MICROSOTVFT

OS/2

Programmers Reference

Microsoft

Microsoft
Operating System/2

Programmer$ Reference

Version 1.2

~ Written, edited, and produéed
by Microsoft Corporation

Distributed by Microsoft Press

‘Microsoft

OS2

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases -
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
‘purchaser’s personal use, without the written permission of Microsoft Corporation.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging-in-Publication Data
(Revised for vol. 4)
Microsoft OS/2 programmer’s reference.
(Microsoft OS/2 programmer’s reference library)
Vol. 4 has title: Microsoft Operating System/2
programmer’s reference.
Includes indexes.
Contents: v. 1 — - -v. 4. Version 1.1/
written, edited, and produced by Microsoft Corporation.
1. OS/2 (Computer operating system). I. Microsoft
Press. II. Microsoft III. Title: Microsoft
Operating System/2 programmer’s reference.
QA76.76.063M5 1989 005.4' 469 89-2817
ISBN 1-55615-220-5 (v. 1)

Printed and bound in the United States of America.
123456789 FGFG 321009

Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada

by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand
British Cataloging in Publication Data available

Patent #4,825,358
Patent #4,779,187

Microsoft®, MS-DOS®, and MS® are registered trademarks of Microsoft Corporation.
IBM®, PC/AT®, and PS/2® are registered trademarks of International Business
Machines Corporation. Lotus® and 1-2-3® are registered trademarks of Lotus Devel-
opment Corporation. PostScript® is a registered trademark of Adobe Systems, Inc.

iii
R e e R e A o e R S B S B i e e R e s SR R e R

Contents

Chapter 1 Introduction

1.1 OVeIVIEW ceiniiiiiiaiiiiiiiii ittt ceea e e e eenese s e 3
1.2 How to Use This Manual.......ccccevuiieiirriiiieienienininenreneenen 4
1.3 Naming Conventions.......ceeeiuuiierncienieriniiiniiirinniinieeeneen 8
1.4 Notational Conventionsc..eeueeeuerreieerenrenneruerenerenseenseeneens 11
Chapter 2 Overviews
2.1 Introduction....c.ccceviiuireiiriiiiiiie e et e e 17
2.2 Installable File Systemsccciiiiuiirieniiiiinnniiiiiieciiuiinienonn 17
2.3 Extended AttriDULES...ccieueieireriueeiuerniereerenieneeneneeecencancnnes 23
2.4 Profile Manager........cceeeeviiemmniiiiriiineeinernieernneeetana e eenas 28
2.5 Help Managerccovviveieeiiaiiiniinirinecninisicesasetesensanssnasnnns 32
2.6 Combination-Box Controls...cc.cceeeerieuieiuiierenreniencinerncencennnes 40
2.7 Multiple-Line Entry Fieldscoooeeiiiiiiiniiiiiiiinn 43
Chapter 3 Functions and Messages Directory
3.1 IntroduCtiON....cceccieieiiiienieireienienreneesesssaosseneeareeeasascnseannnes 53
3.2 DIFECHOIY.euieniiuiiiniiiiiiiieiierinttesristsnisancaessesasssssesennenannans 55
3.3 Functions and MeSSagescveueerurereerssiessnrsnernenaseaseesncsnnes 56
Chapter 4 Types, Macros, Structures
4.1 Introduction......ccceeerneeenernenernernennnnn PN 361
4.2 T YPeS ittt ittt ie e st eras s sttt s s saasansanans 362
4.3 MACIOS . turiuiiureuerenitiiinrnnerernneeearansrnestestancncansenssnssnnsnnnnnees 362
4.4 SUIUCHUIES..ciuuiueenrenrrerenaraerenrenernnaenecransosrasseasasssernarnsannees 362

v
e s R e S N ey R G B e S N R R R S R TR R it

Figures

Figure 1.1 Sample Reference Page ...oeuvevienieniiniincnniiniiiinnnnn.e. 4

B e B e B i e R R e e S B B S R B GaiRSH RIS R

Introduction

1.1 OVEIVIEW triniininiiiininiieiiiecseserseessseseencesensassnsensnsensens 3
1.2 How to Use This Manual.....cccceeeiireiuineiineereiriereenneennens 4
1.2.1 C FOIMAL tivvttiiiirieiinreeisneerensecssasesessssecssnsscenens 5

1.22 MS OS/2Include Files ceveuureeeriennneeeeneneesesieeennns 5

1.2.3 MS 0OS/2 Calling Conventionscceeueururecnseasnes 6

1.2.4 Bit Masks in Function Parameters.......... feeeenestecnene 7

1.2.5 SlIUCHUIES eueerreeineineerenerenetserranesenerenscaansensennnns 8

1.3 Naming Conventions.......ceeveereeneereraeeesrenrnreeearasesnenns 8
1.3.1 Parameter and Field Namesveveereverneencenseessnsenns 8
1.3.1.1 PrefiXeS..vueeeeereeeeeseenrnseeranrosesssencneennes 9

1.3.1.2 Base TYPES.uceeiiieinenineninseennrarnsnsnenannnnns 9

1.3.2 Constant NamMES v.veeveiieeerreeeeeeneseerecessasassessesenses 11

1.4 Notational ConventionS...cveeveevrrirereeretereereeeenseneenneens 11

: 3
R R R S S A S R R B R e B R S R R R R R e S R RN SR R

1.1 Overview

This manual describes the system functions of Microsoft® Operating System/2
(MS® 08S/2) that are new or modified for version 1.2. These functions let MS
0OS/2 programs use the operating system to carry out tasks such as reading and
writing extended attributes for disk files, creating and using multiple-line entry
fields, creating and accessing disk files through installable file systems, and
displaying help text in a Presentation Manager application.

MS OS/2 system functions are designed to be used in C, Pascal, and other high-
level-language programs, as well as in assembly-language programs. MS OS/2
programs request operating-system services by calling system functions.

This chapter, “Introduction,” shows how to use this manual, provides a brief
description of MS OS/2 calling conventions, illustrates function calls in various
languages, and outlines MS OS/2 naming conventions.

Chapter 2, “Overviews,” describes the new features and system functions for MS
0S/2, version 1.2. This chapter explains the purpose of the functions and gives
the operating-system concepts behind them. It also shows how the MS OS/2 sys-
tem functions work together to carry out specific tasks.

Chapter 3, “Functions and Messages Directory,” lists the MS OS/2, version 1.2,
system functions and messages. Three categories of functions and messages are
included: those that are new for MS OS/2, version 1.2; those that are updated,
or changed, from MS OS/2, version 1.1; and those that contain corrections for
errors that appeared in the Microsoft Operating System/2 Programmer’s Refer-
ence, Volume 2 and Volume 3. The category of each item is clearly marked.

This chapter defines the purpose of each function and each message, gives its
syntax, describes any parameters, and gives possible return values. Many of the
descriptions also show program examples that illustrate how the function or mes-
sage is used to carry out simple tasks.

Chapter 4, “Types, Macros, Structures,” lists and describes the new and updated
data types and structures used by MS OS/2, version 1.2, system functions.

This manual is intended to describe the MS OS/2 system functions, messages,
types, and structures that are new or that have been modified for MS OS/2, ver-
sion 1.2. It does not explain how to use these functions to carry out specific
tasks. For more information on this topic, see the Microsoft Operating System/2
Programmer’s Reference, Volume 1.

Also, this manual does not fully describe all MS OS/2 base system and Presenta-
tion Manager functions. MS OS/2 base system functions enable programs to use
the operating system to carry out such tasks as reading from and writing to disk
files; allocating memory; starting other programs; and using the keyboard,
mouse, and video screen. Presentation Manager functions let programs use the
multitasking, window-management, and graphics features of MS OS/2. For more
information on MS OS/2 Presentation Manager functions, see the Microsoft
Operating System/2 Programiner’s Reference, Volume 2. For more information on
MS OS/2 base system functions, see the Microsoft Operating System/2
Programmer’s Reference, Volume 3.

4 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
S T T B B R e R s D R S N B R R R SR R SRR ety

In addition, this manual references but does not discuss QuickHelp, the displa
program for Microsoft documentation databases. For more information on
QuickHelp, see Microsoft Operating System/2 Getting Started, available with the
Microsoft OS/2 Presentation Manager Toolkit.

1.2 How to Use This Manual

This manual provides detailed information about each MS OS/2, version 1.2,
system function, message, and structure. Each item has the format shown in

Figure 1.1:

Figure 1.1
Sample Reference Page

© B DosFreeSeg

Change

O Parameters
© Return Value

O Comments

@ Restrictions

@ Example

© See Also

@ Changes

) E USHORT DosFreeSeg(se/)
SEL sel; /« segment selector o/

The DosFreeSeg function frees the specified memory segment. This function
accepts selectors for memory shared 0 huge-
memory segments, aliased code segments, and resource segments allocated by
DosGetResource. DosFreeSeg frees a shared-memory segment after the segment
is freed by the last process accessing it. DosFreeSeg frees the code-segment
selector for aliased code segments, but the corresponding data-segment selector
remains valid until it is freed.

The DosFreeSeg function is a family API function.

sel Specifies the segment to free.
The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_ACCESS_DENIED
DosFreeSeg can be issued from ring 2, but the segment to free must be a ring-3
segment.

DosFreeSeg should not be used to free resource segments allocated by the
DosGetResource2 function. To free those segments, use the DosFreeResource
function.

In real mode, the following restriction applies to the DosFreeSeg function:

B A code-segment selector (created by using the DosCreateCSAlias func-
tion) and the corresponding data-segment selector are the same. Freeing
one frees both.

This example allocates three segments of memory, then calls the DosFreeSeg
function to free the memory:

SEL sel;
DosAllocHuge(3, 200, ésel, S, SEC_NONSHARED):
DosEreeSeg(sel) ;

DosAllocHuge, DosAllocSeg, DosAllocShrSeg, DosCreateCSAlias,
DosFreeResource, DosGetResource, DosGetResource2

DosFreeSeg should not be used to free segments allocated by the
DosGetResource2 function.

Chapter 1: Introduction 5

B T B B B e T B R e e TR N T S A

0o NO O

©

These are the elements shown in Figure 1.1:

The name of the item and its MS OS/2, version 1.2, status (new, change, or
correction). The name of the function, message, or structure appears on the left.
Its MS OS/2, version 1.2, status is given on the right.

The function, message, or structure syntax. The syntax specifies the number of
parameters or fields and gives the type of each. It also gives the order (from left
to right) that parameters must be pushed on the stack. Comments to the right
briefly describe the purpose of the parameter.

A description of the function, message, or structure, including its purpose and
details of operation.

A full description of each parameter or ﬁeld, including permitted values and
related structures.

A description of the return value, including possible error values.
General comments about how the function, message, or structure can be used.
Restrictions that affect how the function operates in real mode.

An example showing how the function or message can be used to accomplish a
simple task.

A list of related functions and messages.
A summary of the item’s changes or corrections for MS OS/2, version 1.2.

1.2.1 C Format

In this manual, the syntax for MS OS/2 functions is given in C-language format.
In your C-language sources, the function name must be spelled exactly as given
in the syntax, and the parameters must be used in the order given in the syntax.
This syntax also applies to Pascal program sources.

The following example shows how to call the DosBeep function in a C-language
program:

/* Play a note for 1 second. */

DosBeep (660, /* 660 cycles-per-second */
1000) ; /* play for 1000 milliseconds */

1.2.2 MS 0S/2 Include Files

This manual uses many types, structures, and constants that are not part of stan-
dard C language. These items, designed for MS OS/2, are defined in the MS
OS/2 C-language include files provided with the Microsoft OS/2 Presentation
Manager Softset and the Microsoft OS/2 Presentation Manager Toolkit.

6 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
A e) B e e R S e e e S e T R R I R ey

In C-language programs, the #include directive specifying 0s2.k, the MS OS/2
C-language include file, can be placed at the beginning of the source file to
include the definitions for the special types, structures, and constants. Although
there are many MS OS/2 include files, the 0s2.k file contains the additional
#include directives needed to process the basic MS OS/2 definitions.

To speed up processing of the MS OS/2 C-language include files, many
definitions are processed only if the C-language program explicitly defines a
corresponding include constant. An include constant is simply a constant name,
with the prefix INCL_, that controls a portion of the include files. If a constant
is defined using the #define directive, the corresponding MS OS/2 definitions
are processed. For a list of the include constants and a description of the MS
0S/2 system functions they enable, see the Microsoft Operating System/2
Programmer’s Reference, Volume 1.

1.2.3 MS 0S/2 Calling Conventions

You must know MS OS/2 calling conventions to use MS OS/2 functions in other
high-level languages or in assembly language. MS OS/2 functions use the Pascal
(sometimes called the PLM) calling convention for passing parameters, and they.
apply some additional rules to support dynamic-link libraries. The following rules
apply:

M You must push the parameters on the stack. In this manual, each func-
tion description lists the parameters in the order they must be pushed.
The left parameter must be pushed first, the right parameter last. If a
parameter specifies an address, the address must be a far address; that
is, it must have the form selector:offset. The selector must be pushed
first, then the offset.

B The function automatically removes the parameters from the stack as it
returns. This means the function must have a fixed number of parame-
ters.

¥ You must use an intersegment call instruction to call the function. This
is required for all dynamic-link-library functions.

B The function returns a value, possibly an error value, in either the ax
register or the dx:ax register pair. Only the di and si register values are
guaranteed to be preserved by the function. MS OS/2 system functions
may preserve other registers as well, but they do not preserve the flags
register. The contents of the flags register are undefined; specifically, the
direction flag in the register may be changed. However, if the direction
flag was zero before the function was called, it will be zero after the
function returns.

Chapter 1: Introduction 7
R e L e R S R R B s s s i R e

The following example shows how MS OS/2 calling conventions apply to the
DosOpen function in an assembly-language program:

EXTRN DOSOPEN:FAR

name db "abe", O

hFile dw o]

usAction dw (o}

push ds ; filename to open

push offset name

push ds ; address of file handle

push offset hFile

push ds ; address to store action taken
push offset usAction

push o] ; size of new file OlOOH

push 100

push [¢] ; file's attribute

push OO10H ; create file if it does not exist
push 0041H ; open file for writing, share with all
push (o] ; reserved

push (o]

call DOSOPEN

The following example shows how to call the same DosOpen function in a C-
language program. In C, the DosOpen function name, parameter types, and con-
stant names are defined in 0s2.h, the MS OS/2 C-language include file.

include <o0s2.h>

HFILE hfile;
USHORT usAction;

DosOpen ("abc", /* filename to open */
&hfile, /* address of file handle ¥4
&usAction, /* address to store action taken */
100L, /* size of new file *
FILE_NORMAL, /* file's attribute */
FILE_CREATE, /* create file if it does not exist */
OPEN_SHARE_DENYNONE | /* share with all *
OPEN_ACCESS_WRITEONLY, /* open for writing */
oL); /* reserved */

1.2.4 Bit Masks in Function Parameters

Many MS OS/2 system functions accept or return bit masks as part of their
operation. A bit mask is a collection of two or more bit fields within a single *
byte, or a short or long value. Bit masks provide a way to pack many Boolean
flags (flags whose values represent on/off or true/false values) into a single
parameter or structure field. In assembly-language programming, it is easy to
individually set, clear, or test the bits in a bit mask by using instructions that
modify or examine bits within a byte or a word. In C-language programming,
however, the programmer does not have direct access to these instructions, so
the bitwise AND and OR operators typically are used to examine and modify the
bit masks.

