
Microsoft~
Operating
System/2
Windows Presentation Manager
Reference

Volume 1

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Oorporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

© Oopyright Microsoft Corporation, 1987

Microsoft, the Microsoft logo, MS-DOS, and MS are registered trademarks of
Microsoft Corporation.

Document Number 07-01-87-001
Part Number 00248

Contents

1 Introduction 1

2 Application Model 13

3 User Interface 45

4 Wmdow Management Functions 155

iii

Figures

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1

Figure 2.2

Typical Presentation Manager Screen Layout 6

Presentation Manager window with frame 8

Menu bar with pull-down menu 10

Presentation Manager - System Structure. 17

Application Model for Input and Output. 21

Figure 2.4 Presentation Manager application model for dialog boxes 29

Figure 2.5 Application Structure. 32

Figure 3.1 The File Cabinet with Tree 64

Figure 3.2 The File pull-down 66

Figure 3.3

Figure 3.4

Figure 3.5

Key/Mouse Click Usages for Selection and Manipulation

Key /Mouse Drag Usages for Selection and Manipulation

The Filing system with Options pull-down 71

Figure 3.6 The Filing system with Special menu 73

Figure 3.7 The File Cabinet with Window pull-down 74

Figure 3.8 The File Cabinet with STARTUP panel 76

Figure 3.9 Startup Editor - main panel 78

Figure 3.10 Startup Editor - File pull down 79

Figure 3.11 Startup Editor - Edit pull down 80

Figure 3.12 The Task Manager window 82

Figure 3.13 The Task Manager window with Control pull down 83

Figure 3.14 Task Manager - terminating a task 84

Figure 3.15 Task Manager with Shutdown pull down 85

Figure 3.16 Control Panel 86

Figure 3.17 A sample help window 93

Figure 4.1 Parent and Child Windows 164

Figure 4.2 Parent/Child relationships of Previous Diagram 165

Figure 4.3 Action Bar 303

Figure 4.4 Reformatted Action Bar 303

iv

70

70

Preface

The Microsoft Operating System/2 Windows Presentation Manager Refer­
ence, Volumes 1, 2, and 3, is derived from the latest draft of the functional
specification of the Windows Presentation Manager. Although this docu­
mentation does not represent the final Windows Presentation Manager
specification, it does provide a reasonable preview of the functionality you
can expect from the final product.

This documentation is preliminary in nature. The application program
interface and other features of the Windows Presentation Manager
described in this document are subject to change. It is strongly recom­
mended that the documentation be read for informational purposes only.

v

Chapter 1

Introduction

1.1 Introduction and Guide to
Windows Presentation Ivfanager 3

1.1.1 What is Presentation Ivfanager? 3
1.1.2 Fundamental Features of

Windows Presentation Ivfanager 3
1.1.2.1 User Interface Shell 4
1.1.2.2 Screen Appearance. 5
1.1.2.3 The Pointer 7
1.1.2.4
1.1.2.5
1.1.2.6

Presentation Ivfanager Windows. 7
Presentation Ivfanager User Controls 9
Presentation Ivfanager Programming Functions 10

Introduction

1.1 Introduction and Guide to
Windows Presentation Manager

This section introduces Windows Presentation Manager to the end user.

1.1.1 "What is Presentation Manager?

The Windows Presentation Manager is the presentation services com­
ponent of the MS OS/2 operating system. Its features include:

• the ability to view output from multiple applications on the
display simultaneously

• an enhanced User Interface to both MS OS/2 and application func­
tions

• programming interfaces which provide applications with sophisti­
cated functions:

• for generating and displaying Graphics and Alphanumerics
data on a range of output devices including the display screen.

• for handling Input devices such as mouse and keyboard

• for Windowing data onto the display screen

• for the provision of a User Interface which is both rich in func-
tion and consistent across applications.

Applications which run with the MS OS/2 kernel will also run when
Presentation Manager is present. However, not all these applications can
take advantage of the additional facilities provided by Presentation
Manager. In particular, applications which attempt to access the display
or input devices directly cannot share the screen concurrently with other
applications and cannot use the Presentation Manager programming inter­
faces. The applications which cannot take advantage of Presentation
Manager are termed Non-Presentation Manager Applications. The sec­
tion, "Running MS OS/2 Kernel Applications Under Presentation
Manager", defines the applications that may not be run in the Presenta­
tion Manager screen group.

1.1.2 Fundamental Features of
Windows Presentation Manager

3

Windows Presentation Manager Reference

1.1.2.1 User Interface Shell

When the:MS OS/2 system is started up with Windows Presentation
Manager present, the display screen is initially occupied by the Presenta­
tion Manager User Interface Shell. The Presentation Manager User Inter­
face Shell replaces the simple User Interface Shell provided with the MS
OS/2 kernel. It provides the following end-user functions:

4

Start an Application

The user is presented with a list of all the available applica­
tions and can choose one to start. There is a 'command line'
option, which enables the user to start a program by enter­
ing the command line in a manner consistent with MS OS/2.

A means is provided for the user to update the list of of
applications - adding or removing entries as desired - and
updating the application profile for each of them.

Switch to another Application

The user can display all the applications which are running
and can select which one to work with next. The list
includes both Presentation Manager and non-Presentation
Manager applications.

Control of the Position and Size of Application Windows

Each Presentation Manager application has one or more
Windows on the screen. The User Interface Shell provides
the user means of controlling the size and position of the
windows visible on the screen.

Control of the Printing functions.

A menu is provided to give the user control over the Printing
functions performed by Presentation Manager.

Use of MS OS/2 file system

An easy-to-use method of interacting with the MS OS/2 file
system is provided, that allows the end-user to perform file
commands such as copying or renaming files.

Control functions

Provides the user with a consistent and easy-to-use method
of selecting defaults for various Presentation Manager
parameters, e.g. the colour of empty space on the screen.

Introduction

1.1.2.2 Screen Appearance.

As applications are started by the user they appear on the screen. The
applications fall into two classes - Presentation Manager and Non­
Presentation Manager. For Presentation Manager applications, the User
Interface Shell menus remain visible until explicitly removed by the user.
For non-Presentation Manager applications, the User Interface Shell disap­
pears when the application is on the screen.

Non-Presentation Manager applications are not able to take advantage of
the features of Presentation Manager. The section, "Running MS OS/2
Kernel Applications Under Presentation Manager", defines a non­
Presentation Manager application.

Presentation Manager applications are able to take full advantage of the
features of the Presentation Manager functions. These applications do not
have to use the Presentation Manager unique programming interfaces but
do have to obey rules concerning their use of the display screen and the
input devices. Put simply, when using the display and input devices an
application must use the Presentation Manager programming interfaces
and/or use the basic MS OS/2 VIa .. , KBD .. or MOU .. function calls.

When the user wants to interact with a non-Presentation Manager appli­
cation, the application always appears on the screen by itself. Non­
Presentation Manager applications cannot share the screen with other
applications. Neither can they share the screen with the User Interface
Shell. Thus the application cannot be seen at all when the user is interact­
ing with another application or the User Interface Shell.

The User Interface Shell and all the Presentation Manager applications
occupy the Presentation Manager Screen Group. They can all potentially
appear on the screen simultaneously, in overlapped Windows. A Window
is a rectangular region on the screen within which application data is
displayed. The Presentation Manager screen has a 'Messy Desk'
appearence in that the rectangular windows can overlap one another.
Where the windows overlap, only part of one window is displayed and the
appearence is like that of papers on a desktop - ie. one piece of paper over­
lays another and only the topmost one can be seen where they overlap.

A simple example of the Presentation Manager Screen Group appearence is
shown in the following diagram.

5

Windows Presentation Manager Reference

+--+
+---------------------------------------+ 1<----

User Interface Shell I I
, 1<-------+-----
+---------------------------------------+ I

I ,
+----------------------------+ I

, ,

Application 1 1<------------------+-----
+------------+
I Child
I window ,
+------------+

1-----------------+ I
'cation 2 I , ,

<+-----, , , , ,

+----------------------------+
, , , , , , ,

+~-----------------------+ I
+--+

Figure 1.1 Typical Presentation Manager Screen Layout

Screen

Window

Topmost
Window

Window

A Presentation Manager application generally has one window and can
have many more. Windows are organised on a hierarchical parent-child
basis. A child window always lies on top of and is contained within its
parent window. The windows at the top of the structure (which can be
thought of as children of the physical screen) are called top-level windows.
An application may have one or more top-level windows.

The top-level window with which the user is interacting is called the active
window. This will lie visually on top of all other top-level windows. Key­
board input is always directed to the input focus window. The input focus
window is either the active window or a child of the active window.

The mouse input is generally directed to the window that lies underneath
the mouse pointer.

Some user input is received by the User Interface Shell rather than an
application. This input generally performs operations beyond the scope of
a single application, such as allowing the user to switch the active window.
Certain keys on the keyboard and the mouse cause this kind of input. A
detailed description is provided in the section dealing with the User Inter­
face Shell.

6

Introduction

1.1.2.3 The Pointer

Part of the screen appearence related to input is the Pointer. The pointer
is a small image which moves around the screen as the mouse is moved. It
is displayed only on those systems which have a mouse attached. It
appears on top of anything else displayed on the screen.

Its appearence can vary. There is a System Pointer appearence, an arrow,
which the pointer has by default. The shape can change when the pointer
enters an application window. The pointer shape can also vary as it moves
from selectable to non-selectable items on the screen.

The position of the Pointer on the screen is termed the Action Point. The
Pointer can be used to select objects by positioning the pointer over the
object and pressing and releasing one of the mouse buttons. Since the
pointer is generally a large object, the action point occupies a point within
the pointer shape. This point must be chosen carefully to avoid confusing
the user. For instance, the action point of the System Pointer is at the tip
of the arrow.

1.1.2.4 Presentation Manager Windows.

Presentation Manager windows are more than just simple recta.ngles on
the screen. They have a number of optional features which occupy their
borders, termed the frame window. The frame window gives the end-user
access to a number of Presentation Manager functions. The frame window
includes:

• Borders

• Caption

• Scroll Bar

• Menu Bar

• System icon
• Maximize and minimize icons

The area in the centre of the window that would normally contain the
main information content of the window is called the Client area.

7

Windows Presentation Manager Reference

8

---------------------~--------------------------
Border

--
IS: Caption :N:M
:--+-
: Menu Bar 'A
I----------------------~------------------- -1

B: B
0: 0

Ir: Client r
:d d
:e Area 0 e
Ir r

1<: 0 :>IV 1
--

Border

S is the system icon
M is the maximize icon
N is the minimize icon
o is the thumb mark in the scroll bars

Figure 1.2 Presentation Manager window with frame

Window Border

Caption

Presentation Manager windows have a border in one of four
formats:

• Normal border (that is not selectable by the user)

• Heavy border (that is selectable by the user for opera­
tions such as sIzing a window)

• A thin border (that is not selectable)

• No border

The caption is the window name that appears at the top of a
window. Highlighting of the caption bar indicates the win­
dow with which the user is currently interacting.

Scroll Bars

A window can contain one or two optional Scroll Bars.
There is a Vertical Scroll Bar which appears at the right of
the window and a Horizontal Scroll Bar which appears at the

Introduction

Menu Bar

bottom of the window. The scroll bars can be used to move
the data appearing in the window up and down or right and
left, under either application or Presentation Manager con­
trol.

A menu bar is a horizontally aligned menu at the top of the
window. The end user may make selections on the menu bar
that either send commands directly to the application, or
cause the selection of a pull-down menu.

System icon

The sytem icon is an icon that the user may select in order to
activate the system menu for the window. The system menu
contains functions such as move, size, ...

Maximize icon

The maximize icon is an icon that the user may select in
order to change a window to its maximum size.

Minimize icon

The minimize icon is an icon that the user may select in
order to change a window to its minimum size.

1.1.2.5 Presentation Manager User Controls

The Presentation Manager User Controls provide the application program
with consistent means of interacting with the user to perform various
standard operations. These are:

• Interaction by use of menus

• Interaction by use of dialog boxes

1.1.2.5.1 Use of menus

The use of menus to interact with an application will always commence
with a menu bar. The menu bar is a horizontal bar along the top of a win­
dow that contains a number of items. The items may be selected, one at a
time, by the user. The selection of an item in the menu bar by the user
will cause the appearance of a secondary menu, called a pull-down menu.
The pull-down menu contains additional options, one or more of which
may be selected by the user. On completion of the selection, the pull-down
menu is removed and the application performs the required action.

9

Windows Presentation Manager Reference

--
--

I
I
I
I
I
I
I
I
I

Item! I Item2 I Item3 I I
------+---------------------------------------

IPulldown menu I
Isub item a I
Isub item b I
Isub item c I

*--
I

--*

Figure 1.3 Menu bar with pull-down menu

1.1.2.5.2 Use of dialog boxes

1.1.2.6 Presentation Manager Programming Functions

Presentation Manager has a large Application Programming Interface
which is subdivided into major functional groups:

• Windowing - creation and control of windows within an application

• Input and Message Handling

• User Controls

• Alphanumerics Output

• Graphics Output

• Bitmaps
• A programmed interface to the User Interface Shell.

It is not necessary for an application to use any of the Presentation
Manager API functions in order to run as part of the Presentation
Manager Screen Group and be windowed onto the screen with other appli­
cations. An application using the VIO .. , KBD .. and MOU.. functions of
basicMS OS/2 can be windowed when Presentation Manager is present.
No changes to the application are necessary.

However, an application using the Presentation Manager API has access to
a range of powerful functions which can enhance the functionality and
usability of the application while at the same time reducing the effort
required to produce it.

10

Introduction

A summary of the groups of functions in the Presentation Manager API
follows. A thorough description of the functions and their uses is given in
later sections.

Windows

An application can create and use a number of windows on
the screen via the Windows API. Function is provided to
control the size and position of a window and also to control
whether the user can size or position a window. The applica­
tion can specify the form of the window frame. The applica­
tion can also control the data which appear in each window
and can control which window is the Input Window.

User Interface Controls

The User Interface Controls API provides the application
with functions for dialog between application and the user.
The functions include:

• The display and interaction with menus.

The following menus are supported:

• Menu Bars

• Pull-down menus
• Control functions that an application would typically

group together into a 'dialog box'. These are:

• Scroll bars

• Buttons

• Edit controls

• Static controls

• List boxes

• Message boxes
Input and Message Handling

The Input API allows the application to control the input it
receives, both from the user via the Mouse and Keyboard
and from the system and other applications in the form of
messages. The input is based on an application input queue,
and one or more Window processing functions.

Alphanumerics·Output

The Alphanumerics output API, termed Advanced Vio, is
used to output simple Alphanumeric data into screen Win­
dows or into Bitmaps. Advanced Vio is an extension of the
basic MS OS/2 VIa .. functions for a windowing

11

Windows Presentation Manager Reference

12

environment. Advanced Vio also allows use of multiple fonts
and features such as underscoring of individual characters.

Graphics Output

Bitmaps

The Graphics API, called the GPI, is used to draw graphics
data into screen windows, bitmaps, or other devices such as
printers and plotters. The application can draw a range of
graphics objects, such as Lines, Arcs, Text Strings, Closed
Areas and Images. Various attributes of the primitives such
as their Colour, Area Fill pattern, Character Font and Line
Style can be controlled. The size, orientation and position of
every primitive can be varied by means of Transformations.

The GPI also supports a wide range of text functions, includ­
ing the support of fonts.

Graphics data may be managed by the application or stored
and managed by the Presentation Manager system.

The Bitmap API allows creation and use of Bitmaps. Bit­
maps are best thought of as images similar in form to the
screen image. Bitmaps can be drawn into in a similar
fashion to the screen; they may reside either in PC memory
or in memory associated with a particular device. Bitmaps
can also be the source of data to place on the screen. They
can be used to produce rapid changes to the screen, such as
changing a Menu, in cases where normal drawing would be
too slow.

User Interface Shell API

Presentation Manager contains an API that will allow appli­
cations to request some of the shell functions normally
requested by the user.

Chapter 2
Application Model

2.1 How to Write a Windows
Presentation Manager Application 15

2.1.1 The Purpose of the Presentation Manager API 15
2.1.1.1 Presentation Manager Basic System Structure. 17
2.1.2 API - General Features 20
2.1.2.1 Output Fundamentals 21
2.1.2.2 Input Fundamentals 23
2.1.3 Presentation Space,

Device Contexts and windows 24
2.1.3.1 Presentation spaces 24
2.1.3.2 Device Contexts 25
2.1.3.3 Windows 26
2.1.4 Presentation Manager functions 27
2.1.4.1 Output via GPI or Advanced Vio functions 27
2.1.4.2 Output via User Controls functions 28
2.1.4.3 Input Functions 29
2.1.5 Sample Programs 30
2.1.6 Application Model 30
2.1.6.1 Basic Application structure. 31
2.1.6.2 The System Environment - The Shell and Other
Applications. 33
2.1.6.3 Program Structure and Windows - Window Pro-
cedures. 34
2.1.6.4
2.1.6.5
2.1.7
2.1.8

Application Rules And Conventions 34
Building a Presentation Manager Application

Background to user interface 37
Naming Conventions 38

35

13

2.1.8.1 Constant names 38
2.1.8.2 Type names 38
2.1.8.3 Variable and argument names 38
2.1.8.4 Assembly language structure fields 40
2.1.8.5 Standard Data Types Used in this Document 40
2.1.g Return Code Conventions 41
2.1.10 Error Conventions 42
2.1.10.1 Error Severity 42
2.1.10.2 Error codes 43

14

Application Model

2.1 How to Write a Windows
Presentation Manager Application

This section describes how to write a Windows Presentation Manager
application. It describes the environment in which a Presentation
Manager application runs and gives a guide to the concepts and methods
of using the Presentation Manager API. A detailed description of the
Presentation Manager API is in the later seCtions.

2.1.1 The Purpose of the Presentation Manager API

The basic purpose of the Windows Presentation Manager is to provide
easy accessibility for the user to the functions provided by the PC system.
It does this in conjunction with the MS OS/2 kernel and together they
help the user accomplish whatever tasks need doing, as and when they are
needed.

An important feature of MS OS/2 is that of multi-tasking. The system
can perform a number of tasks simultaneously - multiple application pro­
grams can run at the same time. Presentation Manager allows the user to
see the data belonging to many applications simultaneously, so that one
set of data can be used in conjunction with another.

Presentation Manager makes it easy to get things done. In contrast to the
situation on MS-DOS, there is no need to stop one application program
just because the user needs to run another to get access to some piece of
information. Presentation Manager provides means to start any task at
any time. It provides means to view many tasks simultaneously on the
screen. Presentation Manager also provides means for copying data from
one task to another ("Cut and Paste") which really makes the use of mul­
tiple tasks interesting and useful.

For application programs, Presentation Manager provides shared access to
the general resources of the PC system, which include:

• The Screen

• The Keyboard

• The Mouse

• Printer(s)

• Plotter(s)

• Picture Files

• Other Applications

Presentation Manager makes the access to the resources simple.

15

Windows Presentation Manager Reference

Presentation Manager also simplifies the process of writing an application
through the functions provided in the API and the various utility pro­
grams provided in the Toolkit.

The Presentation Manager API does require applications to behave in cer­
tain ways, in order to share resources effectively. In simple terms, applica­
tions wishing to take advantage of the Presentation Manager features
must behave in a Co-operative fashion. Applications must co-operate with
both the Presentation Manager system and other applications in order

- that the system works to the benefit of the end-user.

The Presentation Manager API is structured around these basic ideas and
does make some demands on the way applications work. This is made
clear in later sections.

MS OS/2 applications that do not wish to take advantage of the Presenta­
tion Manager facilities can run in a PC system that is using Presentation
Manager. How such applications run in a system using Presentation
Manager is dealt with in a later section.

16

Application Model

2.1.1.1 Presentation Manager Basic System Structure.

+--------------------1
: >-------------------%--------------------------\
: : +------*------: +------*-------:
: User Shell: +*------------:: +*-------------::
: : +*------------: : I +*-------------: : :
I I I I I I I I I'
I I I I I I I I I I

+--------------------+ : Shell : : : : Applications :::
I I I 1 I I I I
I I I I I I I I

: Utilities ::: : : : :
: : >+ : : >+
: >+ : >+
+------%------+ +-------%------+

I I
I I
I I
I I

+-%-%-%-%-< +-%-%-%-%-<
VVVVVV VVVVVV

+-------%---------%-------%---------%----------%---------------%---------:
: Shell : Windows : Input : Dialogs : Graphics : Alphanumerics : Bitmaps :
>-------*---------*-------*---------*----------*---------------*---------<

Application Programming Interface
I
I
I
I
I

I I

+----------------------------------%-------------------------------------+
I
I
I
I

V
+--1
I I
I I

: System Resources - Screen, etc :
I I
I I

+--+

Figure 2.1 Presentation Manager - System Structure.

2.1.1.1.1 The User Interface Shell

In the user's eyes, the major part of the Presentation Manager system is
the User Interface Shell. The User Interface Shell presents the user with a
view of the various components of the system. It allows the user to:

• get tasks (applications) running

• work with a particular application

• control the layout of applications on the screen, including position
and visibility

• view and work with the data files in the system

• control the Printer(s) and Plotter(s) attached to the system

• control various aspects of the appearance and operation of the sys­
tem, such as the screen colors

17

Windows Presentation Manager Reference

The User Interface Shell is designed to make the system easy to under­
stand and easy to use. It gives rapid access to the capabilities of the sys­
tem. At the same time, it is functionally very rich and caters for the
expert user. Applications should be written with the functions of the User
Interface Shell in mind - to avoid unnecessary duplication.

It is important that the various parts of the User Interface Shell and the
application programs in the system have the same Style. This means that
they are uniform in appearance and all work in the same kind of way, even
though the function provided by different applications may be very
different. This means that the user does not have to jump from one
environment to another and can proceed with ease from one task to the
next. In fact, the user should not really be aware of moving from one
application to another.

The Presentation Manager API makes it easy for a program to conform to
a standard Style. This is discussed in detail in a later section.

Thus, the User Interface Shell provides access to the system, to various
utilities and to the applications installed in the system.

2.1.1.1.2 The API

Applications access the functions of the Presentation Manager system via
the API. The API and its associated Utilities simplify the process of writ­
ing an application. It provides the following broad areas of function:

• Display of Data on the Screen and on Printers and Plotters. The
data may be simple Text ('Alphanumerics') or Graphics (including
high quality Text).

• Presentation and Operation of Standard User Menus and Dialogs
on the screen to aid the user in accomplishment of some task.

• Interaction with other Functions or Applications in the system,
including Shell processes and functions.

• User Interaction and Input functions.

• Partitiioning of Screen data, economical use of Screen area and
structuring of application functions.

The description of the API is divided into a number of functional areas:

18

Shell access to aspects of the User Interface and to the Utilities
that form part of the User Interface Shell, including:

• Starting of Programs - Program Names

Windows

Input

Application Model

• Listing of running applications

• Clipboard - copying of data between programs

• Program environment information - initial values for
position and size of an application, for example.

involves provision of areas on the screen in which to draw
data. However, the function is much more extensive than
this, and touches on:

• pr.ogram structuring including object-oriented program-
mmg

• user interface functions

• user input

• inter-program communication.

which covers:

• user input from Mouse and Keyboard

• system messages and inter-application messages

• timer functions

Dialogs and Menus
which includes:

• Display and operation of Menus offering the user
straightforward selections from a list of items.

• Creation, display and operation of Dialogs which offer
the user more complex forms of interaction with the
application

Alphanumerics Output
which is the output of simple textual information to the
screen, printers, plotters and files. This offers a way of
displaying text in a simple form as fast as possible.

Graphics Output

Bitmaps

which allows the application to create and display graphical
data on the screen, printers, plotters and files. This includes
high quality and high function typographical text functions.

which allow the creation of bitmapped graphical images for
the purpose of rapid manipulation of the appearance of the
screen.

19

Windows Presentation Manager Reference

2.1.2 API - General Features

The Presentation Manager API provides functions for the Interface
between an application program and the user sitting in front of a PC. For
most applications, this means:

• Output Funct£ons for the presentation of data of various forms on
the Screen in a consistent manner.

• Input Funct£ons for the handling of user requests and responses.

Devices other than the screen are also supported for data output, such as
Printers, Plotters and Data Files. However, these devices do not partici­
pate directly in the interface between the application and the user.

Presentation Manager organizes its user related functions, both output
and input, around Screen W£ndows. An application can create as many
windows as it desires. Each window serves a part in the dialog between
application and user. One window at a time is the center of attention for
the user, although other windows may be visible and convey useful and
important information.

The way in which an application uses the Presentation Manager API is
summarized in.

20

Application Model

+-------------------------------------1
I I
I I

1 Application 1
1 1 Get Message
1 >-------------
+----%----------%-------------%-------+ A

1 1 1 A 1
Draw 1 1 Draw 1 1 1

+-------+ I I : :
V V VII

+--------------1 +--------------1 +-------*------1 +------*------1
I I I I I I I I
I I I I I I I I

1 Graphics 1 1 Alphanumeric 1 1 Dialog 1 1 Input 1
1 Presentation 1 1 Presentation 1 1 Box 1 1 Queue 1
1 Space 1 1 Space 1 1 1 1 1
I I I I I I I I
I I I I I I I I

+---%------%---+ +---%------%---+ +------%-------+ +-------------+
1 1 1 1 1 A A
I I I I I I I
r I I I I I I

1 +-----------------*-------------< 1 1
: : : : +--------+
+-------%---------+ 1 1

V V 1 I
+---------------1 +--------*---*-- :
I I I I
I I I I

1 General 1 1 Screen 1
1 Device 1 1 Window 1
I I I I
I I I I

+-------%-------+ +---%-----------+
1 Visual 1 A User
1 Output 1 1 Input
1 +-----+ +----1

V V 1
+---------------1 +----------1 +-------*------1
1 Printer 1 1 1 1 Mouse 1
1 1 1 Screen 1 1 1
1 Plotter 1 1 1 1 Keyboard 1
1 1 +----------+ +--------------+
1 File 1
+---------------+

Figure 2.2 Application Model for Input and Output.

2.1.2.1 Output Fundamentals

2.1.2.1.1 Output Data

The application creates output data in one of three forms:

Alphanumeric Data
which is Text and Numeric data displayed on a fixed grid of
character 'slots'. These are held in an Alphanumeric Presen­
tation Space.

21

Windows Presentation Manager Reference

Graphics Data
such as lines, circles and shapes filled with colored patterns.
These are held in a Graphics Presentation Space.

Dialog Data
which includes items which the user can Select or Type into
as part of a structured dialog between application and user.
This is held in a Menu or Dialog Box. This data is only
displayed on the screen and not on other devices such as
printers since it relates directly to the user interface.

Each type of output data has its own set of functions for creating and
modifying the data. The data is essentially independent of the place
where it is eventually drawn - it is a logical representation of what is
required. Thus, for example, a picture can be created in a Graphics
Presentation Space, first drawn onto the screen and then drawn onto
paper by a printer.

An application may have many instances of each type of data, depending
upon the application's requirements. For example, an application would
have many Menus and Dialog Boxes if it needed a lot of structured input
from the user.

2.1.2.1.2 Devices

Output data is drawn onto a Device. For Dialog Data, the device is always
the Screen. For Graphics and Alphanumerics data the application must
Associate the Presentation Space with a Device. In these cases, the Device
may be the Screen, a memory Bitmap, a Printer, a Plotter or a File. The
association can be changed by the application so that the same data can
be directed to a number of places in sequence, typically following user
requests.

A device is logically represented by a Device Context, which encompasses
the Device Driver required to use the device, and State Data which includes
appropriate physical realizations of device dependent objects such as Text
Fonts.

2.1.2.1.3 Screen Windows

Output data is drawn onto the Screen through one or more Windows.
Each separate Presentation Space or Dialog Box is normally shown in its
own window. The windows are created by the application. Windows are
rectangular in shape and are fitted onto the screen in a 'Messy Desk'
arrangement. This means that the windows are treated like a series of rec­
tangular pieces of paper on a desk. The windows can overlap one another.
Where they overlap, only one of the windows can be seen - the windows
have an ordering where one window lies 'on top' of another. Where they
overlap, the 'topmost' is seen.

22

Application Model

The screen displays all the currently visible windows of all the applications
that are running in the Presentation Manager screen group. An applica­
tion can control the ordering of its own windows relative to one another.
It does not control the ordering of its windows relative to the windows of
other applications. This is done by the Presentation Manager system
according to user requests.

Windows are not used on devices other than the screen. This is because
their main use is in enhancing the end-user interface. The screen is special
- it is used in a highly interactive way and space for the display of impor­
tant information is limited. Multiple applications can use other output
devices serially, but in a highly interactive environment it is important for
the user to be able to see and use multiple applications simultaneously.
Similarly, objects such as Menus and Dialogs are used for short periods at
a time and should not occupy screen space except when needed. Thus they
are placed in windows which can be made invisible.

As well as being a place where an application can display data on the
screen, windows have a User Interface aspect as well. The user can alter
the position and/or the size of some (but not all) windows. This allows
the user to layout work on the screen in a convenient way. To achieve this
function, windows have a variety of Controls which occupy their borders
and allow the user to manipulate the window in a number of ways.

2.1.2.2 Input Fundamentals

2.1.2.2.1 User Input

The end user of the system creates input using the Mouse and Keyboard
devices. The user can create the follwing Input Events:

• Mouse Button up/down

• Mouse Movement

• Keyboard Key up/down

Each input event is called a Message. User input is asynchronous to appli­
cations - that is, the user can press keys or move the mouse to create input
independently of the speed with which an application can process the
input. All the user's input is buffered as a sequence of Messages in an
Input Queue before reaching the application. This ensures that input is
not lost and is correctly sequenced. The application reads the input mes­
sages from the queue one at a time using the Get Message or Peek Message
functions.

23

Windows Presentation Manager Reference

There is a close relationship between user input and windows. The user
directs input to one window at a time. Each input event is tagged with
the ID of the window to which it is directed. Every window is associated
with one input queue. Thus input related to a particular window can only
be received by reading a particular queue. A single queue can receive
input for any number of windows, however.

2.1.2.2.2 Other Kinds of Input

Input other than Mouse and Keyboard messages can also appear on an
input queue. This includes:

• Timer messages, which occur after an application-set Timer expires

• System messages, which inform the application of various system
related events. A typical system message is the Paint message,
which informs the application that a window (or part of a window)
needs to be repainted/redrawn. This often occurs when some or all
of the window becomes visible as a result of the user performing a
windowing operation.

• Inter-application messages, which are sent from one application to
another. These typically occur between applications which are
cooperating in some way. Such messages have application-defined
meanmg.

2.1.3 Presentation Space,
Device Contexts and windows

2.1.3.1 Presentation spaces

A presentation space contains the device-independent quantities required
to perform output to an individual window or device. These include:-

24

• A definition of the picture data itself.

For VIO output, this is the VIO buffer. For a graphics picture, this
could be a graphics segment store (though if non-stored processing
is being used, segments are not kept by the system).

• Clipping region as defined by the application.

• Definition of any fonts required for drawing.

This is essentially a logical description of the fonts, and does not
include any physical font definitions.

• Co-ordinate mapping.

An indication of how world co-ordinates are to be mapped to the
device.

Application Model

• A definition of the colors an application would like.

• The default attributes associated with the picture.

A presentation space is always required whenever the application wishes to
use any of the GPI or Advanced Vio functions to output data on an output
device or into a bitmap. All of the GPI and Advanced Vio calls require the
presentation space handle to be specified as a parameter. The presentation
space is created by the VioCreatePS or GpiCreatePS functions.

Before a presentation space can be used to draw a picture, it must be asso­
ciated with a Device Context. (Refer to following section on Device Con­
texts.) After this has been done, any drawing operations issued to the
presentation space cause output to occur on the device defined by the Dev­
ice Context.

The presentation space can subsequently be associated with a different
Device Context, and the picture redrawn on that device. Because all of
the 'application intent' information is kept in the presentation space, the
system is able to draw the picture as faithfully as possible on this second
device.

Thus a picture which is currently visible on the screen can be printed by
temporarily re-associating its presentation space with a Device Context
whose device is a printer, and re-drawing the presentation space. In order
to continue drawing on the screen, the presentation space is now re­
associated back to the screen Device Context.

(Note that the above scenario is only as simple if the entire picture
definition has been stored in the presentation space. If non-stored graph­
ics have been used, then the application needs to redraw the picture again
after associating with the printer Device Context. However, it still does
not need to respecify any of the logical objects, for example fonts, which it
needs, since these are still kept in the presentation space.)

2.1.3.2 Device Contexts

A Device Context is the means of drawing to a particular device. It
includes a device driver, and also physical realizations, where appropriate,
of device-dependent objects which the drawing process requires.

There are four kinds of Device Context, as follows:-

• Screen Device Context. This causes drawing to be performed to a
particular window on the screen.

• Memory Device Context. This is used only for drawing to a
memory bitmap.

25

Windows Presentation Manager Reference

• Metafile Device Context. This causes the picture to be transmitted
to a metafile, which may be used to store a picture in editable
form.

• Queued device Device Context. This is used for some device other
than the screen, for example, an attached printer or plotter, where
the output is to go via the spooler.

• Directly attached device Device Context. This is used for some
device other than the screen, for example, an attached printer or
plotter, where the output is not to go via the spooler.

• Information Device Context. This is used for some device other
than the screen, for example, an attached printer or plotter, but
where no output will occur. Its purpose is to satisfy queries.

A Device Context is required whenever the application wishes to use any of
the GPI or Advanced Vio output functions. However, the Device Context
is not normally specified on the GPI or Advanced Vio calls; instead a Dev­
ice Context is associated with a particular presentation space, by the
application issuing a GpiAssociate or a VioAssociate call (an implicit asso­
ciation is also possible in the Gpi case). The Device Context must be
specifically created by the application in all cases. The application uses
the DevOpenDc call to create a Device Context for a printer, bitmap, or
metafile. In the case of the display screen, the Device Context for a win­
dow is created by a call to WinCreateWindowDC after the application
creates the window with a WinCreateWindow call.

2.1.3.3 Windows

A Presentation Manager window is a rectangular area on the screen. A
window contains visual data displayed from a Presentation Space, for
example a Graphics (GPI) Presentation Space, which is associated with the
window. Alternatively, a window could display data from a dialog box.

The screen can have many windows displayed and these may overlap.
Where overlap occurs, the windows have a priority ordering. At any point
on the screen, the window with the highest priority gets displayed.

Presentation Manager windows are of two types:

26

Main Windows

A Main window has the property of being positioned relative
to the screen itself. It is not related to any other window.
Operations on one main window do not affect other main
windows.

An application can have as many Main windows as it wants,
within overall implementation limits.

Application Model

A main window may be considered to be a child window of
the entire screen.

Child Windows

A Child window has the property of being positioned relative
to another window, termed its Parent. The Parent window
can have multiple Children. Operations on the Parent win­
dow affect the Child. For example, moving the Parent moves
the Child and hiding the Parent hides the Child.

A Child is constrained to fit within the client area of its
Parent A Child window always has a higher priority than its
Parent, i.e. it cannot be hidden simply by virtue of being
underneath its parent. A Child window may have Children
of its own.

An application can have as many Child windows as it wants,
within overall implementation limits.

2.1.4 Presentation :Manager functions

2.1.4.1 Output via GPI or Advanced Vio functions

The data displayed in each window is held in a Presentation Space which
is created and manipulated by the application separately from the win­
dow. The Presentation Space is different for different types of data - a
GPI presentation space for Graphics/Image data, and an Advanced Vio
presentation space for alphanumeric data.

The application output does not go directly from the presentation space to
the screen window. It goes through a 'Device Context'. The Device Con­
text encapsulates various physical characteristics of the output device.
The main utility of the Device Context is for the support of other devices
such as printers or memory bitmaps.

27

Windows Presentation Manager Reference

--------------- *----------------*
Draw : Presentation :

- - - - - - - - -> : space :
1 1
1 1

Application *----------------*

Window

Function

Associate :
---------------------1 1 1 1

1 1
1 1

<---* v v
1
1

dsptch
msg

1
1

---------------- *-----------*
:Window . Device : : Screen
: . Context:------>:
1 1 1
1 1 1 1

Application 1
1 *----------------* *-----------*

----*
Main *-----------------* *-----------*

getmsg : Input queue Mouse:
Function 1<---------: :<-----: Keyboard:

---------------* *-----------------* *-----------*

Figure 2.3 Presentation Manager application model for graphics and alphanumerics

Thus to display some data on the screen, the application:

1. creates a Window (this will implicitly create a Device Context that
is associated with the window)

2. creates a Presentation Space

3. associates the Presentation Space with the Device Context, so that
data drawn from the Presentation Space goes into the Window

4. creates the data to display by operating on the Presentation Space

5. puts the data into the Window by means of a draw operation on
the Presentation Space

Note that for Gpi, items 2 and 3 can be combined in a single call, and also
in non-stored mode items 4 and 5 are combined.

2.1.4.2 Output via User Controls functions

When an application wishes to use the User Controls functions, it does not
specifically create a presentation space. Instead, it interacts directly with a
dialog box or menu object. These objects incorporate the concepts of win­
dow, presentation space, and Device Context.

In addition, the input that the application receives from the User Controls
is processed by Presentation Manager and returned to the application in
terms of the particular dialog box or menu.

28

Application

Dialog

i Dialog
i template I

i (resource file) i

I
I

Application Model

--------->: :: :

Function i Dialog :---->: Screen :
: box :: :

I
I : (inc window):: :

dsptch *----------------* *-----------*

Application

Main

msg
I I
I I

:----*
I
I

I
I
I
I

V

: getmsg : Input queue

Function :<---------:
I I
I I I

---------------* *-----------------*

*a = application issued dialog box functions

I
I

Mouse :

or :
I Keyboard:

Figure 2.4 Presentation Manager application model for dialog boxes

2.1.4.3 Input Functions

In Presentation Manager, input to an application is a sequence of Messages
generated by any of a number of sources. The Messages are placed on an
application Input Queue in time order and are read from the queue by the
application. All Presentation Manager applications have at least one
input queue - the Default Input Queue. In addition, the application may
create additional input queues. Every window created by the application
will have a single input queue associated with it. Most input messages are
associated with one of the application's windows, and are sent to the
appropriate queue.

In addition to an input queue, every window normally has a window pro­
cessing function associated with it. It is the job of the window processing
function to process the input associated with a window. The main pro­
gram of the application will read the input from the input queue by use of
the GetMessage function, and then route the input to the appropriate win­
dow processing function by means of the DispatchMessage function.

It is the responsibility of the application to be 'well-behaved'. This means
that an application must always issue a GetMessage to read its input
queue within a short time period (e.g. O)sec) of receiving the previous
input. In order to achieve this, it must have dispatched the window pro­
cessing function, and the window processing function must have completed
and returned within the specified time.

29

Windows Presentation Manager Reference

If the application does not meet these requirements, various system func­
tions and/or other applications will be locked out until the application
completes processing and reissues its read on the input queue.

2.1.5 Sample Programs

A number of Sample Programs are supplied with Presentation Manager to
help programmers understand the Presentation Manager API and give
hints as to how the API can be used to achieve results. Each sample pro­
gram tackles its own functional area:

• Use of Windows.

• Use of Men us and Dialogs.

• Advanced Vio alphanumerics for display of Text.

• Keyboard and mouse input.

• Graphics:

• Direct (non-stored) drawing of pictures

• Stored creation, drawing and editing of pictures

• Correlation

• Dragging

• Bitmap operations

• Printing

• Typographic fonts

• Use of the clipboard.

2.1.6 Application Model

This section covers various aspects of writing an application to use the
Presentation Manager facilities. Presentation Manager places a number of
requirements on the wayan application is structured and the way in which
it uses certain facilities, especially Input and the Screen.

Note that special considerations apply to MS OS/2 applications which use
multiprogramming methods, ie. multiple processes or multiple execution
threads. These considerations are dealt with in the chapter, "Multipro­
cessing and Inter-Process Communication"

30

Applica.tion Model

2.1.6.1 Basic Application structure.

To use the Presentation Manager API, a program must call the Winlnitial­
ize function before any other Presentation Manager function. This func­
tion identifies the application to Presentation Manager and initializes the
application's environment.

The WinInitialize function returns an Anchor Block Handle which has the
purpose of holding the application's Presentation Manager environment
data. The Anchor Block Handle must be stored by the application for
later use - it is required by a number of Presentation Manager functions,
such as WinCreate Window.

Once WinInitialize has been called, the application can use any other
Presentation Manager function - to display data on the screen or receive
input from the user, for example. If another Presentation Manager func­
tion is called before WinInitialize, it fails and returns an error code.

When the application is about to finish, it should call the WinTerminate
function. This is the inverse function to WinInitialize - it destroys the
application's Presentation Manager environment. Mter WinTerminate
has been called, the application cannot make any further Presentation
Manager function calls. If the application makes any Presentation
Manager function calls after WinTerminate has been called, the function
fails and an error code is returned.

WinTerminate deallocates and destroys any Presentation Manager
resources that were allocated to the application, such as Windows and
Presentation Spaces. However, it is recommended that such resources are
explicitly destroyed by the application before calling WinTerminate - this
allows the application to perform a tidier 'cleaning up' of the resources,
including saving data in disk files if required.

31

Windows Presentation Manager Reference

Program Fred;

WinInitialize();

WinTerminate();

End Program Fred;

-I
1
1
1

>- Program Initialization
1
1

-+

-I
1
1
1

Presentation Manager Initialization

>- Main body of the program.
1
1

-+

-I
1
1
1

Presentation Manager Termination

>- Program Termination
1
1

-+

Figure 2.5 Application Structure.

2.1.6.1.1 Normal and Abnormal Application Completion.

An application which uses the Presentation Manager API normally allo­
cates various resources to itself, such as Windows, Presentation Spaces
and Input Queues. It is recommended that the application deallocates and
destroys all these resources before it finishes.

If the application fails to deallocate any Presentation Manager resources
before finishing, for example by failing to call WinTerminate, then these
resources are still deallocated by the system. This occurs, in DOS terms,
when the Exit List processing occurs. Note: This applies whether the
application finishes normally or abnormally (due to some error). The
Presentation Manager system ensures that no resources are left 'lying
about' once the application finishes.

It is better if the application explicitly destroys any resources since the
application can do things in a more coherent order - especially from the
appearance of things on the screen. The application can also save away
any data associated with the resources, if necessary.

32

Application Model

2.1.6.2 The System Environment - The Shell and Other Applica­
tions.

In Presentation Manager, an application does not stand on its own. It is
part of a system which interfaces to the user. In particular, the User Inter­
face Shell forms a major part of the interface and it is through the User
I~terface Shell that the application is started and is accessed when run­
mng.

2.1.6.2.1 Starting an Applz'cation

When the user starts an application, this is done via some selection(s) from
windows in the User Interface Shell. The application is represented there
by a Long Name, which is more meaningful to the user than an eight letter
filename.

Once an application is running and it creates and displays a main window,
the window must be given a Title, so that the user can identify the appli­
cation.

The User Interface Shell also has a Switch List containing the names of all
the main windows of applications in the system. This allows the user to
find an application of interest when the system is running more than one
application on the screen and some of the applications are obscured by
other applications' windows. It is the application's responsibility to put its
entry into the Switch List.

The Long Name by which an application is started can be found by calling
the WSHGetStartupName function, which is part of the Shel API. It is
recommended that an application uses this name for its main window and
for its entry in the Switch List. However, where the application is working
with a particular data file, it is also recommende d that the file name is
appended to the Long Name to form the Window Title and the Switch List
entry.

2.1.6.2.2 Main Window Title

The title of the application's main window is set in the Win­
CreateFrame Window function when the window is created. However, the
title can be updated subsequently by sending a
WAL SETWINDOWPARAMS message to the window, for example if the
application starts work on another file.

33

Windows Presentation Manager Reference

2.1.6.2.3 Switch List Entry Name

The Switch List entry is created by the WSHAddSwitchEntry function.
The Name displayed in the Switch List is specified as a parameter to this
function, along with the Window Handle of the application's main win­
dow. When the user selects the Switch List entry belonging to the applica­
tion, the main window is made Active and it is brought to the top of the
stack of windows.

2.1.6.3 Program Structure and Windows - Window Procedures.

A Screen Window is not only used as a place to put display data. Win­
dows have an important role in a number of aspects of the Presentation
Manager API:

• Display of multiple sets of data on the screen.

• Efficient use of scarce screen area.

• Handling of Input - both from the user and the system.

• Program structuring and partitiioning.

• A seamless way of extending System functions.

2.1.6.4 Application Rules And Conventions

2.1.6·4.1 Mouse Button Activation of a Window

It is the application's job to transfer active status to one of its windows if
it gets a mouse down message. It should do this by calling WinSetFocusO
or WinSetActiveWindowO with the window that the mouse message was
sent to.

2.1.6.4.2 Active Windows, Dialog Boxes and User Expectations

The application should not call WinSetActiveWindowO arbitrarily to set
the active status to one of its windows. This should only be done as the
result of an explicit user action requesting a new window to become the
active one or as the result of a message from the shell to the same effect.

Neither should an application display a dialog box or message box arbi­
trarily if it needs to tell the user something and it doesn't own the active
window. Applications that need to do this should call MessageBeepO a few
times and then call Flash WindowO. Flash WindowO will start the frame of
the window flashing. The user will hear a beep and see the window flash­
ing. The user can then choose to pay some attention to the application,
and request that it become the active one, say by clicking the mouse with

34

Application Model

the pointer in the flashing window. The application can then call
Flash WindowO again to turn off the flashing, and bring up an appropriate
Message or Dialog.

2.1 .. 6.4.8 Mouse Cursor Shape within a Window

It is the application's job to set the shape of the mouse cursor when it gets
a WM- MOUSEMOVE message, using the SetCursorO call. Child windows
should send the WM-CONTROLCURSOR message to their parents, so
their parents can have the choice of setting their cursor shapes. See 'Con­
trol Manager'.

2.1.6.5 Building a Presentation Manager Application

This section describes the method of building a Presentation Manag~r
application. This includes details specific to Presentation Manager appli­
cations that do not apply to other DOS applications. The reader is
assumed proficient in building general DOS applications.

The following describes the source files required for Presentation Manager,
and the processes through which these are turned into an executable file.
The application programmer is responsible for providing three types of
source files:

• a resource file

• one or more source code files (i.e. C or assembler files)

• a DOS module definition file.

2.1.6.5.1 Resource Files

The resource file contains descriptions of the application's user interface
data, such as dialog boxes or menus. The application programmer defines
these either through a text description, or by using a tool such as the dia­
log editor which will in turn create the text description.

The Resource Compiler understands these descriptions, and performs two
functions in building an application. First, it compiles the text description
into a binary format suitable for the Presentation Manager system.
Second, it inserts these binary resources into the executable file. The
insertion must be done after linking the objects, i.e. the sequence is:

link
rc

35

Windows Presentation Manager Reference

The resource compiler is invoked through the command:

rc resource filename [exefilenameJ

The resourcefilename is the DOS filename of the resource text file. If no
extension is specified, the extension is assumed to be RC. The exefilename
is optional, and is the name of executable to insert the binary resources
into. If it is not specified, then the default is the executable with the same
filename as resourcefilename, i.e.

rc sample
rc sample.rc
rc sample.rc sample.exe

would all compile the resources described in sample.rc and would insert
them in sample.exe.

Compilation of the resources takes time, and the resources must be rein­
serted in the executable every time the application is relinked. Thus, to
save application build time, the Resource Compiler has an option to com­
pile the resources and then create an intermediate object file. This
resource object file can then in turn be specified as input to the Resource
Compiler, to complete the final step of insertion into the executable.

To create the intermediate object file, specify the" -r" option, which will
create a file whose extension is RES.

Example:

rc -r sample.rc
link
rc sample.res sample.exe

2.1.6.5.2 Source code

High level language files are compiled using the appropriate language com­
piler; assembler files must be assembled. In both cases, intermediate
object files (.OBJ) should be created.

2.1.6.5.3 Module Definition File

All external entry points in a Presentation Manager application must be
EXPORTed in the Module Definition File (.DEF). See "Building an OS/2
Application" for a further description of the .D:EF file.

36

Application Model

2.1.6.5.4 Linking A Presentation Manager Application

At link time, the developer must specify:

• the code object files to be linked (.OBJ's)

• the Module Definition File (.DEF)

• Libraries (.LIB's)

In order to resolve references to Presentation Manager API, the developer
must specify Wincalls.lib in addition to any other necessary libraries.

Sample Build Sequence

• rc -r sample => creates sample.res

• Compile sample.c = creates sample.obj

• Link sample.obj, sample.def, wincalls.lib => creates sample.exe

• rc sample. res => modifies sample.exe

Sample.exe is now ready to run under Presentation Manager.

2.1. 7 Background to user interface

The MS OS/2 user interface is a set of rules intended to provide end users
with a consIstent, easy-to-use interface across applications.

It includes many elements of user interaction with the system, such as
menu selection and text string input, but it does not include iteractions
specific to applications, such as spreadsheet editing.

Where an application has user interaction in areas covered by user inter­
face rules, it must conform to the user interface.

The principal topics in the user interface are as follows:

1. Key assignments

2. Menu colors

3. Application action bars

4. Pop-down men us

5. Scroll bars

6. Types of selection fields

7. Entry fields

37

Windows Presentation Manager Reference

8. Message and Help panels

9. Window sizing and moving.

Presentation Manager allows all applications to conform to the user inter­
face. For some rules, Presentation Manager enforces conformance by tak­
ing over complete parts of the operator interaction. Thus, for these
interactions, the only way the application could avoid being in confor­
mance would be to rewrite part of the code provided with Presentation
Manager.

2.1.8 Naming Conventions

Here is a short description of the variable and argument naming conven­
tions used in the Presentation Manager spec. A name is made up of a tag
prefix and an opti onal identifier. The tag is all lower case, and the
identifier begins with an upper case letter. You can either make up your
own tags for new data types, or use some combination of the standard
tags.

2.1.8.1 Constant names

All constants are written in upper case. If applicable, constant names
have a prefix derived from the name of a function, message, or idea associ­
ated with the constant. For example:

WM_CREATE
WS_CLIPSIBLINGS
DT_CENTER

2.1.8.2 Type names

- Window message (WM_*)
- Window style (WS_*)
- DrawText() code (DT_*)

Type names are written in upper case. Type names are usually longer and
more descriptive than their variable and argument prefixes; for example:

Type

RECT
POINT

Prefix

rc
pt

2.1.8.3 Variable and argument names

A name is made up of a tag prefix and an optional identifier. The tag is all
lower case, and the identifier begins with an upper case letter. You can
either make up your own tags for new data types, or use some combination
of the standard tags.

38

Standard name prefixes:

P
lp
d
c
i
rg

f
h
ch
b
w
1

id
it
cmd

- near pointer
- far pointer
- delta
- count
- index
- array

- boolean
- handle
- character
- byte
- word
- long

- ID
- item
- command

- near function address
- far function address

Application Model

pfn
lpfn
psz
lpsz

- near ptr to zero termintated string

rgf
lrgf
brgf

- far ptr to zero terminated string

- 16-bit packed array of flagsjbits
- 32-bit packed array of flagsjbits
- a-bit packed array of flagsjbits

Standard type abbreviations:

hab - Anchor block handle

hwnd
rc
pt
hmenu
t
x
y

hps

hvps

hdc
hbm
hrgn
hcsr
hdc

msg
style

- window handle
- rectangle
- point
- menu handle
- 32-bit millisecond value
- x coordinate
- y coordinate

- PS handle

- VIO PS handle

- device context handle
- bitmap handle
- region handle
- cursor handle
- DC handle

- window message ID
- 32-bit window style

Standard type identifiers

39

Windows Presentation Manager Reference

Next
Prev
First
Last
Min
Max

- Next
- Previous
- First value (used with Last)
- Last value (== last value, not one greater)
- Minimum value (used with Max)
- Maximum value (one past last possible)

Examples:

pch
rgbBuffer
dx
cyMax
rgfMenu
lpphwnd

- Near pointer to a character (or characters)
- Array of bytes
- Delta-x value
- Max count of y coordinates
- Menu command values
- Far pointer to a near pointer to a window handle.

2.1.8.4 Assembly language structure fields

In assembly language, all structure field names must be unique. Since not
all structure fields have unique names, the assembly language convention
is that all field names are prepended with the structure type abbreviation
and an underscore. Here are some examples:

RECT xLeft field:
POINT y field:

2.1.8.5 Standard Data Types Used in this Document

Below is a list of the standard data types used in this document:

40

Type

CHAR

INT

LONG

UCHAR

DINT

ULONG

Description

Signed 8-bit value or character

Signed 16-bit value

Signed 32-bit value'

Unsigned 8-bit value

Unsigned 16-bit value

Unsigned 32-bit value

LPSTR Far pointer to a character string

BOOL 16-bit Boolean (zero => FALSE, non-zero => TRUE)

HANDLE
32-bit handle

Application Model

SHANDLE
16-bit handle

FARPROC
Far pointer to a procedure

Here are the standard declarations in C for these types:

typedef unsigned char UCHAR;

typedef unsigned int UINT;

typedef unsigned long ULONG;

typedef char FAR *LPSTR;

typedef int BOOL;

typedef long LONG;

typedef char FAR *HANDLE;

typedef unsigned int SHANDLE;

typedef int (FAR * FARPROC) 0 ;

2.1.9 Return Code Conventions

This section documents the strategy for return codes used for Presentation
Manager.

Each function is allocated to one of the following types, depending upon
the ranges of the values which it returns:-

• Restricted range return values

Where these are successful, a value within a specified range is
returned. If there is an error, a value outside the valid range (or a
special value within the range) is returned. The error code may be
obtained by WinGetLastError.

Functions which return handles are a form of this type (0 and -1
are assumed to be outside the range of valid handles).

Examples: WinCreateWindow, GpiQueryMix

• Defaulted return values

Functions for which a documented, reasonable default behavior
exists if an error occurs. Errors in these situations are not interest­
ing, and not harmful to applications.

41

Windows Presentation Manager Reference

Example: WinIsWindowVisible()

• Failsafe unrestricted range return values

These functions tend to be speed critical, and the return value will
be returned in AX.

Example: WinGetCurrentTime

• No return values, or structure return values, or unrestricted range
return values:

Error code (Boolean) is returned in AX; the return value(s) (if any)
are returned through parameter(s).

Example: GpiQueryAttrs

2.1.10 Error Conventions

2.1.10.1 Error Severity

Errors fall into one of the following categories:-

42

Warning

Error

The function detected a problem but took some remedial
action which enabled the function to complete successfully.

The function detected a problem for which it could not take
any sensible remedial action. The system will be able to
recover from the problem, in the sense that the state of the
system, with respect to the application remains the same as
at the time when the function was requested i.e. the system
has not partially executed the function.

Severe Error
The function detected a problem from which the system can­
not reestablish its state, with respect to the application, at
the time when that function was requested i.e. the system
has partially executed the function, and therefore necessi­
tates the application performing some corrective activity in
order to restore the system to some known state.

Unrecoverable Error
The function detected some problem from which the system
cannot reestablish its state, with respect to the application,
at the time when that call was issued and it is possible that
the application cannot perform some corrective action in
order to restore the system to some known state e.g. the
application provides the address of the anchor block which
the system discovers is apparently corrupted.

Application Model

Severity levels are 16 bit unsigned integers, with the following values:-

SEVERITY_NOERROR
SEVERITY_WARNING
SEVERITY_ERROR
SEVERITY_SEVERE
SEVERITY_UNRECOVERABLE

2.1.10.2 Error codes

OxOOOO
Ox0004
Ox0008
OxOOOC
Ox0010

WinGetLastError returns a 32 bit value. The format of this value is:

High uint:
Low uint:

16 bit severity level
16 bit error code

The following is a list of errors returned by the window functions. Gpi
errors are listed for each call.

The actual codes will be defined later.

WINERR_INVALID_SELECTOR
WINERR_INVALID_STRING_PARM
WINERR_INVALID_HEAP_HANDLE
WINERR_INVALID_HEAP_POINTER
WINERR_INVALID_HEAP_SIZE_PARM
WINERR_INVALID_HEAP_SIZE
WINERR_INVALID_HEAP_SIZE_WORD
WINERR_HEAP_OUT_OF_MEMORY
WINERR_HEAP_MAX_SIZE_REACHED
WINERR_INVALID_ATOM_TABLE_HANDLE
WINERR_INVALID_ATOM
WINERR_INVALID_ATOM_NAME
WINERR_INVALID_INTEGER_ATOM
WINERR_ATOM_NAME_NOT_FOUND
WINERR_INVALID_WINDOW_HANDLE
WINERR_INVALID_MESSAGE_QUEUE~HANDLE

WINERR_INVALID_PARAMETER
WINERR_WINDOW_LOCK_UNDERFLOW
WINERR_WINDOW_LOCK~OVERFLOW
WI NERR_WINDOW_LOCKED
WI NERR_WINDOW_UNLOCKED
WINERR_NO_MESSAGE_QUEUE

43

Chapter 3
User Interface

3.1 User Interface Shell 49
3.1.1 General Features of the Shell 50
3.1.2 The Pointer 51
3.1.3 Selection Cursor 51
3.1.3.1 Selecting Items 52
3.1.3.1.1 Single Selection 52
3.1.3.2 Multiple Selection 53
3.1.3.3 Extended Selection. 53
3.1.4 Use of Keyboard and Mouse 54
3.1.4.1 Keyboard 54
3.1.4.2 Mouse 56
3.1.5 Functions for Controlling windows 57
3.1.5.1 Appearance of Windows 57
3.1.5.2 The Shell, Windows and Tasks. 57
3.1.5.3 The Input Focus 58
3.1.5.4 Window manipulation - the System Menu. 58
3.1.5.4.1 Z-ordering 59
3.1.5.4.2 Window Maximize 59
3.1.5.4.3 Window minimize 59
3.1.5.4.4 The Parking-Lot 60
3.1.5.4.5 Change Window Size 60
3.1.5.4.6 Window Move 61
3.1.5.4.7 Restore 61
3.1.6 File Cabinet - functions for using

Directories and Files 61
3.1.6.1 The File Cabinet Window 63
3.1.6.2 Tree Window 63

45

3.1.7 File Cabinet functions 66
3.1.7.1 The File menu 66
3.1.7.2 Direct manipulation 69
3.1.7.2.1 Summary of Mouse use in Direct Manipulation. 69
3.1.7.3 Options menu 71
3.1.7.4 Special Menu 73
3.1.7.5 The Window menu 74
3.1.7.6 STARTUP window 75
3.1.7.6.1 STARTUP Functions 76
3.1.8 STARTUP Editor 77
3.1.8.1 The Exit menu 80
3.1.9 Task Manager 81
3.1.9.1 How to Access The Task Manager. 81
3.1.9.2 Jump Ordering 82
3.1.9.3 How to Work With a Task. 83
3.1.9.4 How to Close a Task 84
3.1.9.5 How to Terminate a Task. 84
3.1.10 Control Panel 86
3.1.10.1 Main panel 86
3.1.10.2 Preferences pull down 87
3.1.10.3 Settings pull down 88
3.1.10.4 Configuration pull down 88
3.1.11 Clipboard Viewer 89
3.1.11.1 Clipboard mechanics. 90
3.1.11.2 Copy and paste for VIO applications 90
3.1.12 Initialization 91
3.1.12.1 The initial view of the system 91
3.1.12.2 The Initialization File 91
3.1.13 HELP facility for the shell. 91
3.1.13.1 INVOKING HELP 92
3.1.13.2 THE HELP WINDOW 92

46

3.1.13.3 HElP INTERACTIONS 93
3.1.13.3.1 F1=General Help 94
3.1.13.3.2 F5 Index 94
3.1.13.3.3 Shell Help Index 94
3.1.13.3.4 F9 Keys 95
3.1.13.3.5 Esc=Cancel 95
3.1.13.4 Additional notes about Help 95
3.1.13.5 Help on items in STARTUP 95
3.2 The User Interface Shell API 96
3.2.1 Definitions of terms used in the Shell API 96
3.2.2 List of functions provided by the Shell API 102
3.2.2.1 Program Use 102
3.2.2.2 Adding a Program. 102
3.2.2.3 Switching Programs. 103
3.2.2.4 Clipboard 103
3.2.2.5 Control Panel 103
3.2.2.6 PrtPlot 104
3.2.3 Using the API for application programmers 104
3.2.3.1 Executing Programs 104
3.2.3.1.1 Starting Presentation J\1anager programs 104
3.2.3.1.2 Starting non-Presentation :rv1anager programs 105
3.2.3.2 Creating or changing the switch list entry 106
3.2.3.3 Installation of Presentation :rv1anager 107
3.2.3.3.1 Building the input for WSHAddProgram 107
3.2.3.4 Clipboard functions 108
3.2.3.5 Switching to another application 108
3.2.3.6 Using the API File Selection function 108
3.2.3.7 File System functions. 108
3.2.4 Detailed Description of Shell API Functions 108
3.2.5 Program Use API 109
3.2.6 Adding a Program API 112

47

3.2.7 Switching Programs API 125
3.2.8 Presentation 11anager Initialization File

and Control Panel AP 137
3.2.8.1 Overview of control panel 137
3.2.9 Presentation 11anager

Initialization File Functions 138
3.3 Shell API Structure definitions 145
3.3.1 Shell API data structure reference 145

48

User Interface

3.1 User Interface Shell

The following sections describe in detail the appearance and function of
the Presentation Manager User Interface Shell.

In general, the Presentation Manager Shell aims to present on the screen
all the functions available in the system. In complete contrast to the sim­
ple MS-DOS user interface, where very few of the objects and functions of
the system are visible on the screen, the Presentation Manager Shell can
show a visual representation of all objects in the MS OS/2 system and the
functions which operate on them. The approach used is an 'Object­
Action' one, where the user selects an object to work with and then
chooses an action to perform on it. Direct manipulation techniques are
used by the Shell, such as dragging objects around, and selecting actions
from pop-up menus.

One aim of the Presentation Manager Shell is to reduce the need for the
user to read manuals. In part this is achieved by the user's ability to see
all system function on the screen. Another contribution to this aim is the
consistency of use of the input devices - Keyboard and/or Mouse. The
user needs to understand only a very few concepts about these devices to
use the system. An important part of the Shell is the online Help facility
which it provides - again reducing the need for reference manuals.

A further important aspect of the Shell is that its user interface
exemplifies the user interface which should be used by applications. In
conjunction with the Presentation Manager programming interfaces
(which the Shell uses), the Shell encourages the consistent end-user inter­
face which is a prime aim of the Presentation Manager product.

Consistent with these objectives, the Shell sets out to provide the follow­
ing capabilities:

1. Provide structured access to the files found on the user's system.

2. Provide a simple, intuitive approach to filing system management

• high and low level topology/index to the filing system

• basic manipulation operations (copy, rename, etc.)

• access to files stored in the system with direct manipulation
from the mouse

• visibility of filing system while running applications

3. Allow for the creation of easy-to-use systems - that is, to provide a
way to configure a system to allow the naive users to focus and
work with a predetermined set of applications and files.

49

Windows Presentation Manager Reference

3.1.1 General Features of the Shell

The basic functions included in the Shell are:

50

1. The Screen Layout - Windows

2. The File Cabinet is the index, viewer, and repository of objects
related to the user's data and program storage. Contained within
the File Cabinet there are:

• Drives

• Directories

• Programs

• OS/2 files

• STARTUP (programs)

The file system is hierarchical- it consists of drives, which contain
a mixture of OS/2 files and directories. Directories in turn may
also contain such a mixture, yielding a tree of arbitrary depth. By
opening a drive or directory in the tree, the user reveals a window
showing the objects found in that drive or directory.

STARTUP, contained within the File Cabinet, and allows the user
to easily manipulate installed applications; for example, Starting a
program running.

3. The Task Manager is the window that provides access to, and con­
trol of, objects that exist in the working environment. In addition,
it provides general control of the user's session, defined as that
period of time that the user is interacting with the system.

A window in the workspace can easily be brought to the front
using the Task Manager, by selecting its name from the list
presented in the Task Manager window. In addition, it may also
be possible to perform certain other operations on the selected
task, such as closing it.

4. The Control Panel allows users to set their workstation
configuration and other system related parameters.

5. Printer Services provides output control for any device other than
the screen.

6. The Clipboard Viewer is used to view the contents of data in the
Presentation Manager clipboard.

7. Startup Editor allows new programs to be defined, and existing pro­
grams to be changed.

User Interrace

These functions are described in more detail in the following section!:!.

The initial implementation of the Shell includes direct manipulation in the
File Cabinet using the mouse.

The data displayed on the screen is divided into a number of windows.
Each window encloses the data belonging to one part of the interaction
between the system and the user. The windows are rectangular and can
overlap, giving the appearance of papers on a desk top. This means that
one window obscures the part of another "underlying" window where they
overlap.

The screen can have many windows displayed at once. A particular use
made of windows is the display of menus and dialogs, where the window is
displayed for a short time while the user makes a choice or inputs some
data. The window is then removed to avoid cluttering the screen.

3.1.2 The Pointer

The Pointer is normally displayed only if there is a mouse attached to the
system. However, it is also displayed on mouse-less systems at certain
times to indicate to the user that some particular action is taking place.
For example, an hour glass is shown to indicate that the user must wait
while a lengthy operation is in process.

The pointer is a small shape which reflects mouse movements on the
screen. The pointer is displayed 'on top' of the other data on the screen
and so is always visible. The position of the pointer marks the user's
center of interest and activity on the screen. Its position is used when the
mouse buttons are pressed; for example, to select an item of data on the
screen.

The shape of the pointer can vary as it travels over the screen. There is a
system default shape - an arrow - but each window on the screen can have
its own pointer shape defined. When the pointer position moves into a
window which has its own pointer shape, the pointer changes to that
shape. Similarly, when the pointer position leaves the window, the pointer
shape changes back to the system shape or to the shape defined for
another window.

3.1.3 Selection Cursor

The Selection Cursor is used to indicate a selectable item that the user can
select. It is displayed whether or not a mouse is attached and is in addi­
tion to the pointer. It marks the whole of a selectable item as being the
center of interest for the user. For example, it can indicate one item in a
list of menu items which the user wants to select. The Selection Cursor
can be moved by the mouse or by keystrokes from the keyboard.

51

Windows Presentation Manager Reference

3.1.3.1 Selecting Items

Many items on the screen are Selectable. This means that the user can
choose the item (Select it) and then perform an action on this item.

Selection is performed in a standard way and is not dependent on the kind
of item involved. The way of selecting an item differs between the mouse
and the keyboard. Generally, a single item is selected at a time and then
some function performed. However, in some cases, multiple items can be
selected and the same action performed on all of the items. Multiple selec­
tion involves a different way of using both the mouse and the keyboard.
All these methods are described in the next sections.

3.1.3.1.1 Single Selection

Keyboard

Mouse

52

The user can move the selection cursor around the selectable
items in the window which has the input focus. This is done
using the arrow keys, which move the Selection Cursor to the
next selectable item in the direction indicated by the arrow.
To move from one group of controls to another, the Tab key
is used.

Movement of the Selection Cursor normally involves auto­
selection of the items. That is, when the Selection Cursor is
moved, the item onto which the cursor moves is selected and
the previous item is deselected.

The user can move the mouse until the Pointer lies over a
selectable item and then press button 1 down. The item is
displayed in reverse video. When button 1 is released, the
item is selected. Any other item(s) selected are deselected.

