
Microsoft® 
Operating 
Systemf2 
Windows Presentation Manager 
Reference 

Volume 3 

M.crosoft Corporation 



Information in this document is subject to change without notice and does not 
represent a commitment on the part of Microsoft Corporation. The software de
scribed in this document is furnished under a license agreement or nondisclosure 
agreement. The software may be used or copied only in accordance with the terms 
of the agreement. It is against the law to copy this software on magnetic tape, 
disk, or any other medium for any purpose other than the purchaser's personal use. 

© Copyright Microsoft Corporation, 1987 

Microsoft, the Microsoft logo, MS-DOS, and MS are registered trademarks of 
Microsoft Corporation. 

Document Number 07-01-87-003 
Part Number 00256 



Contents 

15 Tool Kit Utilities 1 

16 Device Drivers 91 

A Font File Format 227 

B Migration and Coexistence 249 

iii 



Figures 

Figure 15.1 Presentation Manager Dialog box editor 6 

Figure 15.2 Presentation Manager Font Editor 29 

Figure 15.3 Presentation Manager Icon Editor 46 

iv 



Preface 

The Microsoft Operating System/2 Windows Presentation Manager Refer
ence, Volumes 1, 2, and 3, is derived from the latest draft of the functional 
specification of the Windows Presentation Manager. Although this docu
mentation does not represent the final Windows Presentation Manager 
specification, it does provide a reasonable preview of the functionality you 
can expect from the final product. 

This documentation is preliminary in nature. The application program 
interface and other features of the Windows Presentation Manager 
described in this document are subject to change. It is strongly recom
mended that the documentation be read for informational purposes only. 

v 





Chapter 15 
Tool Kit Utilities 

15.1 DIALOG BOX EDITOR USER 
SPECIFICATION 3 

15.1.1 USING FILES WITH 
THE DIALOG BOX EDITOR 3 

15.1.3 MAINWINDOWINTERACTION 8 
15.1.4 ACTIONS BAR aIOICES 9 
15.2 FONT EDITOR FUNCTIONAL 

SPECIFICATION 28 
15.2.1 Application Appearance 28 
15.2.2 APPLICATION ACTIONS 31 
15.2.3 HEIP 44 
15.3 ICON EDITOR FUNCTIONAL SPECIFICATION 45 
15.3.1 APPLICATION APPEARANCE- 46 
15.3.2 APPLICATION ACTIONS 48 
15.3.3 HEIP 56 
15.4 HEIP F AGILITY FOR THE DIALOG, 

FONT, AND ICON EDITORS 57 
15.5 RESOURCE (.RES) FILE 

SPECIFICATION 58 
15.6 RESOURCE SCRIPT FILE 

SPECIFICATION 59 
15.6.1 Resource Script File 59 
15.6.2 Control Classes 77 
15.6.3 Control Styles 79 
15.6.4 FRAME styles 82 
15.7 Sample programs 86 

1 





Tool Kit Utilities 

15.1 DIALOG BOX EDITOR USER 
SPECIFICATION 

This document gives a user specification of the Dialog Box Editor, a 
Presentation Manager application. It describes the physical appearance of 
the application when running under Presentation Manager, how files are 
used with the application, and how the user interacts with the a pplica
tion, i.e., what the assorted commands do, and how to edit dialog boxes. 

The Presentation Manager Dialog Box Editor lets you design dialog boxes 
on the display screen and save a definition of the box in a resource file. 
The definition of the dialog box can be included with other resource 
definitions in your application's resource script file. When you create a 
dialog box, you create the box outline, put controls and text for the con
trols in it, and define the way the user will access the controls. 

15.1.1 USING FILES WITH 
THE DIALOG BOX EDITOR 

This section describes the files produced and used by the Dialog Box Edi
tor and how to use these files with other programs such as the resource 
compiler, your compiler, and your linker. The actions bars and strings 
that make up the user interface for a Presentation Manager application 
generally are produced from a resource definition file, a text file which has 
the extension .re. The application's dialog boxes are defined in a text file 
that has the extension .dlg and included in the resource definition file with 
the rcinclude directive. These files are processed by the Presentation 
Manager Resource Compiler re. re produces a binary resource file with a 
.res extension and also is used to attach the resource file to the 
application's executable .exe file. 

The Dialog Box Editor reads two types of files and produces three types of 
files. It reads the application's .res file, modifying the Dialog Box 
Resources in it, and writes out the modified .res file. When the Dialog Box 
Editor writes out a .res file, it also produces a .dlg file giving the text 
resource definition of the dialog boxes in the .res file. The Dialog Box Edi
tor will use the symbolic equivalents rather than the numbers where such 
constants are correctly contextually defined. Finally, it can also read in 
and write out an include file with the .h extension which is used to define 
symbols which can be used in place of numbers. These symbols are defined 
with the #define C preprocessor directive. 

When the Dialog Box Editor writes a .res file, the file contains the name of 
the include file that was used with the .res file and all changes the user 
made to the Dialog Box Resources but leaves all other resources 
unmodified. If the .re file is subsequently modified, it will have to be com
piled with re. If the Dialog Box Editor didn't save the resource definition 

3 



Windows Presentation Manager Reference 

text for the modified dialog boxes, they would be lost upon recompiling 
with re. That is what the .dlg file is for. If you keep all your dialog box 
definitions in a .dlg file with the same name as your .re and .res files and 
rcinclude the .dlg file in your .re file, the resulting .res file will always be 
up to date, whether it was last produced by the Resource Compiler or by 
the Dialog Box Editor. Note that the Dialog Box Editor never reads the 
.dlg file, it only writes it, hence comments in the .dlg file cannot be 
preserved. 

The .h file produced by the Dialog Box Editor allows you to refer to con
trols by symbolic names rather than numbers. Each control in each dialog 
box has an ID Value associated with it. By using the Include File feature 
of the Dialog Box Editor, you may associate an ID Symbol with each ID 
Value. This symbol will then be defined in the .h file by: 

#define IDSymbol IDValue 

The inclusion of this .h file in your .re and in your C source files using the 
#include directive then allows you to refer to controls by their ID Sym
bols rather than their ID Values. 

There are a few caveats when using the .h include files. First, the Dialog 
Box Editor only reads and writes symbolic constant declarations. Thus, if 
you have anything else in the file, such as comments, structure definitions, 
macros, or variable declarations, they will be lost. So, it is best to have a 
separate file specifically for the symbolic constants used in dialog boxes. 
Next, although it is possible to have more than one ID Symbol for a given 
ID Value, the results may be confusing because only the number is saved 
in the dialog box resource and the Dialog Box Editor has no way of know
ing which symbol to use for that number. You will be warned if you 
attempt to assign more than one symbol to a given number, at that time, 
choose CANCEL and try another ID Symbol. Finally, if you want to use 
the ENTER and ESCAPE keys in the standard ways, you should only use 
the ID Value 1 for buttons associated with the ENTER key and ID Value 2 
for buttons associated with the ESCAPE key. The reason is that whenever 
the ENTER key is pressed, Presentation Manager automatically sends a 
W1LCOMMAND message with ID Value 1 while when the ESCAPE key is 
pressed, Presentation Manager sends a W1L COMMAND message with an 
ID Value of 2. The default ID Symbols for the ID Values (in windows.h) 
are IDOK for 1 and IDCANCEL for 2. 

The following diagrams illustrate how the various files work with various 
programs. 

The .h, .res, and .dlg fit together with the Dialog Box Editor thus: 

The .re, .dlg, .h, and .res files fit together thus: 

4 



Tool Kit Utilities 

The .res, .h, and source files fit together thus: 

15.1.2 APPLICATION APPEARANCE 

15.1.2.1 Main Window 

The main window consists of the following parts: 

1. Editing area 

2. Selected Item Status window 

3. Panel Title 

Note: The following picture gives a good representation of how the appli
cation will look. The exact appearance will depend on the final appear
ance of Presentation Manager. There are also some inaccuracies intro
duced by putting the image in a Write document. 

*---------------------------------------------------------* 
: : S: Dialog Box Editor: SWRITE .RES, SWRITE .H :N: JX: : 
1---------------------------------------------------------1 I I 

l File Edit Control Include Options Exit : Fl=Help: 
1---------------------------------------------------------

I 
I Test mode 
*-------------------------------* 

Heading Options * _________ * ________ * 

J ** Bold J 

* ** * 
I I 
I I * _________ * ________ * 

** Underline 
** 
** Uppercase 
** 
** Section Numbers 
** 

*-----** __________ ** ________ * 
J Enter J : Esc=Cancel : J Fl=Help J 

*-------------------------------* 

*---------------------
: Selected item status 

(x,y) .... : (21,66) 
(ex, cy) .. : (67, 12) 
Relative to window 
Dialog Box 
Control.: Check Box: 
ID Value. : 

---------------------1 I 
I 
I 

---------------------------------------------------------* 

S is the system icon 
X is the maximize icon 
N is the minimize icon 

5 



Windows Presentation Manager Reference 

Figure 15.1 Presentation Manager Dialog box editor 

15.1.2.1.1 Editing Area 

The editing area is where the dialog box will be created and modified. It is 
the client area of the application's window. The dialog box being edited 
may extend out of or be completely out of the editing area as explained in 
the section, "Resizing the Main Window". 

15.1.2.1.2 Selected Item Status Window 

When you start the Dialog Box Editor, you will notice a small window 
labeled "Selected Item Status" in the lower-right corner of the screen. The 
Selected Item Status window stays on your screen as you edit a dialog box 
and supplies you with information about the dialog box and the controls 
in it. When you make a change to the dialog box or controls, the change 
is reflected in the Selected Item Status window. If necessary, the Selected 
Item Status window can be moved out of the way of a dialog box you are 
working on. A picture of the window is below. 

The Selected Item Status window displays the information shown in the 
following list. All measurements in the Dialog Box Editor are given in dia
log units. For horizontal distances, one dialog unit is equal to 1/4 the 
width of a character in the system font (a fixed pitch font). For vertical 
distances, one dialog unit is 1/8 the height of a character in the system 
font. By restricting measurements to dialog units, it is possible to make 
dialog boxes appear the same on different display devices, relative to the 
text in the box. 

6 

( x, y) 

( ex, cy) 

Relative 

Displays the position on the lower-left corner of the dialog 
box or control you have selected. 

Displays the width and height of the dialog box or control 
you have selected. 

Shows how the selected item is positioned. If the selected 
item is a control, this will always be "to Window". If the 
selected item is the dialog box, then it can be "to Window", 
"to Screen", or "to Mouse". See section "Position Relative 
to ... " in the section, "Edit PopDown". 

Control Shows the type of control you have selected (for example, 
Radio Button or Check Box). If the dialog box was selected, 
this part of the Selected Item Status window will read "Dia
log Box". 



Tool Kit Utilities 

ID Value 
If a control is selected, the ID Value or ID Symbol is 
displayed. If the dialog box is selected, its name is displayed. 

15.1.2.1.3 Panel Title 

The panel title will be "Mode:" followed by the mode the Dialog Box Edi
tor is currently in. There are two edit modes and a Test mode. Test 
allows testing of the controls in a dialog box. The two edit modes are 
Work (which allows full editing) and Translate (which allows limited edit
ing). Two possible sub-modes of Work are Group (denoted by 
"Work/Group" and which allows moving groups of controls) and Copy 
(denoted by "Work/Copy" which allows duplicating individual controls). 
The Group and Copy sub-modes are mutually exclusive. The Group sub
mode is also available for Translate. 

15.1.2.1.4 Instructions 

There will be no instructions in the Dialog Box Editor's primary window. 

15.1.2.2 Title Bar 

The Dialog Box Editor's primary window title bar will contain the applica
tion name, "Dialog Box Editor:" followed by the names of the resource 
and include files being edited. 

15.1.2.3 Logo Panel 

When the application first starts up, it will read WIN.IN! and then either 

1. display the logo panel and wait for the user to respond, 

2. display the logo panel for the specified period of time, or 

3. go directly to the application according to the user's 

wishes as specified in WIN.IN!. If the logo panel is displayed until the user 
responds, the following logo panel will be displayed: 

Logo Panel 

If the logo panel will be displayed for a specific period of time, then the 
last line of the panel:' 

Press Enter to continue or Esc to quit. 

will not appear on the panel. 

7 



Windows Presentation Manager Reference 

15.1.3 MAIN WINDOW INTERACTION 

All the creating/ editing of the dialog box is done in the main window with 
the use of the mouse. Actions Bar choices may be accessed either with the 
mouse or keyboard. 

15.1.3.1 Resizing the Main Window 

When the window is resized, the Selected Item Status window is moved 
back to the bottom right-hand corner of the window. Sometimes, the dia
log box being edited will extend beyond the application window, especially 
if the application window is resized. This is because the position of the 
dialog box, either relative to the application window or relative to the 
screen, is saved as the position of the dialog box in the .res file. 

If the dialog box is positioned relative to the mouse, then its position in 
the Dialog Box Editor will be maintained. 

15.1.3.2 Dialog Box Manipulations 

Once a dialog box border is up on the screen, it can be moved, expanded, 
or shrunk. To perform any of these actions, the dialog box borders must 
be selected. This can be done by clicking the mouse on a blank area inside 
the dialog box; the mouse pointer will be a white arrow in the areas which 
will select the dialog box. When the dialog box is selected, eight handles 
(small black rectangles) will appear on the boundaries, as shown here: 

Outline of a Dialog Box 

15.1.3.2.1 Moving the Dialog Box 

To move the dialog box, select the dialog box (as described in the section, 
"Dialog Box Manipulations" above) and then press mouse button one 
inside the dialog box; the pointer will be a plus sign(+) in the valid areas 
for this. While holding the mouse button down, drag the mouse and a 
skeleton of the borders will appear. Release the mouse button when the 
skeleton is located in the desired location for the dialog box. The Selected 
Item Status window will show the exact coordinates while moving the 
skeleton. 

8 



Tool Kit Utilities 

15.1.3.2.2 Expanding/Shrinking a Dialog Box 

To increase or decrease the size of the dialog box, use one of the eight han
dles (small, filled rectangles) on the boundaries. To do this, first select the 
dialog box. Now move the mouse pointer to a handle on the side you want 
to move. The pointer will change to a small box (similar to the handle). 
With the mouse button depressed, drag the border in the desired direction. 
When you release the mouse button, the dialog box will retain its new 
border. You can size the box in vertical and horizontal directions simul
taneously by using a corner handle. 

15.1.4 ACTIONS BAR CHOICES 

The Application Actions Bar contains the choices: 

• File, 

• Include, 

• E <lit, 

• Control, 

• 0 ptions, 

• Ex it, and 

• Fl=Help . 

The underlined character in each choice above is the mnemonic for the 
choice. The choice Fl=Help will be in the rightmost position. The pop
downs for these choices contain choices as follows: 

File Choices that create, open, and save the files containing dia
log boxes. There is also a choice that allows you to view and 
start editing existing dialog boxes. 

Include Choices that you use to create, modify, or view an include 
file. 

Edit Choices that allow you to perform common editing functions 
such as cutting and pasting dialog boxes, duplicating con
trols and moving groups of controls, and changing the order 
in which controls are accessed. There are also choices for 
creating a new dialog box, renaming an existing one, change 
the style of controls and dialog boxes, and setting memory 
management flags. 

Control Choices that let you define the type of controls to be placed 
in the dialog box. 

9 



Windows Presentation Manager Reference 

Options Choices for setting Test and Translate modes, and a choice 
for defining the granularity of control positioning. 

Exit Choices that allow ending or resuming the application. 

15.1.4.1 File Pop-down 

The File Pop-down has five choices: 

• New, 

• 0 pen ... , 

• Save, 

• Save As ... , and 

• V iew Dialog Box ... 

15.1...f .. 1.1 New 

The function of New is to give a standard, untitled and empty resource file 
and clear screen to work from. If you have previously made changes to the 
.res or .h file image in memory, New will warn you that the file has 
changed and allow you to save it before clearing it from memory. 

15.1...{ .. 1.2 Open ... 

Open allows the editing of a dialog box from an existing .res file. When 
Open... is chosen, if there are unsaved changes to the current files, a mes
sage box will pop-up asking if the changes should be saved before opening 
another file. Then the standard Open File dialog box will appear, listing 
the available .res files in the current directory. After a .res file is chosen, 
two things might happen. If the include file name is in the resource file, 
that include file will be opened after a message box asks for confirmation. 
Otherwise the Open Include dialog box (see the section, "Open ... ") listing 
the available .h files (include files) will be shown. The user can choose to 
open an include file or not. After that, the View Dialog Box dialog box 
(seethe section, "View Dialog Box ... ") listing the dialog boxes in the file 
will appear, and the user can choose which dialog box to view or edit. 

Here is the standard Open File dialog box: 

Open File Dialog Box 

Current directory 
(static text) Reports what the current directory is. 

10 



Tool Kit Utilities 

Filename 
(entry) Defines the name of the resource file to open. 

Available files 
(listbox) Lists the files in the current directory with the 
default extension .res. 

15.1.4,1.8 Save 

Save writes out the current .res file and .dlg file with all the dialog boxes. 
If the current file is untitled, Save will bring up the Save As dialog box 
described below. The Alt+F3 key will be an accelerator for Save. If an 
include file is open, its name will be saved in the resource file and, if it has 
changed, the user will be asked if the include file should be saved also. 

15.1.4.1.4 Save As ... 

When Save As ... is chosen, the following dialog box is displayed near the 
upper-left corner of the main window with the name of the current. .res file 
filled in the Filename edit field. If the user types any extension, the Dialog 
Box Editor will warn that the extension is being ignored. If any symbolic 
definitions have changed, then the Include Save As... dialog box will also 
be displayed (see the section "Save As ... ") 

Save .res file and .dlg file Dialog Box 

Current directory 
(static text) Reports what the current directory is. 

Filename 
(entry field) Defines the name of the file to save the resource 
and resource definition files as. 

15.1.4.1.5 View Dialog Box ... 

When View Dialog Box... is chosen, a dialog box is called up which 
displays all the dialog boxes in the current .res file. At this point, the 
name of the dialog box currently being edited will be highlighted, or if 
there is no current dialog box, the first dialog box name will be 
highlighted. The user can then select one of them, and this dialog box will 
be displayed in the editing area and will be available to be modified or 
tested. 

View Dialog Box Dialog Box 

11 



Windows Presentation Manager Reference 

15.1.4.2 Include Pop-down 

The Include pop-down has the following choices: 

• New, 

• 0 pen ... , 

• Save, 

• Save As ... , 

• View Include ... , 

• Hex Mode . 

This pop-down deals directly with the include files (.h files), providing a 
way to change the include file being edited without changing resource file. 

15.1.4.2.1 New 

New clears all information copied from the current include file. If there 
were changes made to the image of the file which were not saved, a mes
sage box will be displayed, saying: 

"filename.h" has changed. Save current changes? 

before the New command is carried out. 

15.1.4.2.2 Open ... 

Open calls up the standard Open File dialog box with a list of all the .h 
files (include files) in the current directory. Choosing a file, makes it the 
current include file for the dialog box. If there are unsaved changes to the 
current include file, a message box asking to save the changes will be 
displayed, before the Open ... command is carried out. See section "Open" 
for the standard Open File dialog box. 

15.1.4.2.3 Save 

Save writes the current include contents to the current include file. If the 
current include file has no name, the Save As ... (Section "Save As ... ") dia
log box will be called up. 

12 



Tool Kit Utilities 

15.L/ .. 2.4 Save As ... 

When Save As... is chosen from the pop-down, the following dialog box is 
displayed near the upper-left corner of the main window with the name of 
the current .h file filled in the Filename edit field. 

Include Save As Dialog Box 

15.1.4.2.5 View Include ... 

View Include... calls up a dialog box which allows the user to add, change, 
and delete ID Symbol definitions from the current include file. The 
current ID Symbol definitions are shown in alphabetic order in a list box. 
If there is no current include file, the list box is empty and the user can 
now add ID Symbol definitions. The definitions are not saved to an 
include file, unless the user issues the Save or Save As command. The dia
log box for View Include... looks like this: 

View Include Dialog Box 

To add a control ID definition to the include file do the following. In the 
Symbol name text box, type the symbolic name you are giving to the con
trol ID. In the ID Value edit box, type the number you are assigning as 
the ID value. If you just want what the Dialog Box Editor considers the 
next number, leave the ID Value field blank. Select the Add button. 

To change a control ID definition, select the definition you wish to change. 
Now edit the symbol name and ID value in the appropriate boxes and then 
select the Change button. 

To delete a definition, select the definition and then press the Delete but
ton. 

To change the Hex/Decimal mode of the displayed IDs, select the 
appropriate radio button. 

15.1.,/..2.6 Hex Mode 

Hex mode allows the user to specify whether the Control ID values are 
shown in decimal or hexadecimal numbers without going through the View 
Include dialog box. If the ID values are shown in hexadecimal, a check 
mark is placed next to Hex mode in the Include pop-down. 

13 



Windows Presentation Manager Reference 

15.1.4.3 Edit Pop-down 

The Edit Pop-down has the following choices: 

• R estore Dialog Box, 

• Cut Dialog Box, 

• Cop y Dialog Box, 

• Paste Dialog Box ... , 

• CI ear Control/Dialog Box, 

• New Dialog Box ... , 

• Rena m e Dialog Box ... , 

• Positio n relative to ... , 

• Styles ... , 

• Group Move, 

• D uplicate Control, 

• Resource Proper t ies ... 

15.1.4.3.1 Restore Dialog Box 

The Restore Dialog Box choice allows you to restore the dialog box to its 
previous saved state. It rereads the dialog box from the Dialog Box 
Editor's copy of the .res file. A message box asks for confirmation before 
the restoration. 

15.1.4.3.2 Cut Dialog Box 

This choice deletes the currently displayed dialog box and puts it in the 
Clipboard. (It cuts both the dialog box resource format and the bitmap 
format.) Individual controls cannot be cut to the Clipboard. 

15.1.4.3.3 Copy Dialog Box 

Copy Dialog Box puts a copy of the currently displayed dialog box (both 
the dialog box resource format and the bitmap format) in the Clipboard. 
Individual controls cannot be copied to the Clipboard, however individual 
controls can be duplicated with the "Duplicate Control" sub-mode (see the 
section, "Duplicate Control") 

14 



Tool Kit Utilities 

15.1.4.3.4 Paste Dialog Box ... 

The Paste Dialog Box choice puts the contents of the Clipboard on the 
screen if the contents are in dialog box resource format. First it requests a 
name for the pasted dialog box and saves the current dialog box. (see the 
section, "New Dialog Box ... "). Note: Only dialog boxes can be pasted; 
individual controls cannot be pasted from the Clipboard. 

15.1.4.3.5 Clear Dialog Box/Control 

This choice will read "Clear Dialog Box" if the dialog box is currently 
selected and "Clear Control" if a control is currently selected. It deletes 
the currently selected item. If it is a dialog box, a confirmation message 
will be displayed saying: 

OK to destroy currently displayed dialog box? 

and the dialog box will be removed from the Dialog Box Editor's copy of 
the .res file in memory. If a control is selected, the control will just be 
deleted from the current copy of the dialog box being edited. 

15.1.4.3.6 New Dialog Box ... 

New Dialog Box puts the currently displayed dialog box back into the Dia
log Editor's copy of the .res file and places a new, empty dialog box on the 
screen. First it requests a name for the new dialog box. Note: This choice 
does not save the .res file to disk., but it does update the Dialog Box 
Editor's copy of the .res file in memory which can affect Restore Dialog 
Box (see the section, "Restore Dialog Box"). 

New Dialog Box and Rename Dialog Box Dialog Box 

15.1.4.3. 7 Rename Dialog Box ... 

The Rename Dialog Box choice puts up the New Dialog Box dialog box 
shown in the section, "New Dialog Box ... " above, requesting a new name 
for the dialog box currently in the editing area. 

15.1.4.3.8 Position Relative to ... 

Dialog boxes may be positioned in three ways: 

1. Relative to a window, 

15 



Windows Presentation Manager Reference 

2. Relative to the screen (absolute positioning), and 

3. Relative to the mouse cursor. 

If a dialog box is positioned relative to the screen, it will always appear in 
the same position on the screen. If a dialog box is positioned relative to a 
window, it may appear at different times on different portions of the 
screen, but it will always appear over the same part of that window. If a 
dialog box is positioned relative to the mouse, t hen the dialog box will be 
positioned so that a particular point on the dialog box will be under the 
mouse pointer when it is first displayed. This choice allows you to set the 
way the dialog box is positioned. The Position Relative to... choice brings 
up the following dialog box: 

Position Relative to Dialog Box 

The Position Relative to dialog box has three radio buttons, select one. 
The options are Relative to Window, Relative to Screen, and Relative to 
Mouse. The Window and Screen choices just set that mode and the 
appropriate positioning information will be remembered anytime you 
move the dialog box. The Relative to Mouse choice produces the following 
dialog box and allows you to set the point which will be under the mouse 
pointer. 

Relative to Mouse Dialog Box 

Point to the spot you want to set and click with the mouse, the position 
will be displayed or you can type the (dialog) coordinates of the point you 
want. When done, select enter. Note: Since there is no way to know 
where the user will want to select, on or off the dialog box, the Relative to 
Mouse dialog box is movable. 

15.Lf.3.9 Styles ... 

The Styles choice allows you to change the styles that govern a control or 
dialog box. You can also use this choice to enter or change text in a con
trol or dialog box and to change the control's ID value and/or symbol. (If 
an include file was loaded, you may symbolically refer to the control's ID 
value. For more information on include files and ID Symbols versus ID 
Values, see Section 1.) Control styles dictate such things as whether a con
trol can be grayed or whether a buttons is a default push button. Dialog 
box styles involve features such as title bars, border types and scroll bars. 

To change a control style for a specific control, first select the control and 
choose Styles... . To change a dialog box style, first select the dialog box 
and choose Styles... . You will see a dialog box that relates to the control 
or dialog box you selected. Select the desired options. Control-style and 
window-style (for the dialog box) options are described in the Presentation 
Manager Reference. If the control or dialog box has text associated with 

16 



Tool Kit Utilities 

it, type the text you want to appe ar in the control in the text section. 
You may also type an ID value or symbol for controls. Select ENTER to 
end the various styles dialog boxes. 

Most of the Styles dialog boxes allow you to enter text and/or an ID Value 
for the selected item. Usually the text is text displayed in the control, but 
for the dialog box, it is the text in the title bar while for icon controls it is 
the name of the icon to use. For all controls, you my enter an ID Value. 
In this field, you may type a number (in decimal or in hexadecimal with 
the Ox prefix), a predefined symbol, or define a symbol by typing the sym
bol followed by a space then the associated number. Note: When you 
create a new control (see the sections, "Control Pop-Down", "Control 
Duplicate", and "Duplicating a Control"), the appropriate Style dialog 
box will be displayed with the next ID Value filled in. To give that value a 
symbol, insert the symbol followed by a space before the given number. 

Button Control Styles Dialog Box 

Besides the standard text and ID fields, the Button Control Styles dialog 
box allows you to change the type of button you have. All of the control 
types listed are defined by Presentation Manager to be buttons. 

Push Button 
is a rectangle with rounded corners and text designed to give 
immediate action. 

Def{ault) Push Button 
is a push button with a heavy border. It is meant to be the 
default action on pressing the ENTER key. It should be 
given the ID Value 1 (ID Symbol IDOK). 

Check Box 
is a small square with text to the right. They are usually 
used in groups to allow zero or more options to be selected. 

Auto Check Box 
is a Check Box which Presentation Manager will maintain 
the checked/unchecked state. With a normal Check Box, 
the application is expected to check or uncheck the control 
when notified of the user action. 

Radio Button 
is a small circle with text to the right. They are used in 
groups to give the user a single choice from several. 

3 State is a Check Box which can be grayed as well as marked 
checked or unchecked. The grayed state is typically used to 
show that the check box has an indeterminate state. 

Auto 3 State 
is just like a 3 State, but Presentation Manager maintains 
the visible state, toggling it from checked to unchecked and 

17 



Windows Presentation Manager Reference 

back when the user clicks in it. 

Group box 
is a frame with a title on the top line, left justified. It is used 
to group controls together. 

Edit Control Styles Dialog Box 

Besides the standard ID field, the Edit Control Styles dialog box allows the 
text alignment and two options to be set. At run time, the application can 
put default text in an edit control, and the user can type text into an edit 
control. The text can be Left, Right, or Center Aligned. The Auto Horz. 
Scroll option causes the text to scroll when the edge of the field is passed. 
The No Hide Selection option overrides the default action of an edit field 
which is to highlight the selection when it receive s the input focus and to 
hide it when it loses the focus. The Edit Control Styles dialog box has no 
text field because there is no text associated with an edit control. 

List Box Styles Dialog Box 

Besides the standard ID field, the List Box Styles dialog box allows several 
standard options to be set. The Notify option causes Presentation 
Manager to notify the application whenever the user clicks or double ~licks 
on an item in the list box. The Sort option ca uses the list box to sort the 
strings before displaying them. The Multiple Sel.( ect) option allows the 
user to select more than one string from the list box and to deselect a 
string by clicking on it again. The No Redraw option prevents the listbox 
from being redrawn every time changes are made. The last option, Stan
dard, is a way of selecting/ deselecting a standard set of list box options, 
Notify and Sort. The List Box Styles dialog box has no text field because 
there is no text associated with a list box control. 

Static Styles Dialog Box 

Besides the standard text and ID fields, the Static Styles Dialog Box allows 
you to select among the various styles of static controls. Static controls 
do not interact with the user and are just for displaying information. 
There are three ways of displaying text, Left, Center, and Right Aligned. 
The text field is for the text which will be displayed. The Icon option 
allows an Icon to be placed in the dialog box. The text field gives the 
name of the icon as given in the icon statement in the .re file. The remain
ing options give various shades of rectangles or frames. These are 
designed to be basic building blocks for simple e;raphics in a dialog box 
(such as putting a border around some controls) and do not use the text 
field. 

Scroll Bar Styles Dialog Box 

18 



Tool Kit Utilities 

The only thing that can be set for a Scroll Bar is the ID field is standard. 
There is no text associated with Scroll Bars. 

Dialog Box Styles Dialog Box 

For the Dialog Box Styles dialog box, the text field gives the Dialog Box 
Title. This title will be displayed in the Title Bar, and hence will only be 
visible if the dialog box has a title bar. The Dialog Box Styles dialog box 
also allows standard window style bits to be set and creates the standard 
frame controls. The Title Bar option gives the dialog box a title bar. The 
System Pop-down Box option gives the dialog box a system Pop-down box. 
This will only be visible if the dialog box also has a title bar. The Horz 
and Vert Scroll Style options give the window horizontal and vertical 
scroll bars. These scroll bars are part of the dialog box frame controls. 
The Size Border option gives the dialog box the wide size-border. The Size 
Box option puts a size box at the end of a scroll bar, thus the dialog box 
must have a scroll bar for this option to be visible. The 
Maximize/Minimize Box options put maximize/minimize boxes on the title 
bar. The Border option gives the dialog box a thin border. The Dialog 
Frame option gives the Dialog Box a dialog frame, a thick solid border sur
rounded by a thinner border. The Visible Bit sets or resets the visible 
style bit. This bit will be set or reset appropriately in the .res and .dlg 
files, but the effect of this bit will not be displayed in the Dialog Box Edi
tor. The visible bit determines if Presentation Manager MUST show the 
dialog box, or if by using an accelerator key sequence the user may avoid 
having the box actually displayed. Generally, it is best to leave the Visible 
Bit check box unchecked unless you absolutely want the dialog box to be 
seen in all cases. 

15.1.4.3.10 Group Move 

Group Move toggles between normal and group move mode. Group move 
mode allows movement of groups of controls together (see the section, 
"Moving a Group of Controls"). When active, Group Move is checked and 
"/Group" appears after the primary mode in the Dialog Box Editor's main 
Panel Title. Group Move and Duplicate Control Modes are mutually 
exclusive. 

15.1.4.3.11 Duplicate Control 

Duplicate Control toggles between normal and duplicate control mode. 
Duplicate control mode allows controls to be duplicated in all respects 
except for ID value (see the section, "Duplicating a Control"). When 
active, Duplicate Control is checked and "/Copy" appears after the pri
mary mode in the Dialog Box Editor's main Panel Title. Group Move and 
Duplicate Control modes are mutually exclusive. When the duplicated 
control is first placed (release of the mouse button), the appropriate Style 
dialog box will be displayed with the next ID value shown. 



Windows Presentation Manager Reference 

15.1.4.3.12 Resource Properties ... 

Since dialog boxes are resources, they have the same memory-manager 
flags that any resource has. The memory-manager flags determine how the 
code for a dialog box is treated by the application and by Presentation 
Manager with regard to memory. You can set options to specify when a 
resource is to be loaded into memory, as well as whether the resource is 
fixed, moveable and/or discardable. The default flag settings are Move
able and Discardable on, Preload off. Memory-manager flags are set in the 
dialog box shown below: 

Resource Properties Dialog Box 

15.1.4.4 Control Pop-down 

The Control Pop-down has the choices: 

• Check Box, 

• Radio Button, 

• P ush Button, 

• Group Box, 

• H orz. Scroll, 

• Vert. Scroll, 

• List Box, 

• Edit, 

• Text, 

• Frame, 

• Rect, 

• I con . 

Controls in a dialog box allow the user to interact with the application. 
Once a border has been created for the dialog box, controls can be added 
by using the Control Pop-down. When one of the choices is selected from 
the Pop-down, the mouse pointer changes to a plus sign ( + ). The pointer 
should then be positioned where the control is to be placed. Pressing the 
mouse button causes the control to appear in the dialog box and the 
mouse pointer to chan9.e back to an arrow. If the control has text associ
ated with it, the word 'text" is included with the control when it is placed 
in the dialog box. Once the control is placed, the appropriate styles dialog 
box will come up allowing you to set the text, ID, and other features, see 
the section, "Styles ... ". 

20 



Tool Kit Utilities 

The choices have the following meanings: 

15.1.4.4.1 Check Box 

Check Box creates a check box, a small square with a label to its right. 
Check boxes typically are used in groups to give the user a choice of selec
tions, any number of which can be turned on or off at a given moment. 

15.1.4.4.2 Radio Button 

Radio Button creates a radio button, a small circle with a label to its 
right. Radio buttons typically are used in groups to give the user a choice 
of selections, only one of which can be selected at a time. 

15.1.4.4.B Push Button 

Push Button creates a push button, a small, rounded rectangle that con
tains a label. Push buttons are used to let the user choose an immediate 
action, such as canceling the dialog box. Note: When placing push but
tons, you should leave some space between the buttons so that if one of 
them is made the default push button (see the section, "Styles ... "), the 
wider border won't cover another border. 

15.1.4.4.4 Group Box 

Group Box creates a simple rectangle that has a label on its upper edge. 
Group boxes are used to enclose a collection or group of other controls, 
such as a group of radio buttons. 

15.1.4.4.5 Horz. Scroll Bar 

Horz. Scroll Bar creates a horizontal scroll bar. Scroll bars let the user 
scroll data and usually are associated with another control or window that 
contains text or graphics. 

15.1.4.4.6 Vert. Scroll Bar 

Vert. Scroll Bar creates a vertical scroll bar. Scroll bars let the user scroll 
data and usually are associated with another control or window that con
tains text or graphics. 

21 



Windows Presentation Manager Reference 

15.1.4.4. 7 List Box 

List Box creates a simple rectangle that has a vertical scroll bar on its 
right edge. List boxes are used to display a list of strings, such as file or 
directory names. 

15.1.4.4.8 Edit 

Edit creates an edit control, a rectangle in which the user can enter and 
edit text. Edit controls are used both to display numbers and text and to 
let the user type in numbers and text. 

15.1.4.4.9 Text 

Text creates a static text control. Static text controls are used for Field 
Prompts and presenting other information such as the panel title and 
instructions. 

15.L.{..4.10 Frame 

Frame creates a rectangle that you can use to frame a control or group of 
controls. 

15.1.4.4.11 Rectangle 

Rectangle creates a filled rectangle. 

15.1.4.4.12 Icon 

Icon creates a rectangular space in which you can place an icon. (Do not 
size the icon space; icons automatically size themselves.) The text for an 
Icon is the name given in the icon command in the .re file for the icon 
desired. 

15.1.4.5 Control Manipulations 

When a dialog box border is up on the screen, controls can be added to the 
dialog box. Once there are controls in the dialog box, they can be moved, 
expanded, or shrunk. To perform any of these actions, the control must 
be selected. This can be done by clicking the mouse on an area inside the 
control; the mouse pointer will be a white arrow in the areas which will 
select the control. When the control is selected, eight handles (small black 
rectangles) will appear on the boundaries of the control. 

22 



Tool Kit Utilities 

A Selected Text Control 

15.1.4.5.1 Moving a Control 

You can reposition a control in a dialog box either by using the mouse to 
drag it to a new location or by using the arrow keys for fine adjustments. 
To move a control, first select the control. When the mouse pointer is in 
the selected control, it changes to a plus sign ( + ). Now depress the left 
button and drag the control to its new location. To move a control one 
dialog unit at a time, use the arrow keys. In this way, you can move a 
control a few positions over (or up or down) without affecting its position 
on the other axis. This is helpful when you want to line up the controls. 

15.1.4.5.2 Moving a Group of Controls 

You can move more than one control in a group maintaining the relative 
positions of the controls. This can be useful if you decide to rearrange the 
layout of controls in the box and you have two or more controls that you 
want to keep together. To move a group of controls, first select Group 
Move from the Edit Pop-down (see the section, "Group Move") then select 
the controls you want to move. You can select any controls you want, 
they don't have to be related in any way. Each control will be outlined 
with a gray line. The group of controls will also have a gray border 
around it. (If you change your mind, you can reverse a selection by click
ing it with the mouse button.) Position the mouse pointer at a location 
inside the group border, but not inside any of the controls' borders, as 
shown below (the pointer is an arrow): 

Before Move After Move 

Press the mouse button and drag the group of controls to the desired loca
tion and release the mouse button. The group of controls is placed in the 
new location. In the figures above, Checkbox 1 and Checkbox 3 have been 
selected for the group move and then are moved to the right. Checkbox 2 
is not outlined and does not move. When you are done, switch back to 
normal Work mode by reselecting the Group Move option. There is a key
board accelerator for group moves: hold down the Shift key whenever you 
press the mouse button one. This accelerator is used for selection and 
deselection and for dragging the group. 

15.1.4.5.3 Changing a Control's Size 

To increase or decrease the size of a control, use one of the eight handles 
(small rectangles) on the boundaries. To do this, first select the control. 
Now move the mouse pointer to a handle. The pointer will change to a 
small box, similar to the handle. Depress the left mouse button and drag 
the border in the desired direction. When you depress the mouse button, 

23 



Windows Presentation Manager Reference 

the small black square handles will disappear, but the square mouse 
pointer will remain. When the frame is the correct shape and size, rel ease 
the mouse button and the control will resize to fill the frame. 

Using the Mouse to Enlarge the Size of a Control 

15.L/ . .5.4 Duplicating a Control 

To duplicate all aspects of a control except its ID, select Duplicate Control 
(see the section, "Duplicate Control"), point to the control with the mouse 
and press the left button on the mouse. If you hold down the mouse but
ton, you may now drag the new control. If you let up without dragging 
the mouse, the new control will be right on top of the old one. When you 
do let up on the mouse button, the appropriate Styles dialog box will 
appear and the ID Value will be the next available value. The new control 
is selected. When you finish duplicating controls, select Duplicate Control 
again. There is a keyboard accelerator for this command. If you hold 
down a Ctrl key while depressing the left mouse button while the pointer 
is on a control, a duplicate control will be created and selected. 

15.1.4.6 Options Pop-down 

The Options pop-down has the choices: 

• Test Mode, 

• T r anslate Mode, 

• Grid ... , 

• Order Groups ... 

15.1.4.6.1 Test Mode 

Test Mode toggles the Dialog Box Editor between an edit mode (work or 
translate) and test mode. The current mode is displayed in the :Dialog Box 
Editor's main Panel Title. Also, a check mark is placed next to the Test 
Mode choice in the Options pop-down when the Dialog Box Editor is in 
test mode. Test mode allows the dialog box to be interacted with like it 
was running under an actual aRplication. The user can enter text in the 
edit fields, select check boxes and radio buttons, and use the TAB and 
DIRECTION keys to cursor around the various controls. 

24 



Tool Kit Utilities 

15.1...j.6.2 Translate Mode 

Translate mode prevents any changes which will affect the interaction 
between the dialog box and the application. Basically it allows text and 
size and shape to be changed, but does not allow adding or deleting con
trols or changing or ID values. Transla te Mode toggles between work 
mode, where any changes are possible, and translate mode, where only lim
ited changes are possible. A check mark is placed next to the Translate 
Mode when it is active and the Dialog Box Editor's main Panel Title will 
display the mode as Translate. 

Note: Just translating the text in the dialog box resources to another 
language may not be enough to translating the application to another 
language. All strings in the string table resource must also be translated 
and any static text control receiving those strings must be large enough 
for the translated text. 

15.1.4.6.8 Grid ... 

The Grid choice puts up dialog box which sets the units of the grid which 
determines the granularity for positioning a control when it is placed or 
moved. For example, when the grid is set at 20 horizontal (x) dialog units, 
if you select a control and try to move it to the left or right, it will move 
in increments of 20 units. Default settings are one unit each in both the 
horizontal and vertical directions. 

Grid Dialog Box 

15.1.4.6.4 Order Groups ... 

The way a dialog box reacts to the keyboard or mouse interface is based in 
part on the sequential order of the controls and the location of tab stops. 
These options are set with the Order Groups choice from the Options 
pop-down. Using this command, you can define the following: 

The sequential order of the controls. 

Which groups the controls are in, and the sequential order of the groups. 
(A group is a collection of controls. Within a group of controls, the user 
makes selections using the DIRECTION keys. This has nothing to do with 
the section, "Group Move"). 

The location of tab stops (the place where the cursor moves when the user 
presses the TAB key). 

25 



Windows Presentation Manager Reference 

When the Order Groups choice is selected, the following dialog box is 
displayed: 

Group/Control Ordering Dialog Box 

The strings in the list box on the Group/Control Ordering dialog box have 
the following meanings. The first string in the list is "Start+of+List" 
padded on both sides by '+' and it allows placement of items at the start 
of the list. The last string in the list is "End+of +List" padded hr, '+' and 
it has a similar use. The start and end of groups are marked by ' Group
Marker" padded by'-'. The strings for controls have four fields. The left
most character may be a space or an asterisk, '*',indicating a tab stop. 
The next field, up to the first '/', gives the text of the control. The third 
field, between the· two '/' characters, is the ID Value. The last field is the 
type of control. 