Because this manual presents the syntax of MS OS/2 system functions in C-
language syntax, it also defines bit masks in a way that is easiest to work with
using the C language: as a set of constant values. When a function parameter is a
bit mask, this manual provides a list of constants (named or numeric) that
represent the correct values used to set, clear, or examine each field in the bit

8 Microsoft Operating System/2 Programmer’'s Reference, Vol. 4
R TR R S R SR Lﬁaﬁmm'amm"ﬁ*@f&"ﬁ%@&mxmﬁwﬁmw@xmm%mwm"w

mask. For example, the fbType field of the VIOMODEINFO structure in the
VioSetMode function specifies three values: VGMT_DISABLEBURST,
VGMT_GRAPHICS, and VGMT_OTHER. These represent the “set” values of
the first three fields in the bit mask. Typically, the description associated with
the value explains the result of the function if the given value is used (that is,
when the corresponding bit is set). Generally, the opposite result is assumed
when the value is not used. For example, using VGMT_GRAPHICS in the
fbType field enables graphics mode; not using it disables graphics mode.

1,-2-5 Structures

Many MS OS/2 system functions use structures as input and output parameters.
This manual defines all structures and their fields using C-language syntax. In
most cases, the structure definition presented is copied directly from the C-
language include files provided with the Microsoft C Optimizing Compiler. Occa-
sionally, an MS OS/2 function may have a structure that has no corresponding
include-file definition. In such cases, this manual gives an incomplete form of the
C-language structure definition to indicate that the structure is not already
defined in an include file.

1.3 Naming Conventions

In this manual, all parameter, variable, structure, field, and constant names con-
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func-
tion parameters and structure fields. These conventions are also used in most
MS OS/2 sample program sources to make the sources more readable and infor-
mative.

1.3.1 Parameter and Field Names

With MS OS/2 naming conventions, all parameter and field names consist of up
. to three elements: a prefix, a base type, and a qualifier. A name always consists

of at least a base type or a qualifier. In most cases, the name also includes a
prefix.

The base type, always written in lowercase letters, identifies the data type of the
item. The prefix, also written in lowercase letters, specifies additional informa-
tion about the item, such as whether it is a pomter, an array, or a count of
bytes. The qualifier, a short word or phrase written with the first letter of each
word uppercase, specifies the purpose of the item.

There are several standard prefixes and base types. These are used for the data
types most frequently used with MS OS/2.

Chapter 1: Introduction 9
i

B e O e B R e R i P e R R B P B S BB

1.3.1.1 Prefixes

The following standard prefixes are used in MS OS/2 naming conventions:

Prefix

Description

p

np

1.3.1.2 Base Types

Pointer. This prefix identifies a far, or 32-bit,
pointer to a given item. For example, pch is a far
pointer to a character.

Near pointer. This prefix identifies a near, or 16-bit,
pointer to a given item. For example, npch is a near
pointer to a character.

Array. This prefix identifies an array of two or more
items of a given type. For example, ach is an array
of characters.

Index. This prefix identifies an index into an array.
For example, ich is an index to one character in an
array of characters.

Count. This prefix identifies a count of items. It is
usually combined with the base type of the items
being counted instead of the base type of the actual
parameter. For example, cch is a count of charac-
ters even though it may be declared with the type
USHORT.

Handle. This prefix is used for values that uniquely
identify an object but that cannot be used to access
the object directly. For example, hfile is a file han-
dle.

Offset. This prefix is used for values that represent
offsets from the beginning of a buffer or a structure.
For example, off is the offset from the beginning of .
the given segment to the specified byte.

Identifier. This prefix is used for values that identify
an object. For example, idSession is a session
identifier.

The following standard base types are used in MS OS/2 naming conventions:

Base type

Type/Description

f

ch

BOOL. A 16-bit flag or Boolean value. The qualifier
should describe the condition associated with the
flag when it is TRUE. For example, fSuccess is
TRUE if successful, FALSE if not; fError is TRUE
if an error occurs and FALSE if no error occurs.
For objects of type BOOL, a zero value implies
FALSE, a nonzero value implies TRUE.

CHAR. An 8-bit signed value.

10 Microsoft Operating System/2 Programmer’s Reference, Vol. 4

R e S e R R S S e e R I T B S s e B R R RS et
Base type Type/Description
s SHORT. A 16-bit signed value.
1 LONG. A 32-bit signed value.
uch UCHAR. An 8-bit unsigned value.
us USHORT. A 16-bit unsigned value.
ul ULONG. A 32-bit unsigned value.
b BYTE. An 8-bit unsigned value. Same as uch.
§z CHAR[]. An array of characters, terminated with a
null character (the last byte is set to zero).
fb UCHAR. An array of flags in a byte. This base type

is used when more than one flag is packed in an
8-bit value. Values for such an array are typically
created by using the logical OR operator to com-
bine two or more values.

fs USHORT. An array of flags in a short (16-bit
unsigned value). This base type is used when more
than one flag is packed in a 16-bit value. Values for
such an array are typically created by using the logi-
cal OR operator to combine two or more values.

fl ULONG. An array of flags in a long (32-bit unsigned
value). This base type is used when more than one
flag is packed in a 32-bit value. Values for such an
array are typically created by using the logical OR
operator to combine two or more values.

sel SEL. A 16-bit value used to hold a segment selec-
tor.

The base type for a structure is usually derived from the structure name. An MS
OS/2 structure name, always written in uppercase letters, is a word or phrase
that describes the size, purpose, and/or intended content associated with the
type. The base type is typically an abbreviation of the structure name. The fol-
lowing are the base types for the structures described in this manual:

avldt fsinf matlf ptrdd
cbnd fsqbf mlectl sbcd
dena fsts2 mlefrd stsdata
eaop fuc mlemrg swblk
efd fur mleovr ti

fat gea mlesrch viocreg
fea geal nmpsmst viofcsz
feal hci param vioin
findbuf2 hinit pres viomi
flc ht prfpro viosett
fir kbci progde viosz
fm kbhw progt viouline
frwe ldtaddr progti wprm

fsc lis ptrebf

Chapter 1: Introduction 1

e R S B S R B e T R R e R S s SR S 2 IS

1.3.2 Constant Names

A constant name is a descriptive name for a numeric value used with an MS
OS/2 function. All constant names are written in uppercase letters and have a
prefix derived from the name of the function, object, or idea associated with the
constant. The prefix is followed by an underscore (_) and the rest of the con-
stant name, which indicates the meaning of the constant and may specify a
value, action, color, or condition. A few common constants do not have
prefixes—for example, NULL is used for null pointers of all types, and TRUE
and FALSE are used with the BOOL data type.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Convention

Meaning

bold

italics

monospace

Bold type is used for keywords—for example, the
names of functions, data types, and structures.
These names are spelled exactly as they should
appear in source programs.

Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

Monospace type is used for example program-
code fragments.

it R A R e e BT

e B G B S S RIS S SR

Overviews

Chapter

2

AR EC R S Y

2.1 Introduction......cccevevinieniniiiiniiniiniiiii 17
2.2 Installable File Systemsccceeemieiniiiiiiiiieieniiinnennne. 17
2.2.1 About Installable File Systems......cccoevevieiiienennnnn.. 17
2.2.1.1 File-System Functions......ccccvueeene.s reraraae 18

2.2.1.2 File-System Volumecccevevieireinnnernecnenns 18

2.2.1.3 Local and Remote File Systems.................. 19

2.2.1.4 Pscudo-Character Devicecvevvevvnrneanennnns 19

2.2.1.5 Filename ConventionsS.......eeevereeeueeseneanans 20

2.2.1.6 Filenames in DOS-Compatibility Mode.......... 20

2.2.1.7 Filenames in User INputc.eevvevrrenernrnnens 20

2.2.1.8 Metacharacters in Filenamescccceeenen.. 21

2.2.1.9 File-System Errors.....ocoeeeieerieeennrnicninnnns 22

2.2.2 SUMMAIY..iteieitiiiiiaiietrtentreeteetsssessesnssasrenss 22

2.3 Extended Attributesccocevvuviuviniiiiinieiinineniinieninnen, 23
2.3.1 About Extended Attributes......ceeeeeerneeeenrarnenennnns 23

2.3.2 Using Extended Attributes.....ccviivienienerneneneneanns 23
2.3.2.1 Naming Conventionsceeveeeeeseeeecanseenans 24

2.3.2.2 Data-Type Conventionsceeeeveeaereeenancnns 24

2.3.3 Standard Extended Attributes.........ccceverneenenennnnn.. 25
2.3.3.1 B 4 3 25

2.3.3.2 KEYPHRASES....iitiiiiiiiiiiinieiincrcnnenenns 25

2.3.33 SUBJECT .ttiiiiiirrrieiiassseiesssesciocsssseess 25

2334 .COMMENTS ..coitiuiiiiiiininiinnenieneninnns 26

2.33.5 HISTORY...cooitiiiruiiininineninnenenrnnenannans 26

2.3.3.6 VERSION. ..iiiiiiiiiiiincreianeiriesessnseneeeans 26

2.3.3.7 1 (10) R 26

2.3.3.8 ASSOCTABLE ..ivvviiiiiiiiiciiiineierinnnnenns 26

2339 HPFSNAME......cooiiiiininiinininiinnennnnen, 27

2.3.3.10 Supporting Extended Attributes.................. 27

2.3.3.11 Multivalue Data-Type Fields...c.cvvevirenernnnns 27

)

Chapter

2

2.4

2.5

2.6

2.7

A s S R B B R S e R R S D R Ry

2.3.3.12 Multivalue, Multitype Attributescocvunenn 27
2.3.3.13 Multivalue, Single-Type Attributes............... 28
23304 ASN.d.iiiuiiiiiiiiiniiiiieniiinieenrieneannns 28
2.3.3.15 Include Extended-Attribute Type ...cvecevrnenn.. 28
2.3.4 SUMMAIY . eviiiieniererneaneenerreenasensessessansaasansenns 28
Profile Manager.....ccceeeveeeiininiiniiinriieeerierneernsnienenennnns 28
2.4.1 About Profile Managerccoveeenrunenreresaceisesenenens 28
2.4.2 Using Profile Manager........c.ccvevvurininriiiniiienienenen. 29
24.2.1 Creating or Opening an Initialization File 29
2.4.2.2 Reading and Writing Settings.....cceeeeeeneenenns 30
2.4.2.3 Identifying the Initialization Files 30
2.42.4 Creating Groups and Program Lists.............. 30
2.4.3 SUMMAIY..ceieeriiinereranrranrnrenseesresnrarensansnsneanens 31
Help Manager....ccoeiuveieiioiiiiiiiiiiiiicenieceeeieeneenns 32
2.5.1 About Help Manager .. 32
2.5.2 Using Help Manager in Applicationscccueuenen.. 33
2.5.2.1 Creating 2 Help Instance......cceeevrnerenneanenns 33
2.5.2.2 Creating a Help Table.....ccvuvenenereniennnnns 34
2.5.2.3 Creating a Help Library....c.cceceveinerenecnnnns. 35
2524 Usingthe FLKeY ..ovvioiierriierninnnneronneenenns 35
2.5.2.5 Using the Help MenU ..c.evvneninenrnienenennnen 36
2.52.6 Using Help BULtORS .vvvveeneeneneeeraerocneenenns 37
2.52.7 Destroying a Help Instancecceevvernenennns 38
2.5.2.8 Handling EITOTS .evevveennrinecneeneenecascancenes 38
2.5.3 Help Hooks and Help Manager.........cccveeuvenrnnnnnns 38
2.5:4 SUMIMAIY .. ieiurnenenniiinrrernearensraraecnsersesasensnnranns 39
2.5.4.1 Functions............ e ereeneienceenetertenteannens 39
2.5.4.2° Messages Sent by Help Managerccueuue.ns 39
2.5.4.3 Messages Sent to Help Manager........c......... 39
Combination-Box Controlsceccuviieiunennneeesianennnnnns 40
2.6.1 About Combo BOXES «.iuvviiiiiuinreiinenererneienenennns 40
2.6.2 Using Combo BOXES ievuveeiniiiiniiniiennriinnranenrnnennns 41
2.6.3 SUMMATIY...ceiitiieinirarenrentiastaerenessesasessersensanssnns 412
2.6.3.1 Combo-BoxX StyleS..c.eerivieieeerrrenrerenseannens 42
2.63.2 Messages Sent to a Combo BoX...eeevveenrnenens 42
2.6.3.3 Messages Sent by a Combo BoX.....c.eeuvenen.ns 42
Multiple-Line Entry Fieldscccoveveuiiiiiiiiiniiieciieninnennas 43
2.7.1 About Multiple-Line Entry Fieldscc.ceevuveennnnnn. 43

2711 Editing MLE TeXt vvvvvvireeeeeeeeeeeererenennnnnns 43

bl

e R T e S e R S e T DL BT R R Y

2.7.2
2.1.3

2.7.1.2 Formatting MLE TeXt...cceevviiniiernennennnnnans 44
2.7.1.3 Importing and Exporting MLE Text 45
2.7.1.4 Copying and Pasting MLE Textcccvueeennn. 46
2.7.1.5 Searching and Replacing MLE Text 46
2.7.1.6 . MLE Notification Codes......coeeureueaeraennnn.. 46
2707 MLE SUYIES ceuvveeerrerreeearerereeeenenreessnans 47
Using Multiple-Line Entry Fieldscococvuiiieinnnins 47
SUMMAIY . eututieerineerieeaeaeenenrarnrreereresenssesasnsons 48
2731 MLE SIYIES veuveeeeereereeeeerereseeseenreeeaennns 48
2.7.3.2 Messages Sent to an MLEcveveniniiainniniens 48

2.733 Messages Sent from an MLEccccvvenene. 50

Chapter 2: Overviews 17
B e B T e e B e e R S B S B B S P R S A NS RS

2.1 Introduction

This chapter describes the MS OS/2 system functions in individual-topic sec-
tions. Each section describes a portion of MS OS/2 that lets an application carry
out a specific task or set of related tasks. For example, the section about the
multiple-line entry ficld (MLE) defines basic MLE terms, describes the role of
multiple-line entry-field messages, and illustrates how to use those messages.

