
M I C R 0 S 0 F T~

Programmers Reference

I

PROGRAMMER'S
REFERENCE
LIBRARY

•

Microsoff
Operating System/2
Programmers Reference

Version 1.2

. Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
'purchaser's personal use, without t~e written permission of Microsoft Corporation.

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging;.in-Publication Data
(Revised for vol. 4)
Microsoft OS/2 programmer's reference.

(Microsoft OS/2 programmer's reference library)
Vol. 4 has title: Microsoft Operating System/2

programmer's reference.
Includes indexes.
Contents: v. 1 - -v. 4. Version 1.1/

written, edited, and produced by Microsoft Corporation.
1. OS/2 (Computer operating system). I. Microsoft

Press. II. Microsoft III. Title: Microsoft
Operating System/2 programmer's reference.
QA76.76.063M5 1989 005.4' 469 89-2817
ISBN 1-55615-220-5 (v. 1)

Printed and bound in the United States of America.
1 2 3 4 5 6 7 8 9 FGFG 3 2 1 ° 9
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand
British Cataloging in Publication Data available

Patent #4,825,358
Patent #4,779,187

Microsoft®, MS-DOS®, and MS® are registered trademarks of Microsoft Corporation.
IBM®, PC/AT®, and PS/2® are registered trademarks of International Business
Machines Corporation. Lotus® and 1-2-3® are registered trademarks of Lotus Devel
opment Corporation. PostScript® is a registered trademark of Adobe Systems, Inc.

iii
~:\mia~iIDil.§ii!i~Jmlif;i~l!'i~~i1lr§if:iiiillimiPii~iii!m~;r~iru!~iill..~im!!m~!lil~m~,~mir.Eli5i5iiiriel~I~~iSign~r:

Contents

Chapter 1 Introduction
1.1 Overview.. 3
1.2 How to Use This Manual.. 4
1.3 Naming Conventions .. 8
1.4 Notational Conventions .. 11

Chapter 2 Overviews
2.1 Introduction.. 17
2.2 Installable File Systems .. 17
2.3 Extended Attributes... 23
2.4 Profile Manager... 28
2.5 Help Manager... 32
2.6 Combination-Box Controls......... 40
2.7 Multiple-Line Entry Fields .. 43

Chapter 3 Functions and Messages Directory
3.1 Introduction.. 53
3.2 Directory................... ... 55
3.3 Functions and Messages ... 56

Chapter 4 Types, Macros, Structures
4.1 Introduction ·................................ 361
4.2 Types... 362
4.3 Macros... 362
4.4 Structures ... 362

Index '... 411

v
~1~~j!m~~@I~!r:ru_!!1l~L~ll§i1il~ii~fg~I~I!$~g!iffi'!silm~~t!im~li§mi~ro~~lffiii~~~f1fI~lImll~i!!'im!fliml~1a!1f:1!~

Figures

Figure 1.1 Sample Reference Page .. . 4

Chapter

1

Introduction
1.1 Overview .. 3

1. 2 How to Use This ManuaL.. 4
1.2.1 C Format .. 5
1.2.2 MS OS/2 Include Files 5
1.2.3 MS OS/2 Calling Conventions............................. 6
1.2.4 Bit Masks in Function Parameters......................... 7
1.2.5 Structures.................... 8

1.3 Naming Conventions.. 8
1.3.1 Parameter and Field Names 8

1.3.1.1 Prefixes... 9
1.3.1.2 Base Types... 9

1.3.2 Constant Names.. 11

1.4 Notational Conventions... 11

3
!fe~:m!iiriR1ii1§f:i*iL?il~i~~;e~~si§it!$.iimi!~iS!rnl5J!;i~~iN!sUlie2laiE~ll!lg!lli1fggHi~~!I:;!l.im~'ii!ffl!Jia:m~~~i~~

1.1 Overview
This manual describes the system functions of Microsoft® Operating System/2
(MS® OS/2) that are new or modified for version 1.2. These functions let MS
OS/2 programs use the operating system to carry out tasks such as reading and
writing extended attributes for disk files, creating and using multiple-line entry
fields, creating and accessing disk files through installable file systems, and
displaying help text in a Presentation Manager application.

MS OS/2 system functions are designed to be used in C, Pascal, and other high
level-language programs, as well as in assembly-language programs. MS OS/2
programs request operating-system services by calling system functions.

This chapter, "Introduction," shows how to use this manual, provides a brief
description of MS OS/2 calling conventions, illustrates function calls in various
languages, and outlines MS OS/2 naming conventions.

Chapter 2, "Overviews," describes the new features and system functions for MS
OS/2, version 1.2. This chapter explains the purpose of the functions and gives
the operating-system concepts behind them. It also shows how the MS OS/2 sys
tem functions work together to carry out specific tasks.

Chapter 3, "Functions and Messages Directory," lists the MS OS/2, version 1.2,
system functions and messages. Three categories of functions and messages are
included: those that are new for MS OS/2, version 1.2; those that are updated,
or changed, from MS OS/2, version 1.1; and those that contain corrections for
errors that appeared in the Microsoft Operating System12 Programmer's Refer
ence, Volume 2 and Volume 3. The category of each item is clearly marked.

This chapter defines the purpose of each function and each message, gives its
syntax, describes any parameters, and gives possible return values. Many of the
descriptions also show program examples that illustrate how the function or mes
sage is used to carry out simple tasks.

Chapter 4, "Types, Macros, Structures," lists and describes the new and updated
data types and structures used by MS OS/2, version 1.2, system functions.

This manual is intended to describe the MS OS/2 system functions, messages,
types, and structures that are new or that have been modified for MS OS/2, ver
sion 1.2. It does not explain how to use these functions to carry out specific
tasks. For more information on this topic, see the Microsoft Operating System12
Programmer's Reference, Volume 1.

Also, this manual does not fully describe all MS OS/2 base system and Presenta
tion Manager functions. MS OS/2 base system functions enable programs to use
the operating system to carry out such tasks as reading from and writing to disk
files; allocating memory; starting other programs; and using the keyboard,
mouse, and video screen. Presentation Manager functions let programs use the
multitasking, window-management, and graphics features of MS OS/2. For more
information on MS OS/2 Presentation Manager functions, see the Microsoft
Operating System/2 Programmer's Reference, Volume 2. For more information on
MS OS/2 base system functions, see the Microsoft Operating Systeml2
Programmer's Reference, Volume 3.

4 Microsoft Operating System/2 Programmer's Reference, Vol. 4
1~a;Sl.~1ii&iit_l~~~ii!la1ifu.~~ia!~.iW~Jlni.iUtfl;Ii'm~~m§i!i§P.SJ.i!j!liimli_i;i5\;mm!EHl~r.f.1~e~li~~mi~i

In addition, this manual references but does not discuss QuickHelp, the displa
program for Microsoft documentation databases. For more information on
QuickHelp, see Microsoft Operating System/2 Getting Started, available with the
Microsoft OS/2 Presentation Manager Toolkit.

1.2 How to Use This Manual

Figure 1.1

This manual provides detailed information about each MS OS/2, version 1.2,
system function,message, and structure. Each item has the format shown in
Figure 1.1:

Sample Reference Page

o. DosFreeSeg Change
8 [USHORT DosFreeSeg(se/)

SEL se/; /. segment selector ./

o Parameters

[

The DosFreeSeg function frees the specified memory segment. This function
accepts selectors for memory segments, shared-memory segments, huge
memory segments, aliased code segments, and resource segments allocated by
DosGetResource_ DosFreeSeg frees a shared-memory segment after the segment e is freed by the last process accessing it. DosFreeSeg frees the code-segment
selector for aliased code segments, but the corresponding data-segment selector
remains valid until it is freed.

The DosFreeSeg function is a family API function.

sel Specifies the segment to free.

o Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

o Comments

f) Restrictions

o Example

0See Also

CI!> Changes

ERRORACCESSJ)ENIED

DosFreeSeg can be issued from ring 2, but the segment to free must be a ring-3
segment.

DosFreeSeg should not be used to free resource segments allocated by the
DosGetResourcel function. To free those segments, use the DosFreeResource
function.

In real mode, the following restriction applies to the DosFreeSeg function:

• A code-segment selector (created by using the DosCreateCSAlias func
tion) and the corresponding data-segment selector are the same. Freeing
one frees both.

This example allocates three segments of memory, then calls the DosFreeSeg
function to free the memory:
SEL •• 1;
DosAllocHuge (3, 200. &s.l. 5, SEG_NONSHARED);

Dosrr.aSeg(sal) ;

DosAllocHuge, DosAllocSeg, DosAllocShrSeg, DosCreateCSAlIas,
DosFreeResource, DosGetResource, DosGetResourceZ

DosFreeSeg should not be used to free segments allocated by the
DosGetResourcel function.

Chapter 1: Introduction 5
gi\r~:i!t~l~Ju!!l!~n~U!fSJ'fd!mliUltf,§i§''HNi~~aifmHiii~~fllI~fIlm~imliISiiii~mI~i:!i!i!mitRiWi[~nmtmr.j!m~~

These are the elements shown in Figure 1.1:

1 The name of the item and its MS OS/2, version 1.2, status (new, change, or
correction). The name of the function, message, or structure appears on the left.
Its MS OS/2, version 1.2, status is given on the right.

2 The function, message, or structure syntax. The syntax specifies the number of
parameters or fields and gives the type of each. It also gives the order (from left
to right) that parameters must be pushed on the stack. Comments to the right
briefly describe the purpose of the parameter.

3 A description of the function, message, or structure, including its purpose and
details of operation.

4 A full description of each parameter or field, including permitted values and
related structures.

5 A description of the return value, including possible error values.

6 General comments about how the function, message, or structure can be used.

7 Restrictions that affect how the function operates in real mode.

8 An example showing how the function or message can be used to accomplish a
simple task.

9 A list of related functions and messages.

10 A summary of the item's changes or corrections for MS OS/2, version 1.2.

1.2.1 C Format
In this manual, the syntax for MS OS/2 functions is given in C-Ianguage format.
In your C-Ianguage sources, the function name must be spelled exactly as given
in the syntax, and the parameters must be used in the order given in the syntax.
This syntax also applies to Pascal program sources.

The following example shows how to call the DosBeep function in a C-Ianguage
program:

/* Playa note for 1 second. */

DosBeep(660,
1000);

1.2.2 MS OS/2 Include Files

/* 660 cycles-per-second */
/* play for 1000 milliseconds */

This manual uses many types, structures, and constants that are not part of stan
dard C language. These items, designed for MS OS/2, are defined in the MS
OS/2 C-Ianguage include files provided with the Microsoft OS/2 Presentation
Manager Softset and the Microsoft OS/2 Presentation Manager Toolkit.

6 Microsoft Operating System/2 Programmer's Reference, Vol. 4
~iFsim~~i.mi!l!l~mmU!iilm~gliJ!;gml§.jJf15jf!l.1mii~!amL~iSllml~iIUiilm!tlJ~i[:ggi5ill~lf!f:!§ilSiml~lffi~~~~n§iiii!~~!~msl!!1!t

In C-Ianguage programs, the #include directive specifying os2.h, the MS OS/2
C-Ianguage include file, can be placed at the beginning of the source file to
include the definitions for the special types, structures, and constants. Although
there are many MS OS/2 include files, the os2.h file contains the additional
#include directives needed to process the basic MS OS/2 definitions.

To speed up processing of the MS OS/2 C-Ianguage include files, many
definitions are processed only if the C-Ianguage program explicitly defines a
corresponding include constant. An include constant is simply a constant name,
with the prefix INCL_, that controls a portion of the include files. If a constant
is defined using the #define directive, the corresponding MS OS/2 definitions
are processed. For a list of the include constants and a description of the MS
OS/2 system functions they enable, see the Microsoft Operating System/2
Programmer's Reference, Volume 1.

1.2.3 MS OS/2 Calling Conventions
You must know MS OS/2 calling conventions to use MS OS/2 functions in other
high-level languages or in assembly language. MS OS/2 functions use the Pascal
(sometimes called the PLM) calling convention for passing parameters, and they.
apply some additional rules to support dynamic-link libraries. The following rules
apply:

• You must push the parameters on the stack. In this manual, each func
tion description lists the parameters in the order they must be pushed.
The left parameter must be pushed first, the right parameter last. If a
parameter specifies an address, the address must be a far address; that
is, it must have the form selector:offset. The selector must be pushed
first, then the offset.

• The function automatically removes the parameters from the stack as it
returns. This means the function must have a fixed number of parame
ters.

• You must use an intersegment call instruction to call the function. This
is required for all dynamic-link-library functions.

• The function returns a value, possibly an error value, in either the ax
register or the dx:ax register pair. Only the di and si register values are
guaranteed to be preserved by the function. MS OS/2 system functions
may preserve other registers as well, but they do not preserve the flags
register. The contents of the flags register are undefined; specifically, the
direction flag in the register may be changed. However, if the direction
flag was zero before the function was called, it will be zero after the
function returns.

Chapter 1: Introduction 7
H~lml~~IP.iUJl~.l!mum~!!i~liii3t51~~~~lmstmm!ill!l!!~!i~ffi~~ilmala~B!!~~!~;!iiiimi!ii~~I~;;!mllr;l1~I:2ISi!iF:ffimf.!

The following example shows how MS OS/2 calling conventions apply to the
DosOpen function in an assembly-language program:

EXTRN DOSOPEN:FAR
name db
hFile dw

"abc", 0
o

usAction dw

push
push
push
push
push
push
push
push
push
push
push
push
push
call

ds
offset name
ds
offset hFile
ds
offset usAction
o
100
o
0010H
0041H
o
o
DOSOPEN

o

filename to open

address of file handle

address to store action taken

size of new file 0100H

file's attribute
create file if it does not exist
open file for writing, share with all
reserved

The following example shows how to call the same DosOpen function in a C
language program. In C, the DosOpen function name, parameter types, and con
stant names are defined in os2.h, the MS OS/2 C-Ianguage include file.
include <os2.h>

HE'ILE hflle;
USHORT usAction;

DosOpen ("abc",
&hfile,
&usAction,
100L,
FILE_NORMAL,
FILE_CREATE,
OPEN_SHARE_DENYNONE I
OPEN_ACCESS_WRITEONLY,
OL) ;

1* filename to open
I' address of file handle
I' address to store action
1* size of new file
I' file's attribute
1* create file if it does

1* share with all
1* open for, writing
1* reserved

1.2.4 Bit Masks in Function Parameters

*1
*1

taken * I
*1
*1

not exist *1
*1
*1
*1

Many MS OS/2 system functions accept or return bit masks as part of their
operation. A bit mask is a collection of two or more bit fields within a single '
byte, or a short or long value. Bit masks provide a way to pack many Boolean
flags (flags whose values represent on/off or true/false values) into a single
parameter or structure field. In assembly-language programming, it is easy to
individually set, clear, or test the bits in a bit mask by using instructions that
modify or examine bits within a byte or a word. In C-Ianguage programming,
however, the programmer does not have direct access to these instructions, so
the bitwise AND and OR operators typically are used to examine and modify the
bit masks.

Because this manual presents the syntax of MS OS/2 system functions in C
language syntax, it also defines bit masks in a way that is easiest to work with
using the C language: as a set of constant values. When a function parameter is a
bit mask, this manual provides a list of constants (named or numeric) that
represent the correct values used to set, clear, or examine each field in the bit

8 Microsoft Operating System/2 Programmer's Reference, Vol. 4
Ih~iiEl~'miffi~fA!~i!rnI~F.;;1~n.~n~~~!e.i~liit~ii~a:.':d&!l5Uti~~r~Eim.~mli~iSiesiifiH~n~~lf;muf~mrtfl.m!Umlii§i!i1lnlit!!

mask. For example, the lbType field of the VIOMODEINFO structure in the
VioSetMode function specifies three values: VGMTJ)ISABLEBURST,
VGMT_GRAPHICS, and VGMT_OTHER. These represent the "set" values of
the first three fields in the bit mask. Typically, the description associated with
the value explains the result of the function if the given value is used (that is,
when the corresponding bit is set). Generally, the opposite result is assumed
when the value is not used. For example, using VGMT_GRAPHICS in the
lbType field enables graphics mode; not using it disables graphics mode.

1.2.5 Structures
Many MS OS/2 system functions use structures as input and output parameters.
This manual defines all structures and their fields using C-Ianguage syntax. In
most cases, the structure definition presented is copied directly from the C
language include files provided with the Microsoft C Optimizing Compiler. Occa
sionally, an MS OS/2 furiction may have a structure that has no corresponding
include-file definition. In such cases, this manual gives an incomplete form of the
C-Ianguage structure definition to indicate that the structure is not already
defined in an include file.

1.3 Naming Conventions
In this manual, all parameter, variable, structure, field, and constant names con
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func
tion parameters and structure fields. These conventions are also used in most
MS OS/2 sample program sources to make the sources more readable and infor
mative.

1.3.1 Parameter and Field Names
With MS OS/2 naming conventions, all parameter and field names consist of up
to three elements: a prefix, a base type, and a qualifier. A name always consists
of at least a base type or a qualifier. In most cases, the name also includes a
prefix.

The base type, always written in lowercase letters, identifies the data type of the
item. The prefix, also written in lowercase letters, specifies additional informa
tion about the item, such as whether it is a pointer, an array, or a count of
bytes. The qualifier, a short word or phrase written with the first letter of each
word uppercase, specifies the purpose of the item.

There are several standard prefixes and base types. These are used for the data
types most frequently used with MS OS/2.

Chapter 1: Introduction 9
W.i£i/mi~i~i§iEi~;tme!emig{il~it'l1:~m§!mJtSiiS!mm!~I!!mmi~l~ilU.~I!t!i~ljgjlli'~1I!liimJiWia!lh1lml~ulIMtilllffi!iru~~I~!I!~!:f:ti

1.3.1.1 Prefixes
The following standard prefixes are used in MS OS/2 naming conventions:

Prefix

p

np

a

c

h

off

id

Description

Pointer. This prefIX identifies a far, or 32-bit,
pointer to a given item. For example, pch is a far
pointer to a character.

Near pointer. This prefix identifies a near, or 16-bit,
pointer to a given item. For example, npch is a near
pointer to a character.

Array. This prefix identifies an array of two or more
items of a given type. For example, ach is an array
of characters.

Index. This prefix identifies an index into an array.
For example, ich is an index to one character in an
array of characters.

Count. This prefix identifies a count of items. It is
usually combined with the base type of the items
being counted instead of the base type of the actual
parameter. For example, cch is a count of charac
ters even though it may be declared with the type
USHORT.

Handle. This prefix is used for values that uniquely
identify an object but that cannot be used to access
the object directly. For example, hfile is a file han
dle.

Offset. This prefix is used for values that represent
offsets from the beginning of a buffer or a structure.
For example, off is the offset from the beginning of.
the given segment to the specified byte.

Identifier. This prefix is used for values that identify
an object. For example, idSession is a session
identifier.

1.3.1.2 Base Types
The following standard base types are used in MS OS/2 naming conventions:

Base type

f

ch

Type/Description

BOOL. A 16-bit flag or Boolean value. The qualifier
should describe the condition associated with the
flag when it is TRUE. For example, fSuccess is
TRUE if successful, FALSE if not; fError is TRUE
if an error occurs and FALSE if no error occurs.
For objects of type BOOL, a zero value implies
FALSE, a nonzero value implies TRUE.

CHAR. An 8-bit signed value.

10 Microsoft Operating System/2 Programmer's Reference, Vol. 4
mi¥:iiiiiiS_~~~:a;ie!:n/i!il~fi~1fimi~~~m5i~i~_~~ff~.!'2:!liJi.d!:i~liiilsniifm&!lf~igs;!!Him-iiiiiiimi!i§ffi~iwiif~'!iiliUn

Base type

s

uch

us

ul

b

sz

fb

fs

fI

sel

Type/Description

SHORT. A 16-bit signed value.

LONG. A 32-bit signed value.

UCHAR. An 8-bit unsigned value.

USHORT. A 16-bit unsigned value.

ULONG. A 32-bit unsigned value.

BYTE. An 8-bit unsigned value. Same as uch.

CHAR[]. An array of characters, terminated with a
null character (the last byte is set to zero).

UCHAR. An array of flags in a byte. This base type
is used when more than one flag is packed in an
8-bit value. Values for such an array are typically
created by using the logical OR operator to com
bine two or more values.

USHORT. An array of flags in a short (16-bit
unsigned value). This base type is used when more
than one flag is packed in a 16-bit value. Values for
such an array are typically created by using the logi
calOR operator to combine two or more values.

ULONG. An array of flags in a long (32-bit unsigned
value). This base type is used when more than one
flag is packed in a 32-bit value. Values for such an
array are typically created by using the logical OR
operator to combine two or more values.

SEL. A 16-bit value used to hold a segment selec
tor.

The base type for a structure is usually derived from the structure name. An MS
OS/2 structure name, always written in uppercase letters, is a word or phrase
that describes the size, purpose, and/or intended content associated with the
type. The base type is typically an abbreviation of the structure name. The fol
lowing are the base types for the structures described in this manual:

avldt fsinf matlf ptrdd
cbnd fsqbf mlectZ sbcd
della fsts2 mlefrd stsdata
eaop fUc mlemrg swblk
efd fur mleovr ti
fat gea mlesrch viocreg
fea geaZ nmpsmst viofcsz
feal hci param vioin
findbuf2 h ill it pres viomi
flc ht prfpro viosett
fir kbci progde viosz
fm kbhw progt viouline
frwc Idtaddr progti wprm
fsc lis ptrcbf

Chapter 1: Introduction 11
ift.·mmlliimruwii~:;j;miS!rtm~!rID~im~~millii~~ffif:j~~m!~~rtmjih~~l~.§Ullffil~iil!!m;~~!~mif.tiSm:iiii~~!iiigiIl~;1il~~Iif~il!I!~

1.3.2 Constant Names
A constant name is a descriptive name for a numeric value used with an MS
OS/2 function. All constant names are written in uppercase letters and have a
prefix derived from the name of the function, object, or idea associated with the
constant. The prefix is followed by an underscore (_) and the rest of the con
stant name, which indicates the meaning of the constant and may specify a
value, action, color, or condition. A few common constants do not have
prefixes-for example, NULL is used for null pointers of all types, and TRUE
and FALSE are used with the BOOL data type.

1.4 Notational Conventions
The following notational conventions are used throughout this manual:

Convention

bold

italics

monospace

Meaning

Bold type is used for keywords-for example, the
names of functions, data types, and structures.
These names are spelled exactly as they should
appear in source programs.

Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

Monospace type is used for example program
code fragments.

Chapter

2

Overviews
2.1 Introduction 17

2.2 Installable File Systems 17
2.2.1 About Installable File Systems............................. 17

2.2.1.1 File-System Functions... 18
2.2.1.2 File-System Volume..... 18
2.2.1.3 Local and Remote File Systems 19
2.2.1.4 Pseudo-Character Device...... 19
2.2.1.5 Filename Conventions............................. 20
2.2.1.6 Filenames in DOS-Compatibility Mode.......... 20
2.2.1.7 Filenames in User Input 20
2.2.1.8 Metacharacters in Filenames..................... 21
2.2.1.9 File-System Errors... 22

2.2.2 Summary. 22

2.3 Extended Attributes... 23
2.3.1 About Extended Attributes................................. 23
2.3.2 Using Extended Attributes........ 23

2.3.2.1 Naming Conventions.............................. 24
2.3.2.2 Data-Type Conventions......... 24

2.3.3 Standard Extended Attributes.............................. 25
2.3.3.1 .TYPE.. 25
2.3.3.2 .KEYPHRASES................................... 25
2.3.3.3 . SUBJECT 25
2.3.3.4 .COMMENTS 26
2.3.3.5 .HISTORY... 26
2.3.3.6 .VERSION...... 26
2.3.3.7 .ICON .. 26
2.3.3.8 .ASSOCTABLE 26
2.3.3.9 .HPFSNAME................ 27
2.3.3.10 Supporting Extended Attributes.................. 27
2.3.3.11 Multivalue Data-Type Fields...... 27

2.3.3.12 Multivalue, Multitype Attributes..... 27
2.3.3.13 Multivalue, Single-Type Attributes............... 28
2.3.3.14 ASN .1................................... 28
2.3.3.15 Include Extended-Attribute Type..... 28

2.3.4 Summary... 28

2.4 Profile Manager.. 28
2.4.1 About Profile Manager 28
2.4.2 Using Profile Manager 29

2.4.2.1 Creating or Opening an Initialization File....... 29
2.4.2.2 Reading and Writing Settings.......... 30
2.4.2.3 Identifying the Initialization Files................ 30
2.4.2.4 Creating Groups and Program Lists.............. 30

2.4.3 Summary.............................. 31

2.5 Help Manager ~... 32
2.5.1 About Help Manager .. 32
2.5.2 U sing Help Manager in Applications 33

2.5.2.1 Creating a Help Instance....... 33
2.5.2.2 Creating a Help Table. 34
2.5.2.3 Creating a Help Library.. 35
2.5.2.4 Using the F1 Key....................... 35
2.5.2.5 Using the Help Menu.................. 36
2.5.2.6 Using Help Buttons 37
2.5.2.7 Destroying a Help Instance.... 38
2.5.2.8 Handling Errors 38

2.5.3 Help Hooks and Help Manager............................ 38
2.5.4 Summary.. 39

2.5.4.1 Functions ,.................... 39
2.5.4.2 Messages Sent by Help Manager...... 39
2.5.4.3 Messages Sent to Help Manager. 39

2.6 Combination-Box Controls.. 40
2.6.1 About Combo Boxes .. 40
2.6.2 Using Combo Boxes ... 41
2.6.3 Summary. 42

2.6.3.1 Combo-Box Styles...................... 42
2.6.3.2 Messages Sent to a Combo Box ~......... 42
2.6.3.3 Messages Sent by a Combo Box.................. 42

2.7 Multiple-Line Entry Fields 43
2.7.1 About Multiple-Line Entry Fields 43

2.7.1.1 Editing MLE Text 43

2.7.1.2 Formatting MLE Text 44
2.7.1.3 Importing and Exporting MLE Text 45
2.7.1.4 Copying and Pasting MLE Text.................. 46
2.7.1.5 Searching and Replacing MLE Text 46
2.7.1.6. MLE Notification Codes 46
2.7.1.7 MLE Styles 47

2.7.2 Using Multiple-Line Entry Fields 47
2.7.3 Summary... 48

2.7.3.1 MLE Styles. 48
2.7.3.2 Messages Sent to an MLE 48
2.7.3.3 Messages Sent from an MLE 50

Chapter 2: Overviews 17
~1i1f~ll§ls~~tml~iafi!i!U~m!lru!iir~ifiilf~=ili!l~rnJi~~Ii!ru!!i~,iur~a:r.~!ID§:ffiil~!~!i~U;iffi:S\P.Eiii3ijF~!an~iI.~m.1§jil~illijlm-m§i

2.1 Introduction
This chapter describes the MS OS/2 system functions in individual-topic sec
tions. Each section describes a portion of MS OS/2 that lets an application carry
out a specific task or set of related tasks. For example, the section about the
multiple-line entry field (MLE) defines basic MLE terms, describes the role of
multiple-line entry-field messages, and illustrates how to use those messages.

Each topic section in this chapter gives a general description and programming
samples. Each section discusses the purpose and operation of pertinent MS
OS/2 functions. The programming samples show how to usc those MS OS/2
functions in applications to carry out useful tasks.

In many cases, it is assumed that you have basic knowledge of some other por
tions of MS OS/2. Each section lists the prerequisites for understanding the con
cepts and terms described in that section.

2.2 Installable File Systems
This section describes how MS OS/2 enables programs to use installable file sys
tems. A file system is the combination of software and hardware that supports
storing information on a storage device. An installable file system is a file system
whose software can be installed when the operating system starts. MS OS/2 sup
ports installable file systems and permits users to have multiple file systems
active at the same time.

This section also describes some of the MS OS/2 functions that let programs
create, read, and write data files in installable file systems. Because installable
file systems are not available with releases of MS OS/2 prior to version 1.2 or
with MS-DOS®, versions 2.0 through 3.3, programs that use the family applica
tion programming interface (family API) cannot use functions that are specific to
installable file systems.

2.2.1 About Installable File Systems
In MS OS/2, version 1.2, users install a file system by specifying the file-system
components in the config.sys file. The file-system software consists of device
drivers that access storage devices and dynamic-link libraries that control the
format of information on a device and manage the flow of data to and from the
device. The user must use the device command to specify the device driver and
the irs command to specify the dynamic-link library. MS OS/2 loads the device
driver and dynamic-link library and initializes a specific device for use as a file
system.

MS OS/2, version 1.2, has two file systems: the file allocation table (FAT) file
system and the high-performance file system (HPFS). These file systems define
how information is organized on the storage devices. Both file systems create
data files supported by one or more tables that specify the location and size of
the data files on the storage device.

The file allocation table (FAT) file system is the default file system for MS
OS/2; it does not need to be installed. The FAT file system, used in previous
releases of MS OS/2 and also in MS-DOS, controls storage of data files for
fixed and floppy disks. The FAT file system is hierarchical, allowing multiple
directories on the disk. Each directory can contain one or more files. The

18 Microsoft Operating System/2 Programmer's Reference, Vol. 4
i~iil!~.6!~~§:~iiml.f;tOOlreilf:~fre!tirniSll~!i.i~~ffi1ltJffiem!;1~s..lm!m!lW:~Jf~llii!~~!~~~l!~lal~iiJim~im~'eff~~lIili~~lm~li~l:

distinguishing feature of the FAT file system is its 8.3 filename convention.
Under this convention, the filename consists of a filename (up to eight charac
ters), a separating period (.), and a filename extension (up to three characters).

The high-performance file system (HPFS) is an installable file system for MS
OS/2. It is an hierarchical file system and allows for multiple directories. HPFS
controls storage of data for fixed disks. Filenames under HPFS can be any prac
tical length and can contain characters that are not valid for the FAT file sys
tem, for example, spaces and underscores (_). In many cases, accessing files
under HPFS is faster than accessing similar files under the FAT file system.

A user can choose either or both file systems. Programs must be able to work
with any file system. Fortunately, MS OS/2 provides a common set of file-system
functions that are not dependent upon a particular file system; it also gives
guidelines for working with file systems, such as specific filename conventions.

2.2.1.1 File-System Functions
MS OS/2 provides a standard set of file-system functions. This means that pro
grams can create, open, read, write, copy, and delete files and directories by
using the same functions regardless of which file system is used. When a pro
gram calls a file-system function, MS OS/2 passes the request to the dynamic
link library that supports the file system. Most file-system processing, such as
validating filenames, is carried out by the dynamic-link library. If an error
occurs, the file system returns the error to MS OS/2, which then passes it back
to the calling program.

Occasionally, a file system may extend the standard set of file-system functions
by providing file-system control fuilctions. The control functions are specific to
the given file system. A program can call a control function by using the
DosFSCtl function, which directs MS OS/2 to pass the control-function informa
tion to the dynamic-link library for the particular file system.

2.2.1.2 File-System Volume
MS OS/2 allows more than one file system on a single storage device. If the
device can have more than one logical partition (or volume), each partition can
be initialized as an MS OS/2 partition and given a valid MS OS/2 file system.
For each volume, MS OS/2 determines the type of file system the first time the
volume is accessed by a function or when the media in the drive changes. After
that, MS OS/2 manages all input and output to that volume by using the
corresponding dynamic-link library for the file system.

MS OS/2 uses the volume label and serial number to ensure that the media in
the drive does not change while there are outstanding requests for input and out
put. Each volume has a volume label and a 32-bit volume serial number, stored
in a reserved location in logical sector zero at the time of formatting. If the
volume label and serial number do not match, MS OS/2 signals the critical-error
handler to prompt the user to insert the volume that has the specified serial
number and label. MS OS/2 maintains the connection between the media and
the volume label and serial number until all open files on the volume are closed
and all search references and cache-buffer references are removed. The system
redetermines the type of the file system and the volume label and serial number
for the volume only when the media changes.

Chapter 2: Overviews 19
'~w.\~i!f.ie!!l!;·Usi~~fijl~1R~1l;1=~~m~E5i~~~i§!§l~~llP!rJ;}iiffi~~nllii~i!Uf!~~mi§ili!~i?i!ru!§gali:1r~I~I~i~~~~i§U~ll§l

2.2.1.3 Local and Remote File Systems
Installable file systems work with a variety of storage devices. A file system on a
local device such as a disk drive or virtual disk is called a local file system. A file
system on a remote device such as a disk drive on another computer is called a
remote file system. A program can establish a connection to a local or a remote
file system by using the DosFSAttach function.

For a local file system, MS OS/2 uses a block device driver to handle input and
output to the device. MS OS/2 automatically connects most (if not all) local file
systems when it starts. However, a program can connect and disconnect (some
times called mount and dismount) additional file systems as needed.

For a remote file system, the corresponding device driver typically accesses a
communications or network device instead of a block device driver used to
access disk hardware. Typically, the actual storage device is located on another
computer, and the two computers communicate requests and data through a net
work connection. A program can connect a remote file system to a drive letter
by using the DosFSAttach function. Once the connection is made, the program
can access directories and files on the remote device simply by using the
assigned drive letter, treating the remote device as if it were on the same com
puter.

2.2.1.4 Pseudo-Character Device
A program can attach a device name to a file system and use the file system as a
pseudo-character device (also called a single-file device). Attaching a device
name to a file system lets a program open the device associated with the file sys
tem as if it were a character device (for example, a serial port) and read
from and write to the device by using the DosRead and DosWrite functions.
Unlike with a character device, a program can use the DosChgFilePtr and
DosFileLocks functions for working with a pseudo-character device. An MS
OS/2 pseudo-character device name is a null-terminated string in the format of
an MS OS/2 filename in a subdirectory called \dev.

A file system that can be attached to a pseudo-character device is typically asso
ciated with a single disk file or with a special storage device such as a tape drive.
The file system establishes a connection with the device and transfers requests
and data between MS OS/2 and the device. The following example attaches the
device associated with the file system bcrvmpcl to the pseudo-character device
named \devVzost:

BYTE bData[];
USHORT cbData;

DosFSAttach("\dev\host", "bcrvmpcl", bData, cbData, 0);

If the program successfully attaches the file system, the program can then open
the file \devVzost by using the DosOpen function, read host-created data by using
the DosRead function, and write data and commands to the host by using the
DosWrite function. This example assumes that the name bcrvmpcl corresponds
to an installable file system and that the file system can perform the necessary
host communication and translation.

20 Microsoft Operating System/2 Programmer's Reference, Vol. 4
Uiirtm\fiiiJ~mYiR1~~~iMtiifilF.ilnmgm_mi~gler;l:mm~I!!it"ff§iimmf!~mp.!fmmli!ii!fi.~liSii~!ii~~iiilmiiiHf"am:miiAinemil§

2.2.1.5 Filename Conventions
Filename conventions are the rules used to form names that uniquely identify
files in a given file system. Although each installable file system can have specific
rules about how individual components in a directory or filename are formed, all
file systems follow the same general conventions for combining components. For
example, the FAT file system requires that file and directory names have the 8.3
filename format, HPFS allows names to be any length, but both file systems use
the backslash (\) character to separate directory names and the filename when
forming a path.

When creating names for directories and files or when processing names sup
plied by the user, programs should follow these general rules:

1 Process a path as a null-terminated string. A program can determine maximum
length for a path by using the DosQSyslnfo function.

2 Use any character in the current code page for a name, but do not use a path
separator, a character in the range 0 through 31, or any character explicitly disal
lowed by the file system. Although a name can contain characters above 127, a
program must be able to switch code pages if necessary to access the
corresponding file.

3 Compare names using a case-insensitive comparison. Names such as ABC, Abc,
and abc are considered to be the same name .

. 4 Use the backslash (\) andlor the forward slash (I) to separate components in a
path. No other character is accepted as a path separator.

5 Use the dot (.) as a directory component in a path to represent the current
directory.

6 Use two dots (..) as a directory component in a path to represent the parent of
the current directory.

7 Use a period (.) to separate components in a directory name or filename. Unless
explicitly defined by a file system, there are no restrictions on the number of
components in a name.

2.2.1.6 Filenames in DOS-Compatibility Mode
For compatibility with existing DOS 3.x programs, all file systems support the
FAT file system's 8.3 filename format. This means that programs running in
DOS-compatibility mode can access files on non-FAT file systems if the
filenames have the 8.3 format. To guarantee this rule, MS OS/2 automatically
applies the 8.3 truncation rules to all filenames given in file-system requests from
DOS-compatibility mode.

2.2.1.7 Filenames in User Input
Users often supply filenames as part of a program's command line or in response
to a prompt from the program. Traditionally, users have been able to supply
more than one filename on the command line or in a prompt by separating the
names with certain characters, such as a blank space. In some file systems,
however, traditional separators can be used as valid filename characters. This
means that some additional conventions are required to ensure that a program
processes all characters in a name.

Chapter 2: Overviews 21
lm;iiii't!!1~Iiif;~Jin!§~i~~~'ii§iitill§~m!ml~:w.~e!$~ru!lmlmmil!i~iii:!Famslm!,mImISiSilI1ailml~~Jm!m$JmiiiI!{§ilHlm!t51:;w

When a program processes arguments (including filenames) from its command
line, the program should treat the double quotation mark (") and the caret (") as
quotation characters. All characters between the starting and closing double
quotation marks should be processed as a single argument. The character
immediately following the caret should be processed as part of the current argu
ment. In both cases, the quotation characters are discarded and not treated as
part of the final argument.

When a program processes two or more filenames from a dialog box or other
prompt, it expects the user to enter each filename on a new line. For example, a
Presentation Manager application should use a multiple-line entry field to prompt
for multiple filenames. This makes the use of quotation characters unnecessary.

When a program is started from File Manager, File Manager may construct a
command line for the program. If the command line includes filenames, File
Manager separates each argument with a space character and marks the end of
the argument list with two null characters. Programs that start other programs by
using the DosExecPgm function also can pass arguments using this convention
or by using quotation characters. In practice, most programs receive a command
line as a single, null-terminated string. Therefore, programs that use the Dos
ExecPgm function should prepare command lines as a single string with any
filenames in the string enclosed in quotation marks.

2.2.1.8 Metacharacters in Filenames
To give the user a shortcut to entering long lists of names, programs that accept
more than one filename on their command line can allow metacharacters in
filenames. The metacharacters, the asterisk (*) and the question mark (?),
represent placeholders in a filename. Although a name that contains metacharac
ters is not a complete filename, a program can use functions, such as DosFind
First and DosEditName, to expand the name (replace the metacharacters) to
create one or more valid filenames.

A program can expand a name with metacharacters to a list of filenames by
using the DosFindFirst function. The asterisk (*) matches one or more charac
ters, including blanks. The question mark (?) matches one character, unless that
character is a period (.). To match a period, the original name must contain a
period.

A program can create a new filename from an existing name by using the
DosEditName function. This function takes a template (a name with metacharac
ters) and expands it, using characters from an existing name. An asterisk (*) in
the template directs the function to copy all characters in the existing name until
it locates a character that matches the character following the asterisk. A ques
tion mark (?) directs the function to copy one character unless that character is
a period. The period (.) in the template directs the function look for and move
to the next period in the existing name, skipping any characters between the
current position and the period.

The metacharacters are illegal in all but the last component of a path.

22 Microsoft Operating System/2 Programmer's Reference, Vol. 4
mifi!_fi§1§iIDlf~E~!§pj~mlr:m!lfiilf!ru~!i!ralmiffif!Sl§i.~~jgj~;!I~!ll!limf_1!~li~~rrw:.ll:~MI~iif~il;~~rumli~~iU

2.2.1.9 File-System Errors
Some MS OS/2 file-system functions return the following errors:

Value

ERROR-"8AD_UNIT

ERROR_NOT~EADY

ERROR_BAD_COMMAND

ERROR-CRC

ERRORJ3AD-LENGTH

ERROR_NOT~OSJ)ISK

ERROR-OUT_OF YAPER

ERRO~WRITEYAULT

ERROR-READ_FAULT

ERROR_GENYAILURE

Meaning

The disk in the drive is write
protected.

There is a breakdown of internal
consistency in mapping between
the logical drive and the device
driver. Internal error.

The device is not ready.

There is a breakdown of internal
consistency between the expected
capability of a device driver and
its true capability.

The device driver detected a
cyclic redundancy check (CRC)
mismatch.

There is a breakdown of internal
consistency between the expected
length of a request packet and the
true length. Internal error.

The device driver detected an
error during a seek operation.

The disk is not recognized as
being manageable by MS OS/2.

The device is unable to find the
specific sector.

The printer is out of paper.

Other write-specific error.

Other read-specific error.

Other error.

There are also errors defined by and specific to the specific device driver. These
are indicated by either OxFF or OxFE in the high byte of the error code.

2.2.2 Summary
The following MS OS/2 file-system functions work with installable file systems:

DosCopy Copies a file or subdirectory.
\

DosEditName Transforms a source string using an editing string.

DosFileIO Performs file I/O (locking, unlock, seek, read, and write opera
tions).

Chapter 2: Overviews 23
~~iiiimirfi.rfilimllai~~~§!i~ienemiumie:~11i~ltimm~n~ma~i21~~i~~~!~1ij;ii!i~ftUiiL~~~~~i~fSlliL~:mWim!;

DosFindFirst2 Finds the first file that matches a specified filename and attri
butes.

DosFSAttach Attaches or detaches a drive or pseudo-character device from a
remote file system.

DosFSCtl Calls file-system functions that are not part of the standard I/O func
tions.

DosGetResource2 Retrieves a resource for a module.

DosMkDir2 Creates a directory.

DosOpen2 Opens or creates a file with extended attributes.

DosQFSAttach Queries information about an attached file system.

DosSetPathlnfo Sets information for a file or directory.

DosShutdown Shuts down the file system.

2.3 Extended Attributes
This section describes how to use extended attributes to store information about
your files and directories. Before reading this section, you should be familiar
with the MS OS/2 tHe system.

2.3.1 About Extended Attributes
Extended attributes can be thought of as a list of facts attached to a file or direc
tory. MS OS/2 stores extended attributes separate from the file or directory so
that the attributes do not affect the contents of the file or directory. An applica
tion uses extended attributes to provide a description of the tHe or directory, but
does not place the description in the tHe or directory itself.

Each extended attribute has two parts: a name and a value. The name is a null
terminated string; applications can choose any convenient name. The value is
corresponding data; 'it can be text, a bitmap, or any binary data. The application
that creates the extended attributes and the applications that read the extended
attributes must recognize the format and meaning of the data associated with a
given name.

2.3.2 Using Extended Attributes
Applications can examine, add, and replace extended attributes at any time. The
DosOpen2 function adds extended attributes to new or existing files; the Dos
MkDir2 function adds extended attributes to new directories. Any application
can read the extended attributes by using the DosQFilelnfo or DosQPathlnfo
function. Applications can also search for files that have specific extended attri
butes by using the DosFindFirst and DosFindNext functions.

A file can have any number of extended attributes. Each extended attribute can
be up to 64K long. For MS OS/2, version 1.2, the sum of all extended attributes
for a file must not exceed 64K.

24 Microsoft Operating System/2 Programmer's Reference, Vol. 4
~i$;iiiii~~=miim!gfjm!t'm:l§~~it~~~mp.§:IfI~I$iiWj!~i!i!R;$1I§"~:!!i1ii~!m!~mmEi1imimra:ilim~g;~i!imir,iTii!!iWJ@I_l~:mi

2.3.2.1 Naming Conventions
Although an application can choose any name for the extended attributes it
creates, other applications cannot read the extended. attributes unless they also
recognize the corresponding format. Because many applications use extended
attributes consisting of text, bitmaps, and other similar data, a set of names has
been adopted to help identify these formats when used in extended attributes.
An application need not be limited to this set of standard extended attributes,
but should use it as a way for many applications to access a common set of
information.

The names for all standard extended attributes use a dot (.) as a prefix. The
leading dot is considered reserved, so no application should define extended
attributes that start with a dot. Also, extended attributes that start with the char
acters $, @, &, and + are reserved for system use. To ensure that its extended
attributes are unique, an application should use the vendor and application name
as a prefix for application-specific extended attributes. For example, Microsoft
Excel would use MS EXCEL.MYSTUFF, MS EXCEL.MORESTUFF, and so
forth.

2.3.2.2 Data-Type Conventions
Extended attributes can contain any type of data. To identify the type of infor
mation, the first word of extended-attribute data should specify one of the fol
lowing data types:

Value

EATJUNARY

EAT.ASCII

EAT.J3ITMAP

EAT-METAFILE

EATJCON

EAT.-£A

EAT-MVMT

EAT-MVST

EAT.ASN1

Meaning

Binary data; the first word specifies length.

ASCII text; the first word specifies length.

Bitmap data; the first word specifies lengt~.

Metafile data; the first word specifies length.

Icon data; the first word specifies length.

ASCII name of associated data; the first
word specifies length.

Two or more consecutive extended-attribute
values; each value has a explicitly specified
type.

Two or more consecutive extended-attribute
values; all values have the same type.

ASN.1 field data.

In all, cases, the length specifies the number of bytes of data. Other values for
data types, in the range OxOOOO through Ox7FFF, can be used for user-defined
extended attributes. User-defined data should also specify the length.

For example, here is how to represent the string "Hello":

0005 Hello

Chapter 2: Overviews 25.
m!iI~~:;m!~i!!e~!a!fmaiS:;¥'ifi:~;im$Um~1Wr~m:J:ili_m:im!Siai!l§iltJm~]I!ruffJmi~lllOO~~iI;;!SiE;ia~u.IlFalEmWilf!Y.t§im

2.3.3 Standard Extended Attributes

2.3.3.1 .TYPE

The standard extended attributes are listed in the following sections. The field
format follows the data-type conventions given previously. A field can be a
multivalue or single-value field.

The .TYPE extended attribute indicates the type of file. It is similar to the ear
lier use of filename extensions. The following file types are predefined:

Plain Text
OS/2 Command File
DOS Command File
Executable
Metafile
Bitmap
Icon
Binary Data
Dynamic Link Library
C Code
Pascal Code
BASIC Code
COBOL Code
FORTRAN Code
Assembler Code
Library
Resource File

Applications can use their own type names, such as Microsoft Excel Chart. The
first words in the type name should be the name of the vendor and the applica
tion. For example, Microsoft Excel Chart, Microsoft Excel Worksheet, Lotus
1-2-3 Spreadsheet.

Entries should be ASCII. Case is important.

The performance of extended attributes is dependent on the file system. Because
some file systems store extended attributes in first-in/first out (FIFO) order, it is
important to write the .TYPE entry first so that File Manager can access, that
information quickly.

2.3.3.2 .KEYPHRASES
The .KEYPHRASES extended attribute specifies text key phrases for the file.
Such phrases can be used for a database-style search or to help the user under
stand the nature of the file.

H there is more than one key phrase, each should be stored in a separate entry
in a multivalue field. Each entry should be ASCII.

2.3.3.3 .SUBJECT
The .SUBJECT extended attribute contains a brief summary of the file's content
and/or purpose. This attribute should be less than 40 characters long.

This field should be a single-value ASCII entry.

26 Microsoft Operating System/2 Programmer's Reference, Vol. 4
~ifiii~1mmm~1!iJrJ!ffi$iW:1:i~:milffiii!l§l!m~!Il!ei~;Smm~!~if.j§jiiYiman!5t!iiWrnl~~tm![~lH~p.mfil.§iI~I!i!!mJfi1J!f!'I:'m!$i!mf!fi}n~

2.3.3.4 .COMMENTS
The .COMMENTS extended attribute contains miscellaneous notes about the
file. It can be a multivalue field and be of any type. This field is intended as a
reminder note. For example, it could contain some notes about the intent of a
file or a picture.

2.3.3.5 .HISTORY
The .HISTORY extended attribute lists the history of a file's modification. It
lists the author of the file and all subsequent changes. Each action entry should
be a separate field iil a multivalue field. Each entry should be ASCII.

The application can let the user decide when an entry is placed into the history
field, to avoid unnecessary file growth. For example, there are some cases when
it is important to note when a document is printed; however, it is probably
unnecessary to note every time the file was printed.

2.3.3.6 .VERSION

2.3.3.7 .ICON

The . VERSION extended attribute is a version number of the file format (for
example, Excel Worksheet 1).

This attribute should be ASCII or binary. It should be modified only by the
application. This attribute can also be used to indicate an application or
dynamic-link library version.

The .ICON extended attribute specifies the icon to be used for the file represen
tation, whether in File Manager or when minimized. File Manager can use the
. TYPE entry to determine the default application to run and to determine the
default icon for that type of file. If there is a .ICON entry, however, it is used
instead of the icon associated with a particular type.

If the data type is for an icon, the icon data follows. It is best to provide as
much icon information as possible. Ideally, an icon should be 64-by-64 bits in
8-color, device-independent format.

Executable files should simply store the binary icon data in this extended attri
bute. They should use the .ASSOCTABLE extended attribute to install icons
for data files.

2.3.3.8 .ASSOCTABLE
The .ASSOCTABLE extended attribute contains association data for a file. It is
created by the Microsoft Operating System/2 Resource Compiler (rc), from a
table with the following form:

ASSOCTABLE.assoctable -id
BEGIN

"type name", "extension", [flags], [icon filename]

END

The .ASSOCTABLE extended attribute contains information that associates
icons with the data files an application creates. The file-association table associ
ates icons by data type.

Chapter 2: Overviews 27
mi~l!ii~Yii!lfii!slaI1isllil~miejHn~'Hal:~~~fit2~j!ei!1~~JiiflmIl~~&Ji;i5iljiliffii~=~~llr!!¥J~J:iHii:i~iim;nimillmlllliffiliIDi~ii~?

The .ASSOCTABLE extended attribute allows an application to indicate the
type, extension, and icon for the data files it recognizes. It also contains an own
ership flag. This data can be installed automatically by File Manager.

For example, the table for Microsoft Excel could be:

"MS Excel Worksheet", "XLS", AF_DEFAULTOWNER, excel.sheet.icon
"MS Excel Chart", "XLC", AF_DEFAULTOWNER, excel.chart.icon

The flag entry indicates if the application owns or merely recognizes the type.
The icon file contains an icon for that data type.

2.3.3.9 .HPFSNAME
The .HPFSNAME attribute is used when an application attempts to write a
file with a long name to a file system that does not support long names. The
application should generate a unique short name for the file and notify the user
of the new short name. It should then save th~ original (long) name in the
.HPFSNAME extended attribute.

When a file is copied from a system that uses short names to a system that uses
long names, the application should check the .HPFSNAME extended attribute.
If a value is present, the application should allow the file to be renamed to a
long name. The .HPFSNAME extended attribute should then be removed.

2.3.3.10 Supporting Extended Attributes

To support extended attributes, applications should do the following:

1 Fill in the .ASSOCTABLE extended attribute for all major file types that the
application recognizes or uses.

2 Fill in the .ICON extended attribute for executable files.

3 Set the .TYPE field for data files it creates.

4 Fill in and use the .HPFSNAME extended attribute as appropriate.

5 Support .HISTORY and .VERSION.

6 Support the other standarq extended attributes as appropriate.

2.3.3.11 Multivalue Data-Type Fields
In many cases, extended attributes need to store more than a single piece of
information. For example, an extended attribute can store a list of names of peo
ple to whom a mail document was sent. The multivalue formats specify how indi
vidual pieces of data are stored.

In a multivalue field, the first entry in the list is assumed to be the default. For
example, suppose the .TYPE entry contains Text and C Code. Text is the
default type. If C Code is the first entry in the list (C Code and Text), then C
Code is the default type.

2.3.3.12 Multivalue, Multitype Attributes
The EAT ~VMT type allows a single extended attribute to contain several
pieces of information; each piece of information can be a different type.

28 Microsoft Operating System/2 Programmer's Reference, Vol. 4
~ilflliilmllmb~i!ai~~i!aii§~iit;;lml~!in~I~~:!t!l~!m!m!!if::=:fii!i!lii~lSi~lil4imm!r;{~ll!iiiiiiIJJ!Wlmm!~!~li'Jmi~~f:Si!i!~

2.3.3.13 Multivalue, Single-Type Attributes

2.3.3.14 ASN.1

The EAT.-MVST type sets up a multivalue field in which each piece of informa
tion is of the same type.

The EAT_ASNI type is an ISO standard for describing multivalue data streams.

2.3.3.15 Include Extended-Attribute Type
The EAT~A type indicates that the data is continued in another extended
attribute entry associated with the file. Among other things, this allows for
extended attributes greater than 64K (but not exceeding the limit per file).

2.3.4 Summary
The following MS OS/2 functions create and manage extended attributes:

DosFindFirst2 Finds the first file that matches the specified filename and attri
butes.

DosMkDir2 Creates a directory.

DosOpen2 Opens or creates a file with extended attributes.

DosQFileInfo Retrieves file information, including the date and time the file
was created, the date and time it was last accessed, the date and time it was last
written to, its size, and its attributes. It also returns information about a file's
extended attributes.

DosQPathInfo Retrieves information about a file or directory .

. DosSetFileInfo Sets information about a file, including the date and time the
file was created, the date and time it was last accessed, the date and time it was
last written to, the size of the file, and its attributes. It can also set extended
attributes for a file.

DosSetPathInfo Sets information for a file or directory.

2.4 Profile Manager
This section describes how to use the MS OS/2 Profile Manager to store and
retrieve information about your application and the system from the MS OS/2
initialization files. Before reading this section, you should be familiar with the
MS OS/2 initialization files.

Profile Manager functions replace the MS OS/2 initialization-file functions
described in the Microsoft Operating System12 Programmer's Reference,
Volume 1.

2.4.1 About Profile Manager
Profile Manager enables applications to create their own initialization files and to
access the MS OS/2 initialization files, os2.ini and os2sys.ini. An initialization
file is a convenient place to store information between sessions. Just as MS
OS/2 uses the os2.ini and os2sys.ini files to store configuration information for

Chapter 2: Overviews 29
;1~lii~!a~~.§itl§lmfim!i~_i!~~~i§HI~~ii~n~m~!.rtii~llli~i!~mre;flU~'Hail~m1~Ut1~t1(!~1fm:~rnlilil~~~rnJffli~lIrJis~

when it starts, an application can create initialization files that store information
it uses to initialize windows and data when it starts.

Because all initialization files are binary files, the user cannot view or edit them
directly. A file consists of one or more sections; each section contains one or
more settings, or keys. Each key consists of two parts: a name and a value. Both
section names and key names are null-terminated strings. A key value can be a
null-terminated string, a null-terminated string representing a signed integer, or
individual bytes of data.

The MS OS/2 initialization files, os2.ini and os2sys.ini, contain sections and set
tings used by the MS OS/2-system applications (such as Desktop Manager, Con
trol Panel, and Print Manager). Although applications can read settings from the
MS OS/2 initialization files, only rarely will an application need to change a set
ting. One common task that does change the settings in the MS OS/2 initializa
tion files is adding a group and program list to Desktop Manager. For example,
the installation program for an application can create a new group for the appli
cation and its related utilities by using Profile Manager functions.

Once an initialization file is created, an application can rename, copy, move,
and delete the file just like any other file. Although an application can also read
and write to the file as if it were a binary file, the application should always use
Profile Manager functions to access the contents of the file.

2.4.2 Using Profile Manager
You can use Profile Manager functions in character-based MS OS/2 programs as
well as in Presentation Manager applications. A thread that calls Profile Manager
functions must have initialized an anchor block by using the Winlnitialize func
tion. You create an initialization file or open an existing one by using the
PrfOpenProfile function. You then store and retrieve information from the file
by using functions such as PrfQueryProfileString and PrfWriteProfileString. You
can also create and manage groups and program lists by using functions such as
PrfAddProgram and PrfCreateGroup.

2.4.2.1 Creating or Opening an Initialization File
You can create an initialization file or open an existing initialization file by using
the PrfOpenProfile function. The function takes a handle to an anchor block
and a pointer to the name of an initialization file. If the file doesn't exist in the
given path, the function automatically creates an initialization file.

The following example creates an initialization file named pmtoo/s.ini in the
current directory:

HAB hab;
HINI hini;

hab = Winlnitialize(O);
if «hini = PrfOpenProfile(hab, "pmtools.ini")) == NULL)

I' initialization file not opened or created 'I

If it is successful, the PrfOpenProfile function returns a handle to the initializa
tion file. Otherwise, it returns NULL. Once you have an initialization-file han
dle, you can create new sections in the file and make new settings.

To close an initialization file, you use the PrfCloseProfile function.

30 Microsoft Operating System/2 Programmer's Reference, Vol. 4
1!fl!~~!iliI~imw!ifl~jiii~~'mm~~li!;;mmim~g_~!m~l!mitD.m!!~amt!fii~If:J~1UW~!liJRiHms!~~~R'Jli!E~f:Bi~

2.4.2.2 Reading and Writing Settings
You can read and write strings, integers, and binary data to and from an initiali
zation file. To read from or write to an initialization file, you must provide a sec
tion and a key name that specifies which setting to read or to change. When writ
ing, if there is no corresponding section and/or key name, the section and/or
key name is added to the file and assigned the given value.

The following example creates the section "My App" and the key name
"Main WindowColor" in a previously opened initialization file and assigns the
value of the RGB structure to the new setting:

HINI hini;
RGB rgb = { Oxff, OxOO, Oxoo };

PrfWriteProfileData(hini, "MyApp" , "MainWindowColor", &rgb, sizeof(RGB));

To read a setting, you can retrieve the size of the setting and then read the
setting into an appropriate buffer by using the PrfQueryProfileSize and
PrfQueryProfileData functions, as shown in the following example. This example
reads the setting "MainWindowColor" from the "MyApp" section only if the size
of the data is equal to the size of the RGB structure.

HINI hini;
ULONG cb;
RGB rgb;

PrfQueryProfileSize(hini, "MyApp" , "MainWindowColor", &cb);
if (cb==sizeof(RGB))

PrfQueryProfileData(hini, "MyApp" , "MainWindowColor", &rgb, &cb);

You can also read strings by using the PrfQueryProfileString function and write
strings by using the PriWriteProfileString function. You can read integers
(stored as strings) by using the PrfQueryProfileInt function.

2.4.2.3 Identifying the Initialization Files
You can retrieve the names of the MS OS/2 initialization files by using the
PrfQueryProfile function. Although the MS OS/2 initialization files are usually
named os2.ini and os2sys.ini, a user can use other files when starting the system.

The following example retrieves the names of the MS OS/2 initialization files
and copies the names of the initialization files to the arrays szUserName and
sZSysName. Once you know the names of the MS OS/2 initialization files, you
can use that name to open the files and read settings.

char szUserName[80];
char szSysName[80];
PRFPROFILE prfpro = { 80, (PSZ) szUserName, 80, (PSZ) szSysName };

PrfQueryProfile(hini, &prfpro);

You can change the MS OS/2 initialization files to files of your choice by using
the Prffieset function. This function takes the names of two initialization files
and uses them as replacements for the os2.ini and os2sys.ini files. The system is
then reset using the settings in the new files.

2.4.2.4 Creating Groups and Program Lists

You can create a group and a list of programs by using the PrfCreateGroup and
PrfAddProgram functions. A group is a window, managed by Desktop Manager,
that contains a list of programs. The user can start a program in the list by
selecting the program title or double-clicking the title using the mouse.

Chapter 2: Overviews 31
li~i;!rJ~ii\iii!tlfi;l\llil~,,!!1f;IIi;;jjmlrf:r!ffi~iiif~!I~lmlm;\§Sl!~R\\~l~iam~~I!\~~~1!!-m~lli.tm5f~g:Ii;I~ii~~ie!l~~~i~

The following example creates a new group, named "My Application," and adds
one program to it:

HPROCRAM hCroup;
HPROCRAM hProg;
PROCDETAILS pprogde;

progde.Length = sizeof(PROCDETAILS) ;
progde.progt.progc = PROC_PM;
progde.progt.fbVisible SHE_VISIBLE;
progde.pszTitle = "My Application";
progde.pszExecutable = "c:\os2\myapp.exe"
progde.pszStartupDir = "c:\os2";
progde.pszIcon = "";
progde.pszEnvironment = "";
progde.pszParameters "";
progde.swpInitial.fs = 0;
progde.swpInitial.cx = 0;
progde.swpInitial.cy = 0;
progde.swplnitial.x = 0;
progde.swpInitial.y = 0;
progde.swpInitial.hwndInsertBehind = NULL;
progde.swpInitial.hwnd = NULL;

/* Prof. Mngr. prog. */
/* visible */
/* program title */
/* path to exe file */
/* work directory */
/* empty if not used */

hCroup = PrfCreateCroup(HINI_USER, "My Application", SHE_VISIBLE);
hProg = PrfAddProgram(HINI_USER, &progde, hCroup);

2.4.3 Summary
Profile Manager functions open and modify the MS OS/2 initialization files. Note
that these functions are new with MS OS/2, version 1.2, and replace the Win
initialization-file functions in previous versions of MS OS/2.

PrfAddProgram Adds a program title to Desktop Manager.

PrfChangeProgram Replaces information in the program list.

PrfCloseProfile Closes a profile file.

PrfCreateGroup Creates a new program group in a program list.

PrlDestroyGroup Removes a group from Desktop Manager.

PrfOpenProfile Opens a profile file.

PrfQueryDefinition Retrieves program information.

PrfQueryProfile Retrieves profile filenames.

PrfQueryProfileData Retrieves information from the profile file.

PrfQueryProfilelnt Retrieves an integer from the profile file.

PrfQueryProfileSize Retrieves the size of data stored at a specified location in
the profile file.

PrfQueryProfileString Retrieves a string from the profile file.

PrfQueryProgramCategory Retrieves the program type.

PrfQueryProgramHandle Retrieves program handles that match the name of a
specified executable file.

PrfQueryProgramTitles Retrieves information about programs in a group.

32 Microsoft Operating System/2 Programmer's Reference, Vol. 4
nH!mi:a~i~!i!I~~lfililll~~ii~.5P.mgm~~t$-~if!iim!GUW\S~maEfitiU~fi§lite~,!100!mI~~~nr.UU§i\ri!m~mrgi$l1!f;5gul!t1i.

PrlRemoveProgram Removes a program from Desktop Manager.

PrlReset Resets Presentation Manager.

PriWriteProfileData Places binary data in the profile file.

PriWriteProfileString Places a string in the profile file.

2.5 Help Manager
This section describes how to use Help Manager in MS OS/2 to display help
information about your application to the user. Before reading this section, you
should be familiar with the Help Manager user interface, messages and message
queues, and menus.

Help Manager functions and messages replace the help messages and help
hook described in the Microsoft Operating System/2 Programmer's Reference,
Volume 1.

2.5.1 About Help Manager
You use Help Manager to create help panels and to manage user requests for
help. A help panel is one or more lines of text that describe some feature of the
application. The help panels for an application are stored in compressed format
in a help library. The help library is a separate disk file rather than a resource
within in the application's executable file. This makes it easy to update a help
library or to replace it with international versions of help.

The user requests help in one of three ways: by pressing the Fl key, by using the
Help menu, or by clicking the Help button in a dialog box or message box. The
application must provide the Help menu and Help buttons in the application,
and it must identify a specific help panel for each command or button. When the
user requests help, Help Manager displays a help window alongside the applica
tion window and fills the help window with the text of the corresponding help
panel. The user can view additional help panels in the help window by using the
commands in this help window, or dismiss the help window and return to the
application.

While the user views help panels, Help Manager processes all user input, notify
ing the application of actions carried out for or requested by the user. For exam
ple, the user can search for, print, or copy help panels using commands from
menus in the help window. Help Manager carries out these actions without assis
tance from the application. In some cases, Help Manager sends a message to the
application window so that the application can determine what additional action
to take. For example, if the user input results in an error, Help Manager sends
an H~RROR message to the application.

Help Manager supports hypertext fields-words or phrases in one help panel that
refer to other help panels. The user directs Help Manager to display the other
help panels by choosing the hypertext field (using either the mouse or keyboard).
Hypertext fields can also direct Help Manager to display help panels from other
help libraries and even to start other programs. For example, a hypertext field
can direct Help Manager to send a message to the application window to start
the application tutorial. ,~

Chapter 2: Overviews 33
~~SiIDf!~i~iSlm~iiiliiiiS1i$Ym~1Emm~I~!s:~!m:m~m~mtmmrn~iIDl~~i~n;~rn~~I~I;f1fR!Si~msj!!.i!i?§l~lim!5i6§Ili'~l;11

You create help libraries by using the Information Presentation Facility Compiler
(IPFC). This compiler produces the compressed help library from the text files
that contain your help text. The help text consists of actual text and embedded
information tags. The information tags direct the compiler to carry out specific
actions, such as setting the help-panel name and ID, setting the font andlor
color of the text, displaying text in special formats such as lists or tables, adding
a bitmap to the panel, and including help text from another file. For more infor
mation about the Information Presentation Facility Compiler, you must use
QuickHelp, the display program for Microsoft documentation databases,
described in Microsoft Operating System12 Getting Started. The Information
Presentation Facility Compiler is available only in the Microsoft OS/2 Presenta
tion Manager Toolkit, version 1.2.

2.5.2 Using Help Manager in Applications
In an application, a user should have three ways to access help: by pressing the
Fl key, by choosing commands from the Help menu, and by clicking a Help but
ton. Help Manager provides support for all three methods. The following sec
tions explain how to enable this support for your application.

2.5.2.1 Creating a Help Instance
An application can create an instance of Help Manager by using the Win
CreateHelplnstance function. This function installs a help hook, initializes Help
Manager for help processing, and returns a help-instance window handle. The
application uses the help-instance window handle to direct Help Manager to
carry out requests for help.

To create a help instance, the application first fills a HELPINIT structure with
information about the help table, the title of the help window, and the help
library for the help instance. In the following example, the he/pinit parameter is
the HELPINIT structure. The hab parameter is the anchor-block handle of the
application, returned by the Winlnitialize function.

HAB hab;
HWND hwndHelp;
HELPINIT helpinit = {

sizeof(HELPINIT),
OL,
NULL,
MAKELONG(MY_RESOURCES, OxFFFF)
NULL,
NULL,
0,
0,
"My Helpl",
CMIC_HIDE_PANEL_ID,
"c:\os2\help\myhelp.hlp"
};

1* count of bytes in structure *1
1* return value from Help Mngr. *1
I' pointer to tutorial name 'I
I' resource ID for help table *1
I' handle to help table *1
1* handle to replacement menu *1
1* replacement accelerator ID *1
I' replacement menu ID *1
I' help-window title 'I
1* display help title only *1
I' path to help library 'I

hwndHelp = WinCreateHelpInstance(hab, &helpinit);

The application must associate the help instance with a window by using the
WinAssociateHelplnstance function. This association tells Help Manager which
help instance to use when the user requests help in the window or in any of that
window's child or owned windows. A help instance can be associated with any
frame window (that is, any window created with the WCYRAME class). The
application always can retrieve the handle of the associated window for a help
instance by using the WinQueryHelplnstance function.

34 Microsoft Operating System/2 Programmer's Reference, Vol. 4
!f:!.Sffi~I!~i!i~rniim!i!liii~Jl~~IWJm!~iffl~lffiii!~ffiii'Ja!!5ii!'lii!Eii;!jlmjitl!iiiI~I:aiiarm:m~r:smlntw.iL~iS~~rm§1l§1I!"i~~~~~rJWfi;

The user requests help by pressing the Fl key, by choosing a command from the
Help menu, or by clicking a Help button. These actions cause MS OS/2 to send
a WMJIELP message to an application window procedure. To enable Help
Manager to process the message and display help, the window procedure should
pass the WMJIELP message to the WinDetWindowProc or WinDeIDlgProc
function. Although most window procedures immediately pass the WMJIELP
message to the WinDetWindowProc or WinDeIDlgProc function, a window pro
cedure can carry out some processing of the WMJIELP message before it
passes the message, as shown in the following example. In all cases, however,
the window procedure must retur~ the value returned by WinDetWindowProc or
WinDeIDlgProc.

case WM_HELP:
/* Preprocess the message here. */
return (WlnDefWlndowProc(hwnd, msg, mpl, mp2»;

2.5.2.2 Creating a Help Table
A help table is a list of window IDs and corresponding help-panel IDs. For each
help request, Help Manager uses a help table to translate into a panel ID the
window ID given with the request for help. Every help instance must have a help
table. '

The application must create the help table and associate the help table with the
h~lp instance. An application creates a help table by defining it in a resource
script file or by initializing a HELPTABLE structure. Most applications define
the help table in the resource script file, using the HELPTABLE and HELP·
SUBTABLE statements as follows:

HELPSUBTABLE MY_MAIN_WINDOW_HELP
BEGIN

HELPSUBITEM
HELPSUBITEM
HELPSUBITEM
HELPSUBITEM
HELPSUBITEM

END

IDM_HELPFORHELP, IDH_FORHELP
IDM_EXTENDEDHELP, IDH_FOREXTENDED
IDM_KEYSHELP, IDH_KEYS
IDM_HELPINDEX, IDH_INDEX
IDM_ABOUT, IDH_ABOUT

HELPSUBTABLE MY_DIALOG_HELP
BEGIN

HELPSUBITEM MY_DIALOG, IDH_DLG_EXTENDED
HELPSUBITEM MY_DIALOG_EDIT, IDH_DLG_EDIT

END

HELPTABLE MY_MAIN_WINDOW
BEGIN

HELPITEM MY_MAIN_WINDOW, MY_MAl N_WINDOW_HELP, IDH_EXTENDED
HELPITEM MY_DIALOG, MY_DIALOG_HELP, IDH_DLG_EXTENDED

END

In the preceding example, the HELPTABLE statement defines the help table. It
specifies help for two windows: the main window and a dialog window. (The
MY-.MAIN_WINDOW and MY-DIALOG constants, defined elsewhere, must
be unique and must be equal to the window IDs for these given windows.)

The HELPITEM statements within the HELPTA~~E statement identify the main
and dialog windows and the help subtables that apply to them. A help sub table
specifies the help-panel ID that corresponds to a window ID. The HELPITEM
statements also specify the help-panel ID for the extended help associated
with each window. For example, the dialog window has the help subtable
MY-DIALOGJIELP and the extended help panel IDH-DLG-EXTENDED
(the MY-DIALOGJIELP and IDH-DLG-EXTENDED constants must be
defined elsewhere).

Chapter 2: Overviews 35
~i!Y.Ii~!i§arulrulli!~!H!i~~!llffi~m!Wlm~lm~~~~~lm!!lJ§i1imia~$i~im~~~i!~Uilmr!§imal!~gfmlS~@ffi!IDI~;~lmrli$.

The HELPSUBTABLE statements define the window IDs and corresponding
help-panel IDs for each child window of the specified main or dialog window.

After receiving a help request, Help Manager determines which window is active
and uses the ID of the active window to select a help subtable. Help Manager
then determines the ID of the window that has the input focus (if any) and uses
the ID of the focus window with the selected help subtable to identify the help
panel. After Help Manager identifies the help panel, it displays the help panel in
the help window. Help Manager positions the help window next to the "relative"
window (the relative window is the window next to which the system displays the
help window). The relative window is usmilly the active window, but it can be set
to another window by using the H~SET-A.CTIVE_ WINDOW message.

2.5.2.3 Creating a Help Library
you create a help library by using a text editor to create a help text file and then
compiling the help text file with the Information Presentation Facility Compiler
(IPFC). The help library must contain one or more help panels, each with a
unique panel ID or name. In the help text file, each help panel must start with
the :hl tag. The help text file itself must start with the :userdoc. tag and end
with the :euserdoc. tag. The following help text file contains two help panels:

:userdoc.
:hl res=l.Extended Help
Display this help when the user requests extended help.
:hl res=2.0ther Help.
Display this help when the user requests any other help.
:euserdoc.

The res= option with the :hl tag identifies the panel ID for the help panel. The
text immediately following the ;hl tag specifies the title of the panel. For exam
ple, "Extended Help" is the title of the first panel and "Other Help" is the title
of the second. All subsequent text, up to the next :hl tag, belongs to that help
panel. .

2.5.2.4 Using the F1 Key
The Fl key is the system Help key. Help Manager automatically enables this key
for a window whenever an application creates a help instance and associates it
with the frame window. The user can display help for specific items in the win
dow, such as menu commands,. by selecting the item and pressing the Fl key.
Whenever the user presses the Fl key, Help ~anager retrieves the ID of the
selected item and uses the ID to locate the corresponding help-panel ID. If Help
Manager finds a help-panel ID, it displays that help panel. Otherwise, it displays
the extended help panel.

Although Help Manager carries out all :processing for the Fl key, the application
must provide appropriate help-table entries fO,r each item that can be selected. If
the active window is not directly associated with a help instance, Help Manager
checks the window's parent and owner windows until it finds an associated help
instance. It first checks the parent window, the parent window of the parent win
dow, and so on, until it finds a window that has an associated help instance.
Help Manager checks the owner window only if the parent-window check ended
at the desktop and no help instance was found.

36 Microsoft Operating System/2 Programmer's Reference, Vol. 4
~ir~~!ir§el~i31l§jna~~rli!~iSiilb1lfiB!ru~~liiiillti!i!m_{~tKil!.ili§H~~t~ii!ii1fiii~wii~imm!!m!~lfJ_&iz':!iE~=i=-'i!i

2.5.2.5 Using the Help Menu
The Help menu lets the user view general help for an application. The menu
appears as the last (rightmost) menu in the menu bar and contains the following
commands:

Command

Help for Help

Extended Help

Keys Help

Help index

About

Description

Displays general information about
help and how to access help.

Displays information about the appli
cation window. This help information
can explain the fields in the window,
the window's purpose, and how the
user should interact with the window.

Displays a list of the function keys
used by the applicati~n.

Displays an alphabetical list of all the
help-index entries for· the application.
The author of the help text source file
creates the help index by including
index tags within the help file.

Displays copyright information for the
application. The About command is
used only in the Help menu for the
application window.

The application must create the Help menu, add it to the menu bar, and process
the menu commands. The most convenient way to create the Help menu and
add it to the menu bar is to place the following statements in the application's
MENU statement in the resource script file:

SUBMENU "-Help". 1
BEGIN

END

MENUITEM "-Help for Help ... ".
MENUITEM "-Extended Help ... ".
MENUITEM "-Keys Help ... ".
MENUITEM "Help -index ... ".
MENUITEM SEPARATOR
MENUITEM "A-bout ... ".

IDM_HELPFORHELP
IDM_EXTENDEDHELP
IDM_KEYSHELP
IDM_HELPINDEX

You can assign any values for the IDM_ constants (IDM~ELPFORHELP and
IDM_EXTENDEDHELP, for example) as long as the values are unique within
the menu.

To process the menu commands, the window procedure for the application
must process the WM_COMMAND message. The application receives a
WM_COMMAND message whenever the user chooses one of the menu com
mands. For each Help-menu command, the application mllst send an appropri
ate help message to the help instance for the application, as shown in the follow
ing statements.

Chapter 2: Overviews 37
ali!lliffiliilm~I!tU\tmi!i§H~rum.iii!iiUil;amii~I1i!!~ltmmliaml~miel&~U~m'!"E~mi~ffii_Tir5Jl!'\~lr.!OOtru,a~iOO~~f5lI!

case WM_COMMAND:
sWitch (SHORTIFROMMP(mpl» {
case IDM_HELPFORHELP: It display help for help panel tl

WinSendMsg(hwndHelp, HM_DISPLAY_HELP,
MPFROMSHORT(IDH_HELPFORHELP),
MPFROMSHORT(HM_RESOURCEID» ;

break;
case IDM_EXTENDEDHELP: It display extended help tl

WinSendMsg(hwndHelp, HM_EXT_HELP, OL, OL);
break;

case IDM_KEYSHELP: It display keys help panel tl
WinSendMsg(hwndHelp, HM_KEYS_HELP, OL, OL);
break;

case IDM_HELPINDEX: It display help index tl
WinSendMsg(hwndHelp, HM_HELP_INDEX, OL, OL);
break;

case IDM_ABOUT: It create about dialog box tl
WinDlgBox(HWND_DESKTOP, hwnd, MyAboutProc,

NULL, MY_ABOUTBOX, NULL);
break;

}
return (OL);

In the preceding statements, the HM_DISPLA YJIELP message directs Help
Manager to display the specific help panel. You can identify the panel by
using a panel ID or by using a panel name. In this example, the constant
HM.-RESOURCEID directs Help Manager to locate the panel using the panel
ID,IDHJIELPFORHELP.

The HM-£XT_HELP message directs Help Manager to display extended help
for the help instance. The panel ID for extended help is specified in the help
table of the help instance. When Help Manager receives HM-£XTJIELP, it
uses the extended help-panel ID to locate and display extended help.

The H~KEYSJIELP message directs Help Manager to display the help panel
that contains a description of the application keys. Although the application
must supply the panel ID for keys help, the HM~EYSJIELP message does
not take parameters. Instead, whenever Help Manager receives this message, it
se~lds the H~QUERY_KEYSJIELP message back to the application. The
application must return the keys-help panel ID as shown in the following state
ments:

case HM_QUERY_KEYS_HELP:
return (IDH_KEYSHELP);

The H~HELP _INDEX message directs Help Manager to display the help
index for the help instance. Because the help index has no explicit panel ID, this
is the only way to display the help index from the application.

Although the About command is usually placed in the Help menu, Help
Manager does not support the About command. The application can use the
WinD 19B ox function to display a dialog box that contains copyright information
in response to the user choosing the About command. A corresponding dialog
template must be defined in the resource script file.

2.5.2.6 Using Help Buttons
Help buttons provide an alternative way to display contextual help for fields in
dialog boxes. A Help button is a push button that displays help information
when the user clicks it using the mouse. It usually appears in the lower-right part
of a dialog box. Clicking a Help button has the same effect as pressing the Fl key
(that is, it displays information about the selected field).

38 Microsoft Operating System/2 Programmer's Reference, Vol. 4
fru7Slt§ilt.~§ji3iljmfii:~~~!!!i~~tW~f§!ml§'llfilfirril.!il~f!§ii~UiP:emlffli:mil!~.H~tI!h"r~;1iW~iriiU§li55m!miimtim~

The application must add Help buttons to dialog boxes, but Help Manager car
ries out the processing. The most convenient way to add a Help button to a dia
log box is to use a PUSHBUTTON statement in the dialog template in the
resource script file. The following statements define a very simple dialog box
with a Help button:

DLGTEMPLATE MY_DIALOG
BEGIN

END

DIALOG "My Dialogl", MY_DIALOG, 0,0, 200,8S"FCF_TITLEBAR
BEGIN
LTEXT "Enter name:", MY_LABEL, 10,40, 60,15
ENTRYE'IELD '''', MY_DIALOG_EDIT, 70,40, 120,15, ES_MARGIN
DEFPUSHBUTTON "OK", MY_OK, 10,10, 60,15
PUSHBUTTON "-Help", MY_HELP, 110,10, 60,15,

BS_NOPOINTERFOCUSIBS_HELP
END

The Help button must have the BSJIELP and BS_NOPOINTERFOCUS styles.
When the button has the BSJIELP style, the system interprets a button click as
a request for help. When the button has the BS_NOPOINTERFOCUS style, the
input focus does not move from the Help button when it is clicked; this allows
Help Manager to determine which field in the dialog box is selected.

2.5.2.7 Destroying a Help Instance
When a help instance is no longer needed, you can destroy it by using the Win
DestroyHelplnstance function. This function closes the help-instance window
and removes the corresponding help hook. Before destroying the help instance,
you should disassociate the help instance from the window by using the Win
AssociateHelplnstance function and specifying a NULL window handle. After a
help instance is disassociated, it can be destroyed.

2.5.2.8 Handling Errors
Help Manager functions typically indicate errors by returnirig FALSE. If a func
tion is unsuccessful, the application can use the WinGetLastError function to
retrieve the value of the error.

If the user is viewing a help panel when an error occurs, Help Manager sends
the HM-ERROR message to the active application window to notify the applica
tion of the error. Help Manager does not display error messages to the user; the
application must display its own messages.

2.5.3 Help Hooks and Help Manager
Help Manager installs a help hook when the application creates the Help
Manager instance. This hook enables Help Manager to trap user requests for
help. When using Help Manager for your application, it is recommended that
you do not install your own help hooks. If you choose to do so, however, you
must install the help hook prior to creating the help instance because the Help
Manager help-hook procedure always returns TRUE, preventing all subsequent
hook procedures from being called. If you do install a help hook, it must return
FALSE so that Help Manager can process requests for help.

Chapter 2: Overviews 39
!1ii~~illiiia~§~1'Um!~H!i!tiffi\iE!nil;wHiiI5i~~a§imllSt~!F.j~OOlml!!~~~ll!i!~i~~m~§Ei~i~fi!Emiimmn~!~Uilm!~~

2.5.4 Summary
The following MS OS/2 functions and messages work with Help Manager.

2.5.4.1 Functions
MS OS/2 provides the following help functions:

WinAssociateHelplnstance Associates a help instance with a given window.

WinCreateHelplnstance Creates a help instance.

WinCreateHelpTable Identifies or changes the pointer to the help table.

WinDestroyHelplnstance Destroys an instance of Help Manager.

WinLoadHelpTable Identifies or changes the handle of the module that con
tains the help-table resource and the ID of that resource.

WinQueryHelplnstance Retrieves the handle of the help instance associated
with the specified window.

2.5.4.2 Messages Sent by Help Manager
Help Manager sends the following messages to the application:

HM.-ACTIONBAR_COMMAND Sent to the application when the user
chooses a command from an application-supplied menu.

H1LERROR Notifies the application of an error caused by a user action.

H1LEXT~ELP _UNDEFINED Notifies the application that an extended help
panel is not defined for the active window.

HM~ELPSUBITE~NOTYOUND Sent to the application when the user
requests help about a field and the system cannot find a related entry in the help
subtable.

HMJNFORM Notifies the application that the user has selected a hypertext
field in the help window. The hypertext field must have been created using the
:inform tag.

H~QUERYJ(EYS~ELP Sent to the application when the user requests
keys help. The application responds by returning the ID of the requested keys
help panel.

H~TUTORIAL Sent to the application when the user chooses the Tutorial
command from a help panel. The application then calls its own tutorial program.

2.5.4.3 Messages Sent to Help Manager

The application sends the following messages to Help Manager:

HM_CREATE~ELP_TABLE Specifies a new help table for the help
instance.

H~DISMISS_ WINDOW Directs Help Manager to close the help window
associated with the last active window.

H~ISPLA Y JIELP Directs Help Manager to display a specific help
window.

40 Microsoft Operating System/2 Programmer's Reference, Vol. 4
Hliiiiil!m.sJiiJI~Si!!rui.!ml_is!Gili~!i!!6!ff.1~-W.l!f~iIDtm~W~i!~imi~i1~~'"ilSl!iif!im!i!Hti~§;~ll~~lmf~~!~ili}f!:~~iilmm~

HM-.EXTJIELP Directs Help Manager to display the extended help panel for
the active application window.

HMJIELP _CONTENTS Directs Help Manager to display the table of con
tents for the open help library.

HMJIELP JNDEX Directs Help Manager to display the index for the open
help library.

HMJ(EYSJIELP Directs Help Manager to display the help panel that con
tains information about the application keys.

H~OADJIELP_TABLE Directs Help Manager to replace the existing help
table with a help-table resource.

H1LREPLACEJIELP YORJIELP Directs Help Manager to display the
application-defined help panel instead of the general help panel that is shipped
with Help Manager.

H1LSET~CTIVE_ WINDOW Directs Help Manager to change the active
window. Subsequent help messages are sent to the new active window and
appear next to it.

H1LSETJIELP~IBRARY_NAME Identifies the help library to the help
instance.

H1LSETJIELP_WINDOW_TITLE Sets the title text of a help window.

H1LSET_SHOWYANELJD Directs Help Manager to display, hide, or tog
gle the panel ID for each help panel displayed.

2.6 Combination-Box Controls
This section describes how to use combination-box controls to let the user
choose and edit items from a list. Before reading this section, you should be
familiar with entry-field controls, list-box controls, messages and message
queues, and standard user-interface guidelines.

Combination-box controls, also called combo boxes, are a new feature of MS
OS/2, version 1.2. They can be used in addition to entry-field controls, which
are described in the Microsoft Operating System12 Programmer's Reference,
Volume 1.

2.6.1 About Combo Boxes
A combo box is two controls in one: an entry field and a list 'box. Combo boxes
let the user enter data by typing in the entry field or by choosing from a list in
the list box.

A combo box automatically manages the interaction between the entry field and
the list box. For example, when the user chooses an item in the list box, the
combo box displays the text for that item in the entry field. The user can then
edit the text without affecting the item in the list box. When the user types a
letter in the entry field, the combo box scrolls the list box contents so that items
beginning with that letter become visible.

Chapter 2: Overviews 41
ilml~BHgUJl~~!J1~t!¥~l~mitm~I~~Jftll.m:u~m!~!rn~!!iii~iitima;iila~B!J~~I~!!ID~if;i~~~~Irumr:§i~lS!!~S.~ilI1i

A combo box can have one of the following styles:

Style Meaning

CBS_SIMPLE A simple combo box. A simple combo box
always displays its list box. The user can
enter and edit text in the entry field or
choose items from the list box.

CBSJ)ROPDOWN A drop-down combo box. A simple drop
down combo box displays its list box only if
the user clicks the drop-down icon at the
right end of the entry field. It hides the list
box when the user clicks the icon a second
time. In a drop-down combo box, the user
can enter and edit text in the entry field or
choose items from the list box.

CBSJ)ROPDOWNLIST A drop-down-list combo box is similar to
the drop-down combo box, but the user can
choose items only from the list box. The
user cannot enter or edit text in the entry
field.

For combo boxes that have the CBS_DROPDOWN or CBSJ)ROPDOWNLIST
styles, an application can show the list by using the CB~SHOWLIST message.
An application can determine whether the list is already showing by using the
CBMJSLISTSHOWING message.

Applications can use any of the entry-field (E~) and list-box (L~) messages
with combo boxes. Entry-field messages affect the entry field; list-box messages
affect the list box. For example, an application can use the LMJNSERTITEM
message to insert items into the list box. For more information on the entry-field
and list-box messages, see the Microsoft Operating Systeml2 Programmer's Refer
ence, Volume 1 and Volume 2.

A combo box sends a variety of notification messages to its parent window.
These notification messages are similar to the notification messages sent by
entry-field and list-box controls. For example, the combo box sends a
CBN-EFCHANGE notification message when the user changes text in the entry
field and sends a CBN-LBSELECT when the user chooses an item in the list
box.

2.6.2 USing Combo Boxes
You can create a combo box by using the Win Create Window function or by
specifying a COMBOBOX statement in a dialog-window template in a resource
file. When creating a combo box by using WinCreate Window, you must
specify the WC_COMBOBOX class, the predefined class for a combo box. If
you do not specify a style, the default styles WS_GROUP, WS_TABSTOP, and
WS_ VISIBLE are used.

42 Microsoft Qperating System/2 Programmer's Reference, Vol. 4
=JEi~~f!iH!~~!r:f!ml!f~;aIaii!~m~~!mEHim:'K1eiiiS::~Imi5i~n!ililSi!~OOlfi!!§1I.J1liifijSiii¥mifii!Sl5imlii!ml;iJ9.m!~iiillils:Ji~

2.6.3 Summary
The following MS OS/2 styles and messages are used with combination-box
controls.

2.6.3.1 Combo-Box Styles
The following style constants, specified when the combo box is created, deter
mine its 'action and appearance:

CBS_SIMPLE Specifies a simple combo box made up of a list-box control and
an entry-field control that are visible at all times.

CBS_DROPDOWN Specifies a drop-down combo box made up of an entry
field control and a button. When the user selects the button, a list-box control
appears.

CBS_DROPDOWNLIST Similar to a drop-down combo box, but the user can
not enter or edit text in the entry field.

2.6.3.2 Messages Sent to a Combo Box
An application sends these messages to a combo box:

CBMJ-IILITE Sets drop-down button highlighting in a combo box.

CBM_ISLISTSHOWING Determines if a list box is visible in a combo box.

CBM_SHOWLIST Shows or hides the list box in a combo box.

2.6.3.3 Messages Sent by a Combo Box
Messages sent from a combo box to an owner window notify the owner of events
in the combo box, such as when the user edits text. A combo box sends the fol
lowing message to an owner window:

W~CONTROL Sent to the owner window of the combo box when a user
event occurs in the combo box. This message contains one of the following
notification control codes, specifying what event occurred.

Code

CBN_ENTER

CBN_LBSCROLL

CBN_LBSELECT

CBN_MEMERROR

Description

Indicates text in a combo-box entry field has
changed.

Indicates a combo-box entry field is
scrolled.

Indicates a combo-box item is selected.

Indicates a combo-box list is scrolled.

Indicates a combo-box list item is selected.

Indicates the combo box cannot allocate
sufficient memory.

Indicates a combo-box list has dropped,
down (is visible).

, Chapter 2: Overviews 43
~IBIillf!~'m§i§ia:.l§iil~!m~I:~::f.:.[rtiIY![lJM!ir.iaiU~':Si~!!il~I~;~tW!L!g§ii§fii.~~sr.iiailn!iiil~fiim\iSiiif:l§!~~~~

2.7 Multiple-Line Entry Fields
This section describes how to use multiple-line entry fields to let the user view
and edit text in an application. Before reading this section, you should be fami
liar with entry-field controls, messages and message queues, and standard user
interface guidelines.

Multiple-line entry fields are a new feature of MS OS/2, version 1.2, and can be
used in addition to entry-field controls, which are described in the Microsoft
Operating System/2 Programmer's Reference, Volume 1.

2.7.1 About Multiple-Line Entry Fields
A multiple-line entry field (MLE) is a very sophisticated control window that
users use to view and edit multiple lines of text. An MLE provides all the text
editing capability of a simple text editor, making these features readily available
to applications.

You can create multiple-line entry fields by using the WinCreateWindow func
tion or by specifying the MLE statement in a dialog-window template in a
resource file.

2.7.1.1 Editing MLE Text
An MLE contains one or more lines of text. Each line consists of one or more
characters and ends with one or more characters that represent the end of the
line. The user inserts text by typing (when the MLE has the focus). The applica
tion can insert text at any time by using the MLMJNSER T message and specify
ing the text as a null-terminated string. The MLE inserts the new text at the cur
sor position or replaces the selected text.

The entry mode determines the action of the MLE when the user inserts text.
The entry mode can be set to overstrike or insertion. The user sets it by pressing
the INSERT key. When overstrike mode is enabled, at least one character is
always selected. This means that the MLMJNSERT message always replaces at
least one character. If insert mode is enabled, the MLMJNSERT message
replaces only characters the user or the application has selected. Otherwise, the
MLE makes room for the inserted characters by moving existing characters to
the right at the cursor position.

The cursor position, identified by a flashing caret, is always specified as a char
acter offset, relative to the beginning of text. The user sets the cursor position by
moving the flashing caret using the mouse or the direction keys. An application
can set the cursor position by using the ML1LSETSEL message. This message
directs the MLE to move the flashing caret to a given character position.

The ML1LSETSEL message also sets the selection. The selection is one or
more characters of text on which the MLE carries out an operation, such as
deleting or copying. The user selects text by pressing the SHIFf key while moving
the cursor. An application selects text by specifying the cursor position and
anchor point using the ML1LSETSEL message. The selection is all text between
the cursor position and the anchor point. If the cursor position and anchor point
are equal, there is no selection. An application can retrieve the cursor position
and/or anchor point by using the ML1LQUERYSEL message.

44 Microsoft Operating System/2 Programmer's Reference, Vol. 4
itru~rni.'§~I!t~fY!l!n~5~s!ggWU~~~!gg~1~II!lilt!ii5Jii3ilW~"IDi~!!~~~~~m!§I§j:mmj§afi~lml~jjmmJl8}~i~;:B~

The user can delete characters, one at a time, by pressing the DELETE key or the
BACKSPACE key. These keys delete the character to the left of the cursor. An
application can delete one or more characters by using the MLMJ)ELETE mes
sage. This message directs the MLE to delete a specified number of characters,
starting at the given position. This message does not change the cursor position.
An application can delete selected text by using the ML~CLEAR message.

An application can reverse the previous operation by using the ML~UNDO
message. This message directs the MLE to restore the entry field to its previous
state. It is a quick way to fix users' editing mistakes.

But not all operations can be undone. The application can determine whether
the previous operation can be undone by using the ML~QUERYUNDO mes
sage. This message returns TRUE and an indication of the type of operation that
can be undone. An application can prevent a subsequent ML~UNDO message
from changing the state of the MLE by llsing the MLM_RESETUNDO message.

2.7.1.2 Formatting MLE Text
An application can retrieve the number of lines of text in an MLE by using the
MLM_QUERYLINECOUNT message. It can retrieve the number of characters
in the MLE by using the MLM_QUERYTEXTLENGTH message. The amount
of text and, subsequently, the number of lines to be entered in an MLE depend
on the text limit. An application can set the text limit by using the
MLM_SETTEXTLIMIT message and determine the current limit by using the
MLM_QUERYTEXTLIMIT message. The user cannot set the limit. If the user
types to the text limit, the MLE beeps and ignores subsequent characters. If the
application attempts to add text beyond the limit, the MLE truncates the text.

An application can control the length of each line in an MLE by enabling word
wrapping. When word-wrapping is enabled, the MLE automatically breaks any
line that is longer than the MLE is wide. An application can set word-wrapping
by using the MLM_SETWRAP message, and it can determine whether the MLE
is wrapping text by using the MLM_QUERYWRAP message. Unless the
MLS_ WORD WRAP style is specified when the MLE is created, word-wrapping
is initially disabled.

An application can set tab stops for an MLE by llsing the ML~SETT ABSTOP
message. Tab stops specify the maximum width of tab character. When the user
or an application inserts a tab character, the MLE expands the character so
that it fills the space between cursor position and the next tab stop. The
MLM_SETTABSTOP message actually sets the distanc'e (specified in pels)
between tab stops, and the MLE provides as many tab stops as needed, no
matter how long the line gets. An application can retrieve the distance between
tab stops by using the MLM_QUERYfABSTOP message.

An application can use the ML~SETFORMATRECT message to set the for
mat rectangle. The format rectangle is used to set the horizontal and/or vertical
limits for text. The MLE sends a notification message to the parent window of
the MLE if text exceeds the limit. An application typically uses the format rect
angle to provide its own word-wrapping or other special text processing. An
application can retrieve the current formatting rectangle by using the
ML~QUERYFORMATRECT message.

Chapter 2: Overviews 45
a.ii~~~!il~Sl!ffiifiIL~.lSiUru'iiirUi~:s.ii!i~~i!5"il:I~~~li1~~n~G!SI~!!rlfi1~m~~ifilffiilif:~lif-:ilmil!'lsI!i!iEJ!i~aiL4mtfii~~~

An application can prevent the user from entering text in the entry field by using
the MLM_SETREADONL Y message. The ML~QUERYREADONLY mes
sage specifies whether the MLE is read-only. An application can also set the
MLE to read-only by specifying the MLS~EADONL Y style when creating the
MLE.

An application can set the colors and font for an MLE by using the
MLM_SETTEXTCOLOR, ML~SETBACKCOLOR, and ML~SETFONT
messages. These messages affect all text in the MLE; an MLE cannot contain a
mixture of fonts and colors. An application can retrieve the current values
for the color and the font by using the MLM_QUERYTEXTCOLOR,
MLM_QUERYBACKCOLOR, and MLM_QUERYFONT messages.

2.7.1.3 Importing and Exporting MLE Text
An application can copy text to and from an MLE by importing and exporting.
Importing using the MLM_IMPORT message copies text from a buffer to the
MLE. Exporting using the MLM_EXPORT message copies text from the MLE
to a buffer. The application uses the MLM_SETIMPORTEXPORT message to
set the import and export buffers. To import, the application must fill the buffer
with the text to copy to the MLE. To export, the MLE copies the specified text
to the buffer.

An application can import and export text in a variety of formats. The text for
mat identifies which characters are used for the end-of-line ,characters and is set
using the MLM_FORMAT message. An MLE can have the following text for
mats:

Type

MLFIE_NOTRANS

Format

Exported lines end with a carriage-return/
newline character pair (OxOD, OxOA).
Imported lines must end with a newline

, character, a carriage-return/newline charac
ter pair, or a newline/carriage-return char
acter pair.

Imported and exported lines end with a
newline character (OxOA).

For exported lines, the carriage-return/
newline character pair marks a hard line
break (a break entered by the user), and
two carriage-return characters and a newline
character (OxOD, OxOD, OxOA) mark a soft
line break (a break inserted during word
wrapping, not entered by the user). For
imported lines, soft line break characters
are ignored.

The text format can affect the number of characters in a selection. To ensure
the export buffer is large enough to hold exported text, an application can
send the MLM_QUERYFORMATLINELENGTH message and the
MLM_QUERYFORMATTEXTLENGTH message to determine the number of
bytes in text to be exported.

46 Microsoft Operating System/2 Programmer's Reference, Vol. 4
~il~l~-§ref.Sli\Sis!l!ii~~rnlml~~iJ~grn5i~1!~lm;g;F.iiIfi;'i!~~iil$i~i~llii!:iIll_:!i1lIitm!l~~~fiiml§1I!j1~:i~§mii

Each time an application inserts text in an MLE, the MLE automatically
refreshes the display by drawing the new text. When an application copies large
amounts of text to an MLE, refreshing can be quite time-consuming, so applica
tions should disable the automatic refresh setting in such cases. An application
can disable this setting by sending the MLMJ)ISABLEREFRESH message.
After copying all the text, the application can restore the refresh by sending the
ML~NABLEREFRESH message.

2.7.1.4 Copying and Pasting MLE Text
The user can cut, copy, and paste text in an MLE by using the CTRL+DELETE,
SHIFr+DELETE, and SHIFr+INSERT keys. An application can cut, copy, and paste
text by using the MLM_CUT, ML~COPY, and ML~ASTE messages. The
ML~CUT and ML~COPY messages direct the MLE to copy the selected
text to the clipboard. The MLM_CUT message also deletes the text
(ML~COPY does not). The ML~ASTE message directs the MLE to copy
the text on the clipboard to the current position in the MLE, replacing any exist
ing text with the copied text. An application can delete the selected text without
copying it to the clipboard by using the ML~CLEAR message.

An application can also copy the selected text from an MLE to a buffer by using
the MLM_QUERYSELTEXT message. This message does not affect the con
tents of the clipboard.

2.7.1.5 Searching and Replacing MLE Text
An application can search for a specified string within MLE text by using the
ML~SEARCH message. This message directs the MLE to search for the'
string. If the string is found, the MLE returns TRUE. The cursor does not move
to the string unless the message specifies the MLFSEARC~SELECTMATCH
option.

An application can also use the ML~SEARCH message to replace one string
with another. If the MLFSEARC~CHANGEALL option is specified, the
MLE replaces all occurrences of the search string with the replacement
string. Both the search string and the replacement string must be given in a
MLE_SEARCHDATA structure passed with the message.

2.7.1.6 MLE Notification Codes
An MLE sends notification codes to its parent window whenever certain events
occur, for example, when the user or the application tries to insert too much
text or when the user uses the scroll bars. The parent window uses the
notification codes to carry out custom operations for the MLE or to respond to
errors. Notification codes that are closely related to MLE messages are
described here.

The MLE sends the MLN-HSCROLL or MLN_ VSCROLL notification codes
when the user uses the scroll bars so the application can monitor the visible con
tents of the MLE. The application can also monitor the contents of an MLE by
using the ML~QUERYFIRSTCHAR message. This message identifies the
character in the upper-left corner of the MLE (by specifying its offset). This
represents the first MLE character that is visible to the user. An application can
move a specified character to the upper-left corner of an MLE by using the
ML~SETFIRSTCHAR message as an alternative way of scrolling the contents
of an MLE.