Changing the Order of Controls 

By default, the controls you place in a dialog box receive the input focus 
(and thus are accessed by the user) in the order in which they were placed 
in the box. For example, the first control you put in the box will receive 
the focus first, no matter where you subsequently move it in the dialog 
box. To change the sequential order, you must use the Order Groups com
mand and rearrange the controls in the list it displays. 

When you rearrange the order of the controls in the Group/Control Order
ing dialog box, the control statements in the .dig file are rearranged 
correspondingly. Thus, the first control listed in the .dig file is the first to 
receive the input focus, the second listed is the second to receive the focus, 
and so on. 

To change the sequence in which a control gets the focus in a dialog box, 
choose Order Groups from the Options pop-down. From the list in the 
dialog box, select the control you want to move. Place the mouse pointer 
where you want the control to appear. Notice that as you move it, the 
pointer changes from an arrow to a short, horizontal bar. The bar appears 
only in places where you are allowed to insert the control. To insert the 
control, press the mouse button. 

Tab Stops 

Tab stops determine where the cursor will move when the user presses the 
TAB key. Normally, tab stops are set for individual controls or, in the 
case of a group, for the first control in the group. To set a tab stop, select 
the control at which you want to place the tab stop. Select the Tab Stop 
button. An asterisk appears next to the control, which indicates a tab 
stop has been placed. To delete a tab stop, select the control that has the 
tab stop. The Tab Stop button will change to read "Delete Tab". Select 
the Delete Tab button. The asterisk disappears. 

26 



Tool Kit Utilities 

Group Markers 

To designate the beginning and end of a group, you add group markers to 
the list of controls in the group. (The group marker appears in the Group 
Order dialog box as a horizontal dashed line with the words "Group 
Marker" in it, as shown in the preceding Figure). You need to place a 
group marker both before the first control and after the last control in a 
group. To add a group marker, select the control that appears just below 
where you want to place the group marker. Select the Group Marker but
ton. The horizontal line indicates that the group marker has been 
inserted. Repeat until all markers have been placed. 

To delete a group marker, select the group marker line. The Group 
Marker button will change to read "Delete Marker". Select the Delete 
Marker button. 

15.1.4.7 Exit Pop-down 

The Exit pop-down has the choices: 

• E xit Dialog Box Editor 

• Continue Dialog Box Editor. 

15.Lj. 7.1 Exit Dialog Box Editor 

Exit Dialog Box Editor will end the application. If there are unsaved 
changes to the resource or include files, a warning message will ask the 
user if the changes should be saved. The appropriate save will be done if 
requested by the user. The F3 key will be an accelerator for Exit Dialog 
Box Editor. 

15.1...f .. 7.2 Continue Dialog Box Editor 

Continue Dialog Box Editor will resume the application. 

15.1.4.8 HELP 

Selecting Fl=Help or using the keyboard accelerator, the Fl key, will 
invoke user interface help for the Dialog Box Editor as described in Help 
Facility for the Dialog, Font, and Icon Editors. 

27 



Windows Presentation Manager Reference 

15.2 FONT EDITOR FUNCTIONAL 
SPECIFICATION 

This document gives a functional specification of the Font Editor, a 
Presentation Manager application. It describes the physical appearance of 
the application when running under Presentation Manager, and also how 
the user interacts with the application, ie., what the assorted commands 
do, and how to edit font characters. 

The Font Editor lets the user edit font files to use with applications. A 
font file consists of a header and a collection of character bitmaps that 
represent the individual letters, digits, and punctuation characters that 
can be used to display text on a display device. Application writers who 
want to use fonts in their applications must add the new font files to a 
font resource file. Note: This specification uses the definition of fonts from 
Appendix A. The Font Editor only handles image fonts, not outline fonts, 
and it does not support kerning. 

15.2.1 Application Appearance 

15.2.1.1 Main Window 

The main window consist of the following parts: 

1. Character window 

2. Character-viewing window 

3. Area of text information 

4. Character-selection window 

28 



Tool Kit Utilities 

*---------------------------------------------------------* 
l lSl Font Editor: COU12EGA.FNT lNl lXi i 
1---------------------------------------------------------1 I I 

i File Edit Header Width Shift Exit i Fl=Help 
1---------------------------------------------------------1 

I *------------------------* *---* 

*------------------------

IID'Hi 
:oTo: 
*---* 
Codepoint=84 
Width=12 
Height=15 

iDEFGHIJKLMNOPQRSiTiUVWXYZ{ \} -'abcdefghijklmnopqrstuvw 1 

---------------------------------------------------------! I 
< i i L I i > i 

---------------------------------------------------------* 

L is the scroll bar slider 
S is the system icon 
X is the maximize icon 
N is the minimize icon 

Figure 15.2 Presentation Manager Font Editor 

15.2.1.1.1 Character Window 

The character window consists of a white box which has a grid of black 
lines on it. The grid cells represent individual pixels, and can be either 
black or white. Together, the pixels represent a single character. The 
character window extends from near the top of the main window down to 
near the top of the character-selection window. 

15.2.1.1.2 Character-Viewing Window 

The character-viewing window consists of a white box on a grey back-· 
ground, and appears to the right of the upper corner of the character win
dow. Inside the box are two full-scale copies of the character in the char
acter window, one above the other, with four other characters surrounding 
them. This window is provided so that the user has some idea of how his 
character will look in relation to other characters. The character-viewing 
window will look like one of these choices: 

HXH 
oxo 

nxn 
OXO 

H[ H 
O[ 0 

131 
030 

29 



Windows Presentation Manager Reference 

caps l.c. syms nums 

where the middle character is the character being edited and the surround
ing characters would be chosen depending if the character was a capital, a 
lower-case, a symbol, or a number. If the Font Editor is editing a font 
whose codepage it does not know about, it will treat the characters in the 
font as symbols. 

15.2.1.1.3 Area of Text Information 

Below the character-viewing window is an area which lists important 
information about the character. The information displayed is the 
character's codepoint value and its width and height in pixels. 

15.2.1.L/. Character-Selection Window 

The character-selection window consists of a long horizontal box, which 
contains a character-selection area and a scroll bar. The character
selection area contains full-scale copies of characters in the font, and is 
provided to allow the user to select the current character to edit. The 
scroll bar allows scrolling the character-selection area so all characters in 
the font can be seen and selected. The character-selection window appears 
at the bottom of the main window, below the character window, and 
stretches horizontally along the bottom of the main window. 

15.2.1.2 Title Bar 

The window title bar will contain the text "Font Editor - filename", where 
filename is the name of the current font file being edited. If there is no 
current file loaded in the Font Editor, the title bar will contain "Font Edi
tor - ( untitled)". 

15.2.1.3 Mouse Pointer Appearance 

When the moused pointer is over the character window, it will appear as a 
pencil so that the user knows where drawing is possible. When the pointer 
is over selectable objects, such as the Application Action Bar (AAB), pop
down choices, and the character-selection window, it will be a black arrow 
with a white outline. When the pointer is over non-selectable objects, ie., 
the remainder of the screen, it will appear as a white arrow with a black 
outline. When the Font Editor is in Add/Delete Row mode, described in 
the section, "Application Action Bar", the pointer will appear as a hor
izontal bar. When the Font Editor is in Add/Delete Column mode, 
described in the section, "Application Action Bar", the pointer will appear 
as a vertical bar. 

30 



Tool Kit Utilities 

15.2.1.4 Logo Panel 

When the application first starts up, it will look in the file WIN.INI for a 
flag specifying whether a logo panel should be displayed, and if it should 
automatically continue to the program or have user controls on it to con
tinue or quit. The logo panel will appear as described in [user interface] 

If the flag specified that the logo panel should automatically continue on 
to the program, the line: 

Press Enter to continue or Esc to quit. 

would not appear on the panel. 

15.2.2 APPLICATION ACTIONS 

15.2.2.1 Main Window Interaction 

When a font file is loaded into the Font Editor, the "A" character is put in 
the character window, and the "A" character is highlighted in the 
character-selection area. The user can now use the mouse to edit the char
acter in the character window, to change the current character being 
edited, or to choose a pop-down from the AAB. 

15.2.2.1.1 Editing in the Character Window 

The user edits the character in the character window by clicking the 
mouse while the pointer is on a pixel. If the pixel was white, it becomes 
black, and if the pixel was black, it becomes white. The user can also 
invert several pixels at once by holding the mouse button down, and drag
ging it over the desired pixels, and then releasing. 

15.2.2.1.2 Selecting a Character in the Character-Selecti'on Window 

The user can use the scroll bar with the mouse to scroll what is visible in 
the character-selection area. The user can select a character to edit by 
moving the mouse pointer into the character-selection area of the 
character-selection window, and then clicking on the desired character. 
This causes the character to be copied to the character window, and the 
selection being highlighted in the charll-cter-selection area. Clicking on the 
arrows at the end of the scroll bar scrolls the character-selection area by 
one character. 

31 



Windows Presentation Manager Reference 

15.2.2.1.3 Posting Changes to an Edited Character 

The user can post his changes to the character in the character window by 
moving the mouse pointer over the selected character in the character
selection area and clicking the mouse button. The character-selection area 
is updated to show the new character. If the user clicks the mouse button 
while the pointer is over another character in the character-selection area, 
the changes to the character in the character window are still posted, and 
the new character is selected and copied into the character window. 

When characters are edited and then posted, the character in the Font 
Editor's copy of the font file is changed. But this has no effect to the font 
file on the disk. In order to save the Font Editor's copy of the font file, the 
user must use the Save or Save As commands from the File pop-down. 
Using these commands writes out the edited font file to the disk. 

15.2.2.1.4 Resizing the Main Window 

When the window is resized, the contents of the window are also resized 
and drawn in the window to maintain full visiblity. If the window 
becomes too small, parts of the window are clipped. 

15.2.2.2 Application Action Bar 

The application action bar contains the choices: 

• File, 

• Edit, 

• Header, 

• Width, 

• Shift, and 

• Ex it . 

The underlined character is the mnemonic for the choice. Also, the non
cursorable choice "Fl=Help" will appear in the bottom rightmost position 
of the AAB. 

15.2.2.2.1 Fi'le Pop-down 

The File pop-down has the choices: 

• New, 

32 



Tool Kit Utilities 

• 0 pen ... , 

• Save, and 

• Save As .... 

New 

When New is chosen, if there are unsaved changes to the current font file, 
a warning message box will pop-up asking the user if the changes should 
be saved. Then the Font Editor will load in the system font. The system 
font is loaded as if it were a font file, filling in the header information and 
loading all the character bitmaps. The reason for having New use the sys
tem font is that there are many fields of information in the font's header, 
and it is easier for the user to have some default values to begin with than 
to start from scratch. 

Open ... 

When Open ... is chosen, if there are unsaved changes to the current font 
file, a warning message box will pop-up asking the user if the changes 
should be saved. Then a dialog box will be displayed near the upper left 
corner of the main window, prompting the user to pick a font file to load 
by showing the following fields: 

Current directory 
(static text) Reports what the current directory is. 

Filename 
(entry field) Defines the name of the font file to open 

Available files 

Save 

(listbox) Lists the files in the current directory with the 
default extension .fnt. 

Save writes the Font Editor's copy of the font file out to the disk. The 
Alt+F3 key combination will be an accelerator for Save. 

When a proportional spaced font file with a codepage the Font Editor 
knows about is saved, the Font Editor will do some error checking on the 
widths of certain characters which should have the same widths. Upon 
saving, the characters which should have the same widths will be checked 
to make sure they agree with each other. If character width mismatches 
are found, the following dialog box informing the user of mismatched char
acters will be displayed to allow the user to save the font file anyway, or 
return to editing characters to fix the mismatches. 

33 



Windows Presentation Manager Reference 

The characters which should have the same widths are: 

0123456789$ 

. , space 
+<>= 
() 
[ J 
{ } 
OQ 
il 
hnu 
bdpq 
accented characters and their unaccented counterparts 

Save As ... 

Save As brings up a dialog box which prompts the user for the name in 
which to save the font. It contains the following fields: 

Current directory 
(static text) Reports what the current directory is. 

Filename 
(entry field) Defines the name of the file in which to save. 

Save As ... also will do error checking for proportional spaced fonts as 
described under Save. 

15.2.2.2.2 Edit Pop-down 

The Edit pop-down has the choices: 

34 

• Cut, 

• Copy, 

• Paste, 

• Undo, and 

• Restore . 

Cut copies the whole character in the character window to the 
Clipboard, replacing it with all white pixels. 

Copy copies the whole character in the character window to the 
Clipboard. 



Tool Kit Utilities 

Paste fills the character window with the character in the Clip
board. 

Undo restores the character window to its previous state, before 
the last change. If the last action was to post the character 
into the Font Editor's copy of the font file, Undo does noth
ing. That is to say, Undo can only nullify the last action if 
the action only affected the character in the character win
dow, and did not affect the highlighted character in the 
character-selection window. 

Restore cancels any changes made to the edited character by recopy
ing the character from the character-selection window to the 
character window. 

15.2.2.2.3 Header Pop-down 

The Header pop-down contains the choices: 

• Naming ... , 

• General..., 

• Sizes ... , and 

• Relations .... 

The font's header contains information about the font's size, style, weight, 
and other information. Since there is so much information in the header, 
it was impossible to present all the header information to the user in one 
dialog box. Thus the header information is broken into four seperate dia
log boxes. 

Here is a complete list of all of the fields in the font's header. Following 
will be seperate lists of what information is in each dialog box. 

Typeface name 
(entry field) The typeface name to which the font is designed, 
eg. Time~ Roman. 

Registry ID 
(entry field) The Registry number for the font. 

Character Set/Code Page 
(entry field) Defines the Registered Code Page supported by 
the font. 

First Character Code Point 
(entry field) The code point of the first character in the font. 

35 



Windows Presentation Manager Reference 

36 

Last Character Code Point 
(entry field) The code point of the last character in the font. 

Default Character Code Point 
(entry field) The code point which is used if a code point out
side the range supported by the font is used. 

Break Character Code Point 
(entry field) The code point which represents the 'space' or 
'break' character for this font. 

Nominal Vertical Point Size 
(entry field) The height of the font specified in decipoints 
(one 720th of an inch). This nominal size is the size for 
which the font is designed. 

Minimum Vertical Point Size 
(entry field) The minimum height to which the font may be 
scaled down for display. 

Maximum Vertical Point Size 
(entry field) The maximum height to which the font may be 
scaled up for display. 

Weight Class 
(group of radiobuttons) Indicates the visual weight (thick
ness of strokes) of the characters in the font. Choices are 
Ultra-light, Extra-light, Light, Semi-light, Medium (normal), 
Semi-bold, Bold, Extra-bold, and Ultra-Bold. 

Width Class 
(group of radiobuttons) Indicates the relative aspect ratio of 
the character of the font in relation to the 'normal' aspect 
ratio for this type of font. Choices are: 

• Ultra-condensed, 

• Extra-condensed, 

• Condensed, 

• Semi-condensed, 

• Medium (normal), 

• Semi-expanded, 

• Expanded, 

• Extra-expanded, and 

• Ultra-expanded. 

Spacing (2 radiobuttons) Indicates whether the font is fixed or pro
portional spaced. 

Protected 
(check box) Says whether the font is licensed or not. 



Styles 

Tool Kit Utilities 

(group of checkboxes) Contain information concerning the 
nature of the font patterns, as follows: 

• Italic, 

• Underscored, 

• Overstruck, 

• Negative Image, 

• Hollow Characters . 

Font Measurement Units 
The units of measure in the font definition. Consists of: 

X Unit Base 
(2 radiobuttons) Describes the unit of measure 
base for x dimension. Tens of inches or decime
ters. 

Y Unit Base 
(2 radiobuttons) Describes the unit of measure 
base for y dimension. Tens of inches or decime
ters. 

X Unit Value 
(entry field) The number of x units of measure in 
the x unit base - eg. an x and y unit of 1/1440th 
of an inch would be represented as 0, 0, 14400, 
14400. 

Y Unit Value 
(entry field) The number of y units of measure in 
the y unit base. 

Target Device Resolution - X 
(entry field) The resolution in the x dimension of the device 
for which the font is intended, expressed as the number of 
device units per unit of measure. 

Target Device Resolution - Y 
(entry field) The resolution in the y dimension of the device. 

Average Character Width 
(static text) Average inter-character increment for the font; 
based on the "Average Character Definition Formula". 

Maximum Character Increment 
(entry field) The maximum inter-character increment for the 
font. 

Maximum Baseline Extent 
(entry field) This is essentially the vertical space required by 
the font - ie. the nominal inter-line gap. 

37 



Windows Presentation Manager Reference 

38 

Character Slope 
Defines the nominal slope for the characters of a font. The 
slope is defined in degrees increasing clockwise from the vert
ical. An Italic font is a typical example of a font with a 
non-zero slope. Consists of: 

Degrees (entry field) Value in the range 0-359, representing 
the number of degrees in the slope. 

Minutes (entry field) Value in the range 0-59, representing 
the number of minutes in the slope. 

lnline Direction 
The direction in which the characters in the font are 
designed for viewing, in degrees increasing clockwise from 
the horizontal (left-to-right). Characters are added to a line 
of text along the character baseline in the inline direction. 
Consists of: 

Degrees (entry field) Value in the range 0-359, representing 
the number of degrees in the direction 

Minutes (entry field) Value in the range 0-59, representing 
the number of minutes in the direction 

Character Rotation 
The baseline direction for which the characters in the font 
are designed. Consists of: 

Degrees (entry field) Value in the range 0-359, representing 
the number of degrees in the rotation 

Minutes (entry field) Value in the range 0-59, representing 
the number of minutes in the rotation 

Maximum Ascender 
(entry field) The maximum height above the baseline reached 
by any part of any symbol in the font. 

Maximum Descender 
(entry field) The maximum depth below the baseline reached 
by any part of any symbol in the font. 

Em Height 
(entry field) The (average) height above the baseline for 
uppercase characters. 

'x' Height 
(entry field) The (average) height above the baseline for 
lowercase characters. 

Lower Case Ascent 
. {entry field) The maximum height above the ~aseline reached 

by any part of any lower case symbol in the font. 



Tool Kit Utilities 

Lower Case Descent 
(entry field) The maximum depth below the baseline reached 
by any part of any lower case symbol in the font. 

Recommended Subscript Size 
(entry field) The recommended point size for subscripts for 
this font. 

Recommended Subscript Position 
(entry field) The recommended baseline offset for subscripts 
for this font. 

Recommended Superscript Size 
(entry field) The recommended point size for superscripts for 
this font. 

Recommended Superscript Position 
(entry field) The recommended baseline offset for super
scripts for this font. 

Underscore Position 
(entry field) The position of the (first) underscore stroke from 
the baseline. 

Underscore Count 
(entry field) The number of strokes used to underscore the 
characters in the font. 

Underscore Width 
(entry field) Thickness of the underscore. (Integer + frac
tion). 

Underscore Spacing 
(entry field) The spacing used between multiple underscores. 

Strikeout Offset 
(entry field) The position of the overstrike stroke relative to 
the baseline. 

Strikeout Thickness 

Naming ... 

(entry field) Thickness of the overstrike stroke. (Integer + 
fraction). 

The Naming dialog box contains the information: 

• Typeface Name 

• Registry ID 

• Protected (licensed) 

• Character Set/Code Page 

39 



Windows Presentation Manager Reference 

• First Character Code Point 

• Last Character Code Point 

• Default Character Code Point 

• Break Character Code Point 

General ... 

The General dialog box contains the information: 

• Spacing (Fixed or Proportional) 

• Style Options 

• Underscored, 

• Italic, 

• Overstruck, 

• Hollow Characters, 

• Negative Image 

• Width Class (Ultra-condensed through Ultra-expanded) 

• Weight Class (Ultra-light through Ultra-bold) 

It is possible to change the font from being proportionally spaced to fixed 
spaced and vice-versa, merely by changing the spacing option. This basi
cally changes nothing when going from a fixed spaced font to a propor
tional font - the user must do any of the character size and spacing adjust
ments necessary. Going from a proportional font to fixed spacing does two 
(destructive) things: 

1. The font character definitions are all made the same width - the 
width of the largest character in the proportional spaced font. 

2. The font spacing information is changed so that inter-character 
spacing is the same for all characters. 

Changing a font from proportional to fixed width may cause considerable 
damage to a font definition because of stretching or compression on its 
narrow and wide characters. Therefore the Font Editor displays a warning 
message to notify the user of the font alteration and offers the option to 
cancel it. 

Si"zes ... 

The Sizes dialog box contains the following information: 

• Nominal Vertical Point Size 

40 



Tool Kit Utilities 

• Minimum Vertical Point Size 

• Maximum Vertical Point Size 

• Font Measurement Units (X Unit Base, Y Unit Base, X Unit Value, 
Y Unit Value 

• Target Device Resolution - X 

• Target Device Resolution - Y 

• Average Character Width 

• Maximum Character Increment 

• Maximum Baseline Extent 

• Maximum Ascender 

• Maximum Descender 

• Em Height 

• 'x' Height 

• Lower Case Ascent 

• Lower Case Descent 

Relati"ons ... 

The Relations dialog box contains the following information: 

• Character Slope 

• Inline Direction 

• Character Rotation 

• Underscore Position 

• Underscore Count 

• Underscore Width 

• Underscore Spacing 

• Strikeout Offset 

• Strikeout Thickness 

• Recommended Subscript Size 

• Recommended Subscript Position 

• Recommended Superscript Size 

• Recommended Superscript Position 

41 



Windows Presentation Manager Reference 

15.2.2.2.4 Width Pop-down 

The Width pop-down has the choices: 

1 Narrower left, 
2 Narrower right, 
3 Narrower both, 
4 Wider left, 
5 Wider right, 
6 Wider both, and 
7 Set width ... 

If the font being edited is a fixed spaced font, then all of the Width pop
down choices will be grayed and non-selectable. 

Narrower Left 
deletes a column from the left side of the character's bitmap. 

Narrower Right 
deletes a column from the right side of the character's bit
map. 

Narrower Both 
deletes a column from each side of the character's bitmap. 

Wider Left 
adds a blank column to the left side of the character's bit
map. 

Wider Right 
adds a blank column to the right side of the character's bit
map. 

Wider Both 
adds a blank column to each side of the character's bitmap. 

Note: Making characters wider than the maximum character width will 
bring up a message box confirming that the maximum character width will 
be increased. 

Set Width ... 

Set Width ... calls up the Width dialog box, which allows the user to 
change the width of the current character's bitmap. If the user specifies a 
width smaller than the current width, columns are deleted from the right 
side of the character's bitmap. If the user specifies a width larger than the 
current width, blank columns are added to the right side of the character's 
bitmap. If the specified size is larger than the maximum character width, 
a message is displayed which asks if the maximum width should be 
increased. 

42 



Tool Kit Utilities 

Width (entry field) Defines the width (in pixels) of the character. 

15.2.2.2.5 Shift Pop-down 

The Shift pop-down contains the choices: 

1 Insert row, 
2 Delete row, 
3 Insert column, and 
4 Delete column. 

These commands are used to insert or delete a row or column of pixels 
from within the character. Both commands require the user to select a 
row or column of pixels in the character window. When either command is 
chosen from the Shift pop-down, the mouse pointer changes to a horizon
tal bar (for insert/ delete row) or a vertical bar (for insert/ delete column) 
to signal to the user that a row or column must now be selected. The user 
selects the row or column by clicking the mouse pointer over the desired 
row or column. 

Insert row 
inserts a new row of white pixels where the selected row is, 
pushing all other rows up or down depending on where the 
selected row was located. If the selected row is above the 
baseline, Insert pushes rows up to make room for the new 
row. If the selected row is below the baseline, Insert pushes 
rows down to make room the new row. 

Delete row 
removes the selected row of pixels from the character, push
ing all other rows up or down to take the removed row's 
place. If the selected row is above the baseline, Delete 
pushes rows above the selected row down towards the base
line. If the selected row is below the baseline, Delete pushes 
rows below the selected row up towards the baseline. 

Insert column 
inserts a new column of white pixels where the selected 
column is, pushing all other columns left or right depending 
on where the selected column was located. If the selected 
column is on the left half of the character, Insert pushes 
columns to the left to make room for the new column. If the 
selected column is on the right half of the character, Insert 
pushes columns to the right to make room for the new 
column. If the selected column is in the exact center of the 
character, Insert will push columns to the right to make 
room for the new column. 

43 



Windows Presentation Manager Reference 

Delete column 
removes the selected column of pixels from the character, 
pushing all other columns left or right to take the removed 
column's place. If the selected column is on the left half of 
the character, Delete pushes columns to the left of the 
selected column towards the center of the character. If the 
selected column is on the right half of the character, Delete 
pushes columns to the right of the selected column towards 
the center of the character. If the selected column is in the 
exact center of the character, Delete will push columns to the 
right of the selected column towards the center. 

15.2.2.2.6 Exit Pop-down 

The Exit pop-down contains the choices: Exit Font Editor, and Continue 
Font Editor. 

Exit Font Editor will end the application. If there are unsaved changes to 
the current font, a warning message box will be displayed asking the user 
if the changes should be saved. The F3 key will be an accelerator for Exit. 

Continue Font Editor resumes the application. 

15.2.3 HELP 

Context sensitive Help will be provided for the Font Editor as described in 
the document Help Facility For The Dialog, Font, and Icon Editors. 

44 



Tool Kit Utilities 

15.3 ICON EDITOR FUNCTIONAL SPECIF
ICATION 

This document gives a functional specification of the Icon Editor, a 
Presentation Manager application. It describes the physical appearance of 
the application when running under Presentation Manager, and also how 
the user interacts with the application, ie., what the assorted commands 
do, and how to edit icons, pointers, and bitmaps. 

The Icon Editor lets the user create customized icons, pointers, and bit
maps for use in applications. The application allows the user to work on a 
large-scale icon, pointer, or bitmap while displaying a full-scale replica of 
the work. The difference between icons, pointers, and bitmaps is as fol
lows: Note: In this document, the terms hi-res, med-res, lo-res will refer to 
different categories of display devices. Lo-res refer to "CGA" compatible 
displays (640x200). Med-res refer to "EGA/VGA" compatible displays 
{640x350, 640x480). Hi-res refer to any displays which have a higher reso
lution than the "EGA/VGA" displays. Also, the following dimensions 
given for icons and pointers are still subject to change depending on what 
Presentation Manager will be like. 

Icons and Pointers contain 64x64 pixels in hi-res format, 32x32 pixels in 
med-res format, and 32x16 pixels in lo-res format. They can contain four 
different kinds of pixels in them: black pixels, white pixels, screen pixels, 
and inverse screen pixels. Screen pixels can be thought of as clear, and 
show the background color of whatever they are over. Inverse screen pix
els show the inverse of the background color of whatever they are over. 
An example use of an icon is the warning symbol of the upraised h and 
found in some message boxes. Pointers are used by Presentation Manager 
to show the location of the mouse on the screen. 

The pixels in an icon/pointer are stored in a bitmap which is divided in 
two parts: the AND mask and the XOR mask. The AND mask contains 
the screen/non-screen color information (0 =black or white, 1 =screen or 
inverse screen). The XOR mask contains the invert information (0 =no 
invert, 1 =invert). Presentation Manager draws the icon/pointer by first 
BITBLTing to the screen the AND mask (the result is a screen or black 
bitmap), and then BITBL Ting to the screen the XOR mask to invert the 
required pixels to get white and inverse screen pixels in the bitmap. The 
chart below shows what the Icon Editor stores in the two bitmasks: 

AND mask: 
XOR mask: 

Black 
0 
0 

Represented Color 
White Screen Inverse 

0 1 1 
1 0 1 

45 



Windows Presentation Manager Reference 

Bitmaps contain anywhere from lxl to 99x99 pixels. Their size is defined 
by the user while using the Icon Editor. They can only contain two kinds 
of pixels in them: black pixels or white pixels. c 

15.3.1 APPLICATION APPEARANCE 

15.3.1.1 Main Window 

The main window consists of the following parts: 

1. Editing box 

2. Display box 

3. Panel instructions 

*---------------------------------------------------------* 
: : S: Icon Editor: LOGO. ICO :N: :x: : 
:---------------------------------------------------------: 
: File Edit Options Color Pensize Exit : Fl=Helpl 

Use the mouse to edit. Button 1 draws black. 
*----------------------------------* 

*-----* 
I I 
I I 

*-----* 

*----------------------------------* 

S is the system icon 
X is the maximize icon 
N is the minimize icon 

Figure 15.3 Presentation Manager Icon Editor 

15.3.1.1.1 Editing Box 

The editing box is a large rectangular box located on the right of the main 
window. This box is the workspace for editing icons, pointers, and bit
maps, and its size depends on which of these is currently in use. The box 
is a magnified view of a small part of the screen. Each pixel in the box is 
many times larger than on the actual screen, so that you can see the indi
vidual pixels while doing your work. 

46 



Tool Kit Utilities 

15.3.1.1.2 Display Box 

The display box is a smaller rectangular box located to the left of the edit
ing box. It contains the type of the current figure being edited, the device 
category and dimensions of the figure being edited, the devic category and 
dimensions of the figure being viewed in the display box, and a true-scale 
replica of the figure being edited. 

15.3.1.1.3 Panel Instructions 

Below the Application Action Bar (AAB), left justified, will be instructions 
on what to do. What the instructions say depends on the mode. (These 
modes are discussed in full detail later in this document.) 

Hotspot mode 
Click Buttonl of the mouse in the edit box to set the 
hotspot. 

Select mode 
Use the mouse to select a region, and then choose Cut or 
Copy. 

Editing mode 
The instruction text will tell what color each mouse button 
will draw. The possible combinations are too numerous to 
list fully here. Some examples are: 

"Use the mouse to Edit. 
"Use the mouse to Edit. 
scr/inv." 

Buttonl draws black. Button2 draws s' 
Buttonl toggles bl/wh. Button2 togg 

For 1 button mouse: 
"Use the mouse to Edit. 
"Use the mouse to Edit. 

15.3.1.2 Title Bar 

Buttonl draws black." 
Buttonl toggles scr/inv." 

The window title bar will contain "Icon Editor - filename", where filename 
is the name of the current file being edited. If there is no current file 
loaded in the Icon Editor, the title bar will contain "Icon Editor - (unti
tled)". 

47 



Windows Presentation Manager Reference 

15.3.1.3 Mouse Pointer Appearance 

When the mouse pointer is over selectable objects, such as the AAB or 
pop-down choices, it will be a black arrow with a white outline. When the 
pointer is over non-selectable objects, ie., the client area of the Icon 
Editor's window minus the editing box, it will appear as a white arrow 
with a black outline. When the mouse pointer is over the editing box, it 
will appear as one of four different pointers, depending on the mode. 
When the Icon Editor is in edit mode, the pointer will appear as a pencil if 
the pen size is lxl, or a brush if the pen size is greater than lxl. When 
the Icon Editor is in Hotspot mode, described in the section, "Application 
Action Bar", the pointer will appear as a bullseye. When the Icon Editor 
is in Select mode, described in the section, "Application Action Bar", the 
pointer will appear as a plus sign. 

15.3.1.4 Logo Panel 

When the application first starts up, it will look in the file WIN.INI for a 
flag specifying whether a logo panel should be displayed, and if it should 
automatically continue to the program or have user controls on it to con
tinue or quit. The logo panel will appear as described in [user interface] 

If the flag specified that the logo panel should automatically continue on 
to the program, the line "Press Enter to continue or Esc to quit." would 
not appear on the panel. 

15.3.2 APPLICATION ACTIONS 

15.3.2.1 Main Window Interaction 

When a icon, pointer, or bitmap file is loaded into the Icon Editor, a true
scale copy of the file's contents are shown in the display box, and a large
scale copy is shown in the editing box. The user can now use the mouse to 
edit the figure in the editing box, or choose a pop-down from the AAB. 

15.3.2.1.1 Drawing in the Editing Box 

The user edits (or creates) the figure in the editing box by moving the 
mouse pointer into the editing box and using buttonl and button2 (2-
button mouse) or buttonl (1-button mouse) to color and erase pixels. How 
the mouse button(s) function depends on the figure being edited, the 
current pen size, and the pen color selected from the Color pop-down, 
described in the section, "Application Action Bar". The following charts 
define the functionality: 

Icon/Pointer mode. Pensize>lxl. 

48 



Tool Kit Utilities 

pen color (selected from color pop-down) 
black white screen inverse 

Button! draws: black white screen inverse 
Button2 draws: screen screen screen screen 
(with 2 button mouse) 

Icon/Pointer mode. Pensize=lxl. Color=Black or White. 

pixel color (of what pen is over) 
black white screen inverse 

Button! draws: white black black black 
Button2 draws: screen screen inverse screen 
(with 2 button mouse) 

Icon/Pointer mode. Pensize=lxl. Color=Screen or Inverse screen. 

pixel color (of what pen is over) 
black white screen inverse 

Button! draws: screen screen inverse screen 
Button2 draws: white black black black 
(with 2 button mouse) 

Bitmap mode. Pensize>lxl. 

Button! draws: 
Button2 draws: 
(with 2 button 

pen color (selected 
black white 
black white 
white black 

mouse) 

from color pop-down) 

Bitmap mode. Pensize=lxl. 

Buttonl draws: 
Button2 draws: 
(with 2 button 

pixel 
black 
white 
white 

mouse) 

color (of what pen is over) 
white 
black 
black 

Several pixels can be colored or erased at once by pressing the appropriate 
mouse button, and dragging the mouse pointer over the pixels which are 
to be colored or erased. The user can draw straight lines by holding down 
the SHIFT key while pressing a mo use button and dragging the pointer. 
The user can also draw straight lines by selecting the "Draw straight" 
choice from the Options pop-down, as described in 
the section, "Application Action Bar". 

15.3.2.1.2 Resizing the Main Window 

When the window is resized, the editing box is resized and then the editing 
and display boxes are redrawn to be centered in the new window. If the 
window is too small, then parts of the boxes are clipped from view. The 
editing box will be sized no smaller than having each edit cell 2x2 screen 
pixels. 

49 



Windows Presentation Manager Reference 

15.3.2.1.3 Display Device Formats 

When Presentation Manager loads an icon or pointer resource for an appli
cation, it scales the figure to the current system icon or pointer size. The 
current size depends on the display device Presentation Manager is run
ning on. This way the application writer does not have to worry about 
sizing his icon or pointer for different display resolutions. Presentation 
Manager will automatically do it for him, either sizing his figure up or 
down depending on the size of the figure and the size of the system icon or 
pointer. 

When Presentation Manager loads a bitmap resource for an application, it 
does not scale the bitmap. It is the application's responsibility to stretch 
or compress the bitmap for its specific needs. 

15.3.2.2 Application Action Bar 

The application action bar contains the choices: F ile, Edit, 0 ptions, C 
olor, P ensize, and Exit. The underlined character is the mnemonic for 
the choice. There will also be the choice Fl=Help in the rightmost posi
tion. 

15.3.2.2.1 File Pop-down 

The File pop-down has four choices: 

• New 

• 0 pen ... 

• Save 

• Save As ... 

New 

When New is chosen, if there are any unsaved changes to the current 
figure, a warning message box will pop-up, saying "filename" has changed. 
Save current changes. Then a dialog box will be displayed which prompts 
the user to choose a figure and its display device format. When the dialog 
box is entered, the Icon Editor will clear the editing box and display box of 
all their contents, and fill an icon or pointer with all screen pixels, and a 
bitmap with all white pixels. 

Open ... 

When Open ... is chosen, if there are unsaved changes to the current file, a 
warning message box will pop-up asking the user if the changes should be 
saved. Then a dialog box will be displayed near the upper left corner of 
the main window, showing the following fields: 

50 



Tool Kit Utilities 

Current directory 
(static text) Reports what the current directory is. 

Filename 
(entry field) Defines the name of the file to open. 

Available files 

Save 

(listbox) Lists the files in the current directory with the 
current edit default extension: .ico, .cur, or .bmp. 

Save writes the current figure out to the current file. If the figure is unti
tled, (it was newly created without being read from a file), then the Save 
As dialog box will be called up. The Alt+F3 key combination will be an 
accelerator for Save. 

Save As ... 

When Save As ... is chosen from the pop-down, a dialog box is shown near 
the upper left corner of the main window, showing the following fields: 

Current directory 
(static text) Reports what the current directory is. 

Filename 
(entry field) Defines the name of the file in which to save. 

15.3.2.2.2 Edit Pop-down 

The Edit pop-down has the choices: 

• Select 

• Select A 11 

• Clear 

• cut 

• Copy 

• Paste 

• Hotspot 

Select 

51 



Windows Presentation Ma.na.ger Reference 

Select puts the Icon Editor in select mode. 

In select mode, the pointer is changed to a plus sign ( + ), and is used to 
select a rectangle of pixels in the editing box. The user selects the rectan
gle by clicking down on a pixel, dragging the mouse to another pixel, and 
releasing the mouse button. While the user is dragging the mouse, he will 
see the frame of a rectangle displayed from where the mouse pointer is to 
the pixel the mouse pointer was clicked down on. You can change your 
selection by doing the click-drag-release actions again. 

Exit select mode by either choosing the Select choice again, or choosing 
Clear, Cut or Copy from the Edit pop-down. 

Select All 

Select All also puts the Icon Editor in select mode but the entire figure is 
automatically selected. You can change the selection by click-drag-release 
actions as specified for Select. 

Clear 

Clear erases the selected rectangle of pixels by replacing them with white 
pixels in bitmap mode, or with screen pixels in icon or pointer mode. The 
Icon Editor returns to edit mode after executing this command. The Clear 
command does not affect the Clipboard contents. 

Cut 

Cut will copy the selected rectangle of pixels to the Clipboard, and will 
replace the pixels with white pixels in bitmap mode, and screen pixels in 
icon and pointer mode. 

In bitmap mode the Clipboard receives one bitmap. In cursor or icon 
modes the Clipboard receives two objects: a black and white bitmap, 
where white represents the figure's white and screen pixels, and black 
represents the figure black and inverse screen pixels; and an object of a 
format defined privately by the Icon editor, which maintains all the 
figure's information. The privately defined object is for use only by the 
Icon Editor. 

After the Cut command has been done, the Icon Editor will be taken out 
of select mode. 

Copy 

Copy will copy the selected rectangle of pixels to the Clipboard. The Clip
board new contents will be as specified in the Cut command section. After 
the Copy command has been done, the Icon Editor will be taken out of 
select mode. 

62 



Tool Kit Utilities 

Paste 

Paste allows the user to copy pixels from the Clipboard- to the currently 
edited figure. If the currently edited figure is a pointer or an icon and the 
Clipboard contains a figure defined in the Icon Editor private format, the 
Clipboard contents will be scaled to the current display device resolution. 
Otherwise the Clipboard contents will not be scaled. 

If both Clipboard contents and figure are either icon or pointer, screen and 
inverse screen information is preserved, otherwise only black and white 
pixels are pasted using the Clipboard bitmap. For a summary refer to the 
following table: 

pasting bitmap bitmap into icon/ptr into icon/ptr into 
into bitmap icon/ptr bitmap icon/ptr 

-------------+---------------------------------------------------------
Clipboard I 
object used I bitmap bitmap bitmap icon/ptr 
-------------+---------------------------------------------------------
Scaling I no no no yes 
-------------+---------------------------------------------------------
Colors I Black/White Black/White Black/White Black/White and 

screen/inverse 

How the actual pasting is done depends on how the Clipboard contents fit 
into the figure being edited. Let "larger" mean that a figure exceeds the 
size of the currently edited figure in either dimension. If a figure is identi
cal in size in both dimensions to the currentlr, edited figure, then it is the 
"same size". Otherwise the figure is "smaller'. 

If the Clipboard figure is smaller, the frame of a rectangle representing the 
pixels in the Clipboard will be displayed in the editing box. The user can 
then move the frame to a location in the editing box by clicking inside the 
rectangle, dragging the mouse, and then releasing at the desired location. 
The editing box will then be repainted to incorporate the pixels from the 
Clipboard. 

If the Clipboard figure is larger than the current figure size (if you are edit
ing a pointer or an icon) or than the maximum bitmap size (if you are edit
ing a bitmap), a warning message will be displayed notifying the user that 
part of the Clipboard contents will be clipped, and Paste will only copy 
the pixels in the rectangle frame which intersect the editing box. 

If the Clipboard figure is larger than the currently edited bitmap but 
smaller than the bitmap maximum size, a warning message will be 
displayed notifying the user that the current bitmap size will be increased 
to the Clipboard figure size and that the later will replace entirely the pre
viously edited bitmap. 

If the Clipboard figure has the same size, a warning message will be 
displayed and, given the user confirmation, the Clipboard figure will 
replace entirely the previous edited picture. 

53 



Windows Presentation Ma.na.ger Reference 

Hotspot 

In an icon, the hotspot can be used by applications to determine where the 
icon is on the screen. In a pointer, th~ hotspot is the pixel from which 
Presentation Manager will take the pointer's current screen coordinates. 
Bitmaps do not have hotspots. 

The Hotspot choice is only enabled if editing an icon or pointer; if editing 
a bitmap, Hotspot is grayed. When Hotspot is chosen, a checkmark is 
placed next to it, information about the current hotspot location appears 
in the display box (see picture be low), and the mouse pointer changes to a 
bullseye. The hotspot is set by moving the mouse pointer to the location 
in the icon or pointer, (in the editing box), where the hotspot is desired, 
and clicking the mouse. 

Only one hotspot is allowed, so clicking the bullseye pointer elsewhere will 
reset the hotspot location. If the user does not set the hotspot, the default 
location is the center of the icon or pointer. While in hotspot mode, 
Select, Cut, Copy, and Paste are grayed. To leave hotspot mode, the user 
must again select Hotspot from the pop-down; the checkmark is removed, 
the other pop-down choices enabled, and the location information will 
disappear. 

15.9.2.2.9 Options Pop-down 

The Options po:e-down has the choices: G rid, D raw straight, B lack," 
yv'' hite, Dark lblue/gray), Light (blue/gray), Lo-res, Med-res, and H 
I-res. 

All the choices in the Options pop-down affect what the user sees while 
editing his figure, but do not affect what is actually stored in the figure. 

Grid 

When Grid is chosen, a checkmark is placed by it, and a grid of lines is 
displayed over the editing box. Each grid cell represents one pixel in the 
figure's bitmap. If the background color is Black, the grid is made up of 
white lines. If the background is anything other than Black, the grid is 
made up of black lines. Choosing Grid again will remove the checkmark 
and remove the grid on the editing box. 