The press and release of the mouse button in this way is
termed a "click"

The following action occurs for menu bars and pop-downs.
The user holds down button 1 and moves the pointer around
the screen. When the Pointer moves away from the original
item, it stops being shown in reverse video. If the Pointer
tracks across other selectable items, whichever item is under
the Pointer highlights. This allows the user to browse
around the selectable objects. Whichever item is under the
Pointer when button 1 is released is selected. If no item is
under the Pointer, no selection occurs.

This use of the mouse is termed "press and hold" .

For other than menu bars and pop· downs, the mouse button
must be pressed to change the selected item.

User Interrace

3.1.3.2 Multiple Selection

In fields with multiple selection (e.g. Check boxes), the following applies:

Keyboard

Mouse

The user can move around the selectable items in the win­
dow as for single selection. The space bar is used to toggle
selection of an item, and the Enter key to submit the panel.

The user can move the mouse until the Pointer lies over a
selectable item, and then click button 1. The item is
displayed as selected, other selections are unchanged. To
deselect an item, the user clicks on it again.

3.1.3.3 Extended Selection.

Note that not all windows allow extended selection. Some windows res­
trict the user to a single selection at a time. This is typical of pull-down
menus, for example. For those windows that do allow extended selection,
the following methods apply.

Keyboard

Mouse

To extend the selection of items using the keyboard, the user
must press the space bar to change from the auto-select
mode to multiple selection mode. The user can select addi­
tional items, by pressing the space bar again.

The mode terminates when Enter is pressed, or the dialog
cancelled. Whilst the mode is active, the selection cursor is
displayed independently of selected emphasis, even when
they apply to the same item.

To select contiguous items, shift+arrow keys may also be
used. These do not cause a mode to be entered.

The user can press the space bar to switch to multiple selec­
tion mode. and then click mouse button 1 with the pointer
over an item to select it. Shift+button 1 may also be used;
this extends selection from the selection cursor to the posi­
tion clicked on.

Double clicking the mouse performs the default action on all
selected items if in extended selection mode. Otherwise, to
invoke the default action on all selected items the the user
must hold the shift key dowp. while double clicking the
mouse.

53

Windows Presentation Manager Reference

3.1.4 Use of Keyboard and Mouse

Keyboard and mouse can be mixed for selecting groups of objects. The
only exception to this is that direct manipulation of files is not available
from the keyboard.

This section describes the standardized actions and their meanings. It
gives the user a guide to using the Presentation Manager system and the
programs which run with it. This is done in terms of the keyboard keys
and mouse actions which can be used and their meanings in terms of sys­
tem functions.

3.1.4.1 Keyboard

The keyboard keys are divided into several logical sections:

Alphanumeric Keys
which include the A-Z, 1-0 and special character keys. These
are typically used only for the input of data. Corresponding
characters appear on the screen when these keys are pressed
and they generally have no other effects.

Function Keys
which typically include FI-FI2. These are normally used to
invoke particular actions. For example, Fl has the standard
meaning of 'Help' and brings help information onto the
screen.

Movement keys
include the Arrow keys (Up, Down, Left and Right cursor
movement keys). The Home, PgUp, End, and PgDn keys
also fall into this class. These are used to cause objects to
move around the screen. The typical object that they move
is the Selection Cursor when the user is interacting with a
list of selectable items.

Ancillary Keys
including the Shift, Alt, Ctrl Keys. These are used to modify
the meanings of other keys. The simplest example of their
use is to cause the alphabetic keys to produce uppercase
characters when the Shift key is held down.

Specific meanings of some of the keys are described below. This list
includes all those keys with associated functions which are essential to the
use of Presentation Manager:

54

Alt+Esc

Ctrl+Esc

Enter

User Interface

Jump to next task/program (includes non-Presentation
Manager programs). This makes the current active applica­
tion inactive and causes the next task in the Task Manager
to become active. (Also see the section, "Jump Ordering")

Jump to Task Manager. Causes the Task Manager to
become the active window. The Task Manager list window
is brought to the top. This occurs even if the active applica­
tion is not in the Presentation Manager screen group, in
which case the screen group is switched back to the Presen­
tation Manager screen group first.

This has two meanings depending on context:

• Submit the changes.

• Take the default action on the selected item(s)

Arrow Keys
Move Selection Cursor to next selectable item. (selects items
as it moves, with deselection of previous item(s) - for Auto­
Select)

Shift+Arrow Keys
Extendfd selection - input field. (Swipe and type)

Delete Deletes selected text to clipboard/., or deletes single character
to right of insertion point (cursor).

Backspace
Deletes character to left of cursor

Ctrl+Arrow Keys
Moves to the beginning/end of fields, or words.

Spacebar
Toggles selection status of item for multiple selection panels
and also switches into extended selection mode.

tab Moves selection cursor between groups of controls

FlO Toggle to/from (Application) menu bar (same as Alt
make/break)

Alt make/break
Toggle to/from (Application) menu bar (same as FlO)

Shift+Esc
Bring Up System Menu (or remove, if already shown)

Alt+F4 Close window (if Close is on the System Menu)

Alt+F5 Restore window

55

Windows Presentation Manager Reference

Alt+F7 Move window

Alt+F8 Size window

Alt+F9 Minimize window (toggle)

Alt+FlO
Maximize window (toggle)

3.1.4.2 Mouse

The mouse is used in two ways. It can be moved. It has buttons that can
be pressed. These actions are used in conjunction to provide a powerful
tool with which the user can interact with the system, using the screen to
provide rapid feedback.

Some actions cannot be done with the mouse alone. The shift key on the
keyboard is used to perform certain actions. The list below shows when
the keyboard shift key is used.

56

Button 1 Click
Select item under Pointer

Shift+Button 1 Click
Extend selection to include items between pointer and previ­
ous cursor position.

Button 1 Double Click
Select item and perform default action. If in extended selec­
tion mode, add item under pointer to selected items, and
perform default action on all items.

Shift+Button 1 Double Click
Add items to Selection between pointer and previous cursor
position, and perform default action on all selected items.

Button 3 Click
Jump to Task Manager

Button 3 Double Click
Jump to next task (Also see the section, "Jump Ordering")

Mouse Movement

Button 2

Moves the Pointer around the screen. It is used to indicate
the point of activity or interest in the data presented on the
screen.

Application defined meaning- can vary from program to pro­
gram.

User Interface

Press and hold button 1
Drag selected object around window or screen. Meaning is
context and application dependent.

3.1.5 Functions for Controlling windows

3.1.5.1 Appearance of Windows

All main task windows are surrounded by emphasised borders when shown
at any size except maximized or minimized. Maximized windows may be
shown with all borders just off the screen, although conceptually still
there, but in this case they may not be moved.

Minimized windows are distinct in that they are shown in iconic form.
Hence minimized windows do not have normal borders.

All windows must have a title bar except:

1. Minimized windows

2. Maximized windows which need the whole screen

Minimized windows may be restored by double clicking on the icon.

The title text of the window is shown next to the icon when it has the
input focus.

A single mouse click on a minimized window shows the Systemu. A double
mouse click (or pressing Enter when the minimized window has been
selected) will open the icon up to show the program.

Non-Presentation Manager programs show up as icons in the Presentation
Manager screen group. A System Menu is shown when they are selected,
but a screen group switch only takes place when the window is opened for
use. Thus the user can browse all tasks in the system without constant
switching of screen groups. Note that if a non-Presentation Manager pro­
gram is selected in the Task Manager window, then the program is shown
directly, rather than bringing the icon representing that program to the
front of the screen.

3.1.5.2 The Shell, Windows and Tasks.

User input, such as a keystroke, mouse movement or a mouse button press
is either passed directly to a program, or is intercepted by the Shell. Input
to the Shell may in turn generate some other input to one or more tasks.

57

Windows Presentation Manager Reference

For example, a mouse button may be pressed when the pointer is anywhere
on the screen. This can cause one of the following to happen:

1. The task deals directly with the pointing.

2. The input focus is switched to the task's window and it then deals
with the pointing.

3. The Shell deals with the pointing.

3.1.5.3 The Input Focus

The Input Focus is the place to which keyboard input is directed at any
time. One window at a time has the Input Focus. The window which has
the input focus is distinguished by:

• Being on top of all other windows.

• Having its window title showing selected emphasis.

Input focus can be changed either by a mouse Pointer selection in another
window or by use of the "Switch Task" key, or by using the Task
Manager.

3.1.5.4 Window manipulation - the System Menu.

The Shell provides a set of functions to allow the user to change the shape,
size and position of screen windows. These functions are contained in the
System Menu, which the user can access by selecting the System Menu icon
(small icon on left side of the title bar) with the mouse, or pressing
Shift+Esc. The System Menu contains the following functions:

• Restore

• Move

• Size

• Minimize

• Maximize

• Task Manager

• (optionally) Close

Applications can add Close to the System Menu if they wish to support
double click on the System Menu as a fast path to Close an application.
They must still support Exit on the application menu in this case. Note:
for default VIO applications the System Menu will contain Close, and will
also contain Mark, Copy, and Paste. See the section, "Copy and Paste
for VIO Applications" .

58

User Interface

3.1.5.4.1 Z-ordering

In considering some of these functions, the concept of Z-ordering may be
useful. It is notionally the third dimension of the screen and accounts for
the order in which windows overlap each other. The top most window
visible is the highest in the Z-order; the bottommost is the lowest. In
terms of pieces of paper stacked on top of each other the Z-order is the
depth and order of the pile. The Z-ordering also controls the jump order­
ing of applications. See the section, "Jump Ordering" for details.

3.1.5.4.12 Window Maximize

An application may define a size to appear when the user selects maximize.
This size cannot be larger than the screen size, although neither window
title nor borders need be shown if the application needs the maximum
screen area.

To achieve this the user either clicks at the Maximize icon (with button 1)
on the window title bar, or selects Maximize on the System Menu for that
window. While the window is maximized, the Maximize icon on the title
bar is replaced with the Restore icon. Maximized windows may be
returned to their original size and screen position with Restore, or sized in
the normal way. (If the window is resized, the Maximize icon is returned
to the title bar and the Maximize command is reenabled.

The maximize key (Alt+FlO) toggles. While the application is maximized
it performs Restore.

Applications can be run with a smaller screen area, but may be maximized
at the user's request. This smaller size might typically not cover the icon
"Parking-Lot". (See the section, "The Parking-Lot")

3.1.5.4.3 Window minimize

In order to occupy as little screen area as possible, applications may be
minimized. This will shrink the application to a predefined (iconic) bit­
map.

To achieve this the user either clicks on the Minimize icon (with button 1)
on the window title bar, or selects Minimize on the System Menu for that
window. When the window is minimized, its appearance is defined by the
application, but is normally a small bit-map giving a visual clue to the
program function. When a window is minimized it is moved to the bottom
of the z-ordering, and the next non-~inimized window is made active.
Minimized windows may be returned to their original size with Restore, or
double clicking on the bit-map icon.

59

Windows Presentation Manager Reference

The minimize key (Alt+F9) toggles. It performs Restore while the applica­
tion is minimized.

There are two possibilities for where a minimized window goes:

• to the place it was when last minimized. Minimized windows can
be moved around the screen like other windows.

• to the icon "Parking-Lot". if it was never minimized,

In either case, minimized windows are never overlapped. They are posi­
tioned on a notional grid on the screen, and if one position is occupied, the
next position to the right, (then in row above) is used.

The position of minimized windows is not related to their position when
restored.

3.1.5.4.4 The Parking-Lot

The icon "Parking-Lot" is this notional grid which overlays the screen.
Each grid segment is large enough to contain exactly one icon; the grid
starts at the bottom left of the screen, and goes from right to left, top to
bottom. All icons will be aligned to this grid pattern.

3.1.5.4.5 Change Window Size

This is achieved from the mouse by pointing at the window border and
selecting one of the four sides or one of the four corners.

• If a side is selected, that side may be moved towards or away from
the opposite side. The opposite side is unchanged. The window
becomes larger or smaller in one dimension only.

• If a corner is selected, the two adjacent sides may be adjusted to
make the window larger or smaller in two dimensions at once.

In either case, the extent of the new window borders is indicated with an
outline box which moves with the mouse. When the mouse button is
released, the window occupies the position and extent indicated by the
box.

From the keyboard, sizing is from the System Menu. Changing the size is
then achieved by use of the arrow keys to move the corner or edge in the
indicated direction.

The first up/down left/right arrow kit hit will identify the horizontal
and/or vertIcal edge to be moved.

60

User Interface

This can result in the window borders being moved just off the screen and
thus becoming not visible.

3.1.5.4.6 Window Move

To move a window with the mouse, the "press-and-hold" technique is
used. The user points anywhere in the window title bar and then drags an
outline box to where the window is to be positioned.

The window is redrawn when the mouse button is released.

Windows may be moved off of the screen to the extent that their title bar
remains visible.

From the keyboard, the user selects "move" from the System Menu, and
then moves the outline box using the cursor keys. The same restrictions
on window position apply.

3.1.5.4.7 Restore

Restore returns the window to its last (unmaximized, un minimized) posi­
tion and size.

Size or move operations between maximize or minimize do not affect this
position. Thus the window can easily be returned to its "normal" position
using Restore.

The user either clicks on the Restore icon on the window title bar, or
selects Restore on the System Menu for that window. For mouse users
double click on the title bar is a fast path for Restore.

The position of a window is only "remembered" when it is maximized or
minimized from some intermediate position.

,

3.1.6 File Cabinet - functions for using
Directories and Files

The File Cabinet is a major feature of the system for most users. It is a
program which lets users display and manipulate their file system, includ­
ing arny network connections. The file system is represented visually.

The File Cabinet provides a range of functions which can be performed on
these items, such as opening a file (which creates an instance of the
appropriate application for manipulating that file), moving a file in to a
directory, opening a program (which creates an instance of that program,
without specifying a particular file to be worked on), copying a file, etc.

61

Windows Presentation Manager Reference

The File Cabinet and its associated windows are accessible to the user
while running other applications. This allows the user to locate and
browse other files at any time.

Working with files and directories in the File Cabinet would normally be
through direct manipulation with the mouse. For example, to move a file
from one directory to another, the user selects the file and drags it to the
open destination directory.

Double clicking on an object, or selecting it and hitting Enter will open
that object, which gives an object-oriented appearance to the system.

To unify the concepts of a file manager and application manager (for
starting programs), a special "Startup" window has been created which
contains directories and programs. Programs may be given long, descrip­
tive names, yet are viewed and manipulated in the same way as the rest of
the user's file system. Information about the user's file system is presented
to the user in the form of three types of windows:

• The File Cabinet Window

• The Tree

• Directory Windows

Only one menu bar is available for the entire File Cabinet. This contains
two sorts of functions:

• functions which operate globally on the entire file system

• functions which operate on the contents of the current directory

All directory windows are child windows of the File Cabinet window. In
the File Cabinet, child windows are created slightly smaller than the win­
dow from which they came, and are slightly offset to the right from their
parent. Thus if the Tree is sized to be half the area of the File Cabinet
window, all subsequent directory windows will be slightly smaller than
that size. If the File Cabinet window is minimized, all child windows tem­
porarily disappear. If it is maximized, windows already created are not
affected. If it is reduced in size, all child windows are clipped to the size of
the File Cabinet.

Child windows may be sized moved, or maximized (but not minimized).

The title bar for these windows includes the name of the Drive/Directory
(truncated if necessary).

One or more objects may be selected in the list using the normal selection
mechanisms.

62

User Interface

The differences between a Directory and Drive are relatively few, with
some limitations on which actions the user may take on a Drive. For
example, you cannot move a drive into a directory. Similarly, drives may
appear based on an explicit action taken by the user to expand the file sys­
tem - such as by connecting to a remote drive on a network. The things
that can be done to the contents of Drives and Directories are the same,
however, so the commands available are identical.

3.1.6.1 The File Cabinet Window

This window contains no data, but represents the maximum screen size to
be taken up by filing system windows. It has an action bar which provides
options for the topmost child window.

3.1.6.2 Tree Window

This window consists of a main area with a representation of the drives
and directories in the system. It has no menu bar, and its size is limited
by the bounds of the main File Cabinet window.

On the left of the main area, each drive in the system is represented by an
icon in the shape of drive or diskette, accompanied by the disk volume
name.

63

Windows Presentation Manager Reference

+-+--+-+-+
IS I FILING SYSTEM INIXI
>-+--+-+-<
I File Options Special Window I Fl=Helpl
>--<

+-+---+-+
lSI Tree IXI
>-+---+-<

Startup +- D Apps Dir -+
-A Mikes-------%- D Bin
-C Netservr +- D DOS

I
I
I
I
I
I
I +- D Accounts
1 >- D Charts
I >- D Finance
+--%- D Mail

>- D Reports
>- D WP.Dir
+- D XYZ

>--+--+--+--
1<- I 1 1-> 1
+--+--+--+--I

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.1 The File Cabinet with Tree

The drives are arranged in a single column in alphabetical order of drive
identifier (Startup at the top). If there are too many drives to appear
simultaneously, scroll buttons appear at the top and bottom of the visible
portion of the column of drive icons. These allow other drives to be
scrolled into view by the user.

To the right of the drive icons is a column of directory names. These are
visually grouped and linked back to one of the drive icons by a series of
lines or braces. The column of directories represents all the first-level
directories belonging to the root directory of the disk represented by the
selected drive.

If there are too many directories to fit in the window, scroll buttons
appear at the top and bottom of the visible portion of the column. These
allow other directories to be scrolled into view by the user.

Deeper levels of the directory tree may be displayed in the Tree window by
selecting the containing directory or drive with either the mouse or key­
board. Mouse selection is done by clicking on the appropriate drive or
directory. Keyboard selection is done by moving the selection with the
arrow keys. The user selects the drive or directory to be displayed with up

64

User Interface

and down keys. Hitting the right arrow key causes the next level of the
tree to be revealed, and the first directory in that level to be selected. Hit­
ting the left arrow key causes the current level of the tree to be hidden.
Pressing alphabetic keys causes the selection to jump to the next directory
that matches the key in that level; the next level of directory is displayed,
as if right arrow had been hit.

The up/down arrows always remove any tree displayed at a deeper level.

PgUp and PgDn scroll the current directory level by a screenful. Home
moves to the top of the current directory level, and End moves to the bot­
tom.

As with the first-level directories, subsequent levels of the tree are linked
visually with their parent directory or drive by lines or braces. Each
column will have its own scroll buttons as required.

The directories may be nested so deeply that all the columns of directories
cannot be shown in the window simultaneously. In this case, a horizontal
scroll bar appears at the bottom of the directories window. This can be
used to browse the whole of the directory structure.

No files are shown in the Tree window. The files and directories belonging

65

Windows Presentation Manager Reference

to a directory can be displayed in a directory window.

3.1. 7 File Cabinet functions

3.1.7.1 The File menu

+-+--+-+-+
IS I FILING SYSTEM INIXI
>-+--+-+-<
I File Options Special Window I Fl=Helpl
>+---------------------+---<

Open
Print
Move
Copy... I
Delete. . . I
Rename... I
Set properties... 1------------------------------------+-+
Create Directory. .. I Tree I I
Select All 1------------------------------------+-<

+---- ----------------!
- Startup +- D Apps Dir
- A:Mikes-----%- D Bin
- C:Sservr +- D DOS

---+
I
I
I
I
I
I
I +- D Accounts
I >- D Charts.Dir
I >- D Finance
+--%- D Mail

>- D Reports
>- D WP.Dir
+- D XYZ

>--+--+--+--<
I <-I I 1-> I
+--+--+--+--I

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.2 The File pull-down

The File menu includes:

Open

66

opens a new window containing the selected drive or direc­
tory. The new window is dis,elayed slightly offset from the
Tree window, and on top of lfirst in the Z-ordering) all other
windows. Windows showing directory contents are created
based on the size of the window from which they were
created. If a window containing the drive or directory

Print

Move

User Interface

already exists, a new window is not created. Instead, the
existing one is brought to the top.

The Open command is the default action for the File Cabinet
window, hence double clicking an item, or hitting enter with
an item selected will cause that item to be Opened.

• If the selected object is a directory, the new window is
simply another directory window, containing the con­
tents of the selected directory.

• If the object is a program, the new window contains
another instance of the selected program.

• If the object is a file, and there is a default action
assigned to the file then the default action is taken. (For
example, .SCR might be input to a script program, when
opening a .SCR file would run the script program with
the particular .SCR file as an input parameter.)

If there are multiple default actions assigned to a file
type (extension), an intermediate window appears with a
list of the actions. The user is allowed to select one of
the actions, the window disappears, and a new window
belonging to the selected action appears.

Windows other than directories are not confined to the File
Cabinet, but have a size and position determined by infor­
mation stored with the program being invoked. If multiple
items are selected when Open is requested, the shell assumes
that the intent of the user is to use all of the items simul­
taneously. Thus all the items are opened. Any dialog boxes
are shown sequentially.

causes the selected objects to be printed. If there is no pro­
gram assigned to the object, then the object is printed as a
text file. If there is a program assigned to the file extension,
the program is invoked. Programs may provide a special
invocation option for printing.

This command is provided for users who need to move files
across drives and directories. It brings W a dialog box which
contains two text entry fields. The first From:) contains
the names of the objects to be moved. hen the dialog box
first appears, this field is filled with all selected directories
and files in the File Cabinet window. The user can then type
additional names. Multiple filenames are allowed in the
From: field, and standard wildcard syntax is valid. The
second field (To:) contains the name of the destination. It is
initially blank.

The user completes the move by typing in the name of the
target file or directory and hitting Enter. Leaving the field
blank implies the current directory {see Create Directory for

67

Windows Presentation Manager Reference

68

Copy

Delete

a description of the current directory).

If the user types into the From field, the typed text is added
to the pre-filled text. The pre-filled text can be deleted.

It will be verified that there will be enough disk space before
attempting the actual move or copy, so as not to risk run­
ning out midway through the operation.

This command is identical to the Move command, except
that it makes a second copy of the data.

Copy is also available by direct manipulation in a similar
way to Move, but holding down the Alt key as well as the
appropriate Move key(s)

brings up a dialog box with a single text edit item, contain­
ing all currently selected items. The user can then type
additional items. When the user confirms the delete, all
items described in the text entry field are erased.
Confirmation is by pressing Enter, or clicking on Delete.

Certain erase actions (drive contents, for example) cause
further dialogs to confirm the operation, or ask for more
details.

Rename This is used to change the name of a file, directory or file.
Only a single file can be renamed.

Set Properties
allows the user to set the attributes of an object. The MS
OS/2 file system attributes that may be changed are the
read-only and/or archive bits, or the time and date infor­
mation. Directories cannot be changed.

Create directory

Select all

This allows new directories to be created. The command
brings up a dialog box to prompt the user for the name.

The directory is created in the current directory, which is the
topmost window in the File Cabinet.

1. If the topmost window is the Tree, and only a drive is
selected, it is the root directory of that drive. If it is
showing some other directory selected, the current direc­
tory is the one shown selected.

2. If the topmost window in the File Cabinet is some other
directory, then this directory represents the current
directory in MS OS/2 terms.

Selects all objects in the current window. It is not valid in
the Tree window.

User Interface

3.1.7.2 Direct manipulation

Using the mouse, a completely different method of moving files and direc­
tories is available. The user selects an object to be moved, holds down
mouse button lover the object, and drags it to a previously opened direc­
tory window. When the button is released, the object is moved to this new
directory.

Both the source object and part of the target directory must be visible.
Objects may be dropped anywhere within the target directory with the
same effect.

Both source and target directories are redrawn after the object has been
moved. The details of the move are as for the keyboard version, with the
same error situations, but with an additional error when the target is not
a valid directory window.

Multiple objects may be moved by extending the selection in the usual
way, and then holding shift while dragging. Alternatively, if the space bar
has been used to switch to extended select mode, then multiple objects will
be dragged without the use of Shift.

Pointer appearance during the move is that of a file, or directory, or a
group of objects for extended selection.

3.1.7.2.1 Summary of Mouse use in Direct Manipulation.

The following section details the rules for keyboard and mouse interaction
for direct manipulation in the File Cabinet.

The default direct manipulation operation in Presentation Manager is a
move on a single object. In order to perform a non-standard move opera­
tion or standard/non-standard copy operation some interaction is required
with one or more of the following keys.

ALT key

CTL key

Shift key

This changes the operation from a move to a copy.

This is used to add an object to a non-contiguous set for a
group copy/move operation.

This is used to add an object to a contiguous set for a group
copy /move operation.

69

Windows Presentation Manager Reference

Below is a glossary of terms used in the following set of rules

XS

Drag

Extended Selection Mode. This mode is entered by hitting
the <SPACEBAR>
Move mouse with button depressed for more than a
predefined distance.

+-----------------------+----------------------+------------------------+
: Shift + Click : Ctl + Click : Click :
>-----------------------%----------------------%------------------------<

Causes object to be :
Causes all objects
from prior location
to current location
inclusively to be
selected.

Causes this object
to be added to the
set of selected
objects (removed if
it was already
selected) .

selected
mode it adds to the
selection, otherwise
anything else that
was selected becomes
deselected.

I
I
I
I
I
I
I
I
I
I
I
I

+-----------------------+----------------------+------------------------!

Figure 3.3 Key/Mouse Click Usages for Selection and Manipulation

+---+
: DRAG :
>-------------------+-------------------+-------------------+-----------<
: Shift : ALT : CTL : Causes
>-----------+-------+---+-----------+---+-------+-----------< object to

Selects : ALT+Shift : Causes ob-: ALT + CTL : Adds be select­
range of >-----------< ject to be>-----------< object to ed and in-
objects Selects selected Adds set of vokes the
from prior range of and invok- object to selected move
cursor objects es copy. set of objects in XS mode
location from prior If in XS selected and it adds
to this cursor mode it objects invokes object to
object and location adds and move set and
invokes to this object to invokes invokes
group object and set and group group move
move invokes invokes copy

group group
copy copy

+-----------+-----------+-----------+-----------+-----------+-----------

Figure 3.4 Key/Mouse Drag Usages for Selection and Manipulation

70

User Interface

3.1.7.3 Options menu

+-+--+-+-+
lSI Filing System INIXI
>-+--+-+-<
I File Options Special Window IF1=Helpl
>------------+------------------+------------------------------------<

I Display Options
+-+----I!Name only 1---------------------------+-+
lSI >------------------< IXI
>-+----1 File options... 1---------------------------+-<

>------------------<
- Stal/Show Information lir ---+
- A: +------------------!
- C:Sservr +- D DOS

I
I
I
I
I
I
I +- D Accounts
I >- D Charts.Dir
I >­
+--%-

D Finance
D Mail

>- D Reports
>- D WP.Dir
+- D XYZ

>--+--+--+--<
I <- I I I -> I
+--+--+--+--!

+--!

Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.5 The Filing system with Options pull-down

The options menu applies to the active child window, and (optionally) to
windows subsequently created in the filing system.

Windows previously created are not affected by changing these options.

Display Options ...
The Display Options dialog includes

1. Include: which directories and files to display - the user
can set this according to all valid attributes:

• Name or extension - via wildcard filters

• Type - directories, programs or files (check boxes).

• File attributes - normal or special check boxes. Spe­
cial shows a panel with hidden, read/only, system,
archive check boxes. These selections show only
objects with all the chosen bits set (and which qualify
by the other selection criteria).

71

Windows Presentation Manager Reference

72

The objects displayed are the logical intersection of each
of the groups selected. The defaults are *.*, all direc­
tories, files and programs, and normal.

2. Display order: what information the objects should be
sorted on:

• Name
• Extension

• Type (directory, program, or file)

• Size

• Date/time
3. What to display: Name, date, size and attributes.

Name only

This allows the user to set the way that the contents of
directories and drives are displayed.

An extra choice is provided on the first menu as a fast path
to the display of as many objects as possible. When Name
Only is selected, the other options for what to display are
ignored, and only the names are shown. The choice toggles.

The name is always displayed. When "Name-only" is
selected, objects are displayed in multiple columns, with a
horizontal scroll bar appearing if there is insufficient window
space to display all objects. Otherwise, the objects are
displayed in a single column, possibly with a vertical scroll
bar.

File options
toggles whether certain confirmation messages are displayed.

• Verify on Copy - compare the bytes in files after a copy

• Verify on Delete - show the dialog box on all delete com­
mands

• Replace existing file - give warning prompt

• Su b-Tree Delete - delete a directory (and everything in it)
even if the directory is not empty

Show Information
toggles whether information about the drive or directory is
displayed. The state is indicated by the presence of a check­
mark (on) or its absence (off). If off, no information is
displayed. If on, the following is displayed:

• Space used by files shown (files that have passed filter),
out of total on disk.

User Interface

• Number of objects visible in window OF total number of
objects (files and directories).

3.1.7.4 Special Menu

+-+--+-+-+
lSI FILING SYSTEM INIXI
>-+--+-+-<
I File Options Special Window I Fl=Helpl
>---------------+------------------+---------------------------------<

I Format diskette
I Refresh I

+-+-------+------------------!------------------------+-+
lSI Tree IXI
>-+---+-<

- Startup +- D Apps Dir
- C Mlkes-----%- D Bin
- A Nservr +- D DOS

---+
I
I
I
I
I
I
I +- D Accounts
I >- D Charts.Dir
I >- D Finance
+--%- D Mail

>- D Reports
>- D WP.Dir
+- D XYZ

I
I
I
I
I
I
I
I
I
I
I
I
I >--+--+--+--<

1<-1 I 1->1
+--+--+--+--I

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.6 The Filing system with Special menu

The Special menu includes commands which operate globally on the file
system or diskettes.

Format This allows the user to format new data diskettes. The com­
mand brings up a dialog box with a text field which requests
the drive letter (with a logical default shown as selected, the
drive name, and checkboxes which allow the user to select
format options such as:

• format single/double density.

Format prompts the user for a volume label and other
options in a dialog box.

73

Windows Presentation Manager Reference

Refresh Ensures that the File Cabinet windows are all up to date.

3.1.7.5 The Window menu

+-+--+-+-+
lSI FILING SYSTEM INIXI
>-+--+-+-<
I File Options Special Window Fl=Helpl
>---------------------------+------------------+---------------------<

I 1 Tree
I 2 Startup
I 3 C:Bi

+-+------~------------I 4 N:\ 1------------+-+
lSI >------------------< IXI
>-+-------------------1 Close All Dirs. 1------------+-<
1 1 1 1
I I I I

I - Startup +- D A+------------------! I
I - A: Mikes----%- D Bin I
I - C: KGT +- D DOS I
I - N: Net I

+-+------------------------+-+ +- D Accounts I
lSI Startup IXI 1 >- D Charts.Dir I
>-+------------------------+-< +-+------------------------+-+
I Word processor I S I Accounts I X I
I Spreadsheet >-+------------------------+-<
I DOS utilities... Norther division
I BASIC Overdue
I Assistant series... 1---- 1 Previous month
+----------------------------! Cleared

+--+--+------------------------1 Pending 1

+----------------------------!

1
1
1
1
1
1
1
1

+--!

Icons - S = System Menu N = Minimize, X = Maximize

74

Figure 3.7 The File Cabinet with Window pull-down

F6 The next directory in the currently displayed directories is
brought to the top of the child windows and given the input
focus when F6 is hit.

1 Tree

Directories are removed by closing them using their System
Menu/icon.

The Tree window is given the input focus and brought to the
top of the child windows in the File Cabinet

Directory list 2 .. n
A list showing the child windows in the File Cabinet is
shown in the pull-down window. If there are more than 8
directories, an option to list all the directories replaces the
ninth.

The name shown is the full name of the directory displayed.

User Interface

For the root directory it is the drive identifier and backslash.

The names of Startup program directories are truncated to
40 characters.

Close All Directories
This commands closes all existing directory and drive win­
dows, providing an easy way for the user to clean up the File
Cabinet windows.

3.1.7.6 STARTUP window

The Start-A-Program functionality of 118 OS/2 is represented by a special
STARTUP icon which appears in the Tree window along with the other
Drives. Its functions and operation are essentially the same as any other
directory window, with some exceptions:

• Directories are represented by program Groups.

• Activities must be added to STARTUP using a special application
called the "STARTUP-Editor". This includes the ability to install
an activity into the list, or modify an installed entry. This file is
available in the File Cabinet by selecting the "STARTUP Editor"
from the list of programs in STARTUP. Applications may also
add themselves to STARTUP during installation.

• Entries in the STARTUP list can only be moved within STARTUP.

75

Windows Presentation Manager Reference

+-+--+-+-+
IS I Filing System INIXI
>-+--+-+-<
I File Options Special Window Fl=Helpl
>--<

+-+--+-<
I S I --- STARTUP IX I
>-+--+-<
I -P- Clipboard I

{ I -P- Control Panel I
MIl -P- Print Services I

I -D- My editors I
{ I -D- Utilities Directory I

NETI I
+--<

>--+--+--<
1<-1 I 1->1
+-----+---+--!

Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.8 The File Cabinet with STARTUP panel

3.1.7.6.1 STARTUP Functions

The File menu functions are:

Open

Copy

Move

Causes selected STARTUP program to be run, or a group to
be opened.

Works only within STARTUP, but is otherwise similar to
normal Copy. Only one program or group may be copied at
a time using this method. Names may be fully qualified
using "\"

Direct manipulation works with the STARTUP programs
and groups, and does allow multiple items to be moved and
copied.

Used only to move between groups in STARTUP. Similar to
Copy.

Rename Used to change the long name of a program.

Delete Deletes the reference to an application from the directory. A
warning is given if this is the last reference to an executable
file.

Create directory
Creates a new group of applications in STARTUP

Select all
Selects all activities in a group.

In the other pull-downs, File Options is available, plus all the Window

76

User Interface

options. All other options in pull-downs are grayed.

In the Tree, application names are displayed as the full length of the text
(no trailing or leading blanks). The column widths are adjusted to sup­
port the longest entry in that group.

In windows showing the contents of program groups, the names of pro­
grams and groups are displayed in a single column. No other information
is shown, apart from the directory/program icon.

3.1.8. STARTUP Editor

Most programs in Presentation Manager are added to the system using the
standard installation process. The STARTUP Editor is only needed for
those programs not installed in this way.

The STARTUP Editor is available from the File Cabinet, and allows users
to add or modify an entry in STARTUP. The STARTUP Editor consists
of a main window which includes entry fields that the user enters the
relevant program invocation data, including:

• Program type (Radio button choice)

• Icon file name.

• Executable file name and directory

• Working Directory at invocation

• Parameters. This will have a syntax which allows prompting.

• Two-line description of the application (also provided during
installation)

• Environment variables

• Program name for STARTUP

• Group in STARTUP

The last two items are prompted for by Save As ...

The information supplied is stored in the PRESSERV.INI file.

All of the information which can be edited here is given initial values
automatically during installation.

77

Windows Presentation Manager Reference

+-+--+-+-+
lSI -T- STARTUP Editor INIXI
+-+--+-+-<
I File Edit Exit Fl=Help I
+--<

Path/program name ... -
Icon file name -
Parameters -
Working Directory ... -
Environment -
Description for Help-

+-------------Program Type--------------+
I (.) OS/2 PM () VIa I
I () Protected Mode () Real Mode I
+---------------------------------------!

+--!
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.9 Startup Editor - main panel

78

User Interface

+-+--+-+-+
lSI -T- STARTUP Editor INIXI
+-+--+-+-<
I File Edit Exit Fl=Help I
+------------+---<
I New I
I Open... lame -
I Save I
I Save As ... I .. · · ..
+------------! , .-
I
I
I
I
I
I
I
I
I
I

+-------------Program Type--------------+
I (.) OS/2 PM () VIa I
I () Protected Mode () Real Mode I

I +---------------------------------------! +--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.10 Startup Editor - File pull down

The File menu includes:

New This command clears the any entries in the STARTUP Edi­
tor window and resets any default fields.

Open

Save

Save As

This command is used to load a previously defined
STARTUP entry. A dialog is displayed which allows the
user to selected the entry from a list box.

This command is used to save a STARTUP entry. If a name
has not been supplied a dialog is displayed which prompts
for a name, otherwise the information is simply saved.

The group name is prompted for in a similar way.

This command is used to save a STARTUP entry with a
given name. A dialog is displayed with an entry field which
prompts for the name. If the program already has a name, it
is proposed as the default.

The group name is prompted for in a similar way.

79

Windows Presentation Manager Reference

+-+--+-+-+
I S I -T- STARTUP Editor INIXI
+-+--+-+-<
I File Edit Exit Fl=Help I
+-----+--------+---<

I Cut
Pal Copy

I Paste
Pal Clear

I
I :e -
I
I
I I······· .

I Undo I
Wo+--------!ctory ... -

+-------------Program Type--------------+
(.) OS/2 PM () VIa I

I () Protected Mode () Real Mode I
+---------------------------------------!

+--

Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.11 Startup Editor - Edit pull down

The Edit menu includes:

Cut Removes the currently selected text and places it on the
Clipboard.

Copy Places a copy of the currently selected text on the Clipboard.

Paste Inserts the current text contents of the Clipboard in the
selected field.

Clear Removes the currently selected text, but does not place it on
the Clipboard.

Undo Regress the last change.

3.1.8.1 The Exit menu

This command quits the STARTUP Editor. If any changes have been
made to the entry's information since the last save, a message will be
displayed informing the user that there are unsaved changes and request­
ing whether to save changes. If the user responds Yes (the default), then
the Save As dialog box is displayed, if not, then the STARTUP Editor
ends.

80

User Interface

3.1.9 Task Manager

Presentation Manager is capable of running many tasks at the same time.
These programs can all potentially be using the screen at the same time.
The user needs to be able to identify which tasks are running and to con­
trol which tasks are visible on the screen at a given time. The user also
needs to close the system down at the end of work.

3.1.9.1 How to Access The Task Manager.

The Task Manager is a window, which appears in the Presentation
Manager screen group, that contains a list of the user's current activities.
The user brings the Task Manager window into view by hitting button 3
on the mouse, hitting Ctrl+Esc on the keyboard, or by selecting the Task
Manager command from the System Menu of the current application. If
the Task Manager is called up while the user is in a non-Presentation
Manager screen group, an implicit screen group switch is performed, and
the user sees the Task Manager in an otherwise empty workspace.

The Task Manager normally contains a representation of every indepen­
dent task running in the system. The representation is in text form, where
the text is provided by the object, and typically matches the text
displayed in the caption of the object (file name + data name).

The default Task Manager window size is large enough to display approxi­
mately 10 objects. A vertical scroll bar is displayed and can be used to
move the list of objects, allowing every object in the Task Manager to be
viewed, even if not all objects fit within the window. The object last
worked on is selected and the list is scrolled to show the selected item at
the middle of the window (unless the first or last item is visible in the win­
dow).

The appearance of the Task Manager window with several tasks running
might be as follows:

81

Windows Presentation Manager Reference

+-+-------------------------------------+
1 S 1 TASK MANAGER 1
+-+-------------------------------------<
1 Control Shutdown Fl=Helpl
+-----------------------------------+---<

ALPHA.EXE
Clipboard
Control Panel
My Diary
Notepad - (TEXT. TXT)
Spreadsheet (ACCTS.SPD)
Paint program (DIAG.DOC)
XYWRITE.EXE

A

v
+-----------------------------------+---

Figure 3.12 The Task Manager window

The objects in the Task Manager are ordered alphabetically.

The entries in the Object List are selectable.

The System Menu commands include:

• Switch to

• Close (Same as Exit being selected in application)

• Terminate

3.1.9.2 Jump Ordering

The jump order round applications is their Z-order on the screen. Appli­
cations can optionally not participate in the jump sequence, but normally
all applications will participate.

Non-Presentation Manager applications appear as icons in the Presenta­
tion Manager desktop, and so have a logical entry in the jump order
sequence. Using the keyboard or mouse to jump to the next application
will make the icon representing the non-Presentation Manager program
active. To see the program itself the icon will have to be Opened. Note
that if the corresponding entry in the Task Manager window is selected
that the icon is automatically opened.

+-+-------------------------------------+
1 S 1 TASK MANAGER 1
+-+-------------------------------------<
1 Control Shutdown Fl=Helpl
+-----------+-----------------------+---<
1 Switch To IXE 1 A 1
1 Close Ird 1---1
+-----------< Panel 1---1

82

User Interface

: Terminate :y :
+-----------! - (TEXT. TXT) :

Spreadsheet (ACCTS.SPD) I:
Paint program (DIAG.DOC) :---:

I XYWRITE . EXE : V :
+---------------------------------------!

Figure 3.13 The Task Manager window with Control pull down

3.1.9.3 How to Work With a Task.

The user can choose to work with a particular task by:

1. Selecting the Name of the task in the list.

2. Select the Switch To command on the Control menu.

The fast way of getting a task to be the Active one is to do a doubleclick
on it with button 1 or select it and press Enter.

The selected task becomes the Interactive Program.

Certain tasks can cause the Switch To selection to be grayed.

Alphanumeric keys can be used to move the selection to an object on the
list when the first letter of the name matches the key pressed. If there is
more than one match the selection moves to the first. If the same key is
pressed again, the selection moves to the next and so on, recycling at the
end of the matching section to the top. If no match is found, the machine
beeps.

For Presentation Manager tasks, this causes the main window of the object
to appear on top of the other windows in the Presentation Manager screen
group. The application may choose to bring its other windows to the front
at the same time. Keyboard input is directed to one of the windows
belonging to the task.

For Non-Presentation Manager programs, the Presentation Manager
Screen Group is removed from the display and is replaced by the Screen
Group containing the program. This occupies the whole screen and no
other programs can be seen. Both Mouse and Keyboard input are directed
to the program.

Non-Presentation Manager programs also show up as icons in the Presen­
tation Manager screen group.

83

Windows Presentation Manager Reference

3.1.9.4 How to Close a Task

Some programs will not have a Close(Exit) command. The user may use
the Close command to close these objects. This commands requests that
the program close down normally (save data, clean up).

3.1.9.5 How to Terminate a Task.

Most programs have their own methods of being brought to an end nor­
mally, through menu options or commands. Generally the user should use
these methods to terminate a running program. This is advisable because
the program probably needs to tidy things up before it finishes - save work
away in files, for example.

However, it can happen that a program gets stuck or begins to behave in
an unusual way. To allow the user to stop such a program, the Terminate
function can also be used quit a program. When invoked the Terminate
function causes a destructive shutdown, i.e, the program does not get a
chance to save data or otherwise clean up.

To terminate a program in this way, select the program's entry in the
Task List and then select the Control option in the Task Manager menu
bar. Select the Terminate option on the pull-down menu which appears
as shown in. A warning panel is displayed. This allows the user a second
chance to think about the destructiveness of the Terminate function and
prevents inadvertent program stopping.

The filing system window cannot be closed or terminated.

+-+-------------------------------------+
: S : TASK MANAGER :
+-+-------------------------------------<
: Control Shutdown Fl=Help:
+-----------------------------------+---<

ALPHA.EXE : A :
Clipboar+---+
Control : WARNING
My Diary: Terminating this task will
Notepad: /: - destroy any data that has not
Spreadsh: +-----+ been previously saved.
Paint pr: Terminate?
XYWRITE. :

----_---_-1 Yes ((No)) (Fl = Help) I

+---

Figure 3.14 Task Manager - terminating a task

84

User Interface

Either the Yes or No buttons must be selected. The default button is No
(for safety), in case the user presses the Enter key as the first action after
this panel appears.

Selec.ting the No option quits the Stop operation and leaves the program
runnmg.

Selecting the Yes option causes the program to be stopped.

+-+-------------------------------------+
: S : TASK MANAGER :
+-+-------------------------------------<
: Control Shutdown fl=Help:
+--------+-----------------------+--+---<

ALPHA.: Shutdown now I A
Clipbo:/Save at shutdown
Control Save tasks now
My Dia: I

Notepa+-----------------------!
Spreadsheet (ACCTS.SPD)
Paint program (DIAG.DOC)
XYWRITE .EXE V

+-----------------------------------+---

Figure 3.15 Task Manager with Shutdown pull down

The Shutdown menu includes:

Shutdown now
This is the normal way to close the system down at the end
of the work session. There are two variations, controlled by
the next option in the menu.

1. Save at shutdown on causes Shutdown-now to save the
entire task list in terms of the applications running, and
their position on the screen. Each application is respon­
sible for saving its data and current state.

2. Shutdown with Save at shutdown off causes all appli­
cations to end normally but no record is kept and Res­
tarting the system will not restart the current set of
applications. Before an application ends, it is expected
to prompt the user to save any unsaved changes, and
then to shut down.

Save at shutdown
This toggle indicates the current action to be performed at
shutdown. It is initially set off (no save).

85

Windows Presentation Manager Reference

Save tasks now
This provides the user with an easy way to save the layout
and data ready for the next IPL. This includes notifying
applications so that they can be restored at least working on
the same file at the next IPL. Screen window layout and
current options must also be preserved.

No shutdown is performed.

The Task Manager window is removed from the screen only following a
Switch To operation.

3.1.10 Control Panel

There are many options the user has for how the system works. Most have
to do with the hardware configuration, while others have to do with the
Presentation Manager system's appearance. Control Panel allows the user
to change these settings:

+-+--+-+-+
: S: Control panel :N:X:
+-+--+-+-<
: Preferences Settings Configuration : Fl=Help:
+--<

Presentation Manager Version

+-+ +-+
Date +-! Time +-!

Cursor blink
Double click

1------1
1 1
1_--_--1
1 1

1
1
1
1
1

+--\
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.16 Control Panel

3.1.10.1 Main panel

86

Time & Date
The user can set the time and date (Entry fields). This will
set the internal hardware clock.

User Interface

Double click
The double click rate is the time interval within which indi­
vidua1 mouse clicks must be received in order to generate a
doubleclick.

Cursor Blink:
This changes the rate at which the caret flashes. Cursors
which flash too quickly tend to be distracting, while if they
are too slow, then they are hard to spot.

3.1.10.2 Preferences pull down

Sound On or Off
Allows the user to turn off sound (Check box)

Screen Colors
The user can select which colors are used in various parts of
the system. For example, the items below can be changed.
This list is not considered to be exhaustive.

Border sizes

Window Background

Window Text

Scroll Bar

Scroll Arrows

Scroll Elevator

Active Title Bar

Inactive Title Bar

Title Bar Text

Window Borders

Menu Bar

Menu Text

Screen Background

The user is able to select border width. Novice users may
want wider borders to make it easier to manipulate the bord­
ers directly. More experienced users may want to shrink the
borders.

Logo on/off
The user can suppress all logo displays. Default is no
suppression. (Check box). .

87

Windows Presentation Manager Reference

Mouse Buttons
Right handed peo~le tend to want their mouse buttons from
left to right {1-2-3 , whereas left handed people want the
opposite (3-2-1). ontrol Panel allows the user to select
which he or she wants.

3.1.10.3 Settings pull down

Printer drivers
Options to select additional printer drivers (Entry field)

Printer defaults
Options to select default printer and settings (List boxes)

Prin t spooler
Options to select spooler (Entry field)

Communications
Options to select Baud rates etc. (Entry fields, radio buttons)

Ports Options change Comm1 etc.(List boxes)

For further information see the section,"Spooler and Printer
Configuration" in the chapter, "Spooler Interface".

3.1.10.4 Configuration pull down

88

Global data.
In the Presentation Manager system, "PRESSERV.lNI" is
not a text file, and if the user's system configuration
chan*es, it is not possible for the user to edit the changes
into PRESSERV.lNI" with a text editor. Therefore, the
Control Panel must account for all such possible hardware
changes. This includes changes to CONFIG.SYS. This
includes changing the type ahead buffer size, and the
autorepeat rate of the keyboard (this is configurable on the
AT). The more commonly changed options are shown indivi­
dually with entry fields, others are shown in list boxes.

For full details of the contents of CONFIG.SYS and an
explanation of what each entry means the user should con­
sult the MS OS/2 Setup Guide.

Path: The user can set the initial path for the system.

Fonts: It is possible to purchase new fonts for Presentation Manager
and to tell Presentation Manager that they exist.

User Interface

In ternational Settings:
The user can change the time/date format, the currency
symbol, and other international characters.

Default action definitions.
The default Open action and Print action may be specified
according to file extension. The panel allows this for each
file extension the user wishes to define, plus a default to be
u.sed by others, or the option to disallow certain file exten­
SIOns.

When applications are installed, they may wish to prompt
the user as to whether they should appear for certain file
extensions.

List boxes and entry fields allow this.

Miscellaneous system variables:
Users can change any system variable through the control
panel. Applications can define variables in the initialization
file themselves, and list boxes and entry fields will be avail­
able to change these.

3.1.11 Clipboard Viewer

Presentation Manager provides copying and moving using the cut, copy
and paste metaphor. This allows an object/action approach to be applied
to copying, rather than the action/object approach of "copy what, to
where" .

To the end user, the appearance of cut and paste is as follows:

1. Mark the object to be copied or moved by the normal selection pro­
cess.

2. Choose either cut (to remove it from the file to the clipboard), or
copy (to copy it). In entry fields, cut may be performed using the
Delete key, and Copy using Ctrl+Insert.

3. In the target file (which may also be the original file), select the
target position.

4. Select paste. In entry fields, Paste may be performed using
Shift+Insert. This replaces selected text with the clipboard con­
tents.

Typically, these functions are provided on an Edit menu in each applica­
tion (As in the STARTUP Editor), and the user can use them both inside
and between applications.

89

Windows Presentation Manager Reference

The Clipboard viewer provides the user with an easy way to look at the
contents of the clipboard. As objects are cut and copied to the clipboard,
the Clipboard Viewer displays the object type and the object itself. The
Clipboard Viewer understands several predefined formats:

• Text
• Rich Text

• Bitmaps

• Metafiles

The Clipboard Viewer menu contains:

Clear Allows the user to empty the clipboard and free up any
memory used by the objects in the clipboard.

3.1.11.1 Clipboard mechanics.

To create this easy-to-use environment, the clipboard is set up to accept
any number of different data formats, several of which it can hold simul­
taneously.

When a new application wants to copy the data, it looks at the data for­
mats available, and chooses one that it understands.

The data itself may be in the clipboard already, or it may be sent as the
result of a message from the target application to the source one.

Applications should use standard IBM data stream definitions, since these
will be supported by printers, plotters and editors.

3.1.11.2 Copy and paste for VIO applications

A simple form of cut and paste is provided for default VIO applications.

Copy

Paste

gO

Areas of screen can be MARKed with an option available
from the System Menu, and the contents of the marked area
copied to the clipboard in text format.

will replay text as if it were being keyed into the application.

User Interface

3.1.12 Initialization

3.1.12.1 The initial view of the system

The view of the system when it is IPLed for the first time is that of the
File Cabinet with the root directory of the default drive displayed in the
Tree.

Also displayed is an open directory showing the root level of STARTUP.

This view will remain the initial view until it is replaced by the user saving
the current tasks.

3.1.12.2 The Initialization File

The initialization file, called PRESSERV.lNI, is a Binary file - i.e. it is not
human readable and cannot be changed easily using text editors. The file
is hidden, since it is not intended for direct use by end-users. Its use is
mainly by the Presentation Manager system, which does provide some API
functions for reading and changing its contents. (See the section, "Presen­
tation Manager Initialization File Functions")

The initialization file contains all non-volatile task information. This
includes files installed in STARTUP, open directories and running files,
and system defaults for both MS OS/2 and Presentation Manager.

The system will boot without the initialization file, but default system set­
tings for colors, display device etc., will be used.

If errors are detected within PRESSERV.INI, the system will attempt to
function correctly, but some strange behaviour may be noticed. For exam­
ple, applications that the user knows have been installed not known to
STARTUP. The user will be informed of the errors, whereupon it might
be necessary to restore the system from a backup copy.

On network systems there may be a local copy of PRESSERV.INI but a
global copy of Presentation Manager.

3.1.13 HELP facility for the shell.

The purpose of Help is to provide information to the user which aids in the
operation of the shell. When the user requests Help, information regard­
ing the item selected in the current context is displayed. The user can also
request an index of available Help topics, request General Help, or request
information on the functions assigned to keys.

91

Windows Presentation Manager Reference

3.1.13.1 INVOKING HELP

The user can request Help by either pressing the Fl key, or by clicking the
mouse pointer while it is on the Fl=Help choice on the Action Bar. After
doing one of these actions, a secondary window will be displayed, and it
will contain a panel of information which pertains to the item on which
the selection cursor is currently positioned.

Note that more than one item may be selected on the panel, but the initial
help will relate to the item where the selection cursor is situated (generally
the last item selected). .

3.1.13.2 THE HELP WINnOW

The Help window is moveable and sizeable, and will be the topmost win­
dow when it is active. It contains four push buttons along its bottom, and
these make up the Common Actions Area. There is also a vertical scroll
bar along the right side of the window, and this can be used to scroll the
Help panel which is displayed in the window if it is too big to fit. If the
window is sized smaller than its default size in the horizontal direction
then the text is clipped, there is no horizontal scroll bar. The window
must be resized to display the full text.

In the window's title bar appears the application name. Here is a picture
of a typical Help window:

92

User Interrace

+-+--+-+-+
lSI Filing System INIXI
+-+--+-+-<
I File Options Special Window I Fl=Helpl
+--+-<
I Open I IAI

I

Print I +-<
Move I I I
Copy I +-<
Del +-+---+
Ren lSI Filing System Help I
Set +-+---+-<
Cre Copy IAI
Sel +-<

1/ Select the file to be copied in its directory
More than one file may be selected by means
of extended selection.

2/ Select Copy on the File pull-down.

3/ Type in the name of the target directory. using
the directory index as a reference.

I _ I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
+-<

4/ Select Copy on the Copy menu. IVI
+---+-<
I (Esc=Cancel) (Fl=General Help) (FS=Index) (F9=Keys) I
+---I

+-<
I IVI
+--+--+---+--%-<
I <-I I 1-> I I
+--+--+---+--+-!

Icons - S = System Menu N = Minimize. X = Maximize

Figure 3.17 A sample help window

3.1.13.3 HELP INTERACTIONS

When a help panel is displayed in the Help window, the user can either use
the mouse to scroll the text with the scroll bar, or can use the arrow keys,
Home, End, PgUp, PgDn, Ctrl+Home, and Ctrl+End keys to scroll the
text.

The pushbuttons at the bottom of the window, in the Common Actions
Area, perform the functions described below. The user can perform the
actions by either pressing the pushbutton with the mouse pointer, or typ­
ing the key whose label is on the desired button, ie. Fl, F5, F9, Esc.

93

Windows Presentation Manager Reference

3.1.13.3.1 Fl=General Help

Displays a general Help panel describing what the panel is for and the con­
cepts behind it. This is not help on the Help facility.

3.1.13.3.2 F5=Index

Displays a selection panel (or list box for simple applications) which lists
all of the available Help topics. The user can select a topic [rom the list,
and it will be displayed. When the list box is displayed, the F5=Index
pushbutton changes to read Enter. The user can select a topic by either
pressing the Enter key, pushing the Enter button, or doubleclicking the
mouse on a topic in the list box. When the listbox is removed, the Enter
pushbutton is changed back to read F5=lndex.

3.1.13.3.3 Shell Help Index

For each of the Presentation Manager Shell "Applications"

• File System

• Task Manager

• Control Panel

• StartUp Editor

• Clipboard Viewer

• Printing Services

the HELP index will contain the following -

• A list of all the available HELP topics for the application

• An item to select help on the System Menu

• An item to select help on general controls (E.g. Scroll bars)

• An item that states that general help is available from the File
Cabinet Help Index

In the File Cabinet as well as the above items there will be a list of Global
Topics, e.g. Setting screen colors, Printing files which will contain a
brief description of how these things can be done and say which applica­
tion needs to be started.

94

User Interface

3.1.13.3.4 F9=Keys

Displays a Help panel describing the functionality of all the keys available
to the application (without Help displayed).

If the user asks for help on keys while in an application, the help will
display the key functions for that application. The user will be advised
that the application must be the interactive window before the keys will
work as defined in the panel.

3.1.13.3.5 Esc=Cancel

Removes the currently displayed help window.

3.1.13.4 Additional notes about Help

If there is no selection cursor when Help is requested, a general Help panel
providing information about the currently active window will be
displayed.

When the Help window is displayed, it becomes the interactive window.

During pull-down interaction with the mouse, Help must be selected using
Fl.

The Help panel exists until it is removed by the user, or its containing
application is closed.

If the application is minimized while Help is being displayed, the Help
panel is removed. If the Help panel is required when the application is
restored, Fl must be pressed again.

Help is available by hitting Fl while a Window is minimized and has the
input focus. Help for the System Menu will be displayed which will contain
help on how to restore the window.

Help panels are not constrained within the application main window.

Examples will be included on Help panels where appropriate.

3.1.13.5 Help on items in STARTUP

A two-line description is supplied with applications, and automatically
included at installation. It may be edited using the STARTUP Editor.
This brief application help will be displayed if Help is requested in the
File Cabinet while an application is the selected item.

95

Windows Presentation Manager Reference

No index is provided for this Help.

3.2 The User Interface Shell API

All of the User Interface Shell functions that are available to the end user,
through interaction with the Shell using the mouse and keyboard, are also
available to an application program using the User Interface Shell API.

The API functions provided are listed and described below. The lists of
functions are divided into functional areas that are similar to those for the
description of the interactive components of the Shell given above.

3.2.1 Definitions of terms used in the Shell API

The Shell API introduces a number of unique terms and concepts which
require definition, and those definitions are collected together in the fol­
lowing list.

Application Information File This file, usually provided as part of an
application package, provides a simple way for a programmer to describe
his "program" in a way that is acceptable to the Presentation Manager
system. The file is an ASCII text file, which can be edited using any of a
number of available Line- and Full-screen-editors, including EDLIN.

The file contains a (relatively) free format description of an executable file,
or files, the title required for the program, a description of its parameters
and so on.

The Shell API provides a function, WSHLoadAIF, which can read these
files and convert the contents into a fixed format data structure in
memory. This data structure is used as input to the WSHAddProgram
and WSHChangeProgram functions in order to create or change the
program's entry in the Installed Program List.

The AIF file format is as described in the MS OS/2 Reference with regard
to the PIP language. If a user wants to create an AIF and use that as a
program definition file, Presentation Manal?er will use the AIF as long as it
follows the definition laid down by MS OS/2.

Executable File The fully qualified name of the file that is executed when
this program is run.

Executable files can be ".BAT" files, ".GMD" files, ".COM" files or ".EXE"
files. Note that Presentation Manager can only start protect mode pro­
grams and will not be able to start real mode programs.

96

User Interface

It is permitted for several entries in the Installed Program List to refer to
the same executable file. This might be done if the same program is to be
used with different (fixed) parameters at different times.

Group Information Structure This is a data structure which is used to
return information to the caller of the WSHQueryProgramTitles function.

The format of the Group Information Structure is defined in the descrip­
tion of the WSHQueryProgramTitles function. Program Information
Block This is a data structure which is used to contain a representation of
all of the information stored in the Installed Program List about a single
program.

The data structure is used to return information from the
WSHQueryDefinition function, and to provide information to the
WSHAddProgram and WSHChangeProgram functions. The format of the
Program Information Block is defined in the description of the
WSHAddProgram function.

Handle In general within Presentation Manager, a Handle is a 32 bit
value. It provides an identifier to an object or resource being used by the
owner of the handle.

Icon File Name When a program is started, the Icon that is to be used to
represent that program is loaded using the resource handling functions of
Presentation Manager.

The Icon loaded appears in the displayed representation of the Switch
List.

Icon Handle When an Icon is loaded using the WINLoadlcon function,
the function returns a handle that can be used to refer to that Icon.

The Icon Handle is stored as part of the Switch List entry for a program in
order that the visual switch list program can display it.

Installed Program List This is a data structure maintained by the Shell
API w~ich contains the description of all "Programs" that the Shell can
recogmze as programs.

The information stored for each program includes the name of the "Exe­
cutable File" associated with the program, a readable "Program Title" for
it, and some execution control attributes for the program - "Program
Type", "Program Handle", "Visibility", and a description of "Program
Parameters" .

Presentation Manager Initialization File In order to preserve system
control information, for example, the "Installed Program List" , all of the
information held by the Shell API is actually held on disk. The informa­
tion is stored in a single file, the Presentation Manager Initialization File.

97

Windows Presentation Manager Reference

The file is a binary file, the actual format of the data stored in the file is
not published. Facilities are provided for applications to record their own
permanent information as part of this file.

Program The smallest executable unit recognized by the Shell. A
program will minimally include a Program Title (q.v.) and a reference
to an Executable file.

As far as the Shell API is concerned, a program exists only after an entry
for it has been added to the "Installed Program List" by means of the
WSHAddProgram function.

Program Groups These are provided to allow the collection of an arbi­
trary set of programs into a unit that can be acted upon as a single entity.

The relationship of program groups to programs is similar to the relation­
ship of subdirectories to files as given in the MS OS/2 file system. It can
be useful to think of the program group hierachy in the same way as you
would think of the file system tree structure. Where the analogy breaks
down, this specification will make the breakdown explicit.

Program groups appear in the Installed Program List as if they were them­
selves programs, and they have their own "program titles", "program han­
dles" and "visibility" attribute but none of the other attributes apply to
groups. A program group can appear within another program group, i.e.
the group structure allows nesting, but recursive group definitions are not
permitted.

There are several reserved handles which refer to a reserved program
group, the complete list of programs, and two groups that are concerned
with system configuration and start up parameters. These handles always
exist and cannot be destroyed. They are the "Root-Group", "Master­
List", the "Auto-Load-Group", and the "Save-Group". At Program instal­
lation, a group handle must be specified and the program is added to the
specified group and automatically inserted into the Master-List.

The same entry may appear multiple times within one group. This will
have the effect of starting the same program multiple times if the option
to start the whole group is selected. Note: the file system does not behave
in this way, in that within anyone subdirectory you cannot have duplicate
filenames, where a filename would correspond to the handle for a program.
Master-List This is similar to a program group, and can be read using a
reserved handle, but there are several differences with respect to a "nor­
mal" program group. The Master-List can be thought of as a copy of the
Installed Program List, except that its contents are available to a pro­
gram. The Installed Program List is NOT made available.

98

User Interface

All programs in the Installed Program List are automatically included in
the Master-List, and cannot be removed unless the program definition is
removed from the Installed Program List.

The Master-List is provided to "anchor" program entries so that the
WSHQueryProgramTitles function can be used to find all the defined
(meaning installed) programs.

There are NO group handles within the Master-List. All the entries are
program handles. Further, there are no duplicate handles within the
Master-List although duplicate titles may appear.

The value of the reserved handle will change if the format of group and
program handles is changed, however it will always be the value of the tar­
get data type with all bits set to one. With the current definition of a
group handle the value is OxFFFFFFFF. The "Name" of this structure is
"WinMASTER-LIST" .

Program Handle This is a number, assigned at the time a "program" is
added to the "Installed Program List", that uniquely identifies the pro­
gram.

The number used is fixed from the time a program is added to the list
until the time it is removed. The number assigned will not be used for any
other program or "group". The number that represents a particular pro­
gram will not change across a system IPL.

Most Shell API function calls that reference programs use the program
handle to identify a program; the program handle is the only unique refer­
ence to a program that exists.

Program Parameters When programs are invoked using shell they can
be supplied with run-time parameters by the Presentation Manager sys­
tem.

These parameter values can be fixed, or automatic interactive prompting
for the required information can be provided. If interactive prompts are
selected, a number of editing options are available to control the values
supplied by the end user at run time.

The parameter generation is driven by information supplied at the time
the program is installed, this information is stored as part of the Installed
Program List entry.

Program Reference A program group is used to collect arbitrary pro­
grams together into a single unit. The collection process has no effect on
the program definitions involved, the group merely indicates which pro­
grams it contains.

gg

Windows Presentation Manager Reference

The "Program Reference" is, therefore, just a pointer which links a group
to each of the programs defined in that group.

Program Title A readable name, usually in the end users natural
language, which can be displayed to the end user.

The title allows the user to recognize programs more easily than using an
executable file name, and allows tailoring to national languages to be
simplified.

Program titles need not be unique; it is possibly, even likely, that several
entries in the "Installed Program List" will have the same title, with the
restriction that you cannot have duplicate titles within the same program
group.

Program Titles are not allowed to be null. If a null title is passed when a
program is added to the system the system will generate a title from the
name of the executable file associated with that program.

Program Type Programs are divided into types based on their run-time
attributes. They can be "Real Mode" programs, "non-Presentation
Manager" programs that must be run in a new screen group, "non­
Presentation Manager" programs that can run in the Presentation
Manager screen group, or "full" Presentation Manager programs that must
be run in the Presentation Manager screen group. These four types are
the only distinctions that Presentation Manager makes. Note: Due to MS
OS/2 architecture restrictions Presentation Manager may not be able to
start programs running within the compatibility box. The user will be
able to start them running after switching to the compatibility box and
entering the command at the MS OS/2 prompt.

Root Group This is a predefined program group, with a reserved group
handle. By default, all programs in the Installed Program List are
included in this group, unless the WSHAddProgram function specifies a
non-zero group handle when the program is added to the Installed Pro­
gram List.

This group is normally the first list that the user will see when the Start­
A-Program function is invoked. This initial view however can be changed
by the user when he shuts the system down. In that case he will be
presented with the same view as when the system closed.

The value of the reserved handle may change if the format of group and
program handles is changed, however it will always be the value of the tar­
get data type with all bits set to zero. With the current definition of a
group handle the value is o.

100

User Interface

The root group may contain group handles as well as program handles. (It
would normally contain group handles.)

The "Name" of the root group is "WinROOT-GROUP".

Save-Group This is a predefined program group, with a reserved group
handle. This group will be automatically created by Presentation
Manager when the "Save Configuration" option is selected from the File
Cabinet. This group will be automatically started by Presentation
Manager when the system initializes.

The name of this group is "WinSA VE-GROUP" .

This group is NOT for general use, and as a result has some restrictions.

• It will only contain Program-Handles (no groups).

• Duplicate titles will be permitted (so that the same visual appear-
ance can be recreated).

Selectability A Switch List entry may be selectable or non-selectable. If
a running program has its entry in the switch list marked as non-selectable
then it will not be possible to reach that program using the "jump applica­
tion" "hot key" .

An entry that is marked non-selectable can still be made active by directly
switching to it using the WSHSwitchToProgram function, by directly
selecting on a window of that application if it is a Presentation Manager
application, or by bringing the Switch List to the foreground and selecting
the entry for that application.

Switch List This is a data structure, maintained by the API, that con­
tains information about all of the programs that are currently executing.
Each executing copy of a program is given an entry in the list, The entry
contains a "Program Title" for the executing program (often the same
name as the Installed Program List), plus some control information -
Window Handle, if it is a program in the Presentation Manager screen
group, Screen Group Id, if it is in a non-Presentation Manager screen
group, Process Id for the process within which the program is running,
Visibility and Selectability.

Switch List Handle This is a number, assigned at the time a "program"
is added to the "Switch List" , that uniquely identifies the executing copy
of the program.

The number used is fixed from the'time a program is added to the list
until the time it is removed. The number assigned will not be used for any
other program.

101

Windows Presentation Manager Reference

Most Shell API function calls that reference executing programs use the
program handle to identify a program.

Visibility Both the Installed Program List and Switch List have the idea
of a visible entry. When defined, this attribute determines if the
appropriate entry (Switch List or Installed Program List) is displayed on
the screen. It has no other effect. In particular it says nothing about the
visibility of whatever windows may belong to the application.