Chapter 2: Overviews 47
li~:!itw!lfIl~~~fif;!lli5iiE1iiIYrnlilllmiii!~~re]!f&Jjiill!ltf,rm~!r~.~:!!!.'iIlIDm~1~yruru&fJ9iiims!e!!!!eh1ffi!!HiU~lnimlmr~ta\IBlifmw

The MLE sends an MLN_CHANGE notification code when the user changes
the text in some way. This code is especially useful when the MLE is in a dialog
box because it can determine whether the dialog procedure should process the
contents of the MLE. The ML~QUERYCHANGED message also can deter
mine whether the user has made changes. The ML~SETCHANGED message
causes the MLE to send a notification code, regardless of whether the user has
changed anything; this code can also be used to hide a change made by a user.

2.7.1.7 MLE Styles
MLE styles can be specified by using the WinCreate Window function or the
MLE statement in a resource file. Styles can be combined by using the OR
operator. Applications can specify a combination of the following styles for an
MLE:

Style

MLSJ30RDER

MLSJISCROLL

MLSJGNORETAB

MLS~EADONL Y

Meaning

Draws a border around the MLE.

Adds a horizontal scroll bar to the MLE.
The scroll bar is enabled when any line
exceeds the width of the MLE.

Directs the MLE to ignore the TAB key.

Prevents the MLE from accepting text from
the user. This style is useful for displaying
lengthy static text in windows or dialog
boxes.

Adds a vertical scroll bar to the MLE. The
scroll bar is enabled when the number of
lines exceeds the height of the MLE.

Prevents lines that are longer than the width
of the MLE. The MLE automatically breaks
the line at a convenient place.

2.7.2 Using Multiple-Line Entry Fields
You can create an MLE by using the WinCreate Window function or by specify
ing the MLE statement in a dialog-window template in a resource file. The fol
lowing example shows how to create an MLE using WinCreate Window:

HWND hwndParent;
HWND hwndMLE;

/* parent-window handle */
/* MLE handle */

hwndMLE = WinCreateWindow(hwndParent,
WC_MLE,
"Test",
MLS_BORDER I WS_VISIBLE,
100, 100, 100, 100,
hwndParent,
HWND_TOP,
2, NULL, NULL);

An MLE has the WC-MLE window class. As with other controls created using
the WinCreate Window function, the WS_ VISIBLE style must be set to display
the window immediately.

48 Microsoft Operating System/2 Programmer's Reference, Vol. 4
p.Hmimt§im!jlmiitliiiiHii\iiiii~fJ!ii!II!i!fm!~~~mrt~l9Ii;tifiii§'~!.!Jmjill~I!iI!f.UU!iii!!Jm_~gga~lil~~Wi\iUi!!rn~I~~r:lif!imi

It is more common to create an MLE by using an MLE statement in a dialog
window template in a resource file, as shown in the following example:

MLE "", 101, 110, 10, so, 100

The predefined class for an MLE is WC~LE. If you do not specify a style, the
default styles MLSJ30RDER, WS_GROUP, and WS_TABSTOP are used.

2.7.3 Summary
The following MS OS/2 styles and messages are used with multiple-line entry
fields.

2.7.3.1 MLE Styles
The following style constants, specified when the MLE is created, determine its
action and appearance:

MLSJ30RDER Places a thin border around the MLE.

MLSJISCROLL Adds a horizontal scroll bar to the MLE.

MLSJGNORETAB Prevents the TAB key from functioning in the MLE.

MLS~EADONLY Makes the MLE text read-only. The user cannot enter or
edit text in the MLE.

MLS_VSCROLL Adds a vertical scroll bar to the MLE.

MLS_ WORD WRAP Automatically moves words that do not fit at the end of a
line to the next line.

2.7.3.2 Messages Sent to an MLE

An application sends the following messages to an MLE:

MLM_CHARFROMLINE Returns the offset to a line.

ML~CLEAR Clears selected text in an MLE.

ML~COPY Copies selected text from an MLE to the clipboard.

MLM_CUT Cuts selected text from an MLE to the clipboard.

ML~DELETE Deletes text from an MLE.

ML~ISABLEREFRESH Disables refresh for an MLE.

ML~NABLEREFRESH Enables screen refresh for an MLE.

ML~XPORT Exports text from an MLE.

ML~ORMAT Sets format for MLE import/export.

ML~IMPORT Imports text into an MLE.

MLMJNSERT Inserts text into an MLE.

MLM-LINEFROMCHAR Determines the line number of an MLE character.

MLM_P ASTE Copies the clipboard contents to an MLE.

MLM_QUERYBACKCOLOR Retrieves the background color of an MLE.

Chapter 2: Overviews 49
g~lml~~~UJl~~!iffi§!~~l~:!!5l~I~ii;1mI!H3mU~l~im~F.llllis!l~m~~'il!iii!l;U!lii9lWf:W~lm~~~(g!lm3§liBl\§!~l~

ML~QUERYCHANGED Determines if text in an MLE has changed.

ML~QUERYFIRSTCHAR Retrieves the offset of the first visible character.

ML~QUERYFONT Retrieves current MLE font information.

ML~QUERYFORMATLINELENGTH Retrieves the formatted MLE line
length.

ML~QUERYFORMATRECT Retrieves the dimensions and mode of an
MLE.

ML~QUERYFORMATTEXTLENGTH Retrieves the length of formatted
MLE text.

ML~QUERYIMPORTEXPORT Retrieves values for the import/export
buffer.

ML~QUERYLINECOUNT Retrieves the number of lines in an MLE.

ML~QUERYLINELENGTH Retrieves the length of an MLE line.

MLM_QUERYREADONL Y Determines MLE read-only mode.

ML~QUERYSEL Retrieves the selection position in an MLE.

ML~QUERYSELTEXT Retrieves selected text from an MLE.

ML~QUERYTABSTOP Retrieves the size of an MLE tab-stop.

ML~QUERYTEXTCOLOR Retrieves MLE text-color information.

ML~QUERYTEXTLENGTH Retrieves the length of MLE text.

ML~QUERYTEXTLIMIT Retrieves the text limit of an MLE.

ML~QUERYUNDO Determines if an MLE can undo an operation.

ML~QUERYWRAP Retrieves the state of word-wrap in an MLE.

MLM~ESETUNDO Resets (clears) the MLE undo flag.

ML~SEARCH Searches an MLE.

ML~SETBACKCOLOR Sets the background color of an MLE.

ML~SETCHANGED Sets the MLE changed flag.

ML~SETFIRSTCHAR Sets the first visible character.

ML~SETFONT Sets MLE font information.

ML~SETFORMATRECT Sets the format rectangle and mode of an MLE.

ML~SETIMPORTEXPORT Sets the MLE import/export buffer.

ML~SETREADONLY Sets/clears the MLE read-only state.

ML~SETSEL Selects text within an MLE.

ML~SETTABSTOP Sets the size of an MLE tab-stop.

MLM_SETTEXTCOLOR Sets the text color of an MLE.

50 Microsoft Operating System/2 Programmer's Reference, Vol. 4
M;ruiEEm~i!m1r~~~i!mr.~er.;ni1li!li~;ml~;;!i~!ffli!~~l!l,~tr.!Jif.tiimjiafanmru!~i~miml!;~m:ifl~;gI~~~!mmmlli!iSelrujlli!!!i;:;1iiit§illil

ML1LSETTEXTLIMIT Sets the text limit for an MLE.

MLM_SETWRAP Sets/resets MLE word-wrap.

ML1LUNDO Undoes an MLE operation.

2.7.3.3 Messages Sent from an MLE
Messages sent from an MLE to an owner window notify the owner of events in
the MLE, such as when the user edits text. An MLE sends the following mes
sage to an owner window:

W1LCONTROL Sent to the owner window of the MLE when a user event
occurs in the MLE. This message contains one of the following notification con
trol codes, specifying what event occurred.

Code

MLNJISCROLL

Description

Indicates that text in an MLE has
changed.

Indicates that a clipboard operation
failed.

Indicates a horizontal MLE scroll
event.

MLN.J(ILLFOCUS Indicates an MLE has lost the input
focus.

MLN~ARGIN Indicates the mouse has moved over
an MLE margin.

MLN~EMERROR Indicates insufficient memory available
for an MLE.

MLN_OVERFLOW Indicates the MLE operation caused
an overflow.

MLNYIXHORZOVERFLOW Indicates an MLE horizontal overflow.

MLNYIXVER TOVERFLOW Indicates an MLE vertical overflow.

MLN_SEARCHP AUSE Determines the status of a search ini
tiated by an MLM_SEARCH message.

MLN_SETFOCUS Indicates the MLE receives the input
focus.

MLN_TEXTOVERFLOW Indicates an MLE text-limit overflow.

MLN_UNDOOVERFLOW Indicates a text change cannot be
undone.

MLN_ VSCROLL Indicates an MLE vertical scroll event.

Chapter

3

Functions and Messages
Directory

3.1 Introduction .. 53
3.1.1 Function Groups.. 53
3.1.2 Message Groups 54

3.2 Directory.. 55

3.3 Functions and Messages.. 56

Chapter 3: Functions and Messages Directory 53
~llrJ~!;;$i~~iia!!1tj;!l!e!m!!§~~~liiime~It~:!iii~mi~~.!5imR=~l:m~i~iii!In§!l!l!i1~15i~!f3liail§iiimiiirn!illillt~I~!!Ue'

3.1 Introduction
This chapter describes MS OS/2 system functions and messages that are new or
modified for MS OS/2, version 1.2. These functions provide features, such as
multiple-line entry fields, extended attributes for disk files, and application help.
The functions and messages represent distinct functional groups.

3.1.1 Function Groups
Programs use the function groups described in the following list to carry out
specific tasks.

Function group

Dev

Dos

Gpi

Kbd

Usage

Use the Presentation Manager device (Dev) func
tions to open and control Presentation Manager
device drivers. These functions let you create
device contexts that you can associate with a
presentation space and use with the Gpi func
tions to carry out device-independent graphics for
displays, printers, and plotters.

Use the disk operating system (Dos) functions in
full-screen and Presentation Manager sessions to
read from and write to disk files, to allocate
memory, to start threads and processes, to com
municate with other processes, and to access
your computer's devices directly. Most functions
in this group can be used in Presentation
Manager applications.

Use the graphics programming interface (Gpi)
functions to create graphics output for displays,
printers, and other output devices. The Gpi func
tions give you a full range of graphics primitives,
from lines to complex curves to bitmaps. You
choose the attributes for the primitives, such as
color, line width, and pattern, and then draw
lines, text, and shapes. The retained-graphics
capability lets you save the drawing in segments
and build complex pictures by drawing a chain of
segments.

Use the keyboard (Kbd) functions in full-screen
sessions to read keystrokes from the keyboard,
to manage multiple logical keyboards, and to
change code pages and translation tables.
Because the Presentation Manager session pro
vides its own keyboard support, Kbd functions
are not needed in Presentation Manager applica
tions. '

54 MS OS/2 Programmer's Reference, Vol. 4
~1~i!~mi~~!f!!§_J!i~_~!§mt~ii~~imP'J~;mlm~I;ir:B.If!:!imfiiiS1~m!imiei!!~lil;~Iim:i!iiiilmi~Ji!!m~Ui![!i!!JJ!!ilt

Function group

MOll

Pic

Prf

Vio

Win

3.1.2 Message Groups

Usage

Use the mouse (Mou) functions in full-screen
sessions to read mouse input from the mouse
event queue, to set the mouse-pointer shape, and
to manage the mouse for all processes in a ses
sion. As with the keyboard, the Presentation
Manager session provides its own mouse support,
so Mou functions are not needed in Presentation
Manager applications.

Use the picture-file (Pic) functions when working
with picture files, typically either metafiles or
interchange files.

Use the Profile Manager (Prf) functions to open
and modify the MS OS/2 initialization files,
os2.ini and os2sys.ini. The Prf functions let you
store application information in the initialization
files, making that information available to other
applications or to the application itself after it
has been stopped and restarted.

Use the video input-and-output (Vio) functions in
full-screen sessions to write characters and char
acter attributes to the screen, to create pop-up
windows for messages, to change the video
modes, and to access physical video memory.
Vio functions can also be used in advanced
video-input-and-output (A VIa) applications for
the Presentation Manager session to write charac
ters and character attributes in a window. Most
Presentation Manager applications, however, use
the graphics programming interface (Gpi) -to
write text in a window.

Use the window-manager (Win) functions to
create and manage windows. Presentation
Manager applications use windows as the main
interface with the user. The Win functions let
you create menus, scroll bars, and dialog win
dows that let the user choose commands and sup
ply input. Your application receives all mouse
and keyboard input as messages from the mes
sage queue. The Win functions let you retrieve
messages from the queue and dispatch them to
the window the input is intended for.

MS OS/2 uses system-defined messages that control the operation of applica
tions. The messages are divided into groups according to the various types of
windows that can interpret and process the messages. Applications use the mes
sage groups described in the following list to carry out specific tasks.

Chapter 3: Functions and Messages Directory 55
mllE~~ia1~I~!lI~S:'lIDn!m!~~g:l~~l~~rw~!!mm!~!!!fu1it;a;~ilmli5f.l~~!ii5ii~Ji~~1~!iiii&'lliim~il.~~I~~~~mu!i~~I@.i!l~!miltrmiJ

Message group

Combination box

Entry field

Help Manager

Multiple-line entry field

Menus

Scroll bar

Title bar

General

3.2 Directory

Usage

Use the combo-box control messages
(CDM_) to control combination boxes.

Use the entry-field control messages (E~)
to control entry fields.

Use the Help Manager messages (H~) to
direct Help Manager for your applications.

Use the multiple-line entry-field messages
(MLM-) to control multiple-line entry
fields.

Use the menu messages (M~) to control
menus and menu items.

Use the scroll-bar messages (SBM-) to con
trol scroll bars and sliders.

Use the title-bar messages (TBM-) to con
trol title bars.

Use the general window messages (WM_) to
control the operation of windows of any
window class. For most general window
messages, the system sends the message to
the window procedure of the given window.
These messages can represent input from
the keyboard, mouse, or timer. Some mes
sages are requests from the system to the
window procedure for information, or they
are actions to be taken. Other messages
contain information that the window pro
cedure can use or save for processing later.

MS OS/2 uses general window messages
when creating, destroying, moving, sizing,
and activating windows. It also uses these
messages for all input to the window,
whether the input is from devices, such as
the keyboard and mouse, or through other
windows, such as dialogs and menus.

The remainder of this chapter is a directory that gives complete syntax, purpose,
and parameter descriptions for MS OS/2, version 1.2, functions and messages.
The types, macros, and structures used by a function are given with the func
tion, and they are described more fully in Chapter 4, "Types, Macros, Struc
tures." You will notice the word New, Change, or Correction on the right side of
the line that contains the function or message name. This heading tells you
whether that particular function or message is new to MS OS/2, version 1.2;
changed, or updated, from MS OS/2, version 1.1; or contains a correction to an
error that appeared in MS OS/2, version 1.1 documentation.

56 MS OS/2 Programmer's Reference, Vol. 4
iaiiii.m~_!rmlti~ii!U!§~~mn$!~~ll;_nYmilfi~ni!l~!a1jil!iw.wi8i~mii~iW!~liJiiarul~H~i!§i~~~m~!§laI~!i!

Some of the function and message descriptions in this chapter include examples.
The examples show how to use the functions and messages to accomplish simple
tasks. In nearly all cases, the examples are code fragments, not complete pro
grams. The code fragment is intended to show the context in which the function
or message can be used, but often assumes that variables, structures, and con
stants used in the example have been defined and/or initialized. Also, a code
fragment may use comments to represent a task instead of giving actual state
ments.

Although the examples are not complete, you can still use them in your pro
grams if you take the following steps:

• Include the os2.h file in your program.

• Define the appropriate include constants for the functions, structures,
and constants used in the example.

• Define and initialize all variables.

• Replace comments that represent tasks with appropriate statements.

• Check return values for errors and take appropriate actions.

3.3 Functions and Messages
The following list, in alphabetical order, details the new, changed, and corrected
functions and messages for MS OS/2, version 1.2.

CBM_SHOWLIST 57

• CBM_HILITE New

Parameters

Return Value

CBM_HILITE
mpl = MPFROMSHORT«USHORT) fHilite);
mp2 = OL;

1* highlight flag . *1
1* not used, must be zero *1

An application sends a CB~HILITE message to set the highlightfng state of
the drop-down list button in a combination box that was created with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

fHilite Low word of mpl. Specifies whether to highlight or remove highlighting
from the drop-down list button. If this parameter is TRUE, the system highlights
the button; if it is FALSE, the system removes the highlighting.

The return value is TRUE if the state of the drop-down list button changes or
FALSE if it does not.

• CBM_ISLISTSHOWING New

Parameters

Return Value

See Also

CBM_ISLISTSHOWING
mpl = OL; 1* not used, must be zero *1
mp2 = OL; It not used, must be zero *1

An application sends a CB~ISLISTSHOWING message to determine whether
the list box in a combination box is currently displayed.

This message does .not use any parameters.

The return value is TRUE if the list box is displayed or FALSE if it is not.

CB~SHOWLIST

• CBM_SHOWLIST New

Parameters

Return Value

See Also

CBM_SHOWLIST
mpl = MPFROMSHORT«USHORT) fShow);
mp2 = OL;

It show flag *1
1* not used, must be zero *1

An application sends a CB~SHOWLIST message to show or hide the list box
in a combination box.

fShow Low word of mpl. Specifies whether to show or hide the list box. If
this parameter is TRUE, the list box is shown; otherwise, it is hidden.

The return value is TRUE if the state of the list box changes or FALSE if it
does not change.

CBMJSLISTSHOWING

58 CBN_EFCHANGE

• CBN_EFCHANGE New

Parameters

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_EFCHANGE;

/* control-window IO */

The CBN-EFCHANGE notification message is sent when the text in a
combination-box entry field changes.

id Low word of mpl. Identifies the control window.

usNo tify Co de High word of mpl. Set to CBN-EFCHANGE.

~CONTROL

• CBN_EFSCROLL New

Parameters

Return Value

See Also

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_EFSCROLL;

/* control-window IO */

The CBN-EFSCROLL notification message is sent when a combination-box
entry field is scrolled.

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to CBN-EFSCROLL.

An application should return zero if it processes this message.

~CONTROL

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_ENTER;

/* control-window ID */

New

The CBN-ENTER notification message is sent when the user presses the ENTER
key or double-clicks a list item in a combination box.

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to CBN_ENTER.

An application should return zero if it processes this message.

CBN_MEMERROR 59

• CBN_LBSCROLL New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_LBSCROLL;

/* control-window IO */

The CBN.LBSCROLL notification message is sent when a combination-box list
is scrolled.

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to CBN.LBSCROLL.

An application should return zero if it processes this message.

WM.-CONTROL

• CBN_LBSELECT New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_LBSELECT;

/* control-window IO */

The CBN.LBSELECT notification message is sent when a combination-box list
item is selected.

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to CBN.LBSELECT.

An application should return zero if it processes this message.

WM.-CONTROL

• CBN_MEMERROR New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_MEMERROR;

/* control-window IO */

The CBN~EMERROR notification message is sent when a combination-box
cannot allocate the amount of memory necessary.

id Low word of mpl. Identifies the control window.

u~NotifyCode High word of mpl. Set to CBNJ4EMERROR.

An application should return zero if it processes this message.

WM.-CONTROL

60 CBN_SHOWLIST

• CBN SHOWLIST

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = CBN_SHOWL1ST;

New

It control-window 10 tl

The CBN_SHOWLIST notification message is sent when the combination-box
list is shown (dropped down).

Parameters

Return Value

See Also

• DevEscape

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to CBN_SHOWLIST.

An application should return zero if it processes this message.

WM_CONTROL

LONG OevEscape(hdc. cmdCode. cblnData. pblnData. pcbOutData. pbOutData)
HOC hdc; /. device-context handle ./
LONG cmdCode; /. escape function to perform ./
LONG cblnData; /. size of input buffer ./
PBYTE pblnData; /. pointer to input buffer ./
PLONG pcbOutData; /. pointer to buffer for bytes in output buffer ./
PBYTE pbOutData; /. pointer to output-data buffer ./

Change

The DevEscape function allows applications to access facilities of a device not
otherwise available through the API. Because calls to escape functions are gen
erally sent to the device driver, the device driver must be able to use them.

Parameters hdc Identifies the device context.

cmdCode Specifies the escape function to perform. The following escape
functions are currently defined:

DEVESC~BORTDOC
DEVESC-BREAK-EXTRA
DEVESC_CHA~XTRA
DEVESC~RAFTMODE
DEVESC-ENDDOC
DEVESC_FLUSHOUTPUT
DEVESC_GETSCALINGFACTOR
DEVESC_NEWFRAME
DEVESC_NEXTBAND
DEVESC_QUERYESCSUPPORT
DEVESC_QUERYVIOCELLSIZES
DEVESC~A WDATA
DEVESC_STAR TDOC

Return Value

Errors

Comments

OevEscape 61

Devices can define additional escape functions by using other cmdCode values in
the following ranges:

Range

32768-40959

40960-49151

49152-57343

57344-65535

Meaning

Not stored in a metafile and not recorded.

Stored in a metafile only.

Stored in a metafile and recorded.

Recorded only.

cblnData Specifies the number of bytes of data in the buffer pointed to by the
pblnData parameter.

pblnData Points to the buffer that contains the input data required for the
escape function.

pcbOutData Points to the buffer that receives the number of bytes of data in
the buffer pointed by the pbOutData parameter. If data is returned in the pbOut
Data parameter, pcbOutData is updated to the number of bytes of data returned.

pbOutData Points to the buffer that receives the output from the escape func
tion. If this parameter is NULL, no data is returned.

The return value is DEV _OK if the function is successful, DEVESC-ERROR if
an error occurs, or DEVESC_NOTIMPLEMENTED if the escape function is
not implemented for the specified code.

You can use the WinGetLastError function to retrieve the error value, which
may be one of the following values:

PMERR-ESC_CODE_NOT_SUPPORTED
PMERRJNV -ESCAPE-DATA
PMERRJNVJlDC
PMERRJNV-LENGTELOR-COUNT

The standard escape functions and the corresponding DevEscape parameters are
listed in the following paragraphs.

The DEVESCJ3REAK-EXTRA escape defines extra width to add to the break
character when that character is transmitted to the device specified by the hdc
parameter. The extra width is used in aligning text. The GpiQueryFonts function
can be used to determine the break character used in a specific font.

For DEVESCJ3REAK-EXTRA, the DevEscape parameters contain the follow
ing information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter. This parameter must be either
zero (for no extra spacing) or 4 (for extra spacing).

Points to the fixed-point number (FIXED) that
specifies the amount of extra width (in world
coordinate units) to add to the break character.

Not used; can be NULL.

Not used; can be zero.

62 DevEscape

Extra spacing is initialized to zero whenever a display context is opened. Any
change made to the extra spacing remains in effect until either the display con
text is closed or a new change to the extra spacing is made.

The DEVESC_CHAR-EXTRA escape defines extra width to add to all charac
ters when they are transmitted to the device specified by the hdc parameter. The
extra width is used in aligning text.

For DEVESC_CHAR-EXTRA, the DevEscape parameters contain the follow
ing information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter. This parameter must be either
zero (for no extra spacing) or 4 (for extra spacing).

Points to the fixed-point number (FIXED) that
specifies the amount of extra width to be added.

Not used; can be NULL.

Not used; can be zero.

Extra spacing is initialized to zero whenever a display context is opened. Any
change made to the extra spacing remains in effect until either the display con
text is closed or a new change to the extra spacing is made.

The extra width added to the break character is the sum of the break-extra and
character-extra amounts. Providing a width vector to GpiCharStringPos or Gpi
QueryCharStringPosAt operates in addition to the extra spacing feature. Extra
spacing does not override kerning; extra spacing adjustments and kerning adjust
ments simply sum.

Text drawn in a path is not affected by the extra spacing. This means that out
lined text and text used for a clipping region are displayed as if the extra spacing
fields were set to zero.

The DEVESC_QUERYESCSUPPORT escape determines whether the device
driver has implemented a particular escape. The return value gives the result.
This escape is not stored in a metafile or recorded.

For DEVESC_QUERYESCSUPPORT, the DevEscape parameters contain the
following information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter.

Specifies the escape-code value of the escape function
to be checked.

Not used; can be NULL.

Not used; can be zero.

OevEscape 63

The DEVESC_QUERYVIOCELLSIZES escape returns the cell sizes supported
by the device identified by the hdc parameter.

For DEVESC_QUERYVIOCELLSIZES, the DevEscape parameters contain
the following information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be zero.

Not used; can be NULL.

Points to the number of bytes of data pointed to by
the pbOutData parameter. Upon return, this parame
ter contains to the number of bytes returned.

Points to the buffer that receives the output from
this escape function. The output is returned in a
VIOSIZECOUNT structure and an array of
VIOFONTCELLSIZE structures. These structures
have the following forms:

typedef struct _VIOSIZECOUNT {
LONG maxcount;
LONG count;
} VIOSIZECOUNT;

typedef struct _VIOFONTCELLSIZE {
LONG cx;
LONG cy;
} VIOFONTCELLSIZE;

The number of VIOFONTCELLSIZE structures
returned is dependent on the value of the count field
of the VIOSIZECOUNT structure.

For a full description, see Chapter 4, "Types, Macros,
Structures. "

The DEVESC_GETSCALINGF ACTOR escape returns the scaling factors for
the X and y axes of a printing device. For each scaling factor, an exponent of two
is put in the pbOutData parameter. For example, the value 3 is used if the scal
ing factor is 8. Scaling factors are used by devices that cannot support graphics
at the same resolution as the device resolution.

For DEVESC_GETSCALINGFACTOR, the DevEscape parameters contain
the following information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be zero.

Not used; can be NULL.

Points to the number of bytes of data pointed to by
the pbOutData parameter. Upon return, this parame
ter contains the number of bytes returned.

Points to the buffer that receives the output from this
escape. A structure is returned that specifies the scal
ing factors for the x and y axes.

64 DevEscape

The DEVESC_STARTDOC escape indicates the start of a new print job. All
subsequent output to the device context, up to the next DEVESC.-ENDDOC
escape, is spooled under the same job.

For DEVESC_STARTDOC, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter.

Points to the null-terminated string that specifies the
name of the document.

Not used; can be NULL.

Not used; can be NULL.

The DEVESC-ENDDOC escape ends a print job started by the
DEVESC_STARTDOC escape.

For DEVESC-ENDDOC, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be zero.

Not used; can be NULL.

Points to the buffer that specifies the number of char
acters in the string pointed to by the pbOutData
parameter. This parameter should be NULL if the
number of characters is zero.

Points to the unsigned 16-bit integer that specifies the
job identifier if a spooler print job was created.

The DEVESC_NEXTBAND escape allows an application to signal that it has
finished writing to a "band," or rectangle. The coordinates of the next band are
returned. This escape is used by applications that perform handle banding ("for
printing") themselves.

For DEVESC_NEXTBAND, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be zero.

Not used; can be NULL.

Points to the number of bytes of data pointed to by
the pbOutData parameter. Upon return, this parame
ter contains the number of bytes returned.

Points to the address of the buffer that receives the
output from this escape. A structure is returned that
specifies the device coordinates of the next band.

OevEscape 65

The DEVESC_ABORTDOC escape stops the current job, erasing every
thing written by the application to the device since the last call to the
DEVESC-ENDDOC escape function.

For DEVESC~BORTDOC, the DevEscape parameters contain the following
information:

Parameter

cblnData

pbIIlData

pcbOutData

pbOutData

Description

Not used; can be zero.

Not used; can be NULL.

Not used; can be NULL.

Not used; can be NULL.

The DEVESC_NEWFRAME escape allows an application to signal when it has
finished writing to a page. This escape is typically used with a printer device to
advance to a new page. Using this escape is similar to processing the GpiErase
function for a screen device context.

For DEVESC_NEWFRAME, the DevEscape parameters contain the following
information:

Parameter

cbIIlData

pblnData

pcbOutData

pbOutData

Description

Not used; can be zero.

Not used; can be NULL.

Not used; can be NULL.

Not used; can be NULL.

The DEVESC_DRAFfMODE escape turns draft mode on or off. Turning draft
mode on instructs the device driver to print faster and, if necessary, with lower
quality. You can change the draft mode only at page boundaries-for example,
after a DEVESC_NEWFRAME escape.

For DEVESC_DRAFfMODE, the DevEscape parameters contain the following
information:

Parameter

cblnData

pbIIlData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter.

Points to the signed 16-bit integer that specifies the
draft mode. This value is 1 if draft mode is on and
zero if draft mode is off.

Not used; can be NULL.

Not used; can be NULL.

The DEVESC_FLUSHOUTPUT escape removes any output from the device
buffer.

For DEVESC_FLUSHOUTPUT, the DevEscape parameters contain the follow
ing information:

Parameter

cblnData

pblnData

Description

Not used; can be zero.

Not used; can be NULL.

66 OevEscape

See Also

Changes

Parameter

pcbOutData

pbOutData

Description

Not used; can be NULL.

Not used; can be NULL.

The DEVESC-.RA WDATA escape allows an application to send data directly
to a device driver. For example, in the case of a printer device driver, the data
could be a printer data stream.

If raw data is mixed with other data-for example, Gpi data-being sent to the
same page of a device context, the results are unpredictable and depend upon
the action taken by the Presentation Manager device driver, which, in this case,
might ignore the GPI data completely. In general, you should send raw data
either to a separate page, using the DEVESC_NEWFRAME escape to obtain a
new page, or to a separate document, using the DEVESC_STARTDOC and
DEVESC-ENDDOC escapes to create a new document.

For DEVESC-.RA WDATA, the DevEscape parameters contain the following
information: '

Parameter

cbIIlData

pblnData

pcbOutData

pbOutData

GpiErase

Description

Specifies the number of bytes pointed to by the
pbIIlData parameter.

Points to the raw data.

Not used; can be NULL.

Not used; can be NULL.

The escape functions DEVESCJ3REAICEXTRA, DEVESC_CHAR-EXTRA,
and DEVESC_QUERYVIOCELLSIZES have been added.

The DEVESC_STARTDOC and DEVESC-ENDDOC escapes indicate the start
and end of a print job.

I DevPostDeviceModes Correction
LONG DevPostDeviceModes(hab, pbDriverData, pszDriverName, achDeviceName, pszName, f10ptions)
HAB hab; I. anchor-block handle *'
PDRIVDATA pbDriverData; I. pOinter to buffer for data .1
PSZ pszDriverName; I. pointer to string for driver name .1
PSZ achDeviceName; I. pointer to device name .1
PSZ pszName; I. pointer to string for output device name .1
ULONG f10ptions; I. specifies various options .1

The DevPostDeviceModes fun~tion causes a device driver to post a dialog box
so the user can set options for the device (resolution, font cartridges, and so
on).

The application can call this function first with a NULL data pointer to find how
much storage is needed for the data buffer. It then calls the function a second

Parameters

Return Value

DevPostDeviceModes 67

time to have the buffer filled with data. You can then pass the returned data to
the DevOpenDC function as the buffer data pointed to by the pbDriverData
parameter.

hab Identifies the anchor block.

pbDriverData Points to the data buffer that receives device data defined by
the driver. If this parameter is NULL, the function returns the required buffer
size. The format of the data is the same as for the pbData parameter of the
DevOpenDC function.

pszDriverName Points to the null-terminated string that contains the name of
the device driver.

achDeviceName Points to the null-terminated string that identifies the partic
ular device (for example, its model number). This string must not exceed 32
bytes. Valid names are defined by device drivers.

pszName Points to the null-terminated string that contains the printer name.

jlOptions Specifies whether the function should display a dialog box that
allows the user to change job properties, display two dialog boxes that allow the
user to change job and printer properties, or simply return the current job pro
perties. This parameter can be one of the following values:

Value

DPDMF _POSTJOBPROP

DPDMF _CHANGEPROP

DPDMF _QUERYJOBPROP

Meaning

Display a dialog box that allows the user
to change job properties. The default
values for this dialog box are taken from
the P~SPOOLER_DD section of the
os2.illi file if the pszName parameter
specifies a logical address. If pS7.Name is
NULL, the default values are taken from
the pbDriverData parameter.

Display two dialog boxes. The first dialog
box allows the user to change job proper
ties; the second allows the user to change
printer properties. The default values for
these dialog boxes are taken from the
P~SPOOLER_DD section of the os2.illi
file. The function returns the new values in
the pbDriverData parameter. The pszName
parameter cannot be NULL when this
option is selected.

Return the current job properties.

The return value, if the pbDriverData parameter is NULL, is the size (in bytes)
required for the data buffer~ DPDM_NONE if there are no settable options, or
DPDM~RROR if an error occurs.

The return value, if pbDriverData is not NULL, is DEV _OK if the function is
successful, DPD~NONE if there is no device mode, or DPD~RROR if an
error occurs.

68 DevPostDeviceModes

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _DEVICE_NAME
PMERRJNV -DRIVER-DATA
PMERRJNV -DRIVER_NAME
PM ERR-IN V J-OGICAL~DDRESS

See Also DevOpenDC

Corrections The sixth parameter (flOptions) was omitted in the previous description of the
function.

I DevQueryCaps Correction
BaaL OevQueryCaps(hdc,/Startitem, cltems, alltems)
HOC hdc; /. device-context handle ./
LONG IS tartitem; /. first item to be returned ./
LONG cltems; /. number of items to be returned ./
PLONG alltems; /. array for device characteristics ./

Parameters

Return Value

Errors

Comments

The De"'QueryCaps function queries the characteristics of the specified device.

hdc Identifies the device context.

IStartitem Specifies the first item of information to be returned in the array.

cltems Specifies the number of items to be returned in the array.

alltems Points to an array of device characteristics, starting with the item
specified by the IStartitem parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _HDC
PMERRJNVJ-ENGTH-OR-COUNT
PMERRJNV _QUERY-ELEMENT_NO

The following are possible values for the alltems parameter:

CAPSYAMILY Specifies the device type. These values are the same as the
values for the type parameter in the DevOpenDC function.

CAPSJO_CAPS Specifies the device input/output capability. The possible
values are as follows:

Value

CAPS_10_DUMMY

CAPS_IO_SUPPORTS_OP

CAPS_IO_SUPPORTS_IP

CAPS_IO_SUPPORTS_IO

Meaning

Dummy device

Output

Input

Output and input

OevQueryCaps 69

CAPS_TECHNOLOGY Specifies the technology. The possible values are as
follows:

Value

CAPS_TEClLUNKNOWN

CAPS_TEClL VECTOR_PLOTTER

CAPS_ TEClLRASTER_DISPLA Y

CAPS_TEClLRASTERJRINTER

CAPS_ TEClLRASTER_CAMERA

CAPS_ TEClLPOSTSCRIPT

Meaning

Unknown (for example, metafile)

Vector plotter

Raster display

Raster printer

Raster camera

PostScript printer

CAPSJ)RIVEIL VERSION Specifies the device-driver version number.

CAPS~EIGHT Specifies the media depth (for a full-screen maximized win
dow on a display) in pels. (For a plotter, a pel is defined as the smallest possible
displacement of the pen and can be smaller than a pen width.)

CAPS_WIDTH Specifies the media width (for a full-screen, maximized window
for displays) in pels.

CAPS~EIGHTJN.:...CHARS Specifies the media depth (for a full-screen,
maximized window for displays) in character rows, for Vio calls only.

CAPS_ WIDTHJN_CHARS Specifies the media width (for a full-screen, max
imized window for displays) in character columns, for Vio calls only.

CAPS_VERTICAL_RESOLUTION Specifies the vertical resolution (in pels
per meter) of the device.

CAPS~ORIZONTAL_RESOLUTION Specifies the horizontal resolution (in
pels per meter) of the device.

CAPS_CHA~EIGHT Specifies the default height (in pels) of the character
box.

CAPS_CHAIL WIDTH Specifies the default width (in pels) of the character
box.

CAPS_SMALL_CHARJ-IEIGHT Specifies the default height (in pels) of the
small character box. This number is zero if there is only one size of the charac
ter box.

CAPS_SMALL_CHAIL WIDTH Specifies the default width (in pels) of the'
small character box. This number is zero if there is only one size of the charac
ter box.

CAPS_COLORS Specifies the number of distinct colors supported at the same
time, including reset (gray-scales count as distinct colors). If loadable color
tables are supported, this is the number of entries in the device color table. For
plotters, the value returned is the number of pens plus one (for the background).

CAPS~OUSE.J3UTTONS Specifies the number of mouse or tablet buttons
that are available. A returned value of zero indicates that there are no mouse or
tablet buttons available.

70 DevQueryCaps

CAPS_FOREGROUND..MDCSUPPORT Specifies the foreground-mix sup
port. The possible values are as follows:

Value

CAPS_F~OR

CAPS_F~OVERPAINT

CAPS_FM_XOR

CAPS_F~LEA VEALONE

Meaning

OR

Overpaint

XOR

Leave alone

CAPS_F~AND AND

CAPS_F~GENERAL_BOOLEAN Mixes 7 through 17

The value returned is the sum of the values appropriate to the mixes supported.
A device capable of supporting the OR mix mode must, as a minimum, return 1
+ 2 + 16 = 19, signifying support for the mandatory mix modes OR, overpaint,
and "leave-alone." Note that these numbers correspond to the decimal represen
tation of a bit string that is seven bits long, with each bit set to 1 if the appropri
ate mode is supported.

CAPS_BACKGROUND..MDCSUPPORT Specifies the background mix sup
port. The possible values are as follows:

Value

CAPS_B~OR

CAPS_B~OVERPAINT

CAPS_BM_XOR

CAPS_B~LEA VEALONE

Meaning

OR

Overpaint

XOR

Leave alone

The value returned is the sum of the values appropriate to the mixes supported.
A device must, as a minimum, return 2 + 16 = 18 signifying support for the man
datory background mixes overpaint and leave alone. Note that these numbers
correspond to the decimal representation of a bit string that is five bits long,
with each bit set to 1 if the appropriate mode is supported.

CAPS.-LOADABLE_SYMBOL_SETS Specifies the number of fonts that may
be loaded for Vio.

CAPS_WINDOW-BYTE~LIGNMENT Specifies whether the client area of
Vio windows should be byte-aligned. The possible values are as follows:

Value Meaning

CAPS_BYTE_ALIGN_REQUIRED Must be byte-aligned.

CAPS_BYTE_ALIGN_RECOMMENDED More efficient if byte-aligned, but
not required.

CAPS_BYTE_ALIGN_NOT_REQUIRED Does not matter whether byte
aligned.

CAPS_BITMAP_FORMATS Specifies the number of bitmap formats sup
ported by the device.

OevQueryCaps 71

CAPS~ASTElLCAPS Specifies the raster-operations capability of the
device. The possible values are as follows:

Value

CAP S_R A STER_BITBLT

CAPS_RASTER_BANDING

CAPS_RASTER_BITBLT _SCALING

CAPS_RASTER_SET _PEL

Meaning

BitBlt supported

Banding supported

Scaling supported

Set PEL support

CAPS~ARKElL WIDTH Specifies the default width (in pels) of the marker
box.

CAPS~ARKER-HEIGHT Specifies the default depth (in pels) of the marker
box.

CAPS-DEVICEYONTS Specifies the number of device-specific fonts.

CAPS_GRAPHICS_SUBSET Specifies the graphics-drawing subset supported
(3 indicates GOCA DR/3).

CAPS_GRAPHICS_ VERSION Specifies the graphics-architecture version sup
ported (1 indicates version 1).

CAPS_GRAPHICS_ VECTOlLSUBSET Specifies the graphics-vector-drawing
subset supported (Z indicates GOCA VS/Z).

CAPS_GRAPHICS_CHAlL WIDTH Specifies the default Gpi character-box
width (in pels).

CAPS_GRAPHICS_CHAILHEIGHT Specifies the default Gpi character-box
height (in pels).

CAPS-DEVICE_ WINDOWING Specifies the support for device windows.
This value may be CAPS-DEV _WINDOWING_SUPPORT if the device sup
ports windowing.

CAPS~DDITIONAL_GRAPHICS Specifies additional graphics support.
The possible values are as follows:

Value Meaning

CAPS_GRAPHICS_KERNING_SUPPORT The device supports kerning.

CAPS_FONT_OUTLINE_DEFAULT Outline font is the default.

CAPS_FONT_IMAGE_DEFAULT Font image is the default.

CAPS_SCALED_DEFAULT_MARKERS Scaled default markers.

CAPS~ESERVED Specifies the maximum number of distinct colors available
at one time.

CAPS_PI-IYS_COLORS Specifies the maximum number of distinct colors that
can be specified on the device.

CAPS_COLORJNDEX Specifies the maximum logical-color-table index sup
ported for the device. This value must be at least 7. For the EGA and VGA
device drivers, the value is 63.

CAPS_COLORYLANES Specifies the number of color planes.

CAPS_COLORJHTCOUNT Specifies the number of adjacent color bits for
each pel (within one plane).

72 OevQueryCaps

See Also

Changes

• DosAliocHuge

CAPS_COLOR_TABLE_SUPPORT Specifies the support for loadable color
tables. It can be one of the following values:

Value

DevOpenDC

Meaning

Set if the RGB color table can be
loaded, with a minimum support
of 8 bits each for red, green, and
blue.

Set if a color table with other
than 8 bits for each primary color
can be loaded.

Set if true mixing occurs when the
logical color table has been real
ized, providing that the size of the
logical color table is not greater
than the number of distinct colors
supported (see CAPS_COLORS).

Set if a loaded color table can be
realized.

DevQueryCaps can also retrieve information about colors by using the following
constants:

CAPS_COLOILBITCOUNT
CAPS_COLO~PLANES
CAPS_COLO~TABLE_SUPPORT
CAPS_COLTABL_REALIZE
CAPS_COLTABL_RGB_8
CAPS_COLTABLE~GB_8YLUS
CAPS_COLTABLE_TRUE-MIX
CAPS_GRAPHICS_CHA~ WIDTH
CAPS_GRAPHICS_CHAR-HEIGHT

Change
USHORT DosAliocHuge (usNumSeg, usPartia/Seg, psel, usMaxNumSeg, (sAttr)
USHORT usNumSeg; /. number of segments requested ./

USHORT usPartia/Seg; /. number of bytes in last segment ./

PSEL psel; /. pointer to variable for selector allocated ./

USHORT usMaxNumSeg; /. maximum number of segments to reallocate ./
USHORT fsAttr; /. sharable/discardable flags ./

The DosAllocHuge function allocates a huge-memory block. This block consists
of one or more 65,536-byte memory segments and one additional segment of a
specified size.

The DosAlIocHuge function allocates the segments and copies the selector of
the first segment to the variable pointed to by the pseZ parameter. Selectors for
the remaining segments are consecutive and must be computed by using an offset
from the first selector.

Parameters

Return Value

Comments

DosAliocHuge 73

The DosAllocHuge function can specify that segments can be shared by other
processes. If the SEG_GETT ABLE flag is used, other processes can gain
access to the shared memory by calling the DosGetSeg function. If the
SEG_GIVEABLE flag is used, the memory can be shared by other processes
after the process allocating the memory has called the DosGiveSeg function. In
both cases, the process allocating the memory must pass the selector to the pro
cess that will share the memory.

The DosAllocHuge function is a family API function.

usNumSeg Specifies the number of 65,536-byte segments to allocate.

usPartiaZSeg Specifies the number of bytes in the last segment. This number
can be any value in the range 0 through 65,535. If this value is zero, no addi
tional segment is allocated.

pseZ Points to the variable that receives the selector of the first segment.

usMaxNumSeg Specifies the maximum number of segments that can be
specified in any subsequent call to the DosReallocBuge function. If this number
is zero, the memory cannot be reallocated to a size greater than its original size,
but it can be reallocated to a smaller size.

!sAttr Specifies the segment attributes. This parameter can be one or more of
the following values:

Value

SEG_DISCARDABLE

SEG_NONSHARED

Meaning

Creates a discardable. nonsharable segment.
Once the segment is unlocked. it may be dis
carded to satisfy another memory-allocation
request.

Creates a sharable segment that other processes
can retrieve by using the DosGetSeg function.

Creates a sharable segment that the owning pro
cess can give to other processes by using the Dos-
GlveSeg function.

Creates a nonsharable. nondiscardable segment.
This value cannot be combined with any other
value.

Specifies that a shared segment can be reduced in
size by DosReallocSeg.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-NOT_ENOUG~EMORY

Each segment in the huge memory block has a unique selector. The selectors are
consecutive. The pseZ parameter specifies the value of the first selector; the
remaining selectors can be computed by adding an offset to the first selector one
or more times-that is, once for the second selector, twice for the third, and so
on. The selector offset is a multiple of 2, as specified by the shift count retrieved
by using the DosGetHugeShift function. For example, if the shift count is 2, the
selector offset is 4 (1 « 2). If the selector offset is 4 and the first selector is 6,
then the second selector is 10, the third is 14, and so on.

74 DosAllocHuge

Restrictions

Example

See Also

Changes

Corrections

• DosAllocSeg

If necessary, the system will discard an unlocked discardable segment in order to
satisfy another allocation request. The new allocation request can come from
any process, including the process that allocated the segment.being discarded.

The DosFreeSeg function frees all segments when passed the first selector. If the
segments were declared as sharable, they will not be discarded from memory
until the last process using them calls DosFreeSeg.

DosAllocHuge can be issued from ring 2, but the segments will be allocated as
ring-3 segments.

In real mode, the following restrictions apply to the DosAllocHuge function:

• The usParlialSeg parameter is rounded up to the next paragraph (l6-byte)
value.

• The actual segment address is copied to the psel parameter.

This example calls the DosAllocHuge function to allocate two segments with 64K
and one segment with 200 bytes. It then converts the first selector to a huge
pointer that can access all the memory allocated.

CHAR huge *pchBuffer;
SEL sel;
DosAllocHuge(2,

200,
&sel,
5,
SEG_NONSHARED) ;

pchBuffer = MAKEP(sel, 0);

1* number of segments *1
1* size of last segment *1
1* address of selector *1
1* maximum segments for reallocation *1
1* sharing flag * I
1* converts selector to pointer *1

DosAllocSeg, DosFreeSeg, DosGetHugeShift, DosGetSeg, DosGiveSeg,
DosLockSeg, DosReallocHuge, DosUnlockSeg

SEG_SIZEABLE is a possible value for the jsAtlr parameter. It allows a shared
segment to be reduced in size by the DosReallocHuge function.

This request can be issued from ring 2, but the segment will be allocated as a
ring-3 segment.

The example incorrectly requested three 64K segments instead of the two
described.

Change
USHORT DosAllocSeg (usSize, psel, (sAttr)
USHORT usSize; I. number of bytes requested .1
PSEL psel; I. pointer to variable for selector allocated .1
USHORT (sAttr; I. sharable/discardable flags .1

The DosAllocSeg function allocates a memory segment and copies the segment
selector to a specified variable.

The DosAllocSeg function can specify that segments can be shared by other
processes. If the SEG_GETTABLE flag is used, other processes can gain
access to the shared memory by calling the DosGetSeg function. If the
SEG_GIVEABLE flag is used, the memory can be shared by other processes

Parameters

Return Value

Comments

DosAllocSeg 75

after the process allocating the memory has called the DosGiveSeg function.
In both cases, the process allocating the memory must pass the selector to the
process that will share the memory.

The DosAllocSeg function is a family API function.

usSize Specifies the number of bytes to allocate. This number can be any
value in the range 0 through 65,535. If this value is zero, the function allocates
65,536 bytes.

pse/ Points to the variable that receives the segment selector.

fsAttr Specifies the segment attributes. This parameter can be one or more of
the following values:

Value

SEG_DISCARDABLE

SEG_NONSHARED

Meaning

Creates a discardable. nonsharable segment.
Once the segment is unlocked, it may be dis
carded to satisfy another memory-allocation
request.

Creates a sharable segment that other processes
can retrieve by using the DosGetSeg function.

Creates a sharable segment that the owning pro
cess can give to other processes by using the Dos
GlveSeg function.

Creates a nonsharable. nondiscardable segment.
This value cannot be combined with any other
value.

Specifies that a shared segment can be reduced in
size by DosReallocSeg.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROILNOT.-ENOUGILMEMORY

If the SEG.J)ISCARDABLE attribute is set, the DosAllocSeg function
automatically locks the segment. The segment cannot be discarded until the
DosUnLockSeg function is called. Before a process accesses an unlocked dis
cardable segment, it must call the DosLockSeg function to determine whether
the segment has been discarded, and to prevent the segment from being dis
carded while it is accessing it.

If necessary, the system will discard an unlocked discardable segment in order to
satisfy another allocation request. The new allocation request can come from
any process, including the process that allocated the segment being discarded.

The DosFreeSeg function frees the segment. If the segment was declared as
sharable, it will not be discarded from memory until the last process using it
calls DosFreeSeg.

The DosAllocSeg function can allocate only up to 64K of contiguous memory.
To allocate more than 64K, use the DosAllocHuge function.

DosAllocSeg can be issued from ring 2, but the segment will be allocated as a
ring-3 segment.

76 DosAllocSeg-

Restrictions

Example

See Also

Changes

In real mode, the following restrictions apply to the DosAllocSeg function:

• The usSize parameter is rounded up to the next paragraph (16-byte)
value.

• The actual segment address is copied to the pseZ parameter.

This example calls the DosAllocSeg function to allocate 26,953 bytes. It then
converts the selector to a far pointer that can access the allocated bytes.

PCH pchBuffer;
SEL sel;

DosAllocSeg(26953,
&sel,
SEG_NONSHARED) ;

pchBuffer = MAKEP(sel, 0);

/* bytes to allocate */
/* address of selector */
/* sharing flag */
/* converts selector to pointer */

DosAllocHuge, DosAllocShrSeg, DosFreeSeg, DosGetSeg, DosGiveSeg,
DosLockSeg, DosReallocSeg, DosUnlockSeg

SEG_SIZEABLE is a possible value for the fsAttr parameter. It allows a shared
segment to be reduced in size by the DosReallocHuge function.

This request can be issued from ring 2, but the segment will be allocated as a
ring-3 segment .

• DosAllocShrSeg Change
USHORT DosAliocShrSeg(usSize. pszSegName. pse/)

. USHORT usSize; /. number of bytes requested ./
PSZ pszSegName; /. pointer to segment name ./
PSEL psel; /. pointer to variable for selector allocated ./

Parameters

The DosAlIocShrSeg function allocates a shared-memory segment and copies the
segment selector to the specified variable.

A shared-memory segment can be accessed by any process that can identify the
segment name. A process can retrieve a selector for the segment by specifying
the name in a call to the DosGetShrSeg function. (Shared segments allocated by
using the DosAllocSeg function must be explicitly given or retrieved by using the
DosGiveSeg and DosGetSeg functions.)

usSize Specifies the number of bytes to be allocated. This number can be any
value in the range 0 through 65,535. If this value is zero, the function allocates
65,536 bytes.

pszSegName Points to a null-terminated string that identifies the shared
memory segment. The string must have the following form:

\sharemem \name

The segment name (name) must have the same format as an MS OSI2 filename
and must be unique. For example, the name \sharemem\public.dat is accept
able.

psel Points to the variable that receives the segment selector.

Return Value

Comments

Example

See Also

Changes

• DosCopy

DosCopy 77

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILALREADY -EXISTS
ERRORJNVALID_NAME
ERRO~NOT-ENOUGH~EMORY

A process can allocate up to 256 shared segments. The number of segments that
can be allocated may be less due to system usage at the time the allocation
request is made.

The DosFreeSeg function frees the segment. The segment will not be discarded
from memory until the last process using it calls DosFreeSeg. '

DosAlIocShrSeg can be issued from ring 2, but the shared-memory segment will
be allocated as a ring-3 segment.

This example calls the DosAlIocShrSeg function to allocate 26,953 bytes. It gives
the memory the name "\sharemem\abc.mem" so that other processes can use
the memory if they know the name.

SEL sel;

DosAllocShrSeg(26953.
"\\sharemem\\abc.mem",
&sel) ;

/* bytes to allocate
/* memory name
/* selector address

*/
*/
*/

DosAlIocHuge, DosAlIocSeg, DosFreeSeg, DosGetSeg, DosGetShrSeg,
DosGiveSeg

The number of segments a process can allocate has been increased to approxi
mately 256 (the actual number varies according to system usage).

The error message ERROR_INV ALID-HANDLE has been changed to
ERRORJNVALID_NAME .

New
USHORT DosCopy(pszSrc, pszDest, usOpt, ulReserved)
PSZ pszSrc; I. pOinter to name of source file .1
PSZ pszDest; I. pointer to name of target file .1
USHORT usOpt; I. options .1
ULONG ulReserved; I. must be zero .1

Parameters

The DosCopy function copies a file or subdirectory.

pszSrc Points to the null-terminated string that specifies the file or directory to
copy. This string must be a valid MS OS/2 filename and cannot contain wildcard
characters.

pszDest Points to the null-terminated string that specifies the name of the file,
directory, or device to copy the value of pszSrc to. This string must be a valid
MS OS/2 filename and cannot contain wildcard characters.

78 DosCopy

Return Value

Comments

Example

See Also

usOpt Specifies an option that can be used in the copy operation (it is ignored
if the destination is a device). This parameter can be one of the following values:

Value

DCPY _EXISTING

Meaning

Copy the source file to the destination file, even if
the destination file already exists. If neither this
option nor the DCPY _APPEND option is
specified, and the file exists, the value
ERROR_ACCESS_DENIED is returned.

Append the data in the source file to the end of
the destination file. If the destination file does not
exist, a new file is created.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR.ACCESSJ)ENIED
ERRORJ)IRECTORY
ERRORJ)RIVEJ.OCKED
ERROR_FILE_NOTYOUND
ERRORYILENAME_EXCED-RANGE
ERRORJNSUFFICIENTJ)ISK-SPACE
ERRORJNVALIDYARAMETER
ERRO~NOTJ)OSJ)ISK
ERRORYATHLNOTYOUND
ERRO~SHARINGJ3UFFE~XCEEDED
ERRO~SHARING_ VIOLATION

The DosCopy function can be used to copy individual files or entire directories
(including any subdirectories within the directory). The source and destination
files can be on different drives.

If an I/O error occurs when a file is being copied, the destination file is deleted
from the destination directory unless the DCPY.APPEND option is specified. In
this case, the destination file is restored to its original size.

The DosCopy function copies the attributes of the source to the destination file,
except when appending to an existing file.

You cannot specify only the drive as the destination. You must give the path on
the drive where the file or directory is to be copied.

This example copies the directory xyz from drive C, including its files and sub
directories, to the root directory on drive A.

DosCopy("c:\\xyz",
"a:\\",
DCPY_EXISTING,
OL) ; -

DosMove

/* source directory */
/* destination directory */
/* replaces existing files */
/* reserved */

DosCreateSem 79

• DosCreateSem Correction
USHORT DosCreateSem(fExclusive. phssm. pszSemName)
USHORT fExclusive; /* exclusive/nonexclusive ownership flag */
PHSYSSEM phssm; /* pOinter to variable for semaphore handle */
PSZ pszSemName: /* pointer to semaphore name */

Parameters

Return Value

Comments

Example

See Also

Corrections

The DosCreateSem function creates a system semaphore and copies the sema
phore handle to a variable. A process can use a system semaphore to indicate to
another process a change in the status of a shared resource.

fExclusive Specifies ownership of the semaphore. If this parameter is
CSEMJ>RIVATE, the process receives exclusive ownership. If this parameter
is CSEMJ>UBLIC, the process does not receive exclusive ownership.

phssln Points to the variable that receives the semaphore handle.

pszSemName Points to a null-terminated string that identifies the semaphore.
The string must have the form \sem\name. The string name, name, must have
the same format as an MS OS/2 filename and must be unique.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILALREADY~XISTS
ERROILINV ALID_NAME
ERROILINV ALID_P ARAMETER
ERROR_TOO~ANY_SEMAPHORES

The process calling DosSemCreate receives exclusive ownership of the sema
phore if the CSEMYRIV ATE flag is set in the fExclusive parameter. Exclusive
ownership prevents other processes from setting or clearing the semaphore.
Other processes can open the semaphore and wait for it to change status, but
they cannot change its status. Another process can obtain ownership of the
semaphore, however, by calling the DosSemRequest function. If ownership of
the semaphore changed through DosSemRequest, the process that originally
called DosCreateSem no longer has ownership. It cannot change the status of
the semaphore until it regains ownership by calling DosSemRequest.

This example calls DosCreateSem to create a system semaphore, and then calls
DosSemSet to set it and DosSemClear to clear it:

HSYSSEM hssm; I' handle to semaphore '1
DosCreateSem(CSEM_PRIVATE, ' I' specifies ownership '1

&hssm, I' address of handle '1
"\\sem\\abc.sem"); I' name of semaphore '1

DosSemSet(hssm); Ii sets semaphore '1

DosSemClear(hssm) ; I' clears semaphore '1

DosCloseSem, DosMuxSemWait, DosOpenSem, DosSemClear,
DosSemRequest, DosSemSet, DosSemSetWait, DosSemWait

The comments incorrectly indicated that the semaphore is always owned by the
process that calls DosCreateSem. The semaphore is owned by the calling pro
cess only if the CSEMYRIV ATE flag is set in .the JExclusive parameter.

80 DosCreateThread

• DosCreateThread Correction
USHORT OosCreateThread(pfnFunction. ptidThread. pbThrdStack)
PFNTHREAO pfnFunction(VOID); 1* pointer to function *1
PTIO ptidThread; 1* pOinter to variable for thread identifier .1
paYTE pbThrdStack; 1* pointer to thread stack *1

Parameters

Return Value

Comments

Example

The DosCreateThread function creates a new thread.

pfnFunction Points to the application-supplied function and represents the
starting address of the thread. For a full description, see the following "Com
ments" section.

ptidThread
pbThrdStack

Points to the variable that receives the thread identifier.

Points to the stack of the new thread.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-NOJROC_SLOTS
ERROR_NOT-ENOUGlLMEMORY

When a thread is created, the system makes a far call to the application-supplied
function whose address is specified by the pjnFunction parameter. This function
can include local variables and can call other functions, as long as the thread's
stack has sufficient space. (The stack can be allocated by using the DosAllocSeg
function or by using a global array.) The address specified by the pbThrdStack
parameter should be the address of the last word in the stack, not the first,
because the stack grows down in memory. The thread terminates when the func
tion returns or calls the DosExit function.

The pjnFulZctiolZ parameter points to a function supplied by the program. This
function should have the following form:

VOID FAR FuncName(VOID)
{
}

Because the system passes no arguments, no parameters are defined.

A new thread inherits all files and resources owned by the parent process. Any
thread in a process can open a file, device, pipe, queue, or system semaphore.
Other threads can use the corresponding handles to access the given item.

Note that high-level languages, run-time libraries, and stack checking may
severely limit or eliminate the ability to call the DosCreateThread function
directly from a high-level-language program. For more information, consult the
documentation that came with your language product.

Before calling the DosCreateThread function, set the es register to zero or
assign to it a selector that will remain valid for the duration of the new thread. If
you fail to set the es register to one of these values, the thread may unexpectedly
terminate as a result of a general protection fault.

This example sets aside a 2K buffer to be used as stack space for any threads
created. The first stack is set at the end of the array. The thread is created by
calling the DosCreateThread function. The thread terminates by calling the
DosExit function.

VOID FAR Threadl();
BYTE abStackArea[2048];

DosDeviOCtl2 81

PVOID pStackl = abStackArea + slzeof(abStackArea);
TID tldThreadl;

}

DosCreateThread(Threadl,
&tIdThreadl,
pStackl) ;

DosExlt(EXIT_PROCESS, 0);

VOID FAR Threadl() {

DosExlt(EXIT_THREAD, 0);
}

It name of thread functIon *1
1* address of thread ID *1
1* thread's stack tl

See Also DosAllocSeg, DosExit, DosResumeThread, DosSuspendThread

Corrections The example indicated that a 512K-byte stack was allocated. This has been
changed to a 2K-byte stack.

• DosDeviOCtl2 New
USHORT DosDevlOCtl2(pvData, cbData, pvParmList, cbParmList, usFunct, usCat, hDev)
PVOID pvData; 1* painter to buffer for data *1
USHORT cbData; 1* length of data buffer *1
PVOID pvParmList; 1* pointer to list of parameters *1
USHORT cbParmList; 1* length of parameter list *1
USHORT usFunct; 1* function code *1
USHORT usCat; 1* device category *1
HFILE hDev; 1* device handle *1

Parameters

The DosDevIOCtl2 function performs control functions on the device specified
by the file or device handle.

pv Data Points to a data buffer.

cbData Specifies the length (in bytes) of the data buffer.

pvParmList

cbParmList
command.

Points to an argument list for a specified command.

Specifies the length (in bytes) of the argument list for a specified

usFunct Specifies a function code for a specified device. This parameter can
be any value from 0 through 255.

usCat Specifies a device category. This parameter can be any value from 0
through 255.

hDev Identifies the device. This handle must have been created previously by
using the DosOpen function.

82 DosDeviOCtl2

Return Value

Comments

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLINV ALID_CATEGORY
ERRORJNVALID~RIVE
ERRORJNVALIDYUNCTION
ERRORJNVALIDJIANDLE
ERRORJNVALIDJ> ARAMETER

This function provides a way for a program to implement a customized IOCtI
function.

If the pvData parameter is zero, this parameter is not defined for the IOCtI func
tion being specified, and the value passed in the cbData parameter is ignored.

If the pvParmList parameter is zero, this parameter is not defined for the IOCtI
function being specified, and the value passed in the cbParmList parameter is
ignored.

Whenever the pvData or pvParmList parameter is a value other than zero, the
associated length parameter cannot be zero. The length parameters are not
passed to device drivers that do not support them.

See Also DosDevIOCtI

• DosEditName New
USHORT DosEditName(usEditLevel, pszSrc, pszEdit, pszDst, cbDst)
USHORT usEditLevel; I. edit level *1
psz pszSrc; 1* pointer to source string *1
psz pszEdit; 1* pointer to editing string *1
PBYTE pszDst; I. pointer to target buffer '*1
USHORT cbDst; 1* length of target buffer *1

Parameters

Return Value

The DosEditName function copies a source string to a revised destination string
by using an editing string and rules for converting wildcard characters.

usEditLevel Specifies the version of editing semantics to use in changing the
copy of the source string.· (Editing semantics are the rules used by the system to
convert wildcard characters.) For MS OS/2, version 1.2, this parameter must be
OxOOO1.

pszSrc Points to the null-terminated string to copy. The string should contain
only the component of the path to be edited, not the entire path.

pszEdit Points to the null-terminated string to use for editing.

pszDst Points to the buffer that contai~ls the new string.

cbDst Specifies the length (in bytes) of the buffer pointed to by the pszDst
parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_NAME
ERROR_INVALID_PARAMETER

Comments

Example

DosEnterCritSec 83

For MS OS/2, version 1.2, the destination string is always converted to upper
case.

The DosEditName function is typically used in copy and rename/move opera-
tions. . .

This example takes the source name abc.txt and an editing string of *.doc and
calls DosEditName to produce the string ABC. DOC:

CHAR szDst[14];

DosEditName(l, "abc.txt", "*.doc", szDst, sizeof (szDst»;

• DosEnterCritSec Change
USHORT DosEnterCritSec(VOID)

Return Value

Comments

See Also

Changes

The DosEnterCritSec function suspends execution of all threads in the current
process, except for the calling thread. Suspended threads cannot execute until
the current thread calls the DosExitCritSec function.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROlCCRITSEC_OVERFLOW

The signal handler (if installed) is not suspended when the DosEnterCritSec
function is called. If a signal occurs, the processing done by the signal handler
must not interfere with the processing done by the thread calling the DosEnter
CritSec function.

MS OS/2 maintains the number of outstanding DosEnterCritSec requests. This
count is incremented by DosEnterCritSec requests and decremented by Dos
ExitCritSec requests. If the count is greater than zero, a DosExitCritSec request
will not restore normal thread execution. If the count exceeds 65535, the error
ERROlCCRITSEC_OVERFLOW will be returned.

DosCreateThread, DosExitCritSec, DosHoldSignal, DosSetSigHandler

DosEnterCritSec now returns zero if the function is successful. Otherwise, it
returns an error value. It did not return a value in earlier versions.

For MS OS/2, version 1.2, a count is maintained of the number of times Dos
EnterCritSec is called. Normal thread execution is not restored until an equal
number of calls are made ro DosExitCritSec.

84 DosEnumAttribute

• DosEnumAttribute New
USHORT DosEnumAttribute (usRefType, pvFile, ulEntry, pvBuf, cbBuf, pulCount, ullnfoLevel, ulReserved)
USHORT usRefType; I. reference type ./
PVOID pvFile; . I. filename/handle ./

ULONG ulEntry; I. starting entry in list ./
PVOID pvBuf; I. data buffer .1
ULONG cbBuf; I. buffer size .1
PULONG pulCount; I. number of entries to return ./
ULONG ulln fo Level; I. info level .1
ULONG ulReserved; I. reserved ./

Parameters

The DosEnumAttribute function enumerates extended attributes for a specified
file or subdirectory.

The DosEnumAttribute function is a family API function.

usRefI'ype Specifies whether the pvFile parameter points to a file handle or to
a string that contains a file or directory name. This parameter can be one of the
following values:

Value Meaning

ENUMEA_REFfYPE_FHANDLE A handle

ENUMEA_REFfYPE_P A TH File or directory name

pv File Points to the handle obtained from the DosOpen or DosOpe"n2 func
tion or to a null-terminated string that contains a file or directory name.

ulEntry Specifies where to start enumerating extended attributes. A value of 1
specifies the first attribute for the file.

pvBuf Points to the buffer that receives the extended attributes. For a
ENUME~EVEL_NO_ VALUE-level request, the buffer is in the form of a
DENA! structure that contains only the names of the extended attributes. The
DENA! structure has the following form:

typedef struct _DENAl {
UCHAR reserved;
UCHAR cbName;
USHORT cbValue;
UCHAR szName[lJ;

} DENA1;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies the length (in bytes) of the buffer pointed to by the pvBuf
parameter.

pulCount Points to the variable that specifies the number of extended attri
butes requested and, on return, contains the number retrieved. A value of
OxFFFFFFFF returns as many extended attributes as will fit in the supplied
buffer.

ullnfoLevel Specifies the information level requested. For MS OS/2, version
1.2, the only possible value is ENUME~EVEL_NO_ VALUE.

ulReserved Specifies a reserved value; must be zero.

Return Value

Comments

Example

• DosExitCritSec

DosExitCritSec 85

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORYILENAME-EXCED.-RANGE
ERRORJNVALID_HANDLE
ERROR~CCESS~ENIED
ERRORY ATILNOTYOUND
ERRO~NOT_ENOUGH_MEMORY
ERRORJNV ALID_LEVEL
ERRORJNVALID_PARAMETER
ERRORj3UFFE~OVERFLOW

The order in which attributes are returned may not be the same if the Dos
EnumAttribute function is called a second time because other threads or
processes may have changed the order.

This example allocates lK of memory for the extended-attribute names, calls
DosEnumAttribute to retrieve the extended-attribute names for the file eafile,
and then displays the names one at a time:

#define BUE'SIZE

SEL sel;
PDENA! pdena!;
ULONG ulCount;
USHORT offset = o·

DosAllocSeg(BUE'SIZE, &sel, SEG_NONSHARED); 1* allocates buffer *1
pdenal = MAKEP(sel, 0); 1* initializes pointer to buffer *1
ulCount = OxE'E'E'E'E'E'E'E';
if (IDosEnumAttribute(ENUMEA_REE'TYPE_PATH, 1* path supplied *1

"eafile", 1* filename *1

}

lL, 1* starts enum. with first attr. *1
pdenal, 1* buffer address *1
BUE'SIZE, 1* buffer size * I
&ulCount, 1* number of attributes to retrieve *1
ENUMEA_LEVEL_NO_VALUE, 1* type of request *1
OL» { 1* reserved * I

while (ulCount--) { 1* while there are attribute names *1

}

VioWrtTTY(pdenal->szName, (USHORT) pdenal->cbName, OL);
VioWrtTTY(I\r\n", 2, OL);
offset += sizeof(DENAl) + pdenal->cbName;
pdenal = MAKEP(sel, offset); 1* points to next name *1

Change
USHORT DosExitCritSec(VOID)

Return Value

The DosExitCritSec function restores execution of all threads suspended by the
DosEnterCritSec function.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_CRITSEC_UNDERFLOW

86 DosExitCritSec

Comments

See Also

Changes

• DosExitList

MS OS/2 maintains the number of outstanding DosEnterCritSec requests. This
count is incremented by DosEnterCritSec requests and decremented by Dos
ExitCritSec requests. If the count is greater than zero, a DosExitCritSec request
will not restore normal thread execution. If the count is less than zero, the
ERROILCRITSEC_UNDERFLOW will be returned.

DosCreateThread, DosEnterCritSec

DosExitCritSec now returns an error value if it is called without a corresponding
call to DosEnterCritSec.

Correction
USHORT DosExitList (fFnCode, pfnFunction)
USHORT fFnCode; /. function code ./
PFNEXITLIST pfnFunction(USHORT); / .. pOinter to address of function .. /

Parameters

Return Value

The DosExitList function specifies a function that is executed when the current
process ends. This "termination function" can define additional termination
functions. The DosExitList function can be called one or more times: each call
adds or subtracts a function from an internal list maintained by the system.
When the current process terminates, MS OS/2 transfers control to each func
tion in the list.

fFnCode Specifies whether a function's address is added to or removed from
the list. If the function is added, the high byte of this parameter specifies the
order in which the function should be called. The exit-list routines with a low
order high byte will be called before those with a high-order high byte. The low
byte of this parameter can be one of the following values:

Value Meaning

Adds the function to the termination list. If this flag is
specified, the high byte of the parameter specifies the
order in which the function is called. It can be a value
from 0 through 255. A value of 0 specifies that this
function is to be called first. In the event of duplicate
order numbers, the last function added with the dupli
cate order number is called before the first function
added with the duplicate order number.

Termination processing is complete. Calls the next
function on the termination list.

EXLST_REMOVE Removes the function from the termination list.

pfnFunction Points to the termination function to be added to the list. For a
full description, see the following "Comments" section.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALID_DATA
ERROR_NOT.:...ENOUGH_MEMORY

Comments

Example

DosExltLlst 87

When adding an exit-list function, it is important that the exit-list function not
call any system functions with a lower exit-list order. The order is determined by
the high-byte of the fFnCode parameter. The following list defines the orders of
the various system components:

Order

Ox80-0x88

Ox90-0x98

OxAO-OxA8

OxBO

OxCO

OxDO

Component

Extended Edition Database Manager

Extended Edition Communication Manager

Presentation Manager

KBD component

VIO component

IPC Queues component

Dynamic-link-library modules often use the DosExitList function. It allows
dynamic-link-library modules to free resources or clear flags and semaphores if
the client process terminates without notifying them.

The termination function has one parameter and no return value. The function
should have the following form:

VOID PASCAL FAR FuncName(usTermCode)
USHORT usTermCode;
{

DosExitList(EXLST_EXIT, NULL);
}

The usTermCode parameter of the termination function specifies the reason the
process ended. This parameter can be one of the following values:

Value

TC_EXIT

TC_HARDERROR

TC_KILLPROCESS

TC_TRAP

Meaning

Normal exit

Hard-error abort

Unintercepted DosKillProcess

Trap operation

Before transferring control to the termination function, MS OS/2 resets the
stack to its initial value. MS OS/2 then passes control to the function by using a
jmp instruction. The termination function should carry out its tasks and then
call the DosExitList function with the fFnCode parameter set to EXLST~XIT.
This parameter setting directs the system to call the next function on the termi
nation list. When all functions on the list have been called, the process ends.

Termination functions should be as short and fail-safe as possible. Before the
termination functions are executed, all threads except for the one executing the
DosExitList function are destroyed. Note that a termination function must call
the DosExitList function to end; otherwise, the process "hangs" because MS
OS/2 cannot terminate it.

A termination function can call most MS OS/2 system functions; however, it
must not call the DosCreateThread or DosExecPgm function.

This example calls DosExitList, which then adds the locally defined function
CleanUp to the list of routines to be called when the process terminates.

88 DosExitList

See Also

Corrections

• DosFilelO

The CleanUp function displays a message that it is cleaning up, and then calls
DosExitList, reporting that it has finished and that the next function on the ter
mination list can be called.

/* Add the function, and have it be called last. */

DosExitList(EXLST_ADD I OxFFOO, CleanUp);

DosExit(EXIT_PROCESS, 0);
}

VOID PASCAL FAR CleanUp(usTermCode)
USHORT usTermCode;
{

}

VioWrtTTY("Cleaning up ... \r\n", 16, 0);

DosExitList(EXLST_EXIT,
NULL);

/* termination complete */

DosCreateThread, DosExecPgm, DosExit, DosKillProcess

When the EXLST~DD constant is used in the fFIlCode parameter, the high
byte of the parameter contains an order number (0 through 255). You can use
this number to specify the order in which your exit-list function is called.

The function template in the example incorrectly listed the prototype of the ter
mination function as PFNEXITLIST. It should be VOID PASCAL FAR .

New
USHORT DosFilelO (hf. pbCmd. cbCmd. pusErr)
HFILE hf; I. file handle .1
PBVTE pbCmd;
USHORT cbCmd;
PUSHORT pusErr;

Parameters

I. pointer to buffer for commands .1
I. length of command buffer .1
I. pointer to error offset

The DosFileIO function performs multiple lock, unlock, seek, read, and write
operations on a file.

h/ Identifies the file on which to perform the commands. This handle must
have been created previously by using the DosOpen function.

pbCmd Points to the buffer that contains one or more of the following
structures: FIOLOCKCMD, FIOLOCKREC, FIOUNLOCKCMD,
FIOUNLOCKREC, FIOSEEKCMD, or FIOREADWRITE. The structures have
the following forms:

typedef struct _FIOLOCKCMD {
USHORT usCmd;
USHORT cLockCnt;
ULONG cTimeOut;

} FIOLOCKCMD;

typedef struct _FIOLOCKREC {
USHORT fShare;
ULONG cbStart;
ULONG cbLength;

} FIOLOCKREC;

Return Value

Comments

typedef struct _FIOUNLOCKCMD {
USHORT usCmd;
USHORT cUnlockCnt;

} FIOUNLOCKCMD;

typedef struct _FIOUNLOCKREC {
ULONG cbStart;
ULONG cbLength;

} FIOUNLOCKREC;

typedef struct _FIOSEEKCMD {
USHORT usCmd;
USHORT fsMethod;
ULONG cbDistance;
ULONG cbNewPosition;

} FIOSEEKCMD;

typedef struct _FIOREADWRITE {
USHORT usCmd;
PYOID pbBuffer;
USHORT cbBufferLen;
USHORT cbActualLen;

} FIOREADWRITE;

DosFilelO 89

For a full description, see Chapter 4, "Types, Macros, Structures."

cbCmd Specifies the length (in bytes) of the pbCmd parameter.

pusErr Points to a variable that receives the byte offset of the structure that
caused an error. The offset is relative to the beginning of the buffer pointed to
by the pbCmd parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLACCESSJ)ENIED
ERRORJ)IRECT-A-CCESSJIANDLE
ERROR...INTERRUPT
ERROR...INV ALIDJIANDLE
ERROILINVALIDYARAMETER
ERROILLOCIC VIOLATION
ERROILNEGATIVE_SEEK
ERROILSEEICON_DEVICE
ERROILSHARING~UFFEILEXCEEDED

The DosFileIO function allows you to combine the following operations into a
single function call:

• Locking and unlocking multiple file ranges
• Changing the file-position pointer
• Reading and/or writing

Combining these operations into one call can improve system performance, par
ticularly in a networking environment.

The DosFileIO function provides a simple mechanism for denying other
processes read/write or write access to regions of the file. If another process
attempts to read from or write to a no-access region, or attempts to write in a
read-only region, an error is returned. If a time-out occurs before the locking
operation is complete, DosFileIO returns an error to the calling process.

Since the calling process may return after the time-out period has expired
without receiving an ERROR_SE~TIMEOUT message, semaphore time-out

90 DosFilelO

Example

values should not be used for exact timing or for determining the sequence of
.110 operations.

Before a range is locked, it must be cleared of any locked subranges or locked
overlapping ranges.

Each lID operation completes before the next one begins. The operations con
tinue until all are complete or until one fails.

This example opens the file abc. txt , allocates memory for the command buffer,
initializes the commands in that buffer, and calls DosFileIO to move the file
10 bytes into the file and then read from the file:

HFILE hf;
USHORT usAction;
SEL sel;
BYTE abBuf[S12];
LONG lError;

PFIOREADWRITE pfiorw;
PFIOSEEKCMD pfioseek;

DosOpen("abc.txt", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);

DosAllocSeg(sizeof(FIOSEEKCMD) + sizeof(FIOREADWRITE),
&sel, SEG_NONSHARED);

pfioseek = MAKEP(sel, 0);
pfioseek->usCmd = FlO_SEEK;
pfioseek->fsMethod = FILE_BEGIN;
pfioseek->cbDistance = 10L;

pfiorw = MAKEP(sel, sizeof(FIOSEEKCMD));
pfiorw->usCmd = FlO_READ;·
pfiorw->pbBuffer = (PVOID) abBuf;
pfiorw->cbBufferLen = sizeof(abBuf);

DosFileIO(hf, I' file handle 'I
MAKEP(sel, 0), I' buffer address 'I
(sizeof(FIOSEEKCMD) + sizeof(FIOREADWRITE)), I' buffer size 'I
&lError); I' address of error variable 'I

See Also DosChgFilePtr, DosFileLocks, DosOpen, DosRead, DosWrite

• DosFindFirst2 New
USHORT DosFindFirst2(pszFileName. phDir. usAttribute. pBuf. cbBuf. pusSearchCount. uslnfoLevel.

ulReserved)
PSZ pszFileNamei
PHDIR phDir;
USHORT usAttributei
PVOID pBufi
USHORT cbBufi
PUSHORT pusSearchCounfi
USHORT uslnfoLeve/i
ULONG ulReservedi

1* pOinter to filename *1
I. pOinter to directory handle .1
I. attributes of file to be found .1
I. pointer to buffer for results .1
I. size of results buffer .1
I. number of entries found .1
I. level of information to retrieve .1
I. must be zero

The DosFindFirst2 function searches a directory for the file or files whose
filename and attributes match the specified filename and attributes.

The DosFindFirst2 function is a family API function.

Parameters

DosFindFirst2 91

pszFileName Points to a null-terminated string. This string must be a valid
MS OS/2 path and can contain wildcard characters.

phDir Points to the variable that contains the handle of the directory to
search.

usAttribute Specifies the file attribute(s) of the file to be located. This param
eter can be a combination of the following, values:

Value

FILE_NORMAL

FILE_READONL Y

FILE_HIDDEN

FILE_SYSTEM

FILE_DIRECTOR Y

FILE_ARCHIVED

Meaning

Search for normal files.

Search for read-only files.

Search for hidden files.

Search for system files.

Search for subdirectories.

Search for archived files.

pBuf Points to the buffer in which the file information is returned. The format
for this buffer is determined by the value specified in the uslnfoLevel parameter.

cbBuf Specifies the size (in bytes) of the buffer pointed to by pBuf.

pusSearchCount Points to the variable that specifies the number of matching
entries to locate. The DosFindFirst2 function copies the number of entries
found to this parameter before returning.

uslnfoLevel Specifies the type of file information to retrieve. This parameter
can be one of the following values:

Value

FIL_QUERYEASIZE

FIL_QUER YEASFROMLIST

Meaning

Return a FILEFINDBUF structure with the
results of the search. The information
returned is identical to that returned by the
DosFindFlrst function.

Return a FILEFINDBUF2 structure with the
results of the search, and that contains the
size of the buffer needed to retrieve the
extended attributes.

Return a buffer that contains both the file
information and the extended attributes for
the file.

The FILEFINDBUF structure has the following form:

typedef struct _FILEFINDBUF {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG chFile;
ULONG chFileAlloc;
USHORT attrFile;
UCHAR cchName;
CHAR achName[13];

} FILEFINDBUF;

92 DosFindFirst2

Return Value

Comments

The FILEFINDBUF2 structure has the following form:

typedef struct _FILEFINDBUF2 {
FDATE fdateCreatlon;
FTIME ftlmeCreatlon;
FDATE fdateLastAccess;
FTIME ftlmeLastAccess;
FDATE fdateLastWrlte;
FTIME ftlmeLastWrlte;
ULONG cbFl1e;
ULONG cbFl1eAlloc;
USHORT attrFlle;
USHORT cbLlst;
UCHAR cchName;
CHAR achName[13];

} FILEFINDBUF2;

For a full description, see Chapter 4, "Types, Macros, Structures."

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

. ERROILBUFFEILOVERFLOW
ERROILEASJ)IDNT_FIT
ERROILEA-LIST_INCONSISTENT
ERRORYILENAME~XCED-RANGE
ERRORJNVALID~LNAME
ERRORJNV ALIDJIANDLE
ERRORJNVALID_PARAMETER
ERROlLMET~XPANSION_TOO-LONG
ERROILNO_MOREYILES
ERROILNO~ORE_SEARC~ANDLES
ERRO~ATHLNOTYOUND

The DosFindNext function uses the directory handle pointed to by the phDir
parameter of the DosFindFirst2 function to repeat the search. If DosFindFirst2
returns an error value other than ERROILEASJ)IDNTYIT, no directory han
dle is allocated.

If the phDir parameter is HDIR_SYSTEM, the system-default search-directory
handle is used; any previous search that used HDIILSYSTEM terminates if this
parameter is HDIR_CREATE, the search directory used by the process is
created, and the function copies the handle of this search directory to the vari
able pointed to 'by the phDir parameter. If the handle was created by a previous
call to DosFindFirst, it can be used in subsequent calls to DosFindNext.

If the value of the uslnfoLevel parameter is FILE_QUERYEASIZE, the cbList
field of the FILEFINDBUF2 structure can be used to calculate the size of the
buffer necessary for a FILE_QUERYEASFROMLIST information request. For
MS OS/2 version 1.2, the value of cbList will never exceed 65,535.

To use a FILE_QUERYEASFROMLIST information request, you must supply
a buffer large enough for an EAOP structure and a FILEFINDBUF structure,
plus enough space for the the extended attributes. You must initialize the first
portion of this buffer as an EAOP structure, and fill in the GEALIST structure
with the extended-attribute names to retrieve., On return, the EAOP structure
will be unchanged. It will be followed immediately by a FILEFINDBUF2 struc
ture, without the last three fields. This is followed by an FEALIST structure (the
address is the same as the cbList field of the FILEFINDBUF2 structure). The
FEALIST structure is in turn followed by a single byte that specifies the length of
the filename, and that is followed by a null-terminated string that specifies the

Example

See Also

• _ DosFindNext

DosFindNext 93

filename. For an example of how to use structure pointers to access each of
these fields, see the "Example" section.

If there is not enough room in the output buffer to hold the extended-attribute
information, the error ERROR~ASJ)IDNTYIT is returned. The search han
dle will be allocated, however, and can be used in subsequent calls to the Dos
FindNext function. If no extended attribute is found, the FEA structure for that
extended attribute will contain the name of the attribute, but the cbValue field
will be zero.

This example shows how to set up pointers to access the various fields of the
buffer returned by a FIL_QUERYEASFROMLIST level request:

/* Declare a structure to retrieve the .TYPE attribute name. */

typedef struct _TYPEATTR {
ULONG cbList;
BYTE cbName;
CHAR szName[6];

} TYPEATTR;

#define BUESIZE 2 * 1024 /* default buffer size */

SEL sel; /* selector for buffer */
HDIR hdir = HDIR_CREATE;
USHORT usSearchCount = 1;
TYPEATTR typeattr;

/* directory haridle */
/' number of files to retrieve */
/* TYPE attribute structure */

PEAOP peaop;
PEILEEINDBUE2 pfindbuf2;
PEEALIST pfeal;
PSZ pszEileName;
PUCHAR pcchEileName;

DosAllocSeg(BUESIZE, &sel, SEG_NONSHARED); /* creates buffer */
peaop = MAKEP(sel, 0); /' sets up peaop pointer '/

typeattr.cbList = sizeof(TYPEATTR);
strcpy(typeattr.szName, ".TYPE");
typeattr.cbName = sizeof(typeattr.szName)

/' structure size
/' EA name

- 1; /* name length

*/
*/
*/

peaop->fpGEAList = (PGEALIST) &typeattr; /* size of GEALIST struc. */

if (IDosEindEirst2("eafile", &hdir, EILE_NORMAL,
peaop. BUESIZE,

}

&usSearchCount, EIL_QUERYEASEROMLIST, OL» {
pfindbuf2 = MAKEP(sel. sizeof(EAOP»; /* EILEEINDBUE structure */
pfeal = (PEEALIST) &pfindbuf2->cbList; /' EEALIST structure */
pcchEileName = «PSZ) pfeal) + pfeal->cbList; /* filename length */
pszEileName = pcchEileName + 1; /* filename */

DosFindClose, DosFindFirst, DosFindNext, DosQFileMode, DosQFSInfo

Change
USHORT DosFindNext(hdir, pfindbuf, cbfindbuf, pcSearch)
HDIR hdir; I. handle of search directory .1
PFILEFINDBUF pfindbuf; I. pOinter to structure for search result .1
USHORT cbfindbuf; I. length of result buffer .1
PUSHORT pcSearch; I. pointer to variable for file count .1

The DosFindNext function searches for the next file or group of files matching
the specified filename and attributes. The function copies the name and
requested information about the file to the specified structure. The information

94 DosFindNext

Parameters

Return Value

Comments

Restrictions

Example

returned is as accurate as the most recent call to the DosClose or DosBufReset
function.

The DosFindNext function is a family API function.

hdir Identifies the search directory and the filename(s) to search for. This
handle must have been created previously by using the DosFindFirst function.

pfindbuf Points to the structure that receives the result of the search. This
structure will be either a FILEFINDBUF or FILEFINDBUF2 structure, depend
ing on the information level requested in the DosFindFirst or DosFindFirst2
function that preceded this function. For specific information on the format of
these structures, see the DosFindFirst and DosFindFirst2 functions.

cbfindbuf Specifies the length (in bytes) of the structure pointed to by the
pfindbuj parameter.

pcSearch Points to the variable that specifies the number of matching
filenames to locate. The function copies the number of filenames found to the
variable before returning.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJlUFFER_OVERFLOW
ERRORJNVALIDJIANDLE
ERRORJNVALIDYARAMETER
ERRO~NO~OREYILES
ERRO~NOT-DOS-DISK
ERROR-EAS-DIDNTYIT

The pcSearch parameter specifies the number of files to search for. The number
of files whose information is copied is the number of files requested, the number
of files whose information fits in the structure, or the number of files that exist,
whichever is smallest. If you want to obtain information for more than one file,
the pfindbuj parameter must point to a buffer that consists of consecutive struc
tures. If the DosFindNext function fails to find a match or cannot copy all the
information about the file to the structure, it returns an error.

In real mode, the following restriction applies to the DosFindNext function:

• The hdir parameter must be set to HDI~SYSTEM.

This example calls the DosFindFirst function to find all files matching "*. *", and
then uses the DosFindNext function to display them one at a time:

FILEFINDBUF findbuf;
HDIR hdir = HDIR_CREATE;
USHORT cSearch = 1;
DosFindFirst("*.*", &hdir, FILE_NORMAL, &findbuf, sizeof(findbuf),

&cSearch, OL);
do {

VioWrtTTY(findbuf.achName, findbuf.cchName, 0);
VioWrtTTY("\r\n", 2, 0); 1* cursor to next line

}
while (DosFindNext(hdir,

&findbuf,
sizeof(findbuf) ,
&cSearch)
== 0);

*1
1* handle of directory *1
1* address of buffer *1
1* length of buffer tl
1* number of files to find tl
It while no error occurs tl

See Also

Changes

DosFreeSeg 95

DosBuffieset, DosClose, DosFindClose, DosFindFirst, DosFindFirst2

DosFindNext returns the same type of structure as requested by the most recent
call to either DosFindFirst or DosFindFirst2.

• Dos Free Resource New
USHORT DosFreeResource(pvData)
PVOID pvDatai f. pOinter to data to free .f

Parameters

Return Value

See Also

• DosFreeSeg

The DosFreeResource function frees memory allocated by a previous call to the
DosGetResource2 function.

pv Data Points to the buffer to free. This pointer should have been returned by
a previous call to the DosGetResource2 function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosGetResource, DosGetResource2

Change
USHORT DosFreeSeg(se/)
SEL se/i f. segment selector ./

Parameters

Return Value

Comments

Restrictions

The DosFreeSeg function frees the specified memory segment. This function
accepts selectors for memory segments, shared-memory segments, huge-memory
segments, aliased code segments, and resource segments allocated by Dos
GetResource. DosFreeSeg frees a shared-memory segment after the segment is
freed by the last process accessing it. DosFreeSeg frees the code-segment selec
tor for aliased code segments, but the corresponding data-segment selector
remains valid until it is freed.

The DosFreeSeg function is a family API function.

sel Specifies the segment to free.

The return value is zero if the function is successful. OtherWise, it is an error
value, which may be the following:

ERROR..ACCESSJ)ENIED

DosFreeSeg can be issued from ring 2, but the segment to free must be a ring-3
segment.

DosFreeSeg should not be used to free resource segments allocated by the Dos
GetResource2 function. To free those segments, use the DosFreeResource func
tion.

In real mode, the following restriction applies to the DosFreeSeg function:

• A code-segment selector (created by using the DosCreateCSAlias func
tion) and the corresponding data-segment selector are the same. Freeing
one frees both.

96 DosFreeSeg

Example

See Also

Changes

• DosFSAttach

This example allocates three segments of memory, then calls the DosFreeSeg
function to free the memory:

SEt sel;
DosAllocHuge(3, 200, &sel, 5, SEG_NONSHARED);

DosFreeSeg(sel) ;

DosAllocHuge, DosAllocSeg, DosAllocShrSeg, DosCreateCSAlias,
DosFreeResource, DosGetResource, DosGetResource2

DosFreeSeg should not be used to free segments allocated by the
DosGetResource2 function.

New
USHORT DosFSAttach(pszDevName, pszFSD, pData, cbData, (sOp, ulReserved)
PSZ pszDevName; I. pointer to device name ~I
PSZ pszFSD; I. pointer to file system .1
PBYTE pData; I. pOinter to buffer for file-system arguments .1
USHORT cbData; I. length of argument buffer .1
USHORT (sOp; I. attach or detach connection .1
ULONG ulReserved; I. must be zero .1

Parameters

Return Value

The DosFSAttach function attaches or detaches a drive or pseudo-character
device from a remote file system.

pszDevName Points to a null-terminated string that specifies the drive letter
followed by a colon or a pseudo-character device name. If this parameter is a
pseudo-character device name, the format of the string is \DEV\filename, where
filename is a valid MS OS/2 filename.

pszFSD Points to a null-terminated string that specifies the name of the
remote file system to attach to or detach from the device specified by the
pszDevName parameter ..

pData Points to a buffer that contains the file-system arguments. The meaning
of the arguments is specific to the file system. The first word of the buffer
specifies the number of strings it contains; the rest of the buffer contains con
tiguous strings.

cbData Specifies the length (in bytes) of the data buffer.

jsOp Specifies the type of operation to perform. A value of FS-ATTACH
attaches a file-system connection. A value of FSJ)ETACH detaches a file
system connection.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~LREADY-ASSIGNED
ERRORJNV ALIDJ)RIVE
ERRORJNVALID_FSD_NAME
ERRORJNVALID-LEVEL
ERRORJNVALIDYATH
ERRO~NOT-ENOUG~EMORY

Comments

Example

See Also

• DosFSCtl

DosFSCtl 97

Drive letters that represent local drives cannot be redirected.

When a drive is attached to a file system, all requests to that drive are routed to
the file system. When a drive is detached from a file system, the drive name can
p.o longer be used.

When a pseudo-character device name is attached to a file system, all requests to
that name are routed to the file system. When a pseudo-character device is
detached from a file system, the device name can no longer be used unless it
overlaid the name of an existing device; in this case, the previous device regains
control.

This example calls DosFSAttach to attach a LAN server to drive X, and then
calls DosFSAttach again to detach the LAN server:

CHAR szShareName[] = { 1, 0,
"\\SERVER\SHARE" }:

I' number of strings 'I
I' name of server and share point 'I

DosFSAttach("X:", "LAN", szShareName, sizeof(szShareName),
FS_ATTACH, OL):

DosFSAttach("X:", "LAN", szShareName, sizeof(szShareName),
FS_DETACH, OL):

DosFSCtl

New
USHORT DosFSCtl(pbData. cbData. pcbData. pbParms. cbParm. pcbParm. usFunct. pszRoute. hf.

usRouteMethod. ulReserved)
PBYTE pbData; /. pOinter to data buffer ./
USHORT cbData; /. buffer length ./
PUSHORT pcbData; /. pointer to buffer for actual length ./
PBYTE pbParms; /. painter to parameter list ./
USHORT cbParm; /. size of parameter list ./
PUSHORT pcbParm; /. pointer to buffer for actual length ./
USHORT uSFunct; /. function code ./
PSZ pszRoute; /. pointer to file-system name ./
HFILE hf; /. file or device handle ./
USHORT usRouteMethod: /. routing method ./
ULONG ulReserved:

Parameters

/. must be zero ./

The DosFSCtl function is used to call functions provided in a file system that are
not part of the standard set of I/O functions.

pbData Points to the buffer that receives data from the nonstandard function.

cbData Specifies the length (in bytes) of the buffer pointed to by the pbData
parameter. If this value is not at least as large as the value pointed to by the
pcbData parameter, the system returns the ERROlLBUFFER-OVERFLOW
error value and the value pointed to by pcbData will contain the correct length.

pcb Data Points to the variable that receives the actual length of data returned.

pbParms Points to a list of command-specific parameters.

98 DosFSCtl

Return Value

Comments

See Also

cbParm Specifies the length (in bytes) of the pbParms parameter. If the buffer
size is insufficient, the error value ERROlLBUFFER_OVERFLOW will is
returned and pcbParm will contain the size of buffer needed.

pcbParm Points to the variable that contains the length of the commands
passed to the function and, on return, contains the length of the commands
returned by the function. usFunct Specifies a function code specific to the file
system. This parameter can be one of the following values:

Value

Ox()()()()...()x7FFF

Ox8000-0xBFFF

OxCOOO-OxFFFF

Meaning

Reserved for MS OS/2.

Functions to be handled by local file systems.

Functions to be handled by r~mote file systems.

pszRoute Points to the string that contains the name of the file system or the
path of a file or directory that the operation applies to.

h! Identifies the file or device.

usRouteMethod Specifies how the request will be routed. This parameter can
be one of the following values:

Value

FSCTL_HANDLE

FSCTLJ> ATHNAME

FSCTL_FSDNAME

Meaning

Route via the file handle. The pszRoute parameter
must be NULL, and the hf parameter must be a
valid file or device handle.

Route via a path. The hf parameter must be - 1,
and the pszRoute parameter must be a valid MS
OS/2 path.

Route via a file-system name. The hf parameter
must be - 1 and the pszRoute parameter must point
to the name of a valid file system.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLBUFFE~OVERFLOW
ERRORJNTERRUPT
ERRORJNVALID_CATEGORY
ERRORJNVALIDYSD_NAME
ERRORJNVALIDYUNCTION
ERROUNVALIDJIANDLE
ERRORJNVALID~EVEL
ERRORJNVALIDYARAMETER
ERRO~NOT_SUPPORTED

A USFUllct value of OxOOOl returns new error code information from the file sys
tem; a value of Ox0002 returns the maximum size of individual extended attri
butes in the first word of the buffer pointed to by pbData and the maximum size
of the full extended-attribute list in the second word of the buffer.

DosFSAttach

DosGetDBCSEv 99

• DosGetDBCSEv Correction
USHORT DosGetDBCSEv(cbBuf, pctryc, pchBuf)
USHORT cbBuf; /. length of buffer ./
PCOUNTRVCODE pctryc; /. pointer to structure for country code ./
PCHAR pchBuf;

Parameters

Return Value

Comments

/. pointer to buffer for DBCS information ./

The DosGetDBCSEv function retrieves the double-byte character set (DBCS)
environment vector for the given country code and code-page identifier.

The DosGetDBCSEv function is a family API function.

cbBuf Specifies the size (in bytes) of the buffer that receives the DBCS
environment vector.

pctryc Points to the COUNTRYCODE structure that contains the country
code and code-page identifier used to retrieve the Dncs environment vector.
The COUNTRYCODE structure has the following form:

typedef struct _COUNTRYCODE {
USHORT country;
USHORT codepage;

} COUNTRYCODE;

pchBuf Points to the buffer that receives the country-dependent DBCS
environment vector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NLSJ3AD_TYPE
ERROILNLS_NO_COUNTRYYILE
ERROILNLS_NO_CTRY_CODE
ERROILNLS_OPEN_F AILED
ERROR_NLS_TABLE_ TRUNCATED
ERROILNLS_TYPE_NOTYOUND

The DnCS environment vector defines the low and high ranges for the DBCS
lead-byte values.

The DosGetDBCSEv function copies the information from the country.sys file to
a buffer. The first two bytes in the environment vector specify the low and high
values in the range for the DBCS lead-byte values. The last two bytes are both
set to zero. The form of the information is similar to the following:

BYTE lowl, highl;
BYTE low, high2;

BYTE lown, highn;
BYTE 0, 0;

If the buffer is too small to hold all of the information, the DosGetDBCSEv
function truncates the information. To avoid this, make sure the buffer is at least
ten bytes long. You can verify that all information has been copied by checking
the last two bytes to make sure they are zeros. If the structure is larger than the
information, the function fills any remaining bytes with zeros.

100 DosGetDBCSEv

Restrictions

See Also

Corrections

In real mode, the following restriction applies to the DosGetDBCSEv function:

• There is no method of identifying the boot drive. The system assumes
that the COUlltry.sys file is in the root directory of the current drive.

DosCaseMap, DosGetCollate, DosGetCp, DosGetCtryInfo, DosSetCp,
VioGetCp, VioSetCp

The DosGetDBCSEv function returns only the range for the lead byte of the
character set, not for the range of the trail byte.

• DosGetModHandle Correction
USHORT DosGetModHandle (pszModName. phMod)
PSZ pszModName; I. pointer to module name ./
PHMODULE phMod: /. pointer to variable receiving module handle ./

Parameters

Return Value

Example

See Also

The DosGetModHandle function retrieves the handle of a dynamic-link module.
The DosGetModHandle function is typically used to make sure that a module
has been loaded into memory. If the module has not been loaded, the function
returns ERROR.-MOD_NOTYOUND, and the DosLoadModule function must
be used to load the module.

pszModName Points to the null-terminated string that specifies the module
name. This string must be a valid MS OS/2 filename. If it does not specify a
path and the filename extension, the function appends the default extension
(.dll) and searches for the dynamic-link module in the directories specified by
the libpath command in the conjig.sys file.

phMod Points to the variable that receives the module handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNTERRUPT
ERROILMOD_NOTYOUND

This example calls DosGetModHandle to determine if the dynamic-link module
mydll.dll is currently in memory. If mydll.dll is not in memory, DosGetMod
Handle calls DosLoadModule to load it. It then calls DosGetModName to get
the full path of the module. (This example is accurate if mydll.dll exists in a
directory defined by the lihpath parameter of the COlljig.sys file.)