Each topic section in this chapter gives a general description and programming
samples. Each section discusses the purpose and operation of pertinent MS
0S/2 functions. The programming samples show how to use those MS OS/2
functions in applications to carry out useful tasks.

In many cases, it is assumed that you have basic knowledge of some other por-
tions of MS OS/2. Each section lists the prerequisites for understanding the con-
cepts and terms described in that section.

2.2 Installable File Systems

This section describes how MS OS/2 enables programs to use installable file sys-
tems. A file system is the combination of software and hardware that supports
storing information on a storage device. An installable file system is a file system
whose software can be installed when the operating system starts. MS OS/2 sup-
ports installable file systems and permits users to have multiple file systems
active at the same time.

This section also describes some of the MS OS/2 functions that let programs
create, read, and write data files in installable file systems. Because installable
file systems are not available with releases of MS OS/2 prior to version 1.2 or
with MS-DOSe®, versions 2.0 through 3.3, programs that use the family applica-
tion programming interface (family API) cannot use functions that are specific to
installable file systems.

2.2.1 About Installable File Systems

In MS OS/2, version 1.2, users install a file system by specifying the file-system
components in the config.sys file. The file-system software consists of device
drivers that access storage devices and dynamic-link libraries that control the
format of information on a device and manage the flow of data to and from the
device. The user must use the device command to specify the device driver and
the ifs command to specify the dynamic-link library. MS OS/2 loads the device
driver and dynamic-link library and initializes a specific device for use as a file
system.

MS 0S/2, version 1.2, has two file systems: the file allocation table (FAT) file
system and the high-performance file system (HPFS). These file systems define
how information is organized on the storage devices. Both file systems create
data files supported by one or more tables that specify the location and size of
the data files on the storage device.

The file allocation table (FAT) file system is the default file system for MS
0S/2; it does not need to be installed. The FAT file system, used in previous
releases of MS OS/2 and also in MS-DOS, controls storage of data files for
fixed and floppy disks. The FAT file system is hierarchical, allowing multiple
directories on the disk. Each directory can contain one or more files. The

18 Microsoft Operating Sysfem/2 Programmer’s Reference, Vol. 4
s B e T e e S o B e S S R B R B R e R SR T R

distinguishing feature of the FAT file system is its 8.3 filename convention.
Under this convention, the filename consists of a filename (up to eight charac-
ters), a separating period (.), and a filename extension (up to three characters).

The high-performance file system (HPFS) is an installable file system for MS
OS/2. It is an hierarchical file system and allows for multiple directories. HPFS
controls storage of data for fixed disks. Filenames under HPFS can be any prac-
tical length and can contain characters that are not valid for the FAT file sys-
tem, for example, spaces and underscores (__). In many cases, accessing files
under HPFS is faster than accessing similar files under the FAT file system.

A user can choose either or both file systems. Programs must be able to work
with any file system. Fortunately, MS OS/2 provides a common set of file-system
functions that are not dependent upon a particular file system; it also gives
guidelines for working with file systems, such as specific filename conventions.

2.2.1.1 File-System Functions

MS OS/2 provides a standard set of file-system functions. This means that pro-
grams can create, open, read, write, copy, and delete files and directories by
using the same functions regardless of which file system is used. When a pro-
gram calls a file-system function, MS OS/2 passes the request to the dynamic-
link library that supports the file system. Most file-system processing, such as
validating filenames, is carried out by the dynamic-link library. If an error
occurs, the file system returns the error to MS OS/2, which then passes it back
to the calling program.

Occasionally, a file system may extend the standard set of file-system functions
by providing file-system control functions. The control functions are specific to
the given file system. A program can call a control function by using the
DosFSCtl function, which directs MS OS/2 to pass the control-function informa-
tion to the dynamic-link library for the particular file system.

2.2.1.2 File-System Volume

MS OS/2 allows more than one file system on a single storage device. If the
device can have more than one logical partition (or volume), each partition can
be initialized as an MS OS/2 partition and given a valid MS OS/2 file system.
For each volume, MS OS/2 determines the type of file system the first time the
volume is accessed by a function or when the media in the drive changes. After
that, MS OS/2 manages all input and output to that volume by using the
corresponding dynamic-link library for the file system.

MS OS/2 uses the volume label and serial number to ensure that the media in
the drive does not change while there are outstanding requests for input and out-
put. Each volume has a volume label and a 32-bit volume serial number, stored
in a reserved location in logical sector zero at the time of formatting. If the
volume label and serial number do not match, MS OS/2 signals the critical-error
handler to prompt the user to insert the volume that has the specified serial
number and label. MS OS/2 maintains the connection between the media and
the volume label and serial number until all open files on the volume are closed
and all search references and cache-buffer references are removed. The system
redetermines the type of the file system and the volume label and serial number
for the volume only when the media changes.

Chapter 2: Overviews 19

e S e e R e e e S e B B B A B SN

2.2.1.3 Local and Remote File Systems

Installable file systems work with a variety of storage devices. A file system on a
local device such as a disk drive or virtual disk is called a local file system. A file
system on a remote device such as a disk drive on another computer is called a
remote file system. A program can establish a connection to a local or a remote
file system by using the DosFSAttach function.

For a local file system, MS OS/2 uses a block device driver to handle input and
output to the device. MS OS/2 automatically connects most (if not all) local file
systems when it starts. However, a program can connect and disconnect (some-
times called mount and dismount) additional file systems as needed.

For a remote file system, the corresponding device driver typically accesses a
communications or network device instead of a block device driver used to
access disk hardware. Typically, the actual storage device is located on another
computer, and the two computers communicate requests and data through a net-
work connection. A program can connect a remote file system to a drive letter
by using the DosFSAttach function. Once the connection is made, the program
can access directories and files on the remote device simply by using the
assigned drive letter, treating the remote device as if it were on the same com-
puter.

2.2.1.4 Pseudo-Character Device

A program can attach a device name to a file system and use the file system as a
pseudo-character device (also called a single-file device). Attaching a device
name to a file system lets a program open the device associated with the file sys-
tem as if it were a character device (for example, a serial port) and read

from and write to the device by using the DosRead and DosWrite functions.
Unlike with a character device, a program can use the DosChgFilePtr and
DosFileLocks functions for working with a pseudo-character device. An MS
0OS/2 pseudo-character device name is a null-terminated string in the format of
an MS OS/2 filename in a subdirectory called \dev.

A file system that can be attached to a pseudo-character device is typically asso-
ciated with a single disk file or with a special storage device such as a tape drive.
The file system establishes a connection with the device and transfers requests
and data between MS QS/2 and the device. The following example attaches the
device associated with the file system bcrvmpcl to the pseudo-character device
named \dev\host:

BYTE bData[]:
USHORT cbData;

DosFSAttach ("\dev\host", "bcrvmpcl", bData, cbData, 0):;

If the program successfully attaches the file system, the program can then open
the file \dev\host by using the DosOpen function, read host-created data by using
the DosRead function, and write data and commands to the host by using the
DosWrite function. This example assumes that the name bcrvmpcl corresponds
to an installable file system and that the file system can perform the necessary
host communication and translation. ,

20 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
R e e e N R R R e R I R e R

2.2.1.5 Filename Conventions

Filename conventions are the rules used to form names that uniquely identify
files in a given file system. Although each installable file system can have specific
rules about how individual components in a directory or filename are formed, all
file systems follow the same general conventions for combining components. For
example, the FAT file system requires that file and directory names have the 8.3
filename format, HPFS allows names to be any length, but both file systems use
the backslash (\) character to separate directory names and the filename when
forming a path.

When creating names for directories and files or when processing names sup-
plied by the user, programs should follow these general rules:

1 Process a path as a null-terminated string. A program can determine maximum
length for a path by using the DosQSysInfo function.

2 Use any character in the current code page for a name, but do not use a path
separator, a character in the range 0 through 31, or any character explicitly disal-
lowed by the file system. Although a name can contain characters above 127, a
program must be able to switch code pages if necessary to access the
corresponding file.

3 Compare names using a case-insensitive comparison. Names such as ABC, Abc,
and abc are considered to be the same name.

"4 Use the backslash (\) and/or the forward slash (/) to separate components in a
path. No other character is accepted as a path separator.

5 Use the dot (.) as a directory component in a path to represent the current
directory.

6 Use two dots (..) as a directory component in a path to represent the parent of
the current directory. '

7 Use a period (.) to separate components in a directory name or filename. Unless
explicitly defined by a file system, there are no restrictions on the number of
components in a name.

2.2.1.6 Filenames in DOS-Compatibility Mode

For compatibility with existing DOS 3.x programs, all file systems support the
FAT file system’s 8.3 filename format. This means that programs running in
DOS-compatibility mode can access files on non-FAT file systems if the
filenames have the 8.3 format. To guarantee this rule, MS OS/2 automatically
applies the 8.3 truncation rules to all filenames given in file-system requests from
DOS-compatibility mode.

2.2,1.7 Filenames in User Input

Users often supply filenames as part of a program’s command line or in response
to a prompt from the program. Traditionally, users have been able to supply
more than one filename on the command line or in a prompt by separating the
names with certain characters, such as a blank space. In some file systems,
however, traditional separators can be used as valid filename characters. This
means that some additional conventions are required to ensure that a program
processes all characters in a name.

Chapter 2: Overviews 21
B s A e e e B P e e e s T e S i

When a program processes arguments (including filenames) from its command
line, the program should treat the double quotation mark (") and the caret (") as
quotation characters. All characters between the starting and closing double
quotation marks should be processed as a single argument. The character
immediately following the caret should be processed as part of the current argu-
ment. In both cases, the quotation characters are discarded and not treated as
part of the final argument.

When a program processes two or more filenames from a dialog box or other
prompt, it expects the user to enter each filename on a new line. For example, a
Presentation Manager application should use a multiple-line entry field to prompt
for multiple filenames. This makes the use of quotation characters unnecessary.

When a program is started from File Manager, File Manager may construct a
command line for the program. If the command line includes filenames, File
Manager separates each argument with a space character and marks the end of
the argument list with two null characters. Programs that start other programs by
using the DosExecPgm function also can pass arguments using this convention
or by using quotation characters. In practice, most programs receive a command
line as a single, null-terminated string. Therefore, programs that use the Dos-
ExecPgm function should prepare command lines as a single string with any
filenames in the string enclosed in quotation marks.

2.2.1.8 Metacharacters in Filenames

To give the user a shortcut to entering long lists of names, programs that accept
more than one filename on their command line can allow metacharacters in
filenames. The metacharacters, the asterisk (*) and the question mark (?),
represent placeholders in a filename. Although a name that contains metacharac-
ters is not a complete filename, a program can use functions, such as DosFind-
First and DosEditName, to expand the name (replace the metacharacters) to
create one or more valid filenames.

A program can expand a name with metacharacters to a list of filenames by
using the DosFindFirst function. The asterisk (*) matches one or more charac-
ters, including blanks. The question mark (?) matches one character, unless that
character is a period (.). To match a period, the original name must contain a
period.

A program can create a new filename from an existing name by using the
DosEditName function. This function takes a template (a name with metacharac-
ters) and expands it, using characters from an existing name. An asterisk (*) in
the template directs the function to copy all characters in the existing name until
it locates a character that matches the character following the asterisk. A ques-
tion mark (?) directs the function to copy one character unless that character is
a period. The period (.) in the template directs the function look for and move
to the next period in the existing name, skipping any characters between the
current position and the period.

The metacharacters are illegal in all but the last component of a path.

22 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
B s R S R S e S e R RS R G e B s i

2.2.1.9 File-System Errors
Some MS O8S/2 file-system functions return the following errors:

Value Meaning

ERROR_WRITE_PROTECT The disk in the drive is write-
protected.

ERROR_BAD_UNIT There is a breakdown of internal

consistency in mapping between
the logical drive and the device
driver. Internal error.

ERROR_NOT_READY The device is not ready.

ERROR_BAD_COMMAND There is a breakdown of internal
consistency between the expected
capability of a device driver and
its true capability.

ERROR_CRC The device driver detected a
cyclic redundancy check (CRC)
mismatch.

ERROR_BAD_LENGTH There is a breakdown of internal

consistency between the expected
length of a request packet and the
true length. Internal error.

ERROR_SEEK The device driver detected an
error during a seek operation.
ERROR_NOT_DOS_DISK The disk is not recognized as

being manageable by MS OS/2.

ERROR_SECTOR_NOT_FOUND The device is unable to find the
specific sector.

ERROR_OUT_OF_PAPER The printer is out of paper.
ERROR_WRITE_FAULT Other write-specific error.
ERROR_READ_FAULT Other read-specific error.
ERROR_GEN_FAILURE Other error.

There are also errors defined by and specific to the specific device driver. These
are indicated by either OxFF or OxFE in the high byte of the error code.

2.2.2 Summary
The following MS OS/2 file-system functions work with installable file systems:
DosCopy ‘Copies a file or subdirectory\.
DosEditName Transforms a source string using an editing string.

DosI;ileIO Performs file I/O (locking, unlock, seek, read, and write opera-
tions).

Chapter 2: Overviews 23
R A 1 e A P e e e e R e M R R S R R R AR RS

DosFindFirst2 Finds the first file that matches a specified filename and attri-
butes.

DosFSAttach Attaches or dctaches a drive or pscudo-character device from a
remote file system.

DosFSCtl Calis file-system functions that are not part of the standard 1/0 func-
tions.

DosGetResource2 Retricves a resource for a module.

DosMkDir2 Creates a dircctory.

DosOpen2 Opens or creates a file with extended attributes.
DosQFSAttach Queries information about an attached file system.
DosSetPathInfo Sets information for a file or directory.

DosShutdown Shuts down the file system.

2.3 Extended Attributes

This section describes how to use extended attributes to store information about
your files and directories. Before rcading this section, you should be familiar
with the MS OS/2 file system.

2.3.1 About Extended Attributes

Extended attributes can be thought of as a list of facts attached to a file or direc-
tory. MS OS/2 stores extended attributes separate from the file or directory so
that the attributes do not affect the contents of the file or directory. An applica-
tion uses extended attributes to provide a description of the file or directory, but
does not place the description in the file or directory itself.

Each extended attribute has two parts: a name and a value. The name is a null-
terminated string; applications can choose any convenient name. The value is
corresponding data; it can be text, a bitmap, or any binary data. The application
that creates the extended attributes and the applications that read the extended
attributes must recognize the format and meaning of the data associated with a
given name.

2.3.2 Using Extended Attributes

Applications can examine, add, and replace extended attributes at any time. The
DosOpen2 function adds extended attributes to new or existing files; the Dos-
MkDir2 function adds extended attributes to new directories. Any application
can read the extended attributes by using the DosQFileInfo or DosQPathInfo
function. Applications can also search for files that have specific extended attri-
butes by using the DosFindFirst and DosFindNext functions.