By marking an entry as not-visible no entry will appear on the screen,
and therefore no direct selection will be possible. Note however that it
will still be possible to select the item by jumping to it using the jump
application key (for Switch List entries) or by using the start program API
calls for entries in the Installed Program List.

The visibility attribute is returned as part of the information provided
when the entry is read using WSHQueryProgramTitles or
WSHQueryDefinition.

3.2.2 List of functions provided by the Shell API

3.2.2.1 Program Use

These functions allow an application to obtain the names of all defined
programs arid program groups.

WSHQueryProgramHandle
WSHQueryProgramTitles
WSHQueryProgramType
WSHQueryProgramUse
WSHStartProgram

3.2.2.2 Adding a Program.

The following functions are used to maintain the list of programs and pro­
gram groups that are available to be started.

The first group of functions maintain the information held for a single pro­
gram, the smallest "executable" unit known to the Shell.

WSHQueryProgramHandle
WSHQueryP~ogramType
WSHQueryProgramTitles

The following group of functions are used to support the collection of pro­
grams into related groups. The list of programs within a group can be
read using a single WSHQueryProgramTitles function.

102

WSHAddPro gr am
WSHAddToGroup
WSHCreateGroup

3.2.2.3 Switching Programs.

User Interface

The following functions are used to maintain the list of currently started
programs, to make one of those programs the "foreground" program,
either via direct selection or through hot-key processing, and to stop an
executing program.

WSHAddSwitchEntry
WSHChangeSwitchEntry
WSHQuerySwitchEntry
WSHQuerySwitchHandle
WinQueryTaskTitle
WinQueryTaskSizePos
WSHQuerySwitchList
WSHRemoveSwitchEntry
WSHSwitchToProgram

3.2.2.4 Clipboard

The basic Clipboard functions are provided by a window management API
and do not concern the shell. The visual clipboard (CLIPBRD.EXE in
MS-Windows) does not need an API and is not included in this section. A
visual clipboard will be included with the Presentation Manager product.

3.2.2.5 Control Panel

The control panel (CONTROL.EXE) provided with MS-Windows is no
more than a limited editor of the imtialization file WIN.INI. The Presen­
tation Manager control panel would be used to control similar settings for
the Presentation Manager environment but would include additional func­
tion. The Control Panel API allows a program to read/write default con­
trol settings for the system and are listed below.

WinQueryProfilelnt
WinQueryProfileString
WinWriteProfileString
WSHQueryProfileSize .
WSHQueryProfileData
WSHWriteProfileData

103

Windows Presentation Manager Reference

3.2.2.6 PrtPlot

This section is a separate consideration.

3.2.3 Using the API for application programmers

This section details how the Shell API calls are used to execute various
tasks. This is not an exhaustive list, but does give some guidelines to
using the Shell API calls.

3.2.3.1 Executing Programs

3.2.3.1.1 Starting Presentation Manager programs

Using the Start-A-Program function

When your program has been defined in the Installed Program List, a user
of the Start-A-Program function may select your program from the
displayed list of programs. The program is then started in the Presenta­
tion Manager screen group as a Presentation Manager program.

When started in this way, the new program does not immediately appear
in the Switch List. See the section, "Using the Switcher" , for information
on creating the Switch List entry for your program.

Using the DOSStartSession function

Any application in the system can use the DOSStartSession function to
cause a program in the Installed Program List to be started.

The results in this case are identical to those of selecting the program
using the Start-A-Program function.

Using the DOSExecPgm function

Programs started using the DOSExecPgm function will be started in the
screen group of the program issuing the function. Thus if a Presentation
Manager program uses DOSExecPgm then the target program will be
started in the Presentation Manager screen group and will have access to
the Presentation Manager functions. A program started from another
screen group will not be able to use Presentation Manager functions since
it will not be running in the Presentation Manager screen group.

No switch list entry is provided for programs started in this way. Seethe
section, "Using the Switcher" , for information on creating the Switch List
entry for your program.

104

User Interface

3.2.3.1.2 Starting non-Presentation Manager programs

These are programs which must run in a separate screen group, or have
not been written to the Presentation Manager API.

Using the Start-A-Program function

When your program has been defined in the Installed Program List, a user
of the Start-A-Program function may select your program from the
displayed list of programs. The program is started in a new screen group.

When started in this way, the new program is given a Switch List entry
which is both visible and selectable. The long name of this entry is the
program title as defined in the Installed Program List. See the section,
"Using the Switcher", for information on changing the Switch List entry
for your program.

Using the DOSStartSession function

Any application in the system can use the DOSStartSession function to
cause a program defined using the Add-A-Program function to be started.

The results in this case are identical to those of selecting the program
using the Start-A-Program function.

The program will be started in a new screen group.

A switch list entry is created for these programs. The entry is both visible
and selectable, and will have a title equal to the Program Title supplied on
the DOSStartSession call. If no Program Title is supplied then the name
of the .EXE file is used, without any qualifying path information.

Using the DOSExecPgm function

Programs started using the DOSExecPgm function will be started in the
screen group of the program issuing the function. Thus if a Presentation
Manager program uses DOSExecPgm then the target program will be
started in the Presentation Manager screen group and will have access to
the Presentation Manager functions. A program started from another
screen group will not be able to use Presentation Manager functions since
it will not be running in the Presentation Manager screen group.

No switch list entry is provided for programs started in this way. See the
section, "Using the Switcher", for information on creating the Switch List
entry for your program.

105

Windows Presentation Manager Reference

3.2.3.2 Creating or changing the switch list entry

Presentation Manager programs

• For Presentation Manager programs started by the Start-A­
Program function, by the DOSStartSession function.

Mter creating a main window, it is the application program's
responsibility to create a switch list entry using the
WSHAddSwitchEntry function. The entry placed in the switch list
can be given a default title which will be the same as the name of
the program in the Installed Program List.

• For programs started by means of the DOSExecPgm function, the
above options are still available, except that the default name
option of the WSHAddSwitchEntry function cannot be used.

Once a switch list entry is established, it is possible to change the details
of the entry at any time using the WSHChangeSwitchEntry function.

As an example, this might be done by an "Editor" program in order to
have the switch list entry show the name of the file being edited.

Non-Presentation Manager programs.

106

• For non-Presentation Manager programs started by the Start-A­
Program function, by the DOSStartSession function.

A switch list entry is created automatically for these programs.
The entry will have the title of the program as defined in the
Installed Program List or Application Information File. This
switch list entry will be both visible and selectable.

Since a switch list entry is created automatically for these pro­
grams, they may not use the WSHAddSwitchEntry function, nei­
ther may WSHRemoveSwitchEntry be used. The switch list entry
will be automatically deleted when the screen group terminates.
WSHChangeSwitchEntry may be used.

• For non-Presentation Manager programs started by means of the
DOSStartSession function, a switch list entry is created automati­
cally. The entry will have a long name of the program title as
passed in the DOSStartSession request. If no title is passed, then
the name of the program .EXE file is used. This switch list entry
will be both visible and selectable.

• For programs started by means of the DOSExecPgm function, no
switch list entry is needed. This is because these programs are
started in the same screen group as the caller, which will already
have a switch list entry. A non-Presentation Manager screen group
may have only one entry in the switch list.

User Interface

Once a switch list entry is established, it is possible to change the details
of the entry at any time using the WSHChangeSwitchEntry function.

As an example, this might be done by an "Editor" program in order to
have the switch list entry show the name of the file being edited.

3.2.3.3 Installation of Presentation Manager

When Presentation Manager is installed on top of an existing MS OS/2
system, data from existing installed programs will be extracted and copied
across to the Presentation Manager format. Thus the user will not have to
reinstall all his programs.

3.2.3.3.1 Building the input for WSHAddProgram

The control block structures required as input for the WSHAddProgram
function are typically complex, they include a description of the programs
execution environment and a descriptive name to aid the end user and
optionally a description of the parameters required by the program to
allow Presentation Manager to prompt the user for the required parame­
ters at execution time.

To simplify the task of an application programmer who is using the
WSHAddProgram function, a function is provided to produce a valid con­
trol block for use as input to WSHAddProgram. This function is
WSHQueryDefinition.

Using WSHLoadAIF

This function will read a named AIF format file, and construct the
corresponding control blocks from the information in the file. During the
reading process, the files are checked for correctness, any errors in the files
result in an error code and the control block structure is not created.

This control block can be passed to the WSHAddProgram function
directly, or can be modified before use.

Using WSHQueryDefinition

This function will reconstruct the control block structure that was used to
add an existing Installed Program List entry to the Initialization File.

As before, the output of this function can be used directly as input to the
WSHAddProgram function. Notice, however, that this will result in a
duplicate named entry in the Initialization File. While this is permitted, it
may be confusing to the end user of the system.

107

Windows Presentation Manager Reference

3.2.3.4 Clipboard functions

The clipboard API is a development of the MS-Windows Clipboard API.
The shell visual clipboard has no other API needs. For information on
how the visual clipboard is used refer to the section, "Clipboard Viewer" .
For information on the Clipboard API refer to "Clipboard Functions".

3.2.3.5 Switching to another application

3.2.3.6 Using the API File Selection function

3.2.3.7 File System functions.

Presentation Manager sits on top of MS OS/2 kernel and uses the file sys­
tem provided by DOS. All of the file system functions available under 1-18
OS/2 kernel are still available under Presentation Manager.

3.2.4 Detailed Description of Shell API Functions

Note: In the following sections the API call definition is given in C format.
To use the Shell API from assembler convert the C format call to assem­
bler following the example below. The following two definitions are identi­
cal.

In Cformat:

WSHExampleCall((HANDLE) Handle, (char far *) Progname,
(int) Strlength)

HANDLE Handle
char
int

ProgName []
Strlength

In ASSEMBLER format:

EXTRN WSHExampleCall:FAR

PUSH WORD Handle
PUSH@ ASCIIZ ProgName
PUSH WORD Strlength
CALL WSHExampleCall

/* Program handle */)
/* (returned) Name of program */
/* Length of program name buffer */

Example handle
(returned) ASCIIZ string

Maximum length of string

On return AX contains the return code (non-O for an ERROR)

108

User Interface

3.2.5 Program Use API

short WSHQueryProgramHandle((char far *)ProgName,
(HANDLE far *)&ProgHandle, (short)ProgCount)

char ProgName[] /* Program names */
HANDLE far * ProgHandle[J /* Array of program handles */
short ProgCount /* Maximum count of handles */

Purpose Given the name of an executable file, this function will
return the program handles using that executable file. This
will allow the system to determine where a particular execut­
able file is being used.

Where: ProgName is the name of the executable file. If it is a fully
qualified name it must match exactly with the stored name.
If it is an unqualified executable name (no path) then a
match will occur on every instance of a executable file of that
name.

Returns:

Remarks

ProgHandle is an array of handles. The user controls how
many handles he wants to see by the ProgCount parame­
ter.

ProgCount is the dimension of the array, and thus the
maximum number of handles that can be returned to the
user.

Count = 0

<> 0

No Handles matched OR Error
(use WinGetLastError)

The count of handles in the array

• No program found with given name

• Invalid path statement

long WSHQueryProgramType((char far *)ProgramName)
char ProgramName[J /* Name of program being queried */

Purpose.
Get the program type for a specified executable file. The
valid types are:

Presentation Manager

Vio-windowed

Real

109

Windows Presentation Manager Reference

Non-Presentation Manager

Program_ Group

Unknown

Where: ProgramName is the qualified or unqualified name of a
DOS executable file.

Returns:

Remarks

ProgramType 0 No name matched OR Error
<> 0 The first matching program handle

If more than one program exists that matches the input pro­
gram name, then the type of the first program found will be
returned. It is expected that programs will always be used in
the same environment (e.g. Presentation Manager, OR non­
Presentation Manager but not both).

int WSHQueryProgramTitles((HANDLE) GroupHandle, (GISPTR) Buffer,
(int) BufferLen)

HANDLE GroupHandle /* Handle of group to read */
GISSTRUCT Buffer /* (returned) Data Buffer */
int BufferLen /* Length of buffer in bytes */

110

Purpose Used to obtain information about programs and program
groups defined as "start able" to the Shell. Information
about all programs in a group is returned in a single opera­
tion. The information returned is an array of entries, one for
each program in the group.

Where: GroupHandle is the handle of the group for which informa­
tion is required, as returned in a previous WSHQueryPro­
gramTitles request. The group handle may be one of the
reserved group handles. If GroupHandle is WinROOT­
GROUP, then information for the root group is returned. If
GroupHandle is WinMASTER-GROUP, then information for
all installed programs is returned up to the size of the buffer
provided.

Buffer is an area of storage into which Group Information
Structure data structure will be placed. The format of the
Group Information Structure is given below.

BufferLen is the maximum usable space in the buffer.

Definition

typedef struct gis {
short TotalNumber;
short ArrayCount;
struct ProgramEntry ProgramArray[ArrayCount];

} GISSTRUCT *GISPTR;

Returns:

User Interface

Where

TotalNumber is the total count of entries in the selected
group.

ArrayCount is the number of entries for which there was
room in the buffer.

ProgramArray is an array of structures, one array element
for each program entry within the group. The format of the
structure is given below.

Definition

typedef struct ProgramEntry {
HANDLE ProgramHandle;
PROGTYPE ProgramType;

/* Program/Group Handle Flag */
char InvisibleFlag;

/* zero if ENTRY is visible on screen,
non-zero if hidden */

char IconFileName[&maxpathl.+l];
char ProgramTitle[60+1J;

} PROGRAMENTRY *PROGRAMENTRYPTR;

Where

ProgramHandle is the program/group handle.

ProgramType is PROGRAM or PROGRAMGROUP.
In the case of PROGRAM then the information as to what
type of program this is is included. The type can be Presen­
tation Manager, non-Presentation Manager-Windowed, and
non-Presen tation Manager-other.

InvisibleFlag is VISmLE if this entry appears when this
group is displayed by the Shell, or INVISIBLE if the entry
is not shown in the visible list. It does NOT refer to the visi­
bility status of any windows belonging to this entry.

IconFileName is a far pointer to an ASCIIZ filename string
which is where the icon definition for this entry can be
found. The pointer may be NULL in which case no icon is
defined.

Program Title is a character array containing the program
title for this entry. The maximum length is 60. No leading
or trailing blanks are preserved by the Shell API.

IF ERROR (AX not = 0

AX = Error Code

• Invalid handle.

111

Windows Presentation Manager Reference

• Insufficient space to contain Group Information Struc­
ture

• Invalid Group Information Structure buffer size

Remarks
This function can be used to find out the number of entries
within a group by passing a buffer of length 2 bytes. The
function will return the total number of entries within the
group.

Values of BufferLen less than 2 are invalid.

If the buffer is not large enough to contain the Group Infor­
mation Structure an error will be reported and as many com­
plete array entries as possible will be placed into the buffer.

The handle specified can also be a program handle, in which
case the buffer will only contain the entry for one program.
Thus this call may be used to get the program title.

The list of returned program entries may contain group han­
dles. This allows the tree structure to be built up by the
caller. Note though, that information from only ONE level
of the tree structure is returned by this call.

3.2.6 Adding a Program API

HANDLE WSHAddProgram((PIBSTRUCT far *)ProgramInfo,
(HANDLE) GroupHandle)

PIBSTRUCT ProgramInfo /* Program Information Block */
HANDLE GroupHandle /* Target group handle */

112

Purpose This function is used to create a new program entry in the
Installed Program List, and to provide the initial informa­
tion about the program.

Where: ProgramInfo is a structure containing the information
required by Presentation Manager to control the starting
and switching to this program. The layout of the structure
is given below. Specifically, the title for the program is con­
tained within the Program Information Block.

GroupHandle is the handle, returned by WSHCreateGroup,
of the group to which this program is to be added.

ProgHandle is a word in which the newly generated handle
for this program will be returned.

Definition

typedef struct xywinsize {
short XPos; /* X position of Window */

short
short
short
word

YPos;
XSize;
XSize;
WinFlag;

User Interface

/* Y position of Window */
/* X extent of Window */
/* Y extent of Window */
/* MINIMISED or MAXIMISED

or INVISIBLE or NORMAL(O) */
} XYWINSIZE *XYWINSIZEPTR;

Definition

typedef struct pib {

Where

PROGTYPE ProgramType;
/* Presentation Manager, non-Presentation

non-Presentation Manager-other,
Group, and Visibility attribute */

char ProgramTitle[60+1];
char IconFileName[&maxpathl.+l];
char ExecutableName[&maxpathl.+l];
char StartupDirectory[&maxpathl.+l];
XYWINSIZE InitialPosition;
char HelpString[&helpstrl.+l];
short EnvironLength;
char EnvironString[EnvironLength];
short Parameter Length;
char ParameterString[l];

} PIBSTRUCT *PIBSTRUCTPTR;

Program Type defines the type and visibility of this pro­
gram. If this is a PROGRAM: then the type can also be
Presentation Manager, non-Presentation Manager­
Windowed, and non-Presentation Manager-other. If this is a
PROGRAM:GROUP, then the type of program has no mean­
ing. The Visibility attribute defines whether this entry is
visible in the Start-A-Program list.

Program Title is the title for this program. No leading or
trailing blanks are preserved by the Shell API.

IconFileName defines the icon file associated with this pro­
gram.

ExecutableFileName defines the executable file that will
be run when this program is started.

StartupDirectory defines the subdirectory that will be the
c,!rrent drive and directory when the program starts run­
mng.

InitialPosition is the suggested position and size to be used
on the first WlNCreate Window call. If all values are 0, then
the Shell will provide an initial size and position.

HelpString is a short informative piece of help information
for this program. This text will be displayed whenever gen­
eral help is requested for this program.

113

Windows Presentation Manager Reference

114

EnvironLength is the length of the EnvironString.

EnvironString defines the environment variables to be
passed to the program when it is started. This string is in
the format required by DOS, i.e. a set of ASCIIZ strings, the
complete set of which is terminated by a null character.

ParameterLength is the length of the ParameterString.

ParameterString defines the parameter to be passed to the
program, via its "Command Line" when it is invoked.

Each entry in ParameterArray is a structure, as follows.

Definition

typedef struct parameterdescriptor {
WORD ParameterType;
BYTE ParameterSubtype;
short PstringLength;
char ParameterString[PStringLength];

/* Initial path for FileSystem
when User Selected File Name

OR default input string */
} PARAMETERDESCRIPTOR *PARAMETERDESCRIPTORPTR;

ParameterType is one of three basic types.

• File name
When ParameterSubtype will be one of the following

User selected - by definition, must exist

User entered - must exist

User entered - must not exist

User entered - mayor may not exist

• Free format

• Constant
ParameterSubtype is one of the defined filename subtypes
if ParameterType is File-Name, otherwise it is undefined.

PStringlength is the length of ParameterString exclud­
ing the terminating zero. This is the length before any sub­
stitutions have taken place.

Parameter String is an ASCIIZ input string for the pro­
gram. The meaning of ParameterString depends on
ParameterType. These meanings are shown below.

Type Meaning of ParameterString

constant
Input Parameter for the program.

Returns:

Remarks

User Interface

user selected filename
Initial path to use for file selection when calling
the FileSystem.

free format
String from which the input parameter string is
constructed, which may include prompting the
user for the actual parameter.

IF ERROR (AX not = 0)

AX = Error Code

• Invalid Program Information Block

• Insufficient space to add Installed Program List entry

• Invalid group handle

• Title already in use in target group

Program titles need not be unique, each call to this function
will add a new definition with the same title. Note though
that duplicate titles are NOT allowed within a group. (The
same title can be used, but the entries must be in different
groups.) Although the same title is permitted, it may lead to
confusion, and is not recommended practice. The restriction
that duplicate titles are not allowed within a group does
ensure that if the same name appears in the listing of a
group it is because the program has been added multiple
times. (So that when the group is executed, the program in
question is started multiple times.)

The value passed in GroupHandle must be the handle of a
defined group. The "Root" group is predefined with a handle
of O. The program may not be added explicitly to the
"Master-List" .

The initial window position and size information will be
made available to the application by an API call. (Win­
QueryTaskSizePos) The application may ignore the sug­
gested defaults if it so wishes, otherwise it may use the
defaults on the first WINCreateWindow call.

The initial position and size fields should be 0 for a non­
Presentation Manager application. If no defaults are
required, then both initial X and Y extents must be set to O.
In this case Start-A-Program will generate a default starting
size and position whenever the application is started.

It is recommended that the initial size and position be
specified as all Os, whereupon the Shell will position the win­
dow with regard to other programs. The values in this

115

Windows Presentation Manager Reference

structure are device dependent and should ONLY be
specified if the target device is kn6wn and cannot change.

The visibility attribute is returned as part of the information
provided in the WSHQueryProgramTitles function. An
"invisible" group or program will not appear in the Start-A­
Program list and so cannot be started by user selection.

int WSHChangeProgram((HANDLE)ProgHandle,
(PIBSTRUCT far *)ProgramInfo)

HANDLE ProgHandle /* Program to be changed */
PIBSTRUCT ProgramInfo /* Changed Program Information Block */

116

Purpose To replace an existing program entry in the Installed Pro­
gram List with a complete new definition.

Where: ProgHandle is the handle returned by WSHAddProgram
when the program was first added to the system.

Programlnfo is a PIBSTRUCT data structure which is
fully defined in the WSHAddProgram function. The format
IS:

Definition

typedef struct pib {

Where

PROGTYPE ProgramType;
/* Presentation Manager, non-Presentation

non-Presentation Manager-other,
Group, and Visibility attribute */

char ProgramTitle[60+1];
char IconFileName[&maxpathl.+l];
char ExecutableName[&maxpathl.+l];
char StartupDirectory[&maxpathl.+l];
XYWINSIZE InitialPosition;
char HelpString[&helpstrl.+l];
short EnvironLength;
char EnvironString[EnvironLength];
short ParameterLength;
char ParameterString[l];

} PIBSTRUCT *PIBSTRUCTPTR;

Program Type defines the type and visibility of this pro­
gram. If this is a PROGRAM then the type can also be
Presentation Manager, non-Presentation Manager­
Windowed, and non-Presentation Manager-other. If this is a
PROGRAMGROUP, then the type of program has no mean­
ing. The Visibility attribute defines'whether this entry is
visible in the Start-A-Program list.

Program Title is the title for this program. No leading or
trailing blanks are preserved by the Shell API.

User Interrace

IconFileName defines the icon file associated with this pro­
gram.

ExecutableFileName defines the executable file that will
be run when this program is started.

StartupDirectory defines the subdirectory that will be the
c,!rrent drive and directory when the program starts run­
nmg.

InitialPosition is the suggested position and size to be used
on the first WINCreateWindow call. If all values are 0, then
the Shell will provide an initial size and position.

HelpString is a short informative piece of help information
for this program. This text will be displayed whenever gen­
eral help is requested for this program.

EnvironLength is the length of the EnvironString.

EnvironString defines the environment variables to be
passed to the program when it is started. This string is in
the format required by DOS, i.e. a set of ASCIIZ strings, the
complete set of which is terminated by a null character.

ParameterLength is the length of the ParameterString.

ParameterString defines the parameter to be passed to the
program, via its "Command Line" when it is invoked.

Each entry in ParameterArray is a structure, as follows.

Definition

typedef struct parameterdescriptor {
WORD ParameterType;
BYTE ParameterSubtype;
short PstringLength;
char ParameterString[PStringLength];

/* Initial path for FileSystem
when User Selected File Name

OR default input string */
} PARAMETERDESCRIPTOR *PARAMETERDESCRIPTORPTR;

Parameter Type is one of three basic types.

• File name

When ParameterSubtype will be one of the following

User selected - by definition, must exist

User entered - must exist

User entered - must not exist

User entered - mayor may not exist

117

Windows Presentation Manager Reference

Returns:

Remarks

118

• Free format

• Constant

Parameter Subtype is one of the defined filename subtypes
if ParameterType is File-Name, otherwise it is undefined.

PStringlength is the length of ParameterString exclud­
ing the terminating zero. This is the length before any sub­
stitutions have taken place.

ParameterString is an ASCIIZ input string for the pro­
gram. The meaning of ParameterString depends on
ParameterType. These meanings are shown below.

Type

constant

Meaning of ParameterString

Input Parameter for the program.

user selected filename
Initial path to use for file selection when calling
the FileSystem.

free format
String from which the input parameter string is
constructed, which may include prompting the
user for the actual parameter.

IF ERROR (AX not = 0)

AX = Error Code

• Invalid program or program group handle

• New title already exists in group

• Invalid Program Information Block

This function performs a complete replacement of the infor­
mation stored for a program; no information is carried over
from the existing definition.

This function may be used to change the title or visibility of
a program group. In this case the PROGTYPE field in the
Program Information Block will indicate that the handle is a
program group handle, and the Program Information Block
will only contain the ProgramType and ProgramTitle fields.

The group associations for the program being changed are
not affected by this function.

WSHQueryDefinition can be used to obtain a working copy
of the current definition. This copy can be changed and used
as input to this function.

User Interface

There is no facility provided for writing the changed infor­
mation out to a new Application Information File (AIF).

int WSHQueryDefinition((HANDLE)ProgHandle,
(PIBSTRUCTPTR) Buffer, (int) BufferLen)

HANDLE ProgHandle /* Handle of program selected */
PIBSTRUCT Buffer /* Buffer for Program Information Block */
int BufferLen /* Length of Buffer */

Purpose To obtain a copy of the Program Information Block held for
a program, or program group. The program for which infor­
mation is required is identified by its handle. This function
can be used to read the definition for a program group. Note
however that a group definition ONLY consists of the
PROGTYPE and ProgramTitle fields.

Where: ProgHandle is the handle returned when the program was
added to the list of programs using the WSHAddProgram
function.

Buffer is an area of storage into which the routine will con­
struct the Program Information Block for this program.

BufferLen is the maximum usable space in the buffer that is
to be used for the Program Information Block.

The format of a Program Information Block is shown below.
For descriptions of the field contents within a Program Infor­
mation Block.

Definition

typedef struct pib {

Where

PROGTYPE ProgramType;
/* Presentation Manager, non-Presentation

non-Presentation Manager-other,
Group, and Visibility attribute */

char ProgramTitle[60+1];
char IconFileName[&maxpathl.+l];
char ExecutableName[&maxpathl.+l];
char StartupDirectory[&maxpathl.+l];
XYWINSIZE InitialPosition;
char HelpString[&helpstrl.+l];
short EnvironLength;
char EnvironString[EnvironLength];
short Parameter Length;
char ParameterString[l];

} PIBSTRUCT *PIBSTRUCTPTR;

Program Type d~fines the type and visibility of this pro­
gram. If this is a PROGRAM then the type can also be
Presentation Manager, non-Presentation Manager­
Windowed, and non-Presentation Manager-other. If this is a

119

Windows Presentation Manager Reference

120

PROGRAMGROUP, then the type of program has no mean­
ing. The Visibility attribute defines whether this entry is
visible in the Start-A-Program list.

Program Title is the title for this program. No leading or
trailing blanks are preserved by the Shell API.

IconFileName defines the icon file associated with this pro­
gram.

ExecutableFileName defines the executable file that will
be run when this program is started.

StartupDirectory defines the subdirectory that will be the
c~rrent drive and directory when the program starts run­
mng.

InitialPosition is the suggested position and size to be used
on the first WINCreate Window call. If all values are 0, then
the Shell will provide an initial size and position.

HelpString is a short informative piece of help information
for this program. This text will be displayed whenever gen­
eral help is requested for this program.

EnvironLength is the length of the EnvironString.

EnvironString defines the environment variables to be
passed to the program when it is started. This string is in
the format required by DOS, i.e. a set of ASCIIZ strings, the
complete set of which is terminated by a null character.

ParameterLength is the length of the ParameterString.

ParameterString defines the parameter to be passed to the
program, via its "Command Line" when it is invoked.

Each entry in ParameterArray is a structure, as follows.

Definition

typedef struct
WORD
BYTE
short
char

parameterdescriptor {
ParameterType;
ParameterSubtype;
PstringLength;
ParameterString[PStringLength];
/* Initial path for FileSystem

when User Selected File Name
OR default input string */

} PARAMETERDESCRIPTOR *PARAMETERDESCRIPTORPTR;

ParameterType is one of three basic types.

• File name

When ParameterSubtype will be one of the following

Returns:

Remarks

User Interface

User selected - by definition, must exist

User entered - must exist

User entered - must not exist

User entered - mayor may not exist

• Free format

• Constant

ParameterSubtype is one of the defined filename subtypes
if ParameterType is File-Name, otherwise it is undefined.

PStringlength is the length of Parameter String exclud­
ing the terminating zero. This is the length before any sub­
stitutions have taken place.

ParameterString is an ASCIIZ input string for the pro­
gram. The meaning of ParameterString depends on
ParameterType. These meanings are shown below.

Type Meaning of ParameterString

constant
Input Parameter for the program.

user selected filename
Initial path to use for file selection when calling
the FileSystem.

free format
String from which the input parameter string is
constructed, which may include prompting the
user for the actual parameter.

IF ERROR (AX not = 0)

AX = Error Code

• Invalid Program Handle

• Invalid Program Information Block buffer size

• Insufficient space to contain Program Information Block

If the buffer is not large enough to contain the Program
Information Block an error will be reported, and the space
that would have been required for the Program Information
Block (in bytes) is placed in the first word of the buffer pro­
vided.

If the buffer is large enough the first word will be set to the
total number of bytes used.

121

Windows Presentation Manager Reference

The minimum possible size for this buffer is 2 bytes, in which
case only the numeric result field will be provided, thus indi­
cating the actual space required for successful completion.

If the handle is a program handle, as opposed to a group
handle, the resulting information is in a format suitable for
input to the WSHAddProgram and WSHChangeProgram
functions.

If the handle is a program group handle, then the structure
only contains the PROGTYPE and ProgramTitle fields.

int WSHRemoveProgram((HANDLE)ProgHandle)
HANDLE ProgHandle /* Handle of Program to Remove */

Purpose To erase the definition of a program from the Installed Pro­
gram List. All references to the program being removed,
from all groups, are also removed.

Where: ProgHandle is the handle returned for the program when it
was added to the list by the WSHAddProgram function.

Returns:

Remarks

IF ERROR (AX not = 0)

AX = Error Code

• Invalid Program Handle

You cannot use this routine to remove a group definition.
To remove a group definition use WSHDestroyGroup.

int WSHAddToGroup((HANDLE) GroupHandle, (HANDLE)ProgHandle)
HANDLE GroupHandle /* Group handle */
HANDLE ProgHandle /* Program Handle */

122

Purpose To add the definition of a program or program group to an
existing program group.

Where: GroupHandle is a word which contains the group handle to
which the program will be added.

Returns:

ProgHandle is the handle of the program or program group
to be added.

IF ERROR (AX not = 0

AX = Error Code

User Interrace

• Invalid target group handle

• Invalid source program or program group handle

• Insufficient space to add Installed Program List entry

• Circular reference not allowed

• Duplicate title

Remarks
The target group must already exist.

HANDLE WSHCreateGroup((char far *)GroupTitle,
(char) GroupVis, (HANDLE) Tar getGr oupH ,

char
char
HANDLE
char

(char far *)GroupHelp)
GroupTitle[] /* Name of new group */
GroupVis /* Visibility Option */
TargetGroupH /* Target group handle */
GroupHelp[] /* Help for group */

Purpose To add the definition of a new group of programs to the pro­
gram list. When the group is created, it will not contain any
program references, the WSHAddToGroup function must be
used to place program references into a group.

Where: GroupTitle is an ASCIIZ string which contains the readable
text name of the group being defined. If the title is longer
than 60 characters, then the title will be truncated.

Returns:

The title must contain valid ASCII characters; note that" \"
is not permitted, and the string must be non-null (at least
one non-blank character). Leading and trailing blanks are
removed by the API before further validating the title.

GroupVis controls the visibility attribute for the group
entry.

TargetGroupH is the group into which this group is to be
placed. In order to have the group appear in the Root group
specify a handle of O.

GroupHelp is a short piece of help information for this pro­
gram group. It is optional (i.e. the pointer to the string may
be null) but if specified the string must be non-null, with at
least one non blank character.

GroupHandle is a HANDLE in which the newly generated
handle for this group will be returned.

IF ERROR (AX. not = 0

AX. = Error Code

123

Windows Presentation Manager Reference

• Invalid title

• Invalid target group handle

• Duplicate title

• Insufficient space to add Installed Program List entry

Remarks
The visibility attribute is returned as part of the information
provided in the WSHQueryProgramTitles function. An
"invisible" group or program will not appear in the Start-A­
Program list and so cannot be started by user selection.

The Shell Start-A-Program program will honor the visibility
attribute.

If the group already exists, then the existing group handle
will be returned. No new handle will be created.

int WSHDestroyGroup((HANDLE) Gr oupHand 1 e)
HANDLE GroupHandle /* Handle of group to remove */

Purpose To remove a group definition from the Installed Program
List, and also to remove the associations between the
removed group and any program entries in the group.

Where: GroupHandle is the handle of the group to be removed.

Returns:

Remarks

IF ERROR (AX not = 0

AX = Error Code

• Invalid group handle.

It is not permitted to remove either the "Root" group or
"Master-List" .

int WSHRemoveFromGroup((HANDLE) GroupHandle, (HANDLE)ProgHandle)
HANDLE GroupHandle /* Group handle */
HANDLE ProgHandle /* Program Handle */

124

Purpose To remove the definition of a program from a group in the
Installed Program List.

Where: GroupHandle is the handle of the group from which the
program association is to be removed.

ProgHandle is the handle of the program for which the
association is to be removed.

Returns:

Remarks

User Interface

IF ERROR (AX not = 0

AX = Error Code

• Invalid group handle

• Handle does not exist within group

It is not possible to remove the association between the
"Master-List" and a program.

If the same program appears multiple times within a group
(which must have been caused by multiple WSHAddToGroup
calls) then WSHRemoveFromGroup will only remove one
definition. WSHRemoveFromGroup will have to be called as
many times as WSHAddToGroup was called to delete the
program entirely from the group.

3.2.7 Switching Programs API

HANDLE WSHAddSwitchEntry«SWCNTRL far *)Control)
SWCNTRL far * Control /* Switch list control information */

Purpose Add an entry to the switch list. The entry need not neces­
sarily be made visible, but it must refer to a process that is
currently running.

Where: Control is a structure with the following format:

Definition

typedef struct swcontrol {
char SwTitle[60+1J;
HANDLE WindowHandle;
HANDLE IconHandle;
HANDLE ProgramHandle
WORD ProcessId;
WORD SessionId;
BYTE SwitchFlagA;
BYTE SwitchFlagB;

} SWCNTRL *SWCNTRLPTR;

Where

/* 0 if no window */
/* 0 if no icon */
/* 0 if not an installed pre
/* For this entry */
/* For this entry */

SwTitle is the ASCIIZ title for this entry. It must be a
non-null string in order to define a valid switch list entry.

WindowHandle is the handle of the main window belong­
ing to this entry. (0 means that there is no window, in which
case this is a non-Presentation Manager entry.)

IconHandle is the handle to access the icon for this entry.

125

Windows Presentation Manager Reference

126

ProgramHandle is the program handle that was used to
start the program resulting in this entry in the switch list.
Only items in the switch list that have a program handle
entry can be included in the SAVE CONFIGURATIONfunc­
tion as these are the only programs that the Shell knows how
to get started.

ProcessId is the DOS process id for this entry.

SessionId is the session identifier for this entry. The session
id is generated by DOS when starting a new session running.
This is a read only field and may NOT be changed by the
user.

SwitchFlagA defines the visibility of an entry in the Switch
List. It is a byte with ONE of the following values:

NOT_VISIBLE No entry in the visual list
NOT_SELECTABLE Visible, but disabled (grayed)
SWL_NORMAL Visible and enabled (default value -- 0)

NOT_ VISIBLE means that this entry will not appear
in the visual switch list, but can be selected by the user
by using the Jump-Application hotkey, or, if it is a
Presentation Manager application, making a direct selec-
tion on one of the windows belonging to that application.

NOT_ SELECTABLE means that this entry is not
enabled for selection. (On a colour screen it will appear
grayed.)

SWL_ NORMAL means that this entry is both visible
and enabled for selection. (This is the default when 0 is
given.)

SwitchFlagB defines the response of this entry to the
Jump-Application hotkey. It is a byte with ONE of the
following values:

JUMP_ENABLED
JUMP_DISABLED

Will appear in the round robin sequence
Will not appear in the round robin sequenc.

JUMP_ENABLED means that this entry will be
activated as a result of pressing the Jump-Application
hotkey.

JUMP_DISABLED means that this entry will not be
activated as a result of pressing the Jump-Application
hotkey. The application can still be activated by directly
selecting the entry in the Switch List (if the entry is visi­
ble and enabled) or, if it is a Presentation Manager appli­
cation, by making a direct selection on one of the win­
dows belonging to that application.

SwHandle is the handle to the switch list entry for this pro­
gram and should be used on subsequent switch list

Returns:

Remarks

User Interface

processing calls.

IF ERROR (AX not = 0

AX = 0 implies error (use WinGetLastError call)
AX/DX = SwHandle

• (Presentation Manager) Main Window already in switch
list

• (Non-Presentation Manager) Screen group already in
switch list

• Invalid window handle

• Not a main window handle

• Invalid parameter block

• Invalid icon handle

• Invalid name

• Switch list full

• Invalid Process Id

If a null string is passed for the entry name Presentation
Manager will use the name under which the application was
started. This ONLY applies to Presentation Manager appli­
cations, and only to the first WSHAddSwitchEntry for that
application. Otherwise a null name (i.e. a name consisting of
only the terminating zero) is invalid.

Leading and trailing blanks will be removed from the pro­
gram title. This ensures a consistent user view. If the pro­
gram title is longer than 60 bytes it will be truncated.

There is an implementation maximum of the number of
Switch List entries. However the maximum number will be
several hundred programs and there should be no reason to
reach the limit. Before the limit is reached other machine
limitations will have been encountered.

The program handle will be passed across to the Switch List
and will mean that the program started in this manner can
be stored during shutdown of the machine and restored later
by the Shell restore configuration function.

If a program has been registered with the WSHSwitchPro­
gramRegister call then this API will send a message to the
window defined by the WSHSwitchProgramRegister. This
message has the following format:

SH_SWITCHLIST

127

Windows Presentation Manager Reference

lParaml:
lParam2 :
Returns:

DWORD idAddEntry
HANDLE Switch Handle
OL

Description
This message is used by all the Task Manager rou­
tines to inform the visual shell that a new entry
has been made to the Switch List.

This message is always queued.

The handle is the new switch list handle.

int WSHChangeSwitchEntry((HANDLE)SwHandle, (SWCNTRL far *)SwControl)
HANDLE SwHandle /* Switch List Handle */
SWCNTRL far * SwControl /* Switch list control block */

128

Purpose Alter the attributes and/or name of an entry in the switch
list.

Where: SwHandle is the switch list entry handle whose information
is to be changed.

SwControl is the same structure defined for
WSHAddSwitchEntry and has the following form.

Definition

typedef struct swcontrol {
char SwTitle[60+1J:
HANDLE WindowHandle: /* o if no window
HANDLE IconHandle: /* o if no icon */

*/

HANDLE ProgramHandle /* o if not an installed
WORD Processld: /* For this entry */
WORD Sessionld: /* For this entry */
BYTE SwitchFlagA:
BYTE SwitchFlagB:

} SWCNTRL *SWCNTRLPTR:

Where

SwTitle is the ASCIIZ title for this entry. It must be a
non-null string in order to define a valid switch list entry.

WindowHandle is the handle of the main window belong­
ing to this entry. (0 means that there is no window, in which
case this is a non-Presentation Manager entry.)

IconHandle is the handle to access the icon for this entry.

ProgramHandle is the program handle that was used to
start the program resulting in this entry in the switch list.
Only items in the switch list that have a program handle
entry can be included in the SAVE CONFIGURATIONfunc­
tion as these are the only programs that the Shell knows how

I

Returns:

User Interface

to get started.

ProcessId is the DOS process id for this entry.

SessionId is the session identifier for this entry. The session
id is generated by DOS when starting a new session running.
This is a read only field and may NOT be changed by the
user.

SwitchFlagA defines the visibility of an entry in the Switch
List. It is a byte with ONE of the following values:

NOT_VISIBLE
NOT_SELECTABLE
SWL_NORMAL

No entry in the visual list
Visible, but disabled (grayed)
Visible and enabled (default value

NOT_ VISmLE means that this entry will not appear
in the visual switch list, but can be selected by the user
by using the Jump-Application hotkey, or, if it is a
Presentation Manager application, making a direct selec­
tion on one of the windows belonging to that application.

NOT_ SELECTABLE means that this entry is not
enabled for selection. (On a colour screen it will appear
grayed.)

SWL_ NORMAL means that this entry is both visible
and enabled for selection. (This is the default when 0 is
given.)

SwitchFlagB defines the response of this entry to the
Jump-Application hotkey. It is a byte with ONE of the
following values:

0)

JUMP_ENABLED
JUMP_DISABLED

Will appear in the round robin sequence
Will not appear in the round robin sequence

JUMP_ENABLED means that this entry will be
activated as a result of pressing the Jump-Application
hotkey.

JUMP_DISABLED means that this entry will not be
activated as a result of pressing the Jump-Application
hotkey. The application can still be activated by directly
selecting the entry in the Switch List (if the entry is visi­
ble and enabled) or, if it is a Presentation Manager appli­
cation, by making a direct selection on one of the win­
dows belonging to that application.

IF ERROR (AX not = a
AX = Error Code

129

Windows Presenta.tion Ma.nager Reference

Remarks

• Invalid Handle

• Invalid Icon Handle

• Invalid Program Title (it cannot be zero length)

• Invalid SWCNTRL block

• Invalid Process Id

The maximum length of a program title in the switch list is
60. Any entry longer than this will have the title truncated
with no warning.

If a program has been registered with the WSHSwitchPro­
gramRegister call. then this API will send a message to the
window defined by the WSHSwitchProgramRegister. This
message has the following format:

SH_SWITCHLIST
lParaml:
lParam2:
Returns:

DWORD idChangeEntry
HANDLE Switch Handle
OL

Description
This message is used by all the Task Manager rou~
tines to inform the visual shell that an entry in the
Switch List. has been changed.

This message is always queued.

The handle is the changed switch list handle.

int WSHQuerySwitchEntry((HANDLE)SwHandle, (SWCNTRLPTR) Buffer)
HANDLE SwHandle /* Switch List Handle */
SWCNTRL far * Buffer /* Buffer for definition */

130

Purpose To obtain a copy of the Switch List Control block for a
specific application. The application for which information
is required is identified by its handle.

Where: SwHandle is the handle returned when the program was
added to the switch list using the WSHAddSwitchEntry
function.

Returns:

Buffer is an area of storage into which the routine will con­
struct the switch list entry for this program.

IF ERROR (AX not 0)

Remarks

User Interface

AX = Error Code

• No entry corresponding to handle

If SwHandle cannot be found, for whatever reason, then an
error is returned.

This call is available to non-Presentation Manager applica­
tions.

HANDLE WSHQuerySwitchHandle((HANDLE)WHandle, (WORD)ProcessID)
HANDLE WHandle /* Window Handle */
WORD ProcessID /* Process ID */

Purpose Find the switch list handle belonging to a specific process or
window. This is used by those applications that know what
the window handle is (via some other means) and want to
alter or query the attrIbutes of the entry for this window in
the switch list.

Where: WHandle is a window handle for an application running in
the Presentation Manager screen group for which the switch
list handle is required or O.

Returns:

Remarks

ProcessID is the process id for which a switch list handle is
required or O. This is mutually exclusive with the first
parameter and is designed for use by non-Presentation
Manager applications which do not have a window handle.

SwHandle is set to the switch list handle for this entry, if
the entry exists (i.e. AX A= 0). If no matching entry can be
found in the switch list then 0 is returned.

IF ERROR (AX=O)

Use WinGetLastError

• Invalid handle

• Invalid process id

• Invalid parameters

• No entry in switch list

This entry could be used by a parent application after start­
ing a child in order to change or modify the switch list entry
for the child, or even to use'the shell facilities to kill the
child. For example, it may well be the easiest way to prompt
the user to confirm the death of a child process.

If both window handle and process id are provided they must

131

Windows Presentation Manager Reference

int

be consistent with each other. Otherwise NO handle will be
returned.

WinQueryTaskTitle((word)ProcessID, (char far *)NameBuffer,

word
char far
int

(int) BufferLen)
ProcessID
* NameBuffer
BufferLen

/* Process ID */
/* (returned) Program name */
/* Maximum buffer length */

Purpose Find the title which this program has in the Switch List.
This is used by those applications that want to know what
string the user associates with this program. The applica­
tion can then use the same string in its window and/or
switch list entry. The main purpose of the call is before an
application creates its first window, when it can insert the
same title into the window and Switch List as appears in the
Start-A-Program list.

Where: ProcessID is the process id to identify the application
whose title is required.

Returns:

Remarks

NameBuffer is filled with the name of this process, if the
program is known by the shell.

BufferLen is the maximum length of NameBuffer. If the
name is too long to fit into the buffer the name will be trun­
cated. The maximum number of characters of title that can
be copied to the buffer is BufferLen-l as there must always
be room for a terminating zero.

IF ERROR (AX not = 0)

AX = Error Code

• process id is not known

• Title truncated

Use this entry to get the title associated with a program.

If found, the name will be copied to the supplied buffer, with
a terminating zero added.

int WinQueryTaskSizePos((word)ProcessID, (XYWINSIZE far *)PositionBlock)
word ProcessID /* Process ID */
XYWINSIZE PositionBlock /* (returned) Size and Position */

Purpose Find the size and position for the initial window.

132

User Interrace

Where: ProcessID is the process id to identify the application
whose title is required.

Returns:

Remarks

PositionBlock is filled with the size and position to use
when creating the window. PositionBlock has the following
structure:

Definition

typedef struct xywinsize {
short XPos; /* X position of Window */
short YPos; /* Y position of Window */
short XSize; /* X extent of Window */
short XSize; /* Y extent of Window */
word WinE lag; /* MINIMISED or MAXIMISED

or INVISIBLE or NORMAL(O) */
} XYWINSIZE *XYWINSIZEPTR;

IE ERROR (AX not = 0)

AX = Error Code

• process id is not known

Use this entry to get the suggested size and poistion to use
for the first window created. The system will provide default
values if there are no values stored for this particular pro­
gram. (i.e. there is no program handle, because a .EXE or
.GNID file was started.)

If a window size and position needs to be generated by the
shell (i.e. Switch List) the units returned will be those that
can be used on the Presentation Manager create window API
calls.

The values returned will be for the frame window, not the
client area. The size will be large enough to provide a non­
null client area which will be no more than one quarter of
the available windowing area. The exact algorithm to be
used will not form part of the specification.

short WSHQuerySwitchList((SWBlock far *)Buffer, (int) Length)
SWBlock far * Buffer /* Buffer into which to copy data */
int Length /* Length of buffer in bytes */

Purpose To collect information about entries defined in the switch
list. Information about all entries in the switch list is
returned in a single operation, each individual entry being
defined by a single array element.

133

Windows Presentation Manager Reference

Where: Buffer will be set to the Switch List Block as described
below.

134

Length is the length in bytes of the buffer. If Length=O
then only the number of entries in the list is returned. This
is also the case if a null address is given for Buffer.

Definition

typedef struct SWBlock {
WORD SwNumber; /* Number in SwListArray */
SWENTRY SwListArray[SwNumber];

}SWBLOCK *SWBLOCKPTR;

Where

SwNumber is a count of the number of array entries
returned.

SwListArray is an array with the given number of entries
of SWENTRY structures.

The SWENTRY structure is shown below.

Definition

typedef struct swentry {
HANDLE SwHandle;
SWCNTRL SwControl;

} SWENTRY *SWENTRYFTR;

Where

/* Switch list handle for t

SwHandle is the Switch List handle for this entry.

SwControl is the SWCNTRL structure as given below.

Definition

typedef struct swcontrol {
char SwTitle[60+1];
HANDLE WindowHandle;
HANDLE IconHandle;
HANDLE ProgramHandle
WORD Processld;
WORD Sessionld;
BYTE SwitchFlagA;
BYTE SwitchFlagB;

} SWCNTRL * SWCNTRLPTR;

Where

/* 0 if no window */
/* 0 if no icon */
/* 0 if not an installed p
/* For this entry */
/* For this entry */

SwTitle is the ASCIIZ title for this entry. It must be a
non-null string in order to define a valid switch list entry.

WindowHandle is the handle of the main window belong­
ing to this entry. (0 means that there is no window, in which
case this is a non-Presentation Manager entry.)

IconHandle is the handle to access the icon for this entry.

User Interface

ProgramHandle is the program handle that was used to
start the program resulting in this entry in the switch list.
Only items in the switch list that have a program handle
entry can be included in the SAVE CONFIGURATIONfunc­
tion as these are the only programs that the Shell knows how
to get started.

ProcessId is the DOS process id for this entry.

SessionId is the session identifier for this entry. The session
id is generated by DOS when starting a new session running.
This is a read only field and may NOT be changed by the
user.

SwitchFlagA defines the visibility of an entry in the Switch
List. It is a byte with ONE of the following values:

NOT_VISIBLE
NOT_SELECTABLE
SWL_NORMAL

No entry in the visual list
Visible, but disabled (grayed)
Visible and enabled (default value

NOT_ VISIBLE means that this entry will not appear
in the visual switch list, but can be selected by the user
by using the Jump-Application hotkey, or, if it is a
Presentation Manager application, making a direct selec­
tion on one of the windows belonging to that application.

NOT_ SELECTABLE means that this entry is not
enabled for selection. (On a colour screen it will appear
grayed.)

SWL_NORMAL means that this entry is both visible
and enabled for selection. (This is the default when 0 is
given.)

SwitchFlagB defines the response of this entry to the
Jump-Application hotkey. It is a byte with ONE of the
following values:

0)

JUMP_ENABLED Will appear in the round robin sequence
JUMP_DISABLED Will not appear in the round robin sequence

JUMP_ENABLED means that this entry will be
activated as a result of pressing the Jump-Application
hotkey.

JUMP_DISABLED means that this entry will not be
activated as a result of pressing the Jump-Application
hotkey. The application can still be activated by directly
selecting the entry in the Switch List (if the entry is visi­
ble and enabled) or, if it is a Presentation Manager appli­
cation, by making a direct selection on one of the win­
dows belonging to that application.

135

Windows Presentation Manager Reference

Returns:

Remarks

If ERROR (AX = 0)

ELSE AX = Total number of switch list entries

The Switch List Block is built into the block of storage pro­
vided by the caller. The total number of Switch List entries
will always be returned to the caller.

int WSHRemoveSwitchEntry((HANDLE)SwHandle)
HANDLE SwHandle /* Switch list handle */

Purpose Remove an entry from the switch list.

Where: SwHandle is the switch list handle of the entry to be
removed.

Returns:

Remarks

If ERROR (AX not = 0)

AX = Error Code

• Entry cannot be removed

Well behaved applications should call WSHAddSwitchEntry
to include themselves in the switch list when they start to
run and also call WSHRemoveSwitchEntry before terminat­
ing to remove their entry from the switch list.

In addition the window management will ensure that the
switch list entry is removed when a window is destroyed by
calling WSHRemoveSwitchEntry.

Entries for non-Presentation Manager programs CANNOT
be explicitly removed by the program. They will be removed
by the Shell when the screen group terminates.

int WSHSwitchToProgram((HANDLE)SwHandle)
HANDLE SwHandle /* Switch list handle */

Purpose

136

Make a specific program the active program. This will
involve jumping to another window within the Presentation
Manager screen group, and bringing that, and all related
windows, to the "front" of the screen, or switching to
another screen group in the case of a non-Presentation
Manager program. In either case, the keyboard (and mouse
for non-Presentation Manager) input will be directed to the
new program.

User Interrace

Where: SwHandle is the switch list entry of the program which is to
be made the foreground process.

Returns:

IF ERROR (AX not = 0

AX = Error Code

• Invalid handle

• Requesting program is NOT the foreground process

Remarks
It is only possible to make an arbitrary application the fore­
ground process if you are currently the foreground process.
In all other cases the call is ignored. A foreground process is
defined as being any process within the active screen group
in the case of non-Presentation Manager applications, and
the window with the input focus for applications running in
the Presentation Manager screen group.

3.2.8 Presentation Manager Initialization File
and Control Panel API

3.2.8.1 Overview of control panel

The Control Panel allows the user to tailor certain aspects of the system
for personal preference, and to alter the system configuration. The func­
tions provided by the control panel allow the user to:

• Set the system clock (date and time)

• Change the screen colors (for example, Scroll bars, title line, win­
dow text, etc ...)

• Change the default printer

• Change the printer configuration (meaning the port the printer is
attached to)

• Change the country settings (Country, time format, number
representation, date format, and currency symbol)

• Change the mouse buttons (swap left and right)

• Set the double click time

All of the above functions are int(;lractive, and the user is allowed to try (or
look at) the new settings before confirming the change. Mter the change
is made the new settings are permanently stored.

137

Windows Presentation Manager Reference

Some of the information above is provided by system calls and are outside
the scope of the Shell API. The calls detailed below allow the visual con­
trol panel to access data that is either available in the system but not pro­
vided in a convenient form, or not available anywhere else.

The information is stored in PRESSERV.INI in a structured binary form.
The API calls below access the relevant parts of this structured file. The
basic operation done by the API calls will be to execute
WINGetProfileString for a section of PRESSERV.INI and then extract the
data from the binary data read from the file. Similarly the write opera­
tions will construct a binary structure with the information passed across
the API and write the new structure to PRESSERV.INI by calling
WINWri teProfileString

Listed in the section, "Presentation Manager Initialization File Func­
tions", are the low-level calls used to access PRESSERV.INI.

3.2.g Presentation Manager
Initialization File Functions

This section describes the functions used to read from and write to the
Presentation Manager initialization file, PRESSERV.INI. The Presenta­
tion Manager initialization file is a special MS OS/2 file that contains
keyname-value pairs (within specific application sections) that represent
runtime options for applications.

It is a binary file and is thus NOT considered a text editable file. Any
application wishing to use PRESSERV.lNI should use the API given below
to read and write the file. In this way users of the file can be shielded from
the way in which the file is stored.

There are the following functions:

WINQueryProfilelnt
WINQueryProfileString
WINWriteProfileString
WSHQueryProfileSize
WSHQueryProfileData
WSHWriteProfileData

int WINQueryProfilelnt((HANDLE)hab, (LPSTR)lpApplicationName,

HANDLE
LPSTR
LPSTR
int

138

(LPSTR)lpKeyName, (int)nDefault)
hab;
IpApplicationName;
IpKeyName;
nDefault;

User Interface

Purpose This function retrieves the value of an integer key from the
the Presentation Manager initialization file PRESSERV.INI.
The function searches the Presentation Manager initializa­
tion file for a key matching the name specified by IpKey­
Name under the application heading specified by IpApplica­
tionName.

An integer entry. in the Presentation Manager initialization
file must have the following form:

[<Application-Name>]
<Key-Name> = <value>

where value is the key's integer value.

Parameters --
Parameter

Significance

hab The value returned by the Winlnitialize function.

IpApplicationName
A long pointer to a character string naming the
application. The string must be a null-terminated
ASCII string.

IpKeyName

nDefault

A long pointer to a character string naming a key.
The string must be a null-terminated ASCII string.

A short integer value specifying the default value
for the given key if the key cannot be found in the
Presentation Manager initialization file.

Return Value
The return value is a short integer value specifying the value
of the given key if the key exists. Otherwise, it is equal to
nDefault.

The WINQueryProfilelnt function returns zero, instead of
the default value, if the value corresponding to the specified
keyname is not an integer. If the value corresponding to the
keyname consists of digits followed by non-numeric charac­
ters, the function returns the value of the digits. For exam­
ple, if the entry 'KeyName=102abc' is accessed, the function
returns 102.

int WINQueryProfileString((HAB) hab, (LPSTR) lpApplicationName,
(LPSTR) IpKeyName, (LPSTR) IpDefault, (LPSTR) IpReturnedString,
(int) nSize)

HAB hab;
LPSTR IpApplicationName;

139

Windows Presentation Manager Reference

LPSTR lpKeyName;
LPSTR lpDefault;
LPSTR lpReturnedString;
int nSize;

Purpose This function copies a character string from the user profile,
PRESSERV.INI, into the buffer pointed to by lpReturned­
String. The function searches the Presentation Manager ini­
tialization file for a key matching the name specified by
lpKeyName under the application heading specified by lpAp­
plicationName. If the key is found, the corresponding string
is copied to the buffer. If the key does not exist, the default
character string, lpDefault, is copied.

140

A string entry in the Presentation Manager initialization file
must have the following form:

[<Application-Name>]
<Key-Name> = <string>

where string is an ASCII string.

If lpApplicationName is NULL, WINQueryProfileString
enumerates all application names in PRESSERV.INI and fills
the location pointed to by lpReturnedString with a list of
application names (not keynames or values). Each applica­
tion name in the list is terminated with a null character.
The last string in the list is terminated with two null charac­
ters. WINQueryProfileString returns the length of the list,
up to, but not including, the final null.

If IpKeyName is NULL, WINQueryProfileString enumerates
all keynames associated with lpApplicationName by filling
the location pointed to by lpReturnedString with a list of
keynames (not values). Each keyname in the list is ter­
minated with a null character. The last string in the list is
terminated with two null characters. WinQueryProfileString
returns the length of the list, up to, but not including, the
final null.

Parameters ---
Parameter

Significance

hab The value returned by the WinInitialize function.

IpApplicationName
A long pointer to a character string naming the
application. The string must be a null-terminated
ASCII string.

User Interface

lpKeyName

lpDefault

A long pointer to a character string naming a key.
The string must be a null-terminated ASCII string.

A long pointer to the character string to be used if
the given key does not exist. It must be a null­
terminated ASCII string.

lpReturnedString
A long pointer to the buffer to receive the charac­
ter string.

nSize A short integer value specifying the maximum
number of bytes to be copied to the buffer. If the
actual string is longer, it is truncated.

Return Value

Notes

The return value is a short integer value specifying the
actual number of characters copied to lpReturnedString.

WinQueryProfileString is not case-dependent, so the strings
in lpApplicationName and IpKeyName may be in any combi­
nation of uppercase and lowercase letters.

BOOL WINWriteProfileString((HAB) hab, (LPSTR) lpApplicationName,
(LPSTR) lpKeyName, (LPSTR) lpString)

HAB hab;
LPSTR lpApplicationName;
LPSTR lpKeyName;
LPSTR lpString;

Purpose This function copies the character string pointed to by
IpString into the Presentation Manager initialization file,
PRESSERV.INI. This function searches the Presentation
Manager initialization file for the key named by IpKeyName
under the application heading specified by lpApplication­
Name. If there is no match, it adds a new string entry to the
user profile. If there is a matching key, the function replaces
that key's value with lpString.

If there is no application field for IpApplicationName, this
function creates a new application field and places an
appropriate key-value line in that field of the Presentation
Manager initialization file.

A string entry in the Presentation Manager initialization file
has the following form:

[<Application-Name>]
<Key-Name> = <string>

where string is an ASCII string.

141

Windows Presentation Manager Reference

Parameters ---
Parameter

Significance

hab The value returned by the Winlnitialize function.

IpApplicationName
A long pointer to a character string naming the
application. The string must be a null-terminated
ASCII string.

IpKeyName
A long pointer to a character string naming the
desired key. The string must be a null-terminated
ASCII string.

lp Value A long pointer to the string to be copied to the file.
The string must be a null-terminated ASCII string.

Return Value
The return value, a Boolean value, is nonzero if the function
is successful. Otherwise, it is zero.

Notes Applications that make changes to the PRESSERV.INI file in
sections that are also accessed by other applications must
send a w:rv:L WININICHANGE message to all applications in
the system.

int WSHQueryProfileSize((HANDLE)hab, (LPSTR)lpApplicationName,
(LPSTR) IpKeyName, (int far *) IpValueSize)

HANDLE
LPSTR
LPSTR

hab;
IpApplicationName;
IpKeyName:

int far * IpValueSize;

142

Purpose This function returns the size of a particular keyname-value
pair in the Presentation Manager initialization file
PRESSERV.INI. The function searches the Presentation
Manager initialization file for a key matching the name
specified by IpKeyName under the application heading
specified by lpApplicationName. The size returned includes
any trailing zero bytes included for zero terminated strings.

Where: hah is the anchor block handle as returned by WINInitialize.

IpApplicationName is a pointer to an ASCIIZ string iden­
tifying the application section within PRESSERV.INI that is
of interest.

IpKeyName is a pointer to an ASCIIZ string identifying the
keyname pair for which the value length is required.

lp ValueSize is a pointer to an integer value which will be

Returns:

Remarks

User Interface

set to the size of the value field. If an error occurs the con­
tents of this variable will be unchanged.

The possible error conditions are

• Application name not found

• Key name not found

• Error accessing PRESSERV.INI

This call is provided so that an application can find out the
size of a value field in PRESSERV.INI, where that size is
unknown, in order to pass the correct buffer size when calling
WSHQueryProfileData.

int WSHQueryProfileData((HANDLE)hab, (LPSTR)lpApplicationName,

HANDLE
LPSTR
LPSTR
LPSTR

(LPSTR)lpKeyName, (LPSTR)lpBuffer, (int far *)lpnSize)
hab;
IpApplicationName;
IpKeyName;
IpBuffer;

int far * IpnSize;

Purpose This function returns a string of binary data from the
Presentation Manager initialization file PRESSERV.INI.
The function searches the Presentation Manager initializa­
tion file for a key matching the name specified by IpKey­
Name under the application heading specified by IpApplica­
tionName.

Where: hab is the anchor block handle as returned by WlNlnitialize.

IpApplicationName is the application name identifying the
section within PRESSERV.INI.

IpKeyName is the keyname identifying the keyname-value
pair within PRESSERV.INI.

IpBuffer is where the data will be returned into. The
returned string will not be zero terminated, unless the value
string is explicitly zero terminated within PRESSERV.INI
This is a call handling binary data.

IpnSize is a long pointer to an integer value giving the max­
imum size of the buffer. If the function is successful this will
be overwritten with the number of bytes copied into the
buffer.

Returns If Retcode /= 0 an error occurred. (Otherwise IpnSize is the
number of bytes copied into the buffer.) The possible return
code values are

143

Windows Presentation Manager Reference

No match on application name

No match on key name

Not enough room for data

Error accessing PRESSERV.lNI

Remarks

int

Because of the binary nature of the data the returned data is
not zero terminated. It is up to the application to use the
length provided in order to process the data.

WSHWriteProfileData((HANDLE)hab, (LPSTR)lpApplicationName,
(LPSTR) lpKeyName, (LPSTR) lpBuffer, (int) nSize)

HANDLE
LPSTR
LPSTR
LPSTR

hab;
lpApplicationName;
lpKeyName;
lpBuffer;

int

144

nSize;

Purpose This function writes a string of binary data of length nSize
to the Presentation Manager initialization file, putting the
data into the area identified by the Application Name
Key Name parameter pair.

Where: hab is the anchor block handle as returned by WINInitialize.

IpApplicationName is the application name identifying the
section within PRESSERV.lNI.

IpKeyName is the keyname identifying the keyname-value
pair within PRESSERV.INI.

IpBuffer is data to be written. This string is NOT zero ter­
minated, and the length is obtained from the following
parameter.

nSize is the size of the data to be written.

Retcode is the return value. The return value is 0 if the
function worked, otherwise is one of the error values listed
below.

Returns Return code values

Remarks

Invalid application name

Invalid key name

Error accessing PRESSERV.lNI

Because of the binary nature of the data, the input data is
not zero terminated. The length provided is the only way to
identify the length of the data.

User Interface

3.3 Shell API Structure definitions

3.3.1 Shell API data structure reference

This section lists all the data structures used by the Presentation Manager
Shell API.

Definition

typedef struct gis {

Where

short TotalNumber;
short ArrayCount;
struct ProgramEntry ProgramArray[ArrayCount];

} GISSTRUCT *GISPTR;

TotalNumber is the total count of entries in the selected group.

ArrayCount is the number of entries for which there was room in the
buffer.

ProgramArray is an array of structures, one array element for each pro­
gram entry within the group. The format of the structure is given below.

Definition

typedef struct ProgramEntry {

Where

HANDLE ProgramHandle;
PROGTYPE ProgramType;

/* Program/Group Handle Flag */
char InvisibleFlag;

/* zero if ENTRY is visible on screen,
non-zero if hidden */

char IconFileName[&maxpathl.+l];
char ProgramTitle[60+1];

} PROGRAMENTRY *PROGRAMENTRYFTR;

ProgramHandle is the program/group handle.

ProgramType is PROGRAM or PROGRAMGROUP. In the case of
PROGRAM then the information as to what type of program this is is
included. The type can be Presentation Manager, non-Presentation
Manager-Windowed, and non-Presentation Manager-other.

InvisibleFlag is VISmLE if this entry appears when this group is
displayed by the Shell, or INVISmLE if the entry is not shown in the
visible list. It does NOT refer to the visibility status of any windows
belonging to this entry.

IconFileName is a far pointer to an ASCIIZ filename string which is
where the icon definition for this entry can be found. The pointer may be

145

Windows Presentation Manager Reference

NULL in which case no icon is defined.

Program Title is a character array containing the program title for this
entry. The maximum length is 60. No leading or trailing blanks are
preserved by the Shell API.

Definition

typedef struct progarray {

Where

short TotalCount; /* Total number of entries in list */
short ArrayCount; /* Number of array elements */
HANDLE ProgramArr[ArrayCount]; /* Program handles */

} PROGARRAY * PROGARRAYPTR;

TotalCount is the total number of program or program group entries in
the list.

ArrayCount is the size of the array that fits into the buffer of the given
length.

ProgramArr is the array of program, or program group handles.

Definition

typedef struct pib {

Where

PROGTYPE ProgramType;
/* Presentation Manager, non-Presentation Manager-Wi

non-Presentation Manager-other,
Group, and Visibility attribute */

char ProgramTitle[60+1];
char IconFileName[&maxpathl.+l];
char ExecutableName[&maxpathl.+l];
char StartupDirectory[&maxpathl.+l];
XYWINSIZE InitialPosition;
char HelpString[&helpstrl.+l];
short EnvironLength;
char EnvironString[EnvironLength];
short Parameter Length;
char ParameterString[l];

} PIBSTRUCT *PIBSTRUCTPTR;

Program Type defines the type and visibility of this program. If this is a
PROGRAM then the type can also be Presentation Manager, non­
Presentation Manager-Windowed, and non-Presentation Manager-other.
If this is a PROGRAMGROUP, then the type of program has no meaning.
The Visibility attribute defines whether this entry is visible in the Start­
A-Program list.

Program Title is the title for this program. No leading or trailing blanks
are preserved by the Shell API.

IconFileName defines the icon file associated with this program.

146

User Interface

ExecutableFileName defines the executable file that will be run when
this program is started.

StartupDirectory defines the subdirectory that will be the current drive
and directory when the program starts running.

InitialPosition is the suggested position and size to be used on the first
WINCreateWindow call. If all values are 0, then the Shell will provide an
initial size and position.

HelpString is a short informative piece of help information for this pro­
gram. This text will be displayed whenever general help is requested for
this program.

EnvironLength is the length of the EnvironString.

EnvironString defines the environment variables to be passed to the pro­
gram when it is started. This string is in the format required by DOS, i.e.
a set of ASCIIZ strings, the complete set of which is terminated by a null
character.

ParameterLength is the length of the ParameterString.