USHORT usError;
HMODULE hrood;
CHAR achFailName[128], szModName[128];

if (usError = DosGetModHandle("mydll", &hmod» {
if (usError == ERROR_MOD_NOT_FOUND)

DosLoadModule(achFailName, sizeof(achFailName),

}
"mydll", &hmod);

DosGetModName(hmod, sizeof(szModName), szModName);

DosFreeModule, DosGetModName, DosLoadModule

Corrections

DosGetResource 101

If the pszModName parameter does not specify a path and the filename exten
sion, the DosGetModHandle function appends the default extension (.dll) and
searches for the dynamic-link module in the directories specified by the Iibpath
command in the config.sys file.

• DosGetResource Change
USHORT DosGetResource (hmod, idType, idName, pse/)
HMODULE hmod; I. module handle .1
USHORT idType; I. resource-type Identifier .1
USHORT idName; I. resource-name Identifier .1
PSEL pse/; I. pointer to variable for resource selector .1

Parameters

Return Value

. Comments

The DosGetResource function retrieves the specified resource from a specified
executable file. The function allocates a segment, copies the resource into the
segment, and returns the segment selector. A process can use this segment
selector to access the resource directly.

This function is included in MS OS/2 version 1.2 for compatibility purposes
only. All new applications should use the DosGetResource2 function, which
returns a far pointer to the resource, rather than a selector.

hmod Identifies the module that contains the resource. This par~~meter can be
either the module handle returned by the DosLoadModule function or NULL
for the application's module.

idType Specifics the type of resource to retrieve.

idName Specifics the name of the resource to retrieve.

pse/ Points to the variable that receives the selector of the segment containing
the resource.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_CANT_FIND~ESOURCE
ERRORJNVALID~ODULE
ERRORJNV ALID_SELECTOR

The following list describes the predefined types that can be used for the idType
parameter:

Type

RT_ACCELTABLE

RT_BITMAP

RT_CHARTBL

RT_DIALOG

RT_DISPLA YINFO

RT_DLGINCLUDE

RT_FONT

RT_FONTDIR

Meaning

Accelerator tables

Bitmap

Glyph-to-character tables

Dialog template

Screen-display information

Dialog include file.

Font

Font directory

102 DosGetResource

See Also

Changes

Type

RT_HELPSUBTABLE

RT_HELPTABLE

RT_KEYTBL

RT_MENU

RT_MESSAGE

RT_POINTER

RT_RCDATA

RT_STRING

RT_VKEYTBL

Meaning

Help-subtable resource.

Help-table resource.

Key to UGL tables

Menu template

Error-message tables

Mouse-pointer shape

Binary data

String tables

Key to virtual-key tables

DosGetResource2, DosLoadModule

This function is included in MS OS/2, version 1.2, for compatibility purposes
only. All new applications should use DosGetResource2.

I DosGetResource2 New
USHORT DosGetResource2(hmod, idType, idName, ppData)
HMODULE hmod; /. module handle ./
USHORT idType; /. resource-type identifier ./
USHORT idName; /. resource-name identifier ./
PVOID FAR * ppData; /. pOinter to variable for resource address ./

Parameters

Return Value

Comments

The DosGetResource2 function retrieves a pointer to a resource.

hmod Identifies the module that contains the resource. This parameter can be
the module handle returned by the DosLoadModule function or NULL for the
application's module.

idType Specifies the type of resource to retrieve.

idName Specifies the name of the resource to retrieve.

ppData Points to the variable that receives the pointer to the resource.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJ> ARAMETER
ERRORJNVALID.-MODULETYPE

The DosGetResource2 function allocates a segment, copies the resource into the
segment, and returns a pointer to the resource. A process can use this pointer to
access the resource directly. For compatibility with future versions of MS OS/2,
this function should be used instead of the DosGetResource function, which
returns a selector instead of a pointer.

Example

DosGetVersion 103

The following list describes the predefined types that can be used for the idType
parameter:

Type Meaning

RT_ACCELTABLE

RT_BITMAP

RT_CHARTBL

RT_DIALOG

RT_DISPLA YINFO

RT_DLGINCLUDE

RT_FONT

RT_FONTDIR

RT_HELPSUBTABLE

RT_HELPTABLE

RT_KEYTBL

RT_MENU

RT_MESSAGE

RT_POINTER

RT_RCDATA

RT_STRING

RT_VKEYTBL

Accelerator tables

Bitmap

Glyph-to-character tables

Dialog template

Screen-display information

Dialog include file.

Font

Font directory

Help-subtable resource.

Help-table resource.

Key to UGL tables

Menu template

Error-message tables

Mouse-pointer shape

Binary data

String tables

Key to virtual-key tables

This example calls DosGetResource2 to retrieve a resource from the
application's module, and then the calls DosFreeResource to free the memory
used by the resource:

PBYTE pResource;

if (IDosCetResource2(NULL,
RT_MENU,
IDM_MENU,
&pResource» {

I' loads from application's module 'I
I' gets a menu resource 'I
I' ID of the menu to get 'I
I' pointer address 'I

DosFreeResource(pResource); I' frees resource 'I

See Also DosFreeResource, DosGetResource, DosLoadModule

• DosGetVersion Correction
USHORT DosGetVersion(pusVersion)
PUSHORT pus Version; I. pointer to variable receiving version number .1

The DosGetVersion function retrieves version number of the operating system.
For MS OS/2, version 1.1, both the major and minor version numbers are 10.
For MS OS/2, version 1.2, the minor version number is 20.

The DosGetVersion function is a family API function.

104 DosGetVersion

Parameters

Return Value

Example

See Also

Corrections

pusVersion Points to the variable that receives the version number. The high
order byte is set to the major version number; the low-order byte is set to the
minor version number.

The return value is zero if the function is successful. Otherwise, it is an error
value.

This example retrieves and displays the major and minor version number:

USHORT usVersion;
CHAR chi

DosGetVersion(&usVersion) ;
ch = (HIBYTE(usVersion) 1 10) + '0'; 1* gets maj. version number *1
VioWrtTTY("You are using MS OS/2 version ". 30. 0);
VioWrtTTY(&ch. 1. 0);
VioWrtTTY(".". 1. 0);
ch = (LOBYTE(usVersion) 1 10) + '0'; 1* gets min. version number *1
VioWrtTTY(&ch. 1. 0);
VioWrtTTY("\r\n". 2. 0);

DosQSyslnfo

The example incorrectly retrieved the minor version number, instead of the
major version number. It has been changed to show how to get and display both
major and minor version numbers.

• DosLoadModule Correction
USHORT DosLoadModule (pszFailName, cbFileName, pszModName, phmod)
PSZ pszFailName; 1* pointer to buffer for name if failure *1
USHORT cbFileName; 1* length of buffer for name if failure *1
PSZ pszModName; 1* pointer to module name *1
PHMODULE phmod; 1* pOinter to variable for module handle *1

Parameters

The DosLoadModule function loads a dynamic-link module and returns a handle
for the module. You can use the module handle to retrieve the entry addresses
of procedures in the module and to retrieve information about the module.

pszFailName Points to the buffer that receives a null-terminated string. The
DosLoadModule function copies a string to the buffer only if the function fails
to load the module. The string identifies the dynamic-link module responsible for
the failure. This module may be other than the one specified in the pszModName
parameter if the specified module links to other dynamic-link modules.

cbFileName Specifies the length (in bytes) of the buffer pointed to by the
pszFailName parameter.

pszModName Points to the null-terminated string that specifies the module
name. This string must be a valid MS OS/2 filename. If it does not specify a
path and the filename extension, the function appends the default extension
(.dll) and searches for the dynamic-link module in the directories specified by
the libpath command in the config.sys file.

phmod Points to the variable that receives the handle of the dynamic-link
module.

Return Value

Comments

Example

DosMakePipe 105

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILBADYORMAT
ERRORYILE_NOTYOUND
ERRORJNTERRUPT
ERRORJNVALID_NAME
ERROR-NOT-ENOUGf~EMORY

The DosLoadModule function loads only MS OS/2 dynamic-link modules.
Attempts to load other executable files (such as MS-DOS executable files)
results in an error.

This example calls the DosLoadModule function to load the dynamic-link
module qhdll.dll. This example then calls the DosGetProcAddr function to
retrieve the address of the BOXMESSAGE function that is defined in the
module. After calling the BOXMESSAGE function, the example calls Dos
FreeModule to free the dynamic-link module. (This example is accurate if
qhdll.dll exists in a directory defined by the libpath parameter of the config.sys
file, and if qhdll.dll contains the BOXMESSAGE function that uses the Pascal
calling convention.)

CHAR achFailName[128];
HMODULE hmod;
VOID (PASCAL FAR 'pfnBoxMsg) (PSZ, BYTE, BYTE, SHANDLE,SHANDLE, BOOL);

DosLoadModule(achFailName, /' failure name buffer
sizeof(achFailName), /' size of failure name
"qhdll", /' module name
&hmod); /' address of handle

DosGetProcAddr(hmod, "BOXMESSAGE" , &pfnBoxMsg);
pfnBoxMsg("Hello World", Ox30, 1, 0, 0, FALSE);
DosFreeModule(hmod);

'/
buffer '/

'/
'/

See Also DosExecPgm, DosFreeModule, DosGetModName, DosGetProcAddr

Corrections If the pszModName parameter does not specify a path and the filename exten
sion, DosLoadModule function appends the default extension (.dll) and searches
for the dynamic-link module in the directories specified by the libpath command
in the config.sys file.

• DosMakePipe Change
USHORT DosMakePipe(phfRead. phfWrite. cbPipe)
PHFILE phfRead; /* pOinter to variable for read handle */
PHFILE phfWrite; /* pOinter to variable for write handle */
USHORT cbPipe; / .. number of bytes reserved for pipe ./

Parameters

The DosMakePipe function creates a pipe. The function creates the pipe, assign
ing the specified pipe size to the storage buffer, and also creates handles that the
process can use to read from and write to the buffer in subsequent calls to the
DosRead and DosWrite functions.

ph/Read Points to the variable that receives the read handle for the pipe.

phjWrite Points to the variable that receives the write handle for the pipe.

106 DosMakePipe

Return Value

Comments

See Also

Changes

I DosMkDir2

cbPipe Specifies the size (in bytes) to allocate for the storage buffer for this
pipe. This can be any value up to 65,536 minus the size of the pipe header,
which is currently 32 bytes. If this parameter is zero, the default buffer size is
used. (The buffer size is advisory only. MS OSI2 may allocate more or less
space.)

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NOT~NOUGH~EMORY
ERROR_TOO~ANY_OPENYILES

Pipes are typically used by a pair of processes. One process creates the pipe and
passes a handle to the other process. This lets one process write into the pipe
and the other read from the pipe. Since MS OS/2 provides no permission
checks on pipes, the cooperating processes must ensure that they do not attempt
to write to or read from the pipe at the same time.

When all of a pipe's handles are closed by using the DosClose function, MS
OSI2 deletes that pipe. If two processes are communicating by using a pipe and
the process that is reading the pipe ends, the next call to the DosWrite function
for that pipe returns the "broken pipe" error value.

MS OS/2 temporarily blocks any call to the DosWrite function that would write
more data to the pipe than can fit in the storage buffer. The system removes the
block as soon as enough data is read from the pipe to make room for the
remaining unwritten data.

DosClose, DosDupHandle, DosRead, DosWrite

The cbPipe parameter is advisory only. The actual buffer space allocated by the
system may be larger (to a maximum of 65,536 minus the pipe header size) or
smaller.

New
USHORT DosMkDir2(pszOir, peaop, ulReserved)
PSZ pszOir; I. pointer to directory name .1
PEAOP peaop; I. pointer to structure for extended attributes .1
ULONG ulReserved; I. must be zero .1

Parameters

The DosMkDir2 function creates a directory.

pszDir Poihts to a null-terminated string that specifies a valid MS OS/2 direc
tory name.

peaop Points to the EAOP structure that defines extended attributes for the
directory.

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Comments

See Also

• DosMonReg

DosMonReg 107

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLACCESSJ)ENIED
ERROILEA-LISTJNCONSISTENT
ERRORYILENAME.-£XCED~ANGE
ERRORJNV ALID.-£A_NAME
ERRORJ> ATILNOT_FOUND

Prior to the function call, the fpFEAList field of the EAOP structure should be
set to point to the buffer that contains the relevant list of extended attributes.

If the peaop parameter is NULL, no extended attributes are defined for the
directory.

If an error occurs during the creation of the extended attributes, the oError field
of the EAOP structure will contain the offset within the list where the error
occurred.

DosMkDir

Change
USHORT DosMonReg(hmon, pblnBuf, pbOutBuf, fPosition, uslndex)
HMONITOR hmon; 1* monitor handle to register *1
PBYTE pblnBuf; 1* painter to structure for input buffer *1
PBYTE pbOutBuf; 1* pointer to structure for output buffer *1
USHORT fPosition; 1* position flag *1
USHORT uslndex; 1* index *1

Parameters

The DosMonReg function registers a monitor by placing it in a chain of other
monitors for the same device. Each monitor receives input from or sends output
to the device in the order in which it appears in the chain.

hmon Identifies the monitor to register. This handle must have been created
previously by using the DosMonOpen function.

pblnBuf Points to the MONIN structure that receives data from the device
driver or from the previous monitor in the chain. The MONIN structure has the
following form:

typedef struct _MONIN {
USHORT cb;
BYTE abReserved[18];
BYTE bBuffer[108];

} MONIN;

pbOutBuf Points to the MONOUT structure that receives data' for the next
monitor in the chain. The MONOUT structure has the following form:

typedef struct _MONOUT {
USHORT cb;
BYTE abReserved[18];
BYTE abBuffer[108];

} MONOUT;

108 DosMonReg

Return Value

Comments

See Also

Changes

• DosOpen

[position Specifies the position of the monitor in the chain of input and out
put. This parameter can be one of the following values:

Value Meaning

MONITOR_BEGIN Place the monitor at the beginning of the c}tain,
ahead of any other monitors in the chain.

MONITOR_DEFAULT

MONITOR_END

Place the monitor anywhere in the chain.

Place the monitor at the end of the chain.

Any of the jPosition values may be combined with MONITOR-SPECIAL by
using the OR operator to allow the monitor to continue to receive data even if
the device is disabled or another monitor further down the chain is blocked. If
the MONITOR-SPECIAL constant is not set, no monitors will receive input
when the device driver is disabled or any monitor is blocked.

uslndex Specifies a device-specific value. If the device is the keyboard,
uslndex specifies the ID for the screen group to monitor.· If no screen-group
number is available (the monitor is detached), the ID of the current foreground
screen group can be obtained by calling DosGetInfoSeg. (The current fore
ground screen group is the group that most recently called KbdCharln.)

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROICMON_BUFFEILTOO_SMALL
ERROICMONJNVALIDJIANDLE
ERROICMONJNVALIDYARMS
ERROILNOT~NOUG~EMORY

The MONIN and MONOUT structures must be in the same segment.

DosGetInfoSeg, DosMonClose, DosMonOpen, DosMonRead, DosMonWrite,
KbdCharIn

A new value, MONITOR_SPECIAL, can be combined with any other position
value for the jPositioll parameter. This constant lets a monitor receive input even
if the device is disabled or another monitor in the chain is blocked .

Change
USHORT OosOpen(pszFileName, phf, pusAction, ulFileSize, usAttribute, fsOpenFlags, fsOpenMode,

ulReserved)
PSZ pszFileName; I. pointer to filename .1
PHFILE phf; I. pointer to variable for file handle .1
PUSHORT pusAction; I. pOinter to variable for action taken .1
ULONG ulFileSize; I. file size if created or truncated .1
USHORT usAttribute; I. file attribute .1
USHORT fsOpenFlags; I. action taken if file exists/does not exist *1
USHORT fsOpenMode; 1* open mode of file *1
ULONG ulReserved; 1* must be zero *1

The DosOpen function opens an existing file or creates a new file. This function
returns a handle that can be used to read from and write to the file, as well as to

Parameters

DosOpen 109

retrieve information about the file. The DosOpen function can also be used to
open a device or a named pipe.

The DosOpen function is a family API function.

pszFileN ame Points to the null-terminated string that specifies the name of
the file to be opened. The string must be a valid MS OS/2 filename and must not
contain wildcard characters.

phf Points to the variable that receives the handle of the opened file.

pusAction Points to the variable receiving the value that specifies the action
taken by the DosOpen function. If DosOpen fails, this value has no meaning.
Otherwise, it is one of the following values:

Value

FILE_CREATED

FILE_EXISTED

Meaning

File was created.

File already existed.

FILE_TRUNCATED File existed and was truncated.

ulFileSize Specifics the file's new size (in bytes). This parameter applies only
if the file is created or truncated. The size specification has no effect on a file
that is opened only for reading.

usAttribute Specifies the file attributes. This parameter can be a combination
of the following values:

Value

FILE_NORMAL

FILE_READONL Y

FILE_HIDDEN

FILE_SYSTEM

FILE_ARCHIVED

Meaning

File can be read from or written to.

File can be read from, but not written to.

File is hidden and does not appear in a directory
listing.

File is a system file.

File has been archived.

File attributes apply only if the file is created.

fsOpenFlags Specifies the action to take both when the file exists and when it
does not exist. This parameter may be one of the following values:

Value

FILE_ TR UNCA TE

Meaning

Create a new file; fail if the file
already exists.

Open an existing file; fail if the
file does not exist.

Open an existing file or create the
file if it does not exist.

Open an existing file and change
to a given size.

Open an existing file and truncate
it, or create the file if it does not
exist.

110 DosOpen

[sOpenMode Specifies the modes with which to open the file. It consists of
one access mode and one share mode. The other values are optional and can be
given in any combination:

Value

OPEN_ACCESS_ WRITEONL Y

OPEN_SHARE_DENYREAD

OPEN_SHARE_DENYWRITE

Meaning

Data can be read from the file but
not written to it.

Data can be read from or written
to the file.

Data can be written to the file but
not read from it.

Other processes can open the file
for any access: read-only, write
only, or read-write.

Other processes can open the file
for write-only access but they can
not open it for read-only or read
write access.

The current process has exclusive
access to the file. The file cannot
be opened by any process (includ
ing the current process).

Other processes can open the file
for read-only access but they can
not open it for write-only or
read-write access.

The file handle represents a physi
cal drive that has been opened for
direct access. (The pS7.FileName
parameter must specify a drive
name.) The OosOevIOCtl func
tion can be used with this file han
dle to bypass the file system and
to access the sectors of the drive
directly.

Any function that uses the file
handle returns immediately with
an error value if there is an I/O
error-for example, when the
drive door is open or a sector is
missing. If this value is not
specified, the system passes the
error to the system critical-error
handler, which then reports the
error to the user with a hard-error
popup. The fail-on-error flag is
not inherited by child processes.

The fail-on-error flag applies to all
functions that use the file handle,
with the exception of the Oos
DevIOCtl function.

8eturn Value

Value

DosOpen 111

Meaning

The file handle is not available to
any child process started by the
current process. If this value is
not specified, any child process
started by the current process may
use the file handle.

This flag applies to functions,
such as DosWrlte, that write data
to the file. If this value is
specified, the system writes data
to the device before the given
function returns. Otherwise, the
system may store the data in an
internal file buffer and write the
data to the device only when the .
buffer is full or the file is closed.

OPEN_FLAGS_NO_LOCALITY There is no specific information
regarding the locality of reference
(the degree of randomness with
which the file is accessed).

OPEN_FLAGS_SEQUENTIAL The file is accessed sequentially.

OPEN_FLAGS_RANDOM The file is accessed randomly.

OPEN_FLAGS_RANDOMSEQUENTIAL The file is accessed randomly, but
that there is a degree of sequential
I/O within that random access.
For example, this flag is specified
if large blocks of data are to be
read or written at random loca
tions in the file.

The disk drive should not cache
data in I/O operations on this file.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESSJ)ENIED
ERRO~CANNOT_MAKE
ERRORJ)ISICFULL
ERRORJ)RIVEJ.OCKED
ERRORJILE_NOT_FOUND
ERRORJNV ALID-ACCESS
ERRORJNVALIDY ARAMETER
ERRO~NOT_DOSJ)ISK
ERROR_OPENYAILED
ERRORYATILNOTYOUND
ERRO~SHARINGJ3UFFER-EXCEEDED
ERRO~SHARING_ VIOLATION
ERROR_TOO~ANY_OPENYILES

112 DosOpen

Comments

Restrictions

Example

See Also

Changes

The ERROILACCESSJ)ENIED value is returned if you try to open a file in a
mode that is incompatible with the file's current access and sharing modes-for
example, if you attempt to open a read-only file for writing.

The ERROR_SHARING_ VIOLATION value is returned if some other process
has opened the file with a sharing method that denies the type of access you
have requested.

Once the file is opened, the DosSetFHandState function can be used to change
the OPENYLAGSYAIL_ON~RROR, OPENYLAGS_NOINHERIT, and
OPENYLAGS_ WRITE_THROUGH flags specified in /sOpenMode.

MS OS/2 does not provide a built-in method to inform a child process that it has
inherited a given file handle. The parent process must pass this information to a
child process. If the file is created without the OPENYLAGS_NOINHERIT
flag, and the parent process terminates without closing the file, the file will
remain open until all child processes have terminated.

In real mode, the following restriction applies to the DosOpen function:

• Only the access modes and the OPENYLAGSJ)ASD flag can be
specified for the /sOpellMode parameter.

This example calls the DosOpen function to create a file abc that is 100 bytes
long and open it for write-only access. The /sOpenFlags parameter is set to
FILE_CREATE so that DosOpen will return an error if the file already exists.

HFILE hf;
USHORT usAction;
DosOpen("abc",

&Chf,
&cusAction,
lOOL,
FILE_NORMAL,
FILE_CREATE,
OPEN_ACCESS_WRITEONLY
OL) ;

It filename to open tl
It address of file handle tl
It action taken tl
It size of new file tl
It file attribute tl
It create the file tl

OPEN_SHARE_DENYNONE, It open mode tl
It reserved tl

DosBuffieset, DosClose, DosDevIOCtl, DosDupHandle, DosQFHandState,
DosQFilelnfo, DosQFileMode, DosQFSlnfo, DosSetFHandState, DosSet
FileMode, DosWrite

The following constants are new for the /sOpenMode parameter:
Value Meaning

OPEN_FLAGS_NO_LOCALITY There is no specific information
regarding the locality of reference
(the degree of randomness with
which the file is accessed).

OPEN_FLAGS_SEQUENTIAL The file is accessed sequentially.

OPEN_FLAGS_RANDOM The file is accessed randomly.

OPEN_FLAGS_RANDOMSEQUENTIAL The file is accessed randomly, but
that there is a degree of sequential
1/0 within that random access.
For example, this flag is specified
if large blocks of data are to be
read or written at random loca
tions in the file.

Corrections

• DosOpen2

Value

DosOpen2 113

Meaning

The disk drive should not cache
data in 110 operations on this file.

The comments incorrectly stated that ERROILACCESSJ)ENIED would be
returned if another process had previously opened the file in an incompatible
mode. The correct error code is ERROlLSHARING_ VIOLATION .

New
USHORT DosOpen2(pszFileName, phfHand, pusAction. ulFileSize, usAttribute. usOpenFlags.

ulOpenMode. peaop, ulReserved)
PSZ pszFileName;
PHFILE phfHand;
PUSHORT pusAction;
ULONG ulFileSize;
USHORT usA ttribu te;
USHORT usOpenFlags;
ULONG ulOpenMode;
PEAOP peaop;

/. pOinter to filename ./
/. pOinter to variable for file handle ./
/. pointer to variable for action taken ./
/. file size If created or truncated ./
/. file attribute ./
/. action If file exists/does not exist ./
/. open mode of file ./
/. pointer to structure for extended attributes ./

ULONG ulReserved;

Parameters

/. must be zero

The DosOpen2 function opens an existing file or creates a new file. This func
tion returns a handle that can be used to read from and write to the file, as well
as to retrieve information about the file.

For compatibility with future versions of MS OS/2, the DosOpen2 function
should be used instead of the DosOpen function.

pszFileName Points to the null-terminated string that specifies the name of
the file to be opened. The string must be a valid MS OS/2 filename and must not
contain wildcard characters.

ph/Hand Points to the variable that receives the handle of the opened file.

pusAction Points to the variable receiving the value that specifies the action
taken by the DosOpen2 function. If DosOpen2 fails, this value has no meaning.
Otherwise, it is one of the following values:

Value

FILE_CREATED

FILE_EXISTED

FILE_TRUNCATED

Meaning

File was created.

File already existed.

File existed and was truncated.

ulFileSize Specifies the file's new size (in bytes). The size specification has no
effect on a file that is opened only for reading.

usAttribute Specifies the file attributes. This parameter can be a combination
of the following values:

Value

FILE_NORMAL

FILE_READONL Y

Meaning

File can be read from or written to.

File can be read from, but not written to.

114 DosOpen2

Value Meaning

File is hidden and does not appear in a directory
listing.

FILE_SYSTEM

FILE_ARCHIVED

File is a system file.

File has been archived.

File attributes apply only if the file is created.

usOpenFlags Specifies the action to take both when the file exists and when it
does not exist. This parameter can be one of the following values:

Value

FILE_TRUNCATE

Meaning

Create a new file; fail if the file
already exists. ,

Open an existing fiie; fail if the
file does not exist.

Open an existing file or create the
file if it does not exist.

Open an existing file and change
its size to a given size.

Open an existing file and truncate
it, or create the file if it does not
exist.

ulOpenMode Specifies the modes with which to open the file. This parameter
consists of one access mode and one share mode. All other values are optional;
one locality mode can be specified, and the others can be given in any combina
tion:

Value

OPEN_ACCESS_READWRITE

OPEN_ACCESS_ WRITEONL Y

OPEN_SHARE.;.DENYNONE

OPEN_SHARE_DENYREADWRITE

OPEN_SHARE_DENYWRITE

Meaning

Data can be read from the file but
not written to it.

Data can be read from or written
to the file.

Data can be written to the file but
not read from it.

Other processes can open the file
for any access: read-only, write
only, or read-write.

Other processes can open the file
for write-only access but they can
not open it for read-only or read
write access.

The current process has exclusive
access to the file. No process
(including the current process)
can be open the file.

Other processes can open the file
for read-only access but cannot
open it for write-only or read
write access.

Value

OPEN_FLAGS_NOINHERIT

OPEN_FLAGS_SEQUENTIAL

OPEN_FLAGS_RANDOM

DosOpen2 115

Meaning

The file handle represents a physi
cal drive that has been opened for
direct access. (The pS7.FileName
parameter must specify a drive
name.) The DosDevIOCtl func
tion can be used with this file han
dle to bypass the file system and
to access the sectors of the drive
directly.

Any function that uses the file
handle returns immediately with
an error value if there is an 110
error-for example, when the
drive door is open or a sector is
missing. If this value is not
specified, the system passes the
error to the system critical-error
handler, which then reports the
error to the user with a hard-error
popup. The fail-on-error flag is
not inherited by child processes.

The fail-on-error flag applies to all
functions that use the file handle,
with the exception of the Dos
DcvIOCtl function.

The file handle is not available to
any child process started by the
current process. If this value is
not specified, any child process
started by the current process can
use the file handle.

This flag applies to functions (for
example, DosWrlte) that write
data to the file. If this value is
specified, the system writes data
to the device before the given
function returns. Otherwise, the
system can store the data in a
buffer and write the data to the
device only when the buffer is full
or the file is closed.

There is no specific information
regarding the locality of reference
(the degree of randomness with
which the file is accessed).

The file is accessed sequentially.

The file is accessed randomly.

116 DosOpen2

Return Value

Comments

Value Meaning

OPEN_FLAGS_RANDOMSEQUENTIAL The file is accessed randomly~ but
that there is a degree of sequential
I/O within that random accesS.
For example~ this flag would be
specified if large blocks of data
were to be read or written at ran
dom locations in the file.

OPEN_FLAGS_NO_CACHE The disk driver should not cache
data in I/O operations on this file.

peaop Points to an EAOP structure that defines extended attributes for the
file. If this value is NULL, the file will not use extended attributes. Before you
call the DosOpen2 function, the fpFEAList field of the EAOP structure must
point to a data area where the relevant extended-attribute information is stored.
The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, "Types, Macros, Structures."

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlCACCESS.J)ENIED
ERROR.J)ISILFULL
ERROILEA-LISTJNCONSISTENT
ERROR--EA-VALUE_UNSUPPORTABLE
ERRO~FILE_NOTYOUND
ERRORYILENAME--EXCED-RANGE
ERRO~INV ALID_ACCESS
ERRORJNV ALID--EA-NAME
ERRORJNVALIDYARAMETER
ERROR_OPENYAILED
ERRORY ATILNOTYOUND
ERRO~SHARING_BUFFER_EXCEEDED
ERRO~SHARING_ VIOLATION
ERRO~TOO~ANY_OPENYILES

The read/write pointer is initially set at the first byte of the file.

The ulFileSize parameter affects the size of the file only when it is created, trun
cated, or replaced. The value specified for this parameter is the recommended
file size. The file can be opened even if allocation of the full amount of bytes
fails.

The value of the usOpenFlags parameter provides a disk-access mechanism that
is independent of the file system. When this value is used, the DosOpen2 func
tion returns a handle to the calling process that represents the physical drive as a
file. In order to prevent other processes from accessing the disk, the calling pro
cess must also issue a DosDevIOCti DSK-LOCKDRIVE subcall, which requires
the file handle returned by the DosOpen2 function for the physical drive.

See Also

DosQFHandState 117

Extended attributes that require contiguous disk space may cause the function to
fail if the file system is unable to allocate contiguous space.

DosOpen2 sets extended attributes when a file is created, replaced, or truncated.
Extended attributes are ordinarily set when a file is opened for reading. When a
file is replaced, the extended attributes are also replaced. Extended attributes are
discarded if the peaop parameter is NULL.

The pszFileName parameter cannot point to a volume label, because volume
labels cannot be opened.

Any sharing restrictions placed on a file when it is opened are removed when it
is closed. When a file is inherited by a child process, all sharing and access res
trictions are also inherited.

The DosOpen2 function opens the client end of a named pipe and returns a han
dle of the pipe. The pipe must be in "listen" state for the open operation to
succeed; otherwise the open operation fails and the ERROILPIPE~USY error
value is returned. Until a given instance of a named pipe has been closed by a
client, that same instance cannot be opened by another client; however, the
opening process can duplicate the open handle as many times as required. The
access and sharing modes specified when a pipe is opened must be consistent
with the modes specified in the call to the DosMakeNmPipe function. Pipes are
always opened with the pipe-specific states set to lock read and write operations
and are read as a byte stream.

DosClose, DosDevIOCtI, DosDupHandle, DosMakeNmPipe, DosOpen,
DosSetFHandState, DosSetFileInfo

• DosQFHandState Change
USHORT DosQFHandState (hf. pfsOpenMode)
HFILE hf: 1* file handle *1
PUSHORT pfsOpenMode: 1* pOinter to variable for file-handle state *1

. Parameters

The DosQFHandState function retrieves the state of the specified file handle.
The file-handle state indicates whether the file may be read from or written to
and whether it may be opened for reading or writing by other processes.

The DosQFHandState function is a family API function.

hi Identifies the file whose file-handle state is to be retrieved. This handle
must have been previously created by using the DosOpen function.·

pis OpenMode Points to the variable that receives the file-handle state. The
file-handle state consists of one access mode, one share mode, and optional
flags. It is identical to the values specified in the jsOpenMode parameter of the
DosOpen function. Which values are set can be determined by using the AND
operator to combine the value returned in the pjsOpenMode parameter with one
or more of the following values:

Value

OPEN_ACCESS_READWRITE

Meaning

Data can be read from the file but
not written to it.

Data can be read from or written
to the file.

118 DosQFHandState

Return Value

Example

See Also

Changes

Value

OPEN_ACCESS_ WRITEONL Y

OPEN_SHARE_DENYREADWRITE

OPEN_SHARE_DENYWRITE

Meaning

Data can be written to the file but
not read from it.

Other processes can open the file
for any access: read-only, write
only, or read-write.

Other processes can open the file
for write-only access but not for
read-only or read-write access.

The current process has exclusive
access to the file.

Other processes can open the file
for read-only access but not for
write-only or read-write access.

The file handle represents a physi
cal drive that has been opened for
direct access.

Any function that uses the file
handle returns immediately with
an error code if there is an I/O
error.

The file handle is private to the
current process.

The system writes data to the
device before the given function
returns.

The system does not cache file
data.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJIANDLE

This example calls the DosQFHandState function using the handle of a previ
ously opened file, and then checks the variable fsOpenMode and reports if the
file is opened for read/write access:
HFILE hf;
USHORT fsOpenMode;

DosQFHandState(hf, &fsOpenMode);
if (fsOpenMode & OPEN_ACCESS_READWRITE)

VioWrtTTY("File opened for read/write access\r\n", 35, 0);
if (fsOpenMode & OPEN_SHARE_DENYREADWRITE)

VioWrtTTY("File cannot be shared\r\n", 23, 0);

DosDevIOCtI, DosExecPgm, DosOpen, DosSetFHandState

The OPEN_FLAGS_NO_CACHE value can be specified for the pjsOpenMode
parameter. If specified, the system does not cache file data.

DosQFilelnfo 119

• DosQFilelnfo Change
USHORT DosQFilelnfo (hf, uslnfoLevel, pvlnfo, cblnfoBuf)
HFILE hfj 1* handle of file about which data sought *1
USHORT uslnfoLeve/j 1* level of file data required *1
PVOID pvlnfoj 1* pointer to file-data buffer .1
USHORT cblnfoBuf; 1* length of file-data buffer *1

Parameters

The DosQFileInfo function retrieves information about a specific file. The file
information consists of the date and time the file was created, the date and time
it was last accessed, the date and time it was last written to, the size of the file,
and its attributes. It can also be used to return information about the extended
attributes used for a file.

The file information is based on the most recent call to the DosClose or the
DosBufReset function.

The DosQFileInfo function is a family API function.

hf Identifies the file about which information is to be retrieved. This handle
must have been created by using the DosOpen function.

usInfoLevel Specifies the level of file information required. It may be one of
the following values:

Value Meaning

Level-! information request. This will return a
FILESTATUS structure. Any time and data fields
in the structure that the file-sys,tem device does not
support are set to zero.

Level-2 information request. This will return a
FILESTATUS2 structure, which contains the same
information as FILESTATUS plus the size of the
structure used by the FILE_INFO_3 value (for MS
OS/2 version 1.2, this size cannot exceed 65,535
bytes).

Level-3 information request. This will return an
EAOP structure that contains a subset of the file's
extended-attribute information.

pv Info Points to the structure that receives the file information. This structure
will be FILESTATUS for FILEJNFO_l information, FILESTATUS2 for
FILEJNFO~ information, and EAOP for FILEJNF03 information.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

120 DosQFilelnfo

Return Value

Comments

Example

The FILESTATUS2 structure has the following form:

typedef struct _FILESTATUS2 {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbF He;
ULONG cbFileAlloc;
USHORT attrFHe;
USHORT cbList;

} FILESTATUS2;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList; _
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, "Types, Macros, Structures."

cblnfoBuf Specifies the length (in bytes) of the buffer that receives the file
information.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALID_EA_NAME
ERROR-E~ISTJNCONSISTENT
ERROILBUFFE~OVERFLOW
ERRO~IRECT~CCESSJfANDLE
ERRORJNVALIDJfANDLE
ERRORJNVALID~EVEL

Prior to the function being called, the fpFEAlist field in the EAOP structure
should be initialized so that it points to the FEALIST structure that contains the
relevant FEA structure. The cbList field in the FEALIST structure is valid, giv
ing the size of the FEA structure.

If the FEALIST structure is not large enough to hold the returned information
(indicated by ERROILBUFFE~OVERFLOW), cbList will still be valid,
assuming there is at least enough space for it. Its value will be the size of the
entire set of extended attributes for the file, even if only a subset of attributes
was requested.

This example opens the file abc, calls the DosQFilelnfo function to retrieve the
current allocated size, and then calls the DosNewSize function to increase the
file's size by lK:

HFILE hf;
USHORT usAction;
FILESTATUS fstsFile;
DosOpen("abc". &hf. &usAction. OL. FILE_NORMAL,

FILE_OPEN I FILE_CREATE,
OPEN_ACCESS_WRITEONLY I OPEN_SHARE_DENYNONE, OL);

DosQF ileInfo (hf, /* file handle
FILE_INFO_l, /* level of information
&fstsFile, /* address of file-data
sizeof(fstsFile)); /* size of data buffer

DosNewSize(hf. fstsFile.cbFileAlloc + l024L);

*/
*/

buffer */
*/

See Also

Changes

• DosQFSAttach

DosQFSAttach 121

DosButReset, DosClose, DosNewSize, DosOpen, DosQFileMode,
DosQPathlnfo, DosSetFileInfo

Parameters and structures for FILEJNFO~ and FILEJNFO~ information
have been added. The type of the pvlnfo parameter has changed from
PFILESTATUS to PYOID because one of three structures can be used for this
parameter.

New
USHORT DosQFSAttach(pszDev, usOrdina/, uslnfoLevel, pFSAttBuf, pcbAttBuf, ulReserved)
PSZ pszDev; /. pointer to drive or device ./
USHORT usOrdina/; /. index to drive or device ./
USHORT uslnfoLevel; /. level of information ./
PBYTE pFSAttBuf; /. pointer to structure for file-system attributes ./
PUSHORT pcbAttBuf; /. pointer to structure length ./
ULONG ulReserved; /. must be zero ./

Parameters

The DosQFSAttach function queries information about an attached remote file
system or a local file system. The function can also query information about a
character device or pseudo-character device attached to a local or remote file
system.

pszDev Points to a null-terminated string that specifies the drive letter fol
lowed by a colon or to the name of a character or pseudo-character device. If
this parameter is a character or pseudo-character device name, the format of the
string is \DEV\jilename, where filename is a valid MS OS/2 filename.
This parameter is ignored if the uslnfoLevel parameter is set to either
FSAILJ)EVNUMBER or FSAILJ)RVNUMBER.

usOrdinal Specifies an index into the list of character or pseudo-character
devices or the set of drives. The first item in the list is always 1. This parameter
is ignored if the usIllfoLevel parameter is set to FSAIL_QUERYNAME.

uslnfoLevel Specifies the type of information requested. This parameter can
be one of the following values:

Value Meaning

FSAIL_QUER YN AME Returns information about the drive or device
pointed to by the ps'ZDev parameter. When this value
is specified. the usOrdinal parameter is ignored.

FSAIL_DEVNUMBER Returns information about the character or pseudo
character device specified by the usOrdinal parame
ter. When this value is specified. the ps'ZDev parame
ter is ignored.

FSAIL_DRVNUMBER Returns information about the drive specified by the
usOrdinal parameter. When this value is specified.
the ps'ZDev parameter is ignored.

122 DosQFSAttach

Return Value

Comments

Example

See Also

pFSAttBuf Points to the buffer that receives information about the file system.
The buffer is organized as a FSQBUFFER structure. Because the name fields can
vary length, however, the structure cannot be used directly to retrieve the data.
The PFSQBUFFER structure has the following form:

typedef struct _FSQBUFFER {
USHORT iType;
USHORT cbName;
UCHAR szName[l];
USHORT cbFSDName;
UCHAR szFSDName[l];
USHORT cbFSAData;
UCHAR rgFSAData[l];

} FSQBUFFER;

For a full description, see Chapter 4, "Types, Macros, Structures."

pcbAttBuf Points to the variable that receives the length (in bytes) of the
buffer.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIU3UFFEILOVERFLOW
ERRORJNVALIDJ)RlVE
ERRORJNVALIDJ..EVEL
ERROILNO~OREJTEMS

The DosQFSAttach function can be used to ensure that the correct file system is
loaded for a disk. Without this information, there is potential for the data on the
disk to be destroyed because the wrong file system could be attached to the disk
by default.

This example calls DosQFSAttach to get information about drive C, and then
displays the device and file-system names:

PSZ psz;
PUSHORT pcb;
USHORT cb;
SEL sel;

DosAllocSeg(1024, &sel, SEG_NONSHARED); 1* allocates buffer *1

if (lDosQFSAttach("c:", 0, FSAIL_QUERYNAME, MAKEP(sel, 0), &cb, OL» {

}

pcb = MAKEP(sel, 2); 1* points to length of device name *1
psz = MAKEP(sel, 4); 1* points to device name *1
VioWrtTTY(psz, *pcb, NULL); 1* displays device name *1
VioWrtTTY("\r\n", 2, OL);
psz += *pcb + 3; 1* add null char. and name-length var.
pcb = (PUSHORT) (psz - 2); 1* points to length of name
VioWrtTTY(psz, *pcb, NULL); 1* displays file-system name
VioWrtTTY("\r\n", 2, OL);

*1
*1
*1

DosFSAttach, DosQFSlnfo

DosQNmPipelnfo 123

• DosQNmPipelnfo Change
USHORT DosQNmPipelnfo(hP. uslnfoLe"vel. pbBuf. cbBuf)
HPIPE hp; 1* pipe handle *1
USHORT uslnfoLevel; 1* level of information to retrieve *1
PBYTE pbBuf; 1* pointer to buffer ~or information .1
USHORT cbBuf; I. number of bytes in buffer .1

Parameters

Return Value

Comments

See Also

Changes

Corrections

The DosQNmPipelnfo function retrieves information about a named pipe.

hp Identifies the pipe to read from.

uslnfoLevel Specifies the level of information to retrieve. Levell is miscel
laneous information about the pipe.

pbBuf Points to the buffer that receives the information. For level-l informa
tion, the data is stored in the PIPEINFO structure. The PIPEINFO structure has
the following form:

typedef struct _PIPEINFO {
USHORT cbOut;
USHORT cbln;
BYTE cbMaxlnst;
BYTE cbCurlnst;
BYTE cbName;
CHAR szName[l];

} PIPEINFO;

cbBuf Specifies the size (in bytes) of the buffer receiving the information.

The return value is zero if the function is successful. Otherwise, it is an error
Value, which may be one of the following:

ERROlLBADYIPE
ERROlLBUFFER-OVERFLOW
ERRORJNV ALIDJ.EVEL
ERRORJNVALIDY ARAMETER
ERRORYIPE_NOT_CONNECTED

For level-l information, if the pipe name is longer than 255 bytes, zero will be
returned in the cbName field of the PIPEINFO structure. The full null
terminated string that contains the name will be returned in the location
specified by the szName field.

DosQNmPHandState, DosQNmPipeSemState

Pipe names longer than 255 bytes are now supported. For names longer than 255
bytes, however, zero is returned in the cbName field of the PIPEINFO structure.

This function returns only level-l information. Erroneous references to level-2
information have been removed.

124 DosQNmPipeSemState

• DosQNmPipeSemState Correction
USHORT DosQNmPipeSemState (hsem. pnmpsmst. cbBuf)
HSEM hsem; I. semaphore handle .1
PPIPESEMSTATE pnmpsmst; I. pointer to buffer receiving information *'
USHORT cbBuf;

Parameters

Return Value

I. buffer size

The DosQNmPipeSemState function returns information about all local named
pipes that are in blocking mode and are associated with a specified system sema
phore.

hsem Identifies the semaphore that is associated with the named pipe.

pnmpsmst Points to the PIPESEMSTATE structure that receives the informa
tion. ThePIPESEMSTATE structure has the following form:

typedef struct _PIPESEMSTATE {
BYTE fStatus;
BYTE fFlag;
USHORT usKey;
USHORT usAvail;

} PIPESEMSTATE;

For a full description of these structures, see Chapter 4, "Types, Macros, Struc
tures."

cbBuf Specifies the length (in bytes) of the structure that receives the informa
tion. Programs written in the C language should use the sizeof operator to set
this parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALID_PARAMETER
ERROR_SE~NOTYOUND

See Also DosSetNmPipeSem

Corrections The second parameter has been replaced by a PIPESEMSTATE structure.

• DosQPathlnfo New
USHORT.DosQPathlnfo(pszPath. uslnfoLevel. plnfoBuf. cblnfoBuf. ulReserved)
psz pszPath; I. pOinter to path .1
USHORT uslnfoLevel; I. level of information .1
PBYTE plnfoBuf; I. pOinter to buffer for information .1
USHORT cblnfoBuf; I. length of information buffer .1
ULONG ulReserved; I. must be zero .1

Parameters

The DosQPathInfo function returns information about a specified file or direc
tory.

The DosQPathlnfo function is a family API function.

pszPath Points to the null-terminated string that specifies the path of the file
or directory. Wildcard characters are valid in the path only when the value of the
uslnjoLevel parameter is FIL_QUERYFULLNAME or FIL_NAMEISV ALID.

DosQPathlnfo 125

usInfoLevel Specifies the level of information required. This parameter can
be one of the following values:

Value

FIL_STANDARD

FIL_QUER YEA SIZE

FIL_QUERYEASFROMLIST

FIL_QUERYFULLN AME

FIL_N AMEISV ALID

Meaning

Return a FILESTATUS structure.

Return a FILESTATUS structure followed by
a 4-byte value that specifies the buffer size
needed to retrieve the entire extended attri
bute.

Return extended-attribute information using
an EAOP structure for the plnfoBuf parame
ter.

Return the fully qualified path of the buffer
pointed to by the plnfoBuf parameter. When
this value is specified, the path pointed to by
the psZPath parameter can contain wildcard
characters.

Verify the correctness (according to MS OS/2
syntax rules) of the path pointed to by the
pszPath parameter. If the path is incorrect
(for example, a filename is too long for the
current file system), an error will be returned.
The path can contain wildcard characters.

pInfoBuf Points to the buffer that contains a FILESTATUS or EAOP struc
ture. The structure used is determined by the value specified for the uslnjoLevel
parameter.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbF 11e;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, "Types, Macros, Structures,"

cbInfoBuf Specifies the length (in bytes) of the buffer pointed to by the
plnjoBuj parameter,

ulReserved Specifies a reserved value; must be zero.

126 DosQPathlnfo

Return Value

Comments

See Also

• DosRead

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-BUFFER-OVERFLOW
ERROR-E~LISTJNCONSISTENT
ERROR_FILENAME~XCED~ANGE
ERRORJNVALID_EA_NAME
ERRORJNVALID-LEVEL
ERRORY ATILNOTYOUND

If the uslnfoLevel parameter is FIL_QUERYEASFROMLIST, a subset of the
extended-attribute information for the file is returned. Prior to the call to the
DosQPathlnfo function, the fpGEAList field of the EAOP structure should
point to a list that defines the attribute names for which values will be returned,
and the fpFEAList field should point to a buffer in which the relevant extended
attribute list will be returned.

DosQFileInfo, DosSetPathlnfo

Correction
USHORT DosRead(hf, pvBuf, cbBuf, pcbBytesRead)
HFILE hf: /. file handle ./
PVOID pvBuf: /. pointer to buffer receiving data ./
USHORT cbBuf: /. number of bytes in buffer ./
PUSHORT pcbBytesRead: /. pointer to variable for number of bytes read ./

Parameters

Return Value

Comments

The DosRead function reads up to a specified number of bytes of data from a
file into a buffer. The function may read fewer than_ the specified number of
bytes if it reaches the end of the file.

The DosRead function is a family API function.

hf Identifies the file to be read. This handle must have been created by using
the DosOpen function.

pv Buf Points to the buffer that receives the data.

cbBuf Specifies the number of bytes to read from the file.

pcbBytesRead Points to the variable that receives the number of bytes read
from the file. This parameter is zero if the file pointer is positioned at the end of
the file prior to the call to the DosRead function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESS~ENIED
ERROlLBROKENYIPE
ERRORJNVALIDJIANDLE
ERROILLOC~ VIOLATION
ERROR-NOT~OS~ISK

The DosRead function does not return an error if the file pointer is at the end of
the file when the read operation begins.

Example

See Also

Corrections

DosRead 127

When DosRead is used to read a byte pipe, the pipe must be in byte-read mode,
an error is returned if the pipe is in message-read mode. All currently available
data, up to the size requested, is returned.

For a message pipe in message-read mode, a read operation that is larger than
the next available message returns only that message, with pcbBytesRead set to
indicate the size of the returned message. A read operation that is smaller than
the next available message returns with the number of bytes requested and an
ERROR~ORE_DATA error code. Subsequent DosRead calls will continue
reading the message. The DosPeekNmPipe function can be used to determine
how many bytes are left in the message.

For a message pipe in byte-read mode, DosRead reads the pipe as if it were a
byte stream, skipping over message headers. This is the same as reading a byte
pipe in byte mode.

When blocking mode is set, the read operation blocks until data is available. In
this case, the read operation will never return with the pcbBytesRead parameter
equal to zero except when it has read an end-of-file (EOF) character. Note that
in message-read mode, messages are always read entirely, except in the case
where the message is larger than the size specified for the read operation.

When nonblocking mode is set, the read operation returns with the
pcbByfesRead parameter equal to zero upon reading the EOF character. An
error will be returned if no data is available.

When resuming reading a message after an ERROR-MORE~ATA error
occurs, the read operation always blocks until the next part of the message can
be transferred. When nonblocking mode is set, the read operation can return
with pcbBytesRead equal to zero if, upon attempting to read at th.e. start of a
message, it determines that no message is available.

This example opens, reads, and displays the file abc:

BYTE abBuf[S12];
HFILE hf;
USHORT usAction, cbBytesRead, cbBytesWritten;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,

OL) ; OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE,
do {

}

DosRead (hf,
abBuf,
sizeof(abBuf) ,
&cbBytesRead);

DosWrite(l, abBuf,

while (cbBytesRead);

/' file handle '/
/' address of buffer '/
/' size of buffer '/
/' address for number of bytes read '/

cbBytesRead, &cbBytesWritten);

DosChgFiIePtr, DosOpen, DosPeekNmPipe, DosReadAsync, DosWrite,
KbdStringIn

DosRead can be used to read from a named pipe. The comments have been
updated to contain the relevant information about reading from a named pipe.

128 DosReadAsync

• DosReadAsync Change
USHORT DosReadAsync(hf, hsemRam, pusErrCode, pvBuf, cbBuf, pcbBytesRead)
HFILE hf; /. file handle ./
PULONG hsemRam; /. pointer to RAM semaphore ./
PUSHORT pusErrCode; /. pointer to variable for error return code ./
PVOID pvBuf; /. pOinter to Input buffer ./
USHORT cbBuf; /. length of input buffer ./
PUSHORT pcbBytesRead; /. pointer to variable for number of bytes read ./

Parameters

Return Value

Comments

The DosReadAsync function reads one or more bytes of data from the file
identified by the hf parameter. The function reads the data asynchronously; that
is, the function returns immediately to the process that called it but continues to
copy data to the specified buffer while the process continues.

hf Identifies the file to be read. This handle must have been previously opened
by using the DosOpen function.

hsemRam Points to the RAM semaphore that indicates when the function has
finished reading the data.

pusErrCode Points to the variable that receives any error code the function
generates while reading data. The possible error codes are identical to those
returned by the DosRead function.

pvBuf Points to the buffer that receives the data being read.

cbBuf Specifies the number of bytes to be read from the file identified by the
hf parameter.

pcbBytesRead Points to the variable that receives the number of bytes read
from the file.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR~CCESSJ)ENIED
ERROlU3ROKENYIPE
ERRORJNV ALIDJ-IANDLE
ERROILLOCIC VIOLATION
ERROlLNOYROC_SLOTS
ERROlLNOTJ)OSJ)ISK

The DosReadAsync function reads up to the number of bytes specified in the
cbBuf parameter, but it may read fewer if it reaches the end of the file. In any
case, the function copies the number of bytes read to the variable pointed to by
the pcbBytesRead parameter. The pcbBytesRead parameter is zero if all the bytes
in the file have been read (that is, the end of file has been reached).

If the process intends to use the RAM semaphore pointed to by the hsemRam
parameter to determine when data is available, it must set the semaphore by
using the DosSemSet function before calling DosReadAsync. When Dos
ReadAsync has read the data, it clears the RAM semaphore.

The DosReadAsync function carries out the asynchronous operation by creating
a new thread that reads from the specified file. The function terminates the
thread when the operation is complete or when an error occurs.

Example

See Also

Changes

DosReadAsync 129

When DosReadAsync is used to read a byte pipe, the pipe must be in byte-read
mode; an error is returned if the pipe is in message-read mode. All currently
available data, up to the size requested, is returned.

For a message pipe in message-read mode, a read operation that is larger than
the next available message returns only that message; pcbBytesRead is set to indi
cate the size of the message returned. A read operation that is smaller than the
next available message returns with the number of bytes requested and an
ERROR-.MOREJ)ATA error code. Subsequent DosReadAsync calls will con
tinue reading the message. DosPeekNmPipe may be used to determine how
many bytes are left in the message.

For a message pipe in byte-read mode, DosReadAsync reads the pipe as if it
were a byte stream, skipping over message headers. This is the same as reading a
byte pipe in byte mode.

When blocking mode is set, a read operation blocks until data is available. In
this case, the read operation wilInot return with the pcbBytesRead parameter
equal to zero except when it has read an end-of-file (EOF) character. Note that
in message-read mode, messages are always read entirely, except in the case
where the message is larger than the size specified for the read operation.

When nonblocking mode is set, a read operation returns with pcbBytesRead
equal to zero upon reading the EOF character. An error will be returned if there
is no data available.

When resuming reading a message after an ERROR-.MOREJ)ATA message,
the read operation always blocks until the next part of the message can be
transferred. When nonblocking mode is set, the read operation can return with
pcbByteRead equal to zero if, upon attempting to read at the start of a message,
it determines that no message is available.

This example opens the file abc, sets a RAM semaphore, and calls the Dos
ReadAsync function to read part of the file. While the file is being read, program
execution continues until the call to the DosSemWait function, which does not
return until the DosReadAsync thread completes its work.

BYTE abBuf[S12];
ULONG hReadSemaphore = 0;
HFILE hf;
USHORT usAction, cbBytesRead;
USHORT usReadReturn;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,

OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);
DosSemSet(&hReadSemaphore); /* sets RAM semaphore
DosReadAsync(hf, /* handle to file

&hReadSemaphore, /* address of semaphore
&usReadReturn, /* address to store return
abBuf, /* address of buffer
sizeof(abBuf) , /* size of buffer
&cbBytesRead) ; /* number of bytes read

. /* Other processing occurs here. */

DosSemWait(&hReadSemaphore, -lL);

DosOpen, DosPeekNmPipe, DosRead, DosSemSet, DosSemWait,
Dos WriteAsync

Information about using this function with pipes has been added.

*/
*/
*/

code */
*/
*/
*/

130 DosReadQueue

I DosReadQueue Correction
USHORT DosReadQueue(hqueue, pqresc, pcbE/ement, ppv, usE/ement, fWait, pbElemPrty, hsem)
HQUEUE hqueue; 1* handle of queue to read *1
PQUEUERESULT pqresc; 1* pOinter to structure for PIO and request code *1
PUSHORT pcbE/ement; 1* pointer to variable for length of element *1
PYOID FAR * ppv; 1* pOinter to buffer for element *1
USHORT usElement; 1* element number to read *1
UCHAR fWait; 1* wait/no wait indicator *1
PBYTE pbE/emPrty; 1* pOinter to variable for priority of element *1
HSEM hsem; 1* semaphore handle *1

Parameters

The DosReadQueue function retrieves an element and then removes it from a
queue. It copies the address of the clement to the supplied pointer and fills a
structure with information about the element.'

hqueue Identifies the queue to read. This handle must have been created or
opened by using the DosCreateQueue or DosOpenQueue function.

pqresc Points to the QUEUERESULT structure that receives information
about the request. The QUEUERESULT structure has the 'following form:

typedef struct _QUEUERESULT {
PID pidProcess;
USHORT usEventCode;

} QUEUERESULT;

pcb Element Points to the variable that receives the length (in bytes) of the
element.

Ppv . Points to the pointer that receives the address of the element in the
queue.

usElement Specifies where to look in the queue for the element. If this
parameter is OxOOOO, the function looks at the beginning of the queue. Other
wise, the function assumes the value is an element identifier retrieved by using
the DosPeekQueue function and"looks for the specified element.

jWait Spe~ifies whether to wait for an element to be placed in the queue, if
the queue is empty. If this parameter is DCWW_WAIT, the function waits until
an element is available. If this parameter is DCWW _NOWAIT, the function
returns immediately with a code that indicates there are no entries in the queue.

pbElemPrty . Points to the variable that receives the priority value specified
when the element was added to the queue. This is a value in the range 0 through
15; 15 !ndicates the highest priority.

hsem Identifies a semaphore. This value can be the handle of a system sema
phore that has been created or opened by using the DosCreateSem or DosOpen
Sem function, or it can be the address of a RAM semaphore. This semaphore
would typically be used in a call to the DosMuxSem Wait function to wait until
the queue has an element. If thefWait parameter is DCWW_WAIT, hsem is
ignored.

Return Value

Comments

Example

See Also

Corrections

DosReallocHuge 131

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-QUE_ELEMENT_NOT-EXIST
ERROR_QUE-EMPTY
ERROR-QUEJNVALIDJIANDLE
ERROR-QUEJNV ALID_ WAIT
ERROR_QUEYROC_NOT_OWNED

If the queue is empty, the DosReadQueue function either returns immediately or
waits for an element to be written to the queue, depending on the value of the
/Wait parameter.

Only the process that created the queue can call the DosReadQueue function.

This example reads the queue and waits until an element is received. After the
element is read and the data processed, the process frees the shared memory
that was passed to it. This assumes the process writing to the queue created a
shared-memory segment. For more information, see the DosWriteQueue func
tion.

QUEUERESULT qresc;
USHORT cbElement;
PVOID pv;
BYTE bElemPrty;

DosReadQueue(hqueue, 1* queue handle *1
&qresc, 1* address 0 f result structure * I
&cbElement, 1* receives element number *1
&pv, 1* receives data address *1
0, 1* element number to read *1
DCWW_WAIT, 1* waits until something is written *1
&bElemPrty, 1* receives priority level *1
NULL) ; 1* semaphore not needed, since waiting *1

. 1* Process the data. *1
DosFreeSeg(SELECTOROF(pv»; 1* frees shared memory *1

DosCreateQueue, DosMux~emWait, DosOpenQueue, DosOpenSem,
DosPeekQueue, DosWriteQueue

The description incorrectly stated that the element was copied to the supplied
buffer. It is the address of the element that is copied to the supplied pointer. No
data is actually copied; only the pointer to the data is copied .

• DosRealiocHuge Change
USHORT DosReallocHuge (usNumSeg. usPartialSeg. se/)
USHORT usNumSeg; 1* number of 65,536-byte segments .1
USHORT usPartia/Seg; 1* number of bytes in last segment .1
SEL sel; 1* segment selector

The DosReallocHuge function reallocates a huge-memory block. This function
changes the size of the huge memory to the specified number of 65,536-byte seg
ments plus an additional segment of a specified size.

The DosReallocHuge function is a family API function.

132 DosRealiocHuge

Parameters

Return Value

Comments

Restrictions

See Also

Changes

usNumSeg Specifies the number of 65,536-byte segments to allocate.

usPartialSeg Specifies the number of bytes in the last segment. This number
can be any value in the range Othrough 65,535. If this number is .zero, no addi
tional segment is allocated.

sel Specifies the selector for the huge-memory block to be reallocated. The
selector must have been created by using the DosAllocHuge function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILINV ALIDJ> ARAMETER
ERROILNOT-ENOUGfLMEMORY

The DosReallocHuge function does not change the sharable and discardable
attributes of the segments in the huge-memory block. If it was originally a shar
able or discardable block, it remains a sharable or discardable block. However,
if DosReallocHuge reallocates a discardable block, it also locks the segments.
The DosUnlockSeg function must be used to unlock the segments and permit
discarding.

The huge-memory block cannot be reallocated for a size larger than the max
imum specified by the usMaxNumSeg parameter in the original call to the
DosAllocHuge function.

Each segment in the huge-memory block has a unique selector. The selectors are
consecutive. The sel parameter specifies the value of the first selector; the
remaining selectors can be computed by adding the selector offset to the first
selector one or more times-that is, once for the second selector, twice for the
third, and so on. The selector offset is a multiple of 2, as specified by the shift
count retrieved by using the DosGetHugeShift function. For example, if the shift
count is 2, the selector offset is 4 (1 «2). If the selector offset is 4 and the
first selector is 6, the second selector is 10, the third is 14, and so on.

Typically, DosReallocHuge can increase, not decrease, the size of shared huge
segments. If the shared segment is allocated by the DosAllocHuge function, the
segment can be decreased in size by setting the fsAttr parameter to
SEG_SIZEABLE.

DosReallocHuge can be issued from ring 2, but only ring-3 segments are affected
by this function.

In real mode, the following restriction applies to the DosReallocHuge function:

• The usParlialSeg parameter is rounded up to the next paragraph (16-byte)
value.

DosAllocHuge, DosFreeSeg, DosGetHugeShift, DosLockSeg, DosReallocSeg,
DosUnlockSeg

Typically, DosReallocHuge can increase, not decrease, the size of shared huge
segments. If the shared segment is allocated by the DosAllocHuge function, the
segment can be decreased in size by setting the fsAttr parameter to
SEG_SIZEABLE.

DosReallocHuge can be issued from ring 2, but only ring-3 segments are affected
by this function.

DosReallocSeg 133

• DosReallocSeg Change
USHORT DosReallocSeg(usNewSize. se/)
USHORT usNewSize; I. new segment size .1
SEL sel; I. segment selector .1

Parameters

Return Value

Comments

Restrictions

Example

See Also

Changes

The DosReallocSeg function reallocates a segment. The function changes the
size of the segment to the number of bytes specified by the usNewSize parameter.

The DosReallocSeg function is a family API function.

usNewSize Specifies the new size (in bytes). The size can be any number from
o through 65,535. If it is 0, the function allocates 65,536 bytes.

sel Specifies the selector of the segment to be reallocated. The selector must
have been created previously by using DosAllocSeg or DosAllocShrSeg.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLACCESSJ)ENIED
ERROR_NOT_ENOUGlLMEMORY

The DosReallocSeg function does not change the sharable and discardable attri
butes of the segment. If it was originally a sharable or discardable segment, it
remains a sharable or discardable segment. If DosReallocSeg reallocates a dis
cardable segment, however, it also locks the segment. You must use the Dos
UnlockSeg function to unlock the segment and permit discarding.

If the DosReallocSeg function is used to reallocate a shared segment to a size
smaller than its original size, the segment must have been created using the
DosAllocSeg function with the SEG_SIZEABLE attribute set. This request can
be issued from ring 2 or ring 3; the segment to be reallocated can be a ring-2 or
a ring-3 segment.

The DosReallocSeg function cannot be used to reallocate a segment created by
the DosCreateCSAlias function.

In real mode, the following restriction applies to the DosReallocSeg function:

• The usNewSize parameter is rounded up to the next paragraph (l6-byte)
value.

This example allocates a segment with 16,000 bytes, and then calls DosReal
locSeg to increase the size to 32,000 bytes:

SEt sel;

DosAllocSeg(16000, &sel, SEG_NONSHARED); 1* allocates memory *1

DosReallocSeg(32000, sel); 1* reallocates memory *1

DosAllocSeg, DosFreeSeg, DosLockSeg, DosReallocHuge, DosUnlockSeg

If DosReallocSeg is used to reallocate a shared segment to a size smaller than its
original size, the segment must have been created using the DosAllocSeg func
tion with the SEG_SIZEABLE attribute set. This request can be issued from
ring 2 or ring 3; the segment to be reallocated can be either a ring-2 or a ring-3
segment.

134 DosSearchPath

• DosSearchPath Change
USHORT DosSearchPath(fsSearch. pszPath. pszFileName. pbBuf. cbBuf)
USHORT fsSearch; I. search flags .1
PSZ pszPath; I. pOinter to search path or environment variable .1
PSZ pszFileName; I. pointer to filename .1
PBYTE pbBuf; I. pointer to result buffer .1
USHORT cbBuf; I. length of result buffer .1

Parameters

The DosSearchPath function searches the specified search path for the given
filename. The search path is a null-terminated string that consists of a sequence
of directory paths separated by semicolons (;). The function searches for the
filename by looking in each directory (one directory at a time) in the order
given.

fsSearch Specifies how to interpret the pszPath parameter and whether to
search the current directory. This parameter can be a combination of the follow
ing values:

Value

nsp _ENVIRONMENT

Meaning

The pS'l.Path parameter points to the
name of an environment variable. The
function retrieves the value of the
environment variable from the environ
ment segment of the process and uses it
as the search path. If this value is not
specified, pS'l.Path points to a string that
specifies the search path. This value can
not be used with the nsp _PATH value.

If this value is set, the search ignores any
network errors encountered during during
processing and continues to search the
remainder of the path. If this value is not
specified, a network error (for example,
when a server is unavailable) causes the
search to halt.

The function searches the current direc
tory before it searches the first directory
in the search path. If this value is not
specified, the function searches the
current directory only if it is explicitly
given in the search path. .

The pS'l.Path parameter points to a string
that specifies the search path. This
value cannot be used with the
nsp _ENVIRONMENT value.

pszPath Points to the null-terminated string that specifies the search path. If
nsp J> ATH is specified for the fsSearch parameter, the pszPath parameter
points to an environment variable. Otherwise, the pszPath parameter points to
one or more paths to search. The paths are separated by semicolons (;).

Return Value

Comments

Example

DosSemClear 135

pszFileName Points to a null-terminated string that specifies the filename to
search for. The string must be a valid MS OS/2 filename and can contain wild
card characters.

pbBuf Points to the buffer that receives the full path name of the file if the
filename is found.

cbBuf Specifies the length (in bytes) of the buffer pointed to by the pbBuf
parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value.

If DosSearchPath finds a matching filename in any of the directories specified by
the search path, the function copies the full, null-terminated path name to the
buffer pointed to by the pbBuf parameter. If the filename pointed to by the
pszFileName parameter contains wildcard characters, the resulting path name
will also contain wildcard characters; the DosFindFirst function can be used to
retrieve the actual filename(s).

The DosSearchPath function does not check for the validity of filenames. If the
filename is not valid, the function returns an error, indicating that the file was
not found.

This example uses the search path specified by the DPATH environment variable
to search for the abc.txt filename:

CHAR szFoundFile[128];
DosSearchPath(DSP_ENVIRONMENT,

"DPATH",
"abc.txt",
szFoundFile,
sizeof(szFoundFile)) ;

/' uses environment variable '/
/' uses DPATH search path '/
/' filename '/
/' receives resulting filename '/
/' length of result buffer '/

The following example is identical to the first example if the DPATH variable is
defined as shown:

DPATH=c:\sysdir;c:\init

DosSearchPath(DSP_PATH,
"c:\\sysdir;c:\\init",
"abc.txt",
szFoundFile,
sizeof(szFoundFile));

/' uses search path '/
/' search path '/
/' filename '/
/' receives resulting filename '/
/' length of result buffer '/

See Also DosFindFirst, DosScanEnv

Changes The constants SEARCILPATH, SEARCILCURJ)IRECTORY, and
SEARCILENVIRONMENT have been changed to DSP.Y ATH,
DSP_CUILDIRECTORY, and DSP-ENVIRONMENT, respectively. A new
constant, DSP _IGNORE_NET-ERR, has been added to allow searches to con
tinue when a network drive specified in the path might not be available at the
time of the search.

• DosSemClear Correction
USHORT DosSemClear(hsem)
HSEM hsemj /. semaphore handle ./

The DosSemClear function clears a system or RAM semaphore that has been
set by using the DosSemRequest, DosSemSet, or DosSemSdWait function.

136 DosSemClear

Parameters

Return Value

Comments

Example

See Also

Corrections

hsem Identifies the semaphore to clear. This value can be the handle of a sys
tem semaphore that has been previously created or opened by using the Dos
CreateSem or DosOpenSem function, or it can be the address of a RAM sema
phore.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROlLEXCL_SE1LALREADY _OWNED

The DosSemClear function cannot clear a system semaphore that is owned by
another process unless the semaphore is nonexclusive.

This example uses the DosSemClear function to clear a RAM semaphore and a
system semaphore:

ULONG hsem = 0;
HSYSSEM hsys;
DosSemClear(&hsem);
DosSemClear(hsys) ;

I' clears RAM semaphore *1
I' clears system semaphore 'I

DosCreateSem, DosMuxSemWait, DosOpenSem, DosSemRequest, DosSem
Set, DosSemSetWait, DosSemWait

The example incorrectly used the address of the system semaphore rather than
the handle of the system semaphore. System semaphores require the handle of
the semaphore; RAM semaphores require the address of the semaphore.

• DosSemRequest Correction
USHORT DosSemRequest(hsem. ITimeOut)
HSEM hsem; 1* semaphore handle */
LONG ITimeOut; /* time-out */

Parameters

Return Value

The DosSemRequest function obtains and sets a semaphore. If no previous
thread has set the semaphore, DosSemRequest sets the semaphore and returns
immediately. If the semaphore has already been set by another thread, the func
tion waits until a thread clears the semaphore (by using the DosSemClear func
tion) or until a time-out occurs. The DosSemRequest function is also used to
obtain ownership of a system semaphore created with the CSEMJ>RIV ATE flag
set (see DosCreateSem).

hsem Identifies the semaphore to set. This value can be the handle of a sys
tem semaphore that has been previously created or opened by using the Dos
CreateSem or DosOpenSem function, or it can be the address of a RAM sema
phore.

[TimeOut Specifies how long to wait for the semaphore to clear. If the value
is greater then zero, this parameter specifies the number of milliseconds to wait
before returning. If the value is SEMJMMEDIATE~ETURN, the function
returns immediately. If the value is SEMJNDEFINITE_ WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNTERRUPT
ERROR_SEM_OWNE~DIED

Comments

Example

DosSetFilelnfo 137

ERROILSE~TIMEOUT
ERROILTOOj1ANY_SE~EQUESTS

If DosSemRequest is used to obtain exclusive ownership of a semaphore created
by another process, it will wait (if ITimeOut is non-zero) until the semaphore is
clear, or until the process that currently owns the semaphore closes the sema
phore or terminates. If the process owning the semaphore terminates, DosSem
Request will return with an error value of ERROILSE~OWNERJ)IED, how
ever ownership will be transferred and the semaphore will be set and can be
used by the calling process.

The effects of DosSemRequest are cumulative. If mUltiple calls to the DosSem
Request function set the semaphore, the same number of calls to the DosSem
Clear function are required to clear the semaphore.

If more than one thread has requested to set the semaphore, a thread may have
to wait through several changes of the semaphore before it continues (depending
on which thread clears the semaphore and when the system scheduler passes
control to the thread). As long as the semaphore is set (even if it has been
cleared and reset since the thread originally called the function), the thread must
wait.

The DosSemRequest function can set system or RAM semaphores. A system
semaphore is initially clear when it is created. A RAM semaphore is clear if its
value is zero. Programs that use RAM semaphores should assign the initial value
of zero.

This example uses the DosSemRequest function to create a RAM semaphore. It
also shows how to set and clear the semaphore.

ULONG hsem = 0;
DosSemRequest(&hsem,

SEM_INDEFINITE_WAIT);

DosSemClear(&hsem) ;

/* address of handle */
/* waits indefinitely */

/* clears semaphore */

See Also DosCreateSem, DosExitList, DosMuxSemWait, DosOpenSem, DosSemClear,
DosSemSet, DosSemSetWait, DosSemWait

Corrections DosSemRequest is used not only to set a semaphore once it becomes clear, but
also to obtain exclusive ownership of a system semaphore created with the
CSEMYRIV ATE flag.

• DosSetFilelnfo Change
USHORT DosSetFilelnfo (hf, uslnfoLevel, plnfoBuf, cblnfoBuf)
HFILE hf; I. handle of file about which data sought .1
USHORTuslnfoLevel; I. level of file data required .1
PBYTE plnfoBuf; I. pointer to file-data buffer .1
USHORT cblnfoBuf; I. length of file-data buffer .1

The DosSetFilelnfo functiori sets information about a specific file. The file infor
mation consists of the date and time the file was created, the date and time it
was last accessed, the date and time it was last written to, the size of the file,
and its attributes. It can also be used to set extended attributes for a file.

The DosSetFilelnfo function is a family API function.

138 DosSetFilelnfo

Parameters

Return Value

Comments

hf Identifies the file about which information is to be set. This handle must
have been created by using the DosOpen function.

usInfoLevel Specifies the level of file information. This may be one of the fol
lowing values:

Value Meaning

Level-! information request. This uses a
FILESTATUS structure. Any date and time fields
in this structure that the file system does not sup
port should be set to zero.

Level-2 information request. This uses an EAOP
structure, which contains the file's extended
attribute information.

pInfoBuf Points to the structure that contains the file information. This struc
ture will be FILESTATUS or EAOP, depending on the uslnjoLevel parameter.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbF He;
ULONG cbFileAlloc;
USHORT attrFHe;

} FILESTATUS;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbInfoBuf Specifies the length (in bytes) of the buffer that contains the file
information.

The return vallie is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLBUFFEILOVERFLOW
ERROIUJIRECT-ACCESSJiANDLE
ERROILE~ISTJNCONSISTENT
ERRORJNVALID~~NAME
ERRORJNVALIDJiANDLE
ERRORJNVALID-LEVEL

DosSetFilelnfo works only for files opened in a mode that allows write access.

Prior to the function being called, the fpFEAlist field in the EAOP structure
should be initialized so that it points to the FEALIST structure that contains the
relevant FEA structure. The cbList field in the FEALIST structure is valid, giv
ing the size of the FEA structure.

A zero value in both the date and time components of a field causes that field to
be unchanged. For example, if both the fdateLastWrite and ftimeLastWrite

DosSetPathlnfo 139

fields are zero in the FILESTATUS structure, both attributes of the file remain
unchanged. If either of these fields are nonzero, both attributes of the file are set
to the new values. If extended attributes are modified, the file's last modification
date and time are changed.

See Also DosBumeset, DosClose, DosNewSize, DosOpen, DosSetFileMode,
DosQFilelnfo

Changes The constant FILEJNFO~ has been added.

• DosSetMaxFH Change
USHORT DosSetMaxFH(usHandles)
USHORT usHandleSi /. number of file handles ./

Parameters

Return Value

Comments

The DosSetMaxFH function sets the maximum number of available file handles
for the current process and any of its child processes. The number of available
handles limits the numb~r of files that can be opened at the same time.

usHandles Specifies the maximum number of file handles provided to the call
ing process. The maximum value for this parameter is 32,767; the minimum is
20. This number must not be smaller than the current number of file handles
allocated.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJ> ARAMETER
ERROlLNOT~NOUGILMEMORY

This function preserves all currently open file handles.

There are three handles in use when a process is started-for standard input,
standard output, and standard error. The number of available handles set by the
DosSetMaxFH function includes these handles. The DosOpenQueue, KbdOpen
and MouOpen functions also use these handles.

See Also DosDupHandle, DosOpen, DosOpenQueue, KbdOpen, MouOpen

Changes The maximum number of handles has been increased from 255 to 32,767.

• DosSetPathlnfo New
USHORT DosSetPathlnfo(pszPathName. uslnfoLevel. plnfoBuf. cblnfoBuf. fsOptions. ulReserved)
psz pszPathNamei /. pOinter to path ./
USHORT usln fo Level; /. level of Information ./
PBYTE plnfoBuf; /. pointer to buffer for Information ./
USHORT cblnfoBuf; /. length of information buffer ./
USHORT fsOptions; /. options ./
ULONG ulReserved; /. must be zero ./

The DosSetPathlnfo function sets information for a specified file or directory.

The DosSetPathInfo function is a family API function.

140 DosSetPathlnfo

Parameters

Return Value

Comments

pszPathName Points to the null-terminated string that specifies the path of
the file or directory. The string must be a valid MSOSI2 path.

usInfoLevel Specifies the level of information to set. This parameter can be
one of the following values:

Value Meaning

Use a FILESTATUS structure.

FIL_QUERYEASIZE Use an EAOP structure to set extended attributes.

pInfoBuf Points to the buffer where path information is stored. The buffer
contains a FILESTATUS structure for FIL_STANDARD information or an
EAOP structure for FIL_QUERYEASIZE information.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbF ile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbInfoBuf Specifies the length (in bytes) of the buffer pointed to by the
plnfoBuf parameter.

fsOptions Specifies one or more options. For MS OS/2, version 1.2,
DSPL WRTTHRU is the only available option. The DSPL WRTTHRU option
means all data, including extended attributes, must be written to the disk before
the function returns.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ3UFFER_OVERFLOW
ERROR_EA-LISTJNCONSISTENT
ERROR_FILENAME_EXCED_RANGE
ERRORJNVALID_EA_NAME
ERRORJNV ALID_LEVEL
ERRORJ> ATILNOT _FOUND

If the DosSetPathlnfo, function is used to set extended-attribute information, the
fpFEAList field of the EAOP structure should point to the FEALIST structure
that contains the extended attributes. The fpGEAList field of the EAOP struc
ture will be ignored.

See Also

• DosSetPrty

DosSetPrty 141

DosSetPathlnfo fails if another process has the same file or directory.

A zero value in both the date and time fields of an attribute cause those attri
butes to remain unchanged. For example, if both the fdateLastWrite and
ftimeLastWrite fields of the FILESTATUS structure are zero, both attributes are
unchanged. If either field is nonzero, both fields are set to the new values. If
extended attributes are modified, the file's last modification date and time will be
changed.

DosQPathlnfo, DosSetFileInfo

Change
USHORT DosSetPrty((Scope, (PrtyC/ass, sChange, id)
USHORT (Scope; /. scope of change ./

USHORT (PrtyC/ass; /. priority class to set ./

SHORT sChange; /. change in priority level ./
USHORT id; /. process or thread identifier ./

Parameters

The DosSetPrty function sets the scheduling priority of the specified process or
thread by changing the priority class and/or the priority level.

Within each class, a thread's priority level may vary-either through system
action or through the DosSetPrty function. The system changes a thread's prior
ity level based on that thread's actions and the overall system activity.

[Scope Specifies the scope of the request. This parameter can be one of the
following values:

Value

PRTYS_PROCESS

PRTYS_PROCESSTREE

PRTYS_ THREAD

Meaning

Priority for the process and all its threads.

Priority for the process and all its child
processes.

Priority for one thread in the current process.

[prtyClass Specifies the priority class of a process or thread. This parameter
can be one of the following values:

Value

PR TYC_IDLETIME

PRTYC_NOCHANGE

PRTYC_REGULAR

PRTYC_FOREGROUND

Meaning

Idle time.

No change; leave as is.

Regular.

Foreground server.

PR TYC_ TIMECRITICAL Time-critical.

sChange Specifies the relative change in the current priority level of the pro
cess or thread. This parameter can be any value from - 31 through +31, or the
constants PRTYD~INIMUM or PRTYD~AXIMUM, which specify the
minimum and maximum change allowed.

id Specifies the process or thread identifier, depending on the value of the
JScope parameter. If the value is a process identifier, it must be for the calling
process or a child of the calling process. A value of zero can be used to specify
the current thread or process.

142 DosSetPrty

Return Value

Comments

See Also

Changes

• DosSetVec

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the follo~ing:

ERRORJNV ALIDJ>CLASS
ERRORJNVALIDJ>DELTA
ERRORJNV ALIDJ>ROCID
ERRORJNV ALID_SCOPE
ERRORJNVALID_THREADID
ERROR-NOT-DESCENDANT

The PRTYCYOREGROUND priority is higher than PRTYC-REGULAR, but
lower than PRTYC_TIMECRITICAL. PRTYCYOREGROUND is a static
priority that is not changed by the system. This allows a thread or process in a
background screen group to service requests of a foreground process in a timely
manner. Because the priority level is static, this priority should be used only
when absolutely necessary. Indiscriminate use degrades system performance.

DosEnterCritSee, DosGetInfoSeg, DosGetPrty

A new value, PRTYCYOREGROUND, can be specified for jPrtyClass.

Correction
USHORT DosSetVec(usVecNum. pfnFunction. ppfnPrev)
USHORT uSVecNum; f. type of exception .f
PFN pfnFunction; f. pointer to function .f
PPFN ppfnPrev: f. pointer to variable for previous function's address .f

Parameters

The DosSetVee function installs or removes an exception handler for a specified
exception. An exception is a program error, such as division by zero, that causes
the system to pass control to the exception handler. The exception handler is an
assembly-language routine that corrects errors or cleans up programs before ter
minating. The system calls the exception handler whenever the specified excep
tion occurs. If a process does not install its own exception handler, the default
exception handler terminates the process when an exception occurs.

The DosSetVee function is a family API function.

usVecNum Specifies the number of the exception vector. This parameter can
be one of the following values:

Value

VECTOR_DIVIDE_BY-ZERO

VECTOR~XTENSION_ERROR

VECTOR_INV ALIDOPCODE

VECTOR_NO_EXTENSION

VECTOR_OUTOFBOUNDS

VECTOR_OVERFLOW

Meaning

Division by zero

Processor extension error

Invalid operation code (opcode)

Processor extension not available

Out of bounds

Overflow

pfnFunction Points to the address of the exception handler that receives con
trol when the specified exception occurs. If this parameter is zero, the DosSet
Vee function removes the current exception handler. For a full description, see
the following "Comments" section.

Return Value

Comments

Restrictions

DosShutdown 143

ppfnPrev Points to the variable that receives the address of the previous
exception handler. The new exception handler can use this address to chain
exception handling through all previous handlers or to restore the previous
exception handler.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDYUNCTION

When the system calls the exception handler, it enables interrupts and pushes
the machine status word and far return address on the stack. If the exception
handler returns, it must use the iret (return-from-interrupt) instruction.

If the DosSetVec function is used to install an exception handler for the vector
VECTOILEXTENSION~RROR, the function sets the machine status word to
indicate that no 80287 processor is available. The emulation bit is set and the
monitor-processor bit is cleared. (This is done without regard for the true state
of the hardware.) If the DosSetVec function is used to remove the exception
handler for VECTOILEXTENSION~RROR, the function sets the machine
status word to reflect the true state of the hardware.

If the routine being registered is in a segment that has the iopl instruction indi
cated, the exception when it occurs, causes a general protection fault and the
process is terminated.

In real mode, the following restriction applies to the DosSetVec function:

• Because the 8086 and 8088 microprocessors do not raise this exception,
usVecNum cannot be VECTOILEXTENSION~RROR.

See Also DosDevConfig, DosError

Corrections The exception handler must not be in an IOPL segment or the exception will
cause a general protection fault.

• DosShutdown New
USHORT DosShutdown (uIReserved)

- ULONG ulReserved; /. must be zero ./

Parameters

Return Value

Comments

The DosShutdown function flushes all system buffers and closes down the file
system. After calling DosShutdown, no process can access the file system until
the computer is rebooted.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJ> ARAMETER

The DosShutdown function may take as much as several minutes to return,
depending on the amount of data being written to the disk.

Because it is not possible to swap memory to the disk once the DosShutdown
function has been called, some functions may-fail due to a lack of memory in

144 DosShutdown

low memory situations. All memory that the calling process may need should be
allocated before calling DosShutdown; this includes implicit memory allocation
that may be done by system functions for the calling process.

• DosStartSession Correction
USHORT DosStartSession(pstdata, pidSession, ppid)
PSTARTDATA pstdata; I. pointer to structure with session data .1
PUSHORT pidSession; I. pointer to variable for session Identifier .1
PUSHORT ppid; I. pointer to variable for process Identifier .1

Parameters

Return Value

Comments

The DosStartSession function starts a session (screen group) and specifies which
program to start in that session. This function creates an independent session or
a child session, depending on the value of the Related field in the STARTDATA
structure.

pstdata Points to the STARTDATA structure that contains data describing the
session to start. The STARTDATA structure has the following form:

typedef struct _STARTDATA {
USHORT Length;
USHORT Related;
USHORT FgBg;
USHORT TraceOpt;
PSZ PgmTitle;
PSZ PgmName;
PBYTE Pgmlnputs;
PBYTE TermQ;
PBYTE Environment;
USHORT InheritOpt;
USHORT SessionType;
PSZ IconFile;
ULONG PgmHandle;
USHORT PgmControl;
USHORT InitXPos;
USHORT InitYPos;
USHORT InitXSize;
USHORT InitYSize;

} STARTDATA;

pidSession Points to the variable that receives the identifier of the child ses
sion.

ppid Points to the variable that receives the process identifier of the child
process.

The return value is zero if the function is successful. Otherwise, it is an error
vruue. .

The MS OS/2 session manager writes a data element into the specified queue
when the child session created by the DosStartSession function terminates. A
parent session can be notified when a child session has terminated by using the
DosReadQueue function. When the child session terminates, the request value
returned by DosReadQueue is zero, and the data-element format consists of two
unsigned values: the session identifier and the result code.

Only the process that calls the DosStartSession function should call the Dos
ReadQueue function. Only this process can address the notification data ele
ment. After reading and processing the data element, the cruling process must
use the DosFreeSeg function to free the segment that contains the data element.

See Also

Corrections

• DosSubAlioc

DosSubAlioc 145

A child session is created when the Related field of the STARTDATA structure
is set to TRUE.

The process identifier of the child process cannot be used with MS OS/2 func
tions, such as DosSetPrty, that require a parent process/child process relation
ship.

An independent session is created when the Related field of the STARTDATA
structure is set to FALSE. An independent session is not under the control of
the starting session. The DosStartSession function does not copy session and
process identifiers for an independent session to the pidSession and ppid parame
ters.

New sessions can be started in the foreground only when the caller's session (or
one of the caller's descendant sessions) is currently executing in the foreground.
The new session appears in the shell switch list.

DosCreateQueue, DosExecPgm, DosFreeSeg, DosReadQueue, DosSelect
Session, DosSetPrty, DosSetSession, DosStopSession

The comments incorrectly stated that an independent session was created when
the Related field of the STARTDATA structure is set to TRUE. The Related
field must be set to FALSE to create an independent session.

Correction
USHORT DosSubAlloc(se/, pus Offset, cbB/ock)
SEL se/; I. segment selector .1
PUSHORT pus Offset; I. pointer to variable for offset .1
USHORT cbB/ock; I. requested size of memory block .1

Parameters

Return Value

Comments

The DosSubAlloc function allocates memory in a segment that was allocated
previously by using the DosAIlocSeg or DosAllocShrSeg function and that was
initialized by using the DosSubSet function.

The DosSubAlloc function is a family API function.

sel Specifies the selector of the data segment in which the memory should be
allocated.

pusO!fset
cbBlock

Points to the variable that receives the offset to the allocated block.

Specifies the size (in bytes) of the requested memory block.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-DOSSUBJ3ADSIZE
ERROR-DOSSUB_NOMEM

The cbBlock parameter must not be greater than the maximum size of the seg
ment minus 8 bytes. Since all memory blocks are aligned on byte boundaries, the
cbBlock parameter does not need to be a multiple of 16; however, it will be
rounded to a multiple of 4.

DosSubAlloc can be issued from ring 2 or ring 3; the suballocation segment can
be either a ring-2 or a ring-3 segment.

146 DosSubAlloc

See Also

Corrections

• DosSubFree

DosAllocSeg, DosAllocShrSeg, DosSubFree, DosSubSet

The cbBlock parameter is rounded to a multiple of 4 before being processed.

Correction
USHORT DosSubFree (sel, off Block, cbBlock)
SEL sel;
USHORT o ffBlock;
USHORT cbBlock;

Parameters

Return Value

I. segment selector

I. block offset
I. number of bytes in block to free .1

The DosSubFree function frees memory that was allocated previously by using
the DosSubAlloc function.

The DosSubFree function is a family API function.

sel Specifies the selector of the data segment from which the memory should
be freed.

off Block Specifies the offset of the memory block to be freed. This offset
must have been created previously by using the DosSubAlIoc function.

cbBlock Specifies the size (in bytes) of the block to free. This parameter
should by a multiple of 4. If it is not, it will be rounded prior to being used by
this function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ)OSSUBJ3ADSIZE
ERRORJ)OSSUB_OVERLAP

Comments DosSubFree can be issued from ring 2 or ring 3; and the suballocation segment
can be either a ring-2 or a ring-3 segment.

See Also DosAllocSeg, DosSubAlloc, DosSubSet

Corrections The cbBlock parameter is rounded to a multiple of 4 before being processed.

• DosWaitNmPipe Correction
USHORT DosWaitNmPipe(pszName, ulTimeOut)
psz pszName; I. painter to pipe name .1
ULONG ulTimeOut; I. time-out value .1

Parameters

The DosWaitNmPipe function waits for a named pipe to become available.

pszName Points to the pipe name. The name is in the form \pipe\name for a
local pipe and \ \server\pipe\name for a remote pipe.

ul Time Out Specifies the amount of time (in milliseconds) MS OS/2 should
wait for the pipe to become available. A value of NP JNDEFINITE_ WAIT
causes an infinite wait. A value of NP-DEFAULT_WAIT causes the system to
wait for the default time specified by the call to the DosMakeNmPipe function
call that created this named pipe.

Return Value

Comments

See Also

Corrections

• DosWrite

DosWrite 147

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-.BAD_PIPE
ERRORJNTERRUPT
ERROR_SEM_TIMEOUT

The DosWaitNmPipe function should be used only when the DosOpenfunction
returns the ERROR_PIPE_BUSY error value.

If more than one process has requested a named pipe that has become available,
MS OS/2 gives the pipe to the process that has been waiting the longest.

DosOpen

A value of NP _INDEFINITE_WAIT for the ulTimeOut parameter specifies an
infinite wait; a value of NP_DEFAULT_WAIT for ulTimeOut uses the default
time-out specified in the DosMakeNmPipe function .

Correction
USHORT DosWrite (hf. pvBuf. cbBuf. pcbBytesWritten)
HFILE hfj 1* file handle *1
PVOID pvBufj 1* pointer to buffer *1
USHORT cbBufj 1* number of bytes to write *1
PUSHORT pcbBytesWrittenj 1* pointer to variable receiving byte count *1

Parameters

Return Value

Comments

The Dos Write function writes data from a buffer to a file, then copies the
number of bytes written to a variable.

The DosWrite function is.a family API function.

hf Identifies the file that receives the data. This handle must h·ave been created
by using the DosOpen function.

pvBuf Points to the buffer that contains the data to write.

cbBuf Specifies the number of bytes to write.

pcbBytesWritten Points to the variable receiving the number of bytes written.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS~ENIED
ERROR-.BROKEN_PIPE
ERRO~INVALIDJlANDLE
ERRO~OCL VIOLATION
ERRO~NOT~OS~ISK
ERROR-WRITEYAULT

The Dos Write function begins to write at the current file-pointer position. The
file-pointer position can be changed by using the DosChgFilePtr function.

If the specified file has been opened using the write-through flag, the DosWrite
function writes data to the disk before returning. Otherwise, the system collects
the data in an internal file buffer and writes the data to the disk only when the
buffer is full.

148 DosWrite

Example

The DosWrite function may write fewer bytes to the file than the number
specified in the cbBuj parameter if there is not enough space on the disk for all
of the requested bytes. The cbBuf parameter can be zero without causing an
error-that is, writing no bytes is acceptable.

The efficiency with which DosWrite writes to a disk is improved when cbBuf is
set to a multiple of the disk's bytes-per-sector size. When cbBuf is set this way,
DosWrite writes directly to the disk, without first copying the data to an internal
file buffer. (DosQFSInfo retrieves the bytes-per-sector value for a disk.)

DosWrite can be used to write bytes or messages to a pipe. Each write to a mes
sage pipe writes a message whose size is the length of the write; DosWrite
automatically encodes message lengths in the pipe, so applications need not
encode this information in the buffer being written.

Writes in blocking mode always write all requested bytes before returning. In
nonblocking mode, writes return either with all bytes written or none written;
the latter will occur in cases where DosWrite would have to block in order to
complete the request-for example, if there is no room in the pipe buffer or if
the buffer is currently being written to by another client).

An attempt to write to a pipe whose other end has been closed will return the
error ERROILBROKENYIPE.

This example creates the file abc and calls the DosWrite function to write the
contents of the abBuf buffer to the file:

BYTE abBuf [512] ;
HFILE hf;
USHORT usAction, cbBytesWritten, usError;
usError = DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,

FILE_CREATE,
OPEN_ACCESS_WRITEONLY OPEN_SHARE_DENYWRITE, OL);

if (lusError) {
DosWrite(hf,

abBuf,
sizeof(abBuf),
&cbBytesWritten);

1* file handle *1
It buffer address *1
1* buffer size *1
1* address of bytes written *1

See Also DosChgFiIePtr, DosOpen, DosQFSInfo, DosRead, DosWriteAsync

Corrections DosWrite can be used to write bytes or messages to a pipe. Relevant informa
tion about writing to a named pipe has been added.

• DosWriteAsync Correction
USHORT DosWriteAsync (hf, hsemRam, pusErrCode, pvBuf, cbBuf, pcb Bytes Written)
HFILE hf; 1* file handle *1
PULONG hsemRam; 1* pointer to RAM semaphore *1
PUSHORT pusErrCode; 1* pointer'to variable for error value *1
PVOID pvBuf; 1* pointer to buffer containing data to write *1
USHORT cbBuf; 1* number of bytes in buffer *1
PUSHORT pcbBytesWritten; 1* painter to variable for bytes written .1

The DosWriteAsync function writes one or more bytes of data to a specified file.
The function writes the data asynchronously-that is, the function returns
immediately, but continues to copy data to the specified file while the process
continues with other tasks. '

Parameters

Return Value

Comments

DosWriteAsync 149

hf Identifies the file that receives the data. This handle must have been created
previously by using the DosOpen function.

hsemRam Points to the RAM semaphore that indicates when the function has
finished reading the data.

pusErrCode Points to the variable that receives an error value.

pvBuf Points to the buffer that contains the data to write.

cbBuf Specifies the number of bytes to write.

pcb Bytes Written Points to the variable receiving the number of bytes written.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR.ACCESS_DENIED
ERROlCBROKENYIPE
ERRORJNVALIDJIANDLE
ERRO~OCIC VIOLATION
ERRO~NO_PROC_SLOTS
ERRO~NOT-DOS-DISK
ERROR_WRITEYAULT

The DosWriteAsync function starts writing at the current file-pointer position.
The file-pointer position can be changed by using the DosChgFilePtr function.

If the specified file has been opened using the write-through flag, the Dos
WriteAsync function writes data to an internal file buffer and to the disk before
returning. If the write-through flag has not been set, the system collects the data
in an internal file buffer and writes the data to the disk only when the buffer is
full.

The DosWriteAsync function may write fewer bytes to the file than the number
specified in the cbBuj parameter if there is not enough space on the disk for all
the requested bytes. The cbBuj parameter can be zero without causing an
error-that is, writing no bytes is acceptable.

When the DosWriteAsync function has written the data, it clears the RAM
semaphore pointed to by the hsemRam parameter. If the process uses the sema
phore to determine when data is available, it must use the DosSelJlSet function
to set the semaphore before calling DosWriteAsync.

The efficiency with which the DosWriteAsync function writes to a disk is
improved when the cbBuj parameter is set to a multiple of the disk's bytes-per
sector size. When cbBuj is set this way, the function writes directly to. the disk,
without first copying the data to an internal file buffer. (The DosQFSlnfo func
tion retrieves the byters-per-sector value for a disk.)

DosWriteAsync can be used to write bytes or messages to a pipe. Each write to
a message pipe writes a message whose size is the length of the write; DosWri
teAsync automatically encodes message lengths in the pipe, so applications need
not encode this information in the buffer being written.

In blocking mode, write operations always write all requested bytes before
returning. In nonblocking mode, write operations return either with all bytes
written or none written; the latter occurs in cases where DosWriteAsync has to
block in order to complete the request (for example, if there is no room in the
pipe buffer or if the buffer is currently being written to by another process).

When the function tries to write to a pipe whose other end has been closed, it
returns the error ERRO~BROKEN_PIPE.

150 DosWriteAsync

Example This example creates the file abc.ext, sets a RAM semaphore, and calls the
DosWriteAsync function to write the contents of the buffer abBuf to a file.
When any additional processing is finished, the example calls the DosSemWait
function to wait until DosWriteAsync has finished writing to the file.

ULONG hsemWrite = 0;
BYTE abBuf[1024];
HFILE hf;
USHORT usAction, cbBytesWritten;
USHORT usWriteAsyncError;
DosOpen("abc.ext", &hf, &usAction, OL, FILE_NORMAL,

FILE_CREATE,
OPEN_ACCESS_WRITEONLY OPEN_SHARE_DENYWRITE, OL);

DosSemSet(&hsemWrite) ;
DosWriteAsync(hf,

&hsemWrite,
&usWriteAsyncError,
abBuf,
sizeof (abBuf) ,
&cbBytesWritten) ;

I' sets semaphore
I' file handle

'I
'I

semaphore address 'I
return-code address 'I I'

I'
I'
I'
I'

buffer address 'I
buffer size 'I
address of bytes written 'I

. I' Other processing would go here. 'I

DosSemWait(&hsemWrite, -lL);
if (usWriteAsyncError) {

I' waits for DosWriteAsync 'I

. I' Error processing would go here. '/

See Also DosChgFilePtr, DosOpen, DosQFSlnfo, DosReadAsync, DosSemSet,
DosSemWait, DosWrite

Corrections Information about using DosWriteAsync with named pipes has been added.

• DosWriteQueue Correction
USHORT DosWriteQueue (hqueue, usRequest, cbBuf, pbBuf, usPriority)
HQUEUE hqueue; /* target-queue handle */

USHORT usRequest; /* request/identification data */

USHORT cbBuf; /* number of bytes to write */

PBYTE pbBuf; /* pointer to buffer with element to write */

UCHAR usPriority; /* priority of element to write */

Parameters

The DosWriteQueue function writes an element to the specified queue. The
position of the element in the queue is determined by the value specified in the
fQueueOrder parameter of the DosCreateQueue function when the queue was
created; if this parameter was set to Ox0002 (priority queue), the usPriority
parameter of the Dos WriteQueue function can be used to set the priority of the
element. After the element is written, the process that 'owns the queue can read
the element by using the DosPeekQueue or DosReadQueue function.

hqueue Identifies the queue to be written to. This handle must have been
created or opened by using the DosCreateQueue or DosOpenQueue function.

usRequest Specifies a program-supplied event code. MS OS/2 does not use
this field; it is reserved for the program's use. The queue owner can retrieve this
value by using the DosPeekQueue or DosReadQueue function.

cbBuf Specifies the number of bytes to be copied from the buffer pointed to
by the pbBuf parameter.

Return Value

Comments

Example

See Also

Corrections

DosWriteQueue 151

pbBuj Points to the buffer that contains the element to be written to the
queue.

usPriority Specifies the element priority. This parameter can be any value
from 0 through 15; 15 is the highest priority.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILQUE_INV ALID_HANDLE
ERROILQUE_NO~EMORY

The DosWriteQueue function returns an error value if the queue has been
closed by the process that owns it.

If the queue owner uses a RAM semaphore to notify it when elements are added
to the queue, the semaphore must be shared. If the notifying semaphore is a sys
tem semaphore, the writing process must have opened the semaphore by using
the DosOpenSem function.

This example opens a queue called \queues\queuename. In order to write to the
queue, the process allocates shared memory, gives the memory to the queue
owner, copies data to the shared memory, and calls Dos WriteQueue. The pro
cess then frees the shared memory. The queue owner must also free the shared
memory before it becomes available to the system again. For more information,
see DosReadQueue.

