
Microsoft®
Operating System/2

Presentation Manager Reference

Addendum

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
and/or databases described in this document are furnished under a license agree
ment or nondisclosure agreement. The software and/or databases may be used or
copied only in accordance with the terms of the agreement. The purchaser may
make one copy of the software for backup purposes. No part of this manual and/or
database may be reproduced or transmitted in any form or by any means, elec
tronic or mechanical, including photocopying, recording, or information storage
and retrieval systems, for any purpose other than the purchaser's personal use,
without the written permission of Microsoft Corporation.

© Copyright Microsoft Corporation, 1988. All rights reserved.
Simultaneously published in the U.S. and Canada.

Microsoft®, MS@, and the Microsoft logo are registered trademarks of Microsoft Corporation.

Intel® is a registered trademark of Intel Corporation.

IBM® and PC/AT® are registered trademarks, and Personal System/2@> is a trademark, of
International :Business Machines Corporation.

Document No. 060060011-103-R00-0388
Part No. 02900

Contents

Preface v

1 Introduction and Guide
to the Presentation Manager 1

2 Application Model 13

3 User Interface 55

15 Toolkit Utilities 103

15.1
15.2
15.3
15.4

15.5
15.6

Dialog Box Editor User Specification
Font Editor Functional Specification
Icon Editor Functional Specification
Help Facility for the Dialog,

Font, and Icon Editors 157
Resource (.res) File Specification
Resource Script File Specification

16 Device Drivers 189

16.1 Device Driver Interface 193

105
129
145

158
159

16.2 Graphics Engine Function List 385

iii

Figures

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1

Typical Presentation Manager Screen Layout 5

Presentation Manager Window with Frame 7

Menu Bar with Pull-down Menu 9

API Functions-Application Model for Input and Output

Figure 2.2 Application Model for Graphics and Alphanumerics 27

20

Figure 2.3 Presentation Manager Application Model for Dialog Boxes 28

Figure 2.4

Figure 3.1

Figure 3.2

Application Structure 31

The File Cabinet with Tree 72

The File Pull-down Menu 74

Figure 3.3 Key /Mouse Click Usages for Selection and Manipulation 78

Figure 3.4 Key /Mouse Drag Usages for Selection and Manipulation 78

Figure 3.5 The Filing System with Options Pull-down 79

Figure 3.6 The Filing System with Special Menu 81

Figure 3.7 The File Cabinet with Window Pull-down 82

Figure 3.8 The File Cabinet with STARTUP Panel 84

Figure 3.9 Startup Editor - Main Panel 86

Figure 3.10 Startup Editor - File Pull-down 86

Figure 3.11 The Task Manager Window 88

Figure 3.12 The Task Manager Window with Control Pull-down 89

Figure 3.13 Task Manager - Terminating a Task 91

Figure 3.14 Task Manager with Shutdown Pull-down 91

Figure 3.15 Control Panel 93

Figure 3.16 A Sample Help Window 99

Figure 15.1 Presentation Manager Dialog Box Editor 107

Figure 15.2 Presentation Manager Font Editor 130

Figure 15.3 Presentation Manager Icon Editor 147

Figure 16.1 Engine Transformation and Clipping 330

iv

Preface

The Microsoft Operating System/2 Presentation Manager Reference Adden
dum is derived from a draft of the functional specification of the MS OS/2
Presentation Manager and contains selected chapters from the Microsoft
Operating System/2 Presentation Manager Reference described in the
Mi"crosoft Operating System/2 Presentation Manager Startup Guide. This
addendum describes the Presentation Manager shell, Icon Editor, Font
Editor, and Dialog Editor-information that is not present in the Micro
soft Operati'ng System/2 Programmi'ng Reference Manual. To help you find
this information, chapter numbers were preserved to match those
described in the Mi'crosoft Operating System/2 Presentation Manager
Startup Guide. The Microsoft Operating System/2 Programmin~ Reference
Manual is a more up-to-date and accurate draft of the MS OS/2 1.1 appli
cation programming interface and replaces Chapters 4 through 14 of the
Mi'crosoft Operating System/2 Presentation Manager Reference.

Although this addendum does not represent the final Presentation
Manager specification, it does provide a reasonable preview of the func
tionality you can expect from the final product. This documentation is
preliminary in nature. The application program interface and other
features of the Presentation Manager described in this document are sub
ject to change.

v

Chapter 1

Introduction and Guide
to the Presentation Manager

1.1 Introduction and Guide to Presentation
Manager 3

1.1.1 What Is Presentation Manager? 3
1.1.2 Fundamental Features of Presentation Manager 3
1.1.2.1 User Interface Shell 3
1.1.2.2 Screen Appearance 4
1.1.2.3 The Pointer 6
1.1.2.4 Presentation Manager Windows 7
1.1.2.5 Presentation Manager User Controls g
1.1.2.6 Presentation Manager Programming Functions 10

1

Introduction and Guide to the Presentation Manager

1.1 Introduction and Guide to Presentation
Manager

This section introduces Presentation Manager to the end user.

1.1.1 'What Is Presentation Manager?

Presentation Manager is an extension of the basic MS OS/2 operating sys
tem. Presentation Manager is the 'Presentation Manager' component of
MS OS/2. Its features include:

• the ability to view output from multiple applications on the
display simultaneously

• an enhanced User Interface to both MS OS/2 and application func
tions

• programming interfaces which provide applications with sophisti
cated functions:

• for generating and displaying Graphics and Alphanumerics
data on a range of output devices including the display screen.

• for handling Input devices such as mouse and keyboard

• for Windowing data onto the display screen

• for the provision of a User Interface which is both rich in func
tion and consistent across applications.

Applications which run with the basic MS OS/2 will also run when Presen
tation Manager is present. However, not all these applications can take
advantage of the additional facilities provided by Presentation Manager.
In particular, applications which attempt to access the display or input
devices directly cannot share the screen concurrently with other applica
tions and cannot use the Presentation Manager programming interfaces.
The applications which cannot take advantage of Presentation Manager
are termed non-Presentation Manager Applications.

1.1.2 Fundamental Features of Presentation Manager

1.1.2.1 User Interface Shell

When the MS OS/2 system is started up with Presentation Manager
present, the display screen is initially occupied by the Presentation
Manager User Interface Shell. The Presentation Manager User Interface
Shell replaces the simple User Interface Shell provided with MS OS/2. It
provides the following end-user functions:

3

MS OS/2 Presentation Manager Reference

Start an Application

The user is presented with a list of all the available applications
and can choose one to start. There is a 'command line' option,
which enables the user to start a program by entering the com
mand line in a manner consistent with MS OS/2.

A means is provided for the user to update the list of of applica
tions - adding or removing entries as desired - and updating the
application profile for each of them.

Switch to another Application

The user can display all the applications which are running and
can select which one to work with next. The list includes both
Presentation Manager and non-Presentation Manager applica
tions.

Control of the Position and Size of Application Windows

Each Presentation Manager application has one or more Win
dows on the screen. The User Interface Shell provides the user
means of controlling the size and position of the windows visible
on the screen.

Control of the Printing functions

A menu is provided to give the user control over the Printing
functions performed by Presentation Manager.

Use of MS OS/2 file system

An easy-to-use method of interacting with the MS OS/2 file sys
tem is provided, that allows the end-user to perform file com
mands such as copying or renaming files.

Control functions

Provides the user with a consistent and easy-to-use method of
selecting defaults for various Presentation Manager parameters,
e.g., the color of empty space on the screen.

1.1.2.2 Screen Appearance

As applications are started by the user they appear on the screen. The
applications fall into two classes - Presentation Manager and non
Presentation Manager. For Presentation Manager applications, the User
Interface Shell menus remain visible until explicitly removed by the user.
For non-Presentation Manager applications, the User Interface Shell disap
pears when the application is on the screen.

Non-Presentation Manager applications are not able to take advantage of
the features of Presentation Manager.

4

Introduction and Guide to the Presentation Manager

Presentation Manager applications are able to take full advantage of the
features of the Presentation Manager functions. These applications do not
have to use the Presentation Manager unique programming interfaces but
do have to obey rules concerning their use of the display screen and the
input devices. Put simply, when using the display and input devices an
application must use the Presentation Manager programming interfaces
and/or use the basic :MS OS/2 VIO .. , KBD .. or MOU .. function calls.

When the user wants to interact with a non-Presentation Manager appli
cation, the application always appears on the screen by itself. Non
Presentation Manager applications cannot share the screen with other
applications. Neither can they share the screen with the User Interface
Shell. Thus the application cannot be seen at all when the user is interact
ing with another application or the User Interface Shell.

The User Interface Shell and all the Presentation Manager applications
occupy the Presentation Manager Screen Group. They can all potentially
appear on the screen simultaneously, in overlapped windows. A Window is
a rectangular region on the screen within which application data is
displayed. The Presentation Manager screen has a 'Messy Desk' appear
ance in that the rectangular windows can overlap one another. Where the
windows overlap, only part of one window is displayed and the appearance
is like that of papers on a desktop, i.e., one piece of paper overlays another
and only the topmost one can be seen where they overlap.

A simple example of the Presentation Manager Screen Group appearance
is shown in the following diagram.

+--+
+---------------------------------------+ I<---- Screen
I User Interface Shell I I
I I<-------+----- Window
+---------------------------------------+ I

I
I +----------------------------+ I

Application 1 :<------------------+----- Topmost
:-----------------+ I Window

+------------+ :cation 2 I I
I I I
I I I I Child

I window 1 I i<+----- Window
I I I
I I I +------------+
I I I

I I I I +----------------------------+ I I
I I I
I I I

I +------------------------+ I
+--+

Figure 1.1 Typical Presentation Manager Screen Layout

5

MS OS/2 Presentation Manager Reference

A Presentation Manager application generally has one window and can
have many more. Windows are organized on a hierarchical parent-child
basis. A child window always lies on top of and is contained within its
parent window. The windows at the top of the structure (which can be
thought of as children of the physical screen) are called top-level windows.
An application may have one or more top-level windows.

The top-level window with which the user is interacting is called the active
window. This will lie visually on top of all other top-level windows. Key
board input is always directed to the input focus window. The input focus
window is either the active window or a child of the active window.

The mouse input is generally directed to the window that lies underneath
the mouse pointer.

Some user input is received by the User Interface Shell rather than an
application. This input generally performs operations beyond the scope of
a single application, such as allowing the user to switch the active window.
Certain keys on the keyboard and the mouse cause this kind of input. A
detailed description is provided in the section dealing with the User Inter
face Shell.

1.1.2.3 The Pointer

Part of the screen appearance related to input is the Pointer. The pointer
is a small image which moves around the screen as the mouse is moved. It
is displayed only on those systems which have a mouse attached. It
appears on top of anything else displayed on the screen.

Its appearance can vary. There is a System Pointer appearance, an arrow,
which the pointer has by default. The shape can change when the pointer
enters an application window. The pointer shape can also vary as it moves
from selectable to non-selectable items on the screen.

The position of the Pointer on the screen is termed the Action Point. The
Pointer can be used to select objects by positioning the pointer over the
object and pressing and releasing one of the mouse buttons. Since the
pointer is generally a large object, the action point occupies a point within
the pointer shape. This point must be chosen carefully to avoid confusing
the user. For instance, the action point of the System Pointer is at the tip
of the arrow.

6

Introduction and Guide to the Presentation Manager

1.1.2.4 Presentation Manager Windows

Presentation Manager windows are more than just simple rectangles on
the screen. They have a number of optional features which occupy their
borders, termed the frame window. The frame window gives the end-user
access to a number of Presentation Manager functions. The frame window
includes:

• Borders

• Title Bar

• Scroll Bar

• Menu Bar

• System icon

• Maximize and minimize icons

The area in the center of the window that would normally contain the
main information content of the window is called the Client area.

--
: Border
I
I
I
I
I
I
I
I
I
I

JB

--
!Si Title Bar iNJMi
:--+-:
' Menu Bar 'Ai
-- _,

Client

B
0

r
d

:o
:r
Id
:e
:r

Area 0 e

I
I
I
I
I
I

I -- -I l

: ,<J 0 i> v:
: *--*

r

: Border ,
--
S is the system icon
M is the maximize icon
N is the minimize icon
0 is the thumb mark in the scroll bars

Figure 1.2 Presentation Manager Window with Frame

7

MS OS/2 Presentation Manager Reference

Window Border

Title Bar

Presentation Manager windows have a border in one of four for
mats:

• Normal border (that is not selectable by the user)

• Heavy border (that is selectable by the user for operations
such as sizing a window)

• A thin border (that is not selectable)

• No border

The title bar is the window name that appears at the top of a
window. Highlighting of the title bar indicates the window with
which the user is currently interacting.

Scroll Bars

Menu Bar

A window can contain one or two optional Scroll Bars. There is
a Vertical Scroll Bar which appears at the right of the window
and a Horizontal Scroll Bar which appears at the bottom of the
window. The scroll bars can be used to move the data appearing
in the window up and down or right and left, under either appli
cation or Presentation Manager control.

A menu bar is a horizontally aligned menu at the top of the win
dow. The end user may make selections on the menu bar that
either send commands directly to the application, or cause the
selection of a pull-down menu.

System icon

The system icon is an icon that the user may select in order to
activate the system menu for the window. The system menu con
tains functions such as move, size.

Maximize icon

The maximize icon is an icon that the user may select in order to
change a window to its maximum size.

Minimize icon

8

The minimize icon is an icon that the user may select in order to
change a window to its minimum size.

Introduction and Guide to the Presentation Manager

1.1.2.5 Presentation Manager User Controls

The Presentation Manager User Controls provide the application program
with consistent means of interacting with the user to perform various
standard operations. These are:

• Interaction by use of menus

• Interaction by use of dialog boxes

1.1.2.5.1 Use of Menus

The use of menus to interact with an application will always commence
with a menu bar. The menu bar is a horizontal bar along the top of a win
dow that contains a number of items. The items may be selected, one at a
time, by the user. The selection of an item in the menu bar by the user will
cause the appearance of a secondary menu, called a pull-down menu. The
pull-down menu contains additional options, one or more of which may be
selected by the user. On completion of the selection, the pull-down menu is
removed and the application performs the required action.

--
--

I

Iteml : Item2 : Item3 :
------+---------------------------------------

iPulldown menu:
:sub item a :
:sub item b :
:sub item c :

*--
--*

Figure 1.3 Menu Bar with Pull-down Menu

9

MS OS/2 Presentation Manager Reference

1.1.2.6 Presentation Manager Programming Functions

Presentation Manager has a large Application Programming Interface
which is subdivided into major functional groups:

• Windowing - creation and control of windows within an application

• Input and Message Handling

• User Controls

• Alphanumerics Output

• Graphics Output

• Bitmaps

• A programmed interface to the User Interface Shell

It is not necessary for an application to use any of the Presentation
Manager API functions in order to run as part of the Presentation
Manager Screen Group and be windowed onto the screen with other appli
cations. An ar,plication using the VIO .. , KBD .. and MOU .. functions of
basic MS OS/2 can be windowed when Presentation Manager is present.
No changes to the application are necessary.

However, an application using the Presentation Manager API has access to
a range of powerful functions which can enhance the functionality and
usability of the application while at the same time reducing the effort
required to produce it. ·

A summary of the groups of functions in the Presentation Manager API
follows.

Windows

An application can create and use a number of windows on the
screen via the Windows APL Function is provided to control the
size and position of a. window and also to control whether the
user can size or position a window. The application can specify
the form of the window frame. The application can also control
the data which appear in each window and can control which
window is the Input Window.

User Interface Controls

10

The User Interface Controls API provides the application with
functions for dialog between application and the user. The func
tions include:

• The display and interaction with menus.

The following menus are supported:

Introduction and Guide to the Presentation Manager

• Menu Bars

• Pull-down menus

• Control functions that an application would typically group
together into a 'dialog box'. These are:

• Scroll bars

• Buttons

• Edit controls

• Static controls

• List boxes

• Message boxes

Input and Message Handling

The Input API allows the application to control the input it
receives, both from the user via the Mouse and Keyboard and
from the system and other applications in the form of messages.
The input is based on an application input queue, and one or
more Window processing functions.

Alphanumerics Output

The Alphanumerics output API, termed Advanced Vio, is used
to output simple Alphanumeric data into screen Windows or
into Bitmaps. Advanced Vio is an extension of the basic MS
OS/2 VIO .. functions for a windowing environment. Advanced
Vio also allows use of multiple fonts and features such as under
scoring of individual characters.

Graphics Output

Bitmaps

The Graphics API, called the GPI, is used to draw graphics data
into screen windows, bitmaps, or other devices such as printers
and plotters. The application can draw a range of graphics
objects, such as Lines, Arcs, Text Strings, Closed Areas and
Images. Various attributes of the primitives such as their Color,
Area Fill pattern, Character Font and Line Style can be con
trolled. The size, orientation and position of every primitive can
be varied by means of Transformations.

The GPI also supports a wide range of text functions, including
the support of fonts in a manner consistent with the Font Object
Content Architecture.

Graphics data may be managed by the application or retained
and managed by the Presentation Manager system.

The Bitmap API allows creation and use of Bitmaps. Bitmaps
are best thought of as images similar in form to the screen

11

MS OS/2 Presentation Manager Reference

image. Bitmaps can be drawn into in a similar fashion to the
screen; they may reside either in PC memory or in memory asso
ciated with a particular device. Bitmaps can also be the source
of data to place on the screen. They can be used to produce
rapid changes to the screen, such as changing a Menu, in cases
where normal drawing would be too slow.

User Interface Shell API

12

Presentation Manager contains an API that will allow applica
tions to request some of the shell functions normally requested
by the user.

Chapter 2
Application Model

2.1 How to Write a Presentation :N.fanager
Application-A Guide to the API 15

2.1.1 The Purpose of Presentation :Manager
and Its API 15

2.1.1.1 Presentation :N.fanager Basic System Structure 16
2.1.2 API General Features 19
2.1.2.1 Output Fundamentals 21
2.1.2.2 Input Fundamentals 22
2.1.3 Presentation Space, Device Contexts

2.1.3.1
2.1.3.2
2.1.3.3

and Windows 23
Presentation Spaces 23
Device Contexts 25
Windows 25

2.1.4 Presentation :N.fanager Functions 26
2.1.4.1 Output via GPI or Advanced Vio Functions 26
2.1.4.2 Output via User Controls Functions 27
2.1.4.3 Input Functions 28
2.1.5 Sample Programs 29
2.1.6 Application Model 29
2.1.6.1 Basic Application Structure 30
2.1.6.2 The System Environment-The Shell

and Other Applications 31
2.1.6.3 Program Structure and Windows-

Window Procedures 33
2.1.6.4 Application Rules and Conventions 33
2.1.6.5 Building an 1\1S OS/2 Presentation :N.fanager

Application 34
2.1.7 Non-Reentrant Language Support 36

13

2.1.8 Background to User Interface 41
2.1.9 Naming Conventions 41
2.1.9.1 Constant Names 42
2.1.9.2 Type Names 42
2.1.9.3 Variable and Argument Names 42
2.1.9.4 Assembly-Language Structure Fields 43
2.1.9.5 Standard Data Types Used in This Document 44
2.1.10 Return Code Conventions 46
2.1.11 Error Conventions 46
2.1.11.1 Error Severity 53
2.1.11.2 Error Codes 54

14

Application Model

2.1 How to Write a Presentation Manager
Application-A Guide to the API

This section describes how to write a Presentation Manager application. It
describes the environment in which a Presentation Manager application
runs and gives a guide to the concepts and methods of using the Presenta
tion Manager APL A detailed description of the Presentation Manager API
is in the later sections.

2.1.1 The Purpose of Presentation Manager
andltsAPI

The basic purpose of Presentation Manager is to provide easy accessibility
for the user to the functions provided by the PC system. It does this in
conjunction with MS OS/2 and together they help the user accomplish
whatever tasks need doing, as and when they are needed.

An important feature of MS OS/2 and Presentation Manager is that of
multi-tasking. The system can perform a number of tasks simultaneously -
multiple application programs can run at the same time. Presentation
Manager allows the user to see the data belonging to many applications
simultaneously, so that one set of data can be used in conjunction with
another.

Presentation Manager makes it easy to get things done. In contrast to the
situation on MS OS/2, there is no need to stop one application program
just because the user needs to run another to get access to some piece of
information. Presentation Manager provides means to start any task at
any time. It provides means to view many tasks simultaneously on the
screen. Presentation Manager also provides means for copying data from
one task to another ("Cut and Paste") which really makes the use of mul
tiple tasks interesting and useful.

For application programs, Presentation Manager provides shared access to
the general resources of the PC system, which include:

• The Screen

• The Keyboard

• The Mouse

• Printer(s)

• Plotter(s)

• Picture Files

• Other Applications

15

MS OS/2 Presentation Manager Reference

Presentation Manager makes the access to the resources simple. Presenta
tion Manager also simplifies the process of writing an application through
the functions provided in the API and the various utility programs pro
vided in the Toolkit.

The Presentation Manager API does require applications to behave in cer
tain ways, in order to share resources effectively. In simple terms, applica
tions wishing to take advantage of the Presentation Manager features
must behave in a cooperative fashion. Applications must cooperate with
both the Presentation Manager system and other applications in order
that the system works to the benefit of the end user.

The Presentation Manager API is structured around these basic ideas and
does make some demands on the way applications work. This is made clear
in later sections.

:MS OS/2 applications that do not wish to take advantage of the Presenta
tion Manager facilities can run in a PC system that is using Presentation
Manager. How such applications run in a system using Presentation
Manager is dealt with in a later section.

2.1.1.1 Presentation Manager Basic System Structure

+--------------------:
I >-------------------%------ -------------------:
I I +------*------ +------*-------:
l User Shell I +*------------: +*-------------:I
l I +*------------1 I +*-------------: 11
I I I I I I I I I
I I I I I I I I I +--------------------+ I Shell I I I Applications I I I

I I I I I I I
I I I I I I I

l Utilities l I l l l I
: : >+ : : >+
l >+ I >+
+------%------+ +-------%------+

I I
I I
I I
I I

+-%-%-%-%-< +-%-%-%-%-<
vvvvvv vvvvvv

+-------%---------%-------%---------%----------%---------------%---------:
I Shell I Windows I Input I Dialogs I Graphics I Alphanumerics I Bitmaps I >-------* _________ * _______ * _________ * __________ * _______________ *---------<
I
I
I
I
I
I

Application Programming Interface

+----------------------------------%--------------------------------+

16

I
I
I
I
v

+--:
I I
I I
I
I System Resources - Screen, etc. I
I I
I I +--+

Application Model

2.1.1.1.1 The User Interface Shell

In the user's eyes, the major part of the Presentation Manager system is
the User Interface Shell. The User Interface Shell presents the user with a
view of the various components of the system. It allows the user to:

• get tasks (applications) running

• work with a particular application

• control the layout of applications on the screen, including position
and visibility

• view and work with the data files in the system

• control the Printer(s) and Plotter(s) attached to the system

• control various aspects of the appearance and operation of the sys
tem, such as the screen colors

The User Interface Shell is designed to make the system easy to under
stand and easy to use. It gives rapid access to the capabilities of the sys
tem. At the same time, it is functionally very rich and caters for the expert
user. Applications should be written with the functions of the User Inter
face Shell in mind - to avoid unnecessary duplication.

It is important that the various parts of the User Interface Shell and the
application programs in the system have the same Style. This means that
they are uniform in appearance and all work in the same kind of way, even
though the function provided by different applications may be very
different. This means that the user does not have to jump from one
environment to another and can proceed with ease from one task to the
next. In fact, the user should not really be aware of moving from one
application to another.

The Presentation Manager API makes it easy for a program to conform to
a standard Style. This is discussed in detail in a later section.

Thus, the User Interface Shell provides access to the system, to various
utilities and to the applications installed in the system.

2.1.1.1.2 The AP!

Applications access the functions of the Presentation Manager system via
the APL The API and its associated Utilities simplify the process of writ
ing an application. It provides the following broad areas of function:

17

MS OS/2 Presentation Ma.na.ger Reference

• Display of Data on the Screen and on Printers and Plotters. The
data may be simple Text ('Alphanumerics') or Graphics (including
high quality Text).

• Presentation and Operation of Standard User Menus and Dialogs
on the screen to aid the user in accomplishment of some task.

• Interaction with other Functions or Applications in the system,
including Shell processes and functions.

• User Interaction and Input functions.

• Partitioning of Screen data, economical use of Screen area and
structuring of application functions.

The description of the API is divided into a number of functional areas:

Shell access to aspects of the User Interface and to the Utilities that
form part of the User Interface Shell, including:

Windows

Input

18

• Starting of Programs - Program Names

• Listing of running applications

• Clipboard - copying of data between programs

• Program environment information - initial values for posi
tion and size of an application, for example

involves provision of areas on the screen in which to draw data.
However, the function is much more extensive than this, and
touches on:

• program structuring including object-oriented programming

• user interface functions

• user input

• inter-program communication.

which covers:

• user input from Mouse and Keyboard

• system messages and inter-application messages

• timer functions

Application Model

Dialogs and Menus
which includes:

• Display and operation of Menus offering the user straightfor
ward selections from a list of items.

• Creation, display and operation of Dialogs which offer the
user more complex forms of interaction with the application.

Alphanumerics Output
which is the output of simple textual information.to the screen,
printers, plotters and files. This offers a way of displaying text in
a simple form as fast as possible.

Graphics Output

Bitmaps

which allows the application to create and display graphical
data on the screen, printers, plotters and files. This includes
high quality and high function typographical text functions.

which allow the creation of bitmapped graphical images for the
purpose of rapid manipulation of the appearance of the screen.

2.1.2 API General Features

The Presentation Manager API provides functions for the Interface
between an application program and the user sitting in front of a PC. For
most applications, this means:

• Output Functions for the presentation of data of various forms on
the Screen in a consistent manner.

• Input Functions for the handling of user requests and responses.

Devices other than the screen are also supported for data output, such as
Printers, Plotters and Data Files. However, these devices do not partici
pate directly in the interface between the application and the user.

Presentation Manager organizes its user related functions, both output
and input, around Screen Windows. An application can create as many
windows as it desires. Each window serves a part in the dialog between
application and user. One window at a time is the center of attention for
the user, although other windows may be visible and convey useful and
important information.

19

MS OS/2 Presentation Manager Reference

The way in which an application uses the Presentation Manager API is
summarized in:

+-------------------------------------:
I I
I I

I Application I
l l Get Message
: >-------------
+----%----------%-------------%-------+ A

l l l A l
Draw l lDraw l I I

+-------+ : : : :
v v v : :

+--------------: +--------------: +-------*------: +------*------:
I I I I I I I I
I I I I I I I I

I Graphics I I Alphanumeric I I Dialog I I Input I
l Presentation l l Presentation l l Box l I Queue I
l Space l I Space I l I l l
I I I I I I I I
I I I I I I I I

+---%------%---+ +---%------%---+ +------%-------+ +-------------+
I l I I I A A
I I I I I I I
I I I I I I I

: +-----------------*-------------< : :
: : : : +--------+
+-------%---------+ : :

v v : :
+---------------: +--------*---*--:
I I I I
I I I I

l General l l Screen I
I Device I l Window I
I I I I
I I I I

+-------%-------+ +---%-----------+
I Visual l A User
l Output I I Input
: +-----+ +----:
v v :

+---------------: +----------: +-------*------:
I Printer I I I I Mouse I
I I I Screen I I I
I Plotter I I I I Keyboard I
: : +----------+ +--------------+
I File I
+---------------+

Figure 2.1 API Functions-Application Model for Input and Output

20

Application Model

2.1.2.1 Output Fundamentals

2.1.2.1.1 Output Data

The application creates output data in one of three forms:

Alphanumeric Data
which is Text and Numeric data displayed on a fixed grid of
character 'slots'. These are held in an Alphanumeric Presenta
tion Space.

Graphics Data
such as lines, circles and shapes filled with colored patterns.
These are held in a Graphics Presentation Space.

Dialog Data
which includes items which the user can Select or Type into as
part of a structured dialog between application and user. This is
held in a Menu or Dialog Box. This data is only displayed on the
screen and not on other devices such as printers since it relates
directly to the user interface.

Each type of output data has its own set of functions for creating and
modifying the data. The data is essentially independent of the place where
it is eventually drawn - it is a logical representation of what is required.
Thus, for example, a picture can be created in a Graphics Presentation
Space, first drawn onto the screen and then drawn onto paper by a printer.

An application may have many instances of each type of data, depending
upon the application's requirements. For example, an application would
have many Menus and Dialog Boxes if it needed a lot of structured input
from the user.

2.1.2.1.2 Devices

Output data is drawn onto a Device. For Dialog Data, the device is always
the Screen. For Graphics and Alphanumerics data the application must
Assocz"ate the Presentation Space with a Device. In these cases, the Device
may be the Screen, a memory Bitmap, a Printer, a Plotter or a File. The
association can be changed by the application so that the same data can
be directed to a number of places in sequence, typically following user
requests.

A device is logically represented by a Devz"ce Context, which encompasses
the Device Driver required to use the device, and State Data which includes
appropriate physical realizations of device dependent objects such as Text
Fonts.

21

MS OS/2 Presentation Manager Reference

2.1.2.1.3 Screen Windows

Output data is drawn onto the Screen through one or more Windows.
Each separate Presentation Space or Dialog Box is normally shown in its
own window. The windows are created by the application. Windows are
rectangular in shape and are fitted onto the screen in a 'Messy Desk'
arrangement. This means that the windows are treated like a series of
rectangular pieces of paper on a desk. The windows can overlap one
another. Where they overlap, only one of the windows can be seen - the
windows have an ordering where one window lies 'on top' of another.
Where they overlap, the 'topmost' is seen.

The screen displays all the currently visible windows of all the applications
that are running in the Presentation Manager screen group. An applica
tion can control the ordering of its own windows relative to one another. It
does not control the ordering of its windows relative to the windows of
other applications. This is done by the Presentation Manager system
according to user requests.

Windows are not used on devices other than the screen. This is because
their main use is in enhancing the end-user interface. The screen is special
- it is used in a highly interactive way and space for the display of impor
tant information is limited. Multiple applications can use other output
devices serially, but in a highly interactive environment it is important for
the user to be able to see and use multiple applications simultaneously.
Similarly, objects such as Menus and Dialogs are used for short periods at
a time and should not occupy screen space except when needed. Thus they
are placed in windows which can be made invisible.

As well as being a place where an application can display data on the
screen, windows have a User lnterf ace aspect as well. The user can alter
the position and/or the size of some (but not all) windows. This allows the
user to layout work on the screen in a convenient way. To achieve this
function, windows have a variety of Controls which occupy their borders
and allow the user to manipulate the window in a number of ways.

2.1.2.2 Input Fundamentals

2.1.2.2.1 User Input

The end user of the system creates input using the Mouse and Keyboard
devices. The user can create the following Input Events:

• Mouse Button up/down

• Mouse Movement

• Keyboard Key up/down

22

Application Model

Each input event is called a Message. User input is asynchronous to appli
cations - that is, the user can press keys or move the mouse to create input
independently of the speed with which an application can process the
input. All the user's input is buffered as a sequence of Messages in an Input
Queue before reaching the application. This ensures that input is not lost
and is correctly sequenced. The application reads the input messages from
the queue one at a time using the WinGet Message or WinPeek Message
functions.

There is a close relationship between user input and windows. The user
directs input to one window at a time. Each input event is tagged with the
ID of the window to which it is directed. Every window is associated with
one input queue. Thus input related to a particular window can only be
received by reading a particular queue. A single queue can receive input
for any number of windows, however.

2.1.2.2.2 Other Kinds of Input

Input other than Mouse and Keyboard messages can also appear on an
input queue. This includes:

• Ti"'!-er messages, which occur after an application-set Timer
expires.

• System messages, which inform the application of various system
related events. A typical system message is the Paint message,
which informs the application that a window (or part of a window)
needs to be repainted/redrawn. This often occurs when some or all
of the window becomes visible as a result of the user performing a
windowing operation.

• Inter-application messages, which are sent from one application to
another. These typically occur between applications which are
coope_rating in some way. Such messages have application-defined
meanmg.

2.1.3 Presentation Space, Device Contexts
and Windows

2.1.3.1 Presentation Spaces

A presentation space contains the device-independent quantities required
to perform output to an individual window or device. These include:

23

MS OS/2 Presentation Manager Reference

• A definition of the picture data itself.

For VIO output, this is the VIO buffer. For a graphics picture, this
could be a graphics segment store (though if non-retained process
ing is being used, segments are not kept by the system).

• Clipping region as defined by the application.

• Definition of any fonts required for drawing.

This is essentially a logical description of the fonts, and does not
include any physical font definitions.

• Coordinate mapping.

An indication of how world coordinates are to be mapped to the
device.

• A definition of the colors an application would like.

• The default attributes associated with the picture.

A presentation space is always required whenever the application wishes to
use any of the GPI or Advanced Vio functions to output data on an output
device or into a bitmap. All of the GPI and Advanced Vio calls require the
presentation space handle to be specified as a parameter. The presentation
space is created by the VioCreatePS or GpiCreatePS functions.

Before a presentation space can be used to draw a picture, it must be asso
ciated with a Device Context. {Ref er to following section on Device Con
texts.) After this has been done, any drawing operations issued to the
presentation space cause output to occur on the device defined by the De
vice Context.

The presentation space can subsequently be associated with a different
Device Context, and the picture redrawn on that device. Because all of the
'application intent' information is kept in the presentation space, the sys
tem is able to draw the picture as faithfully as possible on this second
device.

Thus a picture which is currently visible on the screen can be printed by
temporarily reassociating its presentation space with a Device Context
whose device is a printer, and redrawing the presentation space. In order
to continue drawing on the screen, the presentation space is now re
associated back to the screen Device Context.

(Note that the above scenario is only as simple if the entire picture
definition has been retained in the presentation space. If non-retained
graphics have been used, then the application needs to redraw the picture
again after associating with the printer Device Context. However, it still
does not need to respecify any of the logical objects, for example fonts,
which it needs, since these are still kept in the presentation space.)

24

Application Model

2.1.3.2 Device Contexts

A Device Context is the means of drawing to a particular device. It
includes a device driver, and also physical realizations, where appropriate,
of device-dependent objects which the drawing process requires.

There are four kinds of Device Context, as follows:

• Screen Device Context. This causes drawing to be performed to a
particular window on the screen.

• Memory Device Context. This is used only for drawing to a
memory bitmap.

• Metafile Device Context. This causes the picture to be transmitted
to a metafile, which may be used to store a picture in editable
form.

• Queued-device Device Context. This is used for some device other
than the screen, for example, an attached printer or plotter, where
the output is to go via the spooler.

• Directly attached-device Device Context. This is used for some
device other than the screen, for example, an attached printer or
plotter, where the output is not to go via the spooler.

• Information Device Context. This is used for some device other
than the screen, for example, an attached printer or plotter, but
where no output will occur. Its purpose is to satisfy queries.

A Device Context is required whenever the application wishes to use any of
the GPI or Advanced Vio output functions. However, the Device Context
is not normally specified on the GPI or Advanced Vio calls; instead a De
vice Context is associated with a particular presentation space, by the
application issuing a GpiAssociate or a VioAssociate call (an implicit asso
ciation is also possible in the Gpi case). The Device Context must be
specifically created by the application in all cases. The application uses the
DevOpenDC call to create a Device Context for a printer, bitmap, or
metafile. In the case of the display screen, the Device Context for a win
dow is created by a call to Win Open WindowDC after the application
creates the window with a WinCreateWindow call.

2.1.3.3 Windows

A Presentation Manager window is a rectangular area on the screen. A
window contains visual data displayed from a Presentation Space, for
example a Graphics (GPI) Presentation Space, which is associated with the
window. Alternatively, a window could display data from a dialog box.

The screen can have many windows displayed and these may overlap.

25

MS OS/2 Presentation Manager Reference

Where overlap occurs, the windows have a priority ordering. At any point
on the screen, the window with the highest priority gets displayed.

Presentation Manager windows are of two types:

Main Windows
A Main window has the property of being positioned relative to
the screen itself. It is not related to any other window. Opera
tions on one main window do not affect other main windows.

An application can have as many Main windows as it wants,
within overall implementation limits.

A main window may be considered to be a child window of the
entire screen.

Child Windows

A Child window has the property of being positioned relative to
another window, termed its Parent. The Parent window can
have multiple Children. Operations on the Parent window affect
the Child. For example, moving the Parent moves the Child and
hiding the Parent hides the Child.

A Child is constrained to fit within the client area of its Parent.
A Child window always has a higher priority than its Parent,
i.e., it cannot be hidden simply by virtue of being underneath its
parent. A Child window may have Children of its own.

An application can have as many Child windows as it wants,
within overall implementation limits.

2.1.4 Presentation Manager Functions

2.1.4.1 Output via GPI or Advanced Vio Functions

The data displayed in each window is held in a Presentation Space which
is created and manipulated by the application separately from the win
dow. The Presentation Space is different for different types of data - a GPI
presentation space for Graphics/Image data, and an Advanced Vio presen
tation space for alphanumeric data.

The application output does not go directly from the presentation space to
the screen window. It goes through a 'Device Context'. The Device Con
text encapsulates various physical characteristics of the output device.
The main utility of the Device Context is for the support of other devices
such as printers or memory bitmaps.

26

Application Model

--------------- *----------------*

Application

Window

Function

Application

Main

Draw I Presentation
--------->I space

I
I I

Associate I

---------------------1 I I I
I I
I I

<---* v v
I
I *----------------* *-----------*

dsptch
msg

I
I

I I
I I

:----*

!Window . Device I I Screen
• Context:------>:

I I
I • I I

I
I

I *-----------------* *-----------*
I getmsg I Input queue Mouse I

Function l<---------1 l<-----1 Keyboard I
--------------- *-----------------* *-----------*

Figure 2.2 Application Model for Graphics and Alphanumerics

Thus to display some data on the screen, the application:

1. creates a Window (this will implicitly create a Device Context that
is associated with the window)

2. creates a Presentation Space

3. associates the Presentation Space with the Device Context, so that
data drawn from the Presentation Space goes into the Window

4. creates the data to display by operating on the Presentation Space

5. puts the data into the Window by means of a draw operation on
the Presentation Space

Note that for GPI, items 2 and 3 can be combined in a single call, and also
in non-retained mode items 4 and 5 are combined.

2.1.4.2 Output via User Controls Functions

When an application wishes to use the User Controls functions, it does not
specifically create a presentation space. Instead, it interacts directly with a
dialog box or menu object. These objects incorporate the concepts of win
dow, presentation space, and Device Context.

In addition, the input that the application receives from the User Controls
is processed by Presentation Manager and returned to the application in
terms of the particular dialog box or menu.

27

MS OS/2 Presentation Manager Reference

Application

Dialog

I
I
I
I
I
I
I
I
I
I

: *a

Dialog

1 template 1

i (resource file) :

I
I

I--------->: : : l

Function

Application

Main

Function

I
I

dsptch
msg

I
I

----*

l Dialog :---->: Screen :
l box l i l
l (inc window) l i l
---------------- *-----------*

I
I
I
I
v

I
I

getmsg I Input queue : Mouse :

<---------: l or :
I
I I : Keyboard :
----------------- *-----------*

*a = application issued dialog box functions

Figure 2.3 Presentation Manager Application Model for Dialog Boxes

2.1.4.3 Input Functions

In Presentation Manager, input to an application is a sequence of Messages
generated by any of a number of sources. The Messages are placed on an
application Input Queue in time order and are read from the queue by the
application. All Presentation Manager applications have at least one input
queue - the Default Input Queue. In addition, the application may create
additional input queues. Every window created by the application will
have a single input queue associated with it. Most input messages are asso
ciated with one of the application's windows, and are sent to the appropri
ate queue.

In addition to an input queue, every window normally has a window pro
cessing function associated with it. It is the job of the window processing
function to process the input associated with a window. The main pro
gram of the application will read the input from the input queue by use of
the WinGetMessage function, and then route the input to the appropriate
window processing function by means of the WinDispatchMessage func
tion.

It is the responsibility of the application to be 'well-behaved'. This means
that an application must always issue a WinGetMessage to read its input
queue within a short time period (e.g., 0.1 sec) of receiving the previous
input. In order to achieve this, it must have dispatched the window pro
cessing function, and the window processing function must have completed
and returned within the specified time.

28

Application Model

If the application does not meet these requirements, various system functions
and/or other applications will be locked out until the application completes
processing and reissues its read on the input queue.

2.1.5 Sample Programs

A number of Sample Programs are supplied with Presentation Manager to
help programmers understand the Presentation Manager API and give
hints as to how the API can be used to achieve results. Each sample pro
gram tackles its own functional area:

• Use of Windows.

• Use of Menus and Dialogs.

• Advanced Vio alphanumerics for display of Text.

• Keyboard and mouse input.

• Graphics:

• Direct (non-retained) drawing of pictures

• Stored creation, drawing and editing of pictures

• Correlation

• Dragging

• Bitmap operations

• Printing

• Typographic fonts

• Use of the clipboard.

2.1.6 Application Model

This section covers various aspects of writing an application to use the
Presentation Manager facilities. Presentation Manager places a number of
requirements on the way an application is structured and the way in which
it uses certain facilities, especially Input and the Screen.

Note that special considerations apply to MS OS/2 applications which use
multiprogramming methods, i.e., multiple processes or multiple execution
threads.

29

MS OS/2 Presentation Manager Reference

2.1.6.1 Basic Application Structure

To use the Presentation Manager API, a program must call the
Win/nitialize function before any other Presentation Manager function.
This function identifies the application to Presentation Manager and ini
tializes the application's environment.

The Winlnitialize function returns an Anchor Block Handle which has the
purpose of holding the application's Presentation Manager environment
data. The Anchor Block Handle must be stored by the application for later
use - it is required by a number of Presentation Manager functions, such as
Win Create Window.

Once Winlnitialize has been called, the application can use any other
Presentation Manager function - to display data on the screen or receive
input from the user, for example. If another Presentation Manager func
tion is called before Winlnitialize, it fails and returns an error code.

When the application is about to finish, it should call the WinTerminate
function. This is the inverse function to Winlnitialize - it destroys the
application's Presentation Manager environment. After WinTerminate has
been called, the application cannot make any further Presentation
Manager function calls. If the application makes any Presentation
Manager function calls after WinTerminate has been called, the function
fails and an error code is returned.

WinTerminate deallocates and destroys any Presentation Manager
resources that were allocated to the application, such as Windows and
Presentation Spaces. However, it is recommended that such resources are
explicitly destroyed by the application before calling WinTerminate - this
allows the application to perform a tidier 'cleaning up' of the resources,
including saving data in disk files if required.

Program Fred;

Wininitialize();

30

_,
I
I
I

>- Program Initialization
I
I

-+

_,
I
I
I

Presentation Manager Initialization

>- Main body of the program.
I
I

-+

Application Model

WinTerminate();

End Program Fred;

-1
I
I
I

Presentation Manager Termination

>- Program Termination
I
I

-+

Figure 2.4 Application Structure

2.1.6.1.1 Normal and Abnormal Application Completion

An application which uses the Presentation Manager API normally allo
cates various resources to itself, such as Windows, Presentation Spaces
and Input Queues. It is recommended that the application deallocates and
destroys all these resources before it finishes.

If the application fails to deallocate any Presentation Manager resources
before finishing, for example by failing to call WinTerminate, then these
resources are still deallocated by the system. This occurs, in MS OS/2
terms, when the Exit List processing occurs. Note: This applies whether
the application finishes normally or abnormally (due to some error). The
Presentation Manager system ensures that no resources are left 'lying
about' once the application finishes.

It is better if the application explicitly destroys any resources since the
application can do things in a more coherent order - especially from the
appearance of things on the screen. The application can also save away
any data associated with the resources, if necessary.

2.1.6.2 The System Environment-The Shell
and Other Applications

In Presentation Manager, an application does not stand on its own. It is
part of a system which interfaces to the user. In particular, the User Inter
face Shell forms a major part of the interface and it is through the User
l~terface Shell that the application is started and is accessed when run
mng.

31

MS OS/2 Presentation Manager Reference

2.1.6.2.1 Starting an Application

When the user starts an application, this is done via some selection(s) from
windows in the User Interface Shell. The application is represented there
by a Long Name, which is more meaningful to the user than an eight letter
filename.

Once an application is running and it creates and displays a main window,
the window must be given a Title, so that the user can identify the appli
cation.

The User Interface Shell also has a Switch List containing the names of all
the main windows of applications in the system. This allows the user to
find an application of interest when the system is running more than one
application on the screen and some of the applications are obscured by
other applications' windows. It is the application's responsibility to put its
entry into the Switch List.

The Long Name by which an application is started can be found by calling
the WinGetStartupName function, which is part of the Shell APL It is
recommended that an application uses this name for its main window and
for its entry in the Switch List. However, where the application is working
with a particular data file, it is also recommended that the file name is
appended to the Long Name to form the Window Title and the Switch List
entry.

2.1.6.2.2 Main Window Title

The title of the application's main window is set in the
WinCreateFrame Window function when the window is created. However,
the title can be updated subsequently by sending a
WAL.SETWINDOWPARAMSmessage to the window, for example if the
application starts work on another file.

2.1.6.2.3 Switch List Entry Name

The Switch List entry is created by the WinAddSwitchEntry function. The
Name displayed in the Switch List is specified as a parameter to this func
tion, along with the Window Handle of the application's main window.
When the user selects the Switch List entry belonging to the application,
the main window is made Active and it is brought to the top of the stack
of windows.

32

Application Model

2.1.6.3 Program Structure and Windows
Window Procedures

A Screen Window is not only used as a place to put display data. Windows
have an important role in a number of aspects of the Presentation
Manager API:

• Display of multiple sets of data on the screen.

• Efficient use of scarce screen area.

• Handling of Input - both from the user and the system.

• Program structuring and partitioning.

• A seamless way of extending System functions.

2.1.6.4 Application Rules and Conventions

2.1.6.4.1 Mouse Button Activation of a Window

It is the application's job to transfer active status to one of its windows if
it gets a mouse down message. It should do this by calling WinSetFocus or
WinSetActiveWindow with the window that the mouse message was sent
to.

2.1.6.4.2 Active Wz"ndows, Dialog Boxes and User Expectations

The application should not call WinSetActive Window arbitrarily to set
the active status to one of its windows. This should only be done as the
result of an explicit user action requesting a new window to become the
active one or as the result of a message from the shell to the same effect.

Neither should an application display a dialog box or message box arbi
trarily if it needs to tell the user something and it doesn't own the active
window. Applications that need to do this should call DosBeep a few times
and then call WinFlash Window. WinFlash Window will start the frame of
the window flashing. The user will hear a beep and see the window flash
ing. The user can then choose to pay some attention to the application,
and request that it become the active one, say by clicking the mouse with
the pointer in the flashing window. The application can then call Win
Flash Window again to turn off the flashing, and bring up an appropriate
Message or Dialog.

33

MS OS/2 Presentation Manager Reference

2.1.6.4.3 Mouse Pointer Shape Within a Window

It is the application's job to set the shape of the mouse cursor when it gets
a WM_MOUSEMOVE message, using the WinSetPointer call. Child win
dows should send the WM_ CONTROLPOINTER message to their
parents, so their parents can have the choice of setting their cursor shapes.
See 'Control Manager'.

2.1.6.5 Building an MS OS/2 Presentation Manager
Application

This section describes the method of building an MS OS/2 Presentation
Manager application. This includes details specific to MS OS/2 Presenta
tion Manager applications that do not apply to other MS OS/2 apr,lica
tions. The reader is assumed proficient in building general MS OS/2 appli
cations.

The following describes the source files required for MS OS/2 Presentation
Manager, and the processes through which these are turned into an exe
cutable file. The application programmer is responsible for providing three
types of source files:

• a resource file

• one or more source code files (i.e., C or assembler files)

• an MS OS/2 module definition file

2.1.6.5.1 Resource Hies

The resource file contains descriptions of the application's user interface
data, such as dialog boxes or menus. The application programmer defines
these either through a text description, or by using a tool such as the dia
log editor which will in turn create the text description.

The Resource Compiler understands these descriptions, and performs two
functions in building an application. First, it compiles the text description
into a binary format suitable for the MS OS/2 Presentation Manager sys
tem. Second, it inserts these binary resources into the executable file. The
insertion must be done after linking the objects, i.e., the sequence is:

link
re

The resource compiler is invoked through the command:

re resoureefilename [exefilename]

34

Application Model

The resourcefilename is the MS OS/2 filename of the resource text file. If
no extension is specified, the extension is assumed to be RC. The
exefilename is optional, and is the name of executable to insert the binary
resources into. If it is not specified, then the default is the executable with
the same filename as resourcefilename, i.e.:

re sample
re sample.re
re sample.re sample.exe

would all compile the resources described in sample.re and would insert
them in sample.exe.

Compilation of the resources takes time, and the resources must be rein
serted in the executable every time the application is relinked. Thus, to
save application build time, the Resource Compiler has an option to com
pile the resources and then create an intermediate object file. This
resource object file can then in turn be specified as input to the Resource
Compiler, to complete the final step of insertion into the executable.

To create the intermediate object file, specify the "-r" option, which will
create a file whose extension is RES.

Example:

re -r sample.re
link
re sample.res sample.exe

2.1.6.5.2 Source Code

High level language files are compiled using the appropriate language com
piler; assembler files must be assembled. In both cases, intermediate object
files (.OBJ) should be created.

2.1.6.5.3 Module Definition File

All external entry points in an MS OS/2 Presentation Manager application
must be EXPORTed in the Module Definition File (.DEF). See "Building
an MS OS/2 Application" for a further description of the .DEF file.

35

MS OS/2 Presentation Manager Reference

2.1.6.5.4 Linking an MS OS/2 Presentation Manager Application

At link time, the developer must specify:

• the code object files to be linked (.OBJ's)

• the Module Definition File (.DEF)

• Libraries (.LIB's)

In order to resolve references to MS OS/2 Presentation Manager API, the
developer must specify Wincalls.lib in addition to any other necessary
libraries.

Sample Build Sequence

re -r sample => creates sample.res

Compile sample.c = creates sample.obj

Link sample.obj, sample.def, wincalls.lib => creates sample.exe

re sample.res => modifies sample.exe

Sample.exe is now ready to run under MS OS/2 Presentation Manager.

2.1. 7 Non-Reentrant Language Support

This section describes how to write a Presentation Manager application in
a language which does not support either reentrancy or recursion into the
application via callback functions. COBOL and FORTRAN are examples
of languages which do not allow these features. Note that to fully appreci
ate the content of this section, it may be necessary to read and understand
some of the detailed sections concerning the Presentation Manager APL

Some features of Presentation Manager are implemented with window pro
cedures, which are reentrant application procedures. These features of
Presentation Manager may not be available to an application written in a
language not supporting such constructs. However, most features are
available, but some must be implemented in a slightly different way.

The first step in writing a Presentation Manager application that does
not use standard window procedures is to register a window class with a
NULL window procedure address. This window class may be used
with WinCreateStdWindow to create a client window.

The key difference between a no-window-proc window and a standard win
dow is that messages may not be sent to the window. Since the frame win
dow and the frame controls are of preregistered classes, these windows
have window procedures, and thus may be sent messages.

36

Application Model

The other difference is that WinDispatchMsg may not be used to dispatch
queued messages to the window. Instead, messages must be processed
directly as it is obtained with WinGetMsg or WinPeekMsg in the main
loop. Messages for no-window-proc windows must be handled directly, but
messages for other windows (such as the frame window or the frame con
trols) must be dispatched as usual with WinDispatchMsg.

Below is a simple skeletal application showing how a no-window-proc
application might be structured. Notice that in this example, we check to
see if a queue message is destined for the no-window-proc window, and if
so, we call an application "window proc", which preserves much of the
object-oriented flavor of the system.

/*
* Register a no-window-proc class
*/

WinRegisterClass("MyClass", NULL, OL, 0, NULL)

/*
* Create a standard

hwndFrame = WinCreateStdWindow(NULL, FS_STAND.ARD, "MyClass",
"Hello World", WS_VISIBLE, NULL, 0, &hwndMyWindow);

/*
* Process messages from the queue
*/

while (WinGetMsg(hab, &qmsg, NULL, 0, 0)) {

}

/*
* If the messages is for my no-window-proc window,
* then "dispatch" it directly to the "window procedure".
* Since the "window proc" is not a true window proc, it need
* not be declared FAR PASCAL or anything like that.
In addition,
* only queued messages will be received by the procedure.

* * If not for no-window-proc window, dispatch the
message as usual.
*/

if (qmsg.hwnd == hwndMyWindow) {
MyWindowProc(qmsg.hwnd, qmsg.msg, qmsg.mpl,
qmsg.mp2);

} else {
WinDispatchMsg(&qmsg);

}

/* * Here is an example "window procedure" for the no-window-proc
* window. Again, this isn't a real window procedure, simply
* a single place in the application where all messages for the
* window go to.
*/

37

MS OS/2 Presentation Manager Reference

MyWindowProc(hwnd, msg, mpl, mp2)
HWND hwnd;
USHORT msg;
ULONG mpl;
ULONG mp2;
{

}

switch (msg) {
case WM_CHAR:

break;
case WM_COMMAND:

break;
case WM_PAINT:

break;
break;

Creating instances of any of the preregistered classes such as scroll bars or
pushbuttons is no problem. However, not all of the features of controls
may be available: any messages sent by the control can not be processed.
However, messages POSTED by controls can be processed as usual in the
main loop of the application.

Certain standard window messages are sent to the window, and thus may
not be processed by no-window-proc applications. Many of these messages
simply provide information that can be obtained by other means, and thus
are not required. Other messages that are normally sent to a window are
automatically posted in the queue instead of being sent to the window.
This is called "message post back". Some messages are always processed in
a default way, rather than being posted back.

Here are some guidelines regarding whether a message can be processed by
a no-window-proc application:

1. All posted messages can be processed in the main loop.

2. Messages that reflect a state change that can be polled when neces
sary (e.g., wrvLSIZE) are not posted back.

3. Messages that reflect state changes that cannot or are inconvenient
to obtain by other means are posted back (wrvLACTIVATE,
wrvL ACTIVATETHREAD).

4. Messages that include far pointers to structures or other transient
information must not be posted back. Only the default processing
of the message is available.

Here are some of the restrictions on a no-window-proc application:

38

1. Only standard PC/UIS window size/move tracking, sizing, re
arrangement is available.

2. No notification is made to the application when a window is .
created, destroyed, moved, sized, hidden or shown. Since generally
only the application can make these state changes, this is not

Application Model

really a problem. There are a number of ways to handle these
situations:

• After the call is made that would normally send a notification
(e.g., WinShowWindow), the application code that would
correspond to the processing of the notification message can be
called immediately after the call.

• In code that depends on a particular window state, such as the
size of a window, the current state of the window can be com
pared with a saved copy of the previous state. If .any changes
are detected at this time, the application code to process the
state change may be called.

3. Dialog box manager

Not all features of the dialog box manager and dialog controls are
available. Dialog boxes should be created with WinLoadDlg or
WinCreateDlg, then initialized with in-line code (in place of pro
cessing the WM_ INITDLG message). WinProcessDlg must then be
called to handle user input for the dialog. When WinProcessDlg
returns, the field values of the dialog box may be queried, and the
window destroyed.

Note that the restrictions apply both for modal and for modeless
dialogs. Modal dialogs are particularly problematic in that none of
the messages relating to the dialog can be 'seen' by the application
during the user's interaction with the dialog.

The dialog procedure of the WC_ DIALOG window class operates
so that if there is no application dialog procedure, the default dia
log proc handles WM_ COMMAND messages by issuing Win
DismissDlg and passing back the command value as a parameter.

In other words, the winprocless application looks like:

hwnd = WinLoadDlg(..);
code= WinProcessDlg(...);
switch (code) {
case DID_OK:

/* user pressed the OK button, do whatever's necessary */
break;

case DID_CANCEL:
/* user pressed the CANCEL button, do whatever's necessary */
break;

}
WinDestroyWindow(hwnd);

An important point to note is that the default processing of
WM_ COMMAND messages means that all pushbuttons cause
WinProcessDlg to return. If the application needs to go back into
the dialog, WinProcessDlg must be called again.

4. Controls:

Only notifications from controls that are posted may be used. For

39

MS OS/2 Presentation Manager Reference

40

5.

example, pushbuttons post W1L CO:N1MAND messages, and scroll
bars post W1L H/VSCROLL messages, which may be obtained by
calling WinGet:Msg or WinPeek:Msg. Other notifications, such as
W1LINITMENU, are sent, and are thus not available. Most of the
common features of the standard controls are available.

All controls may be sent messages as usual.

Summary of control notifications available:

Menus:

• W1L COMMAND

• To implement W1LINITMENU, a mouseclick or key
message to a menu control window can be recognized
in the main loop, and the menu initialized before
WinDispatch:Msg is called to dispatch the message to
the menu control.

Scroll bars:

• W1LHSCROLL

• WlvL VSCROLL

Pushbuttons:

• W1LCOMMAND

Edit controls:

• None .

List boxes:

• None .

Clipboard Manager

No delayed format rendering is possible with no-window-proc win
dows.

6. System color change notification

Postback is used to post message to application. Application must
ensure that all parts of the application are redrawn as necessary
when the message is eventually received and processed in the main
loop, since the message may not have been received until after all
windows have been redrawn.

7. No W1L OTHERWINDOWDESTROYED destroy registration
notification.

8. WlvLSETFOCUS, W1LACTIVATE notification messages are
posted back. No-window-proc apps may not assume synchronous
notification of these events. Also, the window handle parameters of
these messages (hwndFocusPrev, hwndActivePrev, etc.) are NULL
when posted back.

Application Model

2.1.8 Background to User Interface

The Presentation Manager specification (the user interface), is a set of
rules intended to provide end users with a consistent, easy-to-use interface
across applications.

It includes many elements of user interaction with the system, such as
menu selection and text string input, but it does not include interactions
specific to applications, such as spreadsheet editing.

Where an application has user interaction in areas covered by user inter
face rules, it must conform to the user interface.

The principal topics in the user interface are as follows:

• Key assignments

• Menu colors

• Application action bars

• Pop-down menus

• Scroll bars

• Types of selection fields

• Entry fields

• Message and Help panels

• Window sizing and moving

MS OS/2 Presentation Manager allows all applications to conform to the
user interface. For some rules, MS OS/2 Presentation Manager enforces
conformance by taking over complete parts of the operator interaction.
Thus, for these interactions, the only way the application could avoid
being in conformance would be to rewrite part of the code provided with
MS OS/2 Presentation Manager.

2.1.9 Naming Conventions

Here is a short description of the variable & argument naming conventions
used in the Presentation Manager spec. A name is made up of a tag prefix
and an optional identifier. The tag is all lower case, and the identifier
begins with an upper case letter. You can either make up your own tags
for new data types, or use some combination of the standard tags.

41

MS OS/2 Presentation Manager Reference

2.1.9.1 Constant Names

All constants are written in upper case. If applicable, constant names have
a prefix derived from the name of a function, message, or idea associated
with the constant. For example:

WM_ CREATE
WS_CLIPSIBLINGS
DT_CENTER

- Window message (WM_*)
- Window style (WS_*)
- DrawText() code (DT_*)

2.1.9.2 Type Names

Type names are written in upper case. Type names are usually longer and
more descriptive than their variable and argument prefixes; for example:

Type

WRECT
WPOINT

Pref ix

re
pt

2.1.9.3 Variable and Argument Names

A name is made up of a tag prefix and an optional identifier. The tag is all
lower case, and the identifier begins with an upper case letter. You can
either make up your own tags for new data types, or use some combination
of the standard tags.

Standard name prefixes:

42

p
lp
d
c
i
rg

f
h
ch
b
w
1

id
it
cmd

pfn
lpfn
psz
lpsz

- near pointer
- far pointer
- delta
- count

index
- array

- boolean
- handle
- character
- byte
- word
- long

- ID
- item
- command

- near function address
- far function address
- near ptr to zero terminated string
- far ptr to zero terminated string

Application Model

fs
lrgf
brgf

- 16-bit packed array of flags/bits
- 32-bit packed array of flags/bits
- 8-bit packed array of flags/bits

Standard type abbreviations:

hab - Anchor block handle

hwnd
re
pt
hmenu
t
x
y

hps

hvps

hdc
hbm
hrgn
hp tr
hdc

msg
style

- window handle
- rectangle
- point
- menu handle
- 32-bit millisecond value
- x coordinate
- y coordinate

- PS handle

- VIO PS handle

- device context handle
- bitmap handle
- region handle
- pointer handle
- DC handle

- window message ID
- 32-bit window style

Standard type identifiers

Next
Prev
First
Last
Min
Max

Examples:

- Next
- Previous
- First value (used with Last)
- Last value (== last value, not one greater)
- Minimum value (used with Max)
- Maximum value (one past last possible)

pch
rgbBuffer
dx

- Near pointer to a character (or characters)
- Array of bytes
- Delta-x value
- Max count of y coordinates
- Menu command values

cyMax
rgfMenu
lpphwnd - Far pointer to a near pointer to a window handle.

2.1.9.4 Assembly-Language Structure Fields

In assembly language, all structure field names must be unique. Since not
all structure fields have unique names, the assembly language convention
is that all field names are prepended with the structure type abbreviation
and an underscore. Here are some examples:

43

MS OS/2 Presentation Manager Reference

WRECT xLeft field: rc_xLeft
WPOINT y field: pt_y

2.1.9.5 Standard Data Types Used in This Document

Below is a list of the standard data types used in this document:

Type

CHAR

SHORT

Description

Signed 8-bit value or character

Signed 16-bit value

LONG Signed 32-bit value'

UCHAR

USHORT

ULONG

PSZ

PCH

BOOL

PFN

PQMSG

Unsigned 8-bit value

Unsigned 16-bit value

Unsigned 32-bit value

Far pointer to a zero terminated character string

Far pointer to a character string

16-bit Boolean (zero=> FALSE, non-zero=> TRUE)

Far pointer to a procedure

Far pointer to a qmsg structure

PWRECT
Far pointer to a rect structure

PWPOINT

PSWP

HWND

Far pointer to a point structure

Far pointer to a window position structure

Window handle

HPROGRAM
Program Handle

HS WITCH
Switch List Handle

HPS Presentation space handle

HENUM
Window enumeration handle (WinBegin/EndEnumWindows)

44

HMODULE
Module handle

HAB Anchor block handle

HACCEL
Accelerator table handle

HRGN Region handle

HBITMAP
Bitmap handle

HPOINTER
Pointer or icon handle

HDC Device Context handle

HHEAP Heap handle

HATOMTBL

HMQ

HSPL

HPROC

Atom table handle

Message queue handle

Spooler handle

Spool queue processor handle

Here are the standard declarations in C for these types:

typedef unsigned char UCHAR;

typedef unsigned short USHORT;

typedef short SHORT;

typedef unsigned long ULONG;

typedef char FAR *PCH;

typedef int BOOL;

typedef long LONG;

typedef int (FAR* PFN) ();

Application Model

45

MS OS/2 Presentation Manager Reference

2.1.10 Return Code Conventions

This section documents the strategy for return codes used for Presentation
Manager.

2.1.11 Error Conventions

There are six categories of procedure return values:

1. Restricted range return values

An error is indicated by returning a value outside the specified
range, or a special value withing the range. Any routines that
return an HWND, for instance, fall into this category because a
value of OL (NULL) indicates an invalid window handle and thus
an error. The "special" error value doesn't have to be 0. Note that
all procedures that return a region code fall into this category,
because they return RGN_ERROR when an error occurs.

2. Defaulted return values

Reasonable default behavior exists if an error occurs. The pro
cedures generally return 0 in the default or error case. However,
since reasonable, documented default behavior is executed in an
error condition, it is likely that applications will never explicitly
test these return values for errors.

3. Failsafe unrestricted range return values

There is no known error case, or it isn't efficient to test for one.

4. No return value.

The function doesn't return any interesting information EXCEPT
whether or not we succeeded (fSuccess Boolean).

5. Structure return value

Information is returned by passing long pointer to a structure
(which often contains input information as well). Returns fSuccess
Boolean.