Parameter String defines the parameter to be passed to the program, via
its "Command Line" when it is invoked.

Each entry in ParameterArray is a structure, as follows.

Definition

typedef struct parameterdescriptor {
WORD ParameterType;
BYTE ParameterSubtype;
short PstringLength;
char ParameterString[PStringLength];

/* Initial path for FileSystem
when User Selected File Name

OR default input string */
} PARAMETERDESCRIPTOR *PARAMETERDESCRIPTORPTR;

ParameterType is one of three basic types.

• File. name

When ParameterSubtype will be one of the following

User selected - by definition, must exist

User entered - must exist

User entered - must not exist

User entered - mayor may not exist

• Free format

147

Windows Presentation Manager Reference

• Constant

ParameterSubtype is one of the defined filename subtypes if Parameter­
Type is File-Name, otherwise it is undefined.

PStririglength is the length of Parameter String excluding the ter­
minating zero. This is the length before any substitutions have taken
place.

Parameter String is an ASCIIZ input string for the program. The mean­
ing of ParameterString depends on ParameterType. These meanings are
shown below.

Type Meaning of ParameterString

constant
Input Parameter for the program.

user selected filename
Initial path to use for file selection when calling the FileSys­
tern.

free format
String from which the input parameter string is constructed,
which may include prompting the user for the actual param­
eter.

Definition

typedef struct ProgramEntry {

Where

HANDLE ProgramHandle;
PROGTYPE ProgramType;

/* Program/Group Handle Flag */
char InvisibleFlag;

/* zero if ENTRY is visible on screen,
non-zero if hidden */

char IconFileName[&maxpathl.+l];
char ProgramTitle[60+1];

} PROGRAMENTRY *PROGRAMENTRYPTR;

ProgramHandle is the program/group handle.

ProgramType is PROGRAM or PROGRAMGROUP. In the case of
PROGRAM then the information as to what type of program this is is
included. The type can be Presentation Manager, non-Presentation
Manager-Windowed, and non-Presentation Manager-other.

InvisibleFlag is VISmLE if this entry appears when this group is
displayed by the Shell, or INVISmLE if the entry is not shown in the
visible list. It does NOT refer to the visibility status of any windows
belonging to this en try.

148

User Interface

IconFileName is a far pointer to an ASCIIZ filename string which is
where the icon definition for this entry can be found. The pointer may be
NULL in which case no icon is defined.

Program Title is a character array containing the program title for this
entry. The maximum length is 60. No leading or trailing blanks are
preserved by the Shell API.

Definition

/* 0 if no window */
/* a if no icon */

typedef struct swcontrol {
char SwTitle[60+1];
HANDLE WindowHandle;
HANDLE IconHandle;
HANDLE ProgramHandle
WORD ProcessId;
WORD SessionId;
BYTE SwitchFlagA;
BYTE SwitchFlagB;

/* 0 if not an installed program */
/* For this entry */
/* For this entry */

} SWCNTRL *SWCNTRLPTR;

Where

SwTitle is the ASCIIZ title for this entry. It must be a non-null string in
order to define a valid switch list entry.

WindowHandle is the handle of the main window belonging to this
entry. (0 means that there is no window, in which case this is a non­
Presen tation Manager en try.)

IconHandle is the handle to access the icon for this entry.

ProgramHandle is the program handle that was used to start the pro­
gram resulting in this entry in the switch list. Only items in the switch
list that have a program handle entry can be included in the SA VE CON­
FIGURATION function as these are the only programs that the Shell
knows how to get started.

ProcessId is the DOS process id for this entry.

SessionId is the session identifier for this entry. The session id is gen­
erated by DOS when starting a new session running. This is a read only
field and may NOT be changed by the user.

SwitchFlagA defines the visibility of an entry in the Switch List. It is a
byte with ONE of the following values:

NOT_VISIBLE
NOT_SELECTABLE
SWL_NORMAL

No entry in the visual list
Visible. but disabled (grayed)
Visible and enabled (default value == 0)

NOT_ VISIBLE means that this entry will not appear in the
visual switch list, but can be selected by the user by using the
Jump-Application hotkey, or, if it is a Presentation Manager
application, making a direct selection on one of the windows

149

Windows Presenta.tion Mana.ger Rererence

belonging to that application.

NOT_SELECTABLE means that this entry is not enabled for
selection. (On a colour screen it will appear grayed.)

SWL_NORMAL means that this entry is both visible and
enabled for selection. (This is the default when 0 is given.)

SwitchFlagB defines the response of this entry to the
Jump-Application hotkey. It is a byte with ONE of the following
values:

JUMP_ENABLED
JUMP_DISABLED

Will appear in the round robin sequence
Will not appear in the round robin sequence

JUMP_ENABLED means that this entry will be activated as a
result of pressing the Jump-Application hotkey.

JUMP _ DISABLED means that this en try will not be activated
as a result of pressing the Jump-Application hotkey. The appli­
cation can still be activated by directly selecting the entry in the
Switch List (if the entry is visible and enabled) or, if it is a Presen­
tation Manager application, by making a direct selection on one of
the windows belonging to that application.

Definition

typedef struct SWBlock {
WORD SwNumber; /* Number in SwListArray */
SWENTRY SwListArray[SwNumber];

}SWBLOCK *SWBLOCKPTR;

Where

SwNumber is a count of the number of array entries returned.

SwListArray is an array with the given number of entries of SWENTRY
structures.

The SWENTRY structure is shown below.

Definition

typedef struct swentry {
HANDLE SwHandle;
SWCNTRL SwControl;

} SWENTRY *SWENTRYPTR;

Where

/* Switch list handle for this entry *1

SwHandle is the Switch List handle for this entry.

SwControl is the SWCNTRL structure as given below.

Definition

150

User Interface

/* 0 if no window */
/* 0 if no icon */

typedef struct swcontrol {
char SwTitle[60+1];
HANDLE WindowHandle;
HANDLE IconHandle;
HANDLE PrograrnHandle
WORD ProcessId;
WORD SessionId;
BYTE SwitchFlagA;
BYTE SwitchFlagB;

/* 0 if not an installed program */
/* For this entry */
/* For this entry */

} SWCNTRL *SWCNTRLPTR;

Where

SwTitle is the ASCIIZ title for this entry. It must be a non-null string in
order to define a valid switch list entry.

WindowHandle is the handle of the main window belonging to this
entry. (0 means that there is no window, in which case this is a non­
Presentation Manager entry.)

IconHandle is the handle to access the icon for this entry.

ProgramHandle is the program handle that was used to start the pro­
gram resulting in this entry in the switch list. Only items in the switch
list that have a program handle entry can be included in the SA VE CON­
FIGURATIONfunction as these are the only programs that the Shell
knows how to get started.

Processld is the DOS process id for this entry.

Sessionld is the session identifier for this entry. The session id is gen­
erated by DOS when starting a new session running. This is a read only
field and may NOT be changed by the user.

SwitchFlagA defines the visibility of an entry in the Switch List. It is a
byte with ONE of the following values:

NOT_VISIBLE
NOT_SELECTABLE
SWL_NORMAL

No entry in the visual list
Visible, but disabled (grayed)
Visible and enabled (default value == 0)

NOT_ VIS IDLE means that this entry will not appear in the
visual switch list, but can be selected by the user by using the
Jump-Application hotkey, or, if it is a Presentation Manager
application, making a direct selection on one of the windows
belonging to that application.

NOT_ SELECTABLE means that this entry is not enabled for
selection. (On a colour screen it will appear grayed.)

SWL_ NORMAL means that this entry is both visible and
enabled for selection. (This is the default when 0 is given.)

SwitchFlagB defines the response of this entry to the
Jump-Application hotkey. It is a byte with ONE of the following
values:

151

Windows Presentation Manager Reference

JUMP_ENABLED
JUMP_DISABLED

Will appear in the round robin sequence
Will not appear in the round robin sequence

JUMP_ENABLED means that this entry will be activated as a
result of pressing the Jump-Application hotkey.

JUMP _ DISABLED means that this en try will not be activated
as a result of pressing the Jump-Application hotkey. The appli­
cation can still be activated by directly selecting the entry in the
Switch List (if the entry is visible and enabled) or, if it is a Presen­
tation Manager application, by making a direct selection on one of
the windows belonging to that application.

Definition

typedef struct swentry {
HANDLE SwHandle;
SWCNTRL SwControl;

} SWENTRY * SWENTRYPTR;

Where

/* Switch list handle for this entry *1

SwHandle is the Switch List handle for this entry.

SwControl is the SWCNTRL structure as given below.

Definition

typedef struct swcontrol {
char SwTitle[60+1];
HANDLE WindowHandle;
HANDLE IconHandle;
HANDLE ProgramHandle
WORD Processld;
WORD Sessionld;
BYTE SwitchFlagA;
BYTE SwitchFlagB;

} SWCNTRL *SWCNTRLPTR;

Where

/* 0 if no window */
/* 0 if no icon */
/* 0 if not an installed program */
/* For this entry */
/* For this entry */

SwTitle is the ASCIIZ title for this entry. It must be a non-null string in
order to define a valid switch list entry.

WindowHandle is the handle of the main window belonging to this
entry. (0 means that there is no window, in which case this is a non­
Presentation Manager entry.)

IconHandle is the handle to access the icon for this entry.

ProgramHandle is the program handle that was used to start the pro­
gram resulting in this entry in the switch list. Only items in the switch
list that have a program handle entry can be included in the SA VE CON­
FIGURATIONfunction as these are the only programs that the Shell
knows how to get started.

152

User Interface

ProcessId is the DOS process id for this entry.

SessionId is the session identifier for this entry. The session id is gen­
erated by DOS when starting a new session running. This is a read only
field and may NOT be changed by the user.

SwitchFlagA defines the visibility of an entry in the Switch List. It is a
byte with ONE of the following values:

NOT_VISIBLE
NOT_SELECTABLE
SWL_NORMAL

No entry in the visual list
Visible, but disabled (grayed)
Visible and enabled (default value == 0)

NOT_ VISIBLE means that this entry will not appear in the
visual switch list, but can be selected by the user by using the
Jump-Application hotkey, or, if it is a Presentation Manager
application, making a direct selection on one of the windows
belonging to that application.

NOT_ SELECTABLE means that this entry is not enabled for
selection. (On a colour screen it will appear grayed.)

SWL_ NORMAL means that this entry is both visible and
enabled for selection. (This is the default when 0 is given.)

SwitchFlagB defines the response of this entry to the
Jump-Application hotkey. It is a byte with ONE of the following
values:

JUMP_ENABLED
JUMP_DISABLED

Will appear in the round robin sequence
Will not appear in the round robin sequence

JUMP_ENABLED means that this en try will be activated as a
result of pressing the Jump-Application hotkey.

JUMP_DISABLED means that this en try will not be activated
as a result of pressing the Jump-Application hotkey. The appli­
cation can still be activated by directly selecting the entry in the
Switch List (if the entry is visible and enabled) or, if it is a Presen­
tation Manager application, by making a direct selection on one of
the windows belonging to that application.

Definition

typedef struct
short
short
short
short
word

xywinsize {
XPos;
YPos;
XSize;
XSize;
WinFlag;

/* X position of Window */
/* Y position of Window */
/* X extent of Window */
/* Y extent of Window */
/* MINIMISED or MAXIMISED

or INVISIBLE or NORMAL(O) */
} XYWINSIZE *XYWINSIZEPTR;

153

Chapter 4

Window Management Functions

4.1 Window management functions 159
4.1.1 Window :Manager Architecture 159
4.1.1.1 The Window 159
4.1.1.2 Window Procedures and Window Messages 159
4.1.1.3 Window Classes and Instances 160
4.1.1.4 Public and Private Window Classes 161
4.1.1.5 Window Attributes 161
4.1.1.6
4.1.1.7
4.1.1.8
4.1.1.9
4.1.1.10
4.1.1.11
4.1.1.12
4.1.2
4.1.2.1

Window Relationships 163
Window Owners and Owned Windows
Window States 165
Object Windows 165
Window Subclassing 166
Special Windows 166
Window Management Routines 167

Window Drawing Management Architecture
The Window DC 209

4.1.2.2 Cached Micro-PS 210

165

209

4.1.2.3
4.1.2.4
4.1.2.5
4.1.2.6
4.1.2.7
4.1.2.8
4.1.2.9
4.1.2.10
4.1.3

Application PS vs. Cache PS Considerations 210
Window Clipping Options 211
Window Clipping Considerations 212
Application PS Example 213
Cached-PS Example 213
Window Repainting after Window Rearrangment
Synchronous Window Updating 215
Synchronous vs. Asynchronous Painting 216

Window Drawing Functions 216

155

214

4.1.3.1
4.1.4
4.1.4.1
4.1.4.2

Drawing Helpers 224
Window Frames 230

Window Frame Architecture
The Frame Window Class

230
232

4.1.4.3 Standard Window Frame Routines 238
4.1.4.4 Using Frame Windows 242
4.1.4.5 Alternate Window Frame Formatting 242
4.1.5 The Title Bar Control 242
4.1.5.1 Title Bar Style 243
4.1.5.2 Title Bar Messages 243
4.1.5.3 Title Bar Notification Messages 245
4.1.6 The Size Control 245
4.1.6.1 Size Control Styles 246
4.1.6.2 Size Control Messages 246
4.1.6.3 Size Notification Codes 246
4.1.7 The :Minimize/Maximize Control 246
4.1.7.1 :MinMax Control Styles 247
4.1.8 Dialog :Boxes 247
4.1.8.1 The Dialog Procedure 248
4.1.8.2 Dialog Templates 249
4.1.8.3 Dialog Control Groups 252
4.1.8.4 Dialog :Box Messages 252
4.1.8.5 Dialog Styles 254
4.1.8.6 Dialog:Box Routines 254
4.1.9 Message :Boxes 261
4.1.9.1 Message Box Functions 261
4.1.10 Control Windows 266
4.1.10.1 Common Features 267
4.1.10.2 Standard Control Messages 270
4.1.10.3 Owner Notification Messages 273
4.1.11 Static Controls 276

156

4.1.11.1 Static Control Styles 276
4.1.11.2 Static Notification Codes 278
4.1.12 Button Controls 278
4.1.12.1 Button Control Styles 278
4.1.12.2 Button Control Messages 27g
4.1.12.3 Button Notification Codes 280
4.1.12.4 Button Control State Messages 282
4.1.13 Edit Controls 283
4.1.13.1 Edit Control Styles 284
4.1.13.2 Edit Control Keys 284
4.1.13.3 Edit Control Notification Messages 285
4.1.13.4 Edit Control Messages 286
4.1.14 Listbox Controls 28g
4.1.14.1 Listbox Control Styles 28g
4.1.14.2 Listbox Control Notification Messages 2g0
4.1.14.3 Listbox Control States 2g1
4.1.14.4 Listbox Control Messages 2g1
4.1.15 Scroll Bar Controls 2g7
4.1.15.1 Scroll Bar Notification Messages 2g8
4.1.16 Menu Controls 302
4.1.16.1 Action Bar Layout 302
4.1.16.2 Menu Control Styles 303
4.1.16.3 Menu Items 304
4.1.16.4 Menu Item Styles 304
4.1.16.5 Menu Item Attributes 306
4.1.16.6 Mnemonics and Mnemonic Highlighting. 306
4.1.16.7 Menu Data Structures 307
4.1.16.8 Menu Notification Messages 30g
4.1.16.g Menu Control Messages 311
4.1.17 Caret :Manager 318
4.1.18 Mouse Cursor 321

157

4.1.19 Clipboard :Manager 325
4.1.20 Rectangle Functions 337
4.1.21 Presentation :Manager Resources 343
4.1.22 Command Key Accelerators 343
4.1.23 System Colors 350
4.1.24 System Information Functions 352
4.1.25 Using Windows of Other Threads 356
4.1.26 Window Destroy Registration 359
4.1.27 System and Queue Hooks 360
4.1.28 International Information 368
4.1.29 Mscellaneous 376

158

Window Management Functions

4.1 Window management functions

4.1.1 Window Manager Architecture

4.1.1.1 The Window

A window is the standard input and output tool of a Presentation
Manager application program. Some Presentation Manager applications
use a window to display text and graphics on the system screen and to
process input from the system keyboard, mouse, and timer. In a virtual
sense, a window provides the same input and output capabilities as a com­
plete graphics terminal, but it does so without requiring complete control
of the system's actual hardware resources.

Windows are identified by a window handle which uniquely identifies the
window.

All windows in the system are associated with a particular message queue.
A message queue is associated with a particular thread; a thread may have
only one message queue. Windows are always associated with the message
queue that was associated with the thread that created with the window.
More than one window can be associated with a particular message queue.

Though there is an association between a window and its message queue
thread, a window handle may be accessed by all threads and processes.

For more information on Message Queues, see the "Message Manager" sec­
tion.

4.1.1.2 Window Procedures and Window Messages

Every window in the system has a procedure associated with it called the
"Window Procedure". The window procedure, also called the "Window
Proc", controls all aspects of a window: what it looks like, how it responds
to state changes, how it processes input, etc.

The information passed to a window procedure is called a "Window Mes­
sage". A window message is made up of five parts, which correspond to
the four arguments of the window proc and its return value:

HWND hwnd - Handle of window receiving the message
- Msg ID identifying the message
- ULONG parameter (content depends on message ID)

unsigned msg
ULONG IParaml
ULONG lParam2 - ULONG parameter (content depends on message ID)

ULONG reply - 32-bit return value (content depends on message ID)

159

Windows Presentation Manager Reference

The message ID defines the message. The contents of IParaml and
IParam2, and whether or not a return value is required, depend on the
semantics of the message as defined by the message ID.

For more information on window messages and some rules for their use,
see the "Message manager" section.

4.1.1.3 Window Classes and Instances

Every window is an "instance" of a particular window" class". The win­
dow class defines the window procedure to be used, as well as other infor­
mation that is shared by all instances of the class. Before an instance of a
particular class can be created, the window class must be registered with
the window manager.

There are a number of preregistered window classes available to applica­
tions, that are used to implement menus, scroll bars, push buttons, etc. All
of these preregistered classes are explained in detail later.

Window classes are identified by the" class name". Class names are nor­
mally specified as far pointers to standard zero-terminated strings. Case is
significant in class name strings.

Instead of a far pointer to a string, preregistered class names are specified
as a 32-bit value with Oxffff in the hi word, and a small integer in the low
word. The names of these special class name constants begin with
"WC_":

160

Class Name
Description

WC_FRAME
Standard top-level window frame class

WC_DIALOG
Standard dialog box window class

WC_BUTTON
Push buttons, checkboxes, and radio buttons

WC_EDIT
Text editing fields

WC_STATIC
Static display items such as text strings and icons.

WC_LISTBOX
Lists of text that the user can choose from.

Window Management Functions

WC_:MENU
Menus

WC_ SCROLLBAR
Scroll bars

WC_MINMAXBOX
Minimize/Maximize pushbuttons

WC_ SIZEBORDER
Window sizing border

4.1.1.4 Public and Private Window Classes

There are two kinds of window classes: public classes and private classes.
Applications can create windows of private classes only within the process
in which the class was registered. Private window class names need only
be unique for that process; more than one application may register private
window classes with the same class name.

Public window classes are window classes that can be used in any process
context to create window instances. Public class window procedures must
be callable from any process/thread context, so they must be defined as
part of a dynalink library. Public class names must be unique for all
applications; by convention, public class names should contain the module
name as part of their name. For example:

"ModuleName.ClassName"

Window instances created from public or private classes can be used by
any process in the system; the "public" and "private" terms refer only to
the scope of the window class when used to create a window.

4.1.1.5 Window Attributes

4.1.1.5.1 Window Style

The "Window Style" is a 32-bit value that controls the appearance and
behavior of a window. The window style is specified by combining various
style values together with the OR operator. The meaning and interpreta­
tion of the 32 style bits depends on the window class. There are a few
standard style bits that apply to all window classes, however. These
styles, whose names begin with "WS_", are restricted to the high order 16
bits of the window style; this leaves the lower 16 bits available for use and
interpretation by the window procedure of the window class.

161

Windows Presentation Manager Reference

4.1.1.5.2 Class Style

In addition to window styles, there are styles which apply to all the win­
dows of a given class. These are used in a similar way to Window Styles,
except that they are specified when a Window Class is registered and then
apply to ALL windows of that class. These styles have names beginning
with "CS_" and are 32-bit values.

4.1.1.5.3 Window Rectangle and coordinates

All window positions and sizes are specified in "window coordinates".
Window coordinates are in pixel sized units, with the origin (0, 0) at the
bottom left corner of a window.

Every window has a rectangle associated with it that describes the size
and position of the window on the screen. The coordinates of this RECT
structure are in window coordinates.

See the section, "Rectangle Functions" , for more information on the
RECT structure.

4.1.1.5.4 Window ID

All windows have an ID, which is a 16-bit value that is specified by the
application when the window is created. The window ID can be used to
refer to the window with that ID.

4.1.1.5.5 Window Text

Many classes of windows have a string associated with them, called the
"Window Text". This string is often displayed in the window.

4.1.1.5.6 Window Words

For window classes registered by applications, it is possible to reserve
extra memory for each window that can be used by the window procedure
to store any extra information that may be required for the window class.

When the window class is registered, the number of extra bytes to reserve
is specified. Every window instance of that class will have these bytes allo­
cated and initialized to 0, which can be read and modified by the applica­
tion or window procedure.

162

Window Management Functions

The WinQueryWindowUIntO, WinSetWindowUIntO, WinQueryWindowU­
LongO, and WinSetWindowDLongO functions are the only means for
accessing window words.

4.1.1.6 Window Relationships

Main application windows are called "top level" windows. All of these
windows are arranged in an overlapping fashion: you cannot see any part
of a window overlapped by windows above it.

Windows may also contain other windows. Windows that contain other
windows are called "Parent Windows"; the windows within the parent are
called "Child windows". Child windows are always clipped to the parent;
only the part of a child that lies within the parent's window rectangle are
visible.

Windows that share the same parent are called "Sibling Windows". Like
top level windows, siblings are arranged in an overlapping fasion. All
sibling windows are linked together. The first window on the list is con­
sidered the" Top window" of the list; the last window is known as the
"Bottom window". Since all siblings are arranged in overlapping order
this order represents the Z-axis ordering of the windows.

All children of a window, and their children, etc., are call the "Descen­
dants" of that window.

Below is a diagram illustrating one possible arrangement of some windows
on the screen. The next diagram shows the parent/child relationships of
these windows.

Notice that the windows are arranged in a tree, with a special window
called the "Desktop window" at the top of the tree. Windows A, B, and C
are top level windows, which are all children of the desktop window. The
window handle of the desktop window is not available to the application;
for those functions that require a parent window handle, NULL is used to
indicate the desktop window.

There are a few important points to note from this diagram. Window J
illustrates how windows are always contained within their parent. Win­
dows A, B, and C illustrate how windows are obscured by siblings above
them.

The actual window clipping and exclusion rules for windows is described in
"Window Drawing Management Architecture".

163

Windows Presentation Manager Reference

+--+
Desktop Window

+---+

+-----------------+
1 +----------+ 1----+ ----+

1 1 1 1
1 1 1--+ 1-----------------+
1 1 Window L 1 1 1
1 +----------+ 1 1
1 1 Window Mil
1 +-----------+ 1 1
1 Window 0 I 1
+-----------------+ 1

1 Window E 1
+-----------------------+

Window F
+----------------+

Top Level Window A
+---+

1 1
1 Window G 1 indow I 1
+----------------------+ 1-----------+

1 Window H 1
Top Level Window B +------------+

+--+
1
1

Idow J 1
1----------+
1

1
1
1 Window K
+------------------+

1 Top Level Window C
+--+

+--+

164

Figure 4.1 Parent and Child Windows

Desktop Window
I
I
+-------+-------+
I
I

A
I
I
+-+-+
I I I
I I I

D E F
I
I
+-+
I I
I I

L M

<== Topmost/First

I
I

B
I
I
+-+-+
I I I
I I I

G H I

I
I

C
I
I
+-+
I I
I I

J K

Bottommost/Last ==>

Window Management Functions

Figure 4.2 Parent/Child relationships of Previous Diagram

4.1.1.7 Window Owners and Owned Windows

When a window is created, an "owner window" may be specified. The win­
dow is said to be an "owned window" of the owner window.

The owned and owning relationship between windows may be specified by
the application. The effect of owning or being owned by a window
depends on whether the windows involved are top level windows or child
windows:

• Child windows may send notification messages to their owner win­
dows.

• When a top level window is hidden, minimized, or destroyed, other
top level windows owned by that window are hidden or destroyed.

4.1.1.8 Window States

A window can be visible or invisible. An invisible (or "hidden") window is
simply made invisible. Its size and position remain the same, as do its
parent and owner windows. However, any drawing in the window is not
shown on the screen. The visible state is controlled by the WS_ VISIBLE
window style bit.

Windows can also be disabled. A disabled window is still visible, but it
does not respond to mouse input. Windows are normally enabled. The
enabled state is controlled by the WS_ENABLED window style bit.

Some window classes support other window states in addition to the visi­
ble and enabled states. These states are typically changed and queried
with window messages.

4.1.1.9 Object Windows

Windows do not necessarily have to be a parent or child of a window on
the screen. Windows that are not part of the desktop window parent tree
are called "object windows". They have a window procedure like other
windows, and thus can be sent messages. Object windows can also be
owned by other windows (either object or normal), and they can have child
windows. But, because object windows are not part of the desktop win­
dow tree, it can't be made visible on the screen.

Windows whose parent window handles have the value of
HWND_ OBJECT are considered object windows. It is possible to change
the parent of a window with WinSetParentO. This function can be used to
make a normal window an object window by setting its parent to

165

Windows Presentation Manager Reference

HWND_ OBJECT or to make an object window a normal window by set­
ting its parent to another normal window.

Object windows have a size and position like other windows. If the object
window is later given a parent window, the position is relative to the top
left corner of the new parent.

Object windows are also known as "Orphaned" windows, as they are win­
dows without parents.

4.1.1.10 Window Subclassing

"Window Subclassing" refers to either modifying the behavior of an
instance of a window class, or creating a new window class using an exist­
ing window class. In either case, the subclass window procedure is a
"hook" into the normal window procedure. The subclass window proc
may process any message send to the window, or choose to pass it on to
the standard window procedure, or both. In this way it is possible to
modify the behavior of a window without rewriting the entire window pro­
cedure.

To subclass a window instance, it is simply necessary to replace the
window's window procedure with a new window procedure. The previous
window procedure is called in place of WinDefWindowProcO by the new
window procedure. The WinSubclassWindowO function is used to sub­
class a window.

To create a subclass from an existing class, it is necessary to register a new
window class with a window procedure that calls the existing class window
procedure in place of WinDefWindowProcO. The window proc address
and other information necessary to register a subclass may be obtained
with the WinQueryClassInfoO function.

4.1.1.11 Special Windows

There are a number of special windows in the system. These special win­
dows generally have to do with the routing of mouse and keyboard input
and commands.

4.1.1.11.1 Active Window

The "Active Window" is the top level window that either has or contains
the "focus window" (see below). It is usually the topmost window, and .is
hilighted in some way. The active window is the window that the user IS

currently interacting with.

166

Window Management Functions

4.1.1.11.2 Focus Window

The "Focus Window" is the window that will recieve all keyboard input.
See the "Input Manager" for more information on the focus window.

4.1.1.11.3 Capture Window

The "Capture Window" is the window that recieves all mouse input, even
when the mouse is not over the window. There is normally no capture
window; in that case mouse input is routed to the window underneath the
mouse cursor.

4.1.1.11.4 System Modal Window

The "System Modal Window" is a special top level window that recieves
all mouse and keyboard input. Input may also routed to one of its chil­
dren. All other top level windows behave as if they are disabled; no
in teraction is possible.

4.1.1.12 Window Management Routines

4.1.1.12.1 Window Class Styles

Window Class Styles
Meaning

CS_ SA VEBITS
This style controls whether or not the screen image of the
area underneath the window is saved when the window is
made visible. For more information, see "WinShow\,yin­
dowO"·

CS_ SIZEREDRA W
This style determines whether a window should be redrawn
when sized. This style should be used for a window whose
contents are sensitive to the size of the window. For exam­
ple, the data in some windows can be scaled up or down to
fit the size of the Client Area. In other windows, the data
remains the same size whatever the size of the window - it is
merely clipped if the window is made smaller. The
CS_ SIZEREDRAW style should be used in the first case but
not in the second. For more information, see
"WM- CALCVALIDRECTS".

167

Windows Presentation Manager Reference

CS_ SYNCP AI NT
Window will be synchronously repainted. See "Window
Painting Mter Window Rearrangement" for more informa­
tion.

CS_ P ARENTCLIP
This style controls how the window is clipped when drawing
into it. For more information, see "Window Drawing
Management" .

4.1.1.12.2 Standard Window Styles

168

Standard Window Styles
Meaning

WS_ VISIBLE
Window is visible. The absence of this bit indicates that a
window is invisible. See "WinShowWindowO" for more
information.

WS_ DISABLED
Window is disabled. The absence of this bit indicates that a
window is enabled. See "WinEnable WindowO' for more
information.

WS_ CLIP CHILDREN
Causes child windows to be excluded when drawing in the
window. Normally, child windows are not excluded. See
"Window Drawing Management" for more information.

WS_ CLIPSIBLINGS
Causes sibling windows to be excluded when drawing in the
window. Normally, siblings are not excluded. See "Window
Drawing Management" for more information.

WS_GROUP
Used to identify the dialog items that make up a "group".
See the "Dialog Manager" for more information.

WS_TABSTOP
Used to identify dialog items that will be enumerated when
the TAB key is pressed. See "Dialog Manager" for more
information.

WS_ SYSMODAL
The window is a system modal window. This means that no
other window -- even windows belonging to other applica­
tions -- can receive the focus until the window relinquishes
control (i.e. is destroyed with WinDestroyWindow). This
style is generally used for message boxes and other critical
error dialog boxes.

Window Management Functions

WS_MOVENOTIFY
A window with this style causes a W1LMOVE message to
be generated by the window manager when it is moved rela­
tive to the screen. See the 'W1L MOVE' message descrip­
tion for more detail.

4.1.1.12.3 Window Class Routines

WinRegisterClass ---
Format

BOOL WinRegisterClass(hab, IpszClassName,
IpfnWndProc,
styleClass,
cbWndExtra, idModule):

LPSTR IpszClassName:
FARPROC IpfnWndProc;
ULONG styleDefault;
INT cbWndExtra;
UINT idModule;
HAB hab;

Description
This function registers a window class having the
supplied characteristics with the window manager.
Returns TRUE if successful, FALSE otherwise.
Once registered, the class name may be used to
create windows of that class.

IpszClassName is a far pointer to the class name
string, or one of the WC_ * class name constants
to specify any of the preregistered classes. The
actual class name to be used for the preregistered
classes may be found in the description of the class
elsewhere in this manual.

lpfn WndProc is the window procedure address to
use when creating instances of this class.

styleClass specifies the window class style.
will

cb WndExtra specifies the number of bytes of win­
dow words to reserve when a window is created.

idModule is the module handle that contains the
code of the window procedure, returned by the
DOS DosLoadModule call. If idModule is NULL,
the class is assumed to be a private class. Oth­
erwse, idModule must be a module handle of a
dynamic link library containing th code of the

169

Windows Presentation Manager Reference

Notes

window procedure. The class name must also be
unique; this can be achieved by naming the class
by prepending the module name:

"ModuleName.ClassName"

Registering a public class with the same name as
an existing public class replaces the existing class.
Registering a private class with the same name as
another private class of the same process fails and
WinRegisterClassO returns FALSE. Applications
should avoid registering private classes with the
same name as an existing public class. Private
classes with the same name as a public class
preempt the public class for that process.

See "Public and Private Window Classes".

Win QueryClassName

Format

INT WinQueryClassName(hwnd, IpchBuffer, cchBufferMa
HWND hwnd;
LPSTR IpehBuffer;
INT cchBufferMax;

Description
This function copies the null terminated class
name string of the specified window into
*lpszBuffer, returning the length of the string not
including the null termination character. If the
class name is longer than cchBufferMax, it is trun­
cated at (cchBufferMax - 1) characters; the string
is always null terminated.

If the window is of any of the preregistered WC_ *
classes, the string returned will be of the form
"# n", where n is a single digit corresponding to
the value of the WC_ * class name constants.

4.1.1.12.4 Creating and Destroying Windows

typedef struet CREATESTRUCT {
UCHAR FAR *lpPresParams;
UCHAR FAR *lpCtlData;
UINT id;

170

HWND hwndlnsertBehind;
HWND hwndOwner;
HWND hwndParent;
INT ey;
INT ex;
INT y;

INT x;
ULONG style:

Window Management Functions

LPSTR lpszName;
LPSTR IpszClass;

} CREATESTRUCT;

WinCreate Window ---
Format

HWND WinCreateWindow(hab, IpszClassName,
lpszName, style, x, y, ex, ey,
hwndParent, hwndOwner, hwndlnsertBehind,
id, lpCtlData, IpPresParams);

LPSTR lpszClassName;
LPSTR IpszName;
ULONG style:
TNT x, y, ex, ey;
HWND hwndParent;
HWND hwndOwner;
HWND hwndInsertBehind;
UINT id;
HAB hab;
UCHAR FAR *lpCtlData;
UCHAR FAR *lpPresParams;

Description
Thisfunction creates a new window, returning the
window handle of the window or NULL if unsuc­
cessful.

An instance of the window class named by
IpszClassName is created. IpszClassName may be
a far pointer to a registered class name string, or it
may be one of the preregistered class names shown
in the section, "Window Classes and Instances" .

IpszName points to the window text, or to other
class-specific data. The actual structure of the
data pointed to by IpszName is class-specific r but
it is usually a zero terminated string, which is
often displayed in the window.

style specifies the style of the window. Any of the
standard WS_ style bits may be used, in addition
to any class-specific styles that may be defined for
that class.

x and y, specify the position of the window, in win­
dow coordinates relative to the origin of the parent
window (specified below). ex and cy are the hor­
izontal and vertical dimensions of the window, also
in window coordinate units.

171

Windows Presentation Manager Reference

Notes

172

hwndParent specifies the parent window. If
hwndParent is NULL, a top level window is
created. If hwndParent is HWND_ OBJECT, an
object window is created.

hwndOwner is the 'owner' window. In the case of
windows with notification codes (like controls), the
owner is the window to notify when something
happens to the control. When a window gets des­
troyed, all windows it owns get destroyed also.

hwndInsertBehind specifies the Z-ordering of the
newly created window in relation to another win­
dow. The new window is placed immediately
behind the window specified. hwndInsertBehind
can take the values HWND_ TOP and
HWND_BOTTOM to put the new window at the
top or bottom of the Z-ordering, respectively.

id is an application-specified value typically used
to identify a window. For example, all controls of
a dialog must have unique IDs so the owner win­
dow when notified can determine which control has
notified it. For standard formatting of frame con­
trols, standard IDs must be used identifying each
control type. See Frame Formatting.

IpCtlData is a far pointer to class-specific data
that may be used to pass information to the
window procedure as the window is created. This
field is available to the window proc (as are all of
the other parameters above) in the CREATES­
TRUCT structure passed with the WM-CREATE
message. It may also be accessed at any time by
the VV1L SETWINDOWP ARAMS and
WM- QUERYWINDOWP ARAMS messages.

IpPresParams is a reserved field, and must have a
value of zero.

A window is normally created enabled and invisi­
ble. See the list of the standard window styles for
more information on the initial state of a created
window.

Messages may be recieved from other processes or
threads when WinCreateWindowO is called.

WinCreateWindowO sends the WM-CREATE
message to the windoW being created. If the win­
dow is created with the WS_ VISIBLE style, Win­
Create WindowO will call WinShowWindowO,
which may cause additional messages to be sent.

Window Management Functions

The W1L SIZE message is NOT sent by Win­
Create WindowO while the window is being
created. Any required size processing can be per­
formed during the processing of the
W1L CREATE message.

Since windows are often created initially with zero
height or width and sized later with a non-zero
size, it is a good idea to avoid performing any
size-related processing if the size of the window is
zero.

It should be noted that there is no limitation to
the size and position specified for a window within
the number range permitted for the size and posi­
tion parameters. This means that an application
can create windows which are larger than the
screen or which are positioned partially or wholly
off the screen.

It should be remembered, however, that the user
interface for manipulation of window sizes and
positions is affected if part or all of the window is
off the screen. It is recommended that part of the
title bar is left on the screen, if the window has
one, to allow the user to move the window around.

These considerations apply to all windows, but
particularly to Standard windows.

WinDestroyWindow

Format

BOOL WinDestroyWindow(hwnd)
HWND hwnd;

Description
This function destroys a window and all its descen­
dants. Before the specified window is itself des­
troyed, all other top level windows owned by hwnd
are destroyed. Returns TRUE if sucessful, FALSE
if hwnd is an invalid window handle or is not asso­
ciated with the current thread.

Notes If hwnd is locked, WinDestroyWindowO does not
return until the window is unlocked. See t.he sec­
tion on "Window Locking".

Messages may be received from other processes or
threads.

Messages sent before WinDestroyWindowO
returns:

173

Windows Presentation Manager Reference

174

Message
When Sent

W1LDESTROY
Always sent to the window being des­
troyed after the window has been hidden
from the screen, but before its children
have been destroyed. The message is sent
first to the window being destroyed, then
to the children as they are destroyed.
Therefore, during the processing of the
W1L DESTROY message, it can be
assumed that all the children still exist.

W1L KILLFOCUS
Sent if the window being destroyed or
any of its descendants is the focus win­
dow.

W1LACTIVATE
Sent with LOUINT(lParaml) == FALSE
if the window being destroyed is the
active window.

W1L OTHERWINDOWDESTROYED
Sent to all top level windows if hwnd or
any of its descendants has been
registered with WinRegisterWindowDes­
troyO. See "Window Locking".

~RENDERALLFMTS
Sent if the clipboard owner is being des­
troyed, and there are unrendered formats
in the clipboard. See the "Clipboard
Manager".

If the application has associated a presentation
space with the window, it must disassociate the PS
(using GpiAssociate(hgpi, NULL)) before calling
WinDestroyWindowO. If it does not do so, Win­
DestroyWindow returns an error. Alternatively,
the application can destroy the PS before it des­
troys the window.

W1LCRE~A~T~E~ ______________________________ __

Format

WM_CREATE
IParaml:
lParam2 :
Returns:

BYTE FAR *lpCtlData;
CREATESTRUCT FAR *lpCreateStruct;
BaaL fError;

Window Management Functions

Description

WM..DESTROY

This message is sent from WinCreateWindowO.
The app uses this message for any window initiali­
zation that needs to be done. The window pro­
cedure returns TRUE to indicated that some error
occured, and the window should not be created
(i.e., WinCreateWindow() should return NULL),
and FALSE to indicate that creation should
proceed normally (and the window should be
created).

lparaml contains the Control Data parameter
which is passed to WinCreateWindow(). IParam2
contains a far pointer to a CREATESTRUCT
structure, whose fields correspond to the parame­
ters of Win Create WindowO.

Format

~DESTROY
IParaml: 0;
IParam2: OL;
Returns: OL;

Description
This message is sent when WinDestroyWindowO is
called, after the window has been removed from
the screen. The WM.. DESTROY message is used
to destroy window instance related data, before
the window structure has been freed.

4.1.1.12.5 Enabling or Disabling a Window

WinEnable Window ---
Format

BOOL WinEnableWindow(hwnd, fEnable)
HWND hwnd;
BOOL fEnable;

Description
This routine is used to enable or disable a window.
If fEn able is TRUE, hwnd is enabled, otherwis~
hwnd is disabled. The enabled state is changed by
setting or clearing the WS_ DISABLED window
style bit, as appropriate. Returns TRUE if the
window was previously enabled, FALSE if it was

175

Windows Presentation Manager Reference

176

Notes

not.

If the enable state is changed, a Wl\L ENABLE
message is sent before WinEnableWindowO
returns. This message is sent only if a state
change occurs.

If the window is disabled, and it or one of its chil­
dren is the focus window, then WinSetFocusO is
called to set the focus window to NULL. However,
the focus window may be set to a disabled window
after the window is disabled.

When a window is disabled, its children are impli­
citly disabled, although they are not send the
Wl\L ENABLE message.

A disabled window does not respond to mouse
input, but may still recieve keyboard input if it is
the focus window.

This function may be used to enable or disable
ANY window, including the standard controls such
as pushbuttons, scrollbars, etc.

Typically, a window changes its appearance when
disabled. For example, a disabled pushbutton is
displayed with halftone text.

WinIs WindowEnabled

Format

BOOL WinlsWindowEnabled(hwnd)
HWND hwnd;

Description

Wl\LENABLE

Returns TRUE is hwnd is enabled, FALSE if it is
disabled. A window is enabled if its
WS_ DISABLE window style bit is clear and dis­
abled if the bit is set.

Format

WM_ENABLE
IParaml:
IParam2:
Returns:

BOOL fEnable
OL
OL

Window Management Functions

Description
The WJ\LENABLE message is sent from WinEna­
ble WindowO if a window's enable state is chang­
ing. If fEnable is TRUE, a previously disabled
window has been enabled. If fEnable is FALSE, a
previously enabled window has been disabled.

This message is always sent before WinEnable Win­
dowO returns, but AFTER the window enable
state (WS_DISABLE window style bit) has been
changed.

This message is sent only if a state change has
occured.

4.1.1.12.6 Showing or Hiding a Window

Normally when a window is hidden, the windows underneath must redraw
themselves clipped to the area being uncovered. However, if the
CS_ SA VEBITS style is specified, the screen image underneath the window
is saved when the window is made visible. When the window is hidden or
destroyed, this window image is simply replaced onto the screen, avoiding
any window repainting. If an application draws into a window underneath
a CS_ SA VEBITS window, or ifthe window is sized or moved, the area of
the saved image that is invalidated is redrawn when the window is hidden.

Because saved screen images can take up quite a bit of memory for large
windows, the CS_SAVEBITS class style should be used carefully. It is
generally used for transient windows such as menus and dialog boxes, not
for main application windows.

WinShowWindow
~~---

Format

BOOL WinShowWindow(hwnd, fShow)
HWND hwnd;
BOOL fShow;

Description
This function is used to show or hide a window. If
fShow is TRUE, the window is shown; if fShow is
FALSE, the window is hidden. If the window is
shown, it is made visible on the screen, and subse­
quent drawing in the window will be visible. If the
window is hidden, the window is removed from the
screen and all subsequent drawing in the window
will not be visible.

The visible state is changed by setting or clearing

177

Windows Presentation Manager Reference

178

the WS_ VISIBLE window style bit. The
WM-SHOW message is sent AFTER the
WS_ VISIBLE bit is changed. WinShowWindowO
returns TRUE if the WS_ VISIBLE bit was previ­
ously set, FALSE if it was clear.

If the visible state of the window is changed, then
the WM-SHOW message is sent before
WinShowWindowO returns.

The WM-SHOW message is sent to the specified
window before this function returns, but only if a
state change has occured.The message is sent
AFTER the state change occurs.

WinEnable WindowU pdate

Format

BOOL WinEnableWindowUpdate(hwnd, fShow)
HWND hwnd;
BOOL fShow;

Description

Notes

This function is similar to WinShowWindowO,
except that no drawing is performed. If fShow is
FALSE, the WS_ VISIBLE window style bit is
cleared, without removing the image of the window
from the screen. Any subsequent drawing in that
window will not be visible.

If fShow is TRUE, then the WS_ VISIBLE bit is
set, without actually causing the window to be
redrawn. Subsequent drawing in the window will
be visible, however.

WinEnable WindowUpdateO returns TRUE if the
WS_ VISIBLE bit was prevIOusly set, FALSE if it
was clear.

The W1L SHOW message is sent to the specified
window before this function returns, but only if a
state change has occured. The message is sent
AFTER the state change occurs.

This function is usually used to disable drawing
before making a series of changes to a window to
prevent needless drawing. To show a window and
ensure that it is redrawn after calling WinEna­
ble WindowUpdateO with fShow == FALSE, use
WinShowWindow(J with fShow == TRUE.

Window Management Functions

WinIs WindowVisible

Format

BOOL WinIsWindowVisible(hwnd)
HWND hwnd;

Description

Notes

WM-SHOW

Returns TRUE if the specified window and its
parents are visible (i.e., have their WS_ VISIBLE
window style bits set), FALSE otherwise.

This function does NOT simply return the state of
the WS_ VISIBLE style bit of the specified window;
the state of all of the parents of hwnd are tested as
well.

WinlsWindowVisibleO may return TRUE even if
the window is completely obscured by other win­
dows.

--
Format

WM_SHOW
IParaml: BOOL fShow
IParam2: OL
Returns: OL

Description

Notes

This message is sent from WinShowWindowO after
a visible window is hidden, or a hidden window is
shown. If fShow is TRUE, a previously hidden
window is being shown; if fShow is FALSE, a previ­
ously visible window is being hidden.

In this context, "Shown" or "Hidden" refers to the
state of the WS_ VISIBLE style bit. This message
is NOT sent when a window is obscured by other
windows above it.

4.1.1.12.7 Window Data Routines

Win Query WindowText

Format

INT WinQueryWindowText(hwnd, IpszBuffer, cchBufferMax
HWND hwnd;

179

Windows Presentation Mana.ger Reference

LPSTR lpszBuffer;
INT cchBufferMax;

Description
This function copies the null terminated window
text of the specified window into *lpszBuffer,
returning the length of the string not including the
null termination character. If the window's text is
longer than cchBufferMax, it is truncated at
(cchBufferMax - 1) characters; the string is always
null termina ted.

Notes This function simply sends a
WM- QUERYWINDOWP ARAMS message to the
specified window.

If hwnd is a window of another process, then
IpszBuffer must point to memory that is shared by
both processes or a memory fault may occur.

If this function is called with a frame window han­
dle, then the text of the title bar frame control is
returned.

The WM- QUERYWINDOWP ARAMS message
may be sent to determine the size of the string.

Win Query WindowTextLength

180

Format

INT WinQueryWindowTextLength(hwnd)
HWND hwnd;

Description
This function returns the length of the window
text of the specified window, not including the
zero-termination character. It sends a
WM- QUERYWINDOWP ARAMS message to the
window to obtain the information.

WinSet WindowText

Format

BOOL WinSetWindowText(hwnd, lpszText)
HWND hwnd;
LPSTR lpszText:

Description
This function sets the text of the specified window
to the string *lpszText. IpszText is a far pointer

Notes

Window Management Functions

to a zero-terminated string. Returns TRUE if suc­
cessful, FALSE otherwise.

This function simply sends a
W1L SETWINDOWP ARAMS message to the
specified window.

If hwnd is a window of another process, then
IpszText must point to memory that is shared by
both processes or a memory fault may occur.

If WinSet WindowText() is called with a frame win­
dow handle, the text of the title bar frame control
is changed. See "Window Frames" for more infor­
mation.

WinSet WindowParams

Format

BOOL fSuccess = WinSetWindowParams(lpszText,
IpCtlData, IpPresParams,
rgfStatus);

LPSZ IpszText;
UCHAR FAR *lpCtlData;
UCHAR FAR *lpPresParams;
UINT rgfStatus;

Description
This function sends a
W1L SETWINDOWP ARAMS message. The
parameters correspond to the parameters of the
mes~age. Returns TRUE if successful, FALSE oth­
erWIse.

WinQueryWindowParams

Format

INT cchText = WinGetWindowParams(lpszText,
cchTextMax, IpCtlData, IpPresParams,
rgfStatus);

LPSZ IpszText;
INT cchTextMax;
UCHAR FAR *lpCtlData;
UCHAR FAR *lpPresParams;
UINT rgfStatus;

Description
This function sends the
W1L QUERYWINDOWP ARAMS message. The
parameters correspond to the parameters of the

181

Windows Presentation Manager Reference

message. The function returns the length of the
window text if WPM- TEXT is specified in
rgfStatus, otherwise 0 is returned.

WinQueryDesktop Window

Format

HWND hwndDesktop = WinQueryDesktopWindow (hab, hdc
HAB hab;
HDC hdc;

Description

Notes

This function returns the desktop window handle
for the device associated with hdc, or the default
desktop window (screen) if hdc is NULL.

The call will fail if it is issued to a device which
does not support windowing. This is any device
which is not the screen device.

Many of the calls that require a desktop window
handle will accept NULL instead of the desktop
window handle. For example, WinCreateWindow
will accept NULL for hwndParent in order to
create a top level window, which is a child of the
desktop window.

4.1.1.12.8 Wz"ndow data messages

typedef struct {
UINT cchText;
UINT cchTextMax;
LPSZ IpszText;
UCBAR FAR *lpCtlData;
UCBAR FAR *lpPresParams;

} WNDP ARAMS ;

lpszText is a pointer to the control text, or NULL.

IpCtlData is a pointer to the control data, or NULL.

lpPresParams is a null pointer.

cchText is used only with the WM- QUERYWINDOWP ARAMS message:
the length of t text (excluding the zero termination character) is returned
in this field. If IpszText is not NULL, this field contains the number of
characters copie into *lpszText, not including the zero termination charac­
ter. The maximum length in this case is cchTextMax - 1.

182

Window Management Functions

cchTextMax is used only with W1L QUERYWINDOWP ARAMS: it con­
tains the size in characters of the text buffer pointed to by IpszText. This
field is ignored by W1L SETWINDOWP ARAMS.

rgfStatus values

WPM- TEXT Set/Query control text
WPM-CTLDATA Set/Query control data
WPM-PRESPARAMS Set/Query presentation parameters

wrvL SETWINDOWP ARAMS

Format

WM_SETWINDOWPARAMS
lParaml: CTLPARAMS FAR *lpWndParams;
lParam2: ULONG rgfStatus;
Returns: BOOL fSuccess;

Description

Notes

This message is used to set the window data for a
window. lParaml is a far pointer to a wndparams
structure defined above, and IParam2 contains the
WPM- status flags above.

If this message is sent to a window of another pro­
cess, then *lpWndParams, and the three data
areas pointed to by *lp WndParams, must all be in
memory shared by both processes.

W1L QUERYWINDOWP ARAMS

Format

WM_QUERYWINDOWPARAMS
lParaml: CTLPARAMS FAR *lpWndParams;
lParam2: ULONG rgfStatus;
Returns: BOOL fSuccess;

Description

Notes

This message is used to query the window data for
a window. IParaml is a far pointer to a
wndparams structure defined above, and IParam2
contains the WPM- status flags above.

If this message is sent to a window of another pro­
cess, then *lp WndParams, and the three data
areas pointed to by *lp WndParams, must all be in
memory shared by both processes.

183

Windows Presentation Manager Reference

4.1.1.12.9 W£ndow Information Funct£ons

Win WindowFromID

184

Format

HWND WinWindowFromID(hwndParent, id)
HWND hwndParent;
UINT id;

Description

Notes

This function returns the child window handle of
hwndParent that has the specified window ID.

To obtain the window handle of a particular dialog
item, Win WindowFromIDO may be called with the
dialog box window handle and the dialog item ID
specified in the dialog template. See the "Dialog
Manager" for more information.

WinMult WindowFromIDs

Format

INT WinMultWindowFromIDs(hwndParent, lprghwnd,
idFirst, idLast)

HWND hwndParent;
HWND FAR *lprghwnd;
UINT idFirst, idLast;

Description

Notes

This function is used to quickly fill an array of
window handles that have window ID values
between idFirst and idLast, inclusive. The window
handles are returned in *lprghwnd. l~rghwnd is
assumed to have (idLast - idFirst + 1) elements in
the array. The wmdows are stored in the array
indexed by their window ID: a window is stored in
lprghwnd*?*id - idFirst*?*, where id is the window
ID of the window. If no window exists with an ID
in the range, that corresponding element in the
array is NULL.

This function returns the number of window han­
dles return in the lprghwnd array. Returns 0 if no
window handles were returned.

This function may be used to enumerate all items
in a dialog group with contiguous ID values, or to
enumerate all of the frame controls. This function
is faster than multiple calls to Win Win­
dowFromIDO·

Window Management Functions

WinQueryWindow ---
Format

HWND WinQueryWindow(hwnd, code, fLock)
HWND hwnd;
INT code;
BOOL fLock;

Description

WinIs Window

WinQueryWindowO returns a window handle asso­
ciated with the specified window, depending on the
code parameter. The available values of the code
parameter and their effect is shown in the table
below. If fLock is TRUE, then the window is
returned locked, and the caller is responsible for
unlocking it. If fLock is FALSE, the window is
returned unlocked. See "Window Locking"

If WinQueryWindowO is used to enumerate win­
dows of other threads, it is not guaranteed that all
windows will be enumerated, because the Z order­
ing of the windows might change during the
enumeration. Use WinEnum WindowO instead: see
"Window Enumeration".

Available WinQueryWindowO codes:

WinQueryWindow Codes
Code

QW_NEXT
Next window (window below)

QW_PREV
Previous window (window above)

QW_TOP
Top most child window

QW_BOTTOM
Bottom most child window

QW_OWNER
Owner of window

QW_PARENT
Parent of window. Returns
HWND_ OBJECT if object window.

185

Windows Presentation Manager Reference

Format

BOOL WinIsWindow(hab, hwnd)
HWND hwnd;
HAB hab;

Description

WinIsChild

Format

This function returns TRUE if hwnd is a valid win­
dow handle, FALSE otherwise.

BOOL WinIsChild(hab, hwndParent, hwnd)
HWND hwndParent;
HWND hwnd;
HAB hab;

Description
Returns TRUE if hwnd is a descendant of
hwndParent, FALSE otherwise. If hwndParent is
NULL, this function returns TRUE if hwnd is a top
level window.

WinQueryWindowProcess

Format

UINT WinQueryWindowProcess(hwnd, lptid)
HWND hwnd;
UINT FAR * lptid;

Description
This function is used to obtain the process ID and
thread ID associated with a window. Returns the
process ID, or NULL if unsuccessful. The thread
ID is returned in *lptid. If lptid is NULL, the
argument is ignored and the thread ID is not
returned.

4.1.1.12.10 Wz"ndow Sz"ze (3 Posz"tz"on Related Functions

186

WinQueryWindowRect

Format

void WinQueryWindowRect(hwnd, lprc)
HWND hwnd;

Window Mana.gement Functions

LPRECT Iprc;

Description

WinSetParent

This function returns the window rectangle of the
specified window in *lprc. The rectangle is
returned in window coordinates relative to the bot­
tom left corner of the parent of hwnd, or the
screen if hwnd is a top level window.

Format

HWND WinSetParent(hwnd, hwndNewParent, fRedraw);
HWND hwnd;
HWNDhwndNewParent;
BOOL fRedraw;

Description

Notes

This function changes the parent window of hwnd
to hwndNewParent, returning its previous parent
handle.

If hwnd is visible and it is not an object window,
the appropriate redrawing is performed.

If hwndNewParent is HWND_ OBJECT, hwnd
becomes an "object window". Object windows can
be converted to normal windows again on the
screen by setting their parent to another normal
window.

If hwndNewParentis NULL, hwnd becomes a top
level window.

If hwnd is visible and fRedraw is TRUE, any neces­
sary redrawing in both the old parent window and
the new parent window is performed. If fRedraw is
FALSE, no redrawing is performed. This is useful
at times when the window will be later redrawn
anyway, such as during WM-SIZE message pro­
cessing. The window is essentially first hidden in
the old parent window, and shown again in the
new parent window. The messa~es sent are the
same as with WinShowWindow{).

hwndNewParent may not be a child of hwnd.

This function returns an unlocked window handle.

The WinQueryWindowO function can be used to
get a window's parent ..

187

Windows Presentation Manager Reference

WinSetOwner ---
Format

HWND WinSetOwner(hwnd, hwndNewOwner)
HWND hwnd;
HWND hwndNewOwner;

Description

Notes

This function changes the owner window of hwnd
to hwndNewOwner, returning its previous owner
window. hwndNewOwner may be NULL to disown
a window. If the window was not previously
owned, NULL is returned.

This function returns an unlocked window owner.

The WinQueryWindowO function can be used to
get a window's owner.

typedef struet {
HWND hwnd;
HWND hwndlnsertBehind;
INT x, y;
INT ex, ey;
UINT rgfSwp;

} SWP;

188

WinSet WindowPos
----~---

Format

BOOL WinSetWindowPos(hwnd, hwndlnsertBehind,
x, y, ex, ey, rgfSwp)

HWND hwnd;
HWND hwndlnsertBehind;
INT x, y, ex, ey;
UINT rgfSwp;

Description
WinSet WindowPosO is a general window position­
ing function, used to change position, size, and Z
ordering of any window. Returns TRUE if success­
ful, FALSE otherwise.

hwnd is the window to be changed. It it positioned
x and y units from the bottom left corner of its
parent, with the size specified by cx and cy. The
window is inserted behind hwndInsertBehind.

If hwndInsertBehind is HWND_ TOP, then hwnd is
brought to the top, relative to it siblings. If hwnd
is a top level window, it is activated if it is brought

Notes

Window Management Functions

to the top. If the active window is moved behind
another window, the new top window is activated.

If hwndInsertBehind is HWND_ BOTTOM, then
hwnd is placed at the bottom relative to its
siblings.

Not all of these parameters must be specified. The
rgfSwp parameter controls the interpretation of
the parameters, and the behavior of WinSet Win­
dowPosO:

WinSet WindowPos Flags
Flag

SWP_SIZE
Change the size of the window. ~or­
mally, the size is not changed.

SWP_MOVE
Move the window. Normally, the win­
dow is not moved.

SWP_ZORDER
Change the window Z ordering. Nor­
mally, the hwndlnsertBehind parameter
is ignored.

SWP _ NOREDRA W
Don't redraw changes. Normally,
changes made are redrawn.

SWP_ACTIVATE
Activate the window if the window is
brought to the top, and deactivate the
window if it is moved from the top to
behind another window. The new top­
most window is activated. Normally, the
active window is not changed.

SWP_ADJUST
Send a WM...-ADJUSTWINDOWRECT
message before moving or sizing window.

Messages may be received from other processes or
threads.

If a window is made smaller and it was has the
CS_ SA VEBITS style, the saved screen image is
used to redraw the area uncovered when the win­
dow size changes, if those bits are still valid. See
"Showing and Hiding Windows" .

If the CS_ SIZEREDRA W style is present, the
entire window area is assumed invalid if sized.

189

Windows Presentation Manager Reference

190

Otherwise WM- CALCV ALIDRECTS is sent to the
window to inform the window manager which bits
may be possible to preserve.

Messages sent from WinSetWindowPosO and \Nin­
SetMultWindowPosO have specific orderings
within the window positioning process. The process
begins with redundancy checks and precalculations
on every window for each requested operation. For
example, if SWP _SHOW is present but the win­
dow is already visible, SWP _ SHOW is turned off.
If SWP _ SIZE is present and the new size is equal
to the old size, SWP _ SIZE is turned off, etc. If the
operations will create new results, the information
is calculated and store away. For example, if sizing
or moving, the new window rectangle is stored
away for later. It is at this point that the
WM-ADJUSTWINDOWRECT message is sent to
any window that is sizing or moving. It is also at
this point that the WM- CALCVALIDRECTS mes­
sage is sent to any window that is sizing and
doesn't have the CS_SIZEREDRAW class style.

Once all the new window state is calculated, the
window management process begins. Window areas
that can be preserved are moved from the old to
the new positions, window areas that are invali­
dated by these operations are calculated and dis­
tributed as update regions, etc. Once this is
finished, and before any sync paint windows are
repainted, the WM- SIZE message is sent to any
windows that have changed size.
at Next, all the sync paint windows that can be
repainted are repainted, and the entire process in
complete.

If a sync paint parent window has a size sensitive
area displayed that includes sync paint child win­
dows, the parent will want to reposition those win­
dows when it gets the WM- SIZE message. Their
invalid regions will get added to the parent's,
resulting in one update after the parent's
WM- SIZE message, rather than many indepen­
dent and later duplicated updates.

Messages sent from WinSetWindowPosO:

Message
When Sent

Window Management Functions

W1L CALCV ALIDRECTS
This message is sent to determine the
area of a window that may be possible to
preserve as the window is sized.

See "Window Painting" for more infor­
mation on the
W1L CALCV ALIDRECTS message.

W1L SYNCP AINT
This message is sent when any part of a
window with the WS_SYNCPAINT class
style becomes uncovered or otherwise
requires repainting. May be sent to win­
dows of other processes or threads.

W1LSIZE
This message is sent if the size of the
specified window has changed. Sent
AFTER the window's size has changed.

W1LACTIV ATE
If a top level window is brought to the
top and SWP _ NOACTIVATE is not
specified, the window is activated. In
this case, WinSetActive WindowO will
send a W1LACTIVATE message, and
possibly others. See WinSetActive Win­
dowO for more information.

W1LADJUSTWINDOWRECT
This message is sent if SWP _ ADJUST is
specified. IParaml points to an SWP
structure which has been filled in by
Set WindowPosO with the proposed
move/size data. The windowl may
adjust this new position by changing the
contents of the SWP structure. It can
change the x/y fields to adjust its new
position; it can change the cx/cy fields to
adjust its new size, or it change the
hwndInsertBehind field to adjust its new
z-order.

WinSetMult WindowPos

Format

BOOL WinSetMultWindowPos(hab, IpSwp, cSwp)
HAB hab;
SWP FAR *lpSwp;
INT cSwp;

191

Windows Presenta.tion Mana.ger Reference

Description
This function is similar to WinSetWindowPos(),
except that it can be used to reposition more than
one window at a time. IpSwp points to an array of
SWP structures, and cSwp is the count of SWP
structures in that array. A single call to Set­
MultWindowPos{) is much faster and causes less
screen uJ>dating than multiple calls to WinSetWin­
dowPosU·

All the windows concerned must have the same
parent.

The fields of the SWP structure correspond to the
parameters of SetWindowPosO.

R~turns TRUE if any error occured, FALSE other­
WIse.

WNLSIZE

192

Format

WM_srZE
LOU I NT (lParaml) : INT cxNew
HIUINT(lParaml): INT cyNew
LOUINT(lParam2): INT cxOld;
HIUINT(lParam2): INT cyOld;
Returns: OL

Description
This message is sent from WinSetWindowPosO ot
WinSetMult WindowPosO when a window's size
is initialized or changed. cxOld and cyOld are the
PREVIOUS horizontal and vertical dimensions of
the window. The LOUINT of lParaml contains
the new width of the window, the HIUINT of
IParaml contains the new height of the window.

This message is NOT sent by WinCreateWindowO
when the window is created. Any size related pro­
cessing must be performed during the
W1tL CREATE message processing.

This message is sent after the window has been
actually sized, but before any repainting has been
performed. Any resizing or repositioning of child
windows, etc., that may be necessary as a result of
the size change is usually performed during the
processing of this message. It is generally unwise
to do any output to the window during the pro­
cessing of the W1tL SIZE message, because the
area drawn into may be drawn a second time after

WJVLMOVE

Window Management Functions

the WM...- SIZE }?rocessing is complete by Win­
Set WindowPosU.

The processing of this message for a window which
is displaying an Advanced Vio presentation space
must be carried out by WinDefAVioWindowProc.
See the section, "WM...-SIZE Message Processing",
for details.

Format

~MOVE
IParaml: OL
IParam2: OL
Returns: OL

Description
The window manager sends a WM...- MOVE mes­
sage when a window with WS_MOVENOTIFY
style changes its absolute position (ie. relative to
the origin of the screen). It is sent from Win-
Set WindowPosO, WinSetMult WindowPosO, and
WinScrollWindowO·

The window's new position is obtained by calling
WinGetWindowRectO, and can make those rectan­
gle coordinates relative to any window by calling
WinMap WindowPoin tsO.

There are several cases where windows want to
know if they've been moved. This includes the
cases when the window doesn't change position
relative to its parent but does change position rela­
tive to the screen (its absolute position).

An example is menus. When a top level menu con­
trol (child of the frame window) moves its absolute
position as a result of the frame window being
moved, the top level menu control wants to move
any pull down menus along with its movement.
The same goes for application / dialog box posi­
tional grouping. In some cases a dialog box might
want to be moved as the main window is moved, to
clear room for other applications.

W1L CALCV ALIDRECTS

193

Windows Presenta.tion Mana.ger Reference

194

Format

WM_CALCVALI DRECTS
lParaml: RECT FAR *lprcWindowOld;
lParam2: RECT FAR *lprcWindowNew;
Returns: UINT Align;

Description
This message is sent from WinSetWindowPosO and
WinSetMultWindowPosO to determine which areas
of a window may be preserved if a window is sized,
and which should be redisplayed. This message is
NOT sent if this window has the
CS_ SIZEREDRA W style, indicating size sensitive
window content that must be totally redrawn if
sized (see WinSetWindowPos()).

IParaml points to a rectangle structure that con­
tains the rectangle of the window before the move.
IParam2 points to the new window rectangle. The
coordinates of the rectangles are parent window
relative. This allows the application to determine
if the window's position has changed as well as its
size, which can aid alignment processing.

These rectangles may be modified by the window
procedure to cause parts of the window to be
redrawn and not preserved.

The window manager will attempt to preserve the
screen image by copying the image described by
the old rectangle into the image described by the
new rectangle. In this way, an application may
control the alignment of the preserved image as
well, by changing the origin of the first rectangle.

If no change is made to either rectangle, the entire
window area is preserved. If either rectangle is
empty, the entire window area is completely
redrawn by the operation. The message has a
return value, Align, which can be used to instruct
WinSet WindowPos() how to align valid window
bits. This return varue is made up from CVIL
flags, as follows:

CVILALIGNLEFT
Align with the left edge of the window

CVILALIGNBOTTOM
Align with the bottom edge of the win­
dow

Window Management Functions

CVILALIGNTOP
Align with the top edge of the window

CVIL ALIGNRIGHT
Align with the right edge of the window

CVILREDRAW
The whole window is invalid

If 0 is returned, it is assumed the application has
changed the rectangles pointed to by IParaml and
IParam2 itself.

If CVIL REDRAW is set, the whole window is
assumed invalid. Otherwise, the remaining flags
may be OR'ed together to get differing kinds of
alignment. For example:

(CVR-ALIGNLEFT I CVR_ALI GNTOP)
Align the valid window area with the
top left of the window.

The WinDefWindowProcO default is to return
CVIL REDRAW if the wmdow has the stvle
CS_ SIZEREDRA W, and otherwise align the valid
area with the window oriyin by returning
(CVILALIGNBOTTOM I CVILALIGNLEFT).

In addition, any child windows intersecting the
source rectangle pointed to by IParaml of the
WM".- CALCV ALIDRECTS message will also be
offset with the aligned window area.

This functionality can be used to optimize window
updating when the window is resized. For exam­
ple, if the application returns that the window is
to be aligned with the top left corner, and the top
border is sized, the window's screen data will move
with the top border.

In all cases, the rectangles are intersected with the
area of the screen that is actually visible and the
valid area of the window. That is, only the win­
dow area that contains window information is
copied.

For example, consider an application that has two
scroll bars, which are children of the client win­
dow. When the window is resized, the scroll bars
must be completely redrawn. By returning rectan­
gles that exclude the scroll bars, the area of the
scroll bars is completely redrawn, thereby preserv­
ing onl~ that part of the screen that is worth
preservmg.