A file can have any number of extended attributes. Each extended attribute can
be up to 64K long. For MS OS/2, version 1.2, the sum of all extended attributes
for a file must not exceced 64K.

24 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
B e B o e e e B B R PR B

2.3.2.1 Naming Conventions

Although an application can choose any name for the extended attributes it
creates, other applications cannot read the extended attributes unless they also
recognize the corresponding format. Because many applications use extended
attributes consisting of text, bitmaps, and other similar data, a set of names has
been adopted to help identify these formats when used in extended attributes.
An application need not be limited to this set of standard extended attributes,
but should use it as a way for many applications to access a common set of
information.

The names for all standard extended attributes use a dot (.) as a prefix. The
leading dot is considered reserved, so no application should define extended
attributes that start with a dot. Also, extended attributes that start with the char-
acters $, @, &, and + are reserved for system use. To ensure that its extended
attributes are unique, an application should use the vendor and application name
as a prefix for application-specific extended attributes. For example, Microsoft
Excel would use MS EXCEL.MYSTUFF, MS EXCEL.MORESTUFF, and so
forth.

2.3.2.2 Data-Type Conventions

Extended attributes can contain any typé of data. To identify the type of infor-
mation, the first word of extended-attribute data should specify one of the fol-
lowing data types:

Value Meaning

EAT_BINARY Binary data; the first word specifies length.

EAT_ASCII ASCII text; the first word specifies length.

EAT_BITMAP Bitmap data; the first word specifies length.

EAT_METAFILE Metafile data; the first word specifies length.

EAT_ICON Icon data; the first word specifies length.

EAT_EA ASCII name of associated data; the first
word specifies length.

EAT_MVMT Two or more consecutive extended-attribute
values; each value has a explicitly specified
type.

EAT_MVST Two or more consecutive extended-attribute
values; all values have the same type.

EAT_ASN1 . ASN.1 field data.

In all cases, the length specifies the number of bytes of data. Other values for
data types, in the range 0x0000 through 0x7FFF, can be used for user-defined
extended attributes. User-defined data should also specify the length.

For example, here is how to represent the string “Hello”:
EAT_ASCII 0005 Hello

Chapter 2: Overviews 25
B B e s A S S R S R e R S T R e B R S R i R i

2.3.3 Standard Extended Attributes

The standard extended attributes are listed in the following sections. The field
format follows the data-type conventions given previously. A field can be a
multivalue or single-value field.

23.3.1 .TYPE

The .TYPE extended attribute indicates the type of file. It is similar to the ear-
lier use of filename extensions. The following file types are predefined:

Plain Text

0S/2 Command File
DOS Command File
Executable

Metafile

Bitmap

Icon

Binary Data
Dynamic Link Library
C Code

Pascal Code

BASIC Code
COBOL Code
FORTRAN Code
Assembler Code
Library

Resource File

Applications can use their own type names, such as Microsoft Excel Chart. The
first words in the type name should be the name of the vendor and the applica-
tion. For example, Microsoft Excel Chart, Microsoft Excel Worksheet, Lotus
1-2-3 Spreadsheet.

Entries should be ASCII. Case is important.

The performance of extended attributes is dependent on the file system. Because
some file systems store extended attributes in first-in/first out (FIFO) order, it is
important to write the .TYPE entry first so that File Manager can access. that
information quickly.

2.3.3.2 .KEYPHRASES

The KEYPHRASES extended attribute specifies text key phrases for the file.
Such phrases can be used for a database-style search or to help the user under-
stand the nature of the file.

If there is more than one key phrase, each should be stored in a separate entry
in a multivalue field. Each entry should be ASCII.

23.3.3 .SUBJECT

The .SUBJECT extended attribute contains a brief summary of the file’s content
and/or purpose. This attribute should be less than 40 characters long.

This field should be a single-value ASCII entry.

26 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
e O O s R e e R S S R I

23.3.4 .COMMENTS

The .COMMENTS extended attribute contains miscellaneous notes about the

file. It can be a multivalue field and be of any type. This field is intended as a

reminder note. For example, it could contain some notes about the intent of a
file or a picture.

2.3.3.5 .HISTORY

The .HISTORY extended attribute lists the history of a file’s modification. It
lists the author of the file and all subsequent changes. Each action entry should
be a separate field in a multivalue field. Each entry should be ASCII.

The application can let the user decide when an entry is placed into the history
field, to avoid unnecessary file growth. For example, there are some cases when
it is important to note when a document is printed; however, it is probably
unnecessary to note every time the file was printed.

2.3.3.6 .VERSION

The .VERSION extended attribute is a version number of the file format (for
example, Excel Worksheet 1).

This attribute should be ASCII or binary. It should be modified only by the
application. This attribute can also be used to indicate an application or
dynamic-link library version.

23.3.7 .ICON

The .ICON extended attribute specifies the icon to be used for the file represen-
tation, whether in File Manager or when minimized. File Manager can use the
.-TYPE entry to determine the default application to run and to determine the
default icon for that type of file. If there is a .ICON entry, however, it is used
instead of the icon associated with a particular type.

If the data type is for an icon, the icon data follows. It is best to provide as
much icon information as possible. Ideally, an icon should be 64-by-64 bits in
8-color, device-independent format.

Executable files should simply store the binary icon data in this extended attri-
bute. They should use the .ASSOCTABLE extended attribute to install icons
for data files.

2.3.3.8 .ASSOCTABLE

-The .ASSOCTABLE extended attribute contains association data for a file. It is
created by the Microsoft Operating System/2 Resource Compiler (rc), from a
table with the following form:

ASSOCTABLE -assoctable -id

BEGIN
"type name", "extension", [flags], [icon filename]

END
The .ASSOCTABLE extended attribute contains information that associates

icons with the data files an application creates. The file-association table associ-
ates icons by data type.

Chapter 2: Overviews 27
i R T e e e B e e B R i R R R R R R s i e R T

The .ASSOCTABLE extended attribute allows an application to indicate the
type, extension, and icon for the data files it recognizes. It also contains an own-
ership flag. This data can be installed automatically by File Manager.

For example, the table for Microsoft Excel could be:

"MS Excel Worksheet", "XLS", AF_DEFAULTOWNER, excel.sheet.icon
"MS Excel Chart", "XLC", AF_DEFAULTOWNER, excel.chart.icon

The flag entry indicates if the application owns or merely recognizes the type.
The icon file contains an icon for that data type.

2.3.3.9 .HPFSNAME

The .HPFSNAME attribute is used when an application attempts to write a
file with a long name to a file system that does not support long names. The
application should generate a unique short name for the file and notify the user
of the new short name. It should then save the original (long) name in the
.HPFSNAME extended attribute.

When a file is copied from a system that uses short names to a system that uses
long names, the application should check the . HPFSNAME extended attribute.
If a value is present, the application should allow the file to be renamed to a
long name. The .HPFSNAME extended attribute should then be removed.

2.3.3.10 Supporting Extended Attributes

To support extended attributes, applications should do the following:

=N

Fill in the . ASSOCTABLE extended attribute for all major file types that the
application recognizes or uses.

Fill in the .ICON extended attribute for executable files.

Set the .TYPE field for data files it creates.

Fill in and use the . HPFSNAME extended attribute as appropriate.
Support .HISTORY and .VERSION.

Support the other standard extended attributes as appropriate.

OO A WN

2.3.3.11 Multivalue Data-Type Fields

In many cases, extended attributes need to store more than a single piece of
information. For example, an extended attribute can store a list of names of peo-
‘ple to whom a mail document was sent. The multivalue formats specify how indi-
vidual pieces of data are stored.

In a multivalue field, the first entry in the list is assumed to be the default. For
example, suppose the .TYPE entry contains Text and C Code. Text is the
default type. If C Code is the first entry in the list (C Code and Text), then C
Code is the default type.

2.3.3.12 Multivalue, Multitype Attributes

The EAT_MVMT fype allows a single extended attribute to contain several
pieces of information; each piece of information can be a different type.

28 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
T e S o B S T T R e e A S S e R S e S s R TSR R

2.3.3.13 Multivalue, Single-Type Attributes

The EAT_MVST type sets up a multivalue field in which each piece of informa-
tion is of the same type.

2.3.3.14 ASN.1
The EAT._ASNI1 type is an ISO standard for describing multivalue data streams.

2.3.3.15 Include Extended-Attribute Type

The EAT_EA type indicates that the data is continued in another extended-
attribute entry associated with the file. Among other things, this allows for
extended attributes greater than 64K (but not exceeding the limit per file).

2.3.4 Summary
The following MS OS/2 functions create and manage extended attributes:

DosFindFirst2 Finds the first file that matches the specified filename and attri-
butes.

DosMkDir2 Creates a directory.
DosOpen2 Opens or creates a file with extended attributes.

DosQFileInfo Retrieves file information, including the date and time the file
was created, the date and time it was last accessed, the date and time it was last
written to, its size, and its attributes. It also returns information about a file’s
extended attributes.

DosQPathInfo Retrieves information about a file or directory.

DosSetFileInfo Sets information about a file, including the date and time the
file was created, the date and time it was last accessed, the date and time it was
last written to, the size of the file, and its attributes. It can also set extended
attributes for a file.

DosSetPathInfo Sets information for a file or directory.

2.4 Profile Manager

This section describes how to use the MS OS/2 Profile Manager to store and
retrieve information about your application and the system from the MS OS/2
initialization files. Before reading thxs section, you should be familiar with the
MS 08/2 initialization files.

Profile Manager functions replace the MS OS/2 initialization-file functions
described in the Microsoft Operating System/2 Programmer’s Reference,
Volume 1.

2.4.1 About Profile Manager

Profile Manager enables applications to create their own initialization files and to
access the MS OS/2 initialization files, 0s2.ini and 0s2sys.ini. An initialization
file is a convenient place to store information between sessions. Just as MS
OS/2 uses the os2.ini and o0s2sys.ini files to store configuration information for

Chapter 2: Overviews 29
S S e T e e) Pt R e e g B S e e e R e e e e B R B S R il

when it starts, an application can create initialization files that store information
it uses to initialize windows and data when it starts.

Because all initialization files are binary files, the user cannot view or edit them
directly. A file consists of one or more sections; each section contains one or
more settings, or keys. Each key consists of two parts: a name and a value. Both
section names and key names are null-terminated strings. A key value can be a
null-terminated string, a null-terminated string representing a signed integer, or
individual bytes of data.

The MS OS/2 initialization files, 0s2.ini and os2sys.ini, contain sections and set-
tings used by the MS OS/2-system applications (such as Desktop Manager, Con-
trol Panel, and Print Manager). Although applications can read settings from the
MS OS/2 initialization files, only rarely will an application need to change a set-
ting. One common task that does change the settings in the MS OS/2 initializa-
tion files is adding a group and program list to Desktop Manager. For example,
the installation program for an application can create a new group for the appli-
cation and its related utilities by using Profile Manager functions.

Once an initialization file is created, an application can rename, copy, move,
and delete the file just like any other file. Although an application can also read
and write to the file as if it were a binary file, the application should always use
Profile Manager functions to access the contents of the file.

2.4.2 Using Profile Manager

You can use Profile Manager functions in character-based MS OS/2 programs as
well as in Presentation Manager applications. A thread that calls Profile Manager
functions must have initialized an anchor block by using the WinlInitialize func-
tion. You create an initialization file or open an existing one by using the
PrfOpenProfile function. You then store and retrieve information from the file
by using functions such as PrfQueryProfileString and PrfWriteProfileString. You
can also create and manage groups and program lists by using functions such as
PrfAddProgram and PrfCreateGroup. :

24.21 Creating or Opening an Initialization File

You can create an initialization file or open an existing initialization file by using
the PrfOpenProfile function. The function takes a handle to an anchor block
and a pointer to the name of an initialization file. If the file doesn’t exist in the
given path, the function automatically creates an initialization file.

The following example creates an initialization file named pmtools.ini in the
current directory:

HAB hab;
HINI hini;

hab = WinInitialize(0):
if ((hini = PrfOpenProfile(hab, "pmtools.ini")) == NULL)
/* initialization file not opened or created */

If it is successful, the PrfOpenProfile function returns a handle to the initializa-
tion file. Otherwise, it returns NULL. Once you have an initialization-file han-
dle, you can create new sections in the file and make new settings.

To close an initialization file, you use the PrfCloseProfile function.

30 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
e R e R T e e A e e R S RS R e e e

2.4.2.2 Reading and Writing Settings

You can read and write strings, integers, and binary data to and from an initiali-
zation file. To read from or write to an initialization file, you must provide a sec-
tion and a key name that specifies which setting to read or to change. When writ-
ing, if there is no corresponding section and/or key name, the section and/or
key name is added to the file and assigned the given value.

The following example creates the section “MyApp” and the key name
“MainWindowColor” in a previously opened initialization file and assigns the
value of the RGB structure to the new setting:

HINI hini;
RGB rgb = { Oxff, 0x00, Ox00 };

PrfWriteProfileData(hini, "MyApp", "MainWindowColor", &rgb, sizeof (RGB)):

To read a setting, you can retrieve the size of the setting and then read the
setting into an appropriate buffer by using the PrfQueryProfileSize and
PrfQueryProfileData functions, as shown in the following example. This example
reads the setting “MainWindowColor” from the “MyApp” section only if the size
of the data is equal to the size of the RGB structure.

HINI hinji;
ULONG cb;
RGB rgb;
PrfQueryProfileSize (hini, "MyApp", "MainWindowColor", &cb):;
if (cb==sizeof (RGB))
PrfQueryProfileData(hini, "MyApp", "MainWindowColor", &rgb, &cb):

You can also read strings by using the PrfQueryProfileString function and write
strings by using the PrfWriteProfileString function. You can read integers
(stored as strings) by using the PrfQueryProfileInt function.

2.4.2.3 ldentifying the Initialization Files

You can retrieve the names of the MS OS/2 initialization files by using the
PrfQueryProfile function. Although the MS OS/2 initialization files are usually
named os2.ini and os2sys.ini, a user can use other files when starting the system.

The following example retrieves the names of the MS OS/2 initialization files
and copies the names of the initialization files to the arrays szUserName and
szSysName. Once you know the names of the MS OS/2 initialization files, you
can use that name to open the files and read settings.

char szUserName [80];

char szSysName[80];
PREPROFILE prfpro = { 80, (PSZ) szUserName, 80, (PSZ) szSysName };

PrfQueryProfile(hini, &prfpro);

You can change the MS OS/2 initialization files to files of your choice by using
the PrfReset function. This function takes the names of two initialization files
and uses them as replacements for the os2.ini and o0s2sys.ini files. The system is
then reset using the settings in the new files.