6. Window message return value

The procedure return value is the same as the window message
return value for the corresponding message.

category 1: Restricted Range Return Values (returns NULL, 0, or OL if error)
==
HWND FAR PASCAL WinCreateWindow(HWND, PSZ, PSZ, ULONG, SHORT, SHORT, SHORT,

SHORT, HWND, HWND, USHORT, PVOID,
PVOID)

HWND FAR PASCAL WinWindowFromID(HWND, USHORT);
HWND FAR PASCAL WinQueryWindow(HWND, SHORT, BOOL);
HWND FAR PASCAL WinLockWindow(HWND, BOOL);

46

Application Model

HWND FAR PASCAL WinQueryActiveWindow(HWND, BOOL);
HWND FAR PASCAL WinQuerySysModalWindow(HWND, BOOL);
HWND FAR PASCAL WinGetNextWindow(HENUM);
HWND FAR PASCAL WinWindowFromPoint(HWND, PWPOINT, BOOL, BOOL);
HWND FAR PASCAL WinWindowFromDC(HDC);
HWND FAR PASCAL WinQueryCapture(HWND, BOOL);
HWND FAR PASCAL WinQueryDesktopWindow(HAB, HDC);
HWND FAR PASCAL WinQueryFocus(HWND, BOOL);
HWND FAR PASCAL WinLoadMenu(HWND, HMODULE, USHORT);
HWND FAR PASCAL WinCreateMenu(HWND, PVOID);
HWND FAR PASCAL WinLoadDlg(HWND, HWND, PFNWP, HMODULE, USHORT, PVOID);
HWND FAR PASCAL WinCreateDlg(HWND, HWND, PFNWP, PDLGT, PVOID);
HWND FAR PASCAL WinEnumDlgitem(HWND, HWND, USHORT, BOOL);
HWND FAR PASCAL WinCreateStdWindow(HWND, ULONG, PSZ, PSZ, ULONG,

HMODULE, USHORT, PHWND FAR*);
HWND FAR PASCAL WinCreateStdWindowindirect(HWND, ULONG, PSZ, PSZ, ULONG,

BYTE FAR *, BYTE FAR *, HPOINTER,
HWND FAR*);

HWND FAR PASCAL WinQueryClipbrdOwner(HAB, BOOL);
HWND FAR PASCAL WinQueryClipbrdViewer(HAB, BOOL);
HENUM FAR PASCAL WinBeginEnumWindows(HWND);
HMQ FAR PASCAL WinCreateMsgQueue(HAB, SHORT);
HACCEL FAR PASCAL WinLoadAccelTable(HAB, HMODULE, USHORT);
HACCEL FAR PASCAL WinCreateAccelTable(HAB, PACCELTABLE);
HACCEL FAR PASCAL WinQueryAccelTable(HAB, HWND);
HPOINTER FAR PASCAL WinLoadPointer(HWND, HMODULE, USHORT);
HPOINTER FAR PASCAL WinCreatePointer(HWND, HBITMAP, BOOL, SHORT, SHORT);
HPOINTER FAR PASCAL WinQuerySysPointer(HWND, SHORT, BOOL);
HPS FAR PASCAL WinBeginPaint(HWND, HPS, PWRECT);
HPS FAR PASCAL WinGetPS(HWND);
HDC FAR PASCAL WinOpenWindowDC(HWND);
PFNWP FAR PASCAL WinSubclassWindow(HWND, PFNWP);
SHORT FAR PASCAL WinQueryUpdateRegion(HWND, HRGN);
SHORT FAR PASCAL WinExcludeUpdateRegion(HPS, HWND);
SHORT FAR PASCAL WinScrollWindow(HWND, SHORT, SHORT, PWRECT, PWRECT, HRGN,

PWRECT, USHORT);
SHORT FAR PASCAL WinDrawText(HPS, SHORT, PSZ, PWRECT, ULONG, ULONG, USHORT);
USHORT FAR PASCAL WinProcessDlg(HWND);
USHORT FAR PASCAL WinDlgBox(HWND, HWND, PFNWP, HMODULE, USHORT, PVOID);
SHORT FAR PASCAL WinSubstituteStrings(HWND, PSZ, SHORT, PSZ);
ULONG FAR PASCAL WinQueryClipbrdData(HAB, USHORT);
USHORT FAR PASCAL WinEnumClipbrdFmts(HAB, USHORT);
SHORT FAR PASCAL WinLoadString(HAB, HMODULE, USHORT, SHORT, PSZ);
SHORT FAR PASCAL WinLoadMessage(HAB, HMODULE, USHORT, SHORT, PSZ);
USHORT FAR PASCAL WinStartTimer(HAB, HWND, USHORT, USHORT);
HPOINTER FAR PASCAL WinQueryPointer(HWND);

Returns MBID_ERROR
USHORT FAR PASCAL WinMessageBox(HWND, HWND, PSZ, PSZ, USHORT, USHORT);
category 2: Defaulted return values

==
Subcategory A: Default error return is TRUE
BOOL FAR PASCAL WinisRectEmpty(HAB, PWRECT);

Subcategory B: Default error return is FALSE
BOOL FAR PASCAL WinintersectRect(HAB, PWRECT, PWRECT, PWRECT);
BOOL FAR PASCAL WinUnionRect(HAB, PWRECT, PWRECT, PWRECT);
BOOL FAR PASCAL WinSubtractRect(HAB, PWRECT, PWRECT, PWRECT);

47

MS OS/2 Presentation Manager Reference

BOOL FAR PASCAL WinEqualRect(HAB, PWRECT, PWRECT);
BOOL FAR PASCAL WinPtinRect(HAB, PWRECT, PWPOINT);
BOOL FAR PASCAL WinisWindowEnabled(HWND);
BOOL FAR PASCAL WinisWindowVisible(HWND);
BOOL FAR PASCAL WinisWindow(HAB, HWND);
BOOL FAR PASCAL WinisChild(HWND, HWND);
BOOL FAR PASCAL WinisThreadActive(HAB);
BOOL FAR PASCAL WininSendMsg(HAB);
BOOL FAR PASCAL WinPeekMsg(HAB, PQMSG, HWND, USHORT, USHORT, USHORT);
BOOL FAR PASCAL WinGetMsg(HAB, PQMSG, HWND, USHORT, USHORT);
BOOL FAR PASCAL WinTimeoutSendMsg(HWND, USHORT, ULONG, ULONG, ULONG,

ULONG FAR•);
BOOL FAR PASCAL WinCallMsgFilter (HAB, PQMSG, SHORT);
BOOL FAR PASCAL WinTranslateAccel(HAB, HWND, HACCEL, PQMSG);
BOOL FAR PASCAL WinEnablePhysinput(HWND, BOOL);
BOOL FAR PASCAL WinTrackRect(HWND, HPS, PTRACKINFO);
BOOL FAR PASCAL WinProcessDlgMsg(HWND, PQMSG);
BOOL FAR PASCAL WinQueryClipbrdFmtinfo(HAB, USHORT, PUSHORT);

Subcategory C: Default error return is O or OL
SHORT FAR PASCAL WinFormatFrame(HWND, PWRECT, PSWP, SHORT, PWRECT);
SHORT FAR PASCAL WinQueryWindowText(HWND, SHORT, PSZ);
SHORT FAR PASCAL WinMultWindowFromIDs(HWND, PHWND, USHORT, USHORT);
SHORT FAR PASCAL WinQueryClassName(HWND, SHORT, PSZ);
SHORT FAR PASCAL WinQueryWindowTextLength(HWND);
SHORT FAR PASCAL WinQueryWindowLockCount(HWND);
USHORT FAR PASCAL WinCopyAccelTable(HACCEL, PACCELTABLE, USHORT);
ULONG FAR PASCAL WinQueryQueueStatus(HWND);
SHORT FAR PASCAL WinQueryKeyState(HWND, SHORT);
SHORT FAR PASCAL WinQueryPhysKeyState(HWND, SHORT);

category 3: Failsafe unrestricted return values (returns 0 or OL if error)

ULONG FAR PASCAL WinGetCurrentTime(HAB);
USHORT FAR PASCAL WinQuerySysValue(HWND, SHORT);
ULONG FAR PASCAL WinQuerySysColor(HAB, SHORT);
ULONG FAR PASCAL WinQueryMsgTime(HAB);
USHORT FAR PASCAL WinQueryWindowUShort(HWND, SHORT);
ULONG FAR PASCAL WinQueryWindowULong(HWND, SHORT);
USHORT FAR PASCAL WinQueryVersion (HAB)

category 4: No return value (fSuccess return)

USHORT FAR PASCAL WinQueryWindowProcess(HWND, PUSHORT, PUSHORT);
BOOL FAR PASCAL WinFillRect (HPS, PWRECT, COLOR);
BOOL FAR PASCAL WinRegisterClass(HAB, PSZ, PFNWP, ULONG, USHORT, HMODULE);
BOOL FAR PASCAL WinDestroyWindow(HWND);
BOOL FAR PASCAL WinEnableWindow(HWND, BOOL);
BOOL FAR PASCAL WinShowWindow(HWND, BOOL);
BOOL FAR PASCAL WinEnableWindowUpdate(HWND, BOOL);
BOOL FAR PASCAL WinSetWindowText(HWND, PSZ);
SHORT FAR PASCAL WinQueryWindowLockCount(HWND);
BOOL FAR PASCAL WinSetWindowPos(HWND, HWND, SHORT, SHORT, SHORT, SHORT,

USHORT)
BOOL FAR PASCAL WinSetMultWindowPos(HAB, PSWP, SHORT);
BOOL FAR PASCAL WinSetActiveWindow(HWND, HWND, BOOL);
BOOL FAR PASCAL WinFlashWindow(HWND, BOOL);
BOOL FAR PASCAL WinSetSysModalWindow(HWND, HWND);
BOOL FAR PASCAL WinSetWindowUShort(HWND, SHORT, USHORT);
BOOL FAR PASCAL WinSetWindowULong(HWND, SHORT, ULONG);
BOOL FAR PASCAL WinEndEnumWindows(HENUM);
BOOL FAR PASCAL WinDestroyMsgQueue(HMQ);

48

Application Model

BOOL FAR PASCAL WinWaitMsg(HAB, USHORT, USHORT);
BOOL FAR PASCAL WinPostMsg(HWND, USHORT, MPARAM, MPARAM);
BOOL FAR PASCAL WinPostQueueMsg(HMQ, USHORT, MPARAM, MPARAM);
BOOL FAR PASCAL WinSetMsginterest(HWND, USHORT, SHORT);
BOOL FAR PASCAL WinDestroyAccelTable(HACCEL);
BOOL FAR PASCAL WinSetAccelTable(HAB, HWND, HACCEL);
BOOL FAR PASCAL WinSetKeyboardStateTable(HWND, PBYTE, BOOL);
BOOL FAR PASCAL WinSetSysValue(HWND, SHORT, LONG);
BOOL FAR PASCAL WinSetSysColors(HWND, SHORT, PSHORT, PULONG);
BOOL FAR PASCAL WinEndPaint(HPS);
BOOL FAR PASCAL WinReleasePS(HPS);
BOOL FAR PASCAL WininvalidateRect(HWND, PWRECT, BOOL);
BOOL FAR PASCAL WininvalidateRegion(HWND, HRGN, BOOL);
BOOL FAR PASCAL WinValidateRect(HWND, PWRECT, BOOL);
BOOL FAR PASCAL WinValidateRegion(HWND, HRGN, BOOL);
BOOL FAR PASCAL WinUpdateWindow(HWND);
BOOL FAR PASCAL WinLockScreen(HWND, HWND);
BOOL FAR PASCAL WinLockVisRegions(HWND, BOOL);
BOOL FAR PASCAL WinDrawBitmap(HPS, HBITMAP, PWRECT, PWPOINT, ULONG,

ULONG, USHORT);
BOOL FAR PASCAL WininvertRect(HPS, PWRECT);
BOOL FAR PASCAL WinShowTrackRect(HWND, BOOL);
BOOL FAR PASCAL WinDrawBorder(HP~, PWRECT, SHORT, SHORT, ULONG,

ULONG, USHORT);
BOOL FAR PASCAL WinDismissDlg(HWND, USHORT);
BOOL FAR PASCAL WinSetDlgitemShort(HWND, USHORT, USHORT, BOOL);
BOOL FAR PASCAL WinAlarm(HWND, USHORT);
BOOL FAR PASCAL WinCreateFrameControls(HWND, ULONG, PSZ, HMODULE);
BOOL FAR PASCAL WinClearMinPosition(HWND);
BOOL FAR PASCAL WinOpenClipbrd(HAB);
BOOL FAR PASCAL WinCloseClipbrd(HAB);
BOOL FAR PASCAL WinEmptyClipbrd(HAB);
BOOL FAR PASCAL WinSetClipbrdOwner(HAB, HWND);
BOOL FAR PASCAL WinSetClipbrdData(ULONG, USHORT, USHORT);
BOOL FAR PASCAL WinSetClipbrdViewer(HAB, HWND);
BOOL FAR PASCAL WinSetHook(HAB, HMQ, SHORT, PFN, HMODULE);
BOOL FAR PASCAL WinReleaseHook(HAB, HMQ, SHORT, PFN, HMODULE);
BOOL FAR PASCAL WinStopTimer(HAB, HWND, USHORT);
BOOL FAR PASCAL WinDestroyPointer(HPOINTER);
BOOL FAR PASCAL WinShowPointer(HWND, BOOL);
HPOINTER FAR PASCAL WinCreatePointer(HWND, HBITMAP, BOOL, SHORT, SHORT);
BOOL FAR PASCAL WinDestroyPointer(HPOINTER);
BOOL FAR PASCAL WinSetPointerPos(HWND, SHORT, SHORT);
BOOL FAR PASCAL WinDrawPointer(HPS, SHORT, SHORT, HPOINTER, USHORT);
USHORT FAR PASCAL WinRegisterWindowDestroy(HWND, BOOL);
BOOL FAR PASCAL WinSetParent(HWND, HWND, BOOL);
BOOL FAR PASCAL WinSetOwner(HWND, HWND);
BOOL FAR PASCAL WinSetPointer(HWND, HPOINTER);
BOOL FAR PASCAL WinSetCapture(HWND, HWND);
BOOL FAR PASCAL WinSetFocus(HWND, HWND);
BOOL FAR PASCAL WinShowPointer(HWND, BOOL);
MRESULT FAR PASCAL WinBroadcastMsg(HAB, USHORT, MPARAM, MPARAM, BOOL);

category 5: Structure return value (fSuccess return)
=========-~-===============================
BOOL FAR PASCAL WinSetRect(HAB, PWRECT, SHORT, SHORT, SHORT, SHORT);
BOOL FAR PASCAL WinCopyRect(HAB, PWRECT, PWRECT);
BOOL FAR PASCAL WinSetRectEmpty(HAB, PWRECT);
BOOL FAR PASCAL WinOffsetRect(HAB, PWRECT, SHORT, SHORT);
BOOL FAR PASCAL WininflateRect(HAB, PWRECT, SHORT, SHORT);
BOOL FAR PASCAL WinQueryWindowRect(HWND, PWRECT);
BOOL FAR PASCAL WinQueryWindowPos(HWND, PSWP);

49

MS OS/2 Presentation Manager Reference

BOOL FAR PASCAL WinQueryClassinfo(HAB, PSZ, PCLASSINFO);
BOOL FAR PASCAL WinMapWindowPoints(HWND, HWND, PWPOINT, SHORT);
BOOL FAR PASCAL WinQueryMsgPos(HAB, PWPOINT);
BOOL FAR PASCAL WinQueryUpdateRect(HWND, PWRECT);
BOOL FAR PASCAL WinMapDlgPoints(HWND, PWPOINT, SHORT, BOOL);
BOOL FAR PASCAL WinCalcFrameRect(HWND, PWRECT, BOOL);
BOOL FAR PASCAL WinQueryPointerinfo(HPOINTER, PPOINTERINFO);
BOOL FAR PASCAL WinQueryPointerPos(HWND, PWPOINT);
BOOL FAR PASCAL WinQueryPointerinfo(HPOINTER, PPOINTERINFO);
BOOL FAR PASCAL WinMakeRect(HAB, PWRECT);
BOOL FAR PASCAL WinMakePoints(HAB, PWPOINT, SHORT);
BOOL FAR PASCAL WinGetMinPosition(HWND, PSWP, PWPOINT);
BOOL FAR PASCAL WinGetMaxPosition(HWND, PSWP);
BOOL FAR PASCAL WinGetinitialWindowPos(HWND, SWP FAR*);
BOOL FAR PASCAL WinQueryDlgitemShort(HWND, USHORT, PSHORT BOOL);

category 6: Message type specific return values
==
MRESULT FAR PASCAL WinSendMsg(HWND, USHORT, MPARAM, MPARAM);
ULONG FAR PASCAL WinDispatchMsg(HAB, PQMSG);
MRESULT FAR PASCAL WinSendDlgitemMsg(HWND, USHORT, USHORT, MPARAM, MPARAM);

All Presentation Manager messages cart be split into the following
categories and subcategories:

1. Defaulted return values. FALSE, 0, or OL is returned if an error
occurs.

2. Restricted range return values. Specific values are returned if error
occurs.

3. Notification messages sent by Presentation Manager with no return
value. Sent app in a situation where processing of message is not
necessary, and/or app cannot affect or prevent actions taken by
the sender. (e.g., WM_ DESTROY)

4. Messages that are posted, and thus have no return value (e.g.,
WJ'vLQUIT)

Category 1: Defaulted return values:
==========
fSuccess return values:

WM_SETWINOOWPARAMS
WM_QUERYWINOOWPARAMS
WM_SETICON
WM_SETICONSLOT
BM_SETDEFAULT
MM_QUERYITEM
MM_SETITEM
MM_SELECTITEM
MM_SETITEMHANDLE
MM_SETITEMTEXT
WM_FLASHWINDOW
EM_SETTEXTLIMIT
LM_SETITEMHANDLE
LM_SETITEMHEIGHT
EM_ CUT

50

EM_ COPY
EM_ CLEAR
EM_PASTE
BM_SETIIILITE
BM_SETCHECK
MM_SETITEMATTR
BM_ CLICK
MM_DELETEITEM
MM_REMOVEITEM
MM_STARTMENUMODE
MM_ENDMENUMODE
SZM_TRACKSIZE
TBM_SETSTATE
TBM_TRACKMOVE
TBM_SHOWICONTEXT
SBM_SETSCROLLBAR
SBM_SETPOS
EM_SETSEL
LM_SETTOPINDEX
LM_DELETEITEM
LM_SELECTITEM
LM_SETITEMTEXT
WM_ACTIVATEFRAME
WM_SETFRAMEPOS

fProcessed return values:

WM_INITDLG
WM_SETACCELTABLE
WM_DRAWITEM
WM_QUERYTRACKINFO
WM_QUEUESYNC
WM_ CHAR
WM_FORMATFRAME
WM_UPDATEFRAME
WM_ERASEBACKGROUND
WM_MAXIMIZE
WM_MINIMIZE
WM_MOUSEMOVE
WM_BUTTONlDOWN
WM_BUTTONlUP
WM_BUTTONlDBLCLK
WM_BUTTON2DOWN
WM_BUTTON2UP
WM_BUTTON2DBLCLK
WM_BUTTON3DOWN
WM_BUTTON3UP
WM_BUTTON3DBLCLK
WM_ACTIVATE
WM_RENDERALLFMTS

fError return value:

WM_ CREATE

fValid return value:

WM_VALIDATEACCEL

fAdjusted return value:

WM_ADJUSTWINDOWPOS

Application Model

51

MS OS/2 Presentation Manager Reference

Category 2: Restricted range return value
=======

WM_RENDERFMT
WM_QUERYMINMAXINFO
WM_SUBSTITUTESTRING
WM_QUERYACCELTABLE
WM_QUERYDLGCODE
WM_NEXTOWNEDMENU
WM_QUERYICON
WM_QUERYICONSLOT
BM_QUERYCHECKINDEX
BM_QUERYCHECK
BM_QUERYHILITE
MM_INSERTITEM
MM_QUERYSELITEMID
MM_QUERYITEMTEXT
MM_QUERYITEMTEXTLENGTH
MM_ITEMPOSITIONFROMID
MM_ITEMIDFROMPOSITION
MM_QUERYITEMATTR
MM_QUERYITEMCOUNT
WM_MEASUREITEM
TBM_QUERYSTATE
SBM_QUERYPOS
SBM_QUERYRANGE
EM_QUERYCHANGED
EM_QUERYSEL
LM_QUERYITEMCOUNT
LM_INSERTITEM
LM_QUERYSELECTION
LM_QUERYITEMTEXTLENGTH
LM_QUERYITEMTEXT
LM_QUERYITEMHANDLE
LM_SEARCHSTRING
LM_QUERYTOPINDEX
WM_CONTROLPOINTER
WM_CONTROLHEAP
WM_HITTEST
WM_NULL

Category 3: Notification messages (always return OL)
====
WM_DESTROY
WM_OTHERWINDOWDESTROYED
WM_ENABLE
WM_SHOW
WM_ MOVE
WM_SIZE
WM_CALCVALIDRECTS
WM_ACTIVATETHREAD
WM_SETFOCUS
WM_CANCELMODE
WM_SYSCOLORCHANGE
WM_PAINT
WM_ CONTROL
WM_INITMENU
WM_MENUSELECT

52

Application Model

Category 4: Posted messages (always return OL)
================
WM_ERROR
WM_ TIMER
WM_SEMl
WM_SEM2
WM_SEM3
WM_SEM4
WM_ COMMAND
WM_ SYS COMMAND
WM_HELP
WM_HSCROLL
WM_VSCROLL
WM_ QUIT
WM_DESTROYCLIPBOARD
WM_PAINTCLIPBOARD
WM_SIZECLIPBOARD
WM_HSCROLLCLIPBOARD
WM_VSCROLLCLIPBOARD
WM_DRAWCLIPBOARD

2.1.11.1 Error Severity

Errors fall into one of the following categories:

Warning

Error

The function detected a problem but took some remedial action
which enabled the function to complete successfully.

Note that a function which detects an error of "Warning" sever
ity does not return a function value corresponding to "error".
This is because in most cases, there is valid data to return.

Thus an application using a function which can generate errors
with "Warning" severity level must use WinGetLastError to
identify occasions on which such errors occur, if necessary.

The function detected a problem for which it could not take any
sensible remedial action. The system will be able to recover from
the problem, in the sense that the state of the system, with
respect to the application remains the same as at the time when
the function was requested, i.e., the system has not partially exe
cuted the function.

Severe Error
The function detected a problem from which the system cannot
reestablish its state, with respect to the application, at the time
when that function was requested, i.e., the system has partially
executed the function, and therefore necessitates the application
performing some corrective activity in order to restore the sys
tem to some known state.

Unrecoverable Error
The function detected some problem from which the system can
not reestablish its state, with respect to the application, at the

53

MS OS/2 Presentation Manager Reference

time when that call was issued and it is possible that the appli
cation cannot perform some corrective action in order to restore
the system to some known state, e.g., the application provides
the address of the anchor block which the system discovers is
apparently corrupted.

Severity levels are 16 bit unsigned integers, with the following values:

SEVERITY_NOERROR
SEVERITY_WAR.NING
SEVERITY_ERROR
SEVERITY_SEVERE
SEVERITY_UNRECOVERABLE

2.1.11.2 Error Codes

OxOOOO
Ox0004
Ox0008
OxOOOC
OxOOlO

WinGetLastError returns a 32 bit value. The format of this value is:

High uint: 16 bit severity level
Low uint: 16 bit error code

The following is a list of errors returned by the window functions. GPI
errors are listed for each call.

WINERR_INVALID_HWND
WINERR_INVALID_HMQ
WINERR_INVALID_HACCEL
WINERR_INVALID_HCURSOR
WINERR_INVALID_HENUM
WINERR_INVALID_WINDOW_ID
WINERR_RESOURCE_NOT_FOUND
WINERR_INVALID_SELECTOR
WINERR_INVALID_STRING_FARM
WINERR_INVALID_HHEAP
WINER.R_INVALID_HEAP_FOINTER
WINERR_INVALID_HEAP_SIZE_PARM
WINERR_INVALID_HEAP_SIZE
WINERR_INVALID_HEAP_SIZE_WORD
WINERR_HEAP_OUT_OF_MEMORY
WINERR_HEAP_MAX_SIZE_REACHED
WINERR_INVALID_HATOMTBL
WINERR_INVALID_ATOM
WINER.R_INVALID_ATOM_NAME
WINERR_INVALID_INTEGER_ATOM
WINERR_ATOM_NAME_NOT_FOUND
WINERR_INVALID_HWND
WINER.R_INVALID_HMQ
WINERR_INVALID_PARAMETER
WINERR_WINDOW_LOCK_UNDERFLOW
WINER.R_WINDOW_LOCK_OVERFLOW
WINERR_WINDOW_LOCKED
WINERR_WINDOW_NOT_LOCKED

54

/* Window handle is invalid */ .
/* Message Queue handle is invalid */
/* Accelerator Table handle invalid */
/* Cursor handle invalid */
/* Enumeration handle invalid */
/* Window ID invalid */
/* Resource object could not be found */
/* Address selector value invalid */

Chapter 3
User lnterf ace

3.1 User Interface Shell 57
3.1.1 General Features of the Shell
3.1.2 The Pointer 5g
3.1.3 Selection Cursor 5g
3.1.3.1 Selecting Items 60
3.1.3.2 Multiple Selection 61
3.1.3.3 Extended Selection 61

58

3.1.4 Use of Keyboard and Mouse 62
3.1.4.1 Keyboard 62
3.1.4.2 Mouse 64
3.1.5 Functions for Controlling Windows 65
3.1.5.1 Appearance of Windows 65
3.1.5.2 The Shell, Windows and Tasks 65
3.1.5.3 The Input Focus 66
3.1.5.4 Window Manipulation - the System Menu 66
3.1.6 File Cabinet-Functions for Using Directories

3.1.6.1
3.1.6.2
3.1.7
3.1.7.1
3.1.7.2
3.1.7.3
3.1.7.4
3.1.7.5
3.1.7.6

and Files 70
The File Cabinet Window
Tree Window 71

File Cabinet Functions 7 4
The File Menu 7 4
Direct Manipulation 77
Options Menu 79
Special Menu 81
The Window Menu 82
STARTUP Window 83

71

55

3.1.8 STARTUP Editor 85
3.1.8.1 The File Menu Option 86
3.1.8.2 The Exit Menu Option 87
3.1. g Task Manager 87
3.1. g.1 How to Access the Task Manager 87
3.1.g.2 Jump Ordering 8g
3.1.g.3 How to Work with a Task 8g
3.1.g.4 How to CTose a Task go
3.1.g.5 How to Terminate a Task go
3.1.10 Control Panel g2
3.1.10.1 Main Panel g3
3.1.10.2 Preferences Pull-down 93
3.1.10.3 Settings Pull-down 94
3.1.10.4 Configuration Pull-down 95
3.1.11 Cut, Copy and Paste 96
3.1.11.1 Clipboard Mechanics 96
3.1.11.2 Copy and Paste for VIO Applications 97
3.1.12 Initialization 97
3.1.12.1 The Initial View of the System g7
3.1.12.2 The Initialization File 97
3.1.13 Help Facility for the Shell 98
3.1.13.1 Invoking Help 98
3.1.13.2 The Help Window 98
3.1.13.3 Help Interactions 99
3.1.13.4 Additional Notes about Help 101
3.1.13.5 Help on Items in STARTUP 101

56

User Interface

3.1 User Interface Shell

The following sections describe in detail the Appearance and Function of
the Presentation Manager User Interface Shell.

In general, the Presentation Manager Shell aims to present on the screen
all the functions available in the system. In complete contrast to the sim
ple MS OS/2 user interface, where very few of the objects and functions of
the system are visible on the screen, the Presentation Manager Shell can
show a visual representation of all objects in the MS OS/2 system and the
functions which operate on them. The approach used is an 'Object-Action'
one, where the user selects an object to work with and then chooses an
action to perform on it. Direct manipulation techniques are used by the
Shell, such as dragging objects around, and selecting actions from pop-up
menus.

One aim of the Presentation Manager Shell is to reduce the need for the
user to read manuals. In part this is achieved by the user's ability to see
all system function on the screen. Another contribution to this aim is the
consistency of use of the input devices - Keyboard and/or Mouse. The user
needs to understand only a very few concepts about these devices to use
the system. An important part of the Shell is the on line Help facility
which it provides - again reducing the need for reference manuals.

A further important aspect of the Shell is that its user interface
exemplifies the user interface which should be used by applications. In con
junction with the Presentation Manager programming interfaces (which
the Shell uses), the Shell encourages the consistent end-user interface
which is a prime aim of the Presentation Manager product.

Consistent with these objectives, the Shell sets out to provide the follow
ing capabilities:

1. Provide structured access to the files found on the user's system.

2. Provide a simple, intuitive approach to filing system management:

• high and low level topology /index to the filing system

• basic manipulation operations (copy, rename, etc.)

• access to files stored in the system with direct manipulation
from the mouse

• visibility of filing system while running applications

3. Allow for the creation of easy-to-use systems - that is1 to provide a
way to configure a system to allow the naive users to focus and
work with a predetermined set of applications and files.

57

MS OS/2 Presentation Manager Reference

3.1.1 General Features of the Shell

The basic functions included in the Shell are:

1. The Screen Layout - Windows

2. The File Cabinet is the index, viewer, and repository of objects
related to the user's data and program storage. Contained within
the File Cabinet there are:

• Drives

• Directories

• Programs

• MS OS/2 files

• STARTUP (programs)

The file system is hierarchical - it consists of drives, which contain
a mixture of MS OS/2 files and directories. Directories in turn may
also contain such a mixture, yielding a tree of arbitrary depth. By
opening a drive or directory in the tree, the user reveals a window
showing the objects found in that drive or directory.

STARTUP, contained within the File Cabinet, allows the user to
easily manipu~ate installed applications; for example, starting a
program runnmg.

3. The Task Manager is the window that provides access to, and con
trol of, objects that exist in the working environment. In addition,
it provides general control of the user's session, defined as that
period of time that the user is interacting with the system.

A window in the workspace can easily be brought to the front
using the Task Manager, by selecting its name from the list
presented in the Task Manager window. In addition, it may also be
possible to perform certain other operations on the selected task,
such as closing it.

4. The Control Panel allows users to set their workstation
configuration and other system related parameters.

5. Printer Services provides output control for any device other than
the screen.

6. Startup Editor allows new programs to be defined, and existing pro
grams to be changed.

These functions are described in more detail in the following sections.

The initial implementation of the Shell includes direct manipulation in the
File Cabinet using the mouse.

58

User Interface

The data displayed on the screen is divided into a number of windows.
Each window encloses the data belonging to one part of the interaction
between the system and the user. The windows are rectangular and can
overlap, giving the appearance of papers on a desk top. This means that
one window obscures the part of another "underlying" window where they
overlap.

The screen can have many windows displayed at once. A particular use
made of windows is the display of menus and dialogs, where the window is
displayed for a short time while the user makes a choice or inputs some
data. The window is then removed to avoid cluttering the screen.

3.1.2 The Pointer

The Pointer is normally displayed only if there is a mouse attached to the
system. However, it is also displayed on mouse-less systems at certain
times to indicate to the user that some particular action is taking place.
For example, an hour glass is shown to indicate that the user must wait
while a lengthy operation is in process.

The pointer is a small shape which reflects mouse movements on the
screen. The pointer is displayed 'on top' of the other data on the screen
and so is always visible. The position of the pointer marks the user's
center of interest and activity on the screen. Its position is used when the
mouse buttons are pressed; for example, to select an item of data on the
screen.

The shape of the pointer can vary as it travels over the screen. There is a
system default shape - an arrow - but each window on the screen can have
its own pointer shape defined. When the pointer position moves into a
window which has its own pointer shape, the pointer changes to that
shape. Similarly, when the pointer position leaves the window, the pointer
shape changes back to the system shape or to the shape defined for
another window.

3.1.3 Selection Cursor

The Selection Cursor is used to indicate a selectable item that the user can
select. It is displayed whether or not a mouse is attached and is in addition
to the pointer. It marks the whole of a selectable item as being the center
of interest for the user. For example, it can indicate one item in a list of
menu items which the user wants to select. The Selection Cursor can be
moved by the mouse or by keystrokes from the keyboard.

59

MS OS/2 Presentation Manager Reference

3.1.3.1 Selecting Items

Many items on the screen are Selectable. This means that the user can
choose the item (Select it) and then perform an action on this item.

Selection is performed in a standard way and is not dependent on the kind
of item involved. The way of selecting an item differs between the mouse
and the keyboard. Generally, a single item is selected at a time and then
some function performed. However, in some cases, multiple items can be
selected and the same action performed on all of the items. Multiple selec
tion involves a different way of using both the mouse and the keyboard.
All these methods are described in the next sections.

3.1.3.1.1 Single Selection

Keyboard
The user can move the selection cursor around the selectable
items in the window which has the input focus. This is done
using the arrow keys, which move the Selection Cursor to the
next selectable item in the direction indicated by the arrow. To
move from one group of controls to another, the Tab key is used.

Movement of the Selection Cursor normally involves auto
selection of the items. That is, when the Selection Cursor is
moved, the item onto which the cursor moves is selected and the
previous item is deselected.

Mouse The user can move the mouse until the Pointer lies over a select
able item and then press button 1 down. The item is displayed in
reverse video. When button 1 is released, the item is selected.
Any other item(s) selected are deselected.

60

The press and release of the mouse button in this way is termed
a "click".

The following action occurs for menu bars and pop-downs. The
user holds down button 1 and moves the pointer around the
screen. When the Pointer moves away from the original item, it
stops being shown in reverse video. If the Pointer tracks across
other selectable items, whichever item is under the Pointer
highlights. This allows the user to browse around the selectable
objects. Whichever item is under the Pointer when button 1 is
released is selected. If no item is under the Pointer, no selection
occurs.

This use of the mouse is termed "press and hold".

For other than menu bars and pop-downs, the mouse button
must be pressed to change the selected item.

User Interface

3.1.3.2 Multiple Selection

In fields with multiple selection (e.g., Check boxes), the following applies:

Keyboard
The user can move around the selectable items in the window as
for single selection. The space bar is used to toggle selection of
an item, and the Enter key to submit the panel.

Mouse The user can move the mouse until the Pointer lies over a select
able item, and then click button 1. The item is displayed as
selected, other selections are unchanged. To deselect an item,
the user clicks on it again.

3.1.3.3 Extended Selection

Note that not all windows allow extended selection. Some windows restrict
the user to a single selection at a time. This is typical of pull-down menus,
for example. For those windows that do allow extended selection, the fol
lowing methods apply.

Keyboard
To extend the selection of items using the keyboard, the user
must press the space bar to change from the auto-select mode to
multiple selection mode. The user can select additional items, by
pressing the space bar again.

The mode terminates when Enter is pressed, or the dialog can
celed. While the mode is active, the selection cursor is displayed
independently of selected emphasis, even when they apply to the
same item.

To select contiguous items, shift+arrow keys may also be used.
These do not cause a mode to be entered.

Mouse The user can press the space bar to switch to multiple selection
mode and then click mouse button 1 with the pointer over an
item to select it. Shift+button 1 may also be used; this extends
selection from the selection cursor to the position clicked on.

Double clicking the mouse performs the default action on all
selected items if in extended selection mode. Otherwise, to
invoke the default action on all selected items the the user must
hold the shift key down while double clicking the mouse.

61

MS OS/2 Presentation Manager Reference

3.1.4 Use of Keyboard and Mouse

Keyboard and mouse can be mixed for selecting groups of objects. The
only exception to this is that direct manipulation of files is not available
from the keyboard.

This section describes the standardized actions and their meanings. It
gives the user a guide to using the Presentation Manager system and the
programs which run with it. This is done in terms of the keyboard keys
and mouse actions which can be used and their meanings in terms of sys
tem functions.

3.1.4.1 Keyboard

The keyboard keys are divided into several logical sections:

Alphanumeric Keys
which include the A-Z, 1-0 and special character keys. These are
typically used only for the input of data. Corresponding charac
ters appear on the screen when these keys are pressed and they
generally have no other effects.

Function Keys
which typically include Fl-F12. These are normally used to
invoke particular actions. For example, Fl has the standard
meaning of 'Help' and brings help information onto the screen.

Movement keys
include the Arrow keys (Up, Down, Left and Right cursor move
ment keys). The Home, PgUp, End, and PgDn keys also fall into
this class. These are used to cause objects to move around the
screen. The typical object that they move is the Selection Cursor
when the user is interacting with a list of selectable items.

Ancillary Keys
including the Shift, Alt, Ctrl Keys. These are used to modify the
meanings of other keys. The simplest example of their use is to
cause the alphabetic keys to produce uppercase characters when
the Shift key is held down.

Specific meanings of some of the keys are described below. This list
includes all those keys with associated functions which are essential to the
use of Presentation Manager:

Alt+Esc

62

Jump to next task/program (includes non-Presentation Manager
programs). This makes the current active application inactive
and causes the next task in the Task Manager to become active.

Ctrl+Esc

Enter

User Interface

Jump to Task Manager. Causes the Task Manager to become
the active window. The Task Manager list window is brought to
the top. This occurs even if the active application is not in the
Presentation Manager screen group, in which case the screen
group is switched back to the Presentation Manager screen
group first.

This has two meanings depending on context:

• Submit the changes.

• Take the default action on the selected item(s)

Arrow Keys
Move Selection Cursor to next selectable item. (Selects items as
it moves, with deselection of previous item(s)- for Auto-Select.)

The Up and Down Arrow keys also work in a specialized way
when used with an Action Bar and its associated Pull-down
menus. The Up and Down Arrow keys cause the selection cursor
to move between the rows of a multi-line Action Bar. When the
cursor reaches the edge of the Action Bar, the keys cause the
Pull-down menu (associated with the last indicated item) to
appear.

Shift+Arrow Keys
Extended selection - input field (Swipe and type).

Delete Deletes selected text to clipboard, or deletes single character to
right of insertion point (cursor).

Backspace
Deletes character to left of cursor

Ctrl+Arrow Keys
Moves to the beginning/ end of fields, or words.

Space bar
Toggles selection status of item for multiple selection panels and
also switches into extended selection mode.

Tab

FlO

Moves selection cursor between groups of controls

Toggle to/from (Application) menu bar (same as Alt
make/break)

Alt make/break
Toggle to/from (Application) menu bar (same as FlO)

Shift+Esc
Bring Up System Menu (or remove, if already shown).

Alt+F4 Close window (if Close is on the System Menu).

Alt+F5 Restore window

63

MS OS/2 Presentation Manager Reference

Alt+F7 Move window

Alt+F8 Size window

Alt+F9 Minimize window (toggle)

Alt+FlO
Maximize window (toggle)

3.1.4.2 Mouse

The mouse is used in two ways. It can be moved. It has buttons that can
be pressed. These actions are used in conjunction to provide a powerful
tool with which the user can interact with the system, using the screen to
provide rapid feedback.

Some actions cannot be done with the mouse alone. The shift key on the
keyboard is used to perform certain actions. The list below shows when
the keyboard shift key is used.

Button 1 Click
Select item under Pointer

Shift+Button 1 Click
Extend selection to include items between pointer and previous
cursor position.

Button 1 Double Click
Select item and perform default action. If in extended selection
mode, add item under pointer to selected items, and perform
default action on all items.

Shift+Button 1 Double Click
Add items to Selection between pointer and previous cursor posi
tion, and perform default action on all selected items.

Button 3 Click
Jump to Task Manager

Button 3 Double Click
Jump to next task

Mouse Movement

Button 2

Moves the Pointer around the screen. It is used to indicate the
point of activity or interest in the data presented on the screen.

Application defined meaning - can vary from program to pro
gram.

Press and hold button 1

64

Drag selected object around window or screen. Meaning is con
text and application dependent.

User Interface

3.1.5 Functions for Controlling Windows

3.1.5.1 Appearance of Windows

All main task windows are surrounded by emphasised borders when shown
at any size except maximized or minimized. Maximized windows may be
shown with all borders just off the screen, although conceptually still
there, but in this case they may not be moved.

Minimized windows are distinct in that they are shown in iconic form.
Hence minimized windows do not have normal borders.

All windows must have a title bar except:

• Minimized windows

• Maximized windows which need the whole screen

Minimized windows may be restored by double clicking on the icon.

The title text of the window is shown next to the icon when it has the
input focus.

A single mouse click on a minimized window shows the System Menu. A
double mouse click (or pressing Enter when the minimized window has
been selected) will open the icon up to show the program.

Non-Presentation Manager programs show up as icons in the Presentation
Manager screen group. A System Menu is shown when they are selected,
but a screen group switch only takes place when the window is opened for
use. Thus the user can browse all tasks in the system without constant
switching of screen groups. Note that if a non-Presentation Manager pro
gram is selected in the Task Manager window, then the program is shown
directly, rather than bringing the icon representing that program to the
front of the screen.

3.1.5.2 The Shell, Windows and Tasks

User input, such as a keystroke, mouse movement or a mouse button press
is either passed directly to a program, or is intercepted by the Shell. Input
to the Shell may in turn generate some other input to one or more tasks.

For example, a mouse button may be pressed when the pointer is anywhere
on the screen. This can cause one of the following to happen:

• The task deals directly with the pointing.

65

MS OS/2 Presentation Manager Reference

• The input focus is switched to the task's window and it then deals
with the pointing.

• The Shell deals with the pointing.

3.1.5.3 The Input Focus

The Input Focus is the place to which keyboard input is directed at any
time. One window at a time has the Input Focus. The window which has
the input focus is distinguished by:

• Being on top of all other windows.

• Having its window title showing selected emphasis.

Input focus can be changed either by a mouse Pointer selection in another
window or by use of the "Switch Task" key, or by using the Task
Manager.

3.1.5.4 Window Manipulation - the System Menu

The Shell provides a set of functions to allow the user to change the shape,
size and position of screen windows. These functions are contained in the
System Menu, which the user can access by selecting the System Menu icon
(small icon on left side of the title bar) with the mouse, or pressing
Shift+Esc. The System Menu contains the following functions:

• Restore

• Move

• Size

• Minimize

• Maximize

• Task Manager

• (optionally) Close

Applications can add Close to the System Menu if they wish to support
double click on the System Menu as a fast path to Close an application.
They must still support Exit on the application menu in this case. Note:
for default VIO applications the System Menu will contain Close, and will
also contain Mark, Copy, and Paste.

66

User Interface

3.1.5.4.1 Z-ordering

In considering some of these functions, the concept of Z-ordering may be
useful. It is notionally the third dimension of the screen and accounts for
the order in which windows overlap each other. The topmost window visi
ble is the highest in the Z-order; the bottommost is the lowest. In terms of
pieces of paper stacked on top of each other the Z-order is the depth and
order of the pile. The Z-ordering also controls the jump ordering of appli
cations.

3.1.5.4.2 Window Maximize

An application may define a size to appear when the user selects maximize.
This size cannot be larger than the screen size, although neither window
title nor borders need be shown if the application needs the maximum
screen area.

To achieve this the user either clicks at the Maximize icon (with button 1)
on the window title bar, or selects Maximize on the System Menu for that
window. While the window is maximized, the Maximize icon on the title
bar is replaced with the Restore icon. Maximized windows may be
returned to their original size and screen position with Restore, or sized in
the normal way. (If the window is resized, the Maximize icon is returned to
the title bar and the Maximize command is reenabled.

The maximize key (Alt+FlO) toggles. While the application is maximized
it performs Restore.

Applications can be run with a smaller screen area, but may be maximized
at the user's request. This smaller size might typically not cover the icon
"parking lot".

3.1.5.4.3 Window Minimize

In order to occupy as little screen area as possible, applications may be
minimized. This will shrink the application to a predefined (iconic) bit
map.

67

MS OS/2 Presentation Manager Reference

To achieve this the user either clicks on the Minimize icon (with button 1)
on the window title bar, or selects Minimize on the System Menu for that
window. When the window is minimized, its appearance is defined by the
application, but is normally a small bit-map giving a visual clue to the
program function. When a window is minimized it is moved to the bottom
of the z-ordering, and the next non-minimized window is made active.
Minimized windows may be returned to their original size with Restore, or
double clicking on the bit-map icon.

The minimize key (Alt+F9) toggles. It performs Restore while the applica
tion is minimized.

There are two possibilities for where a minimized window goes:

• to the place it was when last minimized. Minimized windows can be
moved around the screen like other windows.

• to the icon "parking lot" if it was never minimized.

In either case, minimized windows are never overlapped. They are posi
tioned on a notional grid on the screen, and if one position is occupied, the
next position to the right, (then in row above) is used.

The position of minimized windows is not related to their position when
restored.

3.1.5 . ..f. • ..f. The Parking Lot

The icon "parking lot" is this notional grid which overlays the screen.
Each grid segment is large enough to contain exactly one icon; the grid
starts at the bottom left of the screen, and goes from right to left, top to
bottom. All icons will be aligned to this grid pattern.

3.1.5 . ..{..5 Change Window Size

This is achieved from the mouse by pointing at the window border and
selecting one of the four sides or one of the four corners.

• If a side is selected, that side may be moved towards or away from
the opposite side. The opposite side is unchanged. The window
becomes larger or smaller in one dimension only'.

• If a corner is selected, the two adjacent sides may be adjusted to
make the window larger or smaller in two dimensions at once.

In either case, the extent of the new window borders is indicated with an
outline box which moves with the mouse. When the mouse button is
released, the window occupies the position and extent indicated by the
box.

68

User Interface

From the keyboard, sizing is from the System Menu. Changing the size is
then achieved by use of the arrow keys to move the corner or edge in the
indicated direction.

The first up/down left/right arrow kit hit will identify the horizontal
and/or vertical edge to be moved.

This can result in the window borders being moved just off the screen and
thus becoming not visible.

3.1.5.,f..6 W£ndow Move

To move a window with the mouse, the "press-and-hold" technique is
used. The user points anywhere in the window title bar and then drags an
outline box to where the window is to be positioned.

The window is redrawn when the mouse button is released.

Windows may be moved off of the screen to the extent that their title bar
remains visible.

From the keyboard, the user selects "move" from the System Menu, and
then moves the outline box using the cursor keys. The same restrictions on
window position apply.

3.1.5.,f.. 7 Restore

Restore returns the window to its last (unmaximized, unminimized) posi
tion and size.

Size or move operations between maximize or minimize do not affect this
position. Thus the window can easily be returned to its "normal" position
using Restore.

The user either clicks on the Restore icon on the window title bar, or
selects Restore on the System Menu for that window. For mouse users
double click on the title bar is a fast path for Restore.

The position of a window is only "remembered" when it is maximized or
minimized from some intermediate position.

69

MS OS/2 Presentation Manager Reference

3.1.6 File Cabinet-Functions for Using Directories
and Files

The File Cabinet is a major feature of the system for most users. It is a
program which lets users display and manipulate their file system, includ
ing any network connections. The file system is represented visually.

The File Cabinet provides a range of functions which can be performed on
these items, such as opening a file (which creates an instance of the
appropriate application for manipulating that file), moving a file into a
directory, opening a program (which creates an instance of that program,
without specifying a particular file to be worked on), copying a file, etc.

The File Cabinet and its associated windows are accessible to the user
while running other applications. This allows the user to locate and
browse other files at any time.

Working with files and directories in the File Cabinet would normally be
through direct manipulation with the mouse. For example, to move a file
from one directory to another, the user selects the file and drags it to the
open destination directory.

Double clicking on an object, or selecting it and hitting Enter will open
that object, which gives an object-oriented appearance to the system.

To unify the concepts of a file manager and application manager (for
starting programs), a special "Startup" window has been created which
contains directories and programs. Programs may be given long, descrip
tive names, yet are viewed and manipulated in the same way as the rest of
the user's file system. Information about the user's file system is presented
to the user in the form of three types of windows:

• The File Cabinet Window

• The Tree

• Directory Windows

Only one menu bar is available for the entire File Cabinet. This contains
two sorts of functions:

• functions which operate globally on the entire file system

• functions which operate on the contents of the current directory

All directory windows are child windows of the File Cabinet window. In
the File Cabinet, child windows are created slightly smaller than the win
dow from which they came, and are slightly offset to the right from their
parent. Thus if the Tree is sized to be half the area of the File Cabinet
window, all subsequent directory windows will be slightly smaller than
that size. If the File Cabinet window is minimized, all child windows

70

User Interface

temporarily disappear. If it is maximized, windows already created are not
affected. If it is reduced in size, all child windows are clipped to the size of
the File Cabinet.

Child windows may be sized, moved, or maximized (but not minimized).

The title bar for these windows includes the name of the Drive/Directory
(truncated if necessary).

One or more objects may be selected in the list using the normal selection
mechanisms.

The differences between a Directory and Drive are relatively few, with
some limitations on which actions the user may take on a Drive. For exam
ple, you cannot move a drive into a directory. Similarly, drives may appear
based on an explicit action taken by the user to expand the file system -
such as by connecting to a remote drive on a network. The things that can
be done to the contents of Drives and Directories are the same, however,
so the commands available are identical.

3.1.6.1 The File Cabinet Window

This window contains no data, but represents the maximum screen size to
be taken up by filing system windows. It has an action bar which provides
options for the topmost child window.

3.1.6.2 Tree Window

This window consists of a main area with a representation of the drives
and directories in the system. It has no menu bar, and its size is limited by
the bounds of the main File Cabinet window.

On the left of the main area, each drive in the system is represented by an
icon in the shape of drive or disk, accompanied by the disk volume name.

71

MS OS/2 Presentation Manager Reference

+-+--+-+-+
:s: FILING SYSTEM :N:x:
>-+--+-+-<
l File Options Special Window : Fl=Helpi
>--<

+-+---+-+
IS I Tree :x:
>-+---+-<

Startup +- D Apps Dir -+
-A Mikes-------%- D Bin
-C Netservr +- D MS OS/2

I
I
I
I
I
I

: +
: >
: >
+- -%-

D Accounts
D Charts
D Finance
D Mail

>- D Reports
>- DWP.Dir
+- D XYZ

>--+--+--+--<
: <-: : :->:
+--+--+--+--!

+--!
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.1 The File Cabinet with Tree

The drives are arranged in a single column in alphabetical order of drive
identifier (Startup at the top). If there are too many drives to appear
simultaneously, scroll buttons appear at the top and bottom of the visible
portion of the column of drive icons. These allow other drives to be
scrolled into view by the user.

To the right of the drive icons is a column of directory names. These are
visually grouped and linked back to one of the drive icons by a series of
lines or braces. The column of directories represents all the first-level
directories belonging to the root directory of the disk represented by the
selected drive.

If there are too many directories to fit in the window, scroll buttons
appear at the top and bottom of the visible portion of the column. These
allow other directories to be scrolled into view by the user.

72

User Interface

Deeper levels of the directory tree may be displayed in the Tree window by
selecting the containing directory or drive with either the mouse or key
board. Mouse selection is done by clicking on the appropriate drive or
directory. Keyboard selection is done by moving the selection with the
arrow keys. The user selects the drive or directory to be displayed with up
and down keys. Hitting the right arrow key causes the next level of the
tree to be revealed, and the first directory in that level to be selected. Hit
ting the left arrow key causes the current level of the tree to be hidden.
Pressing alphabetic keys causes the selection to jump to the next directory
that matches the key in that level; the next level of directory is displayed,
as if right arrow had been hit.

The up/down arrows always remove any tree displayed at a deeper level.

Pg Up and PgDn scroll the current directory level by a screenful. Home
moves to the top of the current directory level, and End moves to the bot
tom.

As with the first-level directories, subsequent levels of the tree are linked
visually with their parent directory or drive by lines or braces. Each
column will have its own scroll buttons as required.

The directories may be nested so deeply that all the columns of directories
cannot be shown in the window simultaneously. In this case, a horizontal
scroll bar appears at the bottom of the directories window. This can be
used to browse the whole of the directory structure.

No files are shown in the Tree window. The files and directories belonging
to a directory can be displayed in a directory window.

73

MS OS/2 Presentation Manager Reference

3.1.7 File Cabinet Functions

3.1.7.1 The File Menu

+-+--+-+-+
:s: FILING SYSTEM :N:x:
>-+--+-+-<
: File Options Special Window : Fl=Help:
>+---------------------+---<

Open
Print
Move
Copy .. .
Delete .. .
Rename .. .
Set properties .. .
Create Directory .. .
Select All

------------------------------------+-+
Tree : i
------------------------------------+-<

'+----

I
I
I
I
I

- Startup +- D Apps Dir
- A:Mikes-----%- D Bin
- C:Sservr +- D MS OS/2

---+
I
I
I
I
I
I

: +
: >
: >
+- -%-

D Accounts
D Charts.Dir
D Finance
D Mail

>- D Reports
>- DWP.Dir
+- D XYZ I

I
I
I
I

>--+--+--+--<
: <-I I I-> I
+--+--+--+--!

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.2 The File Pull-down Menu

The File menu includes:

Open

74

opens a new window containing the selected drive or directory.
The new window is displayed slightly offset from the Tree win
dow, and on top of (first in the Z-ordering) all other windows.
Windows showing directory contents are created based on the
size of the window from which they were created. If a window
containing the drive or directory already exists, a new window is
not created. Instead, the existing one is brought to the top.

Print

Move

User Interface

The Open command is the default action for the File Cabinet
window, hence double clicking an item, or hitting enter with an
item selected will cause that item to be Opened.

• If the selected object is a directory, the new window is simply
another directory window, containing the contents of the
selected directory.

• If the object is a program, the new window contains another
instance of the selected program.

• If the object is a file, and there is a default action assigned to
the file then the default action is taken. (For example, .SCR
might be input to a script program, when opening a .SCR file
would run the script program with the particular .SCR file as
an input parameter.)

If there are multiple default actions assigned to a file type
(extension), an intermediate window appears with a list of
the actions. The user is allowed to select one of the actions,
the window disappears, and a new window belonging to the
selected action appears.

Windows other than directories are not confined to the File
Cabinet, but have a size and position determined by information
stored with the program being invoked. If multiple items are
selected when Open is requested, the shell assumes that the
intent of the user is to use all of the items simultaneously. Thus
all the items are opened. Any dialog boxes are shown sequen
tially.

causes the selected objects to be printed. If there is no program
assigned to the object, then the object is printed as a text file. If
there is a program assigned to the file extension, the program is
invoked. Programs may provide a special invocation option for
printing.

This command is provided for users who need to move files
across drives and directories. It brings u_e a dialog box which
contains two text entry fields. The first {From:) contains the
names of the objects to be moved. When the dialog box first
appears, this field is filled with all selected directories and files in
the File Cabinet window. The user can then type additional
names. Multiple filenames are allowed in the From: field, and
standard wildcard syntax is valid. The second field (To:) con
tains the name of the destination. It is initially blank.

The user completes the move by typing in the name of the target
file or directory and hitting Enter. Leaving the field blank
implies the current directory (see Create Directory for a descrip
tion of the current directory).

If the user types into the From field, the typed text is added to
the pre-filled text. The pre-filled text can be deleted.

75

MS OS/2 Presentation Manager Reference

Copy

Delete

It will be verified that there will be enough disk space before
attempting the actual move or copy, so as not to risk running
out midway through the operation.

This command is identical to the Move command, except that it
makes a second copy of the data.

Copy is also available by direct manipulation in a similar way to
Move, but holding down the Alt key as well as the appropriate
Move key(s).

brings up a dialog box with a single text edit item, containing all
currently selected items. The user can then type additional
items. When the user confirms the delete, all items described in
the text entry field are erased. Confirmation is by pressing
Enter, or clicking on Delete.

Certain erase actions (drive contents, for example) cause further
dialogs to confirm the operation, or ask for more details.

Rename This is used to change the name of a file, directory or file. Only a
single file can be renamed.

Set Properties
allows the user to set the attributes of an object. The MS OS/2
file s;ystem attributes that may be changed are the read-only
and/or archive bits, or the time and date information. Direc
tories cannot be changed.

Create directory

Select all

76

This allows new directories to be created. The command brings
up a dialog box to prompt the user for the name.

The directory is created in the current directory, which is the
topmost window in the File Cabinet.

1. If the topmost window is the Tree, and only a drive is
selected, it is the root directory of that drive. If it is showing
some other directory selected, the current directory is the
one shown selected.

2. If the topmost window in the File Cabinet is some other
directory, then this directory represents the current direc
tory in MS OS/2 terms.

Selects all objects in the current window. It is not valid in the
Tree window.

User Interface

3.1.7 .2 Direct Manipulation

Using the mouse, a completely different method of moving files and direc
tories is available. The user selects an object to be moved, holds down
mouse button 1 over the object, and drags it to a previously opened direc
tory window. When the button is released, the object is moved to this new
directory.

Both the source object and part of the target directory must be visible.
Objects may be dropped anywhere within the target directory with the
same effect.

Both source and target directories are redrawn after the object has been
moved. The details of the move are as for the keyboard version, with the
same error situations, but with an additional error when the target is not
a valid directory window.

Multiple objects may be moved by extending the selection in the usual
way, and then holding shift while dragging. Alternatively, if the space bar
has been used to switch to extended select mode, then multiple objects will
be dragged without the use of Shift.

Pointer appearance during the move is that of a file, or directory, or a
group of objects for extended selection.

3.1. 7.2.1 Summary of Mouse Use in Direct Manipulation

The following section details the rules for keyboard and mouse interaction
for direct manipulation in the File Cabinet.

The default direct manipulation operation in Presentation Manager is a
move on a single object. In order to perform a non-standard move opera
tion or standard/non-standard copy operation some interaction is required
with one or more of the following keys.

ALT key

CTL key

Shift key

This changes the operation from a move to a copy.

This is used to add an object to a non-contiguous set for a group
copy /move operation.

This is used to add an object to a contiguous set for a group
copy /move operation.

Below is a glossary of terms used in the following set of rules:

77

MS OS/2 Presentation Ma.na.ger Reference

XS

Drag

Extended Selection Mode. This mode is entered by hitting the
<SPACEBAR>.
Move mouse with button depressed for more than a predefined
distance.

place=inline frame=none width=page
+-----------------------+----------------------+------------------------\le
I Shift + Click I Ctl + Click I Click I
>-----------------------%----------------------%------------------------<

Causes all objects
from prior location
to current location
inclusively to be
selected.

Causes this object
to be added to the
set of selected
objects (removed if
it was already
selected) .

Causes object to be I
selected I
mode it adds to the I
selection, otherwise I
anything else that l
was selected becomes l
deselected. I

I
I

+-----------------------+----------------------+------------------------!

Figure 3.3 Key /Mouse Click Usages for Selection and Manipulation

place=inline frame=none width=page
+---\le
I DRAG l
>-------------------+-------------------+-------------------+-----------<
I Shift l ALT I CTL l Causes l
>-----------+-------+---+-----------+---+-------+-----------< object to l

Selects l ALT+Shift I Causes ob-I ALT+ CTL l Adds be select-I
range of >-----------< ject to be>-----------< object to ed and in-I
objects I Selects selected Adds set of vokes the I
from priori range of and invok- object to selected move I
cursor I objects es copy. set of objects in XS model
location I from prior If in XS selected and it adds l
to this l cursor mode it objects invokes object to 1

object andl location adds and move set and
invokes l to this object to invokes invokes
group I object and 1 set and group group move
move l invokes I invokes copy

l group l group
I copy I copy

+-----------+-----------+-----------+-----------+-----------+-----------

Figure 3.4 Key /Mouse Drag Usages for Selection and Manipulation

78

User Interface

3.1.7.3 Options Menu

+-+--+-+-+
:s: filing System iNiXi
>-+--+-+-<
i file Options Special Window ifl=Help:
>------------+------------------+------------------------------------<

i Display Options
+-+----:/Name only :---------------------------+-\le
:s: >------------------< :x:
>-+----:file options ... :---------------------------+-<

>------------------<
- Stai/Show Information iir ---\le
- A: +------------------!
- C:Sservr +- D MS OS/2

I
I
I
I
I
I

: +-
: >
: >
+--%-

>
>-

D Accounts
D Charts.Dir
D finance
D Mail
D Reports
DWP.Dir

+- D XYZ

>--+--+--+--<
:<-: : :->:
+--+--+--+--!

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.5 The Filing System with Options Pull-down

The options menu applies to the active child window, and (optionally) to
windows subsequently created in the filing system.

Windows previously created are not affected by changing these options.

Display Options ...
The Display Options dialog includes:

1. Include: which directories and files to display - the user can
set this according to all valid attributes:

• Name or extension - via wildcard filters

• Type - directories, programs or files (check boxes).

• File attributes - normal or special check boxes. Special
shows a panel with hidden, read/only, system, archive
check boxes. These selections show only objects with all
the chosen bits set (and which qualify by the other

79

MS OS/2 Presentation Manager Reference

selection criteria).

The objects displayed are the logical intersection of each of
the groups selected. The defaults are *·*, all directories, files
and programs, and normal.

2. Display order: what information the objects should be sorted
on:

• Name

• Extension

• Type (directory, program, or file)

• Size

• Date/time

3. What to display: Name, date, size and attributes.

This allows the user to set the way that the contents of
directories and drives are displayed.

Name only
An extra choice is provided on the first menu as a fast path to
the display of as many objects as possible. When Name Only is
selected, the other options for what to display are ignored, and
only the names are shown. The choice toggles.

The name is always displayed. When "Name-only" is selected,
objects are displayed in multiple columns, with a horizontal
scroll bar appearing if there is insufficient window space to
display all objects. Otherwise, the objects are displayed in a sin
gle column, possibly with a vertical scroll bar.

File options
toggles whether certain confirmation messages are displayed.

• Verify on Copy - compare the bytes in files after a copy

• Verify on Delete - show the dialog box on all delete com
mands

• Replace existing file - give warning prompt

• Sub-Tree Delete - delete a directory (and everything in it)
even if the directory is not empty

Show Information

80

toggles whether information about the drive or directory is
dis12layed. The state is indicated by the presence of a checkmark
(on) or its absence (off). If off, no information is displayed. If on,
the following is displayed:

• Space used by files shown (files that have passed filter), out
of total on disk.

User Interface

• Number of objects visible in window OF total number of
objects (files and directories).

3.1. 7 .4 Special Menu

+-+--+-+-+
ISi FILING SYSTEM iNiXi
>-+--+-+-<
l File Options Special Window : Fl=Helpl
>---------------+------------------+---------------------------------<

l Format disk
l Refresh ,

+-+-------+------------------!------------------------+-+
JS l Tree :x:
>-+---+-<

- Startup +- D Apps Dir
- C Mikes-----%- D Bin
- A Nservr +- D MS OS/2

---+
I
I
I
I
I
I

: +- D Accounts
l >- D Charts.Dir
l >- D Finance
+--%- D Mail

>- D Reports
>- D WP.Dir
+- D XYZ

>--+--+--+--<
:<-: : :->:
+--+--+--+--!

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.6 The Filing System with Special Menu

81

MS OS/2 Presentation Manager Reference

The Special menu includes commands which operate globally on the file
system or disks.

Format This allows the user to format new data disks. The command
brings up a dialog box with a text field which requests the drive
letter (with a logical default shown as selected, the drive name,
and checkboxes which allow the user to select format options
such as:

• format single/double density.

Format prompts the user for a volume label and other options in
a dialog box.

Refresh Ensures that the File Cabinet windows are all up to date.

3.1.7.5 The Window Menu

+-+--+-+-+
iSi FILING SYSTEM INIXI
>-+--+-+-<
i File Options Special Window Fl=Helpi
>---------------------------+------------------+---------------------<

l 1 Tree
l 2 Startup
l 3 C:Bi

+-+-------------------: 4 N:\ :------------+-+
:s: >------------------< :x:
>-+-------------------: Close All Dirs. :------------+-<
I I I
I I I

l - Startup +- DA+------------------!
l - A: Mikes----%- D Bin i
l - C: KGT +- D MS OS/2 i
l - N: Net i

+-+------------------------+-+ l +- D Accounts
l S: Startup :x l l >- D Charts .Dir
>-+------------------------+-< +-+---------------------- -+-+
i Word processor l JSi Accounts JXi
: Spreadsheet l >-+------------------------+-<
: MS OS/2 utilities... : Norther division
l BASIC l 1 Overdue
l Assistant series... :----: Previous month
+----------------------------! : Cleared

+--+--+------------------------: Pending ,
+----------------------------!

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.7 The File Cabinet with Window Pull-down

82

User Interface

F6 The next directory in the currently displayed directories is
brought to the top of the child windows and given the input
focus when F6 is hit.

Directories are removed by closing them using their System
Menu/icon.

1 Tree The Tree window is given the input focus and brought to the top
of the child windows in the File Cabinet

Directory list 2 .. n
A list showing the child windows in the File Cabinet is shown in
the pull-down window. If there are more than 8 directories, an
option to list all the directories replaces the ninth.

The name shown is the full name of the directory displayed. For
the root directory it is the drive identifier and backslash.

The names of Startup program directories are truncated to 40
characters.

Close All Directories
This commands closes all existing directory and drive windows,
providing an easy way for the user to clean up the File Cabinet
windows.

3.1.7.6 STARTUP Window

The Start-A-Program functionality of MS OS/2 is represented by a special
STARTUP icon which appears in the Tree window along with the other
Drives. Its functions and operation are essentially the same as any other
directory window, with some exceptions:

• Directories are represented by program Groups.

• Activities must be added to STARTUP using a special application
called the "STARTUP-Editor". This includes the ability to install
an activity into the list, or modify an installed entry. This file is
available in the File Cabinet by selecting the "STARTUP Editor"
from the list of programs in STARTUP. Applications may also add
themselves to STARTUP during installation.

• Entries in the STARTUP list can only be moved within STARTUP.

83

MS OS/2 Presentation Manager Reference

+-+--+-+-+
lSl Filing System INlXl
>-+--+-+-<
I File Options Special Window Fl=Helpl
>--<

+-+--+-<
ISi STARTUP IXI
>-+--+-<
I -P- Clipboard

{ I -P- Control Panel
Mii -P- Print Services

I -D- My editors
1 { I -D- Utilities Directory
I NETl I

I +--<
>--+--+--<
I<- I I 1-> I
+-----+---+--!
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.8 The File Cabinet with STARTUP Panel

3.1. 7.6.1 STARTUP Functions

The File menu functions are:

Open

Copy

Move

Causes selected STARTUP program to be run, or a group to be
opened.

Works only within STARTUP, but is otherwise similar to nor
mal Copy. Only one program or group may be copied at a time
using this method. Names may be fully qualified using "\".

Direct manipulation works with the STARTUP programs and
groups, and does allow multiple items to be moved and copied.

Used only to move between groups in STARTUP. Similar to
Copy.

Rename Used to change the long name of a program.

Delete Deletes the reference to an application from the directory. A
warning is given if this is the last reference to an executable file.

Create directory
Creates a new group of applications in STARTUP.

Select all
Selects all activities in a group.

84

User Interface

In the other pull-downs, File Options is available, plus all the Window
options. All other options in pull-downs are grayed.

In the Tree, application names are displayed as the full length of the text
(no trailing or leading blanks). The column widths are adjusted to support
the longest entry in that group.

In windows showing the contents of program groups, the names of pro
grams and groups are displayed in a single column. No other information
is shown, apart from the directory /program icon.

3.1.8 STARTUP Editor

Most programs in Presentation Manager are added to the system using the
standard installation process. The STARTUP Editor is only needed for
those programs not installed in this way.

The STARTUP Editor is available from the File Cabinet, allows users to
add or modify an entry in STARTUP. The STARTUP Editor consists of a
main window which includes entry fields that the user enters the relevant
program invocation data, including:

• Program type (Radio button choice)

• Icon file name

• Executable file name and directory

• Working Directory at invocation

• Parameters. This will have a syntax which allows prompting.

• Two-line description of the application (also provided during
installation)

• Environment variables

• Program name for STARTUP

• Group in STARTUP

The last two items are prompted for by Save As ...

The information supplied is stored in the PRESSERV.INI file.

All of the information which can be edited here is given initial values
automatically during installation.

85

MS OS/2 Presentation Manager Reference

+-+--+-+-+
: S : -T- STARTUP Edi tor : N : X:
+-+--+-+-<
: File Exit Fl=Help:
+--<

Path/Program name ... -
Icon file name -
Parameters -
Working Directory ... -
Environment -
Description for Help-

+-------------Program Type--------------+
: (.) OS/2 PM () VIO :
: () Protected Mode () Real Mode :
+---------------------------------------!

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.9 Startup Editor - Main Panel

3.1.8.1 The File Menu Option

+-+--+-+-+
: S l -T- STARTUP Editor IN IX:
+-+--+-+-<
: File Exit Fl=Help:
+------------+---<
I New I
I Open . . . I ame -
I Save I ... · · · · · ·
I Save As. . . :
+------------! -
I
I
I
I
I
I
I
I
I
I
I
I

+-------------Program Type--------------+
I (.) OS/2 PM () VIO I
: () Protected Mode () Real Mode I
+---------------------------------------!

+--
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.10 Startup Editor - File Pull-down

86

User Interface

The File pulldown contains:

New This command clears the any entries in the STARTUP Editor
window and resets any def a ult fields.

Open This command is used to load a previously defined STARTUP
entry. A dialog is displayed which allows the user to selected the
entry from a list box.

Save This command is used to save a STARTUP entry. If a name has
not been supplied a dialog is displayed which prompts for a
name, otherwise the information is simply saved.

The group name is prompted for in a similar way.

Save As This command is used to save a STARTUP entry with a given
name. A dialog is displayed with an entry field which prompts
for the name. If the program already has a name, it is proposed
as the default.

The group name is prompted for in a similar way.

3.1.8.2 The Exit Menu Option

This immediately quits the STARTUP Editor. If any changes have been
made to the entry's information since the last save, a message will be
displayed informing the user that there are unsaved changes and request
ing whether to save changes. If the user responds Yes (the default), then
the Save As dialog box is displayed, if not, then the STARTUP Editor
ends.

3.1.9 Task Manager

Presentation Manager is capable of running many tasks at the same time.
These programs can all potentially be using the screen at the same time.
The user needs to be able to identify which tasks are running and to con
trol which tasks are visible on the screen at a given time. The user also
needs to close the system down at the end of work.

3.1.9.1 How to Access the Task Manager

The Task Manager is a window, which appears in the Presentation
Manager screen group, that contains a list of the user's current activities.
The user brings the Task Manager window into view by hitting button 3
on the mouse, hitting Ctrl+Esc on the keyboard, or by selecting the Task
Manager command from the System Menu of the current application. If
the Task Manager is called up while the user is in a non-Presentation
Manager screen group, an implicit screen group switch is performed, and
the user sees the Task Manager in an otherwise empty workspace.

87

MS OS/2 Presentation Manager Reference

The Task Manager normally contains a representation of every indepen
dent task running in the system. The representation is in text form, where
the text is provided by the object, and typically matches the text
displayed in the caption of the object (file name + data name).

The default Task Manager window size is large enough to display approxi
mately 10 objects. A vertical scroll bar is displayed and can be used to
move the list of objects, allowing every object in the Task Manager to be
viewed, even if not all objects fit within the window. The object last
worked on is selected and the list is scrolled to show the selected item at
the middle of the window (unless the first or last item is visible in the win
dow).

The appearance of the Task Manager window with several tasks running
might be as follows:

+-+-------------------------------------+
iSi TASK MANAGER i
+-+-------------------------------------<
i Control Shutdown Fl=Helpi
+-----------------------------------+---<

ALPHA.EXE A
Clipboard
Control Panel
My Diary
Notepad - (TEXT.TXT}
Spreadsheet (ACCTS.SPD)
Paint program (DIAG.DOC}
XYWRITE.EXE V

+-----------------------------------+---+

Figure 3.11 The Task Manager Window

The objects in the Task Manager are ordered alphabetically.

The entries in the Object List are selectable.

The System Menu commands include:

• Switch to

• Close {Same as Exit being selected in application)

• Terminate

88

User Interface

3.1.9.2 Jump Ordering

The jump order round applications is their Z-order on the screen. Applica
tions can optionally not participate in the jump sequence, but normally all
applications will participate.

Non-Presentation Manager applications appear as icons in the Presenta
tion Manager desktop, and so have a logical entry in the jump order
sequence. Using the keyboard or mouse to jump to the next application
will make the icon representing the non-Presentation Manager program
active. To see the program itself the icon will have to be Opened. Note
that if the corresponding entry in the Task Manager window is selected
that the icon is automatically opened.

+-+-------------------------------------+
iSi TASK MANAGER I
+-+-------------------------------------<
I Control Shutdown Fl=Helpl
+-----------+-----------------------+---<
I Switch To IXE A
I Close lrd
+-----------< Panel
I Terminate IY
+-----------+ - (TEXT.TXT)
I Spreadsheet (ACCTS.SPD)
I Paint program (DIAG.DOC) 1

I XYWRITE .EXE I V
+---------------------------------------+

Figure 3.12 The Task Manager Window with Control Pull-down

3.1.9.3 How to Work with a Task

The user can choose to work with a particular task by:

1. Selecting the Name of the task in the list.

2. Select the Switch To command on the Control menu.

The fast way of getting a task to be the Active one is to do a doubleclick
on it with button 1 or select it and press Enter.

The selected task becomes the Interactive Program.

Certain tasks can cause the Switch To selection to be grayed.

89

MS OS/2 Presentation Manager Reference

Alphanumeric keys can be used to move the selection to an object on the
list when the first letter of the name matches the key pressed. If there is
more than one match the selection moves to the first. If the same key is
pressed again, the selection moves to the next and so on, recycling at the
end of the matching section to the top. If no match is found, the machine
beeps.

For Presentation Manager tasks, this causes the main window of the object
to appear on top of the other windows in the Presentation Manager screen
group. The application may choose to bring its other windows to the front
at the same time. Keyboard input is directed to one of the windows
belonging to the task.

For non-Presentation Manager programs, the Presentation Manager Screen
Group is removed from the display and is replaced by the Screen Group
containing the program. This occupies the whole screen and no other pro
grams can be seen. Both Mouse and Keyboard input are directed to the
program.

Non-Presentation Manager programs also show up as icons in the Presen
tation Manager screen group.

3.1.9.4 How to Close a Task

Some programs will not have a Close (Exit) command. The user may use
the Close command to close these objects. This commands requests that
the program close down normally (save data, clean up).

3.1.9.5 How to Terminate a Task

Most programs have their own methods of being brought to an end nor
mally, through menu options or commands. Generally the user should use
these methods to terminate a running program. This is advisable because
the program probably needs to tidy things up before it finishes - save work
away in files, for example.

However, it can happen that a program gets stuck or begins to behave in
an unusual way. To allow the user to stop such a program, the Terminate
function can also be used quit a program. When invoked the Terminate
function causes a destructive shutdown, i.e, the program does not get a
chance to save data or otherwise clean up.

To terminate a program in this way, select the program's entry in the
Task List and then select the Control option in the Task Manager menu
bar. Select the Terminate option on the pull-down menu. A warning panel
is displayed. This allows the user a second chance to think about the des
tructiveness of the Terminate function and prevents inadvertent program
stopping.

90

User Interface

The filing system window cannot be closed or terminated.

+-+-------------------------------------+
ISi TASK MANAGER I
+-+-------------------------------------<
I Control Shutdown Fl=Helpi
+-----------------------------------+---<

ALPHA.EXE i A i
Clipboar+---+
Control WARNING
My Diary Terminating this task will
Notepad / : - destroy any data that has not
Spreadsh +-----+ been previously saved.
Paint pr Terminate ?
XYWRITE.

+---------- Yes ((No)) (Fl = Help)
+---+

Figure 3.13 Task Manager - Terminating a Task

Either the Yes or No buttons must be selected. The default button is No
(for safety), in case the user presses the Enter key as the first action after
this panel appears.

Selec_ting the No option quits the Stop operation and leaves the program
runnmg.

Selecting the Yes option causes the program to be stopped.

+-+-------------------------------------+
ISi TASK MANAGER I
+-+-------------------------------------<
I Control Shutdown Fl=Helpl
+--------+-----------------------+--+---<

ALPHA.: Shutdown now A
Clipboi/Save at shutdown
Controi Save tasks now
My Dia i 1

Notepa+-----------------------+
Spreadsheet (ACCTS.SPD)
Paint program (DIAG.DOC)
XYWRITE.EXE V

+-----------------------------------+---+

Figure 3.14 Task Manager with Shutdown Pull-down

91

MS OS/2 Presentation Manager Reference

The Shutdown menu includes:

Shutdown now
This is the normal way to close the system down at the end of
the work session. There are two variations, controlled by the
next option in the menu.

1. Save at shutdown on causes Shutdown-now to save the
entire task list in terms of the applications running, and
their position on the screen. Each application is responsible
for saving its data and current state.

2. Shutdown with Save at shutdown off causes all applica
tions to end normally but no record is kept and Restarting
the system will not restart the current set of applications.
Before an application ends, it is expected to prompt the user
to save any unsaved changes, and then to shut down.

Save at shutdown
This toggle indicates the current action to be performed at shut
down. It is initially set off (no save).

Save tasks now
This provides the user with an easy way to save the layout and
data ready for the next IPL. This includes notifying applications
so that they can be restored at least working on the same file at
the next IPL. Screen window layout and current options must
also be preserved.

No shutdown is performed.

The Task Manager window is removed from the screen only following a
Switch To operation.

3.1.10 Control Panel

There are many options the user has for how the system works. Most have
to do with the hardware configuration, while others have to do with the
Presentation Manager system's appearance. Control Panel allows the user
to change these settings:

92

User Interface

+-+--+-+-+
:s: Control panel :N:x:
+-+--+-+-<
: Preferences Settings Configuration : Fl=Help:
+--<

Presentation Manager Version

+-+ +-+
Date +-+ Time +-+
Cursor blink
Double click

1------1
I I
1------1
I I

+--+
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.15 Control Panel

3.1.10.1 Main Panel

Time & Date
The user can set the time and date (Entry fields). This will set
the internal hardware clock.

Double click
Individual mouse clicks must be received in order to generate a
doubleclick.

Cursor Blink
This changes the rate at which the pointer flashes. Cursors
which flash too quickly tend to be distracting, while if they are
too slow, then they are hard to spot.

3.1.10.2 Preferences Pull-down

Sound On or Off
Allows the user to turn off sound (Check box)

Screen Colors
The user can select which colors are used in various parts of the
system. For example, the items below can be changed. This list
is not considered to be exhaustive.