Draw Straight 

When Draw straight is chosen, a checkmark is placed by it, and the Icon 
Editor will now draw/erase straight lines in the editing box. If the user 
clicks on a pixel in the editing box and then drags his mouse horizontally, 
the Icon Editor will force drawing a horizontal line, even if the user devi
ates from the horizontal row. Similarly, if the user clicks down on a pixel 
and then drags his mouse vertically, the Icon Editor will draw a vertical 

54 



Tool Kit Utilities 

line. Once the user releases the mouse button, the current direction which 
was being forced is no longer forced. To leave the Draw straight mode, 
the user must choose the Draw straight choice again. The user can also 
draw straight lines by holding down the SHIFT key while pressing a mouse 
button and dragging the pointer, as described in the section, "Main Win
dow Interaction". 

Black, White, Dark (blue/gray), Light {blue/gray) 

These choices will have the text "Background View:" above them on the 
Options pop-down. If the user is running on a color display, the third and 
fourth choices will be Dark blue and Light blue. If the user is running on a 
monochrome display, the third and fourth choices will be Dark gray and 
Light gray. 

The background color is provided to allow the user to see what his icon, 
pointer, or bitmap will look like over a variety of different screen colors. It 
is for viewing purposes only, it does not affect what is stored inside the 
icon, pointer, or bitmap. The background color does not actually fill in 
pixels in the figure; it is seen through screen pixels and its inverse is seen 
throught inverse screen pixels. When one of the color choices is chosen, a 
checkmark is placed by it and the editing box and display box are 
redisplayed with the new background color. 

Lo-res, Med-res, Hi-res 

These choices will have the text "Display Version View:" above them on 
the Options pop-down. If the user is editing a dependent bitmap, these 
choices will be grayed. 

These choices decide which display version of the current figure to show in 
the display box. If the user is editing either an icon or pointer, the Icon 
Editor will use the same algorithm Presentation Manager will use to either 
compress or stretch the figure to be the same size as the chosen display 
version's system icon or pointer. For independent bitmaps, the Icon Edi
tor will use the same algorithm Presentation Manager will use to scale the 
bitmap up or down depending on the chosen display version. (The scaling 
factors have not been decided at the time of writing). If the user is editing 
a dependent bitmap, the display version will be ignored, and the figure in 
the display box will be exactly the number of pixels the user specified for 
the bitmap. 

15.3.2.2.,f. Color Pop-down 

The Color pop-down has the choices: Black, White, S creen, and Inverse 
screen. 

55 



Windows Presentation Ma.riager Reference 

In pointer and icon mode, all pen color choices are enabled. In bitmap 
mode, Screen and Inverse screen are grayed because bitmaps can only con
tain black or white pixels. 

The pen color choice always refers to Buttonl of the mouse. If the user is 
using a 2-button mouse, the color of Button2 will be based on the color 
selected for Buttonl. The panel instructions will describe which colors are 
assigned to each mouse button. The full functionality is described in the 
section, "Main Window Interaction". 

When one of the choices is chosen, a checkmark is placed next to it and 
the current p~n color is set to the new choice. 

15.9.2.2.5 Pensize Pop-down 

The Pensize pop-down has the choices: Small (lxl), Medium (3x3), L 
arge (5x5), and Extra large (7x7). 

When one of the choices is chosen, a checkmark is placed next to it and 
the current pen size is set to the new choice. Now drawing in the editing 
box will fill a region of pixels equal to the new size. 

When the pen size is greater than one pixel, the region filled will be 
located around the tip of the pen pointer, ie. the pen pointer's tip will be 
in the center of the 3x3 region (medium size) or 5x5 region (large size) or 
7x7 region (extra large size). 

15.9.2.2.6 Exit Pop-down 

The Exit pop-down contains the choices: Exit Icon Editor, and Continue 
Icon Editor. 

Exit Icon Editor will end the application. If there are unsaved changes to 
the current figure, a warning message box will be displayed asking the user 
if the changes should be saved. The F3 key will be an accelerator for Exit. 

Continue Icon Editor resumes the application. 

15.3.3 HELP 

Context sensitive Help will be provided for the Icon Editor, as defined in 
the document Help Facility For The Dialog, Font, And Icon Editors. 

56 



Tool Kit Utilities 

15.4 HELP FACILITY FOR THE DIALOG, 
FONT, AND ICON EDITORS 

The purpose of Help is to provide information to the user which aids in the 
operation of an application. When the user requests Help, information 
regarding the item selected in the current context is displayed. The user 
can also request an index of available Help topics, request General Help, or 
request information on the functions assigned to keys. 

The appearence and function of the Help Facility for the Dialog, Font and 
Icon Editors is tha same as for the Shell. 

Here is a picture of what the Help window might look like for the Editors: 

++-+----------------------------------------------------------+-+-+-++ 
: :s: Dialog Box Editor: SWRITE 
++-+----------------------------------------------------------+-+-+-+: 
: File Edit Control Include Options Exit : Fl=Help: 
+------------------------------------------------------------------+-: 

+-+---------------------------------------------------+-+-+ 
: S: Dialog Box Editor Help :N: : 
+-+---------------------------------------------------+-+-: 

Sizing a control :A 1 

---------------- +-
1/ To size a control, first select it. The control 

will be given a grayed border and +handles+. 

2/ Point to the +handle+ of the side or corner you 
want to move. 

3/ When the pointer appearance changes to a box, 
press mouse button 1, and move the box to the 
place required. 

I 
I 

+
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+-
4/ :v, 

+-------------------------------------------------------+-: 
: (Esc=Cancel) (Fl=General Help) (FS=Index) (F9=Keys) : 
+---------------------------------------------------------! 

:A' 
+-
I 
I 
+-

+-
:v, 

+--+--+---------------------------------------------------------+--%-: 
:<-: : :->: : 
+--+--+---------------------------------------------------------+--+-! 

A sample help window 

57 



Windows Presentation Manager Reference 

15.5 RESOURCE (.RES) FILE 
SPECIFICATION 

The format for the .res file is as follows: 

{TYPE NAME FLAGS SIZE BYTES}+ 

Where: 

TYPE is either a null-terminated string or an ordinal, in which case 
the first byte is OxFF followed by an INT which is the ordi
nal. 

/* Predefined resource 
#define RT_CURSOR 
#define RT_BI'IMAP 
#define RT_ICON 
#define RT_MENU 
#define RT_DIALOG 
#define RT_S'IRING 
#define RT_FONTDIR 
#define RT...,;FONT 
#define RT_ACCELTABLE 
#define RT_DLGINCLUDE 

types */ 
MAKEIN'IRESOURCE( 1) 
MAKEIN'IRESOURCE( 2 ) 
MAKEIN'IRESOURCE ( 3 ) 
MAKEIN'IRESOURCE ( 4 ) 
MAKEIN'IRESOURCE( 5) 
MAKEIN'IRESOURCE( 6 ) 
MAKEIN'IRESOURCE( 7) 
MAKEIN'IRESOURCE( 8 ) 
MAKEIN'IRESOURCE( 9 ) 
MAKEIN'IRESOURCE(lO) 

NAME is the same format as TYPE. There are no predefined ordi
nals. 

FLAGS is an unsigned value containing the memory manager flags: 

#define NSTYPE Ox0007 /* Segment type mask */ 
#define NSCODE OxOOOO /* Code segment */ 
#define NSDATA OxOOOl /* Data segment */ 
#define NSITER OxOOOS /* Iterated segment flag */ 
#define NSMOVE Ox0010 /* Movable segment flag */ 
#define NSPURE Ox0020 /* Pure segment flag */ 
#define NSPRELOAD 0x0040 /* Preload segment flag */ 
#define NSEXRD OxOOSO /*Execute-only (code segment), 

* or read-only (data segment) 
*/ 

#define NSRELOC OxOlOO /* Segment has relocations */ 
#define NSDEBUG 0x0200 /* Segment has debug info */ 
#define NSDPL OxOCOO /* 286 DPL bits */ 
#define NSDISCARD OxlOOO /* Discard bit for segment */ 

SIZE is a LONG value telling how many bytes follow in the 
resource. 

BYTES is the stream of bytes that makes up the resource. 

Any number of resources can appear one after another in the .res file. 

58 



15.6 RESOURCE SCRIPT FILE 
SPECIFICATION 

15.6.1 Resource Script File 

Tool Kit Utilities 

The resource script file defines the names and attributes of the resources to 
be added to the application's executable file. The file consists of one or 
more resource statements that define the resource type and original file. 
The following is a list of the resource statements: 

Single-line statements 

• CURSOR 

• ICON 

• BITMAP 

• FONT 

• DLGINCLUDE 

User-defined resources 

Multiple-line statements 

• STRINGTABLE 

• ACCELTABLE 

• MENU 

• DIALOGTEMPLATE 

• WINDOWTEMPLATE 

Directives 

• #include 

• #define 

• #undef 

• #ifdef 

• #ifndef 

• #if 

• #elif 

• #else 

• #endif 

59 



Windows Presentation Manager Reference 

The following sections describe these statements in detail. 

15.6.1.1 Single Line Statements 

The single line statements define resources that are contained in a single 
file, such as cursors, icons, and fonts. The statements associate the 
filename of the resource with an identifying name or number; The 
resource is added to the executable file when the application is created, 
and can be extracted during execution by referring to the name or number. 

The general form for all single line statements is: 

resource-type nameID [load-option] [mem-option] filename 

nameID is either a unique name or an integer number identifying the 
resource. For a FONT resource, the namelD must be a number; it cannot 
be a name. 

resource-type is one of the following keywords, specifying the type of 
resource to be loaded: 

Keyword 
Resource Type 

CURSOR 
A cursor resource is a bitmap defining the shape of the 
mouse cursor on the display screen. 

ICON An icon resource is a bitmap defining the shape of the icon to 
be used for a given application. 

BITMAP 
A bitmap resource is a custom bitmap that an application 
intends to use in its screen display or as an item in a menu. 

FONT A font resource is simply a file containing a font. The for
mat of a font file is defined in Appendix C. 

DLGINCLUDE 
This statement tells the dialog box editor which file to use as 
an include file for the dialog boxes in the resource file. The 
Nameld is not applicable. 

load-option is an optional keyword specifying when the resource is to be 
loaded. It must be one of the following: 

PRELOAD 
Resource is loaded immediately 

60 



Tool Kit Utilities 

LOADONCALL 
Resource is loaded when called 

The default is LOADONCALL. 

The mem-option consists of the following keyword or keywords, specifying 
whether the resource is fixed or moveable and whether it is discardable: 

FIXED Resource remains at a fixed memory location 

MOVEABLE 
Resource can be moved if necessary to compact memory 

DISCARD ABLE 
Resource can be discarded if no longer ne~ded 

The default is MOVEABLE and DISCARDABLE for CURSOR, ICON, and 
FONT resources. The default for BITMAP resources is MOVEABLE. 

filename is an ASCII string specifying the DOS filename of the file contain
ing the resource. A full pathname must be given if the file is not in the 
current working directory. 

Examples: 

CURSOR pointer point.cur 
CURSOR pointer DISCARDABLE point.cur 
CURSOR 10 custom.cur 

ICON desk desk.ice 
ICON desk DISCARDABLE desk.ice 
ICON 11 custom.ice 

BITMAP disk disk.bmp 
BITMAP disk DISCARDABLE disk.bmp 
BITMAP 12 custom.bmp 

FONT 5 CMROMAN.FON 

15.6.1.2 User-Defined Resources 

An application can also define its own resource. The resource can be any 
data that the application intends to use. A user-defined resource state
ment has the form: 

RESOURCE typeID nameID [load-option] [mem-option] filename 

61 



Windows Presentation Manager Reference 

typelD is either a unique name or an integer number identifying the 
resource type. If a number is given, it must be greater than 255. The type 
numbers 1 through 255 are reserved for existing and future predefined 
resource types. 

namelD is either a unique name or an integer number identifying the 
resource. 

load-option is an optional keyword specifying when the resource is to be 
loaded. It must be one of the following: 

PRELOAD 
Resource is loaded immediately 

LOADONCALL 
Resource is loaded when called 

The default is LOADONCALL. 

mem-option consists of the following keyword or keywords, specifying 
whether the resource is fixed or moveable and whether it is discardable: 

FIXED Resource remains at a fixed memory location 

MOVEABLE 
Resource can be moved if necessary to compact memory 

DISCARD ABLE 
Resource can be discarded if no longer needed 

The default is MOVEABLE. 

filename is an ASCII string specifying the DOS filename of the file contain
ing the cursor bitmap. A full pathname must be given if the file is not in 
the current working directory. 

Example: 

RESOURCE MYRES 
RESOURCE 300 

array 
14 

data.res 
custom.res 

15.6.1.3 STRINGTABLE Statement 

The STRINGTABLE statement defines one or more more string resources 
for an application. String resources are simply null-terminated ASCII 
strings that can be loaded when needed from the executable file, using the 
LoadString function. 

62 



Tool Kit Utilities 

The STRINGTABLE statement has the form: 

STRINGTABLE [load-option] [mem-option] 
BEGIN 
string-definitions 
END 

where string-definitions are one or more ASCII strings, enclosed in double 
quotation marks and preceded by an identifier. The identifier must be an 
integer. 

load-option is an optional keyword specifying when the resource is to be 
loaded. It must be one of the following: 

PRELOAD 
Resource is loaded immediately 

LOADONCALL 
Resource is loaded when called 

The default is LOADONCALL. 

The optional mem-option consists of the following keyword or keywords, 
specifying whether the resource is fixed or moveable and whether it is dis
cardable: 

FIXED Resource remains at a fixed memory location 

MOVEABLE 
Resource can be moved if necessary to compact memory 

DISCARD ABLE 
Resource can be discarded if no longer needed 

The default is MOVEABLE and DISCARDABLE. 

Example: 

#define IDS_HELLO 1 
#define IDS_GOODBYE 2 

STRINGTABLE 
BEGIN 

END 

IDS_HELLO, "Hello" 
IDS_GOODBYE, "Goodbye" 

Note: In addition to the STRINGTABLE keyword, there is an equivalent 
MESSAGETABLE keyword. It is identical to the STRINGTABLE except 
that a different resource ID value is generated on compilation. The 

63 



Windows Presentation Manager Reference 

1'.IESSAGETABLE keyword is mainly used for Presentation Manager error 
messages and need not be used by applications. 

15.6.1.4 ACCELERATOR TABLES 

The ACCELTABLE statement defines a table of accelerator keys for an 
application. 

An accelerator is a keystroke defined by the application to give the user a 
quick way to perform a task. The TranslateAccelerator function is used to 
translate accelerator messages from the application queue into 
WM_ COMMAND, WM_HELP or WM_SYSCOMMAND messages. 

The ACCELTABLE statement has the form: 

ACCELTABLE <id> 
BEGIN 

<memory mgr flags> 

<keyval>, <cmd>, <acceloption , acceloption > 

END 

64 

id is the resource id. 

keyval is the accelerator character code. This can either be a con
stant, or a quoted character. If it is a quoted character, then 
the CHAR acceloption is assumed. If the quoted character is 
preceded with an up-arrow character, then a control charac
ter is specified. 

cmd is the value of the WM_ COMMAND, W1LHELP or 
\VM_ SYSCOMMAND message generated from the accelera
tor for the indicated key. 

acceloption 
defines the kind of accelerator. 

The VIRTUALKEY, SCANCODE, and CHAR acceloptions 
specify the type of message that will match the accelerator. 
Only one of the se options may be specified per accelerator. 

The acceloptions SHIFT, CONTROL, and ALT, cause a 
match of the accelerator only if the corresponding key is 
down. 

If there are two accelerators that use the same key with 
different SHIFT, CONTROL, or ALT options, the more res
trictive accelerator should be specified first in the table. For 
example, Shift-Enter should be placed before Enter. 

The SYSCOMMAND acceloption causes the keystroke to be 
passed to the application as a \VM_ SYSCOMMAND mes
sage. If it is not specified, a \VM_ COMMAND message is 



Tool Kit Utilities 

used. 

The HELP acceloption causes the keystroke to be passed to 
the application as a WM_ HELP message. If it is not 
specified, a WM_ COMMAND message is used. 

Note that the AF_XX:X: form of these constants can also be 
used. These can be OR'ed together, eg. AF_ CHAR I 
AF-HELP. (See the section on accelerator tables). 

Example: 

ACCELTABLE MainAcc 
BEGIN 

END 

"S", 101, CONTROL 
"G", 102, CONTROL 

This would be used to generate WM_ COMMAND messages with values of 
101 and 102 from Control-Sand Control-G. This might be used in con
junction with menu options for Saving and Getting files, for example. 

15.6.1.5 MENU Statement 

The MENU statement defines the contents of a menu resource. A menu 
resource is a collection of information that defines the appearance and 
function of an application menu. A menu is a special input tool that lets a 
user select commands from a list of command names. 

The MENU statement has the form: 

MENU <menuID> <load option> <mem-option> 
BEGIN 

MENUITEM "string", <cmd>, <flags> 
if (<flags> includes MIS_POPOP: 
BEGIN 

MENUITEM 
END 

END 

menuID is a name or number used to identify the menu resource. 

load-option 
is an optional keyword specifying when the resource is to be 
loaded. It must be one of the following: 

PRELOAD 
Resource is loaded immediately 

65 



Windows Presentation Manager Reference 

LOADONCALL 
Resource is loaded when called 

The default is LOADONCALL. 

mem-option 
is optional. It consists of the following keyword or key
words, specifying whether the resource is fixed or moveable 
and whether it is discardable: 

FIXED Resource remains at a fixed memory location 

MOVEABLE 
Resource can be moved if necessary to compact 
memory 

DISCARD ABLE 
Resource can be discarded if no longer needed 

MENUITEM 

Example 

is a special resource statements used to define the items in 
the menu. These are discussed in more detail in the next sec
tion. 

The following is an example of a complete MENU statement: 

MENU sample 
BEGIN 

MENUITEM "Alpha", 100, MIS_TEXT 

END 

MENUITEM "Beta", 101, MIS_TEXTiMIS_SUBMENU 
BEGIN 

MENUITEM "Item l", 200 MIS_TEXT 
MENUITEM "Item 2", 201, MIS_TEXTiMI.A__CHECKED 

END 

15.6.1.5.1 Menu Item Definition Statements 

MENUITEM statements are used in the item-definition section of a MENU 
statement to define the names and attributes of the actual menu items. 
Any number of statements can be given; each defines a unique item. The 
order of the statements defines the order of the menu items. Note: The 
MENUITEM statements can only be used within an item-definition section 
of a MENU statement. 

MENU ITEM 

string 

66 

"string", <cmd>, <flags> 

is an ASCII string, enclosed in double quotation marks, 
specifying the name of the menu item. 



cmd 

flags 

Examples: 

Tool Kit Utilities 

The string can contain the escape characters \t and \a. The 
\ t character inserts a tab in the string when displayed and is 
used to align text in columns. Tab characters should be used 
only in popup menus, not in menu bars. The \a character 
right-justifies all text that follows it. To insert a double 
quote character (") in the text, use two double quote charac-
t ("") ers . 

The string can also contain tilde characters indicating that 
the following character is used as a mnemonic character for 
the item. A full explanation of the use of mnemonics is given 
in the section dealing with Menus. 

If <flags> does not contain MIS_ TEXT, the string is 
ignored but must still be specified. An empty string("") 
should be specified in this case. 

is an integer number. This number is used as the command 
value in the WM_ COMMAND message (or 
WM_ SYSCOMMAND message, if if :Mrs_ SYSCO:MMAND 
is specified in <flags>), which is sent to the owner window 
when the user selects the menu item. Hence it identifies the 
selection made and should be unique within one menu 
definition. 

are one or more menu options defined by the :MIS_ and 
MIA_ constants, ORed together with the I operator. These 
constants and their meaning are fully defined in the section 
on Menu Controls. 

MENUITEM "Alpha", 1, MIS_TEXTJMIA_ENABLEDJMIA_CHECKED 
MENUITEM "Beta", 2, MIS_TEXT 

15.6.1.5.2 Pull-Down Menus/Submenus 

As well as simple items, a menu definition can contain the definition of a 
Pull-Down Menu or Submenu. The main menu appears as a horizontal bar 
of items at the top of the window to which it relates. Pull-Down menus 
appear as vertical lists running downwards from an item in the main 
menu, which only become visible as the result of a selection on the item in 
the main menu. 

The definition of a Pull-Down menu is very similar to that of the main 
menu - it consists of a list of MENUITEM statements. It is introduced by 
an item in the main menu which has the MIS_ SUBMENU constant set. 

67 



Windows Presentation Manager Reference 

Example: 

MENU chem 
BEGIN 

MENUITEM "elements", 2, MIS_TEXTIMIS_SUBMENU 
BEGIN 

END 

MENUITEM "Oxygen", 200 MIS_TEXT 
MENUITEM "Carbon", 201, MIS_TEXTIMIA_CHECKED 
MENUITEM "Hydrogen", 202, MIS_TEXT 

MENUITEM "Compounds", 2, MIS_TEXTIMIS_SUBMENU 
BEGIN 

END 

END 

MENUITEM."Glucose", 301, MIS_TEXT 
MENUITEM "Sucrose", 302, MIS_TEXTIMIA_CHECKED 
MENUITEM "Lactose", 303, MIS_TEXTIMIS_BREAK 
MENUITEM "Fructose", 304, MIS_TEXT 

15.6.1.5.3 Separator Menu Item 

There is a special form of the 11ENUITEM statement which is used to 
create a horizontal dividing bar between two active menu items in a Pull
Down menu. The Separator item is itself inactive and has no text associ
ated with it nor a cmd value. 

Example: 

MENUITEM "Roman", 206, MIS_TEXT 
MENUITEM SEPARATOR 
MENUITEM "20 Point", 301, MIS_TEXT 

15.6.1.6 DIALOG and WINDOW templates 

DLGTEMPLATE and WINDOWTEMPLATE statements are used by an 
application to create predefined window and dialog resource templates. 

The DLGTEMPLATE and WINDOWTEMPLATE statements are treated 
identically by the resource compiler and have the following format: 

(DLGTEMPLATE I WINDOWTEMPLATE} resourceID loadoption memoption 
(BEGIN I {) 

Single DIALOG, CONTROL, or WINDOW statement 
(END I }) 

The parts of the DIALOGTEMPLATE and WINDOWTEMPLATE state
ments are described below. 

68 



Tool Kit Utilities 

Purpose This statement marks the beginning of a window template. 
It defines the name of the dialog box window, and its 
memory and load options. 

Parameters 
resourcelD is either a unique name or an integer number 
identifying the resource. 

load-option is an optional keyword specifying when the 
resource is to be loaded. It must be one of the following: 

Option Meaning 

PRELOAD 
Resource is loaded immediately 

LOADONCALL 
Resource is loaded when called 

The default is LOADONCALL. 

The optional mem-option consists of the following keyword 
or keywords, specifying whether the resource is fixed or 
moveable and whether it is discardable: 

Option Meaning 

FIXED Resource remains at a fixed memory location 

MOVEABLE 
Resource can be moved if necessary to compact 
memory 

DISCARD ABLE 
Resource can be discarded if no longer needed 

The default is MOVEABLE. 

Alternatively, "{" can be used in place of BEGIN and"}" in place of END. 

The DLGTEMPLATE and WINDOWTEMPLATE keywords are synonyms. 

The DIALOG statement defines a window of class WC-DIALOG that can 
be used by an application to create dialog boxes. 

The DIALOG statement has the format: 

DIALOG text, id, x, y, width, height, [, style] 
[CTLDATA (MENU I data, data, ••.. )] 
[PRESPARAMS data, data, .... ] 
BEGIN 

one or more DIALOG, CONTROL, WINDOW statements 
END 

The parts of the DIALOG statement are described below. 

69 



Windows Presentation Manager Reference 

Purpose This statement marks the beginning of a DIALOG state
ment. It defines the box's starting location on the display 
screen, its width, its height, and any extra style bits. 

Parameters 
text is a string that is displayed in the title bar control, if it 
exists. 

x and y are integer numbers specifying the x and y coordi
nates on the display screen of the lower left corner of the dia
log box. x and y are in dialog coordinates. The exact mean
ing of the coordinates depends on the style defined by the 
style argument. For normal dialog boxes, the coordinates 
are relative to the origin of the parent window. For 
DS_ SCREENALIGN style boxes, the coordinates are rela
tive to the origin of the display screen. With 
DS_ MOUSEALIGN, the coordinates are relative to the posi
tion of the mouse cursor at the time the dialog box is 
created. 

width and height are integer numbers specifying the width 
and height of the box. The width units are 1/4 the width of 
a character; the height units are 1/8 the height of a charac
ter. 

style is any additional window styles, dialog styles, or frame 
styles. 

The WINDOW and CONTROL statements have the format: 

(CON'IROL : WINDOW) text, id, x, y, width, height, class [, style] 
[CTLDATA (MENU : data, data, .•.• )] 
[PRESPARAMS data, data, .... ] 
BEGIN 

one or more DIALOG, CON'IROL, WINDOW statements 
END 

Note: The WINDOW and CONTROL keywords are synonyms. 

The BEGIN-END pair can be deleted if there are no child dialog, control 
or window statements. 

The DIALOG, CONTROL and WINDOW statements between the BEGIN 
and END statements are defined as child windows. The template format is 
fully recursive - the DIALOG/CONTROL/WINDOW statements between 
the BEGIN/END may also have BEGIN/END blocks. 

The optional CTLDATA statement is used to define control data for the 
control. Hex or decimal word constants follow the CTLDATA statement, 
separated with commas. 

70 



Tool Kit Utilities 

In addition to hex or decimal data, the CTLDATA statement may be fol
lowed by the MENU keyword, followed by a menu template in a 
BEGIN/END block. This creates a menu template as the window's control 
data. 

The optional PRESP ARAMS statement is used to define presentation 
parameters. The syntax of the PRESPARAL\18 statement is the same as 
the CTLDATA statement. 

Left and right curly braces are synonyms for BEGIN and END. 

In addition to the normal CONTROL statement, there exist special state
ments for commonly used controls such as pushbuttons and edit controls. 
These have the same format as the normal CONTROL statement, except 
that their STYLE and CLASS statements are implied. 

EXAMPLES 

The following is a complete example of a DIALOG statement. 

#include "windows.h" 

DIALOGTEMPLATE errmess 
BEGIN 

END 

DIALOG "Disk Error", 100, 10, 10, 300, 110 
BEGIN 

END 

CTEXT "Select One:", 1, 10, 80, 280, 12 
RADIOBUTTON "Retry", 2, 75, 50, 60, 12 
RADIOBUTTON "Abort", 3, 75, 30, 60, 12 
RADIOBUTTON "Ignore", 4, 75, 10, 60, 12 

This is an example of a WINDOWTEMPLATE statement that is used to 
define a specific kind of window frame. Calling WinLoadDialog with this 
resource will automatically create the frame window, the frame controls, 
and the client window (of class MyClientClass). 

WINDOWTEMPLATE windl 
BEGIN 

FRAME "My Window", 1, 10, 10, 320, 130, FS_STANDARD i FS_VERTSCROLL 
BEGIN 

WINDOW 1111 , FID_CLIENT, 0, 0, 0, 0, "MyClientClass", style 
END 

END 

This example creates a resource template for a modeless dialog box 
identified by the constant "modelessl". It includes a frame with a title 
bar, a system menu, and a dialog-style border. The modeless dialog box 
has three auto-radio buttons in it. 

DLGTEMPLATE modelessl 

71 



Windows Presentation Manager Reference 

BEGIN 
DIALOG "Modeless Dialog", 50, 50, 180, 110, 

FS_TITLEBAR I FS_SYSMENU i FS_DLGBORDER 
BEGIN 

AUTORADIOBUTTON "Retry", 2, 75, 80, 60, 12 
AUTORADIOBUTTON "Abort", 3, 75, 50, 60, 12 
AUTORADIOBUTTON "Ignore", 4, 75, 30, 60, 12 

END 
END 

15.6.1.6.1 Parent/Child/Owner relatz'onship 

The format of the DLGTEMPLATE and WINDOWTEMPLATE resources 
is very general in order to allow tree-structured relationships within the 
resource format. The general layout of the templates is this: 

WINDOWTEMPLATE id 
BEGIN 

END 

WINDOW winTop 
BEGIN 

WINDOW windl 
WINDOW wind2 
WINDOW wind3 
BEGIN 

WINDOW wind4 
END 
WINDOW windS 

END 

this is the top level window 

In this example, the top level window is identified by winTop. It has 4 
child windows, windl, wind2, wind3, and wind5. wind3 has one child win
dow, wind4. When each of these windows is created, the parent and the 
owner are set to be the same. 

The only time when the parent and owner windows are not the same are 
when frame controls get automatically created by a frame window. See 
Window Frame Architecture. 

Note that the WINDOW statements in the example above could also have 
been a CONTROL or DIALOG statements; they are interchangable syn
tactically. 

15.6.1.6.2 Pre-defined Control Statements 

In addition to the general form of the CONTROL statement, there are 
special control statements for commonly used controls. These statements 
define the attributes of the child control windows that appear in the win
dow. 

72 



Tool Kit Utilities 

Control statements have the following general form: 

control-type text, id, x, y, width, height[, style] 
BEGIN 
dialog-statements and/or control-statements and/or window-statements 

END 

Two control statements are exceptions to this general form: 

• the EDIT and LISTBOX controls do not have a-text field. 

The control-type field is one of the keywords described below, defining the 
type of the control. 

text is an ASCII string specifying the text to be displayed. The string 
must be enclosed in double quotation marks. The manner in which the 
text is displayed depends on the particular control, as detailed below. 

id is a unique integer number identifying the control. 

x and y are integer numbers specifying the x and y coordinates of the 
lower left corner of the control, in dialog coordinates. The coordinates are 
relative to the origin of the dialog box. 

width and height are integer numbers specifying the width and height of 
the control. The width units are 1/4 the width of a character; the height 
units are 1/8 the height of a character. 

The x, y, width, and height fields can use addition and subtraction opera
tors ( + and -) for relative positioning. For example, 15 + 6 can be used 
for the x field. 

The optional style field consists of one or more of the control styles given 
later in this chapter in Table 1.2 and the window styles defined in Chapter 
2. Styles can be combined using the bitwise OR operator. 

The control-type keywords are described below, and their class and default 
style are given. See Tables 1.1 and 1.2 for a full description of control 
classes and styles. 

FRAME 

Description 
Frame control. The style bits of a frame window define 
which additional frame control windows will be created and 
initialized when the frame itself is created. Frame style bits 
are defined in table 1.3. Note that if the text field of this 
control is non-empty, then a WC_ TITLEBAR window will 
be created even if the FS_ TITLEBAR style bit is not 

73 



Windows Presentation Manager Reference 

included (see below). 

Frame controls created automatically by a frame window 
will be given default styles and id numbers depending on 
their class. For example, a WC_ TITLEBAR window will be 
automatically given the id FID- TITLEBAR. 

Class Frame 

Default Style 
None 

LTEXT 

Description 
Left-justified text control. A simple rectangle displaying the 
given text left-justified in the rectangle. The text is format
ted before it is displayed. Words that would extend past the 
end of a line are automatically wrapped to the beginning of 
the next line. 

Class Static 

Default Style 
ss_LEFT, ws_GROUP 

RTEXT 

Description 
Right-justified text control. A simple rectangle displaying 
the given text right-justified in the rectangle. The text is 
formatted before it is displayed. Words that would extend 
past the end of a line are automatically wrapped to the 
beginning of the next line. 

Class Static 

Default Style 
SS_ RIGHT, ws_ GROUP 

CT EXT 

74 

Description 
Centered text control. A simple rectangle displaying the 
given text centered in the rectangle. The text is formatted 
before it is displayed. Words that would extend past the end 
of a line are automatically wrapped to the beginning of the 
next line. 



Tool Kit Utilities 

Class Static 

Default Style 
SS_ CENTER, ws_ GROUP 

CHECKBOX 

Description 
A small rectangle (check box) that is highlighted when 
clicked. The given text is displayed just to the right of the 
check box. The control highlights the square when the user 
clicks the mouse in it, and removes the highlight on the next 
click. 

Class Button 

Default Style 
BS_ CHECKBOX, ws_ TABSTOP 

PUSHBUTTON 

Description 
A rectangle containing the given text. The control sends a 
message to its parent whenever the user clicks the mouse 
inside the rectangle. -

Class Button 

Default Style 
BS_PUSHBUTTON, ws_ TABSTOP 

LISTBOX 

Description 
A rectangle containing a list of strings (such as filenames) 
from which the user can make selections. The LISTBOX 
control state- ment does not contain a text field, so the form 
of the LISTBOX statement is: 

LISTBOX id, x, y, ex, cy [, style] 

The fields have the same meaning as in the other control 
state- ments. 

Class List box 

Default Style 
LBS_ NOTIFY, LBS_ SORT, ws_ VSCROLL, ws_ BORDER 

75 



Windows Presentation Manager Reference 

GROUP BOX 

Description 
A rectangle that groups other controls together. The con
trols are grouped by drawing a border around them and 
displaying the given text in the upper left corner. 

Class Button 

Default Style 
ss_ GROUPBOX, ws_ TABSTOP 

DEFPUSHBUTTON 

Description 
A small rectangle with an emboldened outline that 
represents the default response for the user. The text is 
displayed inside the button. The control highlights the but
ton in the usual way when the user clicks the mouse in it and 
sends a message to its parent window. 

Class Button 

Default Style 
BS_ DEFPUSHBUTTON, ws_ TABSTOP 

RADIOBUTTON 

Description 
A small rectangle that has the given text displayed just to its 
right. The control highlights the square when the user clicks 
the mouse in it and sends a message to its parent window. 
The control removes the highlight and sends a message on 
the next click. 

Class Button 

Default Style 
BS-RADIOBUTTON, WS_ TABSTOP 

AUTORADIOBUTTON 

76 

Description 
Similar to a normal radio button in appearance, but 
automatically checks itself when clicked. It also unchecks 
any other AUTORADIOBUTTONs in the same group. 



Tool Kit Utilities 

Class Button 

Default Style 
BS_ AUTORADIOBUTTON, ws_ T ABSTOP 

EDIT 

Description 
A rectangle in which the user can enter and edit text. The 
control displays a cursor when the user clicks the mouse in 
it. The user can then use the keyboard to enter text or edit 
the existing text. Editing keys include the backspace and 
delete keys. The mouse can be used to select the character 
or characters to be deleted, or select the place to insert new 
characters. 

The EDIT control statement does not contain a text field, so 
its form is: 

EDIT id, x, y, width, height [, style] 

The fields have the same meaning as in the other control 
statements. 

Class Edit 

Default Style 
ws_ TABSTOP, ES-LEFT 

ICON 

Description 
An icon displayed in the dialog box. The given text is the 
name of an icon (not a filename) defined elsewhere in the 
resource file. 

For the ICON statement, the width and height parameters 
are ignored; the icon automatically sizes itself. 

Class Static 

Default Style 
ss_ICON 

15.6.2 Control Classes 

Class Meaning 

77 



Windows Presentation Manager Reference 

WC_BUTION 
A button control is a small rectangular child window that 
represents a button that the user can turn on or off by click
ing on it with the mouse. Button controls can be used alone 
or in groups, and can either be labelled or appear without 
text. Button controls typically change appearance when the 
user clicks on them. 

we_ EDIT 
An edit control is a rectangular child window in which the 
user can enter text from the keyboard. The user selects the 
control, and gives it the input focus, by clicking the mouse 
inside it or tabbing to it. The user can enter text when the 
control displays a flashing caret. The mouse can be used to 
move the cursor and select characters to be replaced, or posi
tion the cursor for inserting characters. The backspace key 
can be used to delete characters. 

we_ STATIC 
Static controls are simple text fields, boxes, and rectangles 
that can be used to label, box, or separate other controls. 
Static controls take no input and provide no output. 

wc_LISTBOX 
List box controls consist of a list of character strings. The 
control is used whenever an application needs to present a 
list of names, such as filenames, that the user can view and 
select. The user can select a string by pointing the mouse to 
the string and clicking a mouse button. Selected strings are 
highlighted and a notification message is passed to the 
parent window. A scroll bar can be used with a list box con
trol to scroll lists too long or wide for the control window. 

we_ SCROLLBAR 
A scroll bar control is a rectangle containing a thumb and 
direction arrows at both ends. The scrolling bar sends a 
notification message to its parent whenever the user clicks 
the mouse in the control. The parent is responsible for 
updating the thumb position, if necessary. Scroll bar con
trols can be positioned anywhere in a window and used 
whenever needed to provide scrolling input for a window. 

Note: A control class name can be used as the class name parameter to the 
Create Window function to create a child window having the control class 
attributes. 

78 



Tool Kit Utilities 

15.6.3 Control Styles 

WC_ BUTTON Class 

Style Meaning 

BS_ PUSHBUTTON 
Same as PUSHBUTTON statement. 

BS-DEFPUSHBUTION 
Same as DEFPUSHBUTION statement. 

BS- CHECKBOX 
Same as CHECKBOX statement. 

BS_AUTOCHECKBOX 
Button automatically toggles its state whenever the user 
clicks on it. 

BS-RADIOBUTTON 
Same as RADIOBUTTON statement. 

BS-AUTORADIOBUTION 
Same as RADIOBUTTON, by automatically checks itself 
when clicked, and unchecks any other auto-radio buttons in 
the same group. 

BS_3STATE 
Identical to BS-CHECKBOX except that a button can be 
grayed as well as checked or unchecked. The grayed state is 
typically used to show that a check box has been disabled. 

BS-AUT03STATE 
Identical to BS_3STATE except that the button automati
cally toggles its state when the user clicks on it. 

BS_ GROUPBOX 
Same as GROUPBOX statement. 

BS- USERBUTTON 
User-defined button. Parent is notified when the button is 
clicked. Notification includes a request to paint, invert, and 
disable the button when necessary. 

WC_ EDIT Class 

Style Meaning 

ES-LEFT 
Left-justified text. 

79 



Windows Presentation Manager Reference 

ES_ CENTER 
Centered text. 

ES-RIGHT 
Right-justified text. 

ES_ NOHIDESEL 
Normally, an edit control hides the selection when it loses 
the input focus, and inverts the selection when it receives the 
input focus. Specifying ES_ NOHIDESEL overrides this 
default action. 

WC_STATIC Class 

Style Meaning 

SS_ LEFT 
Same as L TEXT control 

SS_ CENTER 
Same as CTEXT control 

SS_ RIGHT 
Same as RTEXT control 

SS_ ICON 
Same as ICON control 

ss_ FGNDRECT 
Foreground color filled rectangle 

ss_ HALFTONERECT 
Half tone filled rectangle 

ss_ BKGNDRECT 
Background color filled rectangle 

ss_ FGNDFRAME 
Box with foreground color frame 

ss_HALFTONEFRAME 
Box with halftone frame 

ss_ BKGNDFRAME 
Box with Background color frame 

SS_ USER 
User-defined item 

WC_ LISTBOX Class 

Style Meaning 

80 



Tool Kit Utilities 

LBS_ NOTIFY 
The parent receives an input message whenever the user 
clicks or double clicks a string. 

LBS-MULTIPLESEL 
The string selection is toggled each time the user clicks or 
double clicks on the string. Any number of strings can be 
selected. 

LBS-SORT 
The strings in the list box are sorted alphabetically. 

LBS_ NOREDRA W 
The list box display is not updated when changes are made. 

WC_ SCROLLBAR Class 

Style Meaning 

SBS_ VERT 
Vertical scroll bar. The scroll bar has the height, width, and 
position given in the control statement or the CreateWindow 
call. 

SBS-HORZ 

All Classes 

Horizontal scroll bar. The scroll bar has the height, width, 
and position given in the control statement or the 
Create Window call. 

ws_GROUP 
Specifies the first control of a group of controls in which the 
user can move from one control to the next by using the cur
sor keys. All controls defined after the first control with 
WS_ GROUP style belong to the same group. The next con
trol with WS_ GROUP style ends the first group and starts 
the next group (i.e., one group ends where the next begins). 

ws_TABSTOP 
Specifies one of any number of controls through which the 
user can move by tabbing. The TAB key moves the user to 
the next control with WS_ TABSTOP style. 

81 



Windows Presentation Manager Reference 

15.6.4 FRAME styles 

Style Meaning 

FS_ TITLEBAR 
Title bar 

FS_SYSMENU 
System menu 

FS_MENU 
Application menu 

FS_MINMAX 
Minimize /Maximize box 

FS_ VERTSCROLL 
Vertical scroll bar 

FS_ HORZSCROLL 
Horizontal scroll bar 

FS_ SIZEBORDER 
Wide sizing borders 

FS_SIZEBOX 
Size box at lower right corner 

FS_ DLGBORDER 
The frame window is created with the FS_ DLGBORDER 
style 

FS_BORDER 
Frame window is created with FS-BORDER style 

FS_STANDARD 
Equal to (FS_ TITLEBAR I FS_ SYSMENU I FS_ MINMAX I 
FS_ WIDESIZE) 

15.6.4.1 Directives 

The resource directives are special statements that define actions to per
form on the script file before it is compiled. The directives can assign 
values to names, include the contents of files, and control compilation of 
the script file. 

The resource directives are identical to the directives used in the 0 pro
gramming language. They are fully defined in [ OFUN] . 

# i'nclude filename 

82 



Tool Kit Utilities 

Purpose This directive copies the contents of the file specified by 
filename into your resource script before re processes the 
script. 

Parameters 
filename is an ASCII string, enclosed in double quotation 
marks, specifying the DOS filename of the file to be included. 
A full pathname must be given if the file is not in the current 
directory or in the directory specified by the INCLUDE 
environment variable. 

The filename parameter is handled as a C string, and two 
backslashes must be given wherever one is expected in the 
pathname (for example, root\ \sub.) Or, a single forward 
slash(/) can be used instead of double backslashes (for 
example, root/sub.) 

Example: 

#include "wincalls.h" 

PenSelect MENU 
BEGIN 

MENUITEM "black pen", BLACK_PEN 
END 

# define name value 

Purpose This directive assigns the given value to name. All subse
quent occurrences of name are replaced by the value. 

Parameters 
name is any combination of letters, digits, or punctuation. 

value is any integer number, character string, or line of text. 

Examples: 

#define 
#define 

#undefname 

nonzero 
USERCLASS 

1 
"MyControlClass" 

Purpose This directive removes the current definition of name. All 
subsequent occurrences of name are processed without 
replacement. 

Parameters 
name is any combination of letters, digits, or punctuation. 

Examples: 

83 



Windows Presentation Manager Reference 

#undef 
#undef 

nonzero 
USERCLASS 

#ifdef name 

Purpose This directive carries out conditional compilation of the 
resource file by checking the specified name. If the name has 
been defined using a #define directive, #if def directs the 
resource compiler to continue with the statement immedi
ately after it. If name has not been defined, #ifdef directs 
the compiler to skip all statements up to the next #endif 
directive. 