PID pidOwner;
SEL sel, selRecipient;

DosOpenQueue(&pidOwner, &hqueue,
"\\queues\\queuename") ;

DosAllocSeg(512, &sel, SEG_GIVEABLE);
DosGiveSeg(sel, pidOwner, &selRecipient);

It opens queue tl
It allocates shared memory tl
It gives it to queue owner tl

It Copy the data to the shared memory segment. tl
DosWriteQueue(hqueue,

0,
11,

MAKEP(selRecipient, a),
0) ;

DosE'reeSeg(sel) ;

It queue handle
It request data
It length of data
It data buffer
It element priority
It frees shared memory

tl
tl
tl
tl
tl

segment tl

DosCreateQueue, DosOpenQueue, DosOpenSem, DosPeekQueue, DosRead
Queue

The example worked only for interthread communication. It has been replaced
with an example that works for interprocess communication.

The description of the cbBuj parameter incorrectly stated that this parameter
contained the number of bytes to be written to the buffer. It now correctly states
that this is the number of bytes to be written from the buffer.

152 EM_QUERYREADONLY

• EM_QUERYREADONLY New

Parameters

Return Value

See Also

EM_QUERYREADONLY
mpl = OL; . I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends the E~QUERYREADONLY message to retrieve the
read-only state of an entry field.

This message does not use any parameters.

The return value is TRUE if the read-only state is set; otherwise it is FALSE.

E~SETREADONLY

• EM_SETINSERTMODE New

Parameters

Return Value

Comments

See Also

EM_SETINSERTMODE
mpl = MPFROMSHORT(flnsertMode);
mp2 = OL;

I' insert-mode flag 'I
It not used, must be zero 'I

An application sends the E~SETINSERTMODE message to set or clear the
system insert-mode state.

flnsertMode Low word of mpl. Specifies whether to set or clear the.insert
mode. If this parameter is TRUE, insert mode is turned on; if it is FALSE,
insert mode is turned off.

The return value is TRUE if the previous insert mode was on or FALSE if the
previous insert mode was off.

This message changes the SV JNSER TMODE system constant to reflect the
current insert-mode state. It also sends an ENJNSERTMODETOGGLE
notification message.

ENJNSERTMODETOGGLE

• EM_SETREADONL Y New

Parameters

Return Value

Comments

See Also

EM_SETREADONLY
mpl = MPFROMSHORT(fReadOnly);
mp2 = OL;

It read-only state tl
I' not used, must be zero 'I

An application sends the EM_SETREADONL Y message to set the read-only
state of an entry field.

fReadOnly Low word of mpl. Specifies whether to set or remove the read
only state of the entry field. A value of TRUE sets the state.

The return value is TRUE if the read-only state is set; otherwise, it is FALSE.

When the read-only state of an entry field is set, the user cannot change the text
within the entry field.

EM_QUERYREADONLY

EN_INSERTMODETOGGLE 153

• EM_SETTEXTLIMIT Change

Parameters

Return Value

Comments

See Also

Changes

Parameters

Return Value

See Also

EM_SETTEXTLIMIT
mpl = MPFROMSHORT((SHORT) cchMax);
mp2 = OL;

1* max. number of bytes *1
1* not used, must be zero *1

An application sends an E~SETTEXTLIMIT message to set the maximum
number of bytes an entry-field control can contain.

cchMax Low word of mpl. Specifies the maximum number of bytes an entry
field can hold.

The return value is TRUE if the operation is successful or FALSE if there is not
enough memory to hold the requested number of characters.

Sending an E~SETTEXTLIMIT message causes memory to be allocated from
the control heap for the specified maximum number of bytes. Failure to allocate
sufficient memory results in a WM_CONTROL message, with the
EN~EMERROR notification code being sent to the owner window.

W~CONTROL

All references to characters have been replaced by bytes to accommodate sys
tems in which a character may be composed of more than one byte.

New
'WM_CONTROL

1* control-window ID *1 id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = EN_CHANGE;
hwndEdit = HWNDFROMMP(mp2); It window handle of entry field *1

The EN_CHANGE notification message is sent when the text in an entry field
changes.

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to EN_CHANGE.

hwndEdit Low and high word of mp2. Identifies the entry-field window.

An application should return zero if it processes this message.

~CONTROL

• EN~NSERTMODETOGGLE New
WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = EN_INSERTMODETOGGLE
hwndEdit = HWNDFROMMP(mp2);

It control-window ID *1
It window handle of entry field *1

The EN_INSERTMODETOGGLE notification message is sent when the insert
mode of an entry-field control is toggled.

154 EN_INSERTMODETOGGLE

Parameters id Low word of mpl. Identifies the control window.

usNotify Co de High word of mpl. Set to ENJNSERTMODETOGGLE.

hwndEdit Low and high word of mp2. Identifies the entry-field window.

Return Value An application should return zero if it processes this message.

See Also E~SETINSERTMODE, W~CONTROL

• EN_KILLFOCUS New

Parameters

See Also

WM_CONTROL
I' control-window ID 'I id = (USHORT) SHORTIFROMMP(mpl);

usNotifyCode = EN_KILLFOCUS;
hwndEdit = HWNDFROMMP(mp2); I' window handle of entry field 'I

The ENJ{ILLFOCUS notification message is sent when an entry-field control
loses the input focus.

id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to EN.J<ILLFOCUS.

hwndEdit Low and high word of mp2. Identifies the entry-field window.

EN_SETFOCUS, W~CONTROL

New
WM_CONTROL
id = (USHORT) SHORTIFROMMP(mpl);
usNotifyCode = EN_MEMERROR;
hwndEdit = HWNDFROMMP(mp2);

I' control-window ID 'I
I' window handle of entry field 'I

The EN-.MEMERROR notification message is sent when an entry-field control
cannot allocate the memory necessary to accommodate window text of the length
specified by the E~SETTEXTLIMIT message.

Parameters id Low word of mpl. Identifies the control window.

usNotify Co de High word of mpl. Set to EN-.MEMERROR.

hwndEdit Low and high word of mp2. Identifies the entry-field window.

See Also E~SETTEXTLIMIT, WM_CONTROL

• EN_OVERFLOW New

WM_CONTROL
I' control-window ID 'I id = (USHORT) SHORTIFROMMP(mpl);

usNotifyCode = EN_OVERFLOW
hwndEdit = HWNDFROMMP(mp2); I' window handle of entry field 'I

The EN_OVERFLOW notification message is sent when the text limit in an
entry field is exceeded.

Parameters

Return Value

See Also

EN_SETFOCUS 155

id Low word of mpl. Identifies the control window.

usNotify Co de High word of mpl. Set to EN_OVERFLOW.

hwndEdit Low and high word of mp2. Identifies the entry-field window.

An application should return TRUE to retry the operation.

W1LCONTROL

New
EN_SCROLL

IA control-window ID AI id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = EN_SCROLL;
hwndEdit = HWNDFROMMP(mp2); IA window handle of entry field AI

The EN_SCROLL notification message is sent to the owner of the entry-field
window when a scroll-bar event occurs.

Parameters id Low word of mpl. Identifies the control window.

usNotifyCode High word of mpl. Set to EN_SCROLL.

hwndEdit Low and high word of mp2. Identifies the entry-field window.

Return Value An application should return zero if it processes this message.

See Also W1LCONTROL

• EN_SETFOCUS New

Parameters

See Also

WM_CONTROL
IA control-window ID AI id = (USHORT) SHORT1FROMMP(mpl);

usNotifyCode = EN_SETFOCUS;
hwndEdit = HWNDFROMMP(mp2); IA window handle of entry field AI

The EN_SETFOCUS notification message notifies an application when an entry
field receives the input focus.

id Low word of mpl. Identifies the control window.

usNotify~ode High word of mpl. Set to EN_SETFOCUS.

hwndEdit Low and high word of .mp2. Identifies the entry-field window.

ENJ(ILLFOCUS, W1LCONTROL

156 GpiCaliSegmentMatrix

• GpiCaliSegmentMatrix Correction
LONG GpiCallSegmentMatrix(hps, idSegment, cElements, pmatlf, IType)
HPS hps; I. presentation-space handle .1
LONG idSegment; I. segment Identifier .1
LONG cElements; I. number of matrix elements to examine .1
PMATRIXLF pmatlf; I. address of structure for matrix a/

LONG IType; I. transformation modifier .1

Parameters

The GpiCallSegmentMatrix function draws the specified segment using an
instance transformation. The function combines the instance transformation
pointed to by pmallf with the current inodel transformation, then draws the seg
ment as if calling the GpiDrawSegment function. The combined transformation
applies only while the function draws the segment. GpiCallSegmentMatrix does
not modify the current model transformation.

hps Identifies the presentation space.

idSegment Specifies the segment to draw. This value must be greater than
zero.

cElements Specifies the number of matrix elements pointed to by pmallf. It
can be any value from 0 through 9.

pmatl! Points to a MATRIXLF structure that contains the matrix for the
instance transformation. Although a transformation requires nine matrix ele
ments, the function copies from the structure only the number of matrix ele
ments specified by cElements. If cElemenls is less than nine, the function sup
plies the remaining elements by substituting corresponding elements from the
identity matrix.

The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

1 Type Specifies how to combine the instance transformation with the model
transformation. It can be one of the following values:

Value

TRANSFOR1LADD

TRANSFORM_PREEMPT

TRANSFOR1LREPLACE

Meaning

Adds the model transformation to the
instance transformation (MODEL •
INSTANCE).

Adds the instance transformation to the
model transformation (INSTANCE •
MODEL).

Replaces the model transform with the
instance transformation.

Return Value

Errors

Example

See Also

Corrections

GpiCaliSegmentMatrix 157

The return value is GPI_OK or GPIJIITS if the function is successful (it is
GPIJIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_CALLED_SEGJS_CURRENT
PMERR-CALLED_SEG_NOTYOUND
PMERRJNV JIPS
PMERR-INV-LENGTELOR_COUNT
PMERRJNV _MATRDCELEMENT
PMERR-INV ~ICROPSYUNCTION
PMERR-INV _SEG_NAME
PMERR-INV _TRANSFOR~TYPE
PMERRJS_BUSY
PMERR-SEG_CALL~ECURSIVE
PMERR_SEG_NOTYOUND

This example calls the GpiCalISegmentMatrix function to draw a segment three
times. Each time the segment is drawn, the instance transformation doubles in
size. The result is three triangles with the last triangle twice the size of the
second, and the second twice the size of the first.

POINTL ptlStart = { O. 0 };
POINTL ptlTriangle[] = { 100. 100. 200. O. O. 0 };
MATRIXLF matlflnstance {MAKEFIXED(l. 0). MAKEFIXED(O, 0). O.

MAKEFIXED(O. 0). MAKEFIXED(l. 0). O.
O. O. 1 };

GpiOpenSegment(hps. 1L);
GpiMove(hps. &ptlStart);
GpiPolyLine(hps, 3L. ptlTriangle);
GpiCloseSegment(hps) ;

for (i = 0; i < 3; i++) {

/*

/* opens segment */
/* moves to start point (0. 0) */
/* draws triangle */
/* closes segment */

* Draw the segment after adding the matrix to the model
* transformation.

}

*/

GpiCallSegmentMatrix(hps. 1L. 9. &matlflnstance. TRANSFORM_ADD);
matlflnstance.fxM11 *= 2;
matlflnstance.fxM22 *= 2;

GpiDrawSegment

In the example, the MAKEFIXED macro is required to create FIXED values for
initializing the structure.

158 GpiCreateLogFont

• GpiCreateLogFont Correction
LONG GpiCreateLogFont(hps, pchName, /cid, pfat)
HPS hps; I. presentation-space handle .1
PSTR8 pchName; I. address of logical-font name .1
LONG /cid; I. local identifier .1
PFATTRS pfat; I. address of structure for font attributes .1

Parameters

Return Value

The GpiCreateLogFont function creates a logical font. A logical font is a list of
font attributes, such as face name, average width, and maximum height, that an
application uses to request a physical font. A physical font is the bitmap or vec
tor information the system uses to draw characters on a device. Applications
create logical fonts to specify the fonts they need, and the system maps the logi
cal fonts to matching physical fonts.

GpiCreateLogFont creates a logical font using the font attributes specified in the
structure pointed to by the pfat parameter. Each logical font has a local identifier
and logical font name, specified by the lcid and pchName parameters, to
uniquely identify it. The local identifier can then be used in subsequent graphics
functions to identify the font.

Since a physical font that exactly matches the logical font may not be available,
the system usually maps the logical font to the closest matching physical font. .
The system uses rules to map the font-for example, it chooses a font with a
greater height if a font of the exact height is not available. An application can
force the system to choose a particular font by setting the value of the IMatch
field in the FATIRS structure to be that returned for the desired font by the
GpiQueryFonts function. After GpiCreateLogFont chooses the physical font,
this choice does not change for a particular logical font.

hps Identifies the presentation space.

pchName Points to an 8-character logical-font name. It can be NULL, if no
logical font name is desired.

lcid Specifies the local identifier that the application uses to refer to this font.
It must be in the range 1 through 254. It is an error if this parameter is already
in use to refer to a font or bitmap.

plat Points to a FATTRS structure that will contain the attributes of the logical
font that is created. The FATTRS structure has the following form:

typedef struct _FATTRS {
USHORT usRecordLen~th;
USHORT fsSelection;
LONG lMatch;
CHAR szFaceName[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG lMaxBaselineExt;
LONG lAveCharWidth;
USHORT fsType;
SHORT sQuality;
USHORT fsFontUse;

} FATTRS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is FONT~ATCH if a matching font is found,
FONTJ)EFAULT if a matching font could not be found, or zero if an error
occurred.

Errors

Comments

Example

See Also

Corrections

GpiCreateLogFont 159

Use the WinGetLastError function to retrieve the error value, which may be one
of the following: ..

PMERR-FONT_NOT_LOADED
PMERRJNV YONT~ TIRS
PMERR-INV JIPS
PMERRJNV _SETID
PMERRJ{ERNING_NOT_SUPPOR TED
PMERR_PS_BUSY
PMERR-SETID_IN_USE

To choose the system default font, set the face name to NULL and all other
attributes in the FATTRS structure, except the code page, to zero.

To use 'a font, the application sets the font for the presentation space by specify
ing the local identifier for the corresponding logical font with the GpiSetCharSet
function. Once a font is set, the system uses the font for subsequent text output.

..

This example uses the GpiCreateLogFont function to create a logical font with
the local identifier 1. The logical font has the face name "Courier" and requested
width and height of 12 pels. Once the font is created, the example sets the font
using the local identifier and displays a string in the font at the point (100,100).

USHORT i;
POINTL ptl = { 100, 100 };
FATTRS fat;

sizeof(FATTRS); 1* sets size of structure *1 fat.usRecordLength =
fat.fsSelection = 0;
fat.1Match = OL;
fat.idRegistry = 0;
fat.usCodePage = 850;
fat.1MaxBaselineExt = 12L;
fat.1AveCharWidth = 12L;

1* uses default selection *1
1* does not force match *1
1* uses default registry *1
1* code-page 850 * I
1* requested font height is 12 pels *1
1* requested font width is 12 pels *1
1* uses default type *1 fat.fsType = 0;

fat.fsFontUse = FATTR_FONTUSE_NOMIX; 1* does not mix with graphics *1

1* Copy Courier to szFacename field. *1
for (i=O; fat.szFacename[i]

GpiCreateLogFont(hps,
NULL,
lL,
&fat) ;

"Courier"[i]; i++);

1* presentation space
1* does not use logical font name
1* local identifier
1* structure with font attributes

*1
*1
*1
*1

GpiSetCharSet(hps, lL); 1* sets font for presentation space *1
GpiCharStringAt(hps, &ptl, 5L, "Hello"); 1* displays a string *1

GpiCharStringAt, GpiCreateLogFont, GpiQueryFonts, GpiSetCharSet

In the example, the fat.fsType field should be set to 0 rather than to
FATIR_TYPEYIXED.

160 GplDestroyPS

• G piDestroyPS Correction
BOOl GpiDestroyPS (hps)
HPS hps; f. presentation-space handle .f

Parameters

Return Value

Errors

Example

See Also

Corrections

• GpiGetData

The GpiDestroyPS function destroys the presentation space and releases all
resources owned by the presentation space. This function should only be used to
destroy presentation spaces created by the GpiCreatePS function.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV JlPS
PMERRYSJ3USY
PMERRYSJS_ASSOCIATED

This example uses the GpiDestroyPS function to destroy the presentation space
associated with a memory device context:

HOC hdc;
HPS hps;
SIZEL page = { 0, 0 };

/* Create the memory device context and presentation space. */

hdc DevOpenDC(hab, OD_MEMORY, "*", OL, NULL, NULL);
hps GpiCreatePS(hab, hdc, &page, PU_PELS I GPIT_MICRO I GPIA_ASSOC);

GpiAssociate(hps, NULL);
GpiDestroyPS(hps); /* destroys presentation space */
DevCloseDC(hdc); /* closes device context */

GpiCreatePS

In the example, GpiAssociate must be called before DevCloseDC. This is true
whenever a device context is associated with a presentation space.

Correction
lONG GpiGetData (hps. idSegment. poff. cmdFormat. cb. pb)
HPS hps; f. presentation-space handle .f
lONG idSegment; f. segment identifier ./
PlONG poff; f. address of variable for segment offset .f
lONG cmdFormat; /. conversion type ./
lONG cb; f. length In bytes of the data buffer ./
PBYTE pb; f. address of buffer for data ./

The GpiGetData function copies graphics orders from the specified segment to
the specified buffer. The function continues to copy the graphics orders from the
segment to the buffer until all orders in the segment have been copied or the
number of bytes specified by the cb parameter have been copied. If the function

Parameters

Return Value

Errors

GpiGetData 161

fills the buffer, the last order in the buffer may not be complete since the func
tion does not stop on an order boundary when copying to the buffer. In any
case, the function returns the number of bytes copied to the buffer.

The function starts copying graphics-order data from the location specified by
the pDf! parameter. If this parameter is zero, the function copies from the begin
ning of the segment. After copying the data, the function replaces the value in
po!! with the offset to the next byte of data to copy from the segment (if any).
This value can be used to specify the next location to copy.

The GpiGetData function cannot be used to copy data from an open segment,
but it can be used to copy data while some other segment is open.

hps Identifies the presentation space.

idSegment Specifies the segment identifier.

pof! Points to the variable that contains the offset from the beginning of the
segment to the next byte of graphics order data to copy. If this parameter is
zero, the function copies from the beginning of the segment.

cmdFormat Specifies the coordinate conversion type. It can be one of the
following values:

Value

DFOR1LNOCONV

DFOR1LPCLONG

DFOR1LPCSHORT

DFOR1LS370SHORT

Meaning

Copies coordinates without converting. The coordi
nates are in the format used by the presentation
space.

Converts coordinates to PC-format long (4-byte)
integers.

Converts coordinates to PC-format short (2-byte)
integers.

Converts coordinates to S/370-format short (2-byte)
integers.

cb Specifies the length in bytes of the buffer to receive the graphics orders.

pb Points to the buffer that receives the graphics-order data.

The return value is the number of graphics-order bytes copied if the function is
successful or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR~AT~TOO--LONG
PMERR_INV _G ETDAT A_CONTROL
PMER~INV JIPS
PMERRJNV _LENGTH
PMERRJNV _LENGTH_OR_COUNT
PMERRJNV ~ICROPS_FUNCTION
PMER~INV _SEG_NAME
PMERRJNV _SEG_OFFSET
PMER~PS_BUSY
PMER~SEGJS_CURRENT
PMERR_SEG_NOTYOUND

162 GpiGetData

Example This example uses the GpiGetData function to copy data from one segment to
another:

LONG fFormat = DFORM_NOCONV;
LONG off Segment = OL;
LONG offNextElement = OL;
LONG cb = OL;
BYTE abBuffer[S12];

1* does not convert coordinates *1
1* offset in segment *1
1* offset in segment to next element *1
1* bytes retrieved *1

GpiOpenSegment(hps, 3L); 1* opens segment to receive data *1
do {

off Segment += cb;
offNextElement = off Segment;
cb = GpiGetDa~a(hps, 2L, &offNextElement, fFormat, S12L, abBuffer);

1* put data in other segment *1

if (cb > OL) GpiPutData(hps,
fFormat,
&cb,
abBuffer) ;

} while (cb > 0);
GpiCloseSegment(hps) ;

1* presentation-space handle *1
1* format of coordinates *1
1* number of bytes in buffer *1
1* buffer with grap~lcs-order data *1

1* closes segment that received data *1

See Also GpiPutData

Corrections The pof! parameter is a pointer to the variable that contains the offset; the
cmdFormat parameter is an integer that specifies the conversion format.

• GpiLoadFonts Correction
BOOl GpiloadFonts(hab.pszFileName)
HAB hab; /. anchor-block handle ./
PSZ pszFileName; /. pOinter to filename ./

Parameters

Return Value

Error

The GpiLoadFonts function loads fonts from the specified resource file. Once
loaded, the fonts are private fonts and can be used by any thread in the process.
Any other process can use the fonts but only if it also loads the font by using the
GpiLoadFonts. The function loads a copy of the fonts once only. Any subse
quent call to the function by another process for the same fonts simply incre
ments the use cOl,lnt for the resource and gives tJtat process access.

hab Identifies the anchor block.

pszFileName Points to a null-terminated string. This string must be a valid
MS OS/2 filename. If it does not specify a path and the filename extension, the
function appends the default extension (.dll) and searches for the font resource
file in the directories specified by the libpath command in the config.sys file.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNVYONTYILEJ)ATA

Example

GpiOutlinePath 163

This example uses the GpiLoadFonts function to load all fonts from the font
resource file helv.dll. The GpiQueryFonts function retrieves the number of fonts
loaded.

LONG cFonts = OL;

GpiLoadFonts(hab, "helv");
cfonts = GpiQueryfonts(hps, Qf_PRIVATE, NULL, &cfonts, OL, NULL);

See Also GpiCreateLogFont, GpiDeleteSetId, GpiQueryFonts, GpiUhloadForits

Corrections In the example, the function loads fonts from the helv.dll file, not the helv.Jon
file. If no path and filename .extension are given, the function by default searches
for a file that has the .dll extension. .

• GpiOutlinePath New
LONG GpiOutlinePath(hps. IPath. IOptions)
HPS hps; I. presentation-space handle .1
LONG IPath; I. Identifies path to be outlined .1
LONG IOptions; I. reserved, must be zero .1

Parameters

Return Value

Errors

Comments

See Also

The GpiOutIinePath function draws an outline of a path using the current line
attributes. This function draws the outline such that each line, curve, and other
item in the path appears to be drawn individually; it does not close the path.
GpiOutIinePath draws the path using the current cosmetic line width (see the
GpiSetLineWidth function); it does not fill the path. GpiOutIinePath deletes the
path after drawing the outline.

hps Identifies the presentation space.

IPath Identifies the path to be outlined. For MS OS/2, version 1.2, this
parameter must be set to 1.

IOptions Specifies outline options. For MS OS/2, version 1.2, this parameter
must be set to zero.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV JIPS
PMERILINV Y ATILID
PMERRJNV ~ESERVEDYIELD
PMERRYATH_UNKNOWN
PMERILPSJ3USY

If character strings are in the path, the function draws the outline of each char
acter but does not fill the interior of the character, giving the appearance of hol
low characters. For small characters, outlining in this way can give a visual
appearance similar to filled characters, but with improved performance.

GpiBeginPath, GpiEndPath, GpiSetLineWidth

164 GpiPlayMetaFile

• GpiPlayMetaFile Correction
LONG GpiPlayMetaFile (hps, hmf, cOptions, a/Options, pcSegments, cchDesc, pszDesc)
HPS hps; I. presentation-space handle .1
HMF hmf; I. metafile handle .1
LONG cOptions; I. number of elements in array .1
PLONG a/Options; I. address of array of load options .1
PLONG pCSegments; I. address of count of renumbered segments .1
LONG cchDesc; I. number of bytes in record .1
PSZ pszDesc;

Parameters

Return Value

Errors

I. address of buffer for descriptive record

The GpiPlayMetaFile function plays the metafile specified by the hmf parameter.
The function plays the metafile file by converting the graphics data in the file to
graphics operations for the given presentation space. The function uses the load
options specified by the alOptions parameter to determine how to prepare the
presentation space for playing the metafile. This may include resetting the
presentation space, replacing tagged bitmaps and logical fonts, and replacing the
logical color table.

Since the metafile may create segments, the application must close any open seg
ment before calling GpiPlayMetaFile. If the metafile creates segments, the func
tion retains the segments only if the current drawing mode is DMJETAIN or
DMJ)RA W AND RETAIN . If chained segments are retained, the function adds
them to the end of the existing segment chain.

The GpiPlayMetaFile function can playa metafile any number of times.

hps Identifies a presentation space.

hmJ Identifies the metafile to play. It must have been created or loaded previ
ously by using the DevOpenDC or GpiLoadMetaFile function.

cOptions Specifies the number of elements in the array pointed to by the
alOptions parameter.

alOptions Points to the array specifying the load options. For a full descrip
tion, see the following "Comments" section.

pcSegments Points to a variable for the count of renumbered segments. This
parameter is reserved and is set to zero.

cchDesc Specifies the number of bytes in the buffer pointed to by the pszDesc
parameter.

pszDesc Points to the buffer that receives the null-terminated string describing
the metafile. This descriptive record is the record set by the DevOpenDC func
tion for the metafile. If the buffer is smaller than the record, the function trun
cates the record.

The return value is GPI_OK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following values:

PMERRJNCOMP ATIBLE_METAFILE
PMERRJNV ~LEMENTYOINTER
PMERRJNV ~MF
PMERR_INV _HPS

Comments

PMERRJNV IN_CURRENTJ.DIT-MODE
PMERRJNV ~ENGTH
PMERRJNV~ENGTH-OR_COUNT
PMERRJNV -METAFILE
PMERRJNV -MICROPS_ORDER
PMERRJNV _OUTSIDE_DRA W_MODE
PMERRJNV YLAY-METAFILE_OPTION
PMERRYROLOGJ.RROR
PMERRYSJlUSY
PMER~STOP;,j)RA W _OCCURRED

GpiPlayMetaFile 165

The GpiPlayMetaFile function uses several options to control how a metafile is
played. The options are specified in an array passed to the function by using the
alOptions parameter. The array has at most ten elements, and there are eight
predefined array indexes that can be used to access these elements. The follow
ing list describes the purpose and possible values for each element:

PMF _SEGBASE Specifies a reserved element. It must be zero.

PMF ~OADTYPE Specifies the transformation to use when playing the
metafile. It can be one of the following values:

Value Meaning

LT_DEFAULT Default; same as LT_NOMODIFY.

LT_NOMODIFY Use the current viewing transformation as set by the
application by using the GplSctVlewlngTransCorm
Matrix function. This is the default action.

LT_ORIGINALVIEW Use the viewing transformations defined in the
metafile.

PMF~ESOLVE Specifies a reserved element. It must be RS;.,.l)EFAULT or
RS_NODISCARD.

PMF ~CIDS Specifies whether to use tagged bitmaps and logical fonts from
the metafile or from the application. It can be one of the following values:
metafile or from the application. It can be one of the following values:

Value

LC_DEFAULT

LC_NOLOAD

Meaning

Default; same as LC_NOLOAD.

Use the tagged bitmaps and logical fonts defined by
the application. The application must define the
appropriate objects and local identifiers before playing
the metafile. This is the default.

Use the tagged bitmaps and logical fonts defined in
the metafile. The function loads the object from the
metafile and assigns a local identifier. If the local
identifier is already defined by the application, the
function deletes the identifier before creating the new
object.

166 GpiPlayMetaFile

PMF ~ESET Specifies whether the presentation space should be reset before
playing the metafile, with the page units and size being set as defined in the
metafile. It can be one of the following values:

Value Meaning

Default; same as RES_NORESET.

Does not reset the presentation space.

Resets the presentation space. The function resets the
page units and page size to the values specified by the
metafile. It then sets up default transformations,
based on page units and size, as if the presentation
space had just been created with these values, and
modifies the device transformation (if necessary) to
ensure that the physical size of the metafile picture is
preserved. Finally, it resets the presentation space as
if calling the GplRcsctPS function with the
GRES_ALL option.

PMF _SUPPRESS Specifies whether to continue playing the metafile after reset
ting the presentation space. It can be one of the following values:

Value

SUP_DEFAULT

SUP _NOSUPPRESS

SUP_SUPPRESS

Meaning

Default; same as SUP _NOSUPPRESS.

Does not suppress the metafile.

Suppresses the metafile after the presentation space is
reset as specified by the PMF _RESET option. All
other options are ignored.

PMF _COLORTABLES Specifies whether to use logical color tables from the
metafile or from the application. It can be one of the following values:

Value

CTAB_DEFAULT

CTAB_NOMODIFY

Meaning

Default; same as CTAB_NOMODIFY.

Uses the logical color table defined by the application.
This is the default.

Uses the logical color tables implied by or given in the
metafile. The application's existing logical color table
is overwritten.

PMF _COLORREALIZABLE Specifies whether the logical color tables
defined by the metafile should be realizable. It can be one of the following
values:

Value Meaning

CREA_DEFAULT Default; same as CREA_NOREALIZE.

CREA_REALIZE Creates realizable color tables.

CREA_NOREALIZE Does not create realizable color tables. This is the
default.

Example

See Also

Corrections

• GpiPolyLine

GpiPolyLine 167

PMFJ>ATHBASE Specifies a reserved element. It must be zero.

PMF _RESOL VEPATH Specifies a reserved element. It must be
RSP.J)EFAULT or RSP_NODISCARD.

This example uses the GpiPlayMetaFile function to play the given metafile. The
function uses all the default actions for playing the metafile.

HMF hmf;
LONG cSegments;
CHAR szBuffer[SO];

hmf = GpiLoadMetafile(hab, "sample.met");
GpiPlayMetafile(hps, hmf, OL, NULL, &cSegments, SOL, szBuffer);

DevCloseDC, DevOpenDC, GpiCreateLogColorTable, GpiCreateLogFont,
GpiLoadMetaFile, GpiResetPS, GpiSetDrawingMode, GpiSetViewing
TransformMatrix

The default value for PMF _COLORREALIZABLE is CRE~NOREALIZE,
not CRE~EALIZE.

Correction
LONG GpiPolyLine (hps, cpt!, apt!)
HPS hps; I. presentation-space handle *1
LONG cptl; I. number of points in array *1
PPOINTL apt!; I. address of array of structures for points .1

Parameters

Return Value

The GpiPolyLine function draws one or more straight lines. The function draws
the lines by using the points specified by the aptl parameter. The function needs
at least one point to draw a line. If a point is specified, the function draws the
line from the current position to the point. For each additional line, the function
needs exactly one more point, and uses the end point of the last line as the start
ing point for the next. The function draws the lines by using the current values
of the line-color, line-mix, line-width, and line-type attributes.

The GpiPolyLine function moves the current position to the end point of the last
line.

hps Identifies a presentation space.

cptl Specifies the number of points. This parameter must be greater than or
equal to zero.

aptl Points to an array of POINTL structures that contains the points. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

The return value is GPLOK or GPU-IITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

168 GpiPolyLine

Errors Use the WinGetLastError function to retrieve the error value, which may be one

Example

See Also

Corrections

of the following:

PMERRJNV_COORDINATE
PMERRJNV JIPS
PMERRJNV-LENGTELOR_COUNT
PMERRYS.-BUSY

This example uses the GpiPolyLine function to draw a triangle:

POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiMove(hps, &ptlTriangle[2]); /* moves to end point (0, 0) */
GpiPolyLine(hps, 3L, &ptlTriangle[l]); /* draws triangle */

GpiLine, GpiMove, GpiSetAttrs, GpiSetColor, GpiSetCurrentPosition,
GpiSetLineType

The example did not draw a triangle because the starting point for GpiPolyLine
was the same point as that moved to in the GpiMove function. The GpiPolyLine
function was also missing a parameter.

• GpiQueryBitmapBits Correction
LONG GpiQueryBitmapBits(hps, IScanStart, cScan, pbBuffer, pbmi)
HPS hps; I. presentation-space handle .1
LONG IScanStart; I. number for first scan line to retrieve .1
LONG cScan; I. number of scan lines to retrieve .1
PBYTE pbBuffer; I. address of buffer for bitmap image data .1
PBITMAPINFO pbmi; I. address of structure for bitmap info .1

The GpiQueryBitmapBits function copies image data from a bitmap to the
buffer pointed to by the pbBuffer parameter. The function copies the image data
from the bitmap currently set for the presentation space. The presentation space
must be associated with a memory device context.

To copy the image data, the function needs the count of planes and adjacent
color bits specified in the fields of the structure pointed to by the pbmi parame
ter. That is, the cPlanes and cBitCount fields must be set before you call the
function. Also, the cbFix field must be set to 12. The function then copies the
image data to the buffer. The buffer must have sufficient space to hold all the
bytes of image data being copied. The number of bytes for the buffer is equal to
the number of scan lines to copy, multiplied by the width of the bitmap in bytes
(rounded up to the next multiple of 4), multiplied by the number of color planes.
The width has to be a multiple of 4, since the function rounds the length of each
scan line to a multiple of 4 bytes before copying. Also, the width must be multi
plied by the number of adjacent color bits before rounding.

After copying the image data, the GpiQueryBitmapBits function fills the remain
ing fields in the structure pointed to by pbmi. These fields are the width and
height of the bitmap and the array of RGB color values for the bitmap pels. An
application must make sure there is sufficient space in the structure to receive all
elements of the array of RGB color values. The number of elements in the array
depends on the format of the bitmap.

Parameters

Return Value

Errors

Comments

GpiQueryBitmapBits 169

hps Identifies the presentation space.

[ScanStart Specifies the number of the first scan line to copy to the buffer. If
this parameter is zero, the function copies the first scan line in the bitmap.

cScan Specifies the number of scan lines to copy.

pbBuffer Points to the buffer that receives the bitmap image data. It must be
large enough to hold all the bytes of the image data, from the scan line specified
by the [ScanStart parameter to the end of the bitmap.

pbmi Points to the BITMAPINFO structure that receives the bitmap informa
tion table. The BITMAPINFO structure has the following form:

typedef struet _BITMAPINFO {
ULONC ebFlx;
USHORT ex;
USHORT ey;
USHORT ePlanes;
USHORT eBltCount;
RCB argbColor[l);

} BITMAPINFO;

Depending on the format of the given bitmap, an application may need to allo
cate extra bytes for the structure to hold the additiomil elements for the
argbColor field.

The return value is the number of scan lines retrieved if the function is success
ful or BMB.-ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNCORRECTJ)C_TYPE
PMERRJNV J)C_TYPE
PMERRJNV JIPS
PMERRJNVJNFO_TABLE
PMERRJNV~ENGTELOR_COUNT
PMERRJNV _SCAN_START
PMERR-NO~ITMAP _SELECTED
PMERRYS~USY

If the requested color format is not the same as the bitmap's color format, the
function converts the bitmap image data to the requested format.

For any scan line, the bits for the pixels are tightly packed, with the bits for the
first pixel stored in the most significant bits of the first byte. If necessary, a scan
line is padded at the end so that each scan line begins on a 32-bit boundary.

170 GpiQueryBitmapBits

Example

See Also

Corrections

This example uses GpiQueryBitmapBits to copy the image data of a bitmap
from a presentation space associated with a memory device context.

BITMAPINFOHEADER bmp = { 12, 640, 350, 1, 1 };
LONG obBuffer, obBitmaplnfo;
SEL selBuffer, selBitmaplnfo;
PBYTE pbBuffer;
PBITMAPINFO pbmi;

I'
, Compute the size of the image-data buffer and the bitmap
, information struoture.
'I

obBuffer = ({{bmp.oBitCount ' bmp.ex) + 31) I 32)
, 4 ' bmp.oy , bmp.oPlanes;

ebBitmaplnfo = sizeof{BITMAPINFO) +
{sizeo f (RGB) , (1 « bmp. eBi tCount)) ;

I'
, Allooate memory for the image data-buffer and the bitmap
, information struoture.
*1

DosAlloeSeg{ebBuffer, &selBuffer, SEG_NONSHARED);
pbBuffer = MAKEP{selBuffer, 0);
DosAlloeSeg{ebBitmaplnfo, &selBitmaplnfo, SEG_NONSHARED);
pbmi = MAKEP{selBitmaplnfo, 0);

1* Copy the image data. *1

pbmi->ebFix = 12;
pbmi->oPlanes = 1;
pbmi->oBitCount = 1;
GpiQueryBitmapBits{hps, OL, (LONG) bmp.ey, pbBuffer, pbmi);

GpiLoadBitmap" GpiQuery BitmapParameters, GpiSetBitmapBits

The first bits in a scan line are stored in the most significant bits of the first byte
of the scan line.

• GpiQueryCharDirection
LONG GpiQueryCharDirection(hps)

Change

HPS hps; /. presentation-space handle ./

Parameters

Return Value

Errors

The GpiQueryCharDirection function retrieves the current value of the
character-direction attribute. This function cannot be used in an open segment
when the drawing mode is DMJETAIN.

hps Identifies the presentation space.

The return value is the current character-direction attribute if the function is suc
cessful, or CHDIRN~RROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV JIPS
PMERRJNV IN.-RETAIN~ODE
PMERILPSJlUSY

Comments

See Also

Changes

GpiQueryCharStringPos 171

In MS OS/2, version 1.2, the following character directions are available:
Value

CHDIRN_LEFfRIGHT

CHDIRN_RIGHTLEFf

CHDIRN_TOPBOTfOM

CHDIRN_BOTfOMTOP

Meaning

Left to right

Right to left

Top to bottom

Bottom to top

GpiSetCharDirection, GpiSetDrawingMode

Character directions other than the default are allowed.

• GpiQueryCharStringPos Correction
BOOL GpiQueryCharStringPos(hps. flOptions. cchString. pchString. adx. apt/)
HPS hps; /. presentation-space handle ./
ULONG flOptions; /. option flags ./

LONG cchString; /. length of the string ./
PCH pchString; /. address of string to examine ./
PLONG adx; /. address of array for increment values ./

PPOINTL apt/; /. address of array of structures for points ./

Parameters

The GpiQueryCharStringPos function determines a position for each character
in the string pointed to by the pchString parameter. Each position is the position
of the character in wodd coordinates as if it were drawn by using the GpiChar
StringPos function.

The GpiQueryCharStringPos function copies the character positions to the array
of structures pointed to by the aptl parameter. It uses the current character attri
butes or the array of vector increments specified by the adx parameter to deter
mine the positions. The function cannot be used in an open segment when the
drawing mode is DMJETAIN.

hps Identifies the presentation space.

flOptions Specifies whether to use the vector increments specified by the adx
parameter. It can be one of the following values:

Value

o

Meaning

Advances the current position after each character
by using the width of the character. The adx
parameter is ignored.

Advances the current position after each character
by using the next value in the array adx. The
current character direction defines the direction in
which the current position is advanced.

cchString Specifies the length of the string pointed to by the pchString param
eter.

pchString Points to the character string to examine.

172 GpiQueryCharStringPos

Return Value

Errors

Example

See Also

Corrections

adx Points to an array of increment values. Each value is a 4-byte signed
integer specifying the distance (in world coordinates) to advance the current
position for each character. There must be one value for each character in the
string. The first element specifies the distance for the first character, the second
element for the second character, and so on. This parameter may be NULL if
the jlOptions parameter is set to zero.

aptl Points to the array of POINTL structures that receives the position (in
world coordinates) of each character in the string. The array must be large
enough for each character in the string, plus one final point that contains the
position of the first character that follows the string. The POINTL structure has
the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

The return value is GPLOK if the function is successful or GPLERROR if an
,error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _CHAR_POS_OPTIONS
PMERRJNV _COORDINATE
PMERRJNV ~PS
PMERRJNV IN-.RETAIN~ODE
PMERRJNV~ENGTELO~COUNT
PMERRJNV -.RECT
PMERRYSJ3USY

This example calls the GpiQueryCharStringPos function to determine the loca
tion of each character in the string. Vector increments are not used.

CHAR szString [J = "Sample string";
POINTL aptl[sizeof(szString) + 1];

GpiQueryCharStringPos(hps,
OL,
sizeof(szString),
szString,
NULL,
aptl) ;

/* presentation-space handle */
/* does not use vector increments */
/* number of characters in string */
/* character string */
/* no vector increments */
/* array of structures for points */

GpiCharStringPos, GpiQueryCharStringPosAt, GpiSetDrawingMode

The array of points specified in the aptl parameter must include not only a
POINTL structure for each character in the string, but also one additional
POINTL structure that will receive the position of the first character that follows
the string.

GpiQueryDefAttrs 173

• GpiQueryDefArcParams New
BOOl GpiQueryDefArcParams(hps, parcp)
HPS hps; I. presentation-space handle .1
PARCPARAMS parcp; I. pointer to structure for arc parameters *1

Parameters

Return Value

Errors

See Also

The GpiQueryDefArcParams function retrieves the default arc parameters. The
default arc parameters define the values given to the arc parameters of a presen
tation space whenever that presentation space is reset. (The arc parameters
define the shape and orientation of the ellipses drawn using the arc functions.) A
presentation space can be reset by using the GpiResetPS function.

hps Identifies the presentation space.

parcp Points to the ARCPARAMS structure that receives the arc parameters.
The ARCPARAMS structure has the following form:

typedef struct _ARCPARAMS {
LONG lP;
LONG lQ;
LONG lR;
LONG lS;

} ARCPARAMS;

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _COORDINATE
PMERRJNV JIPS
PMERILPS_BUSY

GpiQuery ArcParams, GpiSetDefArcParams

• GpiQueryDefAttrs New
BOOl GpiQueryDefAttrs(hps,IPrimType, flAttrMask, pbunAttrs)
HPS hps; 1* presentation-space handle *,
lONG IPrimType; 1* primitive type .1
UlONG flAttrMask; I. attributes mask .,

PBUNDlE pbunAttrs; I. pOinter to structure for default attributes .1

Parameters

The GpiQueryDefAttrs function retrieves the default attributes for a primitive.
The default attributes define the values given to a presentation space's attributes
when that presentation space is reset. The default attributes also define the value
of attributes when they are explicitly set to the default by using the GpiSetAttrs
function.

hps Identifies the presentation space.

174 GpiQueryOefAttrs

Return Value

lPriln Type Specifies which primitive type to retrieve attributes for. It can be
one of the followiilg values:

Value

PRIM.-AREA

PRIM.-CHAR

Meaning

Area primitives

Character primitives

PRIM.-IMAGE Image primitives

PRIM_LINE Line and arc primitives

PRIM.-MARKER Marker primitives

flAttrMask Specifies which attributes to retrieve. The values for this parame
ter depend on the primitive type specified by the lPrimType parameter. This
parameter can be any combination of the following values for a specific type:

Type

PRIM.-AREA

PRIM.-CHAR

PRIM.-IMAGE

PRIM.-LINE

PRIM.-MARKER

Values

ABB_COLOR, ABB_BACK_COLOR,
ABB~DLMODE, ABB_BACK_MDLMODE,
ABB_SET, ABB_SYMBOL, ABB_REF_POINT

CBB_COLOR, CBB_BACK_COLOR,
CBB_MDLMODE, CBB_BACK_MDLMODE,
CBB_SET, CBB_MODE, CBB_BOX, CBB_ANGLE,
CBB_SHEAR, CBB_DIRECTION

IBB_COLOR, IBB_BACK_COLOR, IBB_MI'LMODE,
IBB_BACK_MI'LMODE

LBB_COLOR, LBB_MI'LMODE, LBB_ WIDTH,
LBB"':GEOM.-WIDTH, LBB_TYPE, LBB_END,
LBB_JOIN

MBB_COLOR, MBB_BACK_COLOR,
MBB_MI'LMODE, MBB_BACK_MI'LMODE,
MBB_SET, MBB_SYMBOL, MBB_BOX

If this parameter is zero, the function does not retrieve attributes but still returns
a mask that specifies the attributes using default values.

pbunAttrs Points to the structure that receives the default attribute values for
each attribute specified by the jlAttrMask parameter. The type of structure
depends on the value of the lPrimType parameter; it can be one of following
structures:

Type Structure

PRIM.-AREA

PRIM.-CHAR

PRIM.-IMAGE

PRIM.-LINE

PRIM.-MARKER

AREABUNDLE

CHARBUNDLE

IMAGEBUNDLE

LINEBUNDLE

MARKERBUNDLE

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Errors

See Also

GpiQueryDefTag 175

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILHUGEYONTS_NOT_SUPPOR TED
PMERRJNV_llACKGROUND_COL-ATTR
PMER~INV _CHAR-ANGLE-ATTR
PMERRJNV _CHAR_DIRECTION-A TTR
PMERRJNV_CHA~ODE-ATTR
PMERRJNV _CHAR_SET_A TTR
PMERRJNV _CHA~SHEAR-A TTR
PMERRJNV _COLOR_ATTR
PMERRJNV _COORDINATE
PMER~INV _GEO~INE_ WIDTH-A TTR
PMERRJNV -HPS
PMER~INV ~INE_END-A TTR
PMERRJNV ~INEJOIN-ATTR
PMERRJNV ~INE_TYPE-ATTR
PMERRJNV ~INE_ WIDTH-ATTR
PMERRJNV _MARKE~SET-A TTR
PMERRJNV ~ARKER_SYMBOL-ATTR
PMERRJNV ~DCATTR
PMERRJNV J ATTERN-ATTR
PMERRJNV J ATTERN_SET-A TTR
PMERRJNV _PATTERN_SETYONT
PMERRJNV JRIMITIVE_TYPE
PMERRJS_BUSY
PMER~UNSUPPORTED-ATTR
PMER~UNSUPPORTED-ATT~VALUE

GpiQueryAttrs, GpiSetDefAttrs

• GpiQueryDefTag New
BOOl GpiQueryOefTag(hps. plTag)
HPS hps; I. presentation-space handle .1
PLONG plTag; I. painter to tag .1

Parameters

Return Value

Errors

See Also

The GpiQueryDeITag function retrieves the default primitive tag. A primitive tag
is a way to identify a primitive stored in a segment.

hps Identifies the presentation space.

pi Tag Points to the variable that receives the tag.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -HPS
PMERRJNV ~ICROPSYUNCTION
PMERRJS~USY

GpiCorrelateChain, GpiCorrelateFrom, GpiSetDeITag

176 GpiQueryDefViewingLimits

• GpiQueryDefViewingLimits New
BOOl GpiQueryDefViewinglimits(hps. pre/Limits)
HPS hps; I. presentation-space handle .1
PRECTl pre/Limits; I. pointer to structure for viewing limits .1

Parameters

Return Value

Errors

See Also

The GpiQueryDefViewingLimits function retrieves the default viewing limits.
The default viewing limits define the values given to a presentation space's view
ing limits whenever that presentation space is reset. (The viewing limits specify a
rectangle in model space that the system uses to clip output.) A presentation
space can be reset by using the GpiResetPS function.

hps Identifies the presentation space.

prclLimits Points to the RECTL structure that receives the coordinates of the
default viewing limits. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _COORDINATE
PMERRJNV JfPS
PMERRJNV _ VIEWING~IMITS
PMERRYSJ3USY

GpiQueryViewingLimits, GpiSetDefViewingLimits

• GpiQueryFontFileDescriptions Correction
lONG GpiQueryFontFileDescriptions(hab. pszFi/eName. peFonts. pffdeses)
HAB hab; I. anchor-block handle .1
PSZ pszFileName;
PlONG peFonts;
PFFDESCS pffdeses;

Parameters

I. address of the font-resource filename *'
I. address of variable with number of fonts .1
I. array of names

The GpiQueryFontFiIeDescriptions function retrieves the typeface family and
names contained in the specified file if the file is a font-resource file. The func
tion copies the names to the array pointed to by the pffdescs parameter. Each
name is a null-terminated string up to 32 characters long. The function copies all
names in the file up to the number of names specified by the pcFonts parameter.

hab Identifies the anchor block.

•

Return Value

Example

See Also

Corrections

GpiQueryMetaFlIeBlts 177

pszFileName Points to a null-terminated string. This string must be a valid
MS OS/2 filename. If it does not specify a path and the .Jon filename extension,
the function appends the default extension (.dll) and looks for the font-resource
file in the directories specified by the libpath command in the config.sys file.

pcFonts Points to a variable specifying the maximum number of typeface fam
ily and name pairs to retrieve. The function copies the actual number of descrip
tions it retrieved to this variable.

pffdescs Points to the array to receive the typeface family and names for e.ach
font. Each array element is itself a two-element array of type FFDESCS.

The return value is the number of fonts for which details were not returned if
the function is successful or GPLALTERROR if an error occurred.

This example uses the GpiQueryFontFileDescriptions to retrieve the typeface
family and names for the fonts in the helv.dll file. The function is called twice,
once to determine the actual number of fonts in the file, and again to retrieve
the descriptions.

PFFDESCS pffdescs;
SEL sel;
LONG cFonts 0;

/* Retrieve a count of all fonts in the file. */

cFonts = GpiQueryFontFileDescriptions(hab, "helv", &cFonts, NULL);

/* Allocate space for the descriptions. */

DosAllocSeg((USHORT) (cFonts * sizeof(FFDESCS)), &sel, SEG_NONSHARED);
pffdescs = MAKEP(sel, 0);

/* Retrieve the descriptions. */

GpiQueryFontFileDescriptions(hab, "helv", &cFonts, pffdescs);

GpiQueryFonts

In the example, the function retrieves information from the helv.dll file, not the
helv.Joll file. If no path and filename extension are given, the function by default
searches for a file that has the .dll extension. Also, the cFonts variable must be
set to zero for the first call to the function.

GpiQueryMetaFileBits Correction
Baal GpiQueryMetaFileBits(hmf, off, cbBuffer, pbBuffer)
HMF hmf;
lONG off;
lONG cbBuffer;
PBYTE pbBuffer;

f. metafile handle .f
f. offset to the first metafile byte to copy .f
f. length in bytes of buffer .f
f. address of buffer for metafile data .f

The GpiQueryMetaFileBits function copies data from the metafile specified by
hmf to the buffer pointed to by the pbBuffer parameter. The function copies the
bytes of the metafile, up to the number of bytes specified by cbBuffer, starting at
the byte whose offset from the beginning of the metafile is specified by the off
parameter.

178 GpiQueryMetaFileBits

Parameters

Return Value

Errors

Example

See Also

Corrections

• GpiResetPS

hmt Identifies the memory metafile.

off Specifies the offset in bytes from the beginning of the metafile to the first
byte to copy.

cbBuffer Specifies the number of bytes of metafile data to copy.

pbBuffer Points to the buffer to receive the metafile data. It must have the
number of bytes specified by the cbBuffer parameter.

The return value is GPI_OK if the function is successful or GPLJ~RROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following: '

PMERRJNV J-IMF
PMERRJNV ~ETAFILE~ENGTH
PMERRJNV ~ETAFILE_OFFSET

This example uses the GpiQueryMetaFileBits function to retrieve the graphics
order data from the specified metafile. The GpiQueryMetaFileLength function
returns the length of the metafile.

HMF hmf;
LONG cBytes;
SEL sel;
LONG off;

hmf = GpiLoadMetaFile(hps, "sample.met");

1* Allocate the buffer for the metafile data. *1

DosAllocSeg(O, &sel, SEG_NONSHARED);
pbBuffer = MAKEP(sel, 0);

cBytes = GpiQueryMetaFileLength(hmf); 1* gets length of metafile *1

1* Retrieve up to 64K. *1
GpiQueryMetaFileBits(

1* handle of metafile *1
1* offset of next byte to retrieve *1
1* retrieves as much as possible *1
1* buffer to receive metafile data *1

hmf,
off,
6SS36L,
pbBuffer) ;

GpiQueryMetaFileLength, GpiSetMetaFileBits

In the example, the first parameter of the GpiQueryMetaFileBits function is a
handle of the metafile, not a handle to the presentation space. Also, the metafile
is assumed to be no greater than 64K. For larger metafiles, you can use the
DosAllocHuge function to allocate segments to receive the metafile bits.

Change
BOOl GpiResetPS (hps, flOption)
HPS hps; /. presentation-space handle ./
UlONG flOption; /. reset option ./

The GpiResetPS function resets the presentation space. In general, resetting the
presentation space restores attributes to their default values-that is, the values
given to the attributes when the presentation space was created or the values

Parameters

Return Value

Errors

See Also

Changes

Corrections

GpiResetPS 179

specified in the last call to the GpiSetDefAttrs function. The function can reset
the presentation space in three ways: as if a segment were closed; as if the
presentation space had just been created, but without deleting any resources;
and as if the presentation space had just been created. It uses the flOpfion
parameter to determine how to reset the presentation space.

The GpiResetPS function does not draw or erase the device. It is up to the
application to erase the screen, if this is required. Also, the function does not
affecl the association between the specified presentation space and a device con
text.

The GpiResetPS function also deselects a bitmap if any are selected into a
memory device context.

hps Identifies the presentation space.

flOption Specifies the reset option. It can be one of the following:
Value Meaning

Sets all current attributes to their default values,
the current model transform to unity, and the
current position to (0,0). The option also ends any
open path, area, or element brackets and closes
any open segment. Finally, it sets the current clip
path and viewing limits to their widest possible
values.

Resets as described for GRES_A TTRS, plus it
deletes all retained segments, clears any boundary
data, releases the clip region (if any), enables kern
ing (if the device supports it), and sets the default
values for initial segment attributes, default viewing
transform, graphics field, drawing mode, draw con
trols, edit mode, and attribute mode.

Resets as described for GRES_A TTRS and
GRES_SEGMENTS, plus it deletes any logical
fonts and local identifiers for bitmaps and sets the
logical color table to its default value.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV J1PS
PMERRJNV _RESET_OPTIONS
PMERRYSJ3USY

GpiAssociate, GpiCreatePS, GpiSetAttrs

Calling GpiResetPS resets the attributes of the presentation space to the values
it had when created or to the values specified in the last call to GpiSetDefAttrs.

GpiResetPS also deselects a bitmap if any are selected into a memory device
context.

180 GpiRotate

• GpiRotate New
BOOl GpiRotate (hps, pmatlf, flType, fxAngle, pptl)
HPS hps: f. presentation-space handle af
PMATRIXlF pmatlf: f. pointer to structure with matrix af
lONG flType: fa transformation type .f
FIXED fxAngle: fa pointer to variable with rotation angle af
PPOINTl pptl: fa pointer to structure with center point af

Parameters

Return Value

The GpiRotate function creates a transformation that can be used to rotate
objects around a given point. GpiRotate either adds the specified rotation to an
existing transformation or replaces the existing transformation with the rotation.
The new transformation can be used in a subsequent call to any transformation
function.

hps Identifies the presentation space.

pmatlf Points to the MATRIXLF structure that contains the transformation ,
matrix. The MATRIXLF structure has following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

jlType Specifies how the specified matrix should be used to modify the
transformation. It can be one of the following values:

Value

TRANSFORM-.ADD

TRANSFORM-.REPLACE

Meaning

Additive. The specified transformation matrix is
combined with the existing transformation, with
the existing transformation first, the new
transformation second. This option is useful for
incremental updates to transformations.

New/replace. The previous transformation is dis
carded and replaced by the specified transforma
tion matrix.

fxAngle Specifies the rotation (in degrees) to use.

pptl Points to the POINTL structure that contains the coordinates of a point,
relative to the origin, that defines the center of rotation. The POINTL structure
has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

•

Errors

See Also

GpiScale

GpiScale 181

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _TRANSFOR~TYPE

GpiScale, GpiSetDefaultViewMatrix, GpiSetModelTransformMatrix,
GpiSetSegmentTransformMatrix, GpiSetViewingTransformMatrix,
GpiTranslate

New
BOOl GpiScale (hps, pmatlf, flType, afxScaJe, pptJ)
HPS hps;
PMATRIXlF pmatlf;
lONG flType;
PFIXED afxScaJe;
PPOINTl pptJ;

Parameters

f. presentation-space handle .• f

f. pointer to structure for matrix .f
f. transformation type .f
f. pointer to variable with scaling factor .f
f. pointer to structure with point data .f

The GpiScale function creates a transformation that can be used to scale
(expand or contract) an object relative to a given point. GpiScale either adds the
specified scaling factor to an existing transformation or replaces the existing
transformation. The new transformation can be used in a subsequent call to any
transformation function.

hps Identifies the presentation space.

pmatlf Points to the MATRIXLF structure that contains the transformation
matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

jlType Specifies how a specified matrix should be used to modify the transfor
mation. It can be one of the following values:

Value

TRANSFOR1LADD

TRANSFORM_REPLACE

Meaning

Additive. The specified transformation matrix is
combined with the existing transformation. with
the existing transformation first, the new
transformation second. This option is useful for
incremental updates to transformations.

New/replace. The previous transformation is dis
carded and replaced by the specified transforma
tion matrix.

182 GpiScale

Return Value

Errors

See Also

afxScale Points to the two-element array that contains the scaling factors to
use. The first element specifies the scaling factor along the x-axis; the second
specifies the scaling factor along the y-axis.

pptl Points to the POINTL structure that contains the coordinates of the
point, relative to the origin, that defines the center of the scale. The POINTL
structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV _TRANSFORM_TYPE

GpiRotate, GpiSetDefaultViewMatrix, GpiSetModelTransformMatrix,
GpiSetSegmentTransformMatrix, GpiSetViewingTransformMatrix,
GpiTranslate

• GpiSetCharDirection Change
BOOl GpiSetCharDirection(hps. flDirection)
HPS hps; 1* presentation-space handle *1
lONG flDirection; 1* character direction *1

Parameters

Return Value

The GpiSetCharDirection function sets the character direction for drawing char
acters. The character direction specifies the direction to advance after drawing a
character, relative to the baseline.

If the attribute mode is AMYRESER VE, the function saves the previous char
acter direction on the attribute stack when it sets the new direction. The previ
ous character direction can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

jlDirection Specifies the character direction. This parameter can be one of
the following values:

Value

CHDIRN_DEFAULT

CHDIRN_LEFTRIGHT

CHDIRN_RIGHTLEFT

CHDIRN_TOPBOTTOM

CHDIRN_BOTTOMTOP

Meaning

Default direction (left to right)

Left to right

Right to left

Top to bottom

Bottom to top

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Errors

See Also

Changes

GpiSetDefArcParams 183

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILINV _CHAILDIRECTION~ TIR
PMERILINV ~PS
PMERlLPSJlUSY

GpiPop, GpiQueryCharDirection, GpiSetAttrMode, GpiSetAttrs

The following character directions can now be specified for the flDirection
parameter:

Value

CHDIRN_DEFAULT

CHDIRN_LEFTRIGHT

CHDIRN_RIGHTLEFT

CHDIRN_TOPBOTTOM

CHDIRN_BOTTOMTOP

Meaning

Default direction

Left to right

Right to left

Top to bottom

Bottom to top

• GpiSetDefArcParams New
BOOl GpiSetDefArcParams (hps, parcp)
HPS hpsj /. presentation-space handle ./
PARCPARAMS parcpj /. pointer to structure with arc parameters ./

Parameters

Return Value

Errors

The GpiSetDefArcParams function sets the default arc parameters. The default
arc parameters define the values given to the arc parameters of a presentation
space whenever that presentation space is reset. (The arc parameters define the
shape and orientation of the ellipses drawn using the arc functions.) A presenta
tion space can be reset using the GpiResetPS function.

hps Identifies the presentation space.

parcp Points to the ARCPARAMS structure that contains the arc parameters.
The ARCPARAMS structure has the following form:

typedef struct _ARCPARAMS {
LONG 1P;
LONG 1Q;
LONG 1R;
LONG lS;

} ARCPARAMS;

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _COORDINATE
PMERRJNV ~PS
PMERRYSJ3USY

184 GpiSetDefArcParams

Comments Setting the default arc parameters does not immediately affect the arc parame
ters. The system uses the default arc parameters only when the presentation
space is reset. The default arc parameters are reset when the presentation space
is reset using the GRES_SEGMENT or GRES.-ALL options of the GpiResetPS
function. The reset values for the default arc parameters are IP=l, lQ=l, lR=O,
and IS=O.

See Also GpiFullArc, GpiPartialArc, GpiPointArc, GpiQueryDefArcParams

• GpiSetDefAttrs New
BOOl GpiSetDefAttrs (hps, IPrimType, /IAttrMask, pbunAttrs)
HPS hps; I. presentation-space handle .1
lONG IPrimType; I. primitive type .1
UlONG flAttrMask; I. attributes mask .1
PBUNDlE pbunAttrs; I. pointer to structure with default attributes .1

Parameters

The GpiSetDefAttrs function sets the default attributes for a primitive. The
default attributes define the values given to the attributes of a presentation space
when that presentation space is reset. The default attributes also define the value
of attributes when they are explicitly set to the default using the GpiSetAttrs
function.

hps Identifies the presentation space.

lPriln Type Specifies which primitive type to set default attributes for. It can
be one of the following values:

Value

PRI1LAREA

PRI1LCHAR

PRI1LIMAGE

PRI1LLINE

PRIM_MARKER

Meaning

Area primitives

Character primitives

Image primitives

Line and arc primitives

Marker primitives

flAttrMask Specifies which default attributes to set. The values for this
parameter depend on the primitive type specified by the lPrim Type parameter.
This parameter can be any combination of the following values for a specific
type:

Type

PRI1LAREA

PRI1LCHAR

Values

ABB_COLOR,ABB_BACK_COLOR,
ABB-MIX_MODE, ABB-l3ACK-MDCMODE,
ABB_SET, ABB_SYMBOL,
ADB_REF _POINT

CBB_COLOR, CBB_BACK_COLOR,
CDB_MDCMODE, CBB_BACK_MDCMODE,
CBB_SET, CBB_MODE, CBB_BOX,
CBB_ANGLE, CBB_SHEAR,
CBB_DIRECTION

Return Value

Errors

GpiSetDefAttrs 185

Type Values

PRI~IMAGE IBB_COLOR, IBB_BACK_COLOR,
IBB_MDLMODE, IBB_BACK_MDLMODE

PRI~LINE

PRI~MARKER

LBB_COLOR, LBB_MDLMODE,
LBB_ WIDTH, LBB_GEO~ WIDTH,
LBB_TYPE, LBB_END, LBB_JOIN

MBB_COLOR, MBB_BACK_COLOR,
MBB_BACK_MDLMODE, MBB_SET,
MBB_SYMBOL, MBB_BOX,
MBB_MIX-MODE

If this parameter is zero, 110 attributes are set, regardless of the value of the
pbunAttrs parameter.

pbunAttrs Points to the buffer that contains attribute values for each default
attribute specified by the flAttrMask parameter. The buffer format depends on
the primitive type specified by the lPrimType parameter. The following structures
can be used for the specified primitive types:

Type Structure

PRI~AREA AREABUNDLE

PRI~CHAR CHARBUNDLE

PRI~IMAGE IMAGEBUNDLE

PRI~LINE LINEBUNDLE

PRI~MARKER MARKERBUNDLE

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use theWinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJIUGEYONTS_NOT_SUPPORTED
PMERRJNV-BACKGROUND_COL~TTR
PMERRJNV_CHA~NGLE~TTR
PMERRJNV _CHA~DIRECTION~TTR
PMERRJNV_CHAR~ODE_ATTR
PMERRJNV _CHA~SET~TTR
PMER~INV _CHAR_SHEA~ TTR
PMERRJNV_COLO~TTR
PMER~INV _COORDINATE
PMERRJNV _GEO~LINE_ WIDT~TTR
PMERR_INV _HPS
PMERRJNV ~INE~ND~TTR
PMERR_INV ~INEJOIN~ TTR
PMERRJNV ~INE_TYPE~TTR
PMER~INV ~INE_ WIDT~TTR
PMERRJNV ~ARKER_SET~TTR
PMERR-INV ~ARKER_SYMBOL_ATTR
PMERRJNV _MDCATfR
PMER~INV _PATTERN_ATTR
PMERRJNV _PATTERN_SET _A TTR
PMERRJNV YATTERN_SETYONT

186 GpiSetDefAttrs

Comments

PMERRJNV YRIMITIVE_TYPE
PMERRYS.-BUSY
PMERR_UNSUPPORTED-ATTR
PMER~UNSUPPORTED-ATT~VALUE

Setting the default attributes for a primitive does not immediately affect the
current attributes. The system uses the default attributes only when the presenta
tion space is reset or when the GpiSetAttrs function is used to set the defaults.
The default attributes are reset when the presentation space is reset using the
GRES_SEGMENT or GRES-ALL options of the GpiResetPS function.

If an attempt is made to set an invalid default value, none of the specified
default attribute values change. Some invalid default attribute values (for exam
ple, certain color and mix values), however, may not be detected until the attri
bute is used.

See Also GpiQueryDefAttrs, GpiSetAttrs

• GpiSetDefTag New
BOOl GpiSetDefTag(hps,/Tag)
HPS hps; I. presentation-space handle .1
lONG /Tag; I. tag .1

Parameters

Return Value

Errors

See Also

The GpiSetDelTag function sets the default primitive tag. A primitive tag is a
way to identify a primitive stored in a segment. This function sets the default
primitive tag and the system applies this tag to all subsequent primitives.

hps Identifies the presentation space.

1 Tag Specifies the tag. It must be an integer value.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV JIPS
PMERRJNV ~ICROPSYUNCTION
PMERRYS.-BUSY

GpiCorrelateChain, GpiCorrelateFrom, GpiCorrelateSegment,
GpiQueryDelTag

• GpiSetDefViewingLimits New
BOOl GpiSetDefViewingLimits(hps, prc/Limits)
HPS . hps; I. presentation-space handle .1
PRECTl prc/Limits; I. pointer to structure with viewing limits .1

The GpiSetDetViewingLimits function sets the default viewing limits. The default
viewing limits define the values given to the viewing limits of a presentation
space whenever that presentation space is reset. (The viewing limits specify a

Parameters

Return Value

Errors

Comments

See Also

• GpiSetPS

GpiSetPS 187

rectangle in model space that the system uses to clip output.) A presentation
space can be reset using the GpiResetPS function.

hps Identifies t4e presentation space.

prclL im its Points to the RECTL structure that contains the coordinates of the
default viewing limits. The RECTL structure has the following form:

typedef struet _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _COORDINATE
PMERRJNV JlPS
PMERRJNV _ VIEWINGJ.IMITS
PMERRYSJ3USY

Setting the default viewing limits does not immediately affect the viewing-limits
parameters. The system uses the default viewing limits only when the presenta
tion space is reset. The default viewing limits are reset when the presentation
space is reset using the GRES_SEGMENT or GRES~LL options of the
GpiResetPS function. The reset values for the default viewing limits are all of
model space, meaning nothing is clipped.

GpiQueryDefViewingLimits, GpiSetViewingLimits

Correction
BOOL GpiSetPS(hps, psiz/, flOptions)
HPS hps; I. presentation-space handle .1
PSIZEL psiz/; I. address of structure for presentation-space size *1
ULONG flOptions; I. options .1

Parameters

The GpiSetPS function sets the page size and units for the presentation space. .
This function is often used to change the device transformation for the presenta
tion space.

hps Identifies the presentation space.

psizl Points to the SIZEL structure that contains the size of the presentation
space. The SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

188 GpiSetPS

Return Value

Errors

Comments

flOptions Specifies the presentation-space options. The options define the
page unit for the presentation space. Although the flOptions parameter can
include many other options (as specified by the GpiCreatePS function), the
GpiSetPS function ignores all but the following options:

Option

PU_HIMETRIC

PU_LOENGLISH

Meaning

Sets the page units to pels, but permits the units to
be modified later by using the GplSetPageVlewport
function.

Sets the units to 0.001 inch.

Sets the units to 0.01 millimeter.

Sets the units to 0.01 inch.

Sets the units to 0.1 millimeter.

Sets the units to pels.

Sets the units to 1/1440 inch (1120 point).

Specifies that coordinates are stored as 4-byte
integers (LONG). This value is the same as
GPIF_LONG.

Specifies that coordinates are stored as 2-byte
integers.

Specifies that coordinates are stored as 4-byte
integers.

Specifies that the presentation space cannot be
fully reset, and that a reset equivalent to
GRES_SEGMENTS is performed. (Otherwise, a
full reset, equivalent to GRES_ALL, is per
formed.)

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV J-IDC
PMERILINV J-IPS
PMERRJNV _ORJNCOMPAT_OPTIONS
PMERRJNVYS
PMERRYSJ3USY

The GpiSetPS function does not affect the device context associated with the
presentation space. This means the device context already associated remains
associated. Also, the function does not change the type of presentation space.
(Presentation-space types include the micro-presentation space and the normal
presentation space.)

When this function is called, it resets the presentation space to a state that is
equivalent to setting the value GRES_ALL in the GpiResetPS function.

See Also

Corrections

GpiSetViewingLimits 189

GpiCreatePS, GpiResetPS

GpiSetPS can be used to set the storage format for the presentation space
by specifying one of the constants GPIFJ)EFAULT, GPIFJ.ONG, or
GPIF _SHORT. The PS_NORESET constant prevents the presentation space
from being completely reset.

• GpiSetViewingLimits Correction
BOOl GpiSetViewinglimits(hps. pre/Limits)
HPS hps: I. presentation-space handle .1
PRECTl pre/Limits: I. address of structure with viewing limits .1

Parameters

Return Value

Errors

Comments

Th~ GpiSetViewingLimits function sets the viewing limits. The viewing limits
specify a rectangle in model space that the system uses to clip output. The view
ing limits include all points inside the rectangle and all points on the left and
bottom edges, but do not include points on .the right and top edges. Points on
these edges are clipped.

The GpiSetViewingLimits function can be used in a segment to set the viewing
limits for subsequent primitives in the segment. The viewing limits also apply to
any called segments, unless the called segment itself sets the viewing limits.

hps Identifies the presentation space.

prclLimits Points to the RECTL structure that contains the coordinates of the
viewing limits. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

The return value is GPLOK if the function is successful or GPI~RROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV _COORDINATE
PMERRJNV _HPS
PMERR_INV _ VIEWING_LIMITS
PMERR_PS.J3USY

Unless the segments in the picture chain have the fast-chaining attribute, the sys
tem resets the default viewing limits when each segment in the chain is drawn.
The default viewing limits include all model space-that is, nothing is clipped.

The segment and model transformations do not affect the viewing limits, but the
viewing limits are affected by the current viewing and default viewing transforma
tions.

If either the left boundary is greater than the right or the bottom boundary is
greater than the top, a NULL rectangle is defined, and all points are clipped.

190 GpiSetViewingLimits

See Also

Corrections

• GpiTranslate

GpiQueryViewingLimits, GpiSetAttrMode

If either the left boundary is greater than the right or the bottom boundary is
greater than the top, a NULL rectangle is defined, and all points are clipped.

New
BOOl GpiTranslate (hps, pmatlf, flType, pptl)
HPS hps; 1* presentation-space handle *1
PMATRIXlF pmatlf; 1* pOinter to structure with matrix .1
lONG f1Type; 1* transformation type *1
PPOINTl ppt/; 1* pointer to structure with point data *1

Parameters

The GpiTranslate function creates a transformation that can be used to translate
(move) an object a specified direction and distance. GpiTranslate either adds
the specified translation to an existing transformation or replaces the existing
transformation. The new transformation can be used in a subsequent call to any
transformation function.

hps Identifies the presentation space.

pmall! Points to the MATRIXLF structure that contains the transformation
matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG lM13;
FIXED fxM21;
FIXED fxM22;
LONG lM23;
LONG lM31;
LONG lM32;
LONG lM33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

jlType Specifies how a specified matrix should be used to modify the transfor
mation. It can be one of the following values:

Value

TRANSFOR1LADD

TRANSFOR1LREPLACE

Meaning

Additive. The specified transformation matrix is
combined with the existing transformation, with
the existing transformation first, the new
transformation second. This option is useful for
incremental updates to transformations.

New/replace. The previous transformation is dis
carded and replaced by the specified transforma
tion matrix.

ppll Points to the POINTL structure that contains the coordinates of a point,
relative to the origin, that defines the required translation. The POINTL struc
ture has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

Return Value

Errors

GpiUnloadFonts 191

The return value is GPLOK if the function is successful or GPLERROR if an
error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _TRANSFORM_TYPE

See Also GpiRotate, GpiScale, GpiSetDefaultViewMatrix, GpiSetModelTransform
Matrix, GpiSetSegmentTransformMatrix, GpiSetViewingTransformMatrix

• GpiUnloadFonts Correction
BOOl GpiUnloadFonts (hab. pszModName)
HAB hab; 1* anchor-block handle *1
psz pszModName; 1* address of the module name *1

Parameters

Return Value

Errors

See Also

Corrections

The GpiUnloadFonts function unloads font definitions that were previously
loaded from the resource file specified by the pszModName parameter. Before
unloading fonts, the application must delete any local identifiers previously
assigned to the fonts. The function unloads the fonts for the application only. If
any other applications have loaded the fonts, they remain available for those

. applications.

hab Identifies the anchor block.

pszModName Points to a null-terminated string. This string must be a valid
MS OS/2 filename. If it does not specify a path and the filename extension, the
function appends the default extension (.d/l) and searches for the font resource
file in the directories specified by the libpath command in the config.sys file.

The return value is GPI_OK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRYONTYILE_NOT-LOADED
PMERR-FONT_NOT-LOADED
PMERR-OWN_SETJD-REFS

GpiCreateLogFont, GpiDeleteSetId, GpiLoadFonts, GpiSetCharSet

Before unloading fonts, the application must delete any local identifiers previ
ously assigned to the fonts.

192 GpiWCBitBlt

• GpiWCBitBlt Correction
LONG GpiWCBitBlt(hps. hbm. cPoints. aptl. 'Rop. ('Options)
HPS hps; I. presentation-space handle .1
HBITMAP hbm; I. bitmap handle . .1
LONG cPoints; I. number of pOints .1
PPOINTL apt'; I. address of structure with points .1
LONG 'Rop; I. mixing function .1
ULONG flOptionsj I. options .1

Parameters

The GpiWCBitBlt function copies a bitmap to a presentation space. It can also
modify the bitmap within a rectangle in a presentation space. The exact opera
tion carried out by GpiWCBitBlt depends on the raster operation specified by
the lRop parameter.

If lRop directs GpiWCBitBlt to copy a bitmap, the function copies the bitmap
specified by hbm to the presentation space. The presentation space must be
associated with a device context for the display, for memory, or for some other
suitable raster device. The aptl parameter points to an array of points that
specify the corners of a rectangle in the bitmap as well as the corners of the
rectangle in the presentation space to receive the bitmap. The bitmap rectangle
is specified in device coordinates; the presentation-space rectangle in world coor
dinates. If the bitmap and presentation-space rectangles are not the same (after
converting the presentation space to device coordinates), GpiWCBitBlt stretches
or compresses the bitmap to fit the presentation-space rectangle.

If lRop directs GpiWCBitBlt to modify a bitmap, the function uses the raster
operation to determine how to alter the bits in a rectangle in the presentation
space. Raster operations include changes such as inverting existing bits, replac
ing bits with pattern bits, and mixing existing and pattern bits to create new
colors. For some raster operations, the function mixes the bits of the bitmap
with the presentation space and/or pattern bits.

hps Identifies the presentation space.

hbm Identifies the bitmap.

cPoints Specifies the number of points pointed to by the aptl parameter. It
must be 4.

aptl Points to an array of POINTL structures that contains the number of
points specified in the cPoints parameter. The points must be given in the follow
ing order:

Element index

o

1

2

3

Coordinate

Specifies the lower-left corner of the target rectangle in
world coordinates.

Specifies the upper-right corner of the target rectangle in
world coordinates.

Specifies the lower-left corner of the source rectangle in
device coordinates.

Specifies the upper-right corner of the source rectangle in
device coordinates.

GpiWCBitBlt 193

The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

lRop Specifies the raster operation for the function. It can be any value in the
range 0 through 255 or one of the following values, which represent common ras
ter operations:

Value

ROP _DSTINVERT

ROP _MERGECOPY

ROP _MERGEPAINT

ROP _NOTSRCCOPY

ROP _NOTSRCERASE

ROP_ONE

ROP _PATCOPY

ROP _PATINVERT

ROP _PATPAINT

ROP_SRCAND

ROP _SRCCOPY

ROP _SRCERASE

ROP _SRCINVERT

Meaning

Inverts the target.

Combines the source and the pattern using the
bitwise AND operator.

Combines the inverse of the source and the tar
get using the bitwise OR operator.

Copies the inverse of the source to the target.

Combines the inverse of the source and the
inverse of the target bitmaps using the bitwise
AND operator.

Sets all target pels to 1.

Copies the pattern to the target.

Combines the target and the pattern using the
bitwise exclusive XOR operator.

Combines the inverse of the source, the pattern,
and target using the bitwise OR operator.

Combines the source and target bitmaps using
the bitwise AND operator.

Copies the source bitmap to the target.

Combines the source and the inverse of the tar
get bitmaps using the bitwise AND operator.

Combines the source and target bitmaps using
the bitwise exclusive OR operator.

ROP _SRCPAINT Combines the source and target bitmaps using
the bitwise OR operator.

ROP _ZERO Sets all target pels to O.

flOptions Specifies how to compress a bitmap if the target rectangle is smaller
than the source. It can be one of the following values:

Value Meaning

Compresses two rows or columns into one by
combining them with the bitwise AND operator.
This value is useful for compressing bitmaps that
have black images on a white background.

Compresses two rows or columns into one by
combining them with the bitwise OR operator.
This value is the default and is useful for
compressing bitmaps that have white images on
a black background.

194 GpiWCBitBlt

Return Value

Errors

Comments

Example

Value Meaning

Compresses two rows or columns by throwing
one out. This value is useful for compressing
color bitmaps.

All values in the range Ox0100 to OxFFOO are reserved for privately supported
modes for particular devices.

The return value is GPI_OK or GPIJIITS if the function is successful (it is
GPIJIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI~RROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILBASE~RROR
PMERILBITMAP _NOT_SELECTED
PMERRJNCOMPATIBLEJUTMAP
PMERRJNV _BITBLT-MIX
PMERRJNV ~ITBLT_STYLE
PMERRJNV _COORDINATE
PMERRJNV -DC_TYPE
PMERRJNV JIBITMAP
PMERRJNV JIDC
PMER~INV _IN~REA
PMERRJNVJN_PATH
PMERRJNV-LENGT~O~COUNT

The GpiWCBitBIt function can be used in an open segment. If the drawing
mode is DM-DRAWANDRETAIN or D~ETAIN, the function builds a
graphics 'order in the current open segment. The order identifies the bitmap han
dle arid uses uses long or short coordinates, as determined bY'the presentation
space format.

GpiWCBitBIt does not affect the pels in the upper and right boundaries of the
presentation-space rectangle. This means the function draws up to but does not
include those pels. Also, the function ignores any rotation transformations.

If the lRop parameter includes a pattern, GpiWCBitBIt uses the current area
color, area background color, pattern set, and pattern symbol of the presenta
tion space. Although the function may stretch or compress the bitmap, it never
stretches or compresses the pattern.

If the presentation-space and the bitmap have different color formats,
GpiWCBitBlt converts the bitmap color format. ~s it copies the bitmap. This
applies to bitmaps copied to a device context having a monochro~e format. To
convert a monochrome bitmap to a color bitmap, GpiWCBitBlt converts 1 pels
to the presentation foreground color, and 0 pels to the current-area background
color.

This example uses GpiWCBitBlt to copy and compress a bitmap in a presenta
tion space. The function copies the bitmap that is 100 pels wide and 100 pels
high into a SO-by-SO-pel rectangle at the location (300,400). Since the raster
operation is ROP_SRCCOPY, GpiWCBitBlt replaces the image previously in
the presentation-space rectangle. The function compresses the bitmap to fit the
new rectangle by discarding extra rows and columns as specified by the
BBOJGNORE option.

See Also

Corrections

HPS hps;
HBITMAP hbm;
POINTL aptl [4]

300, 400,
350, 450,
0, 0,
100, 100 };

GpiWCBitBlt (hps,
hbm,
4L,
aptl,
ROP_SRCCOPY,
BBO_IGNORE) ;

{
/* lower-left corner of target
/* upper-right corner of target
/* lower-left corner of source
/* upper-right corner of source

*/
*/
*/
*/

/* presentation space * /
/* bitmap handle */
/* four points needed to compress */
/* points for source and target rectangles */
/* copy source replacing target */
/* discard extra rows and columns */

DevOpenDC, GpiBUBlt, GpiCreateBitmap, GpiLoadBitmap, GpiSetBitmap,
GpiSetBitmapDimension, GpiSetBitmapld

For the aptl parameter, the element indexes are 0, 1, 2, and 3. The array has at
most four elements, not five.

• HM...,ACTIONBAR_COMMAND New

Parameters

Return Value

Comments

See Also

Parameters

HM_ACTIONBAR_COMMAND
usCmd = (USHORT) SHORT1FROMMP(mp1); /* command value */

The HM.J\CTIONBAlLCOMMAND message is sent when the user chooses a
command from an application-supplied menu in the help window. The applica
tion should carry out the command identified by the usCmd parameter.

usCmd Low word of mpl. Specifies the command value.

An application should return zero if it processes this message.

Applications can replace the menu in a help window by specifying a menu ID in
the HELPINIT structure used when the help instance is created by using the
WinCreateHelplnstance function. If an application replaces the menu, it
receives the HM.J\CTIONBAR_COMMAND message when the user chooses a
command from the menu. Application-supplied menus should have command
values in the range Ox7FOO through Ox7FFF.

WinCreateHelplnstance

New

HM_CREATE_HELP_TABLE
mp1 = MPFROMP«PHELPTABLE) phtHelpTable); /* pointer to help table */
mp2 = OL; /* not used, must be zero */

An application sends an HM_CREATEJIELP_TABLE message to a help win
dow to set the help table for the help instance. The system uses the specified
help table to locate help-panel IDs on subsequent requests for help.

phtHe/pTab/e Low and high word of mpl. Points to the HELPTABLE struc
ture that contains the help-table information. The HELPTABLE structure has
the following form:

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

typedef struct _HELPTABLE {
USHORT idAppWindow;
PHELPSUBTABLE phstHelpSubTable;
USHORT idExtPanel;'

} HELPTABLE;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is FALSE.

An application can use this message to replace the initial help table of a help
instance or to set the table if no initial help table is given. The initial help table
is specified in the HELPINIT structure used when the help instance is created by
using the WinCreateHelplnstance function. This message replaces the help table
without freeing any memory or resources associated with the initial help table.

The application must allocate space for the help table and fill the table with
appropriate values before sending this message. The system does not check the
validity of the help-table contents.

WinCreateHelplnstance, HMJ.OADJIELP _TABLE

HM_DISMISS_WINDOW
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

New

An application sends an HMJ)ISMISS_ WINDOW message to a help window to
close the help window. Closing the help window does not destroy the help
instance.

This message does not use any parameters.

The return value is FALSE if the help window is closed. It is TRUE if the help
window was already closed.

A help window is a modeless window. This means the user can view help and
return to the application window without closing the help window. An applica
tion can use the HMJ)ISMISS_ WINDOW message to close the help window if
the user has not closed it.

WinDestroyHelplnstance

New
HM_DISPLAY_HELP
mpl = MPFROMP((PVOID) pHelpPanel); 1* panel ID or pointer to name *1
mp2 = MPFROMSHORT((USHORT) usTypeFlag); 1* ID or name flag *1

An application sends an HM~ISPLAY_HELP message to a help window to
display a specific help panel.

Parameters

Return Value

Comments

See Also

Parameters

pHelpPanel Low and high word of mpl. Points to a help-panel ID, points to a
null-terminated help-panel name, or contains the help-panel ID in the low word
and OxOOOO in the high word.

usTypeFlag Low word of mp2. Specifies whether the pHelpPanel parameter
specifies a help-panel ID or name. The usTypeFlag parameter can be one of the
following values:

Value

HM_RESOURCEID

H~PANELNAME

Meaning

Specifies that pHelpPanel points to the help
panel ID or contains the help-panel ID in the
low word.

Specifies that pHelpPanel points to the nu11-
terminated help-panel name.

The return value is FALSE if the help panel is displayed. Otherwise, it is an
error value, which may be one of the following:

HMERRJ)ATABASE_NOT_OPEN
HMERRY ANEL_NOTYOUND
HMER~READ-LIB_FILE

The system searches for the specified panel in the help libraries opened for the
help window and displays the first matching panel found.

H~XT-HELP, HM-HELP_CONTENTS, HM-HELPJNDEX,
H~KEYS-HELP

HM_ERROR
ulErrorCode = (ULONG) LONGcROMMP(mpl); /* error type */

New

The H~RROR message is sent to notify an application of an error in a help
window-errors that occur while the user views help. It does not notify the appli
cation of errors that result from messages sent by the application.

ulErrorCode Low and high word ofmpl. Specifies an error value, which may
be one of the following:

HMERR~LLOCATE_SEGMENT
HMER~CLOSE_LIB_FILE
HMERR_CONTENT_NOTYOUND
HMERR~ATABASE_NOT_OPEN
HMERRYREE~EMORY
HMER~ELP _INSTANCE_UNDEFINE
HMERR_HELP JNST_CALLEDJNVALID
HMER~ELPITE~NOT_FOUND
HMERR_HELPTABLE_UNDEFINE
HMER~INDEX-NOT_FOUND
HMERRJNVALID~SSOC~PP _ WND
HMERRJNV ALID_ASSOCJ-IELP JNST
HMER~INV ALID_DESTROY _HELP JNST
HMERRJNV ALID_HELPSUBITE~SIZE

Return Value

Comments

HMERRJNV ALID_HELP _INSTANCE-HDL
HMERRJNV ALID-LIBYILE
HMER~INVALID_QUERY~PP _ WND
HMER~NOYRAME_ WNDJN_CHAIN
HMERR_NO-HELP JNSTJN_CHAIN
HMER~NO_MEMORY
HMERR_OPEN-LIB_FILE
HMERRY ANEL_NOT_FOUND
HMER~EAD-LIB_FILE

An application should return zero if it processes this message.

Because a help window does not display' error messages to the user, the applica
tion should display its own messages when it receives an H~RROR message.

If an error occurs when creating the help instance using the WinCreateHelpln
stance function, the system copies the error value to the ulReturnCode field in
the HELPINIT structure used with WinCreateHelplnstance. If an error occurs
for another function or for a message sent to a help window, the return value
from the function or message sent specifies the error.

See Also WinCreateHelplnstance

Parameters

Return Value

Comments

See Also

HM_EXT_HELP
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must' be zero *1

An application sends an H~XT-HELP message to a help window to display
the extended help panel.

This message does not use any parameters.

The return value is FALSE if the extended help panel is displayed. Otherwise, it
is an error value, which may be one of the following:

HMERRJ)ATABASE_NOT_OPEN
HMER~PANEL_NOTYOUND
HMER~EAD-LIBYILE

For this message to display an extended help panel, the help table for the help
instance must specify a help-panel ID that corresponds to the active window.
(For example, the idExtPanel in the HELPTABLE structure used with the Win
CreateHelplnstance function must be set to a valid help-panel ID.) If the help
table specifies zero for the extended help-panel ID, the system sends the
HM-EXT-HELP _UNDEFINED message to the application. In this case, the
application should carry out some default action, such as displaying an error
message or using the H~ISPLA Y _HELP message to display a help panel.

HM-DISPLA Y -HELP, HM-EXT-HELP _UNDEFINED, HM-HELP JNDEX,
HMJ<EYS-HELP

Parameters

Return Value

Comments

See Also

Parameters

Return Value

See Also

The HM-.EXT_HELP_UNDEFINED message notifies the application that an
extended help panel is not defined for the active window.

This message does not use any parameters.

An application should return zero if it processes this message.

The system displays extended help only if the help table for the help instance
specifies a help-panel ID that corresponds to the active window. (For example,
the idExtPanel in the HELPTABLE structure used with the WinCreateHelp
Instance function must be set to a valid help-panel ID.) If the help table
specifies zero for the extended help-panel ID, the system sends the
HM-.EXTJ-IELP _UNDEFINED message to the application. In this case, the
application should carry out some default action, such as displaying an error
message or using the H~ISPLAY~ELP message to display a help panel.

H~ISPLAYJIELP, HM-.EXT~ELP

HM_HELP_CONTENTS
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

New

An application sends an H~ELP _CONTENTS message to a help window to
display the table of contents for the open help library.

This message does not use any parameters.

The return value is FALSE if the table of contents is displayed. Otherwise, it is
an error value, which may be one of the following:

HMERRJ)ATABASE_NOT_OPEN
HMERRY ANEL_NOT_FOUND
HMER~EAD-LIBYILE

H~ISPLAY~ELP, H~ELPJNDEX, HMJ(EYS~ELP

HM_HELP_INDEX
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an HM_HELP _INDEX message to a help window to
display the index for the open help library.

New

Parameters

Return Value

See Also

Parameters

Return Value

Comments

See Also

This message does not use any parameters.

The return value is FALSE if the index is displayed. Otherwise, it is an error
value, which may be one of the following:

HMERRJ)ATABASE_NOT_OPEN
HMERRYANEL_NOTYOUND
HMER~EAD~IBYILE

HMJ)ISPLAY-HELP, HMJIELP_CONTENTS, HMJ(EYS-HELP

HM_HELPSUBITEM_NOT_FOUND

New

usMode = (USHORT) SHORTIFROMMP(mpl):
idTopic = (USHORT) SHORTIFROMMP(mp2):
idSubTopic = (USHORT) SHORT2FROMMP(mp2):

/* help mode */
/* window ID for topic */
/* window ID for subtopic */

The HM-HELPSUBITE~NOTYOUND message notifies the application that
the system failed to find a help panel in response to a user request for help.

usMode Low word of mpl. Specifies the context of the help request. This
parameter can be one of the following values:

Value Meaning

HLP1LFRAME The help request is for a focus window that is a child win
dow of the client window.

HLP1LMENU The help request is for a selected menu item or submenu.

HLP1L WINDOW The help request is for a focus window that is not a child
window of the client window.

idTopic Low word of mp2. Specifies the ID of the active frame or dialog win
dow or the submenu that contains the selection.

idSub Topic High word of mp2. Specifies the ID of the window that has the
keyboard focus or the menu item that contains the selection.

An application should return FALSE to direct the system to display the
extended help panel for the active window. An application should return TRUE
to direct the system to do nothing.

When an application receives this message, it should carry out a default action,
such as displaying an error message or using the HMJ)ISPLA Y -HELP message
to display an explicitly specified help panel, or it can return FALSE to direct the
system to display the extended help panel. If the application displays an error
message or a help panel, it must return TRUE to prevent the system from
displaying the extended help' panel.

HMJ)ISPLAYJ-IELP, HM~RROR

• HMJNFORM New

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

HM_INFORM
idPanel = (USHORT) SHORT1FROMMP(mpl): /* help-panel ID */

The HMJNFORM message notifies an application that the user has chosen a
hypertext field in the help window.

idPanel Low word of mpl. Specifies the help-panel ID associated with the
hypertext field.

An application should return zero if it processes this message.

The system sends an HMJNFORM message only if the corresponding hypertext
field was created using the :inform tag. The value of the idPanel parameter is the
number specified with the tag. This is usually a help-panel ID, but it can be any
number. When an application receives the HMJNFORM message, it can carry
out any action; however, after the application returns from the message, the sys
tem displays the corresponding help panel if one exi~ts.

H~ISPLAYJ-IELP

HM_KEYS_HEtP
mpl = ot: /* not used, must be zero */
mp2 = ot; /* not used, must be zero */

New

An application sends an HMJ(EYS~ELP message to a help window to display
the help panel that contains information about the application keys.

This message does not use any parameters.

The return value is FALSE if the keys-help panel is displayed. Otherwise, it is
an error value, which may be one of the following:

HMERR.J)ATABASE_NOT_OPEN
HMERRYANEL_NOTYOUND
HMER~EAD-LIBYILE

Because the keys-help-panel ID is not specified in the help table, the system
sends an H~QUERYJ{EYS~ELP message to the window associated with
the help window or to the active window. If the application returns the keys
help-panel ID, the system displays the keys-help window.

HMJ)ISPLAY_HELP, HM_EXT~ELP, HMJIELP_CONTENTS,
HMJ-IELP _INDEX

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

New

HM_LOAO_HELP_TABLE
mpl = MPFROM2SHORT(OxFFFF, (USHORT) idHelpTable); 1* help-table IO'*I
mp2 = MPFROMSHORT«USHORT) hmodModule); 1* module with resource *1

An application sends an HM-LOADJIELP_TABLE message to a help window
to replace the existing help table (if any) with a help-table resource.

idHelpTable Low word of mpl. Specifies the resource ID of the help-table
resource.

hmodModule Low word of mp2. Identifies the module that contains the
help-table resource.

The return value is FALSE.

Applications can use this message to replace the initial help table of a help
instance or to set the table if no initial help table is given. The initial help table
is specified in the HELPINIT structure used when the help instance is created by
using the WinCreateHelplnstance function. This message replaces the help table
without freeing any memory or resources associated with the initial help table.

WinCreateHelplnstance, HM_CREATEJIELP _TABLE

HM_QUERY_KEYS_HELP
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

New

The H~QUERYJ(EYSJIELP message is sent to an application to retrieve
the keys-help-panel ID.

This message does not use any parameters.

An application should return the keys-help-panel ID. If no keys-help panel
exists, the application should return an alternate panel ID, such as the ID for
extended help.

The system uses the returned ID to display the corresponding help panel. If the
return value is not a valid help-panel ID, no help is displayed.

HMJ(EYSJIELP

HM_REPLACE_HELP_FOR_HELP
mpl = MPFROMSHORT(idHelpForHelpPanel);
mp2 = OL;

New

1* help-panel 10 *1
1* not used, must be zero */

An application sends an HM-REPLACEJIELP YORJ1ELP message to a help
window to replace the general help panel (supplied by the system) with a
specified help panel.

Parameters

Return Value

Comments

See Also

Parameters

Return Value

See Also

Parameters

Comments

idHelpForHelpPanel Low word of mpl. Specifies a help-panel ID.

The return value is zero.

A help window displays the general help panel whenever an application specifies
zero for the help-panel ID in an HMJ)ISPLAYJIELP message. The general
help panel is initially set by the system when the help instance is created; appli
cations can replace the system-supplied help at any time. Applications that
modify the help-window menu should also replace the general help information.

HMJ)ISPLAYJIELP

HM_SET_ACTIVE_WINDOW
mpl = MPFROMHWND(hwndActiveWindow);
mp2 = MPFROMHWND(hwndRelativeWindow);

New

I' active-window handle 'I
1* application-window handle 'I

An application sends an HM-SET~CTIVE_ WINDOW message to a help win
dow to set the active and relative windows. The active window is the window to
which the system sends help messages. The relative window is the window next
to which the system displays the help window.

hwndActiveWindow Low and high word of mpl. Identifies the active window.
This value can be a window handle or NULL. If this parameter is NULL, the
active and relative windows are determined by the system.

hwndRelativeWindow Low and high word of mp2. Identifies the relative win
dow. This value can be a window handle or HWNDJ ARENT. If the value is
HWNDJ ARENT, the system sets the relative window to be the parent window
of the active window.

The return value is FALSE.

WinAssociateHelplnstance

New

mpl = MPFROMP(pszHelpLibraryName); I' pointer to help-library name 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an HM-SETJIELP-LIBRARY_NAME message to Help
Manager to identify the help library to search.

pszHelpLibraryName Low word of mpl. Points to the string that contains the
help-library name used by Help Manager when it searches for the requested help
topic.

Sending an HM_SETJIELPJ.IBRARY_NAME message replaces the current
help library with the library specified.

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

HM_SET_HELP_WINOOW_TITLE
mpl = MPFROMP(pszHelpWindowTitle);
mp2 = OL;

/* pointer to new title */
/* not used, must be zero */

New

An application sends an HM.-SETJIELP_WINDOW_TITLE message to a help
window to change the window title.

pszHelp Window Title Low and high word of mpl. Points to the null
terminated string that contains the new Help-window title.

The return value is FALSE if the window title is set. Otherwise, it is an error
value, which may be one of the following:

HMERILALLOCATE_SEGMENT
HMERILNO~EMORY

The initial window title is specified by setting the pszHelp WindowTitle field in
the HELPINIT structure used when the help instance is created by using the
WinCreateHelpInstance function. The system allocates memory to save the title
and frees the memory when the HM.-SETJIELP_WINDOW_TITLE message is
used to change the title.

WinCreateHelplnstance

HM_SET_SHOW_PANEL_IO
mpl = MPFROMSHORT(fVisible);
mp2 = OL;

/* help-panel IO flag */
/* not used, must be zero */

New

An application sends an HM_S ET_S HOW..P ANELJD message to a help win
dow to specify whether the window should display the help-panel ID along with
the help panel title.

jVisible Low word of mpl. Specifies whether to display or hide the help-panel
ID. This parameter can be one of the following values:

Value Meaning

CMIC_HIDE_PANEL_ID Turns off the show option. The help-panel ID
is not displayed.

CMIC_SHOW _P ANEL_ID Turns on the show option. The help-panel ID
is displayed.

CMIC_TOGGLE_PANEL_ID Toggles the display of the help-panel ID.

The return value is zero.

The help window displays the help-panel ID along with the help-panel title in the
title bar of the help-panel window. The panel ID is enclosed in brackets.

Initially, an application specifics whether to display the help-panel ID by setting
the usShowPanelId field in the HELPINIT structure when the help instance is
created by using the WinCreateHelplnstance function.

WinCreateHelplnstance

KbdCharln 205

• HM_TUTORIAL New

Parameters

Return Value

Comments

See Also

• KbdCharln

HM_TUTORIAL
pszTutorialName = (PSZ) PVOIDFROMMP(mpl); 1* pointer to tutorial *1

The HM_ TUTORIAL message is sent to a window when the user chooses the
Tutorial command in the help window menu. The application can then invoke its
own tutorial program.

pszTutorialName Low and high word of mpl. Points to the null-terminated
tutorial name.

An application should return zero if it processes this message.

An application sets the name of the tutorial by setting the pszTutorialName field
in the HELPINIT structure used when the help instance is created by using the
WinCreateHelplnstance function. If a tutorial name is specified, the help win
dow adds the Tutorial command to its Help menu.

WinCreateHelplnstance

Change
USHORT KbdCharln(pkbci, fWait, hkbd)
PKBDKEYINFO pkbci; 1* pointer to structure for keystroke info. *1
USHORT fWait; 1* wait/no-wait flag *1
HKBD hkbd; I. keyboard handle *1

Parameters

The KbdCharIn function retrieves character and scan-code information from a
logical keyboard. The function copies the information to a specified structure.
Keystroke information includes the character value of a given key, the scan
code, the keystroke status, the state of the shift keys, and the system time (in
milliseconds) when the keystroke occurred.

The KbdCharIn function is a family API function.

pkbci Points to the KBDKEYINFO structure that receives the keystroke infor
mation. The KBDKEYINFO structure has the following form:

typedef struct _KBDKEYINFO {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;

} KBDKEYINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

jWail Specifies whether to wait for keystroke information if none is available.
If this parameter is 10_ WAIT, the function waits for a keystroke if one is not
available. If this parameter is 10_NOWAIT, the function returns immediately
whether or 110t it retrieved any keystroke information. The fbStatus field in the
KBDKEYINFO structure specifies whether a keystroke is received. The fbStatus
field is nonzero if a keystroke is received or zero if not.