93

MS OS/2 Presentation Manager Reference

• Window Background

• Window Text

• Scroll Bar

• Scroll Arrows

• Scroll Elevator

• Active Title Bar

• Inactive Title Bar

• Title Bar Text

• Window Borders

• Menu Bar

• Menu Text

• Screen Background

Border sizes
The user is able to select border width. Novice users may want
wider borders to make it easier to manipulate the borders
directly. More experienced users may want to shrink the borders.

Logo on/off
The user can suppress all logo displays. Default is no suppres
sion. (Check boxJ.

Mouse Buttons
Right handed people tend to want their mouse buttons from left
to right (1-2-3)1 whereas left handed people want the opposite
(3-2-1). Control Panel allows the user to select which he or she
wants.

3.1.10.3 Settings Pull-down

Printer drivers
Options to select additional printer drivers (Entry field)

Printer defaults
Options to select default printer and settings (List boxes)

Print spooler
Options to select spooler (Entry field)

Communications
Options to select Baud rates, etc. (Entry fields, radio buttons)

Ports Options change Comml, etc. (List boxes)

User Interface

3.1.10.4 Configuration Pull-down

Global data:

Path:

Fonts:

In the Presentation Manager system, "PRESSERV.INI" is not a
text file, and if the user's system configuration changes, it is not
possible for the user to edit the changes into "PRESSERV.INI"
with a text editor. Therefore, the Control Panel must account
for all such possible hardware changes. This includes changes to
CONFIG.SYS. This includes changing the type ahead buffer size,
and the autorepeat rate of the keyboard. The more commonly
changed options are shown individually with entry fields, others
are shown in list boxes.

The user can set the initial path for the system.

It is possible to purchase new fonts for Presentation Manager
and to tell Presentation Manager that they exist.

International Settings:
The user can change the time/date format, the currency symbol,
and other international characters.

Default action definitions:
The default Open action and Print action may be specified
according to file extension. The panel allows this for each file
extension the user wishes to define, plus a default to be used by
others, or the option to disallow certain file extensions.

When applications are installed, they may wish to prompt the
user as to whether they should appear for certain file extensions.

List boxes and entry fields allow this.

Miscellaneous system variables:
Users can change any system variable through the control panel.
Applications can define variables in the initialization file them
selves, and list boxes and entry fields will be available to change
these.

MS OS/2 Presentation Manager Reference

3.1.11 Cut, Copy and Paste

Presentation Manager provides copying and moving using the cut, copy
and paste metaphor. This allows an object/action approach to be applied
to copying, rather than the action/object approach of "copy what, to
where".

To the end user, the appearance of cut and paste is as follows:

1. Mark the object to be copied or moved by the normal selection pro
cess.

2. Choose either cut (to remove it from the file to the clipboard), or
copy (to copy it). In entry fields, cut may be performed using the
Delete key, and Copy using Ctrl+Insert.

3. In the target file (which may also be the original file), select the
target position.

4. Select paste. In entry fields, Paste may be performed using
Shift+lnsert. This replaces selected text with the clipboard con
tents.

Typically, these functions are provided on an Edit menu in each applica
tion (as in the STARTUP Editor), and the user can use them both inside
and between applications.

3.1.11.1 Clipboard Mechanics

To create this easy-to-use environment, the clipboard is set up to accept
any number of different data formats, several of which it can hold simul
taneously.

When a new application wants to copy the data, it looks at the data for
mats available, and chooses one that it understands.

The data itself may be in the clipboard already, or it may be sent as the
result of a message from the target application to the source one.

Applications should use standard data stream definitions, since these will
be supported by printers, plotters and editors.

96

User Interface

3.1.11.2 Copy and Paste for VIO Applications

A simple form of cut and paste is provided for default VIO applications.

Copy Areas of screen can be MARKed with an option available from
the System Menu, and the contents of the marked area copied to
the clipboard in text format.

Paste will replay text as if it were being keyed into the application.

3.1.12 Initialization

3.1.12.1 The Initial View of the System

The view of the system when it is IPLed for the first time is that of the
File Cabinet with the root directory of the default drive displayed in the
Tree.

Also displayed is an open directory showing the root level of STARTUP.

This view will remain the initial view until it is replaced by the user saving
the current tasks.

3.1.12.2 The Initialization File

The initialization file, called PRESSERV.INI, is a Binary file, i.e., it is not
human readable and cannot be changed easily using text editors. The file
is hidden, since it is not intended for direct use by end-users. Its use is
mainly by the Presentation Manager system, which does provide some API
functions for reading and changing its contents.

The initialization file contains all non-volatile task information. This
includes files installed in STARTUP, open directories and running files,
and system defaults for both MS OS/2 and Presentation Manager.

The system will boot without the initialization file, but default system set
tings for colors, display device, etc., will be used.

If errors are detected within PRESSERV.INI, the system will attempt to
function correctly, but some strange behavior may be noticed. For exam
ple, applications that the user knows have been installed not known to
STARTUP. The user will be informed of the errors, whereupon it might be
necessary to restore the system from a backup copy. •

97

MS OS/2 Presentation Manager Reference

On network systems there may be a local copy of PRESSERV.INI but a
global copy of Presentation Manager.

3.1.13 Help Facility for the Shell

The purpose of Help is to provide information to the user which aids in the
operation of the shell. When the user requests Help, information regarding
the item selected in the current context is displayed. The user can also
request an index of available Help topics, request General Help, or request
information on the functions assigned to keys.

3.1.13.1 Invoking Help

The user can request Help by either pressing the Fl key, or by clicking the
mouse pointer while it is on the Fl=Help choice on the Action Bar. After
doing one of these actions, a secondary window will be displayed, and it
will contain a panel of information which pertains to the item on which
the selection cursor is currently positioned.

Note that more than one item may be selected on the panel, but the initial
help will relate to the item where the selection cursor is situated (generally
the last item selected).

3.1.13.2 The Help Window

The Help window is movable and sizable, and will be the topmost window
when it is active. It contains four pushbuttons along its bottom, and these
make up the Common Actions Area. There is also a vertical scroll bar
along the right side of the window, and this can be used to scroll the Help
panel which is displayed in the window if it is too big to fit. If the window
is sized smaller than its default size in the horizontal direction then the
text is clipped, there is no horizontal scroll bar. The window must be
resized to display the full text.

In the window's title bar appears the application name. Here is a picture
of a typical Help window:

98

User Interface

place=inline width=page frame=none
+-+--+-+-+
l S l Filing System JN lX l
+-+--+-+-<
l File Options Special Window l Fl=Helpl
+--+-<

Open l lAl
Print l +-<
Move l l l
Copy l +-<
Del +-+---+
Ren JSl Filing System Help l
Set +-+---+-<
Cre Copy lAl
Sel +-<

1/ Select the file to be copied in its directory
More than one file may be selected by means
of extended selection.

2/ Select Copy on the File pull-down.

3/ Type in the name of the target directory, using
the directory index as a reference.

I
I

-1
I
I
I
I
I
I
I
I
I
I
I
I
I +-<

4/ Select Copy on the Copy menu. :v:
+---+-<
l (Esc=Cancel) (Fl=General Help) (FS=Index) (F9=Keys) l
+---+

+-<
:v:

+--+--+---+--%-<
:<-: : :->: :
+--+--+---+--+-+
Icons - S = System Menu N = Minimize, X = Maximize

Figure 3.16 A Sample Help Window

3.1.13.3 Help Interactions

When a help panel is displayed in the Help window, the user can either use
the mouse to scroll the text with the scroll bar, or can use the arrow keys,
Home, End, PgUp, PgDn, Ctrl+Home, and Ctrl+End keys to scroll the
text.

The pushbuttons at the bottom of the window, in the Common Actions
Area, perform the functions described below. The user can perform the
actions by either pressing the pushbutton with the mouse pointer, or typ
ing the key whose label is on the desired button, i.e., Fl, F5, F9, Esc.

99

MS OS/2 Presentation Manager Reference

3.1.13.3.1 F1=General Help

Displays a general Help panel describing what the panel is for and the con
cepts behind it. This is not help on the Help facility.

3.1.13.3.2 F5=lndex

Displays a selection panel (or listbox for simple applications) which lists
all of the available Help topics. The user can select a topic from the list,
and it will be displayed. When the listbox is displayed, the F5=1ndex
pushbutton changes to read Enter. The user can select a topic by either
pressing the Enter key, pushing the Enter button, or doubleclicking the
mouse on a topic in the listbox. When the listbox is removed, the Enter
pushbutton is changed back to read F5=1ndex.

3.1.13.3.3 Shell Help Index

For each of the Presentation Manager Shell "Applications"

• File System

• Task Manager

• Control Panel

• StartUp Editor

• Printing Services

the HELP index will contain the following -

• A list of all the available HELP topics for the application

• An item to select help on the System Menu

• An item to select help on general controls (e.g., Scroll bars)

• An item that states that general help is available from the File
Cabinet Help Index

In the File Cabinet as well as the above items there will be a list of Global
Topics, e.g., Setting screen colors, Printing files which will contain a
brief description of how these things can be done and say which applica
tion needs to be started.

3.1.13.3.,/ F9=Keys

Displays a Help panel describing the functionality of all the keys available
to the application (without Help displayed).

100

User Interface

If the user asks for help on keys while in an application, the help will
display the key functions for that application. The user will be advised
that the application must be the interactive window before the keys will
work as defined in the panel.

3.1.13.3.5 Esc=Cancel

Removes the currently displayed help window.

3.1.13.4 Additional Notes about Help

If there is no selection cursor when Help is requested, a general Help panel
providing information about the currently active window will be
displayed.

When the Help window is displayed, it becomes the interactive window.

During pull-down interaction with the mouse, Help must be selected using
Fl.

The Help panel exists until it is removed by the user, or its containing
application is closed.

If the application is minimized while Help is being displayed, the Help
panel is removed. If the Help panel is required when the application is
restored, Fl must be pressed again.

Help is available by hitting Fl while a Window is minimized and has the
input focus. Help for the System Menu will be displayed which will contain
help on how to restore the window.

Help panels are not constrained within the application main window.

Examples will be included on Help panels where appropriate.

3.1.13.5 Help on Items in STARTUP

A two-line description is supplied with applications, and automatically
included at installation. It may be edited using the STARTUP Editor.
This brief application help will be displayed if Help is requested in the
File Cabinet while an application is the selected item.

No index is provided for this Help.

101

Chapter 15
Toolkit Utilities

15.1 Dialog Box Editor User Specification 105
15.1.1 Using Files with the Dialog Box Editor 105
15.1.1.1 Codepage Support 106
15.1.2 Application Appearance 107
15.1.2.1 :Main Window 107
15.1.2.2 Title Bar 109
15.1.2.3 Logo Panel 109
15.1.3 :Main Window Interaction 110
15.1.3.1 Resizing the :Main Window 110
15.1.3.2 Dialog Box :Manipulations 110
15.1.4 Actions Bar Choices 111
15.1.4.1 File Pop-down 112
15.1.4.2 Include Pop-down 113
15.1.4.3 Edit Pop-down 115
15.1.4.4 Control Pop-down 121
15.1.4.5 Control :Manipulations 124
15.1.4.6 Options Pop-down 126
15.1.4. 7 Exit Pop-down 128
15.1.4.8 Help 129
15.2 Font Editor Functional Specification 129
15.2.1 Application Appearance 129
15.2.1.1 :Main Window 129
15.2.1.2 Title Bar 131
15.2.1.3 Mouse Pointer Appearance 132
15.2.1.4 Logo Panel 132
15.2.2 Application Actions 132

103

15.2.2.1
15.2.2.2
15.2.3

Main Window Interaction
Application Action Bar

Help 145

132
133

15.3 Icon Editor Functional Specification 145
15.3.1 Application Appearance 146
15.3.1.1 Main Window 146
15.3.1.2 Title Bar 148
15.3.1.3 Mouse Pointer Appearance 148
15.3.1.4 Logo Panel 148
15.3.2 Application Actions 14g
15.3.2.1 Main Window Interaction 149
15.3.2.2 Application Action Bar 150
15.3.3 Help 157
15.4 Help Facility for the Dialog,

Font, and Icon Editors 157
15.5 Resource (.res) File Specification 158
15.6 Resource Script File Specification 15g
15.6.1 Resource Script File 159
15.6.1.1 Single Line Statements 160
15.6.1.2 User-Defined Resources 162
15.6.1.3 Codepage Flagging 163
15.6.1.4 STRINGTABIE Statement 164
15.6.1.5 Accelerator Tables 165
15.6.1.6 :MENU Statement 166
15.6.1.7 DIALOG and WINDOW Templates 170
15.6.2 Control Classes 179
15.6.3 Control Styles 180
15.6.4 Frame Styles 183
15.6.4.1 Directives 184

104

Toolkit Utilities

15.1 Dialog Box Editor User Specification

This document gives a user specification of the Dialog Box Editor, an MS
OS/2 Presentation Manager application. It describes the physical appear
ance of the application when running under MS OS/2 Presentation
Manager, how files are used with the application, and how the user
interacts with the application, i.e., what the assorted commands do, and
how to edit dialog boxes.

The MS OS/2 Presentation Manager Dialog Box Editor lets you design
dialog boxes on the display screen and save a definition of the box in a
resource file. The definition of the dialog box can be included with other
resource definitions in your application's resource script file. When you
create a dialog box, you create the box outline, put controls and text for
the controls in it, and define the way the user will access the controls.

15.1.1 Using Files with the Dialog Box Editor

This section describes the files produced and used by the Dialog Box Edi
tor and how to use these files with other programs such as the resource
compiler, your compiler, and your linker. The actions bars and strings
that make up the user interface for an MS OS/2 Presentation Manager
application generally are produced from a resource definition file, a text
file which has the extension .re. The application's dialog boxes are defined
in a text file that has the extension .dlg and are included in the resource
definition file with the rcinclude directive. These files are processed by the
MS OS/2 Presentation Manager Resource Compiler re. Re produces a
binary resource file with a .res extension and also is used to attach the
resource file to the application's executable .exe file.

The Dialog Box Editor reads two types of files and produces three types of
files. It reads the application's .res file, modifying the Dialog Box
Resources in it, and writes out the modified .res file. When the Dialog Box
Editor writes out a .res file, it also produces a .dlg file giving the text
resource definition of the dialog boxes in the .res file. The Dialog Box Edi
tor will use the symbolic equivalents rather than the numbers where such
constants are correctly contextually defined. Finally, it can also read in
and write out an include file with the .h extension which is used to define
symbols which can be used in place of numbers. These symbols are defined
with the #define C preprocessor directive.

When the Dialog Box Editor writes a .res file, the file contains the name of
the include file that was used with the .res file and all changes the user
made to the Dialog Box Resources but leaves all other resources
unmodified. If the .re file is subsequently modified, it will have to be com
piled with re. If the Dialog Box Editor didn't save the resource definition
text for the modified dialog boxes, they would be lost upon recompiling
with re. That is what the .dlg file is for. If you keep all your dialog box

105

MS OS/2 Presentation Manager Reference

definitions in a .dlg file with the same name as your .re and .res files and
rcinclude the .dlg file in your .re file, the resulting .res file will always be
up to date, whether it was last produced by the Resource Compiler or by
the Dialog Box Editor. Note that the Dialog Box Editor never reads the
.dlg file, it only writes it, hence comments in the .dig file cannot be
preserved.

The .h file produced by the Dialog Box Editor allows you to refer to con
trols by symbolic names rather than numbers. Each control in each dialog
box has an ID Value associated with it. By using the Include File feature of
the Dialog Box Editor, you may associate an ID Symbol with each ID
Value. This symbol will then be defined in the .h file by:

#define IDSymbol IDValue

The inclusion of this .h file in your .re and in your C source files using the
#include directive then allows you to ref er to controls by their ID Sym
bols rather than their ID Values.

There are a few caveats when using the .h include files. First, the Dialog
Box Editor only reads and writes symbolic constant declarations. Thus, if
you have anything else in the file, such as comments, structure definitions,
macros, or variable declarations, they will be lost. So, it is best to have a
separate file specifically for the symbolic constants used in dialog boxes.
Next, although it is possible to have more than one ID Symbol for a given
ID Value, the results may be confusing because only the number is saved
in the dialog box resource and the Dialog Box Editor has no way of know
ing which symbol to use for that number. You will be warned if you
attempt to assign more than one symbol to a given number, at that time,
choose CANCEL and try another ID Symbol. Finally, if you want to use
the ENTER and ESCAPE keys in the standard ways, you should only use
the ID Value 1 for buttons associated with the ENTER key and ID Value 2
for buttons associated with the ESCAPE key. The reason is that whenever
the ENTER key is pressed, MS OS/2 Presentation Manager automatically
sends a WM_ COMMAND message with ID Value 1 when the ESCAPE key
is pressed, MS OS/2 Presentation Manager sends a WM_ COMMAND mes
sage with an ID Value of 2. The default ID Symbols for the ID Values (in
wincalls.h) are DID-OK for 1 and DID-CANCEL for 2.

15.1.1.1 Codepage Support

The Dialog Box Editor will create resouces in a specific codepage, and flag
the codepage in the resource. This codepage will be the codepage in which
the Dialog Box Editor application is started.

A warning message will be issued if the Dialog Box Editor detects that an
existing resource it is editing is flagged in a codepage other than the
codepage in which the editor is running. However, after this warning, any
new resource written will be flagged with the current codepage in which
the editor is running.

106

Toolkit Utilities

15.1.2 Application Appearance

15.1.2.1 Main Window

The main window consists of the following parts:

1. Editing area

2. Selected Item Status window

3. Panel Title

Note: The following picture gives a good representation of how the appli
cation will look. The exact appearance will depend on the final appearance
of MS OS/2 Presentation Manager.

I ISi Dialog Box Editor: SWRITE.RES, SWRITE.H INI IXI
1---1

I File Edit Control Include Options Exit I Fl=Help

I Test mode

Heading Options

I ** Bold
* **

I
I

* I I
I I * _________ * ________ *

* * Under 1 ine
** ** Uppercase

** ** Section Numbers
** I

I
I *-----** __________ ** ________ * I

I Enter I IEsc=Cancel 1 IFl=Help I I *-----** __________ ** ________ * :
I
I *-------------------------------*

*---------------------
Selected item status

(x,y) : (21,66)
(cx,cy) .. : (67,12)
Relative to window
Dialog Box
Control.: Check Box
ID Value.

*---------------------

S is the system icon
X is the maximize icon
N is the minimize icon

Figure 15.1 Presentation Manager Dialog Box Editor

107

MS OS/2 Presentation Manager Reference

15.1.2.1.1 Editing Area

The editing area is where the dialog box will be created and modified. It is
the client area of the application's window. The dialog box being edited
may extend out of or be completely out of the editing area.

15.1.2.1.2 Selected Item Status Window

When you start the Dialog Box Editor, you will notice a small window
labeled "Selected Item Status" in the lower-right corner of the screen. The
Selected Item Status window stays on your screen as you edit a dialog box
and supplies you with information about the dialog box and the controls
in it. When you make a change to the dialog box or controls, the change is
reflected in the Selected Item Status window. If necessary, the Selected
Item Status window can be moved out of the way of a dialog box you are
working on.

The Selected Item Status window displays the information shown in the
following list. All measurements in the Dialog Box Editor are given in dia
log units. For horizontal distances, one dialog unit is equal to 1/4 the
width of a character in the system font (a fixed pitch font). For vertical
distances, one dialog unit is 1/8 the height of a character in the system
font. By restricting measurements to dialog units, it is possible to make
dialog boxes appear the same on different display devices, relative to the
text in the box.

(x, y)

(ex, cy)

Relative

Displays the position on the lower-left corner of the dialog box
or control you have selected.

Displays the width and height of the dialog box or control you
have selected.

Shows how the selected item is positioned. If the selected item is
a control, this will always be "to Window". If the selected item
is the dialog box, then it can be "to Window", "to Screen", or
"to Mouse".

Control Shows the type of control you have selected (for example, Radio
Button or Check Box). If the dialog box was selected, this part
of the Selected Item Status window will read "Dialog Box".

ID Value

108

If a control is selected, the ID Value or ID Symbol is displayed. If
the dialog box is selected, its name is displayed.

Toolkit Utilities

15.1.2.1.3 Panel Title

The panel title will be "Mode:" followed by the mode the Dialog Box Edi
tor is currently in. There are two edit modes and a Test mode. Test allows
testing of the controls in a dialog box. The two edit modes are Work
(which allows full editing) and Translate (which allows limited editing).
Two possible sub-modes of Work are Group (denoted by "Work/Group"
and which allows moving groups of controls) and Copy (denoted by
"Work/Copy" which allows duplicating individual controls). The Group
and Copy sub-modes are mutually exclusive. The Group sub-mode is also
available for Translate.

15.1.2.1.4 Instructions

There will be no instructions in the Dialog Box Editor's primary window.

15.1.2.2 Title Bar

The Dialog Box Editor's primary window title bar will contain the applica
tion name, "Dialog Box Editor:" followed by the names of the resource
and include files being edited.

15.1.2.3 Logo Panel

When the application first starts up, it will read WIN.IN! and then either

1. display the logo panel and wait for the user to respond,

2. display the logo panel for the specified period of time, or

3. go directly to the application according to the user's wishes as
specified in WIN.IN!.

If the logo panel is displayed until the user responds, the following logo
panel will be displayed:

Logo Panel

If the logo panel will be displayed for a specific period of time, then the
last line of the panel:

Press Enter to continue or Esc to quit.

will not appear on the panel.

109

MS OS/2 Presentation Manager Reference

15.1.3 Main Window Interaction

All the creating/ editing of the dialog box is done in the main window with
the use of the mouse. Actions Bar choices may be accessed either with the
mouse or keyboard.

15.1.3.1 Resizing the Main Window

When the window is resized, the Selected Item Status window is moved
back to the bottom right-hand corner of the window. Sometimes, the dia
log box being edited will extend beyond the application window, especially
if the application window is resized. This is because the position of the
dialog box, either relative to the application window or relative to the
screen, is saved as the position of the dialog box in the .res file.

If the dialog box is positioned relative to the mouse, then its position in
the Dialog Box Editor will be maintained.

15.1.3.2 Dialog Box Manipulations

Once a dialog box border is up on the screen, it can be moved, expanded,
or shrunk. To perform any of these actions, the dialog box borders must
be selected. This can be done by clicking the mouse on a blank area inside
the dialog box; the mouse pointer will be a white arrow in the areas which
will select the dialog box. When the dialog box is selected, eight handles
(small black rectangles) will appear on the boundaries, as shown here:

Outline of a Dialog Box

15.1.9.2.1 Moving the Dialog Box

To move the dialog box, select the dialog box and then press mouse button
one inside the dialog box; the pointer will be a plus sign (+) in the valid
areas for this. While holding the mouse button down, drag the mouse and
a skeleton of the borders will appear. Release the mouse button when the
skeleton is located in the desired location for the dialog box. The Selected
Item Status window will show the exact coordinates while moving the
skeleton.

15.1.9.2.2 Expanding/Shrinking a Dialog Box

To increase or decrease the size of the dialog box, use one of the eight han
dles (small, filled rectangles) on the boundaries. To do this, first select the
dialog box. Now move the mouse pointer to a handle on the side you want

110

Toolkit Utilities

to move. The pointer will change to a small box (similar to the handle).
With the mouse button depressed, drag the border in the desired direction.
When you release the mouse button, the dialog box will retain its new
border. You can size the box in vertical and horizontal directions simul
taneously by using a corner handle.

15.1.4 Actions Bar Choices

The Application Actions Bar contains the choices:

• File

• Include

• Edit

• Control

• Options

• Exit

• Fl=Help

The bold character in each choice above is the mnemonic for the choice.
The choice Fl=Help will be in the rightmost position. The pop-downs for
these choices contain choices as follows:

File

Include

Edit

Control

Choices that create, open, and save the files containing dialog
boxes. There is also a choice that allows you to view and start
editing existing dialog boxes.

Choices that you use to create, modify, or view an include file.

Choices that allow you to perform common editing functions
such as cutting and pasting dialog boxes, duplicating controls
and moving groups of controls, and changing the order in which
controls are accessed. There are also choices for creating a new
dialog box, renaming an existing one, changing the style of con
trols and dialog boxes, and setting memory management flags.

Choices that let you define the type of controls to be placed in
the dialog box.

Options Choices for setting Test and Translate modes, and a choice for
defining the granularity of control positioning.

Exit Choices that allow ending or resuming the application.

111

MS OS/2 Presentation Manager Reference

15.1.4.1 File Pop-down

The File Pop-down has five choices:

• New

• Open ...

• Save

• Save As ...

• View Dialog Box ...

15.1.4.1.1 New

The function of New is to give a standard, untitled and empty resource file
and clear screen to work from. If you have previously made changes to the
.res or .h file image in memory, New will warn you that the file has
changed and allow you to save it before clearing it from memory.

15.1.4.1.2 Open ...

Open allows the editing of a dialog box from an existing .res file. When
Open ... is chosen, if there are unsaved changes to the current files, a mes
sage box will pop up asking if the changes should be saved before opening
another file. Then the standard Open File dialog box will appear, listing
the available .res files in the current directory. After a .res file is chosen,
two things might happen. If the include file name is in the resource file,
that include file will be opened after a message box asks for confirmation.
Otherwise the Open Include dialog box listing the available .h files (include
files) will be shown. The user can choose to open an include file or not.
After that, the View Dialog Box dialog box listing the dialog boxes in the
file will appear, and the user can choose which dialog box to view or edit.

Here is the standard Open File dialog box:

Open File Dialog Box

Current directory
(static text) Reports what the current directory is.

Filename
(entry) Defines the name of the resource file to open.

Available files

112

(listbox) Lists the files in the current directory with the default
extension .res.

Toolkit Utilities

15.1...j.1.3 Save

Save writes out the current .res file and .dlg file with all the dialog boxes.
If the current file is untitled, Save will bring up the Save As dialog box
described below. The Alt+F3 key will be an accelerator for Save. If an
include file is open, its name will be saved in the resource file and, if it has
changed, the user will be asked if the include file should be saved also.

15.1.4.1.4 Save As ...

When Save As ... is chosen, the following dialog box is displayed near the
upper-left corner of the main window with the name of the current .res file
filled in the Filename edit field. If the user types any extension, the Dialog
Box Editor will warn that the extension is being ignored. If any symbolic
definitions have changed, then the Include Save As ... dialog box will also
be displayed.

Save .res file and .dlg file Dialog Box

Current directory
(static text) Reports what the current directory is.

Filename
(entry field) Defines the name of the file to save the resource and
resource definition files as.

15.1.4.1.5 View Dialog Box ...

When View Dialog Box ... is chosen, a dialog box is called up which
displays all the dialog boxes in the current .res file. At this point, the name
of the dialog box currently being edited will be highlighted, or if there is
no current dialog box, the first dialog box name will be highlighted. The
user can then select one of them, and this dialog box will be displayed in
the editing area and will be available to be modified or tested.

View Dialog Box Dialog Box

15.1.4.2 Include Pop-down

The Include pop-down has the following choices:

• New

• Open ...

• Save

113

MS OS/2 Presentation Manager Reference

• Save As ...

• View Include ...

• Hex Mode

This pop-down deals directly with the include files (.h files), providing a
way to change the include file being edited without changing the resource
file.

15.1.4.2.1 New

New clears all information copied from the current include file. If there
were changes made to the image of the file which were not saved, a mes
sage box will be displayed, saying:

"filename.h" has changed. Save current changes?

before the New command is carried out.

15.1.4.2.2 Open ...

Open calls up the standard Open File dialog box with a list of all the .h
files (include files) in the current directory. Choosing a file, makes it the
current include file for the dialog box. If there are unsaved changes to the
current include file, a message box asking to save the changes will be
displayed, before the Open ... command is carried out.

15.1.4.2.3 Save

Save writes the current include contents to the current include file. If the
current include file has no name, the Save As ... dialog box will be called
up.

15.1.4.2.4 Save As ...

When Save As ... is chosen from the pop-down, the following dialog box is
displayed near the upper-left corner of the main window with the name of
the current .h file filled in the Filename edit field.

Include Save As Dialog Box

114

Toolkit Utilities

15.1.4.2.s View Include ...

View Include ... calls up a dialog box which allows the user to add, change,
and delete ID Symbol definitions from the current include file. The current
ID Symbol definitions are shown in alphabetic order in a list box. If there
is no current include file, the list box is empty and the user can now add
ID Symbol definitions. The definitions are not saved to an include file,
unless the user issues the Save or Save As command. The dialog box for
View Include ... looks like this:

View Include Dialog Box

To add a control ID definition to the include file do the following. In the
Symbol name text box, type the symbolic name you are giving to the con
trol ID. In the ID Value edit box, type the number you are assigning as the
ID value. If you just want what the Dialog Box Editor considers the next
number, leave the ID Value field blank. Select the Add button.

To change a control ID definition, select the definition you wish to change.
Now edit the symbol name and ID value in the appropriate boxes and then
select the Change button.

To delete a definition, select the definition and then press the Delete but
ton.

To change the Hex/Decimal mode of the displayed IDs, select the
appropriate radio button.

15.1.4.2.6 Hex Mode

Hex mode allows the user to specify whether the Control ID values are
shown in decimal or hexadecimal numbers without going through the View
Include dialog box. If the ID values are shown in hexadecimal, a check
mark is placed next to Hex mode in the Include pop-down.

15.1.4.3 Edit Pop-down

The Edit Pop-down has the following choices:

• Restore Dialog Box

• Cut Dialog Box

• Copy Dialog Box

• Paste Dialog Box ...

• Clear Control/Dialog Box

• New Dialog Box ...

115

MS OS/2 Presentation Manager Reference

• Rename Dialog Box ...

• Position relative to ...

• Styles ...

• Group Move

• Duplicate Control

• Resource Properties ...

15.1.4.3.1 Restore Dialog Box

The Restore Dialog Box choice allows you to restore the dialog box to its
previous saved state. It rereads the dialog box from the Dialog Box
Editor's copy of the .res file. A message box asks for confirmation before
the restoration.

15.1.4.3.2 Cut Di'alog Box

This choice deletes the currently displayed dialog box and puts it in the
Clipboard. (It cuts both the dialog box resource format and the bitmap
format.) Individual controls cannot be cut to the Clipboard.

15.1.4.3.3 Copy Dialog Box

Copy Dialog Box puts a copy of the currently displayed dialog box (both
the dialog box resource format and the bitmap format) in the Clipboard.
Individual controls cannot be copied to the Clipboard, however individual
controls can be duplicated with the "Duplicate Control" sub-mode.

15.1.4.8.4 Paste Dialog Box ...

The Paste Dialog Box choice puts the contents of the Clipboard on the
screen if the contents are in dialog box resource format. First it requests a
name for the pasted dialog box and saves the current dialog box. Note:
Only dialog boxes can be pasted; individual controls cannot be pasted
from the Clipboard.

15.L/,3.5 Clear Di'alog Box/Control

This choice will read "Clear Dialog Box" if the dialog box is currently
selected and "Clear Control" if a control is currently selected. It deletes
the currently selected item. If it is a dialog box, a confirmation message

116

Toolkit Utilities

will be displayed saying:

OK to destroy currently displayed dialog box?

and the dialog box will be removed from the Dialog Box Editor's copy of
the .res file in memory. If a control is selected, the control will just be
deleted from the current copy of the dialog box being edited.

15. Lf .. 3. 6 New Dialog Box ...

New Dialog Box puts the currently displayed dialog box back into the Dia
log Editor's copy of the .res file and places a new, empty dialog box on the
screen. First it requests a name for the new dialog box. Note: This choice
does not save the .res file to disk, but it does update the Dialog Box
Editor's copy of the .res file in memory which can affect Restore Dialog
Box.

New Dialog Box and Rename Dialog Box Dialog Box

15.1.f3. 7 Rename Dialog Box ...

The Rename Dialog Box choice puts up the New Dialog Box dialog box,
requesting a new name for the dialog box currently in the editing area.

15.L{.3.8 Position Relative to ...

Dialog boxes may be positioned in three ways:

1. Relative to a window

2. Relative to the screen (absolute positioning)

3. Relative to the mouse cursor

If a dialog box is positioned relative to the screen, it will always appear in
the same position on the screen. If a dialog box is positioned relative to a
window, it may appear at different times on different portions of the
screen, but it will always appear over the same part of that window. If a
dialog box is positioned relative to the mouse, the dialog box will be posi
tioned so that a particular point on the dialog box will be under the mouse
pointer when it is first displayed. This choice allows you to set the way the
dialog box is positioned. The Position Relative to ... choice brings up the
following dialog box:

117

MS OS/2 Presentation Manager Reference

Position Relative to Dialog Box

The Position Relative to dialog box has three radio buttons, select one.
The options are Relative to Window, Relative to Screen, and Relative to
Mouse. The Window and Screen choices just set that mode and the
appropriate positioning information will be remembered any time you
move the dialog box. The Relative to Mouse choice produces the following
dialog box and allows you to set the point which will be under the mouse
pointer.

Relative to Mouse Dialog Box

Point to the spot you want to set and click with the mouse, the position
will be displayed or you can type the (dialog) coordinates of the point you
want. When done, select enter. Note: Since there is no way to know where .
the user will want to select, on or off the dialog box, the Relative to Mouse
dialog box is movable.

15.1.4.3.9 Styles ...

The Styles choice allows you to change the styles that govern a control or
dialog box. You can also use this choice to enter or change text in a con
trol or dialog box and to change the control's ID value and/or symbol. (If
an include file was loaded, you may symbolically refer to the control's lb
value. For more information on include files and ID Symbols versus ID
Values, see Section 1.) Control styles dictate such things as whether a con
trol can be grayed or whether a button is a default push button. Dialog
box styles involve features such as title bars, border types and scroll bars.

To change a control style for a specific control, first select the control and
choose Styles To change a dialog box style, first select the dialog box
and choose Styles You will see a dialog box that relates to the control or
dialog box you selected. Select the desired options. Control-style and
window-style (for the dialog box) options are described in the MS OS/2
Presentation Manager Reference. If the control or dialog box has text asso
ciated with it, type the text you want to appe ar in the control in the text
section. You may also type an ID value or symbol for controls. Select
ENTER to end the various styles dialog boxes.

Most of the Styles dialog boxes allow you to enter text and/or an ID Value
for the selected item. Usually the text is text displayed in the control, but
for the dialog box, it is the text in the title bar, while for icon controls it is
the name of the icon to use. For all controls, you may enter an ID Value.
In this field, you may type a number (in decimal or in hexadecimal with
the Ox prefix), a predefined symbol, or define a symbol by typing the sym
bol followed by a space then the associated number. Note: When you
create a new control, the appropriate Style dialog box will be displayed
with the next ID Value filled in. To give that value a symbol, insert the
symbol followed by a space before the given number.

118

Toolkit Utilities

Button Control Styles Dialog Box

Besides the standard text and ID fields, the Button Control Styles dialog
box allows you to change the type of button you have. All of the control
types listed are defined by MS OS/2 Presentation Manager to be buttons.

Push Button
is a rectangle with rounded corners and text designed to give
immediate action.

Def(ault) Push Button
is a push button with a heavy border. It is meant to be the
default action on pressing the ENTER key. It should be given
the ID Value 1 (ID Symbol MBID_ OK).

Check Box
is a small square with text to the right. They are usually used in
groups to allow zero or more options to be selected.

Auto Check Box
is a Check Box with which MS OS/2 Presentation Manager will
maintain the checked/unchecked state. With a normal Check
Box, the application is expected to check or uncheck the control
when notified of the user action.

Radio Button
is a small circle with text to the right. These buttons are used in
groups to give the user a single choice from several.

3 State is a Check Box which can be grayed as well as marked checked
or unchecked. The grayed state is typically used to show that
the check box has an indeterminate state.

Auto 3 State
is just like a 3 State, but MS OS/2 Presentation Manager main
tains the visible state, toggling it from checked to unchecked
and back when the user clicks in it.

Group box
is a frame with a title on the top line, left justified. It is used to
group controls together.

Edit Control Styles Dialog Box

Besides the standard ID field, the Edit Control Styles dialog box allows the
text alignment and two options to be set. At run time, the application can
put default text in an edit control, and the user can type text into an edit
control. The text can be Left, Right, or Center Aligned. The Auto Horz.
Scroll option causes the text to scroll when the edge of the field is passed.
The No Hide Selection option overrides the default action of an edit field
which is to highlight the selection when it receives the input focus and to
hide it when it loses the focus. The Edit Control Styles dialog box has no
text field because there is no text associated with an edit control.

119

MS OS/2 Presentation Manager Reference

List Box Styles Dialog Box

Besides the standard ID field, the List Box Styles dialog box allows several
standard options to be set. The Notify option causes MS OS/2 Presenta
tion Manager to notify the application whenever the user clicks or double
clicks on an item in the list box. The Sort option causes the list box to sort
the strings before displaying them. The Multiple Sel.(ect) option allows the
user to select more than one string from the list box and to deselect a
string by clicking on it again. The No Redraw option prevents the listbox
from being redrawn every time changes are made. The last option, Stan
dard, is a way of selecting/ deselecting a standard set of list box options,
Notify and Sort. The List Box Styles dialog box has no text field because
there is no text associated with a list box control.

Static Styles Dialog Box

Besides the standard text and ID fields, the Static Styles Dialog Box allows
you to select among the various styles of static controls. Static controls do
not interact with the user and are just for displaying information. There
are three ways of displaying text, Left, Center, and Right Aligned. The
text field is for the text which will be displayed. The Icon option allows an
Icon to be placed in the dialog box. The text field gives the name of the
icon as given in the icon statement in the .re file. The remaining options
give various shades of rectangles or frames. These are designed to be basic
building blocks for simple graphics in a dialog box (such as putting a
border around some controls) and do not use the text field.

Scroll Bar Styles Dialog Box

There is no text associated with Scroll Bars.

Dialog Box Styles Dialog Box

For the Dialog Box Styles dialog box, the text field gives the Dialog Box
Title. This title will be displayed in the Title Bar, and hence will only be
visible if the dialog box has a title bar. The Dialog Box Styles dialog box
also allows standard window style bits to be set and creates the standard
frame controls. The Title Bar option gives the dialog box a title bar. The
System Pop-down Box option gives the dialog box a system Pop-down box.
This will only be visible if the dialog box also has a title bar. The Horz and
Vert Scroll Style options give the window horizontal and vertical scroll
bars. These scroll bars are part of the dialog box frame controls. The Size
Border option gives the dialog box the wide size-border. The Size Box
option puts a size box at the end of a scroll bar, thus the dialog box must
have a scroll bar for this option to be visible. The Maximize/Minimize Box
options put maximize/minimize boxes on the title bar. The Border option
gives the dialog box a thin border. The Dialog Frame option gives the Dia
log Box a dialog frame, a thick solid border surrounded by a thinner
border. The Visible Bit sets or resets the visible style bit. This bit will be

120

Toolkit Utilities

set or reset appropriately in the .res and .dig files, but the effect of this bit
will not be displayed in the Dialog Box Editor. The visible bit determines
if MS OS/2 Presentation Manager MUST show the dialog box, or if by
using an accelerator key sequence the user may avoid having the box actu
ally displayed. Generally, it is best to leave the Visible Bit check box
unchecked unless you absolutely want the dialog box to be seen in all
cases.

15.L/.3.10 Group Move

Group Move toggles between normal and group move mode. Group move
mode allows movement of groups of controls together. When active, Group
Move is checked and "/Group" appears after the primary mode in the Dia
log Box Editor's main Panel Title. Group Move and Duplicate Control
Modes are mutually exclusive.

15.L/_.3.11 Duplicate Control

Duplicate Control toggles between normal and duplicate control mode.
Duplicate control mode allows controls to be duplicated in all respects
except for ID value. When active, Duplicate Control is checked and
"/Copy" appears after the primary mode in the Dialog Box Editor's main
Panel Title. Group Move and Duplicate Control modes are mutually
exclusive. When the duplicated control is first placed (release of the mouse
button), the appropriate Style dialog box will be displayed with the next
ID value shown.

15.Lf .. 3.12 Resource Properties ...

Since dialog boxes are resources, they have the same memory-manager
flags that any resource has. The memory-manager flags determine how the
code for a dialog box is treated by the application and by MS OS/2
Presentation Manager with regard to memory. You can set options to
specify when a resource is to be loaded into memory, as well as whether
the resource is fixed, moveable and/or discardable. The default flag set
tings are Moveable and Discardable on, Preload off. Memory-manager flags
are set in the dialog box shown below:

Resource Properties Dialog Box

15.1.4.4 Control Pop-down

The Control Pop-down has the choices:

• Check Box

• Radio Button

121

MS OS/2 Presentation Manager Reference

• Push Button

• Group Box

• Horz . Scroll

• Vert. Scroll

• List Box

• Edit

• Text

• Frame

• Re ct

• Icon

Controls in a dialog box allow the user to interact with the application.
Once a border has been created for the dialog box, controls can be added
by using the Control Pop-down. When one of the choices is selected from
the Pop-down, the mouse pointer changes to a plus sign (+). The pointer
should then be positioned where the control is to be placed. Pressing the
mouse button causes the control to appear in the dialog box and the
mouse pointer to change back to an arrow. If the control has text associ
ated with it, the word "text" is included with the control when it is placed
in the dialog box. Once the control is placed, the appropriate styles dialog
box will come up allowing you to set the text, ID, and other features.

The choices have the following meanings:

15.1.4.4.1 Check Box

Check Box creates a check box, a small square with a label to its right.
Check boxes typically are used in groups to give the user a choice of selec
tions, any number of which can be turned on or off at a given moment.

15.1.4.4.2 Radz'o Button

Radio Button creates a radio button, a small circle with a label to its
right. Radio buttons typically are used in groups to give the user a choice
of selections, only one of which can be selected at a time.

15.1.4.4.3 Push Button

Push Button creates a push button, a small, rounded rectangle that con
tains a label. Push buttons are used to let the user choose an immediate
action, such as canceling the dialog box. Note: When placing push buttons,
you should leave some space between the buttons so that if one of them is

122

Toolkit Utilities

made the default push button, the wider border won't cover another
border.

15.1.4.4.4 Group Box

Group Box creates a simple rectangle that has a label on its upper edge.
Group boxes are used to enclose a collection or group of other controls,
such as a group of radio buttons.

15.1.4.4.5 Horz. Scroll Bar

Horz. Scroll Bar creates a horizontal scroll bar. Scroll bars let the user
scroll data and usually are associated with another control or window that
contains text or graphics.

15.1.4.4.6 Vert. Scroll Bar

Vert. Scroll Bar creates a vertical scroll bar. Scroll bars let the user scroll
data and usually are associated with another control or window that con
tains text or graphics.

15.1.4.4. 7 List Box

List Box creates a simple rectangle that has a vertical scroll bar on its
right edge. List boxes are used to display a list of strings, such as file or
directory names.

15.1.4 .4. 8 Edit

Edit creates an edit control, a rectangle in which the user can enter and
edit text. Edit controls are used both to display numbers and text and to
let the user type in numbers and text.

15.1.4.4.9 Text

Text creates a static text control. Static text controls are used for Field
Prompts and presenting other information such as the panel title and
instructions.

15.1.4.4.10 Frame

Frame creates a rectangle that you can use to frame a control or group of
controls.

123

MS OS/2 Presentation Manager Reference

15.1..4.4.11 Rectangle

Rectangle creates a filled rectangle.

15.L/ .. 4.12 Icon

Icon creates a rectangular space in which you can place an icon. (Do not
size the icon space; icons automatically size themselves.) The text for an
Icon is the name given in the icon command in the .re file for the icon
desired.

15.1.4.5 Control Manipulations

When a dialog box border is up on the screen, controls can be added to the
dialog box. Once there are controls in the dialog box, they can be moved,
expanded, or shrunk. To perform any of these actions, the control must be
selected. This can be done by clicking the mouse on an area inside the con
trol; the mouse pointer will be a white arrow in the areas which will select
the control. When the control is selected, eight handles (small black rec
tangles) will appear on the boundaries of the control.

A Selected Text Control

15.1.4.5.1 Moving a Control

You can reposition a control in a dialog box either by using the mouse to
drag it to a new location or by using the arrow keys for fine adjustments.
To move a control, first select the control. When the mouse pointer is in
the selected control, it changes to a plus sign(+). Now depress the left
button and drag the control to its new location. To move a control one
dialog unit at a time, use the arrow keys. In this way, you can move a con
trol a few positions over (or up or down) without affecting its position on
the other axis. This is hefpful when you want to line up the controls.

15.1.f5.2 Moving a Group of Controls

You can move more than one control in a group maintaining the relative
positions of the controls. This can be useful if you decide to rearrange the
layout of controls in the box and you have two or more controls that you
want to keep together. To move a group of controls, first select Group
Move from the Edit Pop-down then select the controls you want to move.
You can select any controls you want, they don't have to be related in any
way. Each control will be outlined with a gray line. The group of controls
will also have a gray border around it. (If you change your mind, you can
reverse a selection by clicking it with the mouse button.) Position the
mouse pointer at a location inside the group border, but not inside any of

124

Toolkit Utilities

the controls' borders, as shown below (the pointer is an arrow):

Before Move After Move

Press the mouse button and drag the group of controls to the desired loca
tion and release the mouse button. The group of controls is placed in the
new location. In the figures above, Checkbox 1 and Checkbox 3 have been
selected for the group move and then are moved to the right. Checkbox 2
is not outlined and does not move. When you are done, switch back to nor
mal Work mode by reselecting the Group Move option. There is a key
board accelerator for group moves: hold down the Shift key whenever you
press the mouse button one. This accelerator is used for selection and
deselection and for dragging the group.

15.1.4.5.3 Changing a Control's Size

To increase or decrease the size of a control, use one of the eight handles
(small rectangles) on the boundaries. To do this, first select the control.
Now move the mouse pointer to a handle. The pointer will change to a
small box, similar to the handle. Depress the left mouse button and drag
the border in the desired direction. When you depress the mouse button,
the small black square handles will disappear, but the square mouse
pointer will remain. When the frame is the correct shape and size, release
the mouse button and the control will resize to fill the frame.

Using the Mouse to Enlarge the Size of a Control

15.L/ .. 5.4 Duplicating a Control

To duplicate all aspects of a control except its ID, select Duplicate Control
point to the control with the mouse and press the left button on the
mouse. If you hold down the mouse button, you may now drag the new
control. If you let up without dragging the mouse, the new control will be
right on top of the old one. When you do let up on the mouse button, the
appropriate Styles dialog box will appear and the ID Value will be the next
available value. The new control is selected. When you finish duplicating
controls, select Duplicate Control again. There is a keyboard accelerator
for this command. If you hold down a Ctrl key while depressing the left
mouse button while the pointer is on a control, a duplicate control will be
created and selected.

125

MS OS/2 Presentation Manager Reference

15.1.4.6 Options Pop-down

The Options pop-down has the choices:

• Test Mode

• Translate Mode

• Grid ...

• Order Groups ...

15.Lf.6.1 Test Mode

Test Mode toggles the Dialog Box Editor between an edit mode (work or
translate) and test mode. The current mode is displayed in the Dialog Box
Editor's main Panel Title. Also, a check mark is placed next to the Test
Mode choice in the Options pop-down when the Dialog Box Editor is in
test mode. Test mode allows the dialog box to be interacted with like it
was running under an actual application. The user can enter text in the
edit fields, select check boxes and radio buttons, and use the TAB and
DIRECTION keys to cursor around the various controls.

15.1.4.6.2 Translate Mode

Translate mode prevents any changes which will affect the interaction
between the dialog box and the application. Basically it allows text and
size and shape to be changed, but does not allow adding or deleting con
trols or changing or ID values. Translate Mode toggles between work
mode, where any changes are possible, and translate mode, where only lim
ited changes are possible. A check mark is placed next to the Translate
Mode when it is active and the Dialog Box Editor's main Panel Title will
display the mode as Translate.

Note: Just translating the text in the dialog box resources to another
language may not be enough to translate the application to another
language. All strings in the string table resource must also be translated
and any static text control receiving those strings must be large enough
for the translated text.

15.1...j.6.3 Gri'd ...

The Grid choice puts up a dialog box which sets the units of the grid
which determines the granularity for positioning a control when it is
placed or moved. For example, when the grid is set at 20 horizontal (x}
dialog units, if you select a control and try to move it to the left or nght,
it will move in increments of 20 units. Default settings are one unit each in
both the horizontal and vertical directions.

126

Toolkit Utilities

Grid Dialog Box

15.1.4.6.4 Order Groups ...

The way a dialog box reacts to the keyboard or mouse interface is based in
part on the sequential order of the controls and the location of tab stops.
These options are set with the Order Groups choice from the Options
pop-down. Using this command, you can define the following:

The sequential order of the controls.

Which groups the controls are in, and the sequential order of the groups.
(A group is a collection of controls. Within a ~roup of controls, the user
makes selections using the DIRECTION keys.)

The location of tab stops (the place where the cursor moves when the user
presses the TAB key).

When the Order Groups choice is selected, the following dialog box is
displayed:

Group/Control Ordering Dialog Box

The strings in the list box on the Group/Control Ordering dialog box have
the following meanings. The first string in the list is "Start+of +List" pad
ded on both sides by '+' and it allows placement of items at the start of
the list. The last string in the list is "End+of+List" padded bi¥ '+' and it
has a similar use. The start and end of groups are marked by 'Group
Marker" padded by '-'. The strings for controls have four fields. The left
most character may be a space or an asterisk, '*',indicating a tab stop.
The next field, up to the first '/', gives the text of the control. The third
field, between the two '/' characters, is the ID Value. The last field is the
type of control.

Changing the Order of Controls

By default, the controls you place in a dialog box receive the input focus
(and th us are accessed by the user) in the order in which they were placed
in the box. For example, the first control you put in the box will receive
the focus first, no matter where you subsequently move it in the dialog
box. To change the sequential order, you must use the Order Groups com
mand and rearrange the controls in the list it displays.

When you rearrange the order of the controls in the Group/Control Order
ing dialog box, the control statements in the .dlg file are rearranged
correspondingly. Thus, the first control listed in the .dlg file is the first to
receive the input focus, the second listed is the second to receive the focus,
and so on.

127

MS OS/2 Presentation Manager Reference

To change the sequence in which a control get.s the focus in a dialog box,
choose Order Groups from the Options pop-down. From the list in the dia
log box, select the control you want to move. Place the mouse pointer
where you want the control to appear. Notice that as you move it, the
pointer changes from an arrow to a short, horizontal bar. The bar appears
only in places where you are allowed to insert the control. To insert the
control, press the mouse button.

Tab Stops

Tab stops determine where the cursor will move when the user presses the
TAB key. Normally, tab stops are set for individual controls or, in the case
of a group, for the first control in the group. To set a tab stop, select the
control at which you want to place the tab stop. Select the Tab Stop but
ton. An asterisk appears next to the control, which indicates a tab stop
has been placed. To delete a tab stop, select the control that has the tab
stop. The Tab Stop button will change to read "Delete Tab". Select the
Delete Tab button. The asterisk disappears.

Group Markers

To designate the beginning and end of a group, you add group markers to
the list of controls in the group. (The group marker appears in the Group
Order dialog box as a horizontal dashed line with the words "Group
Marker" in it.) You need to place a group marker both before the first con
trol and after the last control in a group. To add a group marker, select
the control that appears just below where you want to place the group
marker. Select the Group Marker button. The horizontal line indicates
that the group marker has been inserted. Repeat until all markers have
been placed.

To delete a group marker, select the group marker line. The Group Marker
button will change to read "Delete Marker". Select the Delete Marker but
ton.

15.1.4.7 Exit Pop-down

The Exit pop-down has the choices:

• Exit Dialog Box Editor

• Continue Dialog Box Editor

128

Toolkit Utilities

15.1.4. 1.1 Exit Dialog Box Editor

Exit Dialog Box Editor will end the application. If there are unsaved
changes to the resource or include files, a warning message will ask the
user if the changes should be saved. The appropriate save will be done if
requested by the user. The F3 key will be an accelerator for Exit Dialog
Box Editor.

15.1.4. 1.2 Continue Dialog Box Editor

Continue Dialog Box Editor will resume the application.

15.1.4.8 Help

Selecting Fl=Help or using the keyboard accelerator, Fl, will invoke user
interface help for the Dialog Box Editor as described in the Help Facility
for the Dialog, Font, and Icon Editors.

15.2 Font Editor Functional Specification

This document gives a functional specification of the Font Editor, an MS
OS/2 Presentation Manager application. It describes the physical appear
ance of the application when running under MS OS/2 Presentation
Manager, and also how the user interacts with the application, i.e., what
the assorted commands do, and how to edit font characters.

The Font Editor lets the user edit font files to use with applications. A
font file consists of a header and a collection of character bitmaps that
represent the individual letters, digits, and punctuation characters that
can be used to display text on a display device. Application writers who
want to use fonts in their applications must add the new font files to a
font resource file. Note: The Font Editor only handles image fonts, not
outline fonts, and it does not support kerning.

15.2.1 Application Appearance

15.2.1.1 Main Window

The main window consist of the following parts:

1. Character window

129

MS OS/2 Presentation Manager Reference

2. Character-viewing window

3. Area of text information

4. Character-selection window

ISi Font Editor: COU12EGA.FNT lNi lXi

File Edit Header Width Shift Exit

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*------------------------

lHTHl
iOTOi

Codepoint=84
Width=12
Height=lS

l Fl=Help

iDEFGHIJKLMNOPQRSiTiUVWXYZ{ \} - 1 abcdefghijklmnopqrstuvw 1

---' I I

i < l l L l i > l

L is the scroll bar slider
S is the system icon
X is the maximize icon
N is the minimize icon

Figure 15.2 Presentation Manager Font Editor

15.2.1.1.1 Character Window

The character window consists of a white box which has a grid of black
lines on it. The grid cells represent individual pixels, and can be either
black or white. Together, the pixels represent a single character. The char
acter window extends from near the top of the main window down to near
the top of the character-selection window.

130

Toolkit Utilities

15.2.1.1.2 Character-Viewing Window

The character-viewing window consists of a white box on a grey back
ground, and appears to the right of the upper corner of the character win
dow. Inside the box are two full-scale copies of the character in the charac
ter window, one above the other, with four other characters surrounding
them. This window is provided so that the user has some idea of how his
character will look in relation to other characters. The character-viewing
window will look like one of these choices:

HXH
oxo
caps

nxn
oxo

H[H
O[0

Le. syms nums

131
030

where the middle character is the character being edited and the surround
ing characters would be chosen depending if the character was a capital, a
lower-case, a symbol, or a number. If the Font Editor is editing a font
whose codepage it does not know about, it will treat the characters in the
font as symbols.

15.2.1.1.3 Area of Text Information

Below the character-viewing window is an area which lists important
information about the character. The information displayed is the
character's codepoint value and its width and height in pixels.

15.2.1.L.{. Character-Selection Window

The character-selection window consists of a long horizontal box, which
contains a character-selection area and a scroll bar. The character
selection area contains full-scale copies of characters in the font, and is
provided to allow the user to select the current character to edit. The
scroll bar allows scrolling the character-selection area so all characters in
the font can be seen and selected. The character-selection window appears
at the bottom of the main window, below the character window, and
stretches horizontally along the bottom of the main window.

15.2.1.2 Title Bar

The window title bar will contain the text "Font Editor - filename", where
filename is the name of the current font file being edited. If there is no
current file loaded in the Font Editor, the title bar will contain "Font Edi
tor - (untitled)".

131

MS OS/2 Presentation Manager Reference

15.2.1.3 Mouse Pointer Appearance

When the moused pointer is over the character window, it will appear as a
pencil so that the user knows where drawing is possible. When the pointer
is over selectable objects, such as the Application Action Bar (AABJ, pop
down choices, and the character-selection window, it will be a black arrow
with a white outline. When the pointer is over non-selectable objects, i.e,
the remainder of the screen, it will appear as a white arrow with a black
outline. When the Font Editor is in Add/Delete Row mode, the pointer
will appear as a horizontal bar. When the Font Editor is in Add/Delete
Column mode, the pointer will appear as a vertical bar.

15.2.1.4 Logo Panel

When the application first starts up, it will look in the file WIN.IN! for a
flag specifying whether a logo panel should be displayed, and if it should
automatically continue to the program or have user controls on it to con
tinue or quit.

If the flag specified that the logo panel should automatically continue on
to the program, the line:

Press Enter to continue or Esc to quit.

would not appear on the panel.

15.2.2 Application Actions

15.2.2.1 Main Window Interaction

When a font file is loaded into the Font Editor, the "A" character is put in
the character window, and the "A" character is highlighted in the
character-selection area. The user can now use the mouse to edit the char
acter in the character window, to change the current character being
edited, or to choose a pop-down from the AAB.

15.2.2.1.1 Editing in the Character Window

The user edits the character in the character window by clicking the
mouse while the pointer is on a pixel. If the pixel was white, it becomes
black, and if the pixel was black, it becomes wpite. The user can also
invert several pixels at once by holding the mouse button down, and drag
ging it over the desired pixels, and then releasing.

132

Toolkit Utilities

15.2.2.1.2 Selecting a Character in the Character-Selection Window

The user can use the scroll bar with the mouse to scroll what is visible in
the character-selection area. The user can select a character to edit by
moving the mouse pointer into the character-selection area of the
character-selection window, and then clicking on the desired character.
This causes the character to be copied to the character window, and the
selection being highlighted in the character-selection area. Clicking on the
arrows at the end of the scroll bar scrolls the character-selection area by
one character.

15.2.2.1.3 Posting Changes to an Edited Character

The user can post his changes to the character in the character window by
moving the mouse pointer over the selected character in the character
selection area and clicking the mouse button. The character-selection area
is updated to show the new character. If the user clicks the mouse button
while the pointer is over another character in the character-selection area,
the changes to the character in the character window are still posted, and
the new character is selected and copied into the character window.

When characters are edited and then posted, the character in the Font
Editor's copy of the font file is changed. But this has no effect to the font
file on the disk. In order to save the Font Editor's copy of the font file, the
user must use the Save or Save As commands from the File pop-down.
Using these commands writes out the edited font file to the disk.

15.2.2.1.../ Resizing the Main Window

When the window is resized, the contents of the window are also resized
and drawn in the window to maintain full visiblity. If the window becomes
too small, parts of the window are clipped.

15.2.2.2 Application Action Bar

The application action bar contains the choices:

• File

• Edit

• Header

• Width

• Shift

• Exit

133

MS OS/2 Presentation Manager Reference

The underlined character is the mnemonic for the choice. Also, the non
cursorable choice "Fl=Help" will appear in the bottom rightmost position
of the AAB.

15.2.2.2.1 File Pop-down

The File pop-down has the choices:

• New

• Open ...

• Save

• Save As ...

New

When New is chosen, if there are unsaved changes to the current font file,
a warning message box will pop-up asking the user if the changes should
be saved. Then the Font Editor will load in the system font. The system
font is loaded as if it were a font file, filling in the header information and
loading all the character bitmaps. The reason for having New use the sys
tem font is that there are many fields of information in the font's header,
and it is easier for the user to have some default values to begin with than
to start from scratch.

Open ...

When Open ... is chosen, if there are unsaved changes to the current font
file, a warning message box will pop-up asking the user if the changes
should be saved. Then a dialog box will be displayed near the upper left
corner of the main window, prompting the user to pick a font file to load
by showing the following fields:

134

Current directory
(static text) Reports what the current directory is.

Filename
(entry field) Defines the name of the font file to open

Available files
(listbox) Lists the files in the current directory with the
default extension .fnt.

Toolkit Utilities

Save

Save writes the Font Editor's copy of the font file out to the disk. The
Alt+F3 key combination will be an accelerator for Save.

When a proportional spaced font file with a codepage the Font Editor
knows about is saved, the Font Editor will do some error checking on the
widths of certain characters which should have the same widths. Upon
saving, the characters which should have the same widths will be checked
to make sure they agree with each other. If character width mismatches
are found, the following dialog box informing the user of mismatched char
acters will be displayed to allow the user to save the font file anyway, or
return to editing characters to fix the mismatches.

The characters which should have the same widths are:

0123456789$
' .
• ,space
+<>=
()
[]
{ }
OQ
il
hnu
bdpq
accented characters and their unaccented counterparts

Save As ...

Save As brings up a dialog box which prompts the user for the name in
which to save the font. It contains the following fields:

Current directory
(static text) Reports what the current directory is.

Filename
(entry field) Defines the name of the file in which to save.

Save As ... also will do error checking for proportional spaced fonts as
described under Save.

15.2.2.2.2 Edit Pop-down

The Edit pop-down has the choices:

• Cut

• Copy

• Paste

135

MS OS/2 Presentation Manager Reference

• Undo

• Restore

Cut copies the whole character in the character window to the Clip
board, replacing it with all white pixels.

Copy copies the whole character in the character window to the Clip
board.

Paste fills the character window with the character in the Clipboard.

Undo restores the character window to its previous state, before the
last change. If the last action was to post the character into the
Font Editor's copy of the font file, Undo does nothing. That is to
say, Undo can only nullify the last action if the action only
affected the character in the character window, and did not
affect the highlighted character in the character-selection win
dow.

Restore cancels any changes made to the edited character by recopying
the character from the character-selection window to the charac
ter window.

15.2.2.2.3 Header Pop-down

The Header pop-down contains the choices:

• Naming ...

• General. ..

• Sizes ...

• Relations ...

The font's header contains information about the font's size, style, weight,
and other information. Since there is so much information in the header, it
was impossible to present all the header information to the user in one dia
log box. Thus the header information is broken into four separate dialog
boxes.

Here is a complete list of all of the fields in the font's header. Following
will be separate lists of what information is in each dialog box.

Typeface name
(entry field) The typeface name to which the font is designed,
e.g., Times Roman.

Registry ID
(entry field) The Registry number for the font.

136

Toolkit Utilities

Character Set/Code Page
(entry field) Defines the Registered Code Page supported by the
font.

First Character Code Point
(entry field) The code point of the first character in the font.

Last Character Code Point
(entry field) The code point of the last character in the font.

Default Character Code Point
(entry field) The code point which is used if a code point outside
the range supported by the font is used.

Break Character Code Point
(entry field) The code point which represents the 'space' or
'break' character for this font.

Nominal Vertical Point Size
(en try field)The height of the font specified in decipoin ts (one
720th of an inch). This nominal size is the size for which the font
is designed.

Minimum Vertical Point Size
(entry field) The minimum height to which the font may be
scaled down for display.

Maximum Vertical Point Size
(entry field) The maximum height to which the font may be
scaled up for display.

Weight Class
(group of radiobuttons) Indicates the visual weight (thickness of
strokes) of the characters in the font. Choices are Ultra-light,
Extra-light, Light, Semi-light, Medium (normal), Semi-bold,
Bold, Extra-bold, and Ultra-bold.

Width Class
(group of radiobuttons) Indicates the relative aspect ratio of the
character of the font in relation to the 'normal' aspect ratio for
this type of font. Choices are:

• Ultra-condensed

• Extra-condensed

• Condensed

• Semi-condensed

• Medium (normal)

• Semi-expanded

• Expanded

137

MS OS/2 Presentation Manager Refer~nce

• Extra-expanded

• Ultra-expanded

Spacing (2 radiobuttons) Indicates whether the font is fixed or propor
tional spaced.

Protected

Styles

(check box) Says whether the font is licensed or not.

(group of checkboxes) Contain information concerning the
nature of the font patterns, as follows:

• Italic

• Underscored

• Overstruck

• Negative Image

• Hollow Characters

Font Measurement Units
The units of measure in the font definition. Consists of:

XUnit Base
(2 radiobuttons) Describes the unit of measure base for
x dimension. Tens of inches or decimeters.

Y Unit Base
(2 radiobuttons) Describes the unit of measure base for
y dimension. Tens of inches or decimeters.

X Unit Value
(entry field) The number of x units of measure in the x
unit base - e.g., an x and y unit of 1/1440th of an inch
would be represented as 0, 0, 14400, 14400.

Y Unit Value
(entry field) The number of y units of measure in the y
unit base.

Target Device Resolution - X
(entry field) The resolution in the x dimension of the device for
which the font is intended, expressed as the number of device
units per unit of measure.

Target Device Resolution - Y
(entry field) The resolution in they dimension of the device.

Average Character Width
(static text) Average inter-character increment for the font;
based on the "Average Character Definition Formula".

Maximum Character Increment

138

(entry field) The maximum inter-character increment for the
font.

Toolkit Utilities

Maximum Baseline Extent
(entry field) This is essentially the vertical space required by the
font - i.e., the nominal inter-line gap.

Character Slope
Defines the nominal slope for the characters of a font. The slope
is defined in degrees increasing clockwise from the vertical. An
Italic font is a typical example of a font with a non-zero slope.
Consists of:

Degrees (entry field) Value in the range 0-359, representing the
number of degrees in the slope.

Minutes (entry field) Value in the range 0-59, representing the
number of minutes in the slope.

lnline Direction
The direction in which the characters in the font are designed
for viewing, in degrees increasing clockwise from the horizontal
(left-to-right). Characters are added to a line of text along the
character baseline in the inline direction. Consists of:

Degrees (entry field) Value in the range 0-359, representing the
number of degrees in the direction

Minutes (entry field) Value in the range 0-59, representing the
number of minutes in the direction

Character Rotation
The baseline direction for which the characters in the font are
designed. Consists of:

Degrees (entry field) Value in the range 0-359, representing the
number of degrees in the rotation

Minutes (entry field) Value in the range 0-59, representing the
number of minutes in the rotation

Maximum Ascender
(entry field) The maximum height above the baseline reached by
any part o(any symbol in the font.

Maximum Descender
(entry field) The maximum depth below the baseline reached by
any part o(any symbol in the font.

Em Height

'x' Height

(entry field) The (average) height above the baseline for upper
case characters.

(entry field) The (average) height above the baseline for lower
case characters.

139

MS OS/2 Presentation Manager Reference

Lower Case Ascent
(entry field) The maximum height above the baseline reached by
any part o(any lower case symbol in the font.

Lower Case Descent
(entry field) The maximum depth below the baseline reached by
any part o(any lower case symbol in the font.

Recommended Subscript Size
(entry field) The recommended point size for subscripts for this
font.

Recommended Subscript Position
(entry field) The recommended baseline offset for subscripts for
this font.

Recommended Superscript Size
(entry field) The recommended point size for superscripts for this
font.

Recommended Superscript Position
(entry field) The recommended baseline offset for superscripts for
this font.

Underscore Position
(entry field) The position of the (first) underscore stroke from
the baseline.

Underscore Count
(entry field) The number of strokes used to underscore the char
acters in the font.

Underscore Width
(entry field) Thickness of the underscore. (Integer +fraction).

Underscore Spacing
(entry field) The spacing used between multiple underscores.

Strikeout Offset
(entry field) The position of the overstrike stroke relative to the
baseline.

Strikeout Thickness
(entry field) Thickness of the overstrike stroke. (Integer + frac
tion).

Naming ...

The Naming dialog box contains the information:

• Typeface Name

• Registry ID

140

Toolkit Utilities

• Protected (licensed)

• Character Set/Code Page

• First Character Code Point

• Last Character Code Point

• Default Character Code Point

• Break Character Code Point

General ...

The General dialog box contains the information:

• Spacing (Fixed or Proportional)

• Style Options

• Underscored

• Italic

• Overstruck

• Hollow Characters

• Negative Image

• Width Class (Ultra-condensed through Ultra-expanded)

• Weight Class (Ultra-light through Ultra-bold)

It is possible to change the font from being proportionally spaced to fixed
spaced and vice-versa, merely by changing the spacing option. This basi
cally changes nothing when going from a fixed spaced font to a propor
tional font - the user must do any of the character size and spacing adjust
ments necessary. Going from a proportional font to fixed spacing does two
(destructive) things:

1. The font character definitions are all made the same width - the
width of the largest character in the proportional spaced font.

2. The font spacing information is changed so that inter-character
spacing is the same for all characters.

Changing a font from proportional to fixed width may cause considerable
damage to a font definition because of stretching or compression on its
narrow and wide characters. Therefore the Font Editor displays a warning
message to notify the user of the font alteration and offers the option to
cancel it.

141

MS OS/2 Presentation Manager Reference

Sizes ...

The Sizes dialog box contains the following information:

• Nominal Vertical Point Size

• Minimum Vertical Point Size

• Maximum Vertical Point Size

• Font Measurement Units (X Unit Base, Y Unit Base, X Unit Value,
YUnit Value

• Target Device Resolution - X

• Target Device Resolution - Y

• Average Character Width

• Maximum Character Increment

• Maximum Baseline Extent

• Maximum Ascender

• Maximum Descender

• Em Height

• 'x' Height

• Lower Case Ascent

• Lower Case Descent

Relations ...

The Relations dialog box contains the following information:

• Character Slope

• Inline Direction

• Character Rotation

• Underscore Position

• Underscore Count

• Underscore Width

• Underscore Spacing

• Strikeout Offset

• Strikeout Thickness

• Recommended Subscript Size

142

Toolkit Utilities

• Recommended Subscript Position

• Recommended Superscript Size

• Recommended Superscript Position

15.2.2.2.,f. Width Pop-down

The Width pop-down has the choices:

1 Narrower left
2 Narrower right
3 Narrower both
4 Wider left
5 Wider right
6 Wider both
7 Set width .•.

If the font being edited is a fixed spaced font, then all of the Width pop
down choices will be grayed and non-selectable.

Narrower Left
deletes a column from the left side of the character's bitmap.

Narrower Right
deletes a column from the right side of the character's bitmap.

Narrower Both
deletes a column from each side of the character's bitmap.

Wider Left
adds a blank column to the left side of the character's bitmap.

Wider Right
adds a blank column to the right side of the character's bitmap.

Wider Both
adds a blank column to each side of the character's bitmap.

Note: Making characters wider than the maximum character width will
bring up a message box confirming that the maximum character width will
be increased.

Set Width ...

Set Width ... calls up the Width dialog box, which allows the user to
change the width of the current character's bitmap. If the user specifies a
width smaller than the current width, columns are deleted from the right
side of the character's bitmap. If the user specifies a width larger than the
current width, blank columns are added to the right side of the character's
bitmap. If the specified size is larger than the maximum character width, a
message is displayed which asks if the maximum width should be
increased.

143

MS OS/2 Presentation Manager Reference

Width (entry field) Defines the width (in pixels) of the character.

15.2.2.2.5 Shift Pop-down

The Shift pop-down contains the choices:

1 Insert row
2 Delete row
3 Insert column
4 Delete column

These commands are used to insert or delete a row or column of pixels
from within the character. Both commands require the user to select a row
or column of pixels in the character window. When either command is
chosen from the Shift pop-down, the mouse pointer changes to a horizon
tal bar (for insert/delete row) or a vertical bar (for insert/delete column)
to signal to the user that a row or column must now be selected. The user
selects the row or column by clicking the mouse pointer over the desired
row or column.

Insert row
inserts a new row of white pixels where the selected row is, push
ing all other rows up or down depending on where the selected
row was located. If the selected row is above the baseline, Insert
pushes rows up to make room for the new row. If the selected
row is below the baseline, Insert pushes rows down to make
room the new row.