Parameters 
name is the name to be checked by the directive. 

Example: 

#ifdef Debug 
BITMAP errbox errbox.bmp 
#endif 

# ifndef name 

Purpose This directive carries out conditional compilation of the 
resource file by checking the specified name. If the name has 
not been defined or if its definition has been removed using 
the # undef directive, # ifndef directs the resource compiler 
to continue processing statements up to the next #endif, 
#else, or #elif directive, then skip to the statement after 
after the # endif. If name is defined, # ifndef directs the 
compiler to skip to the next #endif, #else, or #elif direc
tive. 

Parameters 
name is the name to be checked by the directive. 

Example: 

#ifndef Optimize 
BITMAP errbox errbox.bmp 
#endif 

#if constant-expression 

84 

Purpose This directive carries out conditional compilation of the 
resource file by checking the specified constant-expression. If 
the constant-expression is nonzero #if directs the resource 



Tool Kit Utilities 

compiler to continue processing statements up to the next 
# endif, #else, or # elif directive, then skip to the statement 
after after the #endif. If constant-expression is zero, #if 
directs the compiler to skip to the next ffeendif, #else, or 
# elif directive. 

Parameters 

Example: 

constant-expression is a defined name, an integer constant, 
or an expression consisting of names, integers, and arith
metic and relational operators. 

#if Version<3 
BITMAP errbox errbox.bmp 
#endif 

# elif constant-expression 

Purpose This directive marks an optional clause of a conditional com
pilation block defined by an #if def, # ifndef, or #if direc
tive. The directive carries out conditional compilation of the 
resource file by checking the specified constant-expression. If 
the constant-expression is nonzero #elif directs the resource 
compiler to continue processing statements up to the next 
#endif, #else, or #elif directive, then skip to the statement 
after the # endif. If constant-expression is zero, #el if 
directs the compiler to skip to the next # endif, #else, or 
#elif directive. Any number of #elif directives can be used 
in a conditional block. 

Parameters 

Example: 

constant-expression is a defined name, an integer constant, 
or an expression consisting of names, integers, and arith
metic and relational operators. 

#if Version<3 
BITMAP errbox errbox.bmp 
#elif Version<? 
BITMAP errbox userbox.bmp 
#endif 

#else 

Purpose This directive marks an optional clause of a conditional com
pilation block defined by an #if def, # ifndef, or #if direc
tive. The #else directive must be the last directive before 

85 



Windows Presentation Manager Reference 

#endif. 

Parameters 
None. 

Example: 

#ifdef Debug 
BITMAP errbox errbox.bmp 
#else 
BITMAP errbox errbox.bmp 
#endif 

# endif 

Purpose This directive marks the end of a conditional compilation 
block defined by an #if def directive. One # endif is required 
for each #if def directive. 

Parameters 
None. 

15. 7 Sample programs 

The sample programs give examples of how to use the Presentation 
Manager APL 

Sample programs conform to user interface and use Presentation Manager 
User Controls wherever appropriate. Each sample program has a Presen
tation Manager window with a title bar and a menu bar containing at 
least an 'Exit' button which terminates the sample program. 

The sample programs which have a scroll bar should use bit operations 
where appropriate to speed up scrolling. They should cope with devices 
which do not support bit operations, and also when the bit operation fails 
since the application is not on top. 

Sample programs process redraw requests by redrawing the contents of the 
window. 

Sample programs are written in a clear programming style with good, 
English comments. They are described in detail in the Presentation 
Manager Programming Guide or equivalent publication. 

86 



Tool Kit Utilities 

The user must be able to inspect the source of a sample program while the 
program is running, provided that a suitable editor is available. 

The sample programs are as follows: 

1. Minimal Application 

Create a window and display the message "Hello world!" using 
CSC functions and without using a WinProc. (Loosely based on 
trimmed down HELLO Microsoft Windows sample program). 

Scroll bars and menu buttons: 

• 'Exit' button 

2. Typing Application 

Create a window and echo keyboard input in the window using 
non-retained graphics character strings. (Based on TYPE Micro
soft Windows sample program). 

Scroll bars and menu buttons: 

• 'Help' button 

• 'Exit' button 

3. user interface windowing. 

Demonstrate the use of each User Interface Control. The user can 
see and interact with each of the following: a user interface win
dow, pull-down menus, a list box, a check box, push buttons, radio 
buttons, static controls, an edit control. 

Also demonstrate the use of dialogues (e.g. the open file dialogue). 
This may require a separate sample program to avoid making the 
first user interface windowing sample program too large. Note: 
The details of these sample programs should be specified by a usa
bility expert. 

Scroll bars and menu buttons: 

• 'Help' button 

• 'Exit' button 

• Other buttons as required to exercise the User Controls. 

4. Alphanumerics 

Echo keyboard input in a window using an Advanced Vio presenta
tion space associated with the window. 

Also allow a print file to be generated containing only character 
information. 

Echo keyboard input as follows: 

87 



Windows Presentation Manager Reference 

88 

• Any alphanumerics or special character key is echoed on the 
screen at the cursor position which is then moved to the next 
character position. 

• The cursor move keys and keys such as tab, backtab, newline, 
erase line, erase to end of line, delete line, add line, insert 
mode, and delete perform the corresponding operations. 

Scroll bars and menu buttons: 

• Vertical scroll bar 

• 'Colour' button: display a pull-down to allow selection of new 
foreground and background colours 

• 'Clear' button: clear the Advanced Vio presentation space and 
the window 

• 'Print' button: generate a print file 

• 'Exit' button 

5. Non-retained graphics 

Draw a simple picture using non-retained primitives in a graphics 
presentation space associated with the window. Use screen coordi
nates, first querying the screen size to ensure that the picture is 
scaled and positioned suitably. However, the picture should be too 
tall to fit in the window vertically. 

Scroll bars and menu buttons: 

• Vertical scroll bar 

• 'Print' button: generate a print file by creating a segment, 
passing the picture again, issuing a spool request, and deleting 
the segment. 

• 'Exit' button 

6. Retained graphics 

Create a simple picture consisting of at least three segments in a 
graphics presentation space associated with the window. The 
primitives in the segments include examples of each type of graph
ics primitive order together with a selection of attribute orders. At 
least one segment should call another segment. 

After creating the picture, draw it in the window. The picture 
should be too tall to fit in the window vertically. 

If a zoom is requested, adjust the default viewing transform and 
redraw the picture. 

If mouse button 1 is depressed, perform a correlate-last operation. 
If there is a hit on a primitive in a segment, then highlight the seg
ment and allow the user to drag it until mouse button 1 is released. 
Then de-hilight the segment and place it in the picture at the new 



Tool Kit Utilities 

position. 

Scroll bars and menu buttons: 

• Vertical scroll bar: scroll by modifying the viewing transform 
and redrawing the picture 

• 'Print' button: generate a print file 

• 'Exit' button 

7. Fonts 

Create a window and display a horizontal line of alphanumeric and 
special characters in the window using a font. (Based on 
FONTTEST Microsoft Windows sample program). 

Scroll bars and menu buttons: 

• 'Commands': pull-down containing the options: 

• 'Sample': draw the line of characters again below any other 
lines of characters 

• 'Clear': clear the window 

• 'Options': allow the user to choose new font attributes 
using a dialogue box. Characters are subsequently drawn 
with these attributes. 

• 'Help' button 

• 'Exit' button 

8. Bitmaps and image 

Draw non-retained graphics into a bitmap, retrieve the bitmap 
data into the application, and then draw this image data in the 
window. 

Draw non-retained graphics into a bitmap and then bitblt this into 
a window. 

Scroll bars and menu buttons: 

• 'Exit' button 

9. Clip board 

Create a window and display text in it using the gpi. Allow the 
user to interchale data between instances of this application 
using a cut/copy paste editing metaphor. The user should select 
areas of text, an the application will place it into the clipboard in 
the CF_ DSPTEXT and CF_ TEXT formats. The CF_ TEXT for
mat will be delay rendered. 

When the user selects paste, the application will copy the 
CF_ TEXT format from the clipboard. 

Scroll bars and menu buttons: 

89 



Windows Presentation Manager Reference 

• 'Help' button 

• 'Exit' button 

• 'Select' button: allow the user to select a rectangle of charac
ters VIO data using the mouse. Show which rectangle is 
selected by displaying it in reverse video. 

• 'Copy', 'Cut', 'Paste', and 'Clear' buttons: allow the user to do 
the corresponding clipboard operations on the selected data. 

10. Template application 

go 

This is a program which serves as a template for application 
authors. The parts of the program which should be replaced by 
application code are delimited by suitable comments. (Based on 
TEMPLATE Microsoft Windows sample program). 

Scroll bars and menu buttons: 

• 'Help' button 

• 'Exit' button 



Chapter 16 
Device Drivers 

16.1 Device Driver Interface 95 
16.1.1 Overview 95 
16.1.2 Entry Points 95 
16.1.2.1 Primary Exported Entry Points 95 
16.1.2.2 Major Handler Entry Points 95 
16.1.3 Function Parameters 97 
16.1.3.1 Stack Arguments 97 
16.1.3.2 Command Bits for Drawing, Correlation and 
Bounds Calculation 98 
16.1.3.3 Register Arguments 99 
16.1.3.4 Transforms 100 
16.1.3.5 Return Values 100 
16.1.3.6 
16.1.3.7 
16.1.3.8 
16.1.3.9 
16.1.3.10 
16.1.3.11 
16.1.4 
16.1.4.1 
16.1.4.2 
16.1.4.3 
16.1.4.4 
16.1.4.5 
16.1.4.6 
16.1.4.7 

Register Content Preservation 101 
Calling SimulationEntry 101 
Bitmap Simulations 101 
Journalling 102 
Serialization and Locking. 103 
Cursors 103 

Dispatching :Minor Functions 107 
OutputArc 00 108 
OutputLine 01 108 
OutputMarker 02 109 
OutputScan 03 109 
OutputFill 04 109 
Bitmap 05 109 
Textout 09 110 

91 



16.1.4.8 Area OA 110 
16.1.4.9 Bounds OB 110 
16.1.4.10 Clip OC 111 
16.1.4.11 Region OD 111 
16.1.4.12 Transform OE 112 
16.1.4.13 Attributes OF 112 
16.1.4.14 Color 10 113 
16.1.4.15 Query 11 113 
16.1.4.16 Device Mode 14 114 
16.1.5 The Dispatch Table 114 
16.1.5.1 Device Driver Installation 114 
16.1.5.2 Device Driver Function Handling 114 
16.1.5.3 Simulation Installation 115 
16.1.6 Primary Function Definitions 115 
16.1.6.1 Enable 115 
16.1.7 Definitions of Functions called via Handlers 124 
16.1.7.1 OutputArc Functions - Major Function 00. 124 
16.1.7.2 OutputLine Functions - Major Function 01. 132 
16.1.7.3 Output:Marker Functions - Major Function 
02. 134 
16.1.7.4 
16.1.7.5 
16.1.7.6 
16.1.7.7 
16.1.7.8 
16.1.7.9 
16.1.7.10 
16.1.7.11 
16.1.7.12 
16.1.7.13 
16.1.7.14 

92 

OutputScan Functions - Major Function 03. 134 
OutputFill Functions - Major Function 04. 136 
Bitmap Functions - ]\iaj or Function 05. 138 
Textout Functions - Major Function 09. 150 
Area Functions - Major Function OA. 157 
Bounds Functions - Major Function OB. 163 
Clip Functions - Major Function OC. 165 
Region Functions - Major Function OD. 171 
Transform Functions - Major Function OE. 178 
Attribute Functions - Major Function OF. 189 
Color Functions - Major Function 10. 201 



16.1.7.15 Query Functions - Major Function 11. 209 
16.1.7.16 Device Modes Function - Major Function 
14. 215 
16.1.8 Graphics Engine Functions Callable by Device 
Drivers. 217 
16.1.8.1 
16.1.8.2 
16.1.9 
16.1.9.1 

Brief List of DDI-Engine Function Calls 
Description of DDI-Engine Function Calls 

Required Functions 221 
All Devices 221 

16.1.9.2 Display Devices 223 
16.1.9.3 Printer Devices 223 
16.1.10 Clipping 223 

217 
217 

93 





Device Drivers 

16.1 Device Driver Interface 

16.1.1 Overview 

The device driver interface resembles the interface to the graphics engine 
very closely. This gives device drivers the ability to take over many func
tions of the graphics engine. The device driver entry points correspond 
exactly to the major function entry points of the graphics engine. The 
same function numbers are used. The parameters passed to the device 
driver are exactly the same as those passed to the graphics engine function 
handlers. 

Because the two interfaces are so similar, a caller to a function does not 
need to know whether the function will be handled by the graphics engine 
or by the device driver directly. Graphics engine calls are dispatched 
through a dispatch table. The entries in the dispatch table are far 
pointers to "Major Function Handlers". Some of these pointers point to 
the graphics engine, but others point directly to the device driver. On 
installation the device driver inserts its own pointers into the dispatch 
table for the functions it wants to handle. 

16.1.2 Entry Points 

16.1.2.1 Primary Exported Entry Points 

All device drivers must export the following entry points: 

• Enable 

• Disable 

Enable is called when the device driver is loaded. It handles driver initiali
zation and construction of the driver's dispatch table. 

Display drivers also must export Cursor entr,Y points. These are called to 
update the position and shape of the cursor tor mouse pointer) on the 
display. 

16.1.2.2 Major Handler Entry Points 

As part of its Enable function the device driver installs the addresses of its 
major function handlers into its logical device dispatch table, the 
lDispatchTable. The engine will call the major function handlers through 
the lDispatchTable. The major function handlers handle the dispatching 
of the required minor functions. 

95 



Windows Presentation Manager Reference 

The major function handlers are as follows: 

96 

OutputArc 
Major handler 00. Dispatches all minor functions that draw 
arcs. 

OutputLine 
Major handler 01. Dispatches all minor functions that draw 
lines. 

All device drivers are required to provide this major handler. 

OutputMarker 
Major handler 02. Dispatches minor functions that draw 
markers. 

OutputScan 
Major handler 03. Dispatches minor functions that deal with 
scan lines. 

All device drivers are required to provide this major handler. 

OutputFill 
Major handler 04. Dispatches some minor functions that do 
area filling. 

Bitmap Major handler 05. Dispatches all minor functions that deal 
with bitmaps. 

Textout 

All device drivers are required to provide this major handler. 

Major handler 09. Dispatches minor functions that display 
text. 

All device drivers are required to provide this major handler. 

Area Major handler OA. Dispatches minor functions for the area 
accumulation calls. 

Bounds Major handler OB. Dispatches minor functions that set and 
retrieve bound and correlate data. 

Clip Major handler OC. Dispatches minor functions that deal 
with the clip region. 

Region Major handler OD. Dispatches minor functions that deal 
with regions. 

Transform 
Major handler OE. Dispatches minor functions that set, 
retrieve, and calculate transforms. 

Attributes 
Major handler OF. Dispatches minor functions that set and 
retrieve attributes. 



Device Drivers 

All device drivers are required to provide this major handler. 

Color Major handler 10. Dispatches minor functions that deal with 
color tables. 

All device drivers are required to provide this major handler. 

Query Major handler 11. Dispatches minor functions that query 
device capabilities and parameters and also the escape func
tion for direct access of driver function. 

All device drivers are required to provide this major handler. 

16.1.3 Function Parameters 

16.1.3.1 Stack Arguments 

Four arguments are passed on the stack to the major function handlers. 
These arguments are the same for all handlers. Each argument is a 32 bit 
quantity. They are pushed onto the stack in the order: lpArgs, Com
mand, hDC, FunN. As an example, the OutputLine major function 
handler would be called as: 

16.1.3.1.1 OutputLine( lpArgs, Command, hDC, FunN) 

Parameters; 

lpArgs A far pointer to the original arguments to the graphics 
engine. The device driver gets the original arguments, as 
defined in the graphics engine specification, but in a struc
ture rather than on the stack. 

The selector part of lpArgs is always the device driver's 
stack segment. This means that the device driver can poten
tially avoid a segment selector load when accessing the argu
ments by using SS directly. 

Command 
Bit flags indicating what operations need to be performed. 

Bit 0 => COI\-LDRAW 
Draw the figure. 

Bit 1 = > COI\-L BOUND 
Calculate the bounding rectangle. 

Bit 2 = > COI\-L CORR 
Calculate correlation with the Pick Window. 

(These three functions only apply to drawing 

g7 



Windows Presentation Manager Reference 

functions and should be ignored for other func
tions.) 

Bit 3 =>COM-BITMAP 
Set by the device driver prior to a call back to the 
engine using SimulationEntry to ensure that the 
function gets routed to the bitmap simulation rou
tines. 

Bits 16 - 23 
may be defined by a simulation for its own use. 

Bits 24 - 31 
· may be defined by the driver for its own use. 

All other bits should be ignored. 

hDC This is a pointer to the actual DC in memory. The high 
word is the DC Segment (for all DC's), the low word is the 
offset of this DC. 

FunN 

The device driver is given access to a DWORD (4 bytes) of 
information starting at byte offset 4 in the DC. This 
DWORD is under total control of the device driver, except 
that it will be zeroed when the DC is created. It is expected 
that the device driver will store an index or pointer here that 
will help it locate its attribute instantiations for this DC. 
We will refer to this DWORD as the DC Magic Number. 

Also, at offset 8 of the DC, the device driver has access to the 
hLogicalDevice. This is a 32-bit handle for the logical device 
that the DC belongs to. This allows the device driver to 
recognize its own DC objects. This lets the device driver do 
its own error checking, preventing a stopover in the engine 
layer. 

The logical device handle is useful when doing a BitBlt 
operation from one device bitmap to another. In this case, 
both bitmaps should be in DC's on the same logical device 
and the handle allows the driver to check this. 

The function number. The minor function number is in the 
low word. The major function number is in the low byte of 
the high word. The high byte should be ignored. 

16.1.3.2 Command Bits for Drawing, Correlation and Bounds 
Calculation 

Three command bits are passed to the device driver and may be used in 
any combination. These bits are: 

98 



Device Drivers 

• COM_DRAW 

• COM_BOUND 

• COM_CORR 

requesting that the device perform drawing, bounding, and correlating 
respectively. 

If more than one of the bits is set then more than one operation needs to 
be performed. If none of the bits are set, there may still be something that 
needs doing. An example is that the current position must be updated on 
a drawing command even if the COM_ DRAW bit is not set. 

16.1.3.2.1 Draw 

When COM_ DRAW is set, the device driver must actually draw the 
requested figure on the device or bitmap. If the bit is off, then any func
tions that would normally be performed in addition to drawing must still 
be done (like updating the current position). 

16.1.3.2.2 Bound 

When COM .... BOUND is set, the device driver must calculate the bounding 
rectangle for the given figure. The engine should then be called to accu
mulate the resulting rectangle. Use the AccumulateBounds call, through 
SimulationEntry. 

All device drivers must be able to calculate bounds on any figure they can 
draw. 

16.1. 3. 2. 3 Correlatfon 

When COM_ CORR is set, the device driver must determine whether the 
given figure intersects the Pick Window that was set by SetPickWindow. 
If an intersection is detected, the driver should return the error code 
ERROILCORRELATION-HIT (07FF) in AX. 

Only display device drivers are required to calculate correlations. 

16.1.3.3 Register Arguments 

The following registers will have defined values when the device driver 
major handler is called from the IDispatchTable: 

99 



Windows Presentation Manager Reference 

CX:DX =The DC magic number. CX contains the high order word. 

ES = The DC Segment. 

These assignments are provided as an optimization only. The information 
provided is obtainable elsewhere. We do not expect that device driver 
major function dispatchers will be able to use these at all if they are not 
written in assembler. 

The default engine simulations will not depend on these assignments. 
This means that a device driver major function dispatcher can destroy 
these values and branch to a default simulation without any problems. 

16.1.3.4 Transforms 

Primitive functions (eg PolyLine) will be passed to the driver in world co
ordinates. The driver may either perform the transformations itself, or it 
may use Convert (via SimulationEntry), to get the engine to do them for 
it. 

Some functions which are generated internally (eg ScanLR), will, however, 
already be in device co-ordinates when passed across the DDI. The driver 
can tell whether any particular function has already been transformed or 
not by inspecting a bit in the command flags. (This bit is to be defined.) 

All device co-ordinates (ie after transformation) passed across the DDI are 
32 bit fixed point numbers, with 16 bits integer and 16 bits fraction. Any 
co-ordinates in world, model, page, or default page space are 32 bit signed 
integers. 

16.1.3.5 Return Values 

The device driver must return an error code in the AX register when it has 
completed the function call. A return value of zero indicates successful 
completion. Any other value indicates that an error or other noteworthy 
condition has occurred. Defined return codes are: 

100 

0000 

07FF 

08FF 

2400 

3100 

EEOO 

OK completion. 

Primitive passed through pick window. 

Two correlation hits on EndArea primitive. 

Set Model Transform matrix element overflow. 

Set Viewing Transform matrix overflow. 

End of data. (Used by some enumerating functions.) 



Device Drivers 

16.1.3.6 Register Content Preservation 

AX will contain any error code. Registers BX, CX, DX, and ES may be 
destroyed. All other registers must be preserved. 

16.1.3.7 Calling SimulationEntry 

A device driver and any simulation may call the graphics engine through a 
lower level interface than GREEntry. This entry point is called Simula
tionEntry. 

SimulationEntry should be called as a FAR call: 

SimulationEntry( lpArgs, Command, hDC, FunN ) 

The arguments are exactly what would be passed to a driver or simulation. 

The Command word may be set to request any combination of 
COJvLDRAW, C01L.CORR, and C01LBOUND. In addition, a driver 
can set bits of its own definition. What this means is that all simulations 
will pass bits 24 - 31 of the Command unchanged to any calls they make. 
In this way, a driver can make a call to a simulation with some of its own 
Command bits set, and recognize any driver calls that are generated by 
that simulation. 

In the same way, drivers must pass bits 16 - 23 of the command that they 
received unchanged to any simulations that they call. This way a simula
tion can recognize when a driver is calling it from inside another simula
tion call. 

16.1.3.8 Bitmap Simulations 

Simulations are provided for some standard bitmap formats. Devices that 
use bitmaps in these formats may call on the simulations to do any draw
ing function, like arcs and polylines for example. This allows device 
drivers for dot matrix printers and such to share common code for drawing 
on bitmaps. 

The supported bitmap formats are: 

Bitcount 
======== 

1 
8 

24 
4 

Planes 
====== 

1 
1 
1 
1 

Note: Device Drivers must be able to translate from all the standard 

101 



Windows Presentation Manager Reference 

formats to their own internal format. This allows a bitmap created on 
one device to be displayed on another. 

All device drivers are required to support the PolyLine and PolyShortLine 
calls for drawing on bitmaps. However, to prevent the same code from 
appearing in many device drivers, a non-display device driver may rely on 
the PolyLine and PolyShortLine code in the display driver to actually 
draw on bitmaps. Of course, display device drivers cannot do this, and are 
required to actually draw on bitmaps themselves. 

A typical use of this trick is by dot matrix printers. When a DC is created 
for the printer, the printer device driver does the following: 

1. Call CreateDC to make a memory DC for the "DISPLAY" device. 

2. Call CreateBitmap to make a bitmap compatible with the display 
DC. 

3. Select the bitmap into the DC with SelectBitmap. 

When a drawing function, like PolyLine, is called for drawing on the 
printer DC, the printer driver passes the call along by calling PolyLine on 
the display DC with SimulationEntry. The display driver will set the 
appropriate bits in the bitmap. 

When all drawing commands to the printer DC are completed, as indi
cated by the EndDoc escape call, the printer driver can retrieve the bits 
from the bitmap with GetBitmapBits. The printer then prints the bits on 
the page. 

When the printer DC is deleted, the printer device driver should deselect 
the bitmap from the display DC, delete the bitmap, and delete the display 
DC. 

16.1.3.9 Journalling 

For support of banding printers, drivers need to be able to journal and 
repeatedly play back the drawing calls they receive. Functions are pro
vided in the engine to perform this, as follows: 

102 

170001 CreateJournal (lphJournal,FunN) 
Creates a journal. A handle is returned. 

170002 DeleteJournal (hJournal,FunN) 
Deletes a journal. 

170003 StartJournal (hDC,hJournal,FunN) 
Tells the engme that all drawing and attribute calls for the 
given DC are to be recorded in the journal. After recording 
a drawing call in the journal, the engine will pass the 



170004 

170005 

Device Drivers 

drawing call on to the device driver, but without the 
COM_ DRAW command bit. 

StopJournal (hDC,hJournal,FunN) 
Tells the engine that drawing and attribute calls should no 
longer be recorded in the journal. 

Play Journal ( Control,hDC,hJournal,FunN) 
Tells the engine to play back the journal to the given DC. 
The Control argument determines how many calls to play 
back. This routine returns an error code when the end of the 
file is reached. The next call after the end of file is reached 
will start the file again from the beginning. 

16.1.3.10 Serialization and Locking. 

The device driver should be designed to be re-entrant. It must assume 
that it can be called by two or more different threads at any time. 

A device driver is always called by the Graphics Engine when the engine is 
outside its critical sections. This implies that the device driver can afford 
to take a long time to implement a particular function on a given thread. 
For example, it IS possible for the device driver to access a resource on 
disk or to put up a dialog box for additional information. 

It is often necessary for a device driver to serialize access to internal 
resources - the actual hardware, for example. The driver code has access 
to all the normal serialization mechanisms available to DOS code running 
at ring 2: 

• CLI/STI 

• RAM Semaphores 

• System Semaphores. 

The device driver writer can choose whichever of these is suitable for the 
particular circumstances. The only caveat is that the device driver should 
NEVER call another system component during a critical section. This 
includes the file system, the graphics engine (via SimulationEntry) or the 
Presentation Manager APL 

16.1.3.11 Cursors 

All display drivers must support a "cursor" for the pointing device. The 
cursor is a small graphics image which is allowed to move around the 
screen independently of all other operations to the screen, and is normally 
bound to the location of the pointing device. The cursor is non
destructive in nature, i.e. the bits underneath the cursor image are not 
destroyed by the presence of the cursor image. 

103 



Windows Presentation Manager Reference 

A cursor consists of an AND mask and an XOR mask, which give combina
tions of O's, l's, display, or inverse display. 

AND XOR 

0 
0 
1 
1 

0 
1 
0 
1 

i DISPLAY 

0 
1 

Display 
Not Display 

The cursor also has a "hot spot", which is the pixel of the cursor image 
which is to be aligned with the actual pointing device location. 

For a cursor like this, the hot spot 
would normally be the *, which would 
be aligned with the pointing device 
position 

The cursor may be moved to any location on the screen or be made invisi
ble. Part of the cursor may actually be off the edge of the screen, and in 
such a case only the visible portion of the cursor image is displayed. 

Logically, the cursor image isn't part of the physical display surface. 
When a drawing operation coincides with the cursor image, the result is 
the same as if the cursor image wasn't there. In reality, if the cursor 
image is part of the display surface it must be removed from memory 
before the drawing operation may occur, and redrawn at a later time. 

This exclusion of the cursor image is the responsibility of the display 
driver. If the cursor. image is part of physical display memory, then all 
output operations must perform a hit test to determine if the cursor must 
be removed from display memory, and set a protection rectangle wherein 
the cursor must not be displayed. The actual cursor image drawing rou
tine must honor this protection rectangle by never drawing the cursor 
image within its boundary. 

The cursor drawing primitives reside in the Ring 2 display driver. These 
primitives may be called at various times from many different places, so 
the cursor code must protect itself via a semaphore (any and all protection 
is the sole responsibility of the display driver). Since cursor drawing can be 
a time consuming operation, the driver must also protect itself against 
reen trancy. 

The conditions under which the cursor drawing primitives may be called 
are as follows: 

1. One of the following 

104 



Device Drivers 

1. A mouse movement occurs. Mouse movements are passed to 
the MoveCursor routine at interrupt time. 

2. The window manager is setting a new cursor position. 

The current cursor location must be set to the given coordinates. 
If the cursor is visible, it will be drawn at the new location. If the 
cursor is off (a NULL cursor), or if the cursor has been excluded, 
then no updating of the image is required. 

If the cursor is on and the new cursor position will cause the cursor 
to be excluded, it must be removed from the screen. 

In either case, the real cursor position must be updated to the 
passed (x,y). 

Once the cursor has been drawn, a check must be made to see if a 
new location was given for the cursor, and if it has moved again, be 
drawn at the new location (or be excluded because it has moved 
into the protection rectangle). This implies that a real (x,y) and a 
cursor-shape (x,y) be maintained. 

void MoveCursor(abs_x,abs_y) 
SWORD abs_x; /* x coordinate of cursor •/ 

/* y coordinate of cursor •/ SWORD abs_y; 
{ 

} 

WORD old_busy; 

enter _crit (); /*Updating the real X,Y is •/ 
real_x = abs_x - hot_x; 
real_y = abs_y - hot_y; 
old_busy = IS_BUSY; 
swap(screen_busy,old_busy); 
leave_crit (); 

/* a critical section •/ 

/* Try for screen semaphore •/ 

if (old_busy == NOT_BUSY) 
{ 

while(cursor positions disagree) 
{ 

if (cursor hidden I I already excluded) 
{ 

} 

screen_busy = NOT_BUSY; 
return(); 

if (newly excluded) 
{ 

} 

cur_flags = CUR_EXCLUDED; 
cursor _off(); 
screen_busy = NOT_BUSY; 
return(); 

draw_cursor () ; /* can actually draw cursor */ 
} 
screen_busy = NOT_BUSY; 

} 
return(); 

/* others can have the screen now•/ 

105 



Windows Presentation Manager Reference 

2. A new cursor image is being set. When a new cursor image is set, 
the old cursor image, if any, must be removed from the screen 
before the new cursor is set. The hot spot of the old cursor and the 
new cursor must be aligned. This code must also protect itself 
from any of the drawing primitives, or from the interrupt thread 
·moving the cursor. 

106 

void SetCursor(lp_cursor) 
CURSOR far *lp_cursor 
{ 

} 

WORD old_busy; 

old_busy = IS_BUSY; /* Try for screen semaphore */ 
if (swap(screen_busy. old_busy) == IS_BUSY) 

return(); 

disable_interrupts; 
cur_flags = CUR_OFF; 
real_x += hot_x; 
real_y += hot_y; 
hot_x = hot_y = O; 
enable_interrupts; 
cursor _off(); 
if (lp_cursor) 
{ 

} 

copy(cur_cursor,lp_cursor); 
move_cursors () ; 
disable_interrupts; 
hot_x = cur_cursor.csHotX 
hot_y = cur_cursor.csHotY 
real_x -= hot_x; 
real_y -= hot_y; 
cur_flags = CUR_EXCLUDED; 
enable_interrupts; 

screen_busy = NOT_BUSY; 

/* Treat as a critical section */ 
/* Assume a null cursor; */ 
/* Remove hot spot adjustment */ 
/* from real (X,Y) position*/ 
/* Don't want hot spot adjustments */ 
/* Interrupt can play with real x & y 
/* Remove old cursor from s */ 
/* If there is a new cursor */ 

/* Copy cursor header information */ 
/*Move the patterns, adj. hot spot* 
/* Treat as a critical section */ 
/* Save X hot spot adjustment */ 
/* Save Y hot spot adjustment */ 
/* Adjust real (X,Y) for the */ 
/* hot spot */ 
/* Show excluded, but not hidden */ 

/* Others can have the screen now */ 

3. A timer interrupt occured. Approximately every 1/4 second, the 
Window Manager will call CheckCursor. This allows a lazy redraw 
of the cursor whenever it has been removed from the screen. Use of 
this function is optional. 

If the cursor is currently invisible, and can now become visible, 
then it should be drawn. If while the cursor was being drawn, it 
moved, then it must be drawn at the new location. If it moved into 
the protection rectangle, then it must be taken down again. 

This code must protect itself from any of the drawing primitives, 
or from the interrupt thread moving the cursor. 

void CheckCursor(); 
{ 

WORD old_busy; 

if (swap(screen_busy,old_busy) == screen_busy) 
return () ; / * cannot access the screen * / 

if (cursor is off I I cursor not excluded) 



{ 

} 

screen_busy = NOT_BUSY; 
return(); 

Device Drivers 

/* nothing to do */ 

/* The cursor is currently excluded. If it is now unexcluded, */ 
/* it must be drawn. */ 

test_if_unexcluded: 

} 

enter _crit (); 
if (cursor unexcluded) 
{ 

} 

leave_crit (); 
draw_cursor () ; 
cur _flags = O; 
enter _crit (); 
if (cursor positions ~isagree) 

goto test_if_unexcluded; 
screen_busy = NOT_BUSY; 
leave_crit () ; 
return(); 

leave_crit (); 

/* draw cursor at new location */ 
/* show cursor is on and unexcluded */ 

/* moved while we were drawing it */ 

/* Must test to see if the cursor became excluded after we */ 
/* just brought it back. */ 

if (cursor is excluded) 
{ 

cursor _off(); 
cur_flags = CUR_EXCLUDED; 

} 

screen_busy = NOT_BUSY; 
return(); 

/* others can have the screen now */ 

The display driver must resolve all interactions between cursor drawing at 
interrupt time and access to video hardware. While in the background, 
the driver should not draw any cursor image. 

16.1.4 Dispatching Minor Functions 

The major function handler is responsible for dispatching the minor func
tion according to the minor function number. For each major function 
handler the minor functions to be dispatched are as follows. 

Note: these numbers are subject to change. 

107 



Windows Presentation Manager Reference 

16.1.4.1 OutputArc 00 

0300 0000 GetArcParameters 

0300 0001 SetArcParameters 

0300 0002 Arc 

0400 0003 FullArcln terior 

0400 0004 FullArcBoundary 

0400 0005 FullArcBoth 

0600 0006 PartialArc 

0600 0007 ArcDDA 

0600 0008 FilletDDA 

0600 0009 PartialArcDDA 

0400 OOOA Poly Fillet 

0600 OOOB PieSliceln terior 

0600 0000 PieSliceBoundary 

0600 OOOD PieSliceBoth 

0300 OOOE Boxln terior 

0300 OOOF BoxBoundary 

0300 0010 BoxBoth 

0300 0011 QueryArcDDA 

0300 0012 QueryFilletDDA 

0300 0013 QueryPartialArcDDA 

0400 0014 PolySpline 

0400 0015 PolyFilletSharp 

16.1.4.2 OutputLine 01 

0401 0000 Poly Line 

0301 0001 PolyShortLine 

0601 0002 LineDDA 

0301 0003 GetCurrentPosition 

0301 0004 SetCurren tPosition 

108 



0301 0005 QueryLineDDA 

16.1.4.3 OutputMarker 02 

0402 0000 

16.1.4.4 OutputScan 03 

0303 0000 

0503 0002 

16.1.4.5 OutputFill 04 

0304 0000 

0404 0002 

0404 0003 

16.1.4.6 Bitmap 05 

0505 0000 

0405 0001 

0305 0002 

0305 0003 

0705 0004 

0705 0005 

0305 0006 

0305 0007 

0505 0008 

0705 0009 

0505 OOOA 

0405 OOOB 

Poly Marker 

Scan LR 

PolyScanLine 

FloodFill 

AltPolygon 

WindPolygon 

DeviceCreateBitmap 

DeviceDeleteBitmap 

DeviceSelectBitmap 

GetBitmapParameters 

GetBitmapBits 

SetBitmapBits 

GetPel 

SetPel 

lmageData 

Bitblt 

DeviceSetCursor 

SaveBits 

Device Drivers 

109 



Windows Presentation Manager Reference 

16.1.4.7 Textout 09 

0709 0000 

0509 0000 

0409 0002 

0409 0003 

0409 0004 

0309 0005 

0509 0006 

0709 0007 

16.1.4.8 Area OA 

030AOOOO 

030A 0001 

OOOA0002 

040A0003 

030A0004 

030A 0005 

030A 0006 

020A 0007 

050A0008 

16.1.4.9 Bounds OB 

110 

030B 0004 

030B 0005 

030B 0006 

CharStringCtrl 

CharString 

CharRect 

CharStr 

ScrollRect 

UpdateCursor 

QueryTextBox 

QueryTextBreak 

BeginArea 

EndArea 

AccumulateArea 

BeginClipArea 

EndClipArea 

BeginStrokes 

EndStrokes 

Query AreaState 

DrawFrame 

QueryCharCorr 

GetPick Window 

SetPick Window 



16.1.4.10 Clip OC 

040C 0000 

050C 0001 

040C 0002 

040C 0003 

030C 0004 

030C 0005 

030C 0006 

040C 0007 

040C 0008 

050C 0009 

0500 OOOA 

0300 OOOB 

16.1.4.11 Region OD 

050D 0000 

060D 0001 

050D 0002 

030D 0003 

050D 0004 

0700 0005 

040D 0006 

050D 0007 

050D 0008 

050D 0009 

030D OOOA 

GetClipBox 

SelectClipRegion 

In tersectClipRectangle 

ExcludeClipRectangle 

OffsetClipRegion 

SetXf ormRect 

QueryClipRegion 

Pt Visible 

RectVisible 

GetOlipRects 

Select VisRegion 

QueryVisRegion 

GetRegionBox 

GetRegionRects 

CreateRectRegion 

Destroy Region 

SetRectRegion 

ComqineRegion 

OffsetRegion 

Eq~~lRegion 
PtlnRegion 

RectlnRegion 

PaintRegion 

Device Drivers 

111 



Windows Presentation Manager Reference 

16.1.4.12 Transform OE 

060E 0000 Convert 

040E 0001 GetModelXf orm 

040E 0002 SetModelXf orm 

040E 0003 Get WindowViewportXf orm 

040E 0004 Set WindowViewportXform 

030E 0005 GetGlobalViewingXf orm 

040E 0007 SetGlobalViewingXform 

030E 0008 GetGraphicsField 

030E 0009 SetGraphicsField 

030E OOOA GetPageUnits 

050E OOOB SetPageUnits 

030E 0000 GetPage Window 

040E OOOD SetPage Window 

030E OOOE GetPage Viewport 

040E OOOF SetPage Viewport 

OOOE 0010 GetDOOrigin 

030E 0012 SetDCOrigin 

030E 0013 Get ViewingLimits 

030E 0014 Set ViewingLimits 

16.1.4.13 Attributes OF 

030F 0001 EnableKerning 

040F 0002 GetKerningPairTable 

040F 0003 GetTrackKern Table 

060F 0004 SetKernTrack 

060F 0005 DeviceSetAttributes 

040F 0006 DeviceSetGlobalAttribute 

040F 0007 NotifyClipChange 

070F 0008 RealizeFont 

112 



Device Drivers 

020F 0009 Erase PS 

030F OOOB GetDCCaps 

040F OOOC DeviceQueryFontAttributes 

040F OOOD DeviceQueryFonts 

070F OOOE DeviceQueryFon tSpace 

020F OOOF GetPattern Origin 

030F 0010 SetPat tern Origin 

030F 0011 SetStyleRatio 

050F 0012 SetLineTypeGeom 

050F 0013 QueryLineTypeGeom 

16.1.4.14 Color 10 

0410 0000 QueryColorData 

0610 0001 QueryLogColorTable 

0710 0002 CreateLogColorTable 

0210 0003 RealizeColorTable 

0210 0004 UnrealizeColorTable 

0610 0005 Query Real Colors 

0510 0006 Query NearestColor 

0510 0007 QueryColorlndex 

0510 0008 QueryRGBColor 

16.1.4.15 Query 11 

0411 0000 QueryDeviceBitmaps 

0411 0001 QueryDeviceCaps 

0711 0003 Escape 

0511 0005 QueryHardcopyCaps 

113 



Windows Presentation Manager Reference 

16.1.4.16 Device Mode 14 

0614 0005 DeviceMode 

The device driver is allowed to reject any call it does not want to handle, 
as long as it is not one of the "required" functions. 

The device driver must pass any call it does not handle to the default 
simulation for the major handler being called. 

16.1.5 The Dispatch Table 

16.1.5.1 Device Driver Installation 

When the device driver module is loaded, the graphics engine will call the 
Enable function. 

Among the arguments to this function will be a pointer to the IDevi
ceDispatchTable. This table will already be filled with the addresses of 
the graphics enJine default major handlers. (Copied from the Default
DispatchTable. The device driver must overwrite the entries in this table 
that correspon to the functions it wishes to handle. 

The device driver must handle all functions listed in the table of required 
functions. The remaining functions are optional. 

16.1.5.2 Device Driver Function Handling 

The device driver should execute a FAR return from an optional function 
only when it completes all processing required for that function. If it can
not complete the function, it must pass control to the engine default 
handler for that major function. The address of the def a ult major handler 
can be found in the DefaultDispatchTable, which is a globally readable 
object. 

A driver may not be able to complete processing in cases when it cannot 
handle certain combinations of attributes, like wide styled curves, for 
example. 

Any minor function number that the driver does not recognize must be 
passed to the default major handler. This will allow device drivers to con
tinue to operate even if the interface is expanded. 

114 



Device Drivers 

Because the interface may be expanded to include functions that even the 
most complete device driver cannot know about, the engine default 
handler must be allowed access to any functions that modify drawing 
attributes. The device driver should record the new attributes and per
form any work required for their instantiation, and then pass the call to 
the default major handler for that function. The attribute is recorded 
twice, but the engine is capable of taking over drawing at any time. The 
calls that must be shared in this way are: 

• SetArcParameters 

• SetCurrentPosition 

• SetAttributes 

• SetGlobalAttributes 

16.1.5.3 Simulation Installation 

Simulations are installed during system initialization. Installation of 
simulations differ in that the desired functions are placed directly in the 
DefaultDispatchTable. In this way, they replace the default engine major 
handlers, but are not distinguishable from them. 

Simulations should make a local copy of the pointers they are replacing. 
This will allow them to use the engine handlers if they are ever needed. 

16.1.6 Primary Function Definitions 

This section contains the definitions of the device driver functions which 
must be called via the normal dynamic link mechanism rather than 
through the Function Handler mechanism. These entry points must be 
exported by the device driver. These are required for all device drivers. 

16.1.6.1 Enable 

The Enable function performs initialization of the device driver, the physi
cal device, and device contexts. It is called as: 

Enable{ U92....SUBFUNOTION, P92....PARAMS, P92....RETURNS} 

115 



Windows Presentation Manager Reference 

16.1.6.1.1 U32-SUBFUNCTION = 1 Fill lDeviceBlock 

Initializes the logical device block. This function will be called whenever 
the device driver module is loaded. 