2.4.24 Creating Groups and Program Lists

You can create a group and a list of programs by using the PrfCreateGroup and
PrfAddProgram functions. A group is a window, managed by Desktop Manager
that contains a list of programs. The user can start a program in the list by
selecting the program title or double-clicking the title using the mouse.

3

Chapter 2: Overviews 31
e e e e T G e e e R S S R R S R i T e A e e e 2

The following example creates a new group, named “My Application,” and adds
one program to it:
HPROGRAM hGroup;

HPROGRAM hProg;
PROGDETAILS pprogde;

progde.Length = sizeof (PROGDETAILS) ;

progde.progt.progc = PROG_PM; /* Prof. Mngr. prog. */
progde.progt.fbVisible = SHE_VISIBLE; /* visible */
progde.pszTitle = "My Application"; /* program title */
progde.pszExecutable = "c:\os2\myapp.exe" /* path to exe file */
progde.pszStartupDir = "c:\os2"; * work directory */
progde.pszlIcon = ", /* empty if not used */

’
w,

B
"o,
i

progde.pszEnvironment
progde.pszParameters

progde.swplnitial.fs = o;
progde.swplInitial.cx = [oH
progde.swplnitial.cy = o;

progde.swplnitial.x = o;
progde.swplnitial.y = 0o;
progde.swplnitial.hwndInsertBehind = NULL;
progde.swpInitial.hwnd = NULL;

hGroup = PrfCreateGroup (HINI_USER, "My Application", SHE_VISIBLE):
hProg = PrfAddProgram(HINI_USER, &progde, hGroup);
2.4.3 Summary

Profile Manager functions open and modify the MS OS/2 initialization files. Note
that these functions are new with MS OS/2, version 1.2, and replace the Win
initialization-file functions in previous versions of MS OS/2.

PrfAddProgram Adds a program title to Desktop Manager.
PrfChangeProgram Replaces information in the program list.
PrfCloseProfile Closes a profile file.

PrfCreateGroup Creates a new program group in a program list.
PrfDestroyGroup Removes a group from Desktop Manager.
PrfOpenProfile Opens a profile file.

PrfQueryDefinition Retrieves program information.
PrfQueryProfile Retrieves profile filenames.
PrfQueryProfileData Retrieves information from the profile file.
PrfQueryProfileInt Retrieves an integer from the profile file.

PrfQueryProfileSize Retrieves the size of data stored at a specified location in
the profile file.

PrfQueryProfileString Retrieves a string from the profile file.
PrfQueryProgramCategory Retrieves the program type.

PrfQueryProgramHandle Retrieves program handles that match the name of a
specified executable file.

PrfQueryProgramTitles Retrieves information about programs in a group.

32 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
B e e B e R A R S R R R R R e e R e

PrfRemoveProgram Removes a program from Desktop Manager.
PrfReset Resets Presentation Manager.

PrfWritePioﬁleData Places binary data in the profile file.
PrfWriteProfileString Places a string in the profile file.

2.5 Help Manager

This section describes how to use Help Manager in MS OS/2 to display help
information about your application to the user. Before reading this section, you
should be familiar with the Help Manager user interface, messages and message
queues, and menus.

Help Manager functions and messages replace the help messages and help
hook described in the Microsoft Operating System/2 Programmer’s Reference,
Volume 1.

2.5.1 About Help Manager

You use Help Manager to create help panels and to manage user requests for
help. A help panel is one or more lines of text that describe some feature of the
application. The help panels for an application are stored in compressed format
in a help library. The help library is a separate disk file rather than a resource
within in the application’s executable file. This makes it easy to update a help
library or to replace it with international versions of help.

The user requests help in one of three ways: by pressing the F1 key, by using the
Help menu, or by clicking the Help button in a dialog box or message box. The
application must provide the Help menu and Help buttons in the application,

and it must identify a specific help panel for each command or button. When the
user requests help, Help Manager displays a help window alongside the applica-
tion window and fills the help window with the text of the corresponding help
panel. The user can view additional help panels in the help window by using the .
commands in this help window, or dismiss the help window and return to the
application.

While the user views help panels, Help Manager processes all user input, notify-
ing the application of actions carried out for or requested by the user. For exam-
ple, the user can search for, print, or copy help panels using commands from
menus in the help window. Help Manager carries out these actions without assis-
tance from the application. In some cases, Help Manager sends a message to the
application window so that the application can determine what additional action
to take. For example, if the user input results in an error, Help Manager sends
an HM_ERROR message to the application.

Help Manager supports hypertext fields—words or phrases in one help panel that
refer to other help panels. The user directs Help Manager to display the other
help panels by choosing the hypertext field (using either the mouse or keyboard).
Hypertext fields can also direct Help Manager to display help panels from other
help libraries and even to start other programs. For example, a hypertext field
can direct Help Manager to send a message to the application window to start
the application tutorial. -

Chapter 2: Overviews 33

b e S RS e SRR e e S e e R S e e e b B H IS e e]

You create help libraries by using the Information Presentation Facility Compiler
(IPFC). This compiler produces the compressed help library from the text files
that contain your help text. The help text consists of actual text and embedded
information tags. The information tags direct the compiler to carry out specific
actions, such as setting the help-panel name and ID, setting the font and/or
color of the text, displaying text in special formats such as lists or tables, adding
a bitmap to the panel, and including help text from another file. For more infor-
mation about the Information Presentation Facility Compiler, you must use
QuickHelp, the display program for Microsoft documentation databases,
described in Microsoft Operating System/2 Getting Started. The Information
Presentation Facility Compiler is available only in the Microsoft OS/2 Presenta-
tion Manager Toolkit, version 1.2.

2.5.2 Using Help Manager in Applications

In an application, a user should have three ways to access help: by pressing the
F1 key, by choosing commands from the Help menu, and by clicking a Help but-
ton. Help Manager provides support for all three methods. The following sec-
tions explain how to enable this support for your application.

2.5.2.1 Creating a Help Instance

An application can create an instance of Help Manager by using the Win-
CreateHelplInstance function. This function installs a help hook, initializes Help
Manager for help processing, and returns a help-instance window handle. The
application uses the help-instance window handle to direct Help Manager to
carry out requests for help.

To create a help instance, the application first fills a HELPINIT structure with
information about the help table, the title of the help window, and the help
library for the help instance. In the following example, the helpinit parameter is
the HELPINIT structure. The hab parameter is the anchor-block handle of the
application, returned by the WinlInitialize function.

HAB hab;

HWND hwndHelp;
HELPINIT helpinit = {

sizeof (HELPINIT), /* count of bytes in structure *

oL, /* return value from Help Mngr. */
NULL, * pointer to tutorial name *

MAKELONG (MY_RESOURCES, OxFFFF) /* resource ID for help table */
NULL, /* handle to help table */
NULL, /* handle to replacement menu */
o, /* replacement accelerator ID */
o, /* replacement menu ID */
"My Help!", /* help-window title */
CMIC_HIDE_PANEL_ID, /* display help title only */
"c:\os2\help\myhelp.hlp" /* path to help library */

‘

hwndHelp = WinCreateHelpInstance(hab, &helpinit);

The application must associate the help instance with a window by using the
WinAssociateHelpInstance function. This association tells Help Manager which
help instance to use when the user requests help in the window or in any of that
window’s child or owned windows. A help instance can be associated with any
frame window (that is, any window created with the WC_FRAME class). The
application always can retrieve the handle of the associated window for a help
instance by using the WinQueryHelpInstance function.

34 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
S O S e T A L S B R S A R B e R N P Rk S

The user requests help by pressing the F1 key, by choosing a command from the
Help menu, or by clicking a Help button. These actions cause MS OS/2 to send
a WM_HELP message to an application window procedure. To enable Help
Manager to process the message and display help, the window procedure should
pass the WM_HELP message to the WinDefWindowProc or WinDefDlgProc
function. Although most window procedures immediately pass the WM_HELP
message to the WinDefWindowProc or WinDefDlgProc function, a window pro-
cedure can carry out some processing of the WM_HELP message before it
passes the message, as shown in the following example. In all cases, however,
the window procedure must return the value returned by WinDefWindowProc or
WinDefDIgProc. '

case WM_HELP:
" /* Preprocess the message here. */
return (WinDefWindowProc (hwnd, msg, mpl, mp2)):

2.5.2.2 Creating a Help Table

A help table is a list of window IDs and corresponding help-panel IDs. For each
help request, Help Manager uses a help table to translate into a panel ID the
window ID given with the request for help. Every help instance must have a help
table. '

The application must create the help table and associate the help table with the
help instance. An application creates a help table by defining it in a resource
script file or by initializing a HELPTABLE structure. Most applications define
the help table in the resource script file, using the HELPTABLE and HELP-
SUBTABLE statements as follows:

HELPSUBTABLE MY_MAIN_WINDOW_HELP

BEGIN
HELPSUBITEM IDM_HELPFORHELP, IDH_FORHELP
HELPSUBITEM IDM_EXTENDEDHELP, IDH_FOREXTENDED

HELPSUBITEM IDM_KEYSHELP, IDH_KEYS
HELPSUBITEM IDM_HELPINDEX, IDH_INDEX
HELPSUBITEM IDM_ABOUT, IDH_ABOUT
END
HELPSUBTABLE MY_DIALOG_HELP
BEGIN
HELPSUBITEM MY_DIALOG, IDH_DLG_EXTENDED
HELPSUBITEM MY_DIALOG_EDIT, IDH_DLG_EDIT
END
HELPTABLE MY_MAIN_WINDOW
BEGIN
HELPITEM MY_MAIN_WINDOW, MY_MAIN_WINDOW_HELP, IDH_EXTENDED
END HELPITEM MY_DIALOG, MY_DIALOG_HELP, IDH_DLG_EXTENDED

In the preceding example, the HELPTABLE statement defines the help table. It
specifies help for two windows: the main window and a dialog window. (The
MY_MAIN_WINDOW and MY_DIALOG constants, defined elsewhere, must
be unique and must be equal to the window IDs for these given windows.)

The HELPITEM statements within the HELPTABLE statement identify the main
and dialog windows and the help subtables that apply to them. A help subtable
specifies the help-panel ID that corresponds to a window ID. The HELPITEM
statements also specify the help-panel ID for the extended help associated

with each window. For example, the dialog window has the help subtable
MY_DIALOG_HELP and the extended help panel IDH_DLG_EXTENDED
(the MY_DIALOG_HELP and IDH_DLG_EXTENDED constants must be
defined elsewhere). '

: Chapter 2: Overviews 35
R L R e P e e B e B e s S R I N e

The HELPSUBTABLE statements define the windoW IDs and corresponding
help-panel IDs for each child window of the specified main or dialog window.

After receiving a help request, Help Manager determines which window is active
and uses the ID of the active window to select a help subtable. Help Manager
then determines the ID of the window that has the input focus (if any) and uses
the ID of the focus window with the selected help subtable to identify the help
panel. After Help Manager identifies the help panel, it displays the help panel in
the help window. Help Manager positions the help window next to the “relative”
window (the relative window is the window next to which the system displays the
help window). The relative window is usually the active window, but it can be set
to another window by using the HM_SET_ACTIVE_WINDOW message.

2.5.2.3 Creating a Heip Library

You create a help library by using a text editor to create a help text file and then
compiling the help text file with the Information Presentation Facility Compiler
(IPFC). The help library must contain one or more help panels, each with a
unique panel ID or name. In the help text file, each help panel must start with
the :h1 tag. The help text file itself must start with the :userdoc. tag and end
with the seuserdoc. tag. The following help text file contains two help panels:
:userdoc.

:hl res=1.Extended Help

Display this help when the user requests extended help.

:hl res=2.0ther Help.

Display this help when the user requests any other help.
teuserdoc.

The res= option with the :h1 tag identifies the panel ID for the help panel. The
text immediately following the :h1 tag specifies the title of the panel. For exam-
ple, “Extended Help” is the title of the first panel and “Other Help” is the title
of the second. All subsequent text, up to the next :h1 tag, belongs to that help

panel. '

2,5.2.4 Using the F1 Key

The F1 key is the system Help key. Help Manager automatically enables this key
for a window whenever an application creates a help instance and associates it
with the frame window. The user can display help for specific items in the win-
dow, such as menu commands,. by selecting the item and pressing the F1 key.
Whenever the user presses the Fi key, Help Manager retrieves the ID of the
selected item and uses the ID to locate the corresponding help-panel ID. If Help
Manager finds a help-panel ID, it displays that help panel. Otherwise, it displays
the extended help panel.

Although Help Manager carries out all processing for the F1 key, the application
must provide appropriate help-table entries for each item that can be selected. If
the active window is not directly associated with a help instance, Help Manager
checks the window’s parent and owner windows until it finds an associated help
instance. It first checks the parent window, the parent window of the parent win-
dow, and so on, until it finds a window that has an associated help instance.
Help Manager checks the owner window only if the parent-window check ended
at the desktop and no help instance was found.

36 Microsoft Operating System/2 Programmer’s Reference, Vol. 4 '
e e v e B S S R e S R R S B TR R B S S iRt

2,5.2.5 Using the Help Menu

The Help menu lets the user view general help for an application. The menu
appears as the last (rightmost) menu in the menu bar and contains the following
commands:

Command Description

Help for Help Displays general information about
help and how to access help.

Extended Help Displays information about the appli-
cation window. This help information
can explain the fields in the window,
the window’s purpose, and how the
uscr should interact with the window.

Keys Help Displays a list of the function keys
used by the application.

Help index Displays an alphabetical list of all the
help-index entries for the application.
The author of the help text source file
creates the help index by including
index tags within the help file.

About Displays copyright information for the
application. The About command is
used only in the Help menu for the
application window.

The application must create the Help menu, add it to the menu bar, and process
the menu commands. The most convenicnt way to create the Help menu and
add it to the menu bar is to place the following statements in the application’s
MENU statement in the resource script file:

SUBMENU "“Help", 1

BEGIN
MENUITEM "~Help for Help...", IDM_HELPFORHELP
MENUITEM "~Extended Help...", IDM_EXTENDEDHELP
MENUITEM "~Keys Help...", IDM_KEYSHELP
MENUITEM "Help “index...", IDM_HELPINDEX
MENUITEM SEPARATOR
MENUITEM "A*bout...", IDM_ABOUT

END

You can assign any values for the IDM_ constants‘(IDM_HELPFORHELP and
IDM_EXTENDEDHELP, for example) as long as the values are unique within
the menu. .

To process the menu commands, the window procedure for the application

must process the WM_COMMAND message. The application receives a
WM_COMMAND message whenever the user chooses one of the menu com-
mands. For each Help-menu command, the application must send an appropri-
ate help message to the help instance for the application, as shown in the follow-
ing statcments.