195

Windows Presentation Manager Reference

4.1.1.12.11 Window Subclassing Functions

WinSu bclass Window

Format

FARPROC WinSubclassWindow(hwnd, IpfnNewWindowProc)
HWND hwnd;
FARPROC IpfnNewWindowProc;

Description
This function is used to subclass the specified win­
dow. The window procedure of the specified win­
dow is replaced with IpfnNewWindowProc, which
is a far procedure address of a window procedure.
This function returns the specified window's previ­
ous window proc address.

Note When subclassing, the new procedure address
should call the old procedure address in place of
calling WinDefWindowProcO.

To reverse the effect of subclassing, simply call
WinSubclassWindowO with the previous window
procedure address.

This routine does not allow the application to sub­
class a window associated with another process.

If this function fails, zero (LONG) is returned.
ted

typdef struct {
ULONG styleClass;
FARPROC IpfnWindowProc;
INT cbWndExtra;
UINT idModule;

} CLASSINFO;

196

WinQuery....:C....:I=as:.::s:.::.ln=f:..:o~ __________________ _

Format

BOOL WinQueryClassInfo(hab, IpszClassName,
IpClassInfo)

RAE hab;
LPSTR IpszClassName;
CLASSINFO FAR *lpClassInfo;

Description
This function is used to obtain information about
the specified window class. Returns TRUE if the
class named by *lpszClassName exists, FALSE

Window Management Functions

Notes

otherwise. If the class exists, information about
the class is returned in *lpClassInfo.

This function is used to create subclasses of a
given class.

4.1.1.12.12 W£ndow Enumerat£on Funct£ons

The three functions WinBeginEnumWindowsO, WinEnumWindowO, and
WinEndEnumWindowsO are used to enumerate windows that might be
owned by different processes or threads. Anyone application can not
make any assumptions about a window owned by another process or
thread unless that window is locked. Instead of locking all the windows in
the list to be enumerated, Presentation Manager makes a snapshot copy of
the list of window handles to be enumerated, which is represented by an
'enumeration' handle. The application uses this handle for subsequent
enumeration calls to get at the windows in this list. There is a final call
which ends the enumeration and frees the enumeration handle. See "Win­
dow Locking" .

Below is an example of how these functions are used to enumerate win­
dows:

/*
* Enumerate all top level windows
*/

hEnum = WinBeginEnumWindows(NULL);

/*
* For each window handle returned from WinEnumWindow(), call our
* internal function DoSomething(), until we've enumerated the
* entire list.
*/

while ((hwnd = WinEnumWindow(hEnum» != NULL) {
DoSomething(hwnd);
/*

* Be sure to unlock the window when finished with it.
*/

UnlockWindow(hwnd);
}

/*
* Finish the enumeration
*/

WinEndEnumWindows(hEnum);

Window enumeration USi~ these functions may be nested; however, a call
to WinEndEnum Windows must be made with the handle returned from
its corresponding call to inBeginEnum WindowsO·

197

Windows Presentation Manager Reference

198

WinBeginEnum Windows

Format

HENUM WinBeginEnumWindows(hab, hwndParent)
HWND hwndParent;
HAB hab;

Description

WinEn urn Window

This function begins the enumeration of all the
children of hwndParent, returning a handle to be
used when enumerating these windows. Regardless
of any subsequent changes to the window Z order­
ing, the windows are enumerated in the Z ordering
that existed at the time WinBeginEnum Windows
was called. This ensures that all of the child win­
dows of hwndParent are enumerated.

If hwndParent is NULL, all top level windows are
enumerated.

Windows may be destroyed after WinBe­
ginEnum WindowsO is called.

See the example above.

Format

HWND WinEnumWindow(hEnum)
HENUM hEnum;

Description
This function returns the next window to be
enumerated. hEnum is a handle returned by Win­
BeginEnumWindowsO. Each call to this function
returns the next window to be enumerated. NULL
indicates that all windows have been enumerated.

WinEnum WindowO always returns a locked win­
dow handle, which must be unlocked by the caller.

See example above.

WinEndEn urn Windows

Format

BaaL WinEndEnumWindows(hEnum)
HENUM hEnum;

Window Management Functions

Description
This function ends the enumeration of the win­
dows. hEnum is the handle returned by a previous
call to WinBeginEnum WindowsO.

See example above.

4.1.1.12.13 Window Hit Testing

"Hit Testing" refers to the process of determining what object a mouse
point is in. Window hit testing is the process of determining which win­
dow a given mouse point is within.

Win WindowFromPoin t

Format

HWND WinWindowFromPoint(hab, hwndParent,
Ippt, fEnumChildren)

HAB hab;
HWND hwndParent;
POINT FAR *lppt;
BaaL fEnumChildren;

Description
Returns the window handle underneath the
specified point, by checking to see if *lppt is within
the window rectangles of the children of
hwndParent. Returns hwndParent if the point is
not inside any of the children of hwndParent, but
is inside hwndParent. Returns NULL if the point
is outside hwndParent.

*lppt must be specified in window coordinates,
relative to hwndParent.

If hwndParent is NULL, then all top level windows
are enumerated. In this case, *lppt must be rela­
tive to the top left corner of the screen.

If fEnumChildren is TRUE, all descendants of
hwndParent are hit tested; otherwise, only
immediate children of hwndParent are hit tested.

199

Windows Presentation Manager Reference

4.1.1.12.14 Coordinate Mapping

WinMap WindowPoin ts

Format

void WinMapWindowPoints(hab, hwndfrom, hwndTo,
lprgpt, cpt)

RAB hab;
HWND hwndfrom;
HWND hwndTo;
POINT fAR *lprgpt;
INT cpt;

Description

Examples

Maps hwndFrom relative window coordinate
points to hwndTo relative window coordinate
points. lprgpt is a far pointer to an array of
POINT structures to map, and cpt is the number
of structures in the array.

If hwndFrom is NULL, the points in the array are
assumed to be in screen coordinates.

If hwndTo is NULL, the points in the array will be
mapped to screen coordinates.

lprgpt may be used to point to a RECT structure;
in this case cpt must be 2.

/* map from window to screen coordinates */
WinMapWindowPoints(hwndfrom, NULL, lppt, cpt);

/* map from screen to window coordinates */
WinMapWindowPoints(NULL, hwndTo, lppt, cpt);

/* map from child to parent window coordinates */
WinMapWindowPoints(hwndChild,

WinQueryWindow(hwndChild, QW_PARENT, fALSE),
lppt, cpt);

4.1.1.12.15 Accessing Window Words

For window classes registered by applications, it is possible to reserve
extra memory for each window that can be used by the window procedure
to store any extra information that may be required for the window class.

When a window class is registered, the number of extra bytes to reserve is
specified. Every window instance of that class will have these bytes allo­
cated and initialized to 0, which can be read and written by the applica­
tion or window procedure.

200

Window Management Functions

These functions are used to access this reserved memory. In addition,
there are special values that can be used to access certain internal window
fields, as shown in the table below. QWL constants are for use with Win­
QueryWindowUIntO and WinSetWindowUIntO, and QWL_ constants are
for use with WinQueryWindowULongO and WinSetWindowULongO:

Standard WinQueryWindowUInt Indexes
Index

QWL_HMQ
Message queue handle

QWLID
Window ID (ID passed to WinCreateWindow())

QWL_STYLE
Window style

QWL_ WNDPROC
Window Procedure address

QWL_USER
The following prere~istered window classes have a window
ULONG at WinSetjQueryWindowULongO offset
QWL_ USER available for application use:

WC_DIALOG

WC_FRAME

WC_LISTBOX

WC_BUTTON

WC_STATIC

WC_EDIT

WC_ SCROLLBAR

WC_MENU

This is useful for placing application-specific data in con­
trols.

Note: QWL constants should NEVER be used with WinQueryWindowU­
LongO or WinSetWindowULongO, and QWL_ constants should NEVER
be used with WinQueryWindowUIntO or WinSetWindowUIntO.

WinQueryWindowUInt

Format

UINT WinQueryWindowUInt(hwnd, ib)
HWND hwnd;

201

Windows Presentation Manager Reference

202

INT ib:

WinSet WindowUIn t

Format

UINT WinSetWindowUlnt(hwnd, ib, w)
HWND hwnd:
INT ib:
UINT w:

Description

Notes

These functions are used to read or write 16 bits of
information in the reserved window word memory
associated with the specified window, at index ib.
ib may also be one of the QWL values shown in
the table above.

ib is a zero-based index into the window words.
Only values between 0 and cb WndExtra may be
used, or any of the QWL values shown in the
table above.

WinQueryWindowUIntO returns the unsigned 2
byte integer at the index specified by ib. Win­
SetWindowUIntO stores the unsigned 2 byte
integer w at the mdex specified by ib, and returns
the previous contents of the uInt.

These functions are used to read the window words
associated with the specified window, using the
index ib. ib may also be one of the QWL values
in the table above.

The QWL_ constants may not be used with these
functions.

Win Query WindowULong

Format

LONG WinQueryWindowULong(hwnd, ib)
HWND hwnd:
INT ib:

WinSet WindowULong

Format

LONG WinSetWindowULong(hwnd, ib, IData)
HWND hwnd:

INT ib;
ULONG IData;

Window Management Functions

Description

Notes

These functions are used to read or write 32 bits of
information in the reserved window word memory
associated with the specified window, at index ib.
ib may also be one of the QWL_ values shown in
the table above.

ib is a zero-based index into the window words.
Only values between 0 and cb WndExtra may be
used, or any of the QWL_ values shown in the
table above.

WinQueryWindowULongO returns the long at the
index specified by ib. WinSetWindowULongO
stores the long lData at the index specified by ib,
and returns the previous contents of the long.

The QWL constants may not be used with these
functions.

4.1.1.12.16 Active Window Routines

WinSetActive Window

Format

BOOL WinSetActiveWindow(hab, hwnd)
HWND hwnd;
HAB hab;

Description

Notes

This function is used to set the active window to
the specified window. Returns TRUE if successful,
FALSE otherwise.

This function sets the keyboard focus to NULL,
and does not directly set the focus. Typically, the
focus is set during the processing of the
WM-ACTIVATE message by the window being
activated.

WinSetActive WindowO should not be called unless
it is directly or indirectly a result of user input.

WinSetActive WindowO succeeds only in the fol­
lowing conditions:

1. It is being called in the context of the thread
that is currently associated with the active
application.

203

Windows Presentation Manager Reference

204

2. It is being called in the context of a thread that
is currently processing a message from another
application. See WinInSend:MsgO.

3. It is being called when an application is being
started.

Messages may be recieved from other processes or
threads if either the current active window or the
new active window is associated with another
thread or process.

The following messages are sent by SetActiveWin­
dow. No messages are sent if hwnd is the same as
the current active window:

Message
When Sent

WM....ACTIVATE
This message is sent first to the window
being deactivated with
LOUINT(IParaml) == FALSE. Then,
this message is sent to the window being
activated with LOUINT(1Paraml) ==
TRUE and HIUINT(IParaml) ==
TRUE.

Note that a WM.... SETFOCUS messa~e is sent to
the window which is losing the focus lif any).

During the processing of a WinSetActive WindowO
call, if WinGetActiveWindow or WinGetFocusO
are called, the old active and focus windows are
returned until the new ones have been established.
In other words, even though
WM....ACTIVATE(false) messages may have been
sent to the old windows, those old windows are
considered to be active and have the focus (until
the system establishes the new active and focus
windows).

Win GetActive Window

Format

HWND WinGetActiveWindow(hab, fLock)
HAB hab;
BOOL fLock;

Description
This function returns the current active window,
or NULL if there is no active window. If fLock is

Wl'vL ACTIVATE

Window Management Functions

TRUE, then the window is returned locked, and
the caller is responsible for unlocking it. If fLock is
FALSE, the window is returned unlocked. See
"Window Locking"

Format

WM_ACTIVATE
LOUINT(lparaml): BOOL fActive;
HIUINT(lParaml): BOOL fSetFocus;
Iparam2 HWND hwndActive;
Returns : BOOL fProcessed;

Description

Notes

This message is sent by WinSetActiveWindowO,
WinSetFocusO, WinCreateWindowO,
WinShowWindowO, WinSetWindowPosO, or Win­
SetMultWindowPos() when a window is activated
or deactivated. If LOUINT(lParaml) is TRUE, the
window is being activated; if FALSE, the window
is being deactivated.

When LOUINT(lParaml) is FALSE, an application
should save away the current focus window, for
later restore when the window is reactivated.
lParam2 has the window handle of the window
being activated.

When LOUINT(lParaml) is TRUE and
HIUINT(lParaml) is TRUE, the application should
set the focus to the saved focus window. If
HIUINT(lParaml) is FALSE, the message is being
sent as a result o(a WinSetFocusO call, therefore
the application should NOT set the focus.
lParam2 has the window handle of the window
being deactivated.

The default WinDefWindowProcO behaviour is to
simply set the focus to the window being activated
if LO. UINT(lParaml) and HIUINT(lParaml) are
both TRUE. WinDefWindowProcO does nothing
otherwise.

Wl'vLACTIVATE with LOUINT(lParaml) ==
FALSE is sent before Wl'vLACTIVATE with
LOUINT(lParaml) == TRUE. Any
Wl'vL SETFOCUS messages with lparam2 ==
FALSE are sent BEFORE the deactivation mes­
sage. Wl'vL SETFOCUS messages with lparam2
== TRUE are sent AFTER the activation

205

Windows Presenta.tion Ma.na.ger Reference

206

message.

If WinSetFocusO is called during WM-ACTIV ATE
or W1vLACTIYATETHREAD message processing,
a W'.NLSETFOCUS message with fFocus ==
FALSE is not

Except in the case of the W'.NLACTIVATE mes­
sage with fActive == TRUE, an application pro­
cessing W'.NLSETFOCUS, W'.NLACTIVATE, or
WNLACTIVATETHREAD should not change the
focus window or active window. If it does, focus
and active window must be restored before the
application returns from processing the message.
For this reason, any dialog boxes or windows
brought up during W'.NL SETFOCUS,
W'.NL ACTIVATE or W'.NL ACTIVATETHREAD
processing should be system modal.

WNLACTIVATETHREAD

Format

WM_ACTIVATETHREAD
IParaml: BOOL fActive:
LOUINT(lParam2): UINT idProcess;
HIUINT(lParam2): UINT idThread;
Returns: OL

Description
This message is sent by the WinSetActivwindowO,
WinSetFocusO, WinCreate WindowO,
WinShowWindowO, WinSetWindowPosO, or Win­
SetMult WindowPosO functions when a window is
being activated or deactivated, and the
process/thread that owns the window being
activated is different to the process/thread that
owns the current active window.

• If IParaml == TRUE, the window is being
activated, and Iparam2 identifies the
process/thread associated with the window
that was the previous active window, or NULL
if there was no previous active window.

• If IParaml == False, the window is being
deactivated, and Iparam2 identifies the
process/thread associated with the window
that will become the new active window, or
NULL if there will be no active window.

Window Management Functions

WinIsThreadActi ve
~~~~------------------------------------

Format 

BOOL WinlsThreadActive(hab) 
HAB hab; 

Description 
This function returns TRUE if the active window 
is associated with the current thread. 

4.1.1.12.17 Window Flashing 

WinFlash Window -----------------------------------------------
Format 

BOOL WinFlashWindow(hwnd, fFlash) 
HWND hwnd; 
BOOL fFlash; 

Description 

Notes 

This function is used to start or stop window flash~ 
ing. If fFlash is TRUE, window flashing is begin; if 
fFlash is FALSE it is stopped. Returns TRUE if 
successful, FALSE otherwise. 

A window is normally flashed by inverting the 
state of the title bar. A beep is emitted for the 
first 5 flashes. 

This function is used when it is necessary to bring 
up a dialog box or message box when the applica­
tion is not the current application. The flashing 
window indicates that the user's attention is 
required -- when the user activates the window, the 
flashing stops and the message box or dialog box is 
brought up. 

4.1.1.12.18 System Modal Window Routines 

The "System Modal Window" is a special top level window that recieves 
all mouse and keyboard input. Input may also routed to one of its chil­
dren. All other top level windows behave as if they are disabled; no 
interaction is possible. 

207 



Windows Presentation Manager Reference 

If another window is explicitly set to the active window, the newly 
activated window is set to the system modal window. The previous system 
modal window may no longer be interacted with. If a system modal win­
dow is destroyed, the window activated as a result becomes the system 
modal window. 

Non-system modal windows are not actually disabled with WinEnable Win­
dow(); they are simply made non-interactive. No messages are sent, and 
the WS_DISABLE style bits are not changed. 

208 

Win GetSysModalWindow 

Format 

HWND WinGetSysModalWindow(hab, fLock) 
HAB hab; 
BaaL fLock; 

Description 
This function returns the window handle of the 
current system modal window, NULL if there is 
none. If fLock is TRUE, then the window is 
returned locked, and the caller is responsible for 
unlocking it. If fLock is FALSE, the window is 
returned unlocked. See "Window Locking" 

WinSetSysModalWindow 

Format 

HWND WinSetSysModalWindow(hab, hwnd) 
HWND hwnd; 
HAB hab; 

Description 
This function sets the current system modal win­
dow to hwnd, and returns the previous system 
modal window handle. The window handle is 
returned unlocked. 

If hwnd is NULL (i.e., there is no system modal 
window), other windows receive mouse input again 
as usuaL 



Window Management Functions 

4.1.2 "Window Drawing Management Architecture 

4.1.2.1 The Window DC 

Graphical output to a window is done to a Presentation Space, like any 
other graphics output. However, in order to draw in a window, the PS 
must be associated with a special kind of device context (DC) called a 
"Window DC". A window DC may be created for a window, and it is 
automatically destroyed when its associated window is destroyed. 

As explained earlier in the section on "Window Management", not all of a 
window is necessarily visible on the screen; a window may be obscured by 
windows above, and clipped to its parent. The window DC associated 
with a window allows access only to the part of the screen that 
corresponds to the part of the window that is actually visible. 

The area of a window that is actually visible is called the "visible region", 
or "visrgn" for short. This visrgn is part of a window DC, and is always 
maintained by the window manager as windows are rearranged. It cannot 
be changed by the application. All output to a PS attached to a window 
DC is clipped to the visrgn of the window DC. The origin of the PS is 
always the bottom left corner of the window rectangle, regardless of where 
it is located on the screen. 

This visrgn clipping does not affect the normal GPI clipping. An applica­
tion is free to change the PS clipping area as it wishes. Physically, how­
ever, output is clipped to the intersection of the PS clipping area and the 
window DC visrgn. 

Getting ready to draw into a window requires three steps: 

1. Create a window 

2. Create a PS 

3. Create a window DC for the window created above . 

. 4. Associate the window DC with the PS. Now, any drawing to the 
PS will be drawn in the visible part of the window. 

These steps are very similar to those required for drawing on any other 
graphical device. 

If you want to use a micro-PS instead of a standard PS in order to save 
memory, here's what you have to do: 

1. Create a window 

2. Create a window DC for the window created above 

209 



Windows Presentation Mana.ger Reference 

3. Create a micro-PS from the window DC created above. 

4.1.2.2 Cached Micro-PS 

There is another way that an application may obtain a micro-PS for use in 
drawing in a window, that does not require the creation of a window DC 
or PS. 

The window manager maintains a cache of micro-PSs and window DCs 
that an ap.p,lication may use. To obtain a micro-PS, the function 
WinGetPSl) is called with the window to be drawn in. The micro-PS 
obtained from the cache is associated with a window DC for the specified 
window. 

In order to allow other applications access to the cache, the micro-PS must 
be released by calling WinReleasePSO when it is no longer required. 

When a micro-PS is obtained from the cache, its state (colors, transforms, 
clipping state, etc) is the same when a PS is first created. Any state 
changes made to a cached PS are lost when it is released. The origin of 
the PS is always aligned with the window rectangle. 

There are two key advantages to using a cached PS: space and speed. 

A normal PS occupies about lK of memory. A window DC occupies about 
400 bytes. Creating a PS and an DC takes a fair amount of execution 
time, as well. 

Cached PSs do not require any additional memory. Obtaining and releas­
ing a PS from the cache is much faster than creating and destroying a PS 
and a window DC. 

These considerations are especially important with some windows, such as 
dialog boxes, that may contain 20 or 30 child windows. If each of those 
windows had its own PS and window DC, some 30K to 45K of memory 
would be occupied by all the PS's and DC's. 

4.1.2.3 Application PS vs. Cache PS Considerations 

Application PSs are appropriate when a window stays around for a long 
period, such as with main application windows. They should also be used 
if non- retained graphics are being used, or if any of the features of a PS 
not available with micro-PSs is desired. 

Application PSs are faster, if windows are not being created and des­
troyed. They are also useful if there are lots of PS state changes required, 
or a normal (non-micro-) PS is required. Visrgn calculation takes place 
after each window management operation, though. They also take 

210 



Window Management Functions 

memory. 

Cached PSs are faster if windows are being created and destroyed often. 
Getting a cache entry the first time causes a region calculation; subsequent 
calls are cheap. Since state is lost when a cached PS is released, it is some­
times expensive to have to select state in every time a PS is obtained. 

4.1.2.4 Window Clipping Options 

An application has some control over how windows are clipped. There are 
two window style bits and a class style bit that control window clipping. 
These styles control: 

1. Whether a window excludes the area of its children 

2. Whether a window excludes the area of its siblings above 

3. Whether a window is clipped to the window rectangle, or to its 
parent's visrgn. 

A window may be created with one or both of the following window or 
class styles to change the clipping behavior: 

Window/Class Style 
Behavior 

WS_ CLIPCHILDREN 
The area of a window's childiefl is excluded from the win­
dow. If this style is not specified, the children are not 
excluded. 

WS_ CLIP SIBLINGS 
The area of a window's siblings above the window is 
excluded from the window. If this style is not specified, the 
siblings are not excluded. 

CS_ P ARENTCLIP 
The parent's visrgn is used for clipping. The origin of the PS 
is still the bottom left corner of the window, but drawing 
may be done outside of the window rectangle. Output is 
clipped to the visible region of the parent. The children of 
the parent are not excluded, even if the parent has the 
WS_ CLIP CHILDREN style. If this class style is not 
specified, the window is clipped to its window rectangle. 

211 



Windows Presentation Manager Reference 

4.1.2.5 Window Clipping Considerations 

The key reason for allowing these clipping options is speed. It takes a cer­
tain time to perform the clipping region calculations that are required. 

For cached PSs, these calculations are performed if there are no valid 
cache entries for the window. A cache entry is invalidated from the cache 
any time window rearrangment, hiding, or showing is done that might 
affect the visrgn of the window. When a cached micro-PS is returned by 
WinGetPSO, it is considered to be "in use" until it is released with Win­
ReleasePSO. Cache entries that are not in use may also be reused for other 
windows as required. 

For windows with permanent window DCs, these calculations are per­
formed every time the window visible region changes as a result of any 
window rearrangement, hiding, or showing that affects the visrgn of the 
window. 

212 

Style Recommendation 

WS_ CLIP CHILDREN 
The WS_ CLIP CHILDREN style should only be used if it is 
necessary to prevent a parent window from drawing on its 
children. If both the parent and the child are invalidated at 
once, the painting order will be top down; the parent will 
draw before the child draws. If the child is invalidated 
independently of the parent, the child will draw indepen­
dently of the parent. 

WS_ CLIPSIBLINGS 
WS_ CLIPSIBLINGS should generally be used when child 
windows physically overlap. Sometimes it may be avoided 
even if they do overlap: since sibling windows are always 
repainted in front to back order, the image on the screen 
may be deterministic. 

CS_ P ARENTCLIP 
The CS_ P ARENTCLIP style is normally used by non­
overlapping windows with a common parent. All windows 
with CS_PARENCLIP and having the same parent window 
will use the same visrgn, and therefore the same origin­
modified PS for drawing. This avoids subsequent visrgn cal­
culations for each window, a drawing speed gain. It makes no 
sense for a CS_ P ARENTCLIP window to have either the 
WS_ CLIP CHILDREN or WS_ CLIPSIBLINGS styles defined, 
as they defeat the purpose of the CS_ PARENTCLIP style. 
Most of the standard controls are CS_ P ARENTCLIP win­
dows, and none of them draw outside their window rectan­
gle. Generally a CS_ P ARENTCLIP window should not draw 
outside its window rectangle. 



4.1.2.6 Application PS Example 

Application initialization: 

hwnd = WinCreateWindow( ... ); 
hps = GpiCreatePS( ... ); 

hdcWindow = WinOpenWindowDC(hwnd); 

hdcPrinter = GpiCreateDC(tlprinter tl ); 

GpiAssocDC(hps, hdcWindow); 

DrawDocument(hps); 

W1L PAINT message processing: 

Window Management Functions 

/* Create a window */ 
/* Create a PS for graphics */ 

/* Create a DC for output to */ 
/* window */ 

/* Create a DC for output to */ 
/* printer */ 

/* Send output to screen */ 
/* window */ 
/* Draw the document */ 

WinBeginPaint(hwnd, hps, (LPRECT)&rcPaint); 

DrawDocument(hps); 

WinEndPaint(hps); 

Printing: 

GpiAssocDC(hps, hdcPrinter) 

DrawDocument(hps); 

4.1.2.7 Cached-PS Example 

hwnd = WinCreateWindow( ... ); 

hps = WinGetPS(hwnd); 

DrawDocument(hps); 

WinReleasePS(hps); 

W1L PAINT message processing: 

/* Redraw the document 

/* Send output to printer 

/* Draw the document 

*/ 

*/ 

*/ 

/* Create a window */ 

/* Get cache PS for drawing */ 

/* Draw the document */ 

/* Release the cache PS */ 

hps = WinBeginPaint(hwnd, NULL, (LPRECT)&rcPaint); 

DrawDocument(hps); /* Redraw the document */ 

WinEndPaint(hps); 

213 



Windows Presentation Manager Reference 

4.1.2.8 Window Repainting after Window Rearrangment 

When windows are rearranged or shown and a new area of the window is 
made visible, it is the responsibility of the window procedure to redraw the 
image in the area of the window that has been uncovered. This update 
repainting may be done synchronously at the time the rearrangement 
takes place, or asynchronously some time after the rearrangement opera­
tion, when an application chooses to redraw the window. The 
CS_ SYNCP AI NT style bit controls whether a window is updated synchro­
nously or asynchronously. 

4.1.2.8.1 Asynchronous Window Updating 

When some part of a window not having CS_ SYNCP AI NT style is made 
visible due to window rearrangment or showing of the window, the window 
is not painted right away. Instead, the area to be updated is saved in the 
window's "Update Region". The update region is the area of a window 
that will eventually require repainting. As subsequent areas are made visi­
ble due to additional window rearrangement, these areas are accumulated 
(added) to the window's update region. 

Accumulating an area into the update region is called "Window Invalida­
tion". Removing area from the update region is called "Window Valida­
tion". In to the invalidation and validation that occurs as a result of win­
dow rearrangement, An application can explicitly invalidate and validate 
areas of a window. 

When an application calls WinGet:MsgO or WinPeek:MsgO and there are no 
other messages in the queue, if there are any windows associated with the 
current queue that require updating (non-empty update regions), a 
W1L PAINT message is returned for that window. The W1L PAINT mes­
sage is not actually placed in the application queue; they are returned only 
as often as WinGet:Msg() or WinPeek:MsgO is called. Since multiple invali­
dations are accumulated into the single update region, a single 
W1L PAINT message may be generated as a result of more than one 
invalidation. 

W1L PAINT messages are always generated in a top-down fashion: first 
the parent, then its children, etc. 

If necessary, an application may ensure that an async paint window has 
been updated by calling the UpdateWindowO function. If the window has 
an update region, a W1LPAINT message is sent to the window procedure. 

214 



Window Management Functions 

,.j..1.2.B.2 WALPAINT Message Processing 

The W1LPAINT message is processed by calling the WinBeginPaintO 
function. The WinBeginPaintO function returns a PS handle that is asso­
ciated with a window DC with a visible region set to the intersection of 
the window's visible area and its update region: this is the area that must 
be updated. All drawing to the PS will only be done in those areas that 
require updating. 

If the window is using a cached PS, then the returned PS handle is from 
the cache. If a window DC was created for the window, the PS handle to 
use for updating is passed as a parameter to BeginPaint. 

With the PS handle, the window procedure must simply redraw the con­
tents of the window. Since the PS is clipped to the update region, only the 
part of the window that needs to be updated is redrawn. 

The rePaint rectangle is the bounding rectangle (in window coordinates) of 
the area that must be updated. This rectangle can be used to minimize 
the amount of redrawing that must be done. 

After the window has been repainted, WinEndPaintO is called to restore 
the visible region of the window DC to its previous state. If the PS handle 
is a cached PS, then the PS is released by WinEndPaintO. 

4.1.2.B.3 Incremental Window Updating 

It is sometimes useful to update an async paint window incrementally one 
part at a time. The idea is that multiple W1L PAINT messages are 
required to repaint the entire window. This is especially useful with win­
dows that paint slowly: after processing each W1LPAINT message, exe­
cution returns back to the application's main loop, where user input can 
be processed if it has occured. 

This can be accomplished by calling either WinGetUpdateRect() or 
WinGetUpdateRgnO to obtain a rectangle or region that describes the 
area that needs updating. These calls do not remove the window's update 
region. Based on this information, a part of the window can be updated, 
and validated with Win ValidateRgnO or Win ValidateRectO. 

4.1.2.9 Synchronous Window Updating 

If a window rearrangmenent or window showing or hiding operation 
occurs, any affected windows with the CS_SYNCPAINT style are updated 
before the operation is completed. Windows with the CS_ SYNCP AINT 
style are called "Sync Paint" windows. ' 

215 



Windows Presentation Manager Reference 

Sync paint windows are usually painted as soon as they are invalidated. If 
the sync paint window has an async parent that isn't 
WS_ CLIP CHILDREN and they both get invalidated by a single invalida­
tion, the painting of its sync paint children is deferred until the async 
parent processes the WM-PAINT message, so that the correct drawing 
order (top-down, parent-child) is maintained. 

These messages are also send as a result of calls to WinInvalidateRectO or 
WinInvalidateRgnO, and WinEndPaintO. 

4.1.2.10 Synchronous vs. Asynchronous Painting 

Synchronous painting windows are well suited when a window can (or 
must) be drawn very quickly, as is the case with the controls that make up 
a window frame or a dialog box. Sync paint windows must draw quickly 
because the operation that is causing the WM- PAINT message will not 
complete unti I the message has been processed. 

Asynchronous painting is appropriate for windows that are relatively slow 
to be redrawn. By putting off redrawing until there is less activity, the 
system will keep up with a user that types or uses the mouse quickly. This 
feature can prevent the swapping in and out of application code as well. 

Generally, asynchronous painting is used for main application windows. 

4.1.3 Window Drawing Functions 

This sections documents the calls mentioned above plus several drawing 
helpers. It is assumed that you've read the overview above. 

216 

WinGetPS -------------------------------------------------
Format 

BPS WinGetPS(hab, hwnd) 
HWND hwnd; 
HAB hab; 

Description 
This function returns a PS handle that can be used 
for drawing in the specified window. The returned 
PS is a "micro-PS"; not all GPI calls may be made. 
The initial state of the PS is the same as the initial 
state of a PS created with GpiCreatePSO· 

The visible region of the returned PS depends on 
the existence of the following window and class 
styles: 



WinReleasePS 

Window Management Functions 

Style Description 

WS_ CLIP CHILDREN 
All of the window's children are 
excluded. 

WS_ CLIPSIBLINGS 
All siblings above the window are 
excluded. 

CS_ P ARENTCLIP 
The visrgn is the same as the window's 
parent. The PS origin and pattern draw­
ing origin is established normally. 

This style optimizes the use of the PS 
cache by minimizing the visrgn calcula­
tion required for child windows. 

-------------------------------------------------
Format 

BOOL WinReleasePS(hps) 
BPS hps; 

Description 
This function returns a PS handle obtained with 
WinGetPS() to the cache. Returns TRUE if suc­
cessful, F AtSE otherwise. 

See section on "Cached PS's" at the beginning of 
this section. 

WinOpen WindowDC 

Format 

HOC WinOpenWindowDC(hwnd) 
HWND hwnd; 

Description 
Opens a window DC associated with the specified 
window handle that may be used with Gpi­
CreatePSO or GpiAssocDCO in order to obtain a 
PS to draw in the window. Returns NULL if 
unsuccessful. 

Notes The window DC is automatically destroyed when 
its associated window is destroyed. The returned 
DC handle must NOT be destroyed with 

217 



Windows Presentation Manager Reference 

218 

WinBeginPain t 

GpiDestroyDCO· 

The visrgn of the DC is updated automatically as 
windows are rearranged. 

Only one window DC per window may be created. 

-------------------------------------------------
Format 

HPS WinBeginPaint(hwnd, hps, IprcPaint) 
HWND hwnd; 
HANDLE hps; 
LPRECT IprcPaint; 

Description 

Notes 

WinEndPaint 

This function is called during the processing of the 
W1L PAINT message in order to obtain a PS han­
dle with a visible region corresponding to the area 
of the window that should be repainted. 

If hps is NULL, one is obtained for use from the PS 
cache. Otherwise, the window DC associated with 
hwnd is selected into hps, and hps is returned. 

If IprcPaint is not equal to NULL, this function 
also fills in the rectangle pointed to be IprcPaint 
with the rectangle bounding the window area need­
ing updating, in window coordinates (regardless of 
the transform of the hps). 

The update region associated with hwnd is 
removed; i.e., the entire window is validated. 

WinBeginPaintO hides the caret if it is flashing in 
hwnd, and later shows it again in WinEndPaintO, 
which must be called once the application is 
finished drawing. 

See "Asynchronous Window Updating" at the 
beginning of this section. 

-------------------------------------------------
Format 

void WinEndPaint(hps) 
HPS hps; 

Description 
This function is used at the end of W1L PAINT 
message processing to restore the PS used for 



WinlnvalidateRect 

Window Management Functions 

repainting to its original state, and to update the 
invalid sync paint windows of hwnd. 

If the PS used for repainting was associated with a 
different DC handle than the window DC selected 
byWinBeginPaintO, the previous DC handle is 
reassociated with the PS. 

If the caret was hidden by WinBeginPaintO, the 
caret is shown again. 

Note that if the window for which the WinBegin­
PaintO / WinEndPain to sequence is done has some 
Synch Paint children, these are automatically 
updated by the WinEndPaintcall. 

See "WinBeginPaintO" above and "Asynchronous 
Window Updating" at the beginning of this sec­
tion. 

-------------------------------------------------
Format 

BOOL WinlnvalidateRect(hab, hwnd, Iprc) 
HWND hwnd; 
LPRECT Iprc; 
HAB hab; 

Winln validateRgn 
----~-------------------------------------------

Format 

BOOL WinlnvalidateRgn(hab, hwnd, hrgn) 
HWND hwnd; 
HRGN hrgn; 
HAB hab; 

Description 
If the specified window is an asynchronously 
painted window, These function adds a rectangle 
or a region to the specified window's update 
region .. If either lprc or hrgn is NULL, the entire 
window is invalidated. 

If the window is a CS_ SYNCP AI NT window, the 
window is repainted before WinlnvalidateRectO 
returns. 

If the window is WS_ CLIPCHILDREN and invalid 
area overlaps some CS_ SYNCP AINT children, 
those children will be repainted before Winlnvali­
dateRectO returns. 

219 



Windows Presenta.tion Manager Reference 

220 

Win ValidateRect 

If hwnd is NULL, area of of the screen (the desktop 
window) is invalidated. In this case, if )prc or hrgn 
is NULL, the entire screen is invalidated. 

These functions return TRUE if successful, FALSE 
otherwise. 

See" Asynchronous Window Updating" for more 
information. 

-------------------------------------------------
Format 

BOOL WinValidateRect(hab, hwnd, Iprc) 
HWND hwnd; 
LPRECT Iprc; 
HAB hab; 

Win ValidateRgn 
--~~-------------------------------------------

Format 

BOOL WinValidateRgn(hab, hwnd, hrgn) 
HWND hwnd; 
HRGN hrgn; 
HAB hab; 

Description 
These functions subtracts a rectangle or region 
from the specified window's update region. This 
function is only used with async update windows. 

These functions have no effect on a window if any 
part of the window has been invalidated (such as 
as a result of another thread's window rearrange­
ment) since the last time WinBeginPaintO, 
WinGetUpdateRectO, or WinGetUpdatetignO was 
called. 

These functions return TRUE if successful, FALSE 
otherwise. 

See "Asynchronous Window Updating" for more 
information. 

WinQueryUpdateRect 

Format 

BOOL WinQueryUpdateRect(hwnd, Iprc) 



HWND hwnd; 
LPRECT Iprc; 

Window Management Functions 

Description 
This function returns the rectangle that bounds 
the update region of hwnd. This routine is usually 
used as an alternate to WinBeginPaintO and 
WinEndPaintO, in incremental updating schemes. 
Typically the application calls WinQueryUp­
dateRectO to see what part of hwnd needs updat­
ing, updates it, then calls WinValidateRectO or 
Win V alidateRgnO to subtract that updated part 
from the update region. FALSE is returned if hwnd 
is totally valid (no update region). lprc points to a 
buffer that receives the update rectangle in window 
coordinates. 

See "Asynchronous Incremental Updating" for 
more information. 

WinQueryUpdateRgn 

Format 

INT WinQueryUpdateRgn(hwnd, hrgn) 
HWND hwnd; 
HRGN hrgn; 

Description 
This function copies hwnd's update region into the 
already existing region passed in, hrgn. This rou­
tine is usually used as an alternate to WinBegin­
Painte) and WinEndPaintO, in incremental updat­
ing schemes. Typically the application calls Win­
QueryUpdateRgnO to see what part of hwnd needs 
updating, updates it, then calls Win ValidateRectO 
or WinValidateRgnO to subtract that updated 
part from the update region. A code indicating the 
type of the region is returned, as for GpiCom­
bineRegion. 

The application can select hrgn into a ps as the 
clip region and have drawing clipped to the 
window's update region. 

See "Asynchronous Incremental Updating" for 
more information. 

WinUpdat~e_W-=in~d_o_w ________________________________________ __ 

221 



Windows Presentation Manager Reference 

222 

Format 

BGOL WinUpdateWindow(hwnd) 
HWND hwnd; 

Description 
This function forces the updating of a window and 
its children. If hwnd is an async window, it and 
only its async children are updated. They get sent 
WM- PAINT messages from within WinUp­
dateWindowO. If hwnd is a sync window, it and 
only its sync children are updated. They get sent 
WM-PAINT messages from within Win Up-
date WindowO. 

If hwnd is a child of a non-clip children parent, 
hwnd's update region is subtracted from the 
update region of the parent, if the parent has one. 
This is so the parent, who will be drawing after 
hwnd, will not draw on top of what hwnd draws. 

If the window was updated, this function returns 
TRUE, otherwise FALSE. 

See "Visrgn Calculation" at the beginning of this 
section. 

WinExcludeUpdateRgn 

Forma.t 

INT WinExcludeUpdateRgn(hps, hwnd) 
BPS hps; 
HWND hwnd: 

Description 

Notes 

This function subtracts the update region for hwnd 
(if one exists) from the visrgn of hps. This is used 
to prevent the application from drawing in areas of 
hwnd which are already invalid. 

A code indicating the type of clipping area is 
returned, as for GpiCombineRegion. 

This function is typically used in situations to 
avoid drawing in a window when it is likely most 
of the window is invalid, such as when replacing a 
selection when a window recieves a 
WJ\L SETFOCUS message. 



Window Mana.gement Functions 

WM-PAINT -------------------------------------------------
Format 

WM_PAINT 
IParaml: 0 
IParam2: OL 

Description 

WinLockScreen 

This message is sent to asynchronously updated 
windows whenever Presentation Manager 0 r an 
application makes a request to repaint a window's 
invalid bits. This message is either sent from 
WinUpdateWindowO when the application makes 
this call, or is returned from WinGetMsg()' In 
either case, the application only receives the mes­
sage if the window has an update region. 

See "Asynchronous Window Updating" at the 
beginning of this section. 

-------------------------------------------------
Format 

BOOL WinLockScreen(hab, fLock) 
HAB hab; 
BOOL fLock; 

Description 
WinLockScreen() is design to start and stop all 
screen output. If fLock is TRUE, nothing outputs 
to the screen until WinLockScreenO is called again 
with fLock FALSE. All the areas would have been 
drawn by applications while the screen is locked 
are remembered and updated once the screen is 
unlocked. 

This function is used by threads that want to draw 
on an area of the screen in which they have no con­
trol. The user interface sizing and moving code 
uses WinLockScreenO while sizing or moving a 
window. All threads still run while the screen is 
locked. 

This function does not prevent screen group 
switches (which may be required to handle a hard 
error.) If fLock is TRUE, this function always 
returns TRUE. If fLock is FALSE, this function 
returns TRUE if no screen group switch occurred, 
or if the screen is locked. Otherwise, returns 

223 



Windows Presentation Manager Reference 

TRUE. 

Note: If one thread locks the screen, other threads 
that call LockScreen{) are blocked (although they 
can receive messages) until the first thread unlocks 
the screen. 

WinLock VisRgns 
--~--------------------------------~-----------

Format 

INT WinLockVisRgns(hab, fLock) 
HAB hab; 
BOOL fLock; 

Description 
This function is called by a thread if it doesn't 
want any visrgns changing while it performs an 
operation on the screen, like copying screen bits 
into a memory bitmap. This function will block 
any other thread that tries to alter visrgns. While 
visrgns are locked, no messages should be sent, and 
no functions called that could send messages. 

If fLock is TRUE, all visrgns are locked. If flock is 
FALSE, all visrgns are unlocked. 

More than one thread can concurrently lock 
visrgns. The system increments a lock count, each 
time an app makes a lock call, and decrements a 
count each time a thread makes an unlock call. 
The visrgns can not change unless the lock count is 
zero. 

This function returns the lock count that results 
from the call. 

Note An thread is not allowed to unlock visrgns if the 
corresponding lock was performed by another pro­
cess. 

4.1.3.1 Drawing Helpers 

224 

WinScrollWindow 
~~~~-----------------------------------------

Format

void FAR WinScrollWindow(hwnd, dx, dy,
IprcScroll, IprcClip, hrgnUpdate,
IprcUpdate, rgfsw)

HWND hwnd;

Window Mana.gement Functions

int dx;
int dy;
LPRECT IprcScroll;
LPRECT IprcClip;
HRGN hrgnUpdate;
LPRECT IprcUpdate;
UINT rgfsw;

Description
This routine scrolls the rectangle defined by
*lprcScroll in the window hwnd by dx units hor­
izontally and dy units vertically. All coordinates
must be in device units.

If IprcScroll is NULL, the entire window will be
scrolled. *lprcClip is a clip rectangle that clips the
destination of the scroll. Any part of hwn d's
update region that maps to scrolled bits will be
offset too.

If not NULL, IprcUpdate is filled with the bound­
ing region of the invali d bits uncovered by the
scroll. If not NULL, hrgnUpdate is modified to hoI
d the region uncovered by the scroll, in window
coordinates.

rgfsw is an array of bits, which may be OR'ed
together:

SW_ SCROLLCHILDREN
All children falling within the intersec­
tion of IprcScroll and IprcClip will be
scrolled by dx and dy units.

SW_ INV ALIDATERGN
The invalid region created as a result of
the scroll will be added to update regions
of those windows affected. This may
result in the sending of WM- PAINT
messages to CS_ SYNCP AI NT windows
before WinScrollWindowO returns.

WinScrollWindowO returns a code indicating the
type of invalid regIOn created by the scroll, as
retuned by GpiCombineRegion. Note: If hwnd is
not a clip children window, the bits of any child
falling inside the scrolled area will be scrolled too.
If this is the case , WinScrollWindowO should
be called with SW_SCROLLCHILDREN.

No thread should be moving bits around in its own
window by a ny other method than by
using WinScrollWindowO, due to the critical sec­
tion nature of window update regions.

225

Windows Presentation Manager Reference

226

WinDrawText

The fastest scrolling method is without
SW _ SCROLLCHILDREN and
SW _ INV ALIDATERGN. If scrolling needs to
repeat quickly, don't incl ude the
SW_INVALIDATERGN flag, and just repaint the
invalid area if th e invalid region is rectangu-
lar, otherwise invalidate and update.

If the scrolling does not happen often, include the
SW_INVALIDATERGN flag, and WinScrollWin­
dowO will invalidate and update sync paint win­
dows automatically before returning.

Format

INT WinDrawText(hps, lpchText, cchText, lprc, rgfCm<
BPS hps;
LPSTR lpchText;
INT cchText;
LPRECT *lprc;
UINT rgfCmd;

Description
This function draws a single line of formatted text
in the rectangle specified by lprc. hps is a handle
to a presentation space, IpchText is a far pointer
to the character string to be drawn, cchText is the
count of characters to be drawn, and rgfCmd is an
array of flags specifying how to draw the text.

This function returns the actual number of charac­
ters drawn that fit completely within lprc.

If cchText is 0, the string is assumed to be zero
terminated, and its len~th is automatically calcu­
lated by WinDrawTextl).

The text is drawn using the currently selected text
color and background color in the presentation
space given by hps. The output is clipped to the
rectangle specified by lprc unless the DT_ NOCLIP
command is used.

If a carriage return or line feed character occurs in
the string it is assumed to terminate the line, even
if the line is shorter than cchText.

rgfOmd may be any combination of the following
values:

Window Management Functions

WinDrawTextO Flags
Flag

DT_LEFT
Left justify the text.

DT_CENTER
Center the text.

DT_RIGHT
Right justify the text.

DT_VCENTER
Vertically center the text.

DT_TOP
Top justify the text.

DT_BOTTOM
Bottom justify the text.

DT_HALFTONE
Halftone the text display.

DT_MNEMONIC
If a mmenomic prefix character is
encountered, the next character is drawn
with mnemonic emphasis.

DT_GETEXTENT
No drawing is performed; *lprc is
changed to a rectangle that bounds the
string if it were drawn with Win­
DrawTextO·

DT_ UINTBREAK
Only words that fit completely within
the supplied rectangle are drawn. Words
are assumed to be separated by space
characters.

Text is always drawn in the current font.

WinHalftoneBitmap

Format

BOOL WinHalftoneBitmap(hps, hbm, hbr, xdst,
ydst, cxdst, cydst, xsrc, ysrc)

HPS hps; .
HBITMAP hbm;
HBRUSH hbr;
INT xdst, ydst, cxdst, cydst;
INT xsrc, ysrc;

227

Windows Presentation Manager Reference

Description

WinDrawlcon

Thus function outputs a halftoned bitmap at loca­
tion xdst, ydst, with extents of cxdst and cydst in
the presentation space hps. xsrc and ysrc specify
the starting location within the bitmap. The back­
ground of that location must be drawn first, as
WinHalftoneBitmapO only draws the 'half toned'
bits.

The return value is TRUE if the operation was a
success.

228

Format

BaaL WinDrawIeon(hps, x, y, hIeon, rgfHalftone)
BPS hps;
INT x, y;
RIcaN hIeon;
UINT rgfHalftone;

Description
Where hps is handle to a presentation space. x and
yare the coordinates at which to draw the icon.
hlcon is a handle to the icon to draw. It may be a
cursor handle. rgfHalftone is a word of flags con­
sisting of the following icon styles which may be
OR'd together:

ICS_NORMAL
draw the icon as it would normally
appear

ICS_ HALFTONE
draw the icon with a halftone pattern
where black normally appears

ICS_INVERT
draw the icon inverted - ie black where
white is and white where black is.