Parameters: 

116 

P32_PARAMS 
Pointer to a structure as follows: 

U32_ VERSION 
Version of the Graphics Engine. This is a BCD 
coded version number. 

U32_ TABLE_ SIZE 

P32-RETURNS 

The number of entries in the dispatch table. The 
device driver should not replace pointers past the 
end of the table as indicated by this number. 

Pointer to a structure as follows: 

P32-FLAGS 
Pointer to a word of logical device flags. The dev
ice driver should set bits 0, 1, and 2 of these flags. 
All other flags are reserved for system use and 
must not be modified. The bits are defined as fol
lows: 

BITO Set if each DC for this device will require 
its own pDeviceBlock. Clear if only one 
pDeviceBlock is needed for each physical 
device. It is expected that printer and 
plotter drivers would set this bit, and 
most others would clear it. 

BIT 1 Set if this device can have only one DC 
open at any time; This is a serially reus
able device. Clear if an arbitrary 
number of DCs may coexist. 

BIT 2 Set if the "device" and "file name" fields 
of a CreateDC call for this device should 
be ignored. This would be the case if the 
device driver supported only one physical 
device in one configuration, like the 
display driver, for example. 

P32_DISPATCIL TABLE 
Pointer to the dispatch table. Each entry in the 
table is a 32 bit pointer to a major function 



Device Drivers 

handler. This table is already filled with the 
addresses of the system default handlers when this 
call is made. The device driver must replace the 
entries in the table that correspond to required 
major function handlers (see relevent section). The 
device driver may replace more entries, at its 
option. This table will then be used to dispatch 
major function handlers for ALL physical devices 
belonging to this logical device. 

16.1.6.1.2 U32_SUBFUNCTION = 2 Fill pDeviceBlock 

Initializes a physical device block. This may be called once per physical 
device or once per DC allocation, depending on how the device driver 
responded with BIT 0 of the ldb_ flags on the lDeviceBlock call. 

Parameters: 

P32-PARAMS 
Pointer to a structure defined as: 

p32_ drivername 
Pointer to ASCIIZ name of the driver ( eg 
"EPSON") 

p32_ devicename 
Pointer to ASCIIZ name of the device ( eg 
"<TBD>") 

p32-outputname 
Pointer to ASCIIZ name of the output device. 
This may be either the spooler output class ( eg 
"PRINT" or "PLOT"), or the device name for the 
physical port ( eg "LPTl "). 

p32_ devicedata 
Pointer to device specific initialization data. 

u32- datatype 

P32_ RETURNS 

One of: 

1 => Device Independant 
2 => Device Dependent 
3 => Raw 
4 => Default 
5 => Device Driver 

Pointer to pDeviceBlock structure. 

117 



Windows Presentation Manager Reference 

U16-LENGTH 
Length in bytes of the pDeviceBlock structure. 
The device driver must not change this field. 

U16_FLAGS 
Physical device flags. All flags are reserved for sys
tem use and must not be modified. 

U32-COUNT 
Reference count for this pDeviceBlock. The device 
driver must not change this field. 

U32-NEXT 
Pointer to the next pDeviceBlock belonging to the 
same logical device. The device driver must not 
change this field. 

U32-DEVICE 
Atom for the name of the physical device, like 
"MX-80". The device driver must not change this 
field. 

U32_FILE 
Atom for the file name of the port this device is 
connected to, like "LPTl". The device driver must 
not change this field. 

U32_ STATEINFO 
Pointer or handle for the state information for this 
device. The device driver should allocate its own 
memory for this purpose and use this field later to 
locate it. 

16.1.6.1.3 U3fLSUBFUNCTION = 3 Fill Information pDeviceBlock 

Fills a pDeviceBlock that will never be used to perform actual drawing. It 
is used for information retrieval only. 

Parameters: 

P32_PARAMS 

118 

Pointer to a structure defined as: 

p32- drivername 
Pointer to ASCIIZ name of the driver ( eg 
"EPSON") 

p32_ devicename 
Pointer to ASCIIZ name of the device ( eg 
"<TBD>") 



Device Drivers 

p32_outputname 
Pointer to ASCIIZ name of the output device. 
This may be either the spooler output class (eg 
"PRINT" or "PLOT"), or the device name for the 
physical port (eg "LPTl"). 

p32_ devicedata 
Pointer to device specific initialization data. 

u32_ datatype 

P32-RETURNS 

One of: 

1 ;> Device Independant 
2 ;> Device Dependent 
3 ;> Raw 
4 ;> Default 
5 ;> Device Driver 

Pointer to pDeviceBlock structure. 

U16-LENGTH 
Length in bytes of the pDeviceBlock structure. 
The device driver must not change this field. 

U16-FLAGS 
Physical device flags. All flags are reserved for sys
tem use and must not be modified. 

U32-COUNT 
Reference count for this pDeviceBlock. The device 
driver must not change this field. 

U32-NEXT 
Pointer to the next pDeviceBlock belonging to the 
same logical device. The device driver must not 
change this field. 

U32-DEVICE 
Atom for the name of the physical device, like 
"MX-80". The device driver must not change this 
field. 

U32-FILE 
Atom for the file name of the port this device is 
connected to, like "LPTl". The device driver must 
not change this field. 

U32- STATEINFO 
Pointer or handle for the state information for this 
device. The device driver should allocate its own 
memory for this purpose and use this field later to 
locate it. 

119 



Windows Presentation Manager Reference 

16.1.6.1.4 U32-SUBFUNCTION = 4 Disable pDeviceBlock 

Any physical disabling of the specified device is performed and any associ
ated memory is deallocated. 

Parameters: 

P32_PARAMS 
Ignored for this subfunction. 

P32-RETURNS 
Pointer to pDeviceBlock structure. 

U16_LENGTH 
Length in bytes of the pDeviceBlock structure. 

U16-FLAGS 
Physical device flags. 

U32_COUNT 
Reference count for this pDeviceBlock. 

U32_NEXT 
Pointer to the next pDeviceBlock belonging to the 
same logical device. 

U32-DEVICE 
Atom for the name of the physical device, like 
"11X-80". 

U32-FILE 
Atom for the file name of the port this device is 
connected to, like "LPTl". 

U32_ STATEINFO 
Pointer or handle for the state information for this 
device. 

16.1.6.1.5 U32-SUBFUNCTION = 5 Enable Device Context 

This function will be called when a new DC is created. The device driver 
is expected to allocate any memory it needs to support the attributes of 
the DC. It then should store a handle for this memory in the DC "magic 
number". 

Parameters: 

P32_PARAMS 
Pointer to pDeviceBlock structure. 

120 



Device Drivers 

P32-RETURNS 
Pointer to the new Device Context. The only information 
the device driver has about the DC structure is that the 
magic number is at offset 4. That is, to the device driver, 
the DC structure is as follows: 

U32-RESERVED 
Reserved. The device driver must not modify this 
field. 

U32-MAGIC 
This field is under the complete control of the dev
ice driver. When this subfunction is called the 
field is initialized to zero. The device driver is 
expected to store here enough information to 
locate its instantiations of any of this DC's attri
butes. 

U32-RESERVEDrmany] 
Reserved. The device driver must not modify this 
field. 

16.1.6.1.6 U32_SUBFUNCTION = 6 Disable Device Context 

This function will be called when a DC is about to be deleted. The device 
driver is expected to free up any memory it has allocated for the DC. It is 
expected that the device driver will use the "magic number" in the DC to 
locate this memory. 

Parameters: 

P32-PARAMS 
Pointer to the DC structure. 

P32-RETURNS 
Ignored for this subfunction. 

16.1.6.1. 7 U32-SUBFUNCTION = 7 Save DC State 

This function will save a copy of whatever information the device driver 
has stored about this DC. A DC's state may be saved multiple times, in a 
LIFO order. This function will return an error code if there is not enough 
memory available to save the state. 

Parameters: 

121 



Windows Presentation Manager Reference 

P32_PARAMS 
Pointer to the Device Context whose state is to be saved. 

P32_ RETURNS 
Pointer to a 32 bit count. As a return value, the count will 
be set to the number of states that are saved for this DC. 
Later on, this number can be used with the RESTORE DC 
STATE call to restore the state we have just saved. If 
P32_RETURNS is NULL, then no count will be returned. 

16.1.6.1.8 U32_SUBFUNCTION = 8 Restore DC State 

This function will restore a previously saved DC state. A parameter to 
this function is the number of saved states that should be "POPed". This 
function will return an error code if is has been asked to POP more states 
than have been PUSHed. 

Parameters: 

P32_PARAMS 
This is a number indicating what state should be restored. If 
the number is positive, it indicates which state in the order 
they were PUSHed. That is, if the number is one, then the 
first PUSHed state is restored, and all others are lost. If the 
number is two, The second PUSHed state will be restored, 
and one will remain saved. If the number is negative, it indi
cates how many states will be POPed. That is, if the 
number is -1, we will POP back one state. If the number is 
zero, an error will be returned. If a positive or negative 
number is given specifying a state that hasn't been saved, an 
error will be returned. 

P32_ RETURNS 
Pointer to the Device Context whose state is to be restored. 

16.1.6.1.9 U32_SUBFUNCTION = 9 Reset DC State 

This function will reset the information saved for this DC to its original 
initialized state. 

Parameters: 

P32_PARAMS 
Ignored for this subfunction. 

122 



Device Drivers 

, P32-RETURNS 
Pointer to the Device Context whose state is to be reset. 

16.1.6.1.10 UtJLSUBFUNGTION = 10 Disable display output 

This function will be called only for a display driver. The call will be 
made, for example, when the screen group is switched. The device driver 
should not do any writing to the physical display after receiving this call, 
until the ENABLE DISPLAY OUTPUT call is made. The device driver 
may want to save any state of the display hardware that may be destroyed 
by another screen group. 

Parameters: 

P32_PARAMS 
Ignored for this subfunction. 

P32-RETURNS 
Ignored for this subfunction. 

16.1.6.1.11 UtJLSUBFUNGTION = 11 Enable display output 

This function will be called only for a display driver. The call will be 
made, for example, when the Presentation Managere screen group is 
restored. The device driver should restore the state of the display device. 
It may then resume output to the display. 

Parameters: 

P32-PARAMS 
Ignored for this subfunction. 

P32-RETURNS 
Ignored for this subfunction. 

16.1.6.1.12 U9LSUBFUNGT/ON = 12 Install Simulation 

This function will be called only for an installable simulation. This is the 
only subfunction that an installable simulation needs to handle. 

The simulation is expected to do any initialization that it needs. It must 
also place pointers to its own major functions in the given dispatch table. 
It may wish to record the pointers that it is overwriting in case it does not 
completely handle the major function. 

123 



Windows Presentation Manager Reference 

The simulation should return zero if the installation was successful. Oth
erwise, it should return ERROR- WRONG_ VERSION or 
ERROR-C011PONENT_NOT_FOUND. 

Parameters: 

P32-PARAMS 
A pointer to the following structure: 

U32_ VERSION 
The BCD coded engine version number. 

P32_ C011PONENT 
A pointer to the ASCIIZ string indicating which 
component to install. By using these component 
names, a single file on the disk can contain the 
code for several simulations, like: "REGIONS", 
"ARCS", or "TRANSFORMS". Even if a file con
tains only one simulation component, it should 
check the name for consistency. 

U32_ TABLE_ SIZE 

P32-RETURNS 

The number of entries in the dispatch table. The 
simulation should not replace pointers past the end 
of the table as indicated by this number. 

A pointer to the major function dispatch table. Each entry 
in the table is a 32 bit pointer to a major function handler. 
The simulation should replace the entries in this table that it 
wants to handle. It may wish to record the previous 
hanlder's address in case it can't handle the function com
pletely. 

16.1. 7 Definitions of Functions called via Handlers 

A major function handler of the device driver is called with an lpArgs 
parameter which points to a structure containing the arguments for the 
minor function. This structure is defined for each minor function below. 

16.1.7.1 OutputArc Functions - Major Function 00. 

124 

Function: 0300 0000 GetArcParameters 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_AttributeData 



Device Drivers 

}; 

Returns the current arc parameters p, q, r, sin a 4 element 
array: 

(s32_ p, s32- q, s32_ r, s32_ s) 

Parameters: 

p32_AttributeData 
Specifies the return address for the data. 

Function: 0300 0001 SetArcParameters 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_AttributeData 

}; 

Sets the arc parameters to the specified values. 

Parameters: 

p32-AttributeData 
Points to a 4 element array containing the integer 
values for the arc parameters: 

(s32- p, s32- q, s32- r, s32_ s). 

The arc parameters define the shape and orientation of an 
ellipse which is used for subsequent Arc, FullArc, and Par
tialArc functions. For all of these functions except Arc, they 
also determine the direction of drawing, as follows: 

s32_p * s32_q > s32_r * s32_s anticlockwise 
s32_p * s32_q < s32_r * s32_s clockwise 
s32_p * s32_q = s32_r * s32_s straight line 

Also except for Arc, they define the nominal size of the 
ellipse, although this may be changed by using the multi
plier. For Arc, the size of the ellipse is determined by the 
three points specified on Arc. 

The arc parameters define a transformation that maps the 
unit circle 
to the required ellipse, placed at the origin (0,0):-

x' = p.x + r.y 
y' = s.x + q.y 

If p.r+q.s = 0, then the transform is termed orthogonal, and 
the line from the origin (0,0) to the point (p,s) is either the 
radius of the circle, or half the half the major axis of the 
ellipse. 

For maximum accuracy orthogonal transforms should be 

125 



Windows Presentation Manager Reference 

used. 

The standard default values of arc parameters (which define 
a unit circle) are 

p=l r=O 
s=O q=l 

The arc parameters transformation takes place in World 
Co-ordinates. Any other non-square transformations in force 
will change the shape of the figure accordingly. 

Function: 0300 0002 Arc 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_xy 

}; 

Creates an arc, using the current arc parameters, through 
three x,y positions starting at the current x,y position. 

126 

Parameters:-

p32-xy Points to 

s32_spare 
s32_spare 
s32_xl 
s32_yl 
s32_x2 
s32_y2 

(may be used as work area) 
(may be used as work area) 
(coordinates of second point) 

(coordinates of third, and final, poi1 

Upon completion, the current x,y position is the third posi
tion of the arc. 

Function: 0400 0003 FullArclnterior 

See below. 

Function: 0400 0004 FullArcBoundary 

See below. 

Function: 0400 0005 FullArcBoth 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_m 

}; 

Creates a full arc with its center at the current x,y position. 

The full arc may be filled, or just an outline, or both, or nei
ther. This is achieved by using different function numbers. 

Whether the full arc is drawn clockwise or anticlockwise is 
determined by the arc parameters. 



Device Drivers 

Parameters: 

u32_ m Specifies the multiplier that determines the size of 
the arc in relation to an arc with the current arc 
parameters. The value passed is treated as a 4-
byte fixed-point number with the high-order word 
as the integer portion, and the low-order word as 
the fractional portion. Thus, a value of 65536 
specifies a multiplier of 1. 

The current x,y position is not changed by FullArc. 

Function: 0600 0006 PartialArc 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG s32_te 
ULONG s32_ts 
ULONG s32_m 
ULONG* p32_XY 

}; 

Draws two figures:-

1. A straight line, from current position to the starting 
point of a partial arc, and 

. .,,. 
2. The arc itself,'With its center at the specified point. 

The full arc, of which the arc is a part, is identical to that 
defined by GpiFullArc. The part of the arc drawn by this 
primitive is defined by the parameters s32- ts and s32_ te, 
which represent the angles subtended from the centre, if the 
current arc parameters specify a circular form. If they do 
not, these angles are skewed to the same degree that the 
ellipse is a skewed circle. s32_ ts and s32_ te are measured 
anticlockwise from the x axis of the circle prior to the appli
cation of the arc parameters. 

Whether the arc. is drawn clockwise or anticlockwise is deter
mined by the arc parameters, s32_ ts and s32- te. 

Parameters: 

u32_m 

A pointer to an x,y co-ordinate pair which are the 
co-ordinates of the center of the arc. 

Specifies the multiplier that determines the size of 
the arc in relation to an arc with the current arc 
parameters. The value passed is treated as a 4-
byte fixed-point number with the high-order word 
as the integer portion, and the low-order word as 
the fractional portion. Thus, a value of 65536 · 

127 



Windows Presentation Manager Reference 

specifies a multiplier of 1. 

s32_ ts, s32_ te 
Specify the start and ending angles. 

Upon completion, the current x,y position is set to the final 
point of the arc. 

Function: 0600 0007 ArcDDA 

See Below. 

Function: 0600 0008 FilletDDA 

See below. 

Function: 0600 0009 PartialArcDDA 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Continue 
ULONG* p32_Pels 
ULONG* p32_Pe1Count 
ULONG* p32_WorkArea 

}; 

Computes points along a primitive drawn through the points 
passed, under the current transforms, and returns the x,y 
coordinate values in device coordinates. 

128 

Points are computed and returned in batches, according to 
the p32_Pe1Count parameter. It can be assumed that the 
points defining the primitive do not change during a 
sequence. 

The data in the work area begins with four zero bytes (which 
the engine may update as the DDA progresses), is followed 
by the points defining the primitive the DDA is being applied 
to, depending on the DDA function being requested, then by 
more reserved bytes, up to the length returned by Query 
DDA. 

The points defining the primitive are as follows: 

Line 

Fillet 

Two x,y coordinate pairs are passed 

Three x,y coordinate pairs are passed 

Arc Three x,y coordinate pairs are passed 

Partial Arc 
Parameters defining the partial arc centre, multi
plier, start and end angles as follows: 

s32_startX 
s32_startY 
s32_centreX 

X Coordinate of start of line 
Y Coordinate of start of line 
X Coordinate of centre of partia: 



s32_centreY 
s32_multiplier 
s32_startAngle 
s32_endAngle 

Device Drivers 

Y Coordinate of centre of partial < 
To apply to arc parameters p,q,r,s 
Angle of start of arc 
End angle. Start=End means full at 

Parameters: 

p32_ WorkArea 
Pointer to work area for this function, starting 
four zero bytes, then the parameters listed above, 
then more work area. 

p32_PelCount 

p32_Pels 

Long pointer to a u32 count of the pels to return. 
At least this many points must be present in the 
p32-Pels array. Fewer points will be returned at 
the end of a DDA. In this case, the count will be 
updated to show the number of pels actually 
returned. 

Pointer to array of x,y coordinates to return the 
next DDA points into. 

p32_ Continue 
Pointer to a u32 variable which will be set to 0 if 
the DDA is complete, otherwise 1. 

The current x,y position is not affected by DDA. 

Function: 0400 OOOA PolyFillet 

struct ARGUMENTS { 
ULONG u32_funcNo 
ULONG u32_DcH 
ULONG s32_n 
ULONG* p32_xy 

}; 

Creates a poly primitive, which can be a fillet, sharp fillet, 
spline, line or marker, starting at the current position, using 
the array of x,y coordinate pairs passed. Different values of 
u32_FuncNo will be used for the different kinds of poly 
primitive. 

Parameters: 

p32_xy Points to an array of x,y coordinates. 

An extra x,y pair will be passed at the start of the 
xy array (and not included in the count), as work 
space. The whole array may, if need be, be 
overwritten by the transformed coordinates. 

129 



Windows Presentation Manager Reference 

s32_n Specifies the number of x,y pairs. 

Upon completion, the current x,y position is the last point in 
the array of x,y coordinates. 

Function: 0300 OOOE Boxlnterior 

See below 

Function: 0300 OOOF BoxBoundary 

See below 

Function: 0300 0010 BoxBoth 

130 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 

}; 

Draws a rectangular box with one corner at the current x,y 
position and the other at the point specified. The sides of 
the box (before transformation) are parallel to the x and y 
axes. 

The corners of the box may be rounded by means of quarter 
ellipses of the specified diameters. If the value of either 
diameter is zero, then no rounding occurs. If the value of 
either diameter exceeds the length of the corresponding side, 
then that length is used as the diameter instead. 

The box may be filled, or just an outline, or both, or neither. 
This is achieved by using different function numbers. 

Parameters: 

p32_ xy Long pointer to parameters defining the box as fol
lows: 

s32_spare May be used as work area 
s32_spare May be used as work area 
s32_cornerX X coordinate of second corner of box 
s32_cornerY Y coordinate of second corner of box 
s32_Xdiam X diameter of ellipse used to round cc 
s32_Ydiam Y diameter of ellipse used to round cc 

The current x,y position is not altered by Box. 

Function: 0300 0011 QueryArcDDA 

See below 

Function: 0300 0012 QueryFilletDDA 

See below 



Function: 0300 0013 QueryPartialArcDDA 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_bytes 

}; 

Device Drivers 

This returns the number of bytes of work area required by a 
particular DDA function (line, partial arc, fillet, arc). The 
application must allocate this much work area to be able to 
use the DDA function. 

Different function numbers are used to query arc, fillet, line 
and partial arc DDAs. 

Parameters: 

p32-bytes 
Long pointer to the u32 variable which will hold 
the return value. 

Function: 0400 0014 PolySpline 

See section on PolyFillet for details. 

Function: 0400 0015 PolyFilletSharp 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_S 
ULONG s32_n 
ULONG• p32_xy 

}; 

Creates a fillet on a series of connected lines, with the first 
line starting at current position. Subsequent x,y pairs iden
tify the end points of the lines. 

This function is similar to Poly Fillet, except that instead of 
allowing the implementation to choose the sharpness of each 
of the constituent fillets, these are specified explicitly. 

The sharpness of each fillet is defined as follows. Let A and C 
be the start and end points, respectively, of the fillets, and 
let B be the control point. 

Let W be the mid-point of AC. Let D be the point where the 
fillet intersects WB. Then the sharpness is given by WD/DB. 

Parameters: 

p32-xy Points to an array of x,y coordinates. 

An extra x,y pair will be passed at the start of the 
xy array (and not included in the count), as work 

131 



Windows Presentation Manager Reference 

space. The whole array may, if need be, be 
overwritten by the transformed coordinates. 

s32_ n Specifies the number of x,y pairs. 

p32_ S Specifies the sharpness of the fillets. It is a far 
pointer to an array of (n/3) elements, each array 
element being a s32-sharpness parameter. Each 
value, when divided by 65536, gives the sharpness 
of successive fillets. 

>1.0 means a hyperbola is drawn 
=1.0 means a parabola is drawn 
<1.0 means an ellipse is drawn 

Upon completion, the current x,y position is the last point in 
the array of x,y coordinates. 

16.1.7.2 OutputLine Functions - Major Function 01. 

16.1. 7.2.1 Function: 0401 0000 Polyline 

See section on PolyFillet for details. 

16.1. 7.2.2 Function: 0301 0001 * PolyShortLine 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_PolyShortData 

}; 

Draws a set of lines encoded as a series of steps. This call is not revealed 
in the APL 

Parameters: 

p32_ PolyShortData 

132 

Is a pointer to a polyshort structure, of the following format: 

struct POLYSHORT { 
UL ONG 
UL ONG 
UL ONG 
UL ONG 
ULONG 
ULONG* 

}; 

where: 

s16_StartX 
sl6_StartY 
sl6_EndX 
sl6_EndY 
sl6_Count 
p32_Steps 



Device Drivers 

s16_StartX, s16_StartY 
The start point of the polyshortline 

sl6-EndX, s16_ EndY 
The end point of the polyshortline 

sl6-Count 
The number of bytes of data pointed to by 
p32_Steps 

p32-Steps 
Points to a byte array of encoded lines. Each line is 
encoded as follows: 

Bits 2:0 Direction to draw: 

0 1 2 
\I/ 

7-x-3 
/I\ 

6 5 4 

Bit 3 Draw/Skip 
0 => Draw these pels 
1 => Skip these pels 

Bits 7:4 Number of pels to draw (1 to 16) 

The current position is not affected by this call. The lines are assumed 
already clipped. 

16.1. 7.2.3 Function: 0601 0002 LineDDA 

16.1. 7.2.4 Function: 0301 0003 GetCurrentPosition 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_AttributeData 

}; 

Returns the current position as an x,y coordinate pair: 

{s32- x, s32-y) 

Parameters: 

p32_ AttributeData 
Specifies the return address for the data. 

133 



Windows Presentation Manager Reference 

16.1. 7.2.5 Function: 0301 0004 SetCurrentPosition 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 

}; 

Sets the current x,y position to the specified value. This has the following 
side-effects: 

• The line type sequence is reset. 

• If the current context is 'in area', a figure closure line is generated 
if necessary. This may generate a correlation hit to occur. if 
necessary. this may cause a correlation hit on an area bound ary 

The current position is correlated on and/or merged into the bounds, if it 
is actually used in a drawing primitive. So, for example, the sequence 
SetCurrentPosition to Pl, SetCurrentPosition to P2, Polyline to P3, will 
not merge Pl into the bounds or correlate on it, but will merge P2 into the 
bounds or correlate on it. 

Parameters: 

p32_ xy Points to the integer values {s32_ x, s32_ y) of the new 
current position in world coordinate space. 

16.1. 7.2.6 Function: 0301 0005 QueryLineDDA 

16.1.7.3 OutputMarker Functions - Major Function 02. 

16.1. 7.3.1 Function: 0402 0000 PolyMarker 

16.1.7.4 OutputScan Functions - Major Function 03. 

16.1. 7.4.1 Function: 0303 0000* ScanLR 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_SearchData 

}; 

134 



Device Drivers 

Scans left or right from a given location looking for a pel which satisfies a 
search condition. 

Parameters: 

p32_ SearchData 
Pointer to the search data structure, defined as follows: 

s32_Startx 
Start x coordinate for search 

s32-Starty 
Start y coordinate for search 

s32_HitX 
Found point x coordinate 

s32_HitY 
Found point y coordinate 

u32-Color 
Index of color of pel for search 

s32_ Control 
Control flags: 

DO = 0 ; Search for not Color 

DO = 1 ; Search for Color 

Dl = 0 ; Step right 

Dl = 1 ; Step left 

16.1. 7.,/.2 Function: 0509 0002* PolyScanLine 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG* p32_BoundingRect 
ULONG* p32_PSL2 
ULONG* p32_PSL1 

Fills an area lying between two polyshortlines. 

The device driver can make the following assumptions:-

• The two polyshortlines do not cross 

• Both polyshortlines have the same s16-StartY and s16-EndY 

135 



Windows Presentation Manager Reference 

• For both polyshortlines, if s16-StartY < sl6_EndY 

• Every step will be in one of the directions 0, 1, 2, 3, or 7 

• For both polyshortlines, if sl6_StartY > s16-EndY 

• Every step will be in one of the directions 3, 4, 5, 6, or 7 

Whenver direction = 3 or 7 (ie horizontal), the pixels defined are outside 
the area fill, and should not be filled. Thus a device driver should always 
look ahead to the next non-horizontal step, adjusting current position in X 
if required, before filling. 

The driver should ignore bit 3 (Draw /Skip) of steps. 

No clipping is necessary on this figure. 

This function must be supported by all device drivers. 

Parameters: 

p32_PSLI, PSL2 
Long pointers to the two polyshortlines. These are each 
POL YSHORT structures, as described for PolyShortLine. 

p32_ BoundingRect 
This is a rectangle which bounds the whole figure. 

16.1.7.5 OutputFill Functions - Major Function 04. 

16.1. 7. 5.1 Function: 0304 0000 FloodFill 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Color 

}; 

This fills an area of the device with the current pattern attributes. The 
area starts at the current position, and extends in all directions until it 
comes to pels of the specified colour. 

Note that the results produced by this function are highly device depen
dent. 

Parameters: 

136 



Device Drivers 

u32_Color 
Specifies the color index for the color which bounds the filled 
area. 

16.1. 7.5.2 Function: 0404 0002 AltPolygon 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG s32_n 
ULONG* p32xy 

}; 

Draws a filled polygon. The boundary is drawn with the current line attri
butes. The interior is filled with the current fill attributes in Alternating 
mode - i.e. every other enclosed region in a complex polygon is filled. 

Parameters: 

p32_ xy Po in ts to an array of x,y point coordinates. 

An extra x,y pair is passed at the start of the array and is 
not included in the number of pairs for working space. The 
starting (and ending) point is listed only once. The whole 
array can be overwritten by transformed coordinates, if 
necessary. 

s32_ n Specifies the number of x,y pairs. 

The current position is unchanged by this call. 

16.1. 7.5.3 Function: 0404 0003 AltPolygon 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG s32_n 
ULONG* p32xy 

}; 

Draws a filled polygon. The boundary is drawn with the current line attri
butes. The interior is filled with the current fill attributes in Winding 
mode - i.e. only 'enclosed' regions in a complex polygon are filled. 
'Enclosed' is defined by the boundary of the region being traversed clock
wise one or time than it is traversed anticlockwise (or vice-versa) - i.e. a 
non-zero 'winding number', which is incremented for each clockwise 
traversal and decremented for each anticlockwise traversal. 

137 



Windows Presentation Manager Reference 

Parameters: 

p32_xy Points to an array of x,y point coordinates. 

s32_n 

An extra x,y pair is passed at the start of the array and is 
not included in the number of pairs for working space. The 
starting (and ending) point is listed only once. The whole 
array can be overwritten by transformed coordinates, if 
necessary. 

Specifies the number of x,y pairs. 

The current position is unchanged by this call. 

16.1.7.6 Bitmap Functions - Major Function 05. 

16.1. 7.6.1 Function: 0505 0000* DeviceCreateBitmap 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Parms 
ULONG u32_Usage 
ULONG* p32_Handle 

}; 

Asks the device driver to create a bitmap. The device driver may create it 
in system RAM, or in its own hardware. The bitmap may be kept in any 
format. The device driver returns a handle for the bitmap. The handle is 
private to the device and will be used only to identify the bitmap in the 
calls DeviceDeleteBitmap and DeviceSelectBitmap. 

Optionally, the device may be requested to initialize the bitmap. See 
below. 

Return codes: 

AX= Error_No_Memory 

Parameters: 

p32-Parms 
Points to a list of parameters for the bitmap. The parameter 
list contains the following: 

138 



Device Drivers 

u32_ Width, u32-Height 
These integers define the width and height of the 
Bitmap in pels. 

u32-planes 
The number of color planes in the bitmap. For 
reference: each plane has 
((Width*Bitcount+31 )/32*4*Height) bytes. 

u32-Bitcount 
The number of adjacent color bits per pel. 

u32_ Usage 
is a set of bit flags controlling the function: 

p32-Handle 

Bit 0 => Keep a memory backup while in device 
storage. 

Bit 1 => This bitmap may not be discarded. 

Bit 2 => Initialize the bitmap by translating a stan
dard format bitmap. If this bit is set, p32_ Handle points 
to a pair of selector values. The selector at 
p32-Handle[O], combined with an offset of 0000 points to 
a standard format bitmap data. The selector at 
p32-Handle[2], combined with the offset 0000 points to 
the parameters of the standard bitmap. These are: 
height, width, planes, and bits per pixel. Following these 
parameters is a color table defining the RGB color value 
of the color indices stored for each pixel. However, if 
(planes)*(bits per pixel) is already 24 bits, then no color 
table is present. In this case, an RGB value is already 
stored for each pixel. Both selectors must be freed by 
this call. 

Points to a location where the device's handle for the result
ing bitmap is to be stored. If bit 2 of Usage is set, then it 
initiallly points to two selectors to be used to initialize the 
bitmap. After the data is used, the selectors must be freed, 
and then overwritten with the device's bitmap handle. 

16.1. 7.6.2 Function: O,f.05 0001 * DeviceDeleteBitmap 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Usage 
ULONG* p32_Handle 

}; 

139 



Windows Presentation Manager Reference 

Asks the device driver to delete a bitmap that it.created. The given han
dle is the one returned from DeviceCreateBitmap. 

Optionally, the device may be asked to translate the bitmap to a standard 
format before deleting it. 

Return codes: 

AX= Error_No_Memory 
AX= Error_Bad_Handle 

Parameters: 

Usage Is a set of bit flags controlling the function: 

Bit 2 => Before deleting the bitmap, translate it into 
one of the standard formats. Two blocks of memory 
must be allocated to return the data, one for the bitmap 
data, and the other for the bitmap parameters and color 
translation table. The device driver is free to choose 
which standard format to translate into, but must take 
into account the parameters the application originally 
requested in the DeviceCreateBitmap call. In general, 
the device should try to use the format that requires the 
smallest space to store and does not lose any information 
presently in the bitmap. 

p32-Handle 
points to a location where the device's handle for the bitmap 
is stored. If bit 2 of Usage is set, then the call should store 
the selector for the data area of the translated bitmap in 
lphandle[Ol, and the selector for the parameter area in 
lpHandle12]. 

16.1. 7.6.8 Function: 0805 0002* DeviceSelectBitmap 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Handle 

}; 

Tells the device driver that a new bitmap is being selected into the given 
DC. Unlike the engine version of this call, it does not need to return the 
previously selected bitmap, since the engine already knows it. 

140 



Device Drivers 

Return codes: 

AX = ERROR_BAD_HANDLE 

Parameters: 

Handle Is the bitmap handle that the device driver returned when 
the bitmap was created. 

16.1. 7.6.,f, Function: 0305 0003 GetBitmapParameters 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Parm 

}; 

This returns various parameters, associated with performing bitmap 
operations on the specified Device Context, which must either be a 
memory Device Context with a selected bitmap, or a Device Context for a 
device which supports raster operations. 

Parameters: 

p32-Parm 
Provides a long pointer to a data area in which the returned 
parameters are placed. The returned parameters are: 

u32- width, u32-height 
Return the width and height of the bitmap in pels 
respectively. 

u32-Planes 
Returns the number of colour planes in the bit
map. 

u32_ Bitcount 
Returns the number of adjacent colour bits per pel 
in the bitmap. 

16.1. 7.6.5 Function: 0705 0004 GetBitmapBits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Info 
ULONG* p32_Address 

141 



Windows Presentation Manager Reference 

}; 

ULONG u32_BitCount 
ULONG u32_Planes 
ULONG u32_Length 
ULONG u32_0ffset 

This function transfers bitmap data from the specified Device Context to 
application storage. The Device Context must be a memory Device Con
text, with a bitmap currently selected. The format of the data is as indi
cated by the data returned by the GetBitmapParameters call. 

If any of the source data is not available, for example if the Device Con
text is connected to a screen window which is not currently all visible, no 
error code is returned and the operation proceeds. 

!here are several standard bitmap formats which the data is likely to be 
lll. 

Parameters: 

u32_0ffset 
Specifies the 4-byte offset in bytes into the bitmap data from 
which the transfer must start. This is used when the bitmap 
data is too long to fit into a single application buffer. 

u32-Length 
Specifies the 4-byte length in bytes of the bitmap data to 
copy. 

u32_Planes 
The number of color planes in the bitmap. For reference: 
each plane has ((Width*Bitcount+31){32*4*Height) bytes. 
If this parameter is zero then data wil be in internal device 
format and the bitcount parameter will be ignored. 

u32_ Bitcount 
The number of adjacent color bits per pel. The Planes and 
Bitcount parameters indicate the format of the data that is 
to be returned. 

p32_ Address 

p32_1nfo 

specifies the address in application storage into which the 
bitmap data is copied. 

A pointer to the Info table (see below) 

Standard Bitmap Formats 

There are four standard bitmap formats. All device drivers are required to 
be able to translate between any of these formats and their own internal 
formats. The standard formats are as follows: 

Bitcount Planes 

142 



Device Drivers 

1 
4 
8 

24 

1 
1 
1 
1 

These formats are chosen because they are identical or similar to all for
mats commonly used by raster devices. Only single plane formats are 
standard, but it is very easy to convert these to any multiple plane format 
used internally by a device. 

The pixel data is stored in the bitmap in the order of the coordinates as 
they would appear on a display screen. That is, the pixel in the lower left 
corner is the first in the bitmap. Pixels are scanned to the right and up 
from there. The first pixel's bits are stored beginning in the lowest order 
bits of the first byte. The data for pixels in each scan line is packed 
together tightly. Each scanline, however, will be padded at the end so 
that each scan line begins on a ULONG boundary. 

Bitmap Color Tables 

Each standard format bitmap must be accompanied by a Bitmap Info 
Table. Because the standard format bitmaps are intended to be traded 
between devices, the color indices in the bitmap are meaningless without 
more information. A bitmap info table has the following structure: 

/* length of a scanline 
/* number of scanlines 

struct 
UINT 
UINT 
UINT 
UINT 
RGB 

BitmapinfoTable { 
BitmapWidth; 
BitmapHeight; 
BitmapPlanes; 
BitmapBitcount; 
BitmapColors[]; 

/* number of planes (1 if standard 
/* number of bits per pixel 
/* color table 

}; 

The BitmapColors array is a packed array of 24 bit RGB values. If there 
are N bits per pixel, then the BitmapColors array would contain 2AN RGB 
values, unless N = 24. The standard format bitmap with 24 bits per pixel 
is assumed to contain RGB values and does not need the BitmapColors 
array. 

Bitmap Example 

To make the ordering of all the bytes clear, consider the following simple 
example of a 5 x 3 array of colored pixels: 

Red Green Blue Red Green 
Blue Red Green Blue Red 
Green Blue Red Green Blue 

ExampleBitmap = 
'23'X '12'X '30'X 'OO'X 
'31'X '23'X 'lO'X 'OO'X 
'12'X '31'X '20'X 'OO'X 

#define BLACK OxOOOOOOL 

/* bottom line */ 
/* middle line */ 
/* top line */ 

143 

*I 
*I 

format) *I 
*I 
*I 



Windows Presentation Ma.na.ger Reference 

#define RED 
#de fine GREEN 
#de fine BLUE 

OxOOOOFFL 
OxOOFFOOL 
OxFFOOOOL 

struct BitmapinfoTable Exampleinfo 
5, 

}; 

3, 
1, 
4, 
BLACK,RED,GREEN,BLUE, 
BLACK, BLACK, BLACK, BLACK, 
BLACK, BLACK, BLACK, BLACK, 
BLACK, BLACK, BLACK, BLACK 

= { 
/* width */ 
/* height */ 
/* planes */ 
/* bitcount */ 
/* color table */ 

16.1. 7.6.6 Function: 7005 0005 SetBitmapBits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Info 
ULONG* p32_Address 
ULONG u32_BitCount 
ULONG u32_Planes 
ULONG u32_Length 
ULONG u32_0ffset 

}; 

This function transfers bitmap data from application storage into the 
specified Device Context, which must be a memory Device Context with a 
selected bitmap. 

Parameters: 

144 

u32_Qffset 
Specifies the 4-byte offset in bytes into the bitmap data from 
which the transfer must start. This is used when the bitmap 
data is too long to fit into a single application buffer. 

u32_Length 
Specifies the 4-byte length in bytes of the bitmap data to 
copy. 

u32_Planes 
The number of color planes in the bitmap. For reference: 
each plane has ((Width*Bitcount+31){32*4*Height) bytes. 
If this parameter is zero then data wi1 be in internal device 
format and the bitcount parameter will be ignored. 

u32_ Bitcount 
The number of adjacent color bits per pel. The Planes and 
Bitcount parameters indicate the format of source data. 



Device Drivers 

p32-Address 
specifies the address in application storage from which the 
bitmap data is copied. 

p32_Info 
A pointer to the Info Table (See GetBitmapBits for details) 

Standard Bitmap Formats - See the GetBitmapBits section for a full 
descripton of Standard bitmap formats. 

16.1. 7. 6. 7 Function: 0805 0006 GetPel 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Parm 

}; 

This function gets a pel from a specified position. 

Parameters: 

p32-Parm 
Provides a long pointer to a parameter block: 

u32_ X, u32- Y 
Specify x and y values for the pel position. 

u32_Color 
Returns a color index value for the colour of the 
pel. 

16.1. 7.6.8 Function: 0805 0007 SetPel 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Parm 

}; 

This function sets a pel at a specified position to the current line attribute 
color and mix. 

Parameters: 

p32-Parm 
Provides a long pointer to a parameter block: 

145 



Windows Presentation Ma.na.ger Reference 

u32-X, u32- Y 
Specify the pel position. 

16.1. 7.6.9 Function: 0505 0008 lmageData 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG s32__Row 
ULONG s32_n 
ULONG* p32_Data 

}; 

Draws a row of image data. 

Separate calls are required for each row of image data. The data is written 
on adjacent rows starting at the top row in the image area. 

The implementation should not assume that unused bits in the last byte of 
data of a row are zero. 

Parameters: 

p32-Data 

s32_n 

s32-row 

Points to a string of image data with one bit per pel. The 
first pel's data is in the first bit of the first byte of data. 

Specifies the number of data bits to output from p32-Data. 

Specifies the row number of the image data. Row 0 is the 
same row as the current position, row 1 is the next one down 
the device, and so on. 

The current position is not affected by this order. 

16.1. 7.6.10 Function: 0705 0009 Bitblt 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Target 
ULONG u32_Style 
ULONG u32_Mix 
ULONG* p32_Parm 
ULONG u32_Count 
ULONG u32_Source 

}; 

146 



Device Drivers 

This copies a rectangle of Bitmap image data from the specified source 
Device Context to a target Device Context. 

Both source and target may refer to the same Device Context. If this is 
the case, the copy will be non-destructive if the source and target rectan
gles overlap. 

The Device Contexts may be either memory Device Contexts (with a 
selected bitmap), or Device Contexts for devices which support raster 
operations. 

The current pattern foreground and background bitmap colors of the tar
get Device Context are used. Also, if the mix requires both source and 
pattern then a 3-way operation is performed (using the pattern defined by 
the current pattern of the target) otherwise a 2-way operation is per
formed. Note that for a StretchBlt operation, only the source data and 
NOT the pattern is stretched. 

If any of the source data is not available, for example if the source Device 
Context is connected to a screen window, and the source rectangle is not 
currently all visible, no error code is returned and the operation proceeds 
by reading what is there. 

Parameters: 

u32-Source 
Specifies the handle of the source Device Context. 

u32_Count 
Specifies the number of x,y pairs of coordinates in the 
parameter block. 

• For Style= 0 AND Mix value specifying PatternBlt only, 
count must be >:...__ 2. 

• For style= 0 {BitBlt) count must be >= 3. 

• For style 1, 2 or 3 {StretchBlt) count must be >= 4. 
Note that count > 4 is only useful if the device driver sup
ports a non-standard use mode. However, the driver should 
allow for there to be more than 4 coordinate pairs, even if it 
does not use them. 

p32-Parm 
Provides a long pointer to the parameter block:-

u32_ TargX1, u32_ TargY1, u32_ TargX2, u32_ TargY2, 
Specify the bottom left and top right corners of the 
target rectangle. 