Chapter 2: Overviews 37
S e e e S R B R R R B S s ssnes

case WM_COMMAND:
switch (SHORT1FROMMP (mp1)) {
case IDM_HELPFORHELP: /* display help for help panel */
WinSendMsg(hwndHelp, HM_DISPLAY_HELP,
MPEROMSHORT (IDH_HELPFORHELP) ,
MPEROMSHORT (HM_RESOURCEID)) :

break;

case IDM_EXTENDEDHELP: /* display extended help */
WinSendMsg(hwndHelp, HM_EXT_HELP, OL, OL);
break;

case IDM_KEYSHELP: /* display keys help panel */
WinSendMsg(hwndHelp, HM_KEYS_HELP, OL, OL):
break;

case IDM_HELPINDEX: /* display help index */
WinSendMsg (hwndHelp, HM_HELP_INDEX, OL, OL);
break; X

case IDM_ABOUT: /* create about dialog box */

WinDlgBox (HWND_DESKTOP, hwnd, MyAboutProc,
NULL, MY_ABOUTBOX, NULL):
break;

return (OL):

In the preceding statements, the HM_DISPLAY_HELP message directs Help
Manager to display the specific help panel. You can identify the panel by
using a panel ID or by using a panel name. In this example, the constant
HM_RESOURCEID directs Help Manager to locate the panel using the panel
ID, IDH_HELPFORHELP.

The HM_EXT_HELP message directs Help Manager to display extended help
for the help instance. The panel ID for extended help is specified in the help
table of the help instance. When Help Manager receives HM_EXT_HELDP, it
uses the extended help-panel ID to locate and display extended help.

The HM_KEYS_HELP message directs Help Manager to display the help panel
that contains a description of the application keys. Although the application
must supply the panel ID for keys help, the HM_KEYS_HELP message does
not take parameters. Instead, whenever Help Manager receives this message, it
sends the HM_QUERY_KEYS_HELP message back to the application. The
application must return the keys-help panel ID as shown in the following state-
ments:

case HM_QUERY_KEYS_HELP:
return (IDH_KEYSHELP):

The HM_HELP_INDEX message directs Help Manager to display the help
index for the help instance. Because the help index has no explicit panel ID, this
is the only way to display the help index from the application.

Although the About command is usually placed in the Help menu, Help
Manager does not support the About command. The application can use the
WinDIgBox function to display a dialog box that contains copyright information
in response to the user choosing the About command. A corresponding dialog
template must be defined in the resource script file.

2.5.2.6 Using Help Buttons

Help buttons provide an alternative way to display contextual help for fields in
dialog boxes. A Help button is a push button that displays help information
when the user clicks it using the mouse. It usually appears in the lower-right part
of a dialog box. Clicking a Help button has the same effect as pressing the F1 key
(that is, it displays information about the selected field).

38 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
A P T e s B S R B S e e R S A R R R R i

The application must add Help buttons to dialog boxes, but Help Manager car-
ries out the processing. The most convenient way to add a Help button to a dia-
log box is to use a PUSHBUTTON statement in the dialog template in the
resource script file. The following statements define a very simple dialog box
with a Help button:

DLGTEMPLATE MY_DIALOG
BEGIN

DIALOG "My Dialog!", MY_DIALOG, 0,0, 200,85, ,ECE_TITLEBAR
BEGIN

LTEXT "Enter name:", MY_LABEL, 10,40, 60,15

ENTRYFIELD "", MY_DIALOG_EDIT, 70,40, 120,15, ES_MARGIN

DEFPUSHBUTTON "OK", MY_OK, 10,10, 60,15
PUSHBUTTON "*Help", MY_HELP, 110,10, 60,15,
BS_NOPOINTERFOCUS | BS_HELP
END
END

The Help button must have the BS_HELP and BS_NOPOINTERFOCUS styles.
When the button has the BS_HELP style, the system interprets a button click as
a request for help. When the button has the BS_NOPOINTERFOCUS style, the
input focus does not move from the Help button when it is clicked; this allows
Help Manager to determine which field in the dialog box is selected.

2.5.2.7 Destroying a Help Instance

When a help instance is no longer needed, you can destroy it by using the Win-
DestroyHelpInstance function. This function closes the help-instance window
and removes the corresponding help hook. Before destroying the help instance,
you should disassociate the help instance from the window by using the Win-
AssociateHelpInstance function and specifying a NULL window handle. After a
help instance is disassociated, it can be destroyed.

2.5.2.8 Handling Errors

Help Manager functions typically indicate errors by returning FALSE. If a func-
tion is unsuccessful, the application can use the WinGetLastError function to
retrieve the value of the error.

If the user is viewing a help panel when an error occurs, Help Manager sends
the HM_ERROR message to the active application window to notify the applica-
tion of the error. Help Manager does not display error messages to the user; the
application must display its own messages.

2.5.3 Help Hooks and Help Manager

Help Manager installs a help hook when the application creates the Help
Manager instance. This hook enables Help Manager to trap user requests for
help. When using Help Manager for your application, it is recommended that
you do not install your own help hooks. If you choose to do so, however, you
must install the help hook prior to creating the help instance because the Help
Manager help-hook procedure always returns TRUE, preventing all subsequent
hook procedures from being called. If you do install a help hook, it must return
FALSE so that Help Manager can process requests for help.

Chapter 2: Overviews . 39
S e B e e e o e B e R e e R R R R S R

2.5.4 Summary
The following MS OS/2 functions and messages work with Help Manager.
2.5.4.1 Functions
MS OS/2 provides the followmg help functions:
WinAssociateHelpInstance Associates a help instance with a given window.
WinCreateHelpInstance Creates a help instance.
WinCreateHelpTable Identifies or changes the pointer to the help table.
WinDestroyHelpInstance Destroys an instance of Help Manager.

WinLoadHelpTable Identifies or changes the handle of the module that con-
tains the help-table resource and the ID of that resource.

WinQueryHelpInstance Retrieves the handle of the help instance associated
with the specified window.

2.5.4.2 Messages Sent by Help Manager

Help Manager sends the following messages to the application:

HM_ACTIONBAR_COMMAND Sent to the application when the user
chooses a command from an application-supplied menu.

HM_ERROR Notifies the application of an error caused by a user action.

HM_EXT_HELP_UNDEFINED Notifies the application that an extended help
panel is not defined for the active window.

HM_HELPSUBITEM_NOT_FOUND Sent to the application when the user
requests help about a field and the system cannot find a related entry in the help
subtable.

HM_INFORM Notifies the application that the user has selected a hypertext
field in the help window. The hypertext field must have been created using the
sinform tag.

HM_QUERY_KEYS_HELP Sent to the application when the user requests
keys help. The application responds by returning the ID of the requested keys-
help panel.

HM_TUTORIAL Sent to the application when the user chooses the Tutorial
command from a help panel. The application then calls its own tutorial program.

2.5.4.3 Messages Sent to Help Manager
The application sends the following messages to Help Manager:

HM_CREATE_HELP_TABLE Specifies a new help table for the help
instance.

HM_DISMISS_WINDOW Directs Help Manager to close the help window
associated with the last active window.

HM_DISPLAY_HELP Directs Help Manager to display a specific help
window.

40 Microsoft Operating System/2 Programmer’s Reference, Vol. 4 .
T B B R R S R R e

HM_EXT_HELP Directs Help Manager to display the extended help panel for
the active application window.

HM_HELP_CONTENTS Directs Help Manager to display the table of con-
tents for the open help library.

HM_HELP_INDEX Directs Help Manager to display the index for the open
help library.

HM_KEYS_HELP Directs Help Manager to display the help panel that con-
tains information about the application keys.

HM_LOAD_HELP_TABLE Directs Help Manager to replace the existing help
table with a help-table resource.

HM_REPLACE_HELP_FOR_HELP Directs Help Manager to display the
application-defined help panel instead of the general help panel that is shipped
with Help Manager.

HM_SET_ACTIVE_WINDOW Directs Help Manager to change the active
window. Subsequent help messages are sent to the new active window and
appear next to it.

HM_SET_HELP_LIBRARY_NAME Identifies the help library to the help
instance.

HM_SET_HELP_WINDOW_TITLE Sets the title text of a help window.

HM_SET_SHOW_PANEL_ID Directs Help Manager to display, hide, or tog-
gle the panel ID for each help panel displayed.

2.6 Combination-Box Controls

This section describes how to use combination-box controls to let the user
choose and edit items from a list. Before reading this section, you should be
familiar with entry-field controls, list-box controls, messages and message
queues, and standard user-interface guidelines.

Combination-box controls, also called combo boxes, are a new feature of MS
0S/2, version 1.2. They can be used in addition to entry-field controls, which
are described in the Microsoft Operating System/2 Programmer’s Reference,
Volume 1.

2.6.1 About Combo Boxes

A combo box is two controls in one: an entry field and a list box. Combo boxes

let the user enter data by typing in the entry field or by choosing from a list in
the list box.

A combo box automatically manages the interaction between the entry field and

the list box. For example, when the user chooses an item in the list box, the

combo box displays the text for that item in the entry field. The user can then

edit the text without affecting the item in the list box. When the user types a

letter in the entry field, the combo box scrolls the list box contents so that items
. beginning with that letter become visible.

Chapter 2: Overviews 41
T e o B B R e e s oy R e e R R S R e S R T R il

A combo box can have one of the following styles:
Style Meaning

CBS_SIMPLE A simple combo box. A simple combo box
always displays its list box. The user can
enter and edit text in the entry field or
choose items from the list box.

CBS_DROPDOWN A drop-down combo box. A simple drop-
down combo box displays its list box only if
the user clicks the drop-down icon at the
right end of the entry field. It hides the list
box when the user clicks the icon a second
time. In a drop-down combo box, the user

. can enter and edit text in the entry field or
choose items from the list box.

CBS_DROPDOWNLIST A drop-down-list combo box is similar to
the drop-down combo box, but the user can
choose items only from the list box. The

user cannot enter or edit text in the entry
field.

For combo boxes that have the CBS_LDROPDOWN or CBS_DROPDOWNLIST
styles, an application can show the list by using the CBM_SHOWLIST message.
An application can determine whether the list is already showing by using the
CBM_ISLISTSHOWING message.

Applications can use any of the entry-field (EM_) and list-box (LM_) messages
with combo boxes. Entry-field messages affect the entry field; list-box messages
affect the list box. For example, an application can use the LM_INSERTITEM
message to insert items into the list box. For more information on the entry-field
and list-box messages, see the Microsoft Operating System/2 Programmer’s Refer-
ence, Volume 1 and Volume 2.

A combo box sends a variety of notification messages to its parent window.

These notification messages are similar to the notification messages sent by

entry-field and list-box controls. For example, the combo box sends a

CBN_EFCHANGE notification message when the user changes text in the entry

geld and sends a CBN_LBSELECT when the user chooses an item in the list
OX.

2.6.2 Using Combo Boxes

You can create a combo box by using the WinCreateWindow function or by
specifying a COMBOBOX statement in a dialog-window template in a resource
file. When creating a combo box by using WinCreateWindow, you must

specify the WC_COMBOBOX class, the predefined class for a combo box. If
you do not specify a style, the default styles WS_GROUP, WS_TABSTOP, and
WS_VISIBLE are used.

42 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
o B B e S g e e S e R S S e B e e R R s

2.6.3 Summary

The following MS OS/2 styles and messages are used with combination-box

controls.
2.6.3.1 Combo-Box Styles

The following style constants, specified when the combo box is created, deter-

mine its action and appearance:

CBS_SIMPLE Specifies a simple combo box made up of a list-box control and
an entry-field control that are visible at all times.

CBS_DROPDOWN Specifies a drop-down combo box made up of an entry-
field control and a button. When the user selects the button, a list-box control

appears.

CBS_DROPDOWNLIST Similar to a drop-down combo box, but the user can-
not enter or edit text in the entry field.

2.6.3.2 Messages Sent to a Combo Box

An application sends these messages to a combo box:

CBM_HILITE Scts drop-down Bulton highlighting in a combo box.
CBM_ISLISTSHOWING Determines if a list box is visible in a combo box.
CBM_SHOWLIST Shows or hides the list box in a combo box.

2.6.3.3 Messages Sent by a Combo Box

Messages sent from a combo box to an owner window notify the owner of events
in the combo box, such as when the user edits text. A combo box sends the fol-
lowing message to an owner window:

WM_CONTROL Sent to the owner window of the combo box when a user
event occurs in the combo box. This message contains one of the following
notification control codes, specifying what event occurred.

Code

Description

CBN_EFCHANGE
CBN_EFSCROLL

CBN_ENTER
CBN_LBSCROLL
CBN_LBSELECT
CBN_MEMERROR

CBN_SHOWLIST

Indicates text in a combo-box entry field has
changed.

Indicates a combo-box entry field is
scrolled.

Indicates a combo-box item is selected.
Indicates a combo-box list is scrolled.
Indicates a combo-box list item is selected.

Indicates the combo box cannot allocate
sufficient memory.

Indicates a combo-box list has dropped-
down (is visible).

. Chapter 2: Overviews 43
T S e e B S R R S A B S R B R S RS i sy

2.7 Multiple-Line Entry Fields

This section describes how to use multiple-line entry fields to let the user view
and edit text in an application. Before reading this section, you should be fami-
liar with entry-field controls, messages and message queues, and standard user-
interface guidelines.

Multiple-line entry fields are a new feature of MS OS/2, version 1.2, and can be
used in addition to entry-field controls, which are described in the Microsoft
Operating System/2 Programmer’s Reference, Volume 1.

2.7.1 About Multiple-Line Entry Fields

A multiple-line entry field (MLE) is a very sophisticated control window that
users use to view and edit multiple lines of text. An MLE provides all the text-
editing capability of a simple text editor, making these features readily available
to applications.

You can create multiple-line entry fields by using the WinCreateWindow func-
tion or by specifying the MLE statement in a dialog-window template in a
resource file.

2.7.1.1 Editing MLE Text

An MLE contains one or more lines of text. Each line consists of one or more
characters and ends with one or more characters that represent the end of the
line. The user inserts text by typing (when the MLE has the focus). The applica-
tion can insert text at any time by using the MLM_INSERT message and specify-
ing the text as a null-terminated string. The MLE inserts the new text at the cur-
sor position or replaces the selected text.

The entry mode determines the action of the MLE when the user inserts text.
The entry mode can be set to overstrike or insertion. The user sets it by pressing
the INSERT key. When overstrike mode is enabled, at least one character is
always selected. This means that the MLM_INSERT message always replaces at
least one character. If insert mode is enabled, the MLM_INSERT message
replaces only characters the user or the application has selected. Otherwise, the
MLE makes room for the inserted characters by moving existing characters to
the right at the cursor position.