206 KbdCharln

Return Value

Comments

Restrictions

Example

See Also

hkbd Identifies the logical keyboard. The handle must have been created by
using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ<BD_FOCUS~EQUIRED
ERRO~KBD_INVALIDJOWAIT
ERRO~KBDJNVALIDJIANDLE

The KbdCharIn function copies and removes keystroke information from the
input buffer of the specified logical keyboard. Although echo mode for the logi
cal keyboard may be turned on, KbdCharIn does not echo the characters it
reads. If the keyboard is in ASCII mode, KbdCharIn retrieves keystroke infor
mation for each key pressed except shift keys. If the keyboard is in binary mode,
KbdCharIn retrieves keystroke information for any key pressed except shift
keys. In most cases, a shift key is pressed in combination with other keys to
create a single keystroke. In binary mode with shift reporting turned on, a shift
key by itself creates a keystroke this function can retrieve. For more information
on binary mode and shift-reporting mode, see the KbdSetStatus function.

The KbdCharIn function retrieves extended ASCII codes, such as when the ALT
key and another key, called the primary key, are pressed simultaneously. When .
the function retrieves an extended code, it sets the chChar field of the
KBDKEYINFO structure to OxOOOO or OxOOEO. It also sets the fbStatus field to
EXTENDED_CODE and copies the extended code to the chScan field. Note
that both fields need to be examined to determine whether an extended code has
been received. The extended code is usually the scan code of the primary key. In
ASCII mode, the function retrieves only complete extended codes, which means
that if both bytes of the extended code do not fit in the buffer, neither byte is
retrieved. For more information, see the Microsoft Operating System12
Programmer's Reference, Volume 3.

This function must be called twice to retrieve a code for a double-byte character
set (DBCS). If the code retrieved is the first byte of a double-byte character, the
fbStatus field of the KBDKEYINFO structure is set to Ox0080.

In real mode, the following restrictions apply to the KbdCharIn function:

• It does not copy the system time to the KBDKEYINFO structure and
there is no interim character support.

• It retrieves characters only from the default logical keyboard (handle 0).
• The fbStatus field can be OxOOOO or SHIFTJ<EYJN.
• The hkbd parameter is ignored.

This example calls the KbdCharIn function to retrieve a character, and then
displays the character on the screen:

KBDKEYINE'O kbci;
KbdCharln(&kbci,

IO_WAIT,
0) ;

VioWrtTTY(&kbci.chChar, 1, 0);

/* structure for data */
/* waits for key */
/* keyboard handle */

KbdGetStatus, KbdOpen, KbdPeek, KbdSetStatus, KbdStringIn

Changes

• KbdGetHWID

KbdGetHWID 207

In order to allow for input OxOOEO as a normal character, a new value has been
added to the fbStatus field of the KBDKEYINFO structure. In order to detect an
extended code, both of the following conditions must be true:

• chChar lUust be equal to OxOOOO or OxOOEO
• fbStatus must be equal to EXTENDED_CHAR

New
USHORT KbdGetHWID (pkbdhwid. hkbd)
PKBDHWID pkb dh wid; 1* pointer to structure for 10 number *1
HKBD hkbd; 1* keyboard handle *1

Parameters

Return Value

Example

See Also

The KbdGetHWID function retrieves the hardware ID number of a keyboard.

pkbdhwid Points to the KBDHWID structure that receives the ID number of
the keyboard. The KBDHWID structure has the following form:

typedef struct _KBDHWID {
USHORT cb;
USHORT idKbd;
USHORT usReservedl;
USHORT usReserved2;

} KBDHWID;

For a full description, see Chapter 4, "Types, Macros, Structures."

hkbd Identifies the logical keyboard. This handle must have been created by
using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~KBD_DETACHED
ERROR-KBDJNVALID-HANDLE
ERRO~KBDJ ARAMETER

This example opens a logical keyboard, and then calls the KbdGetHWID func
tion to retrieve the hardware ID number of that keyboard:

HKBD hkbd;
KBDHWID kbhw;

KbdOpen(&hkbd) ;
KbdGetFocus(IO_WAIT, hkbd);
kbhw.cb = sizeof(kbhw);
KbdGetHWID(&kbhw, hkbd);

DosDevIOCtl, KbdOpen

/' opens keyboard '/
/' gets focus for keyboard '/
/' sets structure length '/
/' gets ID number '/

208 KbdRegister

• KbdRegister Change
USHORT KbdRegister(pszModuleName, pszEntryName, (Functions)
PSZ pszMo duleNa me; I. pOinter to string for module name .1
PSZ pszEntryName: I. pOinter to string for entry-point name .1
ULONG (Functions: I. function flags .1

Parameters

Return Value

The KbdRegister function registers a Kbd subsystem for the specified logical
keyboard. The function temporarily replaces the specified default Kbd functions
with the functions in the specified module. Once KbdRegister replaces a func
tion, MS OS/2 passes any subsequent call to the replaced function to a function
in the given module. If a function is not replaced, MS OS/2 continues to call the
default Kbd function.

pszModuleName Points to the null-terminated string that contains the name
of the dynamic-link module that specifies the replacement Kbd functions. The
string must be a valid filename.

pszEntryName Points to the null-terminated string that contains the name of
the dynamic-link entry-point function. For a full description, see the following
"Comments" section.

fFunctions Specifies the flags for the functions to be replaced. This parameter
can be any combination of the following values:

Value

KR_KBDCHARIN

KR_KBDPEEK

KR_KBDFLUSHBUFFER

KR_KBDGETSTATUS

KR_KBDSETSTA TUS

KR_KBDSTRINGIN

KR_KBDOPEN

KR_KBDCLOSE

KR_KBDGETFOCUS

KR_KBDFREEFOCUS

KR_KBDGETCP

KR_KDDSETCP

KR_KBDXLA TE

KR_KBDSETCUSTXT

KR_KBDGETHWID

Meaning

Replace KbdCharIn.

Replace KbdPeek.

Replace KbdFlushBuffer.

Replace KbdGetStatus.

Replace KbdSetStatus.

Replace KbdStringIn.

Replace KbdOpen.

Replace KbdClose.

Replace KbdGetFocus.

Replace KbdFreeFocus.

Replace KbdGetCp.

Replace KbdSetCp.

Replace KbdXlate.

Replace KbdSetCustXt.

Replace KbdHWId.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_KBD_INV ALID_ASCIIZ
ERROILKBD_INV ALID_MASK
ERROR_KBD_REGISTER

Comments

KbdRegister 209

MS OS/2 passes a Kbd function to the given module by preparing the stack and
calling the function pointed to by the pszEntryName parameter. The specified
module must export the entry-point function name. The entry-point function
must check the function code on the stack to determine which function is being
requested and then pass control to the appropriate function in the module. The
entry-point function can then access any additional parameters placed on the
stack by the original call to KbdRegister.

Only one process in a screen group can use the KbdRegister function at any
given time. That is, only one process can replace Kbd functions at any given
time. The process can restore the default Kbd functions by calling the Kbd
DeRegister function. A process can replace Kbd functions any number of times,
but only by first restoring the default functions and then reregistering the new
functions.

The entry-point function (FullcName) must have the following form:

SHORT FAR FuncName(seIDataSeg, usReservedl, fFunction,
ulReserved2, usParaml, usParam2, usParam3, usParam4,
usParam5, usParam6)

SEL selDataSeg;
USHORT usReservedl;
USHORT fFunction;
ULONG ulReserved2;
USHORT usParaml;
USHORT usParam2;
USHORT usParam3;
USHORT usParam4;
USHORT usParam5;
USHORT usParam6;

Parameters

selDataSeg

usReservedl

fFunction

Description

Specifies the data-segment selector of the process that
calls the specified Kbd function.

Specifies a reserved value that must not be changed.
This value represents a return address for the MS
OS/2 function that routes Kbd function calls.

Specifies the function code of the function request.
This parameter can be one of the following values:

Value Meaning

OxOOOO KbdCharIn called.

OxOOOl KbdPeek called.

OXOOO2 KbdFlushBuffcr called.

OXOOO3 KbdGetStatus called.

OxOOO4 KbdSctStatus called.

OXOOOS KbdStringlo called.

OXOOO6 KbdOpeo called.

OXOOO7 KbdClose called.

OXOOO8 KbdGetFocus called.

OXOOO9 KbdFrccFocus called.

210 KbdRegister

See Also

Changes

uiReserved2

usParaml-usParam6

Value Meaning

OxOOOA KbdGctCp called.

OxOOOB KbdSctCp called.

OxOOOC KbdXlate called.

OxOOOD KbdSctCustXt called.

OxOOOE KbdGctHWld called.

Specifies a reserved value that must not be changed.
This value represents the return address of the pro
gram that calls the specified Kbd function.

Specify up to six unsigned values passed with the call
to the Kbd function. The number and type of parame
ters used depend on the specific function.

The entry-point function should determine which function is requested and then
carry out an appropriate action by using the passed parameters. If necessary, the
entry-point function can call a function within the same module to carry out the
task. The entry-point or replacement function must leave the stack in the same
state as it was received because the return addresses on the stack must be avail
able in the correct order to return control to the program that originally called
the KbdRegister function.

The registered function should return - 1 to call the original function, 0 if no
error occurred, or an error value.

In general, to access the keyboard the replacement function must use the input
and-output control functions for the keyboard.

The KbdRegister function itself cannot be replaced.

KbdDeRegister, KbdFlushBuffer

The KRJ{BDGETTHWID constant for the new function KbdGetHWId has
been added to the functions list and also to the return list.

• MLM_CHARFROMLINE New

Parameters

Return Value

MLM_CHARFROMLINE
mpl = MPFROMLONG((LINE) lLineNum);
mp2 = OL;

/* line number */
/* not used, must be zero */

An application sends an ML1LCHARFROMLINE message to obtain the offset
(number of characters from the beginning of the text) of the first character on
the specified line in a multiple-line entry field (MLE).

lLineNum Low and high word of mpl. Specifies the line number. A value of
zero specifies the first line. A value of - 1 specifies the line that contains the cur
sor.

The return value is the 32-bit offset of the first character on the specified line.

Comments

See Also

Parameters

Return Value

See Also

Parameters

Return Value

Comments

See Also

If the lLineNum parameter specifies a line number greater than the line number
of the last line of text in the MLE, the insertion point returned will be the point
to the right of the last character in the MLE.

A line consists of all text up to a carriage return. A line may be displayed as
several lines on the screen due to word-wrapping and still be considered a single
line when specifying the line number for the lLineNum parameter.

Line numbers are zero-based. Therefore, the first line in an MLE is zero.

MLMJ.,1NEFROMCHAR

MLM_CLEAR
mpl = OL;
mp2 = OL;

/* not used, must be zero */
/* not used, must be zero */

New

An application sends an ML~CLEAR message to clear (delete) selected text
in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value (ULONG) that specifies the number of charac
ters deleted.

MLM_COPY
mpl = OL;
mp2 = OL;

/* not used, must be zero */
/* not used, must be zero */

New

An application sends an MLM_COPY message to copy selected multiple-lirie
entry field (MLE) text to the clipboard.

This message does not use any parameters.

The return value is a 32-bit value (ULONG) that specifies the number of charac
ters copied to the clipboard.

If no text is selected, the previous contents of the clipboard remain unaltered.

ML~CUT,ML~ASTE

MtM_CUT
mpl = ot;
mp2 = ot;

I' not used, must be zero 'I
I' not used, must be zero 'I

New

An application sends an MLM..CUT message to copy selected multiple-line
entry-field (MLE) text to the clipboard and then clear the selected text.

Parameters This message does not use any parameters.

Return Value The return value is a 32-bit value (ULONG) that specifies the number of charac
ters copied and cleared.

Comments If no text is selected, the previous contents of the clipboard remain unaltered.

See Also MLM..COPY, MLM_DELETE, MLMYASTE

• MLM_DELETE New

Parameters

Return Value

See Also

MLM_DEtETE
mpl = MPFROMtONC«LINE) lBegin);
mp2 = MPFROMtONC«UtONC) cch);

I' beginning of deletion 'I
I' characters to delete 'I

An application sends an MLMJ)ELETE message to delete the specified number
of characters from a multiple-line entry field (MLE).

lBegin Low and high word of mpl. Specifies the offset (number of characters
from the beginning of the text) of the first character to delete. If this parameter
is set to - 1, the current selection (if any) is deleted.

cch Low and high word of mp2. Specifies the number of characters to delete.
This parameter is ignored if the [Begin parameter is set to - 1.

The return value is a 32-bit value (LONG) that specifies the number of charac
ters deleted.

MLM..CUT

• MLM_DISABLEREFRESH New

Parameters

Return Value

Comments

See Also

MtM_DISABtEREFRESH
mpl = Ot; 1* not used, must be zero *1
mp2 = Ot; I' not used, must be zero 'I

An application sends an MLM_DISABLEREFRESH message to prevent
repainting (refresh) of a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is always TRUE.

When refresh is disabled, the MLE does not accept any keyboard or mouse
input. If the mouse is moved over the MLE, it becomes an hourglass pointer.

MLM_ENABLEREFRESH

MLM_EXPORT 213

• MLM_ENABLEREFRESH New
MLM_ENABLEREFRESH
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an ML1LENABLEREFRESH message to enable repaint
ing (refresh) of a multiple-line entry field (MLE). While the refresh state is
enabled, the entire MLE window is repainted.

Parameters This message does not use any parameters.

Return Value The return value is always TRUE.

See Also ML~DISABLEREFRESH

• MLM_EXPORT New

Parameters

Return Value

Comments

See Also

MLM_EXPORT
mpl = MPFROMP«PIPT) plOffset);
mp2 = MPFROMP«PULONG) pcbCopy);

I' beginning of copy area 'I
I' bytes to copy 'I

An application sends an MLM-EXPORT message to export text from a
multiple-line entry field (MLE) by copying the specified number of characters
from the MLE to the buffer specified by the ML~SETIMPORTEXPORT mes
sage. If all of the specified characters are on a single line, only the specified
characters are copied. If the specified characters are on more than one line, the
entire line containing the last specified character is copied.

plO!fset Low and high word of mpl. Points to the variable that specifies the
offset (number of characters from the beginning of the text) of the first character
to copy. A value of - 1 specifies the current cursor position. On return, this vari
able contains the offset to the first character not copied to the buffer.

pcb Copy Low and high word of mp2. Points to the variable that specifies the
number of characters to copy. On return, this variable is zero if the number of
characters actually copied does not exceed the numbers specified to be copied.
It is nonzero if the number of characters specified includes a line break and a
portion of another line.

The return value is a 32-bit value (ULONG) that specifies the number of bytes
actually copied. This value includes carriage-return and linefeed characters
copied to the buffer.

The text is copied in the form set by the ML~ORMAT message. Note that
the buffer is not zero-terminated.

All exports are done in full characters. Therefore, if the length of the buffer or
the number of bytes to be exported results in the last byte transferred being only
half of a double-byte character set (DBCS) character, the MLE does not
transfer that byte.

MLM_FORMAT, ML~SETIMPORTEXPORT

214 MLM_FORMAT

• MLM_FORMAT New

Parameters

MLM_E'ORMAT
mpl = MPE'ROMSHORT(usE'ormat); /* format to set */
mp2 = OL; /* not used, must be zero */

An application sends an MLMYORMAT message to set the format for import
ing to or exporting from a multiple-line entry field (MLE).

usFormat Low word of mpl. Specifies the format to set. This parameter can
be one of the following values:

Value

MLFIE_CFfEXT

MLFIE_NOTRANS

MLFIE_ WINFMT

Meaning

Specifies the clipboard text format. This
format uses carriage-return/linefeed char
acters for line breaks on export, and
recognizes linefeed, carriage-return I
linefeed, or linefeed/carriage-return char
acters for line breaks on import. This is
the default format.

Specifies a format that uses linefeed char
acters for line breaks. This value guaran
tees that any text imported into the MLE
in this form can be recovered in exactly
the same form on export.

Specifies the format of the MLE window.
This format recognizes carriage-return I
linefeed characters for line breaks on
import. It ignores the sequence carriage
return/carriage-returnllinefeed. On export,
it uses carriage-return/linefeed characters
to denote a hard line break and carriage
return/carriage-return/linefeed characters
to denote a soft line break caused by
word-wrapping.

See Also ML~XPORT, MLM_IMPORT, ML~QUERYFORMATLINELENGTH,
ML~QUERYFORMATTEXTLENGTH

• MLMJMPORT New

Parameters

MLM_IMPORT
mpl = MPE'ROMP(plOffset);
mp2 = MPE'ROMLONG(cbCopy);

/* import offset */
/* number of bytes to copy */

An application sends an MLMJMPORT message to insert the contents of the
buffer specified by the MLM_SETIMPORTEXPORT message into the multiple
line entry field (MLE).

plOffset Low and high word of mpl. Points to the variable that specifies the
offset (number of characters from the beginning of the text) to the edit-control
buffer where the import buffer is to be inserted. A value of - 1 specifies the
current cursor position. On return, this variable contains the offset to the first
character beyond the imported buffer.

MLM_LlNEFROMCHAR 215

cbCopy Low and high word of mp2. Specifies the number of bytes to import.
If the last byte transferred is half of a double-byte character or part of a line
break sequence (carriage-return/linefced), the last character is not transferred.

Return Value The return value is a 32-bit value (ULONG) that specifies the number of bytes
actually imported. This may be less than the value specified by the cbCopy
parameter-if the last byte to copy included only part of a double-byte character
or part of a linc-break scquence. The return value is zero if the import would
overflow the text limit set by the MLM_SETTEXTLIMIT message.

Comments The contents of the buffer are interpreted as being in the form set by the
MLMYORMAT message.

See Also MLMYORMAT, MLM_SETIMPORTEXPORT, ML~SETTEXTLIMIT,
MLN_OVERFLOW,W~CONTROL

• MLMJNSERT New

Parameters

Return Value

See Also

MLM_INSERT
mpl = MPFROMP(pszBuf); /* pointer to text */
mp2 = OL; /* not used, must be zero */

An application sends an MLMJNSERT message to insert text into a multiple
line entry field (MLE) at the current cursor position.

pszBuf Low and high word of mpl. Points to the null-terminated string that
contains the text to insert.

The return value is TRUE if the text is inserted successfully or FALSE if an
error occurs. If the inserted text overflows a text limit or format rectangle, an
error occurs and an appropriate notification message is sent.

MLN_OVERFLOW, MLN_TEXTOVERFLOW, ~CONTROL

• MLM_LINEFROMCHAR New

Parameters

Return Value

MLM_LINEFROMCHAR
mpl = MPFROMLONG(lOffset);
mp2 = OL;

/* offset of MLE character */
/* not used, must be zero */

An application sends an MLM-LINEFROMCHAR message to obtain the
number of the line that contains the specified character in a multiple-line entry
field (MLE).

[Offset Low and high word of mpl. Specifies the offset (number of characters
from the beginning of the text) of the specified character. A value of - 1
specifies that the number of the line that contains the cursor is returned. If the
offset specified is greater than the total number of characters currently in the
MLE, the number of the last line is returned.

The return value is a 32-bit value (ULONG) that specifies the number of the line
that contains the specified character.

216 MLM_LlNEFROMCHAR

Comments

See Also

Parameters

Return Value

See Also

Line numbers are zero-based. Therefore, the first line in an MLE is zero.

ML~CHARFROMLINE

MLM_PASTE
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

New

An application sends an MLMJ> ASTE message to copy the contents of the clip
board to a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value (ULONG) that specifies the number of charac
ters copied. If the clipboard contains an incompatible format, the return value is
zero.

ML~COPY,ML~CUT

• MLM_QUERYBACKCOLOR New

Parameters

Return Value

MLM_QUERYBACKCOLOR
mpl = OL; 1* not used, must be 0 *1
mp2 = OL; 1* not used, must be 0 *1

An application sends an MLM_QUERYBACKCOLOR message to obtain
background-color information for a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value (COLOR) that specifies the background color.
It can be one of the following values:

Value

CLR_FALSE

CLR_TRUE

CLR_DEFAULT

CLR_WHITE

CLR_BLACK

CLR_BACKGROUND

CLR BLUE

CLR_RED

CLR_PINK

CLR_GREEN

CLR_CYAN

CLR_YELLOW

Meaning

All color planes are zeros.

All color planes are ones.

Default value; same as CLR_NEUTRAL.

White.

Black.

Reset color.

Blue.

Red.

Pink.

Green.

Cyan.

Yellow.

See Also

Value

CLR_NEUTRAL

CLR_DARKGRA Y

CLR_DARKBLUE

CLR_DARKRED .

CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCY AN

CLR_BROWN

CLR_PALEGRA Y

MLM_QUERYFIRSTCHAR 217

Meaning

Neutral.

Dark gray.

Dark blue.

Dark red.

Dark pink.

Dark green.

Dark cyan.

Brown.

Light gray.

MLMLQUERYTEXTCOLOR,MLMLSETBACKCOLOR

• MLM_QUERYCHANGED New

Parameters

Return Value

Comments

See Also

MLM_QUERYCHANGED
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an MLMLQUERYCHANGED message to determine if the
text in a multiple-line entry field (MLE) has changed since the last time the
changed flag was cleared.

This message does not use any parameters.

The return value is TRUE if the text has changed since the last time the changed
flag was cleared. It is FALSE if the text is unchanged or if an error occurs.

The changed flag can also be set or cleared by using an MLMLSETCHANGED
message.

MLM_SETCHANGED, MLN_CHANGE, WMLCONTROL

• MLM_QUERYFIRSTCHAR New

Parameters

Return Value

See Also

MLM_QUERYFIRSTCHAR
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an MLM_QUERYFIRSTCHAR message to retrieve the
offset (number of characters from the beginning of the text) of the first visible
character in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value (ULONG) that specifies the offset of the first
visible character.

MLM_SETFIRSTCHAR

218 MLM_QUERYFONT

• MLM_QUERYFONT New

Parameters

Return Value

See Also

MLM_QUERYFONT
mpl = MPFROMP(pfattrs);
mp2 = OL;

1* pointer to structure with font info. *1
1* not used, must be zero *1

An application sends an MLM_QUERYFONT message to retrieve font informa
tion for a multiple-line entry field (MLE).

pfattrs Low and high word of mpl. Points to the FATTRS structure that con
tains font information. The FATTRS structure has the following form:

typedef struct _FATTRS {
USHORT usRecordLength;
USHORT fsSelection;
LONG lMatch;
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHO~T usCodePage;
LONG lMaxBaselineExt;
LONG lAveCharWidth;
USHORT fsType;
USHORT fsFontUse;

} FATTRS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the system font is in use; otherwise, it is FALSE.

ML~SETFONT

• MLM_QUERYFORMATLINELENGTH New

Parameters

Return Value

Comments

MLM_QUERYFORMATLINELENGTH
mpl = MPFROMLONG((LONG) 10ffset); 1* offset of beginning character *1
mp2 = OL; 1* not used, must be zero *1

An application sends an ML~QUERYFORMATLINELENGTH message to
retrieve the length (in bytes) of a line in a multiple-line entry field (MLE).

IO!fset Low and high word of mpl. Specifies the offset (number of characters
from the beginning of the text) of the first character to count. If this value is -1,
the current cursor position is used as the starting character.

The return value is a 32-bit value (ULONG) that specifies the number of bytes
. between the specified character and the beginning of the next line. If the

specified character is on the last line in the MLE, the number of bytes to the
end of that line is returned.

The number of bytes returned for the end-of-line character is determined by the
format specified by the MLM_FORMAT message. This format can be one of
the following values:

Format

MLFIE_NOTRANS

Description

The end-of-line character is formatted as carriage
return/linefeed characters (2 bytes).

The end-of-line character is formatted as a linefeed
character (1 byte).

See Also

Format

MLFIE_ WINFMT

MLM_QUERYFORMATRECT 219

Description

The end-of-line character for hard line breaks is
formatted as carriage-return/Iinefeed characters
(2 bytes). The end-of-line character for soft line
breaks (line breaks caused by word-wrapping) is
formatted as carriage-return/carriage-returnl
linefeed characters (3 bytes).

MLMYORMAT, MLM_QUERYFORMATTEXTLENGTH,
ML~QUERYLINELENGTH

= MLM_QUERYFORMATRECT New

Parameters

MLM_QUERYFORMATRECT
mpl = MPFROMP«PMLEFORMATRECT) pmlefrmrcl): /* point to MLEFORMATRECT */
mp2 = MPFROMP«PULONG) pflOptions): /* point to variable */

An application sends an ML~QUERYFORMATRECT message to retrieve the
dimensions used to define the format rectangle for a multiple-line entry field
(MLE).

pmlefrmrcl Low and high word of mpl. Points to the MLEFORMATRECT
structure that receives the format-rectangle dimensions for the MLE. The
MLEFORMATRECT structure has the following form:

typedef struct _MLEFORMATRECT {
LONG cxFormat:
LONG cyFormat:

} MLEFORMATRECT:

For a full description, see Chapter 4, "Types, Macros, Structures."

pjlOptions Low and high word of mp2. Points to the variable that receives the
flags that specify how the format rectangle is to be used. A value of zero causes
the MLE to remove any format rectangle and to ignore the pmlefrmrcl parame
ter. Otherwise, this parameter can be a combination of the following values:

Value

MLFFMTRECT_LIMITHORZ

Meaning

Specifies that the text within the MLE
cannot exceed the horizontal dimension
specified by the pmlefrmrcl parameter. If
word-wrap mode is turned on before the
format rectangle is set, lines automatically
wrap to stay within the horizontal limit of
the format rectangle. If word-wrap mode is
turned off before the format rectangle is ~

set, an MLN_PIXHORZOVERFLOW
notification message is sent to the applica
tion whenever an operation would exceed
the horizontal limit specified in the format
rectangle.

220 MLM_QUERYFORMATRECT

Return Value

See Also

Value

MLFFMTRECT_LIMITVERT

Meaning

Specifies that the text within the MLE
cannot exceed the vertical dimension
specified by the pmlefrmrcl parameter. An
MLN_PIXVERTOVERFLOW notification
message is sent to the application when
ever an MLE operation would cause text
to exceed the vertical limit.

MLFFMTRECT_MATCHWINDOW Specifies that the format rectangle is to be
kept the same size as the MLE window
(minus the border or scroll bars).

MLFFMTRECT_FORMATRECT Specifies that the format rectangle is to be
kept the same size as the MLE window
(minus the border or scroll bars) and that
text cannot exceed the size of the window.
This value is equivalent to combining

The return value is always FALSE.

ML~SETFORMATRECT

the MLFFMTRECT_LIMITHORZ,
MLFFMTRECT _LIMITVERT, and
MLFFMTRECT_MA TCHWINDOW
values.

• MLM_QUERYFORMATTEXTLENGTH New

Parameters

Return Value

Comments

MLM_QUERYFORMATTEXTLENGTH
mpl = MPFROMLONG((LONG) lOffset);
mp2 = MPFROMLONG((LONG) cbChar);

1* offset of starting character *1
1* char~cters to scan *1

An application sends an ML~QUERYFORMATTEXTLENGTH message to
retrieve the length (in bytes) of a range of characters in multiple-line entry field
(MLE).

IOf!set Low and high word of mpl. Specifies the offset (number of characters
from the beginning of the text) of the first character to count. If this parameter
is set to - 1, the current cursor position is used as the starting character.

cbChar Low and high word of mp2. Specifies the number of characters to
scan. If this parameter is set to -1, the entire text is scanned.

The return value is a 32-bit value (ULONG) that specifies the number of bytes in
the specified range of characters.

The number of bytes returned for any end-of-line characters is determined by the
. format specified by the ML~ORMAT message. This format can be one of
the following values:

Format

MLFIE_CFTEXT

Description

The end-of-line character is formatted as carriage-return!
linefeed characters (2 bytes).

See Also

MLM_QUERYLINECOUNT 221

Format Description

MLFIE_NOTRANS The end-of-line character is formatted as a linefeed char
acter (1 byte).

MLFIE_ WINFMT The end-of-line character for hard line breaks is format
ted as carriage-return/linefeed characters (2 bytes). The
end-of-line character for soft line breaks (line breaks
caused by word-wrapping) is formatted as carriage
return/carriage-returnllinefeed characters (3 bytes).

MLMYORMAT

• MLM_QUERYIMPORTEXPORT New

Parameters

Return Value

Comments

See Also

MLM_QUERYIMPORTEXPORT
mpl = MPFROMP«PBYTE FAR *) ppBuf);
mp2 = MPFROMP«PUSHORT) pcbBuf);

1* pointer to buffer *1
1* pointer to buffer size *1

An application sends an MLM_QUERYIMPORTEXPORT message to deter
mine the address and size of the buffer used by the import/export buffer of a
multiple-line entry field (MLE). The buffer must have been set previously by
sending an MLM_SETIMPORTEXPORT message (or the returned parameters
will be invalid).

ppBuf Low and high word of mpl. Points to the variable that receives the
address of the import/export buffer.

pcbBuf Low word of mp2. Points to the variable that receives the size of the
buffer pointed to by ppBuf.

The return value is always TRUE.

The import/export buffer can be used to import to and export text from the
MLE by using the MLMJMPORT and ML~XPORT messages.

ML~XPORT,ML~IMPORT,ML~SETIMPORTEXPORT

• MLM_QUERYLINECOUNT New

Parameters

Return Value

See Also

MLM_QUERYLINECOUNT
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an MLM_QUERYLINECOUNT message to retrieve the
numbcr of lines in a multiplc-linc cntry field (MLE).

This message does not use any parameters.

The rcturn valuc is a 32-bit valuc (ULONG) that specifies the number of lines in
the MLE.

MLM_QUERYTEXTLENGTH

222 MLM_QUERYLINELENGTH

• MLM_QUERYLINELENGTH New

Parameters

Return Value

Comments

See Also

MLM_QUERYLINELENGTH
mpl = MPFROMLONG(lOffset);
mp2 = OL;

I' beginning of count 'I
I' not used, must be zero 'I

An application sends an MLM_QUERYLINELENGTH message to retrieve the
number of characters between the specified character and the beginning of the
next line in a multiple-line entry control (MLE).

lOt/set Low and high word of mpl. Specifies the offset (number of characters
from the beginning of the text) of the first character to count. If this parameter
is set to -1, the current cursor position is used as the starting character.

The return value is a 32-bit value (ULONG) that specifies the number of charac
ters between the specified character and the beginning of the next line. If the
specified character is on the last line of the MLE, the number of characters to
the end of that line is returned.

The line break at the end of the line is counted as a single character.

MLM_QUERYTEXTLENGTH

• MLM_QUERYREADONLY New

Parameters

Return Value

See Also

MLM_QUERYREADONLY
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an ML~QUERYREADONLY message to determine
whether the multiple-line entry field (MLE) is in read-only mode. While read
only mode is set, the user cannot change the contents of the text in the MLE.

This message does not use any parameters.

The return value is the read-only state of the MLE. The return value is TRUE
when read-only mode is set.

ML~SETREADONLY

• MLM_QUERYSEL New
MLM_QUERYSEL
mpl = MPFROMSHORT(usQueryMode);
mp2 = OL;

I' specifies the type of query 'I
I' not used, must be zero 'I

An application sends an MLM_QUERYSEL message to retrieve the offsets
(number of characters from the beginning of the text) of the characters selected
in a multiple-line entry field (MLE).

Parameters

Return Value

Example

See Also

MLM_QUERYSEL TEXT 223

usQueryMode Low word of mpl. Specifies which offset to return. This
parameter can be one of the following values:

Value

MLFQS_MINMAXSEL

MLFQS_ANCHORSEL

MLFQS_CURSORSEL

Meaning

Returns the offsets of the selection in a
single 32-bit value. The high word contains
the offset of the ending selection charac
ter, and the low word will contain the
offset of the beginning character. These
values are invalid if the selection contains
offsets greater than 64K.

Returns the minimum (leftmost) offset of
the selection.

Returns the maximum (rightmost) offset of
the selection. .

Returns the offset of the first selected
character.

Returns the offset of the cursor.

The return value is a 32-bit value; its meaning depends on the setting of the
usQueryMode parameter.

This example sends two ML~QUERYSEL messages to obtain the beginning
and ending points of the current selection, sends an
ML~SETIMPORTEXPORT message to set up the export buffer, and then
sends an ML~XPORT message to export the selection into the buffer.

LONG lStart, cch;
CHAR szBuf[SOO];

lStart = (LONG) WinSendMsg(hwndMle, MLM_QUERYSEL,
(MPARAM) MLFQS_MINSEL, (MPARAM) OL);

cch = lStart - (LONG) WinSendMsg(hwndMle, MLM_QUERYSEL,
(MPARAM) MLFQS_MAXSEL, (MPARAM) OL);

WinSendMsg(hwndMle, MLM_SETIMPORTEXPORT,
(MPARAM) szBuf, (MPARAM) sizeo f (szBuf)) ;

WinSendMsg(hwndMle, MLM_EXPORT, (MPARAM) &lStart, (MPARAM) &cch);

ML~XPORT,ML~QUERYSELTEXT,ML~SETIMPORTEXPORT,
MLM_SETSEL

iii MLM_QUERYSEL TEXT New

Parameters

Return Value

MLM_QUERYSELTEXT
mpl = MPFROMP«PCH) pchBuf);
mp2 = OL;

/* pointer to buffer for selection */ '
/* not used, must be zero */

An application sends an ML~QUERYSELTEXT message to copy the selec
tion from a multiple-line entry field (MLE) into the specified buffer.

pchBuf Low and high word of mpl. Points to the buffer that receives the
selected text.

The return value is a 32-bit value (ULONG) that specifies the number of bytes
actually placed in the buffer.

224 MLM_QUERYSEL TEXT

Comments

See Also

The application must ensure that the selected text does not overflow the
buffer. An application can send an ML1LQUERYSEL message to
retrieve character offsets of the selection, and then send an
MLM_QUERYFORMATTEXTLENGTH message to determine the
number of bytes the selected text occupies.

ML1LQUERYFORMATTEXTLENGTH,ML1LQUERYSEL

MLM_QUERYTABSTOP New

Parameters

Return Value

See Also

MLM_QUERYTABSTOP
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an ML1LQUERYTABSTOP message to retrieve the inter
val (in pels) at which tab stops are set in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 16-bit value (USHORT) that specifies the tab-stop interval.

ML1LSETTABSTOP

I MLM_QUERYTEXTCOLOR New

Parameters

Return Value

MLM~QUERYTEXTCOLOR
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an ML1LQUERYTEXTCOLOR message to obtain the
color of the text in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value that indicates the color of the text. It can be
one of the following values:

Value

CLR_FALSE

CLR_TRUE

CLR_DEFAULT

CLR_WHITE

CLR_BLACK

CLR_BACKGROUND

CLR_BLUE

CLR_RED

CLR_PINK

CLR_GREEN

Meaning

All color planes are zeros.

All color planes are ones.

Default value; same as CLR_NEUTRAL.

White.

Black.

Reset color.

Blue.

Red.

Pink.

Green.

See Also

Value

CLR_CYAN

CLR_YELLOW

CLR_NEUTRAL

CLRJ)ARKGRA Y

CLR_DARKBLUE

CLR_DARKRED

CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCY AN

CLR_BROWN

CLR_PALEGRA Y

MLMLSETTEXTCOLOR

Meaning

Cyan.

Yellow.

Neutral.

Dark gray.

Dark blue.

Dark red.

Dark pink.

Dark green.

Dark cyan.

Brown.

Light gray.

MLM_QUERYTEXTLIMIT 225

• MLM_QUERYTEXTLENGTH New

Parameters

Return Value

See Also

MLM_QUERYTEXTLENGTH
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an MLM_QUERYTEXTLENGTH message to retrieve the
number of bytes in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value (LONG) that specifies the number of bytes in
the MLE. This value includes carriage-return and linefeed characters.

MLMLQUERYFORMATTEXTLENGTH

• MLM_QUERYTEXTLIMIT New

Parameters

Return Value

See Also

MLM_QUERYTEXTLIMIT
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an MLM_QUERYTEXTLIMIT message to retrieve the
number of characters currently allowed in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is a 32-bit value (LONG) that specifies the maximum number of
characters currently allowed in the MLE. A return value of - 1 indicates an
unlimited number of characters are allowed.

MLM_SETTEXTLIMIT

226 MLM_QUERYUNDO

• MLM_QUERYUNDO New

Parameters

Return Value

See Also

MLM_QUERYUNDO
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an MLM_QUERYUNDO message to determine if a
multiple-line entry-field (MLE) operation can be undone.

This message does not use any parameters.

The return value is a 32-bit value that indicates whether an MLE operation can
be undone and, if so, which message can be undone. The low word contains
TRUE if the message can be undone or FALSE if the message was just undone.
The high word contains the message, or it contains zero if no message is avail
able to be undone. The following messages can be returned:

Message

ML~CUT

ML~INSERT

ML~PASTE

ML~SETFONT

MLM_SETTEXTCOLOR

W~CHAR

Description

Indicates that the last ML~CLEAR or
ML~DELETE message can be undone.

Indicates that the last ML~CUT message can
be undone.

Indicates that the last ML~INSERT message
can be undone.

Indicates that the last ML~P ASTE message
can be undone.

Indicates that the last ML~SETFONT mes
sage can be undone.

Indicates the last ML~SETBACKCOLOR
or ML~SETTEXTCOLOR message can be
undone.

Indicates that the last character entered by the
user can be undone.

ML~ESETUNDO,MLM_UNDO

• MLM_QUERYWRAP New

Parameters

Return Value

See Also

MLM_QUERYWRAP
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an ML~QUERYWRAP message to retrieve the current
state of word-wrapping in a multiple-line entry field (MLE).

This message does not use any parameters.

The return value is TRUE if word-wrapping is currently set. It is FALSE if
word-wrapping is not set.

ML~SETWRAP

MLM_SEARCH 227

• MLM_RESETUNDO New
MLM_RESETUNDO
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an MLMJESETUNDO message to reset (clear) the undo
flag of a multiple-line entry field (MLE). The undo flag is set whenever an opera
tion within the MLE can be undone.

Parameters This message does not use any parameters.

Return Value The return value is TRUE if the MLE undo flag is cleared as a result of this
message. Otherwise, the return value is FALSE, indicating that the undo flag
was already cleared.

See Also ML~QUERYUNDO, MLM_UNDO

• MLM_SEARCH New

Parameters

MLM_SEARCH
mpl = MPFROMLONG(ulStyle);
mp2 = MPFROMP(pmlesearch);

1* search style * I
1* address of structure with search data *1

An application sends an ML~SEARCH message to search for (and optionally
replace) text within a multiple-line entry field (MLE).

ulSiyle Low and high word of mpl. Specifies the style of the search. This
parameter can be any combination of the following values:

Value Meaning

MLFSEARCILCASESENSITIVE Specifies that the search is case-sensitive.

MLFSEARCILSELECTMATCH Specifies that if the text is found, it should
be highlighted and scrolled into view (if
necessary). This is identical to sending the
ML~SETSEL message.

MLFSEARCILCHANGEALL Specifies that all text found is to be
replaced by the text in the pchReplace
field of the MLE_SEARCHDATA struc
ture.

pm lesearch Low and high word of mp2. Points to the MLE_SEARCHDATA
structure that contains the search data. The MLE_SEARCHDATA structure has
the following form:

typedef struct _MLE_SEARCHDATA {
USHORT cb;
PCHAR pchFind;
PCHAR pchReplace;
SHORT cchFind;
SHORT cchReplace;
IPT iptStart;
IPT iptStop;
USHORT cchFound;

} MLE_SEARCHDATA;

For a full description, see Chapter 4, "Types, Macros, Structures."

228 MLM_SEARCH

Return Value

Comments

Example

See Also

The return value is TRUE if the search is successful, or it is FALSE, indicating
that the search string was not found.

If the MLFSEARCILCHANGEALL flag is not set and a match is found, the
iptStart field of the MLE_SEARCHDATA structure is set to the offset (number
of characters from the beginning of the text) of the first character that matches
the search string. The cchFound field is set to the number of characters that
match the search string. The current cursor position is not changed unless the
MLFSEARCILSELECTMATCH flag is set.

While the MLE is searching, it periodically sends an MLN_SEARCHP AUSE
message that contains the current position of the search. You can terminate the
search by returning TRUE to the MLN_SEARCHPAUSE notification message.

This example searches for all occurrences of the word bonnie and replaces it
with the word jeannette:
MLE_SEARCHDATA search;
search.cb = sizeof(search);
search.pchFind = "bonnie";
search.pchReplace = "jeannette";
search.cchFind = 6;
search.cchReplace = 9;
search.iptStart = 0; IA from the beginning of the text AI
search.iptStop = -1; IA to the end of the text AI
WinSendMsg(hwndMle, MLM_SEARCH, MLFSEARCH_CHANGEALL, (MPARAM) &search);

MLM_SETSEL, MLN_SEARCHPAUSE, W~CONTROL

• MLM_SETBACKCOLOR New

Parameters

MLM_SETBACKCOLOR
mp1 = MPFROMLONG((COLOR) clr);
mp2 = OL;

IA color AI
IA not used, must be zero AI

An application sends an ML~SETBACKCOLOR message to set the back
ground color ofa multiple-line entry field (MLE).

clr Specifies the color. This parameter can be one of the following values:
Value

CLR_FALSE

CL~TRUE

CLR_DEFAULT

CLR_WHITE

CLR_BLACK

CLR_BACKGROUND

CLR_BLUE

CLR_RED

CLR_PINK

CLR_GREEN

Meaning

All color planes are zeros.

All color planes are ones.

Default value; same as CLR_NEUTRAL.

White.

Black.

Reset color.

Blue.

Red.

Pink.

Green.

Return Value

See Also

Value

CLR_CYAN

CLR_YELLOW

CLR_NEUTRAL

CLRJ)ARKGRA Y

CLR_DARKBLUE

CLR_DARKRED

CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCY AN

CLR_BROWN

CLR_PALEGRA Y

Meaning

Cyan.

Yellow.

Neutral.

Dark gray.

Dark blue.

Dark red.

Dark pink.

Dark green.

Dark cyan.

Brown.

Light gray.

MLM_SETFIRSTCHAR 229

The return value is the previous color of the background.

MLM_QUERYBACKCOLOR,MLM_SETTEXTCOLOR

• MLM_SETCHANGED New

Parameters

Return Value

See Also

MLM_SETCHANGED
mpl = MPFROMSHORT((BOOL) fChanged); 1* changed flag *1
mp2 = OL; 1* not used, must be zero *1

An application sends an ML~SETCHANGED message to set or clear the
multiple-line entry field (MLE) changed flag.

fChanged Low word of mpl. Specifies whether to set or clear the changed
flag. A value of TRUE sets the changed flag.

The return value is the previous state of the MLE changed flag.

ML~QUERYCHANGED,MLN_CHANGE,WNLCONTROL

• MLM_SETFIRSTCHAR New

Parameters

MLM_SETFIRSTCHAR
mpl = MPFROMLONG(lOffChar); 1* insertion point *1
mp2 = OL; 1* not used, must be zero *1

An application sends an ML~SETFIRSTCHAR message to specify the first
visible character in a multiple-line entry field (MLE). The MLE scrolls the text
vertically and horizontally as needed to place the character in the upper-left
corner of the MLE window.

IOffChar Low and high word of mpl. Specifies the offset (number of charac
ters from the beginning of the text) of the character to be placed in the upper
left corner of the MLE window.

230 MLM_SETFIRSTCHAR

Return Value The return value is always TRUE.

Comments If the value specified by the [OJ/Char parameter is greater than the total number
of characters in the MLE, the first visible character is set one beyond the last
character in the MLE. .

See Also ML~QUERYFIRSTCHAR

MLM_SETFONT New

Parameters

Return Value

Example

See Also

MLM_SETFONT
mpl = MPFROMP(pfattrs);
mp2 = OL;

1* pointer to structure with font info. *1
1* not used, must be zero *1

An application sends an MLM_SETFONT message to set the font for a
multiple-line entry field (MLE).

pfattrs Low and high word of mpl. Points to the FATTRS structure that con
tains the font information. The FATTRS structure has the following form:

typedef struct _FATTRS {
USHORT usRecordLength;
USHORT fsSelection;
LONG lMatch;
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG lMaxBaselineExt;
LONG lAveCharWidth;
USHORT fsType;
USHORT fsFontUse;

} FATTRS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the font is successfully set or FALSE if an error
occurs.

This example retrieves the current font information, changes it to italic, and sets
it using the ML~SETFONT message:

FATTRS fat;
fat.usRecordLength = sizeof(FATTRS);
WinSendMsg(hwndMle, MLM_QUERYFONT, (MPARAM) &fat, (MPARAM) OL);
fat.fsSelection = FATTR_SEL_ITALIC;
WinSendMsg(hwndMle, MLM_SETFONT, (MPARAM) &fat, (MPARAM) 0);

ML~QUERYFONT

MLM_SETFORMATRECT New

MLM_SETFORMATRECT
mpl = MPFROMP«PMLEFORMATRECT) pmlefrmrcl); 1* point to format recto *1
mp2 = MPFROMLONG«ULONG) flOptions); 1* options *1

An application sends an MLM_SETFORMATRECT message to set a format
rectangle in a multiple-line entry field (MLE). The format rectangle can be used
to limit the insertion of text within the MLE window.

Parameters

Return Value

MLM_SETFORMATRECT 231

pmlefrmrcl Low and high word of mpl. Points to the MLEFORMATRECT
structure that contains the format-rectangle dimensions. If this parameter is
NULL, the current MLE-window dimensions (minus the border or scroll bars) is
used. The MLEFORMATRECT structure has the following form:

typedef struct _MLEFORMATRECT {
LONG cxFormat;
LONG cyFormat;

} MLEFORMATRECT;

For a full description, see Chapter 4, "Types, Macros, Structures."

flOptions Low and high word of mp2. Specifies how the format rectangle is to
be used. A value of zero causes the MLE to remove any format rectangle and to
ignore the pmlefrmrcl parameter. Otherwise, this parameter can be a combina
tion of the following values:

Value

MLFFMTRECT_LIMITHORZ

MLFFMTRECT_LIMITVERT

Meaning

Specifies that the text within the MLE
cannot exceed the horizontal dimension
specified by the pmlefnnrcl parameter. If
word-wrap mode is turned on before the
format rectangle is set, lines automatically
wrap to stay within the horizontal limit of
the format rectangle. If word-wrap mode is
turned off before the format rectangle is
set, an MLN_PIXHORZOVERFLOW
notification message is sent to the applica
tion whenever an operation would exceed
the horizontal limit specified in the format
rectangle.

Specifies that the text within the MLE
cannot exceed the vertical dimension
specified by the pmlefnnrcl parameter.
When an MLE operation would cause
text to exceed the vertical limit, an
MLN_PIXVERTOVERFLOW notification
message is sent to the application.

MLFFMTRECT_MATCHWINDOWSpecifies that the format rectangle is to be
kept the same size as the MLE window
(minus the border or scroll bars).

MLFFMTRECT_FORMATRECT Specifies that the format rectangle is to be
kept the same size as the MLE window
(minus the border or scroll bars) and that
text cannot exceed the size of the window.
This value is equivalent to combining
the MLFFMTRECT_LIMITHORZ,
MLFFMTRECT_LIMITVERT, and
MLFFMTRECT_MA TCHWINDOW
values.

The return value is TRUE if the text fits within the new format-rectangle dimen
sions. Otherwise, it is FALSE, indicating that the text does not fit and that the
format rectangle is not set.

232 MLM_SETFORMATRECT

Comments

See Also

Whenever an insertion would cause the text to be too long for the MLE, the
MLNJ>IXVERTOVERFLOW or MLNJ>IXHORZOVERFLOW notification
message is sent.

ML~QUERYFORMATRECT,MLNJ>IXHORZOVERFLOW,
MLNJ>IXVERTOVERFLOW, ~CONTROL

• MLM_SETIMPORTEXPORT New

Parameters

Return Value

See Also

MLM_SETIMPORTEXPORT
mpl = MPFROMP«PBYTE) pBuf); /* pointer to buffer */
mp2 = MPFROMSHORT«USHORT) cbBuf); /* buffer size */

An application sends an ML~SETIMPORTEXPORT message to set the
transfer buffer for a multiple-line entry field (MLE).

pBuf Low and high word of mpl. Points to the buffer to be used by the
MLMJMPORT, ML~XPORT, and ML~SEARCH messages.

cbBuf Low word of mp2. Specifies the size (in bytes) of the buffer pointed to
by the pBu! parameter. The largest size that can be specified is 65,535.

The return value is always TRUE.

ML~XPORT, MLMJMPORT

• MLM_SETREADONLY New

Parameters

Return Value

See Also

MLM_SETREADONLY
mpl = MPFROMSHORT(fReadOnly); /* read-only flag */
mp2 = OL; /* not used, must be zero */

An application sends an ML~SETREADONL Y message to set the read-only
state of a multiple-line entry field (MLE). While the read-only state is set, the
user cannot change the contents of the MLE text.

fReadOnly Low word of mpl. Specifies the read-only state of the MLE. A
value of TRUE sets the read-only state.

The return value is the previous value of the read-only state. If the return value
is zero, the read-only state was turned off. If the return value is nonzero, the
read-only state was turned on.

ML~QUERYREADONLY

MLM_SETTABSTOP 233

• MLM_SETSEL New

Parameters

Return Value

Comments

Example

See Also

MLM_SETSEL
mpl = MPFROMLONG(lOffsetBegin);
mp2 = MPFROMLONG(lOffsetEnd);

I' offset of beginning character 'I
I' offset of ending character '/

An application sends an MLM.-SETSEL message to select an area of text within
a multiple-line entry field (MLE).

IOjjsetBegin Low and high word of mpl. Specifies the offset (number of char
acters from the beginning of the text) of the first character. If this parameter is
set to - 1, the current cursor position is used.

IOffsetEnd Low and high word of mp2. Specifies the offset of the character
just beyond the selection, where the cursor is to be placed. If this parameter is
set to - 1, the current cursor position is used.

The return value is always TRUE.

The MLE scrolls the text vertically and horizontally as needed to make the. selec
tion visible.

If the IOffsetEnd parameter is greater than the IOffsetBegin parameter, the cursor
is placed to the right of the selected text. If lOf!setEnd is less than lOf!setBegin,
the cursor is placed to the left of the selected text.

Character offsets are zero-based. Therefore, the first character has an offset of
zero.

This example highlights the second, third, and fourth characters of the text, and
places the cursor to the right of the fourth character.

WinSendMsg(hwndMle, MLM_SETSEL, (MPARAM) lL, (MPARAM) 4L);

MLM_QUERYSEL

• MLM_SETTABSTOP New

Parameters

Return Value

See Also

MLM_SETTABSTOP
mpl = MPFROMSHORT«USHORT) usTablnterval); I' tab-stop interval 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an MLM.-SETT ABSTOP message to set the interval (in
pels) at which tab stops are placed in a multiple-line entry field (MLE).

us Tablnterval Low word of mpl. Specifies the interval (in pels) for tab stops.

The return value is a 16-bit value (USHORT) that specifies the tab-stop interval.

MLM.-QUERYTABSTOP

234 MLM_SETTEXTCOLOR

• MLM_SETTEXTCOLOR New

Parameters

Return Value

See Also

MLM_SETTEXTCOLOR
mpl = MPFROMLONG«COLOR) clr); /* color */
mp2 = OL; /* not used, must be zero */

An application sends an ML~SEITEXTCOLOR message to set the text color
of a mUltiple-line entry field (MLE).

clr Specifies the color. This parameter can be one of the following values:
Value

CLR_FALSE

CLR_TRUE

CLRJ)EFAULT

CLR_WHITE

CLRJ3LACK

CLR_BACKGROUND

CLRJ3LUE

CLR.,-RED

CLR_PINK

CLR_GREEN

CLR_CYAN

CLR_YELLOW

CLR_NEUTRAL

CLR_DARKGRA Y

CLR_DARKBLUE

CLR_DARKRED

CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCY AN

CLR_BROWN

CLR_PALEGRA Y'

Meaning

All color planes are zeros.

. All color planes are ones.

Default value; same as CLR_NEUTRAL.

White.

Black.

Reset color.

Blue.

Red.

Pink.

Green.

Cyan.

Yellow.

Neutral.

Dark gray.

Dark blue.

Dark red.

Dark pink.

Dark green.

Dark cyan.

Brown.

Light gray.

The return value is the previous color of the text.

MLMLQUERYTEXTCOLOR,MLMLSETBACKCOLOR

MLM_SETTEXTLIMIT New

MLM_SETTEXTLIMIT
mpl = MPFROMLONG(cch) ; /* maximum number of characters */
mp2 = OL; /* not used, must be zero */

An application sends an MLMLSEITEXTLIMIT message to set the text size of
a multiple-line entry field (MLE). The MLE does not accept any characters
beyond this limit.

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

Parameters

cch Low and high word of mpl. Specifies the maximum number of characters
allowed in the MLE. A value of - 1 specifies unlimited text is allowed.

The return value is zero if the current MLE text is less than the new limit. Oth
erwise, the return value is the number of characters that exceed the specified
limit, and the limit is not set.

If the user inserts more text than the specified maximum for the MLE, an
MLN_TXTOVERFLOW message is sent. If the application inserts more text
than the specified maximum, an MLN_OVERFLOW notification message is
sent.

ML~QUERYTEXTLIMIT, MLN_OVERFLOW, MLN_TEXTOVERFLOW,
WM_CONTROL

MLM_SETWRAP
mpl = MPFROMSHORT(fWrap);
mp2 = OL;

1* word-wrap flag *1
1* not used, must be zero *1

New

An application sends an ML~SETWRAP message to set word-wrap mode in a
multiple-line entry field (MLE).

fWrap Low word of mpl. Specifies whether to turn word-wrap mode on or
off. If this parameter is TRUE, word-wrapping is turned on. If it is FALSE,
word-wrapping is turned off.

The return value is TRUE if word-wrap mode is set as a result of this message.
Otherwise, the return value is FALSE, indicating that the word-wrap mode can
not be changed.

Word-wrap mode affects only the visual display of the text. Line breaks inserted
by the user are not affected.

Word-wrap mode cannot be turned off while the text exceeds the format rect
angle specified in the ML~SETFORMATRECT message. Word-wrap mode
cannot be turned on if the result of word-wrapping would cause the text to
exceed the format rectangle specified in the ML~SETFORMATRECT mes
sage.

ML~QUERYWRAP,ML~SETFORMATRECT

MLM_UNDO
mpl = OL;
mp2 = OL;

1* not used, must be zero *1
1* not used, must be zero *1

New

An application sends an ML~UNDO message to undo a multiple-line entry
field (MLE) operation.

This message does not use any parameters.

Return Value

Comments

The return value is TRUE if an MLE operation is undone.

Only the following MLE operations can be undone:

MLM_CLEAR
MLM_CUT
MLMJ)ELETE
ML~INSERT
MLMYASTE
ML~SETBACKCOLOR
ML~SETFONT
ML~SETTEXTCOLOR
ML~UNDO
WM_CHAR

If an ML~UNDO message is sent when the undo flag has been cleared, it rev
erses the previous undo operation.

See Also ML~QUERYUNDO, MLM-.RESETUNDO

• MLN_CHANGE New

Parameters

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl); /* MLE-window 10 */
usNotifyCode = MLN_CHANCE;

The MLN_CHANGE notification message is sent whenever the text in a
multiple-line entry field (MLE) changes.

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLN_CHANGE.

MLM_QUERYCHANGED,ML~SETCHANGED,~CONTROL

• MLN_CLPBDFAIL New

Parameters

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_CLPBDFAIL;
sError = (USHORT) SHORT1FROMMP(mp2);

/* MLE-window 10 */

/* error code */

The MLN_CLPBDF AIL notification message is sent if the clipboard is unable to
receive the text sent to it by a multiple-line entry field (MLE).

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLN_CLPBDFAIL.

MLN_KILLFOCUS 237

sError Specifies the error that occurred. This parameter can be one of the
following error values:

Value

MLFCLPBD_TOOMUCHTEXT

MLFCLPBD_ERROR

Meaning

Specifies that the amount of text exceeds
the capacity of the clipboard.

Specifies an unknown clipboard error.

See Also ML1LCOPY, MLM_CUT, W1LCONTROL

• MLN_HSCROLL New

Parameters

Return Value

See Also

MLN_HSCROLL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_UNOOOVERFLOW;
sPos = (USHORT) SHORT1FROMMP(mp2);

I' scroll-bar window IO 'I

I' slider position 'I

The MLN_HSCROLL notification message is sent to the owner of the multiple
line entry field (MLE) window when a horizontal scroll event occurs.

id Low word of mpl. Identifies the scroll-bar window.

usNotifyCode High word of mpl. Set to MLNJISCROLL.

sPos Low word of mp2. Specifies the number of pels of text (nonvisible) to
the left of the window.

An application should return zero if it processes this message.

• MLN_KILLFOCUS New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_KILLFOCUS;

I' MLE-window IO 'I

The MLNJ(ILLFOCUS notification message is sent whenever the window in a
multiple-line entry field (MLE) window loses the input focus.

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLNJ(ILLFOCUS.

An application should return zero if it processes this message.

238 MLN_MARGIN

Parameters

Return Value

See Also

New
WM_CONTROL
id = (USHORT) SHORTIFROMMP(mpl);
usNotifyCode = MLN_MARGIN;

1* MLE-window ID *1
pmrg = (PMARGSTRUCT) PVOIDFROMMP(mp2); 1* pointer to MLEMARGSTRUCT *1

The MLN_MARGIN notification message is sent when the mouse moves over
one of the margins of a multiple-line entry field (MLE).

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLN~ARGIN.

pmrg Low and high word of mp2. Points to the MLEMARGSTRUCT structure
that contains the margin data. The MLEMARGSTRUCT structure has the fol
lowing form:
typedef struct _MLEMARGSTRUCT {

USHORT afMargins;
USHORT usMouMsg;
IPT iptNear;

} MLEMARGSTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return zero if you want the MLE to process this message.

W1LCONTROL

• MLN_MEMERROR New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORTIFROMMP(mpl); 1* MLE-window ID *1
usNotifyCode = MLN_MEMERROR;

The MLN~EMERROR notification message is sent if there is insufficient
memory for the requested operation within a multiple-line entry field (MLE).

id Low word of mpl. Identifies the MLE window.

usNotify Co de High word of mpl. Set to MLN~EMERROR.

An application should return zero if it processes this message.

W1LCONTROL

I MLN_OVERFLOW New

Parameters

WM_CONTROL
id = (USHORT) SHORTIFROMMP(mpl); 1* MLE-window ID *1
usNotifyCode = MLN_OVERFLOW;
pmleover = (PMLEOVERFLOW) PVOIDFROMMP(mp2); 1* point to MLEOVERFLOW *1

The MLN_OVERFLOW notification message is sent when an operation in a
multiple-line entry field (MLE) would overflow a text limit or a format rectangle.

id Low word of mpl. Identifies the MLE window.

Return Value

Comments

See Also

MLN_PIXHORZOVERFLOW 239

usNotifyCode High word of mpl. Set to MLN_OVERFLOW.

pmleover Low and high word of mp2. Points to an MLEOVERFLOW struc
ture. The MLEOVERFLOW structure has the following form:

typedef struct _MLEOVERFLOW {
ULONG afErr1nd;
LONG nBytesOver;
LONG pixHorzOver;
LONG pixVertOver;

} MLEOVERFLOW;

For a full description, see Chapter 4, "Types, Macros, Structures."

The application should return TRUE to retry the operation.

Before returning TRUE, the application should perform some operation (for
example, changing the dimensions of the format rectangle) that will enable the
text to fit.

Overflow caused by user-inserted text results in a MLNYIXHORZOVERFLOW
or MLN_ VER TOVERFLOW notification message. Overflow caused by an appli
cation sending a message to the MLE results in a MLN_OVERFLOW message.

MLNYIXHORZOVERFLOW, MLNYIXVERTOVERFLOW,
W~CONTROL

• MLN_PIXHORZOVERFLOW New

Parameters

Return Value

Comments

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_P1XHORZOVERFLOW;
lOverFlow = LONGFROMMP(mp2);

/' MLE-window 1D '/

/, amount of overflow '/

The MLNYIXHORZOVERFLOW notification message is sent whenever user
uses the keyboard to insert more text than can fit in the current format rectangle
or the text limit of a multiple-line entry field (MLE).

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLNYIXHORZOVERFLOW.

IOverFlow Low and high word of mp2. The number of pels by which the
operation overflows the current format rectangle.

An application should return TRUE to retry the operation. If the application
returns FALSE, the user cannot insert additional text.

Before returning TRUE, the application should perform some operation (for
example, changing the dimensions of the format rectangle) that will enable the
text to fit.

MLN_OVERFLOW, MLN_PIXVERTOVERFLOW, ~CONTROL

240 MLN_PIXVERTOVERFLOW

• MLN_PIXVERTOVERFLOW New

Parameters

Return Value

Comments

Example

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mp1);
usNotifyCode = MLN_PIXVERTOVERFLOW;
10verFlow = LONGFROMMP(mp2);

/* MLE-window IO */

/* amount of overflow */

The MLNYIXVERTOVERFLOW notification message is sent whenever a user
uses the keyboard to insert more text than can fit in the current format rectangle
or text limit of a multiple-line entry field (MLE).

id Low word of mpl. Identifies the MLE window.

usNotifyCode· High word of mpl. Set to MLN_PIXVERTOVERFLOW.

IOverFlow Low and high word of mp2. The number of pels by which the
operation overflowed the current format rectangle.

An application should return TRUE to retry the operation. If the application
returns FALSE, the user cannot insert additional text.

Before returning TRUE, the application should perform some operation (for
example, changing the dimensions of the format rectangle) that will enable the
text to fit.

This example processes the MLNYIXVERTOVERFLOW message by increas
ing the size of the format rectangle:

MLEFORMATRECT mlefr;

case MLN_PIXVERTOVERFLOW:
mlefr.cyFormat += 100;
WinSendMsg(hwndMle, MLM_SETFORMATRECT, (MPARAM) &mlefr,

(MPARAM) MLFFMTRECT_L1M1TVERT);
return TRUE;

MLNYIXHORZOVERFLOW,W~CONTROL

• MLN_SEARCHPAUSE New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mp1);
usNotifyCode = MLN_SEARCHPAUSE;
lCurOffset = (ULONG) LONGFROMMP(mp2);

/* MLE-window 10 */

/* position of search */

The MLN_SEARCHPAUSE notification message is sent periodically while a
multiple-line entry field (MLE) searches as a result of an ML~SEARCH mes
sage. An application can use this message to terminate the search.

id Low word of mpl. Identifies the MLE window.

usNo tify Co de High word of mpl. Set to MLN_SEARCHPAUSE.

ICurOffset Low and high word of mp2. Specifies the offset (number of charac
ters from the beginning of the text) of the current character being searched for.

The application should return FALSE to continue the search or TRUE to ter
minate the search.

MLN_UNDOOVERFLOW 241

• MLN_SETFOCUS New

Parameters

Return Value

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_SETFOCUS;

I' MLE-window ID 'I

The MLN_SETFOCUS notification message is sent when the window in a
multiple-line entry field (MLE) receives the input focus.

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLN_SETFOCUS.

An application should return zero if it processes this message.

MLNJ(ILLFOCUS, ~CONTROL

• MLN_TEXTOVERFLOW New

Parameters

Return Value

Comments

See Also

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_TEXTOVERFLOW
cchOver = (ULONG) LONGFROMMP(mp2);

I' MLE-~indow ID 'I
1* characters over limit 'I

The MLN_TEXTOVERFLOW notification message is sent when an operation in
a multiple-line entry field (MLE) exceeds the current text limit.

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLN_TEXTOVERFLOW.

cchOver Low and high word of mp2. Specifies the number of characters by
which the text limit would overflow if the present operation completes.

An application should return TRUE to retry the operation. If the application
returns FALSE, the user cannot insert additional text.

Before returning TRUE, the application should perform some operation (for
example, changing the dimensions of the format rectangle) that will enable the
text to fit.

MLN_OVERFLOW,W~CONTROL

• MLN_UNDOOVERFLOW New

Parameters

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_UNDOOVERFLOW;

I' MLE-window ID *1

The MLN_UNDOOVERFLOW notification message is sent by a multiple-line
entry field (MLE) if a text change cannot be undone because the amount of text
involved exceeds the undo limit. This includes text entry, deletion, and cutting
and pasting.

id Low word of mpl. Identifies the MLE window.

242 MLN_UNDOOVERFLOW

usNotifyCode High word of mpl. Set to MLN_UNDOOVERFLOW.

Return Value An application should return zero if it processes this message.

See Also ML~CUT, ML~DELETE, MLMJNSERT, MLMYASTE,
WM_CONTROL

• MLN_VSCROLL New

Parameters

Return Value

See Also

MLN_VSCROLL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = MLN_UNDOOVERFLOW;
sPos = (USHORT) SHORT1FROMMP(mp2);

/* control-window ID */

/* slider position */

The MLN_ VSCROLL notification message is sent to the owner of a multiple
line entry field (MLE) window when a vertical scroll event occurs.

id Low word of mpl. Identifies the MLE window.

usNotifyCode High word of mpl. Set to MLN_ VSCROLL.

sPos Low word of mp2. Specifies the top line of the display text.

An application should return zero if it processes this message.

MLN~SCROLL,WNLCONTROL

• MM_DISMISSMENU New

Parameters

Return Value

See Also

MM_DISMISSMENU
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an M~DISMISSMENU message to dismiss a pull-down
menu. Ordinarily, an application sends this message only to a pull-down menu
that has the MIA-NODISMISS attribute.

This message does not use any parameters.

This message does not return a value.

M~NDMENUMODE

• MM_QUERYSELITEMID Change

Parameters

MM_QUERYSELITEMID
mpl = MPFROM2SHORT((BOOL) fIncludeSubMenus, 0);
mp2 = OL; /* must be zero */

An application sends an MM_QUERYSELITEMID message to determine the
identifier of the selected menu item.

flncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search. A value of TRUE includes submenus.

Return Value

See Also

Changes

MOU_SETPROTDRAWADDRESS 243

The return value is the identifier of the selected item, MIT_NONE if no item is
selected, or MID-ERROR if an error occurs.

M~SELECTITEM

The flnc1udeSubMenus parameter has been added.

• MOU_DISPLAYMODECHANGE New
USHORT DosDevlOCtl(Ol, Ol, Ox005D, Ox0007, hDevice)
HFllE hDevice; 1* device handle *1

Parameters

Return Value

Comments.

See Also

The MOU-DISPLA YMODECHANGE function notifies the mouse device
driver that a display-mode change is complete.

hDevice Identifies the pointing device that receives the device-control func
tion. This handle must have been created previously by using the DosOpen func
tion.

The return value is zero if the function is successful. Otherwise, it is an error'
value.

The MOU-DISPLA YMODECHANGE function notifies the mouse that a mode
switch is complete and that drawing is allowed. The pointer is redrawn if it was
hidden when the mode switch began.

DosDevIOCtl, DosOpen, VioSetMode

• MOU_SETPROTDRAWADDRESS Change
USHORT DosDevlOCtl(pbDrawData,pbFunction, Ox005A, Ox0007, hDevice)
PBYTE pbDrawData; 1* pointer to drawing data *1
PBYTE pbFunction; 1* pointer to structure with drawing function *1
HFllE hDevice; 1* device handle *1

Parameters

The MOU_SETPROTDRA W ADDRESS function notifies the mouse device
driver of the address of a protected-mode pointer-draw function. This function is
valid for protected mode only.

pbDrawData Points to the PTRDRA WDATA structure. This structure has the
following form:

typedef struct _PTRDRAWDATA {
USHORT cb;
USHORT usConfig;
USHORT usFlag

} PTRDRAWDATA;

/* length * /
/* which display to draw on */
/* Application/BVS Flag */

For a full description, see Chapter 4, "Types, Macros, Structures."

pbFunction Points to the PTRDRA WFUNCTION structure that contains the
address of the pointer-draw function. This structure has the following form:

typedef struct _PTRDRAWFUNCTION {
PFN pfnDraw;
PCH pchDataSeg;

} PTRDRAWFUNCTION;

244 MOU_SETPROTDRAWADDRESS

Return Value

Comments

See Also

Changes

hDevice Identifies the pointing device that receives the device-control func
tion. The handle must have been created previously by using the DosOpen func
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

The pointer-draw routine is an installed, pseudo-character device driver. The
mouse handler must do the following:

• Open the pointer-draw device driver.
• Query the pointer-draw device driver for the address of its entry point.
• Pass the resulting address of the pointer-draw entry point to the mouse

device driver that uses this function.

DosOpen, MOU_SETREALDRA WADDRESS

The first parameter of the DosDevIOCtl function is now pbDrawData, which
points to a PTRDRAWDATA structure.

• MOU_SETREALDRAWADDRESS Change
USHORT DosDevlOCtl(pvConfig, pbFunction, OxOOSB, Ox0007, hDevice)
PVOID pvConfig; 1* pointer to configuration structure *1
PBYTE pbFunction; 1* pointer to structure with function *1
HFILE hDevice; 1* device handle *1

Parameters

The MOU_SETREALDRA WADDRESS function notifies the real-mode mouse
device driver of the entry point of a real-mode pointer-draw routine. This func
tion is intended for use by Session Manager at the end of system initialization
and is valid for real mode only.

pVConjig Points to the VIOCONFIGINFO structure that contains information
about configuration of the default display. The VIOCONFIGINFO structure has
the following format:

typedef struct _VIOCONFIGINFO {
USHORT cb
USHORT adapter;
USHORT display;
ULONG cbMemory;
USHORT Configuration;
USHORT VDHVersion;
USHORT Flags;
ULONG HWBufferSize;
ULONG FullSaveSize;
ULONG PartSaveSize;
USHORT EMAdaptersOFF;
USHORT EMDisplaysOFF;

} VIOCONnGINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

Changes

MOU_UPDATEDISPLAYMODE 245

pbFunction Points to the PTRDRA WFUNCTION structure that contains the
address of the pointer-draw function. The PTRDRA WFUNCTION structure has
the following form:

typedef struct _PTRDRAWfUNCTION {
PfN pfnDraw;
PCH pchDataSeg;

} PTRDRAWfUNCTION;

hDevice Identifies the pointing device that receives the device-control func
tion. The handle must have been created previously by using the DosOpen func
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_SETPROTDRA WADDRESS

The first parameter now points to a VIOCONFIGINFO structure.

• MOU_UPDATEDISPLAYMODE Change
USHORT DosDevlOCtI(pvConfiglnfo, pviomi, Ox0051, Ox0007, hDevice)
PVOID pvConfiglnfo; 1* pointer to structure with configuration info *1
PVIOMODEINFO pviomi; 1* painter to structure with screen mode *1
HFILE hDevice; 1* device handle *1

Parameters

The MOU_UPDATEDISPLAYMODE function notifies the mouse device driver
that the display mode has been modified.

pVConfiglnfo Points to the VIOCONFIGINFO structure that contains the
current display-configuration information. The VIOCONFIGINFO structure has
the following form:

typedef struct _VIOCONfIGINfO {
USHORT cb;
USHORT adapter;
USHORT display;
ULONG cbMemory;
USHORT Configuration;
USHORT VDHVersion;
USHORT flags;
ULONG HWBufferSize;
ULONG fullSaveSize;
ULONG PartSaveSize;
USHORT EMAdaptersOFf;
USHORT EMDisplaysOfF;

} VIOCONFIGINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

246 MOU_UPDATEDISPLAYMODE

Return Value

Comments

See Also

Changes

• MOU_VER

pviomi Points to the VIOMODEINFO structure that contains the display
mode information. The VIOMODEINFO structure has the following form:

typedef struct _VIOMODEINFO {
USHORT cb;
UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;
UCHAR fmt_ID;
UCHAR attrib;
ULONG buf_addr;
ULONG buf_length;
ULONG full_length;
ULONG partial_length;
PCH ext_data_addr;

} VIOMODEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func
tion. This handle must have been created previously by using the DosOpen func
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

When the video I/O subsystem or registered video I/O subsystem sets the
display mode, it must notify the mouse device driver prior to switching display
modes, in order to synchronize the mouse device driver's functions that update
the pointer.

DosOpen, VioSetMode

This function has been updated to reflect changes to the VIOMODEINFO and
VIOCONFIGINFO structures:

New
USHORT DosDevlOCtl(pusVersion, OL, Ox006A, Ox0007, hDevice)
PUSHORT pus Version; /. pOinter to version number ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

The MOU_ VER function returns the version number of the mouse driver.

pus Version Points to a data area in which the version number of the mouse
driver is returned.

hDevice Identifies the pointing device that receives the device-control func
tion. This handle must have been created previously by using the DosOpen func
tion.

The return value is zero if the function is successful. Otherwise, it is an error
value.

Comments

See Also

MouGetNumQueEI 247

The MOU_ VER function returns OxOOOl as the version number of the mouse
driver to indicate that the following features are supported. These features are
new for MS OS/2, version 1.2.

Function

MOU_DISPLA YMODECHANGE

MOU_SETPROTDRA W ADDRESS

MOU_SETREALDRA W ADDRESS

MOU_UPDA TEDISPLA YMODE

MOU_UPDATEDISPLA YMODE

MOU_VER

Change

New IOCtl function.

New pbDrawData parameter.

New pvConfig parameter.

New pvConfiglnfo parameter.

Size of VIOMODEINFO structure
increased from 12 to 34 bytes.

New IOCtl function.

The MOU_ VER function should be used to determine the version number of the
mouse device driver before any of these features are used, in order to maintain
compatibility with earlier versions of MS OS/2.

DosDevIOCtl, DosOpen

• MouGetNumQueEI Correction
USHORT MouGetNumQueEI (pmouqi. hmou)
PMOUQUEINFO pmouqi; I. pointer to structure for number of events .1
HMOU hmou;

Parameters

Return Value

Example

I. mouse handle .. I

The MouGetNumQueEI function retrieves the number of events in the mouse
event queue.

pmouqi Points to the MOUQUEINFO structure that receives the number of
events in the mouse-event queue. The MOUQUEINFO structure has the follow
ing form:

typedef struct _MOUQUEINFO {
USHORT cEvents;
USHORT cmaxEvents;

} MOUQUEINFO;

hmou Identifies the mouse. This handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR~OUSE_NO_DEVICE

This example creates a mouse handle, enables the mouse pointer to be drawn,
and runs within an infinite for loop until there are no events in the queue:

248 MouGetNumQueEI

See Also

Corrections

• MouSynch

HMOU hmou;
MOUEVENTINFO mouevEvent;
MOUQUEINFO mouqi;
USHORT fWait = FALSE;
MouOpen(OL, &hmou);
MouDrawPtr(hmou);
for (;;) {

}

MouGetNumQueEl(&mouqi, hmou);
if (mouqi.cEvents > 1)

MouReadEventQue(&mouevEvent,
else

break;

It retrieves queue tl
It until the last queue ... tl

&fWait, hmou);

MouFlushQue, MouOpen, MouReadEventQue

The example was lacking a closing parenthesis at the end of the MouGetNum
QueEI function call. This has been added.

Correction
USHORT MouSynch(fWait)
USHORT fWait; /. wait/no-wait flag .1

Parameters

Return Value

Comments

See Also

The MouSynch function synchronizes access to the mouse. This function should
be used by a Mou subsystem to prevent more than one process from accessing
the mouse handle at anyone time.

fWai! Specifies whether to wait if the mouse device driver is currently busy. If
this parameter is FALSE, the function returns control immediately without wait
ing for the device to become free. If this parameter is TRUE, the function waits
until the mouse handle is free.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The MouSynch function requests an exclusive system semaphore that clears
when the Mou subsystem returns to the mouse router. The MouSynch function
blocks all other threads within a screen group until the semaphore clears.

A registered mouse subsystem should not issue the MouSynch function when the
base video subsystem (BVS) issues MouOpen and MouClose functions. A
registered mouse subsystem must provide the required level of serialization for
the MouOpen and MouClose functions without calling MouSynch. This special
processing is required because MouOpen and MouClose are issued by BVS on
the VioSetMode path. The VioSetMode function can be issued, in turn, by a
VioSavRedrawWait thread. You can assume the synchronization semaphore was
already held by another thread blocked by a call to the MouReadEventQue func
tion.

Note that if a save/redraw wait thread issues the VioSetMode function, and if
BVS in turn issues the MouOpen or MouClose function and the mouse subsys
tem in turn issues the MouSynch function, the screen switch will be blocked and
the system will "hang."

DosCloseSem, DosDevIOCtl, MouClose MouOpen, MouReadEventQue,
MouRegister, VioSavRedrawWait, VioSetMode

Corrections

• Piclchg

Piclchg 249

A registered mouse subsystem should not issue MouSynch when the base video
subsystem (BVS) issues MouOpen and MouClose functions. A registered mouse
subsystem must provide the required level of serialization for MouOpen and
MouClose without calling MouSynch. This special processing is required
because MouOpen and MouClose are issued by BVS on the VioSetMode path.
The VioSetMode function can be issued, in turn, by a VioSavRedrawWait
thread. You can assume the synchronization semaphore was already held by
another thread blocked by a call to MouReadEventQue.

Note that if a save/redraw wait thread issues the VioSetMode function, if BVS
in turn issues the MouOpen or MouClose function, and the mouse subsystem in
turn issues the MouSynch function, the screen switch will be blocked and the
system will "hang."

New
Baal Piclchg (hab, pszSrcFile, pszDestFile, IType)
HAB hab; f. anchor-block handle .f
PSZ pszSrcFile; f. pointer to source-file name .f
PSZ pszDestFile; f. pointer to destination-file name .f
lONG IType; f. translation type .f

Parameters

Return Value

Comments

The PicIchg function converts an interchange file to a metafile, or converts a
symbol file to a font file.

hab Identifies the anchor block.

pszSrcFile Points to the string that contains the name of the source file. This
name must be a valid MS OS/2 filename.

pszDestFile Points to the string that contains the name of the destination file.
This name must be a valid MS OS/2 filename.

1 Type Specifies the type of conversion requested. This parameter can be one
of the following values:

Value

PIC_PIFfOMET

PIC_SSTOFONT

Meaning

Converts an interchange file to a metafile.

Converts a symbol set to a font.

The return value is TRUE if the conversion is successful or FALSE if an error
occurs.

Any reference to an internal symbol or pattern set is changed to a reference to
the default font character set. Any reference to a line-type set is changed to a
reference to the default line type.

Only outline fonts are supported.

250 Pic Print

• PicPrint New
BOOl PicPrint(hab, pszSrcFile, IType, pszParms)
HAB hab; I. anchor-block handle .1
PSZ ,pszSrcFile; I. pointer to source-file name .1
lONG IType; I. type of file to print .1
PSZ pszParms;

Parameters

Return Value

I. spooler parameters

The Pic Print function prints a picture file.

hab Identifies the anchor block.

pszSrcFile Points to the string that contains the name of the source file. This
name must be a valid MS OS/2 filename.

lType Specifies the type of file to print. This parameter can be one of the fol
lowing values:

Value Meaning

PIP _MF Prints a metafile.

PIP _PIF Prints an interchange file.

pszParms Points to the string that contains spooler parameters.

The return value is TRUE if the print operation is successful or FALSE if an
error occurs.

• PL-ALTERED New
PL_ALTERED
hlnlUser = HWNDFROMMP(mpl); IA handle of user-profl1e fl1e AI

, hlnlSystem = HWNDFROMMP(mp2); IA handle of system-profl1e,fl1e AI

A PL.-ALTERED message is broadcast to all frame windows when an applica
tion calls the PrfReset function.

Parameters hiniUser Low and high word of mpl. Identifies the user-profile file.

hiniSystem Low and high word of mp2. Identifies the system-profile file.

Return Value An application should return zero if it processes this message.

See Also PrfReset

• PrfAddProgram New
HPROGRAM PrfAddProgram(hini, pprogde, hGroup)
HINI hini; I. initialization-file handle .1
PPROGDETAllS pprogde; I. address of structure with program information .1
HPROGRAM hGroup; I. program-group handle .1

The PrfAddProgram function adds a program to the program list of a group in
Desktop Manager. The same program title can be used in different groups, but
the program titles within a group must each be unique.

Parameters

Return Value

Errors

See Also

PrfAddProgram 251

hini Identifies the file to which the program information is added. This param
eter can be an initialization-file handle obtained by using the PrfOpenProfiIe
function, or it can be the value HINLUSERPROFILE, specifying the user
profile file.

pprogde Points to the PROGDETAILS structure that contains program infor
mation for the program being added to Desktop Manager. The PROGDETAILS
structure has the following form:

typedef struct _PROGDETAILS {
ULONG Length;
PROGTYPE progt;
USHORT padl[3];
PSZ pszTitle;
PSZ pszExecutable;
PSZ pszParameters;
PSZ pszStartupDir;
PSZ pszlcon;
PSZ pszEnvironment;
SWP swplnitial;
USHORT pad2[S];

} PROGDETAILS;

Fo~ a full description, see Chapter 4, "Types, Macros, Structures."

hGroup Identifies the program group to which the program title is added. If
this parameter is zero and the hini parameter is HINLUSERPROFILE, the pro
gram is added to the first group defined in Desktop Manager.

The return value is the handle for the added program if the function is successful
or NULL if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJ)UPLICATE_ TITLE
PMER~GROUP YROTECTED
PMERUNSUFF _SPACE_TO_ADD
PMERUNVALID_GROUP -HANDLE
PMERRJNVALID_PROGRAM_CATEGORY
PMERUNVALID_TARGETJIANDLE
PMERUNVALID_TITLE
PMER~EMORY~LLOCATION-ERR
PMER~EMORY~EALLOCATION-ERR
PMER~NOT_CURRENTYL_ VERSION
PMER~NOTJNJDX

PrfCreateGroup, PrfOpenProfiIe, PrfQueryDefinition, PrfQueryProgramTitles,
WinAddProgram

252 PrfChangeProgram

• PrfChangeProgram New
BOOL PrfChangeProgram(hini, hprog, pprogde)
HINI hini; I. initialization-file handle .1
HPROGRAM hprog; I. program handle .1
PPROGDETAILS pprogde; I. address of structure with replacement Info . • 1

Parameters

Return Value

Errors

Comments

See Also

The PrfChangeProgram function changes the 'information stored in Desktop
Manager about a program or group.

hini Identifies the file that contains the program or group information to
change. This parameter can be an initialization-file handle obtained by using the
PrfOpenProfile function, or it can be the value HINLUSERPROFILE, specify
ing the user-profile file.

hprog Identifies the program or group whose information is to change. If this
parameter is a group handle, only the progt and pszTitIe fields can be changed.

pprogde Points to the PROGDETAILS structure that contains the new pro
gram information. The PROGDETAILS structure has the following form:

typedef struct _PROGDETAILS {
ULONG Length;
PROGTYPE progt;
USHORT padl[3];
PSZ pszTitle;
PSZ pszExecutable;
PSZ pszParameters;
PSZ pszStartupDir;
PSZ pszlcon;
PSZ pszEnvironment;
SWP swplnitial;
USHORT pad2[S];

} PROGDETAILS;

For a full description, see. Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJ)UPLICATE_TITLE
PMER~GROUP YROTECTED
PMERRJNVALIDYROGRAM_CATEGORY
PMERRJNVALID_TARGET-HANDLE
PMERRJNV ALID_TITLE
PMER~EMORY~LLOCATION~RR
PMER~EMORY_DEALLOCATION_ERR
PMER~NOTJNJDX
PMER~UNKNOWN_APIPKT

Typically, an application calls PrfQueryDefinition to retrieve current information
about the function, changes the returned structure, and calls PrfChangeProgram
to change the program information.

You cannot change the program information for any program in a protected
group. You can change only the visibility and the protected state.

PrfCreateGroup, PrfOpenProfiIe, PrfQueryDefinition

PrfCreateGroup 253

• PrfCloseProfile New
BOOl PrfC lose Profile (hini)
HINI hini; 1* initialization-file handle .1

Parameters

Return Value

Errors

The PrfCloseProfile function closes a profile file opened by the PrfOpenProfile
function.

hini Identifies the profile file to close. The file must have been previously
opened by using the PrfOpenProfile function.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNVALIDJNLFILEJIANDLE

See Also PrfOpenProfile

• PrfCreateGroup New
HPROGRAM PrfCreateGroup(hini, pszTitle, fsVisible)
HINI hini; I. initialization-file handle .1
psz pszTitle; I. pointer to group title .1
UCHAR fsVisible; I. visibility flag .1

Parameters

The PrfCreateGroup function creates a new program-group entry in Desktop
Manager. If the program group already exists, this function returns a handle to
that group.

hini Identifies the file to which the new group is added. This parameter can be
an initialization-file handle obtained by using the PrfOpenProfile function, or it
can be the value HINLUSERPROFILE, specifying the user-profile file.

pszTitle Points to the title of the new group. The maximum string size is
defined by the MAXNAMEL constant (defined in the MS OS/2 include files).
Strings that exceed this limit are truncated to MAXNAMEL characters. Leading
and trailing blanks are removed. The string must contain at least one nonblank
character and cannot contain a backslash (\).

fsVisible Specifics the visibility of the new group. This flag can be a combina
tion of the following values:

Value

SHE_ VISIBLE

SHE_INVISIBLE

SHE_UNPROTECTED

SHE_PROTECTED

Meaning

The group is visible.

The group is invisible and cannot be viewed.

The group is unprotected.

The group is protected. Programs cannot be
added or deleted from the group.

This flag can also be set or reset by using the PrfChangeProgram function.

254 PrfCreateGroup

Return Value

Errors

Comments

See Also

The return value is the group handle for the group if the function is successful or
NULL if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNSUFF _SPACE_TO~DD
PMERRJNV ALID_GROUP JIANDLE
PMERRJNV ALID_TARGETJIANDLE
PMERRJNVALID_TITLE
PMERR-MEMORY~EALLOCATIONY-RR
PMER~NOT_CURRENTYL_ VERSION
PMERR_NOT_INJDX

The new program group is empty when created. Use the PrfAddProgram func
tion to add program entries to the group.

The PrfCreateGroup function replaces the Win Create Group function used in
MS OS/2, version 1.1.

PrfAddProgram, PrfChangeProgram, WinCreateGroup

• PrfDestroyGroup New
BOOl PrfDestroyGroup(hini, hGroup)
HINI hini; 1* initialization-file handle *1
HPROGRAM hGroup; 1* group handle *1

Parameters

Return Value

Errors

Comments

See Also

The PrfDestroyGroup function removes a group and all program information
contained within that group from Desktop Manager.

hini Identifies the file that contains the group to remove. This parameter can
be an initialization-file handle obtained by using the PrfOpenProfile function, or
it can be the value HINLUSERPROFILE, specifying the user-profile file.

hGroup Identifies the group to be removed from Desktop Manager.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~GROUP YROTECTED
PMERRJNVALID_GROUP JIANDLE
PMERRJNV ALID_ TARGETJIANDLE
PMERR-MEMORY_ALLOCATIONY-RR
PMERR~EMORY~EALLOCATIONY-RR
PMER~NOT_CURRENTYL_ VERSION
PMER~NOTJNJDX

You cannot remove a group that is protected. You can remove a group that con
tains programs.

PrfCreateGroup, PrfOpenProfile

PrfQueryOefinition 255

• PrfOpenProfile New
HINI PrfOpenProfile (hab, pszPro fileNa me)
HAB hab; 1* anchor-block handle *1
psz pszProfileName; 1* pointer to profile name *1

Parameters

Return Value

Errors

See Also

The PrfOpenProfile function opens a profile file. If the profile file does not
already exist, this function creates it. This function cannot be used to open the
user-profile or system-profile files.

hab Identifies the anchor block.

pszProfileName Points to the null-terminated string that contains the fully
qualified filename of the profile file. If no path information is included, the
default directory for the application is used. While not required, it is recom
mended that the extension .illi be used.

The return value is a handle to the profile file if the function is successful or
NULL if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~CALL_NOT~XECUTED
PMER~INVALID_DIRECTORY

PrfCloseProfile

• PrfQueryDefinition New
ULONG PrfQueryDefinition(hini, hprog, pprogde, cbBuf)
HINI hini; 1* initialization-file handle *1
HPROGRAM hprog; 1* program handle *1
PPROGDETAILS pprogde; 1* address of structure for program info. *1
ULONG cbBuf;

Parameters

1* length of buffer for program info.

The PrfQueryDefinition function retrieves information about a program or pro-
gram group. .

hini Identifies the file that contains the program information to retrieve. This
parameter can be an initialization-file handle obtained by using the
PrfOpenProfile function, or it can be the value HINLUSERPROFILE, specify
ing the user-profile file.

hprog Identifies the program or group for which information is to be
retrieved.

pprogde Points to the buffer that receives the program or group information.
This buffer is formatted as a PROGDETAILS structure, followed by various
strings pointed to by the fields within the PROGDETAILS structure. This buffer
must be large enough for both the structure and all strings returned by this func
tion.

256 PrfQueryOefinition

Return Value

Errors

Comments

Example

See Also

The PROGDETAILS structure has the following form:

typedef struct _PROGDETAILS {
ULONG Length;
PROGTYPE progt;
USHORT padl[3];
PSZ pszTitle;
PSZ pszExecutable;
PSZ pszParameters;
PSZ pszStartupDir;
PSZ pszlcon;
PSZ pszEnvironment;
SWP swplnitial;
USHORT pad2[S];

} PROGDETAILS;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies the size (in bytes) of the buffer pointed to by the pprogde
parameter. If this parameter is zero, only the length of the data is returned and
the PROGDETAILS structure is not filled in.

The return value is the number of bytes copied to the buffer pointed to by the
pprogde parameter if the function is successful or zero if an error occurs. If the
cbBuf parameter is zero, the return value is the size (in bytes) of the required
buffer pointed to by the pprogde parameter.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILBUFFEILTOO_SMALL
PMERRJNVALID_PARM
PMERRJNVALIDYIB
PMERRJNVALIDYROGRAMJIANDLE
PMERRJNVALID_GROUP JIANDLE
PMERILMEMORY~LLOCATION-ERR
PMERILMEMORY~EALLOCATION_ERR
PMERILNOT_CURRENTYL_ VERSION
PMERILNOTJNJDX

If the hprog parameter is a group handle, only the progt and pszTitle fields in
the PROGDETAILS structure pointed to by pprogde are filled in.

The PrfQueryDefinition function replaces the WinQueryDefintion function used
in MS OS/2, version 1.1.

This example calls PrfQueryDefinition to determine the size of the buffer needed
to retrieve all of the information. It then calls DosAllocSeg to allocate the
memory and calls PrfQueryDefinition again to retrieve all of the program infor
mation.

SEL sel;
ULONG cb;
PPROGDETAILS pprogde;

1* Eirst find the size of the buffer needed. *1

cb = PrfQueryDefinition(HINI_USERPROEILE, hprog, NULL, OL);
DosAllocSeg(cb, &sel, SEG_NONSHARED);
pprogde = MAKEP(sel, 0);
cb = PrfQueryDefinition(HINI_USERPROEILE, hprog, pprogde, cb);

PrfAddProgram, PrfOpenProfile, WinQueryDefinition

PrfQueryProfile 257

• PrfQueryProfile New
BOOl PrfQueryProfile (hab, pprfprofile)
HAB hab; /. anchor-block handle ./
PPRFPROFllE pprfprofile; /. address of structure for profile data ./

Parameters

Return Value

Comments

Example

See Also

The PrfQueryProfile function retrieves the fully qualified filenames of the two
MS OS/2 profile (initialization) files.

hab Identifies the anchor block.

pprfstruct Points to the PRFPROFILE structure that receives information
about the profile filenames. The PRFPROFILE structure has the following form:

typedef struct _PRFPROFILE {
ULONG cchUserName;
psz pszUserName;
ULONG cchSysName;
psz pszSysName;

} PRFPROFILE;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If either length field (cchUserName or cchSysName) of the PRFPROFILE struc
ture is set to zero when calling this function, the length field is set to the number
of bytes required to hold the corresponding filename, and that filename field is
not filled in.

This example calls PrfQueryProfile to retrieve the size of the filenames, allocates
the memory needed for each string, and calls PrfQueryProfile again to retrieve
the filenames.

PRFPROFILE prfpro;
SEL selUser;
SEL selSys;

prfpro.cchUserName = OL;
prfpro.cchSysName = OL;
PrfQueryProfile(hab, &prfpro); I' gets size of filenames 'I
DosAllocSeg(prfpro.cchUserName, &selUser, SEG_NONSHARED);
DosAllocSeg(prfpro.cchSysName, &selSys, SEG_NONSHARED);
prfpro.pszUserName = MAKEP(selUser, 0); I' initializes pointers 'I
prfpro.pszSysName =MAKEP(selSys, 0);
PrfQueryProfile(hab, &prfpro);

Prffieset

258 PrfQueryProfileData

• PrfQueryProfileData New
BOOl PrfQueryProfileData(hini. pszAppName. pszKeyName. pvBuf. pcbBuf)
HINI hini; I. initialization-file handle .1
PSZ pszAppName; I. pointer to application name .1
PSZ pszKeyName; I. pointer to keyname .1
PVOID pvBuf; I. pointer to buffer .1
PUlONG pcbBuf; I. buffer length .1

Parameters

Return Value

Errors

Comments

The PrfQueryProfileData function retrieves binary data from the profile file. The
location of the data is determined by the application name and keyname that are
passed to the function.

hini Identifies the file to query. This parameter can be a file handle obtained
with PrfOpenProfile or one of the following values:

Value

HINLPROFILE

HINLUSERPROFILE

HINLSYSTEMPROFILE

Meaning

Search the user profile, and if no matching
entries are found, search the system profile.

Search only the user profile.

Search only the system profile.

pszAppName Points to the null-terminated string that contains the application
name. The string must be less than 1024 bytes long, including the null terminat
ing character. The application name is case-sensitive. If pszAppName is NULL,
a list of all application names in the profile specified by the hini parameter is
returned.

pszKeyName Points to the null-terminated string that contains the keyname.
The string must be less than 1024 bytes long, including the null terminating char
acter. The keyname is case-sensitive. If pszKeyName is NULL, all keynames in
the profile specified by the hilli parameter are enumerated.

pvBuf Points to the buffer that receives the data.

pcbBuf Points to the variable that contains the size of the buffer pointed to by
the pv Buj parameter. When the function returns, this variable contains the actual
number of bytes placed in the buffer.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVALIDJ> ARM
PMER~EMORY-ALLOC
PMERR-MEMORY-ALLOCATION~RR
PMERR~EMORYJ)EALLOCATION~RR

When a NULL is used in pszKeyName, if the application name specified by
pszAppName is not found, PrfQueryProfileData returns FALSE.

The size of the data can be determined by calling the PrfQueryProfileSize func
tion. In cases where pvBuj points to a list of values, the value returned by

See Also

PrfQueryProfilelnt 259

PrfQueryProfileSize will include a NULL byte at the end of the list, used as a
terminator.

PrfQueryProfileSize, PrfWriteProfileData, WinQueryProfileData

• PrfQueryProfilelnt New
SHORT PrfQueryProfilelnt(hini, pszAppName, pszKeyName, sError)
HINI hini; I. initialization-file handle .1
PSZ pszAppName; I. pOinter to application name .1
PSZ pszKeyName; 1* pointer to keyname .1
SHORT sError, I. value returned if keyname not found .1

Parameters

Return Value

Errors

Comments

See Also

The PrfQueryProfilelnt function retrieves an integer from the profile file.

hini Identifies the file to query. This parameter can be a file handle obtained
with PrfOpenProfile or one of the following values:

Value

HINLUSERPROFILE

HINLSYSTEMPROFILE

Meaning

Search only the user profile.

Search only the system profile.

pszAppName Points to the null-terminated string that contains the application
name. The string must be less than 1024 bytes long, including the null terminat
ing character. The application name is case-sensitive.

pszKeyName Points to the null-terminated string that contains the keyname.
The string must be less than 1024 bytes long, including the null terminating char
acter. The keyname is case-sensitive.

sError Specifies the error value returned if the keyname specified by the
pszKeyName parameter cannot be found.

The return value is the integer representation of the text string. If the keyname
cannot be found, the return value is the error value specified by the sError
parameter.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following: .

PMERRJNVALIDYARM
PMER~EMORY~LLOC
PMER~EMORY~LLOCATION~RR
PMER~EMORY-DEALLOCATION~RR
PMERR-NOTJNJDX

The location of the integer is determined by the application name and keyname
passed to this function. The PrfWriteProfileString function must have been used
previously to store the integer as a string. For example, a string stored as "123"
would be returned as the integer 123. The string may contain a leading minus
sign if the number is negative.

PrfQuery ProfileData, PrfW riteProfileString, WinQueryProfilelnt

260 PrfQueryProfileSize

• PrfQueryProfileSize New
BOOl PrfQueryProfileSize (hini, pszAppName, pszKeyName, pcb)
HINI hinij I. initialization-file handle *1
PSZ pszAppNamej I. pOinter to application name *1
PSZ pszKeyNamej I. pOinter to keyname *1
PUlONG pcbj 1* pOinter to variable with data length *1

Parameters

Return Value

Errors

Comments

See Also

The PrfQueryProfiIeSize function retrieves the size of the data stored at a
specified location in the profile file.

hini Identifies the file to query. This parameter can be a file handle or one of
the following values:

Value

HINLPROFILE

HINLUSERPROFILE

Meaning

Search the user profile, and if no matching
entries are found, search the system profile.

Search the user profile only.

HINLSYSTEMPROFILE Search the system profile only.

pszAppName Points to the null-terminated string that contains the application
name. The string must be less than 1024 bytes long, including the null terminat
ing character. The application name is case-sensitive. If pszAppName is NULL,
the length returned in the variable pointed to by the pcb parameter is the length
required to contain a list of all application names for the pszKeyName parame
ter.

pszKeyName Points to the null-terminated string that contains the keyname.
The string must be less than 1024 bytes long, including the null terminating·char
acter. The keyname is case-sensitive. If pszKeyName is NULL, the length
returned in the variable pointed to by the pcb parameter is the length required to
contain a list of all keynames.

pcb Points to the variable that receives the length of the data. If an error
occurs, the length is not returned.

The return value is TRUE if the function is successful.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVALIDYARM
PMERR~EMORY~LLOC
PMERILMEMORY~LLOCATION_ERR
PMERILMEMORY_DEALLOCATION~RR

The location of the data stored in the profile file is determined by the application
name and keyname passed to this function. This function is typically called to
determine how much memory to allocate before calling PrfQueryProfileData.

The count returned by this function will be 1 greater than that returned by
PrfQueryProfileData or PrfQueryProfileString in cases where these functions
will return a list. This is due to an additional NULL character used as a termina
tor for the entire list.

PrfQueryProfileData, PrfQueryProfileString, WinQueryProfileSize

PrfQueryProfileString 261

• PrfQueryProfileString New
ULONG PrfQueryProfileString(hini, pszAppName, pszKeyName, pszError, pszBuf, cchBuf)
HINI hini; /. initialization-file handle ./
PSZ pszAppName; /. pointer to application name ./
PSZ pszKeyName; /. pointer to keyname ./
PSZ pszError; /. pointer to default string ./
PSZ pszBuf; /. pOinter to buffer for string ./
ULONG cchBuf; /. buffer size ./

Parameters

Return Value

Errors

Comments

The PrfQueryProfileString function retrieves a string from the profile file. The
location of the string is determined by the application name and keyname passed
to this function.

hini Identifies the file to query. This parameter can be a file handle or one of
the following values:

Value

HINLPROFILE

HINLUSERPROFILE

Meaning

Search the user profile, and if no matching
entries are found, search the system profile.

Search only the user profile.