147 



Windows Presentation Manager Reference 

u32-Mix 

u32_ SrcXl, u32_ Src Yl, u32- SrcX2, u32_ Src Y2 
Specify the bottom left and top right corners of the 
source rectangle. 

Note that the exact number of parameters 
expected will depend on the setting of u32_ Count. 

Specifies a 32 bit raster operation code representing a mix 
value in the range '00' .. 'FF'X. Each plane of the target can 
be considered to be processed separately. For any pel in a 
target plane, three bits together with the Device Context bit
map mix value are used to determine its final value. These 
are the value of that pel in the pattern (P) and Source (S) 
data and the initial value of that pel in the Target (T) data. 
For any combination of P S T pel values, the final target 
value for the pel is determined by the appropriate Mix bit 
value as shown in the table below:-

P S T(initial) T(final) 
0 0 0 Mix bit 0 (LS) 
0 0 1 Mix bit 1 
0 1 0 Mix bit 2 
0 1 1 Mix bit 3 
1 0 0 Mix bit 4 
1 0 1 Mix bit 5 
1 1 0 Mix bit 6 
1 1 1 Mix bit 7 (MS) 

u32_Style 
Specifies how eliminated lines/columns are treated if a 
compression is performed. 

0=> 

1=> 

2=> 

3=> 

Note: 

Do not stretch or compress the data. 

Stretch/Compress as necessary, OR'ing any elim
inated rows/columns. This is used for white on 
black. 

Stretch/comyress as necessary, AND'ing any elim
inated rows/columns. This is used for black on 
white. 

Stretch/Compress as necessary, ignoring any elim
inated rows/columns. This is used for color. 

The values 1 to 32K are reserved by the system. Values 
greater than 32K are passed directly to the device driver. 
This allows applications to use values of their own for use 
with "intelligent" devices. 

u32_ Target 
Specifies the handle of the target Device Context. 

Note: Rectangles defined by BitBlt are non-inclusive. They include the left 

148 



Device Drivers 

and lower boundaries of the rectangles in device units, but not the right 
and upper boundaries. Thus if the bottom left maps to the same device 
pixel as the top right, that rectangle is deemed to be empty. 

16.1. 7.6.11 Function: 0505 OOOA DeviceSetCursor 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Command 
ULONG* p32_Args 

}; 

Sets the cursor bitmap that defines the cursor shape. Each call replaces 
the previous bitmap with that pointed to by SC_ arg_ h bmCursor. If 
SC_ arg_ h bmCursor is null, the cursor has no shape and its image is 
removed from the display screen. 

Parameters: 

lpArgs points to an argument structure as follows: 

SetCursor_arg_struc struc 
SC_arg_FunN dd ? 
SC_arg_hDC dd ? 
SC_arg_hbmCursor dd ? 
SC_arg_yHotspot dd ? 
SC_arg_xHotspot dd ? 

SetCursor_arg_struc ends 

SC_ arg_ hbmCursor 
The bitmap handle to be used for the cursor image. 

SC_ arg_ yHotspot 
They position within the cursor of the "hot spot. 11 

SC_ arg_ xHotspot 
The x position within the cursor of the "hot spot. 11 

Return value: 

ax = 0 if the function executed successfully 
ax = -1 otherwise 

149 



Windows Presentation Ma.na.ger Reference 

16.1. 7.6.12 Function: 0405 OOOB SaveBits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_0ptlons 
ULONG• p32_Rect 

}; 

This function copies bits from the screen to a bitmap managed by the dev
ice driver, and also for the screen to be subsequently restored from this 
bitmap. 

It is used by the user interface routines (not the API) to improve the per
formance of dialog boxes. 

This function is not a required function, but the driver must return 
'failure' if it does not do it. 

Parameters: 

p32-Rect 
points to a screen rectangle 

u32_ Options 
Command flags. values are: 

0 - save a bl tmap 
1 - restore the bitmap 
2 - discard the bitmap without using it 

Return value: 

ax = 1 success 
ax = 0 failure 

16.1.7.7 Textout Functions - Major Function 09. 

Note: The functions CharRect, CharStr, and ScrollRect need a mapping 
from the Avio symbol set indices 0 .. 3, to the actual pixel images for these 
indices. This is achieved as follows:-

150 

• When Avio symbol sets are loaded, the graphics engine will also 
dispatch a call to the device drivers DeviceSetAttributes call, with 
a bundle typeof character attributes. 

• The char_set field will be set to 1-3, and the char_font field will 
contain a long cp segto the symbol set, translated by the engine to 
look like a font. 



Device Drivers 

• At this point the driver will save this pointer. 

• Therefore the device driver will have 4 "fonts/symbol sets" selected 
at once (3 for avio, and one for graphics). 

16.1. 7. 7.1 Function: 0709 0000 CharStringPos 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_dx 
ULONG* p32_ch 
ULONG s32_n 
ULONG u32_0ptions 
ULONG* p32_xy 

}; 

Draws a character string starting at the current x,y position, with user 
controlled spacing. 

Parameters: 

p32-xy Long pointer to the an array of four coordinates, defining the 
opaque rectangle. The first two coordinates of this array are 
spare, the second two will contain the coordinates of one 
corner of the rectangle. The other corner of the rectangle is 
at the current position. The opaque rectangle will ignore 
any background mix attributes, and is drawn using over
paint and the character background color attribute. 

u32_ Options 
Flags controlling the function as follows: 

Bit 0 = 0 Do not opaque 
= 1 Opaque rectangle 

Bit 1 0 Width vector not present 
1 Width vector present 

Bit 2 = 0 Normal text 
= 1 Grayed (de-emphasised) text 

Bit 3 0 Move current position to end of 
character string 

= 1 Leave current position unchanged 

Bit 4 0 Do not clip 
1 Clip string to rectangle 

Note: if rectangle is not present, then bits 0 and 4 must be 
zero. 

151 



Windows Presentation Manager Reference 

s32_ n Specifies the number of characters (bytes) in the character 
string. 

p32_ ch Long pointer to the string of character codepoints. 

p32_ dx Long pointer to an array of s32 numbers, the character incre
ments. These numbers will be used instead of the real 
widths of the characters. There will be s32_ n numbers in 
this array. Long pointer to an array of s32 numbers, the 
character increments. These numbers are used instead of the 
real widths of the characters. There will be s32_ n numbers 
in this array. They are given in world coordinates. 

The current x,y position may optionally be moved to the end of the char
acter string, according to the u32_ options. 

The Gpi function GpiVectorSymbol is provided to interpret a vector sym
bol. 

16.1. 7. 7.2 Function: 0509 0001 CharString 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_ch 
ULONG s32_n 

}; 

Draws a character string starting at the current x,y position. 

Parameters: 

s32_ n Specifies the number of bytes in the character string. 

p32_ ch Long pointer to the string of character codepoints. 

The current x,y position is moved to the point at which the next character 
string would have been drawn, had there been one. 

The Gpi function GpiVectorSymbol is provided to interpret a vector sym
bol. 

16.1. 7. 7.3 Function: 0509 0002 CharRect 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_CharRect 
ULONG* p32_PS 

152 



Device Drivers 

}; 

This writes a rectangle of alphanumeric characters to the referenced device 
context. The set of characters and attributes for the rectangle is taken 
from a presentation space cell buffer. The characters are drawn and 
clipped according to the window's cell buffer origin, the location of the rec
tangle relative to that origin, and the size of the window. 

p32-PS points to the Vio presentation space. 

p32_ CharRect 
points to a block of parameters for the call. 

The parameter block for the call will contain the following: 

u32_ StartRow 
the starting row and 

u32- StartCol 
the starting column in the presentation space of the charac
ter rectangle to be output. 

u32-RectWidth 
the width of the rectangle to be updated. 

u32_ RectHeigh t 
the height of the rectangle to be updated. 

Note: This call will be used to implement the advanced Vio function 
VioSetOr~. If the origin is moved such that the window background is 
"exposed' either on the right or at the bottom then the graphics engine 
must clear the old alphanumeric data from that area of the window. 

16.1. 7. 7.,f. Function: 0509 0003 CharStr 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_CharStr 
ULONG* p32_PS 

}; 

This writes a string of alphanumeric characters to the referenced device 
context. The set of characters and attributes for the string is taken from 
a presentation space cell buffer. The characters are drawn and clipped 
according to the window's cell buffer origin, the location of the string rela
tive to that origin, and the size of the window. 

153 



Windows Presentation Manager Reference 

The string will fold at the end of a row and will continue in row-major 
order either for the given string length or until the Logical Video Buffer is 
exhausted. 

p32_PS points to the Vio presentation space. 

p32_ CharStr 
points to a block of parameters for the call. 

The parameter block for the call will contain the following: 

u32_StartRow 
the starting row and 

u32_ StartCol 
the starting column in the presentation space of the charac
ter string to be output. 

u32_ StrLength 
the length of the character string to be output. 

16.1. 7. 7.5 Function: 0409 0004 ScrollRect 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG* p32_Scrol1Rect 
ULONG* p32_PS 

This function has been included to allow for device drivers that have the 
capability of BitBlting pels from one region of a window to another. Such 
a device would only need to update from the presentation space for data 
outside the window but within the scroll rectangle. A device driver 
without BitBlt would update completely from the presentation space by 
suitable adjustment to the rectangle parameters and performing a Char
Rect function. 

p32-PS points to the Vio presentation space. 

p32_ ScrollRect 
points to a block of parameters for the call. 

The parameter block for the call will contain the following: 

154 



Device Drivers 

u32_ StartRow 
the starting row and 

u32_ StartCol 
the starting column in the presentation space of the charac
ter string to be output. 

u32_ Re ct Width 
the width of the scroll rectangle. 

u32_ RectHeigh t 
the height of the scroll rectangle. 

u32_ HorizCoun t 
the number of rows to be scrolled (see below). 

u32_ VertCount 
the number of columns to be scrolled. These two fields define 
the amount and direction of the scrolling to be done, Posi
tive values define movements downwards and to the right. 
Negative values define movements upwards and to the left. 
Currently this function is used to implement VioScrollnn 
(where nn = Dn, Lf, Rt, Up) and hence for all calls one of the 
counts will always be zero. 

p32_ Fill Cell 
points to a cell (character and attributes) to be used for 
filling the tail of the scroll region. This cell is only of use 
when a device driver has used BitBlt. 

If p32_ Fi11Cell is null, the fill will be taken from cells in the 
Logical Video Buffer. 

16.1. 7. 7.6 Functi"on: 0309 0005 UpdateCursor 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_PS 

}; 

Sets the alphanumeric cursor position, shape and visibility. 

p32-PS points to the Vio presentation space. 

This function updates the drawn alphanumeric cursor to match the cursor 
state information contained in the presentation space. This will usually 
involve removing the previous cursor from the window and then drawing 
the new cursor, if visible, according to the presentation space information. 

155 



Windows Presentation Manager Reference 

The new cursor, if visible, will be positioned and clipped according to this 
information and the window's cell buffer origin and size. 

The cursor is drawn as an xor bar. Its position, size and shape will be 
saved by the graphics engine in a reserved area in the Vio presentation 
space. 

There is only one cursor visible on a screen at any one time and this will 
be in the window that has input focus. The User box must alter the visi
bility of the cursor when changing input focus. Collisions are handled 
below graphics engine interface. The device driver will remove and redraw 
the cursor if necessary, although a BitBlt operation will copy everything 
including the cursor. 

16.1. 7. 7. 7 Function: 0509 0006 QueryTextBox 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 
ULONG* p32_ch 
ULONG s32_n 

}; 

This processes the specified string as if it were to be drawn, using the 
current character attributes, and returns an array of 5 x,y coordinate 
pairs. The first four of these are the coordinates of the top-left, bottom
left, top-right and bottom-right corners of the parallelogram which encom
passes the string when drawn on the associated device. The fifth point is 
the concatenation point, that is the position at which a subsequent string 
would have to be drawn if it were to follow on smoothly. 

All coordinates are relative to the start point of the string, as defined by 
the character direction. 

Parameters: 

156 

s32_ n Specifies the number of bytes in the character string. 

p32_ ch Long pointer to the string of character code po in ts. 

p32-xy Long pointer to the return array of 5 x,y pairs. 



Device Drivers 

16.1. 7. 7.8 Function: 0709 0007 QueryTextBreak 

struct ARGUMENTS { 

}; 

UL ONG 
UL ONG 
ULONG* 
ULONG* 
UL ONG 
ULONG* 
UL ONG 

u32_FuncNo 
u32_DcH 
p32_rem 
p32_n 
s32_len 
p32_ch 
s32_n 

This processes the specified string as if it were to be drawn, using the 
current character attributes, and finds where the string must be split if it 
is not to exceed the specified extent. 

Parameters: 

s32_ n Specifies the number of bytes in the character string. 

p32_ ch Long pointer to the string of character codepoints. 

s32-len Specifies the maximum extent of the string, measured along 
the baseline for left to right or right to left character direc
tions, and along the shear line for top to bottom or bottom 
to top character directions. 

p32_ n Long pointer to a s32 variable to return the number of char
acters which fit into the extent. If no characters fit, zero is 
returned. 

p32-rem 
Long pointer to a s32 variable to return the amount of space 
in the extent which will be unused if only p32_ n characters 
are kept in the string. 

16.1.7.8 Area Functions - Major Function OA. 

When a device driver takes over the Area function group, it must be able 
to handle area fill with boundary drawing. If it needs to have the boundary 
drawing orders repeated to achieve this, then it can place the line drawing 
calls within a strokes bracket, filling with each original call, and drawing 
the boundary with the close of the strokes bracket. 

If the device is only able to handle the fill it should 

1. Hook the BeginArea call. 

2. If there is a border, the driver issues a BeginStrokes call back into 
the engine. 

157 



Windows Presentation Manager Reference 

3. For each line, fillet, arc etc. which the driver receives it uses the 
primitive to figure out its fill. 

4. When the EndArea order is received, the driver does its fill and also 
send off an EndStrokes to the engine. 

5. The strokes process will handle the resulting border as a line and 
draw it either 

1. As a series of cosmetic primitives 

2. By generating a new area (without border) for geometric thick 
lines 

16.1. 7. 8.1 Function: 030A 0000 BeginArea 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Flags 

}; 

Indicates the beginning of a set of primitives that define the boundary of 
an area. 

Only certain drawing functions may be used to build the boundary of an 
area, specifically those that draw lines or arcs. Functions that draw char
acter strings, markers, images, or BitBL Ts are not allowed in an area 
definition. 

Parameters: 

u32_flags 
Specifies whether boundary lines are to be drawn, and what 
algorithm is to be used to determine the area interior. 

Bit 0 Set to 1 to draw boundary lines 

Bit 1 Set to 1 for winding fill mode, set to 0 for alternate 
fill mode 

Although the current x,y position is not changed by BeginArea, it will be 
affected by the drawing orders in the boundary definition. 

158 



Device Drivers 

16.1. 7.8.2 Function: 030A 0001 EndArea 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Cancel 

}; 

Indicates the end of a set of primitives that define the boundary of an 
area. 

If there is a correlation hit on (any part of) the area interior it is returned 
on this function. (Correlation hits on the boundary are returned on the 
primitive causing the hit). 

If the current figure is not closed, this function will generate a closure line 
from the current position to the start of the current figure. If a correlation 
hit is diagnosed on this line as well as on the area interior, a special return 
code indicates this double hit. 

On devices with hardware assist for area fill (such as an area fill plane), 
this facility may be used, or the area definition may be built up in an area 
fill plane in ordinary PC storage. In the case of convex figures, there may 
be a performance gain in just recording the start and end pel position 
across each scan line. Whatever algorithms are used, it is crucial that the 
area interior should be filled identically in each case, otherwise bit map 
operations may fail to join correctly when copied to the screen, etc. 

This is obviously crucial when the area is being dragged around the screen 
using a mix mode of XOR to be able to remove it. 

Upon completion, the current x,y position is the last x,y position specified 
in the boundary definition, unless figure closure occurred, in which case it 
is the start of the last figure in the area definition. 

Parameters: 

u32-cancel 
If this is 0, the area is to be drawn. If it is 1, the area is to 
be cancelled (terminated without being drawn). 

16.1. 7.8.3 Function: 030A 0002 AccumulateArea 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Cancel 

}; 

159 



Windows Presentation Manager Reference 

16.1. 7.8.4 Function: O,f.OA 0003 BeginClipArea 

struct ARGUMENTS { 
DWORD u32_FuncNo 
DWORD u32_DcH 
DWORD u32_Mode; 
DWORD u32_Control 

}; 

This introduces the definition of a clip area, which is terminated by an 
EndClipArea function. The primitives between these cause no drawing to 
occur, but instead define a clip area. At EndClipArea, this area is com
bined, in the manner specified by u32_ mode, with the existing clip area, to 
form the new clip area, which is used for subsequent clipping. 

It is valid for a normal area (BeginArea .. EndArea) to occur within a clip 
area definition. If this occurs, the BeginArea and EndArea are effectively 
ignored, except that, within the area bracket, closure lines are generated 
as usual. A segment 

A null clip area (as, for example, if there are no primitives between the 
BeginClipArea and the EndClipArea), causes all subsequent drawing to be 
clipped. 

CharString(Pos) functions are only valid for characters drawn with vector 
symbol sets or outline fonts. 

Parameters:-

160 

u32_ control 
A 4-byte parameter containing flags:-

GPICA_ WINDING 
(bit 1) - Set to '1 'B if the clip area is to be con
structed in winding mode. Otherwise it is con
structed in alternate mode. 

u32-mode 
Defines how a new clip area is to be formed from the combi
nation of the old clip area and the one to be defined:-

GP I CA_ UNION 
GPICA_REPLACE 
GPICA_SYMDIFF 

GPICA_INTERSECTION 
GPICA_DIFF 
GP I CA._INF IN I TE 

(1) 
(2) 
(4) 

(6) 
(7) 

(17) 

- Union of old and specified areas 
- Specified area replaces old area 
- Symmetrical difference of specifie 

and old areas 
- Intersection of old and specified 
- Old area AND NOT(specified area) 
- New clip area is infinite, regard} 

of specified area 



16.1. 7.8.5 Function: 030A 0004 EndClipArea 

struct ARGUMENTS { 
DWORD u32_FuncNo 
DWORD u32_DcH 
DWORD u32_Cancel 

}; 

This terminates the definition of a clip area. 

Device Drivers 

BeginClipArea followed by EndClipArea with nothing in between will 
create a zero sized clip area (that is everything will be clipped away). Vec
tor characters are allowed in a clip area definition. The geometric line 
thickness attribute is ignored for lines defining a clip area. 

Clipping is inclusive at the left and bottom boundaries, and exclusive at 
the right and top boundaries, (like clip regions). Bounds computation is 
performed on unclipped primitives. Correlation is performed on the out
put of primitives that have been clipped to the Viewing Limits and and 
Graphics Field only (not the clip area). 

Parameters: 

u32-cancel 
If this is 0, the new clip area established, if it is 1, cancel new 
clip area, leave old clip area unchanged. It is not an error if 
EndClipArea(Cancel) is issued without BeginClipArea having 
been issued previousfy. 

16.1. 7.8.6 Function: 030A 0005 BeginStrokes 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

This defines the start of a strokes bracket. The significance of a strokes 
bracket is that if geometric thick lines are in force, the primitives within 
the bracket will be drawn as a whole - ie. with line joins rather than line 
ends between primitives. 

161 



Windows Presentation Manager Reference 

16.1. 7.8. 7 Function: 080A 0006 EndStrokes 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Cancel 

}; 

This terminates a strokes bracket. 

Parameters: 

u32-cancel 
If this is 0, the primitives in the strokes bracket are to be 
drawn as requested; if it is 1, the primitives in the strokes 
bracket are discarded. It is not an error if 
EndStrokes( Cancel) is issued when BeginStrokes has not 
been called previously. 

16.1. 7.8.8 Function: 020A 0007 QueryAreaState 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

This returns whether an area / cliparea / strokes bracket is currently in 
force. 

Returns: 

0 - not in any area/cliparea/strokes state 
1 - in area state 
2 - in cllparea state 
4 - in strokes state 

The values are additive if more than one state is current. 

16.1. 7.8.9 Function: 050A 0008 DrawFrame 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_0ptions 
ULONG* p32_XY 
ULONG* p32_Rect 

}; 

162 



Device Drivers 

This draws a rectangle surrounded by a frame. The interior is drawn with 
the pattern attributes, and the border is drawn with the line attributes. 

The co-ordinates passed are in DC origin device co-ordinates. 

This is a required function for display device drivers. It is used by the user 
interface to improve the performance of wide border dragging and dialog 
box posting. 

Parameters: 

p32_Rect 
A long pointer to a rectangle. This rectangle completely sur
rounds the drawing, ie the border is inside the rectangle. 

A long pointer to the width of the sides, and the height of 
the top/bottom, of the border. 

u32_ options 

Bit 0 - 0 draw the interior 
- 1 do not draw the interior 

16.1.7.9 Bounds Functions - Major Function OB. 

16.1. 7.9.1 Function: 030B 0004 QueryCharCorr 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_n 

}; 

This function returns an offset indicating which character within a charac
ter string was selected, the last time a character string primitive returned 
a successful correlation hit. If more than one character in the string was 
selected, the offset of the first is returned. 

Parameters: 

p32_n A pointer to the s32 variable in which to return the charac
ter offset. A value of zero indicates the first character in the 
string. A negative value indicates that no string has been 
correlated on. 

163 



Windows Presentation Ma.na.ger Reference 

16.1. 7.9.2 Function: 030B 0005 GetPickWindow 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_PickWindow 

}; 

This returns the position and size of the pick window, in page coordinate 
space. 

Parameters: 

p32-Pick Window 
The address at which to return an array containing the 
minimum and maximum xy coordinate pairs of the window: 

{s32- xmin, s32- ymin, s32- xmax, s32- ymax). 

16.1. 7.9.9 Function: 090B 0006 SetPickWindow 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_PickWindow 

}; 

This sets the position and size of the pick window, in page coordinate 
space, for subsequent correlation operations. 

The boundary of the pick window is included in the area correlated upon. 

Parameters: 

164 

p32_ Pick Window 
Points to an array containing the minimum and maximum 
xy coordinate pairs of the window: 

{s32- xmin, s32- ymin, s32- xmax, s32- ymax). 

The data in the array may be overwritten. 



Device Drivers 

16.1.7.10 Clip Functions - Major Function OC. 

Function: 040C 0000 GetClipBox 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Result 
ULONG* p32_xy 

}; 

Returns the dimensions of the tightest rectangle around the 
DC region. The DC region is the intersection of the visible 
region, clip region and the Xform rectangle. 

Note that the Xform rectangle is the intersection of the 
Viewing Limits, Graphics Field and Clip Area. 

Parameters: 

p32_xy A far pointer to an array s32-xl, s32-yl, s32-x2, 
s32-y2 in which the rectan gle is returned where 
s32-xl, s32-Yl returns the minimum coordinates 
of the rectangle and s32_ x2, s32-y2 returns the 
maximum coordinates of the rectangle in world 
coordinates. 

p32-Result 
The complexity of the resultant region from the 
operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

Function: 050C 0001 SelectClipRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_0ldRgnH 
ULONG* p32_Result 
ULONG u32_RgnH 

}; 

Specifies the region to be used for clipping, when any draw
ing takes place in the specified device context. 

The handle of the previous selected clip region is returned. A 
null returned handle means that the default clip region was 
in use before the select. 

A region can only be selected by one DC at any one time and 
when selected region operations modifying the region are 
invalid. 

165 



Windows Presentation Ma.na.ger Reference 

The coordinates of the region are taken to be device coordi
nates within the device context. 

Clipping is inclusive at the left and bottom boundaries and 
exclusive at the right and top boundaries. 

Parameters: 

u32-RgnH 
The handle of the region. If is null, the clipping 
region is set to no clipping, its initial state. 

p32-Result 
The complexity of the resultant region from the 
operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

p32_ OldRgnH 
The handle of the previously selected region. A 
null handle means that there was no clipping. 

Function: 0400 0002 IntersectClipRectangle 

166 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Result 
ULONG* p32_xy 

}; 

Sets the new clipping region to the intersection of the 
current clip region and the specified rectangle. 

Parameters: 

p32-xy A far pointer to an array s32-xl, s32_yl, s32-x2, 
s32-y2 where s32-xl, s32-yl specifies the 
minimum coordinates of the rectangle and s32-x2, 
s32_ y2 specifies the maximum coordinates of the 
rectangle in world coordinates. 

p32_Result 
The complexity of the resultant region from the 
operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

Function: 0400 0003 ExcludeOlipRectangle 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 



Device Drivers 

}; 

ULONG* p32_Result 
ULONG* p32_xy 

Excludes the specified rectangle from the clipping region. 

Parameters: 

p32_xy A far pointer to an array s32_xl, s32_yl, s32-x2, 
s32-y2 where s32_xl, s32_yl specifies the 
minimum coordinates of the rectangle and s32_ x2, 
s32-y2 specifies the maximum coordinates of the 
rectangle in world coordinates. 

p32-Result 
The complexity of the resultant region from the 
operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

Function: 0300 0004 OffsetClipRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Result 
ULONG* p32_xy 

}; 

Moves the clipping region by the specified amounts. 

Parameters: 

p32_ xy The s32_ x, s32_ y offsets by which the clipping 
region is to be moved in in world coordinates. 

p32_Result 
The complexity of the resultant region from the 
operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

Function: 0300 0005 SetXf ormRect 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Rect 

}; 

This function intersects a rectangle with the existing clip
ping region of the DC to produce a new clipping region used 
in subsequent drawing operations. 

167 



Windows Presentation Manager Reference 

The clipping region resulting from the intersection is distinct 
from the current Clip Region which can be set using 
SelectClipRegion, for example. 

Parameters: 

p32_Rect 
is a rectangle in device coordinates. 

Function: 030C 0006 QueryClipRegion 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 

This returns the handle of the currently selected clip regipn. 
If there is no currently-selected clip region, NULL is 
returned. 

A return value u32_ RegionH is placed in AX:DX: 

0 no region selected or error 
JVon-0 region handle of clip region 

Function: 040C 0007 PtVisible 

168 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG* p32_SuccessVar 
ULONG* p32_xy 

This checks whether a point is visible within the clipping 
region of the specified device context. 

Parameters: 

p32_xy Specifies the s32_x, s32_y point in world coordi
nates. 

p32-Success Var 
A far pointer to u16_SuccessVar which is set to 1 
if the point is visible, and 0 otherwise. 

Function: 040C 0008 RectVisible 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG* p32_SuccessVar 
ULONG* p32_xy 

This checks whether any part of the bounding rectangle 
defined by the specified coordinates is visible within the clip
ping region of the specified device context. 



Device Drivers 

Parameters: 

p32-xy A far pointer to an array s32-xl, s32_yl, s32-x2, 
s32_ y2 where s32_ xl, s32_ yl specifies the 
minimum coordinates of the rectangle and s32_ x2, 
s32-y2 specifies the maximum coordinates of the 
rectangle in world coordinates. 

P32- Success Var 
A far pointer to u16_SuccessVar which is set to 2 
if the bounding rectangle is totally visible, 1 if it is 
partially visible and 0 if totally invisible. 

Function: 050C 0009 GetClipRects 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 
ULONG* p32_Control 
ULONG* p32_Bound.Rect 

This returns a list of x,y coordinate pairs specifying the clip 
region associated with the specified DC. 

Returns the list of x,y coordinate pairs for rectangles specify
ing the region and intersecting an optional bounding rectan
gle. By updating the start rectangle number value, the func
tion can be called multiple times to allow for more rectangles 
than can be stored in the receiving buffer. 

Parameters: 

p32_ BoundRect 
a far pointer to a bounding rectangle. The first x,y 
pair define the minimum coordinates of the rectan
gle and the second x,y pair define the maximum 
coordinates of the rectangle in device coordinates. 
Only rectangles intersecting this bounding rectan
gle will be returned. If this pointer is NULL, all 
rectangles in the region will be enumerated. 

If p32_ BoundRect is not NULL, then each of the 
rectangles returned in p32_ xy will be the in tersec
tion of the bounding rectangle with a rectangle in 
the region. 

p32_ Control 
A far pointer to a structure containing the follow
ing elem en ts. 

169 



Windows Presentation Manager Reference 

170 

u16-Start 
The rectangle number to start enumerat
ing at. A 0 value means the same as 1; 
i.e. start at the beginning. 

ul6-Bufsize 
The number of rectangles that will fit 
into the buffer. A value of at least 1 is 
supplied. 

u16_ Num_ Written 
A returned value indicating how many 
rectangles were written into the buffer. A 
value below u16_ bufsize means that 
there are no more rectangles to 
enumerate. 

u 16_ Direction 
The direction the rectangles are listed. 

1 => left to right, top to bottom 

2 => right to left, top to bottom 

3 => left to right, bottom to top 

4 => right to left, bottom to top 

p32_ xy A far pointer to a region definition which is an 
array of x,y pairs in device coordinates. Odd x,y 
pairs specify the minimum coordinates of a rectan
gle and even x,y pairs specify the maximum coordi
nates of a rectangle. The format is identical to 
that for CreateRectRegion. 

Function: 050C OOOA SelectVisRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_0ldRgnH 
ULONG* p32_Result 
ULONG u32_RgnH 

}; 

Specifies the region to be used for clipping, when any draw
ing takes place in the specified device context. 

A vis region is used to define the visible portion of a Window 
on the screen. The vis region will be combined with the clip 
region if present to form the DC region. 

The handle of the previous selected vis region is returned. A 
null returned handle means that the default vis region was in 
use before the select. 

A region can only be selected by one DC at any one time and 



Device Drivers 

when selected region operations modifying the region are 
invalid. 

The coordinates of the region are taken to be device coordi
nates within the device context. 

Clipping is inclusive at the left and bottom boundaries and 
exclusive at the right and top boundaries. 

Parameters: 

u32_RgnH 
The handle of the region. If is null, the clipping 
region is set to no clipping, its initial state. 

p32-Result . 
The complexity of the resultant region from the 
operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

p32_ OldRgnH 
The handle of the previously selected· region. A 
null handle means that there was no vis region 
selected. 

Function: 0300 OOOB QueryVisRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_RgnH 

}; 

Returns the handle of the current visible region. 

·Parameters: 

p32-RgnH 
The handle of the returned region 

16.1.7.11 Region Functions - Major Function OD. 

16.1. 7.11.1 Function: OSOD 0000 GetRegionBox 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Result 
ULONG* p32_xy 
ULONG u3.2_RgnH 

}; 

171 



Windows Presentation Manager Reference 

Returns the dimensions of the tightest rectangle around a region. 

Parameters: 

u32-RgnH 
The handle of the region. 

p32-xy A far pointer to an array s32-xl, s32-yl, s32-x2, s32-y2 in 
which the rectangle is returned where s32-xl, s32_yl 
returns the minimum coordinates of the rectangle and 
s32-x2, s32-y2 returns the maximum coordinates of the rec
tangle in device coordinates. 

p32-Result 
The complexity of the resultant region from the operation. 

0 nul 1 region 
1 region of 1 rectangle only 
2 complex region (more than 1 rectangle) 

16.1. 7.11.2 Function: 060D 0001 GetRegionRects 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 
ULONG* p32_Control 
ULONG* p32_BoundRect 
ULONG u32_RgnH 

This returns a list of x,y coordinate pairs specifying the region associated 
with the given region handle. A region selected as a clipping region can 
also be specified. 

Parameters: 

172 

u32_RgnH 
The region handle specifying which region data to be 
returned. 

p32_ Control 
A far pointer to a structure containing the following ele
ments. 

ul6_Start 
The rectangle number to start enumerating at. A 
zero value means start at the beginning. 



Device Drivers 

u16_ Bufsize 
The number of rectangles that will fit into the 
buffer. A value of at least 1 is supplied. 

u16_ Num_ Written 
A returned value indicating how many rectangles 
were written into the buffer. A value below 
ul6_ bufsize means that there are no more rectan
gles to enumerate. 

u16-Direction 

p32_ BoundRect 

The direction the rectangles are listed. 

1 => left to right, top to bottom 

2 => right to left, top to bottom 

3 => left to right, bottom to top 

4 => right to left, bottom to top 

a far pointer to a bounding rectangle. The first x,y pair 
define the minimum coordinates of the rectangle and the 
second x,y pair define the maximum coordinates of the rec
tangle in device coordinates. Only rectangles intersecting 
this bounding rectangle will be returned. If this pointer is 
NULL, all rectangles in the region will be enumerated. 

If p32_ BoundRect is not NULL, then each of the rectangles 
returned in p32_ xy will be the intersection of the bounding 
rectangle with a rectangle in the region. 

p32_ xy A far pointer to a region definition which is an array of x,y 
pairs in device coordinates. Odd x,y pairs specify the 
minimum coordinates of a rectangle and even x,y pairs 
specify the maximum coordinates of a rectangle. The format 
is identical to that for CreateRectRegion. 

Note: If p32-BoundRect is not NULL, then each of the rectangles returned 
in p32_ xy will be the intersection of the bounding rectangle with a rectan
gle in the region 

16.1. 7.11.3 Functi"on: 050D 0002 CreateRectRegi"on 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_count 
ULONG* p32_xy 
ULONG* p32_RgnH 

}; 

173 



Windows Presentation Manager Reference 

This creates a region defined using a series of rectangles. The new region 
is defined by the OR of all the rectangles. 

Parameters: 

p32_RgnH 
A far pointer to a variable in which the handle of the new 
region is returned. 

p32_xy A far pointer to the region definition which is an array of x,y 
pairs in device coordinates. Odd x,y pairs specify the 
minimum coordinates of a rectangle and even x,y pairs 
specify the maximum coordinates of a rectangle. 

u32-count 
A count of the number of rectangles in the region definition. 

16.1. 7.1 LI Function: 030D 0003 DestroyR egion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_RgnH 

}; 

Th~s destroys the specified region unless it has been selected as a clipping 
region. 

Parameters: 

u32_RgnH 
The handle of the region. 

16.1. 7.11.5 Function: 050D 0004 SetRectRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Count 
ULONG* p32_xy 
ULONG u32_RgnH 

}; 

Sets the specified region to the specified region definition given by a series 
of rectangles unless the region is in use as a clipping region. The region is 
defined by the OR of all the rectangles. 

174 



Device Drivers 

Parameters: 

u32_RgnH 
The handle of the region. 

p32_xy A far pointer to the region definition which is an array of x,y 
pairs in device coordinates. Odd x,y pairs specify the 
minimum coordinates of a rectangle and even x,y pairs 
specify the maximum coordinates of a rectangle. The series 
of rectangles so defined specify the new region data. 

u32_count 
A count of the number of rectangles in the region definition. 

16.1. 7.11.6 Function: 070D 0005 CombineRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Mode 
ULONG u32_Src2RgnH 
ULONG u32_Src1RgnH 
ULONG u32_DestRgnH 
ULONG* p32_Result 

}; 

This combines two regions to make a third. 

Parameters: 

p32-Result 
The complexity of the resultant region from the operation. 

0 NULL region 
1 RECTanglar region 
2 COMPLEX region (more than 1 rectangle) 

u32_ DestRgnH 
The handle of the destination region. 

u32_ Src1RgnH, u32-Src2RgnH 
The handles of the two regions to be combined. 

u32_Mode 
Method of combination, as follows:-

1 AND 
2 OR 
9 XOR 
4- DIFF 
5 COPY 

175 



Windows Presentation Manager Reference 

16.1.7.11.7 Function: 040D 0006 OffsetRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 
ULONG u32_RgnH 

}; 

This moves the given region by the specified offsets unless the region is in 
use as a clipping region. 

Parameters: 

u32-RgnH 
The handle of the region to be moved. 

p32_ xy The s32_ x, s32_ y offsets by which the region is to be moved 
in device coordinates. 

16.1. 7.11.8 Function: OSOD 0007 Equa/Region 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Equa1Var 
ULONG u32_Src2RgnH 
ULONG u32_Src1RgnH 

}; 

This checks whether two regions are identical. 

Parameters: 

u32_ SrclRgnH, u32_ Src2RgnH 
The handles of the two regions to be checked. 

p32-Equa1Var 
A far pointer to ul6_Equa1Var which is set to 1 if the two 
regions are equal, and 0 otherwise. 

16.1. 7.11.9 Function: OSOD 0008 PtlnRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

176 

ULONG* p32_SuccessVar 
ULONG* p32_xy 



Device Drivers 

ULONG u32_RgnH 
}; 

This checks whether a point lies within a region. 

Parameters: 

u32-RgnH 
The handle of the region. 

p32-xy Specifies the s32_x, s32_y point in device coordinates. 

p32-SuccessVar 
A far pointer to u16_ Success Var which is set to 1 if the 
point is in the region, and 0 otherwise. 

16.1. 7.11.10 Function: 050D 0009 RectlnRegion 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_SuccessVar 
ULONG* p32_xy 
ULONG u32_RgnH 

This checks whether any part of a rectangle defined by the specified coor
dinates lies within the the specified region. 

Parameters: 

u32_RgnH 
The handle of the region. 

p32_xy A far pointer to an array s32-xl, s32_yl, s32-x2, s32_y2 
where s32-xl, s32_yl specifies the minimum coordinates of 
the rectangle and s32_ x2, s32_ y2 specifies the maximum 
coordinates of the rectangle in device coordinates. 

p32_SuccessVar 
A far pointer to u16_SuccessVar which is set to 2 if the rec
tangle is totally within the region, 1 if it is partially within 
the region and 0 otherwise. 

177 



Windows Presentation Manager Reference 

16.1. 7.11.11 Function: 030D OOOA PaintRegion 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_RgnH 

}; 

This function paints the specified region using the current pattern attri
butes. 

Parameters: 

u32_RgnH 
The handle of the region. 

16.1.7.12 Transform Functions - Major Function OE. 

16.1. 7.12.1 Function: 060E 0000 Convert 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_n 
ULONG* p32_xy 
ULONG u32_Target 
ULONG u32_Source 

}; 

Converts the specified coordinates from one coordinate space to another, 
using the current values of the transforms. 

Parameters: 

178 

u32_ Source, u32_ Target 
Define the source and target coordinate spaces. 

1 World coordinate space. 
2 Model space. 
3 Default Page coordinate space. 
4 Page coordinate space. 
5 Device coordinate space. 

p32_xy Long pointer to an array of x,y coordinates to transform. 
The result is also put here. 

u32_ n Count of coordinate pairs in the array. 



Device Drivers 

16.1. 7.12.2 Function: 040E 0001 GetModelXform 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_XformData 

Returns an array of two-dimensional values which define the current 
model transform matrix. 

Parameters: 

p32_ XformData 
Points to the return data area in which the array of 6 matrix 
elements is to be stored: 

{Mll, M12, M21, M22, M41, M42), 

16.1. 7.12.8 Function: O,f.OE 0002 SetModelXform 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Mode 
ULONG* p32_XformData 

}; 

Sets the model transform matrix elements as specified. 

Parameters: 

p32_ Xf ormData 
Points to an array of 6 matrix elements for two-dimensional 
transformation: 

{Mll, M12, M21, M22, M41, M42). 

u32_mode 
Specifies how the supplied array should be used to set the 
matrix. 

Valid values are: 

0 Set unity transform (array values are ignored) . 
1 Concatenate after 
2 Concatenate before 
3 Overwrite. 

179 



Windows Presentation Manager Reference 

16.1. 7.DL/. Function: O,/.OE 0003 GetWindowViewportXform 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Transform 

Returns an array of two-dimensional values which define the current 
Window /Viewport transform matrix. 

Parameters: 

p32_ Transform 
Points to the return data area in which the array of 6 ele
ments is to be stored: 

{M11, M12, M21, M22, M41, M42}, 

16.1. 7.12.5 Function: O,/.OE 0004 SetWi"ndowViewportXform 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Mode 
ULONG* p32_Transform 

}; 

Sets the Window/Viewport Transform matrix elements as specified. 

Parameters: 

180 

p32_ Transform 
Points to an array of 6 matrix elements for two-dimensional 
transformation. 

{M11, M12, M21, M22, A/41, M42}, 

u32-mode 
Specifies how the supplied array should be used to set the 
matrix. 

Valid values are: 

0 Set unity transform (array values are ignored) . 
1 Concatenate after 
2 Concatenate before 
9 Overwrite. 



Device Drivers 

16.1. 7.12.6 Function: 040E 0006 GetGlobalViewingXform 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Transform 

Returns an array of two-dimensional values which define the Global View
ing transform matrix. 

Parameters: 

p32_ Transform 
Points to the return data area in which the array of 6 matrix 
elements is to be stored: 

(M11, M12, M21, M22, M41, M42}, 

16.1. 7.12. 7 Function: 040E 0007 SetGlobalViewingXform 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Mode 
ULONG* p32_Transform 

Sets the Global Viewing Transform matrix elements to the specified 
values. 

Parameters: 

p32_ Transform 
Points to an array of 6 matrix elements for two-dimensional 
transformation. 

(M11, M12, M21, M22, M41, M42), 

u32-mode 
Specifies how the supplied array should be used to set the 
matrix. 

Valid values are: 

0 Set unity transform (array values are ignored). 
1 Concatenate after 
2 Concatenate before 
3 Overwrite. 

181 



Windows Presentation Manager Reference 

16.1. 7.12.8 Function: OBOE 0008 GetGraphicsField 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_GraphicsField 

}; 

Returns a 4 element array containing the integer values that identify the 
boundaries of the graphics field. 

Parameters: 

p32_ GraphicsField 
Points to the return data area in which the array of 4 ele
ments is to be stored. These are integer values that identify 
respectively the min-x, min_y, max_x and max_y boun
daries of the graphics field: 

{s32- xl, s32- yl, s32_ x2, s32- y2). 

16.1. 7.12.9 Function: OBOE 0009 SetGraphicsField 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_GraphicsField 

}; 

Sets the boundaries of the Graphics Field (clip) limits in Page coordinate 
space to the specified values. 

Parameters: 

p32_ GraphicsField 

182 

Points to a 4 element array containing the integer values 
that identify respectively the min_x, min_y, max_x and 
max_y boundaries of the graphics field: 

{s32- xl, s32- yl, s32_ x2, s32_ y2}. 



Device Drivers 

16.1. 7.12.10 Function: 030E OOOA GetPageUnits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Units 

}; 

This returns the page units for the specified display context. See Set
PageUnits for a description of page units. 

Parameters: 

p32_ units 
Points to the return data area in which the page units, 
height and width are to be stored: 

{u92- units, u92- width, u92- height}. 

16.1. 7.12.11 Function: 050E OOOB SetPageUnits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Height 
ULONG u32_Width 
ULONG u32_Units 

}; 

This sets the page units controlling the Device Transform. 