WinDrawBorder
~~~--------------------------------------

Format 

void far WinDrawBorder(hps, Iprc, ex, cy, rgfCmd) 
BPS hps; 
LPRECT Ipre; 
INT ex; 
INT ey; 



Window Management Functions 

UINT rgfCmd; 

Description 

Example 

This function draws a border (a rectangular frame) 
bounded by the rectangle * lprc in the specified PS. 
cx is the width of the left and right sides of the 
rectangle, cy is the height of the top and bottom 
sides of the rectangle. 

The values for rgfCmd are: 

WinDrawBorderO Flags 

DB_PATCOPY 
The PATCOPY raster op is used 

DB_PATINVERT 
The PATINVERT raster op is used 

DB_STANDARD 
cx and cy are multiplied by the system 
SV_CXBORDERandSV_CYBORDER 
constants. 

DB_DLGBORDER 
A standard dialog border is drawn. If 
DB_PATCOPY specified, then an active 
dialog border is drawn. If 
DILPATINVERT is specified, then an 
inactive dialog border is drawn. 

DB_ INTERIOR 
Specifies that the interior of the border is 
drawn with the current pattern back­
ground color. 

The border is drawn in the current pat­
tern foreground color 

For example, here is a call to draw a rectangular 
frame whose width is twice the SV_CXBORDER 
and SV _ CYBORDER values with the standard 
window frame color: 

WinDrawBorder(hps, (LPRECT)&rc, 
2, 2, DB_PATCOPY : DB_STANDARD); 

WinInvertRect 
.~~----------------------------------------

Format 

void WinlnvertRect(hps, Iprc) 

229 



Windows Presentation Manager Reference 

Description 
This function inverts the area of hps described by 
the rectangle *lprc. 

4.1.4 Window Frames 

4.1.4.1 Window Frame Architecture 

A standard application window has the following parts: 

+-----------------------------#1--------------------------------+ +-------------------------------------------------------------+1 
#2: #3 : #4 :: _____________________________________________________________ 11 

1 
File Edit #5 : __________________________________________________________ --I 

1 
1 
I 

_-I 
1 
1 
1 
1 
1 
1 
1 

#9 #6: 
1 
1 
1 
1 
1 
II 
II 

1 II 1 __ 1 1 
1 II 
1 11 
1 1 I ----------------------------------------------------------+--:: 

: #7 : : :: 
+-------------------------------------------------------------+: +---------------------------------------------------------------+ 

Part Description 

#1 Wide sizing border 
#2 System menu 
#3 Title Bar 
#4 Minimize/Maximize box 
#5 Application menu 
#6 Vertical scroll bar 
#7 Horizontal scroll bar 
#8 Client window 

The window that contains all of these parts is called the "Frame Win­
dow". Each of the parts that make up a window, such as the title bar and 
menu, are separate child windows of the frame window. All of these child 
windows ( except the client area) are called "Frame Controls". 

230 



Window Management Functions 

The client area is not a frame control; it is an instance of a window class 
implemented by the application. 

The frame window and all of the frame controls are implemented with 
standard preregistered window classes. In this section, we will describe 
the behavior of each of these window classes, and how they are used with 
an application window class to implement a standard application window. 

The frame window is the" glue" that holds together all of the frame con­
trols and the client that make up an application window. It is responsible 
for arranging the frame controls and the client window as the frame win­
dow is sized and moved. It is also responsible for routing certain messages 
to its frame controls and the client window. 

Each of the frame controls is known to the frame window by its window 
ID. Below is a list of the standard ID values that identify each frame con­
trol: 

Standard Frame Control IDs 

FID_ SIZEBORDER 
Wide sizing border 

FID_ SYS11ENU 
System menu 

FID_ TITLEBAR 
Title Bar 

FID_ :MINMAX 
Minimize/Maximize box 

FID_11ENU 
Application menu 

FID_ VERTS CROLL 
Vertical scroll bar 

FID_ HORZSCROLL 
Horizontal scroll bar 

FID_CLIENT 
Client window 

As with all controls, when something interesting happens to a frame con­
trol (a scroll bar click or the menu key is pressed, for exampl e), the frame 
control notifies its owner with window messages. The owner 0 f each of 
the frame controls is the frame window itself. Messages that may be of 
interest to the client window are sent to the client by the frame window. 
The frame window has no owner. 

231 



Windows Presentation Manager Reference 

There are two ways that you can create a standard window and frame con­
trols. You can create the frame window and all of its frame controls expli­
citly, or you can use the WinCreateStdWindowO function, which will 
create a frame window plus all of the standard controls, using the frame 
window style to determine which of the standard frame controls are to be 
created. 

4.1.4.2 The Frame Window Class 

The standard window frame class name is WC_ FRAME. The frame win­
dow is a sync paint window. 

4.1.4.2.1 Frame Window Styles 

When a window of class WC_ FRAME is created, some of the standard 
frame controls may be also automatically created depending on the win­
dow style of the frame window. The window style also governs the 
appearance of the frame window border as well. 

The frame window styles below are also used with WinCreateStdWindowO 
and WinCreateFrameControlsO below. 

232 

Standard Frame Styles 
Flag 

FS_ TITLEBAR 
Title bar 

FS_SYSMENU 
System menu 

FS_MENU 
Application menu 

FS_MINMAX 
Minimize/Maximize box 

FS_ VERTS CROLL 
Vertical scroll bar 

FS_ HORZSCROLL 
Horizontal scroll bar 

FS_ SIZEBORDER 
Wide sizing border 

FS_BORDER 
Window is drawn with a thin border 



Window Management Functions 

FS_ DLGBORDER 
Window is drawn with a standard dialog border 

FS_ ACCELT ABLE 
Causes an accelarator table to be loaded for this frame win­
dow from the resource file identified on the Win­
CreateStdWindow call. 

FS_ STANDARD 
Same as (FS_ TITLEBAR i FS_ SYSMENU 1 FS_ MINMAX i 
FS_SIZEBORDER i FS_MENU i FS_ACCJ:<;LTABLE) 

All of the styles except FS_BORDER and FS_DLGBORDER only have an 
effect when the WC_FRAME window is created. At this time, these styles 
are used to determine whether the corresponding frame control should be 
created. Once a frame control is created, changing these style bits has no 
effect: to add or remove frame controls the WinSetParentO call may be 
used, or the frame controls may be created or destroyed explicitly. 

4.1.4.2.2 Frame Window Messages 

The following messages are processed by the frame window. Many of these 
messages are standard window management messages; they are included 
here to illustrate the behavior of the frame window. 

mLSYSCOMMAND 
Description of this message is given in the section on Con­
trols. 

mL FORMATFRAME 

Format 

WM_FORMATFRAME 
IParaml: OL; 
IParam2: OL 
Returns: BOOL fProcessed; 

Description 
This message is sent to a frame window to calcu­
late the sizes and positions of all of the frame con­
trols and the client window. 

This message is passed on to the FID_ CLIENT 
window by the standard frame window. If the 
FID_ CLIENT window returns fProcessed == 
FALSE, then the frame window performs the 
default action; otherwise it is assumed that the 
FID_ CLIENT window processed the message. 

233 



Windows Presentation Manager Reference 

The WC_ FRAME default processing of this mes­
sage is to first call WinFormatFrameO and then 
calling WinSetMultWindowPosO to position the 
frame controls. 

W1L UPDATEFRAME 

234 

Format 

WM_UPDATEFRAME 
lParaml: ULONG style; 
lParam2: OL 
Returns: BOOL fProcessed; 

Description 
This message is sent by an application after frame 
controls have been added or removed from the win­
dow frame to reformat and update the appearance 
of the window frame as a result of the change. 

IParaml contains FS_ style bits that indicate 
which frame controls were added or removed. 

Since this message will cause any redrawing that is 
necessary, you should ensure that no drawing takes 
place when you actually add or remove a frame 
control, to prevent unnecessary redrawing. If you 
use WinSetParentO, this is done by setting the 
fRedraw parameter to FALSE. 

This message is passed on to the FID_ CLIENT 
window by the standard frame window. If the 
FID_ CLIENT window returns fProcessed == 
FALSE, then the frame window performs the 
default action; otherwise it is assumed that the 
FID_ CLIENT window processed the message. 

The default WC_FRAME processing of this mes­
sage is to simply send a W1LFORMATFRAME 
message to itself. 

To add a control, simply create the window with a 
zero size, or use WinSetParentO with fRedraw == 
FALSE. To remove a control, use WinSetParentO 
with fRedraw == FALSE. Then set the appropri­
ate style bit, and send the W1L UPDATEFRANlE 
message to the frame window. 

W1L ERASEBACKGROUND 



Wmdow Management Functions 

Format 

WM_ERASEBACKGROUND 
IParaml: BPS hps.Frame; 
IParam2: LPRECT IprcPaint; 
Returns: BOOL fProcessed; 

Description 
This message is sent by WC_ FRAME and 
WC_ DIALOG windows to the FID_ CLIENT win­
dow in order to anow the client window to erase 
the background of the frame window synchro­
nously. 

• hpsFrame is the HPS for the frame window. 

• IprcPaint contains a far pointer to a rectangle 
to be painted. 

If the client window processes the message, TRUE 
is returned. If FALSE is returned and a 
FID_ CLIENT window exists, then the area of the 
frame covered· by the FID_ CLIENT window is 
erased in the system window background color. If 
FALSE is returned and no FID_CLIENT window 
exists, then the entire frame window is erased in 
the system window background color. 

4.1.4-2.3 Default we_FRAME Processing of Standard Messages 

Here is a list of the default processing of various messa,ges by 
WC_ FRAME class windows: 

W1LACTNATE 
First sends TBM"-SETSTATE message to FID_ TITLEBAR 
control, if it exists, to hilite or un hi lite the titiebar. If 
FS_ DLGBORDER then dig border is redrawn in eitherhil­
ited or unhilited state, as necessary. Next sends the 
WM..ACTIV ATE message to the FID_ CLIENT window. 
Upon return, if the window is being deactivated and the 
caret is set to the fra.me window or any of its controls, the 
caret is destroyed. 

Wl\L CALCV ALIDRECTS 
Passed to WinDefWindowProcO 

V\i}LSIZE: 
Sends a WAL FORNiATFRAME messa.ge to self. 

WlvLFORMATFRAME 
First, the message is sent to the FID_ CLIENT window If 
FID_ CLIENT returns TRUE to indicate that the message 
was processed by the client window,then no additional 

235 



Windows Presentation Manager Rererence 

processing is performed. Otherwise, WinFormatFrameO is 
called, with IprcFrame rectangle equal to the frame window 
rect adjusted based on the presence of the FS_ DLGBORDER 
or FS_BORDER controls, or the existence of the 
FID_SIZEBORDER control. When WinFormatFrameO 
returns, WinSetMultWindowPosO is called to reposition the 
frame controls. 

WM- UPDATEFRAME 
First, the message is sent to the FID_CLIENT window. If 
FID_ CLIENT returns TRUE to indicate that the message 
was processed by the client window, then no additional pro­
cessing is performed. Otherwise, If IParaml contains 
FS_ SIZEBOX, the area occupied by the size box is invali­
dated. A WM-FORMATFRAME is sent to self. 

WM- QUERYWINDOWP ARAMS 
Passed to FID_ TITLEBAR control, if it exists, in order to 
obtain the text of the window title. 

WM- SETWINDOWP ARAMS 
Passed to FID_ TITLEBAR control, if it exists, in order to 
set the text of the window title. 

WM- L/M/RBUTTONDOWN 
WinSetActive WindowO is called, with fSetFocus == TRUE. 

236 

WM-COMMAND 
Passed to FID_ CLIENT window 

WM-HSCROLL 
Passed to FID_ CLIENT window 

WM-VSCROLL 
Passed to FID_ CLIENT window 

WM-PAINT 
If FS_BORDER then thin frame is drawn. If 
FS_ DLGBORDER then dialog border is drawn in either hil­
ited or unhilited state, as necessary. 
WM- ERASEBACKGROUND message is sent to 
FID_ CLIENT window. If WM- ERASEBACKGROUND 
message returned FALSE (client did not process), then client 
area is erased with the standard window background color. 

WM-SYSCOMMAND 
Below is a list of the standard system commands and how 
they are handled by the frame processing: 

System Command Values 
Command 

SC_SIZE 
Send a SZM-SIZE message to the control with the 
ID FID_ WIDESIZE, assumed to be the wide sizing 



Window Management Functions 

control. 

SC_MOVE 
Send a CP1LMOVE message to the control with 
the ID FID_ TITLEBAR, assumed to be the title 
bar control. 

SC_ MINIMIZE 
Minimizes the frame window or restores it to a 
remembered size and position. 

SC_ MAXIMIZE 
Maximizes the frame window or restores it to a 
remembered size and position. 

SC_NEXT 
Cycle the active window status to the next top­
level window. 

SC_APPMENU 
Send a M1LSTARTMENU message to the control 
with the ID FID_APPMENU, assumed to be the 
application menu control. 

SC_SYSMENU 
Send a M1LSTARTMENU message to the control 
with the ID FID_ SYSMENU, assumed to be the 
system menu control. 

4.1.../..2.4 Frame Notifications 

The frame window always sends notification messages to the child window 
that has the window ID of FID_ CLIENT. If no window exists with that 
ID, no notification messages are sent. 

All messages that are not explicitly processed by the frame window are 
simply sent on to the FID_ CLIENT window. This includes the 
W1L COMMAND message and the W1L HSCROLL and W1L VSCROLL 
messages posted by the menu and scroll bar frame controls, respectively. 

W1L QUERYMINMAXINFO 

Format 

WM_QUERYMINMAXINFO 
IParaml: POINT IprgptMinMax{3}; 
IParam2: 0; 
Returns: OL; 

Description 
This message is sent by the frame window to the 
client window before it performs a minimize or a 

237 



Windows Presentation Manage]' Reference 

maximize operation, upon recieving a 
WM- SYSCOMMAND message with IParaml equal 
to either SC_ MINIMIZE or SC_ MAXIMIZE. 

IParaml is a far pointer to an array of 3 POINT 
structures. These points should be set to the values 
indicated below: 

rgptMinMax{O} = Minimized size 
rgptMinMax{l}= 'Maximized s.ize 
rgptMinMax{2} = Max.imized position, relative 

to the parent of the MinMax control 
owner window. 

4.1.4.3 Standard Window.Frame Routines 

288 

WinCreateStdWindow 

Format 

HWND FAR PASCAL WinGreateStdWindow{hab, hwndParent, 
style, IpszTitle, IpszClientClass, styleCliE 
.idModule, idResource, lphwndClient) 

HWNDhwndParent; 
ULONG style; 
LPS'IR IpszClientClass; 
LPS'IR lpszTitle; 
ULONG styleClient; 
UINT idModule; 
INT idResource; 
HWND far * IphwndCllent; 
HABhab: 

Description 
WinCreateStdWindowO creates and returns a 
WC_ FRAME class window whose p.arent is 
hwndParent. The frame window handle is 
returned, or NULL if the creation was unsuccess­
ful. 

style is the window style of the WC_FRAME win­
dow, which is a combination of any of the standard 
WS_ window styles and the FS_ frame styles. 

IpszClientClass is a pointer to the class name ofa 
window dass name; if non-NULL, a client window 
is created of the specified class and with the win­
dow style styleClient, and returned in 
*lphwndClient. Generally, WS_ VISIBLE should 
be included in styleClient. 

If FS_TITLEBAR is specified, a WC_ TITLEBAR 
control is created with the text pointed to by 



Window Management Func;tions 

IpszTitle. If FS_ TITLEBAR is not specified, this 
parameter is ignored. 

If FS_:MENU is specified, idModule and idResource 
are the module handle, returned by the DOS 
DosLoadModule call, and ID of the menu template 
and accelerator table resources to load. If 
FS..,..:MENU is not specified, idModule and 
idResource are ignored. Note that it is the 
application's responsibility to ensure that the ID of 
the menu resource and accelerator table resource 
are the same. 

All of the. frame controls and the client window are 
created with the standard FID_ window IDs. 

If WS_ VISIBLE is specified in style, the standard 
window's size and position are obtained from the 
Shell before the window is shown. (The Win­
QueryTaskSizePos function is used). 

If WS_ VISIBLE is NOT specified in style, the 
frame window is created invisible with a zero siz.e 
and positioned at bottom left. You MUST later 
size, position, and show the window with a call to 
WinSet WindowPosO. This is the recommended 
way to created a standard window which is NOT a 
main window. 

WinCreateStdWindowIndirect 

Format 

HWND hwndErame ::;: WinCreateStdWindowIndirect(hab, 
hwndParent, style, IpszClientClass, IpszTitle 
styleClient, lpMenuTemplate, lpAccelTable, 
lpHwndClient) 

HWND hwndParent; 
ULONG style: 
LPSTR lpszClientClass: 
LPSTR lpszTitle; 
ULONG styleClient; 
UCHAR EAR *lpMenuTemplate: 
UCHAR EAR *lpAccelTable 
HWND far *lphwndClient; 
HAB hab; 

Description 

This function is identical to WinCreateStdWin­
dow,except that the IpMenuTemplate parameter 
is a pointer to a menu template and the IpAccelT­
able parameter is a pointer to an in-memory 
accelerator table definition. These parameters 
replace the idModule, returned by the DOS 

239 



Windows Presentation Manager Reference 

DosLoadModule call, and idResource parameters of 
WinCreateStdWindowO. A NULL value implies 
that no menu or accelerator table is present, 
respectively. 

Win CalcFrameRect 

240 

---------------------------------------------------
Format 

void WinCalcFrameRect(hwndFrame, lprc, fClient) 
HWND hwndFrame; 
LPRECT lprc; 
BOOL fClient; 

Description 
This function is used to calculate a client rectangle 
from a frame rectangle, or a frame rectangle from 
a client rectangle, depending on the fClient flag. 
The rectangle at *lprc is modified. 

If fClient is FALSE, *lprc points to a client rectan­
gle. *lprc is modified such that corresponds a size 
and position of hwndFrame that would result in a 
client window rectangle the same as that originally 
pointed to by lprc. 

If fClient is TRUE, *lprc points to a frame rectan­
gle. *lprc is modified such that it corresponds to 
the client window rectangle if the size and position 
of the hwndFrame were changed to the rectangle 
originally pointed to by lprc. 

This function works even if hwnd is hidden. In 
fact, it is important that hwnd should be hidden if 
it is required that the window show a particular 
client rectangle when the window is first shown. 

Win CreateFrameCon troIs 

Format 

BOOL FAR PASCAL WinCreateFrameControls(hwndFrame, 
style, lpszTitle, idModule, idResource) 

register HWND hwndFrame; 
ULONG style; 
LPSZ lpszTitle; 
UINT idModule; 
INT idResource; 

Description 
This function creates all of the standard frame 
controls for a window, based on the style parame­
ter. All of the controls are created with 
hwndFrame as their owner and parent. If 
FS_ TITLEBAR is specified in style, a 



WinFormatFrame 

Window Management Functions 

WC_ TITLEBAR window is created with the text 
pointed to by IpszTitle. If FS_MENU is specified, 
a menu is loaded from the resource template 
specified by idModule, returned by the DOS 
DosLoadModule call, and idMenu. 

All of the controls are created with the standard 
FID_ window IDs. 

This function is typically used when the standard 
frame controls are to be used with a non-standard 
(i.e., non-WC_FRAME) frame window class. 

-------------------------------------------------
Format 

INT FAR PASCAL WinFormatFrame(hwndFrame, 
IprcFrame, Iprgswp, cswpMax, IprcClient) 

HWND hwndframe; 
LPRECT IprcFrame; 
LPSWP Iprgswp; 
INT cswpMax; 
LPRECT IprcClient; 

Description 
This function calculates the size and position of all 
of the standard frame controls within a frame win­
dow. For all of the standard frame control chil­
dren of hwndFrame that exist, (identified by their 
FID_ window ID values), this function fills in an 
array of SWP structures with the window size and 
positions. This array of SWP structures is then 
typically passed to WinSetMult WindowPosO to 
actually move and size the frame controls to the 
desired locations. 

hwndFrame is the frame window handle whose 
children are to be positioned. 

IprcFrame is a far pointer to a rectangle within 
which to format the children. This is typically the 
window rectangle of hwndFrame, but in cases 
where the frame window has a wide border 
(FS_DLGBORDER for example), this rectangle is 
inset by the size of the border. 

lprgswp is a far pointer to an array of SWP struc­
tures, and cswpMax is the maximum number of 
SWP structures that will fit in this array. This 
array should have at least 12 elements. 

This function returns the actual number of SWP 
structures returned in the array. The array is 
filled in in the order of FID_ values shown in the 

241 



Windows Presentation Manager Reference 

table; the SWP structure for the FID_ CLIENT 
window is always the last element of the array. 
The client rectangle is returned in *lprcClient. 
This rectangle is in frame window coordinates, and 
represents the area occupied by the FID_ CLIENT 
window. If IprcClient is NULL, no rectangle is 
returned. 

This function is typically used only by applications 
that wish to have a non-standard window frame 
layout. 

4.1.4.4 Using Frame Windows 

To add or remove a menu, scroll bar, or other frame control, see the 
wtvL UPDATEFRAME message. 

You can use WinLoadMenu() to load more than one menu, and use Win­
SetParentO and wtvL UPDATEFRAME to switch between the loaded 
menus. 

When sizing, moving, or activating an application window, the frame win­
dow handle should be used. The client window handle should be used for 
things that directly affect the client window: drawing, sending messages, 
etc. 

4.1.4.5 Alternate Window Frame Formatting 

By processing the wtvLFORMATFRAME and wtvL UPDATEFRAME 
messages, it is possible for applications to change the default window 
frame formatting. 

wtvLFORMATFRAME processing is usually done by first calling WinFor­
matFrameO, and changing or adding additional SWP structures to the 
SWP array based on the results of WinFormatFrameO. Then, WinSet­
MultWindowPosO is called with the changed SWP array. 

4.1.5 The Title Bar Control 

The title bar control is the frame control that is used to display the appli­
cation window title. It is also used to display the window active/inactive 
status of the frame window, and to implement window flashing. 

The title bar control also implements the user interface for moving the 
frame window. 

242 



Window Management Functions 

The class name to use when creating title bar controls is WC_ TITLEBAR. 
The standard ID for a title bar control in a frame window is 
FID_ TITLEBAR. 

4.1.5.1 Title Bar Style 

There is only one title bar style; thus there are no available style bits. 

4.1.5.2 Title Bar Messages 

The window text of the title bar control is displayed in the title bar; the 
window text may be accessed via the WM- SETWINDOWP ARAMS and 
WM- QUERYWINDOWP ARAMS messages. 

The following messages are processed by the title bar control, in addition 
to the standard window management messages: 

Title bar state flag constants: 

State Flag. 
Meaning 

TBF_FLASH 
Titlebar state is flashing. 

TBF _ FLASHHILITE 
Titlebar is flashing and hilit. 

TBF_HILITE 
Titlebar state is hilit. 

TBM-QUERYSTATE 

Format 

TBM,...QUERYSTATE 
lParaml: OL 
lParam2: OL 
Returns: UINT rgfTltleState; 

Description 
Returns a combination of the TBF_ constants 
above: 

• :rBF_FLASH if the titlebar is currently flash­
mg 

243 



Windows Presenta.tion Mana.ger Reference 

• TBF_FLASHHILITE if titlebar is flashing and 
in hili ted state 

• TBF_HILITE if titlebar is in hilited (active) 
state. 

TB1LSETSTATE -----------------------------------------------
Format 

TB~SETSTATE 
IParaml: UINT rgfNewState; 
IParam2: UINT rgfStateMask; 
Returns: UINT rgfOldState; 

Description 
Changes the state of the title bar. IParaml con­
tains flags selecting the new state, and IParam2 
contains flags indicating which state will be 
selected. For example, rgfNewState = 
TBF _ FLASH, rgfStateMask == TBF _ FLASH 
starts the window flashing. rgfNewState = 0, 
rgfStateMask == TBF - FLASH I TBF _ HILITE 
unhilites the title bar and stops it flashing. 

Returns the previous state (ANDed with rgfSta­
teMask) of the title bar. 

TB1L TRACKMOVE 

244 

Format 

TB~TRACKMOVE 
IParaml: BOOL fMouse; 
IParam2: POINT ptMouse; 
Returns: OL; 

Description 
Initiates the window movement user interface 
code. The owner window of the title bar is moved. 

If fMouse is TRUE, the movement was initiated 
with the mouse, and IParam2 contains the initial 
mouse position. Otherwise, IParam2 contains OL. 

The processing of this message causes a 
WNL QUERYMOVESIZEINFO message to be sent 
to the control owner. The processing of this mes­
sage also results in a call to Set WindowPos. 



Window Management Functions 

4.1.5.3 Title Bar Notification Messages 

W1vL QUERYMOVESIZEINFO 

Format 

WM_QUERYMOVESIZEINFO 
IParaml: LPRECT *lprcTrackBoundry; 
IParam2: POINT FAR IprgptSize[2]; 
Returns: BOOL fContinue; 

Description 
This message is sent by the title bar control before 
moving, or by the size control before sizing. It is 
used to obtain limiting widths and rectangles that 
limit the sizing or moving operations. 

For the title bar, this message is sent once to the 
title bar owner at the start of the processing of the 
T:M- TRACKMOVE message. 

For the size control, this message is sent once to 
the size control owner at the start of the process­
ing of the SZ:M- TRACKSIZE message. 

lParaml is a far pointer to a rectangle, which is 
initialized to the tracking limit rectangle. When 
the window is being moved, no edge of the window 
may fall outside this rectangle. 

IParam2 is a long pointer to an array of two 
POINT structures. IprgptSize[O] is set to the 
minimum tracking size, and IprgptSize[l] is set to 
the maximum window tracking size. 

Returns TRUE to continue tracking, FALSE to 
abort tracking. 

4.1.6 The Size Control 

The size control is used to implement the wide window sizing borders. 
This controls implement the window sizing user interface. Mter a size 
change is requested, size controls notify their owners with an 
SZ:M- SETPOS message. 

The class name to use when creating size controls is WC_ SIZE. The stan­
dard IDs for the size borders when used with the standard WC_ FRAME 
window class are FID_ WIDESIZE. 

245 



Windows Presentation Manager Reference 

4.1.6.1 Size Control Styles 

There is only one Size Control style so there are no available style bits. 

4.1.6.2 Size Control Messages 

SZ1L TRACKSIZE -------------------------------------------------
Format 

SZM_TRACKSIZE 
lParaml: BOOL fMouse; 
lParam2: POINT ptMouse; 
Returns: OL; 

Description 
Initiate the window sizing user interface code. The 
owner window of the size control is moved. 

If fMouse is TRUE, the size operation was initiated 
with the mouse, and IParam2 contains the initial 
mouse position. Otherwise, IParam2 contains OL. 

The processing of this message causes a 
W1L GETSIZEINFO message to be sent to the 
control owner. 

4.1.6.3 Size Notification Codes 

The only notification code is the W1L QUERYMOVESIZEINFO message 
which is described in the Title Bar Notification messages section. 

4.1.7 The Minimize/Maximize Control 

The Minimize/Maximize controls (MinMax controls) are used as input 
translation controls, which simply translate mouse down messages into 
W1L SYSCOMMAND messages that get sent to the owner window. When 
drawn, they typically appear as small icon buttons at the right edge of the 
title bar of the frame window. 

The class name to use when creating min/max button controls is 
WC_ TITLEBAR. The standard ID for the minimze and maximize button 
control in a frame window is FID_MlNMAX. 

246 



Window Management Functions 

4.1.7.1 MinMax Control Styles 

MinMax Control Styles 
Style 

MMS_MAXBUTTON 
With this style the control provides the user interface for 
maximizing. Can be used with :M:MS_MINBUTTON. 

:M:MS_ MINBUTTON 
With this style the control provides the user interface for 
maximizing. Can be used with :M:MS_MINBUTTON. 

If both the MMS_MAXBUTTON and :M:MS_MINBUTTON styles are 
used, the control appears and operates as both a min and a max button, 
with the min button to the left of the max button. 

When clicked on, the min/max control simply sends a 
WM-SYSCOMMAND message to the owner window. If the owner window 
is the frame window, it'll send a WM- GETMlNMAXINFO message to the 
client window, and based on the result, perform the minimizing or maxim­
izing operation. 

If a minimize button is clicked on, a WM- SYSCOMMAND will be sent to 
the owner window, with IParaml equal to SC_MINIMIZE. 

If a maximize button is clicked on, a WM-SYSCOMMAND will be sent to 
the owner window, with IParaml equal to SC_ MAXIMIZE. 

4.1.8 Dialog Boxes 

A dialog box is a window that contains one or more child windows, typi­
cally used to provide a means for an application to gather input from the 
user. It is often a temporary window that is created for special purpose 
input and destroyed immediately after use. 

There are two types of dialog boxes: modeless dialogs and modal dialogs. 
A mode less dialog allows other application windows to be activated after 
it has been created. A modal dialog keeps control until the Win­
DismissDlg function is called. The user is not able to activate other win­
dows belonging to the same application until he has finished interacting 
with the modal dialog. 

Dialog boxes are created from a lIDialog Template". The dialog template 
defines the position, appearance, and window ID of the dialog window, and 
each ·of its child windows. Dialog Templates can be used to create dialog 
windows of any window class, containing controls of any window class. 
For standard dialog boxes, the dialog window itself is created with the 
WC_DIALOG class) and its children are any of the preregistered control 

247 



Windows Presentation Manager Reference 

classes. Applications can create dialogs with application registered con­
trols as well. 

Standard WC_DIALOG dialog boxes also have a "Dialog Procedure". 
The dialog procedure is identical to any normal window procedure. 
Presentation Manager always calls the dialog procedure, giving it a chance 
to process the message. If the dialog procedure does not need to handle 
the message, it generally passes it on to WinDefDlgProcO. Win­
CreateDlgO automatically performs the "sub-classing" that is required. 
Note that when a dialog box is created with WinCreateDlgO, the dialog 
proc won't receive a WJ\L CREATE message. This is because the dialog 
window does not get sub-classed until AFTER it is created. 

Presentation Manager supports a standard user interface for dialog boxes. 
Generally, when a dialog proc doesn't handle a keydown or mouse button 
message, it must return FALSE. Presentation Manager then performs 
additional processing on this message to implement the user interface. 

The dialog window itself is called the "Dialog Window", and the child con­
trol windows are called "Dialog Items". Each dialog item is identified by a 
unique ID that is passed to WinCreateWindowO as the item is created. 
The window handle of a particular item may be obtained with Win Win­
dowFromIDO· 

As each dialog item window is created, its text is processed with WinSub­
stituteStringsO, which may cause WJ\L SUBSTITUTESTRING messages 
to be sent to the dialog procedure. See "WinSubstituteStrings" for more 
information. 

4.1.8.1 The Dialog Procedure 

A dialog procedure is a normal window procedure that is automatically 
sub-classed to each instance of the WC_DIALOG window class. The dia­
log procedure must be declared as follows: 

248 

DialogProc -------------------------------------------------
Format 

ULONG FAR PASCAL DialogProc(hwnd, msg, 
IParaml, IParam2) 

HWND hwnd; 
UINT msg; 
ULONG IParaml; 
ULONG IParam2; 



Window Management Functions 

This procedure is no different from other window procedures except that it 
can receive predefined window messages intended especially for dialog 
boxes. It won't receive a W1vL CREATE message, but it can get the same 
information from the W1vL INITDIALOG message. 

The first four parameters are the same as with any window procedure. 
hwnd is always the window handle of the dialog box window. 

Typically, the dialog procedure will process some, but not all of the mes­
sages passed to it. If it does not wish to process a message, it should pass 
it on to WinDefDlgProcO. 

4.1.8.2 Dialog Templates 

Dialog Templates are data structures used to define dialog boxes. These 
templates can be loaded as resources or created dynamically in memory. 
Dialog Templates can be used to create windows of any window class that 
contains child windows of any window class. For standard dialog boxes, 
the dialog window itself is created with the WC_ DIALOG class, and its 
children are any of the predefined control classes. 

The dialog template specifies all the information required to create a dia­
log window and its children: the class, text, position, size, and the window 
ID. 

4.1.8.2.1 Dialog Coordinates 

Coordinates in a dialog template are specified in "dialog coordinates". 
Dialog coordinates are based on the size of the system font: a unit in the 
horizontal direction is 1/4 the system font average character width, and a 
unit in the vertical direction is 1/8 the system font character height. The 
origin is the bottom left corner of the dialog box. 

4.1.8.2.2 Dialog Template Format 

Dialog Template format: 

typedef struct 
UINT 
UINT 
UINT 
UINT 
UINT 
UINT 
UINT 
DLGTITEM 
UCHAR 

DLGTEMPLATE; 

cbTemplate; 
type; 
codepage; 
offrgti; 
statusTemplate; 
coffPresParams; 
rgoffPresParams[ coffPresParams] 
rgti [ 7] ; 
rgbData[ 7] ; 

249 



Windows Presentation Manager Reference 

cbTemplate 
is the overall length of the dialog template in bytes. 

Type identifies the dialog template format type. This value is 
currently always zero. 

codepage 
The codepage of the text in the template. This is currently 
always 850. 

offrgti Offset to array of DLGITEM structures from beginning of 
template. 

statusTemplate 
contains status information for the entire dialog box. This 
currently always has a value of zero. 

coflPresParams 
Currently always zero 

rgoflPresParams 
Currently always an array of zero dimension 

rgti Array of DLGITEM stuctures, described below. The first ele­
ment of this array describes the primary window. All other 
items in the array are children of this window. The number 
of children is specified in the cChildren field of the first 
DLGITEM. 

rgbData 
Array of bytes. Window class names, text strings, control 
data and presentation parameters are stored here. 

Dialog Item format: 

typedef struet DLGTITEM 
UINT status Item; 
UINT eChildren; 
UINT eehClassName; 
UINT offClassName; 
UINT eehText; 
UINT off Text; 
ULONG Style; 
INT x; 
INT y; 
INT ex; 
INT ey; 
UINT id; 
UINT ioffPresParams; 
UINT offCtlData; 

DLGTITEM; 

250 



Window Management Functions 

statusItem 

cChildren 

contains status information for the item. This must have 
the value O. 

is a count of the child windows that are owned by this win­
dow. If cChildren is non-zero, then the next cChildren win­
dows will be created as children to this window. Each win­
dow can have any number of child windows, which allows for 
a fully tree-structured arrangement. 

cchClassName 
is the length of window class name. If a length of zero is 
specified then ClassOffset is assumed to contain a system 
class identifier. This is the length of the significant charac­
ters in the class name excluding the terminating NULL. 

offClassName 
is the offset within the dialog template of the string specify­
ing the window class name. If a cchClassName of zero is 
specified then this offset is assumed to be a system class 
identifier. The class name should be a NULL terminated 
ASCII string. 

cchText is the length in bytes of the text data associated with the 
control. This is the length of the significant characters in 
the text excluding the terminating NULL. 

ofIText is the offset within the dialog template of the text data with 
which the window should be initialized. The text should be 
a NULL terminated ASCII string. 

Style is the style of the window. The first 8 bits are the standard 
WS_ style bits, and the remaining 24 bits are available for 
class-specific use. 

X and y 
are the x and y coordinates of the window. For the control 
windows, within the dialog these are specified in dialog coor­
dinates, with x and y relative to the origin of the dialog win­
dow. 

Cx and Cy 
are the x and y extent of the window. 

id is the ID number for this window. 

ioff'PresParams 
Currently always zero. 

offCtlData 
is the offset within the dialog template of the Control data 
for this window. 

251 



Windows Presentation Manager Reference 

The Dialog Data contains the data for the Text, Class Names, 
CreateParams and PresentationParams for the Dialog Items. This is held 
in an unstructured array of bytes, as large as necessary to contain the 
data. 

Note that this is a fully recursive structure. More than one level of child 
windows may be specified. 

4.1.8.3 Dialog Control Groups 

Within a Dialog Box, sets of controls can be aggregated into Groups, 
mainly for the purposes of easier interaction for the end-user. 

Groups are really useful for Button controls, but could apply to other 
types of controls. 

When a set of controls are formed into a group, the user can go from one 
to the next by pressing the arrow keys on the keyboard. The focus 
progresses round all the members of the group, but not members of any 
other group. Note that this implies that controls which themselves pro­
cess the arrow keys, such as Edit Controls, cannot be formed into a group. 

A group is established by setting the WS_ GROUP style bit for the first 
control in the group. The other members of the group should follow the 
first in the enumeration order (ie follow in the template). The group is 
terminated by the next control which has the WS_ GROUP style - this 
starts the next group. Logically, all the items in a Dialog Box are in one 
group or another. 

The user can go from one group to the next by using the TAB keys. When 
the TAB key is pressed, the focus is moved to the next control in the 
enumeration order which has the WS_ TABS TOP style bit set. Normally 
this would be the first member of a group. 

Tab keys are the normal way to get from one Edit Control to the next and 
these controls should always have the WS_ TABSTOP style. In fact, this 
is the default for Dialog Templates generated from text' :esource files by 
the resource compiler. 

4.1.8.4 Dialog Box Messages 

A dialog procedure, being a standard window procedure, receives any mes­
sages that are sent to the dialog box. This includes the standard window 
management messages such as W}"LDESTROY, as well as control 
notifications such as W}"L CONTROL and W}"L C011MAND. 

252 



Window Management Functions 

The dialog procedure may also receive W1LSUBSTITUTESTRING mes­
sages, if substitution strings are used in the dialog template. If sent, these 
messages are sent before an item is created. See "WinSubstituteStringsO". 

Presentation Manager sends the following message after a dialog box is 
created, but before it is made visible: 

W1L INITDIALOG -------------------------------------------------
Format 

Message: UINT WM_INITDIALOG 
IParaml: HWND hwndSetfocus 
IParam2 : LPSTR IpCreateParams 
Returns: BOOL ffocusSet 

Description 

Notes 

This message is sen t by WinLoadDlg or Win­
CreateDlg to a dialog procedure right after a dia­
log window is created, but before it is shown. This 
message is intended to allow the application to do 
run time initialization of the dialog box. Often it 
will be necessary to initialize text in static and edit 
controls and listboxes at this time, or to check but­
tons according the the current state of the applica­
tion. hwndSetFocus is the window handle of the 
control that is going to receive the focus. The 
application may change this by calling WinSet­
FocusO with the window handle of another control 
in the dialog box and returning TRUE. It shodd 
otherwise return FALSE. 

IpCreateParams is the IpCreateParams parameter 
passed to WinLoadDlg or WinCreateDlg. 

If any string substitutions were made by WinSub­
stituteStringO when the dialog was created, 
W1L SUBSTTTUTESTRING message may have 
been sent BEFORE the W1LINITDIALOG mes-
sage is sent. 

When a dialog is created with WinCreateDlgO or WinLoadDlgO, a 
W1LADJUSTWINDOWRECT message is sent to each child wmdow after 
the window is created. See the section dealing with the 
W1LADJUSTWINDOWRECT message for more detail. 

253 



Windows Presentation Manager Reference 

4.1.8.5 Dialog Styles 

The following styles are defined especially for dialog boxes: 

Dialog Window Styles 
Style 

DS_ DLGFRAME 
The dialog box is created with a special frame that identifies 
it as a dialog box. Most dialog windows are created with 
this style. 

DS_ SCREENALIGN 
The coordinates specifying the location of the dialog box are 
relative to the top left corner of the screen, rather than being 
relative to the owner window's origin. 

DS_MOUSEALIGN 
The coordinates specifying the location of the dialog box are 
relative to the position of the mouse cursor at the time that 
the window was created. Presentation Manager will attempt 
to keep the dialog box on the screen, if possible. 

4.1.8.6 Dialog Box Routines 

254 

WinLoadD_I~g ____________________ _ 

Format 

HWND WinLoadDlg(hab, hwndOwner, IpfnDlgProc, 
idModule, idDlg, IpCreateParams 

HWND hwndOwner; 
FARPROC IpfnDlgProc; 
UINT idModule; 
UINT idDlg; 
LPSTR IpCreateParams; 
HAB hab; 

Description 
This function creates a dialog window from a tem­
plate in a resource. hwndOwner is the owner win­
dow. IpfnDlgProc is the dialog procedure, or 
NULL if it doesn't exist. idModule, returned by 
the DOS DosLoadModule call, is a resource handle 
or NULL for the application resource file. idDlg is 
the id of the dialog within the resource file. 
IpCreateParms points to data that is passed to the 
dialog procedure along with a WM- INITDIALOG 
message. This function returns the window handle 
of the new dialog box. 



Notes 

Window Mana.gement Functions 

WinLoadDlg returns immediately after creating 
the dialog box. A WM- INITDIALOG message is 
sent to the dialog procedure before this function 
returns. 

Also, since each of the controls will be created 
when this function is called, the dialog procedure 
may receive various control notifications. 

A dialog window may be destroyed with WinDes­
troyWindowO· 

As windows are created from the template, strings 
in the template are processed with WinSubstitute­
String(). Any resultant 
WM-SUBSTITUTESTRING messages are sent to 
the dialog procedure before WinLoadDlgO returns. 

WinCreate_D--->lg<--____________________ _ 

Format 

HWND WinCreateDlg(hab, hwndOwner, IpfnDlgProc, 
IpDlgTemplate, IpCreateParms) 

HWND hwndOwner; 
FARPROC IpfnDlgProc; 
DLGTEMPLATE FAR * IpDl gTempl ate; 
LPSTR IpCreateParms; 
HAS hab; 

Description 
This function is identical to WinLoadDlgO (above) 
except that it creates a dialog window from a tem­
plate in memory rather than a resource file. 
IpDlgTemplate points to a data structure defined 
by DLGTEMPLATE. This function returns the 
window handle of the new dialog box. 

WinProcessDlg 
--~~-------------------------------------------

Format 

UINT WinProcessDlg(hwndDlg) 
HWND hwndDlg; 

Description 

This function processes messages intended for a 
modal dialog. It does not return until the Win­
DismissDlg call is issued by the dialog procedure. 

If the application's message queue is not empty, 
this function dispatches the messages from the 

255 



Windows Presentation Manager Reference 

256 

WinDlgBox 

queue to the appropriate window procedure or to 
the dialog procedure, until either a message causes 
the dialog procedure to issue the WinDismissDlg 
call, or until all the messages from the application 
queue are processed. 

If, or when, the application's message queue is 
empty, this function guarantees the visibility of 
the modal dialog identified by the hwndDlg param­
eter, i.e. shows the dialog window if it is hidden. 

The function returns with the wResult parameter 
that was provided to the WinDismissDlg function, 
which has hidden the dialog window but has not 
destroyed it. 

Character messages are processed by WinPro­
cessDlgMsg to implement the standard user inter­
face user interface. Messages are processed in this 
way ONLY if WinDispatchMsgO returns FALSE 
(i.e. the window with the focus did not process the 
message). 

-------------------------------------------------
Format 

UINT WinDlgBox(hab, hwndOwner, lpfnDlgProc, 
idModule, idDlg, lpCreateParams) 

HWND hwndOwner; 
FARPROC lpfnDlgProc; 
UINT idModule; 
UINT idDlg; 
LPSTR lpCreateParams; 
HAB hab; 

Description 
This function creates a modal dialog box. The 
parameters to this function are the same as the 
parameters to WinLoadDlgO. This function does 
not return until the dialog procedure calls Win­
DismissDlgO to destroy the dialog box and relinqu­
ish control. The value returned by this function is 
equal to the value of the wResult parameter passed 
to the WinDismissDlgO function. 

This function is equivalent to: 
hwndDlg = WinLoadDlg( ... ); 
result = WinProcessDlg(hwndDlg); 
WinDestroyWindow(hwndDlg); 
return (result); 



Notes 

Window Management Functions 

Values returned by the application's dialog pro­
cedure are processed by Presentation Manager. 
They are not returned to the caller of 
WinDlgBoxO· 

WinDismissD 19 
--~~-------------------------------------------

Format 

VOID FAR WinDismissDlg(hwndDlg, wResult) 
HWND hwndDlg; 
UINT wResult; 

Description 

Notes 

This function hides the dialog box window and sets 
a flag that causes the 
WinProcessDlgO/WinDlgBoxO message processing 
loop to terminate. WinDismissDlgO is required to 
complete processing whenever the 
WinProcessDlgO/WinDlgBoxO function is used to 
create a modal dialog box. This function is called 
from within a dialog procedure. wResult is the 
value which will be returned to the caller of 
WinProcessD IgO /WinD IgBoxO. 

If necessary, WinDismissDlgO can be called during 
the processing of the W1L INITDIALOG message. 

WinSendDIgItemMsg 

Format 

ULONG WinSendDlgltemMsg(hwndDlg, idltem, msg, 
IParaml, IParam2) 

HWND hwndDlg; 
UI NT idI tem; 
UINT msg; 
ULONG IParaml; 
ULONG IParam2; 

Description 
This function is used to send a message to the 
specified dialog item identified by idItem in the 
dialog box specified by hwndDlg. msg, IParaml 
and IParam2 are the SemdMessage parameters. 
WinSendDlgItemMsg does not return until the 
message has been processed. This function returns 
the value returned by the dialog item's window 
function. 

257 



Windows Presentation Manager Reference 

Notes This function is equivalent to: 

WinSendMsg (WinWindowFromID (hwndDlg, idltem), ms~ 

WinSetD IgI temln t 
~-----------------------------------------------

Format 

BaaL WinSetDlgltemlnt(hwndDlg, idltem, wValue, fSigr 
HWND hwndDlg; 
UINT idltem; 
UINT wValue; 
BaaL fSigned; 

Description 
This function sets the text of the item with idItem 
in the specified to the string representation of the 
integer wValue. If fSigned is TRUE, wValue is a 
signed integer; otherwise, it is an unsigned 
integer. 

Notes The string is always produced as an ASCII string. 

WinQueryDlgItemInt 

258 

Format 

INT 

HWND 
UINT 
LPSTR 
BaaL 

WinQueryDlgltemlnt(hwndDlg, 
IpfSuccess, fSigned) 
hwndDlg; 
idDlgltem; 
Ip fSuccess; 
fSigned; 

idDlgItem, 

Description 
This function translates the text of a dialog item 
into an integer value. hwndDlg is the dialog win­
dow handle, idDlgItem is the id of the item to 
translate. If fSigned is TRUE, WinGetDlgItemlnt 
checks for a minus signe before translating the 
number. If IpfSuccess is non-zero, it points to a 
boolean variable. WinQueryDlgltemInt sets this 
boolean variable to TRUE if it succeeds in 
translating the text without any errors. Other­
wise, it sets this variable to FALSE. This function 
returns the translated integer value. 

Notes The dialog item string is assumed to be an ASCII 
string. 



Window Management Functions 

WinMapDlgPoin ts 
~-----------------------------------------------

Format 

VOID WinMapDlgPoints(hwndDlg, Iprgpt, cpt, 
fCalcWindowCoords) 

HWND hwndDlg; 
POINT FAR *lprgpt; 
INT cpt; 
BOOL fCalcWindowCoords; 

Description 
This function maps points from dialog coordinates 
to window coordinates, or from window coordi­
nates to dialog coordinates, depending on the state 
of fCalc WindowCoords. 

lprgpt is a far pointer to an array of POINT struc­
tures, and cpt is the number of points in this 
array. hwndDlg is the dialog box handle that the 
coordinates will be mapped to or from. 

If fCalcWindowCoords is TRUE, the points in the 
array are assumed to be in dialog coordinates. 
They are mapped to window coordinates relative 
to hwndDlg. 

If fCalc WindowCoords is FALSE, the points in the 
array are assumed to be in window coordinates 
relative to hwndDlg. They are mapped to dialog 
coordinates. 

WinProcessDlg:Msg 
--~~~-----------------------------------------

Format 

BOOL WinProcessDlgMsg(hwndDlg, Ipqmsg) 
HWND hwndDlg; 
LPQMSG Ipqmsg; 

Description 
This function determines whether the message 
specified by lpqmsg is intended for the modeless 
dialog box specified by hwndDlg. If so, the mes­
sage is sent to the dialog window and this function 
returns TRUE. Otherwise, this function returns 
FALSE. This function is typically called from 
within an application's main loop to allow a mode­
less dialog box to process the appropriate mes­
sages, while passing other messages on to its win­
dow proc. 

259 



Windows Presentation Manager Reference 

Notes if WinProcessDlgMsg returns TRUE, the message 
has already been processed and should NOT be 
passed on to WinDispatchMsgO. 

while (WinGetMsg((LPQMSG)&qmsg, (HWND)NULL, 0, 0» { 

} 

if (!WinProcessDlgMsg(hwndModelessDlg, (LPQMSG)&qmsg» { 
WinDispatchMsg(LPMSG)&msg); 

} 

exit (qmsg. lParaml) ; 

WinEn umDlgItem 
--~---------------------------------------------

260 

Format 

HWND WinEnumDlgItem(hwndDlg, hwnd, code, fLock) 
HWND hwndDlg; 
HWND hwnd; 
UINT code; 
BOOL fLock; 

Description 
This function is used to obtain the next or previ­
ous window handle of a dialog item with either the 
WS_ TABSTOP style bit set, or in the same 
"group" as the starting hwnd. 

This function always returns a window handle that 
is an immediate child of hwndDlg, even if hwnd is 
not an immediate child. 

If fLock is TRUE, return the window handle 
locked. 

Wraps around to beginning when obtaining next at 
end of list. Wraps around to end when obtaining 
prev at beginning of list. 

Available code values are shown below. Note that 
only one of these values may be used. 

WinEnumDlgItemO Codes 
Returns: 

EDL PREVTABITEM 
Previous item with style 
WS_ TABSTOP; wraps around to end 

EDL NEXTTABITEM 
Next item with style WS_ TABSTOP; 
wraps around to beginning 

EDLFIRSTTABITEM 
First item in dialog with style 
WS_ TABSTOP; hwnd is ignored 



Window Management Functions 

EDL LASTTABITEM 
Last item in dialog with style 
VVS_ TABSTOP; hwnd is ignored 

EDL PREVGROUPITEM 
Previous item in the same group; wraps 
around to end 

EDL NEXTGROUPITEM 
Next item in the same group; wraps 
around to beginning 

EDL FIRSTGROUPITEM 
First item in the current group 

EDL LASTGROUPITEM 
Last item in the current group 

4.1.9 Message Boxes 

A message box is a special predefined dialog window that any application 
can use to display messages and get simple input from the user. A mes­
sage box contains a specified caption and message and up to four pushbut­
tons. The message box is displayed in the center of the screen. Message 
boxes can also contain anyone of a predefined set of icons. 

The message box may be "Application Modal" or "System Modal". Appli­
cation modal boxes do not allow the user to activate any other window in 
belonging to the same application before responding to the message box, 
whild System Modal message boxes disable the entire system. System 
modal message boxes are used to notify the user of serious, potentially 
damaging, errors that require immediate attention (for example, running 
out of memory). 

4.1.9.1 Message Box Functions 

WinMessa_.l=g~e;::.B...:..o;::.x ____________________ _ 

Format 

UINT fAR WinMessageBox(hab, hwndOwner, idHelp, 
IpszText, IpszCaption, rgfStyle) 

HAB hab; 
HWND hwndOwner; 
UINT idHelp; 
LPSTR IpszText; 
LPSTR IpszCaption; 
UINT rgfStyle; 

261 



Windows Presentation Manager Reference 

262 

Description 
This function creates and displays a message box. 
hwndOwner specifies the owner of the message box 
and IpszText and IpszCaption specify the text con­
tent and the caption content of the message box 
respectively. If IpszCaption is NULL, the default 
caption "Error" is displayed. The Owner window is 
activated when the WinMessageBox returns. 

rgfStyle is a bit array specifying the contents and 
function of the message box. Any of the following 
combinations can be used: 

If multiple lines are required in the text of the mes­
sage, carriage return characters may be inserted in 
*lpszText. 

The window ID of the message box is set to idHelp. 
This value is passed to the HI<- HELP hook if the 
W1L HELP message is received by the message 
box. See the description of the HI<- HELP hook 
for more detail. 

WinMessageBoxO Styles 
Meaning 

MIL OK 
Message box contains an Ok push but­
ton. 

MIL OKCANCEL 
Message box contains Ok and Cancel 
push buttons. 

MIL RETRYCANCEL 
Message box contains Retry and Cancel 
push buttons. 

MILABORTRETRYIGNORE 
Message box contains three push but­
tons: Abort, Retry, and Ignore. 

MIL YES NO 
Message box contains two push buttons: 
Yes and No. 

:MIL YES NOCANCEL 
Message box contains three push but­
tons: Yes, No, and Cancel. 

MEL HELP 
Message box contains a help pushbutton. 



Window Management Functions 

:MILICONHAND 
A hand icon appears in the message box. 

MB_ ICONQUESTION 
A question mark icon appears in the 
message box. 

MB_ICONEXCLAMATION 
An exclamation point icon appears in the 
message box. 

MB_ ICONASTERISK 
An asterisk icon appears in the message 
box. 

MIL DEFBUTTONl 
First button is the default (the first but­
ton is always the default unless 
MB_ DEFBUTTON2 or 
:M:B- DEFBUTTON3 is specified). 

:M:B- DEFBUTTON2 
Second button is the default. 

:M:B- DEFBUTTON3 
Third button is the default. 

MlLAPPLMODAL 
The message box is application modal. 

MB_SYSTE~ODAL 
The message box is system modal. 

Return Value 
Message box returns one of the following values 
depending on the user's response: 

Message Box Return Values 
Return Value 

IDOK OK button was pressed 

IDCANCEL 
Cancel button was pressed 

IDABORT 
Abort button was pressed 

IDRETRY 
Retry button was pressed 

IDIGNORE 
Ignore button was pressed 

IDYES Yes button was pressed 

263 



Windows Presentation Manager Reference 

264 

Notes 

WinAlarm 

IDNO No button was pressed 

If a message box has a Cancel button, the IDCAN­
CEL value will be returned if either the Escape or 
Cancel key is pressed. If the message box has no 
Cancel button, pressing the Escape key has no 
effect. 

When a system modal message box is created to 
indicate that the user is low on memory, the 
strings passed as the lpszText and lpszCaption 
parameters should not be taken from a resource 
file, since an attempt to load a resource file may 
fail. The message box can safely use the hand icon 
( MB_ HANDICON), since this icon is always 
resident and does not require disk access. 

When the keyboard interface is used to enumerate 
windows, the message box and its parent are con­
sidered to be next to each other. 

If a message box is created while a dialog box is 
present, use the handle of the dialog box as the 
hwndOwner parameter. 

----------------------~-------------------------

Format 

BOOL FAR WinAlarm(hab, rgfType) 
HAB hab; 
UINT rgfType; 

Description 
This function generates a beep at the system 
speaker. This function returns TRUE if a beep is 
actually generated. rgfType may be one of the fol­
lowing: 

W~WARNING 
WA_NOTE 
WA_ERROR 

WinSubstituteStrings 

Format 

INT FAR WinSubstituteStrings(hwnd, IpszSrc, 
IpszDst, cchDstMax); 

HWND hwnd; 
LPSTR IpszSrc; 
LPSTR IpszDst; 



Window Management Functions 

INT cchDstMax; 

Description 
This function copies a null terminated string from 
*lpszSrc to *lpszDst, performing substitution of 
certain characters with application-supplied 
strings as the string is copied. 

If a string of the form "%<digit>" is encoun­
tered, where <digit> is a digit from "0" to "g", a 
WNL SUBSTITUTESTRING message is send to 
the specified window. This message returns a far 
pointer to a null terminated string that is copied 
to the destination, replacing the "%<digit>" 
string. 

If two "%" characters are encountered, only one is 
copied. If the character following the "%" is not a 
digit or "%", both the "%" and the character fol­
lowing are copied. 

This function returns the length of IpszDst, not 
including the null termination character. If the 
destination string would be longer than cchDstMax 
characters, it is truncated at cchDstMax - 1 char­
acters; the string is always null terminated. 

WNL SUBSTITUTESTRING 

Format 

WM_SUBSTITUTESTRING 
LOUINT(lParaml): INT iString; 
IParam2: OL; 
Returns: LPSTR IpszSubstituteString; 

Description 
This message is sent by WinSubstituteStringsO 
when a substitution string of the form 
"%<digit>" is encountered, where <digit> is a 
character between "0" and "g". iString is a 
number between 0 and g corresponding to 
<digit>, identifying which substitution is being 
made. 

Example 

This message returns a far pointer to a NULL ter­
minated string, which will be substituted for the 
"%<digit>" string. 

See WinSubstituteStringsO above. 

Here is an example of how WinSubstituteStringsO 
and the WNL SUBSTITUTESTRING message can 

265 



Windows Presentation Manager Reference 

be used: 

The call: 

cch = WinSubstituteStrings(hwnd, 
"Do you want to %0 the file %1?", 
lpchBuffer, cchBufferMax); 

with the following case in the window procedure of 
hwnd: 

case WM_SUBSTITUTESTRING: 
switch (lParam1) { 
case 0: 

return ( (LPSTR) "delete") ; 
break; 

case 1: 

} 

return ((LPSTR) "EXAMPLE .EXE") ; 
break; 

break; 

produces the string: 

Do you want to delete the file EXAMPLE.EXE? 

4.1.10 Control Wmdows 

"Control windows", or just "controls", are predefined classes for child win­
dows that any application can use for input and output. Controls are usu­
ally part of a dialog box and are loaded from a dialog template, but they 
can also be created by the application by calling WinCreateWindowO with 
the appropriate control class. The following control classes have been 
predefined: 

266 

Standard Control Classes 
Class Name 

WC_BUTTON 
These controls consist of buttons and boxes that the user can 
select by clicking the mouse or using the keyboard. 

WC_EDIT 
These controls consist of a single line of text that the user 
can edit. 

WC_STATIC 
These controls are simple display items such as icons and 
text that do not respond to keyboard or mouse events. They 
are used primarily inside dialog boxes. 

WC_LISTBOX 
These controls present a list of text items from which the 
user can make selections. 



Window Management Functions 

WC_:MENU 
These controls also present a list of items. The items may be 
text or bitmaps, displayed horizontally as "Action Bars" or 
vertically as "Popup Menus". Menus are usually used to pro­
vide a command interface to applications. 

WC_ SCROLLBAR 
These controls consist of window scroll bars that allow the 
user to make a request to scroll the contents of an associated 
window. 

WC_ MlNMAXBOX 
Minimize/Maximize pushbuttons 

WC_ SIZEBORDER 
Window sizing border 

WC_ TITLEBAR 
This control displays the window title or caption and allows 
the user to move its owner by dragging the control. 

4.1.10.1 Common Features 

Control windows are just like any other window, so all of the standard 
window management functions such as WinSetWindowTextO and 
WinShowWindowO can be used. In addition, they handle the standard 
window messages such as W1L QUERYWINDOWP ARAMS and 
W1L ENABLE. See the section on "Window Management" . 

Although there are differences among controls of different classes, they all 
share the following common features. 

4.1.10.1.1 Synchronous Painting 

Controls are typically painted synchronously. For more information, see 
"Synchronous Window Updating" 

4.1.10.1.2 Control Identification 

Like all windows, a control has a unique ID value that identifies it. This 
value is determined by the application when the control is created. See 
"Window Attributes". This id is used by the control when it notifies its 
owner. 

267 



Windows Presentation Mana.ger Reference 

4.1.10.1.3 Control States 

Controls can be enabled and disabled, and hidden and shown with 
WinEnableWindow() and WinShowWindowO. A disabled control is usu­
ally half toned to indicate to the user that it is disabled. Some controls 
can be hilited by sending them a SETHILITE message. For example a 
titlebar control is hilited by sending it a TBM.. SETHILITE message. 

4.1.10.1.4 Control Messages 

Typically, control windows each have a certain set of messages that are 
used to interact with the control. For instance, menu controls will 
respond to window messages to add, insert, and delete menu items. Each 
control has its own set of messages. 

4.1.10.1.5 Control data 

Some controls respond to their control data. They are initially passed the 
control data via the W1L CREATE message. They have to respond to 
changes to the control data that is sent to them by 
WM..SETWINDOWPARAMS messages, and return their control data in 
response to WM.. QUERYWINDOWP ARAMS messages. 

The following defines the control data for the standard window classes. 

WC_BUTTON 
typedef struct { 

UINT wCheckState; 
UINT wHiliteState; 

} BTNCDATA; 

wChecked is a uint that indicates the current button check state, i.e., the 
same as the value returned by/passed to the 
BM- QUERYCHECKjBM.. SETCHECK message. 

wHiliteState is a uint that indicates the current button hilite state, as 
returned by jpassed to BM.. QUERY jSETHILlTE. 

WCJllENU 

ControlData points to a menu template structure. The menu control data 
may not be queried or set after the window is created. The ControlData 
field is interpreted by the menu control only when the control is created. 

WC_EDIT 

268 

typedef struct { 
UINT cchEditLimit; 

} EDITCDATA; 



Window Management Functions 

cchEditLimit contains the maximum number of characters that may be 
entered into the edit control. 

WC_SCROLLBAR 
typedef struct { 

UINT posFirst; 
UINT posLast; 
UINT posThumb; 

} SBCDATA; 

posFirst and posLast reflect the scroll range, and posThumb is the current 
thumb position. 

No control data. 

No control data. 

WC_TITLEBAR 

No control data. 

No control data. 

No control data. 

WC_LISTBOX 

No control data. 

4.1.10.1.6 Control Owner Notifications 

When interesting things happen with a control, the owner window of the 
control is notified with a window message. The message sent, and whether 
the message is posted or sent depends on the control. For example, menu 
controls post W1L COMMAND messages to their owner when an item is 
selected. Many controls send notifications via the W1L CONTROL mes­
sage. 

269 



Windows Presenta.tion Mana.ger Reference 

4.1.10.1. 7 Dialog Codes 

When processing user input, the dialog manager makes some assumptions 
ab<iut how certain controls operate. For example, when an edit control is 
given the focus, its entire text is selected. 

A control's" dialog code" contains flags that govern what assumptions the 
dialog manager makes about a control. The dialog manager sends the 
WM- QUERYDLGCODE message to get a control's dialog codes. 

4.1.10.1.8 Control Heap 

Most controls require memory for the storage of data associated with that 
control, such as the strings that make up the items in a menu control, or 
the text buffer associated with an edit control. 

This data is normally allocated in a heap created with the Win­
CreateHeapO function. Controls typically send a WM- CONTROLHEAP 
message to their owner in order to obtain the heap handle to allocate in. 
Some controls do not require a heap handle; others create their own heap 
handle. 

For each thread with a message queue, there is an associated heap handle 
that can be used by controls (or applications) for the purpose of allocating 
app-specific data. This heap handle is returned when 
WM- CONTROLHEAP is processed by WinDefWindowProcO. See the 
"Local Memory Manager" . 

4.1.10.2 Standard Control Messages 

The following messages can be sent to all controls: 

WM-ADJUSTWINDOWRECT 

270 

Format 

WM_ADJUSTWINDOWRECT 
IParaml: LPSWP Ipswp 
IParam2: 0 
Returns: BOOL fAdjusted 

Description 
This message is sent to controls by WinSetWin­
dowPosO to allow the control window to adjust its 
new pOSItion or size whenever it is about to be 
moved. lpswp points to an SWP structure which 
has been filled in by Set WindowPosO with the pro­
posed move/size data. The control may adjust 



Window Management Functions 

this new position by changing the contents of the 
SWP structure. It can change the x/y fields to 
adjust its new position; it can change the cx/ cy 
fields to adjust its new size, or it change the 
hwndInsertBehind field to adjust its new z-order. 

Frame controls can respond to this message to 
reposition themselves or resize themselves in the 
window frame. Menu controls respond to this mes­
sage by resizing both their height and widt.h to fit 
the current content of the menu. 

The return value is TRUE if any change has been 
made to the SWP structure, FALSE otherwise. 

When a dialog is created with WinCreateDlgO or 
WinLoadDlgO, a WM- ADJUSTWlNDOWRECT 
message is sent to each child window after the win­
dow is created, with a pointer to an SWP structure 
containing rgf == SWP _SIZE I SWP _MOVE, and 
the x, y, cx, cy fields initialized to the window's 
current size and position. The message allows the 
control to adjust its size or position, usually to 
compensate for its border and/or margin. 

The WM- AD JUSTWlNDOWRECT is only pro­
cessed by list boxes and edit controls: 

Listboxes: 
Listboxes automatically outsets its 
border in addition to changing its height 
to accomodate an exact number of items. 
This means that the "x, y, cx, cy" fields 
in the .rc file specify the working area of 
the list box. The border will be drawn 
outside this area. 

Edit controls: 
The edit control, if ES_MARGIN is 
specified, outsets its margin. This means 
that in the .rc file, the numbers specified 
as the x, y position of an edit control are 
taken to be the position where the first 
character of text is drawn, not where the 
lower left corner of the surrounding box 
is drawn. Similarly, the height and 
width parameters apply to the editable 
area of the control, thus not including 
the margin. 

271 



Windows Presentation Manager Reference 

WNL QUERYDLGCODE 

272 

Format 

WM_QUERYDLGCODE 
IParaml: 
IParam2: 
Returns: 

LPQMSG * IpQmsg; 
o 

ULONG IDialogCode; 

Description 
When processing user input, the dialog manager 
makes some assumptions about how certain con­
trols operate. The dialog manager sends the 
WNL QUERYDLGCODE message to obtain a code 
that govern what assumptions can be made. 

This message is sent by the dialog manager to 
identify the type of control to determine what 
kinds of messages the control will understand, and 
also to determine whether an input message may 
be processed by the dialog manager or passed 
down to the control. 

The following information flags (which can be 
OR'ed together) are returned. There are two 
groups of flags: those that identify the type of con­
trol and the messages that can be sent to it, and 
those that control how the dialog manager handles 
user input: 

Dialog Codes 
Dialog Code 

DLGC_EDIT 
Identifies an edit control. Assumed to 
understand the E1L SETSEL message. 

DLGC_BUTTON 
Identifies a button item. Assumed to 
understand the B1L CLICK message. 

DLGC_CHECKBOX 
Identifies a checkbox item. Used with 
the DLGC_BUTTON code. 

DLGC_ RADIOBUTTON 
Identifies a radio button control. Used 
with the DLGC_ BUTTON code. 

DLGC_STATIC 
Identifies a static control. Static con­
trols are not included in arrow key 
enumeration. 



Window Ma.na.gement Functions 

DLGC_DEFPUSHBUTTON 
Identifies a Default pushbutton control 

DLGC_UNDEFPUSHBUTTON 
Identifies a Non-default pushbutton 

4.1.10.3 Owner Notification Messages 

Controls are useful because they notify their owners when interesting 
events take place. A control notifies its owner by sending a 
WM- CONTROL message or by posting a WM- COMMAND or 
WM- HELP message. 

WM-CONTROL -----------------------------------------------
Format 

WM_CONTROL 
LOUINT(lParaml): UINT 
HIUINT(lParaml): UINT 
lParam2: ULONG 

id 
wNotifyCode 
lControlSpec 

Description 

WM-COMMAND 

A WM-CONTROL message is always sent (via 
WinSendMsgO· ) 

LOUINT(lParaml) contains the window ID of the 
control, which is the ID parameter of Win-
Create WindowO or in a dialog template. 

HIUINT(lParaml) contains what is known as a 
"notification code", which is a value that indicates 
why the notification is taking place. The values of 
the notification codes sent by each control depends 
on the control class. 

IParam2 contains control-specific information, 
which is often simply the window handle of the 
control. 

-----------------------------------------------
. Format 

~COMMAND 
LOUINT(lParaml): UINT 
LOUINT(lParam2): UINT 
HIUINT(lParam2): BOOL 

id 
wSource; 
fMouse; 

273 



Windows Presentation Manager Reference 

274 

Description 

WM-HELP 

Menu controls and pushbuttons commonly post 
W1L COMMAND messages to the message queue. 

IParaml contains the window ID of the control, 
which is the ID parameter of WinCreateWindowO 
or in a dialog template. 

LOUINT(IParam2) contains information that indi­
cates the source of the W1L COMMAND message: 

W1L COMMAND Source Codes 
Source Code 

CMDSRC_PUSHBUTTON 
Posted by a pushbutton control 

CMDSRC_MENU 
Posted by a menu control 

CMDSRC_ACCELERATOR 
Posted by WinTranslateAcceleratorO. 

CMDSRC_ OTHER 
Other source 

HIUINT(lParam2) contains TRUE if the 
W1L COMMAND message was posted as a as a 
result of a mouse operation, FALSE if a keyboard 
operation. 

-----------------------------------------------
Format 

WM_COMMAND 
LOUINT(lParaml): UINT 
LOUINT(lParam2): UINT 
HIUINT(lParam2): BOOL 

id 
wSource; 
fMouse; 

Description 
Menu controls and pushbuttons post W1LHELP 
messages to the message queue when they have 
appropriate style. The implication is that the 
application should respond to the selection of the 
item by displaying help information. Otherwise, 
the message is identical to a W1L COMMAND 
message. 

IParaml contains the window ID of the control, 
which is the ID parameter of WinCreateWindowO 
or in a dialog template. 

LOUINT(IParam2) contains information that 



Window Management Functions 

indicates the source of the WM- HELP message: 

WM- HELP Source Codes 
Source Code 

CMDSRC_PUSHBUTTON 
Posted by a pushbutton control 

CMDSRC_:tv:1ENU 
Posted by a menu control 

CMDSRC_ACCELERATOR 
Posted by WinTranslateAcceleratorO. 

CMDSRC_ OTHER 
Other source 

HIUlNT(lParam2) contains TRUE if the 
WM-HELP message was posted as a as a result of 
a mouse operation, FALSE if a keyboard opera­
tion. 

WM- CONTROLCURSOR 

Format 

LOUINT (lParaml) : 
Iparam2: 
Returns: 

UINT 
HWND 
BOOL 

idCtl; 
hwndCtl; 
fProcessed; 

Description 
Sent to a control's owner window when the mouse 
cursor moves over the control window, allowing 
the owner to set the mouse cursor. If FALSE is 
returned, the control will set the cursor as normal. 
If TRUE is returned, the control will not set the 
cursor. 

WM- CONTROLHEAP 

Format 

WM_CONTROLHEAP 
LOUINT(lParaml): UINT 
IParam2: HWND 
Returns: HANDLE 

id 
hwndCtl 
hHeap 

Description 
This message is sent by some controls to their 
owner in order to obtain the heap handle to use for 
allocating control-specific data. This message 
should be handled by returning a heap handle to 

275 



Windows Presentation Manager Reference 

use, which has been created with Win­
CreateHeap(). id is the control id, and hwndCtl is 
the window handle of the control. 

WinDefWindowProcD handles this message by 
returning the queue heap handle. 

See the "Local Memory Manager". 

4.1.11 Static Controls 

Static controls are simple text fields, boxes and rectangles that can be 
used to label, box or separate other controls. Static controls do not accept 
input, nor do they notify their owner. 

A staic control can be disabled, even though it cannot receive input. A 
disabled static control is half toned. This cab be used to indicate that the 
text is not applicable for some reason. 

Static text items may contain mnemonic characters, which are embol­
dened. If the text of a static control contains a mnemonic character, the 
text is displayed with the appropriate mnemonic highlighting. 

Static controls can never receive the focus. Whenever a static control 
receives a "W1L SETFOCUS message, or whenever the user clicks on a 
static control, that static control advances the focus to the next sibling 
that is not a static control. (Inside dialog boxes, the next non-static con­
trol will receive the focus.) If the static control has no such siblings, it sets 
the focus to its owner. 

4.1.11.1 Static Control Styles 

There are the following static control styles: 

276 

Static Control Styles 
Style 

SS_ TEXT 
Creates a text field. The text is formatted before it is 
displayed. Words that would extend past the end of a line 
are automatically wrapped to the beginning of the next line. 
Variations of the SS_ TEXT style are created by ORing vari­
ous WinDrawTextO flags into the style. 

The possible flags are: 

DT_LEFT 
Left Justified text 



Window Mana.gement Functions 

DT_CENTER 
Centered text 

DT_'RIGHT 
Right justified text 

DT_TOP 
Text is aligned to top of window 

DT_VCENTER 
Text is aligned vertically in center of window 

DT_BOTTOM 
Text is aligned to bottom of window 

DT_ WORDBREAK 
When specified with DT_ TOP, this allows for 
multi-line static text controls, with word wrapping 
at the ends of lines. 

See the WinDrawTextO documentation for a more complete 
description of these flags. 

SS_ GROUPBOX 
A groupbox static control is a rectangle that has an identify­
ing text string in its upper left corner. Group boxes are used 
to collect a group of radio buttons or other controls in a sin­
gle unit. 

SS_ICON 
Draws an icon. The text of the static control is a string 
which which is used to derive the resource ID from which the 
icon is loaded. The format of the string is: 

1. First byte Oxff, 2nd byte is the low byte of the resource 
ID, 3rd byte is the hi byte of the resource ID. 

2. First character is "#", subsequent characters make up 
the decimal text representation of the resource ID. 

If the string is empty or does not follow the format above, no 
resource is loaded. 

The resource is assumed to reside in the resource file of the 
current process. 

SS_BITMAP 
Draws a bitmap. The text of the static control names the 
bitmap resource, as for SS_ ICON above. 

SS_ FGNDRECT 
Creates a foreground color filled rectangle. 

SS_ BKGNDRECT 
Creates a background color filled rectangle. 

277 



Windows Presentation Manager Reference 

SS_ FGNDFRAME 
Creates a box with a foreground color frame. 

SS_ BKGNDFRAME 
Creates a box with a background color frame. 

4.1.11.2 Static Notification Codes 

Static items do not generate notification messages. 

4.1.12 Button Controls 

A button control is a small rectangular child window that represents a 
button that the user can turn on or off by clicking it with the mouse. But­
ton controls can be used alone or in groups, and can either be labeled or 
appear without text. Button controls typically change appearance when 
the user clicks them. 

Buttons can be disabled to prevent them from responding when the user 
clicks on them. Disabled buttons are half toned. 

The class name to use when creating button controls is WC_BUTTON. 

4.1.12.1 Button Control Styles 

Button controls have the following window styles: 

278 

Button Control Styles 
Style 

BS_ PUSHBUTTON 
A pushbutton is a box that contains a string. When you 
push a button, the parent window is notified. You push a 
bu tton by clicking the mouse on it or pressing the SP A­
CEBAR when the button is active. 

BS_DEFPUSHBUTTON 
A defpushbutton (or default pushbutton) is a pushbutton 
with a thick border box. It has the same properties as a 
pushbutton. In addition, the user may press a defpushbut­
ton by pressing the RETURN key. 

BS_ CHECKBOX 
A checkbox is a little square with a character string to the 
right. If it is checked, a small black box appears inside the 
little square. When you click the box or string, the checkbox 
changes state and the parent window is notified. You click 
the box by clicking on it with the mouse or pressing the 



Window Ma.na.gement Functions 

SPACEBAR when it is active. 

BS_AUTOCHECKBOX 
An automatic check box automatically toggles its state 
whenever the user clicks on it. 

BS_ RADIOBUTTON 
A radio button is similar to a check box, but is typically used 
in groups in which only one button at a time is checked. 
When a radio button is clicked or a cursor key is pressed to 
move within the group, it notifies its owner window. It is 
then up to the owner window to check the clicked radio but­
ton and uncheck all the rest, if necessary. 

BS_ AUTORADIOBUTTON 
When clicked, an automatic radio button automatically 
checks itself and unchecks all other radio buttons in the 
same group. 

BS_3STATE 
A 3-state check box is identical to a check box control except 
that its check box can be half toned as well as the box being 
checked or unchecked. 

BS_ AUT03STATE 
An automatic 3-state check box automatically toggles its 
state when the user clicks on it. 

BS_ USERBUTTON 
This is a application-definable button. The owner window of 
this style control will receive four additional button mes­
sages: BN_ HILITE, BN_ UNHILITE, BN_ DISABLE, and 
BN_PAINT (documented below). 

BS_HELP 
The button posts a WM-HELP message rather than a 
WM- COMMAND or WM- SYSCO:rv:lMAND message. In 
addition, BS_HELP buttons do not set the focus to them­
selves when clicked with the mouse. This style is useful for 
producing a button which can be used for selecting help 
information. 

4.1.12.2 Button Control Messages 

Button controls process the following message: 

BM- CLIC~-=.K=---_________________ _ 

Format 

BM_CLICK 
LOUINT (lParaml) : BOOL fUp; 

279 



Windows Presentation Manager Reference 

IParam2: 
Returns: 

OL 
OL 

Description 
A button control sent a BM- CLICK message will 
take whatever action that would occur if the but­
ton was clicked with the mouse or space bar. If 
fUp is TRUE, then the default upclick action is 
taken; otherwise the default downclick action is 
taken. 

BM- QUERYCHECKINDEX 

Format 

BM_QUERYCHECKINDEX 
IParaml: OL 
IParam2: OL 
Returns: INT iRadioButton 

Description 
Returns the O-based index of the checked radio 
button in the same group as the window that sent 
this message, or -1 if none are checked or if the 
button is not a valid radio button. 

4.1.12.3 Button Notification Codes 

4.1.12.3.1 Pushbutton Notification Codes 

When a pushbutton is clicked, a W1L COMMAND message is posted to 
the owner window. The following information is included in IParaml and 
IParam2 of the W1L COMMAND message: 

280 

Parameter 
Contents 

lParaml 
Contains the pushbutton control ID 

LOUINT(IParam2) 
Contains the value CMDSRC_PUSHBUTTON 

HIUINT(lParam2 ) 
Contains TRUE if the command was posted as a result of a 
mouse operation, and FALSE if a keyboard operation. 



Window Management Functions 

See "Owner Notification Messages" for more information. 

4.1.12.3.2 Radio Button and Checkbox Notzjication Codes 

Radio buttons and check boxes notify their owners with the 
W1L CONTROL message. 

W1L CONTROL: Button Notification 

Format 

WM_CONTROL 
LOUINT(lParaml) : 
HIUINT (lParaml) : 
IParam2: 
Returns: 

UINT idCtl; 
UINT wNotifyCode; 
HWND hwndCtl; 
OL; 

Description 
This message is sent to the button control owner 
when a radio button or checkbox is clicked with 
the mouse, or when it receives a BM- CLICK mes­
sage, or for BS_ USERBUTTON controls. 

LOUINT(IParaml) contains the window ID of the 
button control. H1UINT(IParaml) contains a code 
that indicates the reason for the notification: 

Button Control Notification Codes 
Code 

BN_CLICKED 
The button has been clicked with the 
mouse or the SPACEBAR is pressed 
when the button has the focus. 

BN_ DBLCLICKED 
The button has been doubleclicked with 
the mouse. 

BN_PAINT 
The button needs to be painted. 

BN_HILITE 
The hilited state of the button needs to 
be painted. 

BN_ UNHILITE 
The button should be unhilited. 

BN_ DISABLED 
The button should be painted in a dis­
abled state. 

281 



Windows Presentation Manager Reference 

4.1.12.4 Button Control State Messages 

Button controls can be hilited or unhilited. A hilited button is either 
inverted or emboldened. Radio buttons and check boxes can be checked or 
unchecked. Three state buttons can be checked, unchecked or half toned. 
WinlsWindowEnabledO may be used to determine whether or not a button 
is enabled or disabled. 

The button controls may also be modified by the 
WM- SET /QUERYWINDOWP ARAMS messages. 

B1L SETHILITE 
----~-------------------------------------------

Format 

BM_SETHILITE 
LOUINT (lParaml) : 
IParam2 : 
Returns: 

BOOL fHilite; 
OL 
INT fHiliteOld; 

Description 
This message is used to cause the button control to 
be displayed in either the hili ted or un hili ted 
states. 

Returns the previous hilite state of the button con­
trol. 

B1L QUERYHILITE 

282 

Format 

BM_QUERYHILITE 
IParaml: 0 
IParam2: OL; 
Returns: BOOL fHilite; 

Description 

B1LSETCHECK 

This message returns the current hilite state of the 
button control. Returns TRUE if the button is hil­
ited, FALSE otherwise. 

-------------------------------------------------
Format 

BM_SETCHECK 
LOUINT(lParaml) : 
IParam2: 
Returns: 

wCheck 
OL; 
wOldCheck; 



Window Ma.nagement Functions 

Description 
This message sets the current check state of the 
button control. Possible state values for a check­
box or radio button are TRUE (checked) and 
FALSE (unchecked). For three- state checkboxes, 
the possIble state values are 0 (unchecked), 1 
(checked), and 2 (indeterminate). Returns the pre­
vious check state. 

BM- QUERYCHECK 

Format 

BM_QUERYCHECK 
lParam1.: 0 
lParam2: OL; 
Returns ~ wCheck; 

Description 
This message returns the current check state of the 
button control. Returns current check state for 
the button contro1. Possible state values for a 
checkbox or radio button are TRUE (checked) and 
FALSE (unchecked). For three- state checkboxes, 
the pOSSible state values are 0 (unchecked), 1 
(checked), and 2 (indeterminate). 

4.1.13 Edit Controls 

An edit control is a rectangular window which displays a single line of text 
that the user can edit. When it has the focus, it displays a flashing caret 
to mark the current insertion point. It also allows the user to select parts 
of the text by clicking and dragging the mouse or by using the keyboard 
interface. Selected text can be cut or copied to the clipboard. Text from 
the clipboard can be inserted by pasting from the clipboard. Text which is 
pasted or entered from the keyboard either replaces the current selection 
or is inserted at the insertion point. 

When an edit control is created, an initial buffer of 32 characters is allo­
cated for it. The user can change this with the EM-SETTEXTLIMIT mes­
sage. The initial contents of the edit control can be set with the 
LPCREATESTRUCT parameter passed with the WM-CREATE message. 

If the user attempts to enter more text in an edit control than specified by 
the text limit set by the E:tvL SETTEXTLIMIT message, the edit control 
indicates the error by beeping and does not accept the characters. 

283 



Windows Presentation Manager Reference 

By default, edit controls use the current SYSTEM font to display charac­
ters, but the application can direct the control to use another font. 

The class name to use when creating edit controls is WC_EDIT. 

4.1.13.1 Edit Control Styles 

There are the following edit control styles: 

Edit Control Styles 
Style 

ES_LEFT 
The text in the control is left-justified. This is the default 
style if neither ES_RIGHT or ES_CENTER are specified. 

ES_RIGHT 
The text in the control is right-justified. 

ES_CENTER 
The text in the control is centered. 

ES_AUTOSCROLL 
Whenever the user tries to move off the end of a line, the 
control automatically scrolls one third the width of the win­
dow in the appropriate direction. 

ES_MARGIN 
This style can be used to cause a frame to be painted around 
the control, with a margin around the editable text. The 
margin is 1/2 character width wide, and 1/4 character 
height high. 

If the user attempts to enter more text in an edit control than specified by 
the text limit set by the EM- SETTEXTLIMIT message, the edit control 
indicates the error by beeping and does not accept the characters. 

4.1.13.2 Edit Control Keys 

Edit controls allow the user to perform the following operations. The 
actual keys used to accomplish these functions are defined by the user 
interface. 

1. Moves caret one character left 

2. Moves caret one character right 

3. Extends selection one character left 

284 



Window Ma.na.gement Functions 

4. Extends selection one character right 

5. Moves caret one word right 

6. Moves caret one word left 

7. Moves caret to beginning of line 

8. Moves caret to the end of the line 

9. Deletes the character to the left of the caret and resets the current 
selection 

10. Deletes character to the right of caret and resets current selection 

11. Cuts current selection to clipboard 

12. Deletes current selection, but does not copy it to the clipboard 

13. Replaces current selection with text contents of the clipboard 

4.1.13.3 Edit Control Notification Messages 

Edit controls send the following notification codes to their owner. For a 
general description of notifification codes, see the section on Control Win­
dows. 

Edit Control Notification Codes 
Code 

EN_SETFOCUS 
The edit control received the focus. 

EN_ KILLFOCUS 
The edit control lost the focus. 

EN_CHANGE 
The content of the edit control has changed, and the change 
has been displayed on the screen. 

EN_SCROLL 
The edit control display is about to scroll horizontally. This 
can happen the application has sent a scroll message to the 
edit control, or because the content of the edit control has 
changed, or the caret has moved, and the edit control must 
scroll to show current caret position. 

285 



Windows Present:a.tihn Manager Referenee 

4.1.13.4 Edit Control Messages 

An application can send or post the faIIowing messages t.O an edit. control. 
(See the general control message section for a description of messages that 
c .. an he s.en t to., al.1 controls.) An edi.t control al. so res. ponds to t.ne 
W1LSETjQUERYWIND{}WPARAMS messages. 

EM;...GETCHANGED 

Format 

EM_GE.TCHANGED 
lEaraml.: 0 
IParam2~ 0 
Returns: BaOL fCh.anged 

Description 
Returns. the ch~nge (~di~ty") state.of the e~it COIl­
t.rot [Change IS TR1JE if the tex.t m the edIt. con~ 
trol has changed since the last time it received a 
WM...QUERYW'INDOWPARAMS or 
EM:..... GETGHANGED message. Otherwise, 
fChange is FALSE .. 

Note This message causes the change state of the edit 
cont.rol t:o be set to. FALSE. 

ENL. QUERYSEL 
~~~----------------------~----------------
Format

EM_.QUERYSEL
IParaml:. 0
lPa.ram:l ~ OL
Returns~ LOUINTO: INT jcchMinSel

HIUINI"O: INT icbMaxSel

Dese:ription
Get the current selection of an edIt control. ich­
Mi.nSe:l is: the hyte o;fi'se,t of the first character in
the selection, aNd ichMaxSel is the byte offset of
first charact.er alter tl1e selection" (The current
selectiof]; consists of one or more characters if ich­
MaxSel > ichMinSeL The current selection con­
sists, of an insertion point if lchMinSe1 == iehMax­
Set

EM-SETSEL
==~--

Format

Et-LSETSEL
IParaml:
LOUINT(lParam2) :
HIUINT (lParam2) :
Returns:

Window Management Functions

o
INT ichMinSel
INT ichMaxSel
OL

Description
Set the current selection to characters within the
text with byte offsets less than ichMaxSel and
greater than or equal to ichMinSeL (If ichNfinSel
== ichMaxSel, the current selection becomes an
insertion point. If ichMnSel == 0 and ichMaxSel
>= the number of characters in the buffer, the
entire text is selected.)

EMLSETF~O~N~T~ ______________________________ __

Format

EM_SETFONT
IParaml:
IParam2:
Returns:

HANDLE
OL
OL

hFont

Description
This message sets the edit control font to hFont (a
Font Handle.)

EMLSETTEXTLIMIT

Format

EM_SETTEXTLIMIT
LOUINT (lParaml) :
IParam2:
Returns: '

INT cchMax;
OL
BOOL fSuccess

Description

Notes

This message is used to set the maximum number
of characters the user may enter into a text field.
EM- SETTEXTLIMlT returns a boolean fSuccess
which is TRUE if the operation was successful, and
FALSE if there was not enough memory.

This message is intende~ only to limit the length of
lines that result from tIle user interacting with the
edit control. This message also limits the length of
text that can result from sending EM- PASTE, or
WML SETWINDOWP ARAMS messages.

287

Windows Presentation Manager Reference

EM-CUT ---
Format

EM_CUT
IParaml:
IParam2 :
Returns:

o
OL
BOOL fSuccess

Description
Sends the current selection to the clipboard in
CF _ TEXT format, then deletes the selection from
the control window. The IParaml and IParam2
parameters are not used.

EM-COPY

288

Format

EM_COPY
IParaml:
IParam2 :
Returns:

o
OL
BOOL fSuccess

Description

EM-CLEAR

Sends the current selection to the clipboard in
CF _ TEXT format. The lParaml and IParam2
parameters are not used.