Delete row
removes the selected row of pixels from the character, pushing
all other rows up or down to take the removed row's place. If the
selected row is above the baseline, Delete pushes rows above the
selected row down towards the baseline. If the selected row is
below the baseline, Delete pushes rows below the selected row up
towards the baseline.

Insert column
inserts a new column of white pixels where the selected column
is, pushing all other columns left or right depending on where
the selected column was located. If the selected column is on the
left half of the character, Insert pushes columns to the left to
make room for the new column. If the selected column is on the
right half of the character, Insert pushes columns to the right to
make room for the new column. If the selected column is in the
exact center of the character, Insert will push columns to the
right to make room for the new column.

Delete column

144

removes the selected column of pixels from the character, push
ing all other columns left or right to take the removed column's
place. If the selected column is on the left half of the character,

Toolkit Utilities

Delete pushes columns to the left of the selected column towards
the center of the character. If the selected column is on the right
half of the character, Delete pushes columns to the right of the
selected column towards the center of the character. If the
selected column is in the exact center of the character, Delete
will push columns to the right of the selected column towards
the center.

15.2.2.2.6 Exit Pop-down

The Exit pop-down contains the choices: Exit Font Editor, and Continue
Font Editor.

Exit Font Editor will end the application. If there are unsaved changes to
the current font, a warning message box will be displayed asking the user
if the changes should be saved. The F3 key will be an accelerator for Exit.

Continue Font Editor resumes the application.

15.2.3 Help

Context sensitive Help will be provided for the Font Editor as described in
the document Help Facility For The Dialog, Font, and Icon Editors.

15.3 Icon Editor Functional Specification

This document gives a functional specification of the Icon Editor, a MS
OS/2 Presentation Manager application. It describes the physical appear
ance of the application when running under MS OS/2 Presentation
Manager, and also how the user interacts with the application, i.e., what
the assorted commands do, and how to edit icons, pointers, and bitmaps.

The Icon Editor lets the user create customized icons, pointers, and bit
maps for use in applications. The application allows the user to work on a
large-scale icon, pointer, or bitmap while displaying a full-scale replica of
the work. The difference between icons, pointers, and bitmaps is as fol
lows: Note: In this .document, the terms hi-res, med-res1 lo-res will refer to
different categories of display devices. Lo-res refers to ' CGA" compatible
displays (640x200). Med-res refers to "EGA" compatible displays
(640x350, 640x480). Hi-res refers to any displays which have a higher reso
lution than the "EGA" displays. Also, the following dimensions given for
icons and pointers are still subject to change depending on what MS OS/2
Presentation Manager will be like.

145

MS OS/2 Presentation Manager Reference

Icons and Pointers contain 64x64 pixels in hi-res format, 32x32 pixels in
med-res format, and 32x16 pixels in lo-res format. They can contain four
different kinds of pixels in them: black pixels, white pixels, screen pixels,
and inverse screen pixels. Screen pixels can be thought of as clear, and
show the background color of whatever they are over. Inverse screen pixels
show the inverse of the background color of whatever they are over. An
example use of an icon is the warning symbol of the upraised hand found
in some message boxes. Pointers are used by :MS OS/2 Presentation
Manager to show the location of the mouse on the screen.

The pixels in an icon/pointer are stored in a bitmap which is divided in
two parts: the AND mask and the XOR mask. The AND mask contains
the screen/non-screen color information (0 = black or white, 1 =screen or
inverse screen). The XOR mask contains the invert information (0 =no
invert, 1 =invert). :MS OS/2 Presentation Manager draws the
icon/pointer by first BITBLTing to the screen the AND mask (the result is
a screen or black bitmap), and then BITBLTing to the screen the XOR
mask to invert the required pixels to get white and inverse screen pixels in
the bitmap. The chart below shows what the Icon Editor stores in the two
bitmasks:

AND mask: 0
XOR mask: 0

Black
0
1

Represented Color
White Screen Inverse

1 1
0 1

Bitmaps contain anywhere from lxl to 99x99 pixels. Their size is defined
by the user while using the Icon Editor. They can only contain two kinds
of pixels in them: black pixels or white pixels.

15.3.1 Application Appearance

15.3.1.1 Main Window

The main window consists of the following parts:

1. Editing box

2. Display box

3. Panel instructions

146

Toolkit Utilities

---~---------------

l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:s: Icon Editor: ABCLOGO.ICO IN: :x: I
---! I
File Edit Options Color Pensize Exit : Fl=Help 1

Use the mouse to edit. Button 1 draws black.

I ABC :

----------------------------------*
*---

S is the system icon
X is the maximize icon
N is the minimize icon

Figure 15.3 Presentation Manager Icon Editor

15.3.1.1.1 Editing Box

The editing box is a large rectangular box located on the right of the main
window. This box is the workspace for editing icons, pointers, and bit
maps, and its size depends on which of these is currently in use. The box is
a magnified view of a small part of the screen. Each pixel in the box is
many times larger than on the actual screen, so that you can see the indi
vidual pixels while doing your work.

15.3.1.1.2 Display Box

The display box is a smaller rectangular box located to the left of the edit
ing box. It contains the type of the current figure being edited, the device
category and dimensions of the figure being edited, the devic category and
dimensions of the figure being viewed in the display box, and a true-scale
replica of the figure being edited.

15.3.1.1.3 Panel Instructions

Below the Application Action Bar (AAB), left justified, will be instructions
on what to do. What the instructions say depends on the mode. (These
modes are discussed in full detail later in this document.)

147

MS OS/2 Presentation Manager Reference

Hotspot mode
Click Buttonl of the mouse in the edit box to set the hotspot.

Select mode
Use the mouse to select a region, and then choose Cut or Copy.

Editing mode
The instruction text will tell what color each mouse button will
draw. The possible combinations are too numerous to list fully
here. Some examples are:

"Use the mouse to Edit. Button! draws black. Button2 draws screen."
"Use the mouse to Edit. Button! toggles bl/wh. Button2 toggles
scr/inv."

For 1 button mouse:
"Use the mouse to Edit. Button! draws black."
"Use the mouse to Edit. Button! toggles scr/inv."

15.3.1.2 Title Bar

The window title bar will contain "Icon Editor - filename", where filename
is the name of the current file being edited. If there is no current file
loaded in the Icon Editor, the title bar will contain "Icon Editor - (unti
tled)".

15.3.1.3 Mouse Pointer Appearance

When the mouse pointer is over selectable objects, such as the AAB or
pop-down choices, it will be a black arrow with a white outline. When the
pointer is over non-selectable objects, i.e., the client area of the Icon
Editor's window minus the editing box, it will appear as a white arrow
with a black outline. When the mouse pointer is over the editing box, it
will appear as one of four different pointers, depending on the mode. When
the Icon Editor is in edit mode, the pointer will appear as a pencil if the
pen size is lxl, or a brush if the pen size is greater than lxl. When the
Icon Editor is in Hotspot mode, the pointer will appear as a bullseye.
"Yhen the Icon Editor is in Select mode, the pointer will appear as a plus
sign.

15.3.1.4 Logo Panel

When the application first starts up, it will look in the file WIN.IN! for a
flag specifying whether a logo panel should be displayed, and if it should
automatically continue to the program or have user controls on it to con
tinue or quit. The logo panel will appear as described in [user interface].

148

Toolkit Utilities

If the flag specified that the logo panel should automatically continue on
to the program, the line "Press Enter to continue or Esc to quit." would
not appear on the panel.

15.3.2 Application Actions

15.3.2.1 Main Window Interaction

When a icon, pointer, or bitmap file is loaded into the Icon Editor, a true
scale copy of the file's contents are shown in the display box, and a large
scale copy is shown in the editing box. The user can now use the mouse to
edit the figure in the editing box, or choose a pop-down from the AAB.

15.3.2.1.1 Drawing in the Editing Box

The user edits (or creates) the figure in the editing box by moving the
mouse pointer into the editing box and using buttonl and button2 (2-
button mouse) or buttonl (1-button mouse) to color and erase pixels. How
the mouse button(s) function depends on the figure being edited, the
current pen size, and the pen color selected from the Color pop-down. The
following charts define the functionality:

Icon/Pointer mode. Pensize>lxl.

pen color (selected from color pop-down)
black white screen inverse

Buttonl draws: black white screen inverse
Button2 draws: screen screen screen screen
(with 2 button mouse)

Icon/Pointer mode. Pensize=lxl. Color=Black or White.

pixel color (of what pen is over)
black white screen inverse

Buttonl draws: white black black black
Button2 draws: screen screen inverse screen
(with 2 button mouse)

Icon/Pointer mode. Pensize=lxl. Color=Screen or Inverse screen.

pixel color (of what pen is over)
black white screen inverse

Buttonl draws: screen screen inverse screen
Button2 draws: white black black black
(with 2 button mouse)

Bitmap mode. Pensize>lxl.

149

MS OS/2 Presentation Manager Reference

pen color (selected from color pop-down)
black white

Buttonl draws: black white
Button2 draws: white black
(with 2 button mouse)

Bitmap mode. Pensize=lxl.

pixel
black

Buttonl draws: white
Button2 draws: white
(with 2 button mouse)

color (of what pen
white

black
black

is over)

Several pixels can be colored or erased at once by pressing the appropriate
mouse button, and dragging the mouse pointer over the pixels which are
to be colored or erased. The user can draw straight lines by holding down
the SHIFT key while pressing a mouse button and dra~ging the pointer.
The user can also draw straight lines by selecting the' Draw straight"
choice from the Options pop-down.

15.8.2.1.2 Resizing the Main Window

When the window is resized, the editing box is resized and then the editing
and display boxes are redrawn to be centered in the new window. If the
window is too small, then parts of the boxes are clipped from view. The
editing box will be sized no smaller than having each edit cell 2x2 screen
pixels.

15.8.2.1.8 Display Device Formats

When MS OS/2 Presentation Manager loads an icon or pointer resource
for an application, it scales the figure to the current system icon or pointer
size. The current size depends on the display device MS OS/2 Presentation
Manager is running on. This way the application writer does not have to
worry about sizing his icon or pointer for different display resolutions. MS
OS/2 Presentation Manager will automatically do it for him, either sizing
his figure up or down depending on the size of the figure and the size of the
system icon or pointer.

When MS OS/2 Presentation Manager loads a bitmap resource for an
application, it does not scale the bitmap. It is the application's responsi
bility to stretch or compress the bitmap for its specific needs.

15.3.2.2 Application Action Bar

The application action bar contains the choices: File, Edit, Options,
Color, Pensize, and Exit. The underlined character is the mnemonic for
the choice. The choice Fl=Help is in the rightmost position.

150

Toolkit Utilities

15.3.2.2.1 File Pop-down

The File pop-down has four choices:

• New

• Open ...

• Save

• Save As ...

New

When New is chosen, if there are any unsaved changes to the current
figure, a warning message box will pop-up, saying "filename" has changed.
Save current changes. Then a dialog box will be displayed which prompts
the user to choose a figure and its display device format. When the. dialog
box is entered, the Icon Editor will clear the editing box and display box of
all their contents, and fill an icon or pointer with all screen pixels, .and a
bitmap with all white pixels.

Open ...

When Open ... is chosen, if there are unsaved changes to the current file, a
warning message box will pop-up asking the user if the changes should be
saved. Then a dialog box will be displayed near the upper left corner of the
main window, showing the following fields:

Current directory
(static text) Reports what the current directory is.

Filename
(entry field) Defines the name of the file to open.

Available files

Save

(listbox) Lists the files in the current directory with the current
edit default extension: .ico, .cur, or .bmp .

Save writes the current figure out to the current file. If the figure is unti
tled, (it was newly created without being read from a file), then the Save
As dialog box will be called up. The Alt+F3 key combination will be an
accelerator for Save.

Save As ...

When Save As ... is chosen from the pop-down, a dialog box is shown near
the upper left corner of the main window, showing the following fields:

151

MS OS/2 Presentation Manager Reference

Current directory
(static text) Reports what the current directory is.

Filename
(entry field) Defines the name of the file in which to save.

15.3.2.2.2 Edit Pop-down

The Edit pop-down has the choices:

• Select

• Select All

• Clear

• Cut

• Copy

• Paste

• Hotspot

Select

Select puts the Icon Editor in select mode.

In select mode, the pointer is changed to a plus sign(+), and is used to
select a rectangle of pixels in the editing box. The user selects the rectan
gle by clicking down on a pixel, dragging the mouse to another pixel, and
releasing the mouse button. While the user is dragging the mouse, he will
see the frame of a rectangle displayed from where the mouse pointer is to
the pixel the mouse pointer was clicked down on. You can change your
selection by doing the click-drag-release actions again.

Exit select mode by either choosing the Select choice again, or choosing
Clear, Cut or Copy from the Edit pop-down.

Select All

Select All also puts the Icon Editor in select mode but the entire figure is
automatically selected. You can change the selection by click-drag-release
actions as specified for Select.

Clear

Clear erases the selected rectangle of pixels by replacing them with white
pixels in bitmap mode, or with screen pixels in icon or pointer mode. The
Icon Editor returns to edit mode after executing this command. The Clear
command does not affect the Clipboard contents.

152

Toolkit Utilities

Cut

Cut will copy the selected rectangle of pixels to the Clipboard, and will
replace the pixels with white pixels in bitmap mode, and screen pixels in
icon and pointer mode.

In bitmap mode the Clipboard receives one bitmap. In cursor or icon
modes the Clipboard receives two objects: a black and white bitmap,
where white represents the figure's white and screen pixels, and black
represents the figure black and inverse screen pixels; and an object of a
format defined privately by the Icon editor, which maintains all the
figure's information. The privately defined object is for use only by the
Icon Editor.

After the Cut command has been done, the Icon Editor will be taken out
of select mode.

Copy

Copy will copy the selected rectangle of pixels to the Clipboard. The Clip
board new contents will be as specified in the Cut command section. After
the Copy command has been done, the Icon Editor will be taken out of
select mode.

Paste

Paste allows the user to copy pixels from the Clipboard to the currently
edited figure. If the currently edited figure is a pointer or an icon and the
Clipboard contains a figure defined in the Icon Editor private format, the
Clipboard contents will be scaled to the current display device resolution.
Otherwise the Clipboard contents will not be scaled.

If both Clipboard contents and figure are either icon or pointer, screen and
inverse screen information is preserved, otherwise only black and white
pixels are pasted using the Clipboard bitmap. For a summary refer to the
following table:

pasting bitmap bitmap into icon/ptr into icon/ptr into
into bitmap icon/ptr bitmap icon/ptr

-------------+---
Clipboard I
object used I bitmap bitmap bitmap icon/ptr
-------------+---
Scaling I no no no yes
-------------+---
Colors I Black/White Black/White Black/White Black/White and

screen/inverse

How the actual pasting is done depends on how the Clipboard contents fit
into the figure being edited. Let "larger" mean that a figure exceeds the
size of the currently edited figure in either dimension. If a figure is identi
cal in size in both dimensions to the currently edited figure, then it is the

153

MS OS/2 Presentation Manager Reference

"same size". Otherwise the figure is "smaller".

If the Clipboard figure is smaller, the frame of a rectangle representing the
pixels in the Clipboard will be displayed in the editing box. The user can
then move the frame to a location in the editing box by clicking inside the
rectangle, dragging the mouse, and then releasing at the desired location.
The editing box will then be repainted to incorporate the pixels from the
Clipboard.

If the Clipboard figure is larger than the current figure size (if you are edit
ing a pointer or an icon) or than the maximum bitmap size (if you are edit
ing a bitmap), a warning message will be displayed notifying the user that
part of the Clipboard contents will be clipped, and Paste will only copy
the pixels in the rectangle frame which intersect the editing box.

If the Clipboard figure is larger than the currently edited bitmap but
smaller than the bitmap maximum size, a warning message will be
displayed notifying the user that the current bitmap size will be increased
to the Clipboard figure size and that the later will replace entirely the pre
viously edited bitmap.

If the Clipboard figure has the same size, a warning message will be
displayed and, given the user confirmation, the Clipboard figure will
replace entirely the previous edited picture.

Hotspot

In an icon, the hotspot can be used by applications to determine where the
icon is on the screen. In a pointer, the hotspot is the pixel from which MS
OS/2 Presentation Manager will take the pointer's current screen coordi
nates. Bitmaps do not have hotspots.

The Hotspot choice is only enabled if editing an icon or pointer; if editing
a bitmap, Hotspot is grayed. When Hotspot is chosen, a checkmark is
placed next to it, information about the current hotspot location appears
in the display box (see picture be low), and the mouse pointer changes to a
bullseye. The hotspot is set by moving the mouse pointer to the location in
the icon or pointer, (in the editing box), where the hotspot is desired, and
clicking the mouse.

Only one hotspot is allowed, so clicking the bullseye pointer elsewhere will
reset the hotspot location. If the user does not set the hotspot, the default
location is the center of the icon or pointer. While in hotspot mode, Select,
Cut, Copy, and Paste are grayed. To leave hotspot mode, the user must
again select Hotspot from the pop-down; the checkmark is removed, the
other pop-down choices enabled, and the location information will disap
pear.

154

Toolkit Utilities

15.8.2.2.8 Options Pop-down

The Options pop-down has the choices: Grid, Draw straight, Black,
White, Dark (blue/gray), Light (blue/gray), Lo-res, Med-res, and
Hi-res.

All the choices in the Options pop-down affect what the user sees while
editing his figure, but do not affect what is actually stored in the figure.

Grid

When Grid is chosen, a checkmark is placed by it, and a grid of lines is
displayed over the editing box. Each grid cell represents one pixel in the
figure's bitmap. If the background color is Black, the grid is made up of
white lines. If the background is anything other than Black, the grid is
made up of black lines. Choosing Grid again will remove the checkmark
and remove the grid on the editing box.

Draw Straight

When Draw straight is chosen, a checkmark is placed by it, and the Icon
Editor will now draw/erase straight lines in the editing box. If the user
clicks on a pixel in the editing box and then drags his mouse horizontally,
the Icon Editor will force drawing a horizontal line, even if the user devi
ates from the horizontal row. Similarly, if the user clicks down on a pixel
and then drags his mouse vertically, the Icon Editor will draw a vertical
line. Once the user releases the mouse button, the current direction which
was being forced is no longer forced. To leave the Draw straight mode, the
user must choose the Draw straight choice again. The user can also draw
straight lines by holding down the SHIFT key while pressing a mouse but
ton and dragging the pointer.

Black, White, Dark {blue/gray), Light {blue/gray)

These choices will have the text "Background View:" above them on the
Options pop-down. If the user is running on a color display, the third and
fourth choices will be Dark blue and Light blue. If the user is running on a
monochrome display, the third and fourth choices will be Dark gray and
Light gray.

The background color is provided to allow the user to see what his icon,
pointer, or bitmap will look like over a variety of different screen colors. It
is for viewing purposes only, it does not affect what is stored inside the
icon, pointer, or bitmap. The background color does not actually fill in
pixels in the figure; it is seen through screen pixels and its inverse is seen
through inverse screen pixels. When one of the color choices is chosen, a
checkmark is placed by it and the editing box and display box are
redisplayed with the new background color.

155

MS OS/2 Presentation Manager Reference

Lo-res, Med-res, Hi-res

These choices will have the text "Display Version View:" above them on
the Options pop-down. If the user is editing a dependent bitmap, these
choices will be grayed.

These choices decide which display version of the current figure to show in
the display box. If the user is editing either an icon or pointer, the Icon
Editor will use the same algorithm :MS OS/2 Presentation Manager will
use to either compress or stretch the figure to be the same size as the
chosen display version's system icon or pointer. For independent bitmaps,
the Icon Editor will use the same algorithm :MS OS/2 Presentation
Manager will use to scale the bitmap up or down depending on the chosen
display version. (The scaling factors have not been decided at the time of
writing). If the user is editing a dependent bitmap, the display version will
be ignored, and the figure in the display box will be exactly the number of
pixels the user specified for the bitmap.

15.3.2.2 . ..f. Color Pop-down

The Color pop-down has the choices: Black, White, Screen, and Inverse
screen.

In pointer and icon mode, all pen color choices are enabled. In bitmap
mode, Screen and Inverse screen are grayed because bitmaps can only con
tain black or white pixels.

The pen color choice always refers to Button! of the mouse. If the user is
using a 2-button mouse, the color of Button2 will be based on the color
selected for Button!. The panel instructions will describe which colors are
assigned to each mouse button.

When one of the choices is chosen, a checkmark is placed next to it and
the current pen color is set to the new choice.

15.8.2.2.5 Pensize Pop-down

The Pensize pop-down has the choices: Small (lxl), Medium
(3x3), Large (5x5), and Extra large (7x7).

When one of the choices is chosen, a checkmark is placed next to it and
the current pen size is set to the new choice. Now drawing in the editing
box will fill a region of pixels equal to the new size.

156

Toolkit Utilities

When the pen size is greater than one pixel, the region filled will be
located around the tip of the pen pointer, i.e., the pen pointer's tip will be
in the center of the 3x3 region (medium size) or 5x5 region (large size) or
7x7 region (extra large size).

15.3.2.2.6 Exi't Pop-down

The Exit pop-down contains the choices: Exit Icon Editor, and Continue
Icon Editor.

Exit Icon Editor will end the application. If there are unsaved changes to
the current figure, a warning message box will be displayed asking the user
if the changes should be saved. The F3 key will be an accelerator for Exit.

Continue Icon Editor resumes the application.

15.3.3 Help

Context sensitive Help will be provided for the Icon Editor, as defined in
the document Help Facility for the Dialog, Font, and Icon Editors.

15.4 Help Facility for the Dialog,
Font, and Icon Editors

The purpose of Help is to provide information to the user which aids in the
operation of an application. When the user requests Help, information
regarding the item selected in the current context is displayed. The user
can also request an index of available Help topics, request General Help, or
request information on the functions assigned to keys.

The appearance and function of the Help Facility for the Dialog, Font and
Icon Editors is the same as for the Shell.

157

MS OS/2 Presentation Manager Reference

Here is a picture of what the Help window might look like for the Editors:

++-+--+-+-+-++
I IS I Dialog Box Edi tor: SWRITE I
++-+--+-+-+-+:
I File Edit Control Include Options Exit I Fl=Helpl
+--+-:

+-+---+-+-+
IS I Dialog Box Edi tor Help : N: :
+-+---+-+-:

Sizing a control IA'
---------------- +-

1/ To size a control, first select it. The control
will be given a grayed border and +handles+.

I
I
+-
I
I

2/ Point to the +handle+ of the side or corner you :
want to move. :

I
I

3/ When the pointer appearance changes to a box, :
press mouse button l, and move the box to the :
place required. +-

4/ :v,
+---+-:
I (Esc=Cancel) (Fl=General Help) (FS=Index) (F9=Keys) I
+---+

IA' +-
' I
+-

+-:
:v1

+--+--+---+--%-:
:<-: : :->I :
+--+--+---+--+-+

A sample help window

15.5 Resource (.res) File Specification

The format for the .res file is as follows:

(/TYPE NAME FLAGS SIZE BYTES/)+

158

Where:

TYPE

Toolkit Utilities

is either a null-terminated string or an ordinal, in which case the
first byte is OxFF followed by an INT which is the ordinal.

/* Predefined resource
#define RT_POINTER
#define RT_BI'IMAP
#define RT_ICON
#define RT_MENU
#define RT_DIALOG
#define RT_STRING
#define RT_FONTDIR
#define RT_FONT
#define RT_ACCELTABLE
#define RT_DLGINCLUDE

types */
MAKEINTRESOURCE (1)
MAKEINTRESOURCE (2)
MAKEINTRESOURCE(3)
MAKEINTRESOURCE (4)
MAKEINTRESOURCE (5)
MAKEINTRESOURCE(6)
MAKEINTRESOURCE(7)
MAKEINTRESOURCE(8)
MAKEINTRESOURCE (9)
MAKEINTRESOURCE(lO)

NA11E is the same format as TYPE. There are no predefined ordinals.

FLAGS is an unsigned value containing the memory manager flags:

#define NS TYPE Ox0007 /* Segment type mask */
#define NSCODE OxOOOO /* Code segment */
#define NS DATA OxOOOl /* Data segment */
#define NSITER Ox0008 /* Iterated segment flag */
#define NS MOVE Ox0010 /* Movable segment flag */
#define NSPURE Ox0020 /* Pure segment flag */
#define NSPRELOAD Ox0040 /* Preload segment flag */
#define NSEXRD Ox0080 /* Execute-only (code segment),

* or read-only (data segment)
#define NSRELOC OxOlOO /* Segment has relocations */
#define NSDEBUG Ox0200 /* Segment has debug info */
#define NSDPL OxOCOO /* 286 DPL bits */
#define NSDISCARD OxlOOO /* Discard bit for segment

SIZE is a LONG value telling how many bytes follow in the resource.

BYTES is the stream of bytes that makes up the resource.

Any number of resources can appear one after another in the .res file.

15.6 Resource Script File Specification

15.6.1 Resource Script File

The resource script file defines the names and attributes of the resources to
be added to the application's executable file. The file consists of one or
more resource statements that define the resource type and original file.

159

*/

*/

MS OS/2 Presentation Manager Reference

The following is a list of the resource statements:

Single-line statements

• POINTER

• ICON

• BITMAP

• FONT

• DLGINCLUDE

User-defined resources

Multiple-line statements

• STRINGTABLE

• ACCELTABLE

• MENU

• DLGTE:MPLATE

• WINDOWTEMPLATE

Directives

• #include

• #define

• #undef

• # ifdef

• #ifndef

• #if

• #elif

• #else

• #endif

The following sections describe these statements in detail.

15.6.1.1 Single Line Statements

The single line statements define resources that are contained in a single
file, such as pointers, icons, and fonts. The statements associate the
filename of the resource with an identifying name or number. The resource
is added to the executable file when the application is created, and can be
extracted during execution by referring to the name or number.

160

Toolkit Utilities

The general form for all single line statements is:

resource-type nameID (.load-option.) (.mem-option.)filename

nameID is either a unique name or an integer number identifying the
resource. For a FONT resource, the namelD must be a number; it cannot
be a name.

resource-type is one of the following keywords, specifying the type of
resource to be loaded:

Keyword

POINTER

Resource Type

A pointer resource is a bitmap defining the shape of the
mouse pointer on the display screen.

ICON An icon resource is a bitmap defining the shape of the icon
to be used for a given application.

BITMAP A bitmap resource is a custom bitmap that an application
intends to use in its screen display or as an item in a menu.

FONT A font resource is simply a file containing a font. The for
mat of a font file is defined in Appendix C.

DLGINCLUDE
This statement tells the dialog box editor which file to use
as an include file for the dialog boxes in the resource file.
The Nameid is not applicable.

load-option is an optional keyword specifying when the resource is to be
loaded. It must be one of the following:

PRELOAD
Resource is loaded immediately

LOADONCALL
Resource is loaded when called

The default is LOADONCALL.

The mem-option consists of the following keyword or keywords, specifying
whether the resource is fixed or moveable and whether it is discardable:

FIXED Resource remains at a fixed memory location

MOVEABLE
Resource can be moved if necessary to compact memory

DISCARD ABLE
Resource can be discarded if no longer needed

161

MS OS/2 Presentation Manager Reference

The default is MOVEABLE and DISCARDABLE for POINTER, ICON,
and FONT resources. The default for BITMAP resources is MOVEABLE.

filename is an ASCII string specifying the MS OS/2 filename of the file
containing the resource. A full pathname must be given if the file is not in
the current working directory.

Examples:

POINTER pointer point.cur
POINTER pointer DISCARDABLE point.cur
POINTER 10 custom.cur

ICON desk desk.ice
ICON desk DISCARDABLE desk.ice
ICON 11 custom.ice

BITMAP disk disk.bmp
BITMAP disk DISCARDABLE disk.bmp
BITMAP 12 custom.bmp

FONT 5 CMROMAN.FON

15.6.1.2 User-Defined Resources

An application can also define its own resource. The resource can be any
data that the application intends to use. A user-defined resource statement
has the form:

RESOURCE typeID nameID (.load-option.) (.mem-option.) filename

typelD is either a unique name or an integer number identifying the
resource type. If a number is given, it must be greater than 255. The type
numbers 1 through 255 are reserved for existing and future predefined
resource types.

namelD is either a unique name or an integer number identifying the
resource.

load-option is an optional keyword specifying when the resource is to be
loaded. It must be one of the following:

PRELOAD
Resource is loaded immediately

LOADONCALL
Resource is loaded when called

The default is LOADONCALL.

162

Toolkit Utilities

mem-option consists of the following keyword or keywords, specifying
whether the resource is fixed or moveable and whether it is discardable:

FIXED Resource remains at a fixed memory location

MOVEABLE
Resource can be moved if necessary to compact memory

DISCARDABLE
Resource can be discarded if no longer needed

The default is MOVEABLE.

filename is an ASCII string specifying the MS OS/2 filename of the file
containing the pointer bitmap. A full pathname must be given if the file is
not in the current working directory.

Example:

RESOURCE MYRES array data.res
RESOURCE 300 14 custom.res

15.6.1.3 Codepage Flagging

The following resource types each have a codepage associated with them:

• STRINGTABLE

• ACCELTABLE

• MENU
• WINDOWfEMPLATE and DLGTEMPLATE

The codepage is encoded in the resource, and the data in the resource is
assumed to be in the specified codepage. However, no checking is per
formed.

The following codepages may be specified:

• 437

• 850

• 860

• 863

• 865

If the codepage is not specified, then codepage 850 is assumed.

163

MS OS/2 Presentation Manager Reference

15.6.1.4 STRINGTABLE Statement

The STRINGTABLE statement defines one or more more string resources
for an application. String resources are simply null-terminated ASCII
strings that can be loaded when needed from the executable file, using the
LoadString function.

The STRINGTABLE statement has the form:

STRINGTABLE (.load-option.) (.mem-option.) (.codepageid.)
BEGIN
string-definitions
END

where string-definitions are one or more ASCII strings, enclosed in double
quotation marks and preceded by an identifier. The identifier must be an
integer.

load-option is an optional keyword specifying when the resource is to be
loaded. It must be one of the following:

PRELOAD
Resource is loaded immediately

LOADONCALL
Resource is loaded when called

The default is LOADONCALL.

The optional mem-option consists of the following keyword or keywords,
specifying whether the resource is fixed or moveable and whether it is dis
cardable:

FIXED Resource remains at a fixed memory location

MOVEABLE
Resource can be moved if necessary to compact memory

DISCARD ABLE
Resource can be discarded if no longer needed

The default is MOVEABLE and DISCARDABLE.

Example:

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN

END

164

IDS_HELLO, "Hello"
IDS_GOODBYE, "Goodbye"

Toolkit Utilities

Note: In addition to the STRINGTABLE keyword, there is an equivalent
MESSAGETABLE keyword. It is identical to the STRINGTABLE except
that a different resource ID value is generated on compilation. The MES
SAGETABLE keyword is mainly used for :MS OS/2 Presentation Manager
error messages and need not be used by applications.

15.6.1.5 Accelerator Tables

The ACCELTABLE statement defines a table of accelerator keys for an
application.

An accelerator is a keystroke defined by the application to give the user a
quick way to perform a task. The TranslateAccelerator function is used to
translate accelerator messages from the application queue into
WM.... CO:M1v1AND, WM.... HELP or WM.... SYSCOMMAND messages.

The ACCELTABLE statement has the form:

ACCELTABLE <id> <memory mgr flags> <codepageid>
BEGIN

<keyval>, <cmd>, <acceloption , acceloption >

END

id is the resource id.

Codepageid

keyval is the accelerator character code. This can either be a constant,
or a quoted character. If it is a quoted character, then the CHAR
acceloption is assumed. If the quoted character is preceded with
an up-arrow character, then a control character is specified.

cmd is the value of the WM.... COMMAND, WM.... HELP or
WM.... SYSCOMMAND message generated from the accelerator
for the indicated key.

acceloption
defines the kind of accelerator.

The VIRTUALKEY, SCANCODE, and CHAR acceloptions
specify the type of message that will match the accelerator. Only
one of these options may be specified per accelerator.

The acceloptions SHIFT, CONTROL, and ALT, cause a match
of the accelerator only if the corresponding key is down.

If there are two accelerators that use the same key with different
SHIFT, CONTROL, or ALT options, the more restrictive
accelerator should be specified first in the table. For example,
Shift-Enter should be placed before Enter.

165

MS OS/2 Presentation Manager Reference

The SYSCOMMAND acceloption causes the keystroke to be
passed to the application as a WM_ SYSCO:MMAND message. If
it is not specified, a WM_ COMMAND message is used.

The HELP acceloption causes the keystroke to be passed to the
application as a WM-HELP message. If it is not specified, a
WM_ COMMAND message is used.

Note that the AF_:XXX form of these constants can also be
used. These can be OR'ed together, e.g., A.F_CHAR I
AF_HELP. (See the section on accelerator tables).

Example:

ACCELTABLE MainAcc
BEGIN

END

"S", 101, CONTROL
"G", 102, CONTROL

This would be used to generate WM_ COMMAND messages with values of
101 and 102 from Control-Sand Control-G. This might be used in con
junction with menu options for Saving and Getting files, for example.

15.6.1.6 MENU Statement

The MENU statement defines the contents of a menu resource. A menu
resource is a collection of information that defines the appearance and
function of an application menu. A menu is a special input tool that lets a
user select commands from a list of command names.

The MENU statement has the form:

MENU <menu!D> <load option> <mem-option> <codepageid>
BEGIN

END

MENUITEM "string", <cmd>, <flags>
if (<flags> includes M!s__poPOP)
BEGIN

MENUITEM
END

menulD is a name or number used to identify the menu resource.

load-option
is an optional keyword specifying when the resource is to be
loaded. It must be one of the following:

PRELOAD
Resource is loaded immediately

166

Toolkit Utilities

LOADONCALL
Resource is loaded when called

The default is LOADONCALL.

mem-option
is optional. It consists of the following keyword or keywords,
specifying whether the resource is fixed or moveable and whether
it is discardable:

FIXED Resource remains at a fixed memory location

MOVEABLE
Resource can be moved if necessary to compact
memory

DISCARD ABLE

Codepageid

MENUITEM

Resource can be discarded if no longer needed

is a special resource statements used to define the items in the
menu. These are discussed in more detail in the next section.

Example

The following is an example of a complete MENU statement:

MENU sample
BEGIN

MENUITEM "Alpha", 100, MIS_TEXT
MENUITEM "Beta", 101, MIS_TEXT:Mrs_SUBMENU
BEGIN

MENUITEM "Item 1", 200 MIS_TEXT
MENUITEM "Item 2", 201, MIS_TEXT:MIA.._CHECKED

END
END

15.6.1.6.1 Menu Item Definition Statements

MENUITEM statements are used in the item-definition section of a MENU
statement to define the names and attributes of the actual menu items.
Any number of statements can be given; each defines a unique item. The
order of the statements defines the order of the menu items. Note: The
MENUITEM statements can only be used within an item-definition section
of a MENU statement.

167

MS OS/2 Presentation Manager Reference

MENUITEM "string", <cmd>, <flags>

string

168

is an ASCII string, enclosed in double quotation marks, specify
ing the name of the menu item.

The string can contain the escape characters \ t and \a. The \ t
character inserts a tab in the string when displayed and is used
to align text in columns. Tab characters should be used only in
popup menus, not in menu bars. The \a character right~justifies
all text that follows it.

The Tab and Right Justify functions work as follows:

• When formatting a Pull-down menu, two lengths are defined:

1. The maximum length of any string before a \ t or
\a.(First Length)

2. The maximum length of any string following a \ t or \a.

• The total width of the menu is equal to the sum of the two
lengths plus the width of a blank character.

• A string with a \ t embedded is formatted so that all the text
prior to the \ t is presented left justified. The text following
the \ t is presented starting at an x position equal to the
start of the prior text plus the First Length plus the width of
a blank character.

• A string with a \a embedded is formatted like a string with
a \ t embedded, except that the text following the \ t is posi
tioned so that it is right justified.

After compilation, the menu resource contains the \ t and \a
indicators as control characters. For example, the \ t is stored as
Ox09.

One of the main uses of these functions is to present accelerator
keys which are equivalent to the selection of a given menu item.
For example a menu might appear as:

Insert Text Ctrl+I
Delete Text Ctrl+D
Copy Text Ctrl+C
Search Text Ctrl+S

The Ctrl+* text is a description of the Accelerator Key for the
menu item and should be coded in the menu item text string
with a preceding \ t. In this way, it is not necessary to calculate
widths of text in order to get correct appearance of the menu.

To insert a double quote character(") in the text, use two dou
ble quote characters ("").

cmd

flags

Toolkit Utilities

The string can also contain a tilde character indicating that the
following character is used as a mnemonic character for the
item. A full explanation of the use of mnemonics is given in the
section dealing with Menus.

If <flags> does not contain MIS_ TEXT, the string is ignored
but must still be specified. An empty string ('"') should be
specified in this case.

is an integer number. This number is used as the command value
in the WM_ COMMAND message (or WM_ SYSCOMMAND
message, if MIS_ SYSCOMMAND is specified in <flags>),
which is sent to the owner window when the user selects the
menu item. Hence it identifies the selection made and should be
unique within one menu definition.

This is the same as the idltem field in the Menu Template for an
Item.

are one or more menu options defined by the MIS_ and MIA
constants, ORed together with the l operator. These constants
and their meaning are fully defined in the section on Menu Con
trols.

Examples:

MENUITEM "Alpha", 1, MIS_TEXTIMIA_ENABLEDIMIA_CHECKED
MENUITEM "Beta", 2, MIS_TEXT

15.6.1.6.2 Pull-down Menus/Submenus

As well as simple items, a menu definition can contain the definition of a
Pull-down Menu or Submenu. The main menu appears as a horizontal bar
of items at the top of the window to which it relates. Pull-down menus
appear as vertical lists running downwards from an item in the main
menu, which only become visible as the result of a selection on the item in
the main menu.

The definition of a Pull-down menu is very similar to that of the main
menu - it consists of a list of MENUITEM statements. It is introduced by
an item in the main menu which has the MIS-SUBMENU constant set.

169

MS OS/2 Presentation Manager Reference

Example:

MENU chem
BEGIN

MENUITEM "elements", 2, MIS_TEXTiMIS_SUBMENU
BEGIN

END

MENUITEM "Oxygen", 200 MIS_TEXT
MENUITEM "Carbon", 201, MIS_TEXTIMIA_CHECKED
MENUITEM "Hydrogen", 202, MIS_TEXT

MENUITEM "Compounds", 2, MIS_TEXT:MIS_SUBMENU
BEGIN

END

END

MENUITEM "Glucose", 301, MIS_TEXT
MENUITEM "Sucrose", 302, MIS_TEXTIMIA_CHECKED
MENUITEM "Lactose", 303, MIS_TEXT:MIS_BREAK
MENUITEM "Fructose", 304, MIS_TEXT

15.6.1.6.3 Separator Menu Item

There is a special form of the 11ENUITEM statement which is used to
create a horizontal dividing bar between two active menu items in a Pull
down menu. The Separator item is itself inactive and has no text associ
ated with it nor a cmd value.

Example:

MENUITEM "Roman", 206, MIS_TEXT
MENUITEM SEPARATOR
MENUITEM "20 Point", 301, MIS_TEXT

15.6.1.7 DIALOG and WINDOW Templates

DLGTEMPLATE and WINDOWTEMPLATE statements are used by an
application to create predefined window and dialog resource templates.

The DLGTEMPLATE and WINDOWTEMPLATE statements are treated
identically by the resource compiler and have the following format:

(DLGTEMPLATE I WINDOWTEMPLATE) resourceID loadoption memoption codepageid
(BEGIN I (/)

Single DIALOG, CONTROL, or WINDOW statement
(END I /))

170

Toolkit Utilities

The parts of the DLGTE"MPLATE and WINDOWTE"MPLATE statements
are described below.

Purpose This statement marks the beginning of a window template. It
defines the name of the dialog box window, and its memory and
load options.

Parameters
resourceID is either a unique name or an integer number identi
fying the resource.

load-option is an optional keyword specifying when the resource
is to be loaded. It must be one of the following:

Option Meaning

PRELOAD
Resource is loaded immediately

LOADONCALL
Resource is loaded when called

The default is LOADONCALL.

The optional mem-option consists of the following keyword or
keywords, specifying whether the resource is fixed or moveable
and whether it is discardable:

Option Meaning

FIXED Resource remains at a fixed memory location

MOVEABLE
Resource can be moved if necessary to compact
memory

DISCARD ABLE
Resource can be discarded if no longer needed

The default is MOVEABLE.

Codepageid

Alternatively,"(/" can be used in place of BEGIN and"/)" in place of
END.

The DLGTE"MPLATE and WINDOWTE"MPLATE keywords are synonyms.

The DIALOG statement defines a window of class WC_ DIALOG that can
be used by an application to create dialog boxes.

171

MS OS/2 Presentation Manager Reference

The DIALOG statement has the format:

DIALOG text, id, x, y, width, height, (., style.)
(.CTLDATA (MENU I data, data,).)
(.PRESPARAMS data, data,)
BEGIN

one or more DIALOG, CONTROL, WINDOW statements
END

The parts of the DIALOG statement are described below.

Purpose This statement marks the beginning of a DIALOG statement. It
defines the box's starting location on the display screen, its
width, its height, and any extra style bits.

Parameters
text is a string that is displayed in the title bar control, if it
exists.

x and y are integer numbers specifying the x and y coordinates
on the display screen of the lower left corner of the dialog box. x
and y are in dialog coordinates. The exact meaning of the coor
dinates depends on the style defined by the style argument. For
normal dialog boxes, the coordinates are relative to the origin of
the parent window. For DS_SCREENALIGN style boxes, the
coordinates are relative to the origin of the display screen. With
DS-MOUSEALIGN, the coordinates are relative to the position
of the mouse pointer at the time the dialog box is created.

width and height are integer numbers specifying the width and
height of the box. The width units are 1/4 the width of a charac
ter; the height units are 1/8 the height of a character.

style is any additional window styles, dialog styles, or frame
styles.

The WINDOW and CONTROL statements have the format:

(CONTROL i WINDOW) text, id, x, y, width, height, class (., style.)
(.CTLDATA (MENU i data, data,) .)
(.PRESPARAMS data, data,)
BEGIN

one or more DIALOG, CONTROL, WINDOW statements
END

Note: The WINDOW and CONTROL keywords are synonyms.

The BEGIN-END pair can be deleted if there are no child dialog, control
or window statements.

172

Toolkit Utilities

The DIALOG, CONTROL and WINDOW statements between the BEGIN
and END statements are defined as child windows. The template format is
fully recursive - the DIALOG/CONTROL/WINDOW statements between
the BEGIN/END may also have BEGIN/END blocks.

The optional CTLDATA statement is used to define control data for the
control. The CTLDATA statement can take one of the following forms:

CTLDATA Oxnn,Oxnn, Hexadecimal byte values
CTLDATA "string" String constant
CTLDATA nn,nn,nn, ... Decimal word date
CTLDATA MENU Menu Template as control data
BEGIN

END

In addition to hex or decimal data, the CTLDATA statement may be fol
lowed by the :MENU keyword, followed by a menu template in a
BEGIN/END block. This creates a menu template as the window's control
data.

The optional PRESPARAMS statement is used to define presentation
parameters. The syntax of the PRESPARAMS statement is similar to the
CTLDATA statement:

PRESPARAMS PP_*, nn, PP_*, nn, ..•.. Pairs of PP_* values and
parameter values.

Left and right curly braces are synonyms for BEGIN and END.

In addition to the normal CONTROL statement, there exist special state
ments for commonly used controls such as pushbuttons and edit controls.
These have the same format as the normal CONTROL statement, except
that their STYLE and CLASS statements are implied.

Examples

The following is a complete example of a DIALOG statement.

#include "windows.h"

DLGTEMPLATE errmess BEGIN
DIALOG "Disk Error", 100, 10, 10, 300, 110
BEGIN

END
END

CTEXT "Select One:", l, 10, 80, 280, 12
RADIOBUTTON "Retry", 2, 75, 50, 60, 12
RADIOBUTTON "Abort", 3, 75, 30, 60, 12
RADIOBUT'I'ON "Ignore", 4, 75, 10, 60, 12

173

MS OS/2 Presentation Manager Reference

This is an example of a WINDOWTEMPLATE statement that is used to
define a specific kind of window frame. Calling WinLoadDlg with this
resource will automatically create the frame window, the frame controls,
and the client window (of class MyClientClass).

WINDOWTEMPLATE windl
BEGIN

END

FRAME "My Window", 1, 10, 10, 320, 130, FS_STANDARD l FS_VERTSCROLL
BEGIN

WINDOW"", FID_CLIENT, 0, 0, 0, 0, "MyClientClass", style
END

This example creates a resource template for a modeless dialog box
identified by the constant "modelessl". It includes a frame with a title
bar, a system menu, and a dialog-style border. The modeless dialog box
has three auto-radio buttons in it.

DLGTEMPLATE modelessl
BEGIN

DIALOG "Modeless Dialog", 50, 50, 180, 110,
FS_TITLEBAR l FS_SYSMENU l FS_DLGBORDER

BEGIN
AUTORADIOBUTTON "Retry", 2, 75, 80, 60, 12
AUTORADIOBUTTON "Abort", 3, 75, 50, 60, 12
AUTORADIOBUTTON "Ignore", 4, 75, 30, 60, 12

END
END

15. 6.1. 7.1 Parent/ Child/ Owner Relationship

The format of the DLGTEMPLATE and WINDOWTEMPLATE resources
is very general in order to allow tree-structured relationships within the
resource format. The general layout of the templates is this:

WINDOWTEMPLATE id
BEGIN

WINDOW winTop
BEGIN

END
END

174

WINDOW windl
WINDOW wind2
WINDOW wind3
WINDOW wind4
BEGIN

WINDOW wind4
END
WINDOW windS

this is the top level window

Toolkit Utilities

In this example, the top level window is identified by winTop. It has 4
child windows, windl, wind2, wind3, and wind5. wind3 has one child win
dow, wind4. When each of these windows is created, the parent and the
owner are set to be the same.

The only time when the parent and owner windows are not the same are
when frame controls get automatically create by a frame window.

Note

The WINDOW statements in the example above could also have been a
CONTROL or DIALOG statement; they are interchangeable syntacti
cally.

15.6.1. 7.2 Pre-defined Control Statements

In addition to the general form of the CONTROL statement, there are
special control statements for commonly used controls. These statements
define the attributes of the child control windows that appear in the win
dow.

Control statements have the following general form:

control-type text, id, x, y, width, height(., style.)
BEGIN
dialog-statements and/or control-statements and/or window-statements

END

Two control statements are exceptions to this general form:

• the EDIT and LISTBOX controls do not have a text field.

The control-type field is one of the keywords described below, defining the
type of the control.

text is an ASCII string specifying the text to be displayed. The string must
be enclosed in double quotation marks. The manner in which the text is
displayed depends on the particular control, as detailed below.

id is a unique integer number identifying the control.

x and y are integer numbers specifying the x and y coordinates of the
lower left corner of the control, in dialog coordinates. The coordinates are
relative to the origin of the dialog box.

175

MS OS/2 Presentation Manager Reference

width and height are integer numbers specifying the width and height of
the control. The width units are 1/4 the width of a character; the height
units are 1/8 the height of a character.

The x, y, width, and height fields can use addition and subtraction opera
tors (+ and -) for relative positioning. For example, 15 + 6 can be used for
the x field.

The optional style field consists of one or more of the control styles given
later in this chapter in Table 1.2 and the window styles defined in Chapter
2. Styles can be combined using the bitwise OR operator.

The control-type keywords are described below, and their class and default
style are given. See Tables 1.1 and 1.2 for a full description of control
classes and styles.

FRAME

Description
Frame control. The style bits of a frame window define which
additional frame control windows will be created and initialized
when the frame itself is created. Frame style bits are defined in
table 1.3. Note that if the text field of this control is non-empty,
then a WC_ TITLEBAR window will be created even if the
FS_ TITLEBAR style bit is not included (see below).

Frame controls created automatically by a frame window will be
given default styles and id numbers depending on their class. For
example, a WC_ TITLEBAR window will be automatically given
the id FID_ TITLEBAR.

Class Frame

Default Style
None

LTEXT

Description
Left-justified text control. A simple rectangle displaying the
given text left-justified in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a
line are automatically wrapped to the beginning of the next line.

Class Static

Default Style
ws_GROUP

176

Toolkit Utilities

RTEXT

Description
Right-justified text control. A simple rectangle displaying the
given text right-justified in the rectangle. The text is formatted
before it is displayed. Words that would extend past the end of a
line are automatically wrapped to the beginning of the next line.

Class Static

Default Style
ws_GROUP

CHECKBOX

Description
A small rectangle (check box) that is highlighted when clicked.
The given text is displayed just to the right of the check box.
The control highlights the square when the user clicks the mouse
in it, and removes the highlight on the next click.

Class Button

Default Style
BS_ CHECKBOX, ws_ TABSTOP

PUSHBUTTON

Description
A rectangle containing the given text. The control sends a mes
sage to its parent whenever the user clicks the mouse inside the
rectangle.

Class Button

Default Style
BS_ PUSHBUTTON, ws_ T ABSTOP

LISTBOX

Description
A rectangle containing a list of strings (such as filenames) from
which the user can make selections. The LISTBOX control state
ment does not contain a text field, so the form of the LISTBOX
statement is:

LISTBOX id, x, y, ex, cy (., style.)

The fields have the same meaning as in the other control state
ments.

177

MS OS/2 Presentation Manager Reference

Class List box

Default Style
FS_ BQRDER, FS_ VERTSCROLL

GROUPBOX

Description
A rectangle that groups other controls together. The controls
are grouped by drawing a border around them and displaying
the given text in the upper left corner.

Class Button

Default Style
ss_ GROUPBOX, ws_ TABSTOP

DEFPUSHBUTTON

Description
A small rectangle with an emboldened outline that represents
the default response for the user. The text is displayed inside the
button. The control highlights the button in the usual way when
the user clicks the mouse in it and sends a message to its parent

1 window.

Class Button i

Default Style
BS_DEFPUSHBUTTON, ws_ TABSTOP

RADIOBUTTON

Description
A small rectangle that has the given text displayed just to its
right. The control highlights the square when the user clicks the
mouse in it and sends a message to its parent window. The con- I

trol removes the highlight and sends a message on the next clickj

Class Button

Default Style
BS_RADIOBUTTON, ws_ TABSTOP

AUTORADIOBUTTON

Description

178

Similar to a normal radio button in appearance, but automati
cally checks itself when clicked. It also unchecks any other
AUTORADIOBUTTONs in the same group.

Toolkit Utilities

Class Button

Default Style
BS_AUTORADIOBUTTON, ws_ TABSTOP

EDIT

Description
A rectangle in which the use can enter and edit text. The control
displays a pointer when the user clicks the mouse in it. The user
can then use the keyboard to enter text or edit the existing text.
Editing keys include the backspace and delete keys. The mouse
can be used to select the character or characters to be deleted,
or select the place to insert new characters.

The EDIT control statement does not contain a text field, so its
form is:

EDIT id, x, y, width, height (., style.)

The fields have the same meaning as in the other control state
ments.

Class Edit

Default Style
ws_ TABSTOP, ES_ LEFT

ICON

Description
An icon displayed in the dialog box. The given text is the name
of an icon (not a filename) defined elsewhere in the resource file.

For the ICON statement, the width and height parameters are
ignored; the icon automatically sizes itself.

Class Static

Default Style
SS_ ICON

15.6.2 Control Classes

Class Meaning

WC_ BUTTON
A button control is a small rectangular child window that
represents a button that the user can turn on or off by clicking
on it with the mouse. Button controls can be used alone or in
groups, and can either be labelled or appear without text. But
ton controls typically change appearance when the user clicks on
them.

179

MS OS/2 Presentation Manager Reference

wc_ ENTRYFIELD
An edit control is a rectangular child window in which the user
can enter text from the keyboard. The user selects the control,
and gives it the input focus, by clicking the mouse inside it or
tabbing to it. The user can enter text when the control displays
a flashing pointer. The mouse can be used to move the pointer
and select characters to be replaced, or position the pointer for
inserting characters. The backspace key can be used to delete
characters.

WC_ STATIC
Static controls are simple text fields, boxes, and rectangles that
can be used to label, box, or separate other controls. Static con
trols take no input and provide no output.

WC_LISTBOX
List box controls consist of a list of character strings. The con
trol is used whenever an application needs to present a list of
names, such as filenames, that the user can view and select. The
user can select a string by pointing the mouse to the string and
clicking a mouse button. Selected strings are highlighted and a
notification message is passed to the parent window. A scroll bar
can be used with a list box control to scroll lists too long or wide
for the control window.

WC_ SCROLLBAR
A scroll bar control is a rectangle containing a thumb and direc
tion arrows at both ends. The scrolling bar sends a notification
message to its parent whenever the user clicks the mouse in the
control. The parent is responsible for updating the thumb posi
tion, if necessary. Scroll bar controls can be positioned anywhere
in a window and used whenever needed to provide scrolling
input for a window.

Note: A control class name can be used as the class name parameter to the
Create Window function to create a child window having the control class
attributes.

15.6.3 Control Styles

WC_ BUTTON Class

Style Meaning

BS-PUSHBUTTON
Same as PUSHBUTTON statement.

BS_ DEFPUSHBUTTON
Same as DEFPUSHBUTTON statement.

180

Toolkit Utilities

BS_ CHECKBOX
Same as CHECKBOX statement.

BS_AUTOCHECKBOX
Button automatically toggles its state whenever the user clicks
on it.

BS_ RADIOBUTTON
Same as RADIOBUTTON statement.

BS_ AUTORADIOBUTTON
Same as RADIOBUTTON, by automatically checks itself when
clicked, and unchecks any other auto-radio buttons in the same
group.

BS_3STATE
Identical to BS_ CHECKBOX except that a button can be
grayed as well as checked or unchecked. The grayed state is typ
ically used to show that a check box has been disabled.

BS_AUT03STATE
Identical to BS_ 3STATE except that the button automatically
toggles its state when the user clicks on it.

BS_ GROUPBOX
Same as GROUPBOX statement.

BS_ USERBUTTON
User-defined button. Parent is notified when the button is
clicked. Notification includes a request to paint, invert, and dis
able the button when necessary.

WC_ ENTRYFIELD Class

Style Meaning

ES-LEFT
Left-justified text.

ES_ CENTER
Centered text.

ES_ RIGHT
Right-justified text.

WC_STATIC Class

Style Meaning

SS_ ICON
Same as ICON control

ss_ FGNDRECT
Foreground color filled rectangle

181

MS OS/2 Presentation Manager Reference

SS-HALFTONERECT
Halftone filled rectangle

ss_ BKGNDRECT
Background color filled rectangle

ss_ FGNDFRAME
Box with foreground color frame

SS-HALFTONEFRAME
Box with halftone frame

SS_ BKGNDFRAME
Box with Background color frame

WC-LISTBOX Class

Style Meaning

LS_ MULTIPLESEL
The string selection is toggled each time the user clicks or dou
ble clicks on the string. Any number of strings can be selected.

LS_ OWNERDRA W
The list box display is not updated when changes are made.

WC_ SCROLLBAR Class

Style Meaning

SBS_ VERT
Vertical scroll bar. The scroll bar has the height, width, and
position given in the control statement or the Create Window
call.

SBS-HORZ
Horizontal scroll bar. The scroll bar has the height, width, and
position given in the control statement or the Create Window
call.

All Classes

ws_GROUP

182

Specifies the first control of a group of controls in which the user
can move from one control to the next by using the pointer keys.
All controls defined after the first control with WS_ GROUP
style belong to the same group. The next control with
WS_ GROUP style ends the first group and starts the next group
(i.e., one group ends where the next begins).

Toolkit Utilities

ws_TABSTOP
Specifies one of any number of controls through which the user
can move by tabbing. The TAB key moves the user to the next
control with WS_ TABSTOP style.

15.6.4 Frame Styles

Style Meaning

FS_ TITLEBAR
Title bar

FS_SYSMENU
System menu

FS_MENU
Application menu

FS_MJNMAX
Minimize /Maximize box

FS_ VERTSCROLL
Vertical scroll bar

FS_ HORZSCROLL
Horizontal scroll bar

FS_ SIZEBORDER
Wide sizing borders

FS-SIZEBOX
Size box at lower right corner

FS-DLGBORDER
The frame window is created with the FS_DLGBORDER style.

FS_BORDER
Frame window is created with FS_ BORDER style

FS-STANDARD
Equal to (FS_ TITLEBAR l FS_ SYSMENU l FS-MINMAX l
FS_ WIDESIZE)

183

MS OS/2 Presentation Manager Reference

15.6.4.1 Directives

The resource directives are special statements that define actions to per
form on the script file before it is compiled. The directives can assign
values to names, include the contents of files, and control compilation of
the script file.

The resource directives are identical to the directives used in the C pro
gramming language. They are fully defined in (.CFUN.).

#include filename

Purpose This directive copies the contents of the file specified by filename
into your resource script before re processes the script.

Parameters

Example:

filename is an ASCII string, enclosed in double quotation marks,
specifying the MS 08/2 filename of the file to be included. A full
pathname must be given if the file is not in the current directory
or in the directory specified by the INCLUDE environment vari
able.

The filename parameter is handled as a C string, and two
backslashes must be given wherever one is expected in the path
name (for example, root\ \sub.) Or, a single forward slash t/)
can be used instead of double backslashes (for example,
root/sub.)

#include "wincalls.h"
PenSelect MENU
BEGIN

MENUITEM "black pen", BLACK_FEN
END

#define name value

Purpose This directive assigns the given value to name. All subsequent
occurrences of name are replaced by the value.

Parameters
name is any combination of letters, digits, or punctuation.

value is any integer number, character string, or line of text.

Examples:

#define
#define

184

nonzero
USERCLASS

1
"MyControlClass"

Toolkit Utilities

#undef name

Purpose This directive removes the current definition of name. All subse
quent occurrences of name are processed without replacement.

Parameters
name is any combination of letters, digits, or punctuation.

Examples:

#undef
#undef

#ifdef name

nonzero
USER CLASS

Purpose This directive carries out conditional compilation of the resource
file by checking the specified name. If the name has been defined
using a# define directive, #if def directs the resource compiler
to continue with the statement immediately after it. If name has
not been defined, #if def directs the compiler to skip all state
ments up to the next #endif directive.

Parameters
name is the name to be checked by the directive.

Example:

#ifdef Debug
BITMAP errbox errbox.bmp
#endif

ifndef name

Purpose This directive carries out conditional compilation of the resource
file by checking the specified name. If the name has not been
defined or if its definition has been removed using the # undef
directive, # ifndef directs the resource compiler to continue pro
cessing statements up to the next #endif, #else, or #elif direc
tive, then skip to the statement after after the # endif. If name
is defined, # ifndef directs the compiler to skip to the next
endif, #else, or # elif directive.

Parameters
name is the name to be checked by the directive.

Example:

#ifndef Optimize
BITMAP errbox errbox.bmp
#endif

185

MS OS/2 Presentation Manager Reference

#if constant-expression

Purpose This directive carries out conditional compilation of the resource
file by checking the specified constant-expression. If the
constant-expression is nonzero #if directs the resource compiler
to continue processing statements up to the next #endif, #else,
or #elif directive, then skip to the statement after after the
#endif. If constant-expression is zero, #if directs the compiler
to skip to the next #endif, #else, or #elif directive.

Parameters

Example:

constant-expression is a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetic and
relational operators.

#if Version<3
BITMAP errbox errbox.bmp
#endif

elif constant-expression

Purpose This directive marks an optional clause of a conditional compila
tion block defined by an #ifdef, #ifndef, or #if directive. The
directive carries out conditional compilation of the resource file
by checking the specified constant-expression. If the constant
expression is nonzero # elif directs the resource compiler to con
tinue processing statements up to the next #endif, #else, or
#elif directive, then skip to the statement after the #endif. If
constant-expression is zero, #elif directs the compiler to skip to
the next #endif, #else, or #elif directive. Any number of #elif
directives can be used in a conditional block.

Parameters

Example:

constant-expression is a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetic and
relational operators.

#if Version<3
BITMAP errbox errbox.bmp
#elif Version<?
BITMAP errbox userbox.bmp
#endif

#else

Purpose This directive marks an optional clause of a conditional compila
tion block defined by an #ifdef, #ifndef, or #if directive. The
#else directive must be the last directive before # endif.

186

Parameters
None.

Example:

#ifdef Debug
BITMAP errbox errbox.bmp
#else
BITMAP errbox errbox.bmp
#endif

#endif

Toolkit Utilities

Purpose This directive marks the end of a conditional compilation block
defined by an #ifdef directive. One #endif is required for each
#ifdef directive.

Parameters
None.

187

Chapter 16
Device Drivers

16.1 Device Driver Interface 193
16.1.1 Overview 193
16.1.2 Entry Points 193
16.1.2.1 Primary Exported Entry Points 193
16.1.2.2 :Major Handler Entry Points 194
16.1.3 Function Parameters 195
16.1.3.1 Stack Arguments 195
16.1.3.2 Function Number 195
16.1.3.3 Command Flags 196
16.1.3.4 Device Context Handle 197
16.1.3.5 Register Arguments 197
16.1.3.6 Return Values 198
16.1.3.7
16.1.3.8
16.1.4
16.1.5
16.1.6
16.1.7
16.1.8
16.1.9
16.1.10

Register Content Preservation 198
Stack Usage 198

Calling Simulations 198
Bitmap Simulations 199
Journalling 200
Serialization and Locking 200
Cursors 200
:Miscellaneous 204
Syntax Issues in Defining the Engine
and Device Driver Interfaces 205

16.1.10.1 Parameter Conventions 205
16.1.10.2 Calling Conventions 206
16.1.10.3 Definition of Records in C 207
16.1.10.4 Handles 207

189

16.1.10.5 Coordinates 207
16.1.10.6 Bit Definitions 208
16.1.11 The Dispatch Table 208
16.1.11.1 Device Driver Installation 208
16.1.11.2 Device Driver Function Handling 208
16.1.11.3 Simulation Installation 209
16.1.12 Primary Function Definitions 209
16.1.12.1 Control Functions 209
16.1.12.2 Attribute Functions 216
16.1.12.3 Bundle Attribute Functions 223
16.1.12.4 Attribute and Bundle Definitions 223
16.1.12.5 Function Definitions 237
16.1.12.6
16.1.12.7
16.1.12.8

Drawing Functions 240
'Move' Type Orders 241
Filled Closed Figures 242

16.1.12.9 Correlation on Areas 242
16.1.12.10 Correlation on Strokes 243
16.1.12.11 Transform Matrix Precision 243
16.1.12.12 Code Page 243
16.1.12.13 List of Functions 243
16.1.12.14 AVIO Functions 267
16.1.12.15 Bitmap Functions 273
16.1.12.16 Region Functions 287
16.1.12.17 Font Functions 302
16.1.12.18 Device Context Functions 319
16.1.12.19 Transform and Clipping Functions 329
16.1.12.20 :Matrix Element Format 343
16.1.12.21 Transform Definition by Window

& Viewport 343
16.1.12.22 Bounds, Correlation and Clipping 343
16.1.12.23 Logical Color Table Functions 344

190

16.1.12.24 General Query Functions 353
16.1.12.25 Escape Functions 359
16.1.12.26 Enable Function 366
16.1.13 Journaling Functions 37 4
16.1.14 Area Support Functions 376
16.1.15 Callback Functions 378
16.2 Graphics Engine Function List 385
16.2.1 Device Driver Interface Function List
16.2.1.1 Functions Trappable by Device Drivers
16.2.1.2 Functions Handled by Engine

or Global Simulation 389
16.2.2 Error Definition 390
16.2.3 Standard Default Values 407
16.2.3.1
16.2.3.2

Device Independent Values
Device Dependent Values

407
409

385
385

191

Device Drivers

16.l Device Driver Interface

16.1.1 Overview

A Presentation Manager device driver is used to direct output to devices
such as displays and printers, and also to queues. It consists of dynalink
code, which runs with IOPL. It should not be confused with an MS OS/2
device driver, which is a specialised piece of code for accessing a general
device, including handling interrupts.

The device driver interface resembles the interface to the graphics engine
very closely. This gives device drivers the ability to take over many func
tions of the graphics engine. The device driver entry points correspond
exactly to the major function entry points of the graphics engine. The
same function numbers are used. The parameters passed to the device
driver are exactly the same as those passed to the graphics engine function
handlers.

Because the two interfaces are so similar, a caller to a function does not
need to know whether the function will be handled by the graphics engine
or by the device driver directly. Graphics engine calls are dispatched
through a dispatch table. The entries in the dispatch table are far pointers
to "Major Function Handlers". Some of these pointers point to the graph
ics engine, but others point directly to the device driver. On installation
the device driver inserts its own pointers into the dispatch table for the
functions it wants to handle.

16.1.2 Entry Points

16.1.2.1 Primary Exported Entry Points

All device drivers must export the following entry points:

• Enable

• Disable

Enable is called when the device driver is loaded. It handles driver initiali
zation and construction of the driver's dispatch table.

Display drivers also must export Cursor entry points. These are called to
update the position and shape of the cursor tor mouse pointer) on the
display of the cursor functions.

193

MS OS/2 Presentation Manager Reference

16.1.2.2 Major Handler Entry Points

As part of its Enable function the device driver installs the addresses of its
major function handlers into its logical device dispatch table, the
lDispatchTable. The engine will call the major function handlers through
the lDispatchTable. The major function handlers handle the dispatching
of the required minor functions.

The major function handlers are as follows:

OutputArc
Major handler 00. Dispatches all minor functions that draw arcs.

OutputLine
Major handler 01. Dispatches all minor functions that draw
lines.

All device drivers are required to provide this major handler.

OutputMarker
Major handler 02. Dispatches minor functions that draw mark
ers.

OutputScan
Major handler 03. Dispatches minor functions that deal with
scan lines.

All device drivers are required to provide this major handler.

OutputFill
Major handler 04. Dispatches some minor functions that do area
filling.

Bitmap Major handler 05. Dispatches all minor functions that deal with
bitmaps.

Textout

All device drivers are required to provide this major handler.

Major handler 09. Dispatches minor functions that display text.

All device drivers are required to provide this major handler.

Area Major handler OA. Dispatches minor functions for the area accu
mulation calls.

Bounds Major handler OB. Dispatches minor functions that set and
retrieve bound and correlate data.

All device drivers are required to provide this major handler.

Clip Major handler OC. Dispatches minor functions that deal with the
clip region.

Region Major handler OD. Dispatches minor functions that deal with
regions.

194

Device Drivers

Transform
Major handler OE. Dispatches minor functions that set, retrieve,
and calculate transforms.

Attributes

Color

Major handler OF. Dispatches minor functions that set and
retrieve attributes.

All device drivers are required to provide this major handler.

Major handler 10. Dispatches minor functions that deal with
color tables.

Query

All device drivers are required to provide this major handler.

Major handler 11. Dispatches minor functions that query device
capabilities and parameters and also the escape function for
direct access of driver function.

All device drivers are required to provide this major handler.

16.1.3 Function Parameters

In the function descriptions, each minor function definition gives the name
of the function, followed by the syntax of the parameters to the function.
The function to be performed is described, followed by a more detailed
explanation of the function specific parameters. For all functions, the
parameters u32- FuncNo (Function Number), and u32- DcH (Device Con
text Handle) are as described below, unless otherwise stated.

16.1.3.1 Stack Arguments

Each call to a major function handler passes a number of parameters
which depend upon the particular minor function. The last parameter
pushed is the function number, from which the particular minor function,
and therefore the number and meaning of the other parameters, can be
determined.

PASCAL calling conventions are used in making the call. The device
driver is responsible for setting up its own stack frame, and for removing
all arguments when it returns.

16.1.3.2 Function Number

The format of the function number parameter is as follows:

minor_ function (Bits 0-7)
The minor function number within the particular major func
tion.

195

MS OS/2 Presentation Manager Reference

major_ function (Bits 8-15)
The major function number.

command_ flags (Bits 16-31)
Flags which identify the operations which are to be performed,
and give other information. See below.

16.1.3.3 Command Flags

The meaning of the command flags parameter is as follows (the bit
numbering views command-flags as a 16-bit value, with bit 0 the low
order bit).

If more than one of the bits is set then more than one operation needs to
be performed. If none of the bits are set, there may still be something that
needs doing. An example is that the current position must be updated on a
drawing command even if the COM:_ DRAW bit is not set.

COJ\LDRAW (Bit 0)
Draw the figure.

When COJ\LDRAW is set, the device driver must actually draw
the requested figure on the device or bitmap. If the bit is off,
then any functions that would normally be performed in addi
tion to drawing must still be done (like updating the current
position).

COJ\L BOUND (Bit 1)
Calculate the bounding rectangle.

When COJ\L BOUND is set, the device driver must calculate the
bounding rectangle for the given figure. The engine should then
be called to accumulate the resulting rectangle. Use the Accumu
lateBounds call.

All device drivers must be able to calculate bounds on any figure
they can draw.

COJ\L CORR (Bit 2)
Calculate correlation with the Pick Window.

When COM:_ CORR is set, the device driver must determine
whether the given figure intersects the Pick Window that was set
by SetPickWindow. If an intersection is detected, the driver
should return the appropriate return code for correlation, as
indicated in the function description.

Only display device drivers are required to calculate correlations.

COM-ALT-BOUND (Bit 3)
Equivalent to COM"_ BOUND. The device driver should calculate
the bounding rectangle if either this bit or COM:_ BOUND is set
(or both). ·

196

Device Drivers

(The above functions only apply to drawing functions and
should be ignored for other functions.)

CO:M_ TRANSFORM (Bit 5)
Coordinates are to be transformed.

When COM_ TRANSFORM is set, any coordinates given are not
yet transformed to device coordinates. The Convert function
must be used to transform them. If the bit is clear, then a simu
lation has already done the conversion, and the device driver can
assume that all coordinates are device coordinates.

All other bits should be ignored.

16.1.3.4 Device Context Handle

This parameter is the handle of the Device Context. See the description of
GetDCPointer for converting this to an actual pointer.

The device driver is given access to a ULONG (4 bytes) of information
starting at byte offset 4 in the DC. This ULONG is under total control of
the device driver, except that it will be zeroed when the DC is created. It is
expected that the device driver will store an index or pointer here that will
help it locate its attribute instantiations for this DC. We will refer to this
ULONG as the DC Magic Number.

Also, at offset 8 of the DC, the device driver has access to the hLogicalDe
vice. This is a 32-bit handle for the logical device that the DC belongs to.
This allows the device driver to recognize its own DC objects. This lets the
device driver do its own error checking, preventing a stopover in the
engine layer.

The logical device handle is useful when doing a BitBlt operation from one
device bitmap to another. In this case, both bitmaps should be in DC's on
the same logical device and the handle allows the driver to check this.

16.1.3.5 Register Arguments

The following registers will have defined values when the device driver
major handler is called from the lDispatchTable:

CX:DX =The DC magic number. CX contains the high order word.

ES =The DC Segment.

These assignments are provided as an optimization only. The information
provided is obtainable elsewhere. We do not expect that device driver
major function dispatchers will be able to use these at all if they are not
written in assembler.