Parameters: 

u32-units 
Page Units, as follows:-

Bits 0-1 Reserved, must be preserved by the Engine and 
returned by GetPageUnits 

Bits 2-7 

B'OOOOOO' Cells 
Row/Column character cell units, with the 
origin at (1,1) and y increasing downwards. 

B'OOOOOl' Isotropic 
Arbitrary units, as defined by u32_height 
and u32_width. The page viewport is 
constructed to give equal x and y spacing 
on the physical device with at least one 
dimension of the page completely filling 

183 



Windows Presentation Manager Reference 

184 

Bits 8-31 

the corresponding default device dimension 
(maximised window size, paper size etc.) 
and the origin at the bottom left. 

B'OOOOJO' PelsUp 
Pel coordinates, with the origin at the 
bottom left. 

B'000011' LoMetr ic 
Units of 0.1 mm, with the origin at the 
bottom left. 

B'OOOJOO' HiMetric 
Units of 0.01 mm, with the origin at the 
bottom left. 

B'000101' LoEnglish 
Units of 0.01 in, with the origin at the 
bottom left. 

B'000110' HiEnglish 
Units of 0.001 in, with the origin at the 
bottom left. 

B'000111' Twips 
Units of 1/1440 in, with the origin at the 
bottom left. 

Reserved, must be preserved by the Engine and 
returned by GetPageUnits 

u32_ width, u32_ height 
Specify the page width (w) and height (h). 

A value of zero for w or h will cause it to be set to the 
corresponding default device dimension (maximised window 
size, paper size etc.) in the specified page units (pels for iso
tropic). 

This function causes the Window /Viewport Transform, 
Graphics Field, Page Window, Page Viewport and Device 
Transform to be updated (by the Engine) as follows: 

For PelsUp, LoMetric, HiMetric, LoEnglish and HiEnglish: 

WindowfViewport Transform 
Graphics Field 

Unity 
(0,0) (w-1,h-1) 
(0,0) (w-1,h-1) Page Window 

Page Viewport 
Device Transform 

Where sx = horizontal 
(= 1 for PelsUp) 

(0,0) (SX*W-l,Sy*h-1) 
As defined by Page Window, Page Viewport 

scaling required by page units for the device 

Where sy = vertical scaling required by page units for the device 
(= 1 for PelsUp) 

For Cells: 

WindowfViewport Transform As defined by Window, Viewport 
where Window is (0,32767) (32767,0) 
and Viewport is (1,1) (w,h) 

Graphics Field (1,1) (w,h) 
Page Window (1,h) (w,l) 
Page Viewport (0,0) (Cw*w-l,Ch*h-1) 

where Cw = Cell Width (Normal Default) in pels 



Device Drivers 

and Ch = Cell Height (Normal Default) in pels 
Device Transform As defined by Page Window, Page Viewport 

For Isotropic: 

WindowjViewport Transform 
Graphics Field 
Page Window 
Page Viewport 
Device Transform 

Where 

Unity 
(0,0) (w-l,h-1) 
(0,0) (w-l,h-1) 
(0,0) (X2,Y2) 

As defined by Page Window, Page Viewport 

Dh is the default device (maximised window etc.) height in pels. 
Dw is the default device (maximised window etc.) width in pels. 
Wh is the page window height 

( = I (Y4 - Y3) I + 1 where Y4 & Y3 are page window y coordinates 
Ww is the page window width 

( = I (X4 - X3) I + 1 where X4 & X3 are page window x coordinates 
Par is the pixel (width/height) aspect ratio. 
X2, Y2 are integers determined as follows: 

If Ww / Wh > Par * Dw / Dh then 

X2 Dw-1 
Y2 Par * Dw * Wh / Ww - 1 

If Ww / Wh < Par * Dw / Dh then 

X2 1/Par * Dh * Ww / Wh - 1 
Y2 Dh-1 

Otherwise (Ww / Wh =Par* Dw / Dh) 

X2 Dw-1 
Y2 Dh-1 

16.1. 7.12.12 Function: OSOE OOOC GetPage Window 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_Window 

}; 

This returns the Page Window. 

Parameters: 

p32_ window 
Points to the return data area in which the array of 4 ele
ments is to be stored. These are integer values that identify 
respectively the boundaries of the window that correspond to 
the min_x, min_y, max_x and max_y viewport boundaries: 

{s92- x1, s92- y1, s92- x2, s92- y2). 

185 



Windows Presentation Manager Reference 

16.1. 7.12.13 Function: 04 OE OOOD SetPage Window 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Flags 
ULONG* p32_Window 

}; 

This sets the Page Window in Page coordinate space for the Device 
Transform causing the Device Transform to be updated (by the Engine) 
using the Page Window and Page Viewport coordinates 

Parameters: 

p32_ Window 
Points to a 4 element array containing the integer values 
that identify respectively the boundaries of the window that 
correspond to the min-x, min_y, max_x and max_y 
viewport boundaries: 

{s32- x1, s32- y1, s32- x2, s32- y2). 

u32_Flags 
Bit 0 Set to '1 'B to indicate that the Device transform should 
be computed using the final Page Window and Page 
Viewport values. Set to 'O'B to indicate that the Device 
Transform should not be modified. 

Bit 1 Set to 'l'B to indicate that the Page Viewport 
should be recomputed based on the Page Units (see 
SetPageUnits). 
Set to 'O'B to indicate that the Page Viewport 
should not be modified. 

Bits 2-31 Reserved. 

16.1. 7.12.14 Function: 030E OOOE GetPage Viewport 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Viewport 

}; 

This returns the Page Viewport coordinates. 

Parameters: 

186 



Device Drivers 

p32_ Viewport 
Points to the return data area in which the array of 4 ele
ments is to be stored. These are integer values that identify 
respectively the min-x, min-y, max_x and max_y boun
daries of the page viewport: 

{s92- x1, s92- y1, s92- x2, s92-y2). 

16.1. 7.12.15 Functz'on: O,JOE OOOF SetPage Viewport 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Flags 
ULONG* p32_Viewport 

}; 

This sets the Page Viewport in device coordinates causing the Device 
Transform to be updated (by the Engine) using the Page Window and 
Page Viewport coordinates 

Parameters: 

p32- Viewport 
Points to a 4 element array containing the integer values 
that identify respectively the min_x, min_y, max_x and 
max_ y boundaries of the page viewport: 

{s92- x1, s92-y1, s92- x2, s92-y2). 

u32-Flags 

Bit 0 Set to 'l'B to indicate that the Device 
transform should be computed using the final 
Page Window and Page Viewport values. 
Set to 'O'B to indicate, that the Device Transform 
should not be modified. 

Bits 1-31 Reserved. 

16.1. 7.12.16 Function: 090E 0011 GetDCOrigin 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 

}; 

187 



Windows Presentation Manager Reference 

Returns the DC origin of the device context. 

Parameters: 

p32_ xy An XY pair to be used for the DC origin specified in screen 
coordinates. 

16.1. 7.12.17 Function: 030E 0012 SetDCOrigin 

struct ARGUMENTS { 
ULONG u32~FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 

}; 

Sets the DC origin of the specified device context. Note that the device ori
gin is 0,0 when the device context is created. 

Parameters: 

p32- xy An XY pair to be used for the DC origin specified in screen 
coordinates. 

16.1. 7.12.18 Function: 030E 0013 GetViewingLimits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_ViewLimits 

}; 

Returns a 4 element array containing the integer values that identify the 
boundaries of the viewing window in graphic model space coordinates: 

Parameters: 

p32_ ViewLimits 
Points to the return data area in which the array of 4 ele
ments is to be stored. These are integer values that identify 
respectively the min_x, min_y, max_x and max_y boun
daries of the viewing limits: 

(s32- x1, s32-y1, s32_ x2, s32-y2). 

188 



Device Drivers 

16.1. 7.12.19 Function: OBOE OOL/. SetViewingLimits 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_ViewLimits 

}: 

Sets the boundaries of the viewing (clip) limits in model space to the 
specified values. 

Parameters: 

p32_ ViewLimits 
Points to a 4 element array containing the integer values 
that identify respectively the min_x, min_y, max_x and 
max_y boundaries of the viewing limits: 

If each of the four cqordinates is zero, the viewing limits are 
set to their standard default values. 

{s92- xl, s92- yl, s92- x2, s92- y2). 

16.1.7 .13 Attribute Functions - Major Function OF. 

Function: 030F 0001 EnableKerning 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Flags 

}; 

This enables or disables pair and track kerning. The default 
is that both are disabled when a DC is created. 

u32_Flags 
Denotes whether pair or track kerning are on or off 

bit 0 - 0 = pair kerning off 
- 1 = pair kerning on 

bit 1 - 0 = track kerning off 
- 1 = track kerning on 

Function: 040F 0002 GetKerningPairTable 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_KernPairs 
ULONG u32_Count 

189 



Windows Presentation Manager Reference 

190 

}: 

Gets the kerning pairs of the current font. 

u32-count 
The number of kern pairs the application wants 

p32_ KernPairs 
A far pointer to an array of kern pair records 

struct KERNPAIRS { 
Word Charl 
Word Char2 
Word KernAmount 
} 

where Charl 
Char2 
KernAmount 

Code point for first character 
Code point for second character 
2 byte signed integer, indicati1 
the amount of kerning, with pas: 
numbers meaning increase inter-< 
spacing. 

Note: The number of kern pairs is a field in the 
text metrics. 

Function: 040F 0003 GetTrackKernTable 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}: 

ULONG* p32_KernTracks 
ULONG u32_Count 

Gets the kerning tracks of the current font. 

u32-count 
The number of kern tracks the application wants 

p32_ Kern Tracks 
A far pointer to an array of kern track records 

struct KERNTRACK { 
Dword MinSize 
Dword MinAmount 
Dword MaxSize 
Dword MaxAmount 
} 

where MinSize 4 byte integer indicating minimum 
font size to which linear trackin< 
applies. 

MinAmount 4 byte integer indicating the amot 
of inter-character spacing to remc 
at minimum size. 

MaxSize 4 byte integer indicating maximum 



Device Drivers 

font size to which linear tracking 
applies. 

MaxAmount 4 byte integer indicating the amount 
of inter-character spacing to removE 
at maximum size. 

Note: The number of kern tracks in a font is 
present in the text metrics. 

Function: 060F 0004 SetKernTrack 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Flags 
ULONG* p32_Viewport 

}; 

Function: 060F 0005 DeviceSetAttributes 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Attrs 
ULONG u32_AttrsMask 
ULONG u32_DefsMask 
ULONG u32_BType 

This sets attributes for the specified primitive type according 
to the defaults and attributes masks. 

Each mask contains a bit corresponding to each attribute in 
the bundle record, as defined above. For all the valid bits set 
to 1 in a mask, the corresponding attributes are set to the 
values indicated. 

If both mask bits are set to 1 for a particular attribute then 
the attribute is set to the value given (not the standard 
default). 

Parameters: 

u32_BType 
Specifies the bundle type as one of the following: 

1 Line Attribute Bundle 
2 Character Attribute Bundle 
9 Marker Attribute Bundle 
4 Pattern Attribute Bundle 
5 Image Attribute Bundle 

u32_ DefsMask 
Specifies the attributes to be set to their standard 
default values. 

191 



Windows Presentation Manager Reference 

u32_ AttrsMask 
Specifies the attributes to be set to the values 
given. 

p32_Attrs 
Points to the fixed format bundle record, specified 
above, containing the attribute values to be set, as 
specified by u92AttrsMask In the record, only the 
attribute fields which correspond to the attributes 
to be set contain valid values. 

Function: 040F 0006 DeviceSetGlobalAttribute 

192 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Attribute 
ULONG u32_AttributeType 

This sets the five individual primitive attributes to the 
specified value, in the pen, pattern, character, image and 
marker bundles. 

Parameters: 

u32_ AttributeType 
Specifies the attribute as one of the following: 

1 Foreground Color 
2 Background Color 
9 Foreground Mix 
4 Background Mix 

u32_ Attribute 
Specifies the new value of the attribute. 

Function: 040F 0007 Not if yClipChange 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG u32_Complexity 
ULONG• p32_Rect 

This function is called whenever the clip region intersected 
with the visible region is changed. This function is not 
required. It can be handled completely with a far return if 
the device driver is not interested in each clip region change. 

Parameters: 

u32_ Complexity 
lnd.icates the number of rectangles in the new clip 
region. 



Device Drivers 

p32-Rect 
A far pointer to a rectangle which bounds the new 
region. If the region is a single rectangle, this will 
be the same rectangle. 

Function: 070F 0008 RealizeFont 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_LogFont 
ULONG u32_Command 
ULONG u32_A.ccelator 
ULONG• p32_EFont 
ULONG• p32_FFont 

}; 

This allows the device to attempt to realize a font. The dev
ice is called first to realize a font. The engine will then check 
its tables of generic fonts for a match. The engine then picks 
the better of the two. 

The form of the dialog is: 

1. The engine askes the driver if it can realize a device font 
for the log font requested. 

2. The driver answers yes by returning TRUE in ax if it has 
the font and it fills in the RF_arg_PFont field with a 32 
number of the form 0:16. 

3. The driver answers no by returning zero in ax. 

The engine will then look in its tables attempt to find a font 
in its tables. If a font is found then the engine calls the 
display driver with a long pointer to a engine font in 
RF- arg-EFont. If the driver wishes to use realize that font 
from the engine font then it returns true in ax and fills in 
RF_arg_PFont with a 32 number of the form 0:16. 

Parameters: 

u32-Accelator 
The device driver sets bits here that tell the engine 
what the driver would like the engine to perform. 

Possible bits are: 

TC_BOLD equ 000018 
TC_ITALIC equ 000108 
TC_UNDERLINE equ 001008 
TC_DUNDERLINE equ 001008 
TC_STRIKEOUT equ 010008 

Wants Embolding 
Wants Italisizing 
Wants Underlining 
Wants Double underlining 
Wants to be Strikeout 

p32_PFont 
if{Command == DeviceFont, SymbolSet, LoadEn
gineFont) The driver fills this in with a 16 bit 

193 



Windows Presentation Manager Reference 

194 

identifier if the font or symbol set is realised. The 
identifier must have the form 0 Else if (Command 
== DeleteFont) The driver is given the indentifier 
it uses for a device font. 

p32-EFont 
A long pointer to an engine font supplied by the 
engine when command = LoadEngineFont. 

p32-LogFont 
A long pointer to a logical font data structure if 
command= DeviceFont or a long pointer to a 
symbol set definition if the command = SymbolSet 

u32- Command 
A 32 bit command is one of: 

DeviceFont 
The driver is asked whether it can realize 
a match. 

SymbolSet 
The driver is asked whether it can load 
the symbol set 

LoadEngineFont 
The driver is ask to use a engine font 
from the mapper 

DeleteFont 
The driver is asked to delete a font. 

SelectFoiit 
The driver is asked to make this font the 
current one 

Return values: 

ax= 1 the device realised/selected/deleted the font 

ax= 0 the device was unable to realise/select/delete the 
font. 

Function: 020F 0009 ErasePS 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

Erases the output media associated with the specified Device 
Context handle to the global standard default background 
color on devices that are capable of supporting this opera
tion (i.e. no operation is performed for printers or plotters). 

This operation is unaffected by the draw process control bit 



Device Drivers 

and is unaffected by any application defined clipping. 

Function: 030F OOOB GetDCCaps 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Flags 

}; 

This function is used by the engine to ask the device driver 
what operations it is capable of, with the present attributes 
set for the given DC. The device driver is expected to set the 
flags pointed to by p32-Flags as follows: 

BIT 1 
BIT 2 
BIT 8 

BIT 9 

BIT 10 

BIT 11 

Set if the device driver can do bounding. 
Set if the device driver can do correlations. 
Set if device driver can draw lines with the 
present attributes. 
Set if device driver can draw curves with the 
present attributes. 
Set if the device driver can fill areas with the 
present attributes. 
Set if the device driver can draw markers with the 
present attributes. 

All other bits must not be modified. The engine will simu
late any operations that the device driver cannot perform. 

Function: 030F OOOC DeviceQueryFontAttributes 

struct ARGUMENTS { 

}; 

ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_AttrsLen 
ULONG* p32_FontAttributes 

This obtains the attributes of the font currently selected via 
SetCharSet. 

p32-FontAttributes 

The Font File format consists of two sections. The 
first section contains the general attributes of the 
font, describing features of the font such as its 
typeface style and its nominal size. The second 
section contains the actual definitions of the char
acters belonging to the font. Each of the sections 
is described in the following sections. 

Familyname 
Facename 

Registry Id 
CodePage 

32 byte string 
32 byte string 

Word 
Word 

195 



Windows Presentation Manager Reference 

196 

EmHeight Word 
XHeight Word 

MaxAscender Word 
MaxDescender Word 
LowerCaseAscent Word 
LowerCaseDescent Word 

InternalLeading Word 
External Leading Word 

AveCharWidth Word 
MaxCharinc Word 

MaxBaselineExt Word 
CharSlope Word 
InlineDir Word 
Char Rot Word 

WeightClass Word 
WidthClass Word 

XDeviceRes Word 
YDeviceRes Word 

FirstChar Byte 
LastChar Byte 
DefaultChar Byte 
BreakChar Byte 

NominalPointSize Word 
MinimumPointSize Word 
MaximumPointSize Word 
TypeFlags Word 
SelectionFlags Word 
Capabilities Word 

SubscriptSize Word 
SubscriptPosition Word 
SuperscriptSize Word 
SuperscriptPosition Word 
UnderscoreWidth Word 
UnderscoreSpacing Word 
StrikeoutSize Word 
StrikeoutPosition Word 
KerningPairs Word 
Kerning'l'racks Word 
Match Dword 

u32-AttrsLen 
The length of the font attributes buffer pointed to 
by p32-FontAttributes. 

Function: 030F OOOD DeviceQueryFonts 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_FontCount 



}; 

ULONG u32_MetricLen 
ULONG* p32_Metrics 
ULONG* p32_FaceName 

Device Drivers 

This returns a record providing details of the fonts on a dev
ice, which match the specified FaceName. If the FaceName 
is null then this is treated as matching all of the fonts in the 
system. 

Parameters: 

p32-FaceName 
A far pointer to a null terminated character string 
specifying the facename. If this is a null pointer 
then all fonts should be returned. 

p32_ Metrics 
A far pointer to an array of font element records in 
which the metrics of matching fonts are returned. 
The format of each element is as described for Dev
iceQueryFontAttributes. No more than 
u9fL MetricLen bytes will be returned for any one 
font, and the number of fonts returned is limited 
to the value specified by p32-FontCount. 

u32-MetricLen 
The number of bytes of each metrics structure in 
the p32-Metrics array. 

p32-FontCount 
A far pointer to u32-FontCount, which specifies 
the number of fonts for which the application 
wants metrics. On return this is updated with the 
number of fonts for which metrics are returned. 

Returned value: u32-RemCount 

-1 error 
>=0 The number of fonts not returned. This 

allows an application to find the number of fonts 
by specifying a p32_FontCount of zero. 

Function: 030F OOOF GetPatternOrigin 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 

}; 

Gets the origin of the pattern used for blting and filling. 

Parameters: 

197 



Windows Presentation Manager Reference 

p32_ xy Points to the return address for {s3fL x, s32- y), 
the origin of the pattern relative to the origin (or 
window on the screen) in world coordinates. 

Function: 030F 0010 SetPatternOrigin 

198 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_xy 

}; 

Sets the pattern reference point used for bl ting and filling to 
the specified value. 

Parameters: 

p32_xy Points to {s32-x, s32-y}, the origin of the pattern 
relative to the origin (or window on the screen) in 
world coordinates. 

The pattern reference point is the point which the origin of 
the area filling pattern maps to. The pattern is mapped into 
the area to be filled by conceptually replicating the pattern 
definition in horizontal and vertical directions. 

Since the pattern reference point is subject to all of the 
transforms, if an area is moved by changing a transform and 
redrawing, the fill pattern will also appear to move so as to 
retain its position relative to the area boundaries. This 
allows part of a picture to be moved with a BitBlt operation, 
and the remainder to be drawn by changing the appropriate 
transform, with no discontinuity at the join. 

The pattern reference point, which is specified in World Co
ordinates, need not be inside the actual area to be filled. 
The pattern reference point is not subject to clipping, 
although of course the area to be filled will be. 

The pattern reference point applies to filled areas and to 
FloodFill. 

Function: 030F 0011 SetStyleRatio 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Ratio 

}; 

Specifies the ratios to be used when drawing styled lines. 

This function is used for banding printers which use display 
DDs to write into bitmaps. When drawing a styled line, 
equal length dashes (and dots) nust be maintained in all 
directions. Printer driver calls will be redispatched to the 



Device Drivers 

display driver for banding in printers, and must be able to 
set this aspect ratio so that the printer can have the display 
driver draw correct lines. 

- cga 
Sample ratios 

5,12,13 
10,10,14 - all one to one devices 

This is a required DDI function for display device drivers. 

Parameters: 

p32_Ratio 
Points to three 16:16 fixed point numbers. These 
define the sides of a right angle triangle, which 
correponds to the aspect ratio of the pels a line is 
drawn on. 

Function: 050F 0012 SetLineTypeGeom 

struct ARGUMENTS { 
DWORD u32_FuncNo 
DWORD u32_DcH 
DWORD* p32_lengths; 
DWORD u32_count; 
DWORD u32_options; 

}; 

Sets the geometric line-type attribute to the specified values. 
This is the line-type which will be used if geometric thick 
lines are being drawn (see line-geometric_ width). 

A non-solid geometric line-type consists of a sequence of 'on' 
and 'off' runs which gives the appearance of a dotted, 
dashed, etc line. The lengths of the runs are specified in 
World Co-ordinates, so that they are subject to all of the 
transforms, in the same way that geometric line thickness is. 

The system maintains position within the line-type 
definition, so that, for example, a curve may be implemented 
as a polyline. However, certain functions cause position to 
be reset to the start of the definition. These are:-

• SetLineTypeGeom 

• SetCurrentPosition 

• SetSegmentTransform 

• SetModelTransform 

• Set Window 

• Set Uniform Window 

• Set Viewport 

199 



Windows Presentation Manager Reference 

• SetPage Window 

• SetPage Viewport 

Parameters: 

u32_ options 
Option flags. This consists of 32 flags (with 0 the 
least significant). These may be used in combina
tion. Each set bit has the following meaning:-

LWG_INIT (bit 0) 
If set, the first run is 'on'. Otherwise, it 
is 'off'. 

LWG_REP (bit 1) 
If set, runs repeat from the second value. 
Otherwise, they repeat from the first. In 
either case, the value of L WG_ INIT is 
ignored for repeats. 

u32-count 
The number of elements in the array pointed at by 
p32_ length. 

p32-length 
A far pointer to an array, containing u32- count 
elements, which specifies the run lengths, in world 
co-ordinates. Each array element is of type s32 
(long). 

Returns: BOOL 

0 Error 
1 OK 

Function: 050F 0013 QueryLineTypeGeom 

200 

struct ARGUMENTS { 
DWORD u32_FuncNo 
DWORD u32_DcH 
DWORD• p32_lengths; 
DWORD u32_count; 
DWORD• p32_options; 

}; 

Returns the geometric line-type attribute. 

Parameters: 

p32_ options 
A far pointer to a variable in which the option 
flags are returned. See SetLineTypeGeom. 



Device Drivers 

u32-count 
Set by the application to the numper of elements 
in the array pointer to by p3fL. lengths. 

p32_ lengths 
A far pointer to an array col).taining u3fL. count 
elem en ts, in which the run length!J, iq world co-
ordinates, are returned. ; 

Returns: long int 

-1 Errc;>r 
>=0 Count of number of elements returned 

16.1.7.14 Color Functions- Major Function 10. 

16.1. 7.1../ .. 1 Function: O .. IJO 0000 QueryColorData 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_Array 
ULONG u32_Count 

}; 

Returns information about the currently available color table and device 
colors. 

Parameters: 

u32-Count 
The number of elements supplied in Array. 

p32-Array 
A pointer to, u32-Array, an array which on return 
contains:-

array(O) Format of loaded color table if any:-

LCOLF-DEFAULT (0) 
Default color table is in force. 

LCOLF-INDRGB (1) 
Color table loaded which provides trans
lation from index to RGB. 

LCOLF-RGB (3) 
Color index = RGB. 

201 



Windows Presentation Manager Reference 

Array(l) 

Array(2) 

Array(3) 

Array(4) 

Smallest color index loaded ( 0 if the default color 
table is in force) 

Largest color index loaded ( 0 if the default color 
table is in force) 

Maximum number of distinct colors available at 
one time 

Maximum number of distinct colors specifiable on 
device 

Information is only returned for the number of elements sup
plied. Any extra elements supplied will be zeroed by the sys
tem. 

16.1. 7.Lf.2 Function: 0610 0001 QueryLogColorTable 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Array 
ULONG* p32_Count 
ULONG u32_Start 
ULONG u32_0ptions 

}; 

Returns the logical color of the currently associated device, one at a time. 

Parameters: 

202 

u32_ Options 
Specifies various options:-

LOPT_INDEX (bit 1) 
Set to B'l' if the index is to be returned for each 
RGB value. 

Other flags are reserved and must be B'O'. 

u32_Start 
The starting index for which data is to be returned. 

p32-Count 
A pointer to the number of elements available in Array. 

On return, it is updated to the number of elements actually 
returned. If LOPT-INDEX is specified, only an even number 



Device Drivers 

of elements will be returned. 

p32-array 
A pointer to an array in which the information is returned. 
If LOPT_JNDEX = B'O', this is an array of color values 
(each value is as defined for CreateLogColorTable ), starting 
with the specified index, and ending either when there are no 
further loaded entries in the table, or when u81L Count has 
been exhausted. If the logical color table is not loaded with 
a contiguous set of indices, -1 will be returned as the color 
value for any index values which are not loaded. 

If LOPT_ INDEX = '1 'B, it is an array of alternating color 
indices and values, in the order indexl, valuel, index2, 
value2, ... If the logical color table is not loaded with a con
tiguous set of indices, any index values which are not loaded 
will be skipped. 

16.1. 7.Lf .. 8 Function: 0710 0002 CreateLogColorTable 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_Data 
'ULONG u32_Count 
ULONG u32_Start 
ULONG u32_Format 
ULONG u32_0ptions 

}; 

This function defines the entries of the logical color table. The Engine will 
perform the error checking for CreateLogColorTable. 

It may cause the color table to be preset to the default values. These are:-

-2 White 
-1 Black 
0 Background (Black on display, White on printer) 
1 Blue 
2 Red 
9 Pink (magenta) 
4 Green 
5 Turquoise (cyan) 
6 Yellow 
7 Neutral (White on display, Black on printer) 

The range of color table indices (including the default color table) is 
-2 .. Maxlndex (not O .. Maxindex). 

203 



Windows Presentation Manager Reference 

Index -1 will never be loaded explicitly but will always produce the color 
value defined for for index 0 for a display or index 7 for a printer /plotter 
etc .. Index -2 will never be loaded explicitly but will always produce the 
color value defined for index 7 for a display or index 0 for a printer /plotter 
etc .. 

Colors beyond 7 have device-dependent defaults. 

Parameters: 

u32_ Options 

204 

Specifies various options:-

LCOL-RESET (bit 0) 
Set to B' 1' if the color table is to be reset to 
default before processing the remainder of the data 
in this function 

LCOL-REALIZABLE (bit 1) 
Set to B'l' if the application may issue Real
izeColorTable at an appropriate time. This may 
affect the way the system maps the indices when 
the logical color table is not realised. 

If this option is not set, RealizeColorTable may 
have no effect 

Other flags are reserved and must be B'O'. 

u32_Format 
Specifies the format of entries in the table, as follows:-

LCOLF _ INDRGB (1) 
Array of (index,RGB) values. Each pair of entries 
is 8 bytes long, 4 bytes (local format) index, and 4 
bytes color value. 

LCOLF_CONSECRGB (2) 
Array of (RGB) values, corresponding to color 
indices param upwards. Each entry is 4 bytes long. 

LCOLF_RGB (3) 
Color index = RGB 

u32_Start 
Starting index (only relevant for LCOLF_CONSECRGB) 

u32_Count 
The number of elements supplied in data. This may be 0 if, 
for example, the color table is merely to be reset to the 
default, or for LCOLF_RGB. For LCOLF_INDRGB it must 
be an even number. 



Device Drivers 

p32-Data 
A pointer to the application data area, containing the color 
table definition data. The format depends on the value of 
Format. 

Each color value is a 4-byte integer, with a value of 

(R * 65536) + (G * 256) + B 

where 

R = red intensity value 
G = green intensity value 
B = blue intensity value 

(since there are 8 bits for each primary). The maximum 
intensity for each primary is 255. 

The Engine will perform error checking for this function. 
Errors will include: 

Insufficient Memory Available 
Others - To Be Decided 

16.1. 7.14.4 Function: 0210 0003 RealizeColorTable 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

This function causes the system, if possible, to ensure that the device phy
sical color table is set to the closest possible match to the logical color 
table. 

16.1. 7.14.s Function: 0210 0004 UnrealizeColorTable 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

This function is the reverse of RealizeColorTable. It causes the default 
color table to be reinstated. 

205 



Windows Presentation Manager Reference 

16.1. 7.14.6 Function: 0610 0005 QueryRealColors 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Array 
ULONG* p32_Count 
ULONG u32_Start 
ULONG u32_0ptions 

}; 

Returns the rgb values of the distinct colors available on the currently 
associated device, one at a time. 

Parameters: 

206 

u32_ Options 
Specifies various options:-

LOPT_REALIZED (bit 0) 
Set to B' I' if the information required is to be for 
when the logical color table (if any) is realized; B'O' 
if it is to be for when it is not realized. 

LOPT_INDEX (bit I) 
Set to B'l' if the index is to be returned for each 
RGB value. 

Other flags are reserved and must be B'O'. 

u32_Start 
The ordinal number of the first color required. To start the 
sequence this would be 0. 

Note that this does not necessarily bear any relationship to 
the color index; the order in which the colors are returned is 
not defined. 

p32_Count 
A pointer to the number of elements available in array. On 
return this is updated to the number of elements actually 
returned. If LOPT_INDEX is specified, only an even number 
of elements will be returned. 

p32_Array 
A pointer to a u32_ array in which the information is 
returned. If LOPT_INDEX = B'O', this is an array of color 
values (each value is as defined for CreateLogColorTable ). If 
LOPT-INDEX = B'l', it is an array of alternating color 
indices and values, in the order index!, value!, index2, 
value2, ... 



Device Drivers 

16.1. 7.LI. 7 Function: 0510 0006 QueryNearestColor 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG• p32_RgbColor0ut 
ULONG u32_RgbColorin 
ULONG u32_0ptions 

Returns the nearest color available to the specified color, on the currently 
associated device. Both colors are specified in RGB terms. 

Parameters: 

u32- Options 
Specifies various options:-

LOPT-REALIZED ~bit 0) 
Set to B'l if the information required is to be for 
when the logical color table (if any) is realized; B'O' 
if it is to be for when it is not realized. 

Other flags are reserved and must be B'O'. 

u32-RgbColorln 
The required color 

p32_ RgbColorOut 
A pointer to USLRgbColorOut containing the nearest avail
able color to the specified color. 

16.1. 7.Ll .. 8 Function: 0510 0007 QueryColorlndex 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_Color 
ULONG u32_RgbColor 
ULONG u32_0ptions 

}; 

This returns the color index of the device color which is closest to the 
specified RGB color representation, for the specified device. 

Parameters: 

u32_ Options (ULONG) 
Specifies various options:-

207 



Windows Presentation Manager Reference 

LOPT-REALIZED (bit 0) 
Set to B'l' if the information required is to be for 
when the logical color table (if any) is realized; B'O' 
if it is to be for when it is not realized. 

Other flags are reserved and must be B'O'. 

u32_ RgbColor 
Specifies a color in RGB terms 

p32-Color 
A pointer to a variable in which the closest match color 
index is returned. 

16.1.7.L/ .. 9 Function: 0510 0008 QueryRGBColor 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_RgbColor 
ULONG u32_Color 
ULONG u32_0ptions 

}; 

This returns the actual RGB color which will result from the specified 
color index, for the device specified. 

Parameters: 

208 

u32_ Options 
Specifies various options:-

LOPT-REALIZED (bit 0) 
Set to B'l' if the information required is to be for 
when the logical color table (if any) is realized; B'O' 
if it is to be for when it is not realized. 

Other flags are reserved and must be B'O'. 

u32-Color 
Specifies a color index 

p32-RgbColor 
A pointer to a variable in which the corresponding RGB 
color is returned. 



Device Drivers 

16.1.7.15 Query Functions- Major Function 11. 

16.1. 7.15.1 Function: 0411 0000 QueryDeviceBitmaps 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 

}; 

ULONG u32_0utDataLength 
ULONG• p32_0utData 

This function returns a list of bitmap formats supported by the device. 
The number of formats supported can be found using the QueryDevi
ceCaps function. Each value in the list is of the form ( u32-Planes, 
u32_ BitsPerPixel ). 

Parameters: 

p32-0utData 
A far pointer to the data structure to receive the data. 

u32_ 0utDataLength 
The length in bytes of the data structure pointed to by 
p32_ Ou tData. 

16.1. 7.15.2 Function: 0411 0001 QueryDeviceCaps 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG u32_Count 
ULONG• p32_0utData 
ULONG u32_Index 

}; 

This function returns information about the capabilities of the device. 

Parameters: 

u32-lndex 
Gives the index number of the first item of information to be 
returned in p32_ OutData. The first element is number 1. 

u32-Count 
Gives the number of items of information to be returned at 
p32_ 0utData. 

209 



Windows Presentation Manager Reference 

p32_ 0utData 
A far pointer to an array of u32-Count elements (element 
type is s32) which, on return, will contain the elements 
specified by u32-Index and u32-Count. 

210 

The following element numbers are defined:-

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
13 

Device family {values as for u32_ type on OpenDC) 

Device input/output capability 

1 - Dummy device 
2 - Device supports output 
3 - Device supports input 
4 - Device supports output and input 

Technology 

0 - Unknown (eg metafile) 
1 - Vector plotter 
2 - Raster display 
3 - Raster printer 
4 - Raster camera 

Driver version 

Default page depth {for a full-screen maximized 
window for displays) in display points. {For a 
plotter, a display point is defined as the smallest 
possible displacement of the pen, and can be 
smaller than a pen width.) 

Default page width {for a full-screen maximized 
window for displays) in display points 

Default page depth {for a full-screen maximized 
window for displays) in character rows 

Default page width (for a full-screen maximized 
window for displays) in character columns 

Vertical resolution of device in display points per 
meter for displays, plotter units per meter for 
plotters. 

Horizontal resolution of device in display points 
per meter for displays, plotter units per meter for 
plotters. 

Default character-box height in display points. 

Default character box width in display points. 

Default small character box height in display 
points (this is zero if there is only one character 
box size) 



14 

15 

Device Drivers 

Default small character box width in display points 
(this is zero if there is only one character box size) 

Number of distinct colors supported at the same 
time, includin~ background tgrayscales count as 
distinct colors). If loadable color tables are sup
ported, this is the number of entries in the device 
color table. 

For plotters, the returned value is the number of 
pens plus 1 (for the background). 

16 Number of color planes 

17 Number of adjacent color bits for each pel (within 
one plane) 

18 Loadable color table support: 

Bit o - 1 if RGB color table can be loaded, 
with a minimum support of 8 bits each 
green and blue 

Bit 1 - 1 if color table with other than 8 
bits for each primary can be loaded 

19 The number of mouse or tablet buttons that are 
available to the application program. A returned 
value of 0 indicates that there are no mouse or 
tablet buttons available. 

20 Foreground mix support 

1 - OR 
2 - Overpaint 
4 - Underpaint 
8 - Exclusive-OR 

16 - Leave alone 
32 - AND 
64 - Mixes 7 thru 17 

The value returned is the sum of the values 
appropriate to the mixes supported. A device capa
ble of supporting OR must, as a minimum, return 
1 + 2 + 16 = 19, signifying support for the manda
tory mixes OR, overpaint, and leave-alone. 

Note that these numbers correspond to the decimal 
representation of a bit string that is seven bits 
long, with each bit set to 1 if the appropriate mode 
is supported. 

21 Background mix support 

1 - OR 
2 - Overpaint 
4 - Underpaint 
8 - Exclusive-OR 

211 

for red, 



Windows Presentation Manager Reference 

212 

16 - Leave alone 

The value returned is the sum of the values 
appropriate to the mixes supported. A device OR 
must, as a minimum, return 2 + 16 = 18, signify
ing support for the mandatory background mixes 
overpaint, and leave-alone. 

Note that these numbers correspond to the decimal 
representation of a bit string that is five bits long, 
with each bit set to 1 if the appropriate mode is 
supported. 

22 Number of symbol sets which may be loaded for 
Vio 

23 Whether the client area of Vio windows should be 
byte-aligned:-

0 - Must be byte-aligned 
1 - More efficient if byte-aligned, but not required 
2 - Does not matter whether byte-aligned 

24 Number of bitmap formats supported by device 

25 Device raster operations capability 

BuD - 1 if GpiBitBlt supported 

26 

27 

28 

29 

30 

31 

32 

Bu1 - 1 if this device supports banding 
Bu2 - 1 if GpiBitBlt with scaling supported 
Bit3 - 1 if GpiFloodFill supported 
Bit4 - 1 if GpiSetPel supported 

Default marker box width in pels 

Default marker box depth in pels 

Number of device specific fonts 

Reserved (for graphics drawing subset supported) 

Reserved (for graphics architecture version number 
supported) 

Reserved (for graphics vector drawing subset sup
ported) 

Device windowing support 

BuD - 1 if Device supports windowing 

Other bits are reserved zero. 

33 Additional graphics support 

BuD - 1 if Device supports geometric line types 

Other bits are reserved zero. 



Device Drivers 

Returns: 

-1 Error 
0 OK 

16.1. 7.15.3 Function: 0711 0003 Escape 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG• p32_0utData 
ULONG• p32_0utCount 
ULONG• p32_InData 
ULONG u32_InCount 
ULONG u32_Escape 

}: 

This function allows applications to access facilities of a particular device 
that are not directly available through the GPI. Escape calls made by an 
application are translated and sent to the device driver. 

Parameters: 

u32-Escape 
Specifies the escape function to be performed. The following 
predefined functions are available. 

• 1- QueryEscSupport 

• 2- StartDoc 

• 3- EndDoc 

• 4- NewFrame 

• 5- NextBand 

• 6- AbortDoc 

• 7 - Draf tMode 

• 8 - GetScalingFactor 

• 9 - FlushOutput 

• 10- RawData 

• 11-32767 - Reserved 

Devices can define additional escape functions, using code 
values > 32767. 

u32-InCount 
Specifies the number of bytes of data pointed to by 
p32_ lnData. 

213 



Windows Presentation Manager Reference 

p32-InData 
A far pointer to the input data structure for this escape. 

u32-0utCount 
Specifies the size of the buffer pointed to by p32_ 0utdata. 

p32_ 0utData 
A far pointer to the data structure to receive data from this 
escape. 

Returns: 

-1 Error 
0 Escape not implemented for specified code 
1 OK 

16.1. 7.15.,f. Function: 0511 000,f. QueryHardcopyCaps 

struct ARGUMENTS { 
ULONG u32_FuncNo 
ULONG u32_DcH 
ULONG* p32_Info; 
ULONG u32_Count; 
ULONG u32_Start; 

}; 

This function returns information about the hardcopy capabilities of the 
device. 

Parameters: 

214 

u32_Start 
Specifies which form code number the query is to start from. 
Used with count. 

u32_Count 

p32_1nfo 

Specifies the number of forms the query is to be on. Thus if 
there are 5 form codes defined and start is 2, then if count is 
3, a query is performed for form codes 2, 3 and 4, and the 
result returned in the buffer pointed to by p82_Jnfo. 

If this value is zero, the number of form codes defined is 
returned. If non-zero (ie greater than zero), the number of 
form codes information was returned for is returned. 

Pointer to a buffer containing the results of the query. The 
result consists of count copies of the following structure: 

struct HCINFO 
CHAR formname[32]; 
LONG xwidth; 



Returns: 

-1 Error 

LONG yheight; 
LONG xleftclip; 
LONG ybottomclip; 
LONG xrightclip; 
LONG ytopclip; 
LONG xpels; 
LONG ypels; 

formname 
The ASCIIZ name of the form. 

Device Drivers 

xwid th The width (left to right) in millimeters. 

yheight The height (top to bottom) in millimeters. 

xleftclip 
The left clip limit in millimeters. 

ybottomclip 

xrightclip 

ytopclip 

xpels 

ypels 

The bottom clip limit in millimeters. 

The right clip limit in millimeters. 

The top clip limit in millimeters. 

Number of pels between left and right clip limits. 

Number of pels between bottom and top clip lim
its. 

Note: start and count can be used together to enumerate all 
available form codes without having to allocate a buffer large 
enough to hold information on them all. 

>=0 I fcount == 0, number of forms available 
>=0 Ifcount != 0, number of forms returned 

16.1.7.16 Device Modes Function - Major Function 14. 

16.1. 7.16.1 Function: 0614 0005* DeviceMode 

struct ARGUMENTS { 
UL ONG 
UL ONG 
ULONG* 
ULONG* 
ULONG* 
ULONG* 

u32_FuncNo; 
u32_DcH 
p32_LogAddr 
p32_DeviceName; 
p32_DriverName; 
p32_DriverData; 

215 



Windows Presentation Manager Reference 

}; 

This function causes a device driver to post a dialog box that allows the 
user to set options for the device, for example resolution, font cartridges 
etc. 

The functioncna be called first with a NULL data pointer to find out how 
much storage is needed for the data area. Having allocated the storage, 
the application then calls the function a second time for the data to be 
filled in. 

The returned data can then be passed on OpenDC as DriverData. 

Parameters: 

216 

p32-DriverData 
A long pointer to a data area, which on return will contain 
device data as defined by the driver. 

If this pointer is passed as NULL, then the size in bytes 
which the data area should be is returned. 

The format of the data is as follows:-

u32-Length 
The length of the whole DriverData structure in 
bytes. 

u32_ Version 
The version number of the data. Version numbers 
are defined by particular device drivers. 

DeviceName 
A strin~ 32-bytes long, identifying the particular 
device lmodel number etc). Again, valid values are 
defined by device driver. 

GeneralData 
Data as defined by the device driver. 

p32_ Driver Name 
A long pointer to a string containing the name of the device 
driver 

p32_ DeviceName 
A long pointer to a string identifying the particular device 
(model number etc). Valid names are defined by device 
drivers. 

p32_ LogAddr 
The logical address of the output device ( eg "LPTl "). 