HINLSYSTEMPROFILE Search only the system profile.

pszAppName Points to the null-terminated string that contains the application
name. The string must be less than 1024 bytes long, including the null terminat
ing character. The application name is case-sensitive. If pszAppName is NULL,
a list of all application names in the profile specified by the hini parameter is
returned.

pszKeyName Points to the null-terminated string that contains the keyname.
The string must be less than 1024 bytes long, including the null terminating char
acter. The keyname is case-sensitive. If pszKeyName is NULL, all keynames in
the profile specified by the hilli parameter are enumerated.

pszError Points to the null-terminated string placed in the buffer pointed to by
pszBuj if the keyname is not found.

pszBuf Points to the buffer that receives the null-terminated string.

cchBuf Specifies the length of the buffer pointed to by the pszBuj parameter.
If the string retrieved is longer than this value, it is truncated.

The return value is the number of characters in the buffer pointed to by pszBuj,
or zero if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV ALIDJ> ARM
PMERR_MEMORY~LLOC
PMERR_MEMORY_ALLOCATION~RR
PMERlCMEMORY_DEALLOCATION_ERR

When NULL is used in pszKeyName and the application name specified by
pszAppName is not found, PrfQueryProfileString returns FALSE.

262 PrfQueryProfileString

See Also

Application data should be stored in the user profile or an application-specific
profile. The system profile should be used only for system data.

PrfWriteProfileString, WinQueryProfileString

• PrfQueryProgramCategory New
PROGCATEGORY PrfQueryProgramCategory(hini, pszProgramName)
HINI hini; I. initialization-file handle .1
PSZ pszProgramName; I. pOinter to program name .1

Parameters

Return Value

Errors

Comments

See Also

The PrfQueryProgramCategory function retrieves the type (category) of a
specified program.

hini Identifies the file to search for program information (if the program type·
cannot be determined by searching the header of the executable file). This
parameter can be an initialization-file handle obtained by using the PrfOpen
Profile function, or it can be the value HINLUSERPROFILE, specifying the
user-profile file.

pszProgramName Points to the null-terminated string that contains the name
of the executable file for which the type is to be returned. If the string appears
to be a fully qualified path [(that is, it contains a colon (:) in the second position
and/or contains a backslash (\)], the file is searched for in the indicated direc
tory on the indicated drive. If neither of these conditions is true and the file is
not in the current directory, each drive and directory specified in the path
defined in the current program's environment is searched. The default extension
for an executable file is .exe, although any extension is acceptable.

The return value is the program category if the function is successful or zero if
an error occurs. The program type can be one of the following values:

Value

PROG_FULLSCREEN

PROG_ WINDOW ABLEVIO

PROG_PM

PROG_REAL

PROG_DLL

Meaning

Program runs only in a full-screen session.

Program runs in a VIO window.

Program is a Presentation Manager appli
cation.

Program is a real-mode (DOS) application.

Program is a dynamic-link module.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJ)OS.-ERROR

The PrfQueryProgramCategory function first calls the DosQAppType function.
If the program type cannot be determined from this call, the profile specified by
the hini parameter is searched.

Because this function calls DosQAppType, the program type returned may not
be the same type the user specified for the program in Desktop Manager.

DosQAppType, PrfQueryDefinition

PrfQueryProgramHandle 263

• PrfQueryProgramHandle New
ULONG PrfQueryProgramHandle (hini. pszExeName. phpga. cb. pcHandles)
HINI hini: 1* initialization-file handle *1
psz pszExeName: 1* pOinter to executable-file name *1
PHPROGARRAY phpga: 1* address of structure for program handles *1
ULONG cb: 1* buffer size *1
PULONG pcHandles: 1* pointer to variable for number of handles *1

Parameters

Return Value

Errors

Comments

See Also

The PrfQueryProgramHandle function retrieves the program handles that match
the name of a specified executable file.

hini Identifies the file that contains the program information to retrieve. This
parameter can be an initialization-file handle obtained by using PrfOpenProfile
function, or it can be the value HINLUSERPROFILE, specifying the user
profile file.

pszExeName Points to the fully qualified path [that is, it contains a colon (:)
in the second position and/or contains a backslash (\)] of the executable file.

phpga Points to the HPROGARRAY structure· that receives the program han
dles, one for each match found. The HPROGARRAY structure has the following
form:

typedef struct _HPROGARRAY {
HPROGRAM ahprog[l];

} HPROGARRAY;

cb Specifies the size (in bytes) of the buffer pointed to by the phpga parame
ter. The buffer must be large enough to hold all the program handles retrieved.

pcHandles Points to the variable that receives the number of program handles
placed in the structure pointed to by the phpga parameter. If this value is zero
when the function returns, the buffer size specified by the cb parameter is
insufficient to hold all the program handles or an error occurred.

The return value is the size (in bytes) of the required buffer if the function is
successful. Otherwise, it is zero, indicating an error occurred or the filename
was not found. .

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVALIDJNLFILEJIANDLE
PMERlLMEMORYJ)EALLOCATION-ERR
PMERlLMEMORYJ\LLOCATION-ERR

Typically, an application calls this function twice. The first time, the cb parame
ter is set to zero and the return value is used to determine how much memory
must be allocated to hold the program handles. The second call actually retrieves
the program handles.

PrfOpenProfile

264 PrfQueryProgramTitles

• PrfQueryProgramTitles New
ULONG PrfQueryProgramTitles(hini, hGroup, paprogti, cbBuf, pcTitles)
HINI hini; I. Initialization-file handle *1
HPROGRAM hGroup; I. handle of group *1
PPROGTITLE paprogti; I. array of structures with program info. */

ULONG cbBuf; 1* length of buffer for array of structures *1
PULONG pc Titles; 1* pointer to variable for titles *1

Parameters

Return Value

Errors

Comments

The PrfQueryProgramTitles function retrieves information about programs
within a specified group in Desktop Manager.

hini Identifies the file that contains the program information to retrieve. This
parameter can be an initialization-file handle obtained by using the PrfOpen
Profile function, or it can be the value HINLUSERPROFILE, specifying the
user-profile file.

hGroup Identifies the group or program for which information is to be
returned. This handle can be SG~OOT to retrieve information about all the
groups in Desktop Manager.

paprogti Points to the buffer that receives an array of one or more
PROGTITLE structures followed by the strings pointed to within the structures.
The PROGTITLE structure has the following form:

typedef struct _PROGTITLE {
HPROGRAM hprog;
PROGTYPE progt;
USHORT padl[3];
psz pszTitle;

} PROGTITLE;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies the total length (in bytes) of the buffer pointed to by the
paprogti parameter.

pc Titles Points to the variable that receives the count of titles.

The return value is the size of the required buffer if the function is successful or
zero if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERlLBUFFER_TOO_SMALL
PMERRJNLFILE_CORRUPT
PMERRJNVALID_GROUP -HANDLE
PMERRJNVALIDYARM
PMERRJNVALID_TARGET-HANDLE
PMER~EMORY-ALLOCATION~RR
PMER~EMORYJ)EALLOCATION~RR
PMER~NO~NTRIESJN_GROUP
PMER~NOT_CURRENTYL_ VERSION
PMER~NOTJNJDX
PMERR-NO_PROGRAMYOUND

Typically an application calls this function twice. The first time, the cbBuf
parameter is set to zero. The return value is used to allocate a sufficient buffer.
Then, the application calls the function again to retrieve the program titles.

See Also

PrfReset 265

If a program handle is specified for the hGroup parameter, the information for
only that instance of the program is returned.

PrfAddProgram, PrfOpenProfile, WinQueryProgramTitles

• PrfRemoveProgram New
BOOl PrfRemoveProgram(hini, hProgram)
HINI hini; I. initialization-file handle .1
HPROGRAM hProgram; I. program handle .1

Parameters

Return Value

Errors

Comments

See Also

• PrfReset

The PrlRemoveProgram function removes a program from Desktop Manager.

hini Identifies the file that contains the program information to remove. This
parameter can be an initialization-file handle obtained by using the PrfOpen
Profile function, or it can be the value HINLUSERPROFILE, specifying the
user-profile file.

hProgram Identifies the program to remove from Desktop Manager. This
parameter cannot be a group handle.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~GROUP YROTECTED
PMERRJNVALIDJNLFILEJIANDLE
PMERRJNVALIDYIB
PMERRJNVALIDYROGRAMJIANDLE
PMERRMEMORY-ALLOCATION-ERR
PMERR-MEMOR Y J)EALLOCATION-ERR

You can remove a program from a group, even if the program is currently run
ning. Only the program information in the group is removed-the program itself
is not affected.

PrfDestroyGroup, PrfOpenProfile

New
BOOl PrfReset(hab, pprfpro)
HAB hab; I. anchor-block handle .1
pprfpro pprfpro; I. address of structure with profile data .1

Parameters

The PrlReset function resets Presentation Manager by rereading the initialization
files. This function can change which initialization files are to be used by the sys
tem.

hab Identifies the anchor block.

266 PrfReset

Return Value

Errors

Comments

See Also

pprfpro Points to the PRFPROFILE structure that contains the filenames of
the initialization files. The PRFPROFILE structure has the following form:

typedef struct _PRFPROFILE {
ULONG cchUserName;
psz pszUserName;
ULONG cchSysName;
psz pszSysName;

} PRFPROFILE;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~CALL_NOT-EXECUTED
PMER~EMORY~LLOC
PMER~EMORY~LLOCATION-ERR
PMER~EMORYJ)EALLOCATION-ERR
PMER~EMORY_SHARE
PMER~OPEN_QUEUE
PMER~ WRITE_QUEUE

The system is reset by rereading the initialization files that are specified in the
PRFPROFILE structure. Both initialization files must be specified before calling
this function.

If the path is not included as part of the initialization-file names, the current
directory is used.

The PrfReset function modifies the PRFPROFILE structure passed to it. Before
you can use this structure again; you must reinitialize its values.

PrfQueryProfile

I PrfWriteProfileData New
BOOl PrfWrite Profile Data (hini. pszAppName. pszKeyName. pchBinaryData. cchData)
HINI hini; 1* Initialization-file handle *1
PSZ pszAppName; 1* pointer to application name *1
PSZ pszKeyName; 1* pOinter to keyname *1
PVOID pchBinaryData; 1* pointer to d~ta in profile file *1
UlONG cchData; 1* data length *1

The PrfWriteProfileData function places binary data in the specified profile file.
The location of the data is determined by the application name and keyname
passed to the function. This data can then be retrieved by using the PrfQuery
ProfileData function, with the application name and keyname specified in the
pszAppName and pszKeyName parameters of the PrfWriteProfileData function.

Parameters

Return Value

Errors

Comments

See Also

PrfWriteProfileString 267

hini Identifies the file in which to place the binary data. This parameter can be
a file handle or one of the following values:

Value Meaning

HINLUSERPROFILE Specifies the user profile.

HINLSYSTEMPROFILE Specifies the system profile.

pszAppNal1te Points to the null-terminated string that contains the application
name. The string must be less than 1024 bytes long, including the null terminat
ing character. The application name is case-sensitive. If no application field in
the profile file matches pszAppName, a new application field is created.

pszKeyName Points to the null-terminated string that contains the keyname.
The string must be less than 1024 bytes long, including the null terminating char
acter. If this parameter is NULL, all keynames and their data are deleted. The
keyname is case-seqsitive. If no keyname matches pszKeyName, a new keyname
field is created. If the keyname already exists, the existing value is overwritten.

pchBinaryData Points to the binary data placed in the profile file. There is no
explicit terminating character. If this parameter is NULL, the previous value
associated with the pszKeyName parameter is deleted; otherwise, the data string
becomes the value~ even if its length is zero. The data should not exceed 64K.

cchData Specifies the size (in bytes) of the pchBinaryData parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs. If the profile file exists but is somehow corrupted, this function returns
FALSE.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVALIDYARM
PMER~EMORY~LLOC
PMER~EMORY~LLOCATIONY:RR
PMER~EMORYJ)EALLOCATIONY:RR

The application must know the size of the stored data when it calls
PrfQueryProfileData to retrieve the data.

PrfQueryProfileData, Win WriteProfileData

• PrfWriteProfileString New
BOOl PrfWriteProfileString(hini. pszAppName. pszKeyName. pszString)
HINI hini; I. initialization-file handle .1
PSZ pszAppName; I. pointer to application name .1
PSZ pszKeyName; I. pOinter to keyname .1
PSZ pszString; I. pOinter to string to write .1

The PrlWriteProfileString function places an ASCII string in the profile file.
The location of the string is determined by the application name and keyname
passed to the function. The string can then be retrieved by using the PrfQuery
ProfileString function, specifying the same application name and keynanie given
in the pszAppName and pszKeyName parameters of PrlWriteProf1leStrlng.

268 PrfWriteProfileString

Parameters

Return Value

Errors

Comments

See Also

hini Identifies the file to query. This parameter can be a file handle or one of
the following values:

Value Meaning

HINLUSERPROFILE Specifies the user profile.

HINLSYSTEMPROFILE Specifies the system profile.

pszAppName Points to the null-terminated string that contains the application
name. The string must be less than 1024 bytes long, including the null terminat
ing character. The application name is case-sensitive. If no a?plication field in
the profile file matches pszAppName, a new application field IS created.

pszKeyName Points to the null-terminated string that contains the keyname.
The string must be less than 1024 bytes long, including the null terminating char
acter. If pszKeyName is NULL, all keynames and their data are deleted. The
keyname is case-sensitive. If no keyname matches pszKeyName, a new keyname
field is created. If the keyname already exists, the existing value is overwritten.

pszString Points to the null-terminated ASCII string placed in the profile file.
If pszString is NULL, the previous value associated with pszKeyName is deleted;
otherwise, the ASCII string becomes the value, even if its length is zero. The
string should not exceed 64K.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVALID_PARM
PMER~EMORY~LLOC
PMER~EMORY~LLOCATION-ERR
PMER~EMORY-DEALLOCATION-ERR

User application data should be stored in either the user profile or an application
specific profile. The system profile should be used only for system data, such as
spooler information.

PrfQueryProfileString, Win WriteProfileString

• SBM_SETTHUMBSIZE New

Parameters

Return Value

SBM_SETTHUMBSIZE
mpl = MPFROM2SHORT((USHORT) cVisible, (USHORT) cTotal); It items *1
mp2 = OL; It not used, must be zero *1

An application sends an SBM_SETTHUMBSIZE message to set the size of the
slider in the scroll bar.

cVisibIe

cTotal
Low word of mpl. Specifies the number of visible items.

High word of mpl. Specifies the total number of .items.

The return value is always TRUE.

Comments

See Also

SCR.-ALLOCLDTOFF 269

The SB~SETIHUMBSIZE message is usually sent when the scroll bar is ini
tialized or when the client window changes size. MS OS/2 uses the two parame
ters to calculate the percentage of data visible and thus the percentage of the
scroll bar that the slider should occupy.

SB~QUERYPOS,SB~QUERYRANGE,SBMLSETPOS

• SCRJ\LLOCLDT New
USHORT DosDevlOCtI(psel. pvAddrlnfo. Ox0070. Ox0003. hOevice)
PSEL psel; /. pointer to LDT selector ./
PVOID pvAddrlnfo; /. pointer to structure with address Info ./
HFILE hOevice; /. device handle ./

Parameters

Return Value

Comments

See Also

The SCILALLOCLDT function allocates a logical descriptor table (LDT) selec
tor for an area of memory.

pse/ Points to the logical descriptor table selector for the memory area
specified by the LDTADDRINFO structure.

pvAddrlnJo Points to the LDTADDRINFO structure that contains the address
and size of memory for which a selector is requested.

The LDTADDRINFO structure has the following form:

typedef struct _LDTADDRINFO {
PULONG pulPhysAddr;
USHORT cb;

} LDTADDRINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the screen device that receives the device-control 'function.
This handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or the error value
ERRORJ24JNV ALIDYARAMETER if an error occurs.

Read/Write access is granted to data areas completely contained in the address
range OxAOOOO through OxBFFFF. Read-only access is granted to data areas out
side this range, but inside the range OxOOOOO through OxFFFFF. Attempts to
access 'any address outside this range results in an error.

SCILALLOCLDTOFF,SC~EALLOCLDT

• SCRJ\LLOCLDTOFF New
USHORT DosDevlOCtl(Ppv. pvAddrlnfo. Ox0075. Ox0003. hOevice)
PVOID FAR * ppv; /. pOinter to variable to receive selector:offset ./
PVOID pvAddrlnfo; /. pointer to structure with address info ./
HFILE hDevice; /. device handle ./

The SCR-ALLOCLDTOFF function allocates a logical descriptor table (LDT)
selector and offset for an area of memory.

270 SCRJ\LLOCLDTOFF

Parameters

Return Value

Comments

See Also

ppv Points to the variable that receives the allocated selector and offset.

pvAddrlnfo Points to the LDTADDRINFO structure that contains the address
and size of memory for which a selector is requested.

The LDTADDRINFO structure has the following form:

typedef struct _LDTADDRINFO {
PULONG pulPhysAddr;
USHORT cb;

} LDTADDRINE'O;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the screen device that receives the device-control function.
This handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or the error
ERRORJ24JNV ALIDJ> ARAMETER if an error occurs.

Read/Write access is granted to data areas completely contained in the address
range OxAOOOO through OxBFFFF. Read-only access is granted to data areas out
side this range, but inside the range OxOOOOO through OxFFFFF. Attempts to
access any address outside this range results in an error.

SC~ALLOCLDT,SC~EALLOCLDT

• SCR_DEALLOCLDT New
USHORT DosDevlOCtI(OL, pse', Ox0071, Ox0003, hDevice)
PSEL pse/; /. pointer to LDT selector ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The SC~EALLOCLDT function deallocates a logical descriptor table
(LDT) selector previously allocated by the SC~LLOCLDT or
SC~LLOCLDTOFF function.

psel Points to the logical descriptor table selector to be deallocated.

hDevice Identifies the screen device that receives the device-control function.
This handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or the error value
ERRORJ24JNV ALIDJ> ARAMETER if·an error occurs.

SC~LLOCLDT,SC~LLOCLDTOFF

TBM_TRACKMOVE 271

• TBM_TRACKMOVE New

Parameters

Return Value

See Also

TBM_TRACKMOVE
mpl = MPFROMSHORT(fs);
mp2 = OL;

IA tracking options AI
IA not used, must be zero AI

An application sends a TB~TRACKMOVE message to a title-bar window con
trol to move its owner window.

A WM_QUERYTRACKINFO message is first sent to the owner of the title-bar
window control. If the return value is TRUE, the window is moved; otherwise,
the operation terminates.

fs Low word of mpl. Specifies tracking options. This parameter can be a com
bination of the following values:

Option Meaning

TF _LEFf Tracks the left side of the rectangle.

TF_TOP Tracks the top of the rectangle.

TF _RIGHT Tracks the right of the rectangle.

TF _BOTTOM Tracks the bottom of the rectangle.

TF _MOVE Tracks all sides of the rectangle.

TF_POINTERPOS Repositions the pointer according to the other
options specified.

TF_LEFf Vertically centers the pointer at the left of the
tracking rectangle.

TF_TOP Horizontally centers the pointer at the top of the
tracking rectangle.

TF_RIGHT Vertically centers the pointer at the right of the
tracking rectangle.

TF _BOTTOM Horizontally centers the pointer at the bottom of
the tracking rectangle.

TF _MOVE Centers the pointer in the tracking rectangle.

TF_GRID Restricts tracking to a predetermined grid.

TF_STANDARD The width, height, grid width, and grid height are
all multiples of the border width and border height.

TF_ALINBOUNDARY Tracks so that no part of the tracking rectangle
ever falls outside the bounding rectangle.

TF_PARTINBOUNDARY Tracks so that the corresponding edge of the track
ing rectangle is kept within the opposite edge of
the boundary rectangle.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

~QUERYTRACKINFO

272 VioCreatePS

• VioCreatePS Correction
USHORT VioCreatePS(phvps, cRows, cColumns, (Format, cAttrBytes, hvps)
PHVPS phvps; I. pOinter to variable for presentation-space handle .1
SHORT cRows; I. height of presentation space .1
SHORT cColumns; I. width of presentation space .1
SHORT (Format; I. format of attribute byte(s) .1
SHORT cAttrBytes; I. number of attributes .1
HVPS hvps; I. presentation-space handle .1

Parameters

Return Value

See Also

Corrections

The VioCreatePS function creates an advanced video-input-and-output (A VIO)
presentation space, the size of which must not exceed 64K. To determine the
size of the presentation space, multiply the cColumns, cRows, and cAttrBytes
parameters as follows: cColumns X cRows X (cAttrBytes + 1).

phvps Points to the variable that receives the presentation-space handle. You
may use this handle in subsequent Vio functions.

cRows Specifies the height (in character cells) of the presentation space.

cColumns Specifies the width (in character cells) of the presentation space.

fPormat Identifies the format of the attribute byte(s) in the presentation
space. The content of the attribute bytes depends on the format. Currently, the
only defined format is zero. If the format is zero, the attribute bytes have the fol
lowing meanings:

Value Meaning

Specifies a eGA format of two attribute bytes. The first
byte contains the character value. The second byte con
tains bit fields that specify the background and fore
ground colors. Blink and intensity fields are not sup
ported.

Specifies an extended format of four attribute bytes.
The first byte contains the character value. The second
byte contains bit fields that specify the background and
foreground colors. The third byte contains bit fields
that specify the underscore, reverse video, the back
ground opacity, and the font identifier. The fourth byte
is an extra byte to be used by programs.

cAttrBytes Specifies the number of attribute bytes per character cell in the
presentation space. This number may be 1 or 3.

hvps Identifies the A VIO presentation space. This parameter must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioDestroyPS

The presentation space must not exceed 64K, not 32K as previously docu
mented.

VioGetBuf 273

• VioGetBuf Correction
USHORT VioGetBuf(puILVB, pcbLVB, hvio)
PULONG pulL VB; /. pointer to variable for address of LVB ./
PUSHORT pcbLVB; /. pointer to variable for length of LVB ./
HVIO hvio; /. video handle ./

Parameters

Return Value

Comments

Example

See Also

Corrections

The VioGetBuf function retrieves the address of the logical video buffer (L VB)
that contains the current character attributes for the text output of a process.
The logical video buffer is available for text-mode screens only.

A process can access and modify the contents of the logical video buffer at any
time, even if the process is in the background. Changes made to the logical
video buffer do not affect the physical screen until the process calls the
VioShowBuf function.

pulL VB Points to the variable that receives the address of the logical video
buffer.

pcbL VB Points to the variable that specifies the length (in bytes) of the logical
video buffer. You can use the VioGetMode function to determine the dimen
sions of the buffer.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle ·must have been created using the
VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROIL VIOJNV ALIDJIANDLE

If the process calling VioGetBuf is in the foreground, all VIO output calls are
written. to both the physical display buffer and the logical video buffer.

If the VioSetMode function is called following a call to VioGetBuf, the size of
the logical video buffer is adjusted to correspond to the new mode.

There is one logical video buffer per session (or presentation space, for an
A VIO application).

This example calls VioGetBuf to retrieve the address of the logical video buffer.
It sets the character attributes in the buffer for foreground blinking by using the
OR operator to set the high bit, then it calls the VioShowBuf function to display
the character attributes: .

PBYTE pbLVB;
USHORT cbLVB, i;
VioGetBuf«PULONG) &pbLVB, &cbLVB, 0);
for (i = 0; i < cbLVB; i += 2)

/* OR in the high bit to make it a blinking attribute */

* (pbLVB + i + 1) = * (pbLVB + i + 1) I OxBO;
VioShowBuf(O, cbLVB, 0); /* displays buffer */

VioGetMode, VioGetPhysBuf, VioShowBuf

This function is not a Family API function.

The physical and logical video buffers are not always identical.

274 VioGetConfig

• VioGetConfig Change
USHORT VloGetConfig (usConfigld, pvioin, hvio)
USHORT usConfigld; 1* configuration 10 *1
PVIOCONFIGINFO pvioin; 1* pOinter to structure for configuration *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

Comments

The VioGetConfig function retrieves the video-display configuration, which
defines the type of display adapter, the type of display, and the amount of video
memory available in the current, primary, or secondary display.

The VioGetConfig function is a family API function.

usConfigld Specifies the display adapter to retrieve the configuration for. This
parameter can be one of the following values:

Value

VIO_CONFIG_CURRENT

VIO_CONFIG_PRIMARY

VIO_CONFIG_SECONDARY

Meaning

The current display adapter

The primary display adapter

The secondary display adapter

pvioin Points to the VIOCONFIGINFO structure that receives the display
configuration for the primary display adapter. The VIOCONFIGINFO structure
has the following· form:

typedef struct _VIOCONFIGINFO {
USHORT cb;
USHORT adapter;
USHORT display;
ULONG cbMemory;
USHORT config;
USHORT dd_ver;
USHORT flags;
ULONG hwbu f ;
ULONG maxfullbuf;
ULONG maxpartbuf;
USHORT adaptptr;
USHORT dispptr;
USHORT cwadapt;
USHORT adaptdata[l];
USHORT cwdisp;
USHORT dispdata[l];

} VIOCONFIGINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-outptit (A VIO) presentation
space. For A VIO programs, this handle must have been created using the
VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIOJNV ALID-LENGTH
ERROR-VIOJNVALIDYARMS

MS OS/2 derives the values for the adapter and display fields of the
VIOCONFIGINFO structure for the display configuration by using various tests,
including checking the switch settings on the card.

Example

See Also

Changes

• VioGetMode

VioGetMode 275

This example calls VioGetConfig to determine whether the primary display type
is an enhanced color display:

VIOCONFIGINFO vioinConfig;
vioinConfig.cb = sizeof(vioinConfig);
VioGetConfig(VIO_CONFIG_PRIMARY,

&vioinConfig,
0) ;

if (vioinConfig.display == DISPLAY_EGA)
VioWrtTTY("Enhanqed color displayO,

VioGetMode, VioGetState

1* structure length *1

1* configuration data *1
1* video handle *1

24, 0);

The first parameter changed from usReserved to usConfigld, allowing you to
specify which display adapter to get the configuration information from.

The VIOCONFIGINFO structure pointed to by the pvioin parameter contains
additional fields when used in MS OS/2, version 1.2.

Change
USHORT VioGetMode (pviomi, hvio)
PVIOMODEINFO pviomi; 1* pOinter to structure for screen-mode information .1
HVIO hvio; 1* video handle *1

Parameters

Return Value

The VioGetMode function retrieves the current screen mode. The screen mode
defines the display mode (text or graphics), the number of colors being used
(2, 4, or 16), and the width and height of the screen in both character cells and
pels.

The VioGetMode function is a family API function.

pviomi Points to the VIOMODEINFO structure that receives the screen-mode
information. The VIOMODEINFO structure has the following form:

typedef struct _VIOMODEINFO {
USHORT cb;
UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;
UCHAR attribfmt;
UCHAR attribcount;
ULONG pdbaddr;
ULONG pdblen;
ULONG fullbufsz;
ULONG partbufsz;
ULONG edaaddr;

} VIOMODEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio This parameter must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIOJNV ALIDJIANDLE
ERROIL VIOJNVALID~ENGTH

276 VioGetMode

Comments

Example

See Also

Changes

Corrections

• VioGetState

The hvio parameter can be only NULL. This function cannot be used by an
advanced video-input-and-output application.

This example calls VioGetMode to retrieve the mode information for the screen:

VIOMODEINFO viomi;
viomi.cb = sizeof(viomi);
VioGetMode(&viomi, 0);
if (viomi.fbType == 0)

VioWrtTTY("Monochrome display\n\r" , 20, 0);

VioCreatePS, VioGetState, VioSetMode

The VIOMODEINFO structure pointed to by the pviomi parameter contains
several additional fields when used in MS OSI2,version 1.2.

The hvio parameter can be only NULL. This function cannot be used by an
advanced video-input-and-output application .

Change
USHORT VioGetState (pvoidState, hvio)
PVOID pvoidState; 1* pointer to structure for state information *1
HVIO hvio; 1* video handle *1

Parameters

The VioGetState function retrieves the c~rrent settings of the screen-palette
registers, the overscan (border) color, the blink/background intensity switch, the
screen color, the underline position, or the target display.

The VioSetState function is a family API function.

pvoidState Points to the structure that receives the state information. The
structure type, which depends on the request type spe~ified in the type field of
each structure, is one of the following: VIOPALSTATE, VIOOVERSCAN,
VIOINTENSITY, VIOCOLORREG, VIOSETULINELOC, or VIOSETTARGET.
These structures have the following forms:

typedef struct _VIOPALSTATE {
USHORT cb;
USHORT type;
USHORT iFirst;
USHORT acolor[l];

} VIOPALSTATE;

typedef struct _VIOOVERSCAN {
USHORT cb;
USHORT type;
USHORT color;

} VIOOVERSCAN;

typedef struct _VIOINTENSITY {
USHORT cb;
USHORT type;
USHORT fs;

} VIOINTENSITY;

typedef struct _VIOCOLORREG {
USHORT cb;
USHORT type;
USHORT firstcolorreg;
USHORT numcolorregs;
PCH colorregaddr;

} VIOCOLOR;

Return Value

Example

typedef struct _VIOSETULINELOC {
USHORT cb;
USHORT type;
USHORT scanline;

} VIOUNDERLINE;

typedef struct _VIOSETTARGET {
USHORT cb;
USHORT type;
USHORT defaultalgorithm;

} VIOTARGET;

VioReadCellStr 277

For each structure, you must set the cb and type fields before calling the func
tion. Not all values for the type field are valid for all screen modes.

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an. advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created by using the
VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIOJNV ALID_HANDLE
ERROR_ VIOJNV ALID~ENGTH

This example calls the VioGetState function to retrieve the settings for each of
the 16 palette registers:

BYTE abState[38];
PVIOPALSTATE pviopal;
pviopal = (PVIOPALSTATE) abState;
pviopal->cb = sizeof(abState); 1* structure size *1
pviopal->type = 0; 1* retrieves palette registers *1
pviopal->iEirst = 0; 1* first palette register to return *1
VioGetState(pviopal, 0);

See Also VioCreatePS, VioGetMode, VioSetState

Changes The VIOCOLORREG, VIOSETULINELOC, and VIOSETIARGET structures
have been added to the list of possible structures for this function.

Corrections The VioGetState function is a family API function.

• VioReadCellStr Correction
USHORT VioReadCellStr(pchCellString, pcb, usRow, usColumn, hvio)
PCH pch CeliS tring; I. pointer to buffer for string .1
PUSHORT pcb; I. pointer to variable for string length .1
USHORT usRow; I. starting location (row) .1
USHORT usColumn; I. starting location (column) .1
HVIO hvio; I. video handle .1

The VioReadCellStr function reads one or more cells (character-attribute combi
nations) from the screen, starting at the specified location. If the string is longer
than the current line, the function continues reading at the beginning of the next
line but does not read past the end of the screen.

The VioReadCellStr function is a family API function.

278 VioReadCellStr

Parameters

Return Value

Example

See Also

Corrections

• VioScrollDn

pchCeliString Points to the buffer that receives the cell string.

pcb Points to the variable that specifies the length (in bytes) of the buffer
pointed to by pchCellString. The length should be an even number. On return,
this function copies the length of the string to the variable.

usRow Specifies the row at which to begin reading the cell string.

usColumn Specifies the column at which to begin reading the cell string.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERROR_ VIOJNV ALIDJIANDLE
ERROR_ VIO~OW

This example calls VioReadCellStr to read Line 0, then calls the VioWrtCellStr
function to write the cell string to Line 24:

CHAR achCells[160];
USHORT cb = sizeof(achCells);
VioReadCellStr(achCells, 1* buffer for string *1

&cb, 1* points to variable for string length *1
0, 1* starting location (row) *f
0, 1* starting location (column) *1
0) ; 1* video handle * I

VioWrtCellStr(achCells, cb, 24, 0, 0);

VioReadCharStr, Vio WrtCellStr

The references to cells have been changed to reflect that an attribute can be
longer than one byte.

Correction
USHORT VioScrollDn(usTopRow. usLeftCo/. usBotRow. usRightCo/. cbLines. pbCell. hvio)
USHORT usTopRow; /. top row *'
USHORT usLeftCo/; /. Jeft column • ./
USHORT usBotRow; /. bottom row ./
USHORT usRightCo/; /. right column ./
USHORT cbLines; /. number of blank lines ./
PBYTE pbCell; /. pOinter to cell to write ./
HVIO hvio; /. video handle ./

Parameters

The VioScrollDn function scrolls the current screen downward.

The VioScrollDn function is a family API function.

usTopRow Specifies the top row of the screen area to scroll.

usLeftCol Specifies the leftmost column of the screen area to scroll.

usEotRow Specifies the bottom row of the screen area to scroll.

usRightCol Specifies the rightmost column of the screen area to scroll.

Return Value

Comments

Example

See Also

Corrections

VioScrollDn 279

cbLines Specifies the number of lines to be inserted at the top of the screen
area being scrolled. If this parameter is zero, no lines are scrolled.

pbCell Points to a character/attribute combination, called a cell, that fills the
screen area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERRO~ VIOJNVALID_HANDLE
ERROR_ VIO-ROW

If the usTopRow and usLef/Col parameters are zero, they identify the upper-left
corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLef/Col, usBo/Row, usRigh/Col, or cbLines, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollDn function to clear the screen by setting usTopRow
and usLef/Col to zero and usBo/Row, usRigh/Col, and cbLines to their maximum
values. The function clears the screen by using the character/attribute combina
tion pointed to by the pbCell parameter.

This example creates a cell containing the space character (Ox20) and a white
character attribute (Ox07 on an EGA color monitor), and calls VioScrollDn to
clear the screen by using this cell. By changing the character attribute, you could
change the background color of the screen while clearing it at the same time
(using the value OxFFFF for usBo/Row, usRigh/Col, and cbLines clears the
screen):

BYTE bCell [2] ;
bCell [0] = Ox20;
bCell[l] = Ox07;
VioScrollDn (0,

0,
OxE'E'E'E',
OxE'E'E'E',
OxE'E'E'E',
beell,
0) ;

I' space character
I' white attribute
I' top row
I' left column
I' bottom row
I' right column
I' number of lines
I' cell to write
I' video handle

'I
(EGA) 'I

'I
'I
'I
'I
'I
'I
'I

VioCreatePS, VioScrollLf, VioScrollRt, VioScrollUp

The references to cells have been changed to reflect that an attribute can be
longer than one byte.

280 VioScrollLf

• VioScroliLf Correction
USHORT VioScrollLf(usTopRow, usLeftCo/, usBotRow, usRightCo/, cbColumns, pbCell, hvio)
USHORT usTopRow; I. top row .1
USHORT usLeftCo/; I. left column .1
USHORT usBotRow; I. bottom row .1
USHORT usRightCo/; I. right column .1
USHORT cbColumns; I. number of blank columns .1
PBYTE pbCell; I. pointer to the cell to write .1
HVIO hvio; I. video handle .1

Parameters

Return Value

Comments

Example

The VioScrollLf function scrolls the current screen toward the left.

The VioScrollLf function is a family API function.

usTopRow Specifies the top row of the screen area to scroll.

usLeftCol Specifies the leftmost column of the screen area to scroll.

usBotRow Specifies the bottom row of the screen area to scroll.

usRightCol Specifies the rightmost column of the screen area to scroll.

cbColumns Specifies the number of columns of spaces to be inserted at the
right. If this parameter is zero, no columns are inserted.

pbCeU Points to a character/attribute combination, called a cell, that fills the
screen area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlL VIO_COL
ERROlL VIOJNVALIDJIANDLE
ERROlL VIO~OW

If the usTopRow and usLeftCol parameters are zero, they identify the upper-left
corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbColumns, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollLf function to clear the screen by setting usTopRow
and usLeftCol to zero and usBotRow, usRightCol, and cbColumns to their max
imum values. The function clears the screen by using the character/attribute
combination pointed to by the pbCeU parameter.

This example calls VioScrollLf to fill the last ten columns at the right of the
screen with red hearts on a black background (a value of OxFFFF is used for
usBotRow and usRightCol):

See Also

Corrections

• VioScroliRt

BYTE bCell [2] ;
bCell [0] = Ox03;
bCell[l] = Ox04;
VioScrollLf (0,

0,
OxE'E'E'E',
OxE'E'E'E',
10,
bCell,
0) ;

I' heart character 'I
I' red attribute (EGA) 'I
I' top row 'I
I' left column 'I
I' bottom row 'I
I' right column 'I
I' columns 'I
I' cell to write 'I
I' video handle 'I

VioCreatePS, VioScrollDn, VioScrollRt, VioScrollUp

VioScrollRt 281

The references to cells have been changed to reflect that an attribute can be
longer than one byte.

Correction
USHORT VioScrollRt(usTopRow. usLeftCol. usBotRow. usRightCo/. cbColumns. pbCell. hvio)
USHORT usTopRow; I. top row .1
USHORT usLeftCo/; I. left column .1
USHORT usBotRow; I. bottom row .1
USHORT usRightCo/; I. right column .1
USHORT cbColumns; I. number of blank columns .1
PBYTE pbCell;
HVIO hvio;

Parameters

Return Value

Comments

I. pointer to cell to write .1
I. video handle .1

The VioScrollRt function scrolls the current screen toward the right.

The VioScrollRt function is a family API function.

usTopRow Specifies the top row of the screen area to scroll.

usLeftCol Specifies the leftmost column of the screen area to scroll.

usBotRow Specifies the bottom row of the screen area to scroll.

usRightCol Specifies the rightmost column of the screen area to scroll.

cbColumns Specifies the number of columns of spaces to be inserted at the
left. If this parameter is zero, no columns are inserted.

pbCel/ Points to a character/attribute combination, called a cell, that fills the
screen area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERRO~ VIO_INV ALIDJIANDLE
ERROR_ VIO~OW

If the usTopRow and usLeftCol parameters are zero, they identify the upper-left
corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbColumns, the maximum value

282 VioScrollRt

Example

See Also

Corrections

• VioScroliUp

for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollUp function to clear the screen by setting usTopRow
and usLeJ/Col to zero and usBo/Row, usRigh/Col, and cbColumns to their max
imum values. The function clears the screen by using the character/attribute
combination pointed to by the pbCell parameter.

This example calls VioScrollRt to fill the first ten columns at the left of the
screen with red hearts on a black background (a value of OxFFFF is used for
usBo/Row and usRigh/Col):

BYTE beell [2] ;
beell [0] = Ox03;
beell [1] = Ox04;
VioScrollRt (0,

0,
OxFFFF,
OxFFFF,
10,
beell,
0) ;

/* heart character */
/* red attribute (EGA) */
/* top row */
/* left column */
/* bottom row */
/* right column */
/* columns */
/* cell to write */
/* video handle */

VioCreatePS, VioScrollDn, VioScrollLf, VioScrollUp

The references to cells have been changed to reflect that an attribute can be
longer than one byte.

Correction
USHORT VioScrollUp(usTopRow, usLeftCol, usBotRow, usRightCol, cbLines, pbCell, hvio)
USHORT usTopRow; 1* top row *'
USHORT usLeftCol; 1* left column *'
USHORT usBotRow; 1* bottom row *1
USHORT usRightCol; 1* right column *1
USHORT cbLines; 1* number of blank lines *1
PBYTE pbCell; 1* pOinter to cell to write *1
HVIO hvio; 1* video handle *1

Parameters

The VioScrollUp function scrolls the current screen upward.

The VioScrollUp function is a family API function.

usTopRow Specifies the top row of the screen area to scroll.

usLeftCol Specifies the leftmost column of the screen area to scroll.

usBotRow Specifies the bottom row of the screen area to scroll.

usRightCol Specifies the rightmost column of the screen area to scroll.

cbLines Specifies the number of blank lines to insert at the bottom of the
screen area being scrolled. If this parameter is zero, no lines are inserted.

pbCell Points to a character/attribute combination, called a cell, that fills the
screen area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been createq previously using
the VioCreatePS function. For other programs, hvio must be NULL.

Return Value

Comments

Example

VioSetCurType 283

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIO_COL
ERROIL VIOJNV ALIDJIANDLE
ERROIL VIO~OW

If the usTopRow and usLeftCol parameters are zero, they identify the upper-left
corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbLines, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollUp function to clear the screen by setting usTopRow
and usLeftCol to zero and usBotRow, usRightCol, and cbLines to their maximum
values. The function clears the screen by using the character/attribute combina
tion pointed to by the pbCell parameter.

This example calls VioScrollUp to scroll the entire screen up (by using the value
OxFFFF for usBotRow, usRightCol, and cbLines) and to fill the screen area left
blank by the scrolling with spaces on a green background (Ox22 on an EGA
color monitor):

BYTE bCell [2] ;
bCell [0] = Ox20;
bCell [1] = Ox22;
VioScrollUp (0,

0,
OxFFFF,
OxFFFF,
OxFFFF,
bCell,
0) ;

VioSetCurPos(O, 0, 0);

/* space character
/* green attribute
/* top row
/* left column
/* bottom row
/* right column
/* number of lines
/* cell to write
/* video handle

*/
(EGA) * /

*/
*/
*/
*/
*/
*/
*/

See Also VioCreatePS, VioScrollDn, VioScrollLf, VioScrollRt

Corrections The references to cells have been changed to reflect that an attribute can be
longer than one byte.

• VioSetCurType Change
USHORT VioSetCurType (pvioci, hvio)
PVIOCURSORINFO pvioci; 1* pOinter to structure for cursor characteristics *1
HVIO hvio; 1* video handle *1

Parameters

The VioSetCurType function sets the cursor type. The cursor is a shared
resource for all processes in a screen group. If one process changes it, it is
changed for all processes in the group.

The VioSetCurType function is a family API function.

pvioci Points to the VIOCURSORINFO structure that specifies the charac
teristics of the cursor. The VIOCURSORINFO structure has the following form:

typedef struct _VIOCURSORINFO {
USHORT yStart;
USHORT cEnd;
USHORT cx;
usaORT attr;

} VIOCURSORINFO;

284 VioSetCurType

Return Value

Comments

Example

See Also

Changes

• VioSetMode

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously by
using the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIOJNVALIDJIANDLE
ERROIL VIO_ WIDTH

The yStart and cEnd fields of the VIOCURSORINFO structure can be set to
values that are independent of the number of scan lines in the character cell. If
you specify percentages for these values, MS OS/2 calculates the beginning and
ending scan lines by multiplying the specified percentage by the number of scan
lines in the character cell and rounding the total to the nearest scan line. Percen
tages are specified as a number in the range 0 through -100. For example, if
yStart is set to - 90 and cEnd is set to -100, the cursor occupies the bottom 10
percent of the character cell.

This example calls the VioSetCurType function to set the current cursor type to
a block cursor with 14 scan lines:

VIOCURSORINFO vioci;
vioci.yStart = 0; /' beginning scan line for cursor '/
vioci.cEnd = 13; /' ending scan line, zero-based '/
vioci.cx = 0; /' default width, one character '/
vioci.attr = 0; /' normal attribute '/
VioSetCurType(&vioci, 0);

VioCreatePS, VioGetCurType, VioSetCurPos

The yStart and cEnd fields of the VIOCURSORINFO structure can be set to
values that are independent of the number of scan lines in the character cell. If
you specify percentages for these values, MS OS/2 calculates the beginning and
ending scan lines by multiplying the specified percentage by the number of scan
lines in the character cell and rounding the total to the nearest scan line. Percen
tages are specified as a number in the range 0 through - 100. For example, if
yStart is set to - 90 and cEnd is set to -100, the cursor occupies the bottom 10
percent of the character cell.

Change
USHORT VioSetMode (pviomi. hvio)
PVIOMODEINFO pviomi; I. pOinter to structure for screen mode .1
HVIO hvio; I. video handle .1

The VioSetMode function sets the screen mode. The screen mode defines the
display mode (text or graphics), the number of colors being used (2, 4, or 16),
and the width and height of the screen in both character cells and pels. VioSet
Mode also initializes the cursor position and type, but does not clear the screen.

The VioSetMode fUllction is a family API function.

Parameters

Return Value

Comments

Example

See Also

Changes

Co rre eti 0 ns

VioSetMode 285

pviomi Points to the VIOMODEINFO structure that specifies the screen
mode. The VIOMODEINFO structure has the following form:

typedef struct _VIOMODEINFO {
USHORT cb;
UCHAR fbType;
UCHAR ·color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;
UCHAR attribfmt;
UCHAR attribcount;
ULONG pdbaddr;
ULONG pdblen;
ULONG fullbufsz;
ULONG partbufsz;
ULONG edaaddr;

} VIOMODEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio This parameter must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIOJNV ALIDJIANDLE
ERRO~ VIOJNVALID~ENGTH
ERRO~ VIO~ODE

Not all screen-mode values are valid for all displays.

The hvio parameter can be only NULL. This function cannot be used by an
advanced video-input-and-output application.

When VioSetMode is called from a VIO-window application (as opposed to an
application that is running in its own screen group), it does not change the size
of a character cell.

This example calls the VioGetMode function to retrieve the current display
mode, changes the mode, and calls VioSetMode to enable the new display
mode.

VIOMODEINFO viomi;
viomi.cb = sizeof(viomi);
VioGetMode(&viomi, 0);
if (viomi.vres > 350)

viomi.row = (viomi.row
else

viomi.row = (viomi.row
VioSetMode(&viomi, 0);

50) ? 25 50;

43) ? 25 43;

VioCreatePS, VioGetMode, VioSetState

/* VGA display */

/* EGA display */

The VIOMODEINFO structure pointed to by the pviomi parameter contains
several additional fields when used in MS OS/2, version 1.2.

The hvio parameter can be only NULL. This function cannot be used by an
advanced video-input-and-output application.

286 VioSetState

• VioSetState Change
USHORT VioSet~tate (pvoidState, hvio)
PVOID pvoidState; I. pOinter to buffer with new state .1
HVIO hvio; I. video handle .1

Parameters

The VioSetState function sets the palette-register values, the overscan (border)
color, the blink/background intensity, the screen color, the underline position,
or the display adapter.

The VioSetState function is a family API function.

pvoidState Points to the structure that contains the request type and the
values to set. The structure type, which depends on the request type specified in
the type field of each structure, is one of the following: VIOPALSTATE,
VIOOVERSCAN, VIOINTENSITY, VIOCOLORREG, VIOSETULINELOC, or
VIOSETTARGET. These structures have the following forms:

typedef struct _VIOPALSTATE {
USHORT cb;
USHORT type;
USHORT iE'irst;
USHORT acolor[l];

} VIOPALSTATE;

typedef struct _VIOOVERSCAN {
USHORT cb;
USHORT type;
USHORT color;

} VIOOVERSCAN;

typedef struct _VIOINTENSITY {
USHORT cb;
USHORT type;
USHORT fs;

} VIOINTENSITY;

typedef struct _VIOCOLORREG {
USHORT cb;
USHORT type;
USHORT firstcolorreg;
USHORT numcolorregs;
PCH colorregaddr;

} VIOCOLOR;

typedef struct _VIOSETULINELOC {
USHORT cb;
USHORT type;
USHORT scanline;

} VIOUNDERLINE;

typedef struct _VIOSETTARGET {
USHORT cb;
USHORT type;
USHORT defaultalgorithm;

} VIOTARGET;

Not all request-type values are valid for all screen modes.

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created by using the
VioCreatePS function. For other programs, hvio must be NULL.

Return Value

Example

See Also

Changes

Corrections

• VioShowBuf

VioShowBuf 287

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlL VIOJNV ALID_HANDLE
ERROR_ VIOJNVALID~ENGTH

This example retrieves the current settings of the palette registers, switches
palette registers #0 and #7, and calls VioSetState to enable the new settings:

BYTE abState[38];
PVIOPALSTATE pviopal;
USHORT usTmp;
pviopal = (PVIOPALSTATE) abState;
pviopal->cb = sizeof(abState);
pviopal->type = 0; /* retrieves palette registers */
pviopal->iFirst = 0; /* first iegister to retrieve */
VioGetState(pviopal, 0); /* retrieves current settings */
usTmp = pviopal->acolor[O]; /* swaps #0 and #7 */
pviopal->acolor[O] = pviopal->acolor[7];
pviopal->acolor[7] = usTmp;
VioSetState(pviopal, 0); /* enables new settings */

VioCreatePS, VioGetState, VioSetMode

The VIOCOLORREG, VIOSETULINELOC, and VIOSETIARGET structures
have been added to the list of possible structures for this function.

The VioSetState function is a family API function.

Correction
USHORT VioShowBuf(offLVB, cbOutput, hvio)
USHORT offLVB; 1* offset into logical video buffer *1
USHORT cbOutput; 1* length *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

Comments

The VioShowBuf function updates the physical screen from the logical video
buffer (LVB). You may use the logical video buffer to directly manipulate infor
mation displayed on the screen.

The VioShowBuf function is a family API function.

offL VB Specifies the offset into the logical video buffer at which the screen
update is to start.

chOutput Specifies the length (in bytes) of the screen area to update.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created using the
VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlL VIOJNVALID~ANDLE
ERROR_ VIO-DETACHED

If a background process calls VioShowBuf, the function will return
ERROlL VIO-DETACHED.

288 VioShowBuf

Example This example retrieves the address of the logical video buffer, makes changes to
that buffer, and calls VioShowBuf to update the physical video buffer from the
logical video buffer:

PBYTE pbLVB;
USHORT cbOutput;
VioGetBuf((PULONG) &pbLVB, &cbOutput, 0);

VioShowBuf(O,
cbOutput,
0) ;

/* offset into logical video buffer */
/* length of screen area */
/* video handle */

See Also VioCreatePS, VioGetBuf, VioGetPhysBuf

Corrections This function is not a family API function .

• VioWrtCellStr Correction
USHORT VioWrtCellStr(pchCellString. cbCellString. usRow. usColumn. hvio)
PCH pchCellStringj . f. pointer to cell string .f
USHORT cbCellString; f. length of string .f
USHORT usRow; f. starting position (row) .f
USHORT usColumnj f. starting position (column) .,
HVIO hvioj f. video handle .f

Parameters

Return Value

The VioWrlCellStr function writes a cell string to the screen. A cell string is one
or more character/attribute combinations. A character/attribute combination
defines the character to be written and the character attribute by which it is
displayed.

If the string is longer than the current line, the function continues writing it at
the beginning of the next line, but does not write past the end of the screen.

The Vio WrlCellStr function is a family API function.

pchCellString Points to the cell string to write.

cbCellString Specifies the length (in bytes) of the cell string. The length
should be an even number.

usRow Specifies the row at which to start writing the cell string.

usColumn Specifies the column at which to start writing the cell string.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The. return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERROR_ VIO_INV ALIDJfANDLE
ERRO~ VIO~OW

Example

See Also

Corrections

• VioWrtNCell

VioWrtNCeli 289

This example calls the Vio WrtCellStr function to display the string "Hello
World!" using 12 different attributes:

CHAR achCellString[] = "H\le\2l\3l\4o\5 \6W\7o\10r\11l\13d\141";

VioWrtCellStr(achCellString,
sizeof(achCellString) ,
10,
35,
0) ;

/* character/attribute string */
/* length of string */
/* row */
/* column * /
/* video handle */

VioCreatePS, VioReadCellStr, Vio WrtCharStr, Vio WrtTTY

The references to cells have been changed to reflect that an attribute can be
longer than one byte.

Correction
USHORT VioWrtNCell(pbCe/l, cb, usRow, usColumn, hvio)
PBYTE pbCell; /. pointer to cell to write ./
USHORT cb; /. number of times to write ./
USHORT usRow; /. starting position (row) ./

USHORT usColumn; /. starting position (column) ./
HVIO hvio; /. video handle ./

Parameters

Return Value

The Vio WrtNCell function writes a cell to the screen a specified number of
times. A cell (also called a character/attribute combination) consists of an
unsigned byte value that specifies the character and one or more unsigned byte
values that specify the attribute to be written.

If the number of times that a cell is repeated is greater than the screen width,
the Vio WrtNCell function continues writing the cell at the beginning of the next
line but does not write past the end of the screen.

The Vio WrtNCell function is a family API function.

pbCell Points to the cell to write.

cb Specifies the number of times to write the cell.

usRow Specifies the row at which to start writing the cell.

us Column Specifies the column at which to start writing the cell.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERROR_ VIOJNV ALIDJIANDLE
ERRO~ VIO~OW

290 VioWrtNCell

Example

See Also

Corrections

This example calls the Vio WrtNCell function to fill the screen with green capital
letter A's (on an EGA color monitor):

BYTE abCell [2] ;
abCell[O] = 'A';
abCell[l] = Ox02;
VioWrtNCell(abCell,

80 * 25,
0,
0,
0) ;

/* character/attribute pair */
/t character (letter A) t/
/t attribute (green) */
/* address of attribute */
/* number of cells to write */
/* row */
/* column */
/* video handle */

VioCreatePS, VioWrtNChar

The references to cells have been changed to reflect the fact that a attribute can
be longer than one byte.

• WinAddProgram Change
HPROGRAM WinAddProgram(hab. ppib, hGroupHandle)
HAB hab; 1* handle of anchor block *1
PPIBSTRUCT ppib; 1* address of ~tructure with program information *1
HPROGRAM hGroupHandle; 1* handle of program group *1

Parameters

Return Value

Errors

The WinAddProgram function adds a program to the program list of a group.
Program titl~s need not be unique, although duplicate titles within the same
group are not allowed.

hab Identifies the anchor block.

ppib Points to a PIBSTRUCT structure that contains program information for
the program being added to the program list. The PIBSTRUCT structure has the
following form:

typedef struct _PIBSTRUCT {
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];
CHAR szIconFileName[MAXPATHL+l];
CH~R szExecutable[MAXPATHL+l];
CHAR szStartupDir[MAXPATHL+l];
XYWINSIZE xywinlnitial;
USHORT resl;
LHANDLE res2;
USHORT cchEnvironmentVars;
PCH pchEnvironmentVars;
~SHORT cchProgramParameter;
PCH pchProgramParameter;

} PIBSTRUCT;

hGroupHandle Identifies the program group to which the program is added.

The return value is the handle for the program if the function is successful or
NULL if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJ)UPLICATE_TITLE
PMERR_GROUP _PROTECTED

Comments

See Also

Changes

WinAssociateHelplnstance 291

PMERRJNSUFF _SP ACE_TO.ADD
PMER~INVALID_GROUP _HANDLE
PMERRJNVALIDYROGRAM_CATEGORY
PMERRJNVALID_TARGETJIANDLE
PMERRJNVALID_TITLE
PMERR~EMORY_ALLOCATION~RR
PMERR_MEMORY-DEALLOCATION_ERR
PMERR_NOT_CURRENT_PL_ VERSION
PMER~NOTJNJDX

The WinAddProgram function provides compatibility with MS OS/2 1.1 and ear
lier versions. Applications intended exclusively for MS OS/2 1.2 and later ver
sions should use the PrfAddProgram function.

PrfAddProgram, WinCreateGroup, WinQueryDefinition, WinQucry
ProgramTitles

This function has been replaced by the PrfAddProgram function.

• WinAssociateHelplnstance New
BOOl WinAssociateHelplnstance (hwndHelplnstance, hwndApp)
HWND hwndHelplnstance; I. handle of help instance *1
HWND hwndApp; I. application-window handle *1

Parameters

Return Value

Errors

Comments

See Also

The WinAssociateHelplnstance function associates a help instance with a
specified application window.

hwndHelplnstance Identifies the help instance. It must have been previously
created using the WinCreatcHelpInstance function.

hwndApp Identifies the application window with which the help instance is
associated, or is NULL. If NULL, the association (if any) between the help
instance and a window is removed.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

HMERRJNV ALID_ASSOCJlELP JNST
HMERRJNVALID_HELP_INSTANCE~DL
HMER~NO_FRAME_ WNDJN_CHAIN
HMERRJNVALID.ASSOC.APP _ WND

A help instance can be associated with any application window that has a frame,
but the help instance should contain help information relating to this application
window and the windows in its window chain.

WinCreateHelplnstance

292 WinBroadcastMsg

• WinBroadcastMsg Correction
BeOl WinBroadcastMsg(hwnd, msg, mp1, mp2, (s)
HWND hwnd; 1* handle of the parent window *1
USHORT msg; 1* message *1
MPARAM mp1; 1* message parameter *1
MPARAM mp2; 1* message parameter *1
USHORT fs; 1* windows to send message to *1

Parameters

Return Value

See Also

Corrections

The WinBroadcastMsg function broadcasts a message to multiple windows. This
function sends or posts a message to all immediate child windows of the
specified window.

hwnd Identifies the window whose immediate child windows will receive the
message. If this parameter is HWNDJ)ESKTOP, the function sends the mes
sage to all main windows on the screen.

msg Specifies the message.

mpJ Specifies the first message parameter.

mp2 Specifies the second message parameter.

fs Specifies which windows to send the message to, and whether the message
should be sent or posted. The value consists of a flag from each of the following
lists combined using the OR operator.

The following list contains the values specifying which windows to broadcast the
message to:

Destination Meaning

BMSG_DESCENDANTS Post or send the message to hwnd and all of its
descendants.

BMSG_FRAMEONLY Post or send the message to frame windows only.

The following list contains the values specifying how to broadcast the message
(send or post):

Value

BMSG_POSTQUEUE

Meaning

Post a message to all child windows of the window
specified by the hwnd parameter.

Post a message to all threads that have a message
queue. The message's hwnd parameter will be
NULL.

Send a message to all children of the window
specified by the hwnd parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinPostMsg, WinSendMsg

To broadcast a message to all windows in the system, the hwnd parameter must
be set to HWNDJ)ESKTOP, not to NULL.

WinCreateGroup 293

• WinCreateFrameControls Correction
BOOl WinCreateFrameControls(hwndFrame, pfcdata, pszTitle, hmod)
HWND hwndFramej I. handle of the frame window .1
PFRAMECDATA pfcdataj I. address of structure .1
PSZ psz Title j I. address of title-bar string .1

Parameters

Return Value

See Also

Corrections

TheWinCreateFrameControls function creates standard frame controls for a
specified window. This function is used when the standard frame controls are
needed for a nonstandard window; for example, with a window with a class
other than We_FRAME.

hwndFrame Identifies the frame window that becomes the parent and owner
window of all the frame controls created.

pfcdata Points to the FRAMECDATA structure that contains information
about the frame controls that are to be created. The FRAMECDATA structure
has the following form:

typedef struct _FRAMECDATA {
USHORT cb;
ULONG flCreateFlags;
HMODULE hmodResources;
USHORT ldResources;

} FRAMECDATA;

pszTitle Points to a null-terminated string displayed in a title-bar control.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Win Create Window

The syntax incorrectly listed an hmod parameter. This function only has three
parameters, not four.

• WinCreateGroup Change
HPROGRAM WinCreateGroup(hab, pszTitle, (Visible, hprogDest, pszHelp)
HAB habj I. handle of anchor block .1
PSZ pszTitlej I. address of group title .1
BYTE (Visiblej
HPROGRAM hprogDestj
PSZ pszHelpj

I. visibility flag .1
I. handle of destination group .1
I. address of help text .1

Parameters

The Win Create Group function creates a new program-group entry in Desktop
Manager. The new group is created empty. The WinAddProgram function must
be used to add program entries to the group. If the group already exists, the han
dle of the existing group is returned.

hab Identifies the anchor block.

294 WinCreateGroup

Return Value

Errors

Comments

See Also

Changes

pszTitle Points to the title of the new group. The maximum string size is
defined by the MAXNAMEL constant. Strings that exceed this limit are trun
cated to MAXNAMEL characters. Leading and trailing blanks are removed.
The string must contain at least one nonblank character and must not contain a
backslash (\).

[Visible Specifies the visibility of the new group. If this parameter is
SHE_VISIBLE, the group is visible (it can be viewed by the end-user). If this
value is SHEJNVISIBLE, the group is invisible.

hprogDest Identifies the program group into which the new group is placed. If
this parameter is NULL, the new group is placed in the root group.

pszHelp Points to a null-terminated string that is used as a short piece of help
information relating to the new program group. This parameter is optional and
can be NULL. If used, the string must contain at least one nonblank character
and be less than 60 characters in length.

The return value is the group handle for the group if the function is successful.
Otherwise, the return value is NULL, indicating that an error occurred.

Use the WinGetErrorInfo function to retrieve the error value, which may be one
of the following:

PMERRJNSUFF _SPACE_TO~DD
PMERRJNVALID_GROUP JIANDLE
PMERRJNVALID_TARGETJIANDLE
PMERRJNVALID_TITLE
PMERILMEMORYJ)EALLOCATION~RR
PMER~NOT_CURRENTJ>L_ VERSION
PMER~NOTJNJDX

The WinCreateGroup function provides compatibility with MS OS/2 1.1 and
earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrfCreateGroup function.

PrfCreateGroup, WinAddProgram

This function has been replaced by the PrfCreateGroup function.

• WinCreateHelplnstance New
HWND WinCreateHelplnstance (hab. phmlnitStructure)
HAB hab; 1* anchor-block handle *1
PHELPINIT phmlnitStructure; 1* pointer to help structure *1

Parameters

The WinCreateHelplnstance function creates a help instance. A help instance is
an "object" window that process help requests from the application and the user.

hab Identifies the application anchor block. It must have been previous creat
ing using the WinInitialize function.

phmlnitStructure Points to the HELPINIT structure. The HELPINIT struc
ture has the following form:

Return Value

See Also

typedef struct
USHORT
ULONG
psz
PHELPTABLE
HMODULE
HMODULE
USHORT
USHORT
psz
USHORT
psz

} HELPINIT;

_HELPINIT {
cBytes;
ulReturnCode;
pszTutorialName;
phtHelpTable;
hmodHelpTableModule;
hmodAccelActionBarModule;
idAccelTable;
idActionBar;
pszHelpWindowTitle;
usShowPanelld;
pszHelpLibraryName;

WinCreateHelpTable 295

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the handle of the help instance created if the function is suc
cessful or NULL if an error occurs.

WinCreateHelpTable, WinDestroyHelpInstance, WinInitialize, WinLoad
HelpTable

• WinCreateHelpTable New
BOOl WinCreateHelpTable (hwndHelp/nstance, phtHe/pTab/e)
HWND hwndHelp/nstance; /. handle of help instance ./
PHElPTABlE phtHelpTable; /. pointer to structure with help table ./

Parameters

Return Value

Comments

See Also

The WinCreateHelpTable function replaces the existing help table (if any) with
the help table pointed to by phtHelpTable.

hwndHelplnstance Identifies the help instance. It must have been previously
created using the WinCreateHelpInstance function.

phtHelpTable Points to a HELPTABLE structure containing window and
corresponding help panel IDs. The HELPTABLE structure has the following
form:

typedef struct _HELPTABLE {
USHORT idAppWindow;
PHELPSUBTABLE phstHelpSubTable;
USHORT idExtPanel;

} HELPTABLE;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Applications can use this function to replace a help instance's initial help table
or to set the table if no initial help table is given. The initial help table is
specified in the HELPINIT structure when the help instance is created with the
WinCreateHelpInstance function. The function replaces the help table without
freeing any memory or resources associated with the initial help table.

WinCreateHelpInstance, H1LCREATEJIELP _TABLE

296 WinCreatePointerlndirect

• WinCreatePointerlndirect New
HPOINTER WinCreatePointerlndirect(hwndOesktop, pptri)
HWND hwndOesktop; /. desktop handle ./
PPOINTERINFO pptri; /. pOinter to structure with bitmap ./

Parameters

Return Value

Comments

See Also

The WinCreatePointerIndirect function creates a pointer by using the
POINTERINFO structure. It can create a color pointer.

hwndDesktop Identifies the desktop window. This parameter can be
HWND.,DESKTOP or the desktop window handle.

pptri Points to the POINTERINFO structure that contains the bitmap used to
create the pointer image. The POINTERINFO structure has the following form:

typedef struct _POINTERINFO {
BOOL fPointer;
SHORT xHotspot;
SHORT yHotspot;
HBITMAP hbmPointer;

} POINTERINFO;

The return value is the handle of the new pointer if successful or NULL if an
error occurs.

The WinCreatePointerlndirect and WinCreatePointer functions are similar. The
difference between them is that the WinCreatePointerIndirect function can
create a color pointer; the WinCreatePointer function can create only a black
and-white pointer.

WinCreatePointer

• WinCreateSwitchEntry New
HSWITCH WinCreateSwitchEntry(hab, pswctl)
HAB hab; /. anchor-block handle ./
PSWCNTRL pswct/; /. pOinter to structure with new entry information ./

Parameters

The WinCreateSwitchEntry function creates an entry in the switch list (the list
of running programs displayed in the Task List).

hab Identifies the anchor block.

pswctl Points to the SWCNTRL structure that cont.Jns information about the
new switch-list entry. If the szSwtitle field in the SWCNTRL structure is NULL,
the system uses the name under which the application was started.

This applies only to the first call to this function for that program (since the pro
gram was started). Otherwise, a NULL entry name is invalid. The SWCNTRL
structure has the following form: '

Return Value

Comments

Example

See Also

WinCreateSwltchEntry 297

typedef struct _SWCNTRL {
HWND hwnd;
HWND hwndlcon;
HPROGRAM hprog;
USHORT idProcess;
USHORT idSession;
UCHAR uchVisibility;
UCHAR fbJump;
CHAR szSwtitle[MAXNAMEL+l];
BYTE fReserved;

} SWCNTRL;

The return value is a handle to the new switch-list entry, or NULL if an error
occurs.

The WinCreateSwitchEntry and WinAddSwitchEntry functions are similar. The
only difference between them is that WinCreateSwitchEntry takes an anchor
block handle as the first parameter.

Leading and trailing blanks are removed from the title. The title is truncated to
60 characters.

This example calls WinQueryWindowProcess to get the current process
identifier (needed for the SWCNTRL structure). It then sets up the SWCTL
structure and calls WinCreateSwitchEntry to add the program's name to the
Task List.

The returned handle can be used in subsequent calls to WinChangeSwitchEntry
if the title needs to be changed.

The variables swetl, hswiteh, and pid should be global if your application will be
calling the WinChangeSwitchEntry function to avoid having to set up the struc
ture again.

SWCNTRL swctl;
HSWITCH hswitch;
PID pid;
HAB hab;

hab = WinQueryAnchorBlock(hwndFrame);
WinQueryWindowProcess(hwndFrame, &pid, NULL)';

swctl.hwnd = hwndFrame;
swctl.hwndlcon = NULL;
swctl.hprog = NULL;
swctl.idProcess = pid;
swctl.idSession = NULL;
swctl.uchVisibility = SWL_VISIBLE;
swctl.fbJump = SWL_JUMPABLE;
swctl.szSwtitle[O] = NULL;

hswitch = WinCreateSwitchEntry(hab. &swctl);

I'
I'
I'
I'
I'
I'
I'
I'
I'
I'

gets anchor block
gets process id

window handle
icon handle
program handle
process identifier
session identifier
visibility
jump indicator
program name

WinAddSwitchEntry, WinChangeSwitchEntry, WinRemoveSwitchEntry

'I
'I
'I
'I
'I
'I
'I
'I
'I
'I

298 WinCreateWindow

• WinCreateWindow Change
HWND WinCreateWindow(hwndParent. pszC/ass. pszName. fiSty/e. x. y. ex. ey. hwndOwner.

hwnd/nsertBehind. id. pCt/Data. pPresParams)
HWND hwndParent; I. parent-window handle .1

PSZ pszC/ass; I. pointer to registered class name .1

PSZ pszName; I. pointer to window text .1

ULONG flSty/e; I. window style .1

SHORT x; I. horizontal position of window .1

SHORT y: I. vertical position of window .1

SHORT ex; I. window width .1

SHORT ey: I. window height ./

HWND hwndOwner; I. owner-window handle .1
HWND hwndlnsertBehind; /. handle to sibling window ./
USHORT id: I. window identifier .1
PVOID pCt/Data; I. pointer to buffer ./
PVOID pPresParams; /. pointer to structure with pres. params. ./

Parameters

The Win Create Window function creates a new window.

hwndParent Specifies the parent window of the new window. Any valid win
dow handle can be used.

pszClass Points to the registered class name. This parameter can be an
application-specified name (defined by the WinRegisterClass function), the
name of a preregistered window class, or a window-class (We) constant.

pszName Points to window text or other class-specific data. The actual struc
ture of the data is class-specific. This data is usually a null-terminated string and
is often displayed in the window.

JlStyle Specifies the window style. It can be a combination of one or more of
the following values:

Value

WS_CLIPSIBLINGS

WS_MAXIMIZED

WS_MINIMIZED

WS_P ARENTCLIP

Meaning

Prevents a window from painting over its child
windows.

Prevents a window from painting over its sibling
windows.

Disables mouse and keyboard input to the win
dow. It is used to temporarily prevent the user
from using the window.

Enlarges the window to the maximum size.

Reduces the window to the minimum size.

Prevents a window from painting over its Pl!rent
window.

Saves the image under the window as a bitmap.
When the window is moved or hidden t the sys
tem restores the image by copying the bits.

Return Value

Comments

Value

WS_VISIBLE

WinCreateWindow 299

Meaning

Causes the window to immediately receive
W~P AINT messages after a part of the win
dow becomes invalid. Unless this style is set, the
window receives W~P AINT messages only
when no other message is waiting to be pro
cessed.

Makes the window visible. This window is drawn
on the screen unless overlapping windows com
pletely obscure it. Windows without this style
are hidden.

x Specifies the horizontal position of the window, relative to the origin of the
parent window.

y Specifies the vertical position of the window, relative to the origin of the
parent window.

ex Specifies the window width, in pels.

ey Specifies the window height, in pels.

hwndOwner Identifies the owner window.

hwndlnsertBehind Identifies the sibling window behind which the specified
window is placed. If this parameter is HWND_TOP, the specified window is
placed on top of all its sibling windows. If this parameter is HWND.-BOTTOM,
the specified window is placed behind all its sibling windows. If the hwndlnsert
Behind parameter is neither HWND_TOP nor HWND.-BOTTOM, or it is not a
child window of the window identified by hwndParent, NULL is returned.

id Specifies the window identifier (a value given by the application that allows
a specific child window to be identified). For example, the controls of a dialog
box have unique identifiers so that an owner window can distinguish which con
trol has notified it. Window identifiers are also used for frame windows.

petlData Points to the buffer that contains class-specific information. Ihis
data is passed to the window procedure by the ~CREATE message.

pPresParams Points to a PRESPARAMS structure that contains presentation
parameters for the window. This parameter is NULL if there are no presentation
parameters. The PRESPARAMS structure has the following form:

typedef struct _PRESPARAMS {
ULONG cb;
PARAM aparam[l];

} PRESPARAMS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the handle of the window if the function is successful or
NULL if an error occurs.

The WinCreate Window function sends a ~CREATE message to the
window procedure of the window being created, and then sends the
W1LADJUSTWINDOWPOS message before the window is displayed. The
values passed are those given to the WinCreate Window function.

300 WinCreateWindow

See Also

Changes

The W1LSIZE message is not sent by WinCreate Window while the window is
being created. Any required size processing is performed during the processing
of the W~CREATE message.

WinCreateStdWindow, WinQueryObjectWindow, WinRegisterClass

The pPresParams parameter now points to a PRESPARAMS structure.

I WinDeleteLibrary New
BOOl WinDeletelibrary(hab, hlib)
HAB hab: f. anchor-block handle .f
HLiB hlib: f. handle of library to be deleted *f

Parameters

Return Value

See Also

The WinDeleteLibrary function deletes a library previously loaded by the Win
LoadLibrary function.

hab Identifies the anchor block.

hUb Identifies the library to be deleted. This handle must have been created
by the WinLoadLibrary function.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinLoadLibrary

WinDeleteProcedure New
BOOl WinDeleteProcedure (hab, pfnwpProc)
HAB hab: f* anchor-block handle *f
PFNWP pfnwpProc: f* pointer to window function *f

Parameters

The WinDeleteProcedure function deletes a procedure that was previously
loaded using the WinLoadProcedure function.

hab Identifies the anchor block.

pfnwpProc Points to the procedure to be deleted. This procedure must have
been previously loaded by the WinLoadProcedure function.

Return Value The return value is TRUE if the function is successful or FALSE if an error
occurs.

See Also WinDeleteLibrary, WinLoadProcedure

'WinDestroyHelplnstance New
BOOLWinDestroyHelplnstance (hwndHelplnstance)
HWND hwndHelplnstance; f* handle of instance to destroy *'

- The WinDestroyHelplnstance function destroys a help instance.

WinDrawBitmap 301

Parameters hwndHelplnstance Identifies the help instance to destroy. This handle must
have been previously created by using the WinCreateHelplnstance function.

Return Value The return value is TRUE if the help instance is successfully destroyed or
FALSE if an error occurs.

See Also WinCreateHelplnstance

• WinDrawBitmap Correction
BOOl WinDrawBitmap(hpsDst. hbm. prc/Src. pptlDst. clrFore. clrBack. fs)
HPS hpsDsti I. handle of the destination presentation space .1
HBITMAP hbmi I. handle of the bitmap .1
PRECTl prc/Src; I. address of structure with rectangle coordinates .1
PPOINTl pptlDsti I. address of structure with bitmap position .1
lONG clrForei I. color of the foreground .1
lONG clrBack; I. color of the background .1
USHORT fs; I. bitmap-drawing flags .1

Parameters

The WinDrawBitmap function draws a bitmap using the current image colors
and mixes.

hpsDst Identifies the presentation space in which the bitmap is drawn.

hbln Identifies the bitmap.

prclSrc Points to the RECTL data structure that contains the coordinates of
the rectangle to be drawn. If this parameter is NULL, the entire bitmap is
drawn. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

pptlDst Points to the position of the lower left of the bitmap in the presenta
tion space (in device coordinates).

clrFore Specifies the color of the foreground.

clrBack Specifies the color of the background.

Is Specifies the flags that determine how the bitmap is drawn. It can be one of
the following values:

Value Meaning

DB1LHALFfONE Use the OR operator to combine the bitmap with an
alternating pattern of ones and zeros before drawing
it. This flag can be used in conjunction with either
DB1LNORMAL or DB1LINVERT.

DB1LIMAGEA TTRS The clrFore and clrBack parameters are ignored and
the image attribute colors already selected in hpsDst
are used instead.

DBM_INVERT Draw the bitmap inverted, using
ROP _NOTSRCCOPY.

302 WinDrawBitmap

Return Value

See Also

Corrections

Value

DB1LNORMAL

DB1LSTRETCH

Meaning

Draw the bitmap normally, using ROP _SRCCOPY.

The pptlDst parameter points to a RECTL data struc
ture, representing a rectangle in the destination
presentation space to which the bitmap should be
stretched.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

GpiCreateBitmap, GpiLoadBitmap, WinGetSysBitmap

The previous documentation incorrectly states that the pptlDst parameter was
specified in presentation-space coordinates. This parameter is specified in device
coordinates.

• WinEnumDlgltem Change
HWND WinEnumDlgltem(hwndDlg, hwnd, code, fLock)
HWND hwndDlg; 1* handle of the dialog window *1
HWND hwnd; 1* handle of the child window *1
USHORT code; 1* dialog item to return *'
BOOl fLock; 1* lock/unlock flag *1

Parameters

The WinEnumDlgItem function returns the handle of a dialog item within a dia
log window.

hwndDlg Identifies the dialog window that contains the dialog item.

hwnd Identifies the child window of the dialog window. This may be an
immediate child window or a window lower in the hierarchy, such as a child of a
child window ..

code Specifies which dialog item to return. This parameter is one of the fol
lowing values:

Value

EDLFIRSTGROUPITEM

EDLFIRSTT ABITEM

EDLLASTGROUPITEM

EDLLASTT ABITEM

EDLNEXTGROUPITEM

EDLNEXTT ABITEM

EDLPREVGROUPITEM

Meaning

First item in same group.

First item in dialog window with style
WS_TABSTOP. The hwnd window is ignored.

Last item in same group.

Last item in dialog box with style
WS_TABSTOP. The hwnd window is ignored.

Next item in same group. Wraps to beginning of
group when end of group is reached.

Next item with style WS_TABSTOP. Wraps
around to beginning of dialog-item list when end
is reached.

Previous item in same group. Wraps to end of
group when start of group is reached.

Value

EDLPREVTABITEM

WinGetDlgMsg 303

Meaning

Previous item with style WS_TABSTOP. Wraps
to end of dialog-item list when beginning is
reached.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

Return Value The return value is the item handle obtained by this function, specified by the
code parameter. The window is always an immediate child window of the win
dow identified by the hwndDlg parameter.

See Also WinBeginEnumWindows, WinLockWindow

Changes The fLock parameter is ignored in MS OS/2, version 1.2.

• WinGetDlgMsg New
BOOl WinGetDlgMsg(hwnd, pqmsg)
HWND hwnd; 1* dialog-window handle *1
PQMSG pqmsg; 1* pointer to structure with message *1

Parameters

Return Value

Comments

The WinGetDlgMsg function retrieves a message intended for a dialog box. This
function is used by an application written in a language (for example, COBOL,
or FORTRAN) that does not allow the system to call the application's window
procedure (this is called a non-reentrant window procedure).

hwnd Identifies the dialog window.

pqmsg Points to the QMSG structure that contains a message. The QMSG
structure has the following form:

typedef struct _QMSG {
HWND hwnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

The return value is TRUE if there is a message for the dialog box, or it is
FALSE if the dialog is complete or an error occurs.

The WinGetDlgMsg function allows a language that cannot support window pro
cedures to provide the function of a modal dialog window. The application
creates a modeless box dialog by using the WinCreateDlg or WinLoadDlg func
tions and then calls WinGetDlgMsg to process messages associated with the dia
log box. The application should call this function in a loop until it receives a
WM-QUIT message. The application should call WinDefDlgProc for the mes
sages it does not want rather than dispatching the messages it receives.

To create a window that uses a non-reentrant window procedure, use NULL for
the pftl WndProc parameter of the WinRegisterClass function.

304 WinGetDlgMsg

See Also

The first time this function is called, the owner of the window specified by hwnd
is disabled, thereby preventing input into windows other than the dialog box.
The owner of the window specified by hwnd is enabled when the WinDismissDlg
function is issued by the application or by the default dialog procedure.

Synchronous messages that would normally go directly to the window procedure
will be converted to one of the 'following messages and retrieved by the WinGet
DlgMsg function:

\VMJ>PAINT
\VMJ>SETFOCUS
\VMJ>SYSCOLORCHANGE
WM_PSIZE
\VMJ>ACTIVATE
~PCONTROL

WinCreateDIg, WinDefDIgProc, WinDismissDIg, WinLoadDlg, WinRegister
Class

• WinGetNextWindow Change
HWND WinGetNextW.indow(henum)
HENUM henum; /* handle of the enumeration list */

Parameters

Return Value

See Also

Changes

The WinGetNextWindow function obtains the handle of the next window in a
specified enumeration list.

The enumeration list details the window hierarchy at the time WinBegin-
Enum Windows was called. Enumeration starts with the top-most child window
(listed fi.rst) and proceeds through the list each time the function is called, until
all windows have been enumerated. Once all windows have been enumerated,
the function returns NULL. The enumeration then returns to the top of the list
and the handle of the top-most child window is returned on the next call.

henum Identifies the enumeration list. This parameter is created by the Win
BeginEnum Windows function.

The return value is the handle of the next window in the enumeration list, or it is
NULL if an error occurs.

WinBeginEnum Windows, WinLockWindow

This function no longer locks the window.

• WinGetSysBitmap Change
HBITMAP WinGetSysBitmap(hwndDesktop, ibm)
HWND hwndDesktop; /* handle of the desktop */

USHORT ibm; /* index of the system bitmap */

The WinGetSysBitmap function returns a handle to one of the standard bitmaps
provided by the system. This bitmap can be used for any of the normal bitmap
operations. When your application is done with the bitmap, it should free it by
calling GpiDeleteBitmap.

Parameters

WinGetSysBitmap 305

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

ibm Specifies the system-bitmap index value. It can be one of the following
values:

Value

SBMP _BTNCORNERS

SBMP _CHECKBOXES

SBMP _CHILDSYSMENU

SBMP _COMBODOWN

SBMP_DRIVE

SBMP_FILE

SBMP _FOLDER

SBMP _MAXBUTTON

SBMP _MENUA TT ACHED

SBMP _MENUCHECK

SBMP _MINBUTTON

SBMP _PROGRAM

SBMP _RESTOREBUTTON

SBMP _SBDNARROW

SDMP _SBDNARROWDEP

SBMP _SBDNARROWDIS

SBMP_SBLFARROW

SBMP _SBLFARROWDEP

SBMP _SBLFARROWDIS

SBMP _SBRGARROW

SBMP _SBRGARROWDEP

SBMP_SBRGARROWDIS

SBMP _SBUPARROW

SBMP _SBUPARROWDEP

SBMP _SBUPARROWDIS

SBMP_SIZEBOX

SBMP _SYSMENU

Meaning

Push button corners.

Check box/radio button check mark.

Smaller version of the system menu bitmap to
use in child windows.

Combo-box down arrow.

A symbol used by the file system to indicate a
disk drive.

A symbol used by the file system to indicate a
file.

A symbol used by the file system to show
subdirectories.

Maximize button.

A symbol used to indicate that a menu item
has an attached hierarchical menu.

Menu check mark.

Minimize button.

A symbol used by the file system to indicate
.that a file is an executable program.

Restore button.

Scroll-bar down arrow.

Scroll-bar down arrow is pressed.

Scroll-bar down arrow is disabled.

Scroll-bar left arrow.

Scroll-bar left arrow is pressed.

Scroll-bar right arrow is disabled.

Scroll-bar right arrow.

Scroll-bar right arrow is pressed.

Scroll-bar right arrow is disabled.

Scroll-bar up arrow.

Scroll-bar up arrow is pressed.

Scroll-bar up arrow is pressed.

A symbol used to indicate an area of a win
dow that a user can click to resize the win
dow.

System menu.

306 WinGetSysBitmap

Return Value

See Also

Changes

Value

SBMP _ TREEMINUS

SBMP _ TREEPLUS

Meaning

A symbol used by the file system to show that
an entry in the directory tree contains no
more files.

A symbol used by the file system to show that
an entry in the directory tree contains more
files.

The return value is a handle to a bitmap, or it is NULL if an error occurs.

GpiDeleteBitmap, WinDrawBitmap

The following system bitmaps have been added:
Value

SBMP _SBUPARROWDEP

SBMP _SBDNARROWDEP

SBMP _SBLFARROWDEP

SBMP_SBRGARROWDEP

SBMP _SBUPARROWDIS

SBMP _SBDNARROWDIS

SBMP _SBLFARROWDIS

SBMP _SBRGARROWDIS

SBMP _COMBODOWN

Meaning

Scroll-bar up arrow is pressed.

Scrol~-bar down arrow is pressed.

Scroll-bar left arrow is pressed.

Scroll-bar right arrow is pressed.

Scroll-bar up arrow is disabled.

Scroll-bar down arrow is disabled.

Scroll-bar right arrow is disabled.

Scroll-bar right arrow is disabled.

Combo-box down arrow.

• WinlnstStartApp New
HAPP WlnlnstStartApp (hini. hwndNotifyWindow. cCount. pszApp. pszCmdLine. pData. fsOption)
HINI hini; I. initialization-file handle .1
HWND hwndNotifyWindow; I. notification-window handle .1
USHORT cCount; I. count of elements in the application array .1
PSZ * pszApp; I. identifier of application . .1
PSZ pszCmdLine; I. Input parameters for application .1
PVOID pData; I. must be zero .1
USHORT fsOptions; I. option flags .1

Parameters

The WinlnstStartApp function starts an installed application.

hini Specifies the handle of the initialization file where the application is
found.

hwndNotifyWindow Identifies the window to which a notification message
should be sent. If this parameter is NULL, no notification message is sent.

cCount Specifies the number of elements in the array pointed to by the
pszApp parameter. This value must be 1 or 2.

pszApp Points to an array of pointers which, in turn, point to strings that con
tain the name of the application and group (if any) where the application is
found. The first element of the array points to the application name, the second
to the group name.

Return Value

Errors'

See Also

WinlsWindowShowing 307

pszCmdLine Points to the string that contains the command line to be passed
to the application.

pData Reserved value; must be zero.

/sOptions Specifies the options to be used to start the application. This
parameter can be one of the following values:

Value Meaning

SAF _INSTALLEDCMDLINE The command-line parameters in the Task
List are used. Any parameters specified by
pszCmdLine are ignored.

SAF_STARTCHILDAPP The application is started as a child session
of the session from which the Wlnlnst
StartApp function is called.

The return value is a handle to the application started if the function is success
ful or NULL if an error occurs.

Possible errors may be retrieved with the WinGetLastError function, and may
be one of the following:

PMERRJNVALIDJ> ARAMETERS
PMERILINV ALID_APPL
PMERRJNV ALID_ WINDOW
PMERILCANNOT_START
PMERILSTARTEDJNJ3ACKGROUND
PMERRJ)OS~RROR
PMERILNOT~NOUGH~EM

WinTerminateApp

• WinlsWindowShowing New
BOOl WinlsWindowShowing (hwnd)
HWND hwnd; /. window handle ./

Parameters

Return Value

Comments

See Also

The WinIs WindowShowing function determines if all or part of a window is
currently displayed on the screen. This is in contrast to the WinIsWindowVisible
function, which returns the actual visibility state of the window rather than its
displayed state.

hwnd Identifies the window to be checked.

The return value is TRUE if any part of the identified window is visible, it is
FALSE if no part of the window is visible.

The WinIs WindowShowing function also returns FALSE if it is called while the
user is moving a window.

WinIs WindowEnabled, WinIs WindowVisible

308 WinLoadHelpTable

• WinLoadHelpTable New
BOOl WinloadHelpTable (hwndHelplnstance, idHelpTable, hmodModule)
HWND hwndHelplnstance; I. handle of help instance .1
USHORT idHelpTable; I. resource 10 for help table .1
HMODUlE hmodModule; I. resource-module handle .1

Parameters

Return Value

Errors

The WinLoadHelpTable function specifies a help table for the given help
instance.

hwndH elplnstance Identifies the help instance. The instance must have been
previously created using the WinCreateHelpInstance function.

idHelpTable Specifies the resource ID of the help table.

hmodModule Identifies the module that contains the help table resource.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

HMERR...HELP _INST_CALLEDJNVALID

Comments Applications can use this function to replace a help instance's initial help table
or to set the table if no initial help table is given. The initial help table is
specified in the HELPINIT structure when the help instance is created with the
WinCreateHelplnstance function. The function replaces the help table without
freeing any memory or resources associated with the initial help table.

See Also WinCreateHelplnstance, HM~OAD-HELP_TABLE

• WinLoadLibrary New
HllB WinloadLibrary(hab, pszModName)
HAB hab; I. anchor-block handle .1
psz pszModName; I. pointer to library name .1

Parameters

Return Value

See Also

The WinLoadLibrary function loads a dynamic-link module and returns a handle
for the module. You can use the module handle to retrieve the entry addresses
of procedures in the module.

hab Identifies the anchor block.

pszModName Points to a null-terminated string; the string must be a valid
MS OS/2 filename that specifies the path and filename of the dynamic-link
module to be loaded. All dynamic-link modules have the .dll filename extension
by default.

The return value is the handle of the library module, or it is NULL if an error
occurs.

DosLoadModule, WinDeleteLibrary, WinLoadProcedure

WinQueryActiveWindow 309

• WinLoadProcedure New
PFNWP WinloadProcedure (hab, hlib, pszProcName)
HAB hab; I. anchor-block handle .1
HllB hlib; I. handle of library .1
PSZ pszProcName; I. pointer to procedure name .1

Parameters

Return Value

See Also

The WinLoadProcedure function loads a window procedure from the specified
dynamic-link library.

hab Identifies the anchor block.

hlib Specifies the library handle. If this parameter is NULL, the WinLoad
Library function will be called, using the value of the pszProcName parameter as
the library name.

pszProcName Points to the null-terminated string that specifies the name of
the procedure to be loaded.

The return value is a pointer to the window procedure, or it is NULL if an "error
occurs.

WinDeleteProcedure, WinLoadLibrary

• WinLockWindow Change
HWND WinlockWindow(hwnd, fLock)
HWND hwnd; I. window handle .1
BOal fLock; I. lock/unlock flag .1

Changes

This function exists for compatibility with MS OS/2, version 1.1. It is not used
in MS OS/2 1.2 or later versions.

This function is not used in MS OS/2 1.2 or later versions.

• WinQueryActiveWindow Change
HWND WinQueryActiveWindow(hwndDesktop, fLock)
HWND hwndDesktop; I. desktop handle .1
Baal fLock; I. locklunlock flag .1

Parameters

Return Value

Comments

The WinQueryActiveWindow function retrieves the active frame window.

hwndDesktop Identifies the desktop window. This parameter can be
HWND_DESKTOP or the desktop window handle.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

The return value is the handle of the active window if the function is successful;
it is NULL if no window was active at the time of the call or the desktop handle
is invalid.

If this function is called while the active window is changing, it may return
NULL, indicating that no window was active at the time of the call. Because a

310 WinQueryActiveWindow

See Also

Changes

NULL value can also be returned if the hwndDesktop handle is invalid, the
WinGetLastError function must be called to determine if a NULL return value
is caused by an invalid hwndDesktop handle or because the active window was
changing when WinQueryActiveWindow was called.

WinGetLastError, WinLockWindow, WinQueryFocus

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQueryAnchorBlock New
HAB WinQueryAnchorBlock(hwnd)
HWND hwndj I. window handle .1

Parameters

Return Value

The WinQueryAnchorBlock function retrieves the handle of the anchor block of
a window.

hwnd Identifies the window whose anchor-block handle is to be returned.

The return value is the anchor-block handle of the specified window if the func
tion is successful or NULL if an error occurs.

• WinQueryCapture Change
HWND WinQueryCapture (hwndDesktop, fLock)
HWND hwndDesktopj I. desktop handle .1
BOOl fLockj I. lock/unlock flag .1

The WinQueryCapture function returns the window handle of the window that
has the mouse capture.

Parameters

Return Value

See Also

Changes

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop-window handle.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

The return value is the window handle with the mouse capture if the function is
successful; it is NULL if no window has the capture or an error occurs.

WinLockWindow, WinSetCapture

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQueryClipbrdOwner Change
HWND WinQueryClipbrdOwner(hab, fLock)
HAB habj I. anchor-block handle .1
BOOl fLockj I. lock/unlock viewer flag .1

The WinQueryClipbrdOwner function retrieves the handle of the window that
currently owns the clipboard (if any).

Parameters

Return Value

See Also

Changes

hab

fLock

WinQueryOefinition 311

Identifies an anchor block.

This parameter is ignored by MS OS/2 1.2 and later versions.

The return value is the window handle of the current clipboard owner if the
function is successful; it is NULL if the clipboard is not owned by any window
or if an error occurs.

WinLockWindow, WinQueryClipbrdViewer, WinSetClipbrdOwner

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQueryClipbrdViewer Change
HWND WinQueryClipbrdViewer(hab, fLock)
HAB habj 1* anchor-block handle *1
BOOl fLockj 1* lock/unlock viewer flag *1

Parameters

Return Value

See Also

Changes

The WinQueryClipbrdViewer function obtains the handle of the current clip
board viewer window (if any).

hab Identifies' the anchor block.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

The return value is the handle of the current clipboard viewer window if the
function is successful; it is NULL if the clipboard does not have a current
viewer window or if an error occurs.

WinLockWindow, WinQueryClipbrdOwner, WinSetClipbrdViewer

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQueryDefinition Change
USHORT WinQueryDefinition(hab, hProgHandle, ppib, cbMax)
HAB habj 1* anchor-block handle *1
HPROGRAM hProgHandlej 1* program handle *1
PPIBSTRUCT ppib; 1* address of structure for program information *1
USHORT cbMaxj 1* length of buffer for program Information *1

Parameters

The WinQueryDefinition function retrieves information about a program or pro
gram group.

hab Identifies the anchor block.

hProgHandle Identifies the program or group.

ppib Points to a PIBSTRUCT structure that receives the program-information
data. If the hProgHandle parameter is a group handle, only the program-type
and program-title fields are significant. The PIBSTRUCT structure has the fol
lowing form:

312 WinQueryDefinition

Return Value

Errors

typedef struct _PIBSTRUCT {
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];
CHAR szIconFileName[MAXPATHL+l];
CHAR szExecutable[MAXPATHL+l];
CHAR szStartupDir[MAXPATHL+l];
XYWINSIZE xyvinlnitial;
USHORT resl;
LHANDLE res2;
USHORT cchEnvironmentVars;
PCH pchEnvironmentVars;
USHORT cchProgramParameter;
PCH . pchProgramParameter;

} PIBSTRUCT;

cbMax Specifies the maximum length (in bytes) of data that can be returned
in the data structure pointed to by the ppib parameter. If this value is zero, the
WinQueryDefinition function returns the number of bytes in the program
information block.

The return value is the length of the data actually returned in the data structure,
or zero if an error occurs.

If the target is a program rather than a program group, the data returned in the
ppib parameter is in a format that can be used by the WinAddProgram function.

Use the WinGetErrorInfo function to retrieve the error value, which may be one
of the following:

PMERlU3UFFER_TOO_SMALL
PMERRJNVALIDYROGRAMJIANDLE
PMERILMEMORY~LLOCATION~RR
PMERILMEMORY-DEALLOCATION~RR
PMER~NOT_CURRENTYL_ VERSION
PMER~NOTJNJDX

Comments The WinQueryDefinition function provides compatibility with MS OS/2 1.1 and
earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrfQu~ryDefinition function.

See Also PrfQueryDefinition, WinAddProgram

Changes This function has been replaced by the PrfQueryDefinition function.

• WinQueryFocus Change
HWND WinQueryFocus(hwndDesktop, fLock)
HWND hwndDesktop; I. desktop handle .1
BOOL fLock; I. lock/unlock flag .1

Parameters

The WinQueryFocus function returns the handle of the window that currently
has the focus.

hwndDesktop Identifies the desktop window. This parameter can be
HWND~ESKTOP or the desktop window handle.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

Return Value

See Also

Changes

WinQueryPresParam 313

The return value is a handle to the focus window or NULL if there is no focus
window or an error occurs.

WinFocusChange, WinLockWindow, WinQueryActiveWindow, WinSetFocus

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQueryHelplnstance New
HWN 0 WinQueryHelplnstance (hwndApp)
HWND hwndApp; f. handle of application window .f

Parameters

Return Value

Errors

Comments

See Also

The WinQueryHelplnstance function retrieves the handle of the help instance
associated with the given window.

hwndApp Identifies a window for which the associated help instance is
queried.

The return value is the handle of the associated help instance if the function is
successful; it is FALSE if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

HMERR-INVALID_QUERY-APP _ WND
HMERR-NOJIELP JNSTJN_CHAIN

The function traces the chain of parent windows, starting with the given window,
until it finds a frame window with an associated help instance or finds the desk
top. If it finds the desktop, it traces the chain of owner windows, starting with
the given window, until it finds a frame window with an associated help instance
or the desktop.

WinAssociateHelplnstance

• WinQueryPresParam New
ULONG WinQueryPresParam(hwnd. id1. id2. pulld. cbBuf. pbBuf. fs)
HWND hwnd; f. window handle .f
ULONG id1; f. first parameter type to retrieve .f
ULONG id2; f. second parameter type to retrieve .f
PULONG pulld; f. pointer to variable for parameter 10 .f
ULONG cbBuf; f. buffer length .f
PVOID pbBuf; f. pOinter to buffer for presentation parameter .f
USHORT fs; f. flags .1

Parameters

The WinQueryPresParam function retrieves the presentation parameters for a
window.

hwnd Identifies the window that contains the presentation parameters to
retrieve.

314 WinQueryPresParam

Return Value

Comments

idl Identifies the first type of presentation parameter to retrieve. If both the
idl and id2 parameters are found, idl takes precedence and its presentation
parameter is returned. This parameter is ignored if it is zero.

id2 Identifies the second type of presentation parameter to retrieve. If both
the idl and id2 parameters are found, idl takes precedence and its presentation
parameter is returned. This parameter is ignored if it is zero.

pulld Points to the variable that receives the presentation parameter ID.

cbBuf Specifies the length (in bytes) of the buffer pointed to by the pbBuf
parameter.

pbBuf Points to the buffer that receives the presentation parameter.

fs Specifies one or more flags. These can be any combination of the following
values:

Value

OPF _NOINHERIT

OPF _IDICOLORINDEX

OPF _ID2COLORINDEX

OPF _PURERGBCOLOR

Meaning

Specifies that only the window identified by
hwnd is to be searched for presentation parame
ters. If this flag is not specified, the entire
owner-chain of the window will be searched.

Specifies that the idl parameter is a color index.
The RGB color equivalent is returned in the
pbBuf parameter.

Specifies that the id2 parameter is a color index.
The RGB color equivalent is returned in the
pbBuf parameter.

Specifies that the returned value should be a
pure RGB color.

The return value is the size (in bytes) of the presentation parameter if the func
tion is successful; it is NULL if no parameter was found or an error occurs.

The following parameter types are defined for MS OS/2, version 1.2:
Value

PP _FOREGROUND COLOR

PP JOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLOR

PP _BACKGROUNDCOLORINDEX

PP JHLITEFOREGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLOR

PP _HILITEBACKGROUNDCOLORINDEX

Meaning

RGB foreground color

Color index of foreground
color

RGB background color

Color index of background
color

RGB color of foreground
highlighted area .

Color index of foreground
highlighted area

RGB color of background
highlighted area

Color index of background
highlighted area

See Also

Value

PP _DISABLEDFOREGROUNDCOLOR

WinQueryProfileData 315

Meaning

RGB foreground disabled
color

PP_DISABLEDFOREGROUNDCOLORINDEX Color index,of foreground
disabled color

PP _DISABLEDBACKGROUNDCOLOR RGB color of background
disabled color

PP _DISABLEDBACKGROUNDCOLORINDEX Color index of background
disabled color

PP _BORDERCOLOR

PP _BORDERCOLORINDEX

PP_FONTNAMESIZE

PP _FONTHANDLE

WinSetPresParam

RGB color of window
border

Color index of window
border

Font size.

Font handle.

• WinQueryProfileData Change
BOOl WinQueryProfileData(hab. pszAppName. pszKeyName. pvBuf. cbBuf)
HAB hab; I. anchor-block handle .1
PSZ pszAppName; I. address of application name .1
PSZ pszKeyName; I. address of keyname .1
PVOID pvBuf; I. address of buffer .1
PUSHORT pcbBuf; I. address of variable with length of buffer .1

Parameters

Return Value

The WinQueryProfileData function retrieves binary data from the os2.ini file.
The location of the data is determined by an application name and a keyname
that are passed to the function.

hab Identifies an anchor block.

pszAppName Points to a null-terminated string that contains the name of the
application. The length of the string must be less than 1024 bytes, including the
null terminating character. The application name is case-sensitive. If pszApp
Name is NULL, all application names are returned.

pszKeyName Points to a null-terminated string that contains the keyname.
The length of the string must be less than 1024 bytes, including the null terminat
ing character. The keyname is case-sensitive. If pszKeyName is NULL, all key-
names are returned. .

pvBuj Points to a buffer that receives the data.

pcbBuj Points to a vari~ble that contains the size of the buffer pointed to by
the pvBuj parameter. When the function returns, this variable contains the actual
number of bytes placed into the buffer.

The return value is TRUE if the function is successful, or FALSE if an error
occurs.

316 WinQueryProfileData

Comments

See Also

Changes

You can find out the size of the data prior to calling this function by calling the
Win Query Profile Size function.

The WinQueryProfileData function provides compatibility with MS OS/2 1.1 and
earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrfQueryProfileData function.