197

MS OS/2 Presentation Manager Reference

The default engine simulations will not depend on these assignments. This
means that a device driver major function dispatcher can destroy these
values and branch to a default simulation without any problems.

16.1.3.6 Return Values

The device driver must return an error code in DX:AX when it has com
pleted the function call. The return values are described under each func
tion.

16.1.3.7 Register Content Preservation

On completion of each device driver function, DX:AX will contain any
error code. Registers BX, OX, and ES may be destroyed. All other registers
must be preserved.

16.1.3.8 Stack Usage

The device driver can assume that 500 (decimal) bytes of space are avail
able on the stack when a device driver routine is called. The device driver
code can use this space freely, but it must not exceed this limit.

If there is a danger of running out of stack space, the device driver should
allocate its own stack space, switching to it on entry, and reverting to the
original stack on exit.

16.1.4 Calling Simulations

A device driver and any simulation may call the graphics engine through a
lower level interface than GreEntry. This entry point is called Simula
tionEntry.

SimulationEntry should be called as a FAR call, with exactly the argu
ments as required for the particular function being called, including the
function number. This is accomplished by restoring the original stack
frame before making the call.

The Command word may be set to request any combination of
COM_DRAW, COM_CORR, and COM_BOUND.

198

Device Drivers

16.1.5 Bitmap Simulations

Simulations are provided for some standard bitmap formats. Devices that
use bitmaps in these formats may call on the simulations to do any draw
ing function, like arcs and polylines for example. This allows device drivers
for dot matrix printers and such to share common code for drawing on bit
maps.

The supported bitmap formats are:

Bitcount
==--====

1
8

24
4

Planes
=====

1
1
1
1

Note: Device Drivers must be able to translate from all the standard for
mats to their own internal format. This allows a bitmap created on one
device to be displayed on another.

All device drivers are required to support the PolyLine and PolyShortLine
calls for drawing on bitmaps. However, to prevent the same code from
appearing in many device drivers, a non-display device driver may rely on
the PolyLine and PolyShortLine code in the display driver to actually
draw on bitmaps. Of course, display device drivers cannot do this, and are
required to actually draw on bitmaps themselves.

A typical use of this trick is by dot matrix printers. When a DC is created
for the printer, the printer device driver does the following:

1. Call CreateDC to make a memory DC for the "DISPLAY" device.

2. Call CreateBitmap to make a bitmap compatible with the display
DC.

3. Select the bitmap into the DC with SelectBitmap.

When a drawing function, like PolyLine, is called for drawing on the
printer DC, the printer driver passes the call along by calling PolyLine on
the display DC with SimulationEntry. The display driver will set the
appropriate bits in the bitmap.

When all drawing commands to the printer DC are completed, as indi
cated by the EndDoc escape call, the printer driver can retrieve the bits
from the bitmap with GetBitmapBits. The printer then prints the bits on
the page.

When the printer DC is deleted, the printer device driver should deselect
the bitmap from the display DC, delete the bitmap, and delete the display
DC.

199

MS OS/2 Presentation Manager Reference

16.1.6 Journalling

For support of banding printers, drivers need to be able to journal and
repeatedly play back the drawing calls they receive. Functions are pro
vided in the engine to perform this. See the section entitled "Journalling"
in the Device Drivers Chapter.

16.1.7 Serialization and Locking

The device driver should be designed to be re-entrant. It must assume that
it can be called by two or more different threads at any time.

A device driver is always called by the Graphics Engine when the engine is
outside its critical sections. This implies that the device driver can afford
to take a long time to implement a particular function on a given thread.
For example, it IS possible for the device driver to access a resource on
disk or to put up a dialog box for additional information.

It is often necessary for a device driver to serialize access to internal
resources - the actual hardware, for example. The driver code has access to
all the normal serialization mechanisms available to MS OS/2 code run
ning at ring 2:

• CLI/STI

• RAM Semaphores

• System Semaphores

The device driver writer can choose whichever of these is suitable for the
particular circumstances. The only caveat is that the device driver should
NEVER call another system component during a critical section. This
includes the file system, the graphics engine (via SimulationEntry) or the
MS OS/2 Presentation Manager APL

16.1.8 Cursors

All display drivers must support a "cursor" for the pointing device. The
cursor is a small graphics image which is allowed to move around the
screen independently of all other operations to the screen, and is normally
bound to the location of the pointing device. The cursor is non-destructive
in nature, i.e., the bits underneath the cursor image are not destroyed by
the presence of the cursor image.

A cursor consists of an AND mask and an XOR mask, which give combina
tions of O's, 1 's, display, or inverse display.

200

AND XOR

0
0
1
1

0
1
0
1

: DISPLAY

0
1

Display
Not Display

Device Drivers

The cursor also has a "hot spot", which is the pixel of the cursor image
which is to be aligned with the actual pointing device location.

For a cursor like this, the hot spot
would normally be the *, which would
be aligned with the pointing device
position

The cursor may be moved to any location on the screen or be made invisi
ble. Part of the cursor may actually be off the edge of the screen, and in
such a case only the visible portion of the cursor image is displayed.

Logically, the cursor image isn't part of the physical display surface. When
a drawing operation coincides with the cursor image, the result is the same
as if the cursor image wasn't there. In reality, if the cursor image is part of
the display surface it must be removed from memory before the drawing
operation may occur, and redrawn at a later time.

This exclusion of the cursor image is the responsibility of the display
driver. If the cursor image is part of physical display memory, then all out
put operations must perform a hit test to determine if the cursor must be
removed from display memory, and set a protection rectangle wherein the
cursor must not be displayed. The actual cursor image drawing routine
must honor this protection rectangle by never drawing the cursor image
within its boundary.

The cursor drawing primitives reside in the Ring 2 display driver. These
primitives may be called at various times from many different places, so
the cursor code must protect itself via a semaphore (any and all protection
is the sole responsibility of the display driver). Since cursor drawing can be
a time consuming operation, the driver must also protect itself against
reentrancy.

The conditions under which the cursor drawing primitives may be called
are as follows:

1. One of the following

1. A mouse movement occurs. Mouse movements are passed to the
MoveCursor routine at interrupt time.

2. The window manager is setting a new cursor position.

201

MS OS/2 Presentation Manager Reference

202

The current cursor location must be set to the given coordinates. If
the cursor is visible, it will be drawn at the new location. If the cur
sor is off (a NULL cursor), or if the cursor has been excluded, then
no updating of the image is required.

If the cursor is on and the new cursor position will cause the cursor
to be excluded, it must be removed from the screen.

In either case, the real cursor position must be updated to the
passed (x,y).

Once the cursor has been drawn, a check must be made to see if a
new location was given for the cursor, and if it has moved again, be
drawn at the new location (or be excluded because it has moved
into the protection rectangle). This implies that a real (x,y) and a
cursor_shape (x,y) be maintained.

void MoveCursor(abs_x,abs_y)
SWORD abs_x; II x coordinate of cursor

II y coordinate of cursor SWORD abs_y;
{

}

USHORT old_busy;

enter _crit ();
real_x = abs_x - hot_x;
real_y = abs_y - hot_y;
old_busy = IS_BUSY;
swap(screen_busy,old_busy);
leave_crit ();

if (old_busy == NOT_BUSY)
{

II Updating the real X,Y is
II a critical section

II Try for screen semaphore

while(cursor positions disagree)
{

}

if (cursor hidden I I already excluded)
{

}

screen_busy = NOT_BUSY;
return();

if (newly excluded)
{

}

cur_flags = CUR_EXCLUDED;
cursor _off() ;
screen_busy = NOT_BUSY;
return();

draw_cursor () ; II can actually draw cursor

screen_busy = NOT_BUSY; II others can have the screen
II now

}
return();

2. A new cursor image is being set. When a new cursor image is set,
the old cursor image, if any, must be removed from the screen
before the new cursor is set. The hot spot of the old cursor and the
new cursor must be aligned. This code must also protect itself from
any of the drawing primitives, or from the interrupt thread moving
the cursor.

Device Drivers

void SetCursor(lp_cursor)
CURSOR far *lp_cursor
{

}

USHORT old_busy;

old_busy = IS_BUSY; II Try for screen semaphore
if (swap(screen_busy, old_busy) == IS_BUSY)

return();

disable_interrupts;
cur_flags = CUR_OFF;
real_x += hot_x;
real_y += hot_y;
hot_x = hot_y = O;
enable_interrupts;
cursor_off();
if (lp_cursor)
{

}

copy(cur_cursor,lp_cursor);
move_cursors () ;
disable_interrupts;
hot_x = cur_cursor.csHotX
hot_y = cur_cursor.csHotY
real_x -= hot_x;
real_y -= hot_y;
cur_flags = CUR_EXCLUDED;
enable_interrupts;

screen_busy = NOT_BUSY;

II Treat as a critical section
II Assume a null cursor;
II Remove hot spot adjustment
II from real (X,Y) position
II Don't want hot spot adjustments
II Interrupt can play with real x & y
II Remove old cursor from s
II If there is a new cursor

II Copy cursor header information
II Move the patterns, adj. hot spot
II Treat as a critical section
II Save X hot spot adjustment
II Save Y hot spot adjustment
II Adjust real (X,Y) for the
II hot spot
II Show excluded, but not hidden

II Others can have the screen now

3. A timer interrupt occured. Approximately every 1/4 second, the
Window Manager will call CheckCursor. This allows a lazy redraw
of the cursor whenever it has been removed from the screen. Use of
this function is optional.

If the cursor is currently invisible, and can now become visible,
then it should be drawn. If while the cursor was being drawn, it
moved, then it must be drawn at the new location. If it moved into
the protection rectangle, then it must be taken down again.

This code must protect itself from any of the drawing primitives,
or from the interrupt thread moving the cursor.

void CheckCursor();
{

USHORT old_busy;

if (swap(screen_busy,old_busy) == screen_busy)
return(); II cannot access the screen

if (cursor is off l l cursor not excluded)
{ II nothing to do

screen_busy = NOT_BUSY;
return();

}

II The cursor is currently excluded. If it is now unexcluded,
II it must be drawn.

test_if_unexcluded:

203

MS OS/2 Presentation Manager Reference

}

enter _crit ();
if (cursor unexcluded)
{

}

leave_crit ();
draw_cursor ();
cur _flags = O;
enter _crit ();
if (cursor positions disagree)

goto test_if_unexcluded;
screen_busy = NOT_BUSY;
leave_crit () ;
return();

leave_crit ();

II draw cursor at new location
II show cursor is on and unexcluded

II moved while we were drawing it

II Must test to see if the cursor became excluded after we
II just brought it back.

if (cursor is excluded)
{

cursor _off();
cur_flags = CUR_EXCLUDED;

}

screen_busy = NOT_BUSY;
return();

II others can have the screen now

The display driver must resolve all interactions between cursor drawing at
interrupt time and access to video hardware. While in the background, the
driver should not draw any cursor image.

16.1.g :Miscellaneous

This document defines the function of the Graphics Engine as used by
Presentation Manager. This component provides output graphics,
alphanumerics and raster operations to output devices (e.g., screen win
dows) and to bitmaps.

The following points are worth noting:

204

• 9utput graphics primitives (such as lines) are based on the follow
mg:

Coordinates to drawing primitives are passed in World Coordi
nate Space.

The viewing limits are defined in Graphics Model Space Coordi
nates.

The pick window is defined in Page Coordinates.

Boundary data (bounds) are collected in Graphics Model Space
Coordinates. (It is possible to implement bounds collection in
Page Coordinates, but then the graphics engine must transform
them back to Graphics Model Space Coordinates before return
ing them to the GPI, and also when the window /viewport
transform changes.)

•

•

•

•

•

•

Device Drivers

Drawing is repeatable (the same sequence of primitives turns on
the same pelsJ so that dynamic objects can be drawn and
removed by using XOR mode.

Clipping to the output region is perfect at the pel level, so that
primitives will join up if drawn in neighboring regions.

The line type position is reset by the appropriate orders only.

Fonts are stored by the graphics engine. Both are referenced by
LCID and the engine is responsible for resolving whether an LCID
refers to a loaded font, or whether a base set should be used.

Base line types, patterns and markers (vector and image, resolved
by the marker precision) are provided by the engine. The Engine
will ensure that base symbol sets/fonts are available for each
device. These will include one vector and at least one size of image
for each of the available codepages.

The graphics engine does a certain amount of error checking, for
example that the composite transformation does not overflow. In
these cases, the error is logged.

The graphics engine resolves contention for its own internal data
structures. All device drivers must resolve contention for their own
data structures and hardware registers.

The origin for all ~raphics coordinates, is at the bottom left (i.e., y
increases upwards).

To avoid deadlock, no part of the engine or any device driver may
call another component inside a critical section.

16.1.10 Syntax Issues in Defining the Engine
and Device Driver Interfaces

This section defines the conventions for calls, parameters and datatypes.
This definition has been chosen to be unambiguous and easy to code in our
respective implementation languages (C and ASSE1v1BLER).

16.1.10.1 Parameter Conventions

All parameters will be prefixed by one of the following to indicate their
data type:

Prefix

p32_
u32_
s32_

C type

*type far
unsigned long
long int

The u32 prefix will be used for unsigned and non arithmetic variables vari
ables occupying 32 bits.

205

MS OS/2 Presentation Manager Reference

To avoid problems with alignment on the 180386 microprocessor, all
parameters will be 32 bits. Flags must therefore be specified by saying
which bit number (or numbers) they occupy, according to the bit number
ing scheme listed above.

Here are some examples:

u32_MixMode
s32_x
s32_y
p32_xy

Mix Mode passed as Unsigned Long
X coordinate passed as Long Int
Y coordinate passed as Long Int
Long pointer to an xy array (of Long Int)

To limit the number of parameters passed, coordinates will not be passed
as explicit parameters, instead a pointer to an array of one or more xy
coordinate pairs is passed.

16.1.10.2 Calling Conventions

The parameter passing mechanism used will be PASCAL calling conven
tion. As an example consider a hypothetical entry point called
ROUTINE(U32-Pl, U32_P2, U32_P3). This routine would be called from
PASCAL by

ROUTINE(U32_Pl, U32_P2, U32_P3);

or from C by reversing the order of the parameters

CALL ROUTINE(U32_P3, U32_P2, U32_Pl);

both of which generate the following assembler

PUSH U32_Pl+2
PUSH U32_Pl
PUSH U32_P2+2
PUSH U32_P2
PUSH U32_P3+2
PUSH U32_P3
CALL ROUTINE * This is a far call

Note: that the called routine must pop the parameters off the stack (done
with RETF 12 in assembler, or declaring the entry point in C with the
PASCAL calling convention).

The following registers are saved and restored by the Engine around each
engine function call: SI, DI, DS and BP. DX:AX will contain any return
code. Registers BX, CX, and ES may be destroyed.

206

Device Drivers

16.1.10.3 Definition of Records in C

To avoid alignment problems, records will be constructed with 16 and 32
bit fields. Varying length fields will go at the end. Flags contained in a
field in a record will be recorded by the bit number or numbers they
occupy. All 32 bit quantities will be aligned on 32 bit boundaries, so that
access will be more efficient on the 180386 microprocessor. The 16 bit types
allowed in records identified by prefixes

ul6_ unsigned int
sl6_ int

Examples of records are

RECORD recordl,
fieldl s32, /* Description of Long Int fieldl */
field3 p32, /* Description of Long Pointer field3 */
field2 u16; /* Description of Unsigned Int field2 */

/* Bit 0 flag means */
/*Bit 1 flag means ... */
/* And so on */

Arrays are specified by putting the dimension(s) after the names of the
fields.

The first element in an array is addressed with index 0.

Contiguous elements of an array in a structure are assumed to be contigu
ous in storage. Contiguous elements of an array of structures are assumed
to be contiguous in storage.

RECORD record2(100), /*Array of 0 .. 99
fieldl s32, /* Description of fieldl
field2(20) s32, /*Array of o .. 19
field3 p32; /* Description of field3

/* There are 100 copies of fieldl and field3,

16.1.10.4 Handles

All handles and pointers are 32 bit.

16.1.10.5 Coordinates

*/
*/
*/
*/

2000 of field2 */

All coordinates are signed 32 bit local (Intel) format at the engine inter
face unless otherwise stated. These coordinate values are restricted to lie
within the range 'FFFF8000'X - '00007FFF'X. A pointer to the coordinate
pair(s) is passed in each case.

207

MS OS/2 Presentation Mana~er Reference

16.1.10.6 Bit Definitions

All references to individual bits in this document follow the Intel format
i.e.,

for 16 bit numbers:

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
LSB MSB

for 32 bit numbers:

7 6 •.• 1 0 15 14 •.. 9 8 23 22 ••• 17 16 31 30 ... 25 24
LSB MSB

where LSB is the least significant bit and MSB is the most significant bit.

16.1.11 The Dispatch Table

16.1.11.1 Device Driver Installation

When the device driver module is loaded, the graphics engine will call the
Enable function.

Among the arguments to this function will be a pointer to the lDevice
DispatchTable. This table will already be filled with the addresses of the
graphics engine default major handlers. (Copied from the Default
DispatchTable.) The device driver must overwrite the entries in this table
that correspond to the functions it wishes to handle.

16.1.11.2 Device Driver Function Handling

The device driver should execute a FAR return from an optional function
only when it completes all processing required for that function. If it can
not complete the function, it must pass control to the engine default
handler for that major function. The address of the default major handler
can be found in the DefaultDispatchTable, which is a globally readable
object.

A driver may not be able to complete processing in cases when it cannot
handle certain combinations of attributes, like wide styled curves, for
example.

Any minor function number that the driver does not recognize must be
passed to the default major handler. This will allow device drivers to con
tinue to operate even if the interface is expanded.

208

Device Drivers

Because the interface may be expanded to include functions that even the
most complete device driver cannot know about, the engine default
handler must be allowed access to any functions that modify drawing
attributes. The device driver should record the new attributes and perform
any work required for their instantiation, and then pass the call to the
default major handler for that function. The attribute is recorded twice,
but the engine is capable of taking over drawing at any time. The calls
that must be shared in this way are:

• SetArcParameters

• SetCurrentPosition

16.1.11.3 Simulation Installation

Simulations are installed during system initialization. Installation of simu
lations differ in that the desired functions are placed directly in the
DefaultDispatchTable. In this way, they replace the default engine major
handlers, but are not distinguishable from them.

Simulations should make a local copy of the pointers they are replacing.
This will allow them to use the engine handlers if they are ever needed.

16.1.12 Primary Function Definitions

16.1.12.1 Control Functions

Short list of the functions:

• ErasePS

• SetProcessControl

• GetProcessCon trol

• ResetBounds

• SetPick Window

• GetPick Window

• GetBoundsData

• QueryCharCorr

• Death

• Resurrection

• LockDevice

209

MS OS/2 Presentation Manager Reference

• UnLockDevice

• SetCursor

• DeviceSetCursor

ErasePS(u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

Erases the output media associated with the specified Device
Context handle to the global standard default background color,
on devices that are capable of supporting this operation (i.e., no
operation is performed for printers or plotters).

This operation is unaffected by the draw process control bit and
is unaffected by any application defined clipping.

Returns: BOOL

0 error
1 ok

SetProcessCon trol(u32_ Mask, u32_ ProcessFlags, u32_ DcH,
u32_ FuncNo)

210

Provides a means of turning draw, boundary computation and
correlation on and off.

Bounds are returned in graphics model space coordinates. If a
composite transform is applied to the drawing primitives, the
bounds values need to be back transformed before merging with
the previous bounds values. Bounds computation is performed
on unclipped primitives.

Correlation is performed in Page Coordinate Space on the out
put of primitives that have been clipped to the Viewing Limits
and Graphics Field only. Note: Boundary determination and
correlation are performed for all the functions specified in this
document that draw to the output media, excluding the
alphanumerics functions.

Parameters:

u32_Mask
Only process flags with the corresponding u32-Mask
bit set to 1 are modified.

u32_ ProcessFlags
Contains the following flags:

Device Drivers

Bit 0 draw
Set to '1 'B to indicate that drawing primi
tives should appear on the screen.

If this flag is off then, except for ErasePS, no
output operations are displayed (i.e., BitBlt,
PaintRegion, SetPel, drawing primitives,
etc., are not displayed).

This flag has no effect for ErasePS.

Bit 1 bounds
Set to '1 'B to indicate that bounds should be
collected.

Bit 2 correlate
Set to '1 'B to indicate that correlation
should be performed.

Bit 3 userbounds
Set to '1 'B to indicate that bounds should be
collected for the user interface.

Returns: BOOL

0 error
1 ok

GetProcessCon trol(u32_ DcH, u32_ FuncNo)

Returns the process control flags:

Bit 0 returns the draw process flag.

Bit 1 returns the bounds process flag.

Bit 2 returns the correlate process flag.

Bit 3 returns the user bounds process flag.

Bit 4 set to '1 'B to indicate that an area definition is in pro
gress.

Bit 5 set to '1 'B to indicate that a path definition is in pro
gress.

Bits 6-31
reserved.

Returns: long int

-1 error
>=0 process flags

ResetBounds(u32- Flags, u32_ DcH, u32_ FuncNo)

This resets the bounds values to their initial default values.

211

MS OS/2 Presentation Manager Reference

Parameters:

u32_Flags
Contains the following flags:

Bit 0 GpiBounds
Set to '1 'B to indicate that the Gpi interface
bounds rectangle is to be reset.

Bit 1 UserBounds
Set to '1 'B to indicate that the User inter
face bounds rectangle is to be reset.

Returns: BOOL

0 error
1 ok

SetPick Window(p32_ Pick Window, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* P32_PickWindow;

This sets the position and size of the pick window, in page coor
dinate space, for subsequent correlation operations.

The boundary of the pick window is included in the area corre
lated upon.

Parameters:

p32_ Pick Window
Points to an array containing the minimum and max
imum xy coordinate pairs of the window:

(s32- xmin, s32- ymin, s32_ xmax, s32- ymax)

The data in the array may be overwritten.

Returns: BOOL

0 error
1 ok

GetPick Window(p32-Pick Window, u32_ DcH, u32-FuncNo)

212

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* P32_PickWindow;

Device Drivers

This returns the position and size of the pick window, in page
coordinate space.

Parameters:

p32_ Pick Window
The address at which to return an array containing
the minimum and maximum xy coordinate pairs of the
window:

{s32- xmin, s32- ymin, s32- xmax, s32- ymax}

Returns: BOOL

0 error
1 ok

GetBoundsData(u32_ Style, p32-BoundsData, u32-DcH, u32-FuncNo)

This returns the bounding rectangle of previous drawing primi
tives in graphics model space coordinates for Gpi bounds and
device coordinates for User bounds.

Parameters:

u32_Style
Valid values are:

0 Indicates that the Gpi bounds rectangle is to
be returned.

1 Indicates that the User bounds rectangle is
to be returned.

p32_ BoundsData
The address at which to return the bounds data as an
array of two xy pairs, such that:

s32-xmin
specifies the minimum x bound value.

s32-ymin
specifies the minimum y bound value.

s32-xmax
specifies the maximum x bound value.

s32-ymax
specifies the maximum y bound value.

Null bounds data is returned by setting the x and y
bounds to their initial default values.

Returns: BOOL

0 error
1 ok

213

MS OS/2 Presentation Manager Reference

QueryCharCorr (u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This function returns an offset indicating which character within
a character string was selected, the last time a character string
primitive returned a successful correlation hit. If more than one
character in the string was selected, the offset of the first is
returned.

A value of zero indicates the first character in the string. A
negative value indicates that no string has been correlated on.

Returns: long int

-4 error
-1 no offset
>=D character offset

Death (u32_ DcH, u32_ FuncNo)

This function is used to provide notification of a screen group
switch into another screen group.

This function goes directly to the DDI.

Returns: BOOL

0 error
1 ok

Resurrection (u32_ DcH, u32_ FuncNo)

This function is used to provide notification of a screen group
switch back from another screen group.

This function goes directly to the DDI.

Returns: BOOL

0 error
1 ok

LockDevice(u32_ DcH, u32_ FuncNo)

214

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This function is used to synchronize use and update of VisRe
gion. It allows all current and pending drawing to complete and
blocks any further requests by other threads to draw.

Device Drivers

Upon exit, the only thread that is allowed to continue screen I/O
is the one that acquires the lock.

All screen I/O operations by other threads will be blocked until
UnlockDevice is called.

LockDevice and UnlockDevice are used mainly in the critical sec
tions of visible region calculations.

To prevent deadlock, it is guaranteed that no Death or
Resurrection will be called by the window manager while the
VisRegion is locked.

Returns: BOOL

0 error
1 ok

UnLockDevice(u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This function is used to synchronize use and update of VisRe
gion. It allows all pending screen 1/0 operations blocked by
LockDevice to continue.

LockDevice and UnlockDevice are used mainly in the critical sec
tions of visible region calculations.

Returns: BOOL

0 error
1 ok

SetCursor(p32_ xy, u32_ CursorBmapH, u32-DcH, u32_ FuncNo)

Sets the cursor bitmap that defines the cursor shape. Each call
replaces the previous bitmap with that identified by
u32-CursorBmapH. If this is null, the cursor has no shape and
its image is removed from the display screen.

Parameters:

p32_ xy A far pointer to u32- xHotSpot, u32- yHotSpot which
define the x,y position within the cursor of the "hot
spot."

u32_ CursorBmapH
The bitmap handle to be used for the cursor image.

Returns: BOOL

0 error
1 ok

215

MS OS/2 Presentation Manager Reference

DeviceSetCursor (p32_ xy, u32_ BmapH, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_BmapH;
ULONG* p32_xy;

Sets the cursor bitmap that defines the cursor shape. Each call
replaces the bitmap with that pointed to by u32_BmapH. If
u32_BmapH is null, the cursor has no shape and its image is
removed from the display screen.

Parameters:

p32_xy A far pointer to u32-xHotSpot, u32-yHotSpot which
define the x,y position within the cursor of the "hot
spot."

u32_ CursorBmapH
The bitmap handle to be used for the cursor image.

Returns: BOOL

0 error
1 ok

16.1.12.2 Attribute Functions

The following functions pass individual set attribute orders to the Graph
ics Engine.

Short list of the functions:

• SetArcParameters

• SetCurren tPosition

• SetPatternOrigin

• GetArcParameters

• GetCurren tPosition

• GetPatternOrigin

• SetLineTypeGeom

• QueryLineTypeGeom

• SetStyleRatio

216

Device Drivers

SetArcParameters(p32-AttributeData, u32-DcH, u32-FuncNo)

place=inline frame=box
struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_ArcParameters;

Sets the arc parameters to the specified values.

Parameters:

p32-AttributeData
Points to a 4 element array containing the integer
values for the arc parameters:

{s92- p, s92- q, s92- r, s92- s}

The arc parameters define the shape and orientation of an ellipse
which is used for subsequent Arc, FullArc, and PartialArc func
tions. For all of these functions except Arc, they also determine
the direction of drawing, as follows:

s32_p * s32_q > s32_r * s32_s anticlockwise
s32_p * s32_q < s32_r * s32_s clockwise
s32_p * s32_q = s32_r * s32_s straight line

Also except for Arc, they define the nominal size of the ellipse,
although this may be changed by using the multiplier. For Arc,
the size of the ellipse is determined by the three points specified
on Arc.

The arc parameters define a transformation that maps the unit
circle to the required ellipse, placed at the origin (0,0):

x' = p.x + r.y
y' = s.x + q.y

If p.r + q.s = 0, then the transform is termed orthogonal, and
the line from the origin (0,0) to the point (p,s) is either the
radius of the circle, or half the major axis of the ellipse. The line
from the origin to the point (r,q) is either the radius of the cir
cle, or half the minor axis of the ellipse.

For maximum accuracy orthogonal transforms should be used.

The standard default values of arc parameters (which define a
unit circle) are

p = 1 r = 0
s = 0 q = 1

The arc parameters transformation takes place in World Coordi
nates. Any other non-square transformations in force will change
the shape of the figure accordingly.

217

MS OS/2 Presentation Manager Reference

Returns: BOOL

0 error
1 ok

SetCurrentPosition(p32_xy ,u32-DcH, u32-FuncNo)

place=inline frame=box
struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Sets the current x,y position to the specified value and resets the
line type sequence. If the current context is 'in area', then a
figure closure line is generated if necessary, this may cause a
correlation hit on an area boundary to occur. The current posi
tion should only be correlated on, and or be merged into the
bounds, if it is actually used in a drawing primitive. Thus, for
example, the sequence SetCurrentPosition to Pl, SetCurrentPo
sition to P2, Polyline to P3, will not merge Pl into the bounds
or correlate on it.

Parameters:

p32-xy Points to the integer values {s32_ x, s32_ y) of the new
current position in world coordinate space.

Returns: BOOL

0 error
1 ok

SetPatternOrigin(p32_xy, u32-DcH, u32-FuncNo)

218

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Sets the pattern reference point used for bl ting and filling to the
specified value.

Parameters:

p32_ xy Points to {s32_ x, s32_ y), the origin of the pattern
relative to the origin (or window on the screen) in
world coordinates.

The pattern reference point is the point which the origin of the
area filling pattern maps to. The pattern is mapped into the area

Device Drivers

to be filled by conceptually replicating the pattern definition in
horizontal and vertical directions.

Since the pattern reference point is subject to all of the
transforms, if an area is moved by changing a transform and
redrawing, the fill pattern will also appear to move so as to
retain its position relative to the area boundaries. This allows
part of a picture to be moved with a BitBlt operation, and the
remainder to be drawn by changing the appropriate transform,
with no discontinuity at the join.

The pattern reference point, which is specified in World Coordi
nates, need not be inside the actual area to be filled. The pattern
reference point is not subject to clipping, although of course the
area to be filled will be.

The pattern reference point applies to filled areas and to Flood
Fill.

Returns: BOOL

0 error
1 ok

GetArcParameters(p32-AttributeData, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_ArcParameters;

Returns the current arc parameters p, q, r, sin a 4 element
array:

{892- p, 892- q, 892- r, 892- 8)

Parameters:

p32_ AttributeData
Specifies the return address for the data.

Returns: BOOL

0 error
1 ok

GetCurrentPosition(p32-xy, u32_DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

219

MS OS/2 Presentation Manager Reference

Returns the current position as an x,y coordinate pair:

(s32- x, s32- y}

Parameters:

p32_xy Specifies the return address for the data.

Returns: BOOL

0 error
1 ok

GetPattern Origin(p32_ xy, u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Gets the origin of the pattern used for blting and filling.

Parameters:

p32_ xy Points to the return address for {s32_ x, s82_ y), the
origin of the {lat tern relative to the origin (or window
on the screen) in world coordinates.

Returns: BOOL

0 error
1 ok

SetLineTypeGeom(u32_ options, u32_ count, p32- lengths, u32_ DcH,
u32_ FuncNo)

220

Note: SetLineTypeGeom is not required for the first release of
Presentation Manager.

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_lengths;
ULONG u32_count;
ULONG u32_options;

Sets the geometric line-type attribute to the specified values.
This is the line-type which will be used if geometric thick lines
are being drawn (see line_ geometric- width).

Device Drivers

A non-solid geometric line-type consists of a sequence of 'on' and
'off' runs which gives the appearance of a dotted, dashed, etc.,
line. The lengths of the runs are specified in World Coordinates,
so that they are subject to all of the transforms, in the same way
that geometric line thickness is.

The system maintains position within the line-type definition, so
that, for example, a curve may be implemented as a polyline.
However, certainfunctioils cause position to be reset to the start
of the definition. These are:

• SetLineTypeGeom

• SetCurrentPosition

• SetModeITransform

• Set WindowViewportTransform

• SetPage Window

• Set Page Viewport

Parameters:

u32_ options
Optionfla~s. This consists of 32Jlags (with 0 the least

· significant). These may be used in combination. Each
set bit has the following meaning:

LWG_JNIT {bit 0)
If set, the first run is 'on'. Otherwise, it is
'off'.

LWG_REP (bit 1) ·
If set, runs repeat from the second value.
Otherwise, they repeat from the first. In
either case, the value of L WG_ JNJT is
ignored for repeats ..

u32-count
The number of elements in the array pointed at by
p32-lengths.

p32- lengths
A far pointer to an array, containing u9L count ele
ments, which specifies the run lengths, in world co
ordinates. Each array element is of type s32 {long).

Returns: BOOL

0 Error·
1 OK

221

MS OS/2 Presentation Ma.na.ger Reference

QueryLineTypeGeom(p32-options, u32_ count, p32-lengths, u32-DcH,
u32_ FuncNo)
Note: QueryLineTypeGeom is not required for the first release of
Presentation Manager.

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_lengths;
ULONG u32_count;
ULONG* p32_options;

Returns the geometric line-type attribute.

Parameters:

p32_ options
A far pointer to a variable in which the option flags
are returned. See SetLineTypeGeom.

u32-count
Set by the application to the number of elements in
the array pointed to by p3fL lengths.

p32- lengths
A far pointer to an array containing u3fL count ele
ments, in which the run lengths, in world co-ordinates,
are returned.

Returns: long int

-1 Error
>=0 Count of number of elements returned

SetStyleRatio(p32_ ratio, u32-DcH, u32-FuncNo)

222

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Ratio;

Specifies the ratios to be used when drawing styled lines.

This function is used for banding printers which use display DDs
to write into bitmaps. When drawing a styled line, equal length
dashes (and dots) must be maintained in all directions. Printer
driver calls will be redispatched to the display driver for banding
in printers, and must be able to set this aspect ratio so that the
printer can have the display driver draw correct lines.

Device Drivers

Sample ratios
5,12,13 - cga
10,10,14 - all one to one devices

Parameters:

p32-Ratio
Points to three 16:16 fixed point numbers. These
define the sides of a right angle triangle, which
corresponds to the aspect ratio of the pels a line is
drawn on.

Returns: BOOL

0 error
1 ok

16.1.12.3 Bundle Attribute Functions

Short list of the functions:

• SetAttributes

• DeviceSetAttributes

• GetAttributes

• SetGlobalAttribute

• DeviceSetGlobalAttribute

16.1.12.4 Attribute and Bundle Definitions

The attributes for each attribute bundle type are defined below, following
a general definition of colors, mixes and patterns.

Note: For area definitions, the area must be filled using the pattern that is
current when the BEGIN AREA order is issued.

Colors

All colors will be passed as s32 values. They will either be indices
into the logical color table, which will be stored by the engine, or
24 ~it RGB values. All possible values will be passed to the
engme.

Note that some special attribute values can be passed to the
Engine:

-6 all color planes/bits '1'

-7 all color planes/bits 'O'

223

MS OS/2 Presentation Manager Reference

224

-2 use the color given by index 7 (display) or index 0
(printer/ plotter)

-1 use the color given by index 0 (display) or index 7
(printer/ plotter)

-6 and -7 provide useful operands for BitBlt logical operations.

Attribute values of-1 and -2 will never loaded explicitly but will
always produce the color value defined for index 0 or index 7
(given by the two rules above). If a color attribute of -1 and -2
has been set then -1 or -2 respectively will be returned in
response to a query.

The range of color table indices is -2 .. Maxlndex.

For the default color table index -1 is black (same as 0 for a
display, 7 for a printerland index -2 is white (same as 7 for a
display, 0 for a printer . Note: If the background/foreground mix
is transparent, the bac ground/foreground color will not be
seen.

All values will be passed to the graphics engine, which will pass
them unchanged to the device driver.

Foreground Mix Mode
Valid values are:

1 OR
2 Overpaint
3 Underpaint
4 Exclusive OR
5 Leave Alone (invisible}
6 AND
7 (inverse source) AND dest
8 source AND (inverse dest)
9 All zeros

10 Inverse (source OR dest)
11 Inverse (source XOR dest)
12 Inverse of dest
13 Source OR (inverse dest)
14 Inverse of source
15 (inverse source) OR dest
16 Inverse of (source AND dest)
17 All ones

Background Mix Mode
Valid values are:

1 OR
2 Overpaint
3 Underpaint
4 Exclusive OR
5 Leave Alone (invisible)

Support for the following foreground mixes is mandatory, other
supported values may produce default mix (overpaint):

Patterns

Device Drivers

1 OR (for devices that are capable of supporting this)
2 Overpaint
5 Leave alone (invisible)

Support for the following background mixes is mandatory, other
supported values may produce default mix (leave alone):

2 Overpaint
5 Leave alone (invisible)

The standard default background mix may be used in place of
OR, Underpaint and Exclusive OR if these background mixes are
not supported by the driver.

pattern-symbol and line_ pattern-symbol values in the range 1
thru 255 are valid.

Valid values of line- pattern... symbol and pattern... symbol in the
base pattern set are:

1 thru 8 Solid shading with decreasing intensity.

9 Vertical lines
10 Horizontal lines
11 Diagonal lines 1, bottom left to top right
12 Diagonal lines 2, bottom left to top right
13 Diagonal lines 1, top left to bottom right
14 Diagonal lines 2, top left to bottom right
15 No shading
16 Solid shading
17 Every alternate pixel on

64 Blank

Note that solid shading 1 is less intense than solid shading 16.
Also, on many devices 17 may be distinct from the number 4
solid pattern and is useful for generating "Gray Text" among
other things.

Pen (Line) Attributes

The line attribute bundle and 32 bit mask are defined as follows:

Bit Mask
Number

RECORD LineAttributes,
0 line_color u32,
1 line_background_color u32,
2 line_mix_mode ul6,
3 line_background_mix_mode ul6,
4 line_width s32,
5 line_geometric_width s32,
6 line_ type ul6,
7 line_ end u16,
8 line_join ul6,

Note: Line_ background_ color and line_ background- mix only

225

MS OS/2 Presentation Manager Reference

226

apply to line patterns. They are not used for the spaces in
dot/ dashed lines.

line_ color
Specifies the line foreground color.

line_ background_ color
Specifies the line background color. This is only used
for the line pattern, i.e., for thick lines where the pat
tern shading is non-solid, it is not used for the spaces
in complex lines.

line_ mix_ mode
Specifies the line foreground mix mode.

line_ background_ mix_ mode

line_ type

Specifies the line background mix. This is only used for
the line pattern, i.e., for thick lines where the pattern
shading is non-solid, it is not used for the spaces in
complex lines.

Valid values for (cosmetic) line_ type are:

1 Dotted
2 Short dashed
3 Dash, dot
4 Double dotted
5 Long dashed
6 Dash, double dot
7 Solid
8 Invisible
9 Every alternate pixel on

65 thru 254 User-defined line types

Note that on many devices 9 may be distinct from the
number 1 "Dotted" pattern.

line_ width
Specifies the cosmetic line thickness (used in all cases,
except when the StrokePath option is specified on the
ModifyPath function). This is treated as a 4-byte fixed
point number with the high order word as the integer
portion and the low order word as the fractional por
tion. Thus a value of 65536 specifies a width of 1.0.

Valid values for line_ width are:

10 Normal width
20 Thick (double width)

Any other :positive value is a multiplier on the 'normal'
line width {values that are <= 1.0 may be treated as
'normal' and values > 1.0 as 'thick' by the

Device Drivers

implementation). Note: Cosmetic line_ with attribute
will be not be supported in the first release of Presen
tation Manager. If cosmetic line_ width is set to any
thing other than normal (default), a warning will be
raised.

line_ geometric_ width
Specifies the geometric line thickness in world coordi
nate space as an integer value. This is used only when
the StrokePath option is specified on the ModifyPath
function.

Thick geometric lines will be treated as polygons and
be transformed accordingly.

line_ end

line_ join

Pattern Attributes

Valid values for line.... geometric_ width are:

>O Thickness in world coordinates

Valid values are:

1 Flat
2 Square
3 Round

Valid values are:

1 Bevel
2 Round
3 Mitre

The pattern attribute bundle and 32 bit mask are defined as fol
lows:

Bit Ma6k
Number

RECORD PatternAttributes,
0 pattern_color u32,
1 pattern_background_color u32,
2 pattern_mix_mode ul6,
3 pattern_background_mix_mode ul6,
4 pattern_set ul6,
5 pattern_symbol u16:
6 pattern_origin(2) u32:

pattern_ color
Specifies the pattern foreground color.

pattern_ background_ color
Specifies the pattern background color.

227

MS OS/2 Presentation Manager Reference

pattern_ mix_ mode
Specifies the pattern foreground mix mode.

pattern_ background_ mix_ mode
Specifies the pattern background mix mode.

pattern_ set
Specifies an lcid which identifies a symbol set or a bit
map. Valid values are:

'0001'X
thru
'OOFE'X

Loaded symbol set/bitmap identifier.

'OOFO'X Base pattern set identifier.

pattern_ symbol
Specifies the identity of the required pattern in the
current pattern symbol set (this attribute is ignored if
the pattern set is a bitmap). If the value is outside the
range of the symbol set, the standard default pattern
is used.

Values in the range 1 thru 255 are valid.

pattern_ origin
Specifies the pattern reference point for areas and
thick lines.

The pattern reference point is the point which the ori
gin of the area filling pattern maps to. The pattern is
mapped into the area to be filled by conceptually repli
cating the pattern definition in horizontal and vertical
directions.

Since the pattern reference point is subject to all of
the transforms, if an area is moved by changing a
transform and redrawing, the fill pattern will also
appear to move so as to retain its position relative to
the area boundaries. This allows part of a picture to
be moved with a BitBlt operation, and the remainder
to be drawn by changing the appropriate transform,
with no discontinuity at the join.

The pattern reference point, which is specified in
World Coordinates, need not be inside the actual area
to be filled. The pattern reference point is not subject
to clipping, although of course the area to be filled will
be.

Character Attributes

228

The character attribute bundle and 32 bit mask are defined as
follows:

Bit Mask
Number

RECORD CharacterAttributes,
0 char_color u32,
1 char_background_color u32,
2 char _mix_mode u16,
3 char_background_mix_mode u16,
4 char_set u16,
5 char_precision u16,
6 char_cell(2) s32,
7 char _angle_xy (2) s32,
8 char _shear _xy (2) s32,
9 char_text_align(2) s16,

10 char _spacing (2) s32,
11 char _break_extra (2) s32,
12 char_extra(2) s32,
13 char_direction u16;

char-color
Specifies the foreground color.

char_ background_ color
Specifies the background color.

char-"mix_ mode
Specifies the foreground mix mode.

char_ background-mix_ mode
Specifies the background mix mode.

char_ set

Device Drivers ,

Specifies an lcid which identifies a symbol set or a font.
If the lcid specifies an unloaded character set or a base
symbol set, the engine uses the current code page and
character precision to resolve which base symbol set to
use. The code page (set by the function SetCodePage)
identifies two base symbol sets, a vector and an image
one. The value of char-precision determines which of
these two sets is selected. Valid values for char_ set
are:

'OOOl'X
thru
'OOFE'X

Loaded symbol set/font identifier.

'OOFO'X Base symbol set identifier.

char_ precision
Valid values for precision are:

1 Precision 1
2 Precision 2
8 Precision 3

229

MS OS/2 Presentation Manager Reference

230

char_ cell
Specifies fixed point numbers for the width and height
of a character cell in world coordinate space:

{s82- char_ ce/L width, s82_ char_ celL hei'ght}

Each dimension is represented as a signed 4-byte
integer, with a notional binary point between bits 16
and 15. Thus

+2.5 is represented by'00028000X and
-2.5 is represented by'FFFDBOOOX

The width determines the spacing of consecutive char
acters along the baseline. Both width and height can
be positive, negative or zero.

When either parameter is negative, the spacing occurs
in the opposite direction to normal and each character
is drawn reflected in character mode (precision 3).
Thus, for example, a negative height in the standard
direction in mode 3 means that the characters are
drawn upside down, and the string drawn below the
~aseli1:1e (assuming no other transformations cause
mvers10n).

A zero character width or height is also valid; here, the
string of characters collapses into a line. If both are
zero, the string is drawn as a single point.

char_ angle_ xy
Specifies integer values x and y for the coordinates of
the end of a line starting at the origin (0,0); the base
line for subsequent character strings is parallel to this
line.

In character mode (precision 1), the cell has no effect
when characters are drawn.

In character mode (precision 2), the angle is used to
determine the position of each character, but the
orientation of characters within the character box is
inherent in their definitions. The characters are posi
tioned so that the lower left-hand corners of the char
acter definitions are placed at the lower left-hand
corners of the character boxes.

In character mode (precision 3), the angle is observed
accurately, and the character boxes are rotated to be
normal to the character baseline. If the coordinate sys
tem is such that one x-axis unit is not physically equal
to one y-axis unit, a rotated character appears to be
sheared.

Device Drivers

char_shear_xy
Specifies integer values that identify the end coordi
nates of a line originating at 0,0; the vertical strokes
in subsequent character strings are drawn parallel to
the defined line.

The top of the character box remains parallel to the
character baseline.

If hx = 0 and hy = 1 (the standard default), 'upright'
characters result. If hx and hy are both positive or
both negative, the characters slope from bottom left to
top right. If hx and hy are of opposite signs, the char
acters slope from top left to bottom right. No charac
ter inversion takes place as a result of shear alone.
{Inversion can be performed with the char_ cell attri
bute).

It is an error to specify a zero value for hy, because
this would imply an infinite shear.

char_ texL align
Specifies the alignment, in horizontal and vertical
directions, of subsequently output character strings:

{s16_ horiz, s16_ vert}

s16-horiz and sl6_ vert give the alignment of charac
ter strings horizontally and vertically. Together they
define a reference point within the string that is posi
tioned on the starting point specified for the string.

Possible values of sJ 6_ horiz are:

-1 Standard. The alignment depends on the
current character direction:

Left to right {1} Left edge of first character
Top to bottom'(2} Left edge of first character
Right to left {31 Right edge of first character
Bottom to top (4) Left edge of first character

1 Normal. The alignment depends on the
current character direction:

Left to right {1} Left
Top to bottom '{2} Center
Right to left {31 Right
Bottom to top (4) Center

2 Left alignment. The string is aligned on the
left edge of its leftmost character.

3 Center alignment. The string is aligned on
the arithmetic mean of left and right.

231

MS OS/2 Presentation Manager Reference

232

4 Right alignment. The string is aligned on
the right edge of its rightmost character.

Possible values of s16_ vert are:

-1 Standard. The alignment depends on the
current character direction:

Left to right {1} Bottom edge of first character
Top to bottom/2} Top edge of first character
Right to left {3j Bottom edge of first character
Bottom to top (4) Bottom edge of first character

1 Normal. The alignment depends on the
current character direction:

Left to right (1) Base
Top to bottom'{2} Top
Right to left (3j Base
Bottom to top (4) Base

2 Top alignment. The string is aligned on the
top edge of its topmost character.

3 Cap alignment. The string is aligned on the
cap of its topmost character. Where cap is
not defined by the symbol set or font, this is
the same as top.

4 Half alignment. The string is aligned on the
arithmetic mean of base and cap.

5 Base alignment. The string is aligned on the
base of its bottom character. Where base is
not defined by the symbol set or font, this is
the same as bottom.

6 Bottom alignment. The string is aligned on
the bottom edge of its bottom character.

The terms "top left", "bottom right", and so on, are
well defined when the character angle and the direc
tion of the coordinate system are such that the base
line is parallel to the x axis, running from left to right
on the device, and there is no character shear.

If the character is rotated or sheared, the term "top
left" applies to the corner of the character box that
appears in the top left when no rotation or shear is
applied. Note: The char_ texL align attribute will be
not be supported in the first release of Presentation
Manager. If char_ texL align is set to anything other
than normal (default), a warning will be raised.

Device Drivers

char_ spacing
Specifies the amount of space or overlap to be pro
vided between successive characters in a string, as two
multipliers:

{s92- char_ width_ mult, s92- char_ heighL mult}

The multipliers apply to the char_ cell values. They
give increments to the width and height which are
applied equally to all characters in a string, irrespec
tive of any proportional spacing or kerning which may
take place.

Only one of the two multipliers is relevant for any par
ticular character string primitive; this depends upon
the value of char_ direction. The width increment is
used for left-to-right and right-to-left character direc
tions, and the height increment for top-to-bottom and
bottom-to-top character directions.

char_ width- mult and char_ heighL mult are 4- byte
signed fixed point numbers with the high-order word
as the integer portion and the low-order word as the
fractional portion. Thus, a value of 65536 specifies a
multiplier of 1.0.

The values may be negative, zero or positive:

• A negative value gives overlapping character cells.

• A value of zero results in standard spacing.

• A positive value allows extra space between char-
acter cells.

Note: The character spacing specified in the function
CharStringPos is applied after the char_ spacing spac
ing as a final adjustment.

char_ break_ extra
Specifies the amount of additional space to be pro
vided at the given break (normally space) character
within a string:

{s32- char_ width_ extra, s32- char_ heighL extra}

This space is additional to any spacing produced by
char_ spacing and char_ extra. The values
char-width_ extra and char_ height-extra are addi
tive deltas in world coordinates, and are irrespective of
any proportional spacing or kerning which may take
place.

Only one of the two values will be relevant for any
particular character string primitive; this del?ends
upon the character direction (char_ direction). The
width increment is used for left-to-right and right-to-

233

MS OS/2 Presentation Manager Reference

234

left character directions, and the height increment for
bottom-to-top and top-to-bottom character directions.

char_ width-extra, char_heighLextra

char_ extra

specify the width and height increments,
respectively. These are each in the form of
4-byte signed fixed point numbers with the
high-order word as the integer portion and
the low-order word as the fractional portion.
Thus, a value of 65536 specifies an increment
of 1.0.

The values may be negative, zero, or posi
tive:

•

•

•

A negative value reduces the size of a
break character

A value of zero (the standard default)
gives the normal size {subject to any
other spacing in force)

A positive value increases the size of a
break character

Specifies the amount of space or overlap to be pro
vided between successive characters in a string:

{s32- char_ width- extra, s32- char_ heighL extra}

This gives the same spacing as char_ spacing, except
that the values are additive deltas rather than multi
pliers. If both character spacing and character extra is
used, the effects will be cumulative.

Only one of the two values will be relevant for any
particular character string primitive; this depends
upon the character direction (see char_ direction). The
width increment is used for left-to-right and right-to
left character directions, and the height increment for
bottom-to-top and top-to-bottom character directions.

char_ width_ extra, char_ height_ extra
specify the width and height increments,
respectively. These are each in the form of
4-byte signed fixed point numbers with the
high-order word as the integer portion and
the low-order word as the fractional portion.
Thus, a value of 65536 specifies an increment
of 1.0.

The values may be negative, zero, or posi
tive:

Device Drivers

Image Attributes

• A negative value forces the characters
closer together

• A value of zero (the standard default)
results in staqdard spacing

• A positive value allows extra space
between character boxes

char_ direction
Valid values for direction are:

1 Left to right
2 Top to bottom
3 Right to left
4 Bottom to top

If the specified direction is not valid, the
default direction (Left to right) is used.

The image attribute bundle and 32 bit mask are defined as fol
lows:

Bit Mask
Number

RECORD ImageAttributes,
0 image_color u32,
1 image_background_color u32,
2 image_mix_mode u16,
3 image_background_mix_mode u16;

image_ color
Specifies the image foreground color.

image_ background_ color
Specifies the image background color.

image_ mix_ mode
Specifies the image foreground mix mode.

image_ background_ mix_ mode
Specifies the image background mix mode.

Marker Attributes

The marker attribute bundle is defined as follows:

Bit Mask
Number

RECORD MarkerAttributes,
0 marker_color u32,
1 marker_background_color u32,
2 marker_mix_mode u16,
3 marker_background_mix_mode ul6,
4 marker_set ul6,
5 marker_symbol u16,
6 marker_cell(2) s32;

235

MS OS/2 Presentation Manager Reference

236

marker-color
Specifies the marker foreground color.

marker_ background_ color
Specifies the marker background color.

marker_ mix_ mode
Specifies the marker foreground mix mode.

marker_ background_ mix_ mode
Specifies the marker background mix mode.

marker_ set
Specifies an lcid that identifies the required symbol set.
Valid values are:

'0001'X
thru
'OOFE'X

Loaded symbol set identifier.

'OOFOX Base marker set identifier.

marker-symbol
Specifies the identity of the required marker symbol.
The value identifies a symbol in the current marker
set.

If the specified symbol is not valid, the standard
default is used. Valid values in the base marker set
are:

1 Cross
2 Plus
9 Diamond
4 Square
5 Six-point star
6 Eight-point star
7 Filled diamond
8 Filled square
9 Dot

10 Small circle

64 Blank

marker_ cell
Specifies fixed point numbers for the width and height
of a marker cell in world coordinate space:

{s92- marker_ ce/L width, s92- marker_ celL height)

Each dimension is represented as a signed 4-byte
integer, with a notional binary point between bits 16
and 15. Thus

+2.5 is represented by '00028000'X and
-2.5 is represented by 'FFFDBOOO'X.

Device Drivers

16.1.12.5 Function Definitions

SetAttributes (u32-BType, u32-DefsMask, u32-AttrsMask, p32-Attrs,
u32-DcH, u32_ FuncNo)

This sets attributes for the specified primitive type according to
the defaults and attributes masks.

• Only attributes with their flag bit set in u32-AttrsMask are
modified.

• Those attributes with their flag bit set in both
u32-AttrsMask and u32-DefsMask are set to standard
default value.

• Those attributes with their flag bit set in u32-AttrsMask
only are set to the value specified by p32-Attrs.

• Those attributes with their flag bit set in u32_DefsMask
only are unchanged.

Parameters:

u32-BType
Specifies the bundle type as one of the following:

1 Pen (Line Attribute Bundle)
2 Character Attribute Bundle
9 Marker Attribute Bundle
4 Pattern Attribute Bundle
5 Image Attribute Bundle

u32-DefsMask
Specifies the attributes to be set to their standard
default values.

u32-At trsMask
Specifies the attributes to be modified.

p32_Attrs
Points to the fixed format bundle record, specified
above, containing the attribute values to be set, as
specified by u32-AttrsMask In the record, only the
attribute fields which correspond to the attribute flags
set in u32-AttrsMask and not set in u32-DefsMask
contain valid values.

Returns: BOOL

0 error
1 ok

237

MS OS/2 Presentation Manager Reference

DeviceSetAttributes (u32_BType, u32-DefsMask, u32_AttrsMask,
p32_ Attrs, u32_ DcH, u32-FuncNo)

238

place=inline frame = box

struct ARGUMENTS {

}:

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Attrs;
ULONG u32_AttrsMask;
ULONG u32_DefsMask;
ULONG u32_BType;

This sets attributes for the specified primitive type according to
the defaults and attributes masks.

• Only attributes with their flag bit set in u32-AttrsMask are
modified.

• Those attributes with their flag bit set in both
u32-AttrsMask and u32_ Def sMask are set to standard
default value.

• Those attributes with their flag bit set in u32_AttrsMask
only are set to the value specified by p32_Attrs.

• Those attributes with their flag bit set in u32-DefsMask
only are unchanged.

Parameters:

u32_BType
Specifies the bundle type as one of the following:

1 Pen (Line Attribute Bundle)
2 Character Attribute Bundle
3 Marker Attribute Bundle
4 Pattern Attribute Bundle
5 Image Attribute Bundle

u32_ Def sMask
Specifies the attributes to be set to their standard
default values.

u32_ AttrsMask
Specifies the attributes to be modified.

p32_Attrs
Points to the fixed format bundle record, specified
above, containing the attribute values to be set, as
specified by u3fLAttrsMask In the record, only the
attribute fields which correspond to the attribute flags
set in u32_ AttrsMask and not set in u32_ Def sMask
contain valid values.

Device Drivers

Returns: BOOL

0 error
1 ok

GetAttribu tes(u32-BTlpe, u32-AttrsMask, p32-Attrs, u32_ DcH,
u32-FuncNo)

This returns the current value of the attributes specified in
u32_AttrsMask. If the specified attribute is currently set to
standard default value then the corresponding flag is set in the
returned defaults mask value.

Parameters:

u32-BType
Specifies the bundle type as one of the following:

1 Pen (Line Attribute Bundle)
2 Character Attribute Bundle
9 Marker Attribute Bundle
4 Pattern Attribute Bundle
5 Image Attribute Bundle

u32-AttrsMask
Specifies the attributes to be returned. The mask con
tains a bit corresponding to each attribute in the bun
dle record, as defined above. For all the valid bits set
to 1 in the mask, the corresponding attribute values
and default mask bits are returned.

p32-Attrs
is a far pointer to a buffer in which the current attri
bute settings are returned. The only field that are
updated are those corresponding to the attributes to
be returned,as specified by the u32_AttrsMask.

Returns: long int

-1 error
>=0 defaults mask

Only those flags with the corresponding bit set in
u32-AttrsMask will be updated, other flags are undefined.

SetGlobalAttribute(u32_AttributeType, u32_Attribute, u32_ DcH,
u32_ FuncNo) '

This sets the five individual primitive attributes to the specified
value, in the pen, pattern, character, image and marker bundles.

Parameters:

u32_AttributeType
Specifies the attribute as one of the following:

239

MS OS/2 Presentation Manager Reference

1 Foreground Color
2 Background Color
3 Foreground Mix
4 Background Mix

u32_Attribute
Specifies the new value of the attribute.

Returns: BOOL

0 error
1 ok

DeviceSetGlobalAttributes
(u32-AttributeType, u32-Attribute, u32_ DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Attribute;
ULONG u32_AttributeType;

This sets the five individual primitive attributes to the specified
value, in the pen, pattern, character, image and marker bundles.

Parameters:

u32_AttributeType
Specifies the attribute as one of the following:

1 Foreground Color
2 Background Color
3 Foreground Mix
4 Background Mix

u32_Attribute
Specifies the new value of the attribute.

Returns: BOOL

0 error
1 ok

16.1.12.6 Drawing Functions

These functions pass individual drawing orders to the Graphics Engine.
The engine will then draw, correlate and/or take bounds on the drawing
primitives, as determined by the current values of the draw, correlate and
bounds flags.

The engine is assumed to clip to the appropriate part of the window; that
is the region excluding any window border or frills.

240

Device Drivers

Coordinates are passed as signed 32 bit numbers in a logical space called
WCS {world coordinate space).

Angles are passed as signed 32 bit numbers. A value of 2**31 means a full
circle. A value of zero refers to a direction along the positive x axis. Posi
tive values are taken as being anticlockwise from the positive x axis, so
that, for example, 2**29 refers to a direction along the positive y axis.

16.1.12.7 'Move' Type Orders

It is intended that series of line, arc and fillet orders should all join up
correctly, including the on/off counts according to the current line
style/type. The rules given below allow the smooth joining up of a series of
lines, arcs, and fillets. Such a series will start and end at the expected posi
tions. The only case they fail on is that of a closed figure drawn in XOR
mode, when the first (and last) pel will be drawn twice, and therefore lost.

It is also important that it is clearly specified which orders cause an impli
cit figure closure during an area.

Certain orders are defined to be 'move' type operations. A move causes
three things to happen:

• The line style sequence is reset.

• The next line, arc, fillet, or partial arc primitive is drawn with first
and last pel {subject to the line style sequence).

• In an area, if the current figure is not closed (the current device
coordinate position is not the same as the device coordinate posi
tion the figure was started at), then an implicit closure line is
drawn to close it.

Subsequent line, arc, fillet, and partial arc primitives are drawn to include
the last, but not the first, pel (subject to the line style sequence).

Any full arc, box or pie slice drawn with boundary, {that is any closed
figure) will be drawn with its boundary complete (no missing pels) and
with the line pattern sequence honored around all the parts of its boun
dary. To allow construction of complex area boundaries, such closed
figures are not considered to be 'move' type operations.

The following engine functions are defined to be 'move' type operations.

• 'Set Current Position'.

• Any 'Set' that changes (or might change) the transform from WCS
to device coordinates, for instance 'Set Model Transform', or 'Set
Window /Viewport Transform'.

241

MS OS/2 Presentation Manager Reference

• Any 'Set' that changes (or might change) the current clipping, for
instance 'Set Viewing Limits'.

Refer to u32_ FuncNo page 5-1 and 6-7 for further details. Note: a
different set of rules is needed if constructing a boundary for scan line area
filling, for example, you may choose to ignore line style, and draw all lines
solid, with first pel off, last pel on. This boundary is of course different
from the boundary that is drawn on the screen after the interior is filled.

16.1.12.8 Filled Closed Figures

Certain closed figures can be specified as being filled, outline, or both, or
neither. The filling of these figures (box, full arc, and pie slice) will use the
current pattern (area) attributes. The filled version of these figures can be
treated as an error if already in an area definition.

16.1.12.9 Correlation on Areas

Correlation obeys the u32_ FuncNo rules. In the case of correlating on
areas this is particularly complex.

242

• SET CURRENT POSITION and END AREA will generate a clo
sure line when the current position is not at the start of the current
closed figure. This closure line can cause a correlation hit.

• The area interior itself can cause a correlation hit, which must be
reported on the END AREA order. In addition, a double hit can
occur on END AREA. This occurs when

• the end area causes an area closure line to be drawn,

• the boundary is being drawn

and

• the closure line and the area interior both intersect the pick
window.

In this case a special double hit return code is passed back.

• The lines (and arcs, full arcs, boxes and fillets) defining the area
boundary can cause a correlation hit, if the area is specified with
boundary. This hit must be reported when the function is issued.
This implies that some work must be done, as well as just journal
ling the calls that define the area boundary.

Device Drivers

16.1.12.10 Correlation on Strokes

A hit is returned on the the nominal width strokes as they come in, and
then correlation is performed on the whole figure on EndStrokes, much
like areas.

16.1.12.11 Transform Matrix Precision

Matrix elements are represented as a 16 bit signed integer and a 16 bit
fractional part. These precision limits apply during engine matrix multipli
cation for all initial, intermediate and final matrix element values.

16.1.12.12 Code Page

It is assumed in this section that the engine (or device driver) will be able
to tell from the selected font or symbol set whether it is a single or double
byte character set, and draw the characters appropriately.

16.1.12.13 List of Functions

Short List of Function Calls:

• Arc

• BeginArea

• BeginPath

• Box (Boxlnterior, BoxBoundary, BoxBoth)

• CharString

• CharStringPos

• CloseFigure

• CombinePaths

• DeletePath

• DrawFrame

• EndArea

• EndPath

• FillPath

• FullArc (FullArclnterior, FullArcBoundary, FullArcBoth)

• lmageData

243

MS OS/2 Presentation Manager Reference

• Mod if yPath

• OutlinePath

• QueryCharPositions

• PartialArc

• Poly {Poly Fillet, Poly Line, Poly Marker, PolySpline)

• PolyFilletSharp

• PolyShortLine

• QueryClipPath

• QueryTextBox

• QueryTextBreak

• SelectClipPath

Arc(p32_xy, u32_DcH, u32_FuncNo)

244

place=inline frame=box

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

};

Creates an arc, using the current arc parameters, through three
x,y positions starting at the current x,y position.

Parameters:

p32_ xy Points to

s32_spare
s32_spare
s32_xl
s32_yl
s32_x2
s32_y2

Returns: short int

0 error
1 ok
2 CorrelateHit

(may be used as work area)
(may be used as work area)
(coordinates of second point)

(coordinates of third, and final, point)

Upon completion, the current x,y position is the third position of
the arc.

Device Drivers

BeginArea(u32_ flags, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Flags;

Indicates the beginning of a set of primitives that define the
boundary of an area.

Only certain drawing functions may be used to build the boun
dary of an area, specifically those that draw lines or arcs. Func
tions that draw character strings, markers, images, or BitBlts
are not allowed in an area definition.

Parameters:

u32_flags
Specifies whether boundary lines are to be drawn, and
what algorithm is to be used to determine the area
interior.

Bit 0 Set to 1 to draw boundary lines

Bit 1 Set to 1 for winding fill mode, set to 0 for
alternate fill mode ·

Although the current x,y position is not changed by BeginArea,
it will be affected by the drawing orders in the boundary
definition.

Returns: short int

0 error
1 ok
2 CorrelateHit

BeginPath(s32-Pathld, u32-0ptions, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG u32_0ptions;
ULONG s32_Pathid;

Starts a path definition and ~ives it an identifier. The path may
be either a one-dimensional lPATIL lD) or a two-dimensional
(PATIL 2D) path.

A path, whether it is a PATILlD or a PATIL2D type path, is
defined in terms of a number of figures. A figure is defined by

245

MS OS/2 Presentation Manager Reference

246

line and/or curve functions, and is separated from other figures
by a CloseFigure function, or (for a PATIL lD type path only) a
"move" function.

If a figure in a PATIL lD path definition is terminated by a
"move" type function, or by EndPath, then that figure is said to
be open. Otherwise (i.e., it is terminated by CloseFigure), it is
closed. All figures contained within a PATIL 2D path definition
must be closed.

A PATIL2D type path may be defined using either ALTER
NATE or WINDING mode (see BeginArea).

Path definition functions are terminated by EndPath. If there
are no primitives between BeginPath and EndPath, a null path
will be defined.

Once a path has been defined, the definition cannot be re
opened. An attempt to define a path with an identifier for which
a path definition already exists, results in that definition being
replaced.

A path definition is bound in device coordinates at the time the
path is defined. Any subsequent change to any transforms (other
than to the final translation if the window is moved) has no
effect on the path.

The path descriptions which are built as a result of the path
definitions contain, for both types of path (PATIL lD and
PATIL 2D), information about the outline of the path, which
was defined by the line and curve functions in the definition.
Additionally, a PATIL 2D path description will contain infor
mation describing the interior "area" defined by the path.

The following are the only primitive/attribute functions allowed
within a path definition:

SetModelXform
SetCurrentPosition
GetCurrentPosition
PolyLine
Box
SetArcParams
GetArcParams
Arc
FullArc
PartialArc
PolySpline
Polyfillet
PolyfilletSharp
CharString
CharStringPos

Device Drivers

The CharStringxxx functions are allowed only if the current font
is an outline font. Note that character attribute setting func
tions are not allowed.

It is invalid for this function to occur within an area definition.

A single path can not contain more than 64K of data.

Parameters:

s32-Pathld
Path identifier. Valid values are in the range 1..64.

u32_ Options
Path generation options:

1 PATILlD
A one-dimensional path is to be defined.

2PATIL2DALTERNATE
A two-dimensional path is to be defined, in
alternate mode.

3 PATIL2DWINDING
A two-dimensional path is to be defined, in
winding mode.

Returns: BOOL

0 Error
1 OK

Box(p32_ xy, u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

- ULONG* p32_xy;

Draws a rectangular box with one corner at the current x,y posi
tion and the other at the point specified. The sides of the box
(before transformation) are parallel to the x and y axes.

The corners of the box may be rounded by means of quarter
ellipses of the specified diameters. If the value of either diameter
is zero, then no rounding occurs. If the value of either diameter
exceeds the length of the corresponding side, then that length is
used as the diameter instead.

The box may be filled, or just an outline, or both. This is
achieved by using different function numbers.

247

MS OS/2 Presentation Manager Reference

Parameters:

p32_xy Long pointer to parameters defining the box as fol
lows:

s32_spare
s32_spare
s32_cornerX
s32_cornerY
s32_Xdiam

s32_Ydiam

May be used as work area
May be used as work area
X coordinate of second corner of box
Y coordinate of second corner of box
X diameter of ellipse used to round
corners
Y diameter of ellipse used to round
corners

The current x,y position is not altered by Box.

Returns: short int

0 error
1 ok
2 CorrelateHit

CharString(s32-n, p32_ch, u32-DcH, u32-FuncNo)

248

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_ch;
ULONG s32_n;

Draws a character string starting at the current x,y position.

Parameters:

s32_ n Specifies the number of bytes in the character string.

p32_ch Long pointer to the string of character codepoints.

The current x,y position is moved to the point at which the next
character string would have been drawn, had there been one.

The Gpi function GpiVectorSymbol is provided to interpret a
vector symbol.

Returns: short int

0 error
1 ok
2 CorrelateHit

Device Drivers

CharStringPos(p32_ xy { u32_ options, s32_ n, p32_ ch, p32_ dx, u32-DcH,
u32_ FuncNo J

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Dx;
ULONG* p32_Ch;
ULONG s32_N;
ULONG u32_options;
ULONG* p32_xy;

Draws a character string starting at the current x,y position.

A vector of increments may optionally be specified. which allows
control over the positioning of each character after the first.
These are distances measured in world coordinates (along the
baseline for left-to-right and right-to-left character directions,
and along the shearline for top-to-bottom and bottom-to-top).
The i'th increment is the distance of the reference point (e.g.,
bottom left corner) of the (i+l)'th character from the reference
point of the i'th. The last increment may be needed to update
current position.

These increments, if specified, set the widths of each character.
Any spacing called for by

• char- spacing

• char_ extra

• char_ break_ extra

is applied in addition to the widths defined by the vector.

A further option allows a rectangle to be specified, which is to be
used as the background of the string, rather than using the nor
mal method of defining the background. This rectangle will be
painted using the current character background color and an
overpaint mix. Both corners of the rectangle are specified, so
that the rectangle is positioned independently of current posi
tion.

A further option allows clipping of the string to the rectangle.
This is independent of whether the rectangle is actually drawn.

The string may optionally be drawn de-emphasized. This is used
in menus to denote options which are not currently selectable.
The implementation may choose whichever method of de
emphasis is most appropriate on the particular device.

Current position may optionally be updated to the point at
which the next character would have been drawn, had there been
one, or it can be left unchanged by this function.

249

MS OS/2 Presentation Manager Reference

250

Parameters:

p32_xy Long pointer to the an array of six coordinates,
defining the opaque rectangle. The first two coordi
nates of this array will be spare and the remainder will
specify two corners of the rectangle that defines the
background of the characters (ignored if both the
opaque and clip option flags are zero). The opaque rec
tangle (drawn if bit 0 below = 1) will ignore any back
ground mix attributes, and be drawn using overpaint
and the character background color attribute.

u32_ options
Flags controlling the function as follows:

Bit 0 = 0 Do not opaque
= 1 Opaque rectangle

Bit 1 = 0 Increment vector not present
1 Increment vector present

Bit 2 = 0 Normal text
1 Grayed (de-emphasized) text

Bit 3 = 0 Move current position to end of
character string

= 1 Leave current position unchanged

Bit 4 = 0 Do not clip
= 1 Clip string to rectangle

Note - if rectangle not present, then bits 0
must be zero

s32_n Specifies the number of characters (bytes) in the char
acter string.

p32_ ch Long pointer to the string of character codepoints.

p32_dx

&. 4

Long pointer to an array of s32 numbers, the character
increments. There will be s32_n numbers in this array.
They are given in world coordinates.

The current x,y position may optionally be moved to the end of
the character string, according to the u32_ options.

The Gpi function GpiVectorSymbol is provided to interpret a
vector symbol.

Returns: short int

0 error
1 ok
2 CorrelateHit

Device Drivers

CloseFigure(u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

Closes a figure within a path definition, The current figure is
closed by means of a line drawn to the start point of the figure.

This function must be used to close each figure within a
PATIL 2D path. Within a PATIL ID path it is optional
between figures; an "open" figure may be generated by starting a
new figure (with a "move" type function), or by ending the path,
without first issuing CloseFigure.

If this function occurs outside a path definition, it has no effect.

Returns: BOOL

0 Error
1 OK

CombinePaths(s32-DestPathld, s32_ Src1Pathld, s32-Src2Pathld,
u32-Mode, u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG u32_Mode;
ULONG s32_Src2Path!d;
ULONG s32_Src1Path!d;
ULONG s32_DestPathid;

Combines two paths. The result becomes the definition of the
destination path, which may or may not already exist. It may
also be the same as one of the source paths.