The cursor position, identified by a flashing caret, is always specified as a char-
acter offset, relative to the beginning of text. The user sets the cursor position by
moving the flashing caret using the mouse or the direction keys. An application
can set the cursor position by using the MLM_SETSEL message. This message
directs the MLE to move the flashing caret to a given character position.

The MLM_SETSEL message also sets the selection. The selection is one or
more characters of text on which the MLE carries out an operation, such as
deleting or copying. The user selects text by pressing the SHIFT key while moving
the cursor. An application selects text by specifying the cursor position and
anchor point using the MLM_SETSEL message. The selection is all text between
the cursor position and the anchor point. If the cursor position and anchor point
are equal, there is no selection. An application can retrieve the cursor position
and/or anchor point by using the MLM_QUERYSEL message.

44 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
s e B e R e R R S T I e e S e

The user can delete characters, one at a time, by pressing the DELETE key or the
BACKSPACE key. These keys delete the character to the left of the cursor. An
application can delete one or more characters by using the MLM_DELETE mes-
sage. This message directs the MLE to delete a specified number of characters,
starting at the given position. This message does not change the cursor position.
An application can delete selected text by using the MLM_CLEAR message.

An application can reverse the previous operation by using the MLM_UNDO
message. This message directs the MLE to restore the entry field to its previous
state. It is a quick way to fix users’ editing mistakes.

But not all operations can be undone. The application can determine whether
the previous operation can be undone by using the MLM_QUERYUNDO mes-
sage. This message returns TRUE and an indication of the type of operation that
can be undone. An application can prevent a subsequent MLM_UNDO message
from changing the state of the MLE by using the MLM_RESETUNDO message.

2.7.1.2 Formatting MLE Text

An application can retrieve the number of lines of text in an MLE by using the
MLM_QUERYLINECOUNT message. It can retrieve the number of characters
in the MLE by using the MLM_QUERYTEXTLENGTH message. The amount
of text and, subsequently, the number of lines to be entered in an MLE depend
on the text limit. An application can set the text limit by using the
MLM_SETTEXTLIMIT message and determine the current limit by using the
MLM_QUERYTEXTLIMIT message. The user cannot set the limit. If the user
types to the text limit, the MLE beeps and ignores subsequent characters. If the
application attempts to add text beyond the limit, the MLE truncates the text.

An application can control the length of each line in an MLE by enabling word-
wrapping. When word-wrapping is enabled, the MLE automatically breaks any
line that is longer than the MLE is wide. An application can set word-wrapping
by using the MLM_SETWRAP message, and it can determine whether the MLE
is wrapping text by using the MLM_QUERYWRAP message. Unless the
MLS_WORDWRATP style is specified when the MLE is created, word-wrapping
is initially disabled.

An application can set tab stops for an MLE by using the MLM_SETTABSTOP
message. Tab stops specify the maximum width of tab character. When the user
or an application inserts a tab character, the MLE expands the character so

that it fills the space between cursor position and the next tab stop. The
MLM_SETTABSTOP message actually sets the distance (specified in pels)
between tab stops, and the MLE provides as many tab stops as needed, no
matter how long the line gets. An application can retrieve the distance between
tab stops by using the MLM_QUERYTABSTOP message.

An application can use the MLM_SETFORMATRECT message to set the for-
mat rectangle. The format rectangle is used to set the horizontal and/or vertical
limits for text. The MLE sends a notification message to the parent window of
the MLE if text exceeds the limit. An application typically uses the format rect-
angle to provide its own word-wrapping or other special text processing. An
application can retrieve the current formatting rectangle by using the
MLM_QUERYFORMATRECT message.

Chapter 2: Overviews 45
B S S S e R R e S T B B R

An application can prevent the user from entering text in the entry field by using
the MLM_SETREADONLY message. The MLM_QUERYREADONLY mes-
sage specifies whether the MLE is read-only. An application can also set the
MLE to read-only by specifying the MLS_READONLY style when creating the
MLE.

An application can set the colors and font for an MLE by using the
MLM_SETTEXTCOLOR, MLM_SETBACKCOLOR, and MLM_SETFONT
messages. These messages affect all text in the MLE; an MLE cannot contain a
mixture of fonts and colors. An application can retrieve the current values

for the color and the font by using the MLM_QUERYTEXTCOLOR,
MLM_QUERYBACKCOLOR, and MLM_QUERYFONT messages.

2.7.1.3 Importing and Exporting MLE Text

An application can copy text to and from an MLE by importing and exporting.
Importing using the MLM_IMPORT message copies text from a buffer to the
MLE. Exporting using the MLM_EXPORT message copies text from the MLE
to a buffer. The application uses the MLM_SETIMPORTEXPORT message to
set the import and export buffers. To import, the application must fill the buffer
with the text to copy to the MLE. To export, the MLE copies the specified text
to the buffer.

An application can import and export text in a variety of formats. The text for-
mat identifies which characters are used for the end-of-line characters and is set
using the MLM_FORMAT message. An MLE can have the following text for-

mats:
Type Format
MLFIE_CFTEXT Exported lines end with a carriage-return/

newline character pair (0x0D, 0x0A).
Imported lines must end with a newline
_character, a carriage-return/newline charac-
ter pair, or a newline/carriage-return char-

acter pair.
MLFIE_NOTRANS Imported and exported lines end with a
newline character (0x0A).
MLFIE_WINFMT For exported lines, the carriage-return/

newline character pair marks a hard line
break (a break entered by the user), and
two carriage-return characters and a newline
character (0x0D, 0x0D, 0x0A) mark a soft
line break (a break inserted during word-
wrapping, not entered by the user). For
imported lines, soft line break characters
are ignored.

The text format can affect the number of characters in a selection. To ensure
the export buffer is large enough to hold exported text, an application can

send the MLM_QUERYFORMATLINELENGTH message and the
MLM_QUERYFORMATTEXTLENGTH message to determine the number of
bytes in text to be exported. .

46 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
R e R e T N R e SR i B R S I R e

Each time an application inserts text in an MLE, the MLE automatically
refreshes the display by drawing the new text. When an application copies large
amounts of text to an MLE, refreshing can be quite time-consuming, so applica-
tions should disable the automatic refresh setting in such cases. An application
can disable this setting by sending the MLM_DISABLEREFRESH message.
After copying all the text, the application can restore the refresh by sending the
MLM_ENABLEREFRESH message.

2.7.1.4 Copying and Pasting MLE Text

The user can cut, copy, and paste text in an MLE by using the CTRL+DELETE,
SHIFT+DELETE, and SHIFT+INSERT keys. An application can cut, copy, and paste
text by using the MLM_CUT, MLM_COPY, and MLM_PASTE messages. The
MLM_CUT and MLM_COPY messages direct the MLE to copy the selected
text to the clipboard. The MLM_CUT message also deletes the text
(MLM_COPY does not). The MLM_PASTE message directs the MLE to copy
the text on the clipboard to the current position in the MLE, replacing any exist-
ing text with the copied text. An application can delete the selected text without
copying it to the clipboard by using the MLM_CLEAR message.

An application can also copy the selected text from an MLE to a buffer by using
the MLM_QUERYSELTEXT message. This message does not affect the con-
tents of the clipboard.

2.7.1.5 Searching and Replacing MLE Text

An application can search for a specified string within MLE text by using the
MLM_SEARCH message. This message directs the MLE to search for the-
string. If the string is found, the MLE returns TRUE. The cursor does not move
to the string unless the message specifies the MLFSEARCH_SELECTMATCH
option.

An application can also use the MLM_SEARCH message to replace one string
with another. If the MLFSEARCH_CHANGEALL option is specified, the
MLE replaces all occurrences of the search string with the replacement

string. Both the search string and the replacement string must be given in a
MLE_SEARCHDATA structure passed with the message.

2.7.1.6 MLE Notification Codes

An MLE sends notification codes to its parent window whenever certain events
occur, for example, when the user or the application tries to insert too much
text or when the user uses the scroll bars. The parent window uses the
notification codes to carry out custom operations for the MLE or to respond to
errors. Notification codes that are closely related to MLE messages are
described here.

The MLE sends the MLN_HSCROLL or MLN_VSCROLL notification codes
when the user uses the scroll bars so the application can monitor the visible con-
tents of the MLE. The application can also monitor the contents of an MLE by
using the MLM_QUERYFIRSTCHAR message. This message identifies the
character in the upper-left corner of the MLE (by specifying its offset). This

. represents the first MLE character that is visible to the user. An application can
move a specified character to the upper-left corner of an MLE by using the
N%LMMSEEFIRSTCHAR message as an alternative way of scrolling the contents
of an .

Chapter 2: Overviews 47
R e e e e S B B e P T e S S e R R S R R R

The MLE sends an MLN_CHANGE notification code when the user changes
the text in some way. This code is especially useful when the MLE is in a dialog
box because it can determine whether the dialog procedure should process the
contents of the MLE. The MLM_QUERYCHANGED message also can deter-
mine whether the user has made changes. The MLM_SETCHANGED message
causes the MLE to send a notification code, regardless of whether the user has
changed anything; this code can also be used to hide a change made by a user.

2.7.1.7 MLE Styles

MLE styles can be specified by using the WinCreateWindow function or the
MLE statement in a resource file. Styles can be combined by using the OR
operator. Applications can specify a combination of the following styles for an

MLE:

Style Meaning

MLS_BORDER Draws a border around the MLE.

MLS_HSCROLL Adds a horizontal scroll bar to the MLE.
The scroll bar is enabled when any line
exceeds the width of the MLE.

MLS_IGNORETAB Directs the MLE to ignore the TAB key.

MLS_READONLY Prevents the MLE from accepting text from
the user. This style is useful for displaying
lengthy static text in windows or dialog
boxes.

MLS_VSCROLL Adds a vertical scroll bar to the MLE. The

scroll bar is enabled when the number of
lines exceeds the height of the MLE.

MLS_WORDWRAP Prevents lines that are longer than the width
of the MLE. The MLE automatically breaks
the line at a convenient place.

2.7.2 Using Multiple-Line Entry Fields

You can create an MLE by using the WinCreateWindow function or by specify-
ing the MLE statement in a dialog-window template in a resource file. The fol-
lowing example shows how to create an MLE using WinCreateWindow:

HWND hwndParent: /* parent-window handle */
HWND hwndMLE; /* MLE handle */

hwndMLE = WinCreateWindow (hwndParent,
WC_MLE,
"Tast" ,
MLS_BORDER | WS_VISIBLE,
100, 100, 100, 100,
hwndParent,
HWND_TOP,
2, NULL, NULL):;

An MLE has the WC_MLE window class. As with other controls created using
the WinCreateWindow function, the WS_VISIBLE style must be set to display
the window immediately.

48 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
B B T e R R e R B R T S e R R I e S S R SR T el

It is more common to create an MLE by using an MLE statement in a dialog-
window template in a resource file, as shown in the following example:

MLE "", 101, 110, 10, 50, 100

The predefined class for an MLE is WC_MLE. If you do not specify a style, the
default styles MLS_BORDER, WS_GROUP, and WS_TABSTOP are used.

2.7.3 Summary

The following MS OS/2 styles and messages are used with multiple-line entry
fields.

2.7.3.1 MLE Styles

The following style constants, specified when the MLE is created, determine its
action and appearance:

MLS_BORDER Places a thin border around the MLE.
MLS_HSCROLL Adds a horizontal scroll bar to the MLE.
MLS_IGNORETAB Prevents the TAB key from functioning in the MLE.

MLS_READONLY Makes the MLE text read-only. The user cannot enter or
edit text in the MLE.

MLS_VSCROLL Adds a vertical scroll bar to the MLE.

MLS_WORDWRAP Automatically moves words that do not fit at the end of a
line to the next line.

2.7.3.2 Messages Sent to an MLE
An application sends the following messages to an MLE:
MLM_CHARFROMLINE Returns the offset to a line.
MLM_CLEAR Clears selected text in an MLE.
MLM_COPY Copies selected text from an MLE to the clipboard.
MLM_CUT Cuts sclected text from an MLE to the clipboard.
MLM_DELETE Deletes text from an MLE.
MLM_DISABLEREFRESH Disables refresh for an MLE.
MLM_ENABLEREFRESH Enables screen refresh for an MLE.
MLM_EXPORT Exports text from an MLE.
MLM_FORMAT Sets format for MLE import/export.
MLM_IMPORT Imports text into an MLE.
MLM_INSERT Inserts text into an MLE. ,
MLM_LINEFROMCHAR Determines the line number of an MLE character.
MLM_PASTE Copies the clipboard contents to an MLE.
MLM_QUERYBACKCOLOR Retrieves the background color of an MLE.

Chapter 2: Overviews 49

R R e R D R R S S e Al P B B R S R R R R R

MLM_QUERYCHANGED Determines if text in an MLE has changed.
MLM_QUERYFIRSTCHAR Retrieves the offset of the first visible character.
MLM_QUERYFONT Retrieves current MLE font information.

MLM_QUERYFORMATLINELENGTH Retrieves the formatted MLE line
length. .

MLM_QUERYFORMATRECT Retrieves the dimensions and mode of an
MLE.

MLM_QUERYFORMATTEXTLENGTH Retrieves the length of formatted
MLE text.

MLM_QUERYIMPORTEXPORT Retrieves values for the import/export
buffer.

MLM_QUERYLINECOUNT Retrieves the number of lines in an MLE.
MLM_QUERYLINELENGTH Retrieves the length of an MLE line.
MLM_QUERYREADONLY Determines MLE read-only mode.
MLM_QUERYSEL Retrieves the selection position in an MLE.
MLM_QUERYSELTEXT Retrieves selected text from an MLE.
MLM_QUERYTABSTOP Retrieves the size of an MLE tab-stop.
MLM_QUERYTEXTCOLOR Retrieves MLE text-color information.
MLM_QUERYTEXTLENGTH Retrieves the length of MLE text.
MLM_QUERYTEXTLIMIT Retrieves the text limit of an MLE.
MLM_QUERYUNDO Determines if an MLE can undo an operation.
MLM_QUERYWRAP Retrieves the state of word-wrap in an MLE.
MLM_RESETUNDO Resets (clears) the MLE undo flag.
MLM_SEARCH Searches an MLE.

MLM_SETBACKCOLOR Sets the background color of an MLE.
MLM_SETCHANGED Sets the MLE changed flag.
MLM_SETFIRSTCHAR Sets the first visible character.
MLM_SETFONT Sets MLE font information.
MLM_SETFORMATRECT Sets the format rectangle and mode of an MLE.
MLM_SETIMPORTEXPORT Sets the MLE import/export buffer.
MLM_SETREADONLY Sets/clears the MLE read-only state.
MLM_SETSEL Selects text within an MLE.

MLM_SETTABSTOP Sets the size of an MLE tab-stop.
MLM_SETTEXTCOLOR Sets the text color of an MLE.