Format

EM_CLEAR
IParaml:
IParam2:
Returns:

Description

o
OL
BOOL fSuccess

This message deletes the current selection.

EM-PAST~E~ ________________________________ __

Format

EM_PASTE
IParaml:
IParam2:
Returns:

o
OL
BaaL fSuccess

Window Management Functions

Description
Replaces the current selection with text from the
clipboard. (If the the current selection is an inser­
tion point, text is inserted.) Text is inserted only if
the clipboard contains data in CF_ TEXT format.

4.1.14 Listbox Controls

A listbox control is a window containing a list of items. Each item in a
listbox contains a text string (0 or more characters) and a handle. The
text string is usually displayed in the listbox window. The handle may be
used by the application to refer to other data associated with each item.
The control allows the user to make selections from the list and notifies
the owner when interesting events occur.

A listbox always contains a scroll bar. If the listbox contains more items
than can be displayed in the list box window rectangle, the scroll bar is
enabled. Otherwise, the scroll bar is disabled. (The enabled/disabled state
of these roll bar changes dynamically as items are added to and deleted
from the listbox.

The maximum number of items in a list box control is 32767, but most lists
will be much shorter.

The class name to use when creating list box controls is WC_LISTBOX.

4.1.14.1 Listbox Control Styles

A listbox can have combinations of the following styles.

Style Meaning

LS_ MULTIPLESEL
The listbox control allows the user to more than one item to
be selected at anyone time. Lists that do not have this style
allow only a single selection at anyone time.

LS_ OWNERDRA W
The list box has one or more items that will be drawn by the
owner. Typically, these items will be represented by bitmaps
rather than by text strings.

289

Windows Presentation Manager Reference

4.1.14.2 Listbox Control Notification Messages

Listbox controls send the following notification codes to their owner. For
a general description of notifification codes, see the section on Control
Windows.

Style Meaning

LN_SELECT
a new selection has been made in the list box control.
LOuINT(lParaml) contains the index of the selected (or
deselected) item.

LN_SETFOCUS
The list has received the input focus.

LN_ KILLFOCUS
The list box control has lost the input focus.

LN_SCROLL
The list box control is about to scroll.

LN_DBLCLICK
The list box control been doubleclicked in with the mouse.

WM... DRA WITEM ---

290

Format

WM_DRAW1TEM
LOUINT (lParaml) :
IParam2:
Returns

INT idListbox
01 FAR *lpoi
BOOL fDrawn

idListbox is the window id of the list box control
which is sending the notification. lpoi is a pointer
to an owner item, which has the following struc­
ture:

typedef struct {
HPS hps;
RECT rc1tem;
INT i1tem;
HANDLE h1tem;

} or;
Description

This notification is sent to the owner of a list box
each time an item must be drawn. lpoi->iltem
contains the item number, and lpoi- >hps is the
hps which should be used for drawing. lpoi­
>rcItem contains a rectangle that specifies where
to draw the item. The owner must return TRUE if

Window Management Functions

it actually draws the item, FALSE otherwise. If
the item contains text, the owner may return
FALSE and the list box will draw the item itself.
(The list box will draw the item if and only if the
item contains text and the owner returns FALSE.)

This message may be used by applications that
want to create listboxes containing items that are
not represented by text strings. Since listboxes
only know how to dray text, this message must be
sent to the owner to draw other objects. Typi­
cally, Ipoi-> hItem will caontain a handle to the
object to be drawn.

WM.MEASUREITEM

Format

WM_MEASURE1TEM
LOU1NT(lParaml) :
IParam2:
Returns:

1NT idListbox
01 FAR *lpoi
1NT Height

Description
This notification also is sent to the owner of a list­
box containing with LS_ OWNERDRA W style.
When the owner receives this message, it must cal­
culate the height of the item and return that value.

Note - All items in a iistbox must have the same
height, which must be greater than or equal to the
height of the current font.

4.1.14.3 Listbox Control States

Listbox controls have only the standard window states. The enabled state
of a listbox may be obtained with the WinIsWindowEnabledO function.

4.1.14.4 Listbox Control Messages

An ap)2lication can send or post the following messages to a list box con­
trol. {See the general control message section for a description of messages
that can be sent to all controls.)

LM.. QUERYITEMCOUNT

291

Windows Presentation Manager Reference

292

Format

LM_QUERYITEMCOUNT
IParaml: 0
IParam2: OL
Returns: INT cltem

Description

LM- INSERTITEM

This message returns a count of the number of
items in the list box control.

Format

~INSERTITEM
LOUINT(lParaml):
IParam2
Returns:

INT
LPSTR
INT

iPosition
IpszltemText
iltemActual

Description
This message inserts an item into a list. iPosition
is the O-based position in the list where the item
should be inserted. If iPosition is LIT_END the
item is added to the end of the list. If iPosition is
LIT_ SORTASCENDING, it is insertion sorted
into the list in ascending order. If iPosition is
LIT_ SORTDESCENDING, the item is inserted in
descending order. IpszItemText is a pointer to the
string to be used as the item text. iItem is the
actual position where the item was inserted.

Notes If the control cannot allocate space to insert the
item in the list, it will return LIT_MEMERROR.

LM- SETIOPINDEX

Format

LM_SETTOPINDEX
LOUINT (lParaml) :
Returns:

INT
BOOL

iItem
fScrolled

Description
This message is used to scroll a particular item to
the top of the list box. iItem is the index of the
item to be moved to the top. fScrolled is TRUE if
the list box actually had to scroll to move this item
to the top. fScrolled is FALSE if the item was
already at the top, or if iItem is not in the list.

Window Management Functions

LM- QUERYTOPINDEX

Format

LM_QUERYTOPINDEX
lparaml:
lparam2:
Returns:

OL;
OL;
INT iltem;

Description
This message is get the index value of the item
currently at the top of the listbox.

If there are no items in the listbox, LIT_ NONE is
returned.

LM- DELETEITEM

Format

LM_DELETEITEM
LOUINT(lParaml) :
lParam2:
Returns:

INT iItem
OL
INT cltemsLeft

Description

LM- SELECTITEM

Format

This message deletes an item from the listbox con­
trol. iItem is the (0 based) index of the item to be
deleted. cItemsLeft is the number of items remain­
ing in the list after the item is deleted.

L~SELECTITEM
LOU I NT (lParaml) :
lParam2:
Returns:

INT iItem
BOOL fSelect
BOOL fSelected;

Description
This message sets the selection state of a the
specified item. If fSelected is TRUE, the item is
selected, otherwise the item is deselected.

For single selection list boxes, the previous selec­
tion is deselected. If iItem is LIT_ NONE, no item
is selected.

fSelected is TRUE if a selection is actually made,
and FALSE otherwise. fSelected will be FALSE if
the caller tries to select an item not in the list or

293

Windows Presentation Manager Reference

deselects the current selection of a single selection
list box with iItem == LIT_ NONE.

If an item which is not already selected is
deselected, the selected item does NOT get
deselected and the message returns FALSE.

UvL GETS ELECTION

294

Format

~GETSELECTION
LOUINT(lParaml):
lParam2:
Returns

INT iltemPrevious;
OL
UINT iltemSelected

Description

Example

This message is used to enumerate the selected
item{s} in a list box. For a single selection listbox,
this message always returns the index of the
selected item, or LIT_ NONE if no item is selected.

For multiple selection listboxes, lParaml is the
previously enumerated selected item. The message
returns the index of the next selected item, start­
ing from lParaml. If IParaml is LIT_FIRST, the
first selected item is returned.

Returns LIT_ NONE after all items have been
enumerated.

The following example shows how to count the
number of selected items and place their indexes in
an array:

iItem = LIT_FIRST;
cltems = 0;
while «iltem = (int)WinSendMsg(hwndListBox,

LM-GETSELECTION, iltem,

}

OL» != LIT_NONE) {
rgiltems{cItems++} = iltem;

UvL SETITEMTEXT

Format

LM_SETlTEMTEXT
LOU I NT (lParaml) :
lParam2:
Returns:

UINT iItem;
LPSTR lpszBuffer;
BOOL fSuccess;

Window Management Functions

Description
Sets the text of the specified item by copying the
text from IpszBuffer to the listbox. Returns TRUE
if successful, FALSE otherwise.

W1L SETITEMHEIGHT

Format

WM_SETITEMHEIGHT
LOUINT(lParaml) :
IParam2:
Returns:

INT
OL;
OL;

NewHeight;

Description
This message is used to change the height of the
items in a list box. It is easier to send this message
than to destroy and re-create the list box with
items at the new height.

L:rvL QUERYITEMTEXTLENGTH

Format

LM_QUERYITEMTEXTLENGTH
LOUINT(lParaml) : UINT iItem
IParam2: OL
Returns: INT cbItem

Description
Gets the size in bytes of the text for the specified
item. Returns 0 if iItem does not exist, or some
other error occurs.

LM- QUERYITEMTEXT

Format

LM_QUERYITEMTEXT
LOUINT(lParaml) :
HIUINT(lParaml) :
IParam2:
Returns:

UINT
INT
LPSTR
INT

iItem;
cbBuffer;
IpszBuffer;
cchString;

Description
Copies the specified item text from the listbox to
buffer pointed to by IpszBuffer. cbBuffer specifies
the maximum number of bytes that may be copied
to the buffer. If cbBuffer is 0, the entire text string
is copied.

295

Windows Presentation Manager Reference

The message returns the length of the string
copied, not including the null termination charac­
ter. The length uint is overwritten by the string.

The size of the item can be determined with the
L1L QUERYITEMTEXTLENGTH message.

L1L SETITEMHANDLE

296

Format

LM_SETITEMHANDLE
LOUINT (lParaml) :
IParam2 :

UINT iltem;
HANDLE hltem;

Description
Sets the item handle for the specified item to
hltem.

L1L QUERYITEMHANDLE

Format

LM_QUERYITEMHANDLE
LOUINT(lParaml) : UINT iltem;
Returns: INT hltem;

Description
Returns hItem, the handle associated with the
specified item.

L1L SEARCHSTRING

Format

LM_SEARCHSTRING
LOUINT (lParaml) :
HIUINT(lParaml) :
IParam2 :
Returns:

UINT
UINT
LPSTR
UINT

cmd
iltemStart;
IpszSearch;
iltemFound;

Description
This message returns the item index of the next
item whose string matches the string in
*lpszSearch. All items are enumerated: searching
wraps around at the end, starting over again at the
first item. Searching starts at the first item
AFTER iltemStart; thus the value from a previous
L1L SEARCHSTRING message may be used as the
starting point in order to find the next matching
item. If iItemStart is LIT_ FIRST, searching starts

Notes

Window Management Functions

from the first item in the listbox.

cmd contains one of the following values that
specifies how a match is to be found. (These values
can be combined using the OR operator.)

LSS_ SUBSTRING
The item is matched if it contains a sub­
string that matches *lpszSearch.

LSS_PREFIX
The item is matched if *lpszSearch
matches the initial characters of the
item.

LSS_ CASESENSITIVE
Corresponding characters must be the
same case to match.

Returns LIT_NONE if no match was found.

To determine whether a matched item is unique,
send another LNL FIRSTSTRING message using
the matched item as a starting point. If a different
item is returned, the item is not unique.

4.1.15 Scroll Bar Controls

Scroll bars are controls that are used to indicate that additional informa­
tion can be displayed in a window, logically to the left or right for horizon­
tal scroll bars, logically above or below for vertical scroll bars. The user
interface for scroll bars allows for scrolling one 'unit' or one 'page' at a
time, or alternately picking up the scroll bar 'thumb' and sliding it to a
position in the scroll bar that indicates a logical position in the program.

If the user holds the mouse or key button down that caused the scroll bar
action, the messages will auto-repeat at a rate determined by the value of
the SV_SBREPEATTIME system value.

The default position for a vertical scroll bar is aligned to the right edge of
the frame window, between the application menu and the size box. A hor­
izontal scroll bar is, by default, aligned to the bottom edge of the frame
window, between the left edge and the size box.

A standard scroll bar has a different appearance when disabled, as deter­
mined by user interface.

The class value used to identify the scroll bar class is WC_SCROLLBAR.

297

Windows Presentation Manager Reference

The standard IDs used to identify the vertical and horizontal scroll bars in
frame windows are:

ID Description

FID_ VERTS CROLL
Vertical scroll control ID

FID_ HORZSCROLL
Horizontal scroll control ID

Scroll bars are created with a default resolution of 0 to 100.

4.1.15.0.1 Scroll Bar Styles

Style Description

SBS_HORZ
Create a horizontal scroll bar

SBS_ VERT
Create a vertical scroll bar

4.1.15.1 Scroll Bar Notification Messages

298

W1L VSCROLL

Format

W1LHSCROLL

WM_VSCROLL
IParaml: ULONG idCtl;
LOUINT(lParam2): int pos;
HIUINT(lParam2): UINT cmd;
Returns: OL

Format

WM_HSCROLL
IParaml: ULONG idCtl;
LOUINT(lParam2): int pos;
HIUINT(lParam2): UINT cmd;
Returns: OL;

Description
These two messages are posted to the scroll bar
owner's queue by the window manager. idCtl

Window Management Functions

contains the control window id. cmd contains a
scroll command, which can be one of the following:

Scroll Commands
Command

SB_LINEUP
This is sent if the user hits the up or left
arrow of the scroll bar with the mouse,
or if the user hits the VI<- UP key.

SB_ LINELEFT
Save value as SB_LINEUP, included for
completeness.

SB_ LINEDOWN
This is sent if the user hits the down or
right arrow of the scroll bar with the
mouse, or if the user hits the
VIC DOWN key.

SB_ LINERIGHT
Same value as SB_ LINEDOWN,
included for completeness.

SB_PAGEUP
This is sent if the user hits the halftone
area above or to the left of the scroll
thumb, or if the user hits the
VI<-PAGEUP key.

SB_ P AGELEFT
Same value as SB_PAGEUP, included
for completeness.

SB_PAGEDOWN
This is sent if the user hits the halftone
area below or to the right of the scroll
thumb, or if the user hits the
VIC PAGED OWN key.

SB_ P AGERIGHT
Same value as SB_ P AGEDOWN,
included for completeness.

SB_ THUMBTRACK
If the user grabs hold of the scroll bar
thumb with the mouse, this is sent every­
time the thumb position changes.

SB_ THUMBPOSITION
If the user grabbed hold of the scroll bar
thumb with the mouse, this message is
sent once the user lets go.

299

Windows Presenta.tion Mana.ger Reference

SB_ ENDS CROLL
Sent when the user has finished scrolling,
only if the user wasn't doing an absolute
thumb positioning. LOUINT(IParam2)
contains TRUE if the cursor was inside
the tracking rectangle when the mouse
button was released, FALSE otherwise.

LOUINT(IParam2) holds the scroll position only if
the user was moving the thumb with the mouse
(SB_ THUMBTRACK and
SlL THUMBPOSITION).

4.1.15.1.1 Scroll bar control messages

The following messages may be sent by the application to control or query
the scroll bar. Scroll bars also respond to the
WM.... SET /QUERYWINDOWP ARAM messages.

SBMLSETSCROLLBAR

300

Format

SBM_SETSCROLLBAR
LOUINT(lParaml): int pos;
LOUINT(lParam2): int posFirst;
HIUINT(lParam2): int posLast;
Returns: OL

Description
This message is used to set the scroll bar range and
position information in the scroll bar control.

LOUINT(IParam2) and HIUINT(IParam2) delimit
the range information, their values being inclusive.
IParaml is the position of the thumb within this
range. If this position is illegal, the thumb will be
moved to the nearest position within the range.
The scroll bar is redrawn to reflect these changes.

The application usually sends this message when
either it's initializing a scroll bar or it's client win­
dow is changing in size. These are cases when both
the range and position information need to be sent
at once.

SBMLSET~P~O~S~ ________________________________ _

Format

SBM_SETPOS
LOUINT(lParaml) :
IParam2:
Returns:

Window Management Functions

int pas;
OL
OL

Description
This message sets the thumb position of the scroll
bar control. IParaml is the position of the thumb
within this range. If this position is illegal, the
thumb will be moved to the nearest position within
the range. The scroll bar is redrawn to reflect these
changes.

SBMLQUE~R~YP~O~S~ ____________________________ _

Format

SB~QUERYPOS
IParaml:
IParam2:
Returns:

o
OL

int pas;

Description
This message simply returns the thumb position
for this scroll bar.

SBML QUERYRANGE

Format

SB~QUERYRANGE
IParaml: 0
IParam2: OL
LOUINT(return): int pasFirst;
HIUINT(return): int pasLast;

Description
This message is used to get the scroll range infor­
mation from the scroll bar control.
LOUINT(return) and HIUINT(return) delimit the
scroll bar range.

301

Windows Presentation Manager Reference

4.1.16 Menu Controls

A menu control is a small child or popup window that contains a list of
items. These items can be represented by text strings, separators, bitmaps
or menu buttons. Menu templates can be loaded as resources and the
menu can be created automatically when the parent window is created.
Also, the application can create a menu by calling Win Create Window with
a class WC_NlENU. The application can build the menu dynamically by
sending :MM-INSERTITEM messages, etc. An application can alter
menus by sending messages to it.

Menus allow you to select one of the items in the list using the mouse or
the keyboard interface. When you make this selection, the menu notifies
its parent by posting (PostMsg) a W1LCOMMAND or
W1LSYSCOMMAND message and a unique ID representing the user's
selection.

Menus automatically resize themselves as items are added and removed.
Menus are automatically destroyed when their owner is destroyed.

Typically, an application has an action bar menu and several popup sub­
menus. The action bar is normally visible, and is a child window in the
parent window frame. The popups are normally hidden and become visi­
ble when selections are made on the action bar.

4.1.16.1 Action Bar Layout

The items displayed in an action bar are displayed as follows:

1. Choices are left-aligned in the action bar. That is, they begin near
the left side of the window and are adjacent to each other.

2. Each choice is displayed with a leading and trailing blank.

3. Choices are listed horizontally but may be reformatted to multiple
rows as the size of the window in which it is shown is decreased.

4. The action bar is separated from the panel body by a solid line.

4.1.16.1.1 Action Bar Appearance Examples

The following example shows typical content and layout for the action bar
in an application window:

+--1
i Small Editor I---Window Title
>--%---------<
1 Properties Block Search Format Exit 1 Fl=Help I---Action Bar
>--*---------< full width

GHI Memo More: v of window

302

Window Management Functions

January 24, 1986

MEMO TO: A. B. Curtis
FROM: D.E. Fitzgerald
SUBJECT: Growing Households Inventory

Abe,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

We have just completed the latest households invento I
and it really looks great. It will allow us to maintain :

+--+

Figure 4.3 Action Bar

The next example shows how the action bar is reformatted when the win­
dow size is decreased.

+--------------------------:
: Small Editor :
>----------------%---------<
: Properties : F1=Help :
: Block Search #---------<
: Format Exit :
>--------------------------<

GHI Memo More: v

January 24, 1986

MEMO TO: A.B. Curtis
FROM: D.E. Fitzge
SUBJECT: Growing Hou

Abe,

We have just complete
and it really looks great

+--------------------------+

Figure 4.4 Reformatted Action Bar

4.1.16.2 Menu Control Styles

A menu control can have combinations of the following styles:

Menu Control Styles

MS_ ACTIONBAR
The items in the list are displayed side by side. This style is
used to implement a Top Level Menu. Menus that do not
have this style are displayed in one or more columns and are

303

Windows Presentation Manager Reference

submenus associated with an action bar.

All menu controls have styles WS_SYNCPAlNT and
WS_ P ARENTCLIP.

4.1.16.3 Menu Items

There are two types of menu items: Submenu and Command items. A
sub-menu item contains a reference to a sub-menu which will be displayed
when the user selects that item. A command item contains a value which
is returned by the menu when the item is selected.

Field Meaning

Handle/ID
If the item is submenu, this field contains the window handle
of a submenu which is displayed when the item is selected. If
the item is command, this field contains a unique ordinal
value identifies the item.

Display Object
This object is displayed to represent the item. It can be a
string, bitmap, separator or menu button.

4.1.16.4 Menu Item Styles

A menu item can have combinations of the following styles.

304

Menu Item Styles
Style

MIS_ SUBMENU
The item is submenu. When the user selects this type of
item, a submenu is displayed from which the user must make
further selection. Items that are not submenu items are
Command Items.

MIS_ SEPARATOR
The display object is a horizontal dividing line. This type of
item can only be used in popup menus. This type of item
cannot be enabled, checked, disabled, highlighted or select.ed
by the user. The functional object is NULL when this style
is specified.

MIS_BITMAP
The display object is a bitmap.

Window Management Functions

NUS_TEXT \
The display object is a text string.

NUS_BUTTONSEPARATOR
The item is a menu button. Any menu may have zero, one or
two items of this type. These are the last items in a menu
and are automatically displayed after a separator bar. The
user can not cursor to these items, but he can select them
with the mouse or select them with the appropriate key.

NUS_BREAK
The item is the last one in a row or column. The next item
is displayed at the beginning of a new row or column.

NUS_BREAKSEPARATOR
Same as NUS_ BREAK, except that it draws a separator
between rows or columns.

NUS_ NODISNUSS
If this item is selected, the popup menu containing this item
should not be hidden before notifying the application win­
dow.

NUS_ SYSCOMMAND
If this item is selected, the menu notifies the owner by post­
ing a WM.- SYSCOMMAND message rather than a
WM.- COMMAND message.

NUS_ OWNERDRA W
Items with this style are drawn by the owner.
WM.- DRA WITEM and WM.- MEASUREITEM notification
messages are sent to the owner to draw the item or deter­
mine its size.

NUS_HELP
If the item is selected, the menu notifies the owner by post­
ing a WM.-HELP message rather than a WM.-COMMAND.

NUS_STATIC
This type of item exists for information purposes only. It
cannot be selected with the mouse or keyboard.

4.1.16.4.1 Placing Help selection in Action Bar

It is recommended that a Help item is put into the Action Bar to provide
the Mouse user with a means of getting Help on the Action Bar or its
related client window. The item should read "Fl=Help" and always
appear at the top right of the action bar.

The method by which the placement and function of the Fl=Help item is
achieved in the Menu Bar is as follows:

305

Windows Presentation Manager Reference

• The item should be the last item in the template for the Menu Bar
itself.

• It should not have an associated Pull-Down menu associated with
it.

• It should be MIS_ TEXTIMIS_BUTTONSEPARATOR style and
the string should be Fl =Help.

• The MIS_BUTTONSEPARATOR style will put the item in the top
right of the menu bar, separated from the other items by a separa­
tor bar. It can only be used by the Mouse and cannot be cursored
to from the Keyboard. Note that the Fl key will achieve the same
function as the menu item for the keyboard button.

4.1.16.5 Menu Item Attributes

Menu Items have the following attributes. Applications can get and set
the state of these attributes by sending M1LGETITEMSTATE and
M1L SETITEMSTATE messages.

Menu Item Attributes
Attribute

MIA- HILITED
The state of this attribute is TRUE if and only if the item is
selected.

MIA- ENABLED
If the state of this attribute is TRUE, the item is enabled
and can be selected by the user. If the state is FALSE, it is
disabled and cannot be selected. The item is half toned.

MIA- CHECKED
A checkmark appears next to the item if the state of this
attribute is TRUE.

4.1.16.6 Mnemonics and Mnemonic Highlighting.

A Mnemonic is a single letter which can be typed on the keyboard as a fast
way of selecting a Text item within a menu. A mnemonic comes into
operation when the Input Focus is in a Menu window - either the Action
Bar or one of the Pull-Down menus. The scope of the mnemonic is the
Input Focus window - so that an action bar and a pull-down can use the
same mnemonic letter for different actual items.

"Where mnemonics are used, it is strongly suggested that ALL the items
within one menu window are given a mnemonic letter. The letter chosen
should be unique for each item within that menu and must occur within
the text string representing the item. So, for example, if a menu has the

306

Window Management Functions

items 'Edit', 'File' and 'Erase', the mnemonic letters chosen might be 'E',
'F' and 'R' respectively.

Mnemonic letters within menu items are highlighted by means of an
underscore, which guides the user's eye. However, after a little use of a
menu with Mnemonics, the user should be able to select sequences of items
rapidly directly from the keyboard without even looking at the screen.

The application defines the mnemonic letter for each item by placing a
'tilde' character into the text string, immediately in front of the mnemonic
character. When the menu is displayed, the tilde characters are not
displayed and the mnemonic characters are highlit. If it is necessary to
display a tilde character in a menu item, then the application should put
'tilde tilde' into the initial text string. This applies both to items defined
via resource files and to those defined directly from the application.

Note that if more than one mnemonic character is defined for a single
item, the first mnemonic character in the string is accepted.

Where the mnemonic character is a letter, both lower and upper case char­
acters are accepted as mnemonics from the keyboard.

4.1.16.7 Menu Data Structures

4.1.16.7.1 Item Data Structure

When an application queries or sets the item in a menu, it is transfered in
the following data structure:

typedef struct {
INT iPosition;
UINT rgfStyle
UINT id;
HWND hwndSubMenu;
HANDLE hItem;

} MENUITEM;

The iPosition field contains the position index. The rgfStyle field contains
flags that describe the behavior and appearance of the item. The id field
contains a unique value that identifies the item. hwndSubMenu contains
the window handle of the submenu associated with the particular item if
there is one. Otherwise, hwndSubMenu contains O. For all objects except
MlS_ TEXT, hItem contains a handle to the display object. For Text
objects, hItem is NULL. The application must send a separate message to
query or set the item text.

307

Windows Presentation Manager Reference

4.1.16.7.2 Menu Template Data Structure

Menu templates are data structures that define menus that will be created.
Menu templates can be loaded as resources or created dynamically. Tem­
plates loaded as resources can not contain references to bitmaps or owner­
draw items, shown below. A menu template consists of a sequence of vari­
able length records. Each record in a template defines an item. If an item
contains a reference to a submenu, the template that defines that submenu
is nested after the definition of that particular item.

typedef struct tagMT
UINT cmti;
UINT codepageid;
MTI rgmti(cmti);

MT;

cmti contains the count of menu template items.

codepageid
is the identifier of the codepage used for the text items
within the menu (but not any submenus, which each have
their own codepages). Note that this MUST be 850 for the
present.

rgmti is a variable sized array of menu template items (described
below.)

typedef struct tagMTI
UINT rgfStyle;
UINT idltem;
if (rgfStyle AND MIS_BITMAP)

CHAR szItemString{7};
if (rgfStyle AND MIS_OWNERITEM)

YOID;
if (rgfStyle AND MIS_TEXT)

CHAR szItemString{7};
if (rgfStyle AND MIS_SEPARATOR)

YOID;
if (rgfStyle AND MIS_SUBMENU)

MT MenuTemplate;
MTI;

rgfStyle contains a combinition of menu item styles (MlS_ *) com­
bined with the OR operator.

idItem contains a unique non-negative integer value which identifies
the item.

Following idItem is a variable data structure whose format depends upon
the value of rgfStyle:

308

Window Management Functions

• If rgfStyle contains MIS_ TEXT, it is a O-terminated string.

• If rgfStyle contains MIS_BITMAP, it is a O-terminated string.

For MIS_ BITMAP menu items, the item text string may be used to
derive the resource ID from which a bitmap will be loaded. There
are 3 cases:

1. The first byte is NULL - ie no resource is defined and it is
assumed that the application will subsequently provide a bit­
map handle for the item.

2. First byte is Oxff, 2nd byte is the low byte of the resource ID,
3rd byte is the hi byte of the resource ID.

3. First character is "#", subsequent characters make up the
decimal text representation of the resource ID.

The resource is assumed to reside in the resource file of the current
process.

If the string is empty or does not follow the format above, no
resource is loaded.

• If rgfStyle contains MIS_ OWNERDRA W, it is expected that the
application will subsequently provide a handle to some
application-defined object for the item.

• If rgfStyle contains MIS_SEPARATOR, it is VOID.

• If rgfStyle contains MIS_ SUBMENU, it contains a complete sub­
menu data structure (ie a menu template)

4.1.16.8 Menu Notification Messages

Menu controls send the following notification codes to their owner. For a
general description of notifification codes, see the section on Control Win­
dows.

Menu Notification Codes
Code

WNLIMTME~~NU~ ______________________________ __

Format

WM_INITMENU
LOUINT (lParaml) :
IParam2 :

INT idMenu
HANDLE hwndMenu

This notification is sent to the owner whenever a
menu is about to become "active." (The menu win­
dow is not really activated, and it does not receive
the focus, it just looks and acts like it is.) This

309

Windows Presentation Manager Reference

notification is often used to let application change
the state of menu items before the menu is
displayed. LOUINT(IParaml) contains the id of
the menu being initialized and IParam2 contains
the menu window handle.

WNLMENUSELECT

310

Format

WNLDRAWITEM

WM_MENUSELECT
LOUINT (lParaml) :
HIUINT(lParaml) :
IParam2:

UINT
BOOL
HWND

idltem:
fPostCommand
hwndMenu

An item in the menu was selected. In this case, the
menu posts a WNL COMMAND or a
WNL SYSCOMMAND message to its owner.
LOUINT(lParaml) contains the ID of the selected
item. HIUINT(lParaml) contains BOOL
fPostCommand. IParam2 contains the menu win­
dow handle.

If fPostCommand is TRUE, then the item being
selected will cause a WNL COMMAND or
WNLSYSCOMMAND message to be posted, and
the menu possibly to be dismissed. This is essen­
tially a symchronous command notification. If the
message returns TRUE, then the command will be

~sted as usual, and the menu will be dismissed
unless the currently selected item has attribute

S_NODIS:MISS.) If FALSE is returned, then no
message is posted, and the menu is not dismissed.

Format

WM_DRAWITEM
LOUINT(lParaml) : INT idMenu
IParam2: OWNERITEM FAR *lpoi

idMenu is the window id of the menu control
which is sending the notification.

lpoi is a pointer to an owner item, which has
the following structure:

typedef struct tagOWNERITEM
BPS hps:
UINT rgfStyle:
RECT rcltem:
UINT idltem:
HANDLE hltem:

Window Management Functions

} OWNERITEM;

This notification is sent to the owner of a menu
anytime it is necessary to draw an item that has
item style MIS_ OWNERDRA W. When the menu
owner receives this message it is responsible for
drawing the specified item using hps = lpoi- >hps
inside the rectangle lpoi- >rcItem. If the item has
style MIS_ TEXT, lpoi->hItem is NULL, and the
owner can get the text for the item by sending a
:M}.L QUERYITEMTEXT message. Otherwise,
hItem is a handle to a display object that will be
interpreted by the owner.

rgfStyle is the same as the style field in the
MENUITEM data structure.

W1LMEASUREITEM

Format

WM_MEASURElTEM
LOUINT(lParaml):
IParam2 :

INT idMenu
OWNERITEM FAR *lpoi

This notification also is sent to the
owner of a menu containing items with
MIS_ OWNERDRA W style. When the
owner receives this message, it must cal­
culate the size of the item and store in
lpoi- >rcItem.xRight and lpoi­
>rcItem.yTop. The lpoi- >rcItem.xLeft
and lpoi- >rcItem.yBottom should not be
set by the owner.

4.1.16.9 Menu Control Messages

An application can send or post the following messages to a menu control.

See the general control message section for a description of messages that
can be sent to all controls.

:M}.LSTARTMENUMODE

Format

MM_STARTMENUMODE
LOUINT(lParaml):
IParam2:

BOOL fMouse
POINT ptMouse

311

Windows Presentation Manager Reference

Description
This message is used to begin menu selection. It is
sent to the menu when the user presses the menu
key. fMouse is TRUE if a mouse event has caused
the message. If fMouse is TRUE, ptMouse con­
tains the initial mouse coordinates.

M1vL ENDMENUMODE

Format

MM_ENDMENUMODE

Description
This message is used to end menu selection. When
the menu receives this it hides the menu window if
it is a popup window. W1L CANCELMODE has
the same effect as M1vL ENDMENUMODE

M1vL INSERTITEM

312

Format

MM_INSERTITEM
IParaml: MENUITEM FAR
IParam2: LPSTR
Returns: int

*lpltem
IpszText
iltemActual

Description

Notes

This message inserts an item into a menu.

lpltem

IpszText

points to an MENUITEM data structure
containing the item to be inserted. (This
data structure includes an iPosition field.
If iPosition is MIT_END, the item is
added to the end of the list.

points to a text string if the item style
includes MIS_ TEXT.

iItemActual
is the actual position where the item was
inserted.

If the control cannot allocate space to insert the
item in the list, it will return MIT_MEMERROR.

Window Management Functions

MiVL DELETEITEM

Format

MM_DELETEITEM
LOUINT(lParaml) UINT
HIUINT(lParaml) BOOL
Returns: INT

idltem
flncludeSubmenus
cItemsLeft

Description
This message deletes an item from the menu con­
trol. idltem is the id of the item to be deleted.
cItemsLeft is the number of items remaining in the
list after the item is deleted. Any display object or
submenu referenced by the item is destroyed.

If fIncludeSubmenus is TRUE, and if the window
which receives this message does not have an item
with the specified id (idltem), the submenus of this
menu will be searched for an item with a matching
id. If a match is found, the operation will be per­
formed on the submenu.

MiVL REMOVEITEM

Format

MM_REMOVEITEM
LOUINT(lParaml) UINT
HIUINT(lParaml) BOOL
Returns: INT

idltem
fI nc 1 udeSubmenus
cItemsLeft

Description
Same as MiVL DELETEITEM, except does not des­
troy the display object or submenu.

MiVL SELECTITEM

Format

MM_SELECTITEM
LOUINT (lParaml) :
HIUINT (lParaml) :
LOUINT (lParam2) :
HIUINT (lParam2) :
Returns:

UINT idltem
BOOL fIncludeSubmenus
BOOL fSelected
BOOL fDismiss
BOOL fSuccess

Description
This message sets the selection state of the
specified item. if fDismiss is TRUE, then
W1L SYSC01v1MAND or W1L C01v1MAND is

313

Windows Presentation Manager Reference

posted, and the menu is dismissed, if the item is
not :MIS_NODIS:MISS. If fSelected is TRUE, the
item is selected. If fSelected is FALSE, the item is
deselected. fSuccess is TRUE if a selection is actu­
ally made, and FALSE otherwise.

The application can set the selection to NULL by
setting idItem = :MIT_NONE, in which case fSuc­
cess will be TRUE.

If fIncludeSubmenus is TRUE, and if the window
which receives this message does not have an item
with the specified id (idItem), the submenus of this
menu will be searched for an item with a matching
id. If a match is found, the operation will be per­
formed on the submenu.

MNL GETSELITE:MID

Format

MM_GETSELITEMID
IParaml:
IParam2:
Returns

OL:
OL:
UINT idItemSelected

Description
This message returns the ID of the currently
selected item (even if in a submenu.)

MNL qUERYITEM

314

Format

MM_QUERYITEM
LOUINT (lParaml) :
HIUINT (lParaml) :
IParam2 :

UINT
BOOL
MENUITEM

idItem
fIncludeSubmenus
*lpItem

Description
Copies the specified item from the menu to the
buffer pointed to by lpItem.

If fIncludeSubmenus is TRUE, and if the window
which receives this message does not have an item
with the specified id (idItem), the submenus of this
menu will be searched for an item with a matching
id. If a match is found, the operation will be per­
formed on the submenu.

Window Management Functions

Note This message does not retrieve the text for items
with style MIS_ TEXT. The application must use
M1L QUERYITEMTEXT.

M1L QUERYITEMTEXT

Format

MM_QUERYITEMTEXT
LOUINT (lParaml) :
HIUINT(lParaml) :
IParam2:

UINT
INT
LPSTR

idltem
cchBufferMax
IpszBuffer

Description
This message gets the text string which is used for
a menu item's display object, if it has style
MIS_ TEXT.

idItem is the item id

cchBufferMax

IpszBuffer

specifies the size of the buffer.

points to the buffer to receive the zero
terminated string.

MM- QUERYITEMTEXTLENGTH

Format

MM_QUERYITEMTEXTLENGTH
LOUINT(lParaml) : UINT
Returns INT

idltem
cchltem

Description
Returns the length of the text string for
MIS_ TEXT items, not including the NULL termi­
nator. Returns 0 if not MIS_ TEXT.

M1L SETITEMHANDLE

Format

MM_SETITEMHANDLE
LOUINT (lParaml) :
IParam2:

UINT idltem
HANDLE hltemNew

Description
This message is used to change the bitmap or han­
dle of a non-MIS_ TEXT item. idItem is the item

315

Windows Presentation Manager Reference

Id, and hItemNew contains the handle to the new
display object.

:M1L SETITEMTEXT

316

Format

MM_SETITEMTEXT
LOUINT(lParaml) :
IParam2 :

UINT
LPSTR

idltem
IpszText

Description
This message is used to change the text string
display object for items with style MIS_ TEXT.

IpszText
points to a zero terminated text string to
be used as the new display object.

:M1L SETITEM
----~---

Format

MM_SETITEM
HIUINT(lParaml): BOOL flncludeSubmenus
IParam2: MENUITEM * Ipltem

Description
This message copies the contents of *lpltem to the
menu item with the same id.

If fIncludeSubmenus is TRUE, and if the window
which receives this message does not have an item
with the specified id (idItem), the submenus of this
menu will be searched for an item with a matching
id. If a match is found, the operation will be per­
formed on the submenu.

:M1L ITEMPOSITIONFROMID

Format

MM_ITEMPOSITIONFROMID
LOUINT(lParaml) : UINT
HIUINT(lParaml) : . BOOL
Returns: INT

idltem
flncludeSubmenus
iPosition

Description
Given the ID of an Item, this message returns the
(0 based) position of the item in the menu. If there

Window Management Functions

is no item in the menu with this id, the message
returns MlT_ NONE.

If fIncludeSubmenus is TRUE, and if the window
which receives this message does not have an item
with the specified id (idItem), the submenus of this
menu will be searched for an item with a matching
id. If a match is found, the operation will be per­
formed on the submenu.

:N11L ITEMlDFROMPOSITION

Format

MM_ITEMIDFROMPOSITION
LOUINT(lParaml) : INT iPosition
Returns: UINT idltem

Description
Given the position, this message returns the ID of
the item at that position. If the position is not a
valid position, this message returns MIT_ NONE.

:N11L QUERYITEMCOUNT

Format

MM_QUERYlTEMCOUNT
Returns: int cltem

Description
This message returns a count of the number of
items in the menu control.

:N11L QUERYITEMA TTR

Format

MM_QUERYlTEMATTR
LOUINT (lParaml) :
HIUINT (lParaml) :
LOUINT (lParam2)
Returns:

UINT
BOOL

UINT
UINT

idltem
flncludeSubmenus
rgfAttributeMask
rgfState

Description
Get the current state of the attributes of menu
item. idItem is the ID of the item. rgfAttribu­
teMask is a bit mask indicating the attribute
values to get. Returns the current state values
that correspond to the state mask.

317

Windows Presentation Manager Reference

If fIncludeSubmenus is TRUE, and if the window
which receives this message does not have an item
with the specified id (idItem), the submenus of this
menu will be searched for an item with a matching
id. If a match is found, the operation will be per­
formed on the submenu.

M1L SETITEMATTR

Format

Mt'CSETITEMATTR
LOUINT(lParaml): UINT
HIUINT(lParaml): BOOL

4.1.17 Caret Manager

idltem
fIneludeSub'

This section describes the functions used to create, display, move, and des­
troy the system caret. The system caret is a rectangle that can be moved
to any location on the display screen. The caret is typically used in text
applications to mark the location where characters will be inserted.

The size and position of a caret are specified in window coordinates, rela­
tive to the window that the caret is in.

The caret is clipped in a window as with all other drawing to that window.
The caret is automatically hidden and shwon by WinScrollWindowO, hid­
den by WinBeginPaintO, and shown by WinEndPaintO.

4.1.17.1 Caret Data Structures

typedef struet {
HWND hwnd;
INT x, y;
INT ex, ey;
UINT rgf;
INT iHideLevel;

} CARETINfO;

4.1.17.2 Caret Routines

Win CreateCaret
~~~--------------------------------------------------------------------------------------------------

Format 

318 

BOOL WinCreateCaret(hwnd, x, y, ex, ey, rgf) 
HWND hwnd; 



Window Ma.na.gement Functions 

INT x; 
INT y; 
INT ex; 
INT ey; 
UINT rgf; 

Description 
This function creates a caret for window defined by 
hwnd. The caret has its position defined by the coor­
dinates x and y, its size by cx and cy. These coordi­
nates are in window coordinates, relative to hwnd. 

The rgf parameter specifies the appearance of the 
caret, and whether the cx and cy parameters are inter­
preted. 

The appearance of the caret is specified by rgf. This 
flag can be any combination of the first 5 of the follow­
ing flagss. The last flag bit is used to set the position 
of the caret. 

Returns TRUE if successful, FALSE otherwise. 

Caret flag bits 
Value 

CARET_ SOLID 
The caret is solid. 

CARET_HALFTONE 
Create a halftone caret. 

CARET_RECT 
Solid rectangular caret. 

CARET_FRAME 
Rectangular frame. 

CARET_ FLASH 
The caret flashes. 

CARET_SETPOS 
Set a new caret position. cx and cy are 
ignored. Used when a caret has already been 
created. 

If cx or cy is 0, then the system nominal border width 
or height is used. These values can be obtained by cal­
ling WinGetSysValue with SV_CXBORDER and 
SV_CYBORDER as indexes. The width of a text 
caret is usually set to o. This is preferable to giving 1 
as the cx argument, since on a high resolution device a 
width of 1 may produce a very thin line. 

If the flag CARET_ SETPOS is specified the caret 
must already exist and size and appearance flags are 

319 



Windows Presentation Manager Reference 

ignored. 

The caret is initially hidden. The WinShowCaret 
function must be called to display the caret. 

Only one caret is available at a time, so it is not possi­
ble to have two carets flashing. An applications 
should create a caret only when it has the keyboard 
focus or is the active window. Creating carets at other 
times may stop the caret from flashing in another 
application. Similarly, when an application becomes 
inactive or loses the focus, its caret should be des­
troyed. 

WinDestroyCaret 
~--------------------------------------------------

Format 

BaaL WinDestroyCaret(hwnd) 
HWND hwnd; 

Description 
This function destroys the current caret, if it belongs 
to the specified window. Has no effect if the caret does 
not belong to hwnd. 

Returns TRUE if successful, FALSE otherwise. 

WinShowCaret 

320 

----------------------------------------------------
Format 

INT WinShowCaret(hab, hwnd, fShow) 
HWND hwnd; 
BaaL fShow; 
HAB hab; 

Description 
This function displays (fShow is TRUE) or removes 
(fShow is FALSE) a caret created with the Win­
CreateCaret function in the same window specified by 
hwnd. 

If the caret has been removed several times without 
any intervening calls to display it, an equal number of 
WinShowCaret calls with fShow being TRUE must be 
made before the caret is redisplayed. 

This function returns the caret show level, after the 
caret is shown or hidden. Returns iHideLevel, which is 
o if the caret is visible, 1 or greater if the caret is hid­
den. 



WinQueryCaretInfo 

Format 

Window Management Functions 

BOOL WinQueryCaretlnfo(hab, IpCaretlnfo) 
HAB hab; 
CARETINFO FAR *lpCaretlnfo; 

Description 
Information about the current caret is returned in 
*lpCaretInfo. The fields of this structure correspond 
to the parameters to WinCreateCaret(), except that 
the rgf field never includes the CAREf_ SETPOS bit. 

The size and position of the caret are returned in win­
dow coordinates relative to IpCaretInfo-> hwnd. 

Returns TRUE if a caret exists, FALSE otherwise. If 
no caret exists, *lpCaretInfo is not changed. 

iHideLevel is a variable that is incremented by 
WinShowCaret(hwnd,F ALSE) and decremented by 
WinShowCaret(hwnd,TRUE). The caret is visible only 
if iHideLevel is o. 

4.1.18 Mouse Cursor 

This section describes the functions that affect the mouse cursor pointing 
device. 

The appearance of the cursor is defined by a bitmap. The bitmap must be 
a certain size, defined by the system. There are two possible sizes: the sys­
tem cursor size, and the system icon size. These values may be obtained 
with GetSysValueO. 

The bitmap is always twice as tall as either the system cursor or system 
icon size. The bitmap is divided into two parts: the XOR mask and the 
AND mask. The cursor or icon is drawn by first ANDing the screen with 
the top half of the bitmap, and then XORing with the bottom half of the 
bitmap. 

4.1.18.1 Mouse Cursor Data Structures 

A cursor is identified by a "cursor handle": 

typedef HANDLE HCURSOR; 

321 



Windows Presentation Manager Reference 

The CURSORINFO data structure describes a cursor: 

typedef struct { 
INT xHotspot; 
INT yHotspot; 
HBITMAP hbmCursor; 

} CURSORINFO; 

The hbmCursor field is a bitmap handle to be used for the cursor image. 
The 

The xHotspot and yHotspot fields are the position within the the cursor of 
the "hot spot". This might be the tip of an arrow cursor, or the center of a 
crosshair cursor. 

WinLoad Cursor ------------------------------------------------------
Format 

HCURSOR WinLoadCursor(hab, idModule, idCursor) 
UINT idModule; 
UINT idCursor; 
HAB hab; 

Description 

Notes 

This function loads the cursor resource identified by 
idCursor from the file associated with the module 
specified by hlnstance. Returns a cursor handle if suc­
cessful, NULL otherwise. 

If idModule, returned by the DOS DosLoadModule, is 
NULL, the cursor is loaded from the application's 
resources. Otherwise, idModule is a module handle of 
a dynamic-link library that contains cursor resources. 

A new copy of the cursor is created each time Win­
LoadCursorO is called. The cursor handle must be 
destroyed wIth WinDestroyCursorO. 

To obtain one of the standard system cursors, use Get­
SysValue(). The standard system cursors must not be 
freed by the application. 

Win Create Cursor 
~~~------------~---------------------------

Format

322

HCURSOR WinCreateCursor(hbmCursor, fCursor,
xHotspot, yHotspot)

HBITMAP hbmCursor;
BOOL fCursor;
INT xHotspot, yHotspot;

Window Management Functions

Description
This function creates a cursor from the specified bit­
map handle and the hotspot values. If fCursor is
TRUE, the bitmap is stretched to have the system cur­
sor dimensions. If fCursor is FALSE, the bitmap is
stretched to have the system icon dilIlensions.

Returns a cursor handle, or NULL if unsuccessful.

WinDestroyCursor
~--

Format

BOOL WinDestroyCursor(hesr)
HCURSOR hesr;

Description
This function destroys a cursor or icon.

WinSetCursor --
Format

HCURSOR WinSetCursor(hab, hesr)
HCURSOR hesr;
HAB hab;

Description
This function sets the mouse pointer cursor to the
specified cursor Returns the previous cursor handle, or
NULL if none existed. If hcsr is NULL, the cursor is
removed from the screen.

Notes This function is very fast if hcsr is the same as the
current cursor handle.

WinShowCursot --
Format

INT WinShowCursor(hab, fShow)
HAB hab;
BOOL fShow;

Description
This function is used to show or hide the mouse cur­
sor.

Visibility of the mouse cursor is controlled by the
mouse cursor level. If the cursor level is <= 0, then
the mouse cursor is visible; if > 0, then the cursor is

323

Windows Presentation Manager Reference

Notes

invisible.

If fShow is TRUE, then ShowCursorO decrements the
cursor display level. If the cursor level is decremented
to 0, then the mouse cursor is shown.

If fShow is FALSE, the cursor level is incremented. If
it is incremented to 1, the mouse cursor is hidden.

ShowCursorO returns the new cursor level.

The initial value of the cursor level depends on
whether a mouse is installed in the system or not. If a
mouse exists, the cursor level is 0 (cursor is visible),
otherwise, the cursor level is 1 (cursor is invisible).

To obtain the current cursor display level, use
GetSys Value(SV _ CURSORLEVEL).

WinSetCursorPos --
Format

BOOL WinSetCursorPos(hab, x, y)
HAS hab;
INT x, y;

Description
This function sets the position of the mouse cursor to
the screen coordinates x and y. Returns TRUE if suc­
cessful, FALSE otherwise

WinGetCursorPos

324

--
Format

BOOL WinGetCursorPos(hab, Ippt)
HAB hab;
LPPOINT Ippt;

Description
This function returns the current mouse pointer posi­
tion, in screen coordinates, in *lppt. The position
returned is the true position at the time GetCursorPos
was called; this function is NOT synchronized with the
WinGefMsg() and WinPeekMsgO functions. Use
WinGetMsgPosO to get the mouse position of the last
message obtained via WinGetMsgO or WinPeekMsgO·
Returns TRUE if successful, FALSE otherwise.

Window Management Functions

WinRestrictCursor --
Format

BOOL WinRestrictCursor(hab, Iprc)
HAB hab;
LPRECT Iprc;

Description
This function is used to restrict the mouse cursor to
the rectangle indicated by lprc. lprc is assumed to
point to a rectangle in screen coordinates. If lprc is
NULL, then therehtire screen is assumed. Returns
TRUE if successful, FALSE otherwise.

Win QueryCursorlnfo

Format

BOOL WinQueryCursorInfo(hcsr, IpCursorInfo)
HCURSOR hcsr;
CURSORINFO FAR *lpCursorInfo;

Description
This function is used to obtain a cursor's bitmap han­
dle and hotspot coordinates. This information is
placed in *lpCursorlnfo. Returns TRUE if successful,
FALSE otherwise.

4.1.19 Clipboard Manager

The Clipboard Manager maintains data to be used for data interchange
using the Cut/Copy/Paste editing metaphor. A set of functions is pro­
vided to allow applications to easily implement these commands, in such a
way that data may be transferred from one application to another.

4.1.19.1 Cut/Copy/Paste Editing Metaphor

The Cut, Copy, and Paste commands work as follows:

Command
Description

Copy Copies the current selection into the clipboard. The previous
contents of the clipboard are destroyed.

325

Windows Presentation Manager Reference

Cut Deletes the current selection, after first copying it into the clip­
board. The previous contents of the clipboard are destroyed.

Paste The current selection is deleted, then a copy of the contents of
the clipboard is inserted at the selection. The clipboard is not
changed.

Clear Same as Cut, except that the selection is not copied to the clip­
board. The clipboard is not changed.

Notice that these commands operate on the contents of the clipboard and
the current selection. Logically, there is only one item of data in the clip­
board at a time: a selection.

A selection may be placed into the clipboard in a variety of formats.
These formats may be defined by the application, or one of the predefined
standard clipboard formats may be used. A format is identified by a 16-
bit value. Like window messages, format values may be registered dynam­
ically that are guaranteed to be unique across the system.

In order to facilitate transferring data to a wide variety of applications,
the selection may be copied to the clipboard in more than one format.
When an application obtains data from the clipboard for a Paste com­
mand, it can request the data in whatever format is most convenient.

Clipboard data does not need to be generated, or "rendered", at the time
it is placed in the clipboard. Instead, the application renders the data at
the time another application requests the data for a Paste operation.
Because it often takes a considerable amount of time and memory to
render a selection in the many formats that an application may be capable
of producing, this" delayed rendering" feature is quite useful.

The clipboard is "owned" by the window that last issued the Win­
SetclipbrdOwnerO function. There may be data in the clipboard even it
the clipboard is unowned, such as when an owner window is destroyed.
When clipboard data is requested for a Paste that hasn't been rendered
yet, the clipboard owner window is sent a message to render it.

It is not always necessary to own the clipboard when putting data into it.
It must be owned in the following circumstances:

If delayed rendering is used, so that the owner can process the
WM- RENDERFMT messages

If any data with the CFL OWNERDISPLA Y flag has been set so that
the owner can process the WM.-PAINTCLIPBOARD,
WM.-SIZECLIPBOARD, WM-HSCROLLCLIPBOARD, and
WM- VSCROLLCLIPBOARD messages

If any data with the CFL OWNERFREE flag has been set, so that the
owner can process the WM- DESTROYCLIPBOARD message

In any of the cases above, the owner must not terminate until the

326

Window Management Functions

W1LDESTROYCLIPBOARD message has been processed.

In order to access the clipboard, it must be opened. When a thread has
opened the clipboard, other threads are not allowed access to the clip­
board. Closing the clipboard allows other threads to access the clipboard.
Once data has been set into the clipboard, the program that set the data
should not change it.

Generally, clipboard operations should be performed only as a direct or
indirect result of some user operation.

It is possible for an application to register a window as a "Clipboard
Viewer" window. This window is responsible for displaying the contents
of the clipboard. It is notified of changes to the clipboard by being sent
certain window messages when the clipboard changes. Only one window
at a time may be registered as the clipboard viewer.

The clipboard viewer can display any of the standard clipboard formats.
However, since the clipboard viewer cannot display data that has not been
rendered yet, there are a few special predefined clipboard formats that are
used for clipboard viewer display purposes only. If any of these special
formats exist in the clipboard, the clipboard viewer will display these for­
mats rather than attempt to display the others. These are the
CF _ DSPTEXT and CF _ DSPBITMAP formats defined below.

To display private clipboard formats, the clipboard viewer application
may send messages to the clipboard owner window to draw the clipboard.

4.1.19.2 Standard Clipboard Formats

Standard Clipboard Formats
Format

CF_TEXT
Text format. Each line ends with a carriage return/linefeed (CR­
LF) combination. Tab characters separate fields within a line.
A NULL character signals the end of the data.

CF_BITMAP
Bitmap as defined by the BITMAP data structure.

CF_DSPTEXT
Text display format associated with private format.

CF _11ETAFILE
Metafile format, as defined in the GPI metafile section. The clip­
board viewer will display this format in preference to privately
formatted data.

327

Windows Presentation Manager Reference

CF _ DSPBITMAP
Bitmap display format associated with private format. The clip­
board viewer will display this format in preference to privately
formatted data.

In addition to the above predefined formats, any format value registered
through the standard system atom manager can be used as the fmt param­
eter.

4.1.19.3 Clipboard Functions

WinOpenClipbrd
--~--

Format

BOOL WinOpenClipbrd(hab)
HAB hab;

Description
This function opens the clipboard for use, preventing
other threads or processes from examining or changing
the clipboard contents. If another thread or process
has the clipboard open, this function does not return
until it is closed. Returns TRUE if clipboard was suc­
cessfully opened.

Messages may be received from other threads or
processes.

Win CloseCli p b rd
--~--

Format

BOOL WinCloseClipbrd(hab)
HAB hab;

Description
This function closes the clipboard, allowing other
applications to open the clipboard with WinOpen­
C~ipbrdO. Returns TRUE if successful, FALSE other­
WIse.

WinEmpty~C_I_ipl;....b_r_d __ _

Format

328

BOOL WinEmptyClipbrd(hab)
HAB hab;

Window Management Functions

Description
This function empties the clipboard and frees handles
to data in the clipboard. Returns TRUE if sucessful,
FALSE otherwise

WinSetClipbrdOwner

Format

WinSetClipbrdOwner(hab, hwnd)
HWND hwnd;
HAB hab;

Description
This function sets the current clipboard owner window
to hwnd. The owner window receives the
WM- RENDERFMT, WM-DESTROYCLIPBOARD,
and WM-SIZECLIPBOARD,
WM- VSCROLLCLIPBOARD,
WM- HSCROLLCLIPBOARD, and
WM- P AINTCLIPBOARD messages at the appropri­
ate times.

WinQueryClip brd Owner

Format

HWND WinQueryClipbrdOwner(hab, fLock)
HAB hab;
BOOL fLock;

Description

WinSetClip brdData

Format

This function returns the window handle of the
current clipboard owner, or NULL if the clipboard is
not owned. If fLock is TRUE, then the window handle
is locked before returning.

HANDLE WinSetClipbrdData(h, fmt, rgfFmtlnfo)
HANDLE h;
UINT fmt;
UINT rgfFmtlnfo;

Description
This function sets data of the specified format into the
clipboard. h is a handle to a data object of the format
specified by fmt. If h is NULL, then the clipboard

329

Windows Presentation Manager Reference

owner window will be sent a W1LRENDERFMT mes­
sage to render the format if WinQueryClipbrdDataO is
called with the specified format.

rgfFmtInfo contains one of the following flags that
describe the type of the data handle:

CFL SELECTOR
Handle is a segment, freed with Dos­
FreeSegO. The segment must be allocated
shareable

CFL OWNERFREE
Handle is not freed by WinEmptyClip­
boardO. The application must free the data
if neccessary.

CFL OWNERDISPLAY
This flag indicates that the format will be
drawn by the clipboard owner in the clip­
board viewer window via the
W1L P AINTCLIPBOARD message. The h
parameter should be NULL.

Note that if there is previous data in the clipboard,
then it is freed by this call.

WinQueryClipbrdData

Format

HANDLE WinQueryClipbrdData(hab, fmt)
HAB hab;
UINT fmt;

Description

Notes

This function returns the clipboard data handle of the
format indicated by fmt, or NULL if that format does
not exist in the clipboard.

The returned data handle must not be accessed after
WinCloseClipbrdO is called. For this reason, the
application must either copy the data for long term
use or process the data before WinCloseClipbrdO is
called. The application should not free the data han­
dle or leave it locked.

WinEnumClipbrdFmts

330

Format

Window Ma.na.gement Functions

UINT WinEnumClipbrdFmts(hab, fmtPrev)
HAB hab;
UINT fmtPrev;

Description

Example

This function is used to enumerate all the formats
available in the clipboard. If fmtPrev is 0, then the
first available format· is returned. Otherwise, fmtPrev
should be set to the last format returned, in which
case WinEnumClipbrdFmtsO will return the next
available format. Enumeration is complete when
WinEnumClipbrdFmtsO returns o.

The example below counts the number of available for­
mats, and fills an array with the format values:

fmt = 0;
cFmts = 0;
while «fmt = WinEnumClipbrdFmts(fmt» != 0) {

rgfmt[cFmts++] = fmt;
}

WinQueryClipbrdFmtInfo

Format

BOOL WinIsClipbrdFmtAvail(hab, fmt, lprgfFmtlnfo)
HAB hab;
UINT fmt;
UINT FAR *lprgfFmtlnfo;

Description
This function returns TRUE if data of the format indi­
cated by fmt is available, FALSE otherwise. This
function does NOT cause the data to be rendered. If
TRUE is returned, the format information (CFL *
flags) is returned in *lprgfFmtlnfo.

4.1.19.4 Clipboard messages

WM- RENDERFMT

Format

WM_RENDERFMT
LOU I NT (lParaml) :
lParam2:

UINT fmt;
OL

331

Windows Presentation Manager Reference

Returns: OL

Description
This message is a request to the clipboard owner to
render the data of the format specified in IParaml.
The data should be rendered into a global handle,
which should then be set into the clipboard with Win­
SetClipbrdDataO·

~RENDERALLFMTS

Format

WM_RENDERALLFMTS
IParaml: 0
IParam2: OL
Returns: 0

Description
This message is sent to the application that owns the
clipboard when the application is being destroyed.
The application should render the clipboard data in all
formats it is capable of generating and pass a handle
to each format to WinSetClipbrdData. This ensures
that the data in the clipboard can be rendered even
though the application has been destroyed.

~ DESTROYCLIPBOARD

Format

WM_DESTROYCLIPBOARD
IParaml: 0
IParam2: OL
Returns: 0

Description
This message is sent to the clipboard owner when the
clipboard is emptied through a call to WinEmp­
tyClipbrdO. If there is any data that has been set
with the CI<'L OWNERFREE flag, the clipboard owner
must free the data at this time.

~ P AINTCLIPBOARD

Format

WM_PAINTCLIPBOARD
IParaml: HWND hwndViewer;
IParam2: PAINTSTRUCT FAR *lpPaintStruct;

332

Window Management Functions

Returns: OL;

Description

Notes

This message is sent when the clipboard contains a
data handle with the CFL OWNERDISPLAY informa­
tion flag set (i.e., the clipboard owner is responsible for
displaying the clipboard contents) and the clipboard
application's client area needs repainting. The
Wi\LPAINTCLIPBOARD message is sent to the
owner of the clipboard to request repainting of all or
part of the clipboard application's client area.

lParaml is a handle to the clipboard application win­
dow.

lParam2 is a long pointer to a P AINTSTRUCT data
structure defining what part of the client area to
paint.

To determine whether the entire client area needs
repainting or just a portion of it, the clipboard owner
must compare the dimensions of the drawing area
given in the rcpaint field of the PAINTSTRUCT struc­
ture to the dimensions given in the most recent,
Wi\L SIZECLIPBOARD message.

Wi\L SIZECLIPBOARD

Format

WM_SIZECLIPBOARD
lParaml: HWND hwndViewer;
lParam2: RECT FAR *lprcPaint;
Returns: OL

Description
This message is sent when the clipboard contains a
data handle for the CF _ OWNERDISPLA Y format
(i.e., the clipboard owner is responsible for displaying
the clipboard contents) and the clipboard application
window has changed size.

lParaml is a handle to the clipboard application win­
dow. ord lParam2 is a pointer to a RECT
data structure specifying the area in which the clip­
board owner should paint.

Notes A Wi\LSIZECLIPBOARD message is sent with a
pointer to an empty rectangle (0,0, 0,0) as the new size
when the clipboard application is about to be des­
troyed or made iconic. This permits the clipboard
owner to free its display resources.

333

Windows Presentation Manager Reference

Wl\L HSCROLLCLIPBOARD

Format

WM_HSCROLLCLIPBOARD
lParaml: HWND hwndViewer;
LOUINT(lParam2): INT posSeroll;
HIUINT(lParam2): INT eodeSeroll;
Returns: OL

Wl\L VSCROLLCLIPBOARD

Format

WM_VSCROLLCLIPBOARD
lParaml: HWND hwndViewer;
LOUINT(lParam2): INT posSeroll;
HIUINT(lParam2): INT eodeSeroll;
Returns: OL

Description

Notes

These messages are sent to the clipboard owner win­
dow when the clipboard contains a data handle for the
CF _ OWNERDISPLAY format (i.e., the clipboard
owner is responsible for displaying the clipboard con­
tents) and an event occurs in the clipboard
application's horizontal scroll bar.

lParaml contains a handle to the clipboard applica­
tion window.

HIUINT(IParam2) contains one of the SB- * scroll bar
codes as defined in the "Scroll Bar Controls" section.

Except for SB_ THUMBPOSITION, LOUINT(lParam2)
contains o.
The clipboard owner should use WinInvalidateRect or
repaint as desired. The scroll bar position should also
be reset.

4.1.19.5 Clipboard Viewer Functions

WinSetCli p brdViewer

Format

334

HWND WinSetClipbrdViewer(hab, hwndViewer)
HWND hwndViewer;
HAB hab;

Window Management Functions

Description
This function sets the current clipboard viewer win­
dow to hwndViewer. It returns the previous clipboard
viewer, or NULL if there was none. The returned win­
dow handle is not locked.

Win QueryClipbrdViewer

Format

HWND WinQueryClipbrdViewer(hab, fLock)
BOOL fLock;
HAB hab;

Description
This function returns the current Clipboard viewer
window or NULL if there isn't one. If fLock is TRUE,
the window is locked before returning. If fLock is
FALSE, the window is not locked by this call (it may
already have been locked by some other call).

W1L DRAWCLIPBOARD

Format

WM_DRAWCL I PBOARD
IParaml: OL
IParam2: OL
Returns: OL

Description
This message is sent to the clipboard viewer window
whenever the contents of the clipboard change.

4.1.19.6 Clipboard Examples

4.1.19.6.1 Cutting or Copying; no delayed rendering

1. Open the clipboard with WinOpenClipbrdO.

2. Call WinEmptyClipbrdO to delete the previous contents of the clip­
board.

3. Using the current selection, create clipboard data handle in the desired
format(s) and place each handle into the clipboard with Win­
SetClipbrdDataO. Once placed in the clipboard, the handles are no
longer valid, and must not be used again by the application.

335

Windows Presentation Manager Reference

4. After all of the desired formats have been added to the clipboard, close
the clipboard with WinCloseClipbrdO.

4.1.19.6.2 Cutting or Copying with delayed rendering

1. Open the clipboard with WinOpenClipbrdO.

2. Call WinEmptyClipbrdO to delete the previous contents of the clip­
board

3. Call WinSetClipbrdOwnerO to set the ownership of the clipboard

4. Call WinSetClipbrdDataO with the desired format values and a NULL
data handle.

5. If desired, create data in any of the standard display formats, and put
the handles in the clipboard with WinSetClipbrdDataO.

6. Close the clipboard.

7. When a ~RENDERFORMAT message is recieved by the clipboard
owner window, the data of the requested format should be rendered
and placed into the window with WinSetClipbrdDataO. It is not
necessary to open the clipboard when processing the
~RENDERFORMAT message.

8. If a ~ P AINTCLIPBOARD, ~ SIZECLIPBOARD,
~ HSCROLLCLIPBOARD or ~ VSCROLLCLIPBOARD mes­
saged is receive, carry out the requested function to repaint the clip­
board.

9. If a ~DESTROYCLIPBOARD message is received, free up any
data in the clipboard.

,/..1.19.6.8 Pasting

1. Open the clipboard with WinOpenClipbrdO.

2. Call WinQueryClipbrdDataO with the format that is most con­
veniently handled by the application doing the Paste. If NULL is
returned to indicate that data in that format is not available, try any
other formats that the application knows how to Paste.

3. If a handle is obtained with WinQueryClipbrdDataO, it may be used as
long as the clipboard remains open. Once the clipboard is closed, the
handle may be deleted. Since leaving the clipboard open for long
periods of time may prevent other applications from accessing the clip­
board, it's a good idea to make a copy of the clipboard data, and then
close the clipboard.

4. When finished with the clipboard data handle, close the clipboard with
WinCloseClipbrdO·

336

Window Management Functions

4.1.20 Rectangle Functions

4.1.20.1 Data structures

This section documents the rectangle and point utility functions. The rec­
tangle structure is:

typedef struet {
INT xLeft;
INT dummy1;
INT yBottom;
INT dummy2:
INT xRight;
INT dummy3;
INT yTop;
INT dummy4;

} RECT;

typedef RECT FAR *LPRECT;

The point structure is:

typedef struet {
INT x;
INT dummy1;
INT y;
INT dummy2;

} POINT

A POINT structure describes a window coordinate point. A RECT struc­
ture describes a rectangular area in the window coordinate space: it is
stored as an array of 2 points, the first point being the bottom left corner
of the rectangle, and the second point being the top right corner.

An empty rectangle is a rectangle that has no area: the right coordinate is
less than or equal to the left, top is less than or equal to the bottom.

The rectangle routines assume that coordinates increase as you go up or to
the right.

Logically speaking, the right and top coordinates of a rectangle are one
greater than the last coordinate included in the rectangle. Also, some of
the rectangle routines assume that coordinates used are in window coordi­
nates, where left and bottom most coordinates are smaller than the right
or top coordinates.

To calculate the dimensions in pixels:

ey = re.yTop - re.yBottom
ex = re.xRight - re.xLeft;

To determine whether a coordinate falls inside a rectangle:

337

Windows Presentation Manager Reference

fInside = ((rc.xLeft <= x && x < rc.xRight)
&& (rc.yBottom <= x && Y < rc.yTop));

Note that the comparisons to right and bottom are done with "less than".

When passed to a WinXXX: function, the values of dummy1..3 are not
significant. The system may alter the values of these fields, however.