Various combination modes are allowed, depending upon
whether the paths to be combined are PATIL ID or PATIL2D
types. Disallowed modes give an error.

A single path can not contain more than 64K of data.

Parameters:

s32_ DestPathld
Identifier of the destination path. It must be > 0.

s32-Src1Pathld, s32-Src2Pathld
Identifiers of the source paths. They must be > 0
(except where s32-Src2Pathld is ignored, see below).

251

MS OS/2 Presentation Manager Reference

u32_Mode
Method of combination of paths:

Srcl is PATIL2D, Src2 is PATIL2D (or ignored)
Dest will become a PATIL2D path:

CPATILOR (1) - Union of Srcl and Src2
CPATILCOPY (2) - Srcl only copied to Dest (Src2 ignored)
CPATILXOR (4) - Symmetric difference of Srcl and Src2
CPATILAND (6) - Intersection of Srcl and Src2
CPATH_DIFF (7) - Srcl AND NOT(Src2)

Srcl is PATILlD, Src2 is PATILlD (or ignored)
Dest will become a PATIL lD path:

CPATILOR (1) - Append Src2 to Srcl
CPATILCOPY (2) - Srcl only copied to Dest (Src2 ignored)

Srcl is PATIL lD, Src2 is PATIL 2D
dest will become a PATIL lD path:

CPATH_AND (6) - Srcl clipped to Src2
CPATH_DIFF (7) - Srcl clipped to the inverse of Src2

Returns: BOOL

0 Error
1 OK

DeletePath(s32_Pathld, u32-DcH, u32_FuncNo)

252

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG s32_Pathid;

Deletes a path definition, and all of its storage, from the current
level of the Device Context (if the path is saved below it remains
in existence below). It is an error if the path is currently selected
as a clip path.

Parameters:

s32_Pathld
Path identifier.

A value of -1 indicates that all path definitions in the
specified Device Context are to be deleted (this is an
error if 'any' clip path is currently selected.

Returns: BOOL

0 Error
1 OK

Device Drivers

DrawFrame(p32_Rect, p32-xy, u32-0ptions, u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_0ptions;
ULONG p32_xy;
ULONG p32_Rect;

This draws a rectangle surrounded by a frame. The interior is
drawn with the pattern attributes, and the border is drawn with
the line attributes.

The coordinates passed are in DC origin device coordinates.

This is a required function for display device drivers. It is used
by the user interface to improve the performance of wide border
dragging and dialog box posting.

Parameters:

p32-Rect
A long pointer to a rectangle. This rectangle com
pletely surrounds the drawing, i.e., the border is inside
the rectangle.

A long pointer to the width of the sides, and the
height of the top/bottom, of the border.

u32_ options

Bit 0 - 0 draw the interior
- 1 do not draw the interior

EndArea(u32_ cancel, u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Cancel;

Indicates the end of a set of primitives that define the boundary
of an area.

If there is a correlation hit on (any part of) the area interior it is
returned on this function. (Correlation hits on the boundary are
returned on the primitive causing the hit.)

253

MS OS/2 Presentation Manager Reference

If the current figure is not closed, this function will generate a
closure line from the current position to the start of the current
figure. If a correlation hit is diagnosed on this line as well as on
the area interior, a special return code indicates this double hit.

On devices with hardware assist for area fill (such as an area fill
plane), this facility may be used, or the area definition may be
built up in an area fill plane in ordinary PC storage. In the case
of convex figures, there may be a performance gain in just
recording the start and end pel position across each scan line.
Whatever algorithms are used, it is crucial that the area interior
should be filled identically in each case, otherwise bit map opera
tions may fail to join correctly when copied to the screen, etc.
This is obviously particularly crucial when the area is being
dragged around the screen using a mix mode of XOR to be able
to remove it.

Upon completion, the current x,y position is the last x,y position
specified in the boundary definition, unless figure closure
occurred, in which case it is the start of the last figure in the
area definition.

Parameters:

u32_cancel
If this is 0, the area is to be drawn. If it is 1, the area
is to be cancelled (terminated without being drawn).
An EndArea(Cancel) without a previous BeginArea is
valid but has no effect. Thus it is possible to reset the
area bracket to a known state without any knowledge
of its current state.

Returns: short int

0 error
1 ok
2 CorrelateHit
3 MultipleCorrelateHlt

EndPath(u32-DcH, u32-FuncNo)

254

place=lnllne frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

Ends the definition of the current path.

Returns: BOOL

0 error
1 ok

Device Drivers

FillPath(s32...,. Pathld, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG s32_Path!d;

This takes a PATIL2D path, and draws the interior of the path
using the current pattern attributes.

Parameters:

s32-Pathld
The identifier of the path whose interior is to be
drawn. It must be > 0 and specify a PATIL2D.

Returns: BOOL

0 Error
1 OK
2 Correlate hit

FullArc(u32- m, u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_M;

Creates afull arc with its center at the current x,y position.

The full arc may be filled, or just an outline, or both, or neither.
This is achieved by using different function numbers.

Whether the full arc is drawn clockwise or counterclockwise is
determined by the arc parameters.

Parameters:

u32_ m Specifies the multiplier that determines the size of the
arc in relation to an arc with the current arc parame
ters. The value passed is treated as a 4-byte fixed
point number with the high-order word as the integer
portion, and the low-order word as the fractional por
tion. Thus, a value of 65536 specifies a multiplier of l.

Returns: short z"nt

0 error
1 ok
2 CorrelateHit

The current x,y position is not changed by FullArc.

255

MS OS/2 Presentation Manager Reference

ImageData(p32_data, s32_n, s32-row, u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG s32_Row;
ULONG s32_N;
ULONG* p32_Data;

Draws a row of image data.

Separate calls are required for each row of image data. The data
is written on adjacent rows starting at the top row in the image
area.

The implementation should not assume that unused bits in the
last byte of data for a row are zero.

Parameters:

p32_data
Points to a string of image data with one bit per pel.

s32_ n Specifies the number of data bits that are required in
the drawing order.

s32_row
Specifies the row number of the image data. Row 0 is
the same row as the current position, row 1 is the next
one down the screen, and so on.

Returns: short int

0 error
1 ok
2 CorrelateHit

The current position is not affected by this order.

ModifyPath(s32_Pathld, u32_Mode, u32_DcH, u32_FuncNo)

256

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG u32_Mode;
ULONG s32_Pathid;

Modifies the specified path in one of the ways described below.

A single path can not contain more than 64K of data.

Device Drivers

Parameters:

s32-Pathid
Identifier of the path to be modified. It must be > 0.

u32-Mode
Modification required, as follows:

I BOUNDRY
PATIL2DtoPATIL2D

Converts the path to one describing the
same interior area, but which no longer con
tains any of the lines or curves which lie
wholly within the area. This modification
will normally be performed on a PATIL 2D
path which was initially defined using
WINDING mode, so that if a OutlinePath
operation is performed on it, these interior
lines will not be drawn.

2 INVERT
PATH_2DtoPATIL2D

Inverts the path, so that what was outside
the path is now inside it, and vice versa.

3 CLIP_ TO_ CURRENT
PATH-ID to PATH-ID or PATIL2D to
PATIL2D

Clips the path to the current Clip Path.

The path is flagged as having been clipped.
If a path is drawn, it will be clipped to the
current clip path, unless this flag has been
set for the path.

In addition to clipping, this function is a
hint to the system to cache other data (such
as the PolyScanLines data created in filling)
which may be used repeatedly.

If no clip path has been selected, this func
tion has no effect, other than the perfor
mance hint mentioned above.

4 2DWINDING
PATILIDtoPATH_2D

Converts a PATH_lD path to a PATH_2D
path, usin~ the WINDING method (see
BeginAreaJ. Any unclosed figures in the ori
ginal path are discarded without warning.

257

MS OS/2 Presentation Manager Reference

52DALTERNATE
PATIL1DtoPATIL2D

Converts a PATIL lD path to a PATIL 2D
path, usin~ the ALTERNATE method (see
BeginAreaJ. Any unclosed figures in the ori
ginal path are discarded without warning.

6STROKEPATH
PATIL1DorPATIL2DtoPATIL2D

Converts the path to a PATIL2D one which
describes the envelope of a wide line, stroked
using the current geometric wide line attri
bute. Note: that this is the only function
which can cause geometric wide lines to be
constructed.

The envelope will include the effects of line
joins, and line ends, according to the current
values of these attributes. The following
should be noted:

• A line may be joined to, for example, an
arc. The common point will be handled
according to the Line Join parameter,
rather than applying Line Ends at each
end.

• If a figure has been closed using Gpi
CloseFigure, then the joining rules will
be followed rather than the ending rules,
at the start/end point.

• The envelope will take account of any
crossings, so that, for example, a stroked
"X" will not, if subsequently drawn in
exclusive-OR mode, have a hole in the
middle.

Returns: BOOL

0 Error
1 OK

OutlinePath(s32-Pathld, u32-DcH, u32-FuncNo)

258

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG s32_Pathid;

This takes either a PATIL lD or a PATIL2D path, and draws
the outline using the current line attributes, including the
cosmetic line width, but not the geometric line width.

Device Drivers

Parameters:

s32-Pathld
The identifier of the path to be stroked. It must be >
0.

Returns: BOOL

0 Error
1 OK
2 Correlate hit

QueryCharPositions (u32-options, s32-n, p32-ch, p32_ vector, p32-xy,
u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

}:

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy:

ULONG s32_vector;
ULONG* p32_ch;
ULONG s32_n;
ULONG u32_options;

Returns the positions in world coordinates of where the
currently associated device will place each given character, tak
ing into account kerning, extra space, etc.

A vector of increments may optionally be specified, which allows
control over the positioning od each character after the first.
These distances are measured in world coordinates(along the
baseline for left-to-right and right-to-left character directions,
and along the shearline for top-to-bottom and bottom-to-top).

These increments, if specified, set the widths of each character.
Any spacing called for by

char-spacing

char_ extra

char_ break_ extra

is applied in addition to the widths specified by the vector.

Parameters:

u32_options
Flags controlling the function as follows:

Bit 0

CHS_VECTOR (Bit 1)

= 0 Reserved

= 0 Increment vector not present
= 1 Increment vector present

Bits 2-31 = 0 Reserved

MS OS/2 Presentation Manager Reference

s32_n Specifies the number of bytes in the character string.

p32_ ch Long pointer to the string of character codepoints.

p32_ vector
A vector of (n values of) increment values. These are
4-byte signed integers in world coordinates.

p32_xy Long pointer to an array of n + 1 positions. The first
element of the array contains the current position and
the last contains the new current position.

Returns: BOOL

0 error
1 ok

PartialArc(p32-xy, u32-m, s32_ ts, s32_ te, u32-DcH, u32-FuncNo)

260

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG s32_Te;
ULONG s32_Ts;
ULONG u32_M;
ULONG* p32_xy

Draws two figures:

1. A straight line, from current position to the starting point of
a partial arc, and

2. The arc itself, with its center at the specified point.

The full arc, of which the arc is a part, is identical to that
defined by FullArc. The part of the arc drawn by this primitive
is defined by the parameters s32_ ts and s32- te, which represent
the angles subtended from the center, if the current arc parame
ters specify a circular form. If they do not, these angles are
skewed to the same degree that the ellipse is a skewed circle.
s32_ ts and s32_ te are measured anticlockwise from the x axis of
the circle prior to the application of the arc parameters.

Whether the arc is drawn clockwise or anticlockwise is deter
mined by the arc parameters, s32_ ts and s32_ te.

Parameters:

p32_ xy A pointer to an x,y coordinate pair which are the coor
dinates of the center of the arc.

u32_ m Specifies the multiplier that determines the size of the
arc in relation to an arc with the current arc parame
ters. The value passed is treated as a 4-byte fixed
point number with the high-order word as the integer

Device Drivers

portion, and the low-order word as the fractional por
tion. Thus, a value of 65536 specifies a multiplier of 1.

s32_ ts, s32_ te
Specify the start and ending angles.

Returns: short int

0 error
1 ok
2 CorrelateHit

Upon completion, the current x,y position is set to the final
point of the arc.

Poly(p32_ xy, s32_ n, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG s32_N;
ULONG* p32_xy;

Creates a poly primitive, which can be a fillet, spline, line or
marker, starting at the current position, using the array of x,y
coordinate pairs passed. Different values of u32_FuncNo will be
used for the different kinds of poly primitive.

The definition of a PolyFillet is as follows:

Creates a fillet on a series of connected lines, with the first line
starting at current position. If only two points are supplied, an
imaginary line is drawn from current position to the first point,
and a second line from the first point to the second. A curve is
then constructed, starting at current position and tangential to
the first line at that point. The curve is drawn such that it
reaches the last point at a tangent to the second line. The curve
has the appearance of a fillet. The lines are imaginary, and are
not drawn. If more than two points are supplied, an imaginary
series of lines is constructed through them tas in Poly Line). All
the lines except the first and last are then divided in two at their
mid-points. A series of curved fillets are then drawn, each start
ing at the end point of the last, at one of the mid-points.

The definition of a PolySpline is as follows:

Creates a succession of Bezier splines. The first one starts from
current position and goes to the third specified point, with the
first and second points used as control points. Subsequent
splines start from the ending point of the previous spline, and
end at the next specified point but two, with the intervening
points their first and second control points. The number of x,y
pairs in the array must be 3*s where sis the number of splines

261

MS OS/2 Presentation Manager Reference

The x,y pairs are given in the following order:

ell, cl2, el, c21, c22, e2, c31, c32, e3, ...
where

csi is the i'th control point of the s'th spline
es is the endpoint of the s'th spline

Parameters:

p32_xy Points to an array of x,y coordinates.

An extra x,y pair will be passed at the start of the xy
array (and not included in the count), as work space.
The whole array may, if need be, be overwritten by the
transformed coordinates.

s32_ n Specifies the number of x,y pairs. Note: For Poly Line,
s32_ n = 0 is valid and the function is then ignored.

Returns: short int

0 error
1 ok
2 CorrelateHit

Up?n completion, the current x,y position is the last line in the
sen es.

PolyFilletSharp(p32-xy, s32_ n, p32-s, u32_ DcH, u32_ FuncNo)

262

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_S;
ULONG s32_N;
ULONG* p32_xy;

Creates a fillet on a series of connected lines, with the first line
starting at current position. Subsequent points identify the end
points of the lines.

The first fillet is drawn using the two lines, one from current
position to the first (x,y) point specified (its control point), and
one from there to the second point specified. The fillet starts
from current position, and ends at the second point specified. It
is tangential to the first line at current position, and to the
second line at the second specified point. The sharpness of this
fillet is given by the first sharpness value.

Each subsequent fillet is drawn starting from the end point of
the previous fillet, and uses the next two lines in the sequence, in
a similar way. Thus two points and one sharpness value are
specified for each fillet.

Device Drivers

Note that this function differs from PolyFillet in the following
ways:

• The sharpness of each fillet is explicitly specified.

• Both the control and the end point of each fillet are expli
citly specified.

• Adjacent fillets will in general have a discontinuity in gra
dient, unless the points are chosen so that this is not the
case.

The sharpness of each fillet is defined as follows. Let A and C be
the start and end points, respectively, of the fillet, and let B be
the control point. Let W be the mid-point of AC. Let D be the
point where the fillet intersects WB. Then the sharpness is given
by

sharpness = WD/DB

If

S > 1.0, a hyperbola ls drawn
S = 1.0, a parabola ls drawn
S > 1.0, an ellipse is drawn

Parameters:

p32_xy

s32_n

p32_s

Points to an array of x,y coordinates.

An extra x,y pair will be passed at the start of the xy
array (and not included in the count), as work space.
The whole array may, if need be, be overwritten by the
transformed coordinates.

Specifies the number of x,y pairs.

Specifies the sharpness of the fillets. It is a far pointer
to an array of n/2 elements, each array element being
an s32-sharpness parameter. Each value, when
divided by 65536, gives the sharpness of successive
fillets.

Returns: short int

0 error
1 ok
2 CorrelateHlt

Up?n completion, the current x,y position is the last point in the
series.

263

MS OS/2 Presentation Manager Reference

PolyShortLine(p32_ data, u32_ DcH, u32_ FuncNo)

264

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Data;

Draws a set of lines encoded as a series of steps. This call is not
revealed in the APL

Parameters:

p32_Data
Is a pointer to a polyshort structure, of the following
format:

struct POLYSHORT {
ULONG sl6_StartX
ULONG sl6_StartY
ULONG sl6_EndX
ULONG sl6_EndY
ULONG sl6_Count
ULONG* p32_Steps

}:
where:

sl6_StartX, sl6_StartY
The start point of the polyshortline

sl6_EndX, s16-EndY
The end point of the polyshortline

s16_Count
The number of bytes of data pointed to by
p32_Steps

p32-Steps
Points to a byte array of encoded lines. Each
line is encoded as follows:

Bits 2:0 Direction to draw:

0 1 2
\i/

7-x-3
/i\

6 5 4

Bit 3 Draw/Skip
0 => Draw these pels
1 => Skip these pels

Bits 7:4 Number of pels to draw (1 to 16)

Device Drivers

The current position is not affected by this call. The lines are
assumed already clipped.

QueryClipPath(u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This returns the identifier of the currently selected clip path, if
any.

Returns: LONG

-1 Error
0 Null (no path was previously selected)

>O Identifier of previously selected path

QueryTextBox (s32-n, p32-ch, s32-count, p32-xy, u32-DcH,
u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;
ULONG s32_Count;
ULONG* p32_Ch;
ULONG s32_N;

This processes the specified string as if it were to be drawn,
using the current character attributes, and returns an array of
up to 5 x,y coordinate pairs. The first four of these are the coor
dinates of the top-left, bottom-left, top-right and bottom-right
corners of the parallelogram which encompasses the string when
drawn on the associated device. The fifth point is the concatena
tion point, that is the position at which a subsequent string
would have to be drawn if it were to follow on smoothly.

All coordinates are relative to the start point of the string, as
defined by the character direction.

Parameters:

s32_ n Specifies the number of bytes in the character string.

p32_ch Long pointer to the string of character codepoints.

s32_count
Specifies the number of x,y pairs in the p32_xy array.

p32_ xy Long pointer to the return array of 5 x,y pairs.

265

MS OS/2 Presentation Manager Reference

Returns: BOOL

0 error
1 ok

QueryTextBreak (s32-n, p32-ch, s32-len, p32-n, u32-DcH,
u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_N;
ULONG s32_Len;
ULONG* p32_Ch;
ULONG s32_N;

This processes the specified string as if it were to be drawn,
using the current character attributes, and finds where the
string must be split if it is not to exceed the specified extent.

Parameters:

s32_ n Specifies the number of bytes in the character string.

p32_ ch Long pointer to the string of character codepoints.

s32_ len Specifies the maximum extent of the string, measured
along the baseline for left to right or right to left char
acter directions, and along the shear line for top to
bottom or bottom to top character directions.

p32_ n Long pointer to a s32 variable to return the number of
characters which fit into the extent. If no characters
fit, zero is returned.

Returns: BOOL

-1 error
>=0 extent unused by p32_n characters in world coordinates

SelectClipPath(s32-Pathld, u32-DcH, u32-FuncNo)

266

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

ULONG s32_Pathld;

This takes a PATH_ 2D path, and selects it to be the current
clip path. The identifier of the {)ath which was previously
selected as the clip path (if any) is returned.

Device Drivers

The clip path (bound in device coordinates when the path was
defined, as usual) is used for all subsequent drawing, except for
OutlinePath or FillPath, where the path is already flagged as
having been clipped (see ModifyPath).

While a path is selected as the clip path, it may not be modified
(though it may be used for a read-only operation, such as
FillPath, or as the source of a CombinePath operation).

Parameters:

s32_Pathld
If this is > 0, it is the identifier of the path to be
selected (which must be a PATIL2D path). If 0 is
specified, any path clipping is removed.

Returns: LONG

-1 Error
0 Null (no path was previously selected)

>D Identifier of previously selected path

16.1.12.14 A VIO Functions

Short List of Function Calls:

• CharRect

• CharStr

• ScrollRect

• UpdatePointer

Note: It will be an applications responsibility to ensure that windows con
taining alphanumeric data are device cell aligned if appropriate. It will be
a property of a device driver whether non-cell aligned characters will be
visible.

All column, row, length, width and height values correspond to cells
within a presentation space buffer.

The origin of the presentation is assumed to be at the bottom left, i.e.,
row column = (0,0) corresponds to the the character cell in the bottom left
hand corner.

This interface is written on the assumption that the graphics engine per
forms any necessary clipping of the alphanumeric data into a window.

All alphanumeric engine calls are passed a pointer to a Vio presentation
space. From this the engine extracts current state data as needed to allow
it to update an output device.

267

MS OS/2 Presentation Manager Reference

A Vio presentation space contains:

268

• the device context handle for the presentation space.

• a RAM semaphore to control access to the presentation space from
the Shield Layer and the Vio subsystem.

• a near pointer to a private area for use by the Shield Layer and the
Graphics Engine.

• a near pointer to the buffer containing the character, attribute cells
to be output.

• the size of the character cell buffer (rows,columns).

• the number of bytes in a buffer cell, currently either 2 (CGA format
buff er) or 4 (extended CGA format).

• a structure containing two variables for the number of pels in a
device cell (height, width). This structure is set by the Vio subsys
tem when the presentation space is created to the first cell size
returned by QueryDeviceCaps. The Graphics Engine will ensure
that it uses a base font to match this cell size. Unpredictable
results will occur if a loaded font doesn't match this cell size.

• structures for the cursor position and state (zero visibility means
the cursor is invisible).

• the origin is a structure which identifies the cell (row,column) in
the character cell buffer to be drawn in the top left hand corner of
the window.

• For the Engine, the Window origin coordinates in the PS:

• are relative to the bottom left corner of the L VB.

• define the cell which is displayed at the bottom left corner
of the client rectangle.

• The transformation for converting from the top-left origin used
for VioSetOrigin to the bottom-left origin used in the PS is:

BL_Origin_Row=lpVioPS->BufferRowCount - lpVioPS->WindowHeight -
TL_Origin_Row;

• The internal interfaces to GreCharRect, GreCharStr, and
GreScrollRect the ccrordinates passed are changed such that:

• They are relative to the bottom left corner of the L VB.

• For rectangle descriptors they define the bottom left corner
of the rectangle being described.

• For a rectangle descriptor the coordinate transformation is:

BL_Row_Coordinate=lpVioPS->BufferRowCount - RectangleHeight -
TL_Row_Coordinate;

Device Drivers

• for the string descriptor passed to GreCharStr the transform
is:

BL_Row_Coordinate=lpVioPS->BufferRowCount - 1 - TL_Row_Coordinate;

• The string case is like a rectangle with one row.

• further variables as required by the Vio subsystem.

Each time the presentation space character ceU size changes, a null Char
Rect call will be issued to the engine (i.e., with u32_ StartRow,
u32_StartCol, u32-RectWidth and u32_RectHeight all set to zero).

Buffer cell byte contents:

• Code point

• CGA Attribute byte

bit 7-4 background color
bit 3-0 foreground color
each 4 bit color value will correspond to some explicit 24 bit
RGB value. The RGB values are assumed to be predefined and
fixed within the graphics engine. They should match the colors
available on a CGA.

• Extended Attribute byte (4 byte cells only)

bit 7 underscore
bit 6 reverse video
bit 4 background transparency

0 = b/g opaque
1 = b/g transparent

bit 1-0 character set 0,1,2 or 3

• Spare Attribute byte { 4 byte cells only)

for application use

CharRect(p32-PS, p32_ CharRect, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32-'-DcH;
ULONG* p32_CharRect;
ULONG* p32_PS;

This writes a rectangle of alphanumeric characters to the
referenced device context. The set of characters and attri
butes for the rectangle is taken from the presentation space
cell buffer. The characters are drawn and clipped according
to the window's cell buffer origin, the location of the rectan
gle relative to that origin, and the size of the window.

26D

MS OS/2 Presentation Manager Reference

270

p32-PS points to the Vio presentation space.

p32_ CharRect
points to a block of parameters for the call.

The parameter block for the call will contain the following:

u32_ StartRow
the starting row

u32- StartCol
the starting column in the presentation space of
the character rectangle to be output.

u32-RectWidth
the width of the rectangle to be updated.

u32-RectHeight
the height of the rectangle to be updated.

Returns: short int

0 ok
f=O return code

Note: This call will be used to implement the advanced Vio
function VioSetOrg. If the origin is moved such that the win
dow background is "exposed" either on the right or at the
bottom then the graphics engine must clear the old
alphanumeric data from that area of the window.

CharStr(p32-PS, p32_ CharStr, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

}:

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_CharStr;
ULONG* p32_PS;

This writes a string of alphanumeric characters to the refer
enced device context. The set of characters and attributes
for the string is taken from the presentatio:• space cell buffer.
The characters are drawn and clipped according to the
window's cell buff er origin, the location of the string relative
to that origin, and the size of the window. The string will
fold at the end of a row and will continue in row-major order
either for the given string length or until the Logical Video
Buffer is exhausted.

p32_PS points to the Vio presentation space.

p32_ CharStr
points to a block of parameters for the call.

Device Drivers

The parameter block for the call will contain the following:

u32_ StartRow
the starting row

u32_ StartCol
the starting column in the presentation space of
the character string to be output.

u32_ StrLength
the length of the character string to be output.

Returns: short int

0 ok
f=O return code

ScrollRect(p32-PS, p32_ ScrollRect, u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Scrol1Rect;
ULONG* p32_PS;

This function has been included to allow for device drivers
that have the capability of BitBlting pels from one region of
a window to another. Such a device would only need to
update from the presentation space for data outside the win
dow but within the scroll rectangle. A device driver without
BitBlt would update completely from the presentation space
by suitable adjustment to the rectangle parameters and per
forming a CharRect function.

p32-PS points to the Vio presentation space.

p32_ ScrollRect
points to a block of parameters for the call.

The parameter block for the call will contain the following:

u32_ StartRow
the starting row

u32_ StartCol
the starting column in the presentation space of
the character string to be output.

u32_RectWidth
the width of the scroll rectangle.

u32-RectHeight
the height of the scroll rectangle.

u32_ HorizCoun t
the number of rows to be scrolled (see below).

271

MS OS/2 Presentation Manager Reference

272

u32_ VertCount
the number of columns to be scrolled. These two
fields define the amount and direction of the scrol
ling to be done. Positive values define movements
downwards and to the right. Negative values define
movements upwards and to the left. Currently this
function is used to implement VioScrollnn (where
nn = Dn, Lf, Rt, Up) and hence for all calls one of
the counts will always be zero.

p32-FillCell
points to a cell (character and attributes) to be
used for filling the tailof the scroll region. This
cell is only of use when a device driver has used
BitBlt. If p32-FillCell is null, the fill will be taken
from cells in the Logical Video Buff er.

Returns: short int

0 ok
!=0 return code

UpdatePointer(p32-PS, u32_DcH, u32_FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_PS;

Sets the alphanumeric cursor position, shape and visibility.

p32_PS points to the Vio presentation space.

Returns: short int

0 ok
1=0 return code

This function updates the drawn alphanumeric cursor to
match the cursor state information contained in the presen
tation space. This will usually involve removing the previous
cursor from the window and then drawing the new cursor, if
visible, according to the presentation space information. The
new cursor, if visible, will be positioned and clipped accord
ing to this information and the window's cell buffer origin
and size.

The cursor is drawn as an XOR bar. It's position, size and
shape will be saved by the graphics engine in a reserved area
in the Vio presentation space.

There is only one cursor visible on a screen at any one time
and this will be in the window that has input focus. The User
box must alter the visibility of the cursor when changing
input focus.

Device Drivers

Collisions are handled below graphics engine interface. The
device driver will remove and redraw the cursor if necessary,
although a BitBlt operation will copy everything including the
cursor.

16.1.12.15 Bitmap Functions

Short list of bitmap function calls:

• BitBlt

• CreateBitmap

• DeleteBitmap

• DeviceCreateBi tmap

• DeviceDeleteBitmap

• ScanLR

• PolyScanLine

• GetBitmapBits

• GetBitmapDimension

• GetBi tmapParameters

• GetPel

• SaveBits

• SelectBitmap

• DeviceSelectBi tmap

• SetBitmapBits

• SetBitmapDimension

• SetPel

BitBlt(u32-SrcDcH, u32-Count, p32-Parm, u32_Mix, u32_Style,
u32_ TargDcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_TargDcH;
ULONG u32_Style;
ULONG u32_Mix;
ULONG* p32_Parm;
ULONG u32_Count;
ULONG u32_SrcDcH;

This copies a rectangle of Bitmap image data from the specified

273

MS OS/2 Presentation Manager Reference

274

source Device Context to a target Device Context.

Both source and target may refer to the same Device Context. If
this is the case, the copy will be non-destructive if the source
and target rectangles overlap.

The Device Contexts may be either memory Device Contexts
(with a selected bitmap), or Device Contexts for devices which
support raster operations.

The current pattern foreground and background bitmap colors
of the target Device Context are used. Also, if the mix requires
both source and pattern then a 3-way operation is performed
(using the pattern defined by the current pattern of the target
DcH) otherwise a 2-way operation is performed. Note that for a
StretchBlt operation, only the source data and NOT the pattern
is stretched.

If any of the source data is not available, for example if the
source Device Context is connected to a screen window, and the
source rectangle is not currently all visible, no error code is
returned and the operation proceeds by reading what is there.

Note: Rectangles defined by BitBlt are non-inclusive. They
include the left and lower boundaries of the rectangles in device
units, but not the right and upper boundaries. Thus if the bot
tom left maps to the same device pixel as the top right, that rec
tangle is deemed to be empty.

The color attribute values are used in converting between mono
chrome and color data. This is the only format conversion per
formed by BitBlt. The conversions are as follows:

• Outputing a monochrome pattern to a color device

In this case the pattern is interpreted in two colors, using the
current pattern colors:

- pattern ls are interpreted as pattern foreground color

- pattern Os are interpreted as pattern background color

The color pattern is then copied to the target without regard
for the target's original values.

• BltBlting from a monochrome bitmap to a color bitmap (or
device)

The source bits are converted as follows:

- source ls -> image foreground color

- source Os -> image background color

• BltBlting from a color bitmap to a monochrome bitmap (or
device)

Device Drivers

pels which are the source image background color - >
image background color

all other pels - > image foreground color

Note that in all of these cases it is the attributes of the target
presentation space which are used.

Parameters:

u32_SrcDcH
Specifies the handle of the source Device Context.

u32_Count
Specifies the number of X,Y pairs of coordinates in the
parameter block. Note: For Style = 0 and :Mix value
specifying PatternBlt only, then count must be >= 2,
otherwise, for style= 0 (BitBlt) count must be >= 3,
otherwise for style 1, 2 or 3 (StretchBlt) count must be
>=4.

p32_Parm

u32_:Mix

Provides a long pointer to the parameter block:

u32_ TargXl, u32_ TargYl, u32_ TargX2,
u32_ TargY2,

u32-SrcX1, u32-SrcY1, u32-SrcX2, u32-SrcY2
Specify the bottom left and top right corners
respectively of the target and source rectan
gles respectively in WCS.

Note that the exact number of parameters
expected will depend on the setting of
u32_Count.

Specifies a 32 bit raster operation code representing a
mix value in the range 0 .. 'FF'X. Each plane of the tar
get can be considered to be processed separately. For
any pel in a target plane, three bits together with the
Device Context bitmap mix value are used to deter
mine its final value. These are the value of that pel in
the pattern (P) and Source (S) data and the initial
value of that pel in the Target (T) data. For any com
bination of P S T pel values, the final target value for
the pel is determined by the appropriate Mix bit value
as shown in the table below:

P S T(initial) T(final)
0 0 0 Mix bit 0 (LS)
0 0 1 Mix bit 1
0 1 0 Mix bit 2
0 1 1 Mix bit 3
1 0 0 Mix bit 4

275

MS OS/2 Presentation Manager Reference

1 0 1
1 1 0
1 1 1

Mix bit 5
Mix bit 6
Mix bit 7 (MS)

Raster operation code values are as defined for Micro
soft Windows.

u32_Style
Specifies how eliminated lines/ columns are treated if a
compression is performed.

0 Do not stretch or compress the data.

1 Stretch/Compress as necessary, OR'ing any
eliminated rows/ columns. This is used for
white on black.

2 Stretch/compress as necessary, AND'ing any
eliminated rows/ columns. This is used for
black on white.

3 Stretch/Compress as necessary, ignoring any
eliminated rows/columns. This is used for
color.

Note: The values 1 to 32K are reserved by the applica
tion and values greater than 32K will be passed
directly to the device driver. This allows applications
to use values of their own for use with "intelligent"
devices.

u32_ TargDcH
Specifies the handle of the target Device Context.

Returns: short int

0 error
1 ok
2 CorrelateHit

CreateBitmap(p32_ Bits, p32_ Info, u32_ width, u32_ Height, u32-Planes,
u32_Bitcount, u32_ Usage, u32_DcH, u32-FuncNo)

276

This is used to create a Bitmap of the specified form and to
obtain its handle.

Bitmap size is limited by available memory, the maximum width
and height are 64K. Note: There are several standard bitmap
formats which should normally be adhered to. These are:

Bitcount
======

1
4
8

24

Planes

1
1
1
1

Note: The DC Handle supplied to this function must never be

Device Drivers

NULL. The bitmap will be created on the device specified. The
bitmap can be selected to a different device later and the Engine
will handle transfer of bits from one device to the other but bit
maps always belong to some device.

Note: If the value specified for u32-Planes or u32..,...Bitcount is
incompatible with the physical device specified by u32-DcH
then an error will be returned by the engine.

u32_ Width, u32_Height
These integers define the width and height of the Bit:-.
map· in pels.

u32_ planes . .
The number of color planes in the bitmap. For ref er
ence: each plane has .
((Width*Bitcount+3l)/32*4*Height) bytes.

u32-Bitcount
The number of adjacent color hits per pel.

u32_Usage . .
Provides additional information tci;help the device
when creating a new bitmap. The usage information
will be interpreted as follows:

Bit 0 This bit is reserved.

Bit 1 Discardability

'O'B May discard this bitmap if short of
storage and it is not currently
selected into a DcH or selected as
the current pattern (if it has an
kid assigned but is not selected it
can be discarded; bitmaps that are
to be used as patterns should not
be made discardable by the appli
cation).

'1 'B May not discard this bitmap.

Bit 2 Specifies whether or not p32_Bits and
p32_ Info are to be used to initialize the
newly created bitmap.

'O'B Bitmap initialization is device
dependent.

'l'B Use p32-Bits and p32_1nfo to ini
tialize the bitmap.

Note: Bits 16-31 may be used for special reasons
known to be supported by the particular device driver.

277

MS OS/2 Presentation Manager Reference

p32_Bits

p32_1nfo

u32_DcH

The address in application storage from which the bit
map data is to be copied.

It is assumed that enough data is supplied to initialize
the whole bitmap.

The address in application storage of the Bitmap Info
Table, which describes the format and colors of the
data bits.

Specifies the handle for the device context. In other
words, this specifies the physical device to create the
bitmap on or the physical device with which the bit
map must be compatible. A null handle is invalid.

Returns: HBITMAP

0 error
f=O the handle of the created Bitmap

DeleteBitmap(u32_ BmapH, u32-FuncNo)

This is used to destroy a specified bitmap. This will produce an
error if the specified bitmap is currently selected.

Parameters:

u32_BmapH
The handle of the bitmap to be deleted.

Returns: BOOL

0 error
1 ok

DeviceCreateBitmap(p32-Handle, u32_ Usage, p32_ Address, p32_ Info,
u32_ DcH, u32_ FuncNo)

278

place=inline frame=box

struct ARGUMENTS {
ULONG u32_FuncNo:
ULONG u32_DcH:
ULONG* p32_Parm:
ULONG u32_Usage:
ULONG* p32_Handle;

}:

Device Drivers

DeviceDeleteBitmap(p32_ Handle, u32_ Usage, u32_ DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Usage;
ULONG• p32_Handle;

ScanLR (p32- SearchData, u32_ DcH, u32- FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG• p32_SearchData;

Scans left or right from the given (x,y) location looking for a pel
which satisfies the search condition. This is a private Engine
interface.

P32_SEARCHDATA
Pointer to the search structure defined as follows:

s32-StartX
Search starting X coordinate

s32_StartY
Search starting Y coordinate

s32_HitX
X coordinate of match

s32-HitY
Y coordinate of match

u32_Color
Index of color

s32-Control
Search Control

DO = 0, Search for not color
DO = 1, Search for color
Dl = 0, step right
Dl = 1, step left

279

MS OS/2 Presentation Manager Reference

PolyScanLine (p32-PSL1, p32-PSL2, p32_ BoundingRect, u32-DcH,
u32_ FuncNo)

280

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_BoundingRect;
ULONG* p32_PSL2;
ULONG* p32_PSL1;

Fills an area lying between two polyshortlines.

This call is used from the engine to the DDI. The function must
be supported by all device drivers.

The device driver can make the following assumptions:

• The two polyshortlines do not cross

• Both polyshortlines have the same sl6_StartY and
s16-EndY

• For both polyshortlines, if sl6_StartY < s16-EndY

• Every step will be in one of the directions 0, 1, 2, 3, or 7

• For both polyshortlines, if s16-StartY > s16-EndY

• Every step will be in one of the directions 3, 4, 5, 6, or 7

Whenever direction = 3 or 7 (i.e., horizontal), the pixels defined
are outside the area fill, and should not be fifled. Thus a device
driver should always look ahead to the next non-horizontal step,
adjusting current position in X if required, before filling.

The driver should ignore bit 3 (Draw /Skip) of steps.

No clipping is necessary on this figure.

Parameters:

p32-PSLI, PSL2
Long pointers to the two polyshortlines. These are
each POL YSHORT structures, as described for
PolyShortLine.

p32_ BoundingRect
This is a rectangle which bounds the whole figure.

Device Drivers

GetBitmapBits(u32-ScanStart, u32-ScanCount, p32-Bits, p32-Info,
u32_ bcH, u32-FuncNo)

place=lnline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Info;
ULONG* p32_Bits;
ULONG u32_ScanCount;
ULONG u32_ScanStart;

This transfers bitmap data from the specified Device Context to
application storage. The Device Context must be a memory
Device Context, with a bitmap currently selected.

The Bitmap Info Table must be initialized with the values of
cPlanes and cBitCount, for the format of data which it wants.
This must be one of the standard formats. On return, ex, cy, and
the argbColor array will have been filled in by the system.

Conversion of the bitmap data will have been carried out if
necessary.

The address must point to a storage area large enough to con
tain data for the requested number of scanlines. The amount of
storage required for one scanline can be determined by calling
GetBitmapParameters. It is

((bltcount*width + 31)/32)*height*planes*4 bytes

There are four standard bitmap formats. All device drivers are
required to be able to translate between any of these formats
and their own internal formats. The standard formats are as fol
lows:

Bitcount

1
4
8

24

Planes

1
1
1
1

These formats are chosen because they are identical or similar to
all formats commonly used by raster devices. Only single plane
formats are standard, but it is very easy to convert these to any
multiple plane format used internally by a device.

The pixel data is stored in the bitmap in the order of the coordi
nates as they would appear on a display screen. That is, the
pixel in the lower left corner is the first in the bitmap. Pixels are
scanned to the right and up from there. The first pixel's bits are

281

MS OS/2 Presentation Manager Reference

282

stored beginning in the most significant bits of the first byte.
The data for pixels in each scan line is packed together tightly.
Each scanline, however, will be padded at the end so that each
scan line begins on a ULONG boundary.

Bitmap Color Tables

Each standard format bitmap must be accompanied by a Bitmap
Info Table. Because the standard format bitmaps are intended
to be traded between devices, the color indices in the bitmap are
meaningless without more information. A bitmap info table has
the following structure:

struct BitmapinfoTable {
USHORT ex; /* length of a scanline */
USHORT cy; /* number of scanlines */
USHORT cPlanes; /* number of planes (1 if standard */

/* format) */
USHORT cBitCount; /* number of bits per pixel */
RGB argbColor[]; /*color table */

};

The argbColor array is a packed array of 24 bit RGB values. If
there are N bits per pixel, then the argbColor array would con
tain 2~N RGB values, unless N = 24. The standard format bit
map with 24 bits per pixel is assumed to contain RGB values
and does not need the argbColor array.

Bitmap Example

To make the ordering of all the bytes clear, consider the follow
ing simple example of a 5 x 3 array of colored pixels:

Red Green Blue Red Green
Blue Red Green Blue Red
Green Blue Red Green Blue

ExampleBitmap =
Ox23,0xl2,0x30,0x00
Ox31,0x23,0xl0,0x00
Oxl2,0x31,0x20,0x00

#de fine BLACK
#define RED
#de fine GREEN
#define BLUE

OxOOOOOOL
OxOOOOFFL
OxOOFFOOL
OxFFOOOOL

/* bottom line */
/* middle line */
/* top line */

struct BitmapinfoTable Exampleinfo
5,

{
/* width */

};

3,
l,
4,
BLACK,RED,GREEN,BLUE,
BLACK, BLACK, BLACK, BLACK,
BLACK, BLACK, BLACK, BLACK,
BLACK, BLACK, BLACK, BLACK

/* height */
/* planes */
/* bitcount */
/* color table */

Device Drivers

Parameters:

u32_ ScanStart
The scan-line number at which the data transfer is to
start.

u32_ ScanCount
The number of scan lines to be returned.

p32-Bits
The address in application storage into which the bit
map data is copied.

p32-Info
The address in application storage of a Bitmap Info
Table as described above.

Returns: long int

-1 Error
>=0 Number of scanlines actually returned

GetBitmapDimension(u32-BmapH, p32_ XY, u32_ FuncNo)

This is used to read back a previously associated width and
height from the specified bitmap, in 0.1 mm units. This value
can be associated by the SetBitmapDimension call and is not
used by the engine.

Parameters:

u32_BmapH
Specifies the handle of the bitmap whose width and
height is required.

Provides a far pointer to the width and height parame
ters required as 0.1 mm units.

Returns: BOOL

0 error
1 ok

GetBitmapParameters(u32BmapH, p32-Parm, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {
ULONG u32_FuncNo;

ULONG u32_BmapH;
};

USHORT* p32_Farm;

Returns information about the bitmap identified by the specified
bitmap handle.

283

MS OS/2 Presentation Manager Reference

Parameters:

u32_BmapH
The handle of the bitmap.

p32_Parm
Provides a long pointer to a data area in which the
returned data about the specified bitma,P is stored.
The structure is the first four elements twidth, height,
planes, bitcount) of a Bitmap Info Table (see GetBit
mapBits).

Returns: BOOL

0 error
1 ok

GetPel(p32-xy, u32_DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

This function gets a pel from a position specified in WCS (world
coordinates).

Parameters:

p32-xy Provides a long pointer to the coordinate pair (s32-x,
s32_y).

Returns: long int

-1 error
>=O color index value for the pel

SaveBits(p32_ rect, u32-0ptions, u32-DcH, u32-FuncNo)

284

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_0ptions;
ULONG p32_rect;

This function copies bits from the screen to a bitmap managed
by the device driver, and also for the screen to be subsequently
restored from this bitmap.

It is used by the user interface routines (not the API) to improve
the performance of dialog boxes.

Device Drivers

This function is not a required function, but the driver must
return 'failure' if it does not do it.

Parameters:

p32_Rect
po in ts to a screen rectangle

u32_ Options
Command flags values are:

0 - save a bitmap
1 - restore the bitmap
2 - discard the bitmap without using it

Returns: BOOL

0 error
1 ok

SelectBitmap(u32-BmapH, u32_ DcH, u32-FuncNo)

This is used to select a specified bitmap into a selected Memory
Device Context or, if called with a null bitmap handle to
deselect the specified bitmap. The handle of the previously
selected bitmap is returned.

It is an error if the specified bitmap is already selected into any
DC.

If the specified bitmap and device are incompatible then an error
will be returned by the engine.

Parameters:

u32_BmapH
The handle of the bitmap to be selected.

Returns: HBITMAP

-1 error
0 null handle

>Dii<-1 handle of the previously selected bitmap

DeviceSelectBitmap (Handle, u32-DcH, u32_FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Handle;

285

MS OS/2 Presentation Manager Reference

SetBitmapBits(u32-ScanStart, u32_ Scan Count, p32-Bits, p32_ Info,
u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Info;
ULONG* p32_Bits;
ULONG u32_ScanCount;
ULONG u32_ScanStart;

This transfers bitmap data from application storage into the
specified Device Context.

The Device Context must be a memory Device Context, with a
bitmap currently selected. Note that this function will not set
bits directly to any other kind of device.

If the format of the supplied bitmap does not match that of the
aevice, it is converted, using the supplied Bitmap Info Table.
Only the standard formats will be supported.

Parameters:

u32_ ScanStart
The scan-line number at which the data transfer is to
start.

u32-ScanCount

p32_Bits

P32-Info

The number of scan lines to be transmitted.

The address in application storage from which the bit
map data is to be copied.

The address in application storage of the Bitmap Info
Table.

Returns: long int

-1 Error
>=O Number of scanlines actually set

SetBitmapDimension(u32_ BmapH, p32_ Parm, u32_ FuncNo)

286

This is used to associate a width and a height with the specified
bitmap in 0.1 mm units. This value can be read back by the Get
BitmapDimension call and is not used by the application.

Device Drivers

Parameters:

u32_BmapH
Specifies the handle of the bitmap to be used.

p32-Parm
Specifies a pointer to the parameters:

u32_ Width, u32_Height

Returns: BOOL

0 error
1 ok

The width and height in 0.1 mm units to be
associated with the bitmap.

SetPel(p32_ Parm, u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Parm;

This function sets a pel at a position specified in WCS to the
current line attribute color and mix.

Parameters:

p32_Parm
Provides a long pointer to a parameter block:

u32-X, u32_ Y

Returns: short int

0 error
1 ok
2 CorrelateHit

Specifying a position in WCS.

16.1.12.16 Region Functions

Short list of the function calls:

• CombineRegion

• Com pu teRegions

• CreateRectRegion

• Destroy Region

• EqualRegion

287

MS OS/2 Presentation Manager Reference

• ExcludeClipRectangle

• GetClipBox

• GetClipRects

• GetRegionBox

• GetRegionRects

• In tersectCli pRectangle

• OffsetClipRegion

• OffsetRegion

• Pain tRegion

• PtlnRegion

• Pt Visible

• QueryClipRegion

• Query VisRegion

• RectlnRegion

• Rect Visible

• SelectCli pRegion

• Select VisRegion

• SetRectRegion

• Not if yClipChange

CombineRegion(u32-DestRgnH, u32-Src1RgnH, u32-Src2RgnH,
u32-Mode, u32_DcH, u32-FuncNo)

288

place=inline -frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Mode;
ULONG u32_Src2RegnH;
ULONG u32_Src1RgnH;
ULONG u32_DestRrnH;

This combines two regions to make a third.

Parameters:

u32- DestRgnH
The handle of the destination region.

u32-Src1RgnH, u32_ Src2RgnH
The handles of the two regions to be combined.

Device Drivers

u32-Mode
Method of combination, as follows:

1 OR - Union of Srcl and Src2
2 COPY - Srcl only (Src2 ignored)
4 XOR - Symmetric difference of Srcl and Src2
6 AND - Intersection of Srcl and Src2
7 DIFF - Srcl and not(Src2)

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

Compu teRegions(u32_ DcH u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This forces computation of the Rao region. (Note that the Rao
region is the region reflecting the visible area on the screen).
Note that SetDCOrg does not force recompute.

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

CreateRectRegion(p32-xy, u32_ count, u32-DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Count;

This creates a region defined using a series of rectangles. The
new region is defined by the OR of all the rectangles.

If u32_ count is zero, an empty region is created.

Parameters:

p32-xy A far pointer to the region definition which is an array
of x,y pairs in device coordinates. Odd x,y pairs specify
the minimum coordinates of a rectangle and even x,y
pairs specify the maximum coordinates of a rectangle.

289

MS OS/2 Presentation Manager Reference

u32_count
A count of the number of rectangles in the region
definition.

Returns: HRGN

0 error
f=O region handle

Destroy Region(u32_ RgnH, u32_ DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_RgnH;

This destroys the specified region unless it has been selected as a
clipping region.

Parameters:

u32_RgnH
The handle of the region.

Returns: BOOL

0 error
1 ok

EqualRegion(u32_ SrclRgnH, u32- Src2RgnH, u32-DcH, u32_ FuncNo)

2QO

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Src2RgnH;
ULONG u32_Src1RgnH;

This checks whether two regions are identical.

Parameters:

u32_ SrclRgnH, u32_ Src2RgnH
The handles of the two regions to be checked.

Returns: short int

0 error
1 not equal
2 equal

ExcludeClipRectangle(p32_xy, u32_DcH, u32_FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Device Drivers

Excludes the specified rectangle from the clipping region. The
bottom and left boundaries of the rectangle are included in the
boundary which is to disappear.

Parameters:

p32-xy A far pointer to an array s32_xl, s32_yl, s32_x2,
s32-y2 where s32-xl, s32-yl specifies the minimum
coordinates of the rectangle and s32_ x2, s32_ y2
specifies the maximum coordinates of the rectangle in
world coordinates.

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

GetClipBox(p32-xy, u32-DcH, u32_FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy:

Returns the dimensions of the tightest rectangle around the DC
region. The DC region is the intersection of the visible region,
clip region, viewing limits, graphics field and clip area.

Parameters:

p32....,xy A far pointer to an array s32-xl, s32_yl, s32_x2,
s32_ y2 in which the rectangle is returned where
s32_xl, s32_yl returns the minimum coordinates of
the rectangle and s32_ x2, s32_ y2 returns the max
imum coordinates of the rectangle in world coordi
nates.

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

291

MS OS/2 Presentation Manager Reference

GetClipRects(p32-BoundRect, p32_Control, p32_xy, u32-DcH,
u32_ FuncNo)

292

struct ARGUMENTS {
ULONG u32_FuncNo
ULONG u32_DcH
ULONG* p32_xy
ULONG* p32_Control
ULONG* p32_BoundRect

};

This returns a list of x,y coordinate pairs specifying the clip
region associated with the specified DC.

Returns the list of x,y coordinate pairs for rectangles specifying
the region and intersecting an optional bounding rectangle. By
updating the start rectangle number value, the function can be
called multiple times to allow for more rectangles than can be
stored in the receiving buffer.

Parameters:

p32_ BoundRect
a far pointer to a bounding rectangle. The first x,y
pair define the minimum coordinates of the rectangle
and the second x,y pair define the maximum coordi
nates of the rectangle in device coordinates. Only rec
tangles intersecting this bounding rectangle will be
returned. If this pointer is NULL, all rectangles in the
region will be enumerated. If p32-BoundRect is not
NULL, then the each of the rectangles returned in
p32-XY will be the intersection of the bounding rec
tangle with a rectangle in the region.

If p32-BoundRect is not NULL, then each of the rec
tangles returned in p32-xy will be the intersection of
the bounding rectangle with a rectangle in the region.

p32-Control
A far pointer to a structure containing the following
elements.

u16_Start
The rectangle number to start enumerating
at. A 0 value means the same as 1; i.e., start
at the beginning.

ul6-Bufsize
The number of rectangles that will fit into
the buffer. A value of at least 1 is supplied.

u16_ Num_ Written
A returned value indicating how many rec
tangles were written into the buffer. A value

Device Drivers

below ul6_Start means that there are no
more rectangles to enumerate.

ul 6_ Direction
The direction the rectangles are listed.

1 =>left to right, top to bottom

2 -:-> right to left, top to bottom

3 =>left to right, bottom to top

4 =>right to left, bottom to top

p32_xy A far pointer to a region definition which is an array of
x,y pairs in device coordinates. Odd x,y pairs specify
the minimum coordinates of a rectangle and even x,y
pairs specify the maximum coordinates of a rectangle.
The format is identical to that for CreateRectRegion.

Returns: short int

0 error
1 NULL region
2 RECTangu1ar region
3 COMPLEX region (more than 1 rectangle)

GetRegionBox(u32-RgnH, p32_ xy, u32_DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;
ULONG u32_RgnH;

Returns the dimensions of the tightest rectangle around a
region. If the region is empty, the rectangle returned will have
the right boundary less than the left and the top boundary less
than the top.

A null region is where the boundaries left = right and/or bottom
=top.

Parameters:

u32-RgnH
The handle of the region.

p32_xy A far pointer to an array s32-xl, s32-yl, s32-x2,
s32_ y2 in which the rectangle is returned where
s32-xl, s32-yl returns the minimum coordinates of
the rectangle and s32_x2, s32_y2 returns the max
imum coordinates of the rectangle in device coordi
nates.

MS OS/2 Presentation Manager Reference

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

GetRegionRects(u32_RgnH, p32_ BoundRect, p32_ Control, p32_xy,
u32_ DcH, u32_ FuncNo)

294

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;
ULONG* p32_Control;
ULONG* p32_BoundRect;
ULONG u32_RgnH;

This returns a list of x,y coordinate pairs specifying the region
associated with the given region handle. A region selected as a
clipping region can also be specified.

Parameters:

u32_RgnH
The region handle specifying which region data to be
returned.

p32_ Control
A far pointer to a structure containing the following
elements.

u16_Start
The rectangle number to start enumerating
at. A value of 0 means start at the begin
ning, a value of 1 means start at the second,
etc.

u16-Bufsize
The number of rectangles that will fit into
the buffer. A value of at least 1 is supplied.

u16_ Num_ Written
A returned value indicating how many rec
tangles were written into the buffer. A value
below u16_ bufsize means that there are no
more rectangles to enumerate.

u 16- Direction
The direction the rectangles are listed.

1 =>left to right, top to bottom

2 => right to left, top to bottom

Device Drivers

p32-BoundRect

3 =>left to right, bottom to top

4 => right to left, bottom to top

a far pointer to a bounding rectangle. The first x,y
pair define the minimum coordinates of the rectangle
and the second x,y pair define the maximum coordi
nates of the rectangle in device coordinates. Only rec
tangles intersecting this bounding rectangle will be
returned. If this pointer is NULL, all rectangles in the
region will be enumerated.

If p32_ BoundRect is not NULL, then each of the rec
tangles returned in p32_ xy will be the intersection of
the bounding rectangle with a rectangle in the region.

p32_ xy A far pointer to a region definition which is an array of
x,y pairs in device coordinates. Odd x,y pairs specify
the minimum coordinates of a rectangle and even x,y
pairs specify the maximum coordinates of a rectangle.
The format is identical to that for CreateRectRegion.

Returns: BOOL

0 error
1 ok

In tersectClipRectangle(p32_ xy, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Sets the new clipping region to the intersection of the current
clip region and the specified rectangle.

Parameters:

p32_xy A far pointer to an array s32_xl, s32_yl, s32_x2,
s32_y2 where s32-xl, s32_yl specifies the minimum
coordinates of the rectangle and s32_x2, s32-y2
specifies the maximum coordinates of the rectangle in
world coordinates.

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

295

MS OS/2 Presentation Manager Reference

OffsetClipRegion(p32-xy, u32-DcH, u32_FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Moves the clipping region by the specified amounts.

Parameters:

p32_ xy The s32_ x, s32_ y offsets by which the clipping region
is to be moved in in world coordinates. · ·

Returns: short int

0 error
1 NULL region
2 RECTangular region
9 COMPLEX region (more than 1 rectangle)

OffsetRegion(u32- RgnH, p32_ xy, u32_ DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_RgnH;

This moves the given region by the specified offsets unless the
region is in use as a clipping region.

Parameters:

u32-RgnH
The handle of the region to be moved.

p32- xy The s32_ x, s32_ y offsets by which the region is to be
moved in device coordinates.

Returns: BOOL

0 error
1 ok

Pain tRegion(u32_ RgnH, u32-DcH, u32-FuncNo)

296

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_RgnH;

Device Drivers

This function paints the specified region using the current pat
tern attributes.

Parameters:

u32_RgnH
The handle of the region.

Returns: short int

0 error
1 ok
2 CorrelareHit

PtlnRegion(u32_ RgnH, p32_ xy, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;
ULONG u32_RgnH;

This checks whether a point lies within a region.

Parameters:

u32_RgnH
The handle of the region.

p32_ xy Specifies the s32_ x, s32_ y point in device coordinates.

Returns: short int

0 error
1 not in region
2 in region

PtVisible(p32-xy, u32_DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

This checks whether a point is visible within the clipping region
of the specified device context (where clipping region is defined
to be the intersection of application clipping and clipping result
ing from windowing).

Parameters:

p32_xy Specifies the s32-x, s32_y point in world coordinates.

297

MS OS/2 Presentation Manager Reference

Returns: short int

0 error
1 not visible
2 visible

QueryClipRegion(u32_ DcH u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This returns the handle of the currently selected clip region. If
there is no currently-selected clip region, NULL is returned.

Returns: HRGN

-1 error
0 null handle (no region selected)

<-1 region handle
>O region handle

Query VisRegion(u32-DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

Returns the handle of the current visible region.

Returns: HRGN

-1 error
0 null handle (no region selected)

<-1 region handle
>O region handle

RectlnRegion(u32-RgnH, p32- xy, u32-DcH, u32-FuncNo)

298

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;
ULONG u32_RgnH;

This checks whether any part of a rectangle defined by the
specified coordinates lies within the the specified region.

Parameters:

u32-RgnH
The handle of the region.

Device Drivers

p32-xy A far pointer to an array s32-xl, s32_yl, s32-x2,
s32-y2 where s32-xl, s32_yl specifies the minimum
coordinates of the rectangle and s32_ x2, s32_ y2
specifies the maximum coordinates of the rectangle in
device coordinates.

Returns: short int

0 error
1 not in region
2 partially in region
3 al 1 in region

Rect Visible(p32_ xy, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

This checks whether any part of the bounding rectangle defined
by the specified coordinates is visible within the clipping region
of the specified device context (where clipping region is defined
to be intersection of application clipping and clipping resulting
from windowing).

Parameters:

p32-xy A far pointer to an array s32-xl, s32_yl, s32-x2,
s32-y2 where s32-xl, s32_yl specifies the minimum
coordinates of the rectangle and s32_ x2, s32-y2
specifies the maximum coordinates of the rectangle in
world coordinates.

Returns: short int

0 error
1 not visible
2 partially visible
3 all visible

SelectClipRegion(u32-RgnH, p32- OldRgnH, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_0ldRgnH;
ULONG u32_RgnH;

Specifies the region to be used for clipping, when any drawing
takes place in the specified device context. The handle of the

299

MS OS/2 Presentation Manager Reference

previous selected region is returned. A null returned handle
means that the default clip region was in use before the select.

A region can only be selected by one DC at any one time and
when selected region operations modifying the region are invalid.

The coordinates·of the region are taken to be device coordinates
within the device context.

Clipping is inclusive at the left and bottom boundaries and
exclusive at the right and top boundaries.

Functions that modify the clipping region also modify the region
when it's handle is returned after another SelectClipRegion.

Parameters:

u32_RgnH
The handle of the region. If it is null, the clipping
region is set to no clipping, its initial state.

p32_ OldRgnH
The handle of the previously selected region. A null
handle means that there was no clipping.

Returns: short int

0 error
1 NULL region
2 RECTangular region
3 COMPLEX region (more than 1 rectangle)

Select VisRegion(u32_ RgnH, p32_ OldRgnH, u32_ DcH, u32_ FuncNo)

300

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_0ldRgnH;
ULONG u32_RgnH;

Specifies the region to be used for clipping, when any drawing
takes place in the specified device context. A vis region is used to
define the visible portion of a Window on the screen. The vis
region will be combined with the clip region if present to form
the DC region.

The handle of the previous selected vis region is returned. A null
returned handle means that the default vis region was in use
before the select.

A region can only be selected by one DC at any one time and
when selected region operations modifying the region are invalid.

The coordinates of the region are taken to be device coordinates
within the device context.

Device Drivers

Clipping is inclusive at the left and bottom boundaries and
exclusive at the right and top boundaries.

Parameters:

u32_RgnH
The handle of the region. If it is null, the clipping
region is set to no clip.ping, its initial state.

p32_ OldRgnH
The handle of the previously selected region. A null
handle means that there was no vis region selected.

Returns: short int

0 error
1 NULL region
2 RECTangu.lar region
9 COMPLEX region (more than 1 rectangle)

SetRectRegion(u32-RgnH,. p32_ xy, u32_ count, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Count;
ULONG* p32_xy;
ULONG u32~RgnH;

Sets the specified region to the specified region definition given
by a series of rectangles unless the region is in use as a clipping
region. The region is defined by the OR of all the rectangles.

If u32- count is zero, an empty region is created.

Parameters:

u32-RgnH
The handle of the region.

p32_xy A far pointer to the region definition which is an array
of x,y pairs in device coordinates. Odd x,y pairs specify
the minimum coordinates of a rectangle and even x,y
pairs specify the maximum coordinates of a rectangle.
The series of rectangles so defined specify the new
region data.

u32_count
A count of the number of rectangles inthe region
definition.

Returns: BOOL

0 error
1 ok

301

MS OS/2 Presentation Manager Reference

Not if yClipChange (p32-Rect, u32_ Complexity, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

} ;r

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Complexity;
ULONG* p32_Rect;

This function is called whenever the clip region intersected with
the visible region is changed. This function is not required. It
can be handled completely with a far return if the device driver
is not interested in each clip region change.

Parameters:

U32_ COMPLEXITY
lnd!cates the number of rectangles in the new clip
region.

P32-RECT
A far pointer to a rectangle which bounds the new
region. If the region is a single rectangle, this will be
the same rectangle.

Returns: TBD

16.1.12.17 Font Functions

There are a number of base character sets (at least 6) loaded at system ini
tialization by Presentation Manager. The engine is responsible for the
loading of base pattern and marker sets. The method of referencing base
pattern and marker sets is described in the attributes section of this docu
ment. The engine is also responsible for the loading of any base fonts.

Short list of the function calls:

• CreateLogicalF on t

• QueryLogicalFont

• DeleteSetld

• EnableKerning

• GetCodePage

• GetKerningPairTable

• QueryWidthTable

• RealizeFont

• GetDCCaps

302

Device Drivers

• LoadFont

• QueryBitmapHandle

• QueryFontAttributes

• QueryFonts

• DeviceQueryFontAttributes

• DeviceSetAVIOFont

• DeviceQueryFonts

• Query Kerning

• QueryNumberSetlds

• QuerySetlds

• SetBitmapID

• SetCodePage

• UnloadFont

• GetCodepageTable

• GetRevCodeTable

CreateLogicalFont(u32-LCID, p32_Name, p32-FontMetrics, u32-DcH,
u32_FuncNo)

This selects a font from the list of loaded fonts with the closest
match in terms of its attributes.

If the specified LCID is already in use an error will be raised.

Font Selection

When GpiCreateLogFont is issued, a physical font is selected
which will be used for this logical font. The choice is made in
one of two ways:

1. The system examines the logical font attributes which have
been specified, and selects which of the physical fonts avail
able to it best matches them, or

2. The application, having already determined (by using Gpi
QueryFonts) which font it wants, specifies the same match
value in the logical font attributes as was returned for that
font by GpiQueryFonts.

Once the choice has been made, it is never subsequently changed
for a particular logical font.

303

MS OS/2 Presentation Manager Reference

304

p32_FontMetrics

Field Name

Length of Record
Match
Typeface Name
Registry ID
Code Page
Height
Average Width
Width Class
Weight Class
Selection Flags
Type Flags
Quality
Font use flags

Notes.

• Match

Field Type Value

2 byte integer 62
4 byte integer

32 byte string
2 byte integer
2 byte integer
4 byte integer
4 byte integer
2 byte integer
2 byte integer
2 byte flags
2 byte flags
2 byte integer
2 byte integer

QueryFonts will return a unique Match number for each
font. CreateLogicalFont can specify Match equal to this
number to force selection of a particular font. If Match
specifies zero then mapping takes place as normal.

• Height

The height in world coordinates

• Average Width

The average width in world coordinates

• Quality

There are three levels of quality which refer to the perceived
quality of the characters printed. These definitions of quality
have no exact match in u32-FuncNo.

• Proof - X'02'

Perceived quality is paramount, even at the expense of
not matching the logical attributes of the font - princi
pally its size.

• Draft - X'Ol'

Perceived quality is less important than matching the
logical attributes of the font.

• Default - X'OO'

The appearance of the text does not matter.

Device Drivers

• Font use flags.

(bit 0) - 0 = Reserved

FATTR_FONTUSE_NOMIX (bit 1) - 0 = Normal mixing rules apply
1 = Permissive mixing, as

defined below
FATTR_FONTUSE_OUTLINE (bit 2) - 0 = Font need not be outline

font
1 = Font must be outline font

FATTR_FONTUSE_TRANSFORMABLE (bit 3) - 0 = Font need not be trans
formable

1 = Font must be transformable
(bits 4-15) - 0 = Reserved

If FONTUSE_ NO:MIX is set, it means that when characters
are drawn with this font, it does not matter whether the
current character mix and background mix attributes are

• honored, or

• temporarily replaced by overpaint and leave-alone,
respectively.

Furthermore, if any other primitives are subsequently drawn
at the same position, the mixing effect is undefined.

Fonts and Character Attributes

The interaction between fonts and character attributes
depends upon whether the transformable flag
(FATTILFONTUSE- TRANSFORMABLE) in the logical
tont attributes is set.

• If F ATTIL FONTUSE- TRANSFORMABLE is set, the
lAveCharWidth and lMaxBaselineExt in the font attri
butes are not currently used and should be zero. When
character strings are drawn with this logical font, the
sizes of the characters will be determined by the current
values of the character attributes. The characters will be
positioned, rotated, sheared, etc., precisely as required.

The transformation is calculated by mapping the box
defined by the max_char_increment and em-height in
the font metrics to the character box, under the influence
of the character angle and shear.

The value of character mode is ignored when drawing
character strings in this case.

• If F ATTIL FONTUSE- TRANSFORMABLE is not set,
then the lAveCharWidth and lMaxBaselineExt define the
size of the font which will be used. This will not be
affected by the character box attribute. Either character
modes 1or2 may be used with such a font:

305

MS OS/2 Presentation Manager Reference

•

•

In mode (i.e., precision) 1 the start of the string will
be positioned precisely (taking into account text
alignment), and subsequent characters will be posi
tioned according to the dictates of the font. Charac
ter box, angle, shear, extra, break extra, and spacing
will all be ignored.

In mode (i.e., precision) 2, each character will be posi
tioned taking into account all of the character attri
butes, but the characters themselves will not be
scaled, rotated or sheared.

• Note that an attempt to draw a character string in either
of the following cases will raise an error:

• with mode (i.e., precision)= 3 and
FATIILFbNTUSE__ TRANSFORMABLE not set.

• with mode (i.e., precision) not= 3 and
FATIILFbNTUSE__ TRANSFORMABLE set.

Positioning is by the character reference point. This is
defined within the font.

u32_LCID
The LCID which is to be assigned to the font. If the
LCID is already assigned, the existing definition will be
removed and replaced with the new one. Note: lcids ~2,
-3 and-4, represent AVIO lcids 1, 2 and 3 respectively
(it is the function of the Engine to perform the remap
ping between these values and 1, 2 and 3 for the
Device Driver).

p32_Name
An 8 character name used to describe the logical Font.

Returns: BOOL

0 error
1 ok

QueryLogicalFon t(u32_ LCID, p32_ Name, p32_ Fon tMetrics, u32_ DcH,
u32_ FuncNo)

306

This returns the font metrics for the logical font loaded onto the
specified LCID.

If the specified LCID is in use for a bitmap an error will be
raised.

p32_ FontMetrics
A pointer to a Font Metrics structure as specified in

CreateLogicalFont.

u32_LCID
The LCID of the required Logical Font. Note: kids -2,

Device Drivers

-3 and -4, represent A VIO lcids 1, 2 and 3 respectively
(it is the function of the Engine to perform the remap
ping between these values and 1, 2 and 3 for the
Device Driver).

p32-Name
A pointer to an 8 character name used to describe the
logical Font.

DeleteSetld (u32-LCID, u32-DcH, u32_FuncNo)

This deletes a character set. If the LCID specifies a bitmap id,
the bitmap ID is deleted. Base sets cannot be deleted.

An LCID value of 'FFFFFFFF'X (i.e., -1 if this were a signed
number){ will cause all loaded lcids (i.e., logical Fonts and Bit
map IDsJ to be destroyed.

u32-LCID
Denotes the LCID of the existing character set. Note:
lcids -2, -3 and -4, represent A VIO lcids 1, 2 and 3
respectively (it is the function of the Engine to per
form the remapping between these values and 1, 2 and
3 for the Device Driver).

Returns: BOOL

0 error
1 ok

EnableKerning (u32-Flags, u32-DcH, u32-FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Flags;

This enables or disables pair kerning. the default is that it is dis
abled when a DC is created.

u32-Flags
Denotes whether pair kerning is on or off

EK_FAIR (bit 0)

Returns: BOOL

0 error
1 ck

- 0 = pair kerning off
- 1 = pair kerning on

307

MS OS/2 Presentation Manager Reference

GetCodePage (u32_ DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This obtains the current code page.

Returns: long int

0 error
!=0 codepage

GetKerningPairTable (u32_ count, p32_ KernPairs, u32_ DcH,
u32_ FuncNo)

308

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_KernPairs;
ULONG u32_Count;

Gets the kerning pairs of the current font.

u32_count
The number of kern pairs the application wants

p32_ KernPairs
A far pointer to an array of kern pair records. Each
record has the form:

Word Charl
Word Char2
Word KernAmount

where Charl
Char2
KernAmount

Code point for first character
Code point for second character
2 byte signed integer, indicating the
amount of kerning, with positive numbers
meaning increase inter-character spacing.

Note. The number of kern pairs is a field in the text
metrics.

Returns: BOOL

0 error
1 ok

Device Drivers

QueryWidthTable (u32-sFirstChar, s32-Count, p32_ WidthTable,
u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_WidthTable;
ULONG u32_Count;
ULONG u32_sFirstChar;

This returns the width table information for the currently
selected logical font in world coordinates.

Parameters:

p32_ WidthTable
A far pointer to a buffer in which the width table data
is returned.

u32_Count
The size in bytes of the buffer pointed to by
p32_ WidthTable.

u32_ sFirstChar
The codepoint of the initial character for which width
table information is required.

Returns: BOOL

0 error
1 ok

RealizeFont (u32-PFont, u32-EFont, u32-Accelator, u32-Command,
p32-LogFont, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_LogFont;
ULONG u32_Command;
ULONG u32__.Accelator;
ULONG u32_EFont;
ULONG u32_FFont;

This allows the device to attempt to realize a font. The device is
called first to realize a font. The engine will then check its tables
of generic fonts for a match. The engine then picks the better of
the two.

Note: This is a private Engine interface.

309

MS OS/2 Presentation Manager Reference

310

The form of the dialog is:

1. The engine asks the driver if it can realize a device font for
the log font. The driver answers no by returning zero and yes
by returning a 32 bit number for that font and filling in the
PFONT data structure.