Returns: 

p32- Driver Data pointer was NULL: -
-1 Error 
0 No settable options 

>O Size in bytes required for data area 
p32- Driver Data pointer was not NULL: -

-1 Error 
0 No device modes 
1 OK 

Device Drivers 

16.1.8 Graphics Engine Functions Callable by Device 
Drivers. 

The Graphics Engine provides a number of functions which can be used by 
device drivers to assist in their work. This section provides a list of these 
functions. 

16.1.8.1 Brief List of DD I-Engine Function Calls 

• AccumulateBounds 

• GreGetCodepageTable 

• GreGetRevCodeTable 

• ClipPoly 

• ClipLine 

• ClipConic 

• ClipRect 

• ClipScans 

16.1.8.2 Description of DDl-Engine Function Calls 

AccumulateBounds (lpArgs,Command,hDC,FunN) 

ULONG *lpArgs; 
ULONG Command; 
HANDLE hDC; 
ULONG FunN; 

This function is used to pass the results of a bounds calcula
tion back to the engine. The engine accumulates the bounds 
in the DC. 

Possible error returns: none 

The lpArgs parameter points to an argument structure as 

217 



Windows Presentation Manager Reference 

follows: 

struct ARGUMENTS { 
ULONG FunN; 
ULONG DcH; 
ULONG* p32_lpRect 

}; 

p32_ lpRect is a pointer to a rectangle in device coordinates. 

Bounds calculations may be done by either the engine, a 
simulation, or a device driver. The AccumulateBounds func
tion is used by these three components as a means of coalesc
ing the various bounds calculations they perform prior to the 
return of the data to the application by the Engine. 

GreGetCodepageTable (s32-cpid, p32_ tab, u32-FuncNo) 

ULONG u32_FuncNo 

218 

ULONG* p32_Tab 
ULONG s32_CpID 

The use of Multi-Codepage fonts implies that a translation is 
done from the codepoints of a character string (in one partic
ular codepage) to the indices of the same character glyphs in 
the font. This is done via a Codepage Lookup table. 

Codepage Lookup tables are available for the codepages 500, 
850, 860, 863 and 865. They are provided in the Presenta
tion Manager system by the Graphics Engine and are avail
able to Device Drivers via this call. 

Parameters: 

s32_cpid 

p32_tab 

is the codepage ID. 

is a pointer to a data area where the table is 
returned. 

The table is a simple list of 256 unsigned 16 bit 
values. Each value is the index number into the 
multi-codepage font of the glyph corresponding to 
the codepoint which addresses into the table (0-
based). 

u32_FuncNo 
is the engine function number 

GreGetRevCodeTable (s32-cpid, p32_ tab, u32-FuncNo) 

ULONG u32_FuncNo 
ULONG* p32_Tab 
ULONG s32_CpID 

To ease conversion of text strings from one codepage to 



Device Drivers 

another, a further function is provided, which is essentially 
the reverse of GreGetCodepageTable. 

Parameters: 

s32_cpid 

p32_ tab 

is the codepage ID. 

is a pointer to a data area where the table is 
returned. 

The table is a simple list of 300 unsigned 8 bit 
values. Each value is a codepoint value in the tar
get codepage of the glyph corresponding to the 
index which addresses into the table (0-based). 

u32_FuncNo 
is the engine function number 

ClipPoly (p32_CallBack, u32-DCH, u32-FunN) 

ULONG• p32_Cal1Back 

This is an engine call to provide the driver with the current 
clip polygon. 

This allows devices which do not perform boolean operations 
of clip areas, but do clip to areas, to query the result of the 
boolean area combining. 

Parameters: 

p32_ CallBack 
is a function with the same form as a Simula
tionEntry 

CallBack (lpparm, command, hDC, FunN) 

The function will be called back with three 
different primitives: 

1. SetCurrentPosition, this denotes the beginning 
of a subarea 

2. Polyline 

3. PolyFilletSharp 

The subareas are "simple", ie non self intersecting (or with 
other subareas) 

The callback function may be terminated at any time by 
returning zero to the engine. 

ClipLine (p32-XY, s32_ Count, p32_ CallBack, u32_ DCH, u32_ FunN) 

ULONG• p32_Cal1Back 

219 



Windows Presentation Ma,na.ger Reference 

220 

ULONG s32_Count 
ULONG* p32_XY 

This function may be used by the driver to pass a polyline to 
the engine. The engine will clip the polyline against the 
current clip area and clip region, and call the device driver's 
callback function with a set of fully clipped lines. 

ClipConic 

The parameters and function numbers are the same as for 
PolyLine, and the callback has the same form as the other 
DDI routines. 

The callback function may be terminated at any time by 
returning zero to the engine. 

(p32-XY,s32_ Count,p32_ Sharp,p32_ CallBack, u32_ DCH, u32_ FunN) 

ULONG* p32_Ca11Back 
ULONG* p32_Sharp 
ULONG s32_Count 
ULONG* p32_XY 

This function may be used by the driver to pass a conic to 
the engine. The engine will clip the conic against the current 
clip area and clip region, and call the device driver's callback 
function with a set of fully clipped lines. 

The parameters and function numbers are the same as for 
PolyFilletSharp, and the callback has the same form as the 
other DDI routines. 

The callback function may be terminated at any time by 
returning zero to the engine. 

ClipRect (p32-Rect, p32_ CallBack, u32-DCH, u32-FunN) 

ULONG* p32_Ca11Back 

ClipScans 

ULONG* p32_Rect 

This function may be used by the driver to pass a rectangle 
to the engine. The engine will clip the rectangle against the 
current clip area and clip region, and call the device driver's 
callback function with a set of fully clipped lines. 

The parameters and function numbers are the same as for 
Box, and the callback has the same form as the other DDI 
routines. 

The callback function may be terminated at any time by 
returning zero to the engine. 

(p32_ psll ,p32_ psl2,p32_ BoundingRect,p32_ CallBack, u32-DCH, u32_: 

ULONG* p32_Ca11Back 
ULONG* p32_BoundingRect 
ULONG* p32_ps12 



Device Drivers 

ULONG* p32_psll 

This function may be used by the driver to pass a polyscan
line to the engine. The engine will clip it against the clip 
region, and call the callback function with a clipped polys
canline. 

The parameters and function number are the same as for 
PolyScanLine, and the callback has the same form as PolyS
canLine. 

The callback function may be terminated at any time by 
returning zero to the engine. 

16.1.9 Required Functions 

16.1.9.1 All Devices 

All device drivers must support the following functions: 

• Poly Line 

• PolyShortLine 

• LineDDA 

• GetCurren tPosition 

• SetCurren tPosi ti on 

• ScanLR 

• PolyScanline 

• GetBitmapParameters 

• GetBitmapBits 

• SetBitmapBits 

• GetPixel 

• SetPixel 

• ImageData 

• BitBlt 

• CharStringPos 

• CharStr 

• CharRect 

• ScrollRect 

221 



Windows Presentation Manager Reference 

• UpdateCursor 

• DisableKerning 

• EnableKerning 

• GetKerningPairTable 

• GetTrackKernTable 

• GetAttributes 

• SetAttributes 

• SetSingularAttribute 

• SetGlobalAttribute 

• GetRelWidths 

• SetRelWidths 

• GetColorlndex 

• GetRealColors 

• LoadLogColorTable 

• SelectLogColorTable 

• RealizeColorTable 

• U nrealizeColorTable 

• QueryColors 

• Query NearestColor 

• QueryDeviceBitmaps 

• EmunFonts 

• QueryTextMetrics 

• GetExten tTable 

• QueryTextBox 

• QueryTextBreak 

• RealizeFont 

• Enable 

• Disable 

• DeviceMode 

• Escape 

The remaining functions are all optional, the driver may hook as many of 
them as it wants. 

222 



Device Drivers 

16.1.9.2 Display Devices 

If the device is the main display device, it must have the following (this 
includes support for the mouse cursor); 

• Inquire 

• CheckCursor 

• SetCursor 

• MoveCursor 

• DrawFrame 

• SetStyleRatio 

16.1.9.3 Printer Devices 

A printer device driver must interact with the Spooler, and meet its 
requirements. 

16.1.10 Clipping 

The driver is responsible for clipping its output according to the active 
clip region. The function, GetClipRectangles, is provided by the graphics 
engine to let the device driver examine all the rectangles making up the 
active clip region. 

The device driver could ask for an enumeration of all the rectangles in the 
clip region each time it is called on to draw. Alternatively, the engine pro
vides a function, NotifyClipChange, which can be used to get notification 
when the active clip region is changed. This function may be useful to 
drivers th~t wish to maintain their own information about the clip region. 

223 





Device Drivers 

Appendixes 

Font File Format 227 
l\1igration and Coexistence 249 

225 





Appendix A 
Font File Format 

Al Introduction 22{) 
A2 Font Metrics 22{) 
A2.1 Font Attributes Layout in Storage. 236 
A2.2 Average Character Width - Definition For-
mula. 238 
A3 Font Character Definitions. 238 
A3.1 
A3.l.1 
A3.2 

Font Definition Header. 23{) 
Definition Fields Flags Examples 

Definition Data. 243 
A3.2.1 Image Data format. 243 
A3.2.2 Outline Data format. 244 
A4 The Pair Kerning Table 244 
A5 The Track Kerning Table 245 

242 

A6 Presentation Manager Multi-Codepage Font Sup-
port. 246 
A6.l Font Codepage Functions. 246 
A6.2 Multi-Codepage Font layout. 247 

227 





Font File Format 

Al Introduction 

The Presentation Manager Font File format consists of two sections. The 
first section contains the general attributes of the font, describing features 
of the font such as its typeface style and its nominal size. The second sec
tion contains the actual definitions of the characters belonging to the font. 
Each of the sections is descibed in the following sections. · 

The font file is a set of self defining records, where the records have the 
form: 

font_record struc 
frideritity dd 
fr Size dd 
fr Bytes db 

font_record struc 

? 
? 
bytes of information 

There are four records in a font resource: 

• The font metrics 

• The font character definitions 

• The pair kerning table 

• The track kerning table 

Following compilation, the records in the resource file will follow one 
another in the above order. 

A2 Font Metrics 

The following is a list of all the Font Attributes, in the order in which they 
occur in the font file. 

This information appears in the font directory in the resource file. 

• Identity 

• Size 

• Family name 

• Typeface name 

• Registry ID 

• Code page 

229 



Windows Presentation Ma.na.ger Reference 

• Em Height 

• 'x' Height 

• Maximum Ascender 

• Maximum Descender 

• Lower Case Ascent 

• Lower Case Descent 

• Internal Leading 

• External Leading 

• Average Character Width 

• Maximum Character Increment 

• Maximum Baseline Extent 

• Character Slope 

• Inline Direction 

• Character Rotation 

• Weight Class 

• Width Class 

• X Device Resolution 

• Y Device Resolution 

• First character 

• Last character 

• Default Character Code Point 

• Break Character 

• Nominal Point Size 

• Minimum Point Size 

• Maximum Point Size 

• Type Flags (incl. Fixed/VariaQle Pitch) 

• Selection Flags - Italic-Ness, Underline-Ness, Strikeout-Ness. 

• Capabilities 

• Subscript Size 

• Subscript Position 

• Superscript Size 

• Superscript Position 

230 



Font File Format 

• Underscore Size 

• Underscore Position 

• Strikeout Size 

• Strikeout Position 

• Kerning Pairs 

• Kerning Tracks 

• Device Name Offset 

The Font Attributes are described in detail in the following section. 

Identity 4 byte integer 

Size 4 byte integer 

Family Name 
F ACESIZE (32) character string 

The family name of the font, the basic appearance of the 
font eg. Bodoni. This will be used when the application finds 
a font with a facename such as Bondoni Italic on a printer. If 
no such font is available on the screen, then the application 
can see whether another font of the same basic form is avail
able for use. 

Face Name 
32 character string 

The typeface name to which the font is designed, eg. Times 
Roman. 

Registry ID 
2 byte integer 

The Registry number for the font 

Code Page 
2 byte integer 

Defines the Registered Code Page supported by the font. 

Em Height 
2 byte integer. 

The (average) height above the baseline for uppercase char
acters. 

'x' Height 
2 byte integer. 

The (average) height above the baseline for lowercase charac
ters. 

231 



Windows Presentation Manager Reference 

Maximum Ascender 
2 byte integer 

The maximum height above the baseline reached by any part 
of any symbol in the font. 

Maximum Descender 
2 byte integer 

The maximum depth below the baseline reached by any part 
of any symbol in the font. 

Lower Case Ascent 
2 byte integer 

The maximum height above the baseline reached by any part 
of any lower case symbol in the font. 

Lower Case Descent 
2 byte integer 

The maximum depth below the baseline reached by any part 
of any lower case symbol in the font. 

Internal Leading 

232 

2 byte integer 

Recommended External Leading 
2 byte integer 

Average Character Width 
2 byte integer 

Average inter-character increment for the font. For a more 
detailed description, see the section, "Average Character 
Width - Definition Formula". 

Maximum Character Increment 
2 byte integer. 

The maximum inter-character increment for the font. 

Maximum Baseline Extent 
2 byte integer. 

This is essentially the vertical space required by the font - ie 
the nominal inter-line gap. 

Character Slope 
2 byte integer. 

Defines the nominal slope for the characters of a font. The 
slope is defined in degrees increasing clockwise from the vert
ical. An Italic font is a typical example of a font with a 
non-zero slope. 

Inline Direction 
2 byte integer 



Font File Format 

The direction in which the characters in the font are 
designed for viewing, in degrees increasing clockwise from 
the horizontal (left-to-right). Characters are added to a line 
of text along the character baseline in the inline direction. 

lnline direction, like other rotations, is represented by a two 
part unsigned discontinuous quantity. The first 9 bits con
stitute a value in the range 0 to 359, representing the 
number of degrees in the rotation. The next 6 bits consti
tute a number in the range 0 to 59, representing the number 
of minutes in the rotation. The final bit is reserved 0. 
Values outside the specified ranges are invalid. 

Character Rotation 
2 byte integer 

The baseline direction for which the characters in the font 
are designed. 

Weight Class 
2 byte integer. 

Indicates the visual weight (thickness of strokes) of the char
acters in the font: 

Value 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Width Class 

Description 
Ultra-light 
Extra-light 
Light 
Semi-light 
Medium (normal) 
Semi-bold 
Bold 
Extra-bold 
Ultra-bold 

2 byte integer. 

Indicates the relative aspect ratio of the characters of the 
font in relation to the 'normal' aspect ratio for this type of 
font: 

Value 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Description 
Ultra-condensed 
Extra-condensed 
Condensed 
Semi-condensed 
Medium (normal) 
Semi-expanded 
Expanded 
Extra-expanded 
Ultra-expanded 

Target Device Resolution - X 
2 byte integer 

% of Normal 
50 
62.5 
75 
87.5 
100 
112.5 
125 
150 
200 

233 



Windows Presentation Ma.na.ger Reference 

The resolution in the x dimension of the device for which the 
font is intended, expressed as the number of device units per 
unit of measure. 

Target Device Resolution - Y 
2 byte integer 

The resolution in the y dimension of the device. 

First Character 
1 byte integer 

The code point of the first character in the font. 

Last Character 
1 byte integer 

The code point of the last character in the font. 

All code points between the first and last character specified 
must be supported by the font. 

Default Character Code Point 
1 byte integer 

The code point which is used if a code point outside the 
range supported by the font is used. 

234 

Break Character 
1 byte integer 

The code point which represents the 'space' or 'break' char
acter for this font. 

Nominal Vertical Point Size 
2 byte integer 

The height of the font specified in decipoints (one 720th of 
an inch). The nominal size is the size for which the font is 
designed. 

Minimum Vertical Point Size 
2 byte integer. 

The mimimum height to which the font may be scaled down 
for display. 

Maximum Vertical Point Size 
2 byte integer. 

The maximum height to which the font may be scaled up for 
display. 

Type Flags 
2 bytes of bits. 

Contains the following information: 



Font File Format 

• Bits 0-4 Reserved 0 

• Bit 5 - Font has Kerning information (l=has kerning 
data) 

• Bit 6 - Fixed/Proportional Spaced Font (l=Fixed) 

• Bit 7 - Protected(Licensed) Font 

Selection Flags 
2 bytes of bits. 

Contain information concerning the nature of the font pat
terns, as follows: 

Bit Number Meaning 
0 0 = Upright graphic characters 

1 = Italic graphic characters 
1 0 = Graphic characters are not underscored 

1 = Graphic characters are underscored 
2 0 = Positive Image characters 

1 = Negative Image characters 
3 0 = Solid graphic characters 

1 = Outline (hollow) graphic characters 
4 0 = Graphic characters are not overstruck 

1 = Graphic characters are overstruck 
5-15 Reserved zeros 

Capabilities 
2 byte integer 

This tells the engine what sort of simulations can be done on 
the font and are basically to do with sizing and synthesis. 

Recommended Subscript Size 
2 byte integer 

The recommended point size for Subscripts for this font. 

Recommended Subscript Position 
2 byte integer 

The recommended baseline offset for Subscripts for this font. 

Recommended Superscript Size 
2 byte integer 

The recommended point size for Superscripts for this font. 

Recommended Superscript Position 
2 byte integer 

The recommended baseline offset for Superscripts for this 
font. 

Underscore Size 
1 byte integer 

The number of strokes used to underscore the characters of 
the font. 

235 



Windows Presentation Manager Reference 

Underscore Position 
2 byte integer. 

The position of the (first) underscore stroke from the base
line. 

Strikeout Size 
2 byte integer 

Thickness of the overstrike stroke. 

Strikeout Position 
2 byte integer 

The position of the overstrike stroke relative to the baseline. 

Kerning Pairs 
2 byte integer 

The number of kerning pairs. 

Kerning Tracks 
2 byte integer 

The number of kerning tracks. 

Device Name Offset 
4 byte integer 

This is an offset from the beginning of the resource to a null 
terminated string with the name of the device, eg. Epson 
FX-80. The mapper can tell if this font belongs to a specific 
device. If a font is generic, this field should be zero. 

A.2.1 Font Attributes Layout in Storage. 

The storage layout of the Font Attributes is as follows: 

FONTMETRICS st rue 
tmldentity dd ? ; must be equal to 1 
tmSize dd ? 

tmFamilyname db FACESIZE dup (?) 
tmFacename db FACE SIZE dup (?) 

tmRegistryld dw ? 
tmCodePage dw ? 

tmEmHeight dw ? 
tmXHeight dw ? 

tmMaxAscender dw ? 
tmMaxDescender dw ? 
tmLowerCaseAscent dw ? 
tmLowerCaseDescent dw ? 

236 



Font File Format 

tminternalLeading dw ? 
tmExternalLeading dw ? 

tmAveCharWidth dw ? 
tmMaxCharinc dw ? 

tmMaxBaselineExt dw ? 
tmCharSlope dw ? 
tminlineDir dw ? 
tmCharRot dw ? 

tmWeightClass dw ? 
tmWidthClass dw ? 

tmXDeviceRes dw ? 
tmYDeviceRes dw ? 

tmFirstChar db ? 
tmLastChar db ? 
tmDefaultChar db ? 
tmBreakChar db ? 

tmNominalPointSize dw ? 
tmMinimumPointSize dw ? 
tmMaximumPointSize dw ? 
tmTypeFlags dw ? 
tmSelectionFlags dw ? 
tmCapabilities dw ? 

tmSubscriptSize dw ? 
tmSubscriptPosition dw ? 

tmSuperscriptSize dw ? 
tmSuperscriptPosition dw ? 

tmUnderscoreSize dw ? 
tmUnderscorePosition dw ? 

tmStrikeoutSize dw ? 
tmStrikeoutPosition dw ? 

tmKerningPairs dw ? 
tmKerningTracks dw ? 

tmDeviceNameOffset dd ? 

FONTMETRICS ends 

237 



Windows Presentation Manager Reference 

A2.2 Average Character Width - Definition Formula. 

The Average Character Width is calculated according to the following for
mula: 

For the lower case letters ONLY, sum the individual character widths mul
tiplied by the following weighting factors and then divide by 1000: 

Letter Weight Factor 
a 64 
b 14 
c 27 
d 35 
e 100 
f 20 
g 14 
h 42 
i 63 
j 3 
k 6 
l 35 
m 20 
n 56 
0 56 
p 17 
q 4 
r 49 
s 56 
t 71 
u 31 
v 10 
w 18 
x 3 
y 18 
z 2 
space 166 

A.3 Font Character Definitions. 

Two formats of Font Character definition are supported. These are: 

238 

• Image format. 

The Character Glyphs are represented as Pixel images. 

• Outline format. 

The Character Glyphs are represented by vector data which traces 
the outline of the character. 



Font File Format 

The definition consists of a header portion and a portion carrying the 
characters themselves. 

The header portion contains information about the format of the charac
ter definitions and data about each character including width data and the 
offset into the definition section at which the character definition begins. 

There are many possible features to the file format. Presentation Manager 
will support those listed below. In all representations listed here, the 
height of all characters in the file is the same. 

1. Fixed pitch a+b+c =character increment for all characters 

a,b,c > 0 

2. Proportional characters a+b+c =character increment for each 
character 

a,b,c >= 0 

3. Characters where a,b,c are definitions for all characters 

b >= 0 
a, c any integer 

A.3.1 Font Definition Header. 

Font Definition Identity 
4 bytes 

Must be equal to 2 

Font Definition Size 
4 bytes 

Font Definition Type 

Indicates which format of font definition follows: 

• Bit O 

• 0 =Image Font Definition 

• 1 =Outline (Vector) Font Definition 

• Bit 1 

• 0 =Device 

• 1 =Generic 

Font Definition Fields Flags 
2 bytes of flags 

Indicates which fields are present in the Font Definition Data 
in the header. 

239 



Windows Presentation Manager Reference 

Bit Meaning 
Number 

0 

1 
2 
3 
4 
5 
6 
7-15 

0 = Cell Width not defined in header 
1 = Cell Width defined in header 
Cell Height defined in header 
Character Increment defined in header 
Character a space defined in header 
Character b space defined in header 
Character c space defined in header 
Baseline offset defined in header 
Reserved zeros 

See the section, "Definition Fields Flags Examples", for an 
illustration of how the font definition field flags are used. 

Font Character Definition Fields Flags 
2 bytes of flags 

Indicates which fields are present on a per character basis. 

Bit 
Number 

0 

1 
2 
3 
4 
5 
6 
7 

8-15 

Meaning 

0 = Cell Width not defined for each character 
1 = Cell Width defined for each character 
Cell Height defined for each character 
Character Increment defined for each character 
Character a space defined for each character 
Character b space defined for each character 
Character c space defined for each character 
Baseline offset defined for each character 
Character definition offset defined for each 
character 
Reserved zeros 

See the section, "Definition Fields Flags Examples", for an 
illustration of how the font character definition field flags are 
used. 

Size of Per Character Definition Record 
2 byte integer 

Indicates the l!-'lngth in bytes of the Character Definition 
Record (the per character data) in the Font Definition 
Header. 

Character Cell Width 
2 byte integer 

The width of the characters in pels. 

Character Cell Height 
2 byte integer 

The height of the characters in pels. 

240 



Font File Format 

Character Increment .. 
2 byte integer 

The length along the character baseline required to step 
from one character to the next (when forming a character 
string). 

Character a Space 
2 byte signed integer 

The width of the space before a character in the inline direc
tion. 

Character b Space 
2 byte integer 

The width of a character (inline direction). 

Character c Space 
2 byte signed integer 

The width of the space after a character in the inline direc
tion. 

Character Baseline Offset 
2 byte signed integer 

The position of the bottom of a character definition relative 
to the the baseline in the direction perpendicular to the base
line. 

Character Definition Record 
n byte record 

The following fields may or may not be present, according to 
the Font Character Definition Fields Flags. If a field is 
present, then it is present for EACH character and the value 
applies to that character only. 

• Character Definition Offset - 2 byte integer 

The offset into the Font Definition data at which the 
character definition begins. 

• Character Cell Width - 2 byte integer 

The width of the character definition in pels. 

• Character Cell Height - 2 byte integer 

The height of the character definition in pels. 

• Character Increment - 2 byte integer 

The length along the character baseline required to step 
from this character to the next (when forming a charac
ter string). 

241 



Windows Presentation Manager Reference 

• Character a Space - 2 byte signed integer 

The width of the space before the character in the inline 
direction. 

• Character b Space - 2 byte integer 

The width of the character (inline direction). 

• Character c Space - 2 byte signed integer 

The width of the space after the character in the inline 
direction. 

• Character Baseline Offset - 2 byte signed integer 

The position of the bottom of the character definition 
relative to the the baseline in the direction perpendicular 
to the baseline. 

A.3.1.1 Definition Fields Flags Examples 

The following illustrates how the Font Definition Fields Flags are used for 
the representations given in the section, "Font Character Definitions". 

242 

• For Fixed pitch where a+b+c =character increment for all charac
ters 

Font Definition Fields Flags 

Bit 0 
Bit 1 
Bit 2 

= 1 Cell width defined in header, tmAveCharWidth = tmMaxCh2 
0 

= 1 This is valid since all character increments are the s2 

Bit 3 = OA space not defined 
Bit 4 = 0 B space not defined 
Bit 5 = 0 c space not defined 
Bit 6 0 

Font Character Definition Fields Flags 

All bits, except 7, are zero 

• For Proportional characters where a+b+c = character increment 
for each character 

Font Definition Fields Flags 

Bit 0 = 0 Cell width not defined in header 
Bit 1 = 0 
Bit 2 = 0 char increment not defined in header 
Bit 3 = 0 A space not defined 
Bit 4 = 0 B space not defined 
Bit 5 = 0 c space not defined 
Bit 6 0 

Font Character Definition Fields Flags 



Font File Format 

Bit 0 = 1 cell width defined for each character 
Bit 1 = 0 height is the same for all characters 
Bit 2 = 0 character increment equals the cell width 
Bit 3 = 0 A space not defined 
Bit 4 0 B space not defined 
Bit 5 = 0 C space not defined 
Bit 6 = 0 
Bit 7 = 1 character definition offset defined for 

• For characters where a,b,c is specified for each character 

Font Definition Fields Flags 

Bit 0 = 0 Cell width not defined in header 
Bit 1 = 0 
Bit 2 = 0 char increment not defined in header 
Bit 3 = 0 A space not defined 
Bit 4 = 0 B space not defined 
Bit 5 = 0 C space not defined 
Bit 6 = 0 

Font Character Definition Fields Flags 

Bit 0 = 0 cell width defined for each character 
Bit 1 = 0 height is the same for all characters 
Bit 2 = 0 character increment equals a+b+c 
Bit 3 = 1 A space defined 
Bit 4 = 1 B space defined 
Bit 5 = 1 C space defined 
Bit 6 = 0 

each character 

Bit 7 = 1 character definition offset defined for each character 

A.3.2 Definition Data. 

Since for these formats the characters offset is always present, the 
definitions themselves can be anywhere in the file. 

The Definition Data consists of: 

Identity 

Definition Length 

Outline data 

2 byte integer 

4 byte integer 

n bytes 

A.3.2.1 Image Data format. 

Length of Data in bytes, 
including the length field. 
The data of the outlines. 

The bits for each character are stored separately and start on a byte boun
dary. Sequential bytes represent vertical pieces of the character image. 
For example a 15 bit wide H would be stored as follows 

1 2 

243 



Windows Presentation Manager Reference 

* * 
* * 
* * 
* * 
****** ***** 
* * 
* * 
* * 
* * 
* * 
* * 

The bytes for section one are all stored 
sequentially and all of each byte in used 
This takes up a number of bytes equal to the 
height of the character. 

section 2 are the bytes for the next column of 
the character. These masks use only seven bits 
of each byte. Each seven bits is in a different 
byte. 

Thus the character is laid down in byte 
wide columns. 

A.3.2.2 Outline Data format. 

The Outline format for character definitions is a set of drawing orders for 
each characters. The drawing orders permitted within the definitions are: 

• Line - GLINE, GCLINE 

• Relative Line - GRLINE, GCRLINE 

• Begin Area - GBAR 

• End Area - GEAR 

• Fillet - GFLT, GCFLT 

• Set Colour - GSCOL, GSECOL 

• Set Line Type - GSL T 

• Set Line Width - GSLW 

• End Symbol Definition - GESD 

A.4 The Pair Kerning Table 

There are two possible kerning records. The presence of these records can 
be detected from the tmKerningPairs and tmKerningTracks fields in the 
font header 

244 

Pair_kern_table 
pktidentity 
pktSize 
pktPairs 

Pair_kern_table 

struc 
dd 
dd 
db 

ends 

Kern_pairs struc 
kpCharl db ? 
kpChar2 db ? 
kpKernAmount dw ? 

? ; must be equal to 3 
? 
SIZE kern_pairs ; an array of kptCount kern pal 



Font File Format 

kern_pairs ends 

Only the data for pairs of characters which can be kerned is provided. 
The format of the data for each Kern Pair is: 

• Charl 

Code Point for first character 

• Char2 

Code Point for second character 

• Kern Amount 

2 byte signed integer indicating amount of kerning, with positive 
numbers meaning increase inter-character spacing. 

A5 The Track Kerning Table 

track_kern_table struc 
pttidentity dd ? ; must be equal to 4 
pttSize dd ? 
ptttracks db SIZE kern_tracks ; an array of kptCount kern tra 

track_kern_table ends 

Kern_track struc 
ktMinSize dd ? 
ktMinAmount dd ? 
ktMaxSize dd ? 
ktMinAmount dd ? 

kern_track ends 

The model for the dynamic kerning data is one of a linear ampunt of whi
tespace reduction between a minimum and a maximum font size. The fol-
lowing fields define the tracks: · 

1. Minimum Size 

4 byte integer indicating minimum font size to which linear track
ing applies. 

2. Minimum Amount 

4 byte integer indicating the amount of inter- character spacing to 
remove at Minimum Size. 

3. Maximum Size 

4 byte integer indicitting maximum font size to which linear track
ing applies. 

4. Maximum Amount 

4 byte integer indicating the amount of inter- character spacing to 

245 



Windows Presentation Manager Reference 

remove at Maximum Size. 

A6 Presentation Manager Multi-Codepage 
Font Support. 

Presentation Manager supports multiple Codepages for text input and 
output. For graphics text output using Fonts, a single Font Resource is 
used to support all the Codepages. Thus the fonts are Multi-Codepage. 
The following section describes how this function is provided and gives 
details of the font resource format. 

A.6.1 Font Codepage Functions. 

Presentation Manager supports the following Codepages for graphics text 
output: 

500 EBCDIC CECP International version. 

437 Original PC ASCII codepage. 

850 New PC ASCII codepage supporting US English and many 
European languages. 

860 PC ASCII for Portuguese. 

863 PC ASCII for Canadian French. 

865 PC ASCII for Nordic languages. 

Most of the characters required by each codepage are common - for exam
ple, the first 128 characters of all the ASCII codepages are identical. This 
makes it possible, indeed highly desirable, for a single font file definition to 
support all the codepages - ie a multi-codepage font. Such a font contains 
an ordered list of ALL the character definitions ('glyphs') used by the col
lection of codepages above. 

To use such a multi-codepage font, all that is required is a mapping from 
the codepoints of the current codepage to the glyphs of the font. Such a 
mapping is provided for each of the codepages. To facilitate translation of 
text strings from codepage to codepage, a mapping from the 'universal' set 
of characters to each codepage is also provided. 

The ordering of the characters is the same in all multi-codepage fonts so 
that only one set of translate tables is necessary. 

246 



Font File Format 

A.6.2 Multi-Codepage Font layout. 

The ordering of characters in the multi-codepage fonts is based on that of 
codepage 850, with additional characters added beyond the 256th to pro
vide those characters not present in codepage 850. 

This makes mapping codepage 850 into the multi-codepage fonts simple. 
It also provides simple mappings for the first 128 characters of all the 
ASCII codepages. 

The following extra glyphs are added to codepage 850. They are shown in 
the order they occur in the multi-codepage font, starting at character 
number 256: 

Index Glyph 
Number ID 

Colloquial Name 

256 SC040000 Cent sign 
257 SC050000 Yen sign 
258 SC060000 Pesetas sign 
259 SM680000 Left-hand not sign 
260 SF190000 Double line join single vertical 
261 SF200000 Single line join double vertical 
262 SF210000 Single line top right corner double 
263 SF220000 Double line top right corner single 
264 SF270000 Single line bottom right corner double 
265 SF280000 Double line bottom right corner single 
266 SF360000 Single vertical join double line 
267 SF370000 Double vertical join single line 
268 SF450000 Double horizontal join single line above 
269 SF460000 Single horizontal join double line above 
270 SF470000 Double horizontal join single line below 
271 SF480000 Single horizontal join double line below 
275 SF490000 Double line bottom left corner single 
274 SF500000 Single line bottom left corner double 
273 SF510000 Single line top left corner double 
272 SF520000 Double line top left corner single 
273 SF530000 Double vertical cross single 
274 SF540000 Single vertical cross double 
275 SF580000 Left hand half-block 
276 SF590000 Right hand half-block 
277 GAOlOOOO Greek alpha lower case 
278 GG020000 Greek gamma upper case 
279 GPOlOOOO Greek pi lower case 
280 GS020000 Greek sigma upper case 
281 GSOlOOOO Greek sigma lower case 
282 GTOlOOOO Greek tau lower case 
283 GF020000 Greek phi upper case 
284 GT620000 Greek theta upper case 
285 G0320000 Greek omega upper case 
286 GDOlOOOO Greek delta lower case 
287 SA450000 Infinity sign 
288 GFOlOOOl Greek phi lower case 
289 GEOlOOOO Greek epsilon lower case 

247 



Windows Presentation Manager Reference 

290 SA380000 Mathematical intersection sign 
291 SA480000 Mathematical equivalence sign 
292 SA530000 Mathematical greater than or equals sign 
293 SA520000 Mathematical less than or equals sign 
294 SS260000 Mathematical integral sign top half 
295 SS270000 Mathematical integral sign bottom half 
296 SA700000 Mathematical approximately equals sign 
297 SA790000 Mathematical product dot 
298 SA800000 Mathematical square root sign 
299 LNOllOOO Superscript small n 

Thus the multi-codepage fonts have 300 characters in all (including the 
NULL character). 

This number of characters is supported by the font format definition for 
both image and vector (outline) fonts. 

248 



Appendix B 
Migration and Coexistence 

B.l 

B.1.1 
B.1.2 
B.1.3 
B.1.4 
B.1.5 
B.2 

Running MS OS/2 applications 
under Presentation Manager 251 

Real mode applications 251 
Device control applications 251 
Unsupported VIO calls 251 
Unsupported KBD calls 252 
Unsupported MOU calls 252 

:Migration from :Microsoft Windows 253 

249 





Migration and Coexistence 

B.1 Running MS OS/2 applications 
under Presentation Manager 

It is desirable, and possible, that many applications written to run in their 
own screen group under MS OS/2 should be able to run in a window in the 
Presentation Manager screen group. However, there are some applications, 
mainly those that exercise the more specific forms of control of screen and 
input devices, that will not run. The MS OS/2 facilities that are incompa
tible with running under Presentation Manager are listed here. 

B.1.1 Real mode applications 

No real mode application may run in the Presentation Manager screen 
group. 

B.1.2 Device control applications 

No application that provides its own SORN, KBD, or MOU device driver 
may run, unless that device driver is compatible to the MS OS/2 device 
driver. 

No application that provides its own MOUSCRN device driver may run. 

No application that issues IOCTLS to any of the above device drivers may 
run. 

B.1.3 Unsupported VIO calls 

The following calls are either unsupported or have restricted function in 
the Presentation Manager screen group. For further details refer to the 
chapter, "Standard Application Support". 

VioDeRegister 
Deregister a video subsystem 

VioGetPhysBuf 
Return the address of the physical video buff er 

VioGetState 
Return the current setting of the video state 

VioModeUndo 
Restore mode undo 

251 



Windows Presentation Ma.na.ger Reference 

VioModeWait 
Restore mode wait 

VioRegister 
Register a video subsystem within a screen group 

VioSavRedrawWait 
Screen save redraw wait. 

VioSavRedrawUndo 
Screen save redraw undo. 

VioScrLock 
lock screen. 

VioScr Unlock 
Unlock screen. 

VioSetState 
Set the video state. 

B.1.4 Unsupported KBD calls 

The following calls are either unsupported or have restricted function in 
the Presentation Manager screen group. For further details refer to the 
chapter, "Standard Application Support". 

KbdRegister 

KbdDeRegister 

KbdSetStatus 

KbdGetStatus 

B.1.5 Unsupported MOU calls 

The following calls are either unsupported or have restricted function in 
the Presentation Manager screen group. For further details refer to the 
chapter, "Standard Application Support". 

252 

MouRegister 

MouDeRegister 

MouSetHotKey 

MouDrawPtr 

MouRemovePtr 

MouSetPtrPos 



MouSetScaleFact 

Mou Open 

Mou Close 

MouGetPtrPos 

MouGetPtrShape 

MouSetPtrShape 

MouGetDevStatus 

MouSetHotKey 

Migration and Coexistence 

B.2 Migration from Microsoft Windows 

Microsoft Windows version 1 applications will have to be rewritten to run 
under Presentation Manager. The following areas will require to be 
changed: 

Window functions 
The windowing and input functions of Presentation Manager 
are functionally similar to the object oriented message inter
face of Microsoft Windows, although the function names, 
messages, and associated data structures are different. 

GDI functions 
The graphics functions of Presentation Manager are based 
on the graphics interfaces found in GPI. This has been 
extended to include the functionality of the GDI. 

System resource functions 
The system resource functions are to a large extent provided 
by MS OS/2 kernel. However, Presentation Manager pro
vides additional functions equivalent to Microsoft Windows 
in the following areas: 

Memory manager functions 

Resource manager functions 

String translation functions 

Atom manager functions 

253 





Index 

AccumulateArea, 159 
AccumulateBounds, 217 
AltPolygon, 137 
Arc, 126 
ArcDDA, 128 

BeginArea, 158 
BeginClipArea, 160 
BeginStrokes, 161 
Bitblt, 146 
BoxBoth, 130 
BoxBoundary, 130 
Boxlnterior, 130 

CharRect, 152 
CharStr, 153 
CharString, 152 
CharStringPos, 151 
ClipConic, 220 
ClipLine, 219 
ClipPoly, 219 
ClipRect, 220 
ClipScans, 220 
CombineRegion, 175 
Convert, 178 
CreateLogColorTable, 203 
CreateRectRegion, 173 

DDI 115 
DestroyRegion, 174 
DeviceCreateBitmap, 138 
DeviceDeleteBitmap, 139 
DeviceMode, 215 
DeviceQueryFontAttributes, 195 
DeviceQueryFonts, 196 
DeviceSelectBitmap, 140 
DeviceSetAttributes, 191 
DeviceSetCursor, 149 
DeviceSetGlobalAttribute, 192 
Disable Device Context, 121 
Disable display output, 123 
Disable pDeviceBlock, 120 
DrawFrame, 162 

Enable, 115 
Enable Device Context, 120 

Enable display output, 123 
EnableKerning, 189 
EndArea, 159 
EndClipArea, 161 
EndStrokes, 162 
EqualRegion, 176 
ErasePS, 194 
Escape, 213 
ExcludeClipRectangle, 166 

File Format, 229 
Fill Information pDeviceBlock, 118 
Fill lDeviceBlock, 116 
Fill pDeviceBlock, 117 
FilletDDA, 128 
FloodFill, 136 
FullArcBoth, 126 
FullArcBoundary, 126 
FullArclnterior, 126 

GetArcParameters, 124, 163 
GetBitmapBits, 141 
GetBitmapParameters, 141 
GetClipBox, 165 
GetClipRects, 169 
GetCurrentPosition, 133 
GetDCCaps, 195 
GetDCOrigin, 187 
GetGlobalViewingXf orm, 181 
GetGraphicsField, 182 
GetKerningPairTable, 189 
GetMode!Xform, 179 
GetPageUnits, 183 
GetPage Viewport, 186 
GetPageWindow, 185 
GetPatternOrigin, 197 
GetPel, 145 
GetPickWindow, 164 
GetRegionBox, 171 
GetRegionRects, 172 
GetTrackKernTable, 190 
GetViewingLimits, 188 
Get WindowViewportXform, 180 
GreGetCodepageTable, 218 
GreGetRevCodeTable, 218 

HCINFO structure, 214 

255 



Index 

. lmageData, 146 
Install Simulation, 123 
lntersectClipRectangle, 166 

LineDDA, 133 

NotifyClipChange, 192 

OffsetClipRegion, 167 
OffsetRegion, 176 

PaintRegion, 178 
PartialArc, 127 
PartialArcDDA, 128 
PolyFillet, 129 
PolyFilletSharp, 131 
PolyLine, 131, 132 
Poly1\1arker, 134 
PolyScanLine, 135 
PolyShortLine, 132 
PtlnRegion, 176 
PtVisible, 168 

QueryArcDDA, 130 
QueryAreaState, 162 
QueryClipRegion, 168 
QueryColorData, 201 
QueryColorlndex, 207 
QueryDeviceBitmaps, 209 
QueryDeviceCaps, 209 
QueryFilletDDA, 130 
QueryHardcopyCaps, 214 
QueryLineDDA, 134 
QueryLineTypeGeom, 200 
QueryLogColorTable, 202 
QueryNearestColor, 207 
QueryPartialArcDDA, 131 
QueryRealColors, 206 
QueryRGBColor, 208 
QueryTextBox, 156 
QueryTextBreak, 157 
QueryVisRegion, 171 

RealizeColorTable, 205 
RealizeFont, 193 
RectlnRegion, 177 
RectVisible, 168 
Reset DC State, 122 
Restore DC State, 122 

256 

Save DC State, 121 
SaveBits, 150 
ScanLR, 134 
ScrollRect, 154 
SelectClipRegion, 165 
SelectVisRegion, 170 
SetArcParameters, 125 
SetBitmapBits, 144 
SetCurrentPosition, 134 
SetDCOrigin, 188 
SetGlobalViewingXf orm, 181 
SetGraphicsField, 182 
SetKernTrack, 191 
SetLineTypeGeom, 199 
Set1\1odeDCform, 179 
SetPageUnits, 183 
SetPage Viewport, 187 
SetPageWindow, 186 
SetPatternOrigin, 198 
SetPel, 145 
SetPickWindow, 164 
SetRectRegion, 174 
SetStyleRatio, 198 
Set ViewingLimits, 189 
SetWindowViewportXform, 180 
SetXformRect, 167 

UnrealizeColorTable, 205 
UpdateCursor, 155 