These structures are very similar to the GRECT and GPOINT structures,
except that only the lower 16 bits of the values are significant. A RECT
or POINT can be converted to a GRECT or GPOINT by simply sign
extending the 16 bit fields into the hi-order 16 bits.

The functions WinMakeGRect and WinMakeGPoint convert RECT and
POINT structures to GRECTs and GPOINTs respectively, by sign extend­
ing the significant fields into the dummy fields.

Any function that returns a rectangle or point (WinGetWindowRect, Win­
BeginPaint, etc.) always sign extends the significant fields into the dummy
fields; that is, the returned structures can be used as GRECTs or
GPOINTs.

4.1.20.2 Rectangle routines

WinSetRect --
Format

void WinSetRect(hab, lprc, left, bottom,
right, top)

LPRECT lprc;
INT left;
INT top;
INT right;
INT bottom;
HAB hab;

Description
This function fills the rectangle pointed to by lprc with
the passed coordinates. This routine is equivalent to
assigning the left, top, right, and bottom arguments to
the appropriate fields of *lprc.

WinIsRect:.:;E:,:m::.p!:..,t;",.y ____________________________________ _

Format

338

BOOL WinIsRectEmpty(hab, lprc)
LPRECT lprc;
HAB hab;

Window Mana.gement Functions

Description

Notes

WinCopyRect

This function returns TRUE if *lprc is an empty rec­
tangle, FALSE otherwise. An empty rectangle is one
that has no area: right is less than or equal to left,
bottom is less than or equal to top.

This function works only if the top and left coordi­
nates of *lprc are less than or equal to the bottom and
right coordinates.

--
Format

void WinCopyRect(hab, IprcDest, IprcSrc)
LPRECT IprcDest;
LPRECT IprcSrc;
RAE hab;

Description

WinEqualRect

This function copies the rectangle from *lprcSrc to
*lprcDest.

--
Format

BOOL WinEqualRect(hab, Iprcl, Iprc2)
LPRECT Iprcl;
LPRECT Iprc2;
RAE hab;

Description
This function returns TRUE if *lprcl and *lprc2 are
identical, FALSE otherwise.

WinSetRe_ct_E_m ____ p ty'--______________________________________ _

Format

void WinSetRectEmpty(hab, Iprc)
LPRECT Iprc;
RAE hab;

Description
This function sets *lprc to an empty rectangle by set­
ting each field to 0. Equivalent to WinSetRect(lprc, 0,
0,0,0).

339

Windows Presentation Manager Reference

Win OffsetRect --
Format

void WinOffsetReet(hab, Ipre, ex, ey)
LPRECT Ipre;
INT ex;
INT ey;
HAB hab;

Description
This function offsets the coordinates of *lprc by
adding cx to both the left and right coordinates, and
cy to both the top and bottom coordinates.

WinInfiateRect --
Format

VOID WinInflateReet(hab, Ipre, ex, ey)
LPRECT Ipre;
INT ex;
INT ey;
HAB hab;

Description
This function expands the given rectangle by cx hor­
izontally and cy vertically on all sides. If cx or cy is
negative, the rectangle is inset. cx is subtracted from
the left and added to the right, and cy is subtracted
from the bottom and added to the top.

WinPtInRect

340

--
Format

BOOL WinPtInReet(hab, Ipre, pt)
LPRECT Ipre;
POINT pt;
HAB hab;

Description

Notes

This function returns TRUE if pt falls inside of *lprc.

This function works only if the bottom and left coordi­
nates of *lprc are less than or equal to the top and
righ t coordinates.

Window Management Functions

VVinIntersectFtect --
Format

BOOL WinlntersectRect(hab, IprcDest;
IprcSrcl, IprcSrc2)

LPRECT IprcDest;
LPRECT IprcSrcl;
LPRECT IprcSrc2;
HAB hab;

Description
Calculates the intersection between *lprcSrcl and
*lprcSrc2, returning the resulting rectangle in
*lprcDest. Fteturns TFtUE if *lprcSrcl intersects
*lprcSrc2, FALSE otherwise. If there is no intersec­
tion, an empty rectangle is returned in *lprcDest.

Notes This function works only if the bottom and left coordi­
nates of both *lprcSrc1 and *lprcSrc2 are less than or
equal to the top and right coordinates .

VVin UnionFtect --
Format

BOOL WinUnionRect(hab, IprcDest,
IprcSrcl, IprcSrc2)

LPRECT IprcDest;
LPRECT IprcSrcl;
LPRECT IprcSrc2;
HAB hab;

Description
This function calculates a rectangle that bounds
*lprcSrc1 and *lprcSrc2, returning the result in
*lprcDest. If either *lprcSrc1 or *lprcSrc2 are NULL,
then the other rectangle is returned. Fteturns TFtUE if
*lprcDest is a non-empty rectangle, FALSE otherwise.

Notes This function works only if the bottom and left coordi­
nates of both *lprcSrc1 and *lprcSrc2 are less than or
equal to the top and right coordinates .

VVinSu btractFtect
~~~----------------------------------------------

Format 

BOOL WinSubtractRect(hab, IprcDest, 
Iprcl, Iprc2) 

LPRECT IprcDest; 

341 



Windows Presentation Manager Reference 

LPRECT IprcSrcl; 
LPRECT IprcSrc2; 
HAB hab; 

Description 

Notes 

This function subtracts *lprc2 from *lprcl, returing 
the result in *lprcDest. Returns TRUE if *lprcDest is 
empty, FALSE otherwise. 

Subtracting one rectangle from another may not 
always result in a rectangular area; in this case Sub­
tractRect will return *lprc1 in *lprcDest. For this rea­
son, SubtractRect provides only an approximation of 
subtraction. However, the area described br *lprcDest 
will always be greater than or equal to the • true" 
result of the subtraction. 

You can use the GPICombineRgnO function to calcu­
late the true result of the subtractIOn of two rectangu­
lar areas. SubtractRectO is much faster, however. 

This function works only if the bottom and left coordi­
nates of both *lprcSrc1 and *lprcSrc2 are less than or 
equal to the top and right coordinates . 

WinMakeGRect ----------------------------------------------------
Format 

BaaL WinMakeGRect(lprc) 
LPRECT Iprc; 

Description 
This function converts the RECT structure referenced 
by lprc into a GRECT structure. 

Returns TRUE if the conversion is sucessful, FALSE 
otherwise. 

WinMakeGPoin t 
--~~----------------------------------------------

342 

Format 

BaaL WinMakeGPoint(lppt) 
LPPOINT Ippt; 

Description 
This function converts the POINT structure referenced 
by lprc into a GPOINT structure. 

Returns TRUE if the conversion is sucessful, FALSE 
otherwise. 



Window Management Functions 

4.1.21 Presentation Manager Resources 

WinLoadString 
--~~--------------------------------------------

Format 

int WinLoadString(hab, idModule, idString, 
IpszBuffer, cchBufferMax) 

HAB hab; 
UINT idModule; 
UINT idString; 
LPSTR IpszBuffer; 
int cchBufferMax; 

Description 
This function loads a string resource identified by 
idString from the executable file associated with 
module idModule which is returned by the DOS 
DosLoadModule call. The function copies the string 
into the buffer pointed to by lpBuffer, and appends a 
terminating null character. Returns the size of the the 
string copied into lpszBuffer, which is no larger than 
(cchBufferMax - 1). 

If idModule is NULL, a bitmap from the application 
resource file is loadd. Otherwise, idModule is the 
module handle of a dynlink library containingthe bit­
map resource. 

For loading bitmaps, see WinLoadBitmap. 

4.1.22 Command Key Accelerators 

Accelerators are keyboard keystrokes which can be used to invoke com­
mands directly. The normal way in which this is done is to convert the 
keystrokes into WM- COMMAND, WM- SYSCOMMAND or WM- HELP 
messages before they are received by the application, during the 
WinGetMsg or WinPeekMsg functions. This can allow single keystrokes 
to appear the same as selecting an item off a menu, to the user and the 
application alike. 

The Accelerator Table is used to define which keystrokes are treated as 
accelerators and the Commands they are translated into. 

The WinSet/GetAccelTable() functions are used to set and get the 
accelerator table that is used' implicitly by the WinGetMsgO and Win­
PeekMsg() functions. A WM- SYSCOMMAND, WM- COMMAND or 
WM-HELP message is sent, depending on whether or not the SYSCOM­
MAND or HELP flags are set in the accelerator option definition. 

343 



Windows Presentation Manager Reference 

Note that the Accelerator tables are used in a two-level fashion. There is 
a table which operates on a per-input-queue basis and also one which 
works on a per-active-window basis. Both are used in succession during 
message processing in WinGet:Msg and WinPeek:Msg. This two level struc­
ture allows for some accelerators which are global across all windows 
(Fl=Help, for example) as well as accelerators which are closely allied to 
the menu of a particular window. 

Translation within WinGet:Msg is done with the active window's accelera­
tor table first and subsequently with the queue table. This implies that 
entries in the queue table can be overridden by entries in the active win­
dow table. 

The following is the structure of an accelerator table: 

typedef struct tagACCELTABLE { 
UINT cAccel; 
UINT codepage; 
ACCEL rgaccel(cEntries); 

} ACCELTABLE; 

• cAccel is the count of accelerators in the table. 

• codepage is the code page assumed by all AF_CHAR entries (only code 
points are tied to a particular code page, scan codes and virtual keys 
are not). 

typedef struct tagACCEL { 
UINT rgf; 
UINT key; 
UINT cmd; 

} ACCEL; 

• rgf contains a combination of the following flags: 

344 

AF_CHAR 
key contains a codepoint (translated character) (codepoint 
value is in codepage identlfied in ACCELTABLE structure 
above). 

AF _ VIRTUALKEY 
key contains a virtual key value 

AF_SCANCODE 
key contains a scan code value 

NOTE - the three values above have the same value as their 
KC_ * counterparts. 

AF_SHIFT 
Shift key must be down 

AF_CONTROL 
Control key must be down 



Window Management Functions 

AF_ALT 
Alt key must be down 

AF_SYSCOMl\1AND 
Produce V\l1L SYSCOMl\1AND instead of V\l1L COM11AND 

AF_HELP 
Produce V\l1LHELP instead of V\l1LCOMl\1AND 

• key contains the virtual key, scan code, or code point value (depending 
on the contents of rgf). 

• cmd contains the command ID value to be placed in lParaml of the 
resultant V\l1L COMl\1AND, V\l1L SYSCOMl\1AND, or V\l1L HELP 
message. 

typedef { 
ULONG HACCEL; 

} 

WinLoadAccelTable 

Format 

HACCEL WinLoadAccelTable(hab, idModule, idAccelTable) 
HAB 
UINT idModule; 
UINT idAccelTable; 

Description 
Loads an accelerator table identified by idModule, 
which is returned by th DOS DosLoadModule call, and 
idAccelTable, returning the handle of the accelerator 
table. 

Note that this function will return a different hAccel 
value when called twice in succession with the same 
parameter values. 

Win CreateAccelTable 

Format 

HACCEL haccel = WinCreateAccelTable(hab, IpAccel) 
HAB hab; 
ACCELTABLE FAR *lpAccel; 

Description 
Given a pointer to an accelerator table in memory, 
IpAccel, this function creates an accelerator table han­
dle. IpAccel points to an ACCELTABLE structure. 

Note that this function will return a different hAccel 

345 



Windows Presentation Manager Reference 

value when called twice in succession with the same 
parameter values. 

WinDestroy AccelTable 

Format 

BOOL fDestroyed = WinDestroyAccelTable(haccel) 
HACCEL haccel; 

Description 
This function destroys an accelerator table, returning 
TRUE if successful, FALSE otherwise. 

Win Copy AccelTable 

Format 

WORD cbCopied = WinCopyAccelTable(haccel, IpAccel, 
cbCopyMax) 

HACCEL hacce 1 ; 
ACCELTABLE FAR *lpAccel; 
WORD cbCopyMax; 

Description 
This function is used to either obtain the accelerator 
table data corresponding to an accel table handle, or 
to determine the size of the table data. 

If the IpAccel pointer is not NULL, then up to cbCopy­
Max bytes of the accelerator table data is copied to 
IpAccel. The actual number of bytes copied is 
returned. 

If IpAccel is NULL, then this function returns the size 
in bytes of the accelerator table handle; the cbCopy­
Max parameter is ignored. 

WinTranslateAccel 
.~~--------------------------------------

346 

Format 

BOOL WinTranslateAccel(hab, hwnd, hAccel, Ipqmsg) 
HAB hab; 
HWND hwnd; 
HACCEL hAccel; 
QMSG FAR *lpQrnsg; 

Description 
This function translates the message pointed to by 
lpqmsg if it is a W1L CHAR message that is in the 



WinSetAccelTable 

Window Management Functions 

accelerator table indicated by hAccel.The message is 
translated in to a W1L COMMAND, 
W1L SYSCOMMAND or W1L HELP message, with 
hwnd identifying the destination window. Normally, 
this parameter should be a frame window handle. 
This function does not hilite menu items. 

If hAccel is NULL, the current accelerator table is 
assumed. 

WinTranslateAccelO returns TRUE if the message 
matched an accelerator in the table. The message 
pointed to by lpqmsg is modified by WinTranslateAc­
celO if a match is found. 

If a menu item exists that matches the accelerator 
command value, and that item is disabled, the mes­
sage at *lpqmsg is translated to a W1L NULL mes­
sage, rather than a W1L COMMAND, 
W1L SYSCOMMAND or wtvL HELP message. If the 
command is a wtvLCOMMAND or W1LHELP, the 
menu child window of hwnd that has the FID_MENU 
ID is searched; if wtvL SYSCOMMAND, the 
FID_ SYSMENU child window is searched. 

It is possible to have accelerators that do not 
correspond to items in a menu. If the command value 
does not match any items in the menu, the message is 
STILL translated. 

Generally, applications do not have to call this func­
tion. It is normally called automatically by 
WinGetMsgO and WinPeekMsgO, when a W1L CHAR 
message is received, with the window handle of the 
active window as the first parameter. The standard 
frame window procedure always passes 
W1L COMMAND messages to the FID_ CLIENT win­
dow. Since the message is physically changed by Win­
TranslateAccel(), this implies that applications will 
not see the WNL CHAR messages that resulted in 
wtvLCOMMAND,wtvLSYSCOMMANDor 
W1L HELP messages. 

--------------------------------------------------
Format 

BOOL FAR PASCAL WinSetAccelTable(hab, haccel, 
hwndFrame) 

HAS hab; 
HACCEL haccel; 
HWND hwndFrame; 

347 



Windows Presentation Manager Reference 

Description 
This function is used to set either the window or queue 
accelerator table. If hwndFrame is NULL, then the 
queue accelerator table is set. Otherwise, the window 
accelerator table is set, by sending the 
WNLSETACCELTABLE message to hwndFrame. 

If hAccel is NULL, the effect of this function is to 
remove any accelerator table in effect for the window 
or queue. 

Win Query AccelTable 

Format 

HACCEL FAR PASCAL WinQueryAccelTable(hab, hwndFrame) 
HAB hab; 
HWND hwndFrame; 

Description 
This function is used to query either the window or 
queue accelerator table. If hwndFrame is NULL, then 
the queue accel table is returned. Otherwise, the win­
dow accel table is returned, by sending the 
WNLQUERYACCELTABLE message to hwndFrame. 

4.1.22.1 Accelerator Table Messages. 

The following messages are associated with Accelerator Table functions: 

WNLSETACCELTABLE 

• 

Format 

WM_SETACCELTABLE 
IParaml: HACCEL haccelNew 
Returns: BOOL fSuccess; 

Description 
WfvLSETACCELTABLE is used to establish the win­
dow accelerator table to be used for translation when 
the window is active . 

WNL QUERYACCELT ABLE 

Format 

WMLQUERYACCELTABLE 
Returns: HACCEL haccel; 

348 



Window Management Functions 

Description 
"WM-QUERYACCELTABLE returns the accel table 
handle associated with the window, or NULL if none is 
associated. 

"WM- V ALIDATEACCEL 

Format 

WM_VALIDATEACCEL 
lParaml: LPQMSG lpqmsg; 
lParam2 : OL; 
Returns: BOOL fValid; 

Description 
This message is sent by WinTranslateAcceleratorO to 
the the window that will be the destination of the 
"WM- COMMAND /SYSCOMMAND /HELP message 
when a match is found in the accelerator table. 

IParaml points to a QMSG structure containing 
"WM- COMMAND /SYSCOMMAND /HELP message 
that will be returned. The message should return 
FALSE to indicate that the message is invalid and 
should not be passed on to the application, and TRUE 
to indicate that the message should be passed on to 
the app. 

This message is processed by the WC_ FRAME and 
WC_ DIALOG window procedures by seeing if the 
command exists in either the system or application 
menu (FID_SYSMENU and FID_MENU frame con­
trols). If so, if the corresponding menu item is dis­
abled, FALSE is returned. If the item is enabled, 
TRUE is returned. If the command does not exist in 
either menu, TRUE is returned. 

These messages are processed only by frame windows. 

4.1.22.2 Default Queue Accelerator Table. 

The default queue accelerator table contains entries for the following func­
tions: 

• Enter menu mode (F2) 

• Bring up system menu 

• Help (FI) 

349 



Windows Presentation Manager Reference 

Switch application and switch list keys are not part of this table. These 
are fixed by OS/2 and cannot be overriden in the accelerator tables. 

4.1.23 System Colors 

The System Colors are the colors that the system and applications use to 
color various parts of the user interface. These colors may be modified by 
the application 

The system color functions are used to get and change the system colors. 
The 

4.1.23.1 System Color Index Values 

System Color Indices 
Color Index Value 

SCLIL SCROLLBAR 
Scroll bar halftone area 

SCLIL BACKGROUND 
Desktop 

SCLIL ACTIVECAPTION 
Active window caption 

SCLIL INACTIVECAPTION 
Inactive window caption 

SCLILMENU 
Menu background 

SCLIL WINDOW 
Window background and thumb box 

SCLILWINDO~RAME 
Window border, caption text background 

SCLILMENUTEXT 
Text in men us 

SCLIL WINDOWTEXT 
Text in windows 

SCLIL TITLETEXT 
Text in title bar, size box, scroll bar arrow box 

350 



Window Management Functions 

4.1.23.2 System Color Routines 

WinQuerySysColor 
~--------------------------------------------------

Format 

ULONG WinQuerySysColor(hab, iColor) 
HAB hab; 
int iColor; 

Description 

WinSetSysColors 

This function returns the RGB color value that 
corresponds to the system color index indicated by 
iColor. iColor must be one of the SCLIL * constants 
in the table below. 

----------------------------------------------------
Format 

void WinSetSysColors(hab, cColors, rgiColors, 
rglColorValues) 

HAB hab; 
int cColors; 
int far *rgiColors; 
ULONG far *rglColorValues; 

Description 

Notes 

This functions changes one or more of the system 
colors. cColors is the count of the number of colors 
that are being changed, rgiColors is a far pointer to an 
array of system color indices, and rglColorValues is a 
far pointer to an array of ULONGs that represent 
RGB color values. Values in the rgiColors array must 
be SCLIL * values from the table below. 

WinSetSysColors() sends all top-level windows in the 
system a W1L SY'SCOLORCHANGE message to indi­
cate that the colors have changed. When this message 
is received, applications that depend on the system 
colors can query the new color values with WinGetSys­
ColorO· 

Mter the W1L SYSCOLORCHANGE messages are 
sent, all windows in the system are invalidated so that 
they will be redrawn with the new system colors. 

WinSetSysColorsO does NOT write any system color 
changes to the wtN.INI file. 

351 



Windows Presenta.tion Mana.ger Reference 

4.1.23.3 System Color Messages 

~SYSCOLORCHANGE 

Format 

WM_SYSCOLORCHANGE 
IParaml: 0 
IParam2: OL 
Returns: OL 

Description 
This message is sent to all top level windows when a 
change is made to the system colors with WinSetSys­
ColorsO. When this message is received, applications 
that depend on the system colors can query the new 
color values with WinGetSysColorO. 

After the ~ SYSCOLORCHANGE messages are 
sent, all windows in the system are invalidated so that 
they will be redrawn with the new system colors. 

4.1.24 System Information Functions 

This section describes functions used to retrieve and change system 
characteristics. 

The system value functions are used to get and change system information 
such as the height and width of the screen, dimensions of the various parts 
of a window, caret blink rate, etc. 

WinGetSysValue 

352 

----------------------------------------------------
Format 

int WinGetSysValue(hwndDesktop, iSysVal) 
HWND hwndDesktop; 
int iSysVal; 

Description 
WinGetSysValue returns the system value indicated 
by iSysVal. hwndDesktop is the desktop window han­
dle. iSysVal must be one of the SV _ * constants in the 
table below. 

Notes NULL may be specified to obtain the system values for 
the screen device. 



Window Management Functions 

WinSetSys Value --------------------------------------------------
Format 

BOOL WinSetSysValue(hwndDesktop, iSysVal, value) 
HAB hab; 
int iSysVal; 
int value; 
HWND hwndDesktop; 

Description 
WinSetSysValue sets a new system value indicated by 
iSys Val to value, returning TRUE if successful, FALSE 
otherwise. iSysVal must be one of the SV_* constants 
in the table below. hwndDesktop is the desktop win­
dow handle. 

Notes Not all SV_ values can be set with WinSetSysValue. 

NULL may be specified to obtain the system values for 
the screen device. 

4.1.24.1 System Value Constants 

Below is a table of the available system values, which can be used with the 
WinGetSysValue and WinSetSysValue functions. Dimension values are in 
pixel units, and time values are in milliseconds. Note that not all system 
values are settable with WinSetSysValue; those that are changeable are 
marked with an "*". 

WinGetSysValueO Codes Settable? 
Meaning 

SV _ CXSCREEN 
Wid th of screen 

SV _ CYSCREEN 
Heigh t of screen 

SV _ CXVSCROLL 
Vertical scroll bar wid th 

SV _ CYHSCROLL 
Horizontal scroll bar height 

SV _ CYVSCROLLARROW 
Height of vertical scroll bar arrow bitmaps 

SV_CXHSCROLLARROW 
Width of horizontal scroll bar arrow bitmaps 

353 



Windows Presentation Manager Reference 

SV _ CYCAPTION 
Height of caption 

SV_CXBORDER 
Width of nominal-width border 

SV _ CYBORDER 
Height of nominal-width border 

SV _ CXSIZEBORDER 
Width of sizing border 

SV _ CYSIZEBORDER 
Height of sizing border 

SV_CXDLGFRAME 
Width of dialog frame border 

SV_CYDLGFRAME 
Height of dialog frame border 

SV_CYVTHUMB 
Height of vertical scroll bar thumb 

SV_CXHTHUMB 
Width of horizontal scroll bar thumb 

SV _ CXMINMAXBUTTON 
Width of Minimize/Maximize buttons 

SV_CYMINMAXBUTTON 
Height of Minimize/Maximize buttons 

SV _ CXSIZEBUTTON 
Width of size buttons 

SV _ CYSIZEBUTTON 
Height of size buttons 

SV_CYMENU 
Single line menu height 

SV _ CXFULLSCREEN 
Client area width when window is full screen 

SV _ CYFULLSCREEN 
Client area height when full screen (excluding menu height) 

SV_CXICON 
Icon width 

SV_CYICON 
Icon height 

SV _ CXCURSOR 
Cursor width 

354 



Window Management Functions 

SV _ CYCURSOR 
Cursor height 

SV_DEBUG 
TRUE if debugging version of system, FALSE otherwise 

SV _MOUSEPRESENT 
TRUE if system has mouse installed, FALSE otherwise 

SV_FULLSCREEN 
TRUE if full screen window is present, FALSE otherwise 

SV _ CURSORLEVEL 
Cursor hide level (0 ==> visible) 

SV_CTIMERS 
Count of available timers 

SV_SWAPBUTTON * 
TRUE if mouse buttons swapped. Normally, the mouse buttons 
are set for right-handed use. Setting this value changes them 
around for left-handed usage. 

If TRUE, WM- LBUTTON* messages are returned when the 
user presses the right button, and WM..RBUTTON* messages 
are returned when the left button is pressed. Modifying this 
value affects the entire system. Applications should not nor­
mally read or set this value. The user normally updates this 
value via the User Interface Shell to suit requirements. 

SV _ CARETBLINKTIME * 
Caret blink rate, in milliseconds 

SV _ DBLCLKTIME * 
Mouse doubleclick time, in milliseconds 

SV_CXDBLCLK * 
Width of mouse doubleclick sensitive area 

SV_CYDBLCLK * 
Height of mouse doubleclick sensitive area 

SV _ SBREPEATTIME * 
Scroll bar auto-repeat interval time, in milliseconds 

SV_ALARMFREQ * 
The frequency of the alarm signal gE)nerated by a call to Win­
BeepO if its UINT parameter is Oxffff. 

SV _ALARMDURATION * 
The duration of the alarm signal generated by a call to Win­
BeepO if its UINT parameter is Oxffff. 

SV _ARROWCURSOR 
Arrow cursor handle 

355 



Windows Presentation Manager Reference 

SV _ IBEAMCURSOR 
Text I-Beam cursor handle 

SV_HOURGLASSCURSOR 
Hourglass cursor handle 

SV _ UP ARROWCURSOR 
Up-arrow cursor handle 

SV _ SIZECURSOR 
Size cursor handle 

SV _MOVECURSOR 
Move cursor handle 

4.1.25 Using Windows of Other Threads 

If an application is using a window handle of another thread or process, it 
is possible that the thread that owns the window might destroy the win­
dow, thereby invalidating the window handle. Even worse, after the win­
dow is destroyed, another thread may create a new window, that has the 
same window handle as the one previously destroyed. In this case, the 
application with the window handle of the invalid window handle now has 
a valid window handle of a completely different window. 

In order to prevent this problem, it is possible to "Lock" a window. A 
locked window cannot be destroyed; WinDestroyWindowO waits until the 
window is unlocked before proceeding. During this time, messages may be 
received from other applications, that may possibly involve the window 
being destroyed. 

Most functions that return a window handle have the option of returning 
that window handle locked or unlocked. If the function is being used in a 
context where it is guaranteed that the returned window handle is not of 
another thread, or the window handle is simply used for equality checking 
against NULL or a window of the current thread, it is not necessary to 
lock the window handle. If the window handle is used as an argument to 
other functions, or is sent messages, then the window handle must be 
locked. 

It is very important that a locked window handle be unlocked at some 
point. Otherwise, this may hang the application that owns the window 
when it attempts to destroy the window. 

To help guard against the possibility of an application leaving windows 
locked, the WinCheckWindowLockCountO function can be called to check 
to see if any windows remain locked by the application. This function is 
typically called in an application's main loop. This test is also made 
automatically when the application is terminated. 

356 



Window Management Functions 

Windows should not be locked for indeterminate lengths of time. In order 
to use a window of another application for a long time, in order to store 
the handle in a global variable, etc., the window can be "Destroy 
Registered" When a destroy registered window is destroyed, all top level 
windows in the system are notified with a 
WM- OTHERWlNDOWDESTROYED message that the window has been 
destroyed. This message is sent before the window is actually destroyed. 
The idea is that the saved window handle may be invalidated by the appli­
cation that saved the window handle. Before using a destroy registered 
window as an argument to a function or WinSendMsgO, it should be 
locked as usual. 

4.1.25.1 Window Locking Functions 

WinLock Window ----------------------------------------------------
Format 

HWND WinLockWindow(hwnd) 
HWND hwnd; 

Description 
This function locks the specified window, preventing it 
from being destroyed. This function is used in con­
junction with WinUnlockWindow to ensure that a 
window handle of another application does not get 
destroyed while an application is using it. 

If WinDestroyWindowO is called with a locked window 
handle, it is not actually destroyed until the window is 
unlocked. . 

WinLockWindowO returns hwnd if sucessful, or NULL 
if the window has been destroyed or is otherwise 
invalid. 

The window is marked as being locked by increment­
ing a lock count. Therefore, the same window may be 
locked more than once by different applications. The 
number of WinUnlockWindowO calls must match Win­
Lock WindowO calls. 

Win Unlock Window 
~~~~---------------------------------------

Format

UINT WinUnlockWindow(hwnd)
HWND hwnd;

357

Windows Presenta.tion Mana.ger Reference

Description
This routine unlocks a window. This is accomplished
by decrementing the lock count that was incremented
by WinLockWindowO. The window is not actually
unlochd until this count reaches O.

Returns the lock count of the window after the unlock
is performed. If the window was actually unlocked, 0
is returned.

Win Get WindowLockCount

Format

INT WinGetWindowLockCount(hwnd)
HWND hwnd;

Description
This function returns the lock count of the specified
window, or 0 if the window is not locked.

Since a window may be locked by another thread or
process at any time, the value returned by this func­
tion may also change at any time.

Win Check WindowLockCoun t

358

Format

VOID WinCheckWindowLockCount(hab, cLock)
HAB hab;
INT cLock;

Description
In debugging versions of the system, this routine will
produce an error message on a debugging terminal if
the number of windows locked but not unlocked by the
current thread is not equal to cLock. This function
can be used to help ensure that applications don't
leave other application's windows locked.

In non-debug versions of the system, WinCheckWin­
dowLockCount has no effect.

Window Management Functions

4.1.26 Window Destroy Registration

WinRegisterWindowDestroy

Format

BOOL WinRegisterWindowDestroy(hwnd, fRegister)
HWND hwnd:
BOOL fRegister:

Description
This function provides a mechanism whereby an appli­
cation will be notified when a window of another
thread is destroyed.

If fRegister is TRUE, this function registers the given
window so that when it is destroyed, a
WM- OTHERWINDOWDESTROYED message is
broadcast to all top level windows of other tasks.

Registering the window is accomplished by increment­
ing a register count. If fRegister is FALSE, this rou­
tine un registers the window by decrementing the regis­
ter count. The window is not actually unregistered
until the count reaches O.

WM- OTHERWINDOWDESTROYED

Format

WM_OTHERWINDOWDESTROYED
IParaml: HWND hwndDestroyed:
IParam2: OL
Returns: OL

Description
This message is sent to all top-level windows when a
window registered with WinRegisterWindowDestroyO
is destroyed. IParaml contains the window handle of
the window being destroyed. The message i~ sent by
WinDestroyWindowO after the window has been hid­
den, but before the window is actually destroyed.

This message is non-queued.

359

Windows Presentation Manager Reference

4.1.27 System and Queue Hooks

Presentation Manager provides a mechanism by which procedures written
by an application programmer can get called when interesting things hap­
pen in the system. Such procedures are called Hooks. These hooks allow
things such as filtering of mouse & keyboard input before an application
receives it.

There are a number of places in the system where Hooks can be installed -
ie. there are a number of different types of interesting events that can be
hooked out and processed in some special ways. More than one procedure
can be installed for a given type of event. In this case, the procdures are
'chained' together so that each event is first passed to one procedure and
then to the next, and so on down the chain. This chain of procedures is
called a Hook Chain

Within a particular Hook Chain, the procedures are called in the order
that they were installed. If a hook procedure returns FALSE, the next
hook in the chain is called. If a hook procedure returns TRUE, then the
next hook in the chain is not called.

There are two kinds of hook chains: the System Chain and the Queue
Chain. The system chain applies to all running Presentation Manager
applications, but the queue chain applies only to the thread associated
with the queue that has the hook installed. In this way, it is possible to
install hooks that affect the entire system or just a particular thread.

Procedures on a system chain (system hooks) may be called in the
process/thread context of any running Presentation Manager application.
Procedures on a queue chain (queue hooks) are called only in the context
of the process/thread associated with the hooked queue. This has conse­
quences for the way in which hook procedures are defined.

System Hook procedures must be defined in library modules because it is
not possible to call application module procedures from other applications.
However, it is possible for an application to install one of its own pro­
cedures as a queue hook into one of its own input queues without
defining the procedure in a library module.

WinSetHook
~---

Format

360

BaaL WinSetHook(hab, hmq, iHook, IpfnHook,
idModule)

HAB hab;
HMQ hmq;
INT iHook;
FARPROC IpfnHook;
UINT idModule;

Window Management Functions

Description

Notes

WinReleaseHook

Installs the IpfnHook procedure into the hook chain
specified by iHook and hmq. idModule, returned by
the DOS DosLoadModule call, is the module handle
that contains the hook procedure. If idModule is
NULL, the hook procedure is in the current module.
iHook is a HI<- * value from the table below that
specifies which hook is being installed. Returns TRUE
if successful, FALSE otherwise.

If hmq is NULL, then the hook is installed in the sys­
tem hook chain; otherwise, the hook is installed in the
specified queue's hook chain. For a given hook, queue
hooks are always called before system hooks. System
hooks are always added to the end of the chain, and
queue hooks are added to the beginning of the chain.

Use WinQueryWindowULongO to obtain the queue
handle associated with a window handle.

The value HMQ- CURRENT can be used as the hmq
parameter to indicate the current queue.

--
Format

BOOL WinReleaseHook(hab, hmq, iHook, Ip fnHook ,
idModule)

HAB hab;
HMQ hmq;
INT iHook;
FARPROC IpfnHook;
UINT idModule;

Description
Unhooks the specified hook procedure from the hook
chain specified by iHook and hmq. Returns TRUE if
successful, FALSE otherwise.

If hmq is NULL, then the hook is unhooked from the
system hook chain; otherwise, the hook is removed
from the specified queue's hook chain.

The value HMQ- CURRENT can be used as the hmq
parameter to indicate the current queue.

361

Windows Presentation Manager Reference

4.1.27.1 Hook example

InitCode ()
{

}

WinSetHook(NULL,
HICEXAMPLE,
WinHookProc);

BOOL FAR PASCAL ExampleHookProc(hc, lParaml, lParam2)
INT hc;
ULONG lParaml;
ULONG lParam2;
{

}

switch (hc) {
case 0:

}
/*

if (fProcessHook) {
ExampleProcess(lParaml, lParam2);
/*

}

* Return TRUE to indicate that we've processed
* the call, which will prevent the next guy on
* the chain from being called.
*/

return(TRUE);

break;

* Return FALSE to .indicate that we have not processed the
* call to cause the message to be passed on to the next
* link in the hook chain.
*/

return(FALSE);

4.1.27.2 Queue Hook codes

Here is a list of the available hook codes. Complete documentation for
each hook can be found elsewhere in this manual.

Window Hook Codes

HILINPUT
Input hook: called when message is removed from app queue
before msg is returned by WinGetMsgO or WinPeekMsgO

HIC MSGFILTER
Msg filter hook: called inside system mode loops

362

Window Management Functions

HICSENDMSG
WinSendMsg hook: called as a message is being sent

The following hooks may be installed only in the system hook chain:

HICJOURNALRECORD
Journal recording hook

HICJOURNALPLAYBACK
Journal playback hook

4.1.27.3 HILINPUT hook

The HIC INPUT hook is called when messages are removed from an appli­
cation queue, before being returned by WinGetMsgO or WinPeekMsg(J.

InputHook --
Format

BOOL FAR PASCAL InputHook(lpQmsg)
LPQMSG IpQmsg;

Description
IpQmsg is a pointer to a QMSG structure. This hook
is called from within getjpeekmsg just before return­
ing to the application WIth the message that will be
returned. There are no restrictions on calls that may
be made at this time.

If this hook returns TRUE, the message is not passed
on to the application. If it returns FALSE, then the
message is passed on.

4.1.27.4 HILMSGFILTER hook

The HIC MSGFIL TER hook is called inside any of the system mode loops,
such as during size/move tracking, while a dialog box or menu is up, etc.

MsgFilterH--..,;..oo..;,.k~ _____________________ _

Format

BOOL FAR PASCAL MsgFilterHook(msgf, IpQmsg)
INT msgf:
LPQMSG IpQmsg;

363

Windows Presentation Mana.ger Reference

Description
IpQmsg is a pointer to a QMSG structure, and msgf is
a code indicating the context that the hook procedure
is called in. The msgf code may be one of the follow­
ing values:

Message Filter Context Codes
Context code

MSGF _ DIALOGBOX
DialogBoxO mode loop

MSGF _MESSAGEBOX
MsgBoxO mode loop

MSGF_MENU
Men u tracking

MSGF_MOVE
Window movement tracking

MSGF_SIZE
Window size tracking

MSGF _ SCROLLBAR
Scroll bar tracking

MSGF _ NEXTWINDOW
Window enumeration mode loop

If this hook procedure returns TRUE, the message has
been processed by the hook and will not be processed
by the mode loop code. If it returns false, the message
will be processed by the mode loop code.

CallMsgFilter

364

--
Format

BOOL CallMsgFilter(lpQmsg, msgf)
LPQMSG IpQmsg;
INT msgf;

Description
This function allows the application to call the
HICMSGFILTER hook procedure. msgf may be one of
the standard MSGF _ * values, or an application­
specific code. WinCallMsgFilterO returns TRUE if any
of the message filter hooks returns TRUE, FALSE if
they all return FALSE.

Window Management Functions

4.1.27.5 HICSENDMSG hook

typedef struct {
ULONG IParam2;
ULONG IParaml;
UINT msg;
HWND hwnd;

} SMHSTRUCT;

SendMsgHook --
Format

BOOL FAR PASCAL SendMsgHook(lpsmh, flnterTask)
BOOL fInterTask;
SMHSTRUCT FAR *lpsmh;

Description
The WinSendMsg hook is called whenever a window
procedure is called via WinSendMsgO or Win­
DispatchMsg. fInterTask is TRUE if the message is an
inter-task WinSendMsg, and FALSE if intra-task.
lpsmh is a pointer to a SMHSTRUCT structure,
defined above.

The fields of the SMHSTRUCT contain the Win­
SendMsg parameters. There is no special return value
for the WinSendMsg hook.

4.1.27.6 HIC HELP hook

HelpHook __ ___

Format

BOOL FAR PASCAL HelpHook(context, idTopic,
idSubTopic, IprcPosition)

UINT context;
UINT idTopic;
UINT idSubTopic;
LPRECT IprcPosition;

Description
This hook can be called directly by an application or
in the default processing associated with windows,
menus and message boxes:

• WinDefWindowProc calls the HIC HELP hook
with idTopic == window ID of window sent the
message, idSubTopic == window ID of window
with focus or Oxffff if no window has the focus, and

365

Windows Presentation Manager Reference

IprcPosition == window rect (in screen coordi­
nates) of window with the focus or window sent
the message if idSubTopic == Oxffff.

• Menu code: calls the HILHELP hook with idTopic
== window ID of currently selected submenu, and
idSubTopic == menu item ID of currently selected
submenu item, or Oxffff if no item is selected.
IprcPosition is the bounding rectangle of the
selected item, or of the top level menu if idSubTo­
pic == Oxffff.

• Message Box code if WM- HELP message is
recieved while in a message box, then the help
hook is called with idTopic == message box ID
and idSubTopic == id of button, which is the
same as message box return value
corresponding to that button. IprcPosition is the
bounding rectangle of the button.

4.1.27.7 HILJOURNALRECORD and
HIL JOURNALPLA YBACK hooks

JournalRecordHook

Format

BaaL FAR PASCAL JournalRecordHook(lpqmsg)
QMSG FAR *lpqmsg;

Description
lpqmsg points to a QMSG structure, which contains
the message to be recorded.

This hook is called AFTER raw input has been
translated to WM- CHAR or WM- ?BUTTONDCLK
messages. lpqmsg -> hwnd is also setup when the
hook is called.

JournalPlaybackHook

366

Format

BaaL FAR PASCAL JournalPlaybackHook(lpqmsg, fSkip)
QMSG FAR *lpqmsg;
BaaL fSkip;

Description
lpqmsg points to a QMSG structure, where the mes­
sage to be played back is to be returned.

Window Management Functions

When fSkip is FALSE, the journal playback hook
returns the next message available. The same message
should be returned each time, until it is skipped with a
call with fSkip == TRUE (see below).

The time at which the message will be ready to be
played back should be returned in lpqmsg- >time.
This time value may be greater than the current value.
When this hook is called, the lpqmsg- >time field is
initialized to the current time, which can be used to
determine whether the next message is ready or not.
This value, rather than the result of WinGetCurrent­
TimeO, should be used for any delta calculations per­
formed by the hook procedure.

If fSkip is TRUE, then the journal playback hook
should skip to the next message. The lpqmsg parame­
ter is NULL in this case.

WJ\L QUEUESTATUS

Format

WM_QUEUESTATUS
lParaml: queue status (result of WinQueryQueueStatus()
lParam2: OL
Returns: OL

Description
The recording hook gets called by call to WinGet­
QueueStatus if the results of WinGetQueueStatusO
changed since the last call.

The playback hook should return these messages syn­
chronized with everything else.

Notes This message is only used fur journal recording and
playback hooks.

4.1.27.7.1 Notes on journal recording and playback

• Although the record hook is called after raw input has been translated,
it is necessary only to record the raw input data. For WJ\L CHAR
msgs, only the KC_ flags, lpqmsg- >time, and the high order byte of
Ipqmsg->IParaml (where the scan code is stored). In this case,
KC_ CHAR should be o. For mouse input messages, double click mes­
sages may be recorded as simply single click messages.

• On playback, it is not necessary to specify the lpqmsg- > hwnd or
lpqmsg- >pt fields: these fields will always be filled in by the input
code.

367

Windows Presentation Manager Reference

• Conversely, it is possible to play back only virtual keys and character
codes, by not setting the KC_ SCANCODE bit. In this case, applica­
tions will recieve ~ CHAR messages that do not have the
KC_ SCANCODE bit set.

• The journal recording hook is called after message translation occurs,
but before the key is translated via the system or queue accelerator
tables.

• With double click messages, a problem can arise when messages are
played back with the double click time different than when the mes­
sages were recorded. The problem is that single clicks during record­
ing may be interpreted as double clicks, or vice versa. Applications
that make use of these hooks should probably save & restore the state
of the system timing variables: double click time, cursor flash rate,
repeat, etc., to ensure that no timing problems will arise in this
fashion.

• WinGetMsg/WinPeekMsgO may not be called inside either the journal
record or playback hook.

4.1.28 Internationallnformation

4.1.28.1 Overview

The functions described here deal with problems associated with different
keyboards and code pages.

Input translation depends upon the physical keyboard, and, for characters,
on the code page in use.

There are also functions which allow the application to translate between
any two supported code pages.

A number of national language facilities are provided by base DOS.
Further ones described here supplement these.

4.1.28.2 Input Translation

4.1.28.2.1 Concepts

Keyboard input is obtained in the form of messages received via
WinGetMsg.

A ~ CHAR message is delivered for each keydown and keyup for all
keys on the keyboard. Translation of the scan code received from the key­
board is done by the WinGetMsg call that receives the keystroke.

368

Window Management Functions

WinGetMsg does not send a message for every typamatic repeat from the
keyboard; it may buffer typamatic repeats into one or more messages.
Each message contains a count, which is the number of typamatic repeats
since the first keydown, or since the last WinGetMsg call. This count will
begin at one for the first keydown.

Keyboard data along with mouse data is buffered asynchronously into the
Presentation Manager system queue. Keyboard data is removed from the
system queue when the application that owns the input focus calls
WinGetMsg or WinPeekMsg. Only one keyboard event is dequeued at a
time.

Translation occurs when the event is dequeued. The message obtained
from WinGetMsg contains three separate fields that represent the key
pressed: the hardware dependent scan code, the virtual key code and the
codepoint or dead key. These are discussed below:

•

•

•

•

The virtual ker (VKEY) concept is that there should be a virtual key
code for each I word" (eg esc or FI) on the key tops of the keyboard.
Consistency requires that most applications should use the PC set of
virtual keys built in to Presentation Manager, but applications with
special requirements can define their own virtual key sets. An example
of valid use of this capability is mainframe applications accessed via a
terminal emulator. These use words such as clear, PAl, etc in contrast
to PC applications which use esc, home etc.

The code point (CKEY) concept is that there should be a code point
value for every key on the keyboard with a symbol on it. The code
points can be either ASCII or EBCDIC and are country dependent.
Effectively, each code point corresponds to a unique "glyph" that can
appear on the screen.

Some keys with words on them (eg Enter) generate both a virtual key
value and a code point. This is because the key does need to be
treated as a function key in some applications, but also has a defined
ASCII code point associated with it which some applications may
prefer to use.

For CKEY values that correspond to dead keys (e.g. umlaut)
WinGetMsg will identify these CKEYs with a special flag in the
WM- CHAR message. It is the application's responsibility to echo the
dead key in the appropriate manner (i.e. without advancing the cur­
sor). If the next CKEY after the dead key is a valid dead key combina­
tion, then another flag will be set in the WM- CHAR message to iden­
tify the composite character. Again it is the application's responsibil­
ity to echo the character appropriately. There are three situations the
application must deal with:

• valid dead key combination should replace the dead key display
with the new composite character

369

Windows Presentation Manager Reference

• invalid dead key combination (except the space character) should
leave the dead key displayed, advance the cursor and display the
new CKEY, followed by a beep.

• dead key followed by a space should leave the dead key displayed
and advance the cursor.

• The valid set of dead keys and their combinations with other keys is
defined for each supported code page.

4.1.28.2.2 Keystroke Translation

Presentation Manager keystroke translation provides full flexibility in
remapping, support of country specific keyboard layouts, and support of
EBCDIC and ASCII code pages. This is achieved by the use of three types
of table which are described below:

• The key to VKEY table (VKeyXLateTbl). This table generates virtual
key codes based on the key pressed and the shift state. Presentation
Manager supplies two tables of this type covering the PC VKEY set for
the two physically different keyboards.

• The key to Universal Glyph List (UGL) table(GlyphXLateTbl). (The
UGL is is a list of all (non-DBCS) glyphs that can be generated by a
Presentation Manager application using standard Presentation
Manager facilities. All glyphs for all supported languages, plus the
APL glyphs, are included in the UGL.) The key to UGL table is always
used in conjunction with the UGL to CKEY table described below. It
is uniquely defined by the layout of the key tops. Presentation Manager
supplies tables of this type corresponding to all supported keyboard
layouts.

• The UGL to CKEY table (CharXLateTbl). This table is used in con­
junction with the previous one. Presentation Manager supplies a table
of this type for each supported code page. Also included in this table
is the dead key table, which defines the valid dead keys for each code
page and the valid dead key combinations.

• The WinPeekMsg and WinGet:Msg API calls control the translation
process that generates the virtual key and character code values that
are in the WM- CHAR message. The translation process consists of
the following steps:

370

• Apply scan code/keyboard state to VKeyXLateTbl. Result is a vir­
tual key.

• Apply scan code/keyboard state to GlyphXLateTbl. Result is a
glyph code.

• Apply the glyph code to CharXLateTbl. Result is a character code,
with appropriate dead key bits set.

Window Management Functions

• The translation tables that control the above process are determined
at boot time, based on the physical keyboard type and the values
specified in CONFIG.SYS.

4.1.28.3 String/Character Translation

The functions in this section translate between any two of the code pages
supported.

Win CpTranslateString

Format

BaaL WinCpTranslateString (hab, cpSrc, IpSrc,
cpDest, lenDest, IpDest)

HAB hab;
LONG cpSrc;
LPSTR IpSrc;
LONG cpDest;
LONG lenDest;
LPSTR IpDest;

Description

Translates a string from one code page to anot.her.
Both source and translated strings are null­
terminated.

The source string buffer pointed to by IpSrc is not
altered. The translated string is written to the buffer
pointed to by IpDest, up to a maximum of lenDest
bytes.

Returns

FALSE Error; possible errors are:

• Dissimilar code pages. No translation is
possible.

• Neither code page is recognized.

• The source code page is not recognized.

• The destination code page is not recog­
nized.

• The translated string is too long. Trun­
cation has occurred.

TRUE Successful translation of most if not all char­
acters. Character substitution will occur for
all untranslated characters.

371

Windows Presentation Manager Reference

WinCpTranslateChar

Format

UCHAR WinCpTranslateChar (hab, cpSrc, chSrc,
cpDest)

HAB hab;
LONG cpSrc;
UCHAR chSrc;
LONG cpDest;

Description

Translates a character from one code page to another.

Returns

FALSE Error; possible errors are:

TRUE

• Dissimilar code pages. No translation is
possible.

• Neither code page is recognized.

• The source code page is not recognized.

• The destination code page is not recog­
nized.

• Translation requires more than one byte.

The translated character in the destination
code page. If an exact match was not possi­
ble for this character between the specified
code pages, the character will have been
translated to a standard character.

4.1.28.4 String functions

This section describes the functions dealing with strings that depends on
the current international informations set for the application.

To order strings a two dimensionnal table must be used. Each rows con­
sists of characters (eg: 'A','A' umlaut, 'a', 'a' umlaut, etc ...). The charac­
ters are ordered within a row (secondary order), but this ordering is secon­
dary to the order of the row themselves (primary order). Here is an exam­
ple of what could be a section of this table:

A, A acute, A grave, A umlaut, a, a acute, a grave, a umlaut
B, b
C, C cedilla, c, c cedilla
D, d
E, E acute, E grave, E umlaut, e, e acute, e grave, e umlaut

372

Window Management Functions

This mechanism is not only usefull for accentuated strings ordering hut
also for case sensitive ordering. For example:

'A' < 'a',
'Be' < 'be', but
'Be' > 'ba'

In the third example the primary ordering of the 2nd characters (,c' and
'a') takes precedence over the secondary ordering of the lrst characters
('A' and 'a'). In fact the secondary ordering is only considered when the 2
strings are found equal following the primary ordering rule. By else when
comparing strings with different lengthes the characters in the longer
string that don't have their counterpart are considered greater and the
secondary ordering is ignored. For example:

'a' < 'ab' and
'a' < 'Ab'.

WinCompareStrings

Format

int WinCompareStrings(idcp, lpszl, lpsz2, fSecondary)
UINT idcp;
LPSTR lpszl;
LPSTR lpsz2;
BOOL fSecondary;

Description
This function compares the two strings pointed to by
lpszl and Ipsz2, it takes into consideration primary
and secondary order if fSecondary is TRUE, and only
primary order if fSecondary is FALSE.

It returns:

o if strings are equal,
1 if string pointed to by lpszl is < string

pointed to by lpsz2
-1 if string pointed to by lpszl is > string

pointed to by lpsz2

WinIsAlph.:...:a~ ______________________ _

Format

BOOL WinIsAlpha(idcp, lpsz)
UINT idcp;
LPSTR lpsz;

373

Windows Presentation Manager Reference

Description
This functions checks if the string pointed to by Ipsz is
only made of alphabetical character. It returns TRUE
if this is the case, FALSE otherwise.

Typically are valid any alphabetical characters with
accents or marks like cedilla. Characters like space,
comma, accents, etc ... are not valid.

WinLower --
Format

UINT WinLower(idcp, Ipsz)
UINT idcp;
LPSTR Ipsz;

Description
This function converts the given string to lower case.
Ipsz is a long pointer to a null-terminated string, that
is updated in-place.

The return value is the length of the converted string.

WinUpper --
Format

UINT WinUpper(idcp, Ipsz)
UINT idcp;
LPSTR Ipsz;

Description
This function converts a string or a character to upper
case. Ipsz is a long pointer to a null-terminated string,
that is updated in-place.

The return value is the length of the converted string.

WinUpperChar
~~~------------------------------------------------

374 

Format 

UINT WinUpperChar(idcp, wInchar); 
UINT idcp; 
UINT wInchar; 

Description 
This function converts a character in wlnchar to upper 
case. 

The return value is the converted character, or zero if 



Window Management Functions 

an invalid character was detected. 

WinLowerChar 
----------------------------------------------------~ 

Format 

UINT WinLowerChar(idcp, wlnchar); 
UINT idcp; 
UINT wlnchar; 

Description 

WinNextChar 

This function converts a character in wInchar to lower 
case. 

The return value is the converted character, or zero if 
an invalid character was detected. 

------------------------------------------------------
Format 

LPSTR WinNextChar(idcp, IpCurrentChar) 
UINT idcp; 
LPSTR IpCurrentChar; 

Description 

Notes 

WinPrevChar 

This function moves to the next character in a string. 
IpCurrentChar is a long pointer to a character in a 
null terminated string. 

The return value is a long pointer to the next charac­
ter in the string, or if there is no next character, to the 
null character at the end of the string. 

CPNext is used to move through strings whose charac­
ters are two or more bytes each (for example, strings 
containing characters from a Japanese character set). 

------------------------------------------------------
Format 

LPSTR WinPrevChar(idcp, IpStart, IpCurrentChar) 
UINT idcp; 
LPSTR IpStart; 
LPSTR IpCurrentChar; 

Description 
This function moves to the previous character in a 
string. IpStart is a long pointer to the beginning of 
the string. IpCurrentChar is a long pointer to a char­
acter in a null terminated string. 

375 



Windows Presentation Manager Reference 

Notes 

The return value is a long pointer to the previous 
character in the string, or to the first character in the 
string if IpCurrentChar is equal to IpStart. 

WinPrevCharO is used to move through strings whose 
characters are two or more bytes each (for example, 
strings containing characters from a Japanese charac­
ter set). 

4.1.28.5 Code Pages Available 

Win QueryCpList 
~--------------------------------------------------

Format 

LONG WinQueryCpList (hab, count, array) 
RAE hab; 
LONG count; 
LONG array[J; 

Description 

This returns a list of the code pages currently avail­
able. A maximum of count code pages is returned in 
array. 

Returns 

FALSE Error 

TRUE Number of code pages returned 

4.1.29 Miscellaneous 

W1L SYSTEMERROR 

376 

Format 

WM_SYSTEMERROR 
IParaml: 0 
IParam2: OL 
Returns: OL 

Description 
This message is sent to all top-level windows when an 
out of memory system error occurs during WinInitial­
izeO or WinCreate:MsgQueueO. The sh ell window 
notIfies the user of the out of memory condition. 

If the window receiving the message is the frame 



Window Management Functions 

window, it repeats the message to the client window, 
the window with the window id of STDID_ CLIENT. 
See "Window Frames" . 

377 





Index 

BM- CLICK message, 279 
BM- QUERYCHECK message, 283 
BM- QUERYCHECKINDEX message, 

280 
BM- QUERYHILITE message, 282 
BM- SET CHECK message, 282 
BM- SETIDLITE message, 282 
BOOL type, 41 
Bottom Window, 163 

CallMsgFilter, 364 
CARETINFO type, 318 
Child Window, 163 
CLASSINFO type, 196 
clipboard viewer, 89 
closing a task, 84 
CONFIG.SYS, 88 
control panel, 86 
Control Panel, 137 
CREATESTRUCT type, 170 
CS_ SA VEBITS, 177 
CS_SYNCPAlNT, 215 
CURSORINFO type, 322 

Data Structures 
gis, 110, 145 
parameter descriptor block, 114, 117, 

120, 147 
Program Handle array, 146 
Program Information Block, 113, 116, 

119,146 
ProgramEntry, 111, 145, 148 
Switch List Block, 134, 150 
switch list control block, 125, 128, 

134, 149, 150, 152 
Switch List entry definition, 134, 

150, 152 
xywinsize, 112, 133, 153 

Destroy Registered Windows, 357 
Dialog Control Groups, 252 
Dialog Procedure, 247 
Dialog Template, 247 
DialogProc, 248 
direct manipulation, 69 
directory tree, 63 

EM- CLEAR message, 288 
EM- COPY message, 288 
EM- CUT message, 288 
EM- GET CHANGED message, 286 
EM- PASTE message, 288 
EM- QUERYSEL message, 286 
EM- SETFONT message, 287 
EM- SETSEL message, 286 
EM- SETTEXTLTh1IT message, 287 
ending a task, 84 
extended selection., 53 

FARPROC type, 41 
FID_ WNMAX, 246 
FID_ TITLEBAR, 243 
FID_ WIDESIZE, 245 
File Cabinet, 61 
files, direct manipulation, 69 
focus, input, 58 

Group Information Structure, 110, 145 

HANDLE type, 41 
HCURSOR type, 321 
help, 91 

additional notes, 95 
HelpHook, 365 
help 

invoking, 92 
shell help index, 94 
the help window, 92 

initial view, 91 
initialization file, 91 
input focus, 58 
InputHook, 363 
installation, 107 

JournalPlaybackHook, 366 
JournalRecordHook, 366 

keyboard input, 58 
keyboard 

key actions, 54 

379 



Index 

keyboard (continued) 
selecting items, 52 

LM-DELETEITEM message, 293 
LM- GETSELECTION message, 294 
LM- INSERTITEM message, 292 
LM- QUERYITEMCOUNT message, 

291 
LM- QUERYITEMHANDLE message, 

296 
LM- QUERYITEMTEXT message, 295 
LM- QUERYITEMTEXTLENGTH 

message, 295 
LM- QUERYTOPINDEX message, 293 
LM- SEARCHSTRING message, 296 
LM- SELECTITEM message, 293 
LM- SETITEMHANDLE message, 296 
LM- SETITEMTEXT message, 294 
LM- SETTOPINDEX message, 292 
Locked Windows, 356 
LONG type, 41 
LPRECT type, 337 
LPSTR type, 41 

MENUITEM type, 307 
MM- DELETEITEM message, 313 
MM- ENDMENUMODE message, 312 
MM-GETSELITEMlD message, 314 
MM- INSERTITEM message, 312 
MM- ITEMIDFROMPOSITION 

message, 317 
MM- ITEMPOSITIONFROMID 

message, 316 
MM- QUERYITEM message, 314 
MM- QUERYITEMATTR message, 

317 
MM- QUERYITEMCOUNT message, 

317 
MM- QUERYITEMTEXT message, 315 
MM- QUERYITEMTEXTLENGTH 

message, 315 
MM-REMOVEITEM message, 313 
MM- SELECTITEM message, 313 
MM- SETITEM message, 316 
MM- SETITEMATTR message, 318 
MM- SETITEMHANDLE message, 315 
MM- SETITEMTEXT message, 316 
MM- STARTMENUMODE message, 

311 
Mnemonics., 306 
mouse 

button actions, 56 
pointer, 51 
selecting items, 52 

380 

MsgFilterHook, 363 
multiple selection, 53 

Object Windows, 165 
online help, 91 
Orphaned Windows, 165 
Owned Window, 165 

parameter descriptor block, 114, 117, 
120, 147 

Parent Window, 163 
Parking-Lot, 60 
POINT type, 337 
pointer, 51 
Private Window Class, 161 
Program Handle array, 146 
Program Information Block, 113, 116, 

119,146 
program titles, 110 
PrograrrU8ntry, 111, 145, 148 
programs, starting with the Shell, 75 
Public Window Class, 161 

RECT type, 337 
restore size and position, 61 

SBM- QUERYPOS message, 301 
SBM- QUERYRANGE message, 301 
SBM- SETPOS message, 300 
SBM- SETSCROLLBAR message, 300 
selecting items, 52 
selection cursor, 51 
SendMsgHook, 365 
SHANDLE type, 41 
shell 

general features, 50 
help index, 94 

Sibling Window, 163 
SMHSTRUCT type, 365 
starting OS/2 PM, 91 
starting programs, 75 
STARTUP, 75, 76 
STARTUP editor, 77 
stopping a task, 84 
Sub classing of Windows, 166 
Switch List Block, 134, 150 
switch list control block, 125, 128, 134, 

149, 150, 152 
Switch List entry definition, 134, 150, 

152 
SWP type, 188 
Sync Paint Window, 215 



System Menu, 58 
SZM- TRACKSIZE message, 245 

Task Manager, 81 
TBM- QUERYSTATE message, 243 
TBM- SETSTATE message, 244 
TBM- TRACKMOVE message, 244 
terminating a task, 84 
titles, of programs, 110 
Top level windows, 153 
Top Window, 153 
tree window, 63 

UCHAR type, 41 
UlNT type, 41 
ULONG type, 41 
Update Region, 214 

WC_ BUTTON, 278 
WC_EDIT, 284 
WC_ LISTBOX, 289 
WC_ MINMAX, 245 
WC_ SIZE, 245 
WC_ TITLEBAR, 243 
WinAlarm, 264 
WinBeginEnumWindows, 198 
WinBeginPaint, 218 
WinBeginPaint function, 215 
WinCalcFrameRect, 240 
WinCheckWindowLockCount, 358 
WinCloseClipbrd, 328 
WinCompareStrings, 373 
WinCopyAccelTable, 345 
WinCopyRect, 339 
WinCpTranslateChar, 372 
WinCpTranslateString,371 
WinCreateAccelTable, 345 
WinCreateCaret, 318 
WinCreateCursor, 322 
WinCreateDlg, 255 
WinCreateFrameControls, 240 
WinCreateStdWindow, 238 
WinCreateStdWindowIndirect, 239 
WinCreateWindow,l71 
WinDestroyAccelTable, 346 
WinDestroyCaret, 320 
WinDestroyCursor, 323 
WinDestroyWindow, 173 
WinDismissDlg, 257 
WinDlgBox, 256 
window appearance, 57 
Window Coordinates, 162 
Window Descendants, 153 

Window Invalidation, 214 
Window Owner, 165 
Window Validation, 214 
windows 

changing size, 60 
controlling, 57 
maximizing, 59 
minimizing, 59 
moving, 61 
restoring size and position, 61 
using the System Menu, 58 

WinDrawBorder, 228 
WinDrawIcon, 228 
WinDrawText, 226 
WinEmptyClipbrd, 328 
WinEnableWindow, 175 
WinEnableWindowUpdate, 178 
WinEndEnumWindows, 198 
WinEndPaint, 218 
WinEndPaint function, 215 
WinEnumClipbrdFmts, 330 
WinEnumDlgltem, 260 
WinEnumWindow, 198 
WinEqualRect, 339 
WinExcludeUpdateRgn, 222 
WinFlash Window, 207 
WinFormatFrame, 241 
WinGetActiveWindow, 204 
WinGetCursorPos, 324 
WinGetPS, 216 
WinGetSysModalWindow, 208 
WinGetSysValue, 352 
WinGetWindowLockCount, 358 
WinHalftoneBitmap, 227 
WinInfiateRect, 340 
WinIntersectRect, 341 
WinInvalidateRect, 219 
WinInvalidateRgn, 219 
WinInvertRect, 229 
WinIsAlpha, 373 
WinIsChild, 186 
WinIsRectEmpty, 338 
WinIsThreadActive, 207 
WinIsWindow, 185 
WinIsWindowEnabled, 176 
WinIsWindowVisible, 179 
WinLoadAccelTable, 345 
WinLoadCursor, 322 
WinLoadDlg, 254 
WinLoadString, 343 
WinLockScreen, 223 
WinLockVisRgns, 224 
WinLockWindow, 357 
WinLower, 374 
WinLowerChar, 375 
WinMakeGPoint, 342 

Index 

381 



Index 

WinMakeGRect, 342 
WinMapDlgPoints, 259 
WinMap WindowPoints, 200 
WinMessageBox, 261 
WinMultWindowFrornIDs, 184 
WinNextChar, 375 
WinOffsetRect, 340 
WinOpenClipbrd, 328 
WinOpenWindowDC, 217 
WinPrevChar, 375 
WinProcessDlg, 255 
WinProcessDlgMsg, 259 
WinPtInRect, 340 
WinQueryAccelTable, 348 
WinQueryCaretInfo, 321 
WinQueryClasslnfo, 196 
WinQueryClassName, 170 
WinQueryClipbrdData, 330 
WinQueryClipbrdFmtInfo, 331 
WinQueryClipbrdOwner, 329 
WinQueryClipbrdViewer, 335 
WinQueryCpList, 376 
WinQueryCursorInfo, 325 
WinQueryDesktop Window, 182 
WinQueryDlgItemInt, 258 
WinQuerySysColor, 351 
WinQueryUpdateRect, 220 
WinQueryUpdateRgn, 221 
WinQueryWindow, 185 
WinQueryWindowParams, 181 
WinQueryWindowProcess, 186 
WinQueryWindowRect, 186 
WinQueryWindowText, 179 
WinQueryWindowTextLength, 180 
WinQueryWindowUInt, 201 
WinQueryWindowULong, 202 
WinRegisterClass, 169 
WinRegister WindowDestroy, 359 
WinReleaseHook,361 
WinReleasePS, 217 
WinRestrictCursor, 325 
WinScrollWindow, 224 
WinSendDlgItemMsg, 257 
WinSetAccelTable, 347 
WinSetActiveWindow, 203 
WinSetClipbrdData, 329 
WinSetClipbrdOwner, 329 
WinSetClipbrdViewer, 334 
WinSetCursor, 323 
WinSetCursorPos, 324 
WinSetDlgItemInt, 258 
WinSetHook, 360 
WinSetMultWindowPos, 191 
WinSetOwner, 188 
WinSetParent, 187 
WinSetRect, 338 

382 

WinSetRectEmpty, 339 
WinSetSysColors, 351 
WinSetSysModalWindow, 208 
WinSetSys Value, 353 
WinSet WindowParams, 181 
WinSetWindowPos, 188 
WinSet WindowText, 180 
WinSetWindowUInt, 202 
WinSetWindowULong, 202 
WinShowCaret, 320 
WinShowCursor, 323 
WinShowWindow, 177 
WinSubclassWindow, 196 
WinSubstituteStrings, 264 
WinSubtractRect, 341· 
WinTranslateAccel,346 
WinUnionRect, 341 
WinUnlockWindow, 357 
WinUpdateWindow, 221 
WinUpper, 374 
WinUpperChar, 374 
Win ValidateRect, 220 
WinValidateRgn, 220 
WinWindowFromID, 184 
Win WindowFromPoint, 199 
~ACTIVATE message, 205 
~ACTIV ATETHREADmessage, 

206 
~ADJUSTWINDOWRECT 

message, 270 
~ CALOV ALIDRECTS message, 

193 
~ COMMAND message, 273 
~ CONTROL: Button Notification 

message, 281 
~ CONTROL message, 273 
~ CONTROL CURSOR message, 

275 
~ CONTROLHEAPmessage, 275 
~CREATE message, 174 
~DESTROYmessage, 175 
~DESTROYCLIPBOARD 

message, 332 
~ DRAWCLIPBOARD message, 

335 
~DRAWITEM message, 290 
~ENABLE message, 176 
~ERASEBACKGROUND message, 

234 
~ FORMATFRAME message, 233 
~HELP message, 274 
~ HSCROLL message, 298 
~ HSCROLLCLIPBOARD message, 

334 
~ INITDIALOG message, 253 
~ MEASUREITEM message, 291 



WM- MOVE message, 193 
WM- OTHERWINDOWDESTROYED 

message, 359 
WM-PAINT message, 215, 223 
WM- P AINTCLIPBOARD message, 

332 
WM-QUERYACCELTABLE message, 

348 
WM- QUERYDLGCODE message, 272 
WM- QUERYMINMAXINFO message, 

237 
WM- QUERYMOVESIZEINFO 

message, 245 
WM- QUERYTWINDOWP ARAMS 

message, 183 
WM- QUEUESTATUS, 367 
WM- RENDERALLFMTS message, 

332 
WM- RENDERFMT message, 331 
WM-SETACCELTABLE message, 348 
WM- SETITEMHEIGHT message, 295 
WM- SETWINDOWP ARAMS 

message, 183 
WM- SHOW message, 179 
WM- SIZE message, 192 
WM- SIZECLIPBOARD message, 333 
WM- SUBSTITUTESTRING message, 

265 
WM- SYSCOLORCHANGE message, 

352 
WM- SYSTEMERROR message, 376 
WM- UPDATEFRAME message, 234 
WM- VALIDATEACCEL message, 349 
WM- VSCROLL message, 298 
WM- VSCROLLCLIPBOARD message, 

334 

xywinsize, 112, 133, 153 

Z-ordering, 59 

Index 

383 