2. The engine looks for a match amount its generic fonts.

3. The engine chooses the best match between the driver and
the generic font.

4. If a generic font has been chosen the driver is asked if it
wants to down load it. The driver answers no by returning
zero and yes by returning a 32 bit number for that font and
filling in the PFONT data structure.

Parameters:

U32_PFont
if (Command== DeviceFont, LoadEngineFont) The
driver fills this in with a 16 bit identifier if the font is
realized. Else if (Command== DeleteFont) The driver
is given the indentifier it uses for a device font.

p32-EFont
A long pointer to an engine font supplied by the
engine when command== LoadEngineFont.

u32_ Accelator
The device driver sets bits here that tell the engine
what the driver would like the engine to perform.

Possible bits are:

TC_80LD
TC_ITALIC
TC_ UNDERLINE
TC_DUNDERLINE
TC_STRIKEOUT

u32_ Command

equ 000018
equ 000108
equ OOlOOB
equ 001008
equ OlOOOB

A 32 bit command which is one of:

DeviceFont

Wants Embolding
Wants Italicizing
Wants Underlining
Wants Double underlining
Wants to be StrikeOut

The driver is asked whether it can realize a
match.

LoadGenericFont
The driver is asked if it can download an
engine generic font.

DeleteFont
The driver is asked to delete a font.

Device Drivers

p32_LogFont
A long pointer to a logical font data structure if com
mand == DeviceFont.

GetDCCaps (p32_ Flags, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Flags;

This function is used by the engine to ask the device driver what
operations it is capable of, with the present attributes set for the
given DC. The device driver is expected to set the flags pointed
to by P32_ FLAGS as follows:

BIT 1

BIT2

BIT8

Set if the device driver can do bounding.

Set if the device driver can do correlations.

Set if device driver can draw lines with the present
attributes.

BIT9 Set if device driver can draw curves with the present
attributes.

BIT 10 Set if the device driver can fill areas with the present
attributes.

BIT 11 Set if the device driver can draw markers with the
present attributes.

All other bits must not be modified. The engine will simulate
any operations that the device driver cannot perform.

LoadFont(p32-Filename, u32_ FuncNo)

This loads fonts from the specified resource file. All of the fonts
in the file become available for the applications to use.

Parameters:

p32_ Filename
A long pointer to the filename of the font resource file.

Returns: BOOL

0 error
1 ok

QueryBitmapHandle (u32_LCID, u32-DcH, u32-FuncNo)

This returns the bitmap handle for the specified LCID, or raises
an error if the LCID does not reference a Bitmap.

311

MS OS/2 Presentation Manager Reference

u32_LCID
Specifies the LCID for which the bitmap handle is
required.

Returns: HBITMAP

0 error
f=O Bitmap handle

QueryFontAttributes (u32-AttrsLen, p32_ FontAttributes, u32_ DcH,
u32_ FuncNo)

312

This obtains the attributes of the font currently selected via
SetCharSet.

u32_AttrsLen
The length of the font attributes buffer pointed to by
p32-FontAttributes.

p32_ FontAttributes

The Font File format consists of two sections. The
first section contains the general attributes of the font,
describing features of the font such as its typeface
style and its nominal size. The second section contains
the actual definitions of the characters belonging to
the font. Each of the sections is described in the fol
lowing sections.

Note: The names and formats of fields in this section
conform to the u32_ FuncNo.

szFamilyname 32 byte string
szFacename 32 byte string

idRegistry Word
CodePage Word

lEmHeight Word
lXHeight Word

lMaxAscender Word
lMaxDescender Word
lLowerCaseAscent Word
lLowerCaseDescent Word

llnternalLeading Word
lExternalLeading Word

lAveCharWidth Word
lMaxCharlnc Word

lMaxBaselineExt Word
sCharSlope Word
slnlineDir Word
sCharRot Word

Device Drivers

usWeightClass
usWidthClass

sXDeviceRes
~sYDeviceRes

sFirstChar
sLastChar
sDefaultChar
sBreakChar

sNominalPointSize
sMinimumPointSize
sMaximumPointSize
fsType
fsSelection
Capabilities

lSubscriptSize
lSubscriptPosition
lSuperscriptSize
lSuperscriptPosition
UnderscoreWidth
UnderscoreSpacing
lStrikeoutSize
lStrikeoutPosition
KerningPairs
Reserved
Match

Word
Word

Word
Word

Word
Word
Word
Word

Word
Word
Word
Word
Word
Word

Word
Word
Word
Word
Word
Word
Word
Word
Word
Word
Dword

Note: For more detail see Font Attributes section.

Returns: BOOL

0 error
1 ok

QueryFonts(p32_FaceName, p32_Metrics, u32_MetricLen,
p32-FontCount, u32-DcH, u32_FuncNo)

This returns a record providing details of the fonts, which match
the specified FaceName.

By inspecting the returned data, the application may choose
which of the available fonts is most appropriate for its require
ments. If necessary, it can force selection of a particular font.

By specifying a count of zero, the returned value can be used to
determine how many fonts match the FaceName.

Note: All sizes are returned in world coordinates.

Parameters:

p32-FaceName
A far pointer to a null terminated character string
specifying the facename.

313

MS OS/2 Presentation Manager Reference

p32_ Metrics
A far pointer to an array of font element records in
which the metrics of matching fonts are returned. The
format of each element is as described for QueryFon
tAttributes. No more than u32-MetricLen bytes will
be returned for any one font, and the number of fonts
returned is limited to the value specified by
p32-FontCount.

u32_ MetricLen
The number of bytes of each metrics structure in the
p32-Metrics array.

p32_FontCount
A long pointer to u32-Fontcount which Specifies the
number of fonts for which the application wants
metrics. On return this is updated with the number of
fonts for which metrics are returned.

Returns: long int

-1 error
>=0 number of fonts not returned (this allows the application

to determine the number of fonts by specifying count = 0)

DeviceQueryFontAttributes(p32-Metrics, u32_ iMetrics, u32_ DcH,
u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_iMetrics;
ULONG* p32_Metrics;

This obtains the metrics of the currently selected font.

u32_ iMetrics
The size of the data structure pointed to by
p32-Metrics.

p32_ Metrics
A long pointer to a font metric block where the infor
mation is to be returned.

Returns: BOOL

0 error
1 ok

DeviceSetA VIOFont(u32-FontDef, u32_ LCIDlndex, u32_ DcH,
u32_FuncNo)

place=inline frame = box

314

Device Drivers

struct ARGUMENTS {
ULONG u32_FuncNo;

};

HDC u32_DcH;
ULONG u32_LCIDindex;
ULONG* p32_FontDef;

This call supports loadable cell image sets for A VIO presenta
tion spaces.

The function's result will be true if the given font is acceptable
for use with an AVio presentation space and false otherwise. As
a side effect the device driver will derive a far pointer to the bit
array which constitutes the image data for the given font and
cache that address within the DDC corresponding to hDC.

Subsequent CharRect, CharStr, and ScrollRect calls will use
those cached addresses in the DDC to materialize character
images for LCID 1..3.

u32_ LCIDindex
Specifies the lcid value of 1, 2 or 3.

p32-FontDef
p32_FontDef is either a far pointer to a Font data
structure or a device handle with zero in the
HIWORD(FontDef).

Returns: BOOL

0 error
1 ok

DeviceQueryFonts(p32_Filter,
p32_ Metrics, u32_ iMetrics, u32_ iFon ts, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* u32_iFonts;
ULONG u32_iMetrics;
ULONG* p32_Metrics;
ULONG* p32_Filter;

Enumerates the fonts on a device. For each font on the device
the function returns the metrics of the font.

p32_iFonts
The number of fonts for which the application wants
metrics. The number the application actually receives
is returned here.

315

MS OS/2 Presentation Ma.na.ger Reference

u32_ iMetrics
The size of each metrics structure in the array pointed
at by p32_ Metrics.

p32_Metrics
A long pointer to an array of textmetric records.

p32-Filter
A long pointer to the facename to match.

Returns: long int

-1 error
>=0 number of fonts not returned (this allows the application

to determine the number of fonts by specifying count = 0)

Query Kerning (p32_ Flags, u32_ DcH, u32- FuncNo)

This queries the character kerning flags.

p32-Flags
A far pointer to the returned character kerning flags

EK_PAIR (bit 0) - 0 = pair kerning off
- 1 = pair kerning on

Returns: BOOL

0 error
1 ok

QueryNumberSetlds(u32-LCIDrange, u32-DcH, u32-FuncNo)

Returns the total number of lcids (i.e., logical fonts and Bitmap
Ids) which have been loaded.

u32_ LCIDrange
Specifies whether GPI Lcids or A VIO lcids or both are
to be queried. Note: lcids -2, -3 and -4, represent A VIO
lcids 1, 2 and 3 respectively (it is the function of the
Engine to perform the remapping between these values
and 1, 2 and 3 for the Device Driver).

1 GPI
2 AVIO
9 GPI &. AVIO

Returns: long int

-1 error
>=0 number of lcids

QuerySetlds(u32_ n, p32- types, p32_ names, p32-LCIDs,
u3~L LCIDrange, u32- DcH, u32- FuncNo)

316

This queries the first u32_ n loaded LCIDs in the De. A list of
loaded LCIDs, together with their type (Logical Font or Bitmap)
are returned. If there are less then u32_ n loaded LCIDs, the

Device Drivers

remaining types and LCIDs are set to zero.

u32- n Number of LCIDs to query.

p32_ types
Pointer to an array of u32_ n elements (element type is
s32), in which the array elements signify the type of
LCfD, as follows

where type = 6 logical font
= 7 bitmap

p32-names
A far pointer to an array of pointers to 8-byte fields in
which the 8-character names associated with the
corresponding LCIDs are returned.

p32-LCIDs
Pointer to an array of u32_n elements (element type is
u32) in which the array elements are the queried
loaded LCID identifiers.

u32_ LCIDrange
Specifies whether GPI lcids or A VIO lcids or both are
to be queried. Note: lcids -2, -3 and -4, represent A VIO
lcids 1, 2 and 3 respectively (it is the function of the
Engine to perform the remapping between these values
and 1, 2 and 3 for the Device Driver).

1 GPI
2 AVIO
9 GPI & AVIO

Returns: BOOL

0 error
1 ok

SetBitmaplD (u32-BmapH, u32-LCID, u32-DcH, u32_FuncNo)

This tags the specified bitmap with an LCID, so that the bitmap
can be used for area shading or as the pattern in a BitBlt opera
tion. When a bitmap is destroyed, its LCID becomes undefined.

If the specified LCID is already in use, then an error will be
raised.

u32_BmapH
The handle of the bitmap.

u32-LCID
The LCID for which the definition is required.

Returns: BOOL

0 error
1 ok

317

MS OS/2 Presentation Manager Reference

SetCodePage (u32_ CodePage, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_CodePage;

This sets the current code page.

u32_ CodePage
The new code page.

Returns: BOOL

0 error
1 ok

U nloadF on t(p32_ Filename, u32_ FuncNo)

This unloads the font definitions which had been previously
loaded from the specified resource file.

p32-Filename
The filename of the font resource file.

Returns: BOOL

0 error
1 ok

GetCodepageTable (s32-cpid, p32_ tab, u32-FuncNo)

318

The use of Multi-Codepage fonts implies that a translation is
done from the codepoints of a character string (in one particular
codepage) to the indices of the same character glyphs in the
font. This is done via a Codepage Lookup table.

Codepage Lookup tables are available for the codepages 500,
850, 860, 863 and 865. They are provided in the Presentation
Manager system by the Graphics Engine and are available to
Device Drivers via this call.

Parameters:

s32_cpid

p32_ tab

is the codepage ID.

is a pointer to a data area where the table is returned.

The table is a simple list of 256 unsigned 16 bit values.
Each value is the index number into the multi
codepage font of the glyph corresponding to the
codepoint which addresses into the table (0-based).

u32-FuncNo
is the engine function number

Returns: BOOL

0 error
1 ok

GetRevCodeTable (s32-cpid, p32_ tab, u32-FuncNo)

Device Drivers

To ease conversion of text strings from one codepage to another,
a further function is provided, which is essentially the reverse of
GreGetCodepageTable.

Parameters:

s32_cpid
is the codepage ID.

p32_tab
is a pointer to a data area where the table is returned.

The table is a simple list of 300 unsigned 8 bit values.
Each value is a codepoint value in the target codepage
of the glyph corresponding to the index which
addresses into the table (0-based).

u32_FuncNo
is the engine function number

Returns: BOOL

0 error
1 ok

16.1.12.18 Device Context Functions

The GPLPrime is responsible for the creation/deletion of device contexts.
Association of a Device Context with a Presentation Space (PS) and all
Metafile functions are also provided by GPL Prime.

Short list of the function calls:

• CopyDcLoadData

• OpenDevice Con text

• CloseDevice Context

• GetDcOrigin

• PostDeviceModes

• GetHandle

319

MS OS/2 Presentation Manager Reference

• RestoreDC

• SaveDc

• SetDcOrigin

• SetHandle

• GetDCPointer

CopyDcLoadData(u32_ Options, u32_ SourceDcH, u32_ DcH,
u32_ FuncNo)

Copies Line Type, Color Table and all lcid (i.e., Symbol Set,
Logical Font, & Bitmap ID) related data from the source to the
target DC.

Parameters:

u32_ Options
Specifies whether to copy A VIO symbol sets only
(LCIDs < X'41'), GPI symbol sets (LCIDS >= X'41')
or both of these.

1 GPI
2 AVIO
3 GPI & AVIO

u32_ SourceDcH
Specifies the handle of the source DC for the copy.

u32_DcH
Specifies the handle for the target DC for the copy.

Returns: BOOL

0 error
1 ok

OpenDC (u32_ Type ,p32_ Token, u32_Length, p32_Data, u32_DcH,
u32_ FuncNo)

320

Creates an output Device Context of a specified type.

The data passed depends upon the type of Device Context being
created. It provides information such as the driver name, and
may also provide data with which the Device Context is to be
initialized.

Bits 0 & 1 of DC handle contains flags. which are ignored by the
engine. They are set and used by the GPI layer as follows:

Bit 0 '1 'B specifies Micro PS

- Bit 1 '1 'B specifies Metafile DC

Device Drivers

Parameters:

u32_ Type
The type of Device Context to be created, as follows:

2 - OD_ QUEUED
A device such as a printer or plotter, for
which output is to be queued by the spooler.

5- OD_DIRECT
A device such as a printer or plotter. Output
is not queued by the spooler.

6- OD_INFO
As OD_ DIRECT, but will only be used to
retrieve information (for example, font
metrics). Drawing can be performed to a
presentation space associated with such a
Device Context, but no output medium will
be updated.

8 - OD_ :MEMORY

p32_ Token

A Device Context which will be used to con
tain a bitmap.

A long pointer to a string which identifies device infor
mation, held in the WIN/NI file. This information is
the same as that which may be pointed to by
p32-Data; any that is obtained in this way overrides
the information obtained by using p32- Token.

If the token is specified as " *'' then no device informa
tion is taken from WIN/NI Note: Presentation
Manager Release 1 will ignore this parameter.

u32_Count
The count of the number of long pointers present in
data. This may be shorter This may be shorter than
the full list if omitted items are irrelevant or supplied
from p32_ token or elsewhere.

p32-Data
A long pointer to a parameter block containing:

struct DOPDATA
PSZ address:
PSZ driver_name;
PBYTE driver_data;
PSZ data_type;
PSZ comment:
PSZ proc_name;
PSZ proc_params;
PSZ spl_params;
PSZ network_params;

321

MS OS/2 Presentation Manager Reference

322

p32_ address
The address of the output device.

• For a OD-DIRECT device, this is
required if it is not available from the
token. and consists of a logical de
vice address, such as "LPTl".

• For a OD_ QUEUED device, this is
optional, since the spooler will provide a
default if necessary, and consists of a
spooler queue name.

p32_ Driver Nname
A long pointer to a string containing the
name of the device driver. This information
must always be supplied if it is not available
from the token.

p32_ Driver Data
A long pointer to data which is to be passed
directly to the device driver. Whether or not
any of this is required depends upon the
device driver, though the information may
alternatively have been specified via Devi
ceMode.

The data consists of the following:

struct DRIVDATA
LONG length;
LONG version;
SZ szDeviceName;
ULONG abGeneralData;

u32-DrvDataLength
The length of the whole
driver_ data structure.

u32_ Version
The version number of the data.
Version numbers are defined by
particular device drivers.

DeviceName
A string in a 32-byte field, identi
fying the particular de-
vice (model number, etc.). Again,
valid values are defined by device
drivers.

GeneralData
Data as defined by the device
driver.

Device Drivers

p32_ Data Type
A long pointer to a null terminated Data
Type character string.

• For a OD_ QUEUED device, DataType
defines the type of data which is to be
queued, as follows:

• "Q- STD" - standard format

• "Q-ESC" - escape format

• "Q-RAW" - raw format

Note that a device driver may define
other data types. If the DataType is not
specified for a OD_ QUEUED device, the
default is supplied by the device driver.

In the above case, Data Type information is
defaulted if not specified.

For any other device type, Data Type is
ignored.

p32-Comment
A long pointer to a natural language descrip
tion of the file. This may, for example, be
displayed for a OD_ QUEUED device by the
spooler to the end user. It is optional for any
de- vice.

p32- ProcName
A long pointer to the name of the queue pro
cessor. This is only relevant for a
OD_ QUEUED device, and will normally be
defaulted.

p32_ ProcParams
A long pointer to a parameter string for the
queue processor. This is only relevant for a
OD_ QUEUED device, and is optional.

spLparams
A long pointer to a parameter string for the
Spooler, which is optional. This is only
relevant for a OD-QUEUED device, and is
optional. This has the following options,
which must be separated by one or more
blanks:

• FORM=f

Specifies a forms code 'f'. This must be a
valid forms code for the printer.

If not specified, then the data is printed

323

MS OS/2 Presentation Manager Reference

u32_DcH

on the forms in use when this print job is
ready to be printed.

• PRTY=n

Specifies a priority in the range 0-99,
with 99 being the highest. If not
specified, then a priority of 50 is used.

network_ params
network parameters. This is only relevant
for a OD_ QUEUED device, and is optional.
An application would leave it to the Net
work Program to specify this parameter,
since it is for use in such an environment.

When u32_ Type is OD-MEMORY, u32_DcH specifies
the handle of a DC to create a compatible Device Con
text for. If the given DcH is 0, a Device Context com
patible with the DISPLAY device is created.

Returns: HDC

0 Error
!=0 Device context handle

CloseDC (u32_ DcH, u32_ FuncNo)

This deletes the specified Device Context.

Returns: BOOL

0 error
1 ok

GetDcOrigin(p32_ xy, u32_ DcH, u32_ FuncNo)

324

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_EuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Returns the DC origin of the device context.

Parameters:

p32_xy An XY pair to be used for the DC origin specified in
screen coordinates.

Returns: BOOL

0 error
1 ok

Device Drivers

PostDeviceModes(p32-DriverData, p32-DriverName, p32-DeviceName,
p32_ LogAddr, u32- FuncNo)

This function causes a device driver to post a dialog box that
allows the user to set options for the device, for example resolu
tion, font cartridges, etc.

The function can be called first with a NULL data pointer to
find out how much storage is needed for the data area. Having
allocated the storage, the application then calls the function a
second time for the data to be filled in.

The returned data can then be passed on OpenDC as Driver
Data.

Parameters:

p32_ DriverData
A long pointer to a data area, which on return will
contain device data as defined by the driver.

If this pointer is passed as NULL, then the size in
bytes which the data area should be is returned.

The format of the data is as follows:

u32_Length
The length of the whole DriverData struc
ture in bytes.

u32_ Version
The version number of the data. Version
numbers are defined by particular device
drivers.

DeviceName
A string 32-bytes long, identifying the par
ticular device (model number, etc.). Again,
valid values are defined by device driver.

GeneralData
Data as defined by the device driver.

p32_ DriverName
A long pointer to a string containing the name of the
device driver

p32_ De:viceName
A long pointer to a string identifying the particular
device tmodel number, etc.). Valid names are defined
by device drivers.

p32-LogAddr
The lou:ical address of the output device (e.g.,
"LPTI'').

Returns: short int

325

MS OS/2 Presentation Manager Reference

p32- Driver Data pointer was NULL:
-1 Error
0 No settable options
>0 Size in bytes required for data area

p32- Driver Data pointer was not NULL:
-1 Error
0 No device modes
1 OK

GetHandle(u32-index, u32-DcH, u32_ FuncNo)

This returns the handle (may be GPLPS, AVIO_PS or metafile)
for the specified index.

Parameters:

u32_index
Specifies the index value of the handle in the range 0 .. 3
. There is actually a maximum of three but a slot is
reserved for future expansion.

Returns: long int

-1 error
f= -1 returned handle

RestoreDc(s32-Dcld, u32_DcH, u32-FuncNo)

326

Restore the contents of a previously saved DC.

Parameters:

s32_Dcld

on

Specifies the ID of the DC state to be restored, or, a
negative value will indicate the number of DCs to be
popped before the required one.

1. If the ID specified is positive (>=0) and does not
exist on the stack of saved DC's, then an error is
returned and the DC is not modified.

2. If the ID specified is negative (<0) and there are
insufficient entries on the stack then an error is
returned and the DC is not modified

3. If the required DC is on the stack, then as a result
of this function all entries up to the required one
are removed from the stack as part of the Res
toreDC process.

4. An ID value of 1 will cause the DC stack to be
reset, all entries are removed from the stack.

Device Drivers

5. An ID value of 0 will result in an error, and the DC
is not modified.

Returns: BOOL

0 error
1 ok

SaveDc(u32_ DcH, u32-FuncNo)

Save the specified DC's state on a stack and return an integer
uniquely identifying it so that it can be easily restored at a
future date.

The following are saved:

• Current attributes

• Current transforms and clip window

• Current position

• Reference to selected clip region

• Any loaded logical color table

• References to any loaded logical fonts

• References to any loaded symbol sets

• References to any loaded line type set

• References to the regions created on the associated De-
vice Con text

The following is not saved:

• The visible region

Note that any resources which are referenced in a saved DC
(e.g., clip region, logical fonts, symbol sets, line type set) should
not be deleted.

Note also that ID's of saved DC state's are unique only on a per
DC basis, that is other DC's may have saved states with the
same ID.

Parameters:

Returns: long int

0 error
!=0 id of saved de

327

MS OS/2 Presentation Manager Reference

SetDcOrigin(p32_ xy, u32- DcH, u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_xy;

Sets the DC origin of the specified device context. Note that the
device origin is 0,0 when the device context is created.

Parameters:

p32_ xy An XY pair to be used for the DC origin specified in
screen coordinates.

Note: When the DC origin is set the Engine will align the clip
regions at all saved levels of the DC (if one is set). The Rao
region will not be recomputed until the Engine receives an expli
cit call to ComputeRegions or SelectVisRegion. (Note that the
Rao region is the region reflecting the visible area on the screen).

Returns: BOOL

0 error
1 ok

SetHandle(u32_ Handle, u32_ index, u32_ DcH, u32_ FuncNo)

This associates the specified handle with the specified Device
Context. A maximum of four handles may be associated with a
single Device Context simultaneously. In practice this figure will
probably never exceed three (i.e., a VlO Alphanumerics PS han
dle, a GPI Graphics PS handle and a metafile handle). Note that
index zero will be used by the Engine as the GpiH parameter for
the GpiVectorSymbol call from the Engine back to GPI-Prime.
Dissociation is accomplished by specifying a null handle for
u32_ Handle.

Parameters:

u32-Handle
Specifies the handle.

u32-index
Specifies the index value of the PS in the range 0 .. 3 .

Returns: BOOL

0 error
1 ok

GetDCPoin ter(u32- DcH, u32- FuncNo)

328

This function can be dynalinked directly by a device driver and
allows it to convert a DC handle into a far pointer to the DC
structure.

Device Drivers

This function allows device drivers to be written in high level
languages.

Returns: Device Context far *
0 error

f =0 far pointer to the Device Context

16.1.12.19 Transform and Clipping Functions

Short list of function calls:

• SetModelXf orm

• GetModelXf orm

• SetXFormRect

• Set ViewingLimi ts

• Get ViewingLimits

• Set WindowViewportXform

• Get WindowViewportXform

• SetGlobalViewingTransform

• GetGlobalViewingTransform

• SetPageUnits

• GetPageUnits

• SetGraphicsField

• GetGraphicsField

• Set Page Window

• GetPage Window

• SetPage Viewport

• GetPage Viewport

• Convert

• QueryViewportSize

329

MS OS/2 Presentation Manager Reference

World l
Coordinate I
Space ----+----

I
I

--+--
Transform
Origin

I
I

*-*Model
lMlTransform
-

I
I
I
I

v

I *-clip--*

Model
Space 1

l lViewingl ,
l lLimits lWindowl l* _______ * :

Default
Page
Coordinate
Space

Page
Coordinate
Space

Device
Coordinate
Space

----+---- *---------------*
I
I

*-*WindowjViewport
l Ml Trans form

I
I

v

lViewportl

I
I

*-*Global Viewing
IMITransform
-

I
I

v

l *-------clip---*l
lPage lGraphics Fieldl l
!Window *--------------*:

I
I

*-*Device
lMlTransform
-(Page Units)

I
I

v

--clip I
IPage lMedia l l Default
lViewportlWindowl<------Device
I *------*I Size
I (o, o) I

Figure 16.1 Engine Transformation and Clipping

330

Device Drivers

SetModelXform(p32_ Xf ormData, u32_ mode, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Mode;
ULONG* p32_XformData;

Sets the model transform matrix elements as specified.

Parameters:

p32_ Xf ormData
Points to an array of 6 matrix elements for two
dimensional transformation:

{fxM11, JxM12, /xM21, /xM22, M41, M42).

u32-mode
Specifies how the supplied array should be used to set
the matrix.

Valid values are:

0 Set unity transform (array values are ignored) .
1 Concatenate after (see u32_FuncNo for 'after'

definition) •
2 Concatenate before (see u32_FuncNo for 'before'

definition).
9 Overwrite.

Returns: BOOL

0 error
1 ok

GetModelXf orm(p32_ Xf ormData, u32-DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_XforData;

Returns an array of two-dimensional values which define the
current model transform matrix.

Parameters:

p32_ Xf ormData
Points to the return data area in which the array of 6
matrix elements is to be stored:

(fxM11, /xM12, fxM21, fxM22, M41, M..f2),

331

MS OS/2 Presentation Manager Reference

Returns: BOOL

0 error
1 ok

SetXFormRect (p32- Rect, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Rect;

Set ViewingLimits(p32_ View Limits, u32-DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_ViewLimits;

Sets the boundaries of the viewing (clip) limits in model space to
the specified values.

Parameters:

p32_ ViewLimits
Points to a 4 element array containing the integer
values that identify respectively the min_x, min_y,
max_ x and max_ y boundaries of the viewing limits:

{s92- xl, s92_ yl, s92- x2, s92- y2).

Returns: BOOL

0 error
1 ok

Get ViewingLimits(p32_ View Limits, u32-DcH, u32_ FuncNo)

332

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_ViewLimits;

Returns a 4 element array containing the integer values that
identify the boundaries of the viewing window in graphic model
space coordinates:

Device Drivers

Parameters:

p32_ ViewLimits
Points to the return data area in which the array of 4
elements is to be stored. These are integer values that
identify respectively the min-x, min_y, max_x and
max_ y boundaries of the viewing limits:

{s92- xl, s92-y1, s92- x2, s92-y2).

Returns: BOOL

0 error
1 ok

Set WindowViewportXform(p32- Transform, u32- mode, u32-DcH,
u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Mode;
ULONG* p32_Transform;

Sets the Window /Viewport Transform matrix elements as
specified.

Parameters:

p32_ Transform
Points to an array of 6 matrix elements for two
dimensional transformation.

{fxM11, fxM12, fxM21, fxM22, M41, M42},

u32-mode
Specifies how the supplied array should be used to set
the matrix.

Valid values are:

0 Set unity transform (array values are ignored) .
1 Concatenate after (see u32_FuncNo for 'after'

definition).
2 Concatenate before (see u32_FuncNo for 'before'

definition).
9 Overwrite.

Returns: BOOL

0 error
1 ok

333

MS OS/2 Presentation Manager Reference

Get Window ViewportXform(p32_ Transform, u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Transform;

Returns an array of two-dimensional values which define the
current Window /Viewport transform matrix.

Parameters:

p32_ Transform
Points to the return data area in which the array of 6
elements is to be stored:

{fxM11, fxM12, fxM21, fxM22, M41, M42),

Returns: BOOL

0 error
1 ok

SetGlobalViewingXf orm(p32_ Transform, u32_ mode, u32-DcH,
u32_ FuncNo)

334

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Mode;
ULONG p32_Transform;

Sets the Global Viewing Transform matrix elements to the
specified values.

Parameters:

p32_ Transform
Points to an array of 6 matrix elements for two
dimensional transformation.

{fxM11, fxM12, fxM21, fxM22, M41, M42},

u32_mode
Specifies how the supplied array should be used to set
the matrix.

Valid values are:

0 Set unity transform (array values are ignored).
1 Concatenate after (see u32_FuncNo for 'after'

definition).

Device Drivers

2 Concatenate before (see u32_FuncNo for 'before'
definition).

9 Overwrite.

Returns: BOOL

0 error
1 ok

GetGiobalViewingXf orm(p32_ Transform, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG p32_Transform;

Returns an array of two-dimensional values which define the
Global Viewing transform matrix.

Parameters:

p32_ Transform
Points to the return data area in which the array of 6
matrix elements is to be stored:

{fxM11, /xM12, /xM21, /xM22, M41, M42},

Returns: BOOL

0 error
1 ok

SetPageUnits(u32_ units, u32_ width, u32_ height, u32- DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Height;
ULONG u32_Width;
ULONG u32_Units;

This sets the page units controlling the Device Transform.

Parameters:

u32_ units
Page Units, as follows:

Bits 0-1 Reserved, must be preserved by the Engine
and returned by GetPageUnits

335

MS OS/2 Presentation Manager Reference

336

Bits 2-7

B'000001' Isotropic
Arbitrary units, as defined by u32_height and
u32_width. The page viewport is constructed to give
equal x and y spacing on the physical device with at
least one dimension of the page completely filling
the corresponding default device dimension
(maximized window size, paper size, etc.) and the
origin at the bottom left.

B'000010' PelsUp
Pel coordinates, with the origin at the bottom left.

B'000011' LoMetric
Units of 0.1 mm, with the origin at the bottom left.

B'000100' HiMetric
Units of 0.01 mm, with the origin at the bottom left.

B'000101' LoEnglish
Units of 0.01 in, with the origin at the bottom left.

B'000110' HiEnglish
Units of 0.001 in, with the origin at the bottom left

B'000111' Twips

Bits 8-31

Units of 1/1440 in, with the origin at the bottom left.

Reserved, must be preserved by the Engine
and returned by GetPageUnits

u32_ width, u32_ height
Specify the page width (w) and height (h).

A value of zero for w or h will cause it to be set to the
corresponding default device dimension (maximized
window size, paper size\ etc.) in the specified page
units (pels for isotropic r
This function causes the Window /Viewport
Transform, Graphics Field, Page Window, Page
Viewport and Device Transform to be updated (by the
Engine) as follows:

For PelsUp, LoMetric, HiMetric, LoEnglish and HiEn
glish:

Window/Viewport Transform Unity
Graphics Field (0, 0) (w-1, h-1)
Page Window (0,0) (w-1,h-1)
Page Viewport (0,0) (sx*w-1,sy*h-1)
Device Transform As defined by Page Window, Page Viewport

Where sx = horizontal scaling required by page units
for the device (= 1 for PelsUp)

Where sy = vertical scaling required by page units for
the device (= 1 for PelsUp)

Device Drivers

For Isotropic:

Window/Viewport· Transform Unity
Graphics Field (0, 0) (w-1, h-1)
Page Window (0,0) (w-1,h-1)
Page Viewport (0,0) (X2, Y2)
Device Transform As defined by Page Window,

Page Viewport
Where

Dh is the default device (maximized window, etc.)
height in pels.
Dw is the default device (maximized window, etc.)
width in pels.
Wh is the page window height

(= : (Y4 - Y3) : + 1 where Y4 & Y3 are page
window y coordinates)

Ww is the page window width
(= : (X4 - X3) : + 1 where X4 & X3 are page
window x coordinates)

Par is the pixel (width/height) aspect ratio.
X2, Y2 are integers determined as follows:

If Ww / Wh > Par * Dw / Dh then

X2 Dw-1
Y2 Par * Dw * Wh / Ww - 1

If Ww / Wh < Par * Dw / Dh then

X2 1/Par * Dh * Ww / Wh - 1
Y2 Dh-1

Otherwise (Ww / Wh = Par * Dw / Dh)

X2 Dw-1
Y2 Dh-1

Returns: BOOL

0 error
1 ok

GetPage Units(p32_ units, u32-DcH, u32- FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Units;

This returns the page units for the specified display context. See
SetPageUnits for a description of page units.

337

MS OS/2 Presentation Manager Reference

Parameters:

p32_ units
Points to the return data area in which the height and
width are to be stored:

{u82-wi'dth, u82_ hei'ght).

Returns: long int

0 error
>0 page units

SetGraphicsField(p32_ GraphicsField, u32-DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Graphicsfield;

Sets the boundaries of the Graphics Field (clip) limits in Page
coordinate space to the specified values.

Parameters:

p32_ GraphicsField
Points to a 4 element array containing the integer
values that identify respectively the min_x, min_y,
max_ x and max_ y boundaries of the graphics field:

{s82- xl, s82-y1, s82_ x2, s82_ y2).

Returns: BOOL

0 error
1 ok

GetGraphicsField(p32_ GraphicsField, u32_ DcH, u32-FuncNo)

338

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Graphicsfield;

Returns a 4 element array containing the integer values that
identify the boundaries of the graphics field.

Parameters:

p32_ GraphicsField
Points to the return data area in which the array of 4
elements is to be stored. These are integer values that
identify respectively the min-x, min_y, max:_x and
max_ y boundaries of the graphics field:

{s82-x1, s82-y1, s82-x2, s82-y2).

Returns: BOOL

0 error
1 ok

Device Drivers

SetPage Window(p32_ Window, u32_ Flags, u32_ DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Flags;
ULONG* p32_Window;

This sets the Page Window in Page coordinate space for the
Device Transform causing the Device Transform to be updated
(~y the Engine) using the Page Window and Page Viewport coor
chnates.

Parameters:

p32_ Window
Points to a 4 element array containing the integer
values that identify respectively the boundaries of the
window that correspond to the min_x, min_y, max_x
and ma:x-y viewport boundaries:

{s82- x1, s92-y1, s82- x2, s92-y2).

u32-Flags
Bit 0 Set to 'l'B to indicate that the Device transform
should be computed using the final Page Window and
Page Viewport values. Set to 'O'B to indicate that the
Device Transform should not be modified.

Bu1 Set to 'l'B to indicate that the Page Viewport

Bits 2-91 Reserved.

Returns: BOOL

0 error
1 ok

should be recomputed based on the
Page Units (see SetPageUnits} .
Set to 'O'B to indicate that the
Page Viewport should not be modified.

GetPageWindow(p32_ Window, u32_DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Window;

339

MS OS/2 Presentation Manager Reference

This returns the Page Window.

Parameters:

p32_ window
Points to the return data area in which the array of 4
elements is to be stored. These are integer values that
identify respectively the boundaries of the window
that correspond to the min_x, min_y, max_x and
max_ y viewport boundaries:

{s92- x1, s92_ y1, s92- x2, s92- y2}.

Returns: BOOL

0 error
1 ok

SetPage Viewport(p32_ Viewport, u32- Flags, u32_ DcH, u32_ FuncNo)

340

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Flags;
ULONG* p32_Viewport;

This sets the Page Viewport in device coordinates causing the
Device Transform to be updated (by the Engine) using the Page
Window and Page Viewport coordinates.

Parameters:

p32_ Viewport
Points to a 4 element array containing the integer
values that identify respectively the min_ x, min_ y,
max_x and max_y boundaries of the page viewport:

{s92- x1, s92-y1, s92- x2, s92- y2).

u32-Flags

Bit 0

Bits 1-31

Set to 'l'B to indicate that the Device
transform should be computed using
the final Page Window and Page
Viewport values. Set to 'O'B to

Reserved.

indicate that the Device Transform should
not be modified.

Returns: BOOL

0 error
1 ok

Device Drivers

GetPage Viewport(p32_ Viewport, u32-DcH, u32_ FuncNo)

place=lnllne frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Viewport;

This returns the Page Viewport coordinates.

Parameters:

p32_ Viewport
Points to the return data area in which the array of 4
elements is to be stored. These are integer values that
identify respectively the min-x, min_y, max_x and
ma:x-y boundaries of the page viewport:

{s32- x1, s32- y1, s32- x2, s32- y2).

Returns: BOOL

0 error
1 ok

Convert(u32_ Source, u32_ Target, p32- xy, u32- n, u32_ DcH,
u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_n;
ULONG* p32_xy;
ULONG u32_Target;
ULONG u32_Source;

Converts the specified coordinates from one coordinate space to
another, using the current values of the transforms.

Parameters:

u32_ Source, u32_ Target
Define the source and target coordinate spaces.

1 World coordinate space.
2 Model space.
3 Default Page coordinate space.
4 Page coordinate space.
5 Device coordinate space.
6 Screen coordinate space.

Screen coordinates have the format of 32 bit signed
integers, and are used by the device driver as screen
pixel addresses.

341

MS OS/2 Presentation Manager Reference

p32_ xy Long pointer to an array of x,y coordinates to
transform. The result is also put here.

u32_ n Count of coordinate pairs in the array.

Returns: BOOL

0 error
1 ok

QueryViewportSize(u32_ units, u32-count, p32_ wh, u32_DcH,
u32-FuncNo)

342

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG p32_wh;
ULONG u32_Count;
ULONG u32_Units;

Note that this function is not required for the first release of
Presentation Manager.

This calculates the viewport sizes (in page coordinate space)
that, for the specified window sizes, produce a
Window /Viewport transform that will emulate the specified
u32_ units with the current page units.

Parameters:

u32_ units
As as defined for SetPageUnits

u32-count

p32-wh

The number of dimension pairs in p32_ wh array

A far pointer to an array of u32_ width, u32_ height
dimension pairs which are updated with the returned
values.

Returns: BOOL

0 error
1 ok

Device Drivers

16.1.12.20 Matrix Element Format

The format of the matrix elements for the model and viewing transforms
are as follows:

fxMU, fxM12, fxM21 and fxM22

These are fixed point numbers with each element of the matrix
represented as a signed 4-byte integer, with a notional binary
point between bits 16 and 15. Thus

+2.5 is represented byX'00028000'
-2.5 is represented byX'FFFD8000'
-0.5 is represented byX'FFFF8000'

M41 and M42

These are signed 32 bit numbers.

16.1.12.21 Transform Definition by Window & Viewport

The matrix elements for a transform defined by Window and Viewport rec
tangles are determined as follows (where X1, Y1, X2, Y2, X3, Y3, X,/, Y4
represent the left, bottom, right and top coordinates of the viewport and
the corresponding coordinates of the window respectively, X2 > Xl and
Y2 > Yl always):

M12 = o
M21 = o

If X4 >= X3 then
Mll = (X2 - Xl + 1) / (X4 - X3 + 1)
M41 = ((Xl * X4 - X3 * X2 + 1/2 * (X2 - X4 + Xl - X3)) / (X4 - X3 + 1)

If X4 < X3 then
M11 = (X2 - Xl + 1) I (X4 - X3 - 1)
M41 = ((Xl * X4 - X3 * X2 - 1/2 * (X2 + X4 + Xl + X3)) / (X4 - X3 - 1)

If Y4 >= Y3 then
M22 = (Y2 - Yl + 1) I (Y4 - Y3 + 1)
M42 = ((Yl * Y4 - Y3 * Y2 + 1/2 * (Y2 - Y4 + Yl - Y3)) / (Y4 - Y3 + 1)

If Y4 < Y3 then
M22 = (Y2 - Yl + 1) / (Y4 - Y3 - 1)
M42 = ((Yl * Y4 - Y3 * Y2 - 1/2 * (Y2 + Y4 + Yl + Y3)) / (Y4 - Y3 - 1)

16.1.12.22 Bounds, Correlation and Clipping

Bounds computation is performed on unclipped primitives in model space.
Bounds computation is performed on all operations that perform output to
the device.

343

MS OS/2 Presentation Manager Reference

Correlation is performed on the output of primitives that have been
clipped to the Viewing Limits and Graphics Field only in page coordinate
space. Correlation is performed on all operations that perform output to
the device and is inclusive of all boundaries of the pick window.

For clipping purposes, the transformed viewing limit rectangle can be
approximated to the bounding rectangle of the minimum and maximum
coordinates. Clipping is inclusive of all boundaries of the Viewing Limits
and Graphics Field.

16.1.12.23 Logical Color Table Functions

Short list of function calls:

• CreateLogColorTable

• RealizeColorTable

• UnrealizeColorTable

• QueryColorData

• Query LogColorTable

• Query Real Colors

• QueryNearestColor

• QueryColorlndex

• QueryRgbColor

CreateLogColorTable (u32- Options, u32- format, u32_ Start,
u32-Count, p32-Data, u32-DcH, u32-FuncNo)

344

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Data;
ULONG u32_Count;
ULONG u32_Start;
ULONG u32_Format;
ULONG u32_0ptions;

This function defines the entries of the logical color table. The
Engine will perform the error checking for CreateLogColorTable.

It may cause the color table to be preset to the default values.
These are:

-2 White
-1 Black

Device Drivers

0 Background (Black on display, White on printer)
1 Blue
2 Red
3 Pink (magenta)
4 Green
5 Turquoise (cyan)
6 Yellow
7 Neutral (White on display, Black on printer)

The range of color table indices (including the default color
table) is -2 .. Maxlndex (not O .. Maxlndex).

Index -1 will never be loaded explicitly but will always produce
the color value defined for for index 0 for a display or index 7 for
a printer/plotter, etc. Index -2 will never be loaded explicitly but
will always produce the color value defined for index 7 for a
display or index 0 for a printer /plotter, etc.

Colors beyond 7 have device-dependent defaults.

Parameters:

u32_ Options
Specifies various options:

LCOL-RESET (bit 0)
Set to B' 1' if the color table is to be reset to
default before processing the remainder of
the data in this function

LCOL-REALIZABLE (bit 1)
Set to B'l' if the application may issue Real
izeColorTable at an appropriate time. This
may affect the way the system maps the
indices when the logical color table is not
realized.

If this option is not set, RealizeColorTable
may have no effect

LCOL_DITHER (bit 2)
Set to B'l' if the application does not want
color dithering to be performed on colors not
available in physical palette. If this option is
set, only pure colors will be used and no
dithering will be done.

The default is color dithering.

Other flags are reserved and must be B'O'.

u32-Format
Specifies the format of entries in the table, as follows:

LCOLF-INDRGB (1)
Array of (index,RGB) values. Each pair of

345

MS OS/2 Presentation Manager Reference

en tries is 8 bytes long, 4 bytes (local format)
index, and 4 bytes color value.

LCOLF_CONSECRGB (2)
Array of (RGB) values, corresponding to
color indices param upwards. Each entry is 4
bytes long.

LCOLF_RGB (3)
Color index = RGB

u32_Start
Starting index (only relevant for
LCOLF _ CONSECRGB)

u32-Count
The number of elements supplied in data. This may be
0 if, for example, the color table is merely to be reset
to the default, or for LCOLF _ RGB. For
LCOLF-INDRGB it must be an even number.

p32_Data
A pointer to the application data area, containing the
color table definition data. The format depends on the
value of Format.

Each color value is a 4-byte integer, with a value of

(R * 65536) + (G * 256) + B

where

R = red intensity value
G = green intensity value
B = blue intensity value

(since there are 8 bits for each primary). The max
imum intensity for each primary is 255.

The Engine will perform error checking for this func
tion. Errors will include:

Insufficient Memory Available
Others - To Be Decided

Returns: BOOL

0 error
1 ok

RealizeColorTable (u32- DcH, u32_ FuncNo)

346

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

Device Drivers

This function causes the system, if possible, to ensure that the
device physical color table is set to the closest possible match to
the logical color table.

Returns: BOOL

0 error
1 ok

UnrealizeColorTable (u32_DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;

This function is the reverse of RealizeColorTable. It causes the
default color table to be reinstated.

Returns: BOOL

0 error
1 ok

QueryColorData (u32_Count, p32-Array, u32-DcH ,u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Array;
ULONG u32_Count;

Returns information about the currently available color table
and device colors. Note: Default colors are not included in the
loaded color index returned in Array[l] and Array[2].

Parameters:

u32_Count
The number of elements supplied in Array.

p32-Array
A pointer to, u32-Array, an array which on return
will contain:

array[O] Format of loaded color table if any:

LCOLF-DEFAULT (0)
Default color table is in force.

LCOLF_INDRGB (I)
Color table loaded which provides
translation from index to RGB.

347

MS OS/2 Presentation Manager Reference

Array[l]

Array[2]

Array[3]

Array[4]

Array[5]

LCOLF-RGB (3)
Color index = RGB.

Smallest color index loaded (0 if the default
color table is in force).

Largest color index loaded (0 if the default
color table is in force).

Maximum number of distinct colors avail
able. at one time

Maximum number of distinct colors
specifiable on device.

Maximum logical color table index sup
ported for this device.

The range of logical color table indices is
therefore -2 .. Maxlndex. The maximum index
must be at least 7.

For EGA and u32_ FuncNo, the value is 63.

Information will only be returned for the number of
elements supplied. Any extra elements supplied will be
zeroed by the system.

Returns: BOOL

0 error
1 ok

QueryLogColorTable (u32_ Options, u32-Start, u32_ Count, p32_ array,
u32_ DcH, u32_ FuncNo)

348

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Array;
ULONG"u32_Count;
ULONG u32_Start;
ULONG u32_0ptions;

Returns the logical color of the currently associated device, one
at a time.

Device Drivers

Parameters:

u32_ Options
Specifies various options:

LCOLOPT-INDEX (bit 1)
Set to B'l' if the index is to be returned for
each RGB value.

Other flags are reserved and must be B'O'.

u32-Start
The starting index for which data is to be returned.

u32_Count
Specifies the number of elements available in the array
pointed to by p32_ array.

p32-array
A pointer to an array in which the information is
returned. If LCOLOPT_ INDEX = B'O', this is an
array of color values (each value is as defined for
CreateLogColorTable), starting with the specified
index, and ending either when there are no further
loaded entries in the table, or when u32_ Count has
been exhausted. If the logical color table is not loaded
with a contiguous set of indices, -1 will be returned as
the color value for any index values which are not
loaded.

If LCOLOPT_INDEX = 'l'B, it is an array of alter
nating color indices and values, in the order indexl,
valuel, index2, value2, ... If the logical color table is
not loaded with a contiguous set of indices, any index
values which are not loaded will be skipped.

Returns: long int

-..f- error
-1 color table is in RGB mode and no elements are returned
>=0 number of elements returned

QueryRealColors (u32-0ptions, u32_Start, u32_Count, p32-Array,
u32_ DcH, u32_ FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Array;
ULONG"u32_Count;
ULONG u32_Start;
ULONG u32_0ptions;

349

MS OS/2 Presentation Manager Reference

350

Returns the RGB values of the distinct colors available on the
currently associated device, one at a time.

Parameters:

u32_ Options
Specifies various options:

LCOLOPT_REALIZED (bit 0)
Set to B'l' if the information required is to
be for when the logical color table (if any) is
realized; B'O' if it is to be for when it is not
realized.

LCOLOPT_INDEX (bit 1)
Set to B'l' if the index is to be returned for
each RGB value.

Other flags are reserved and must be B'O'.

u32_Start
The ordinal number of the first color required. To
start the sequence this would be 0. Note that this does
not necessarily bear any relationship to the color
index; the order in which the colors are returned is not
defined.

u32-Count
Specifies the number of elements available in the array
pointed to by p32_ array.

p32_Array
A pointer to a u32_ array in which the information is
returned. If LCOLOPT_INDEX = B'O', this is an
array of color values (each value is as defined for
CreateLogColorTable). If LCOLOPT_INDEX = B'l',
it is an array of alternating color indices and values, in
the order indexl, valuel, index2, value2, ... If there is a
color table, colors that are not in the table but avail
able on the device will have a special index of -5 when
LCOLOPT_INDEX = B'l'. In RGB mode, when
LCOLOPT_INDEX = b'l', the RGB value is returned
in the color indices.

Returns: long int

-1 error
>=O number of elements returned

Device Drivers

Query NearestColor (u32_ Options, u32-RgbColorln, u32-DcH,
u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_RgbColorin;
ULONG u32_0ptions;

Returns the nearest color available to the specified color, on the
currently associated device, even if it is not available in the logi
cal color table. Both colors are specified in RGB terms.

Parameters:

u32_ Options
Specifies various options:

LCOLOPT_ REALIZED (bit 0)
Set to B' 1' if the information required is to
be for when the logical color table (if any) is
realized; B'O' if it is to be for when it is not
realized.

Other flags are reserved and must be B'O'.

u32-RgbColorln
The required color

Returns: long int

-1 error
>=0 nearest available RGB color to that specified

QueryColorlndex (u32- Options, u32-RgbColor, u32-DcH, u32-FuncNo)

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_RgbColor;
ULONG u32_0ptions;

This returns the color index of the device color which is closest
to the specified RGB color representation, for the specified
device. In 'color index= RGB' mode, the input RGB value is
returned.

351

MS OS/2 Presentation Manager Reference

Parameters:

u32_ Options (ULONG)
Specifies various options:

LCOLOPT-REALIZED (bit 0)
Set to B'l' if the information required is to
be for when the logical color table (if any) is
realized; B'O' if it is to be for when it is not
realized.

Other flags are reserved and must be B'O'.

u32_ RgbColor
Specifies a color in RGB terms

Returns: long int

-1 error
>=0 color index providing closest match to specified color

QueryRGBColor (u32_0ptions, u32_Color, u32_DcH, u32-FuncNo)

352

place=inline frame = box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Color;
ULONG u32_0ptions;

This returns the actual RGB color which will result from the
specified color index, for the device specified. In 'color index =
RGB' mode, the nearest RGB color (i.e., the same as Quer
yNearestColor) is returned.

Parameters:

u32_ Options
Specifies various options:

LCOLOPT-REALIZED (bit 0)
Set to B'l' if the information required is to
be for when the logical color table (if any) is
realized; B'O' if it is to be for when it is not
realized.

Other flags are reserved and must be B'O'.

u32_Color
Specifies a color index

Returns: long int

-1 error
>=0 nearest available RGB color to that specified

Device Drivers

16.1.12.24 General Query Functions

Short list of the function calls:

• Query Engine Version

• QueryDeviceBitmaps

• QueryDeviceCaps

• QueryHardcopyCaps

Query Engine Version(u32-FuncNo)

This function returns the version number for the engine.

Parameters:

p32_ Version
A far pointer to u32_ Version which returns the ver
sion number of the engine (this will return zero for the
initial version of the engine).

Returns: long int

-1 error
>=0 Engine Vesion

QueryDeviceBitmaps(p32_ 0utData, u32-0utDataLength, u32-DcH,
u32_ FuncNo)

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_0utDataLength;
ULONG* p32_0utData;

This function returns a list of bitmap formats supported by the
device. The number of formats supported can be found using the
QueryDeviceCaps function. Each value in the list is of the form
(u32_ Planes, u32-BitsPerPixel).

The format at the start of the returned list is that which most
closely matches the device.

Parameters:

p32_ OutData
A far pointer to the data structure to receive the data.

353

MS OS/2 Presentation Manager Reference

u32_ 0utDataLength
The length in bytes of the data structure pointed to by
p32- OutData.

Returns: BOOL

0 error
1 ok

QueryDeviceCaps(u32-Index, p32_0utData, u32-Count, u32-DcH,
u32_ FuncNo)

354

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Count;
ULONG* p32_0utData;
ULONG u32_Index;

This function returns information about the capabilities of the
device.

Parameters:

u32_Index
Gives the index number of the first item of information
to be returned in p32_ 0utData. The first element is
number l.

u32-Count
Gives the number of items of information to be
returned at p32_ 0utData.

p32_ 0utData
A far pointer to an array of u32-Count elements (ele
ment type is s32) which, on return, will contain the
elem en ts specified by u32-Index and u32_ Count. The
first item returned is set into the first element of the
array, the second into the next, and so on. The follow
ing index values are defined:

1 Device family (values as for type on
OpenDC)

2 Device input/output capability

1 - Dummy device
2 - Device supports output
3 - Device supports input
4 - Device supports output and input

3 Technology

0 - Unknown (e.g., metafile)

Device Drivers

1 - Vector plotter
2 - Raster display
3 - Raster printer
4 - Raster camera

4 Driver version

5 Default page depth {for a full-screen maxim
ized window for displays) in display points.
(For a plotter, a display point is defined as
the smallest possible displacement of the
pen, and can be smaller than a pen width.)

6 Default page width {for a full-screen maxim
ized window for displays) in display points

7 Default page depth (for a full-screen maxim
ized window for displays) in character rows

8 Default page width (for a full-screen maxim
ized window for displays) in character
columns

9 Vertical resolution of device in display
points per meter for displays, plotter units
per meter for plotters.

10 Horizontal resolution of device in display
points per meter for displays, plotter units
per meter for plotters.

11 Default character-box height in display
points.

12 Default character box width in display
points.

13 Default small character box height in display
points (this is zero if there is only one char
acter box size)

14 Default small character box width in display
points (this is zero if there is only one char
acter box size)

15 Number of distinct colors supported at the
same time, including background (grayscales
count as distinct colors). If loadable color
tables are supported, this is the number of
entries in the device color table.

For plotters, the returned value is the
number of pens plus 1 (for the background).

16 Number of color planes

355

MS OS/2 Presentation Manager Reference

356

17 Number of adjacent color bits for each pel
(within one plane)

18 Loadable color table support:

BitO - 1 if RGB color table can be loaded, with
a minimum support of 8 bits each for red
green and blue

Bit1 - 1 if color table with other than 8 bits
for each primary can be loaded

19 The number of mouse or tablet buttons that
are available to the application program. A
returned value of 0 indicates that there are
no mouse or tablet buttons available.

20 Foreground mix support

1 - OR
2 - Overpaint
4 - Underpaint
8 - Exclusive-OR

16 - Leave alone
32 - AND
64 - Mixes 7 thru 17

The value returned is the sum of the values
appropriate to the mixes supported. A device
capable of supporting OR must, as a
minimum, return 1 + 2 + 16 = 19, signifying
support for the mandatory mixes OR, over
paint, and leave-alone.

Note that these numbers correspond to the
decimal representation of a bit string that is
seven bits long, with each bit set to 1 if the
appropriate mode is supported.

21 Background mix support

1 - OR
2 - Overpaint
4 - Underpaint
8 - Exclusive-OR

16 - Leave alone

The value returned is the sum of the values
appropriate to the mixes supported. A device
OR must, as a minimum, return 2 + 16 =
18, signifying support for the mandatory
background mixes overpaint, and leave
alone.

Note that these numbers correspond to the
decimal representation of a bit string that is
five bits long, with each bit set to 1 if the
appropriate mode is supported.

Device Drivers

22 Number of symbol sets which may be loaded
for alphanumerics.

23 Whether the client area of Vio windows
should be byte-aligned:

0 - Must be byte-aligned
1 - More efficient if byte-aligned, but not

required
2 - Does not matter whether byte-aligned

24 Number of bitmap formats supported by
device

25 Device raster operations capability

BitO - 1 if BitBlt supported
Bit1 - 1 if this device supports banding
Bit2 - 1 if BitBlt with scaling supported
Bit3 - 1 if FloodFill supported
Bu4 - 1 if SetPel supported

26 Default marker box width in pels

27 Default marker box depth in pels

28 Number of device specific fonts

29 Graphics drawing subset supported

30 Graphics architecture version number sup
ported (1 indicates Version 1)

31 Graphics vector drawing subset supported

32 Device windowing support

Bit 0 - 1 if Device supports windowing

Other bits are reserved zero.

33 Additional graphics support

BitO - 1 if Device supports geometric line types

Other bits are reserved zero.

Returns: BOOL

0 error
1 ok

357

MS OS/2 Presentation Manager Reference

QueryHardcopyCaps(u32_ Start, u32-Count, p32-Info, u32-DcH,
u32_ FuncNo)

358

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_Dch;
ULONG* p32_Info;
ULONG u32_Count;
ULONG u32_Start;

This function returns information about the hardcopy capabili
ties of the device.

Parameters:

u32_Start
Specifies which forms code number the query is to
start from, where the first forms code is specified by
the value 1. Used with count.

u32-Count

p32_1nfo

Specifies the number of forms the query is to be on.
Thus if there are 5 form codes defined and start is 2,
then if count is 3, a query is performed for form codes
2, 3 and 4, and the result returned in the buffer
pointed to by p32_ Jnfo.

If this value is zero, the number of form codes defined
is returned. If non-zero (i.e., greater than zero), the
number of form codes information was returned for is
returned.

Pointer to a buffer containing the results of the query.
The result consists of count copies of the following
structure:

struct HCINFO
CHAR szFormname[32];
LONG ex;
LONG cy;
LONG xLeftClip;
LONG yBottomClip;
LONG xRightClip;
LONG yTopClip:
LONG xPels;
LONG yPels;
LONG attributes;

Device Drivers

szFormname
The ASCIIZ name of the form.

ex The width (left to right) in millimeters.

cy The height (top to bottom) in millimeters.

xLeftClip
The left clip limit in millimeters.

yBottomClip
The bottom clip limit in millimeters.

xRightClip

yTopClip

xPels

yPels

The right clip limit in millimeters.

The top clip limit in millimeters.

Number of pels between left and right clip
limits.

Number of pels between bottom and top clip
limits.

attributes
Attributes of the form, defined as follows:

Bit 0 - 1 if current installed form

Note: start and count can be used together to
enumerate all available form codes without having to
allocate a buff er large enough to hold information on
them all.

Returns: long

-1 Error
>=0 Ifcount == 0, number of forms available
>=0 Ifcount != 0, number of forms returned

16.1.12.25 Escape Functions

Short list of the function calls:

• Escape

359

MS OS/2 Presentation Manager Reference

Escape(u32-Escape, u32_InCount, p32_InData, f32_ 0utCount,
p32_ Ou tData, u32-DcH, u32_ FuncNo

360

place=inline frame=box

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_0utData;
ULONG* p32_0utCount;
ULONG* p32_InData;
ULONG u32_InCount;
ULONG u32_Escape;

This function allows applications to access facilities of a particu
lar device that are not directly available through the GPI.
Escape calls are in general sent to the device driver and must be
understood by it.

Parameters:

u32_Escape
Specifies the escape function to be performed. The fol
lowing predefined functions are available.

• 1 - QueryEscSupport

• 2 - StartDoc

• 3- EndDoc

• 4- NewFrame

• 5- NextBand

• 6 - AbortDoc

• 7 - DraftMode

• 8 - GetScalingFactor

• 9 - FlushOutput

• 10- RawData

Devices can define additional escape functions, using
code values > 32767.

u32-InCount
Specifies the number of bytes of data pointed to by
p32-InData.

p32_InData
A far pointer to the input data structure for this
escape.

Device Drivers

p32_0utCount
A far pointer to u32_ count which on input specifies
the size of the buffer pointed to by p32_ 0utdata and
on output is set to the number of data bytes returned
in this buffer.

p32_ 0utData
A far pointer to the data structure to receive data
from this escape.

Returns: long

-1 Error
0 Escape not implemented for specified code
1 OK

The predefined escape functions are described below:

QueryEscSupport

StartDoc

This function finds out whether a particular escape function is
implemented by the device driver. The return value gives the
result.

Parameters:

u32_InCount
The number of bytes pointed to by in_ data.

p32-InData
Pointer to an escape code value specifying the escape
function to be checked.

p32_ 0utCount
Not used, and can be set to zero.

p32_ 0utData
Not used, and can be set to null.

This function allows an application to specify that a new print
job is starting and that all subsequent NewFrame calls should be
spooled under the same job, until an EndDoc call occurs.

This ensures that documents longer than one page are not inter
spersed with other jobs.

Parameters:

u32_InCount
Specifies the number of characters in the string
pointed to by p92-lnData.

361

MS OS/2 Presentation Manager Reference

EndDoc

p32_1nData
Pointer to an ASCIIZ string, specifying the name of
the document.

p32_ OutCount
Not used, and can be set to zero.

p32_ 0utData
Not used, and can be set to null.

This function ends a print job started by StartDoc and returns
the jobid for the spooled print job.

Parameters:

u32_InCount
Not used, and can be set to zero.

p32_InData
Not used, and can be set to null.

p32_ Ou tCoun t
A far pointer to u32_count which on input specifies
the size of the buffer pointed to by p32-0utdata and
on output is set to the number of data bytes returned
in this buffer (i.e., zero if no jobid).

p32_ 0utData
A long pointer to a data area in which the jobid of the
spooled print job is returned. This is set to null if
there is no jobid (e.g., for a direct printer).

New Frame

362

This function allows an application to specify that it has
finished writing to a page. It is similar to ErasePS processing for
a Screen DC, and causes a reset of the attributes (e.g., color,
mix). This escape is usually used with a printer device to
advance to a new page.

Parameters:

u32-InCount
Not used, and can be set to zero.

p32-InData
Not used, and can be set to null.

p32_ OutCount
Not used, and can be set to zero.

p32_ 0utData
Not used, and can be set to null.

NextBand

AbortDoc

Device Drivers

This function allows an application to specify that it has
finished writing to a band. The coordinates of the next band are
returned. This is used by applications that handle banding
themselves.

Parameters:

u32_ lnCount
Not used, and can be set to zero.

p32-InData
Not used, and can be set to null.

p32-0utCount
Specifies the number of bytes of data pointed to by
p92- OutData. On return, this is updated to the
number of bytes actually returned.

p32-0utData
The address of a buffer which will receive the output
from this escape. A structure is returned, containing
the device coordinates of the next band, which is a rec
tangle. The format of the structure is:

struct BANDRECT

xleft

ytop

xright

LONG xleft;
LONG ytop;
LONG xright;
LONG ybottom;

The x coordinate of the upper left corner of
the. rectangular band.

The y coordinate of the upper left corner of
the rectangular band.

The x coordinate of the lower right corner of
the rectangular band.

ybottom
The y coordinate of the lower right corner of
the rectangular band.

An empty rectangle (i.e., xleft > xright, ytop < ybot
tom) marks the end of the banding operation.

This function aborts the current job, erasing everything the
application has written to the device since the last EndDoc.

Parameters:

u32-lnCount
Not used, and can be set to zero.

363

MS OS/2 Presentation Manager Reference

p32_InData
Not used, and can be set to null.

p32_ 0utCount
Not used, and can be set to zero.

p32_ 0utData
Not used, and can be set to null.

DraftMode

This function turns draft mode on or off. Turning it on instructs
the device driver to print faster and with lower quality, if neces
sary. The draft mode can only be changed at page boundaries
(e.g., after a NewFrame).

Parameters:

u32_InCount
Specifies the number of bytes pointed to by
p32_ InData.

p32_InData
A long pointer to a SHORT integer value specifying
the mode: 1 for draft mode on, 0 for off.

p32_ 0utCount
Not used, and can be set to zero.

p32_ 0utData
Not used, and can be set to null.

GetScalingFactor

364

This function retrieves the scaling factors for the x and y axes of
a printing device. For each scaling factor, an exponent of two is
put in P32_ OutData. Thus, the value 3 is used if the scaling
factor is 8.

Scaling factors are used by devices that cannot support graphics
at the same resolution as the device resolution.

Parameters:

u32_InCount
Not used, and can be set to zero.

p32-lnData
Not used, and can be set to null.

p32_ 0utCount
Specifies the number of bytes of data pointed to by
P32_ OutData. On return, this is updated to the
number of bytes actually returned.

Device Drivers

p32_ OutData
The address of a buffer which will receive the output
from this escape. A structure is returned, containing
the scaling factors for the x and y axes. The format of
the structure is:

struct SFACTORS
LONG x;
LONG y;

x The x scaling factor, as an exponent of two.

y They scaling factor, as an exponent of two.

Flush Output

RawData

This function flushes any output in the device's buffer.

Parameters:

u32-InCount
Not used, and can be set to zero.

p32-InData
Not used, and can be set to null.

p32_ OutCount
Not used, and can be set to zero.

p32_ OutData
Not used, and can be set to null.

This function allows an application to send data direct to a de
vice driver. For example, in the case of a printer device driver,
this could be a printer data stream.

Parameters:

u32_InCount
The number of bytes pointed to by p92-lnData.

p32_InData
Pointer to the raw data. to be checked.

p32_ OutCount
Not used, and can be set to zero.

p32_ OutData
Not used, and can be set to null.

365

MS OS/2 Presentation Manager Reference

16.1.12.26 Enable Function

The Enable function is required by the Device Driver Interface.

The Enable function is exported by the device driver. It performs initiali
zation of the device driver, the physical device, and device contexts. It will
be called as:

Enable(U32_SUBFUNCTION, P32-PARAMS, P32-RETURNS)

16.1.12.26.1 U32_SUBFUNCTION = 1 Fill lDeviceBlock

Initializes the logical device block. This function will be called whenever
the device driver module is loaded.

Parameters:

P32-PARAMS
Pointer to a structure as follows:

U32_ VERSION
Version of the Graphics Engine. This is a BCD coded
version number.

U32_ TABLE- SIZE
The number of entries in the dispatch table. The de
vice driver should not replace pointers past the end of
the table as indicated by this number.

P32_ RETURNS

366

Pointer to a structure as follows:

P32_FLAGS
Pointer to a word of logical device flags. The device
driver should set bits 0, 1, and 2 of these flags. All
other flags are reserved for system use and must not be
modified. The bits are defined as follows:

BITO

BIT 1

Set if each DC for this device will require
its own pDeviceBlock. Clear if only one
pDeviceBlock is needed for each physical
device. It is expected that printer and
plotter drivers would set this bit, and most
others would clear it.

Set if this device can have only one DC open
at any time; This is a serially reusable de
vice. Clear if an arbitrary number of DCs
may coexist.

Device Drivers

BIT 2 Set if the "device" and "file name" fields of a
CreateDC call for this device should be
ignored. This would be the case if the device
driver supported only one physical device in
one configuration, like the display driver, for
example.

P32-DISPATCIL TABLE
Pointer to the dispatch table. Each entry in the table
is a 32 bit pointer to a major function handler. This
table is already filled with the addresses of the system
default handlers when this call is made. The device
driver must replace the entries in the table that
correspond to required major function handlers (see
relevant section). The device driver may replace more
entries, at its option. This table will then be used to
dispatch major function handlers for ALL physical
devices belonging to this logical device.

16.1.12.26.2 U82-SUBFUNCTION = 2 Fill pDeviceBlock

Initializes a physical device block. This may be called once per physical
device or once per DC allocation, depending on how the device driver
responded with BIT 0 of the ldb_ flags on the lDeviceBlock call.

Parameters:

P32_PARAMS
Pointer to a structure defined as:

p32_ drivername
Pointer to ASCIIZ name of the driver.

p32_ devicename
Pointer to ASCIIZ name of the device.

p32_outputname
Pointer to ASCIIZ name of the output device. This
may be either the spooler output class (e.g., "PRINT"
or "PLOT"), or the device name for the physical port
(e.g., "LPTl").

p32_ devicedata
Pointer to device specific initialization data.

u32_ datatype
One of:

1 =>Device Independant
2 =>Device Dependent
3 =>Raw

367

MS OS/2 Presentation Manager Reference

4 =>Default
5 = > Device Driver

P32-RETURNS
Pointer to pDeviceBlock structure.

U16-LENGTH
Length in bytes of the pDeviceBlock structure. The
device driver must not change this field.

U16-FLAGS
Physical device flags. All flags are reserved for system
use and must not be modified.

U32-COUNT
Reference count for this pDeviceBlock. The device
driver must not change this field.

U32-NEXT
Pointer to the next pDeviceBlock belonging to the
same logical device. The device driver must not change
this field.

U32-DEVICE
Atom for the name of the physical device, like "FX-
80". The device driver must not change this field.

U32-FILE
Atom for the file name of the port this device is con
nected to, like "LPTI". The device driver must not
change this field.

U32-STATEINFO
Pointer or handle for the state information for this
device. The device driver should allocate its own
memory for this purpose and use this field later to
locate it.

16.1.12.26.9 U92-SUBFUNCTJON = 3 Fill Information pDeviceBlock

Fills a pDeviceBlock that will never be used to perform actual drawing. It
is used for information retrieval only.

Parameters:

P32-PARAMS
Pointer to a structure defined as:

p32- drivername
Pointer to ASCIIZ name of the driver.

p32_ devicename
Pointer to ASCIIZ name of the device.

368

Device Drivers

p32_outputname
Pointer to ASCIIZ name of the output device. This
may be either the spooler output class (e.g., "PRINT"
or "PLOT"), or the device name for the physical port
(e.g., "LPTl").

p32_ devicedata
Pointer to device specific initialization data.

u32_ datatype
One of:

P32_ RETURNS

1 => Device Independant
2 =>Device Dependent
3 =>Raw
4 =>Default
5 = > Device Driver

Pointer to pDeviceBlock structure.

U16_LENGTH
Length in bytes of the pDeviceBlock structure. The
device driver must not change this field.

U16-FLAGS
Physical device flags. All flags are reserved for system
use and must not be modified.

U32-COUNT
Reference count for this pDeviceBlock. The device
driver must not change this field.

U32_NEXT
Pointer to the next pDeviceBlock belonging to the
same logical device. The device driver must not change
this field.

U32-DEVICE
Atom for the name of the physical device, like "FX-
80". The device driver must not change this field.

U32-FILE
Atom for the file name of the port this device is con
nected to, like "LPTl". The device driver must not
change this field.

U32_ STATEINFO
Pointer or handle for the state information for this
device. The device driver should allocate its own
memory for this purpose and use this field later to
locate it.

369

MS OS/2 Presentation Manager Reference

16.1.12.26.4 U32-SUBFUNCTION = 4 Disable pDeviceBlock

Any physical disabling of the specified device is performed and any associ
ated memory is deallocated.

Parameters:

P32-PARAMS
Ignored for this subfunction.

P32_ RETURNS
Pointer to pDeviceBlock structure.

U16-LENGTH
Length in bytes of the pDeviceBlock structure.

Ul6-FLAGS
Physical device flags.

U32-COUNT
Reference count for this pDeviceBlock.

U32_NEXT
Pointer to the next pDeviceBlock belonging to the
same logical device.

U32-DEVICE
Atom for the name of the physical device, like "FX-
80".

U32-FILE
Atom for the file name of the port this device is con
nected to, like "LPTl".

U32_ STATEINFO
Pointer or handle for the state information for this
device.

16.1.12.26.5 U32_ SUBFUNCTION = 5 Enable Device Context

This function will be called when a new DC is created. The device driver is
expected to allocate any memory it needs to support the attributes of the
DC. It then should store a handle for this memory in the DC "magic
number".

Parameters:

P32_PARAMS
Pointer to pDeviceBlock structure.