PrfQueryProfileData, WinQueryProfileSize, Win WriteProfileData

This function has been replaced by the PrfQueryProfileData function.

• WinQueryProfilelnt Change
SHORT WinQueryProfilelnt(hab. pszAppName. pszKeyName. sErrOf)
HAB hab; /. anchor-block handle ./
PSZ pszAppName; /. address of application name ./
PSZ pszKeyName; /. address of keyname ./
SHORT sError; /. value returned if keyname not found ./

Parameters

Return Value

Errors

Comments

See Also

Changes

The WinQueryProfileInt function retrieves an integer from the os2.ini file. The
location of the integer is determined by an application name and a keyname
which are passed to this function. The Win WriteProfileString function must
have been used previously to store the integer as a string. For example, a string
stored as "123" would be returned as the integer 123. The string may contain a
leading minus sign if the number is negative.

hab Identifies the anchor block.

pszAppName Points to a null-terminated string that contains the name of the
application. The length of the string must be less than 1024 bytes, including the
null terminating character. The application name is case-sensitive.

pszKeyName Points to a null-terminated string that contains the keyname.
The length of the string must be less than 1024 bytes, including the null terminat
ing character. The keyname is case-sensitive.

, sError Specifies the error value returned if the keyname specified by the
pszKeyName parameter cannot be found.

The return value is the integer representation of the text string. If the keyname
cannot be found, the error value specified by the sError parameter is returned.

The error value may be one of the following:

PMERRJ3UFF _TOO_SMALL
PMERR-CAN_NOT_CALL_SPOOLER
PMERRJNVALIDYARM
PMERR-NOT_INJDX

The WinQueryProfileInt function provides compatibility with MS OS/2 1.1 and
earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrfQueryProfileInt function.

PrfQueryProfilelnt, WinQueryProfileData, Win WriteProfileString

This function has been replaced by the PrfQueryProfilelnt function.

WinQueryProfileSlze 317

• WinQueryProfileSize Change
USHORT WinQueryProfileSize (hab. pszAppName. pszKeyName. pcb)
HAB hab; /. anchor-block handle ./
PSZ pszAppName; /. pOinter to application name ./
PSZ pszKeyName; /. pOinter to keyname ./
PUSHORT pcb; /. pOinter to variable with length of data ./

Parameters

Return Value

Comments

See Also

Changes

The Win Query Profile Size function retrieves the size of the data stored at a
specified location in the os2.ini file. The location of the data is determined by an
application name and a keyname that are passed to this function. This function
is typically called to determine how much memory to allocate prior to calling the
WinQueryProfileData function.

hab Identifies an anchor block.

pszAppName Points to a null-terminated string that contains the name of the
application. The length of the string must be less than 1024 bytes, including the
null terminating character. The application name is case-sensitive. If pszApp
Name is NULL, the length returned in the variable pointed to by the pcb param
eter is the length required to contain a list of all application names for the
pszKeyName parameter.

pszKeyName Points to a null-terminated string that contains the keyname.
The length of the string must be less than 1024 bytes, including the null terminat
ing character. The keyname is case-sensitive. If pszKeyName is NULL, the
length returned in the variable pointed to by the pcb parameter is the length
required to contain a list of all keynames.

pcb Points to a variable that receives the length of the data. If an error
occurs, the length is not returned.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

PMERR-CAN_NOT_CALL_SPOOLER
PMERRJNVALIDYARM
PMERR_NOTJNJDX

The WinQueryProfileSize function provides compatibility with MS OS/2 1.1 and
earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrfQueryProfileSize function.

PrfQueryProfileSize, WinQuery ProfileData, WinQueryProfileString

This function has been replaced by the PrfQueryProfileSize function.

318 WinQueryProfileString

• WinQueryProfileString Change
USHORT WinQueryProfileString(hab, pszAppName, pszKeyName, pszError, pszBuf, cchBuf)
HAB hab; I. anchor-block handle .1
PSZ pszAppName; I. pointer to application name .1
PSZ pszKeyName; I. pOinter to keyname .1
PSZ pszError; I. pointer to default string .1
PSZ pszBuf; I. address of buffer for string .1
USHORT cchBuf; I. size of buffer .1

Parameters

Return Value

Comments

See Also

Changes

The WinQueryProfileString function retrieves a string from the os2.ini file. The
location of the string is determined by an application name and a keyname that
are passed to this function.

hab Identifies an anchor block.

pszAppName Points to a null-terminated string that contains the name of the
application. The length of the string must be less than 1024 bytes, including the
null terminating character. The application name is case-sensitive. If the applica
tion name is NULL, a list of all applications for the pszKeyName parameter is
returned.

pszKeyName Points to a null-terminated string that contains the keyname.
The length of the string must be less than 1024 bytes, including the null terminat
ing character. If this parameter is NULL, all keynames are enumerated. The
keyname is case-sensitive.

pszError Points to a null-terminated string that is placed in the buffer pointed
to by the pszBuJ parameter if the key is not found.

pszBuf Points to a buffer that will receive the null-terminated string.

cchBuf Specifies the length of the buffer pointed to by the pszBuJ parameter.
If the retrieved string is longer than this value, it is truncated.

The return value is the number of characters in the buffer pointed to by the
pszBuJ parameter.

The WinQueryProfileString function provides compatibility with MS OS/2 1.1
and earlier versions. Applications intended exclusively for MS OS/2 1.2 and
later versions should use the PrfQueryProfileString function.

PrfQueryProfileString, Win WriteProfileString

This function has been replaced by the PrfQueryProfileString function.

• WinQueryProgramTitles Change
USHORT WinQueryProgramTitles(hab, hGroup, paproge, cbBuf, pcTitles)
HAB hab; I. handle of anchor block .1
HPROGRAM hGroup; I. handle of group .1
PPROGRAMENTRY paproge; I. pointer to array of structures for program info . • 1
USHORT cbBuf; I. length of buffer for array of structures .1
PUSHORT pc Titles; I. pointer to variable for number of titles .1

The WinQueryProgramTitles function obtains information about programs
within a specified program group.

Parameters

Return Value

Errors

Comments

See Also

Changes

WinQueryProgramTitles 319

You can use the WinQueryProgramTitles function to find out the number of
entries within a group. If you pass a buffer of zero bytes, the function returns the
total number of entries within the group.

The list of returned program entries may contain group handles. Group handles
allow the tree structure to be built by the caller; however, this function returns
information from only one level of the tree structure.

WinQueryProgramTitles can be used to retrieve the program title, by specifying
a program handle in the hGroup parameter. In this case, the buffer will contain
an entry for only one program.

hab Identifies the anchor block.

hGroup Identifies the group for which information is returned. This handle is
either the handle of a program group or SGILROOT for the root group.

paproge Points to an array of PROGRAMENTRY structures where the pro
gram information is returned. The PROGRAMENTRY structure has the follow
ing form:

typedef struct _PROGRAMENTRY {
HPROGRAM hprog;
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];

} PROGRAMENTRY;

cbBuf Specifies the total length (in bytes) of the area pointed to by the
paproge parameter. Values of cbBuj less than the size of a PROGRAMENTRY
structure are invalid.

pc Titles Points to a variable that receives the count of the available titles. If
the hGroup parameter is SGILROOT and the buffer length specified in the
cbBuj parameter is too small to hold all the titles, the return value is zero, none
of the titles are copied to the buffer, and pc Titles contains the number of avail
able titles. If hGroup is a program handle, both the return value and pcTitles are
the number of available handles.

The return value is the number of available titles, or zero if an error occurs.

Use the WinGetErrorlnfo function to retrieve the error value, which may be one
of the following:

PMERR~UFFER-TOO_SMALL
PMERUNVALID_GROUP JIANDLE
PMERRJNVALID_TARGETJIANDLE
PMERR_NOT_CURRENTYL_ VERSION
PMERR-NOTJNJDX

The WinQueryProgramTitles function provides compatibility with MS OS/2 1.1
or earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrfQueryProgramTitles function.

PrfQuery ProgramTitles, WinAddProgram

This function has been replaced by the PrfQueryProgramTitles function.

320 WinQuerySessionTitle

• WinQuerySessionTitle New
USHORT WinQuerySessionTitle(hab. usSession. pszTitle. cbTitle)
HAB hab; 1* anchor-block handle *1
USHORT usSession; 1* screen session *1
PSZ pszTitle; 1* pOinter to buffer for title *1
USHORT cbTitle; 1* buffer length *1

Parameters

Return Value

Comments

Example

See Also

The WinQuerySessionTitIe function retrieves the title under which a specified
application was started or added to the Task List.

hab Identifies the anchor block.

usSession Specifies the screen session. For MS OS/2 version 1.2, this value
may be 0 or 1; 0 means the screen session of the caller.

pszTitle Points to the buffer that receives the null-terminated string that
specifies the application's title.

cbTitle Specifies the length (in bytes) of the buffer pointed by pszTitle. If the
title string is longer than this length, the title will be truncated.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

PMERRJNV ALID_SESSIONJD

The length of the title is guaranteed not to exceed MAXNAMEL bytes, plus one
for the null-terminating character. (MAXNAMEL is defined in the MS OS/2
include files.)

This example calls WinQuerySessionTitIe to retrieve the application's title, and
then sets the title bar of the frame window to that title:

CHAR szTitle[MAXNAMEL + 1];

WinQuerySessionTitle(hab, 0, szTitle, sizeof(szTitle»;
WinSetWindowText(hwndFrame, szTitle);

WinSetWindowText

• WinQuerySwitchEntry New
USHORT WinQuerySwitchEntry(hSwitch. pswct/)
HSWITCH hSwitch; 1* item handle *1
PSWCNTRL pswctl; I. point to structure with item data .1

Parameters

The WinQuerySwitchEntry function obtains a copy of the Task List data for a
specific application.

hSwitch Identifies the Task List item.

pswctl Points to the SWCNTRL data structure that contains information about
the specified Task List item. The SWCNTRL structure has the following form:

Return Value

See Also

typedef struct _SWCNTRL {
HWND hwnd;
HWND hwndlcon;
HPROGRAM hprog;
USHORT idProcess;
USHORT idSession;
UCHAR uchVisibility;
UCHAR fbJump;
CHAR szSwtitle[MAXNAMEL+l];
BYTE fReserved;

} SWCNTRL;

WinQuerySwitchHandle 321

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

PMERRJNV ALID_SWITCH_HANDLE

WinQuerySwitchHandle

• WinQuerySwitchHandle New
HSWITCH WinQuerySwitchHandle (hwnd, pidProcess)
HWNO hwnd; /. window handle ./
PIO pidProcess;

Parameters

Return Value

Comments

Example

See Also

/. process identifier ./

The WinQuerySwitchHandle function retrieves the handle of the Task List item
of an application.

hwnd Identifies the frame window of the application. This parameter may be
zero if the process identifier is specified in the pidProcess parameter.

pidProcess Specifies the process identifier. This parameter may be zero if the
window handle is specified in the hWl1d parameter.

The return value is the Task List handle for the specified application if the func
tion is successful or NULL if an error occurs.

If both a window handle and a process identifier are supplied, they both must
apply to the same application.

This example calls WinQuerySwitchHandle to get the Task List handle of a
frame window, and then calls WinQuerySwitchEntry to retrieve information
about that application:

HSWITCH hswitch;
SWCNTRL swctl;

hswitch = WinQuerySwitchHandle(hwndFrame, 0);
WinQuerySwitchEntry(hswitch, &swctl);

WinQuerySwitchEntry

322 WinQuerySwitchList

• WinQuerySwitchList New
USHORT WinQuerySwitchList(hab, pswblk, cbswblk)
HAB hab; 1* anchor-block handle *1
PSWBlOCK pswblk; 1* pointer to structure for items *1
USHORT cbswblk; 1* structure length *1

Parameters

Return Value

Comments

Example

See Also

The WinQuerySwitchList function obtains information about the items in
the Task List (the list of programs running in the system).

hab Identifies the anchor block.

pswblk Points to SWBLOCK structure that receives a ,description of all the
items in the Task List. The SWBLOCK structure has the following form:

typedef struct _SWBLOCK {
USHORT cswentry;
SWENTRYaswentry[l];

} SWBLOCK;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbswblk Specifies the size (in bytes) of the SWBLOCK structure. This param
eter may be zero to retrieve only the number of Task-list items.

The return value is the current number of items in the Task List if the function
is successful or zero if an error occurs.

The SWBLOCK structure contains an array of SWENTRY structures. The first
array contains information about the Task List window. The second array con
tains information about the first program in the Task List.

This example calls WinQuerySwitchList to determine the number of items in
the Task List, allocates memory for the required buffer, and calls WinQuery
SwitchList again to fill the buffer with the information about each program in the
Task List:

USHORT cbltems, cbBuf;
PSWBLOCK pswblk;
SEL sel;

cbltems = WinQuerySwitchList(hab, NULL, 0); 1* gets num. of items *1
cbBuf = (cbltems * sizeof(SWENTRY» + sizeof(HSWITCH);
DosAllocSeg(cbBuf, &sel, SEG_NONSHARED); 1* allocates buffer *1
pswblk = MAKEP(sel, 0);
WinQuerySwitchList(hab, pswblk, cbBuf); 1* gets struct. array *1

WinQuerySwitchEntry

• WinQuerySysModalWindow Change
HWND WinQuerySysModalWindow(hwndDesktop, fLock)
HWND hwndDesktop;' 1* handle of the desktop *1
BOOl fLock; 1* lock/unlock flag *1

Parameters

The WinQuerySysModalWindow function returns the current system modal win
dow.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

Return Value

See Also

Changes

WinQuerySysValue 323

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

The return value is the handle of the current system modal window. If there is
none, the return value is NULL.

WinLockWindow, WinSetSysModalWindow

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQuerySysValue Change
LONG WinQuerySysValue (hwndDesktop, iSysValue)
HWND hwndDesktop; 1* handle of desktop *1
SHORT iSysValue; 1* system value to retrieve *1

Parameters

Return Value

Comments

The WinQuerySysValue function retrieves a specified system value.

hwndDesktop. Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

iSysValue Specifies the system value.

The return value is the system value if the function is successful, or zero if an
error occurs.

The system values can be any of the following values:
Value

SV _CMOUSEBUTIONS

SV _MOUSEPRESENT

SV _DBLCLKTIME

Meaning

Specifies the number of mouse buttons: 1,
2, or 3:

Specifies whether the mouse is present. A
value of TRUE means the mouse is present.

Specifies whether the mouse buttons are
swapped. A value of TRUE means the
mouse buttons are swapped.

Specifies the horizontal spacing for a mouse
double-click. When the horizontal distance
between two mouse clicks is less than this
value, the horizontal spacing requirement
for considering two mouse clicks a double
click is met.

Specifies the vertical spacing for a mouse
double-click. When the vertical distance
between two mouse clicks is less than this
value, the vertical spacing requirement for
considering two mouse clicks a double-click
is met.

Specifies the mouse double-click time, in
milliseconds. When the time between two
mouse clicks is less than this value, the tem
poral requirement for considering two
mouse clicks a double-click is met.

324 WinQuerySysValue

Value

SV _CXSIZEBORDER

SV _CYSIZEBORDER

SV _CURSORRA TE

SV _FIRSTSCROLLRA TE

SV _NUMBERED LISTS

SV_ERRORFREQ

SV _ W ARNINGFREQ

SV _ERRORDURA TION

SV _NOTEDURATION

SV _ W ARNINGDURA TION

SV _CYHSCROLL

SV _CXHSCROLLARROW

Meaning

Specifies the number of pels along the x-axis
in a window-sizing border.

Specifies the number of pels along the y-axis
in a window-sizing border.

Specifies whether a call to the WlnAlarm
function generates a sound. A value of
TRUE means sound is generated.

Specifies the rate at which the cursor blinks,
in milliseconds. The blink rate is the time
that the cursor remains visible or invisible.
Twice this value is the time the cursor takes
to cycle from visibility to invisibility and
back.

Specifies the delay (in milliseconds) between
clicking and holding down the mouse button
(when the mouse pointer is on a scroll
arrow or scroll bar) and the beginning of
scroll-bar autorepeat activity.

Specifies the delay (in milliseconds) between
scroll-bar autorepeat events.

Reserved.

Specifies the frequency (in hertz) of a
WlnAlarm function W A_ERROR sound.

Specifies the frequency (in hertz) of a
WlnAlarm function W A_NOTE sound.

Specifies the frequency (in hertz) of a
WlnAlarm function W A_WARNING
sound.

Specifies the duration (in milliseconds) of a
WlnAlarm function W A_ERROR sound.

Specifies the duration (in milliseconds) of a
WlnAlarm function W A_NOTE sound.

Specifies the duration (in milliseconds) of a
WlnAlarm function W A_WARNING
sound.

Specifies the number of pels along the
screen's x-axis.

Specifies the number of pels along the
screen's y-axis.

Specifies the number of pels along the x-axis
of a vertical scroll bar.

Specifies the number of pels along the y-axis
of a horizontal scroll bar.

Specifies the number of pels along the x-axis
of a horizontal scroll arrow.

Value

SV _CYVSCROLLARROW

SV _CXMINMAXBUTION

SV _CYMINMAXBUTION

SV_CYMENU

SV _CXFULLSCREEN

SV _CYFULLSCREEN

SV _POINTERLEVEL

WinQuerySysValue 325

Meaning

Specifies the number of pels along the y-axis
of a vertical scroll arrow.

Specifies the number of pels along the x-axis
of a window border.

Specifies the number of pels along the y-axis
of a window border.

Specifies the number of pels along the x-axis
of a dialog-box frame.

Specifies the number of pels along the y-axis
of a dialog-box frame.

Specifies the number of pels along the y-axis
of a title-bar window.

Specifies the number of pels along the x-axis
of a horizontal scroll-bar slider.

Specifies the number of pels along the y-axis
of a vertical scroll-bar slider.

Specifies the width (in pels) of a minimize
or maximize button.

Specifies the height (in pels) of a minimize
or maximize button.

Specifies the height (in pels) of a menu.

Specifies the number of pels along the x-axis
of the client window of a maximized frame
window.

Specifies the number of pels along the y-axis
of the client window of a maximized frame
window.

Specifies the number of pels along an icon's
x-axis.

Specifies the number of pels along an icon's
y-axis.

Specifies the number of pels along the
mouse pointer's x-axis.

Specifies the number of pels along the
mouse pointer's y-axis.

Specifies whether a debugging version of
OS/2 is being run. This value is TRUE if a
debugging version is being run.

Specifies the cursor display count. The cur
sor is visible only when the display count is
zero.

Specifies the mouse-pointer display count.
The mouse is visible only when the display
count is zero.

326 WinQuerySysValue

See Also

Changes

Value

SV_TRACKRECTLEVEL

SV _EXTRAKEYBEEP

SV _INSERTMODE

Meaning

Specifies the tracking-rectangle display
count. The tracking rectangle is visible only
when the display count is zero.

Specifies the number of available timers.

Specifies a horizontal alignment that is more
efficient for the device driver.

Specifies a vertical alignment that is more
efficient for the device driver.

Specifies whether beep is turned on for
extended keys (keys not on an IBM PS/2 or
compatible keyboard).

Specifies if the system controls the keyboard
indicator lights.

Specifies if insert mode is on or off for
entry-field controls.

SV _MENUROLLDOWNDELA Y Specifies the delay for menu roll down.

SV_MENUROLLUPDELAY

SV _ALTMNEMONIC

Specifies the delay for menu roll up.

Specifies if the Alt key is allowed as a
mnemonic.

SV _ T ASKLISTMOUSEACCESS Specifies if the task list can be accessed by
the right mouse button.

Specifies the number of system values.

WinSetSys Value

The following system values have been added:

SV Y,XTRAKEYBEEP
SV _SETLIGHTS
SVJNSERTMODE
SV~ENUROLLDOWNDELAY
SV ~ENUROLLUPDELAY,
SV ~LTMNEMONIC
SV _TASKLISTMOUSEACCESS

• WinQueryTaskSizePos New
USHORT WinQueryTaskSizePos(hab, usSession, pswp)
HAB hab; I. anchor-block handle .1
USHORT usSession; I. screen session .1
PSWP pswp; I. pOinter to structure for defaults .1

Parameters

The WinQueryTaskSizePos function retrieves the default size, position, and
status for the first frame window of a newly started application.

hab Identifies the anchor block.

Return Value

See Also

WinQueryWindow 327

usSession Specifies the screen session. For MS OS/2 version 1.2, this value
can be 0 or 1; 0 specifies the screen session of the caller.

pswp Points to the SWP structure that receives the default size, position, and
status for the first frame window of the application. The SWP structure has the
following form:

typedef struet _SWP {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x;
HWND hwndInsertBehind;
HWND hwnd;

} SWP;

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

PMERRJNV ALID_SESSIONJD

WinQueryWindowPos

• WinQueryWindow Change
HWND WinQueryWindow(hwnd, cmd, fLock)
HWND hwnd; I. handle of the window .1
SHORT cmd; I. which window to retrieve .1
BOOl fLock; I. lock/unlock flag .1

Parameters

The WinQueryWindow function retrieves the handle of a window that has a
specified relationship to a specified window.

If WinQueryWindow is used to enumerate windows of other threads, it is not
guaranteed that all the windows are enumerated, because the Z ordering of the
windows may change during the enumeration. The WinGetNextWindow function
must be used for this purpose.

hwnd Identifies a window. The window handle retrieved is relative to this win
dow, based on the value in the cmd parameter.

cmd Specifies which window to retrieve. The following are the possible
values:

Value

OW_NEXT

OW_PREY

OW_TOP

QW_BOTTOM

OW_OWNER

OW_PARENT

Meaning

Next window in Z order (window below).

Previous window in Z order (window above).

Topmost child window.

Bottommost child window.

Owner of the window.

Parent of window; HWND_OBJECT if object
window.

328 WinQueryWindow

Return Value

See Also

Changes

Value

QW _FRAMEOWNER

Meaning

Next main window in the enumeration order
defined for the ALT+ESCAPE function of the user
interface.

Previous main window t in the enumeration order
defined by QW...NEXTTOP.

Returns the owner of hwndt normalized so that it
shares the same parent as hwnd.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

The return value is the handle of the window related to the window identified by
the hwnd parameter.

WinGetNextWindow, WinLockWindow

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinQueryWindowLockCount
SHORT WinQueryWindowlockCount(hwnd)

Change

HWND hwnd; I. window handle .1

Changes

This function exists for compatibility with MS OS/2 version 1.1. It is not used in
MS OS/2 1.2 or later versions.

This function is not used in MS OS/2 1.2 or later versions.

• WinRegisterClass Change
BOOl WinRegisterClass (hab, pszC/assName, pfnWndProc, flSty/e, cbWindowData)
HAB hab; I. handle of anchor block .1
PSZ pszC/assName; I. points to class name .1
PFNWP pfnWndProc; I. address of window procedure .1
ULONG flSty/e; I. window-style flags .1
USHORT cbWindowData; I. amount of reserved data .1

Parameters

The WinRegisterClass function registers a window class.

When an application registers a private class with the window procedure in a
dynamic-link library, the application must resolve the window-procedure address
before calling WinRegisterClass.

Private classes are deleted when the process that registers them terminates.

hab Identifies the anchor block.

pszClassName Points to a null-terminated string that specifies the name of the
window class. The string can be either a name specified by an application or the
name of one of the following preregistered classes:

Class

WC_COMBOBOX

WC_ENTRYFIELD

WC_FRAME

WC_LISTBOX

WinRegisterClass 329

Description

A button control, including push buttons, radio
buttons, check boxes, and user buttons.

A combination entry-field and list-box control.

An entry-field control that allows single-line text
editing.

A standard frame window.

A list box that displays items in a list that can be
scrolled.

A multiple-line entry field.

A menu, including the menu bar and the menus
that can selected from it.

A scroll bar that allows a user to scroll the con
tents of a window.

A static control that displays text. icon. or bitmap
data.

A title-bar control that displays the title of a win
dow across the top of the frame and also allows the
user to drag the frame window to a new location.

pfnWndProc Points to the window procedure. This value can be NULL if the
application does not provide a window procedure. An application written in a
language that does not allow the system to call the application's window pro
cedure (for example, COBOL or FORTRAN) should also use NULL for this
parameter. For more information, see WinGetDIgMsg.

jlStyle Specifies the default window style, which can be any of the standard
CS class styles, and any class-specific window styles that may be defined. These
styles can be augmented when a window of this class is created. A public win
dow class is created if the CSYUBLIC style is specified; otherwise, a private
class is created. Public classes are available from any process for creating a win
dow. Private classes are available only to the registering process.

The following list describes the standard classes:
Style

CS_CLIPCHILDREN

CS_CLIPSIBLINGS

CS_MOVENOTIFY

Meaning

Sets the WS_CLIPCHILDREN style for win
dows created using this class.

Sets the WS_CLIPSIBLINGS style for windows
created using this class.

Identifies windows created using this class as
frame windows.

Directs the system to send a W~HITTEST
message to a window of this class whenever the
mouse moves in the window.

Directs the system to send a W~MOVE mes
sage to the window whenever the window
moves.

330 WinRegisterClass

Return Value

Example

Style

CS_P ARENTCLIP

CS_PUBLIC

CS_SA VEBITS

CS_SIZEREDRA W

Meaning

Sets the WS_P ARENTCLIP style for windows
created using this class.

Creates a public window class.

Sets the WS_SA VEBITS style for windows
created using this class.

Directs the system to invalidate the entire win
dow whenever the size of the window changes.

Sets the WS_SYNCP AINT style for windows
created using this class.

cb WindowData Specifies the number of bytes of storage reserved for use by
applications for each window created of this class.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example calls WinRegisterClass to register a class or returns FALSE if an
error occurs.

HAB hab;
CHAR szClassName [] = "Generic"; /' window class name '/

if (IWinRegisterClass(hab,
szClassName,
GenericWndProc,
OL, 0»

return (FALSE);

/' anchor-block handle '/
/' class name '/
/' window procedure '/
/' window style '/
/' amount of reserved memory '/

See Also WinGetDlgMsg, WinQueryClasslnfo, WinQueryClassName, WinQuery
WindowPtr, WinQueryWindowULong, WinQueryWindowUShort

Changes The constants WC_COMBOBOX and WC~LE have been added to the list of
preregistered classes.

WinReleasePS Correction
BaaL WinReleasePS (hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Comments

The WinReleasePS function releases a cached presentation space obtained by
using the WinGetClipPS, WinGetPS, or WinGetScreenPS function.

Only a cached presentation space can be released using this function. The
presentation space is returned to the cache for reuse. The presentation-space
handle should not be used following this function.

hps Identifies the cached presentation space to release.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Before an application terminates, it must call WinReleasePS to release any
cached presentation spaces obtained.

Example

See Also

Corrections

WinRemovePresParam 331

This example processes an application-defined message (IDMYILL). It calls
WinGetPS to get a presentation space to the entire window. It gets the dimen
sions of the current window, fills the window, and calls WinReleasePS to release
the presentation space.

case IDM_FILL:
hps = WinCetPS(hwnd); I' gets ps for entire window 'I
WinQueryWindowRect(hwnd, &rcl); I' gets window dimensions 'I
WinFillRect(hps, &rcl, eLR_WHITE); I' clears entire window 'I
WinReleasePS(hps); I' releases ps 'I

WinGetClipPS, WinGetPS, WinGetScreenPS

The WinReleasePS function is used to release any cached presentation space,
including those created with the WinGetClipPS and WinGetScreenPS functions.

• WinRemovePresParam New
BOOl WinRemovePresParam(hwnd. id)
HWND hwnd; /. window handle */
UlONG id; /. presentation parameter to remove ./

Parameters

The WinRemovePresParam function removes a presentation parameter.

hwnd Identifies the window that contains the presentation parameters to
remove.

id Identifies the presentation parameter to remove. It may be one of the fol
lowing values:

Value

PP _FOREGROUNDCOLOR

PP _FOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLOR

PP _BACKGROUNDCOLORINDEX

PP _HILITEFOREGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLOR

PP _HILITEBACKGROUNDCOLORINDEX

PP _DISABLEDFOREGROUNDCOLOR

PP _DISABLEDFOREGROUNDCOLORINDEX

Meaning

RGB foreground color

Color index of fore
ground color

RGB background color

Color index of back
ground color

RGB color of foreground
highligh ted area

Color index of fore
ground highlighted area

RGB color of back
ground highlighted area

Color index of back
ground highlighted area

RGB foreground disabled
color

Color index of fore
ground disabled color

332 WinRemovePresParam

Return Value

Comments

See Also

Value

PP _DISABLEDBACKGROUNDCOLOR

PP _DISABLEDBACKGROUNDCOLORINDEX

PP _BORDERCOLOR

PP _BORDERCOLORINDEX

PP _FONTN AMESIZE

PP _FONTHANDLE

Meaning

RGB color of back
ground disabled color

Color index of back
ground disabled color

RGB color of window
border

Color index of window
border

Font size

Font handle

The return value is TRUE if the function is successful or FALSE if an error
occurs.

When a presentation parameter is removed, a WMYRESP ARAMCHANGED
message is sent to all windows owned by the window calling the WinSetPres
Param function.

WinQueryPresParam, WinSetPresParam

• WinSetPresParam New
BOOL WinSetPresParam(hwnd, id, cbParam, pbParam)
HWND hwnd; 1* window handle *1
ULONG id; 1* presentation parameter *1
ULONG cbParam; 1* presentation-parameter size *1
PVOID pbParam; 1* pointer to presentation parameter *1

The WinSetPresParam function sets a presentation parameter.

Parameters hwnd Identifies the window that contains the presentation parameters to set.

id Identifies the presentation parameter to set. It may be one of the following
values:

Value

PP _FOREGROUNDCOLOR

PP _FOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLOR

PP _BACKGROUNDCOLORINDEX

PP _HILITEFOREGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLOR

Meaning

RGB foreground color

Color index of foreground
color

RGB background color

Color index of background
color

RGB color of foreground
highlighted area

Color index of foreground
highlighted area

RGB color of background
highlighted area

Return Value

Comments

See Also

Value

PP _HILITEBACKOROUNDCOLORINDEX

PP _DISABLEDFOREOROUNDCOLOR

WinSetSysColors 333

Meaning

Color index of background
highlighted area

ROB foreground disabled
color

PP _DISABLEDFOREOROUNDCOLORINDEX Color index of foreground
disabled color

PP _DISABLEDBACKOROUNDCOLOR ROB color of background
disabled color

PP _DISABLEDBACKGROUNDCOLORINDEX Color index of background
disabled color

PP _BORDERCOLOR

PP _BORDERCOLORINDEX

PP _FONTN AMESIZE

PP _FONTHANDLE

ROB color of window
border

Color index of window
border

Font size

Font handle

cbParam Specifies the length (in bytes) of the buffer pointed to by the
pbParam parameter.

pbParaln Points to the buffer that contains the presentation parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

When a presentation parameter is set, a WMJ>RESPARAMCHANGED mes
sage is sent to all windows owned by the window calling the WinSetPresParam
function.

WinQueryPresParam, WinRemovePresParam

• WinSetSysColors Correction
BOOl WinSetSysColors(hwndDesktop, flOptions, flFormat, elrFirst, eelr, pelr)
HWND hwndDesktop; I. handle of the desktop .1
UlONG flOptions; I. color options .1
UlONG flFormat; I. format options .1
COLOR elrFirst; I. first color to set .1
UlONG eelr;
PCOlOR pelr;

I. number of colors to set .1
I. address of color definitions .1

The WinSetSysColors function sets system color values. This function sends a
WM_SYSCOLORCHANGE message to all main windows in the system to indi
cate that the colors have changed. When this message is received, applications
that depend on the system colors can query the new color values by using the
WinQuerySysColor function.

After the WM_SYSCOLORCHANGE messages are sent, all windows in the
system are invalidated so that they will be redrawn with the new system colors.

WinSetSysColors does not write any system color changes to the os2.ini file.

334 WinSetSysColors

Parameters hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

flOp/ions Specifies the following options:
Value Meaning

Indicates that color dithering should not be used to
create colors not available in the physical palette.
If this option is set, only pure colors will be used
and no dithering will be done.

Indicates that the system colors are all to be reset
to default before processing the remainder of the
data in this function.

flFormat Specifies the format of entries in the table, as follows:
Value Meaning

LCOLF _CONSECRGB Array of RGB values that correspond to color
indexes. Each entry is 4 bytes.

Array of (index, RGB) values. Each pair of entries
is 8 bytes (4 bytes index and 4 bytes color value).

clrFirst Specifies the starting system color index (this parameter is only
relevant for the LCOLF _CONSECRGB format). The following system color
indexes are defined (each successive index is one larger than its predecessor):

Value

SYSCLR_BUTfONLIGHT

SYSCLR_BUTfONMIDDLE

SYSCLR_BUTfONDARK

SYSCLR_BUTfONDEFAULT

SYSCLR_ TITLEBOTfOM

SYSCL~SHADOW

SYSCLR_ICONTEXT

SYSCLR_DIALOGBACKGROUND

SYSCLR_HILITEFOREGROUND

SYSCLR_HILITEBACKGROUND

Meaning

Light button

Middle button

Dark button

Default button

Bottom title

Shadow

Icon text

Dialog-box background

Foreground hilight

Background hilight

SYSCLR_INACTIVETITLETEXTBGND Inactive title-text background

SYSCLR_ACTIVETITLETEXTBGND

SYSCLR_IN ACTIVETITLETEXT

SYSCLR_ACTIVETITLETEXT

SYSCLR_OUTPUTfEXT

SYSCLR_ WINDOWST ATICTEXT

SYSCLR_SCROLLBAR

SYSCLR_BACKGROUND

SYSCLR_ACTIVETITLE

SYSCLR_IN ACTIVETITLE

Active title-text background

Inactive title-text

Active title-text

Output text

Static text

Scroll bar

Screen background

Title bar of active window

Title bar of inactive window

Return Value

See Also

Corrections

WinSetSysColors 335

Value Meaning

SYSCLR_MENU

SYSCLR_ WINDOW

SYSCLR_ WINDOWFRAME

SYSCLR_MENUTEXT

SYSCLR_ WINDOWTEXT

SYSCLR_ TITLETEXT

SYSCLR_ACTIVEBORDER

SYSCLR_IN ACTIVEBORDER

SYSCLR_APPWORKSP ACE

Menu background

Window background

Window border line

Menu text

SYSCLR_HELPBACKGROUND

SYSCLR_HELPTEXT

Window text

Title text

Border fill of active window

Border fill of inactive window

Background of certain main win
dows

Background of help panels

Help text

SYSCLR_HELPHILITE Highlight of help text

celr Specifies the number of elements supplied in pelr. This parameter may be
zero if, for example, the color table is merely to be reset to the default. For
LCOLF JNDRGB, this parameter must be an even number. The constant
SYSCLICCSYSCOLORS is set to the total number of system colors.

pelr Specifies the start address of the application data area containing the
color-table definition data. The format depends on the value of the flFormat
parameter. Each color value is a 4-byte integer. The low byte is the blue intensity
value (OxOOOOOOFF), the second byte is the green intensity value (OxOOOOFFOO),
and the third byte is the red intensity value (OxOOFFOOOO). The intensity for each
color may range between 0 and 255.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQuerySysColor

The following system colors have been added:

SYSCLICBUTTONLIGHT
SYSCLICBUTTONMIDDLE
SYSCLICBUTTONDARK
SYSCLICBUTTONDEFAULT
SYSCLICTITLEBOTTOM
SYSCLICSHADOW
SYSCLRJCONTEXT
SYSCLRJ)IALOGBACKGROUND
SYSCLRJULITEFOREGROUND
SYSCLRJIILITEBACKGROUND
SYSCLRJNACTIVETITLETEXTBGND
SYSCLICACTIVETITLETEXTBGND
SYSCLRJNACTIVETITLETEXT
SYSCLILACTIVETITLETEXT
SYSCLICOUTPUTTEXT

The system colors were listed alphabetically instead of by numerical order. The
numerical order is important because it is used to determine the starting color to
change when LCOLF _CONSECRGB is specified for flFormat.

336 WinSetSysValue

• WinSetSysValue Change
BOOl WinSetSysValue (hwndDesktop, iSysValue, IValue)
HWND hwndDesktop; /. handle of desktop window ./
SHORT iSysValue; /. system value to change ./
lONG IValue; /. new system value ./

Parameters

Return Value

Comments

The WinSetSysValue function sets the system value.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

iSysValue Specifies the system value. For a complete list of possible system
values, see the following "Comments" section.

IValue Specifies the system value. Durations are in milliseconds. Frequencies
are in hertz; valid values are Ox0025 through Ox7FFF.

The return value is TRUE if the system value is successfully set. Otherwise, it is
FALSE, indicating that an error occurred.

The system values can be any of the following values:
Value

SV _CMOUSEBUTIONS

SV _MOUSEPRESENT

SV _CYDBLCLK

SV _DBLCLKTIME

SV _CXSIZEBORDER

SV _CYSIZEBORDER

Meaning

Specifies the number of mouse buttons: 1,
2, or 3.

Specifies whether the mouse is present. A
value of TRUE means the mouse is
present.

Specifies whether the mouse buttons are
swapped. A value of TRUE means the
mouse buttons are swapped.

Specifies the horizontal spacing for a
mouse double-click. When the horizontal
distance between two mouse clicks is less
than this value, the horizontal spacing
requirement for considering two mouse
clicks a double-click is met.

Specifies the vertical spacing for a mouse
double-click. When the vertical distance
between two mouse clicks is less than this
value, the vertical spacing requirement for
considering two mouse clicks a double
click is met.

Specifies the mouse double-click time, in
milliseconds. When the time between two
mouse clicks is less than this value, the
temporal requirement for considering two
mouse clicks a double-click is met.

Specifies the number of pels along the
x-axis in a window-sizing border.

Specifies the number of pels along the
y-axis in a window-sizing border.

Value

SV _FIRSTSCROLLRA TE

SV _NUMBERED LISTS

SV _ERRORFREQ

SV_NOTEFREQ

SV _ W ARNINGFREQ

SV _ERRORDURA TION

SV _NOTEDURA TION

SV _ W ARNINGDURA TION

SV _CXHSCROLLARROW

SV _CYVSCROLLARROW

WinSetSysValue 337

Meaning

Specifies whether a call to the WlnAlarm
function generates a sound. A value of
TRUE means sound is generated.

Specifies the rate at which the cursor
blinks, in milliseconds. The blink rate is
the time that the cursor remains visible or
invisible. Twice this value is the time the
cursor takes to cycle from visibility to
invisibility and back.

Specifies the delay (in milliseconds)
between clicking and holding down the
mouse button (when the mouse pointer is
on a scroll arrow or scroll bar) and the
beginning of scroll-bar autorepeat activity.

Specifies the delay (in milliseconds)
between scroll-bar autorepeat events.

Reserved.

Specifies the frequency (in hertz) of a
WlnAlarm function W A_ERROR sound.

Specifies the frequency (in hertz) of a
WlnAlarm function W A_NOTE sound.

Specifies the frequency (in hertz) of a
WlnAlarm function W A_WARNING
sound.

Specifies the duration (in milliseconds) of
a WlnAlarm function WA.J3RROR
sound.

Specifies the duration (in milliseconds) of
a WlnAlarm function W A_NOTE sound.

Specifies the duration (in milliseconds) of
a WinAlarm function W A_WARNING
sound.

Specifies the number of pels along the
screen's x-axis.

Specifies the number of pels along the
screen's y-axis.

Specifies the number of pels along the
x-axis of a vertical scroll bar.

Specifies the number of pels along the
y-axis of a horizontal scroll bar.

Specifies the number of pels along the
x-axis of a horizontal scroll arrow.

Specifies the number of pels along the
y-axis of a vertical scroll arrow.

Specifies the number of pels along the
x-axis of a window border.

338 WinSetSysValue

Value

SV _CXMINMAXBUTTON

SV _CYMINMAXBUTTON

SV_CYMENU

SV _CXFULLSCREEN

SV_CYFULLSCREEN

SV_DEBUG

SV _CURSORLEVEL

SV _POINTERLEVEL

SV_TRACKRECTLEVEL

SV_CTIMERS

SV _CXBYTEALIGN

Meaning

Specifies the number of pels along the
y-axis of a window border.

Specifies the number of pels along the
x-axis of a dialog-box frame.

Specifies the number of pels along the
y-axis of a dialog-box frame.

Specifies the number of pels along the
y-axis of a title-bar window.

Specifies the number of pels along the
x-axis of a horizontal scroll-bar slider.

Specifies the number of pels along the
y-axis of a vertical scroll-bar slider.

Specifies the width (in pels) of a minimize
or maximize button.

Specifies the height (in pels) of a minimize
or maximize button.

Specifies the height (in pels) of a menu.

Specifies the number of pels along the
x-axis of the client window of a maximized
frame window.

Specifies the number of pels along the
y-axis of the client window of a maximized
frame window.

Specifies the number of pels along an
icon's x-axis.

Specifies the number of pels along an
icon's y-axis.

Specifies the number of pels along the
mouse pointer's x-axis.

Specifies the number of pels along the
mouse pointer's y-axis.

Reserved.

Specifies the cursor display count. The
cursor is visible only when the display
count is zero.

Specifies the mouse-pointer display count.
The mouse is visible only when the display
count is zero.

Specifies the tracking-rectangle display
count. The tracking rectangle is visible
only when the display count is zero.

Specifies the number of available timers.

Specifies a horizontal alignment that is
more efficient for the device driver.

See Also

Changes

WinSetWindowPos 339

Value Meaning

SV _CYBYTEALIGN Specifies a vertical alignment that is more
efficient for the device driver.

SV _EXTRAKEYBEEP Specifies whether beep is turned on for
extended keys (keys not on an IBM PS/2
or compatible keyboard).

SV _SETLIGHTS Specifies if the system controls the key
board indicator lights.

SV _INSERTMODE Specifies if insert mode is on or off for
entry-field controls.

SV _MENUROLLDOWNDELA Y Specifies the delay for menu roll down.

SV _MENUROLLUPDELA Y Specifies the delay for menu roll up.

SV_ALTMNEMONIC Specifies if the Alt key is allowed as a
mnemonic.

SV_TASKLISTMOUSEACCESS Specifies if the Task List can be accessed
by the right mouse button.

SV _CSYSV ALUES Specifies the number of system values.

WinQuerySysValue

The following system values have been added:

SV..EXTRAKEYBEEP
SV _SETLIGHTS
SV _INSERTMODE
SV~ENUROLLDOWNDELAY
SV~ENUROLLUPDELAY
SV _ALTMNEMONIC
SV _TASKLISTMOUSEACCESS

• WinSetWindowPos Correction
BOOl WinSetWindowPos(hwnd. hwndlnsertBehind. x. y. ex. ey. fs)
HWND hwndj 1* handle of window being set .1
HWND hwndlnsertBehind; I. placement-order handle .1
SHORT x; I. horizontal position .1
SHORT y;
SHORT ex;
SHORT ey;
USHORT fs;

Parameters

I. vertical position .1
I. width .1
I. height *1
I. window-P9sitioning flags .1

The WinSetWindowPos fUllction sets the position of a window.

hwnd Identifies the window being set.

hwndlnsertBehind Identifies relative window-placement order. This parame
ter is ignored if the Is parameter is not set to SWP 20RDER. If this parameter
is HWND.-BOTTOM, the hwnd window is placed behind all sibling windows. If
it is HWND_TOP, the hwnd window is placed on top of all sibling windows.
Other values identify the sibling window behind which the hwnd window is
placed.

340 WinSetWindowPos

x Specifies the horizontal position of the hwnd window (in window coordinates
relative to the lower-left corner of its parent window). This parameter is ignored
if the Is parameter is not set to SWP j10VE.

Y Specifies the vertical position of the hwnd window (in window coordinates
relative to the lower-left corner of its parent window). This parameter is ignored
if the Is parameter is not set to SWP j10VE.

ex Specifies the horizontal window size (in device units). This parameter is
ignored if the Is parameter is not set to SWP _SIZE.

ey Specifies the vertical window size (in device units). This parameter is
ignored if the Is parameter is not set to SWP _SIZE.

Is Identifies the window-positioning options. This parameter can be one or
more of the following values:

Value

SWP _ACTIVATE

SWP _DEACTIVATE

SWP _EXTSTATECHANGE

SWP _FOCUSACTIV ATE

SWP _FOCUSDEACTIV A TE

SWP_HIDE

SWP _MAXIMIZE

Meaning

The window is activated and the focus to
be set to the window that lost the focus
the last time the frame window was deac
tivated. The activated window may not
become the top window if it owns other
frame windows.

Deactivates the window, if it is the active
window.

This flag is for application use. It is used
to pass an additional flag to the portion of
code that is handling messages.

Specifies that a frame window is receiving
the focus. This flag is set so that an
application that is processing the
W~ADJUSTWINDOWPOS message can
tell if the message was sent as the result of
a focus change.

Specifies that a frame window is losing the
focus.

Specifies that the window is to be hidden
when created.

With SWP _MINIMIZE, causes a window
to be minimized, maximized, or restored.
SWP _MAXIMIZE and SWP _MINIMIZE
are mutually exclusive. If either
SWP _MINIMIZE or SWP _MAXIMIZE is
specified, then both SWP _MOVE and
SWP _SIZE must also be specified. Win
SctWindowPos and WlnSctl\-!ultWln
dowPos depend on the previous state of
the window; these flags cause the appropri
ate state to be toggled, as follows: the x,
y, ex, and ey parameters specify the size
and position to which the window will be
restored if it is subsequently restored. This
should be the normal size of the window.

Return Value

Comments

Value

SWP _MINIMIZE

SWP_MOVE

SWP _NOADJUST

SWP _NOREDRA W

SWP _RESTORE

SWP_SHOW

SWP_SIZE

SWP_ZORDER

WinSetWindowPos 341

Meaning

See SWP _MAXIMIZE.

Changes the window's x,y position.

Does not send a
W~ADJUSTWINDOWPOS message to
the window while processing (the window
cannot readjust itself).

Does not redraw changes.

Restores a minimized or maximized win
dow.

Specifies that the window is to be shown
when created.

Changes the window size.

Changes the relative window placement.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If a window created with the CS_SA VEBITS style is moved, reduced in size, or
hidden, the saved screen image is used to redraw the area uncovered when the
window size changes, if those bits are still valid.

If the CS_SIZEREDRAW style is present, the entire window area is assumed
invalid if sized. Otherwise, a ~CALCV ALIDRECTS message is sent to the
window to inform the window manager which bits it is possible to preserve.

Messages sent from WinSetWindowPos and WinSetMultWindowPos have
specific orders within the window positioning process. The process begins with
redundancy checks and precalculations on every window for each requested
operation. For example, if SWP _SHOW is present but the window is already
visible, then SWP _SHOW is turned off. If SWP _SIZE is present and the new
size is equal to the previous size, SWP _SIZE is turned off. If the operations will
create new results, the information is calculated and stored. For example, if
being sized or moved, the new window rectangle is stored for later use. At this
point, the WM_ADJUSTWINDOWPOS message is sent to any window that is
being sized or moved. Also at this point, the ~CALCV ALIDRECTS mes
sage is sent to any window that is being sized and that does not have the
CS_SIZEREDRA W window style.

When the new window state is calculated, the window-management process
begins. Window areas that can be preserved are moved from the old to the new
positions, window areas that are invalidated by these operations are calculated
and distributed as update regions, and so forth. When this is finished, and
before any synchronous-paint windows are repainted, the WM_SIZE message is
sent to any windows that have changed size. Next, all the synchronous-paint win
dows that can be repainted are repainted and the entire process is complete.

If a synchronous-paint parent window has a size-sensitive area displayed that
includes synchronous-paint child windows, the parent window will reposition
those windows when it receives the WM_SIZE message. Their invalid regions
will be added to the parent window's invalid region, resulting in one update after
the parent window's WM_SIZE message, rather than many independent and sub
sequently duplicated updates.

342 WinSetWindowPos

Example

See Also

Corrections

Certain windows are not positioned precisely to the parameters specified by this
function. For example, frame windows without the FCF _NOBYTEALIGN style
creation flag are not positioned to any specific screen coordinate.

The following messages are sent by this function:
Value

W1LCALCV ALIDRECTS

W1LSIZE

W1LMOVE

W1LACTIV ATE

W1LADJUSTWINDOWPOS

Meaning

Sent to determine the area of a window that
it may be possible to preserve as the win
dow is sized.

Sent if the size of the window has changed,
after the change has been effected.

Sent when a window with
CS_MOVENOTIFY class style moves its
absolute position.

Sent if a different window becomes the
active window. For more information, see
the WlnSctActivc Window function.

Sent if SWP _NOADJUST is not specified.
The message's mpJ parameter points to an
SWP structure that has been filled in by the
WlnSctWlndowPos function with the pro
posed move/size data. The window can
adjust this new position by changing the
contents of the SWP structure.

This example gets the dimensions of the desktop window, and calls WinSet
WindowPos to place the application's frame window in the upper left corner. By
positioning the window relative to the desktop window, the window position is
device-independent; it will work on any display adapter no matter what the verti
cal and horizontal resolution is.

RECTL rcl;

WinQueryWindowRect(HWND_DESKTOP, &rcl);
WinSetWindowPos(hwndFrame, HWND_TOP,

rcl.xLeft,
rcl.yTop - 60,
140,

I" x pos "l
I" y pos "l
I" x size "l
I" y size "l 60,

SWP_ACTIVATE I SWP_MOVE I SWP_SIZE I SWP_SHOW); I" flags "l

WinSetActive Window, WinSetMultWindowPos, W1LADJUSTWINDOWPOS,
\V1LCALCVALIDRECTS

Certain windows are not positioned precisely to the parameters specified by
this function. For example, frame windows without a style creation flag of
FCF _NOBYTEALIGN are not positioned to any specific screen coordinate.

• WinSwitchToProgram New
USHORT WinSwitchToProgram(hSwitch)
HSWITCH hSwitch; /. handle of application to activate ./

The WinSwitchToProgram function makes an application the active application.
The function succeeds only if the calling application is currently the active appli
cation (the application with the active window).

Parameters

Return Value

See Also

WinWindowFromlD 343

hSwitch Identifies the application to make active.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

PMERRJNVALID_SWITCHJIANDLE

WinlnstStartApp

• WinTerminateApp New
BOOL WinTenninateApp(happ)
HAPP happ;

Parameters

Return.Value

Errors

Comments

See Also

The WinTerminateApp function terminates an application previously started
with the WinlnstStartApp function.

happ Identifies the application to terminate.

The return value is TRUE if the application is terminated successfully or NULL
if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVALIDJIAPP
PMERR-CANNOT_STOP

The application to terminate must have been started using the WinlnstStartApp
function with the SAF _STARTCHILDAPP option specified.

If the specified application does not stop, this function returns TRUE. To
ensure that the application has terminated, the application calling Win
TerminateApp must wait for the appropriate message to be posted to the win
dow specified in the WinlnstStartApp function.

WinlnstStartApp

• WinWindowFromlD Correction
HWND WinWindowFromlD(hwndParent. id)
HWND hwndParent; f. parent-window handle .f
USHORT id; f. window identifier .f

Parameters

Return Value

Comments

The Win WindowFromID function returns the first child window that has the
specified identifier of the specified parent window.

hwndParent Identifies the parent window.

id Identifies the window.

The return value is a window handle. If no child window exists with identifier id
the return value is NULL.

To obtain the window handle for an item within a dialog box, the hwndParent
parameter is set to the dialog-box window's handle and the id parameter is set to
the identifier of the item in the dialog template.

344 WinWindowFromlD

Example

See Also

Corrections

To obtain the window handle for a frame control, the hwndParent parameter is
set to the frame window's handle and the id parameter is set to one of the FID
constants, indicating which frame control you want a handle of.

The following list contains the frame control identifiers. Note that you must also
define the INCL_ WINFRAMEMGR constant before including pmwin.h

Value

FID_CLIENT

FID_HORZSCROLL

FID_MENU

FID_MINMAX

FID_SYSMENU

FID_ TITLEBAR

FID_ VERTSCROLL

Meaning

Identifies the client window.

Identifies the horizontal scroll bar.

Identifies the application menu.

Identifies the minimize/maximize box.

Identifies the system menu.

Identifies the title bar.

Identifies the vertical scroll bar.

This example calls Win WindowFromID to get the window handle of the system
menu and calls WinSendMsg to send a message to disable the Close menu item.

#define INCL_WINMESSAGEMGR
#define INCL_WINFRAMEMGR
#include <os2.h>

HWND hw~dSysMenu;

1* includes message manager functions tl
It includes FID_ constants tl

hwndSysMenu = WinWindowFromID(hwndDlg, FID_SYSMENU);
WinSendMsg(hwndSysMenu, MM_SETITEMATTR,

MPFROM2SHORT(SC_CLOSE, TRUE),
MPFROM2SHORT(MIA_DISABLED, MIA_DISABLED»;

WinMuItWindowFromIDs, Win WindowFromPoint

The list of FID constants incorrectly identified FID~ENU as referring to the
system menu. It actually refers to the application menu.

• WinWindowFromPoint Change
HWND WinWindowFromPoint(hwnd, pptl, fChildren, (Lock)
HWND hwnd; I. handle of the window .1
PPOINTl pptl; I. address of structure with the point .1
BOOl (Children; I. scope flag .1
BOOl fLock; I. lock/unlock flag .1

Parameters

The Win WindowFromPoint function finds the window that is below a specified
point and that is a descendant of a specified window. This function checks only
the descendants of the specified window.

hwnd Identifies the window whose child windows are tested.

pptl Points to a POI~:TL structure that contains the point to test, specified in
window coordinates relative to the hwnd parameter. The POINTL structure has
the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

Return Value

See Also

Changes

WinWriteProfileOata 345

fChildren Specifies which child windows to test. If fChildren is TRUE, the
function tests all the descendants of hwnd, including child windows of child win
dows. If fChildren is FALSE, the function tests only the immediate child win
dows of hwnd.

fLock This parameter is ignored by MS OS/2 1.2 and later versions.

If fChildren is FALSE, the return value is hwnd, a child of hwnd, or NULL. If
fChildren is TRUE, the return value is the topmost window if that window is
hwnd or a child of hwnd-unless another window of CSJlITTEST type is
found, in which case the window returned may not be the topmost window.

Win WindowFromID

The fLock parameter is ignored by MS OS/2 1.2 and later versions.

• WinWriteProfileOata Change
BOOl WinWrite Profile Data (hab, pszAppName, pszKeyName, pchBinaryData, cchData)
HAB hab; I. handle of anchor block .1
PSZ pszAppName; I. address of application name .1
PSZ pszKeyName; I. address of keyname .1
PVOID pchBinaryData; I. address of data .1
USHORT cchData; I. length of data .1

Parameters

The Win WriteProfileData function places binary data into the os2.ini file. The
placement of the data is determined by an application name and a keyname that
are passed to the function. The data can subsequently be retrieved by using the
WinQueryProfileData function, specifying the same application name and key
name as are given in the pszAppName and pszKeyName parameters.

hab Identifies the anchor block.

pszAppName Points to a null-terminated string that contains the name of the
application. The length of the string must be less than 1024 bytes, including the
null terminating character. The application name is case-sensitive. If there is no
application field in the os2.ini file that matches pszAppName, a new application
field is created.

pszKeyName Points to a null-terminated string that contains the keyname.
The length of the string must be less than 1024 bytes, including the null terminat
ing character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is case-sensitive. If there is no keyname that matches pszKeyName,
a new keyname field is created. If the keyname already exists, the existing value
is overwritten.

pchBinaryData Points to the binary data that is placed into the os2.ini file.
There is no explicit termination character. If pchBinaryData is NULL, the previ
ous value associated with the pszKeyName parameter is deleted; otherwise, the
data string becomes the value, even if it has a zero length. The amount of data
should not exceed 64K.

cchData Specifies the size (in bytes) of the pchBinaryData parameter.

346 WinWriteProfileData

Return Value

Comments

See Also

Changes

The return value is TRUE if the function is successful, or FALSE if an error
occurs. If the os2.ini file exists but is in corrupted form, Win WriteProfileData
returns FALSE.

The WinWriteProfileData function provides compatibility with MS OS/2 1.1 and
earlier versions. Applications intended exclusively for MS OS/2 1.2 and later
versions should use the PrlWriteProfileData function. .

PrlWriteProfileData, WinQueryProfileData

This function has been replaced by the PrlWriterrofileData function.

• WinWriteProfileString Change
BOOl WinWriteProfileString(hab, pszAppName, pszKeyName, pszString)
HAB hab; I. handle of anchor block .1
PSZ pszAppName; I. address of application name .1
PSZ pszKeyName; I. address of keyname .1
PSZ pszString; I. address of string to write .1

Parameters

Return Value

The WinWriteProfileString function places an ASCII string into the os2.ini file.
The placement of the string is determined by an application name and a key
name that are passed to the function. The string can subsequently be retrieved
by using the WinQueryProfileString function, specifying the same application
name and keyname as are given in the pszAppName and pszKeyName parame
ters.

hab Identifies the anchor block.

pszAppName Points to a null-terminated string that contains the name of the
application. The length of the string must be less than 1024 bytes, including the
null terminating character. The application name is case-sensitive. If there is no
application field in the os2.ini file that matches pszAppName, a new application
field is created.

pszKeyName Points to a null-terminated text string that contains the key
name. The length of the string must be less than 1024 bytes, including the null
terminating character. If pszKeyName is NULL, all keynames and their data are
deleted. The keyname is case-sensitive. If there is no keyname that matches
pszKeyName, a new keyname field is created. If the keyname already exists, the
existing value is overwritten.

pszString Points to a null-terminated ASCII string that is placed into the
os2.ini file. If pszString is NULL, the previous value associated with pszKeyName
is deleted; otherwise, the ASCII string becomes the value, even if it has a zero
length. The size of the string should not exceed 64K.

The return value is TRUE if the function is successful, or FALSE if an error
occurs. Use the WinGetErrorInfo function to retrieve the error value, which
may be one of the following:

PMERR-CAN_NOT_CALL_SPOOLER
PMERRJNVALIDYARM

Comments

See Also

Changes

WM.-ADJUSTWINDOWPOS 347

The Win WriteProfileString function provides compatibility with MS OS/2 1.1
and earlier versions. Applications intended exclusively for MS OS/2 1.2 and
later versions should use the PrfWriteProfileString function.

PrfWriteProfileString, WinQueryProfileString

This function has been replaced by the PrfWriteProfileString function.

• WM-ADJUSTWINDOWPOS Change

Parameters

Return Value

See Also

Changes

WM_ADJUSTWINDOWPOS
pswp = (PSWP) PVOIDFROMMP(mpl); 1* pointer to sWP structure *1

The ~DJUSTWINDOWPOS message is sent when a window is about to be
moved or sized. It gives the window an opportunity to adjust the new size and
position before the window is actually moved and sized.

pswp Low and high worq of mpl. Points to an SWP structure that contains the
new window size and position information. The SWP structure has the following
form:

typedef struct _SWP {
USHORT fs;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

An application should return FALSE if it does not change the SWP structure.
Otherwise, it should return on of the following values:

Value Meaning

A WP -.MINIMIZED The window was minimized.

A WP _MAXIMIZED The window was maximized.

A WP _RESTORED The window was restored.

A WP _ACTIV A TE The window was activated.

A WP _DEACTIV A TE The window was deactivated.

WinCreate Window, \V1LCALCV ALIDRECTS,
\V1LWINDOWPOSCHANGED

An application should return FALSE if it does not change the SWP structure.
Otherwise, it should return on of the following values:

Value

A WP _MINIMIZED

A WP _MAXIMIZED

A WP _RESTORED

Meaning

The window was minimized.

The window was maximized.

The window was restored.

348 WM..ADJUSTWINDOWPOS

Value Meaning

A WP _ACTIV ATE The window was activated.

A WP _DEACTIVATE The window was deactivated .

• WM-APPTERMINATENOTIFY New

Parameters

Return Value

See Also

WM_APPTERMINATENOTIFY'
mpl = MPFROMLONG«HAPP) happ);
mp2 = MPFROMSHORT«USHORT) usRetCode);

1* application handle *1
1* return code *1

The WM~PPTERMINATENOTIFY message is sent when a child application
started by the WinInstStartApp function terminates.

happ Low word of mpl. Identifies the application returned by the Win
InstStartApp function.

usRetCode Low word of mp2. Specifies the return code from the application
that has terminated.

An application should return zero if it processes this message.

WinInstStartApp, WinTerminateApp

• WM_CALCFRAMERECT New

Parameters

WM_CALCFRAMERECT
prclFrame = (PRECTL) PVOIDFROMMP(mpl); 1* pointer to RECTL structure itl
fClient = (BOOL) SHORT1FROMMP(mp2); 1* client-indicator flag itl

The W~CALCFRAMERECT message is sent to a frame window when the
WinCalcFrameRect function is called. The default window procedure calculates
a client rectangle from a frame rectangle or calculates a frame rectangle from a
client rectangle.

prcl Low word of mpl. Points to the RECTL structure that contains the coor
dinates of the window. If the jClient parameter is TRUE, this structure contains
the coordinates of the frame window, and on return, it contains the coordinates
of a client window. If the jClient parameter is FALSE, this structure contains
the coordinates of the client window, and on return, it contains the coordinates
of a Jrame window.

The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

[Client Low word of mp2. Specifies whether the window to calculate is a client
window or a frame window. If this value is TRUE, a client window is calculated.
If this value is FALSE, a frame window is calculated.

Return Value

See Also

WM_CALCVALIDRECTS 349

If an application processes this message, it should return TRUE if successful or
FALSE if an error occurs or the calculated rectangle is empty.

WinCalcFrameRect

• WM_CALCVALIDRECTS Correction

Parameters

Return Value

WM_CALCVALIDRECTS
parclWindow = (PRECTL) PVOIDFROMMP(mpl);
pswpDest = (PSWP) PVOIDFROMMP(mp2);

I' source rectangle 'I
I' destination window 'I

The W~CALCV ALIDRECTS message is sent when a window is about to be
resized. This allows the application to specify the coordinates of a rectangle that
will be preserved and to designate where this rectangle will be moved in the
resized window. Areas outside this rectangle will be redrawn.

parclWindow Low and high word of mpl. Points to an array of two RECTL
structures that contain the dimensions of the window before and after resizing.
The first RECTL structure contains the source rectangle; the second RECTL
structure contains the destination rectangle. The coordinates of the rectangles
are relative to the parent window of the window. The RECTL structure has the
following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

pswpDest Low and high word of mp2. Points to the SWP structure that con
tains information about the window after it is resized. The SWP structure has
the following form:

typedef struct _SWP {
USHORT fs;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x·
HWND h~ndI~sertBehind;
HWND hwnd;

} SWP;

If an application processes this message, it can return zero to indicate it has
changed the rectangle itself, C~EDRA W if the entire window is to be
redrawn, or a combination of the following values:

Value

CVR_ALIGNBOTfOM

CVR_ALIGNLEFf

CVR_ALIGNRIGHT

CVR_ALIGNTOP

Meaning

Align with the bottom edge of the window.

Align with the left edge of the window.

Align with the right edge of the window.

Align with the top edge of the window.

350 WM_CALCVALIDRECTS

Comments

See Also

Corrections

Parameters

The W1LCALCV ALIDRECTS message is not sent if a window has the
CS_SIZEREDRA W style because such windows are always completely redrawn
when resized.

~~DJUSTWINDO~OS

The first parameter points to an array of two RECTL structures. The first struc
ture is the source rectangle; the second structure is the destination rectangle.

The second parameter points to an SWP structure, not to a RECTL structure.

The CVR_REDRA W was incorrectly spelled CV .-REDRA W.

Change

WM_CHAR
fsKeyFlags = (USHORT) SHORTlFROMMP(mpl):
uchRepeat = (UCHAR) CHAR3FROMMP(mpl):
uchScanCode = (UCHAR) CHAR4FROMMP(mpl):
usChrl = (UCHAR) CHARIFROMMP(mp2):
usChr2 = (UCHAR) CHAR2FROMMP(mp2):
usVKey = (USHORT) SHORT2FROMMP(mp2):

1* key flags *1
1* repeat count *1
1* scan code *1
1* character *1
1* 2nd byte of character *1
1* virtual key *1

The W1LCHAR message is sent whenever the user presses a key. This message
is placed in the queue associated with the window that has the focus.

jsKeyFlags Low word of mpl. Specifies the keyboard control codes. It can be
one or more of the following values:

Value

KC_ VIRTUALKEY

KC_INV ALIDCOMP

Meaning

The usChr parameter value is valid; otherwise, mp2
contains zero.

The uchScanCode parameter value is valid; otherwise,
uchScanCode contains zero.

The usVKey parameter value is valid; otherwise,
usVKey contains zero.

The event was a key-up transition; otherwise, it was a
key-down transition.

The key was previously down; otherwise, it was previ
ously up.

The character code is a dead key. The application
must display the glyph for the dead key without
advancing the cursor.

The character code was formed by combining the
current key with the previous dead key.

The character code was not a valid combination with
the preceding dead key. The application must advance
the cursor past the dead-key glyph and then, if the
current character is not a space, it must beep the
speaker and display the new character code.

This bit is set if the key was pressed and released
without any other keys being pressed or released
between the time the key was pressed and released.

Comments

Example

Return Value

See Also

Value Meaning

The shift state was active when the key is pressed or
released.

The AL T state was active when the key was pressed or
released.

The CONTROL state was active when the key was
pressed or released.

uchRepeat Low byte of high word of mpl. Specifies the repeat count of the
key.

uchScanCode High byte of high word of mpl. Specifies the character scan
code of the character. usChr 1 First byte of the low word of mp2. Specifies the
ASCII character.

usChr2 Second byte of the low word of mp2, for double-byte characters only.
Specifies second byte of the character, or is zero for standard ASCII.

usVKey High word of mp2. Specifies the virtual-key code.

Generally, all W~CHAR messages generated from actual user input have the
KC_SCANCODE code set. However, if the message has been generated by an
application that has issued the WinSetHook function to filter keystrokes, or if it
was posted to the application queue, this code may not be set.

The CHARMSG macro can be used to access the ~CHAR message parame
ters. This macro defines a CHARMSG structure pointer that has the following
form:

struct _CHARMSG {
USHORT chr;
USHORT vkey;
USHORT fs;

};

UCHAR cRepeat;
UCHAR scancode;

/' mp2 '/

/' mpl '/

When the character returned is a double-byte character, then the second byte of
mp2 contains the second byte of the character. For standard ASCII, the second
byte is zero.

This example uses the CHARMSG macro to process a ~CHAR message. It
first uses the macro to determine if a key was released. It then uses the macro to
generate a switch statement based on the character received.

MRESULT CALLBACK GenericWndProc(hwnd, usMessage, mpl, mp2)
HWND hwnd;
USHORT usMessage;
MPARAM mpl;
MPARAM mp2;
{

switch (usMessage) {
case WM_CHAR:

if (CHARMSG(&usMessage)->fs & KC_KEYUP) {
switch (CHARMSG(&usMessage)->chr) {

An application should return TRUE if it processes the message; otherwise it
should return FALSE.

WinSetHook, WM_NULL, WM_TRANSLATEACCEL, ~VIOClIAR

Changes

Parameters

Return Value

Comments

Example

See Also

Changes

For double-byte character sets, the second parameter (mp2) of ~CHAR con
tains both bytes of the double-byte character.

Change

The ~CLOSE message is sent as a signal that the window or its application
should terminate. This message allows the window to control the termination
process.

This message does not use any parameters.

An application should return zero if it processes this message.

If ~CLOSE is passed to the WinDeffilgProc function, the function calls the
WinDismissDlg function and passes the DID_CANCEL result code to it.

In the following example, the fChanges variable is checked. If it is TRUE, the
user is asked if he or she wants to exit without saving any changes. If the user
responds by choosing the No button, then zero is returned and the application
does not exit. If the user responds by choosing the Yes button, then a
W1LQUIT message is posted so that the application will terminate.

case WM_CLOSE:
if (fChanges) { .

}

if (WinMessageBox(HWND_DESKTOP, hwndClient,
"Do you want to exit without saving your
"", 0, MB_NOICON I MB_YESNO) == MBID_NO)

return. (OL) ;

WinPostMsg(hwnd, WM_QUIT, OL, OL);
return (OL);

changes?" ,

WinDetwindowProc, WinMessageBox, WinPostMsg, WM_QUIT

If a dialog window has a system menu, selecting the "Close" menu item calls the
WinDismissDlg function, passing the DID_CANCEL result code. Previous ver
sions of MS OS/2 closed the application, rather than only the dialog box.

• WM_DRAWITEM Correction

Parameters

WM_DRAWITEM
id = (USHORT) SHORTIFROMMP(mpl);
poi = (POWNERITEM) PVOIDFROMMP(mp2);

1* window ID *1
1* pointer to OWNERITEM *1

The WMJ)RA WITEM message is sent to the owner of a list box when an item
in an owner-drawn list needs to be drawn or highlighted. The list box must have
the LS_OWNERDRA W style. The WMJ)RA WITEM message is also sent to
the owner of a menu when an item in the owner-drawn menu needs to be drawn
or highlighted. The menu must have the MIS_OWNERDRA W style.

id Low word of mpl. Identifies the window of the list-box or menu control
sending this message.

poi Low and high word of mp2. Points to an OWNERITEM structure. The
OWNERITEM structure has the following form:

Return Value

Comments

See Also

Corrections

typedef struct _OWNERITEM {
HWND hwnd;
HPS hps;
USHORT fsState;
USHORT fsAttribute;
USHORT fsStateOld;
USHORT fsAttributeOld;
RECTL rclItem;
SHORT idltem;
ULONG hltem;

} OWNERITEM;

WM_FORMATFRAME 353

The application should return TRUE if it draws the list-box item; it should
return FALSE if the list box should draw the item. If the WMJ)RA WITEM
message is sent to a menu, the return value is ignored.

When an item is to be drawn, the fsState field and the fsStateOld field of the
OWNERITEM structure will be equal. The application should draw the item and
return TRUE, or it should return FALSE to let the list box draw the item. The
list box can draw only text items, so the application must handle the drawing of
other types of objects.

When an item is to be highlighted, the fsState field is TRUE and the fsStateOld
field is FALSE. In this case, the application should carry out the highlighting
and set fsState and fsStateOld equal to FALSE before returning TRUE, or it
should return FALSE so the list box can perform default highlighting of the
item.

When highlighting is to be removed from an item, the fsState field is FALSE
and the fsStateOld field is TRUE. An application can remove the highlighting,
set the fsState and fsStateOld equal to FALSE and return TRUE, or it can
return FALSE to let the list box remove the highlighting.

L~QUERYITEMTEXT

The application should return TRUE if it draws the list-box item; it should
return FALSE if the list box should draw the item. If the WMJ)RA WITEM
message is sent to a menu, the return value is ignored .

• WM_FORMATFRAME Correction

Parameters

WM_FORMATFRAME
paswp = (paswp) PVOIDFROMMP(mpl);
prcl = (PRECTL) PVOIDFROMMP(mp2);

/* pointer to SWP array */
/* pointer to RECTL structure */

The W~FORMATFRAME messa~e is sent to a frame window to calculate the
sizes and positions of the frame controls and the client window. The frame
window procedure sends the message to its client window and, if the client win
dow returns TRUE (indicating that it processed the message), no further action
occurs. Otherwise, the frame window calls the WinFormatFrame function.

paswp Low and high word of mpl. Points to an array of SWP structures. The
array elements are filled in the order of the FID values of the frame controls,
with the FID_CLIENT window always the last element in the array. The SWP
structure has the following form:

354 WM_FORMATFRAME

Return Value

Comments

See Also

Corrections

typedef struet _sWP {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

prcl Low and high word of mp2. Points to a RECTL structure that contains
the rectangle within which the frame controls are formatted. The RECTL struc
ture has the following form:

typedef struet _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

An application should return TRUE if it processes this message.

Note that the paswp parameter points to memory allocated according to the
value returned by the W~QUERYFRAMECTLCOUNT message. The applica
tion must not write beyond this area.

WinFormatFrame

The parameters were reversed. The first parameter is the array of SWP struc
tures; the second parameter is a pointer to a RECTL structure.

• WM_MEASUREITEM Change

Parameters

WM_MEASUREITEM
id = SHORT1FROMMP(mpl);
poi = (POWNERITEM) PVOIDFROMMP(mp2);

1* list-box identifier *1
1* pointer to OWNERITEM *1

The WM~EASUREITEM message is sent to calculate the height of each item
in a window. It is normally sent to list boxes and menus. All items are the same
height in a list box or menu.

id Low word of mpl. Specifies the window.

poi Low and high word of mp2. When this message is sent to a menu window,
this parameter points to an OWNERITEM structure. Otherwise, this parameter
is not used. The OWNERITEM structure has the following form:

typedef struet _OWNERITEM {
HWND hwnd;
HPS hps;
USHORT fsState;
USHORT fsAttribute;
USHORT fsStateOld;
USHORT fsAttributeOld;
RECTL relltem;
SHORT idltem;
ULONG hltem;

} OWNERITEM;

Return Value

See Also

Changes

Parameters

Return Value

See Also

Corrections

WM_PRESPARAMCHANGED 355

If this message is processed by a list box, the low word of the return value con
tains the height of the list-box item. If the style LS_HORZSCROLL is set, the
high word contains the length of the list-box item; otherwise, the high word must
be set to zero.

If this message is processed by a menu, the return value is ignored. The width
and height .are returned by placing their dimensions in the OWNERITEM struc
ture passed in the poi parameter.

LM_SETITEMHEIGHT

If the style LS~ORZSCROLL is set, W~MEASUREITEM must return the
length of the list-box item as the high word of the return value.

Correction

The WM_MOVE message is sent when a window with CS~OVENOTIFY style
changes its absolute position or when a parent window of that window is moved.
The window's new position can be obtained by calling the WinQueryWindowPos
function.

This message does not use any parameters.

An application should return zero if it processes this message.

WinQueryWindowPos

Use the WinQueryWindowPos function, not the WinQueryWindowRect function
to obtain the window's position.

• WM_PRESPARAMCHANGED New

Parameters

WM_PRESPARAMCHANGED
idParam = (ULONG) LONGFROMMP(mpl); /* presentation-parameter ID */

The WMYRESPARAMCHANGED message is sent when a presentation
parameter has changed.

idParaJn Low and high word of mpl. Identifies the presentation parameter
that changed. This parameter can be one of the following values:

Value

PP _FOREGROUND COLOR

PP _FOREGROUNDCOLORINDEX

PP _BACKGROUNDCOLOR

Meaning

RGB foreground color

Color index of fore
ground color

RGB background color

356 WM_PRESPARAMCHANGED

See Also

Value

PP _BACKGROUNDCOLORINDEX

PP _HILITEFOREGROUNDCOLOR

PP _HILITEFOREGROUNDCOLORINDEX

PP _HILITEBACKGROUNDCOLOR

PP _HILITEBACKGROUNDCOLORINDEX

PP _DISABLEDFOREGROUNDCOLOR

PP _DISABLEDFOREGROUNDCOLORINDEX

PP _DISABLEDBACKGROUNDCOLOR

PP _DISABLEDBACKGROUNDCOLORINDEX

PP _BORDERCOLOR

PP _BORDERCOLORINDEX

PP _FONTN AMESIZE

PP _FONTHANDLE

WinQueryPresParam, WinSetPresParam

Meaning

Color index of back
ground color

RGB color of foreground
highlighted area

Color index of fore
ground highlighted area

RGB color of back
ground highlighted area

Color index of back
ground highlighted area

RGB foreground disabled
color

Color index of fore
ground disabled color

RGB color of back
ground disabled color

Color index of back
ground disabled color

RGB color of window
border

Color index of window
border

Font size

Font handle

• WM_QUERYHELPINFO New

Parameters

Return Value

See Also

WM_QUERYHELPINFO

The ~QUERYHELPINFO message is sent to a frame window to retrieve the
handle of the help instance.

This message does not use any parameters.

An application should return the help instance handle associated with the win
dow. If no handle is available, the application should return NULL.

WM_SETHELPINFO

WM_SETHELPINFO 357

• WM_SAVEAPPLICATION New

Parameters

Comments

See Also

WM_SAVEAPPLICATION
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

The W1LSA VEAPPLICATION message notifies an application to save its
current state (for example, due to a pending system shutdown).

This message does not use any parameters.

When a system shutdown is requested, MS OS/2 enumerates the applications in
the Task List and sends each application a W1LSA VEAPPLICATION mes
sage. The sender of the W1LSA VEAPPLICATION message suspends execu
tion until it receives a reply. The receiving application must not display dialog or
message boxes. Doing so could delay the reply and result in unacceptable delays
in completing the shutdown.

In MS OS/2, version 1.2, the application must save its state to the os2.ini file by
using the Win WriteProfileString or Win WriteProfileData function, or it must
save its state to some other file.

To be compatible with future releases of MS OS/2, an application should call
WinDeLWindowProc after processing the W1LSA VEAPPLICATION message.

Each application should maintain only one "saved state." If an application
receives multiple W~SAVEAPPLICATION messages, it should over-
write the previous "saved state" with a new "saved state" for each new
W1LSA VEAPPLICATION message.

WinDeLWindowProc, Win WriteProfileData, Win WriteProfileString

• WM_SETHELPINFO New

Parameters

Return Value

See Also

WM_SETHELPINFO
hwnd = HWNDFROMMP(mpl); 1* handle of help table *1

The W~SETHELPINFO message is sent to a frame window to set the handle
of the help instance for that window.

hwnd Low and high word of mpl. Identifies the help instance.

An application should return zero if it processes this message.

W~QUERYHELPINFO

358 WM_WINDOWPOSCHANGED

• WM_WINDOWPOSCHANGED New

Parameters

Comments

Example

See Also

WM_WINDOWPOSCHANGED
mp1 = MPFROMP«paswp»;
mp2 = MPFROMLONG«flReturn»;

I' pointer to array of SWP structures 'I
I' return-value flag 'I

The W1L WINDOWPOSCHANGED message is sent whenever the size of a
window changes. .

paswp Low and high word of mpl. Points to an array of two SWP structures:
the first SWP structure contains the new state of the window; the second SWP
structure contains the previous state of the window. The SWP structure has the
following form:

typedef struct _sWP {
USHORT fs;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

fiRe/urn Specifies the return value of the ~DJUSTWINDOWPOS mes
sage; it is FALSE if SWP_NOADJUST was specified.

The entire window state is filled in both SWP structures; however, the fs field of
the first SWP structure contains only those bits that correspond to the actual
changes that occurred. For example, if a window is resized, fields x and y con
tain the position of the window even though it did not move, but the fs field
does not contain the SWP ~OVE flag.

This example processes the WM_ WINDOWPOSCHANGED message and
assigns the two structures to pointers:

pSWP pswpNew, pswpOld;

case WM_WINDOWPOSCHANGED:
pswpNew = PVOIDFROMMP(mp1);
pswpOld = pswpNew + 1;

WinCreateWindow, W~ADJUSTWINDOWPOS, WM_CALCVALIDRECTS

Chapter

4

Types, Macros, Structures
4.1 Introduction .. 361

4.2 Types. 362

4.3 Macros ... ~ 362

4.4 Structures ... 362

Chapter 4: Types, Macros, Structures 361
1~;~!m;~li;ssr~~imw~Bii~iil:~J.mfJi\if!ar;~i~~~~if:fiSre\il!"llli!~~~~~~iiU~iiJ.1~!mfiSl~IID~~~m!~:!tHs!~\\§!~

4.1 Introduction
This chapter describes the new and updated types, macros, and structures used
with MS OS/2, version 1.2, functions and messages. For a complete list of all
MS OS/2 types, macros, and structures, see the Microsoft Operating System/2
Programmer's Reference, Volume 2 and Volume 3.

The MS OS/2 functions use many types, macros, and structures that are not part
of the standard C language. These types, macros, and structures have been
defined to make the task of creating MS OS/2 programs easier and to make pro
grams sources clearer and easier to understand.

All types, macros, and structures in this manual are defined in the MS OS/2
C-Ianguage include files. You may also want to use these when developing MS
OS/2 programs in other computer languages, such as Pascal or assembly
language. If include files for a given language are not available, you can translate
the definitions given in this chapter by following these guidelines:

• Numbers must be integers or fixed-point real numbers. MS OS/2 func
tions do not support floating-point numbers. An MS OS/2 program can
use floating-point numbers as long as an appropriate run-time library or
coprocessor is supplied and floating-point numbers are not used as
parameters to the MS OS/2 functions.'

• Structures must be packed. Some compilers align each new field in a
structure on word or double-word boundaries. This may leave unused
bytes in a structure if a given field is smaller than the width between
boundaries. MS OS/2 functions require that unused bytes be removed
from structures.

• Reserved fields in structures should be set to zero. Unless otherwise
specified, MS OS/2 functions expect reserved fields to be set to zero to
avoid compatibility problems with future releases of MS OS/2.

• Variable-length structures must be supported. Several MS OS/2 func
tions use variable-length structures to receive and/or return information.
In a variable-length structure, the number of fields in the structure varies
depending on when the structure is used. In the C language, programs
typically support variable-length structures by allocating enough memory
for the current number of fields and accessing those fields by using a
pointer to the structure. Programs in other languages may use this
method or devise their own method for supporting variable-length struc
tures.

• All 16-bit pointers must be relative to an explicitly defined segment regis
ter. Some compilers assume that the ds and ss registers contain the
same value and implicitly use one segment for both. MS OS/2 does not
guarantee that the ds and ss registers will be equal. This is especially
true in dynamic-link libraries and programs that use callback functions
(for example, window procedures).

!I All 32-bit pointers must consist of a selector:offset pair. MS OS/2 func
tions do not use physical addresses (that is, an address that represents a
32-bit offset from the beginning of physical memory). (One exception to
this rule is the VioGetPhysBuf function, which requires a physical
address to video memory.)

362 MS OS/2 Programmer's Reference, Vol. 4
limi!§i~mim!2i!l~~l~~'fjliHg~!m.G!:~~J§!i~I!.~liiml~s.'mliiljiID§1~mm95iiBJilH~"jt~!f!1is!iii~mi!!lim~ilUml_

4.2 Types

4.3 Macros

The following data types are new or modified for MS OS/2, version 1.2:

Type

HAPP

HINI

HLIB

HPROC

LINE

PHINI

Meaning

32-bit value used as an application handle.

32-bit value used as an initialization-file handle.

16-bit value used as a module handle.

32-bit value used as a pointer to a procedure (function).

32-bit value used as a line number.

32-bit value used as a pointer to an initialization-file handle.

There are no new or updated macros for MS OS/2, version 1.2.

4.4 Structures
The following structures are used by the MS OS/2, version 1.2, functions
described in this manual.

CHARBUNDLE 363

• AVAILDATA New

typedef struct _AVAILDATA {
USHORT cbpipe;
USHORT cbmessage;

} AVAILDATA;

/* avldt */

The AVAILDATA structure contains information about the bytes in a named
pipe.

Fields cbpipe Specifies the number of bytes left in the pipe.

cbmessage Specifies the number of bytes left in the current message.

See Also DosPeekNmPipe

• CHARBUNDLE Change

Fields

typedef struct _CHARBUNDLE {
LONG lColor;
LONG lBackColor;
USHORT usMixMode;
USHORT usBackMixMode;
USHORT usSet;
USHORT usPrecision;
SIZEE sizfxCell;
POINTL ptlAngle;
POINTL ptlShear;
USHORT usDirection;

} CHARBUNDLE;

/* cbnd */

The CHARBUNDLE structure contains fields that describe the current character
attributes in the application's presentation space. MS OS/2 uses these attributes
whenever the application draws text using one of the Gpi functions.

lColor Specifies the character foreground color.

IBackColor Specifies the character background color.

usMixMode Specifies the foreground mix mode. MS OS/2 uses this mix
mode when it combines the character foreground color and the current drawing
surface color.

usBackMixMode Specifies the background mix mode. MS OS/2 uses this
mix mode when it combines the character background color and the current
drawing-surface color.

usSet Specifies the character set. This value is the local identifier for the
current logical font. It can be any value from 1 through 254.

usPrecision Specifies the current character mode. There are three possible
modes: mode 1, mode 2, and mode 3. If mode 1 is set and the current font is an
image font, MS OS/2 ignores the current shear, angle, and box attributes. If
mode 2 is set and the current font is an image font, MS OS/2 uses the current
shear, angle, and box attributes. If mode 3 is set and the current font is an
image font, MS OS/2 issues an error message. If the current font is a vector
font, MS OS/2 always uses the current shear, angle, and box attributes (regard
less of the mode).

364 CHARBUNDLE

See Also

Changes

sizfxCell Specifics the character-cell size (in world units). This SIZEF struc
ture contains two fixed values.

ptlAngle Points to the POINTL structure that contains the coordinates of the
endpoint of the character-angle vector. The baseline of vector characters is
drawn parallel to the character-angle vector.

ptlShear Points to the POINTL structure that contains the coordinates of the
endpoint of the character-shear vector. The vertical strokes in vector characters
are drawn parallel to the character-shear vector.

usDirection Specifics the character direction. The default direction is from
left to right. This parameter can be one of the following values:

Value

CHDIRN_LEFTRIGHT

CHDIRN_RIGHTLEFT

CHDIRN_TOPBOTTOM

CHDIRN_BOTTOMTOP

Meaning

Left to right

Right to left

Top to bottom

Bottom to top

GpiQueryAttrs, GpiQueryCharAngle, GpiQueryCharBox, GpiQueryCharSet,
GpiQueryCp, GpiSetAttrs, GpiSetCharAngle, GpiSetCharBox, GpiSetCharSet,
GpiSetCp, POINTL, SIZEF

The following character directions can now be specified for the usDirection
field:

Value Meaning

CHDIRN_LEFTRIGHT Left to right

CHDIRN_RIGHTLEFT Right to left

CHDIRN_TOPBOTTOM Top to bottom

CHDIRN_BOTTOMTOP Bottom to top

• DENA1 New

Fields

See Also

typedef struct _DENAl { /* dena */
UCHAR reserved;
UCHAR cbName;
USHORT cbValue;
UCHAR szName[l];

} DENA1;

The DENAl structure contains the names of the extended attributes returned by
the DosEnumAttribute function.

reserved Specifies a reserved value; must be zero.

cbName Specifies the length of the extended-attribute name.

cb Value Specifies the length of the extended-attribute value.

szName [1] Contains the name of the extended attribute.

DosEnumAttribute

ENTRYFDAT A 365

• EAOP New

Fields

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

I' eaop 'I

The EAOP structure contains extended-attribute information needed by the file
system function calls.

fpGEAList Points to the GEALIST structure that lists the extended attributes
to retrieve.

fpFEAList Points to the FEALIST structure that lists the extended attributes
found.

oError Specifies the offset, from the beginning of the structure, at which an
error occurred.

See Also DosFindFirst2, DosMkDir2, DosOpen2, DosQFilelnfo, DosQPathlnfo, DosSet
Filelnfo, DosSetPathlnfo, FEALIST, GEALIST

• ENTRYFDATA New

Fields

typedef struct _ENTRYFDATA {
USHORT cb;
USHORT cchEditLimit;
USHORT ichMinSel;
USHORT ichMaxSel;

} ENTRYFDATA;

I' efd 'I

The ENTRYFDATA structure contains control data used to specify the charac
teristics of an entry-field control.

cb Specifies the size of the structure (in bytes). Programs written in the C
language should use the sizeof operator to set this field.

cchEditLimit Specifies the maximum number of characters than can be
entered in the edit control.

ichMinSel Specifies the beginning point of the current selection within the
entry field's text buffer.

ichMaxSel Specifies the end point of the current selection within the entry
field's text buffer.

366 FATTRS

• FATTRS

Fields

typedef struct _FATTRS { 1* fat *1
USHORT usRecordLength;
USHORT fsSelection;
LONG IMatch;
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG IMaxBaselineExt;
LONG lAveCharWidth;
USHORT fsType;
USHORT fsFontUse;

} FATTRS;

Change

The FATTRS structure specifies the attributes of the logical font to be created by
the VioCreateLogFont or GpiCreateLogFont function.

usRecordLength Spccifics the lcngth of the structure.

fsSelection Specifies one or more character attributes. This field can be any
combination of the following valucs:

Value

FA TTR_SEL_IT ALIC

FA TTR_SEL_OUTLINE

FA TTR_SEL_STRIKEOUT

Meaning

Specifies italic characters.

Specifies an outline font.

Specifies strikeout characters.

FA TTR_SEL_UNDERSCORE Specifies underscored characters.

FATTR_SEL_DOLD Specifies bold characters.

IMatch Specifies the match number for a specific font. The VioQueryFonts
and GpiQueryFonts functions return a unique match number for each font.
When this number is specificd in the IMatch field, the specified font is used. If
the IMatch field is zero, the system determines which font gives the best map
ping to the required attributes.

szFacename[FACESIZE] Spccifies the typeface name of the font.

idRegistry Specifics the rcgistry number of the font.

usCodePage Specifies the code-page identifier of the font.

IMaxBaselineExt Specifies the sum of the maximum ascender and descender
values for a font.

lAveCharWidth Specifies the average width of a character in a font. This
value is obtained by multiplying the width of each lowercase letter by a weighted
factor, adding the results for all of the letters in the alphabet, and dividing by
1000. The factor corresponds to the frequency of use for a particular letter. For
example, the lettcr e appears frequcntly in text while the letter q does not; there
fore, the factor assigncd to e would be greatcr than the factor assigned to q.

See Also

Changes

Corrections

• FEA

Fields

FEA 367

fsType Specifics the type of the font. This field can include one or more of
the following values:

Value

FA TTR_ TYPE_KERNING

FA TTR_ TYPE_MilCS

FA TTR_ TYPE_DilCS

FA TTR_ TYPE_ANTIALIASED

Meaning

Specifies a kerned font.

Specifics a multiple-byte character-set font.

Specifics a double-byte character-set font.

Specifies an anti-aliased font.

fsFontUse Specifics how the font is related to the character attributes. This
field can be any combination of the following values:

Value

FA TTR_FONTUSE_OUTLINE

FATTR_FONTUSE_TRANSFORMABLE

Meaning

The application cannot mix text
and graphics.

Requests an outline font.

Requests a transformable font.

GpiCreateLogFont, GpiQueryJi'onts, VioCreateLogFont, VioQueryFonts

FATTILTYPE_FIXED can no longer be specified for the fsType field. The fol
lowing new constants can be specified for fsType:

Value Meaning

FA TTR_TYPE_MBCS

FATTR_TYPE_DBCS

FA TTR_ TYPE_ANTIALIASED

Specifies a multiple-byte character-set font.

Specifies a double-byte character-set font.

Specifies an anti-aliased font.

FATTR_SEL_OUTLINE can be specified for the fsSelection field.

The FATTR_SEL_HOLLOW constant did not exist in the include files. A new
constant, FATTR_SEL_OUTLINE, gives you hollow (outlined) characters .

typedef struct _EEA {
BYTE fEA;
BYTE cbName;
USHORT cbValue;

} EEA;

/* fea */

The FEA structure contains the values of extended attributes.

New

tEA Specifics one or more flags. In MS OS/2, version 1.2, the only flag avail
able is FEA_NEEDEA, indicating an extended-attribute bit is needed.

cbName Specifies the length of the extended-attribute name, not including the
null terminating character.

cb Value Specifies the length of the extended-attribute value.

368 FEA

Comments

See Also

• FEALIST

Fields

This structure also contains a variablc-Iength portion immediately following the
cbValue field. This variable-length portion contains the extended-attribute name
and the extended-attribute value.

EAOP, FEALIST, GEA, GEALIST

typedef struct _FEALIST {
ULONG cbList;
FEA list [1] ;

} FEALIST;

/* feal */

The FEALIST structure contains one or more extended attributes.

cbList Specifies the size (in bytes) of the structure.

Iist[l] Contains an array of one or more FEA structures.

New

Comments The FEALIST structure contains a list of the extended attributes that were
found. The GEALIST structure contains names of extended attributes to retrieve
information for.

See Also DosFindFirst2, DosMkDir2, DosOpen2, DosQPathlnfo, DosSetFilelnfo,
DosSetPathlnfo, EAOP, FEA, GEALIST

• FILEFINDBUF2 New

Fields

typedef struct _FILEFINOBUF2 { /* findbuf2 */
FOATE fdateCreation;
FTIME ftimeCreation;
FOATE fdateLastAccess;
FTIME ftimeLastAccess;
FOATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;
ULONG cbList;
UCHAR cchName;
CHAR achName[CCHMAXPATHCOMP];

} FILEFINOBUF2;

The FILEFINDBUF2 structure contains information about a file.

fdateCreation Specifies the date the file was created.

ftimeCreation Specifies the time the file was created.

fdateLastAccess Specifies the date the file was last accessed.

ftimeLastAccess Specifies the time the file was last accessed.

fdateLastWrite Specifies the date the file was last written to.

ftimeLastWrite Specifies the time the file was last written to.

cbFile Specifies the end of file data.

cbFileAlIoc Specifies the allocated file size.

attrFile Specifies the file attributes.

FILESTATUS2 369

cbList Specifies the size (in bytes) of the buffer needed for the list of
extended attributes in a FIL_QUERYEASFROMLIST level request (see Dos
FindFirst2).

cchName Specifies the length of the null-terminated filename.

achName[CCHMAXPATHCOMP] Specifies the null-terminated filename.

See Also DosFindFirst2, DosFindNext2, FDATE, FTIME

• FILESTATUS2 New

Fields

Comments

See Also

typedef struct _FILESTATUS2 {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;
ULONG cbList;

} FILESTATUS2;

Ii fsts2 il

The FILESTATUS2 structure contains information about the status of a file.

fdateCreation Specifies the date the file was created.

ftimeCreation Specifies the time the file was created.

fdateLastAccess Specifies the date the file was last accessed.

ftimeLastAccess Specifies the time the file was last accessed.

fdateLastWrite Specifics the date the file was last written to.

ftimeLastWrite Specifics the time the file was last written to.

cbFile Specifies the end of file data.

cbFileAlIoc Specifies the allocated file size.

attrFile Specifies the file attributes.

cbList Specifies the size of the extended-attribute buffer.

The cbFile, cbFileAlloc, and attrFile fields are not used by the DosSetFilelnfo
function.

DosQFilelnfo, DosQPathlnfo, DosSetFilelnfo

370 FIOLOCKCMD

• FIOLOCKCMD

Fields

typedef struct _FIOLOCKCMD {
USHORT usCmd;
USHORT cLockCnt;
ULONG cTlmeOut;

} FIOLOCKCMD;

New

/* flc */

The FIOLOCKCMD structure contains information used by the DosFileIO func
tion for locking a file.

usCmd Specifies the command to pass to the DosFileIO function. This field
should be set to FIOJ-OCK.

cLockCnt Specifies the number of FIOLOCKREC structures that follow this
structure. An FIOLOCKREC structure specifies the area of the file to lock and
whether another process can read the locked portion.

cTimeOut Specifics the time-out period (in milliseconds). If this field is
NULL, the DosFileIO function continues immediately with the next command.
If this field is -1, DosFileIO waits indefinitely for the requested lock to become
available. Any other value specifies the maximum amount of time DosFileIO
waits for the requested lock to become available.

See Also DosFileIO, DosFileLocks, FIOLOCKREC

I FIOLOCKREC New

Fields

See Also

typedef struct _FIOLOCKREC {
USHORT fShare;
ULONG cbStart;
ULONG cbLength;

} FIOLOCKREC;

/* flr */

The FIOLOCKREC structure contains information used by the DosFileIO func
tion for locking a file. This structure is preceded by a FIOLOCKCMD structure
that specifies the number of FIOLOCKREC structures to be used.

fShare Specifies whether other processes can read the portion of the file that
is locked. A value of FIO_SHAREREAD allows other processes to read the
file; a value of FIO_NOSHARE prevents other processes from reading the file.

cbStart Specifies the offset of the lock region. The offset is established from
the beginning of the file.

cbLength Specifics the length (in bytes) of the region to be locked.

DosFileIO, FIOLOCKCMD

FIOSEEKCMD 371

• FIOREADWRITE New

Fields

typedef struct _FIOREADWRITE {
USHORT usCmd;
PVOID pbBuffer;
USHORT cbBufferLen;
USHORT cbActualLen;

} FIOREADWRITE;

/. frwc • /

The FIOREADWRITE structure contains information used by the DosFileIO
function for reading and writing data.

usCmd Specifies the command to pass to the DosFileIO function. This field
should be set to FlO_READ for a read operation or to FlO_WRITE for a write
operation.

pbBuffer Points to the buffer that contains the data to be written, or points to
a buffer that receives the data that is read.

cbBufferLen Specifics the length of the buffer (in bytes).

cbActualLen Specifics the number of bytes actually transferred.

See Also DosFileIO

• FIOSEEKCMD New

Fields

See Also

typedef struct _FIOSEEKCMD {
USHORT usCmd;
USHORT fsMethod;
ULONG cbDistance;
ULONG cbNewPosition;

} FIOSEEKCMD;

The FIOSEEKCMD structure contains information used by the DosFileIO
function's seek operation.

usCmd Specifies the command to be passed to the DosFileIO function. This
field must be set to FlO_SEEK.

fsMethod Specifies where to begin the seek operation. This field can be one
of the following values:

Value

FILE_BEGIN

FILE_CURRENT

FILE_END

Meaning

Start at the beginning of the file.

Start at the current location.

Start at the end of the file.

cbDistance Specifies the new position requested for the file pointer. The
value of this field is the number of bytes offset from the starting position
specified in the fsMethod field.

cbNewPosition On return from the DosFileIO function, this field contains
the new position of the file pointer relative to the beginning of the file.

DosChgFilePtr, DosFileIO

372 FIOUNLOCKCMD

• FIOUNLOCKCMD New

Fields

See Also

typedef struct _FIOUNLOCKCMD {
USHORT usCmd;
USHORT cUnlockCnt;

} FIOUNLOCKCMD;

1* fuc *1

The I IOUNLOCKCMD structure contains information used by the DosFileIO
function for unlocking a me.

usCmd Specifics the command to pass to the DosFileIO function. This field
must be set to FlO_UNLOCK.

cUnlockCnt Specifics the number of FIOUNLOCKREC structures that follow
this structure.

DosFileIO, DosFileLocks, FIOUNLOCKREC

• FIOUNLOCKREC New

Fields

See Also

typedef struct _FIOUNLOCKREC {
ULONG cbStart;
ULONG cbLength;

} FIOUNLOCKREC;

1* fur *1

The FIOUNLOCKREC structure contains information used by the Dos
FiIeIO function for unlocking a me. This structure is preceded by an
FIOUNLOCKCMD structure that specifies the number of FIOUNLOCKREC
structures that are used.

cbStart Specifies the offset of the unlock region. The offset is determined
from the beginning of the file.

cbLength Specifies the length (in bytes) of the region to unlock.