P32_ RETURNS

370

Pointer to the new Device Context. The only information the
device driver has about the DC structure is that the magic
number is at offset 4. That is, to the device driver, the DC struc
ture is as follows:

Device Drivers

U32-RESERVED
Reserved. The device driver must not modify this field.

U32_MAGIC
This field is under the complete control of the device
driver. When this subfunction is called the field is ini
tialized to zero. The device driver is expected to store
here enough information to locate its instantiations of
any of this DC's attributes.

U32-RESERVEDrmany]
Reserved.. The device driver must not modify this field.

16.1.12.26.6 U32_SUBFUNCTION = 6 Disable Device Context

This function will be called when a DC is about to be deleted. The device
driver is expected to free up any memory it has allocated for the DC. It is
expected that the device driver will use the "magic number" in the DC to
locate this memory.

Parameters:

P32_PARAMS
Pointer to the DC structure.

P32-RETURNS
Ignored for this subfunction.

16.1.12.26. 7 U32-SUBFUNCTION = 7 Save DC State

This function will save a copy of whatever information the device driver
has stored about this DC. A DC's state may be saved multiple times, in a
LIFO order. This function will return an error code if there is not enough
memory available to save the state.

Parameters:

P32_PARAMS
Pointer to the Device Context whose state is to be saved.

P32_ RETURNS
Pointer to a 32 bit count. As a return value, the count will be set
to the number of states that are saved for this DC. Later on, this
number can be used with the RESTORE DC STATE call to
restore the state we have just saved. If P32-RETURNS is
NULL, then no count will be returned.

371

MS OS/2 Presentation Manager Reference

16.1.12.26.8 U32_SUBFUNCTJON = 8 Restore DC State

This function will restore a previously saved DC state. A parameter to this
function is the number of saved states that should be "POPed". This func
tion will return an error code if is has been asked to POP more states than
have been PUSHed.

Parameters:

P32-PARAMS
This is a number indicating what state should be restored. If the
number is positive, it indicates which state in the order they
were PUSHed. That is, if the number is one, then the first
PUSHed state is restored, and all others are lost. If the number
is two, The second PUSHed state will be restored, and one will
remain saved. If the number is negative, it indicates how many
states will be POPed. That is, if the number is -1, we will POP
back one state. If the number is zero, an error will be returned.
If a positive or negative number is given specifying a state that
hasn't been saved, an error will be returned.

P32-RETURNS
Pointer to the Device Context whose state is to be restored.

16.1.12.26.9 U32_SUBFUNCTION = 9 Reset DC State

This function will reset the information saved for this DC to its original
initialized state.

Parameters:

P32_PARAMS
Ignored for this subfunction.

P32-RETURNS
Pointer to the Device Context whose state is to be reset.

16.1.12.26.10 U32-SUBFUNCTION = 10 Disable display output

This function will be called only for a display driver. The call will be
made, for example, when the screen group is switched. The device driver
should not do any writing to the physical display after receiving this call,
until the ENABLE DISPLAY OUTPUT call is made. The device driver
may want to save any state of the display hardware that may be destroyed
by another screen group.

372

Device Drivers

Parameters:

P32_PARAMS
Ignored for this subfunction.

P32_ RETURNS
Ignored for this subfunction.

16.1.12.26.11 U32_SUBFUNCTION = 11 Enable display output

This function will be called only for a display driver. The call will be
made, for example, when the Presentation Manager screen group is
restored. The device driver should restore the state of the display device.
It may then resume output to the display.

Parameters:

P32_ P ARAlv'.IS
Ignored for this subfunction.

P32_ RETURNS
Ignored for this subfunction.

16.1.12.26.12 U32-SUBFUNCTION = 12 Install Simulation

This function will be called only for an installable simulation. This is the
only subfunction that an installable simulation needs to handle.

The simulation is expected to do any initialization that it needs. It must
also place pointers to its own major functions in the given dispatch table.
It may wish to record the pointers that it is overwriting in case it does not
completely handle the major function.

The simulation should return zero if the installation was successful. Other
wise, it should return ERROR_ WRONG_ VERSION or
ERROR- COMPONENT_ NOT_ FOUND.

Parameters:

P32_PARAMS
A pointer to the following structure:

U32_ VERSION
The BCD coded engine version number.

P32- COMPONENT
A pointer to the ASCIIZ string indicating which com
ponent to install. By using these component names, a
single file on the disk can contain the code for several
simulations, like: "REGIONS", "ARCS", or

373

MS OS/2 Presentation Manager Reference

"TRANSFORMS". Even if a file contains only one
simulation component, it should check the name for
consistency.

U32_ TABLE-SIZE
The number of entries in the dispatch table. The simu
lation should not replace pointers past the end of the
table as indicated by this number.

P32_ RETURNS
A pointer to the major function dispatch table. Each entry in
the table is a 32 bit pointer to a major function handler. The
simulation should replace the entries in this table that it wants
to handle. It may wish to record the previous handle's address in
case it can't handle the function completely.

16.1.13 Journaling Functions

Short list of function calls:

• AccumulateJournalFile

• CreateJournalFile

• DeleteJournalFile

• StartJournalFile

• StopJournalFile

• Play JournalFile

• OpenJournalFile

Format of Eng£ne Journal Files

The format of a journal record for a single function is:

flags
length
function_args
lparg_data

USHORT
USHORT length in bytes of journaled record
ULONG * N (N = number of args for function)
the data pointed to by any lpData type arguments

or, graphically:

: flags : length : function arguments : lp arg data if any :
: (1 word) : (1 word) : (arg cnt dwords) : (variable size) :

Any lpData type arguments are converted to offsets to the journaled data
before the record is written to disk and then fixed up at playback time.

374

Device Drivers

If the journal file is a permanent journal file and the function was Bitblt
(with a Source DC), SetBitmaplD, PaintRegion or SelectClipRegion there
is additional data following the journal record in the form:

length ULONG
rects_or_bits USHORT as many words as necessary

The rects or bits field for bitmaps includes a bitmap info and color table.

AccumulateJournalFile (?, hDC, FunN)

The arguments of this function will vary according to what
Engine function is to be journaled.

This function constructs and writes to disk a journal record for
the function being journaled. The format of the record is:

: flags : length : function arguments : lp arg data if any :
: (1 word) : (1 word) : (arg cnt dwords) : (variable size) :

LOW memory

The lp arg data is the data pointed to by any lp arguments in
the function argument list. The actual journaled lp argument is
changed into an offset to the journal lp arg data and is fixed up
at playback time.

Returns: return value of function accumulated

CreateJournalFile (lpFileName, FunN)

This functions creates a disk journal file. If lpFileName is NULL
(0:0) a temporary file is created in the current directory. If the
pointer is not null it is assumed to point to a fully qualified file
name and this file is created and opened. Such a file is referred
to below as a permanent journal file.

Returns: HJOURNAL

DeleteJournalFile {hJournalFile, FunN)

This function frees any objects associated with the journal file
handle (compatible DCs, private clone regions or bitmaps, global
memory segments, etc.). If the handle refers to a temporary file
the file is also deleted. Finally, the file handle itself is freed.

Returns: BOOL

StartJournalFile (hDC, hJournalFile, FunN)

Starts the journaling process. Opens the previously created jour
nal file and turns on the COM_ RECORDING bit in the DC's
de_ mode. Subsequent GreEntry calls to this DC will pass
through AccumulateJournalFile until StopJournalFile is called.

Returns: BOOL

375

MS OS/2 Presentation Manager Reference

StopJournalFile (hDC, hJournalFile, FunN)

Writes the END_ QF _ JQURNALFILE marker into the journal
file, closes the journal file and turns off the COM_ RECORDING
bit in the DC's de_ mode.

Returns: BOOL

PlayJournalFile (Control, hDC, hJournalFile, FunN)

This functions plays the specified journal file to the specified DC.
The journal file is read into memory and and each journaled
GreEntry call is played.

Each journaled record is processed before playing to the extent
that long pointers to data are fixed up and clone objects (regions
or bitmaps) are created if necessary from the journaled data.

It is assumed that any single journaled function and associated
lp data fits in a 32K buffer. If the journaled record contains
region rectangles or bitmap bits these do not count in this res
triction.

Returns: BOOL

OpenJournalFile (lpFileName, hDC, FunN)

This functions opens for play a journal file previously created
with CreateJournalFile and accumulated to with Accumula
teJournalFile. This function is for use with permanent journal
files. See the description of CreateJournalFile.

Returns: HJOURNAL

16.1.14 Area Support Functions

The Area filling component requires the following support functions. These
belong to the Engine API but only as an internal interface. These func
tions are expected to be called only by the Area Simulation component.
The function LineToShortLine will be handled by the Device Driver as a
required function. The functions CurveToShortLine and IntersectCurves
will be handled by the Arc Simulation component.

Short list of the functions

• CurveToShortLine

• LineToShortLine

• lntersectCurves

376

Device Drivers

CurveToShortLine (p32_Curve, p32_Buffer, s32_ Yl, s32_ Y2, u32-DcH,
u32_ FuncNo)

Converts a curve to a PolyShortLine in the space provided at
p32_Buffer. The PolyShortLine runs only between the given
s32- Yl and s32- Y2 coordinates. The format of the PolyShort
Line is described in the writeup of the PolyShortLine call. The
curve that must be rendered is indicated by p32-Curve which
points to the following sharp fillet structure.

fillet_sharp_rec struc
c_ident USHORT
c_next USHORT
c_prev USHORT
c_type BYTE
c_bits BYTE
c_edge USHORT
c_a ULONG
c_c ULONG
c_b ULONG
c_sharp ULONG
c_eqn USHORT

USHORT
fillet_sharp_rec ends

identifier for firewalls
pointer to next curve
pointer to previous curve
type of this curve
flags and scratch bits
ptr to assoc contour edge
start point of conic
end point of conic
join point of conic
sharpness of conic
near pointer to fillet_eqn
unused

The c_eqn field points to the actual equation for the conic:

fillet_eqn struc
fe_ident

fe_type
fe_bits
fe_alpha
fe_beta
fe_gamma
fe_delta
fe_epsilon
fe_zeta:

fillet_eqn ends

Returns: BOOL int

0 error
1 ok

USHORT
USHORT
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
UL ONG
BYTE
USHORT * 5

identifier for firewalls
unused
type of this block
flags and scratch bits
coefficient of X**2
coefficient of 2xy
coefficient of Y**2
coefficient of 2x
coefficient of 2y
coefficient of 1
; unused

LineToShortLine (p32-Line, p32-Buffer, s32_ Yl, s32- Y2, u32-DcH,
u32_ FuncNo)

Converts a line to a PolyShortLine in the space provided at
p32-Buffer. The PolyShortLine runs only between the given
s32- YI and s32_ Y2 coordinates. The format of the PolyShort
Line is described in the writeup of the PolyShortLine call. The
line that must be rendered is indicated by p32_ Curve which
points to the following line description.

377

MS OS/2 Presentation Manager Reference

line_rec struc
l_ident
l_next
l_prev
l_type
l_bits
l_edge
l_a
l_c
l_rise
l_run
l_intcept
l_rslope

USHORT
USHORT
USHORT
BYTE
BYTE
USHORT
UL ONG
ULONG
UL ONG
UL ONG
UL ONG
UL ONG

line_rec ends

Returns: BOOL int

0 error
1 ok

identifier for firewalls
pointer to next curve
pointer to previous curve
type of this curve
flags and scratch bits
ptr to assoc contour edge
start point of line
end point of line
delta y of line
delta x of line
x intercept of line
dx/dy

IntersectCurves (p32-Curvel, p32_Curve2, p32_Points, u32-DcH,
u32-FuncNo)

Will return up to two intersection points for the curves. The
given curves, p32_ Curvel and p32_ Curve2, are any combina
tion of lines and conics, as described above. The intersection
points are stored in the given area in fixed point notation.

Returns: int

-1 error
>=0 number of intersection points

16.1.15 Callback Functions

This section defines Engine calls that are available only at the DDI (note
that GetCodepageTable and GetRevCodeTable are also callback functions
available to device drivers).

Short list of the function calls:

• AccumulateBounds

• AllocateCurves

• ChangePolygonMode

• Clip Line

• ClipConic

• ClipRect

• ClipScans

• ClipPoly

378

• ClipPathCurves

• Not if yTransformChange

AccumulateBounds (p32-Rect, u32-DcH, u32-FuncNo)

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Rect

};

Device Drivers

This function is used to pass the results of a bounds calculation
back to the engine. The engine accumulates the bounds in the
DC.

Possible error returns: none

p32-Rect is a pointer to a rectangle in device coordinates.

Bounds calculations may be done by either the engine, a simula
tion, or a device driver. The AccumulateBounds function is used
by these three components as a means of coalescing the various
bounds calculations they perform prior to the return of the data
to the application by the Engine.

Parameters:

p32-Rect
A pointer to a rectangle in device coordinates.

Returns: void (possible error returns: none)

AllocateCurves (u32- N, u32-DcH, u32_ FuncNo)

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_N;

};

Allocates u32-N storage blocks for curves. It inserts them into
the doubly linked list of curves of the current path.

Each drawing function simulation must write curve records into
the current path when the DC is in Path accumulation mode.
This function, supplied by the Path Component, allocates and
links these curves into a Path object.

This is an Engine callback routine available to the device driver
only.

Parameters:

u32_N The number of storage blocks required.

Returns: ULONGFAR *
0 error ???

!=0 A long pointer to the allocated memory

379

MS OS/2 Presentation Manager Reference

ChangePolygonMode (s32_Pathld, u32_Mode, u32-DcH, u32_FuncNo)

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG u32_Mode;
ULONG s32_Pathid;

};

This routine converts the mode of a polygon from alternate to
winding or from winding to alternate.

This is an Engine callback routine available to the device driver
only for use if the device driver can handle only one of the alter
nate or winding modes.

Parameters:

s32_Pathld
The identifier of the path. It must be > 0.

u32-Mode
Specifies the mode as:

CHANGE_TO_ALT
CHANGE_TO_WINDING

Returns: Boolean

TBD

ClipLine (p32_ xy, s32_ n, p32_ Callback, u32_ DcH, u32-FuncNo)

380

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Cal1Back;
ULONG s32_count;
ULONG* p32_xy;

};

This function is used by the driver to pass a polyline to the
engine. The engine will clip the polyline against the current clip
area and clip region, and call the device driver's callback func
tion with a set of fully clipped lines.

The parameters are the same as for PolyLine.

The callback function may be terminated at any time by return
ing zero to the engine.

Parameters:

p32-xy Points to an array of x,y coordinates.

s32_ n The number of x,y pairs.

Device Drivers

p32_ Callback
The address of the device driver's Callback entry
point.

Returns: TBD

ClipConic(p32_xy, s32-n, p32_s, p32_Callback, u32-DcH, u32_FuncNo)

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Cal1Back;
ULONG* p32_s;
ULONG s32_count;
ULONG• p32_xy;

This function is used by the driver to pass a conic to the engine.
The engine will clip the conic against the current clip area and
clip region, and call the device driver's callback function with a
set of fully clipped lines.

The parameters are the same as for PolyFilletSharp.

The callback function may be terminated at any time by return
ing zero to the engine.

Parameters:

p32_xy Points to an array of x,y coordinates.

s32_n The number of x,y pairs.

p32_s A long pointer to an array of s32-Sharpness parame
ters.

p32_ Callback
The address of the device driver's Callback entry
point.

Returns: TBD

ClipRect (p32-xy, p32_Callback, u32-DcH, u32_FuncNo)

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG• p32_Cal1Back;
ULONG• p32_xy;

};

This function is used by the driver to pass a rectangle to the
engine. The engine will clip the rectangle against the current clip
area and clip region, and call the device driver's callback func
tion with a set of fully clipped lines.

The parameters are the same as for Box.

381

MS OS/2 Presentation Manager Reference

The callback function may be terminated at any time by return
ing zero to the engine.

Parameters:

p32_xy Points to the x,y defining the rectangle.

p32_ Callback
The address of the device driver's Callback entry
point.

Returns: TED

ClipScans (p32-PSLI, p32-PSL2, p32_ BoundingRect, p32_ Callback,
u32_ DcH, u32-FuncNo)

struct ARGUMENTS {

};

ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Cal1Back;
ULONG* p32_BoundingRect.
ULONG* p32_PSL2;
ULONG* p32_PSL1;

This function is used by the driver to pass a polyscanline to the
engine. The engine will clip it against the clip region, and call
the device driver's callback function with a set of fully clipped
lines.

The parameters are the same as for PolyScanLine.

The callback function may be terminated at any time by return
ing zero to the engine.

Parameters:

p32_ PSLI, p32-PSL2
Long pointers to the two polyshortline structures.

p32_ BoundingRect
This is a rectangle which bounds the whole figure.

p32_ Callback
The address of the device driver's Callback entry
point.

Returns: TED

ClipPoly (p32_ Callback, u32-DcH, u32-FuncNo)

382

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Cal1Back;

};

Device Drivers

This function is used by the driver to determine the current clip
polygon.

This allows devices which support clip areas but which do not
support boolean operations on clip areas to query the result of a
boolean combine area operation.

The function will be called back with three different primitives.

1. SetCurrentPosition, this denotes the beginning of a subarea.
2. Polyline
3. PolyFilletSharp

Parameters:

p32_ Callback
The address of the device driver's Callback entry
point.

Returns: TED

ClipPathCurves (p32-Path, u32_DcH, u32_FuncNo)

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Path;

};

This function is called by the either Path component or the Arcs
component. The function is handled by the Clipping component.
A complete path is given to the Clipping component in lpPath.
The Clipping component modifies the path so that all its curves
and lines are clipped against the current clipping region and
polygon.

The callback function may be terminated at any time by return
ing zero to the engine.

Parameters:

p32_Path
The address of the path definition.

Returns: TED

NotifyTransformChange (u32-Flags, p32-Data, u32-DcH, u32_ FuncNo)

struct ARGUMENTS {
ULONG u32_FuncNo;
ULONG u32_DcH;
ULONG* p32_Data;
ULONG u32_Flags;

};

This function will be called by the Transforms component when
ever the transformation from WORLD to DEVICE coordinates

383

MS OS/2 Presentation Manager Reference

384

changes. This call provides enough information to the device so
that the device can optimize its calling of the Convert function,
or possibly even do all point transformations itself.

Parameters:

u32-Flags
These pass information about the complexity of the
2x2 matrix made of the fxMll, fxM12, fxM21, and
fxM22 components of the composite transform from
WORLD to DEVICE coordinates. They also tell if
there is a translation. The flags are as follows:

MATRIX_SIMPLE
MATRIX_ UNITS
MATRIX_XY_EXCHANGE
MATRIX_X_NEGATE
MATRIX_Y_NEGATE
MATRIX_ TRANSLATION

Examples:

X'OOOOOOOl'
X'00000002'
X'00000004'
X'00000008'
X'OOOOOOlO'
X'00000020'

two entries are zero
all entries are +1 or -1
zeros are on the diagonal
X is hit by negative
Y is hit by negative
non-zero translation

Matrix= { 1.0 , 0.0 , 0.0 , 1.0 , 0 O } =>
Flags = X'00000003'

Matrix= { 1.0 , 0.0 , 0.0 , 1.0 5 10 } =>
Flags = X'00000023'

Matrix= { 0.0 , -1.0 , 1.0 , 0.0 , 17 , -5 } =>
Flags= X'00000037'

p32_Data
A pointer to the composite matrix in fixed point nota
tion:

NotifyTransformData struc
ntd_Type USHORT indicates FIXED notation
ntd_fxMlll ULONG ; FIXED point matrix elements
ntd_fxM12 I ULONG
ntd_fxM21 I ULONG
ntd_fxM22 I ULONG
ntd_M4ll ULONG long translations
ntd_M421 ULONG

NotifyTransformData ends

Returns: TED

Device Drivers

16.2 Graphics Engine Function List

16.2.1 Device Driver Interface Function List

16.2.1.1 Functions Trappable by Device Drivers

The major function handler is responsible for dispatching the minor func
tion according to the minor function number. For each major function
handler the minor functions to be dispatched are as follows. The function
number (with the command bits shown as all zeroes) is given for each
minor function.

OutputArc

00008000 GP!: SIM
00008001 GP!: SIM
00008002 GP!: SIM
00008003 GP!: SIM
00008004 GP!: SIM
00008005 GP!: SIM
00008006 GP!: SIM
0000800A GP!: SIM
0000800E GP!: SIM
0000800F GP!: SIM
00008010 GP!: SIM
00008014 GP!: SIM
00008015 GP!: SIM
00008016 GP!: SIM
00008017 GP!: SIM

GetArcParameters
SetArcParameters
Arc
FullArcinterior
FullArcBoundary
FullArcBoth
PartialArc
PolyFillet
Box!nterior
BoxBoundary
BoxBoth
PolySpline
PolyFilletSharp
CurveToShortLine
IntersectCurves

OutputLine (all functions are required for all device drivers)

00008100 GP!: DEV PolyLine
00008101 ENG: DEV PolyShortLine
00008103 GP!: DEV GetCurrentPosition
00008104 GP!: DEV SetCurrentPosition

OutputMarker

00008200 GP!: SIM PolyMarker

OutputScan (all functions are required for all device drivers)

00008300 GP!: DEV ScanLR
00008301 ENG: DEV PolyScanline

385.

MS OS/2 Presentation Manager Reference

OutputFill

; 00008400 GP!: SIM FloodFill

Bitmap (all functions are required for all device drivers)

00008500 ENG: DEV
00008501 ENG: DEV
00008502 ENG: DEV
00008504 GP!: DEV
00008505 GP!: DEV
00008506 GP!: DEV
00008507 GP!: DEV
00008508 GP!: DEV
00008509 GP!: DEV
0000850A ENG: DEV
00008508 GP!: DEV
0000850C GP!: DEV

DeviceCreateBitmap
DeviceDeleteBitmap
DeviceSelectBitmap
OldGetBitmapBits
OldSetBitmapBits
GetPel
SetPel
ImageData
Bitblt
DeviceSetCursor
GetBitmapBits
SetBitmapBits

Textout (all functions are required for all device drivers)

00008900 GP!: DEV
00008902 GP!: DEV
00008903 GP!: DEV
00008904 GP!: DEV
00008905 GP!: DEV
00008906 GP!: DEV
00008907 GP!: DEV
00008908 GP!: DEV
00008909 GP!: DEV

Area

00008AOO GP!: ENG
00008A01 GP!: ENG
00008A02 ENG: ENG
00008A03 GP!: ENG
00008A04 GP!: ENG
00008A05 GP!: ENG
00008A06 GP!: ENG
00008A07 GP!: ENG
00008A08 GP!: ENG
00008A09 GP!: ENG
00008AOA GP!: ENG
00008AOB GP!: ENG
00008AOC GP!: ENG
00008AOD GP!: ENG
00008AOE GP!: ENG
00008AOf GP!: ENG
00008A10 GP!: ENG
00008All GP!: ENG
00008A12 GP!: ENG
00008Al3 GP!: ENG

386

CharStringPos
CharRect
CharStr
ScrollRect
UpdateCursor
QueryTextBox
QueryTextBreak
CharString
QueryCharPositions

BeginArea
EndArea
AllocateCurves
BeginClipArea
EndClipArea
BeginStrokes
EndStrokes
QueryAreaState
BeginPath
EndPath
Closefigure
DeletePath
CombinePath
ModifyPath
StrokePath
DrawPath
SelectClipPath
QueryClipPath
QueryNumberPaths
ChangePolygonMode

Device Drivers

Bounds {all functions are required for all device drivers)

00008B04 GP!: DEV QueryCharCorr
00008BOS GP!: DEV GetPickWindow
00008B06 GP!: DEV SetPickWindow

Clip

00008COO GP I : SIM GetClipBox
00008C01 GP!: SIM SelectClipRegion
00008C02 GP!: SIM IntersectClipRectangle
00008C03 GP!: SIM ExcludeClipRectangle
00008C04 GP!: SIM OffsetClipRegion
00008COS SIM: SIM SetXformRect
00008C06 GP!: SIM QueryClipRegion
00008C07 GP!: SIM PtVisible
00008C08 GP!: SIM RectVisible
00008C09 DEV: SIM GetClipRects
00008COA GP!: SIM SelectVisRegion
00008COB GP!: SIM QueryVisRegion
00008COC GP!: SIM ComputeRegions
00008COD DEV: ENG ClipScans
00008COE ENG: ENG ClipPathCurves

Region

00008DOO GP!: SIM GetRegionBox
00008D01 GP!: SIM GetRegionRects
00008D02 GP!: SIM CreateRectRegion
00008D03 GP!: SIM DestroyRegion
00008D04 GP I : SIM SetRectRegion
00008DOS GP!: SIM CombineRegion
00008D06 GP!: SIM OffsetRegion
00008D07 GP!: SIM EqualRegion
00008D08 GP!: SIM PtinRegion
00008D09 GP!: SIM RectinRegion
00008DOA GP!: SIM PaintRegion

Transform

00008EOO GP!: SIM Convert
00008E01 GP!: SIM GetModelXf orm
00008E02 GP! : SIM SetModelXform
00008E03 GP!: SIM GetWindowViewportXform
00008E04 GP!: SIM SetWindowViewportXform
00008EOS GP!: SIM QueryViewportSize
00008E06 GP!: SIM GetGlobalViewingTransform
00008E07 GP!: SIM SetGlobalViewingTransform
00008E08 GP!: SIM GetGraphicsField
00008E09 GPI: SIM SetGraphicsField
00008EOA GP!: SIM GetPageUnits
00008EOB GP!: SIM SetPageUnits
00008EOC GP!: SIM GetPageWindow

387

MS OS/2 Presentation Manager Reference

00008EOD GP!: SIM
00008EOE GP!: SIM
00008EOF GP!: SIM
00008Ell GP!: SIM
00008El2 GP!: SIM
00008E13 GP!: SIM
00008E14 GP!: SIM

SetPageWindow
GetPageViewport
SetPageViewport
GetDCOrigin
SetDCOrigin
GetViewingLimits
SetViewingLimits

Attributes (all functions are required for all device drivers)

00008FOO ENG: DEV
00008F01 ENG: DEV
00008F02 ENG: DEV
00008F03 ENG: DEV
00008F04 ENG: DEV
00008F05 ENG: DEV
00008F06 ENG: DEV
00008F07 ENG: DEV
00008F08 ENG: DEV
00008F09 GP!: DEV
00008FOA GP!: DEV
00008FOB ENG: DEV
00008FOC ENG: DEV
00008FOD ENG: DEV
00008FOE SIM: DEV
00008FOF GP!: DEV
00008F10 GP!: DEV
00008Fll GP!: DEV
00008Fl2 GP!: DEV
00008F13 GP!: DEV
00008Fl4 GP!: DEV
00008Fl5 GP!: DEV
00008Fl6 GP!: DEV
00008Fl7 GP!: DEV
00008Fl8 GP!: DEV
00008Fl9 SIM: DEV
00008FlA SIM: DEV
00008FlB SIM: DEV

QueryKerning
EnableKerning
GetPairKerningTable
GetTrackKernTable
SetKernTrack
DeviceSetAttributes
DeviceSetGlobalAttribute
NotifyClipChange
RealizeFont
ErasePS
SetStyleRatio
GetDCCaps
DeviceQueryFontAttributes
DeviceQueryFonts
NotifyTransformChange
GetPatternOrigin
SetPatternOrigin
GetCodePage
SetCodePage
LockDevice
UnlockDevice
Death
Resurrection
QueryLineTypeGeom
SetLineTypeGeom
DeviceSetDCOrigin
GetLineOrigin
SetLineOrigin

Color (all functions are required for all device drivers)

00009000 GP!: DEV
00009001 GP!: DEV
00009002 GP!: DEV
00009003 GP!: DEV
00009004 GP!: DEV
00009005 GP!: DEV
00009006 GP!: DEV
00009007 GP!: DEV
00009008 GP!: DEV

388

QueryColorData
QueryLogColorTable
CreateLogColorTable
RealizeColorTable
UnrealizeColorTable
QueryRealColors
QueryNearestColor
QueryColorindex
QueryRGBColor

Query (all functions are required for all device drivers)

00009100 GPI: DEV QueryDeviceBitmaps
00009101 GPI: DEV QueryDeviceCaps
00009103 GPI: DEV Escape
00009104 GPI: DEV QueryHardcopyCaps

Device Drivers

The major function numbers 0006, 0007, and 0008 are reserved for future
use.

The device driver is allowed to reject any call it does not want to handle,
as long as the call is not one of the above mentioned "required" functions.
The device driver must pass any call it does not handle to the default
simulation for the major handler being called.

Those functions above whose major function number is in the range 00-13
and which are not listed as "Required for device drivers" are optional
device driver functions. Device drivers may hook any optional function
they wish.

16.2.1.2 Functions Handled by Engine or Global Simulation

00001402 GPI: ENG QueryEngineVersion
00009403 GPI: ENG GetHandle
00009404 GPI: ENG SetHandle
00009407 GPI: ENG ResetDC
00009408 GPI: ENG GetProcessControl
00009409 GPI: ENG SetProcessControl
0000940A GPI: ENG SaveDC
00009408 GPI: ENG RestoreDC
0000140E GPI: ENG OpenDC
0000940F GPI: ENG CloseDC

00009500 GPI: ENG DeleteSetid
00009501 GPI: ENG LoadSymbolSet
00009502 GPI: ENG QuerySymbolSetData
00009503 GPI: ENG QueryNumberSetids
00009504 GPI: ENG QuerySetids

00009600 GPI: ENG CreateLogicalFont
00001601 GPI: ENG LoadFont
00001602 GPI: ENG UnloadFont
00009603 GPI: ENG QueryFonts
00009604 GPI: ENG QueryFontAttributes
00009605 GPI: ENG ValidateEngineFont
00001606 GPI: ENG GetCodepageTable
00001607 GPI: ENG GetRevCodeTable
00001608 GPI: ENG QueryLogicalFont

00009700 ENG: ENG AccumulateJournalFile
00001701 DEV: ENG CreateJournalFile

389

MS OS/2 Presentation Manager Reference

00001702 DEV: ENG DeleteJournalFile
00001703 DEV: ENG StartJournalFile
00001704 DEV: ENG StopJournalFile
00001705 DEV: ENG PlayJournalFile
00001706 DEV: ENG OpenJournalFile

00009800 GPI: ENG LoadLineTypes
00009801 GP!: ENG QueryLineTypes
00009802 GPI: ENG ReadLineTypes

00009900 GPI: ENG CopyDCLoadData
00009901 GP!: ENG QueryBitmapHandle
00009902 GPI: ENG SetBitmapID

00009AOO GPI: ENG CreateBitmap
OOOOlAOl GPI: ENG DeleteBitmap
00009A02 GPI: ENG SelectBitmap
00001A03 GPI: ENG GetBitmapDimension
00001A04 GPI: ENG SetBitmapDimension
00009A05 GPI: ENG GetAttributes
00009A06 GPI: ENG SetAttributes
00001A07 GPI: ENG GetBitmapParameters
00009A08 GPI : ENG SetGlobalAttribute
00009AOB GPI: ENG ResetBounds
00009AOC GPI: ENG GetBoundsData
00009AOD DEV: ENG AccumulateBounds
00009AOE GPI: ENG SetCursor

16.2.2 Error Definition

Graphics Error Strategy

Note: This section is subject to change as the error definitions are clarified.

1. Sufficient validation to avoid a malfunction will always be performed
where possible.

2. For environment/objects/resources e.g., SymbolSets, Fonts, Bitmaps,
Regions, Segments full error checking (as defined for that function) is
performed in general by the component that implements the function,
i.e., Engine/DD! will perform full error checking for Symbol Sets,
Fonts, Bitmaps and Regions, etc., GPI will perform full error checking
for Segments, etc.

3. For Query operations full error checking (as defined for that function)
is performed in general by the component that implements the func
tion.

390

Device Drivers

4. For segment drawing, drawing primitives and primitive attributes in
draw mode error checking is permissive i.e., it is optional whether an
invalid value is defaulted or produces the specified error but essential
context checking will be performed. When storing in segment store or
metafiling however, full checking is performed and all defined errors
must be raised.

5. For any defined error, the application will see the same error code
regardless of whether the error was logged by the GPI, Engine or
device driver.

Severity of Errors

Except where specified as Warning, all Gpi errors listed fall into the
category of Error, Severe Error, or Unrecoverable Error as described
below:

Warning

Error

The function detected a problem but took some remedial action
which enabled the function to complete successfully.

The function detected a problem for which it could not take any
sensible remedial action. The system will be able to recover from
the problem, in the sense that the state of the system, with
respect to the application remains the same as at the time when
the function was requested, i.e., the system has not partially exe
cuted the function.

Severe Error
The function detected a problem from which the system cannot
reestablish its state, with respect to the application, at the time
when that function was requested, i.e., the system has partially
executed the function, and therefore necessitates the application
performing some corrective activity in order to restore the sys
tem to some known state.

Unrecoverable Error
The function detected some problem from which the system can
not reestablish its state, with respect to the application, at the
time when that call was issued and it is possible that the appli
cation cannot perform some corrective action in order to restore
the system to some known state, e.g., the application provides
the address of the anchor block which the system discovers is
apparently corrupted.

391

MS OS/2 Presentation Manager Reference

Complete GP! Error List

#define GPIERR_BASE Ox2000

#define GPIERR_ALREADY_IN_AREA GPIERR_BASE OxOOOl

#define GPIERR_ALREADY_IN_CLIP_AREA GPIERR_BASE I Ox0002

#define GPIERR_ALREADY_IN_ELEMENT GPIERR_BASE Ox0003

#define GPIERR_ALREADY_IN_STROKES GPIERR_BASE Ox0004

#define GPIERR_AREA_CONTEXT_ERROR GPIERR_BASE Ox0005

#define GPIERR_AREA_INCOMPLETE GPIERR_BASE I Ox0006

#define GPIERR_BITMAP_AND_DC_NOT_COMPAT GPIERR_BASE I Ox0007

#define GPIERR_BITMAP_IS_SELECTED GPIERR_BASE I Ox0008

#define GPIERR_BITMAP_NOT_FOUND GPIERR_BASE I Ox0009

#define GPIERR_BOX_RADIUS_TOO_LARGE GPIERR_BASE I OxOOOA

#define GPIERR_CALLED_SEG~IS_CURRENT GPIERR_BASE I OxOOOB

#define GPIERR_CALLED_SEG_NOT_FOUND GPIERR_BASE I OxOOOC

#define GPIERR_CANNOT_DELETE_ALL_DATA GPIERR_BASE I OxOOOD

#define GPIERR_CENTER_OUTSIDE_PAGE GPIERR_BASE I OxOOOE

#define GPIERR_CLIP_AREA_CONTEXT_ERROR GPIERR_BASE I OxOOOF

#define GPIERR_CLIP_AREA_INCOMPLETE GPIERR_BASE I OxOOlO

#define GPIERR_COORDINATE_OVERFLOW GPIERR_BASE I OxOOll

#define GPIERR_CORR_FORMAT_MISMATCH GPIERR_BASE I Ox0012

#define GPIERR_DATA_TOO_LONG GPIERR_BASE I Ox0013

#define GPIERR_DC_ALREADY_ASSOCIATED GPIERR_BASE

#define GPIERR_DOS_ERROR GPIERR_BASE I Ox0015

#define GPIERR_DYNAMIC_SEG_SEQ_ERROR GPIERR_BASE

#define GPIERR_ELEMENT_CONTEXT_ERROR GPIERR_BASE

Ox0014

Ox0016

Ox0017

#define GPIERR_END_AREA_IGNORED GPIERR_BASE I Ox0018

#define GPIERR_END_AREA_WRONG_SEG GPIERR_BASE I Ox0019

#define GPIERR_END_CLIP_AREA_IGNORED GPIERR_BASE I OxOOlA

#define GPIERR_END_CLIP_AREA_WRONG_SEG GPIERR_BASE I OxOOlB

#define GPIERR_END_ELEMENT_IGNORED GPIERR_BASE I OxOOlC

#define GPIERR_END_IMAGE_IGNORED GPIERR_BASE I OxOOlD

392

Device Drivers

#define GPIERR_END_IMAGE_WRONG_SEG GPIERR_BASE I OxOOlE

#define GPIERR_END_PROLOG_IGNORED GPIERR_BASE I OxOOlF

#define GPIERR_END_STROKES_IGNORED GPIERR_BASE I Ox0020

#define GPIERR_END_STROKES_WRONG_SEG GPIERR_BASE I Ox0021

#define GPIERR_END_SYMBOL_IGNORED GPIERR_BASE i Ox0022

#define GPIERR_ESC_CODE_NOT_SUPPORTED GPIERR_BASE Ox0023

#define GPIERR_EXCEEDS_MAX_SEG_LENGTH GPIERR_BASE Ox0024

#define GPIERR_FONT_NOT_FOUND GPIERR_BASE I Ox0025

#define GPIERR_FONT_NOT_LOADED GPIERR_BASE I Ox0026

#define GPIERR_GPI_BUSY GPIERR_BASE I Ox0027

#define GPIERR_GRAPHICS_SEG_IS_CURRENT GPIERR_BASE I Ox0028

#define GPIERR_IMAGE_CONTEXT_ERROR GPIERR_BASE I Ox0029

#define GPIERR_IMAGE_INCOMPLETE GPIERR_BASE I Ox002A

#define GPIERR_INCOMPATIBLE_METAFILE GPIERR_BASE I Ox002B

#define GPIERR_INCOMPLETE_LINE_DEFN GPIERR_BASE I Ox002C

#define GPIERR_INCOMPLETE_SYMBOL_DEFN GPIERR_BASE I 0x002D

#define GPIERR_INSUFFIENT_MEMORY GPIERR_BASE I Ox002E

#define GPIERR_INV_ANGLE_PARAMETER GPIERR_BASE I Ox002F

#define GPIERR_INV_ARC_CONTROL GPIERR_BASE I Ox0030

#define GPIERR_INV_ARC_PARAMETER GPIERR_BASE I Ox0031

#define GPIERR_INV_AREA_CONTROL GPIERR_BASE I Ox0032

#define GPIERR_INV_ARRAY_COUNT GPIERR_BASE I Ox0033

#define GPIERR_INV_ATTR_COUNT GPIERR_BASE I Ox0034

#define GPIERR_INV_ATTR_MODE GPIERR_BASE I Ox0035

#define GPIERR_INV_BACKGROUND_COL_ATTR GPIERR_BASE I Ox0036

#define GPIERR_INV_BACKGROUND_FM_ATTR GPIERR_BASE I Ox0037

#define GPIERR_INV_BITBLT_MIX GPIERR_BASE I Ox0038

#define GPIERR_INV_BITBLT_MODE GPIERR_BASE I Ox0039

#define GPIERR_INV_BITBLT_SOURCE_OP GPIERR_BASE Ox003A

#define GPIERR_INV_BITBLT_TARGET_OP GPIERR_BASE Ox003B

#define GPIERR_INV_BITMAP_DIMENSION GPIERR_BASE Ox003C

393

MS OS/2 Presentation Manager Reference

#define GPIERR_INV_BITMAP_SHANDLE GPIERR_BASE I Ox003D

#define GPIERR_INV_BITMAP_PARAMETER GPIERR_BASE I Ox003E

#define GPIERR_INV_BOUNDARY_COLOR GPIERR_BASE I Ox003F

#define GPIERR_INV_BOX_CONTROL GPIERR_BASE I Ox0040

#define GPIERR_INV_CHAR_ANGLE_ATTR GPIERR_BASE I Ox0041

#define GPIERR_INV_CHAR_BOX_ATTR GPIERR_BASE I Ox0042

#define GPIERR_INV_CHAR_BRK_EXTRA_ATTR GPIERR_BASE Ox0043

#define GPIERR_INV_CHAR_DIRECTION_ATTR GPIERR_BASE Ox0044

#define GPIERR_INV_CHAR_EXTRA_ATTR GPIERR_BASE I Ox0045

#define GPIERR_INV_CHAR_MODE_ATTR GPIERR_BASE I Ox0046

#define GPIERR_INV_CHAR_SET_ATTR GPIERR_BASE I Ox0047

#define GPIERR_INV_CHAR_SHEAR_ATTR GPIERR_BASE Ox0048

#define GPIERR_INV_CHAR_SPACING_ATTR GPIERR_BASE I Ox0049

#define GPIERR_INV_CHAR_STRING_LENGTH GPIERR_BASE I Ox004A

#define GPIERR_INV_CHAR_STRING_OPTIONS GPIERR_BASE i Ox004B

#define GPIERR_INV_CLIP_AREA_CONTROL GPIERR_BASE I 0x004C

#define GPIERR_INV_CLIP_REGION_OP GPIERR_BASE I Ox004D

#define GPIERR_INV_CODEPAGE GPIERR_BASE I Ox004E

#define GPIERR_INV_COLOR_ATTR GPIERR_BASE Ox004F

#define GPIERR_INV_COLOR_DATA GPIERR_BASE Ox0050

#define GPIERR_INV_COLOR_FORMAT GPIERR_BASE i Ox0051

#define GPIERR_INV_COLOR_INDEX GPIERR_BASE i Ox0052

#define GPIERR_INV_COLOR_OPTIONS GPIERR_BASE I Ox0053

#define GPIERR_INV_COMMENT_LENGTH GPIERR_BASE I Ox0054

#define GPIERR_INV_COORDINATE GPIERR_BASE I Ox0055

#define GPIERR_INV_CORR_APERTURE_TYPE GPIERR_BASE I Ox0056

#define GPIERR_INV_CORRELATE_DEPTH GPIERR_BASE I Ox0057

#define GPIERR_INV_CORRELATE_TYPE GPIERR_BASE I Ox0058

#define GPIERR_INV_DC_SHANDLE GPIERR_BASE I Ox0059

#define GPIERR_INV_DC_TYPE GPIERR_BASE I Ox005A

#define GPIERR_INV_DDA_TYPE GPIERR_BASE I Ox005B

394

Device Drivers

#define GPIERR_INV_DRAW_CONTROL GPIERR_BASE i OxOOSC

#define GPIERR_INV_DRAW_VALUE GPIERR_BASE I OxOOSD

#define GPIERR_INV_DRAWING_MODE GPIERR_BASE l OxOOSE

#define GPIERR_INV_EDIT_MODE GPIERR_BASE l OxOOSF

#define GPIERR_INV_ELEMENT_NUMBER GPIERR_BASE l Ox0060

#define GPIERR_INV_EXTENDED_HEADER_LEN GPIERR_BASE i Ox0061

#define GPIERR_INV_EXTENT GPIERR_BASE l Ox0062

#define GPIERR_INV_FACENAME GPIERR_BASE i Ox0063

#define GPIERR_INV_FGBG_FM_COMBINATION GPIERR_BASE Ox0064

#define GPIERR_INV_FIRST_CHAR GPIERR_BASE Ox0065

#define GPIERR_INV_FONT_ATTRS GPIERR_BASE Ox0066

#define GPIERR_INV_FONT_DEFN GPIERR_BASE i Ox0067

#define GPIERR_INV_FONT_FILENAME GPIERR_BASE i Ox0068

#define GPIERR_INV_GEOM_LINE_TYPE_ATTR GPIERR_BASE i Ox0069

#define GPIERR_INV_GEOM_LINE_WIDTH_ATTR GPIERR_BASE I Ox006A

#define GPIERR_INV_PS_SHANDLE GPIERR_BASE i Ox006B

#define GPIERR_INV_GRAPHICS_FIELD_DIM GPIERR_BASE Ox006C

#define GPIERR_INV_GRAPHICS_FIELD_ORG GPIERR_BASE Ox006D

#define GPIERR_INV_ID GPIERR_BASE i Ox006E

#define GPIERR_INV_IMAGE_DATA_LENGTH GPIERR_BASE I Ox006F

#define GPIERR_INV_IMAGE_DIMENSION GPIERR_BASE I Ox0070

#define GPIERR_INV_IMAGE_FORMAT GPIERR_BASE i Ox0071

#define GPIERR_INV_IMPLICIT_DRAW_FN GPIERR_BASE I Ox0072

#define GPIERR_INV_IN_IMAGE_DEFN GPIERR_BASE i Ox0073

#define GPIERR_INV_IN_ROOT_SEG_PROLOG GPIERR_BASE I Ox0074

#define GPIERR_INV_IN_VECTOR_SYMBOL GPIERR_BASE I Ox0075

#define GPIERR_INV_INFO_TABLE GPIERR_BASE i Ox0076

#define GPIERR_INV_KERNING_FLAGS GPIERR_BASE I Ox0077

#define GPIERR_INV_LENGTH GPIERR_BASE I Ox0078

#define GPIERR_INV_LINE_END_ATTR GPIERR_BASE I Ox0079

#define GPIERR_INV_LINE_JOIN_ATTR GPIERR_BASE l Ox007A

395

MS OS/2 Presentation Manager Reference

#define GPIERR_INV_LINE_PAT_SET_ATTR GPIERR_BASE

#define GPIERR_INV_LINE_PATTERN_ATTR GPIERR_BASE

Ox007B

oxoo7C

#define GPIERR_INV_LINE_TYPE_ATTR GPIERR_BASE I Ox007D

#define GPIERR_INV_LINE_TYPE_CODEPOINT GPIERR_BASE I Ox007E

#define GPIERR_INV_LINE_TYPE_TABLE_ID GPIERR_BASE I Ox007F

#define GPIERR_INV_LINE_WIDTH_ATTR GPIERR_BASE i Ox0080

#define GPIERR_INV_MARKER_ATTR GPIERR_BASE I Ox0081

#define GPIERR_INV_MARKER_BOX_ATTR GPIERR_BASE Ox0082

#define GPIERR_INV_MARKER_SET_ATTR GPIERR_BASE Ox0083

#define GPIERR_INV_METAFILE SHANDLE GPIERR_BASE I Ox0084

#define GPIERR_INV_METAFILE_FILENAME GPIERR_BASE Ox0085

#define GPIERR_INV_METAFILE_FUNCTION GPIERR_BASE Ox0086

#define GPIERR_INV_METAFILE_LENGTH GPIERR_BASE Ox0087

#define GPIERR_INV_METAFILE_OFFSET GPIERR_BASE Ox0088

#define GPIERR_INV_MICROPS_FUNCTION GPIERR_BASE I 0x0089

#define GPIERR_INV_FM_ATTR GPIERR_BASE i Ox008A

#define GPIERR_INV_MULTIPLIER GPIERR_BASE i Ox008B

#define GPIERR_INV_NAME GPIERR_BASE I Ox008C

#define GPIERR_INV_NO_IMAGE_DATA_ORDERS GPIERR_BASE Ox008D

#define GPIERR_INV_OFFSET GPIERR_BASE I Ox008E

#define GPIERR_INV_OR_INCOMPAT_OPTIONS GPIERR_BASE I Ox008F

#define GPIERR_INV_OR_INCONSISTENT_LENS GPIERR_BASE I Ox0090

#define GPIERR_INV_ORDER GPIERR_BASE i Ox0091

#define GPIERR_INV_ORDER_LENGTH GPIERR_BASE I Ox0092

#define GPIERR_INV_ORDER_OUTSIDE_PROLOG GPIERR_BASE Ox0093

#define GPIERR_INV_ORDERING_PARAMETER GPIERR_BASE I 0x0094

#define GPIERR_INV_PATTERN_ATTR GPIERR_BASE i Ox0095

#define GPIERR_INV_PATTERN_SET_ATTR GPIERR_BASE I Ox0096

#define GPIERR_INV_PICK_APERTURE_DIM GPIERR_BASE I Ox0097

#define GPIERR_INV_PICK_APERTURE_OPTION GPIERR_BASE I Ox0098

#define GPIERR_INV_PICK_NUMBER GPIERR_BASE I Ox0099

396

Device Drivers

#define GPIERR_INV_PLAY_METAFILE_OPTION GPIERR_BASE Ox009A

#define GPIERR_INV_PORT_NAME GPIERR_BASE I 0x009B

#define GPIERR_INV_pOSITIONING_VALUE GPIERR_BASE I 0x009C

#define GPIERR_INV_pRIMITIVE_TYPE GPIERR_BASE I Ox009D

#define GPIERR_INV_pS_DIMENSION GPIERR_BASE I 0x009E

#define GPIERR_INV_REGION_CONTROL GPIERR_BASE 0x009F

#define GPIERR_INV_REGION_SHANDLE GPIERR_BASE OxOOAO

#define GPIERR_INV_REGION_MIX GPIERR_BASE I OxOOAl

#define GPIERR_INV_RESERVED_FIELD GPIERR_BASE I OxOOA2

#define GPIERR_INV_RESET_OPTIONS GPIERR_BASE I OxOOA3

#define GPIERR_INV_RESOURCE_SHANDLE GPIERR_BASE I OxOOA4

#define GPIERR_INV_RESOURCE_ID GPIERR_BASE I OxOOAS

#define GPIERR_INV_RGBCOLOR GPIERR_BASE I OxOOA6

#define GPIERR_INV_ROUNDING_PARAMETERS GPIERR_BASE OxOOA7

#define GPIERR_INV_SCAN_COUNT GPIERR_BASE I OxOOA8

#define GPIERR_INV_SEG_ATTR GPIERR_BASE I OxOOA9

#define GPIERR_INV_SEG_ATTR_CODE GPIERR_BASE OxOOAA

#define GPIERR_INV_SEG_CH_LENGTH GPIERR_BASE OxOOAB

#define GPIERR_INV_SEG_NAME GPIERR_BASE I OxOOAC

#define GPIERR_INV_SET_ID GPIERR_BASE I OxOOAD

#define GPIERR_INV_SHARPNESS_PARAMETER GPIERR_BASE I OxOOAE

#define GPIERR_INV_SOURCE_PS_SHANDLE GPIERR_BASE I OxOOAF

#define GPIERR_INV_SOURCE_OFFSET GPIERR_BASE I OxOOBO

#define GPIERR_INV_SRC_OR_TARG GPIERR_BASE I OxOOBl

#define GPIERR_INV_START GPIERR_BASE I OxOOB2

#define GPIERR_INV_START_SCAN GPIERR_BASE I OxOOB3

#define GPIERR_INV_STOP_DRAW_VALUE GPIERR_BASE I OxOOB4

#define GPIERR_INV_SYMBOL_SET_CODEPOINT GPIERR_BASE I OxOOBS

#define GPIERR_INV_SYMBOL_SET_FORMAT GPIERR_BASE I OxOOB6

#define GPIERR_INV_SYMBOL_SET_LENGTHGPIERR_BASE I OxOOB7

#define GPIERR_INV_SYMBOL_SET_OPTION GPIERR_BASE I OxOOB8

397

MS OS/2 Presentation Manager Reference

#define GPIERR_INV_SYMBOL_SET_TYPE GPIERR_BASE OxOOB9

#define GPIERR_INV_TEXT_ALIGN_ATTR GPIERR_BASE OxOOBA

#define GPIERR_INV_TRANSFORM_FARAMETER GPIERR_BASE I OxOOBB

#define GPIERR_INV_TRANSFORM_TYPE GPIERR_BASE I OxOOBC

#define GPIERR_INV_UNITS GPIERR_BASE OxOOBD

#define GPIERR_INV_USAGE GPIERR_BASE OxOOBE

#define GPIERR_INV_VIEW_LIMIT_SPEC GPIERR_BASE I OxOOBF

#define GPIERR_INV_WINDOW_SPECIFICATION GPIERR_BASE I OxOOCO

#define GPIERR_LABEL_NOT_FOUND GPIERR_BASE I OxOOCl

#define GPIERR_LOGICAL_FONT_NOT_FOUND GPIERR_BASE I OxOOC.2

#define GPIERR_MATRIX_OVERFLOW GPIERR_BASE I OxOOC3

#define GPIERR_MET_FILENAME_NOT_FOUND GPIERR_BASE I OxOOC4

#define GPIERR_NAMED_SEG_NOT_CHAINED GPIERR_BASE I OxOOCS

#define GPIERR_NO_BEGIN_IMAGE_ORDER GPIERR_BASE I OxOOC6

#define GPIERR_NO_BITMAP_SELECTED_IN_DC GPIERR_BASE I OxOOC7

#define GPIERR_NO_CURRENT_ELEMENT GPIERR_BASE I OxOOC8

#define GPIERR_NO_CURRENT_GRAPHICS_SEG GPIERR_BASE I OxOOC9

#define GPIERR_NOT_IN_IMAGE_BRACKET GPIERR_BASE I OxOOCA

#define GPIERR_NOT_IN_STORE_MODE GPIERR_BASE I OxOOCB

#define GPIERR_OVERRAN_SEG GPIERR_BASE I OxOOCC

#define GPIERR_FRIMITIVE_STACK_EMPTY GPIERR_BASE OxOOCD

#define GPIERR_PROLOG_ERROR GPIERR_BASE I OxOOCE

#define GPIERR_FROLOG_SEG_ATTR_NOT_SET GPIERR_BASE I OxOOCF

#define GPIERR_PS_ALREADY_ASSOCIATED GPIERR_BASE I OxOODO

#define GPIERR_REFSEG_NOT_CHAINED GPIERR_BASE I OxOODl

#define GPIERR_REFSEG_UNKNOWN GPIERR_BASE I OxOOD.2

#define GPIERR_REL_LINE_OUTSIDE_WCS GPIERR_BASE I OxOOD3

#define GPIERR_RESERVED_FIELD_NOT_ZERO GPIERR_BASE I OxOOD4

#define GPIERR_RESOURCE_DEPLETION GPIERR_BASE I OxOODS

#define GPIERR_RIGHT_LESS_THAN_LEFT GPIERR_BASE I OxOOD6

#define GPIERR_SEG_AND_REFSEG_ARE_SAME GPIERR_BASE I Ox00D7

398

Device Drivers

#define GPIERR_SEG_CALL_RECURSIVE GPIERR_BASE I Ox00D8

#define GPIERR_SEG_CALL_STACK_EMPTY GPIERR_BASE I OxOOD9

#define GPIERR_SEG_CALL_STACK_FULL GPIERR_BASE i OxOODA

#define GPIERR_SEG_CONTEXT_ERROR GPIERR_BASE I OxOODB

#define GPIERR_SEG_UNKNOWN GPIERR_BASE I OxOODC

#define GPIERR_SET_ID_ALREADY_IN_USE GPIERR_BASE OxOODD

#define GPIERR_SET_ID_NOT_A_SYMBOL_SET GPIERR_BASE I OxOODE

#define GPIERR_SET_ID_NOT_LOADED GPIERR_BASE I OxOODF

#define GPIERR_START_INDEX GPIERR_BASE I OxOOEO

#define GPIERR_STOP_DRAW_OCCURRED GPIERR_BASE I OxOOEl

#define GPIERR_STROKES_CONTEXT_ERROR GPIERR_BASE I OxOOE2

#define GPIERR_STROKES_INCOMPLETE GPIERR_BASE I OxOOE3

#define GPIERR_SYMBOL_SET_LEN_TOO_SMALL GPIERR_BASE I OxOOE4

#define GPIERR_SYMBOL_SET_NOT_FOUND GPIERR_BASE I OxOOES

#define GPIERR_SYMBOL_SET_TYPE_MISMATCH GPIERR_BASE I OxOOE6

#define GPIERR_TARGET_SEG_UNKNOWN GPIERR_BASE OxOOE7

#define GPIERR_TOKEN_NOT_ASTERISK GPIERR_BASE OxOOE8

#define GPIERR_TOP_LESS_THAN_BOTTOM GPIERR_BASE I OxOOE9

#define GPIERR_TRUNCATED_ORDER GPIERR_BASE I OxOOEA

#define GPIERR_UNSUPPORTED_ATTRS_MASK GPIERR_BASE I OxOOEB

#define GPIERR_UNSUPPORTED_DEFS_MASK GPIERR_BASE I OxOOEC

#define GPIERR_WIDTH_OR_DEPTH_TOO_BIG GPIERR_BASE I OxOOED

#define GPIERR_WINDOW_COLUMN_IS_INVALID GPIERR_BASE I OxOOEE

#define GPIERR_WINDOW_DEPTH_IS_INVALID GPIERR_BASE I OxOOEF

#define GPIERR_WINDOW_LIMS_OUTSIDE_PAGE GPIERR_BASE I OxOOFO

#define GPIERR_WINDOW_ROW_IS_INVALID GPIERR_BASE i OxOOFl

#define GPIERR_WINDOW_WIDTH_IS_INVALID GPIERR_BASE OxOOF2

#define GPIERR_Z_COORDS_UNEQUAL GPIERR_BASE Ox00F3

#define GPIERR_3D_NOT_SUPPORTED GPIERR_BASE OxOOF4

399

MS OS/2 Presentation Manager Reference

Error Definition by Engine/DD/ Functions

General errors applicable to many functions. The following errors are
required (i.e., not permissive). They should be detected and logged in all
circumstances.

GPIERIL :rv1A TRIX- OVERFLOW
All functions that may result in matrix computation.

GPIERIL INSUFFIENT-MEMORY
All functions that result in memory allocation.

GPIERIL INV_ DC_ SHAND LE
All functions with hdc as explicit or implicit parameter.

GPIERIL INV_ BITMAP - SHAND LE
All functions with hbm as explicit or implicit parameter.

GPIERIL INV-REGION_ SHANDLE
All functions with hrgn as explicit or implicit parameter.

GPIERIL INV_ METAFILE SHAND LE
All functions with hmf as explicit or implicit parameter.

GPIERIL INV_ COORDINATE
All functions with coordinates as parameters.

GPIERILAREA-CONTEXT-ERROR
All functions that are invalid inside an open area bracket (to be
defined by MS).

GPIERIL CLIP _AREA- CONTEXT_ ERROR
All functions that are invalid inside an open clip area bracket (to
be defined by MS).

GPIERIL STROKES_ CONTEXT_ ERROR
All functions that are invalid inside an open strokes bracket (to
be defined by MS).

GPIERIL DOS-ERROR (unexpected OP /DPS error)
All functions that directly or indirectly issue MS OS/2 calls.

Engine functions with required errors:

SetPick Window

Required errors:

GPIERR_WINDOW_LIMS_OUTSIDE_PAGE

GetAttributes

400

Principal errors:

GPIERR_INV_PRIMITIVE_TYPE
GPIERR_UNSUPPORTED_ATTRS_MASK

BeginArea

Required errors:

GPIERR_ALREADY_IN_AREA

BeginClipArea

Required errors:

GPIERR_.ALREADY_IN_CLIP_AREA

BeginStrokes

DDA

EndArea

Required errors:

GPIERR_.ALREADY_IN_STROKES

Required errors:

GPIERR._INV_DDA..._TYPE
GPIERR_INV_AR.RAY_COUNT

Required errors:

GPIERR._END_AREA..._IGNORED

EndClipArea

Required errors:

GPIERR_END_CLIP_AREA..._IGNORED

EndStrokes

Required errors:

GPIERR._END_STROKES_IGNORED

QueryDDA

Required errors:

GPIERR._INV_DDA..._TYPE

QueryTextBox

Required errors:

GPIERR._INV_CHAR_STRING_LENGTH
GPIERR_INV_ARRAY_COUNT

QueryTextBreak

Required errors:

GPIERR_INV_CHAR_STRING_LENGTH
GPIERR_INV_EXTENT

Device Drivers

401

MS OS/2 Presentation Manager Reference

CharRect

Required errors:

As required for MS OS/2 VIO compatibility

CharStr

Required errors:

As required for MS 08/2 VIO compatibility

ScrollRect

Required errors:

As required for MS 08/2 VIO compatibility

UpdateCursor

BitBlt

Required errors:

As required for MS OS/2 VIO compatibility

Required errors:

GPIERR_INV_BITBLT_SOURCE_OP
GPIERR_INV_BITBLT_TARGET_OP

CreateBitmap

Required errors:

GPIERR_INV_BI'IMAP_PARAMETER
GPIERR_INV_USAGE

DeleteBitmap

Required errors:

GPIERR_BITMAP_IS_SELECTED

GetBitmapBits

Required errors:

GPIERR_INV_SCAN_COUNT
GPIERR_INV_START_SCAN
GPIERR_INV_INFO_TABLE
GPIERR_INV_DC_TYPE
GPIERR_NO_BITMAP_SELECTED_IN_DC

SelectBitmap

Required errors:

GPIERR_BITMAP_AND_DC_INCOMP

SetBitmapBits

Required errors:

402

GPIERR_INV_SCAN_COUNT
GPIERR_INV_START_SCAN
GPIERR_INV_INFO_TABLE
GPIERR_INV_DC_TYPE
GPIERR_NO_BITMAP_SELECTED_IN_DC

CombineRegion

Required errors:

GPIERR_INV_REGION_MIX
GPIERR_INV_CLIP_REGION_OP

CreateRectRegion

Required errors:

GPIERR_INV_ARRAY_COUNT

Destroy Region

Required errors:

GPIERR_INV_CLIP_REGION_OP

GetRegionRects

Required errors:

GPIERR_INV_REGION_CONTROL

OffsetRegion

GPIERR_INV_CLIP_REGION_OP

SetRectRegion

Required errors:

GPIERR_INV_ARRAY_COUNT

CreateLogicalF on t

Required errors:

GPIERR_FONT_NOT_LOADED
GPIERR_INV_SET_ID
GPIERR_SET_ID_ALREADY_IN_USE
GPIERR_INV_FONT_ATTRS
GPIERR_INV_NAME
OTHERS TBD

DeleteSetld

Required errors:

GPIERR_INV_SET_ID
GPIERR_SET_ID_NOT_LOADED

EnableKerning

Required errors:

Device Drivers

403

MS OS/2 Presentation Manager Reference

GPIERR_INV_KERNING_FLAGS

GetKerningPairTable

LoadFont

Required errors:

GPIERR_INV_ARRAY_COUNT

Required errors:

GPIERR_FONT_NOT_FOUND
GPIERR_INV_FONT_FILENAME
GPIERR_INV_FONT_DEFN
OTHERS TBD

LoadSymbolSet

Required errors:

GPIERR_INV _NAME
GPIERR_INV_SYMBOL_SET_LENGTH
GPIERR_INV_EXTENDED_HEADER_LEN
GPIERR_INCOMPLETE_SYMBOL_DEFN
GPIERR_INV_SET_ID
GPIERR_INV_SYMBOL_SET_TYPE
GPIERR_SYMBOL_SET_TYPE_MISMATCH
GPIERR_SET_ID_ALREADY_IN_USE
GPIERR_INV_SYMBOL_SET_FORMAT
GPIERR_SYMBOL_SET_LEN_TOO_SMALL
GPIERR_INV_SYMBOL_SET_CODEPOINT
GPIERR_INV_SYMBOL_SET_OPTION
GPIERR_INV_IN_VECTOR_SYMBOL_DEFN

QueryBitmapHandle

Required errors:

GPIERR_BITMAP_NOT_FOUND
GPIERR_INV_SET_ID

QueryFontAttributes

Required errors:

GPIERR_INV_LENGTH

Query Fonts

Required errors:

GPIERR_INV_FACENAME
GPIERR_INV_ARRAY_COUNT (METRICS)
GPIERR_INV_LENGTH (metrics_length)

QuerySetlds

Required errors:

GPIERR~INV_ARRAY_COUNT

404

Device Drivers

QuerySyrnbolSetData

Required errors:

GPIERR_INV_SET_ID
GPIERR_SET_ID_NOT_A_SYMBOL_SET
GPIERR_INV_ARRAY_COUNT

SetBitrnaplD

Required errors:

GPIERR_INV_SET_ID
GPIERR_SET_ID_ALREADY_IN_USE

SetCodePage

Required errors:

GPIERR_INV_CODEPAGE

UnloadFont

OpenDc

Required errors:

GPIERR_FONT_NOT_LOADED
GPIERR_INV_FONT_FILENAME

Required errors:

GPIERR_INV_DC_TYPE
GPIERR_INV_LENGTH
GPIERR_TOKEN_NOT_ASTERISK
Others TBD

RestoreDc

Required errors:

GPIERR_INV_ID

SetGlobalViewingXf orrn

Required errors:

GPIERR_INV_TRANSFORM_TYPE
GPIERR_INV_TRANSFORM_PARAMETER

SetPageUnits

Convert

Required errors:

GPIERR_INV_PS_DIMENSION
GPIERR_WIDTH_OR_DEPTH_TOO_BIG
GPIERR_INV_OR_INCOMPAT_OPTIONS (i.e., units)

Principal errors:

405

MS OS/2 Presentation Manager Reference

GPIERR_INV_SRC_OR_TARG
GPIERR_INV_ARRAY_COUNT

Query ViewportSize

Principal errors:

GPIERR_INV_UNITS
GPIERR_INV_ARRAY_COUNT

CreateLogColorTable

Principal errors:

GPIERR_INV_COLOR_OPTIONS
GPIERR_INV_COLOR_FORMAT
GPIERR_START_INDEX
GPIERR_INV_ARRAY_COUNT
GPIERR_INV_COLOR_DATA

QueryColorData

Principal errors:

GPIERR_INV_ARRAY_COUNT

QueryLogColorTable

Principal errors:

GPIERR_INV_COLOR_OPTIONS
GPIERR_START_INDEX
GPIERR_INV_ARRAY_COUNT

QueryRealColors

Principal errors:

GPIERR_INV_COLOR_OPTIONS
GPIERR_START_INDEX
GPIERR_INV_ARRAY_COUNT

Query NearestColor

Principal errors:

GPIERR_INV_COLOR_OPTIONS
GPIERR_INV_RGBCOLOR

QueryColorlndex

Principal errors:

GPIERR_INV_COLOR_OPTIONS
GPIERR_INV_RGBCOLOR

QueryRGBColor

Principal errors:

406

GPIERR_INV_COLOR_OPTIONS
GPIERR_INV_COLOR_INDEX

LoadLineTypes

Principal errors:

GPIERR_INV_OR INCONSISTENT_LENS
GPIERR_INV_LINE_TYPE_CODEPOINT
GPIERR_INV_RESERVED_FIELD
GPIERR_INV_LTTID
GPIERR_INCOMPLETE_LINE_DEFN

QueryLineTypes

Principal errors:

GPIERR_INV_LENGTH

QueryDeviceBitmaps

Principal errors:

GPIERR_INV_ARRAY_COUNT

Query DeviceCaps

Principal errors:

GPIERR_INV_ARRAY_COUNT
GPIERR_INV_ELEMENT_NUMBER

Escape

Principal errors:

GPIERR_INV_LENGTH
GPIERR_ESC_CODE_NOT_SUPPORTED

16.2.3 Standard Default Values

16.2.3.1 Device Independent Values

Variable '::~:M~'.: Hex Value ___ ,,,,.,,.. ... ,.. ... ,., "'

arc parameter p s32 'OOOOOOOl'X
arc parameter q s32 'OOOOOOOl'X
arc parameter r s32 'OOOOOOOO'X
arc parameter s s32 'OOOOOOOO'X

bounds xmin s32 '7FFFFFFF'X
bounds ymin s32 '7FFFFFFF'X
bounds xmax s32 '80000000'X
bounds ymax s32 '80000000'X

character angle x s32 'OOOl'X
y s32 'OOOO'X

character direction u16 'OOOl'X
character spacing

width multiplier 'OOOOOOOO'X

Device Drivers

No rotation.

Left to right.
Standard spacing.

407

MS OS/2 Presentation Manager Reference

height multiplier
character precision
character set
character shear x

y
text alignment horizontal

vertical

u16
u16
s32
s32
sl6
s16

character break extra
code point
width
height

character extra
width
height

current position x
y

line end
line geometric width
line join
line pattern set
line pattern symbol
line type
line width

marker set
marker symbol

Variable

character, line, marker,
color - foreground

character, line, marker,
color - background

character, line, marker,
mix - foreground

character, line, marker,
mix - background

pattern origin x
y

pattern set
pattern symbol

viewing limits xleft
viewing limits ybottom
viewing limits xright
viewing limits ytop

ProcessControlE'lags
Bit 0 draw
Bit 1 bounds
Bit 2 correlate
Bits 3-31 reserved

408

ul6

s32
s32

u16
s32
ul6
u16
u16
u16
u32

ul6
ul6

Var Type
,.,,..,.,.,,,.,,,.,,,.,,,.,N

pattern
u32

pattern
u32

pattern
ul6

pattern
ul6

s32
s32
ul6
u16

s32
s32
s32
s32

u32:

'OOOOOOOO'X
'OOOl'X
'OOE'O'X
'OOOO'X
'OOOl'X
I E'E'ff I x
I E'E'E'E' I x

'OOOO'X
'OOOOOOOO'X
'OOOOOOOO'X

'OOOOOOOO'X
'OOOOOOOO'X

'OOOOOOOO'X
'OOOOOOOO'X

'OOOl'X
'OOOOOOOl'X
'0001 'X
'OOE'O'X
'OOlO'X
'0007'X
'OOOlOOOO'X

'OOE'O'X
'OOOl'X

Hex Value

and image:
'00000007'X

and image:
'OOOOOOOO'X

and image:
'0002'X

and image:
'OOOS'X

'OOOOOOOO'X
'OOOOOOOO'X
'OOE'O'X
'OOlO'X

I E'E'E'E' 8000 I X
I ff ff 8000 I X
I 00007E'E'E' IX
I 00007E'E'E' IX

'l'B
'O'B
'O'B
'O'B

Precision 1.
Base symbol set.
No shear.

Standard alignment.

Standard spacing.

Standard spacing.

E'lat.
1
Bevel.
Base pattern set.
Solid shading.
Solid.
Normal.

Base marker set.
Cross.

screen: white
printer: black

screen: black
printer: white

Overpaint.

Transparent.

Base pattern set.
Solid shading.

-32K.
-32K.
+32K.
+32K.

Device Drivers

Model Transform
WindowViewportTransform
GlobalViewingTransform
PageUnits

Unity (See Note 2.)
Unity (See Note 2.)
Unity (See Note 2.)
PelsUp

PageSize

Graphics Field
PageWindow
PageViewport
Device Transform

Device Size in pels (i.e., maximized window,
paper size, etc.)

Determined by PageUnits, PageSize (see SetPageUnits)
Determined by PageUnits, PageSize (see SetPageUnits)
Determined by PageUnits, PageSize (see SetPageUnits)
Determined by PageWindow, PageViewport.

Note: I. Reset will never modify PageUnits or PageSize.

Note: 2. Unity Transformation Matrix:

element fxMll 'OOOlOOOO'X
element fxM12 'OOOOOOOO'X
element fxM21 'OOOOOOOO'X
element fxM22 'OOOlOOOO'X
element M41 'OOOOOOOO'X
element M42 'OOOOOOOO'X

16.2.3.2 Device Dependent Values

Variable

pick window xmin
pick window ymin
pick window xmax
pick window ymax

~~~~~= 
s32 
s32 
s32 
s32 

Device 

element 1,1 = 
element 1,2 = 
element 2,1 = 
element 2,2 = 
element 4,1 = 
element 4,2 = 

Hex Value 

-a/2 
-b/2 
+a/2 
+b/2 

1 
0 
0 
1 
0 
0 

where a and b are the x and y dimensions of a rectangle in page 
coordinate space that produces a square in device coordinates with 
both dimensions equal to the default character cell height. 

character cell width 
height 

s32 
s32 

Device dependent. Normal default cell 
size as returned by QueryDeviceCaps. 

marker cell width 
height 

s32 
s32 

Device dependent. Marker cell size as 
returned by QueryDeviceCaps. 

409 




	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410