DosFileIO, FIOUNLOCKCMD

FONTMETRICS 373

• FONTMETRICS Change

Fields

typedef struct _FONTMETRICS { I' fm 'I
CHAR szFamilyname[FACESIZE];
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG lEmHeight;
LONG lXHeight;
LONG IMaxAscender;
LONG IMaxDescender;
LONG lLowerCaseAscent;
LONG lLowerCaseDescent;
LONG lInternalLeading;
LONG lExternalLeading;
LONG lAveCharWidth;
LONG IMaxCharlnc;
LONG lEmlnc;
LONG IMaxBaselineExt;
SHORT sCharSlope;
SHORT sInlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXDeviceRes;
SHORT sYDeviceRes;
SHORT sFirstChar;
SHORT sLastChar;
SHORT sDefaultChar;
SHORT sBreakChar;
SHORT sNominalPointSize;
SHORT sMinimumPointSize;
SHORT sMaximumPointSize;
USHORT fsType;
USHORT fsDefn;
USHORT fsSelection;
USHORT fsCapabilities;
LONG lSubscriptXSize;
LONG lSubscriptYSize;
LONG lSubscriptXOffset;
LONG lSubscriptYOffset;
LONG lSuperscriptXSize;
LONG lSuperscriptYSize;
LONG lSuperscriptXOffset;
LONG lSuperscriptYOffset;
LONG lUnderscoreSize;
LONG lUnderscorePosition;
LONG lStrikeoutSize;
LONG lStrikeoutPosition;
SHORT sKerningPairs;
SHORT sFamilyClass;
LONG IMatch;

} FONTMETRICS;

The FONTMETRICS structure contains information about fonts.

szFamiIyname [F ACESIZE] Specifies the family name of the font. Examples
of common family names in MS OS/2 version 1.1 are Courier, Helvetica, and
Times.

szFacename [F ACESIZE] Specifies the typeface name of the font. Examples
of common typeface names are Courier, Helvetica, and Times.

idRegistry Specifies the registry number of the font. For MS OS/2 version
1.1, this value must be zero.

usCodePage Identifies the code page an application should use with a partic
ular font. For MS OS/2 version 1.1, this value must be 850.

374 FONTMETRICS

IEmHeight Specifies the average height of uppercase characters. The height is
measured in world coordinates from the baseline to the top of the character.

IXHeight Specifies the average height of lowercase characters. The height is
measured in world coordinates from the baseline to the top of the character.

IMaxAscender Specifies the maximum height of any character in the font.
The height is measured in world coordinates from the baseline to the top of the
character.

IMaxDescender Specifies the maximum depth of any character in the font.
The depth is measured in world coordinates from the baseline to the bottom of
the lowest character.

ILowerCaseAscent Specifies the maximum height of any lowercase character
in the font. The height is measured in world coordinates from the baseline to the
top of the ascender of the tallest lowercase character.

ILowerCaseDescent Specifies the maximum depth of any lowercase charac
ter in a font. The depth is measure in world coordinates from the baseline to the
bottom of the descender on the lowest lowercase character.

lInternalLeading Specifies the amount of space reserved in the top of each
character cell for accent marks. This metric is always given in world coordinates.

IExternalLeading Specifies the amount of space that should appear between
adjacent rows of text. This metric is always given in world coordinates.

IAveCharWidth Specifies the average character width for characters in the
font. The average character width is determined by multiplying the width of each
lowercase character by a predetermined constant, adding the results, and then
dividing by 1000. Letters and their predetermined constances are listed as fol
lows:

a 64 j 3 s 56
b 14 k 6 t 71
c 27 I 35 u 31
d 35 m 20 v 10
e 100 n 56 w 18
f 20 0 56 x 3
g 14 P 17 Y 18
h 42 q 4 z 2

63 r 49 space 166

IMaxCharlnc Specifics the maximum increment bctween characters in the
font.

IEmlnc Specifics the width of an uppercase M in thc font.

IMaxBaselineExt Spccifies the sum of the maximum ascender and maximum
descender values.

sCharSlope Specifics the angle (in degrees and minutes) between a vertical
line and the upright strokes in characters in the font. The first nine bits of this
value contain the degrces, the next six bits contain the minutes, and the last bit
is reserved. The slope of characters in a normal font is zero; the slope of italic
characters is nonzero.

FONTMETRICS 375

sInlineDir Specifics an angle (in degrees and minutes, increasing clockwise)
from the x-axis that the system uses when it draws a text string. The system
draws each consecutive character from the text string in the inline direction. The
inline-direction angle for a Swiss font is zero; the inline direction for a Hebrew
font is 180.

sCharRot Specifics the angle (in degrees and minutes) between the baseline
of characters in the font and the x-axis. This is the angle assigned by the font
designer.

usWeightClass Specifics the thickness of the strokes that form the characters
in the font. This field can be one of the following values:

'Value Meaning

1 Ultra-light

2 Extra-light

3 Light

4 Semi-light

5 Medium (normal)

6 Semi-bold

7 Bold

8 Extra-bold

9 Ultra-bold

usWidthClass Specifies the relative-aspect ratio of characters in the font in
relation to the normal-aspect ratio for a font of this type. The following are the
possible values:

Value Description Normal aspect ratio

1 Ultra-condensed 50%
2 Extra-condensed 2.5%
3 Condensed 75%
4 Semi-condensed 87.5%
5 Normal 100%
6 Semi-expanded 112.5%
7 Expanded 125%
8 Extra-expanded 50%
9 Ultra-expanded 200%

sXDeviceRes Specifies the horizontal resolution of the target device for
which the font was originally designed. This value is given in pels per inch.

sYDeviceRes Specifics the vertical resolution of the target device for which
the font was originally designed. This value is given in pels per inch.

sFirstChar Specifies the code point for the first character in the font.

sLastChar Specifies the code point for the last character in the font. This
code point is an offset from the sFirstChar value.

376 FONTMETRICS

sDefaultChar Specifies the code point for the default character in the font.
This code point is an offset from the sDefaultChar value. The default character
is the character the system uses when an application specifies a code point that
is out of the range of a font's code page.

sBreakChar Specifies the code point for the space character in the font. This
code point is an offset from the sFirstChar value.

sNominalPointSize Specifies the height of the font (in decipoints-each deci
point is 11720 inch). The nominal point size is the point size the font was
designed to be drawn.

sMinimumPointSize Specifies the mimimum height of the font (in deci
points). A font should not be reduced to a size smaller than the minimum point
size.

sMaximumPointSize Specifies the maximum height of the font (in deci·
points). A font should not be increased to a size larger than this value.

fsType Specifies the type of font. This field can be one or more of the follow
ing values:

Value

F~TYPE_LICENSED

F~TYPE_KERNING

F~TYPE_DBCS

Meaning

Font is fixed. Font is proportional if this value is
not specified.

Font is licensed.

Font has kerning information.

Font is a double-byte character set.

FM_TYPE_MBCS Font is a multiple-byte character set.

F~TYPE_64K Font requires more than 64K of memory.

fsDefn Specifies the definition of the font. This field can be one or more of
the following values:

Value

F~DEFN_OUTLINE

F~DEFN_GENERIC

Meaning

Specifies an outline font (vector).

Specifies a generic font (raster or bitmapped).

fsSelection Specifies how the characters are to be drawn. This field can be
one or more of the following values:

Value Meaning

Characters are italic.

F~SEL_UNDERSCORE Characters are underscored.

FM_SEL_NEGATIVE Characters are drawn using negative images.

F~SEL_OUTLINE Characters are outlined.

F~SEL_STRIKEOUT

F~SEL_BOLD

Characters are overstruck.

Characters are bold.

fsCapabilities Specifies whether the characters in this font can be mixed with
graphics. If this field is F~CAP _NOMIX, the characters cannot be mixed with
graphics; otherwise, they can be mixed with graphics.

See Also

Changes

• FSINFO

FSINFO 377

ISubscriptXSize Specifies the horizontal side (in world coordinates) for sub
scripts in the font.

ISubscriptYSize Specifies the vertical size (in world coordinates) for sub
scripts in the font.

ISubscriptXOffset Specifies the horizontal offset from the left edge of the
character cell.

ISubscriptYOffset Specifies the vertical offset from the character-cell
baseline.

ISuperscriptXSize Specifics the horizontal size (in world coordinates) for
superscripts in the font.

ISuperscriptYSize Specifics the vertical size (in world coordinates) for super
scripts in the font.

ISuperscriptXOffset Specifies the horizontal offset from the left edge of the
character cell.

ISuperscriptYOffset Specifies the vertical offset from the character-cell
baseline.

IUnderscoreSize Specifies the width of the underscore (in world coor
dinates).

IUnderscorePosition Specifies the distance from the baseline to the under
score line (in world coordinates).

IStrikeoutSize Specifics the width of the overstrike (in world coordinates).

IStrikeoutPosition Specifies the position of the overstrike in relation to the
baseline.

sKerningPairs Specifies the number of kerning pairs in the kerning-pair table
for the font.

sFamilyClass Specifies the font-family class and subclass.

IMatch Specifics a long integer value that should be copied to the FATTRS
structure when the GpiCreateLogFont function is called. (When this value is
passed, the system must select a font that contains the metrics associated with
this IMatch field.)

GpiCreateLogFont, GpiQueryFontMetrics, GpiQueryFonts, VioQueryFonts

New constants have been added for the fsType, fsDefn, and fsSelection fields.

The sReserved field has been replaced by the sFamilyClass field .

typedef struct _FSINFO {
ULONG ulVSN;
VOLUMELABEL vol;

} FSINFO;

Change

/* fsinf */

The FSINFO structure contains information about the volume label of a disk.

378 FSINFO

Fields ulVSN Specifies the serial number of the disk. If there is no serial number on
the disk, this field is zero.

See Also

Changes

• FSQBUFFER

Fields

vol Specifies a VOLUMELABEL structure that will contain the name of the
volume label.

DosQFSlnfo, VOLUMELABEL

The fields fdateCreation and ftimeCreation worked only for MS OS/2, version
1.1. These fields have been replaced by the ulVSN field, which receives the serial
number of the disk for MS OS/2, version 1.2.

typedef struct _FSQBUFFER {
USHORT lType;
USHORT cbName;
UCHAR szName[l);
USHORT cbFSDName;
UCHAR szFSDName[l);
USHORT cbFSAData;
UCHAR rgFSAData[l);

} FSQBUFFER;

New

1* fsqbf * /

The FSQBUFFER structure contains information about the file system attached
to a driver or device.

iType Specifies the type of device. This field can contain one of the following
values:

Value

FSAT_CHARDEV

FSAT_PSEUDODEV

FSAT_LOCALDRV

FSAT_REMOTEDRV

Type

Resident character device

Pseudo-character device

Local drive

Remote drive attached to a file system

cbName Specifies the length of the drive or device name, not including the
null terminating character.

szName[l] Specifies the drive or device name. The actual length of this field
varies, depending on the length of the device name.

cbFSDName Specifies the length of the file-system name, not including the
null terminating character.

szFSDName[l] Specifies the file-system name the drive or device is attached
to. The actual length of this field varies depending on the length of the file
system name. This field contains only a null character if the device is a resident
character device.

cbFSAData Specifies the length of the data returned by the file system.

rgFSAData [1] Specifies the data returned by the file system. The actual
length and meaning of this field varies, depending on the file system that is
attached.

Comments

See Also

iii GEA

Fields

See Also

• GEALIST

Fields

Comments

See Also

GEALIST 379

This structure should be used only as a guideline. Because it contains variable
length fields, it cannot be used directly to retrieve the data.

DosQFSAttach

typedef struct _GEA {
BYTE cbName;
CHAR szName[l];

} GEA;

1* gea *1

The GEA structure contains an extended-attribute name.

New

cbName Specifies the length of the extended-attribute name contained in the
szName field, not including the null terminating character.

szName[l] Contains the extended-attribute name.

EAOP, FEA, GEALIST

typedef struct _GEALIST {
ULONG cbList;
GEA list [1] ;

} GEALIST;

1* geal *1

The GEALIST structure contains one or more extended-attribute names.

cbList Specifies the size (in bytes) of the structure.

list[l] Contains an array of one or more GEA structures.

New

The GEALIST structure contains a list of extended-attribute names to retrieve
information for. The FEALIST structure contains a list of extended attributes
that were found.

DosFindFirst2, DosMkDir2, DosOpen2, DosQPathlnfo, DosSetFilelnfo, Dos
SetPathlnfo, EAOP, FEALIST, GEA

380 HCINFO

• HCINFO Correction

Fields

See Also

Corrections

• HELPINIT

typedef struet _HCINFO { /* hel */
CHAR szFormname[32];
LONG ex;
LONG ey;
LONG xLeftCllp;
LONG yBottomCllp;
LONG xRlghtCllp;
LONG yTopCllp;
LONG xPels;
LONG yPels;
LONG flAttrlbutes;

} HCINFO;

The HCINFO structure contains information about the hard-copy capabilities of
a device.

szFormname [32] Specifies the form name.

ex Specifies the form width (in millimeters).

ey Specifies the form height (top to bottom, in millimeters).

xLeftClip Specifies the left clip limit (in millimeters).

yBottomClip Specifies' the bottom clip limit (in millimeters).

xRightClip Specifies the right clip limit (in millimeters).

yTopClip Specifies the top clip limit (in millimeters).

xPels Specifies the number of pels between the left and right clip limits.

yPels Specifies the number of pels between the top and bottom clip limits.

flAttrihutes Specifies whether the given form is the selected form. This field
is HCAPS_CURRENT if the form is selected. Otherwise, it is zero.

DevQueryHardcopyCaps

The flAttrihutes field is set to HCAPS_CURRENT when the specified form is
the selected form .

typedef struet
USHORT
ULONG
psz
PHELPTABLE
HMODULE
HMODULE
USHORT
USHORT
psz
USHORT
psz

} HELPINIT;

_HELPINIT { /* hlnlt */
eb;
ulReturnCode;
pszTutorlalName;
phtHelpTable;
hmodHelpTableModule;
hmodAeeelAetlonBarModule;
ldAeeelTable;
ldAetlonBar;
pszHelpWlndowTltle;
usShowPanelld;
pszHelpLlbraryName;

New

The HELPINIT structure is used when creating a help instance for an applica
tion.

Fields

See Also

• HELPTABLE

Fields

HELPTABLE 381

cBytes Specifies the number of bytes in the initialization structure.

ulReturnCode Specifies the value returned by the system at initialization. A
value of zero means that initialization was successful.

pszTutorialName Points to the string that contains the default tutorial name.
If this field is NULL, the application does not have a tutorial or the tutorial
name is specified in each help library.

phtHelpTable Points to the help table or to the resource ID of the help
table. If you defined the table in a resource file, the low word should contain the
resource ID of the table and the high word must be OxFFFF.

hmodHelpTableModule Identifies the module handle returned by the
DosLoadModule function when the application loaded the resource file. A value
of NULL indicates that the resource file that contains the help table was
appended to the application's executable (.exe) file.

hmodAccelActionBarModule Identifies the dynamic-link library that con
tains the accelerator table and menu-bar template used by a help window. A
value of NULL indicates that the resource file containing the tailored accelerator
table and menu bar was appended to the application's executable (.exe) file.

idAccelTable Identifies the accelerator table. The accelerator table is found
in the dynamic-link library identified by the hmodAccelActionBarModule field.
If the default accelerator table is to be used, this field should be NULL.

idActionBar Identifies the menu-bar template used by a help window. The
menu-bar template is found in the dynamic-link library identified by the hmod
AccelActionBarModule field. If the default menu bar is to be used, this field
should be NULL.

pszHelp WindowTitle Points to the string that contains the window title of
each help window.

usShowPanelId Specifies whether to display the window (panel) ID on a help
window. If this value is CMICJ-IIDEYANELJD, the window ID is not shown;
if this value is CMIC_SHOW_PANELJD, the window ID is shown.

pszHelpLibraryName Points to the string that contains the name of the help
library that the system searches on each help request.

WinCreateHelpInstance, HELPTABLE

New

typedef struct _HELPTABLE { /' ht '/
USHORT idAppWindow;
PHELPSUBTABLE phstHelpSubTable;
USHORT idExtPanel;

} HELPTABLE;

The HELPTABLE structure identifies the help table for a specified application.

idAppWindow Specifics the window ID of a frame or dialog window.

phstHelpSubTable Points to a help subtable. The help subtable contains
help panel IDs for the child windows andlor menllS in the specified window.

382 HELPTABLE

Comments

See Also

• KBDHWID

Fields

See Also

idExtPanel Specifies an extended help panel ID. This help panel is displayed
whenever extended help for the specified window is requested.

The help table for an application usually consists of an array of two or more
HELPTABLE structures. Each structure specifies one window, such as a frame
or dialog window, and points to one sub table containing the help panel IDs for
each item in the window that the user may request help for. To mark the end of
the array, the last structure in the array must be zero-filled.

The help subtable, pointed to by the phstHelpSubTable field, is an array help
panel IDs and window or menu IDs. The first element in the help subtable, a
16-bit integer, specifies the size, in 16-bit words, of each subsequent element.
The system requires that the first element be at least 2. All subsequent elements'
consist of the number of words specified by the first element. The first word in
an element must be a window or menu ID. The second word must be a help
panel ID. Any additional words are not used by the system. The last element in
the help subtable must be zero-filled.

HMLCREATE~ELP_TABLE

typedef struct _KBDHWID {
USHORT cb;
USHORT idKbd;
USHORT usReservedl;
USHORT usReserved2;

} KBDHWID;

I' kbhw 'I

The KBDHWID structure contains information that identifies keyboard
hardware.

New

cb Specifies the size of the structure (in bytes). Programs written in the C
language should use the sizeof operator to set this field.

idKbd Specifies the ID number generated by the keyboard hardware. This
field can be one of the following values:

Keyboard

KEYBOARD_A T_COMPA TABLE

KEYBOARD_ENHANCED_IOI

KEYBOARD_ENHANCED_I02

KEYBOARD_ENHANCED_122

KEYBOARD_SPACESAVER

Value

IBM PCI AT or compatible keyboard

101-key enhanced keyboard

I02-key enhanced keyboard

I22-key enhanced keyboard

Space Saver enhanced keyboard

usReservedl Specifies a reserved value.

usReserved2 Specifies a reserved value.

KbdGetHWID

• KBDKEYINFO

Fields

typedef struct _KBDKEYINfO {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;

} KBDKEYINfO;

KBDKEYINFO 383

Change

/* kbci */

The KBDKEYINFO structure contains information about the last key pressed.

chChar Specifies the character derived from translation of the chScan field.

chScan Specifics the scan code received from the keyboard, identifying the
key pressed. This scan code may be modified during the translation process.

fbStatus Specifies the state of the retrieved scan code. It can be any combina
tion of the following values:

Value Meaning

Shift key is received (valid only in binary
mode when shift reporting is turned on).

CONVERSION_REQUEST

FIN AL_CHAR_IN

INTERI1LCHAR_IN

EXTENDED_CODE

Conversion requested.

Final character received.

Interim character received.

The scan code is an extended code, not a
character.

bNlsShift Specifies a reserved value; must be zero.

fsState Specifies the state of the shift keys. It can be any combination of the
following values:

Value

RIGHTSHIFT

LEFTSHIFT

CONTROL

ALT

SCROLLLOCK_ON

NUMLOCK_ON

CAPSLOCK_ON

INSERT_ON

LEFTCONTROL

LEFTALT

RIGHTCONTROL

RIGHTALT

SCROLLLOCK

Meaning

Right SHiFf key down.

Left SHIFf key down.

Either CONTROL key down.

Either ALT key down.

SCROLL LOCK mode turned on.

NUMLOCK mode turned on.

CAPSLOCK mode turned on.

INSERT key turned on.

Left CONTROL key down.

Left ALT key down.

Right CONTROL key down.

Right ALT key down.

SCROLL LOCK key down.

384 KBDKEYINFO

See Also

Changes

• LDTADDRINFO

Fields

See Also

I LINFOSEG

Fields

Value

NUMLOCK
CAPSLOCK
SYSREQ

Meaning

NUMLOCK key down.

CAPSLOCK key down.

SYSREQ key down.

time Specifies the time stamp of the keystroke (in milliseconds).

KbdCharIn, KbdPeek, KBDJ>EEKCHAR

EXTENDED_CODE is a possible value for the fsStatus field and indicates the
scan code is an extended code, not a character .

typedef struct _LDTADDRINFO { /* Idtaddr */
PULONG pulPhysAddr;
USHORT cb;

} LDTADDRINFO;

New

The LDTADDRINFO structure holds information about an address to be added
to the local descriptor table (LDT).

pulPhysAddr Points to the 32-bit physical address of the beginning of the
block of memory for which an LDT selector is requested.

cb Specifies the number of bytes for the requested memory.

SC~LLOCLDT,SCR~LLOCLDTOFF

typedef struct _LINFOSEG {
PlD pidCurrent;
PlD pidParent;
USHORT prtyCurrent;
TID tidCurrent;
USHORT sgCurrent;
UCHAR rfProcStatus;
UCHAR dummy!;
BOOL fForeground;
UCHAR typeProcess;
UCHAR dummy2;
SEL selEnvironment;
USHORT offCmdLine;
USHORT cbDataSegment;
USHORT cbStack;
USHORT cbHeap;
HMODULE hmod;
SEL selDS;

} LINFOSEG;

/* lis */

Change

The LINFOSEG structure contains information local to the current process.

pidCurrent Specifies the identifier of the current process.

pidParent Specifies the identifier of the parent process.

Comments

See Also

prtyCurrent Specifies the priority of the current thread.

tidCurrent Specifies the identifier of the current thread.

sgCurrent Specifies the current screen group.

L1NFOSEG 385

rfProcStatus Specifies the process status. A value of PS.-EXITLIST indi
cates the process is in an exit-list routine.

dummy! Reserved.

fForeground Specifics that the current process is in foreground.

typeProcess Specifies the process type. It can be one of the following values:
Value

PT _FULLSCREEN

Meaning

Process is running as a detached process.

Process is running in a full-screen protected-mode
session.

PT_PM Process is running in the Presentation Manager
screen group.

PT_REALMODE Process is running in DOS-compatibility mode.

PT_ WINDOW ABLEVIO Process is running in a VIO-window session.

dummy2 Reserved.

selEnvironment Specifies the selector to the application's copy of the
environment.

offCmdLine Specifies the offset to the environment where the command line
that is used to run the current. application is copied.

cbDataSegment Specifies the size of the default data segment.

cbStack Specifies the size of the stack.

cbHeap Specifies the size of the heap.

hmod Identifies the program.

selDS Specifies the default data segment.

The following fields are contained in registers at start up:
Field Register

SclEnvlronmcnt ax

offCmdLlnc bx

ebDataScgmcnt ex

ebStaek dx

ebHcap si

hmod di

sclDS ds

DosGetInfoSeg, GINFOSEG

386 LlNFOSEG

Changes

Corrections

• MATRIXLF

The PT_FULLSCREEN, PT.-REALMODE, PT_WINDOWABLEVIO, PTYM,
and PT-DETACHED constants replace the numeric values previously defined
for the typeProcess field. The constant PS~XITLIST is a valid value for the
rfProcStatus field.

The rrProcStatus specifies the process status, not the subscreen group.

Correction

typedef struct _MATRIXLF {
FIXED fxMll;

/* mat1f */

FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

The MATRIXLF structure contains the scaling, translation, rotation, shear, and
reflection transformation values that MS OS/2 uses when your application calls
one of the transformation functions.

If the matrix contains scaling transformation values, the following fields are set:
Field

fxMll

fxM22

Description

Specifies the horizontal scaling value.

Specifies the vertical scaling value.

If the matrix contains translation transformation values, the following fields are
set:

Field

IM31

IM32

Description

Specifies the horizontal translation value.

Specifies the vertical translation value.

If the matrix contains rotation transformation values, the following fields are set:
Field

fxMll

fxM12

fxM21

fxM22

Description

Specifies the cosine of the angle of rotation.

Specifies the negative sine of the angle of rotation.

Specifies the sine of the angle of rotation~

Specifies the cosine of the angle of rotation.

If the matrix contains vertical-shear transformation values, the following fields
are set:

Field

fxM21

fxM22

Description

Specifies the horizontal shear value.

Specifies the vertical shear value.

See Also

Corrections

MLE_SEARCHDATA 387

If the matrix contains horizontal-shear transformation values, the following fields
are set:

Field

fxMll

fxM12

Description

Specifies the horizontal-shear value.

Specifies the vertical-shear value.

If the matrix contains reflection values, the following fields are set:
Field

fxMll

fxl\'122

Description

Specifies the vertical-reflection value. (This value is always
negative. It causes reflection about the x-axis.)

Specifies the horizontal-reflection value. (This value is
always negative. It causes reflection about the y-axis.)

GpiCallSegmentMatrix, GpiQueryDefaultViewMatrix, GpiQueryModel
TransformMatrix, GpiQuerySegmentTransformMatrix, GpiQueryViewing
TransformMatrix, GpiSetDefaultViewMatrix, GpiSetModelTransformMatrix,
GpiSetSegmentTransformMatrix, GpiSetViewingTransformMatrix

If the matrix contains scaling transformation values, the fxM22 field contains the
vertical scaling value, not the fxM12 field .

• MLE_SEARCHDATA New

Fields

typedef struct _MLE_SEARCHDATA {
USHORT cb;
PCHAR pchFind;
PCHAR pchReplace;
SHORT cchFind;
SHORT cchReplace;
IPT iptStart;
IPT iptStop;
USHORT cchFound;

} MLE_SEARCHDATA;

/* mlesrch */

The MLE_SEARCHDATA structure contains information required to perform a
search of a multiple-line entry field (MLE) using the ML~SEARCH message.

cb Specifies the size of the structure (in bytes). The size depends on the
operating-systenl version. Programs written in the C language should use the
size of operator to set this field.

pchFind Points to the null-terminated string to find.

pchReplace Points to the null-terminated replacement string.

cchFind Specifies the number of characters to delete in the search string
before inserting the replacement string. This field is used only if the
MLFSEARCI-LCHANGEALL flag is specified in the ML~SEARCH mes
sage.

388 MLE_SEARCHDATA

cchReplace Specifies the number of replacement-string characters to insert in
the MLE text. This field is used only if the MLFSEARCILCHANGEALL flag
is specified in the ML~SEARCH message.

iptStart Specifies the offset (number of characters from the beginning of the
text) of the first character to search. A value of -1 causes the search to start at
the current cursor position.

iptStop Specifies the offset of the last character to search. A negative value
causes the search to end at the end of the text.

cchFound Specifies the length (in characters) of the string found.

Comments If the iptStop field is less than the iptStart field, the search wraps to the begin
ning of the text. If the two fields are identical, all the text in the MLE is
searched.

See Also MLM_SEARCH

• MLECTLDATA New

Fields

typedef struct _MLECTLDATA {
USHORT cbCtlData;
USHORT af1EFormat;
ULONG cchText;
1PT iptAnchor;
1PT iptCursor;
LONG cxFormat;
LONG cyFormat;
ULONG afFormatFlags;

} MLECTLDATA;

I' mlectl 'I

The MLECTLDATA structure contains multiple-line entry-field (MLE) format
information.

cbCtlData Specifies the size of the structure (in bytes). Programs written in
the C language should use the sizeof operator to set this field.

aflEFormat Specifies the import/export format. This parameter is be one of
the following values:

Value

MLFIE_CFfEXT

MLFIE_NOTRANS

Meaning

Specifies the clipboard text format. This
format uses carriage-return/linefeed char
acters for line breaks on export, and
recognizes linefeed, carriage-returnl
linefeed, or linefeed/carriage-return char
acters for line breaks on import. This is
the default format.

Specifies a format that uses linefeed char
acters for line breaks. Guarantees that any
text imported into the MLE in this form
can be recovered in exactly the same form
on export.

Value

MLFIE_ WINFMT

MLECTLDATA 389

Meaning

Specifies the format of the MLE window.
This format recognizes carriage-returnl
linefeed characters for line breaks on
import. It ignores the sequence carriage
returnl carriage-return/linefeed. On export,
it uses carriage-returnlIinefeed characters
to denote a hard line break and carriage
return/carriage-return/linefeed character to
denote a soft line break caused by word
wrapping.

cchText Specifies the maximum amount (in bytes) of text.

iptAnchor Specifies the offset (number of characters from the beginning of
the text) of the first character of the selection.

iptCursor Specifies the offset of the cursor position (one character to the
right of the selection).

cxFormat Specifies the width (in pels) of the format rectangle.

cyFormat Specifies the height (in pels) of the format rectangle.

aiFormatFlags Specifies how the format rectangle is to be treated. This
parameter can be one or more of the following flags:

Value

MLFFMTRECT_LIMITHORZ

MLFFMTRECT_LIMITVERT

Meaning

Specifies that the text within the
MLE cannot exceed the horizontal
dimension specified by the cxFormat
field. If word-wrap mode is turned
on when the format rectangle is set,
lines automatically wrap to stay
within the horizontal limit of the
format rectangle. If word-wrap
mode is turned off when the
format rectangle is set, an
MLN_PIXHORZOVERFLOW
notification message is sent to the
application whenever an operation
would exceed the horizontal limit
specified in the format rectangle.

Specifies that the text within the
MLE cannot exceed the vertical
dimension specified by the
cxFormat field. Whenever an
MLE operation would cause text
to exceed the vertical limit, an
MLN_PIXVERTOVERFLOW
notification message is sent to the
application.

390 MLECTLDATA

. See Also

Value

MLFFMTRECT_MATCHWINDOW

MLFFMTRECT_FORMATRECT

Meaning

Specifies that the format rectangle is
to be kept the same size as the MLE
window (minus the border or scroll
bars).

Specifies that the format rectangle is
to be kept the same size as the MLE
window (minus the border or scroll
bars) and that text cannot exceed the
size of the window. This value is
equivalent to combining the values
MLFFMTRECT_LIMITHORZ.
MLFFMTRECT _LIMITVERT. and
MLFFMTRECT_MATCHWINDOW.

MLMYORMAT, ML1LSETFORMATRECT

• MLEFORMATRECT New

Fields

See Also

typedef struct _MLEFORMATRECT {
LONG cxFormat;
LONG cyFormat;

} MLEFORMATRECT;

1* mlefrd *1

The MLEFORMATRECT structure contains width and height information for
the multiple-line entry-field (MLE) format rectangle.

cxFormat Specifies the width (in pels) of the MLE format rectangle. If this
field is - 1, the current MLE-window width (minus any border or scroll bars) is
used. If this field is 0, there is no limit on the MLE width.

cyFormat Specifies the height (in pels) of the format rectangle. If this field is
-1, the current MLE-window height (minus any border or scroll bars) is used. If
this field is 0, there is no limit on the MLE height.

ML1LQUERYFORMATRECT,ML1LSETFORMATRECT

• MLEMARGSTRUCT New

typedef struct _MLEMARGSTRUCT {
USHORT afMargins;
USHORT usMouMsg:
IPT iptNear;

} MLEMARGSTRUCT;

1* mlemrg *1

The MLEMARGSTRUCT structure contains data used by the MLN~ARGIN
message to notify an application when the user moves the mouse to one of the
margins.

Fields

See Also

MLEOVERFLOW 391

af1\1argins Specifies the margin. This field can be one of the following values:
Value

MLFMARGIN_LEFT

MLFMARGIN_RIGHT

MLFMARGIN_TOP

MLFMARGIN_BOTTOM

Meaning

The mouse was moved over the left
margin.

The mouse was moved over the right
margin.

The mouse was moved over the top
margin.

The mouse was moved over the bottom
margin.

usMouMsg Specifies the mouse message associated with the move.

iptNear Specifies the offset (number of characters from the beginning of the
text) of the character nearest to the mouse.

MLN~ARGIN,WMLCONTROL

• MLEOVERFLOW New

Fields

typedef struct _MLEOVERFLOW {
ULONG afErrlnd;
LONG nBytesOver;
LONG pixHorzOver;
LONG pixVertOver;

} MLEOVERFLOW;

1* mleovr *1

The MLEOVERFLOW structure contains information about overflow in a
multiple-line entry field (MLE).

afErrlnd Specifies the cause of the error. This parameter can be one of the
following values:

Value

MLFEFR_RESIZE

MLFEFR_TABSTOP

MLFEFR_ TEXT

MLFEFR_ WORDWRAP

MLFETL_TEXTBYTES

Meaning

The overflow was the result of a resize
operation that overflowed a format rect
angle.

The overflow was the result of resetting
tab stops that overflowed a format rect
angle.

The overflow was the result of changing
font information.

The overflow was the result of a text inser
tion operation with the format rectangle
set.

The overflow was the result of setting word
wrap while the MLE text exceeds the for
mat rectangle.

The overflow was the result of a text inser~
tion operation with the text limit se~.

392 MLEOVERFLOW

See Also

• PARAM

Fields

nBytesOver Specifies the number of bytes that overflowed.

pixHorzOver Specifies the number of pels that overflowed horizontally.

pixVertOver Specifics the number of pels that overflowed vertically.

MLN_OVERFLOW, WM_CONTROL

typedef struct _PARAM {
ULONG ld;
ULONG cb;
BYTE ab [1] ;

} PARAM;

/' param '/

The P ARAM structure contains a presentation parameter.

New

id Identifies the presentation parameter. It can be one of the following values:
Value Meaning

PP _FOREOROUNDCOLOR ROB foreground color

PP _FOREOROUNDCOLORINDEX Color index of foreground
color

PP _BACKOROUNDCOLOR ROB background color

PP _BACKOROUNDCOLORINDEX Color index of background
color

PP _HILITEFOREOROUNDCOLOR ROB color of foreground
highlighted area

PP _HILITEFOREOROUNDCOLORINDEX Color index of foreground
highlighted area

PP _HILITEBACKOROUNDCOLOR ROB color of background
highlighted area

PP _HILITEBACKOROUNDCOLORINDEX Color index of background
highligh ted area

PP _DISABLEDFOREOROUNDCOLOR ROB foreground disabled
color

PP _DISABLEDFOREOROUNDCOLORINDEX Color index of foreground
disabled color

PP _DISABLEDBACKOROUNDCOLOR ROB color of background
disabled color

PP _DISABLEDBACKOROUNDCOLORINDEX Color index of background
disabled color

PP _BORDERCOLOR ROB color of window
border

PP _BORDERCOLORINDEX Color index of window
border

Value

PP _FONTNAME SIZE

PP _FONTHANDLE

PRESPARAMS 393

Meaning

Font size.

Font handle

A value of zero for this parameter specifies an application-defined string.

cb Specifies the length of the presentation parameter.

ab [1] Specifies an array of bytes containing the presentation parameter.

See Also PRESPARAMS

• PIPESEMSTATE New

Fields

typedef struct _PIPESEMSTATE {
BYTE fStatus;
BYTE fFlag;
USHORT usKey;
USHORT usAval1;

} PIPESEMSTATE;

/* nmpsmst */

The PIPESEMSTATE structure contains named-pipe information retrieved by
using the DosQNmPipeSemState function.

!Status Specifies the status of the named pipe. This field can be one of the
following values:

Value Meaning

NPSS_EOI End of information.

NPSS_RDATA Readable data is available.

NPSS_ WSP ACE Write space is available.

NPSS_CLOSE Pipe is in closing state.

fFlag Specifies additional information. If this field is NPSS_ WAIT, there is a
waiting thread on the end of the pipe.

usKey Specifies the user's key value.

usAvail Specifies the available data if the fStatus field is NPSS~DATA, or
the available space if the fStatus field is NPSS_ WSP ACE.

See Also DosQNmPipeSemState

• PRESPARAMS New

typedef struct _PRESPARAMS {
ULONG cb;
PARAM aparam[l];

} PRESPARAMS;

/* pres */

The PRESPARAMS structure contains an array of PARAM structures that con
tain presentation parameters.

394 PRESPARAMS

Fields cb Specifies the size (in bytes) of the structure, including the array of PARAM
structures.

See Also

• PRFPROFILE

aparam[l] Specifies an array of one or more PARAM structures.

PARAM

typedef struct _PRFPROFILE {
ULONG cchUserName;
psz pszUserName;
ULONG cchSysName;
psz pszSysName;

} PRFPROFILE;

/* prfpro */

New

The PRFPROFILE structure specifies the names of files that contain profile
information.

Fields cchUserName Specifies the number of characters in the string pointed to by
the pszUserName field.

pszUserName Points to the null-terminated string that contains the name of
the file used to store user-profile information.

cchSysName Specifies the number of characters in the string pointed to by
the pszSysName field.

pszSysName Points to the null-terminated string that contains the name of
the file used to store system-profile information.

See Also PrfQueryProfile, Prffieset

• PROGDETAILS New

Fields

typedef struct _PROGDETAILS { /* progde */
ULONG Length;
PROGTYPE progt;
USHORT padl[3];
PSZ pszTitle;
PSZ pszExecutable;
PSZ pszParameters;
PSZ pszStartupDir;
PSZ pszlcon;
PSZ pszEnvironment;
SWP swplnitial;
USHORT pad2[S];

} PROGDETAILS;

The PROGDETAILS structure contains information about a program.

Length Specifies the size of the structure (in bytes). Programs written in the C
language should use the size of operator to set this field.

progt SpeCifies the PROGTYPE structure that contains program-type informa
tion.

See Also

• PROGTITLE

Fields

See Also

PROGTITLE 395

padl[3] Reserved.

p szTitle Points to the null-terminated string that contains the program title.
This string must not exceed MAXNAMEL (defined in the include files) charac
ters plus the terminating NULL character.

pszExecutable Points to the null-terminated string that contains the name of
the executable file. If the string appears to be a fully qualified path (that is, it
contains a colon in the second position and/or contains a backslash), the file is
searched for in the indicated directory on the indicated drive. If neither of these
conditions is true and the file is not in the current directory, each drive and
directory specified in the path defined in the current program's environment is
searched.

pszParameters Points to the null-terminated string that contains any parame
ters to pass to the program.

pszStartupDir Points to the null-terminated string that contains the default
drive and directory.

pszIcon Points to the null-terminated string that contains the name of an icon
file. This parameter is not used for MS OS/2, version 1.2.

pszEnvironment Points to the string that contains the environment variables.
Each string is null-terminated, with the final string ending with two NULL char
acters.

swpInitial Specifies the SWP structure that contains the initial state of the
program's window. If the ey, ex, y, and x fields of this structure are zero, a
default window size is used when the application is started.

pad2[S] Reserved.

PrfAddProgram, PrfChangeProgram, PrfQueryDefinition, PROGTYPE, SWP

typedef struct _PROGTITLE {
HPROGRAM hprog;
PROGTYPE progt;
USHORT padl[3];
psz pszTitle;

} PROGTITLE;

1* progti */

The PROGTITLE structure is used to specify program-title information.

hprog Specifies the handle of the program.

New

progt Specifies the PROGTYPE structure that contains program-type informa
tion.

padl[3] Reserved.

p szTitle Points to the string that contains the program title.

PrfQueryProgramTitles, PROGTYPE

396 PROGTYPE

• PROGTYPE

Fields

See Also

Changes

typedef struct _PROGTYPE {
PROGCATEGORY progc;
BYTE fbVisible;

} PROGTYPE;

Change

I" progt "I

The PROGTYPE structure is used in the PIBSTRUCT and PROGDETAILS
structures to specify a program or group type.

progc Specifies the program category. This field can be one of the following
values:

Value

PROG_DEFAULT

PROG_FULLSCREEN

PROG_ WINDOW ABLEVIO

PROG_PM

PROG_GROUP

PROG_REAL

Meaning

Default category.

Program runs only in a full-screen session.

Program runs in a VIO-window session.

Program is a Presentation Manager application.

Handle is to a group.

Program is a (DOS) real-mode application.

PROG_DLL Program is a dynamic-link library.

fb Visible Specifies the visibility of a program and (optionally) the protected
or unprotected state of a group. This flag can be a combination of the following
values:

Value

SHE_VISIBLE

SHE_INVISIBLE

SHE_UNPROTECTED

PIBSTRUCT, PROGDETAILS

Meaning

The program or group is visible.

The program or group is invisible and cannot be
viewed.

The group is unprotected. Programs can be
added or deleted from the group. This value is
valid only for groups.

The group is protected. Programs cannot be
added or deleted from the group; the only pro
gram information that can be changed is the visi
bility state. This value is valid only for groups.

The fb Visible field has two additional options (SHE_UNPROTECTED and
SHE_PROTECTED) that can be set when the structure is used to create or
change a group. The program category PROGJ)LL has also been added.

• PTRACEBUF

Fields

PTRACEBUF 397

Change

typedef struct _PTRACEBUF { /* ptrcbf */
PID pid;
TID tid;
USHeRT cmd;
USHeRT value;
USHeRT offv;
USHeRT segv;
USHeRT mte;
USHeRT rAX;
USHeRT rBX;
USHeRT rCX;
USHeRT rDX;
USHeRT rSI;
USHeRT rDI;
USHeRT rBP;
USHeRT rDS;
USHeRT rES;
USHeRT rIP;
USHeRT rCS;
USHeRT rF;
USHeRT rSP;
USHeRT rSS;

} PTRACEBUF;

The PTRACEBUF structure contains various debugging information.

pid Specifies the process identifier of the program being debugged.

tid Specifies the thread identifier of the program being debugged.

cmd Specifies the command to carry out. It can be one of the following
values:

Value

OxOOOl

OxOOO2

OxOOO3

OxOOO4

OXOOOS

OxOOO6

OXOOO7

OXOOO8

OXOOO9

OxOOOA

OxOOOB

OxOOOC

OxOOOD

OxOOOE

OxOOOF

Meaning

Read memory instruction space (I-space).

Read memory data space (D-space).

Read registers.

Write memory I-space.

Write memory D-space.

Write registers.

Begin execution.

Terminate child process.

Single step.

Suspend child process.

Freeze child process.

Resume child process.

Convert segment number to selector.

Get floating-point registers. The scgv and offv fields must
specify the address of a 94-byte buffer that receives the
floating-point register values.

Set floating-point registers. The scgv and offv fields must
specify the address of a 94-byte buffer that contains the
floating-point register values.

398 PTRACEBUF

Value

OxOO10

OxOOll

Meaning

Get library-module name. The value field must contain the
handle of the library module. The segv and offv fields must
contain the address of the buffer that receives the name. This
command should be used instead of the DosGetModHandle
and DosGctModName functions to verify the name of a library
loaded by the program being debugged.

Get the thread identifier of the next thread. This field is circu
lar; to read the registers of all threads in the process, use this
value until a thread identifier is repeated. For more informa
tion about this value, see the "Comments" section.

When the command identified in the cmd field returns, it copies a code to the
value field that specifies the result of the command. The return code can be one
of the following values:

Value

OXOOOO

OxFFFF

OxFFFE

OxFFFD

OxFFFC

. OxFFFB

OxFFFA

OxFFF9

OxFFF8

OxFFF7

OxFFF6

OxFFF5

Meaning

Success return code.

Error. The error code is in the value field.

About to receive signal.

Single-step interrupt.

Hit break point.

Parity error.

Process dying.

General protection fault. The fault type is in the value field.
The scgv and offv fields contain the address that caused the
fault.

Library module has just been loaded. The value field contains
the library-module handle.

Process has not used 287 yet.

Thread ending.

Asynchronous stop.

value Specifies the value to be used for a given command or a return value
from a command. If an error occurs, this field is set to one of the following
values:

Value Meaning

OxOOOl

OXOOO2

OXOOO5

Bad command.

Child process not found.

Child process untraceable.

ofl'v

segv

mte

rAX
rBX

Specifies the offset from the given segment.

Specifics the segmcnt sclector.

Identifies the handle of the module that contains the segment.

Specifics the ax rcgister.

Specifies the bx rcgister.

Comments

See Also

Changes

PTRACEBUF 399

rCX Specifies the ex register.

rDX Specifies the dx register.

rSI Specifics the si register.

rDI Specifies the di register.

rBP Specifies the bp register.

rDS Specifies the ds register.

rES Specifies the es register.

rIP Specifies the ip register.

rCS Specifies the es register.

rF Specifies flags.

rSP Specifies the sp register.

rSS Specifies the ss register.

The OxOOll value in the emd field causes a thread identifier to be retrieved. The
status of this thread is returned in a ThreadStatus buffer pointed to by the segv
and offv fields. The format of the ThreadStatus buffer is as follows:

struct ThreadStatus {
UCHAR fDebugState;
UCHAR fThreadState;
USHORT usThreadPriority;
};

The DebugState field contains one of the following values:
Value Meaning

OXO Thread not frozen by debugger.

Ox! Thread frozen by debugger.

The ThreadState field contains one of the following:
Value Meaning

OXO Thread can be run.

Ox! Thread is suspended.

Ox2 Thread is blocked.

Ox3 Thread state is a critical section.

The ThreadPriority field receives the priority of the specified thread. The high
byte receives the priority class, and the low byte receives the priority level.

DosGetModHandle, DosGetModName, DosPTrace

An additional value, OxOOll, can be specified for the emd field. Two additional
values, OxFFF6 and OxFFF5, can be returned in the emd field.

400 PTRDRAWDATA

• PTRDRAWDATA New

Fields

See Also

• SBCDATA

Fields

Changes

typedef struet _PTRDRAWDATA { /* ptrdd */
USHORT eb;
USHORT usConflg;
USHORT usFlag;

} PTRDRAWDATA;

The I)TRDRAWDATA structure contains data for drawing the pointer.

eb Specifies the size of the structure (in bytes). Programs written in the C
language should use the sizeof operator to set this field.

usConfig Specifics the display configuration. It can be one of the following
values:

Value Meaning

VIO_CONFIG_CURRENT The current display adapter

VIO_CONFIG_PRIMARY The primary display adapter

VIO_CONFIG_SECONDARYThe secondary display adapter

usFlag Specifies a flag that determines if this configuration is for an applica
tion or the base video subsystem (BVS). A value of OxOOOO specifies an applica
tion; OxOOOl specifics the BVS.

MOU_SETPROTDRA WADDRESS

typedef struet _SBCDATA {
USHORT eb;
USHORT sHlllte;
SHORT posFlrst;
SHORT posLast;
SHORT posThumb;
SHORT eVisible;
SHORT eTotal;

} SBCDATA;

/* sbed */

Change

The SBCDDATA structure contains information about a scroll-bar window.

eb Specifies the size of the structure (in bytes). The size depends on the ver
sion of the operating system. Programs written in the C language should use the
size of operator to set this field.

sHilite reserved, should be set to zero

posFirst Specifies the first possible position of the slider bar.

posLast Specifies the last possible position of the slider bar.

posThumb Specifies the current position of the slider bar.

e Visible Specifies the number of items (lines in a file, rows on a spreadsheet,
etc) that are visible in the window.

eTotal Specifics the total number of items to be displayed.

The fields cVisible and cTotal have been added.

• STATUSDATA

Fields

See Also

Corrections

• SWBLOCK

typedef struct _STATUSDATA {
USHORT Length;
USHORT Selectlnd;
USHORT Bondlnd;

} STATUSDATA;

SWBLOCK 401

Correction

I' stsdata '/

The STATUSDATA structure contains status information about a session.

Length Specifics the size of the structure (in bytes). Programs written in the C
language should usc the size of operator to set this field.

SelectInd Specifies whether the target session should be set as selectable or
nonselectable. It can be one of the following values:

Value

TARGET_UNCHANGED

TARGET_SELECTABLE

Meaning

Leave current setting unchanged.

Set as selectable.

TARGET_NOT_SELECTABLE Set as nonselectable.

Bondlnd Specifies which session to bring to the foreground the next time the
parent session is selected. It can be one of the following values:

Value

BOND_UNCHANGED

BOND_CHILD

DosSetSession

Meaning

Leave current setting unchanged.

A bond between the parent session and the
child session is established. The child session is
brought to the foreground the next time the
parent session is selected. If the child session is
selected, the child session is brought to the fore
ground.

Any bond previously established with the
specified child session is broken. The parent ses
sion is brought to the foreground the next time
the parent session is selected and the child ses
sion is brought to the foreground the next time
the child session is selected.

The third field is BondInd, not BindInd. Accordingly, the three constants have
been changed to BOND_ .

typedef struct _SWBLOCK {
USHORT cswentry;
SWENTRYaswentry[l];

} SWBLOCK;

I' swblk 'I

New

The SWBLOCK structure contains an array of SWENTRY structures that con
tain information about the programs in the Task List.

402 SWBLOCK

Fields cswentry Specifies the number of SWENTRY structures contained in the
aswentry field.

See Also

• TRACKINFO

Fields

aswentry[l] Contains an array of SWENTRY structures.

WinQuerySwitchList, SWENTRY

typedef struct _TRACKINFO {
SHORT cxBorder;
SHORT cyBorder;
SHORT cxGrid;
SHORT cyGrid;
SHORT cxKeyboard;
SHORT cyKeyboard;
RECTL rclTrack;
RECTL rclBoundary;
POINTL ptlMinTrackSize;
POINTL ptlMaxTrackSize;
USHORT fs;
USHORT cxLeft;
USHORT cyBottom;
USHORT cxRight;
USHORT cyTop;

} TRACKINFO;

/* ti * /

Change

The TRACKINFO structure contains information about a tracking rectangle used
by the WinTrackRect function.

cxBorder

cyBorder

Specifics the border width.

Specifics the border height.

cxGrid Specifies the horizontal bounds of the tracking movements.

cyGrid Specifies the vertical bounds of the tracking movements.

cxKeyboard Specifies the amount of horizontal movement that occurs when
the user presses the left arrow key.

cyKeyboard Specifies the amount of vertical movement that occurs when the
user presses the left arrow key.

rclTrack Specifies the starting tracking rectangle. This is modified as the rect
angle is tracked and holds the new tracking position when tracking is complete.

rclBoundary Specifics an absolute boundary for the tracking rectangle.

ptlMinTrackSize Specifies the minimum tracking size.

ptlMaxTrackSize Specifies the maximum tracking size.

fs Specifies tracking options. This field can be a combination of the following
values:

Option

TF_LEFf

TF_TOP

TF_RIGHT

TF_BOTTOM

Meaning

Track the left side of the rectangle.

Track the top side of the rectangle.

Track the right side of the rectangle.

Track the bottom side of the rectangle.

See Also

Changes

Corrections

TRACKINFO 403

Option Meaning

TF _MOVE Track all sides of the rectangle.

TF _SETPOINTERPOS Repositions the pointer according to the other
options specified.

TF_LEFT Vertically centers the pointer at the left of the
tracking rectangle.

TF _ TO P Horizon tally centers the pointer at the top of the
tracking rectangle.

TF _RIGHT Vertically centers the pointer at the right of the
tracking rectangle.

TF _BOTTOM Horizontally centers the pointer at the bottom of
the tracking rectangle.

TF _MOVE Centers the pointer in the tracking rectangle.

TF _GRID Restricts tracking to the grid defined by cxGrld and
cyGrid.

TF _STANDARD The width, height, grid-width and grid-height are all
multiples of border-width and border-height.

TF_ALLINBOUNDARY Performs tracking so that no part of the tracking
rectangle ever falls outside the bounding rectangle.

TF_PARTINBOUNDARY Performs tracking so that values of cxLeft, cyBot
tom, cxRlght, and cyTop specify how much of the
corresponding edge of the tracking rectangle must
be kept within the opposite edge of the boundary
rectangle.

exLeft Specifies how much of the tracking rectangle must be kept within the
boundary rectangle. Used only if fs is TF.J>ARTINBOUNDARY.

eyBottom Specifies how much of the tracking rectangle must be kept within
the boundary rectangle. Used only if fs is TF .J>ARTINBOUNDARY.

exRight Specifies how much of the tracking rectangle must be kept within the
boundary rectangle. Used only if fs is TF .J>ARTINBOUNDARY.

eyTop Specifies how much of the tracking rectangle must be kept within the
boundary rectangle. Used only if fs is TF.J>ARTINBOUNDARY.

WinTrackRect

The TF.J>ARTINBOUNDARY option can be used in the fs field.

The TF _SETPOINTERPOS flag was incorrectly spelled TF .J>OINTERPOS.

The TF _ALLINBOUNDARY flag was incorrectly spelled
TF ~LINBOUNDARY.

404 VIOCOLORREG

• VIOCOLORREG

Fields

See Also

typedef struct _VIOCOLORREG {
USHORT cb;
USHORT type;
USHORT firstcolorreg;
USHORT numcolorregs;
PCH colorregaddr;

} VIOCOLORREG;

/* viocreg */

The VIOCOLORREG structure contains the addresses of color registers.

New

cb Specifies the length of the structure (in bytes). The length determines how
many color registers are retrieved.

type Specifies the request type. To retrieve the color registers, this field must
be set to Ox0003.

firstcolorreg Specifics the first color register to be retrieved. This field must
be a value from OxOOOO through OxOOOF. The color registers are in sequential
order. The number of registers retrieved depends on the structure size, as
specified by the cb field.

numcolorregs Specifies the number of color registers to retrieve.

colorregaddr Points to the array that receives the color values for the regis
ters. For each color-register retrieved, there should be three bytes allocated (one
each for the red, green, and blue color values).

VioGetState, VioSetState

• VIOCONFIGINFO Change

Fields

typedef struct _VIOCONFIGINFO {
USHORT cb ;
USHORT adapter;
USHORT display;
ULONG cbMemory;
USHORT Configuration;
USHORT VDHVersion;
USHORT Flags;
ULONG HWBufferSize;
ULONG FullSaveSize;
ULONG PartSaveSize;
USHORT EMAdaptersOFF;
USHORT EMDisplaysOFF;

} VIOCONFIGINFO;

/* vioin */

The VIOCONFIGINFO structure contains configuration information about the
screen.

cb Specifies the size of the structure (in bytes). Programs written in the C
language should use the sizeof operator to set this field.

See Also

VIOCONFIGINFO 405

adapter Specifics the type of display adapter. It can be one of the following
values:

Value Meaning

DISPLAY_MONOCHROME

DISPLA Y_ VGA

DISPLA Y _8514A

Monochrome/printer adapter

Color graphics adapter

Enhanced graphics adapter

Video graphics array display adapter

IBM Personal Systeml2 display adapter
8514/A

display Specifies the display/monitor type. It can be one of the following
values:

Value Meaning

MONITOR_MONOCHROME

MONITOR_COLOR

MONITOR_ENHANCED

MONITOR_8503

MONITOR_85DCCOLOR

MONITOR_8514

Monochrome display

Color display

Enhanced color display

8503 monochrome display

8512 or 8513 color display

8514 color display

cbMemory Specifies the amount of memory in the adapter (in bytes).

Configuration Specifics the configuration ID requested. It can be one of the
following values:

Value

VIO_CONFIG_CURRENT

VIO_CONFIG_PRIMARY

VIO_CONFIG_SECONDARY

Meaning

The current display adapter

The primary display adapter

The secondary display adapter

VDHVersion Reserved; must be zero.

Flags Specifies flag bits. The value OxOOOl sets default power-on configuration.

HWBufl'erSize . Specifies the amount of memory required to save the full
hardware state of the device adapter (not including the physical video buffer).

FullSaveSize Specifies the amount of memory required to save the entire
physical video buffer.

PartSaveSize Specifics the amount of memory required to save the portion of
the physical video buffer that will be overwritte~ by a pop-up window.

EMAdaptersOFF Specifies the offset to information that describes other
display adapters emulated by this display adapter.

EMDisplaysOFF SpecifIes the offset to information that describes other
display types emulated by this display.

VioGetConfig

406 VIOCONFIGINFO

Changes The following fields have been added to the end of the VIOCONFIGINFO struc
ture:

USHORT
USHORT
USHORT
ULONG
ULONG
ULONG
USHORT
USHORT

Configuration;
VDHVersion;
Flags;
HWBufferSize;
FullSaveSize;
PartSaveSize;
EMAdaptersOFF;
EMDisplaysOFF;

• VIOFONTCELLSIZE New

Fields

typedef struct _VIOFONTCELLSIZE {
LONG %cx%;
LONG %cy%;

} VIOFONTCELLSIZE;

1* viofcsz *1

The VIOFONTCELLSIZE structure specifies the size of a font cell.

ex Specifies the width of the font cell.

ey Specifies the length of the font cell.

See Also DevEscape

• VIOMODEINFO Change

Fields

typedef struct _VIOMODEINFO {
USHORT cb;

1* viomi *1
UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;
UCHAR fmt_ID;
UCHAR attrib;
ULONG buf_addr;
ULONG buf_length;
ULONG full_length;
ULONG partial_length;
PCH ext_data_addr;

} VIOMODEINFO;

The VIOMODEINFO structure contains information about the screen mode.

e b Specifies the size of the structure (in bytes). Programs written in the C
language should use the size of operator to set this field.

fbType Specifics the screen mode. It is one of the following values:
Value Meaning

Set adapter to other than a monochrome/printer
adapter. If this value is not given, the
monochrome/printer adapter is assumed by
default.

See Also

Changes

Value

VGMT_GRAPHICS

VGMT_DISABLEBURST

VIOMODEINFO 407

Meaning

Set graphics mode. If this value is not given, the
adapter is set to text mode.

Disable color-burst mode. If this value is not
given, color-burst mode is enabled.

color Specifies the number of colors (defined as a power of 2). This is
equivalent to the number of color bits that define the color. It is one of the fol
lowing values:

Value Meaning

COLORS_2 2 colors

COLORS_4 4 colors

COLORS_16 16 colors

col Specifies the number of text columns.

row Specifies the number of text rows.

hres Specifies the number of pel columns (horizontal resolution).

vres Specifies the number of pel rows (vertical resolution).

fmt_ID Specifies the format of the attributes.

attrib Specifies the number of attributes in the attrihfmt field.

bULaddr Specifies the 32-bit physical address of the physical video buffer for
this mode.

buf_Iength Specifies the length (in bytes) of the physical video buffer for this
mode.

full_length Specifies the size (in bytes) of the buffer required to save the
entire physical video buffer for this mode.

partialJength Specifies the amount of memory required to save a portion of
the physical video buffer for this mode. This portion of the physical video buffer
is what is overwritten by a pop-up window.

ext~data_addr Specifies the far address of an extended-mode data structure,
or zero if there is none.

VioGetMode, VioSetMode

The following fields have been added to the end of the VIOMODEINFO struc
ture:

UCHAR
UCHAR
ULONG
ULONG
ULONG
ULONG
PCH

fmt_ID;
attrib;
buf_addr;
buf_length;
full_length;
partial_length;
ext_data_addr;

408 VIOSETTARGET

I VIOSETTARGET New

Fields

See Also

typedef struct _VIOSETTARGET {
USHORT cb;
USHORT type;
USHORT defaultalgorithm;

} VIOSETTARGET;

I' viosett 'I

The VIOSETTARGET structure identifies the target display of the next call to
the VioSetMode function.

cb Specifies the size of the structure (in bytes). Programs written in the C
language should use the size of operator to set this field.

type Specifies the request type. To retrieve the target information, this field
must be set to Ox0006.

defauUaJgorithm Specifies the target display of the next call to the VioSet
Mode function. A value of OxOOOO specifies the default display (the active display
when the computer was powered on), Ox0001 specifies the primary display, and
OX0002 specifies the secondary display.

VioGetState, VioSetMode, VioSetState

• VIOSETULINELOC New

Fields

See Also

typedef struct _VIOSETULINELOC {
USHORT cb;
USHORT type;
USHORT scanline;

} VIOSETULINELOC;

I' viouline 'I

The VIOSETULINELOC structure contains the location of the underline.

cb Specifies the size of the structure (in bytes). Programs written in the C
language should use the sizeof operator to set this field.

type Specifies the request type. To retrieve the underline location, this field
must be set to OxOOOS.

scanline Specifies the location of the underline. This value is normally in the
range 0 through -1 (the value of the scan line minus 1). A value of 32 means
that underlining is disabled.

VioGetState, VioSetState

WNDPARAMS 409

• VIOSIZECOUNT New

typedef struct _VIOSIZECOUNT {
LONG %MaxCount%;
LONG %Count%;

} VIOSIZECOUNT;

1* viosz *1

The VIOSIZECOUNT structure contains the size of the VIOFONTCELLSIZE
structure.

Fields MaxCount Specifies the maximum number of occurrences of the
VIOFONTCELLSIZE structure.

Count Specifies the actual number of occurrences of the
VIOFONTCELLSIZE structure.

See Also DevEscape

• WNDPARAMS Change

Fields

typedef struct _WNDPARAMS {
USHORT fsStatus;

1* wprm *1

USHORT cchText;
psz pszText;
USHORT cbPresParams;
PYOID pPresParams;
USHORT cbCtlData;
PYOID pCtlData;

} WNDPARAMS;

The WNDPARAMS structure contains information about a window.

fsStatus Specifies the window parameters which are to be set or queried. This
can be any combination of the following values:

Value

WP1LTEXT

WP1LCTLDATA

WP1LPRESPARAMS

WP1LCCHTEXT

WP1LCBCTLDA TA

WP1LCBPRESPARAMS

Meaning

Text

Control data

Presentation parameters

Size of text

Size of control data

Size of presentation parameters

cchText Specifies the length of the window text.

p szText Points to the window text.

cbPresParams Specifies the length of the presentation parameters.

pPresParams Points to the PRESPARAMS structure that contains presenta
tion parameters. This field is NULL if there are no presentation parameters.

cbCtlData Specifies the length of the class-specific data.

p CtiData Points to the class-specific data.

410 WNDPARAMS

See Also

Changes

PRESPARAMS, W1LQUERYWINDOWPARAMS,
W1LSETWINDOWPARAMS

The following constants have been defined for the fsStatus field:
Value Meaning

WPM-TEXT Text

WPM-CTLDATA Control data

WPM-PRESP ARAMS Presentation parameters

WPM-CCHTEXT Size of text

WPM_CD CTLD ATA Size of control data

WPM_CBPRESP ARAMS Size of presentation parameters

A-F 411
~]iiiL1f~~1!iiruiii~.iBUi!~15..lfii£fillir.\1m!Sj;iiiilfif.~!llem!r:m!§l§!~:m:m:Jlil~~;~J~mli!Bf!§fjnmI~Eliij§f.~iiiiiiiiii!§li~!B!lii~iliU!i§i!§il

Index
A
AVAILDATA, 363

B
Bit masks, 7

C
C-Ianguage format, 5
Calling conventions, 6
CB~HILlTE, 42, 57
CB~ISLISTSHOWING, 42, 57
CB~SHOWLIST, 42,57
CBN_EFCHANGE, 41, 42, 58
CBN_EFCSCROLL, 42
CBN_EFSCROLL, 58
CBN_ENTER, 42,58
CBNJ-BSCROLL, 42, 59
CBN_LBSELECT, 41, 42
CBN_LBSELECT, 59
CBN..MEMERROR, 42,59
CBN_SHOWLIST, 42,60
CHARBUNDLE, 363
Combination-box control, 40-42
Combo box, 40-42

messages sent from, 42
messages sent to, 42

Constant names, 11

D
DENA!, 364
DevEscape, 60
DevPostDeviceModes, 66
DevQueryCaps, 68
DOS-compatibility mode, filenames,

20
DosAllocHuge, 72
DosAllocSeg, 74
DosAllocShrSeg, 76
DosChgFilePtr, 19
DosCopy, 77
DosCreateSem, 79
DosCreateThread, 80
DosDevIOCtl2, 81
DosEditN arne, 21, 82
DosEnterCritSec, 83
DosEnumAttribute, 84
DosExecPgm, 21
DosExitCritSec, 85

DosExitList, 86
DosFileIO, 88
DosFileLocks, 19
DosFindFirst, 21, 23
DosFindFirst2, 90
DosFindNcxt, 23, 93
DosFreeResource, 95
DosFrecSeg, 95
DosFSAttach, 19, 96
DosFSCtl, 18, 97
DosGetDBCSEv, 99
DosGetModHandle, 100
DosGetResource, 101
DosGetResource2, 102
DosGetVersion, 103
DosLoadModule, 104
DosMukePipe, 105
DosMkDir2, 23, 106
DosMonRcg, 107
DosOpen, 19, 108
DosOpen2, 23, 113
DosQFHandState, 117
DosQFilelnfo, 23, 119
DosQFSAttach, 121
DosQNmPipelnfo, 123
DosQNmPipeSemState, 124
DosQPathlnfo, 23, 124
DosQSyslnfo, 20
DosRead, 19, 126
DosReadAsync, 128
DosReadQueue, 130
DosReallocHuge, 131
DosReallocSeg, 133
DosSearchPath, 134
DosSemClear, 135
DosSemRequest, 136
DosSetFilelnfo, 137
DosSetMaxFH, 139
DosSetPathlnfo, 139
DosSetPrty, 141
DosSetVec, 142
DosShutdown, 143
DosStartSession, 144
DosSubAlloc, 145
DosSubFree, 146
DosWaitNmPipe, 146
DosWrite, 19, 147
DosWriteAsync, 148
DosWriteQucue, 150

E
EAOP, 365
E1LQUER YREADONL Y, 152
E1LSETINSERTMODE, 152
E1LSETREADONLY, 152
E1LSETTEXTLIMIT, 153
EN_CHANGE, 153
EN_INSERTMODETOGGLE, 153
EN_KILLFOCUS, 154
EN_MEMERROR, 154
EN_OVERFLOW, 154
EN_SCROLL, 155
EN_SETFOCUS, 155
Entry field, multiple-line, 42-50
ENTRYFDATA, 365
Error, file-system, 21-22
Extended attribute, 23-28

F

data type, 24
data-type field, 27
naming, 23

Fl key, 32, 35
FAT (file allocation table), 17-18
FATTRS, 366
FEA, 367
FEALIST, 368
Field names, 8
File allocation table (FAT), 17-18
File system See Installable file

system
File-system error, 21-22
FILEFINDBUF2, 368
Filename

conventions, 20
DOS-compatibility mode, 20
metacharacter, 21

FILEST A TUS2, 369
FIOLOCKCMD, 370
FIOLOCKREC, 370
FIOREADWRITE, 371
FIOSEEKCMD, 371
FIOUNLOCKCMD, 372
FIOUNLOCKREC, 372
FONTMETRICS, 373
FSINFO, 377
FSQBUFFER, 378

412 G-M
1fi!!;mruii~l~ffitmLrm~ifili&1liifijfliir.U~IBf!r.n!:ID~mimifsi§iil6~~~~iIllffi!m~ffliiiii.~5isaj~~~Itru§i~~~~Wmn~1flfd!§!Sii!g

G
GEA, 379
GEALIST, 379
GpiCallSegmentMatrix, 156
GpiCreateLogFont, 158
GpiDestroyPS, 160
GpiGetData, 160
GpiLoadFonts, 162
GpiOutlinePath, 163
GpiPlayMetaFile, 164
GpiPolyLine, 167
GpiQueryBitmapBits, 168
GpiQueryCharDirection, 170
GpiQueryCharStringPos, 171
GpiQueryDefArcParams, 173
GpiQueryDefAttrs, 173
GpiQueryDefTag, 175
GpiQueryDefViewingLimits, 176
GpiQueryFontFileDescriptions, 176
GpiQueryMetaFileBits, 177
GpiResetPS, 178
GpiRotate, 180
GpiScale, 181
GpiSetCharDirection, 182
GpiSetDefArcParams, 183
GpiSetDefAttrs, 184
GpiSetDefTag, 186
GpiSetDefViewingLimits, 186
GpiSetPS, 187
GpiSetViewingLimits, 189
GpiTranslate, 190
GpiUnloadFonts, 191
GpiWCBitBlt, 192

H
HCINFO, 380
Help

button, 32, 37
hook, 38
instance, 33, 37
library, 35
menu, 32,25
table, 34

Help Manager, 31-40
messages sent by, 39
messages sent to, 39-40

HELPINIT, 33, 380
HELPT ABLE, 34, 381
High-performance file system

(HPFS), 17-18
HM-ACTIONBAR_COMMAND,

195
HM_CREA TE-HELP _TABLE, 195
HM-DISMISS_WINDOW, 196

HM_DI SPLAY_HELP , 37,196
H~ERROR, 32, 197
H~EXT_HELP, 37, 198
HM_EXT_HELP _UNDEFINED,

199
. HM_HELP _CONTENTS, 199

HM_HELP_INDEX, 37,199
H~HELPSUBITEM_NOT_FOUND,

200
HM_INFORM, 201
HM_KEYS_HELP, 37, 201
H~LOAD_HELP_TABLE, 202
H~QUERY_KEYS_HELP, 202
H~REPLACE_HELP _FOR_HELP,

202
HM_SET_ACTIVE_WINDOW, 34,

203
HM-SET_HELP _LIBRARY _N AME,

203
H~SET_HELP _WINDOW_TITLE,

204
HM-SET_SHOW_PANEL_ID, 204
H~ TUTORIAL, 205
HPFS (high-performance file

system), 17-18

Include files, 5
Information Presentation Facility

Compiler (IPFC), 32
Initialization file, 28-31
Installable file system, 17-23
IPFC (Information Presentation

Facility Compiler), 32

K
KbdCharIn, 205
KbdGetHWID, 207
KBDHWID, 382
KBDKEYINFO, 383
KbdRegister, 208

L
LDTADDRINFO, 384
LINFOSEG, 384
LM-INSERTITEM, 41
Local file system, 19

M
MA TRIXLF, 386
MLE_SEARCHDAT A, 387

MLECTLDATA, 388
MLEFORMATRECT, 390
MLEMARGSTRUCT, 390
MLEOVERFLOW, 391
MLM-CHARFROMLINE, 48,210
MLM-CLEAR, 43,45,48,211
ML~COPY, 45, 48, 211
MLM-CUT, 45,48,212
ML~DELETE, 44, 48, 212
ML~DISABLEREFRESH, 45,

48,212
MLM_ENABLEREFRESH, 45,48,

213
ML~EXPORT, 44, 48, 213
ML~FORMAT, 45,48,214
ML~IMPORT, 44,48,214
ML~INSERT, 43, 48, 215
ML~LINEFROMCHAR, 48,215
ML~PASTE, 45, 48, 216
ML~QUERYBACKCOLOR, 44,

48, 216
MLM-QUERYCHANGED, 46, 48,

217 '
ML~QUER YFIRSTCHAR, 46,

48, 217
ML~QUERYFONT, 44, 48, 218
ML~QUER YFORMA TLINELENGTH,

45,48,218
ML~QUER YFORMA TRECT,

44,48,219
ML~QUER YFORMA TTEXTLENGTH,

45,48,220
MLM-QUERYIMPORTEXPORT,

48,221
ML~QUERYLINECOUNT, 44,

48, 221
ML~QUER YLINELENGTH, 48,

222
ML~QUERYREADONLY, 44,

48,222
ML~QUERYSEL, 43, 49, 222
MLM-QUERYSELTEXT, 45,49,

223
ML~QUERYTABSTOP, 44, 49,

224
ML~QUERYTEXTCOLOR, 44,

49,224
ML~QUERYTEXTLENGTH, 44,

49,225
ML~QUERYTEXTLIMIT, 44,

49,225
ML~QUERYUNDO, 43, 49, 226
ML~QUERYWRAP, 44, 49, 226
MLM-RESETUNDO, 43,49,227
ML~SEARCH, 46, 49, 227

ML~SETBACKCOLOR, 44, 49,
228

ML~SETCHANGED, 46,49,229
ML~SETFIRSTCHAR, 46, 49,

229
ML~SETFONT, 44, 49, 230
ML~SETFORMATRECT, 44,49,

230
ML~SETIMPORTEXPORT, 44,

49,232
ML~SETREADONLY, 44,49,

232
ML~SETSEL, 43,49,233
ML~SETTABSTOP, 44,49,233
ML~SETTEXTCOLOR, 44, 49,

234
ML~SETTEXTLIMIT, 44,49,

234
ML~SETWRAP, 49, 235
ML~UNDO, 43, 49, 235
MLN_CHANGE, 46, 49, 236
MLN_CLPBDFAIL, 49,236
MLN_HSCROLL, 46, 50, 237
MLN_KILLFOCUS, 50, 237
MLN-MARGIN, 50, 238
MLN_MEMERROR, 50, 238
MLN_OVERFLOW, 50,238
MLN_PIXHORZOVERFLOW, 50,

239
MLN_PIXVERTOVERFLOW, 50,

240
MLN_SEARCHPAUSE, 50, 240
MLN_SETFOCUS, 50, 241
MLN_TEXTOVERFLOW, 50, 241
MLN_UND 0 OVERFLOW , 50, 241
MLN_ VSCROLL, 46, 50, 242
M~DISMISSMENU, 242
M~QUERYSELITEMID, 242
MOU_DISPLA YMODECHANGE,

243
MOU_SETPROTDRA W ADDRESS,

243
MOU_SETREALDRA W ADDRESS,

244
MOU_UPDA TEDISPLA YMODE,

245
MOU_ VER, 246
MouGetNumQueEl, 247
MouSynch, 248
Multiple-line entry field (MLE),

42-50
copying text, 45
editing text, 43
exporting text, 44
formatting text, 44

Multiple-line entry field (MLE) (con-

N

tinued)
importing text, 44
messages sent from, 49
messages sent to, 48
notification code, 46
pasting text, 45
searching and replacing text, 46

Naming conventions, 8-10
Notational conventions, 11

o
Overviews, 13-50

P
PARAM, 392
Parameter names, 8
PicIchg, 249
PicPrint, 250
PIPESEMST ATE, 393
PL_ALTERED, 250
Prefixes, 9
PRESP ARAMS, 393
PrfAddProgram, 29, 30, 250
PrfChangeProgram, 252
PrfCloseProfile, 29, 253 .
PrfCreateGroup, 29, 30, 253
PrfDestroyGroup, 254
PrfOpenProfile, 29, 255
PRFPROFILE, 394
PrfQueryDefinition, 255
PrfQueryProfile, 30, 257
PrfQueryProfileData, 29, 258
PrfQueryProfileInt, 30, 259
PrfQueryProfileSize, 29, 260
PrfQueryProfileString, 29, 30, 261
PrfQueryProgramCategory, 262
PrfQueryProgramHandle, 263
PrfQueryProgramTitles, 264
PrfRemoveProgram, 265
PrfReset, 30, 265
PrfWriteProfileData, 266
PrfWriteProfileString, 29, 267
Profile Manager, 28-31
PROGDET AILS, 394
PROGTITLE, 395
PROGTYPE, 396
Pseudo-character device, 19
PTRACEBUF, 397
PTRDRAWDATA, 400

M-W 413

R
Remote file system, 19

S
SBCDATA, 400
SB~SETTHUMBSIZE, 268
SCR_ALLOCLDT, 269

. SCR_ALLOCLDTOFF, 269
SCR_DEALLOCLDT, 270
Single-file device, 19
STATUSDATA, 401
Structures, 8, 361, 363-410
SWBLOCK, 401

T
TB1L TRACKMOVE, 271
TRACKINFO, 402
Types, 8-10, 361, 362

V
VIOCOLORREG, 404
VIOCONFIGINFO, 404
VioCreatePS, 272
VIOFONTCELLSIZE, 406
VioGetBuf, 273
VioGetConfig, 274
VioGetMode, 275
VioGetState, 276
VIOMODEINFO, 406
VioReadCellStr, 277
VioScrollDn, 278
VioScrollLf, 280
VioScrollRt, 281
VioScrollUp, 282
VioSetCurType, 283
VioSetMode, 284
VioSetState, 286
VIOSETTARGET, 40&
VIOSETULINELOC, 408
VioShowBuf, 287
VIOSIZECOUNT, 409
VioWrtCellStr, 288
VioWrtNCell, 289

W
WinAddProgram, 290
WinAssociateHelplnstance, 33, 38,

291
WinBroadcastMsg, 292
WinCreateFrameControls, 293
WinCreateGroup, 293

414 W
~~;mlm~m!i~_i!!!ifU!lli!!!fH~HI~miiit~mf!J.!fif~1filua!Jm;illiIDHU;m,'R;jllli§mm!ei~imJ~~mmHfli~~e;HSi!!f.ii~!mi~e&~~ml~i~n!1I

WinCreateHelpInstance, 33, 294
WinCreateHelpTable, 295
WinCreatePointerIndirect, 296
WinCreateSwitchEntry, 296
WinCreateWindow, 41, 42, 47, 298
WinDefDIgProc, 33
WinDefWindowProc, 33
WinD eleteLib rary , 300
WinDeleteProcedure, 300
WinDestroyHelplnstance, 38, 300
WinDIgBox, 37
WinDrawBitmap, 301
WinEnumDIgItem, 302
WinGetDIgMsg, 303
WinGetLastError, 38.
WinGetNextWindow, 304
WinGetSysBitmap, 304
WinInitialize, 29, 33
WinInstStartApp, 306
WinIsWindowShowing, 307
WinLoadHelpTable, 308
WinLoadLibrary, 308
WinLoadProcedure; 309
WinLockWindow, 309
WinQueryActiveWindow, 309
WinQueryAnchorBlock, 310
WinQueryCapture, 310

WinQueryClipbrdOwner, 310
WinQueryClipbrdViewer, 311
WinQueryDefinition, 311
WinQueryFocus, 312
WinQueryHelpInstance, 33, 313
WinQueryPresParam, 313
WinQueryProfileData, 315
WinQueryProfilelnt, 316
WinQueryProfileSize, 317
WinQueryProfileString, 318
WinQueryProgramTitles, 318
WinQuerySessionTitle, 320
WinQuerySwitchEntry, 320
WinQuerySwitchHandle, 321
WinQuerySwitchList, 322
WinQuerySysModalWindow, 322
WinQuerySysValue, 323
WinQueryTaskSizePos, 326
WinQueryWindow, 327
WinQueryWindowLockCount, 328
WinRegisterClass, 328
WinReleasePS, 330
WinRemovePresParam, 331
WinSetPresParam, 332
WinSetSysColors, 333
Win SetSysValue , 336
WinSetWindowPos, 339

WinSwitchToProgram, 342
WinTerminateApp, 343
WinWindowFromID, 343
Win WindowFromPoint, 344
WinWriteProfileData, 345
Win WriteProfileString, 346
W1LADJUSTWINDOWPOS, 347
W1LAPPTERMINATENOTIFY,

348
W1LCALCFRAMERECT, 348
W1LCALCV ALIDRECTS, 349
W1LCHAR, 350
W1LCLOSE, 352
W1LCOMMAND, 36
W1LCONTROL, 42
W1LDRA WITEM, 352
W1LFORMATFRAME, 353
W1LMEASUREITEM, 354
W1LMOVE, 355
W1LPRESPARAMCHANGED,

355
W1LQUERYHELPINFO, 356
W1LSA VEAPPLICATION, 357
W1LSETHELPINFO, 357
W1LWINDOWPOSCHANGED,

358
WNDPARAMS, 409

Invest in CD-ROM Technology!
Microsoft® Programmer's Library is the ultimate programmer's reference on a single CD-ROM
disc. It contains full text of the OS/2 Software Development Kit (SDK) manuals, the Windows
SDK manuals, most Microsoft Language manuals, and several Microsoft Press books written
for the serious programmer, including THE MS-DOS ENCYCLOPEDIA. Plus 20 floppies'
worth of "clip art" sample code. Navigate through this mass of programming knowledge with
boolean searches and hypertextuallinks between related data. The price is $395 suggested
retail- a fraction of the price for this material in print form.

For a limited time, Programmer's Library is available System Complete with the Denon DRD-
253 CD-ROM drive for $949. That's a savings of $575!

And if you order now, you'll receive FREE Microsoft Audio Software ($99 value) that turns
your CD-ROM drive into a programmable CD audio player. So you can listen to a keyboard for
a change.

Call (800) 227-4679 for details.

NAME

COMPANY NAME (if applicable)

STREET ADDRESS

CITY

For a Free Demo Disk* please
Print your name and address:

STATE

DA YTIME TELEPHONE (in case we have questions about your order)

Check the appropriate box

ZIP

D 1.2 MB floppy Demo Disk: Contains the self-running demo as well as self-guided
and interactive demos of the features of Programmer's Library. Also includes a
portion of the actual Programmer's Library database.

D 1.44 MB floppy Demo Disk: Same as above for 3.5 inch drives.

D 360K floppy Demo Disk: The self-running demo showing the impressive features
of Programmer's Library.

Send this coupon to:
Microsoft Corporation. Attn: Special Promotions, Dept 127

16011 NE 36th Way. Box 97017. Redmond, WA 98073-9717
*Offer Valid While Supplies Last

Step up to
Presentation Manager with

the Microsoft OS/2 ._-- - -----_ ... _-_ .. _ .•. _._._........- . - ----- ---..

Presentation Manager
Softset.

Congratulations on your purchase of the Microsoft® OS/2 Programmer's Reference Library,
a complete guide to the features of the Microsoft OS/2 Presentation Manager. Now that
you have the documentation, the next step is to purchase Microsoft OS/2 Presentation
Manager Softset version 1.1, which Microsoft designed to help software developers create
the new generation of graphically based, intuitive, easy-to-use software applications.
Softset provides a complete, fully documented set of visual software tools to help you
create popular applications for the graphical environment of Presentation Manager.

Softset Features

• Dialog Editor helps you design on-screen dialog boxes.
• Icon Editor helps you customize icons, cursors, and bitmap images for graphical

applications.

• Font Editor helps you create your own fonts.
• Resource Compiler helps you bind resource-definition files created with the Dialog,

Icon, and Font Editors to .EXE files.
• Other Softset tools help you create and maintain libraries, create message files and

dual-mode (DOS-OS/2) programs, and perform many other tasks.

Combine the Softset with the Microsoft OS/2 Programmer's Reference Library and a
programming language such as Microsoft C Optimizing Compiler or Microsoft Macro
Assembler with OS/2 support for a complete Presentation Manager software development
kit. The applications you create in Presentation Manager are fully compatible with IBM®
SAA (Systems Application Architecture). Trust the software tools from Microsoft- the
company that developed MS® OS/2.

Contact your nearest local software dealer for more information.

Also Available From Microsoft® Press
Authoritative Information for OS/2 Programmers

INSIDE OS/2
Gordon Letwin, Chief Architect, Systems Software, Microsoft
Foreword by Bill Gates
"The best way to understand the overall philosophy of OS/2 will be to read this book."

-Bill Gates

Here-from Microsoft's Chief Architect of Systems Software-is an exciting
technical examination of the philosophy, key development issues, programming im
plications, and role of OS/2 systems in the office of the future. And Letwin provides
the first in-depth look at each of OS/2's design elements. This is a valuable and
revealing programmer-to-programmer discussion of the graphical user interface,
multitasking, memory management, protection, encapsulation, interprocess commu
nication, and direct device access. You can't get a more inside view.

304 pages, 7¥S x 9Y4, softcover, $19.95 ISBN 1-55615-117-9

ADVANCED OS/2 PROGRAMMING
Ray Duncan
Authoritative information, expert advice, and great programming examples make
this comprehensive overview of the features and structure of OS/2 indispensable to
any serious OS/2 programmer. Duncan addresses a range of significant OS/2 issues:
programming the user interface; mass storage; memory management; multitasking;
interprocess communications; customizing filters, device drivers, and monitors; and
using OS/2 dynamic link libraries. A valuable reference section includes detailed
information on each of the more than 250 system service calls inversion 1.1 of the

. OS/2 kernel.

800 pages, 7¥S x 9Y4, softcover, $24.95 ISBN 1-55615-045-8

PROGRAMMING THE OS/2 PRESENTATION MANAGER
Charles Petzold
Here is the' first full discussion of the features and operation of the OS/2 1.1 Pres
entation Manager. If you're developing OS/2 applications, this book will guide you
through Presentation Manager's system of windows, messages, and function calls.
Petzold includes scores of valuable C programs and utilities. Endorsed by the
Microsoft Systems Software group, this book is unparalleled for its clarity, detail,
and comprehensiveness. Petzold covers managing windows _ handling input and
output _ controlling child windows _ using bitmaps, icons, pointers, and strings _
accessing the menu and keyboard accelerators _ working with dialog boxes _
understanding dynamic linking _ and more.

864 pages, 7% x 9Y4, softcover, $29.95 ISBN 1-55615-170-5

ESSENTIAL OS/2 FUNCTIONS: Programmer's Quick Reference
Ray Duncan
Concise information on the essential OS/2 function calls within the application pro
gram interface (API). Entries are included for all kernel API functions for OS/2 ver
si~n 1.0: Dos, Kbd, Mou, and Vio. The book describes each function and provides a
list of the required parameters, returned results, programming notes and warnings,
family API call identification, and error codes. Conveniently arranged to provide
quick access to the information you need.

208 pages, 4¥4 x 8, softcover, $9.95 ISBN 1-55615-177-2

For the Windows™ Programmer
PROGRAMMING WINDOWSTM
Charles Petzold
Your fastest route to successful application programming with Windows. Full of
indispensable reference data, tested programming advice, and page after page of
creative sample programs and utilities. Topics include getting the most out of the
keyboard, mouse, and timer; working with icons, cursors, bitmaps, and strings; ex
ploiting Windows' memory management; creating menus; taking advantage of child
window controls; incorporating keyboard accelerators; using dynamically linkable li
braries; and mastering the Graphics Device Interface (GDI). A thorough, up-to-date,
and authoritative look at Windows' rich graphical environment.

864 pages, 7% x 9Y4, softcover, $24.95 ISBN 0-914845-91-8

Solid Technical Information for MS-DOS® Programmers
ADVANCED MS·DOS® PROGRAMMING, 2nd edt
Ray Duncan
The preeminent source of MS-DOS information for assembly-language and C
programmers - now completely updated with new data and programming advice
covering ROM BIOS for the IBM PC, PC/AT, PS/2, and related peripherals; MS
DOS through version 4; versi~n 4.0 of the LIM EMS; and OS/2 compatibility con
siderations. Duncan addresses key topics, including character devices, mass storage,
memory allocation and management, and process management. In addition, there is a
healthy assortment of updated assembly-language and C listings that range from code
fragments to complete utilities. And the reference section, detailing each MS-DOS
function and interrupt, is virtually a book within a book.

688 pages, 7% x 9Y4, softcover, $24.95 ISBN 1-55615-157-8

THE MS·DOS® ENCYCLOPEDIA
Microsoft Press
General Editor, Ray Duncan
Foreword by Bill Gates
The ultimate reference for insight, data, and advice to make your MS-DOS programs
reliable, robust, and efficient. 1600 pages packed with version-specific data. Annota
tions of more than 100 system function calls, 90 user commands, and a host of key
programming utilities. Hundreds of hands-on examples, thousands of lines of code,
and handy indexes. Plus articles on debugging, writing filters, installable device
drivers, TSRs, Windows, memory management, the future of MS-DOS, and much
more. Researched and written by a team of MS-DOS experts - many involved in the
creation and development of MS-DOS. Covers MS-DOS through version 3.2, with a
special section on version 3.3.

1600 pages, 7¥4 x 10, softcover, $69.95 ISBN 1-55615-174-8

Programmer's Quick Reference Series
MS·DOS® FUNCTIONS
Ray Duncan
The kind of information every seasoned programmer needs right at hand. Includes
detailed information on MS-DOS system service calls along with valuable program
ming notes. Covers MS-DOS through version 4.

128 pages, 4¥4 x 8, softcover, $5.95 ISBN 1-55615-128- 4

IBM® ROM BIOS
Ray Duncan
Essential for every assembly-language or C programmer at any experience level.
Designed for quick and easy access to information, this guide includes all the core
information on each of the ROM BIOS services.

128 pages, 43/4 x 8, softcover, $5.95 ISBN 1-55615-135-7

MS·DOS® EXTENSIONS
Ray Duncan
Brings together the hard-to-find programming information on the Lotusllntel/
Microsoft Expanded Memory Specification (EMS) version 4.0, the Lotus/Intel!
Microsoft/AST Extended Memory Specification (XMS) version 2.0, the Microsoft
CD-ROM Extensions version 2.1, and the Microsoft Mouse driver, version 6. An
overview of each function is accompanied by a list of its required parameters,
returned results, and applicable programming notes.

128 pages, 4¥4 x 8, softcover, $6.95 ISBN 1-55615-212-4

Solid Language References
MICROSOFT® C: SECRETS, SHORTCUT~ & SOLUTIONS
Kris Jamsa
Here is a fact-filled, example-packed resource for any current or aspiring Microsoft
e programmer working in the DOS environment. Each chapter highlights specific e
programming facts, tips, and traps so that key information or items of special interest
are immediately accessible. Hundreds of short sample programs support Jamsa's in
struction and encourage experimentation. If you're new to e, Microso~t e, or even
Microsoft Quicke, Jamsa's fast-paced, highly readable style will help you quickly
master the fundamentals. If you're a seasoned programmer, you'll find page after
page of advanced information that will hone your programming skills and make your
Microsoft e programs fast, clean, and efficient. Jamsa shows you how to _ access the
DOS command line _ expand wildcard characters into matching filenames _ use I/O
redirection _ master dynamic memory allocation _ take advantage of e's predefined
global variables _ optimize your programs for increased speed _ enhance your pro
gram's video appearance _ make full use of the MAKE and LIB tools.

736 pages, 7% x 9Y4, softcover, $24.95 ISBN 1-55615-203-5

PROFICIENT C
Augie Hansen
"A beautifully-conceived text, clearly written and logically organized ... a superb guide."

Computer Book Review

An information-packed handbook for intermediate to advanced DOS programmers
that includes dozens of file-oriented and screen-oriented e programs and specially
developed utilities. A successful blend of programming advice and practical example
programs.

512 pages, 7% x 9Y4, softcover, $22.95

VARIATIONS IN C, 2nd edt
Steve Schustack
Foreword by Gerald Weinberg

ISBN 1-55615-007-5

A superb guide for experienced programmers who want to develop efficient, portable,
high-quality application software using e in the DOS environment. In addition to an
overview of the basic syntax of e, Schustack provides valuable techniques for struc
tured programming. A complete, lS00-line sample order entry program illustrates
key topics. Special comments and cautions are highlighted throughout.

448 pages, 7% x 9Y4, softcover, $22.95 ISBN 1-55615-239-6

STANDARD C: Programmer's Quick Reference
P.J. Plauger and Jim Brodie
All the basic information you need to read and write Standard C programs that
conform to the recently approved ANSI and ISO standard for the C programming
language. Scores of diagrams illustrate the syntax rules. Whether you're new to C or
familiar with an earlier dialect, this will prove a handy companion.

224 pages, 4% x 8, softcover, $7.95 ISBN 1-55615-158-6

THE WAITE GROUP'S MICROSOFT® QUICKC®
PROGRAMMING, 2nd edt
The Waite Group: Mitchell Waite, Stephen Prata, Bryan Costales,
Harry Henderson
This second edition has been completely updated to cover the latest version of
Microsoft QuickC, including information on the new in-line macro assembler. The
Waite Group provides a comprehensive survey of the C language and details on the
many unique capabilities of QuickC. They have packed the book with advice, tips,
and sco~es of specially constructed listings. Also included are special notes for pro
grammers with experience in another language such as BASIC or Pascal.

650 pages, 7% x 9%, softcover, $22.95 ISBN 1-55615-258-2

MICROSOFT® QUICKC® PROGRAMMER'S TOOLBOX
An Essential Library of More Than 250 Programs, Functions, and Utilities
for Supercharging QuickC Programs
John Clark Craig
This will be a valuable resource for both novice and seasoned Microsoft QuickC pro
grammers. The more than 250 programs and functions reinforce effective modular
programming techniques while solving common and unusual programming prob
lems. Each program and function takes maximum advantage of QuickC's capabilities
and can be used with any version of the software. Programs address mouse support,
editing and formatting routines, QuickC'sgraphics functions, menu customization,
random and complex numbers, and more.

500 pages, 7% x 9%, softcover, $22.95 ISBN 1-55615-207-8

THE MICROSOFT® QUICKBASIC PROGRAMMER'S TOOLBOX
John Clark Craig
This essential library of subprograms, functions, and utilities-developed to super
charge your QuickBASIC programs-addresses common and unusual programming
tasks: ANSLSYS screen control _ mouse support _ pop-up windows _ graphics _
string manipulations _ bit manipulation. editing routines _ game programming _
interlanguage calling _ and more. Each program takes maximum advantage of
QuickBASIC's capabilities. You're guaranteed to turn to this superb collection again
and again.

512 pages, 'Ph x 9%, softcover, $22.95 ISBN 1-55615-127-6

MICROSOFT® QUICKBASIC~ 3rd edt
Douglas Hergert
"No matter what your level of programming experience, you'll find this book
irreplaceable when you start to program in QuickBASIC." Online Today

If you're an intermediate-level BASIC, Pascal, or C programmer ready to make the
transition to a professional programming environment, MICROSOFT QUICKBASIC
is an excellent introduction to structured programming and a superb guide to writing
long, useful programs. Included are six full-length programs that highlight data types
and data structures, decision and looping structures, sequential data files, the power
ful graphics commands, and event trapping. Hergert has updated the book to address
the new QuickBASIC user-interface enhancements of version 4.5.

400 pages, 7% x 9Y4, softcover, $21.95 ISBN 1-55615-236-1

Unbeatable Programmer's References
PROGRAMMER'S GUIDE TO PC & PS/2® VIDEO SYSTEMS
Richard Wilton
No matter what your hardware configuration, here is all the information you need
to create fast, profe~sional, even stunning video graphics on IBM PCs, compatibles,
and PS/2s. No other book offers such detailed, specialized programming data,
techniques, and advice to help you tackle the exacting challenges of programming
directly to the video hardware. And no other book offers the scores of invaluable
source code examples included here. Whatever graphic output you want-text,
circles, region fill, bit blocks, animation-you'll achieve it more cleanly, quickly,
and effectively with Wilton's book.

544 pages, 7% x 9Y4, softcover, $24.95

THE 80386 BOOK
Ross P. Nelson

ISBN 1-55615-103-9

A clear, comprehensive, and authoritative introduction for every serious programmer.
Included are scores of superb assembly-language examples along with a detailed
analysis of the 80386 chip. Topics include the CPU, the memory architecture, the in
struction sets of the 80386 microprocessor and the 80387 math coprocessor, the pro
tection scheme, the implementation of a virtual memory system through paging, and
compatibility with earlier Intel microprocessors. Of special note is the comprehen
sive, clearly organized instruction set reference - guaranteed to be a valuable
resource.

464 pages, 7% x 9Y4, softcover, $24.95 ISBN 1-55615-138-1

THE PROGRAMMER'S PC SOURCEBOOK
ThomHogan
At last! A reference to save you the time required to find key pieces of technical
data. Here is important factual information - previously published in scores of other
sources - organized into one convenient reference. Focusing on IBM PCs and com
patibles, PS/2s, and MS-DOS, the hundreds of charts and tables cover
- numeric conversions and character sets _ DOS commands and utilities _
DOS function calls and support tables _ DOS BIOS calls and support tables _ other
interrupts, mouse, and EMS support _ Microsoft Windows _ keyboards, video
adapters, and peripherals _ chips, jumpers, switches, and registers _ hardware de
scriptions _ and more.

560 pages, 8Y2 x 11, softcover, $24.95 ISBN 1-55615-118-7

THE NEW PETER NORTON PROGRAMMER'S GUIDE
TO THE IBM® PC & PS/2®
Peter Norton and Richard Wilton
A must-have classic on mastering the inner workings of IBM micros - now com
pletely updated to include the PS/2 line. Sharpen your programming skills and learn
to create simple, clean, portable programs with this successful combination of astute
programming advice, proven techniques, and solid technical data. Covers 8088,
80286 and 80386 microprocessors; ROM BIOS basics and ROM BIOS services;
video, disk, and keyboard basics; DOS basics, interrupts, and functions (through ver
sion 4); and interrupts, device drivers, and video programming. Accept no substi
tutes; this is the book to have.

528 pages, 7% x 9Y4, softcover, $22.95 ISBN 1-55615-131-4

The Microsoft® Press CD-ROM Library

THE MICROSOFT® CD·ROM YEARBOOK 1989-1990
Microsoft Press
Foreword by Bill Gates
A dynamic, fact-filled portrait and analysis of the wide-ranging, fast-paced CD-ROM
industry. Indispensable for anyone involved in the industry as well as an information
packed compendium for those curious about CD-ROM. Readers can use the book as a
valuable sourcebook of facts, statistics, and forecasts or dip into it for fascinating ar
ticles, reviews, and analyses of the industry. Articles include:

_ an absorbing history - in text and pictures - of the CD-ROM industry
_ reviews of products - hardware and software - considered outstanding or

standard-setting
_ profiles of the leading companies and people in the industry
_ an overview of the process of developing a CD-ROM product
_ a review of the legal issues of protection, rights and permissions, contracts, and

royalties
_ the strategies and pitfalls involved in getting a CD-ROM product to market

The breadth of accurate, up-to-date information in THE MICROSOFT
CD-ROM YEARBOOK is impressive, including:

• comprehensive reference listings of the people, equipment, available titles,
sources, and resources in the CD-ROM industry

• a glossary of industry terms
• a calendar of industry events and conferences
• specialized bibliographies

This is the reference for fact and opinion on the CD-ROM industry.

960 pages, 8Y2 x 11, softcover, $79.95 ISBN 1-55615-179-9

CD·ROM 2: OPTICAL PUBLISHING
Edited by Suzanne Ropiequet with John Einberger and Bill Zoellick
"Recommended reading for any information professional. " Online Today

A comprehensive overview of the entire optical publishing process. Topics include
evaluating and defining storage and retrieval methods; collecting, preparing, and in
dexing data; updating strategies; data protection and copyrighting; and more. Plus
information on the High Sierra Logical Format. In addition, the editors trace the
development of two CD-ROM projects from initial concept to final pro-duct. For
publishers, technical managers, and entrepreneurs.

368 pages, 7% x 9Y4, softcover, $22.95 ISBN 1-55615-000-8

INTERACTIVE MULTIMEDIA
Foreword by John Sculley
Edited by Sueann Ambron and Kristina Hooper
Apple Computer brought together leading researchers and developers to produce this
informative collection of 21 articles. The result is a sourcebook of ideas and inspira
tion for software and hardware developers, educators, publishers, and information
providers. The contributors, including Doug Englebart, Sam Gibbon, and Peter Cook,
represent the industries - computers, television, and publishing - whose products
will provide the content and media for education in the future. Filled with examples
and pilot projects that define the new meaning of multimedia. Published with Apple
Computer, Inc.

350 pages, 7% x 9Y4, softcover, $24.95 ISBN 1-55615-124-1

Microsoft Press books are available wherever books -and software are sold.
Or you can place a credit card order by calling 1-800-888-3303.

U.S.A.
u.K.
Austral.

Pf9grammers
Reference

M I C R 0 S 0 F T 8

Including Presentation Manager

The MICROSOFT OS/2 PROGRAMMER'S REFERENCE LIBRARY is a low-cost
way to explore Presentation Manager's Application Programming Interface (API) and
start creating intuitive, easy-to-use software applications for its graphical environ
ment. The library of four volumes-companions to the affordably priced Microsoft
OS/2 Presentation Manager Softset development tools-is packed with detailed infor
mation on every MS<I> OS/2 system function, related data types, macros, structures,
messages, and file formats.

Each volume in the series is written by a team of OS/2 specialists-many in
volved in the development and ongoing enhancement of OS/2 at Microsoft. The
MICROSOFT OS/2 PROGRAMMER'S REFERENCE LIBRARY is the cornerstone
of every OS/2 developer's programming library.

Volume 1
Volume 1 details the conceptual framework of the MS OS/2 Application Programming
Interface (API). Included are thorough descriptions of MS OS/2 programming models,
overviews of basic programming considerations, and explanations of the interaction
between the API and the rest of the MS OS/2 system. Sections include Introducing MS
OS/2; Window Manager; Graphics Programming Interface; and System Services.

Volume 2
Volume 2 is a comprehensive, alphabetic listjng of MS OS/2 Presentation Manager
version 1.1 functions and of the structures used with these functions. Each function
entry includes information on syntax; descriptions of the function's actions and pur
pose; parameters and field definitions; return values, error values, and restrictions;
source-code examples; and programming notes. A separate chapter discusses file for
mats. Appendixes cover error values and device capabilities.

Volume 3
Similar in format to Volume 2, Volume 3 is a comprehensive, alphabdic listing of MS
OS/2 version 1.1 base functions, including their structures and file formats. Appen
dixes cover error values and ANSI escape sequences.

Volume 4
Volume 4 contains information on the new API elements in MS OS/2 version l.2, as
well as updated infC?rmation on version 1.1 functions,
structures, and Illessages.

$19.95
£18.95
$29.95

ISBN 1-55615-259-0

(recommended) I
9 781556 152597