50 Microsoft Operating System/2 Programmer’s Reference, Vol. 4
e B e e e N R R R R S R N S R sy

MLM_SETTEXTLIMIT Sets the text limit for an MLE.
MLM_SETWRAP Sets/resets MLE word-wrap.
MLM_UNDO Undoes an MLE operation.

2.7.3.3 Messages Sent from an MLE

Messages sent from an MLE to an owner window notify the owner of events in
the MLE, such as when the user edits text. An MLE sends the following mes-
sage to an owner window: ,

WM_CONTROL Sent to the owner window of the MLE when a user event
occurs in the MLE. This message contains one of the following notification con-
trol codes, specifying what event occurred.

Code Description

MLN_CHANGE . Indicates that text in an MLE has
changed.

MLN_CLPBDFAIL Indicates that a clipboard operation
failed.

MLN_HSCROLL Indicates a horizontal MLE scroll
event.

MLN_KILLFOCUS ‘Indicates an MLE has lost the input
focus.

MLN_MARGIN Indicates the mouse has moved over
an MLE margin.

MLN_MEMERROR Indicates insufficient memory available
for an MLE.

MLN_OVERFLOW Indicates the MLE operation caused

; an overflow.
MLN_PIXHORZOVERFLOW Indicates an MLE horizontal overflow.
MLN_PIXVERTOVERFLOW Indicates an MLE vertical overflow.

MLN_SEARCHPAUSE Determines the status of a search ini-
tiated by an MLM_SEARCH message.

MLN_SETFOCUS Indicates the MLE receives the input
focus.

MLN_TEXTOVERFLOW Indicates an MLE text-limit overflow.

MLN_UNDOOVERFLOW Indicates a text change cannot be
undone.

MLN_VSCROLL Indicates an MLE vertical scroll event.

Chapter

3

B g R S e R e T R e B e SRR R AT R

Functions and Messages
Directory

CT BN 0115 ¢ T 1 101103 o AP 53
3.1.1 Function GroUPS...ccceeieeereereerieineeneensnesncensienasens 53
3.12 Message GIOUPS civvveereeeeneereeeieraeiaceesneensecesansnns 54
IV D)3 (v 10} o AU 55

3.3 Functions and MeSSageseeeerrnrerienrneeereereeecsararasanns 56

Chapter 3: Functions and Messages Directory 53
O R e R B e S S S SR S S R R S e

3.1 Introduction

This chapter describes MS OS/2 system functions and messages that are new or
modified for MS OS/2, version 1.2. These functions provide features, such as
multiple-line entry fields, extended attributes for disk files, and application help.
The functions and messages represent distinct functional groups.

3.1.1 Function Groups

Programs use the function groups described in the following list to carry out
specific tasks.

Function group Usage

Dev Use the Presentation Manager device (Dev) func-
tions to open and control Presentation Manager
device drivers. These functions let you create
device contexts that you can associate with a
presentation space and use with the Gpi func-
tions to carry out device-independent graphics for
displays, printers, and plotters.

Dos Use the disk operating system (Dos) functions in
full-screen and Presentation Manager sessions to
read from and write to disk files, to allocate
memory, to start threads and processes, to com-
municate with other processes, and to access
your computer’s devices directly. Most functions
in this group can be used in Presentation
Manager applications.

Gpi Use the graphics programming interface (Gpi)
functions to create graphics output for displays,
printers, and other output devices. The Gpi func-
tions give you a full range of graphics primitives,
from lines to complex curves to bitmaps. You
choose the attributes for the primitives, such as
color, line width, and pattern, and then draw
lines, text, and shapes. The retained-graphics
capability lets you save the drawing in segments
and build complex pictures by drawing a chain of
segments.

Kbd Use the keyboard (Kbd) functions in full-screen
sessions to read keystrokes from the keyboard,
to manage multiple logical keyboards, and to
change code pages and translation tables.
Because the Presentation Manager session pro-
vides its own keyboard support, Kbd functions
are not needed in Presentation Manager applica-
tions.

54 MS 0S/2 Programmer’s Reference, Vol. 4
S T B R R R R R St

Function group

Usage

Mou

Pic

Prf

Vio

Win

3.1.2 Message Groups

Use the mouse (Mou) functions in full-screen
sessions to read mouse input from the mouse-
event queue, to set the mouse-pointer shape, and
to manage the mouse for all processes in a ses-
sion. As with the keyboard, the Presentation
Manager session provides its own mouse support,
50 Mou functions are not needed in Presentation
Manager applications.

Use the picture-file (Pic) functions when working
with picture files, typically either metafiles or
interchange files.

Use the Profile Manager (Prf) functions to open
and modify the MS OS/2 initialization files,
0s2.ini and os2sys.ini. The Prf functions let you
store application information in the initialization
files, making that information available to other
applications or to the application itself after it
has been stopped and restarted.

Use the video input-and-output (Vio) functions in
full-screen sessions to write characters and char-
acter attributes to the screen, to create pop-up
windows for messages, to change the video
modes, and to access physical video memory.
Vio functions can also be used in advanced
video-input-and-output (AVIO) applications for
the Presentation Manager session to write charac-
ters and character attributes in a window. Most
Presentation Manager applications, however, use
the graphics programming interface (Gpi) to
write text in a window.

Use the window-manager (Win) functions to
create and manage windows. Presentation
Manager applications use windows as the main
interface with the user. The Win functions let
you create menus, scroll bars, and dialog win-
dows that let the user choose commands and sup-
ply input. Your application receives all mouse
and keyboard input as messages from the mes-
sage queue. The Win functions let you retrieve
messages from the queue and dispatch them to
the window the input is intended for.

MS OS/2 uses system-defined messages that control the operation of applica-
tions. The messages are divided into groups according to the various types of
windows that can interpret and process the messages. Applications use the mes-
sage groups described in the following list to carry out specific tasks.

Chapter 3: Functions and Messages Directory 55
S R TR R S R R R A e e N A PR R S SR e T R R e e e e i

Message group Usage

Combination box Use the combo-box control messages
(CBM_) to control combination boxes.

Entry field Use the entry-field control messages (EM_)
to control entry fields.

Help Manager Use the Help Manager messages (HM_) to
direct Help Manager for your applications.

Multiple-line entry field Use the multiple-line entry-field messages
(MLM._) to control multiple-line entry
fields.

Menus Use the menu messages (MM_) to control
menus and menu items.

Scroll bar Usc the scroll-bar messages (SBM_) to con-
trol scroll bars and sliders.

Title bar Use the title-bar messages (TBM_) to con-
trol title bars.

General Use the general window messages (WM_) to
control the operation of windows of any
window class. For most general window
messages, the system sends the message to
the window procedure of the given window.
These messages can represent input from
the keyboard, mouse, or timer. Some mes-
sages are requests from the system to the
window procedure for information, or they
are actions to be taken. Other messages
contain information that the window pro-
cedure can use or save for processing later.

MS OS/2 uses general window messages
when creating, destroying, moving, sizing,
and activating windows. It also uses these
messages for all input to the window,
whether the input is from devices, such as
the keyboard and mouse, or through other
windows, such as dialogs and menus.

3.2 Directory

The remainder of this chapter is a directory that gives complete syntax, purpose,
and parameter descriptions for MS OS/2, version 1.2, functions and messages.
The types, macros, and structures used by a function are given with the func-
tion, and they are described more fully in Chapter 4, “Types, Macros, Struc-
tures.” You will notice the word New, Change, or Correction on the right side of
the line that contains the function or message name. This heading tells you
whether that particular function or message is new to MS OS/2, version 1.2;
changed, or updated, from MS OS/2, version 1.1; or contains a correction to an
error that appeared in MS OS/2, version 1.1 documentation.

56 MS 0S/2 Programmer’s Reference, Vol. 4
T e e S S P B S e N e e B e R R e S e R

Some of the function and message descriptions in this chapter include examples.
The examples show how to use the functions and messages to accomplish simple
tasks. In nearly all cases, the examples are code fragments, not complete pro-
grams. The code fragment is intended to show the context in which the function
or message can be used, but often assumes that variables, structures, and con-
stants used in the example have been defined and/or initialized. Also, a code
fragment may use comments to represent a task instead of giving actual state-
ments.

Although the examples are not complete, you can still use them in your pro-
grams if you take the following steps:
B Include the o0s2.h file in your program.

B Define the appropriate include constants for the functions, structures,
and constants used in the example.

B Define and initialize all variables.
B Replace comments that represent tasks with appropriate statements.
B Check return values for errors and take appropriate actions.

3.3 Functions and Messages

The following list, in alphabetical order, details the new, changed, and corrected
functions and messages for MS OS/2, version 1.2.

CBM_SHOWLIST 57

B CBM_HILITE New
CBM_HILITE
mpl = MPEROMSHORT ((USHORT) fHilite); /* highlight flag LAy
mp2 = OL; /* not used, must be zero */

Parameters

Return Value

An application sends a CBM_HILITE message to set the highlighting state of
the drop-down list button in a combination box that was created with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

fHilite Low word of mp1. Specifies whether to highlight or remove highlighting
from the drop-down list button. If this parameter is TRUE, the system highlights
the button; if it is FALSE, the system removes the highlighting.

The return value is TRUE if the state of the drop-down list button changes or
FALSE if it does not.

Return Value

See Also

B CBM_ISLISTSHOWING New
CBM_ISLISTSHOWING
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */
An application sends a CBM_ISLISTSHOWING message to determine whether
the list box in a combination box is currently displayed.
Parameters This message does.not use any parameters.
Return Value The return value is TRUE if the list box is displayed or FALSE if it is not.
See Also CBM_SHOWLIST
H CBM_SHOWLIST New
CBM_SHOWLIST"
mpl = MPFROMSHORT ((USHORT) fShow); /* show flag */
mp2 = OL; /* not used, must be zero */
An application sends a CBM_SHOWLIST message to show or hide the list box
in a combination box.
Parameters fShow Low word of mpl. Specifies whether to show or hide the list box. If

this parameter is TRUE, the list box is shown; otherwise, it is hidden.

The return value is TRUE if the state of the list box changes or FALSE if it
does not change.

CBM_ISLISTSHOWING

58 CBN_EFCHANGE

CBN_EFCHANGE : New
WM_CONTROL

id = (USHORT) SHORT1FROMMP (mpl); /* control-window ID */
usNotifyCode = CBN_EFCHANGE;

The CBN_EFCHANGE notification message is sent when the text in a
combination-box entry field changes.

Parameters id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to CBN_EFCHANGE.

See Also WM_CONTROL

CBN_EFSCROLL New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl) ; /* control-window ID */
usNotifyCode = CBN_EFSCROLL;
The CBN_EFSCROLL notification message is sent when a combination-box
entry field is scrolled.

Parameters id Low word of mpI. Identifies the control window.

Return Value

usNotifyCode High word of mpI. Set to CBN_EFSCROLL.

An application should return zero if it processes this message.

See Also WM_CONTROL

CBN_ENTER New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl) ; /* control-window ID */
usNotifyCode = CBN_ENTER;
The CBN_ENTER notification message is sent when the user presses the ENTER
key or double-clicks a list item in a combination box.

Parameters id Low word of mpl. Identifies the control window.

Return Value
See Also

usNotifyCode High word of mpl. Set to CBN_ENTER.

An application should return zero if it processes this message.

WM_CONTROL

CBN_MEMERROR 59

B CBN_LBSCROLL New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl) ; /* control-window ID #*/

Parameters

Return Value

See Also

usNotifyCode = CBN_LBSCROLL;

The CBN_LBSCROLL notification message is sent when a combination-box list
is scrolled. '

id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to CBN_LBSCROLL.

An application should return zero if it processes this message.

WM_CONTROL

B CBN_LBSELECT New

Parameters

Return Value

WM_CONTROL
id = (USHORT) SHORT1EROMMP (mpl); /* control-window ID */
usNotifyCode = CBN_LBSELECT;

The CBN_LBSELECT notification message is sent when a combination-box list
item is selected.

id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to CBN_LBSELECT.

An application should return zero if it processes this message.

See Also WM_CONTROL
N CBN_MEMERROR New

WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl):; /* control-window ID */
usNotifyCode = CBN_MEMERROR;
The CBN_MEMERROR notification message is sent when a combination-box
cannot allocate the amount of memory necessary.

Parameters id Low word of mpl. Identifies the control window.

Return Value
See Also

usNotifyCode High word of mpl. Set to CBN_.MEMERROR.
An application should return zero if it processes this message.

WM_CONTROL

60 CBN_SHOWLIST

CBN_SHOWLIST New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl); /* control-window ID */

usNotifyCode = CBN_SHOWLIST;

The CBN_SHOWLIST notification message is sent when the combination-box
list is shown (dropped down).

Parameters id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to CBN_SHOWLIST.

Return Value An application should return zero if it processes this message.

See Also WM_CONTROL

DevEscape Change

LONG DevEscape (hdc, cmdCode, cbinData, pbinData, pcbQutData, pbOutData)

HDC hdc; /= device-context handle »/

LONG cmdCode; /= escape function to perform s/

'LONG cbinData; /= size of input buffer /

PBYTE pbinData; /~ pointer to input buffer »/

PLONG pcbOutData; /= pointer to buffer for bytes in output buffer »/

PBYTE pbOutData; /= pointer to output-data buffer s/

The DevEscape function allows applications to access facilities of a device not
otherwise available through the API. Because calls to escape functions are gen-
erally sent to the device driver, the device driver must be able to use them.

Parameters hdc Identifies the device context.

cmdCode Specifies the escape function to perform. The following escape
functions are currently defined:

DEVESC_ABORTDOC
DEVESC_BREAK_EXTRA
DEVESC_CHAR_EXTRA
DEVESC_DRAFTMODE
DEVESC_ENDDOC
DEVESC_FLUSHOUTPUT
DEVESC_GETSCALINGFACTOR
DEVESC_NEWFRAME
DEVESC_NEXTBAND
DEVESC_QUERYESCSUPPORT
DEVESC_QUERYVIOCELLSIZES
DEVESC_RAWDATA
DEVESC_STARTDOC

Return Value

Errors

Comments

DevEscape 61

Devices can define additional escape functions by using other cmdCode values in
the following ranges:

Range Meaning

32768-40959 Not stored in a metafile and not recorded.
40960-49151 Stored in a metafile only.

49152~57343 Stored in a metafile and recorded.
57344-65535 Recorded only.

cbInData Specifies the number of bytes of data in the buffer pointed to by the
pbinData parameter.

pbInData Points to the buffer that contains the input data required for the
escape function.

pcbOutData Points to the buffer that receives the number of bytes of data in
the buffer pointed by the ppbOutData parameter. If data is returned in the pbOut-
Data parameter, pcbOutData is updated to the number of bytes of data returned.

pbOutData Points to the buffer that receives the output from the escape func-
tion. If this parameter is NULL, no data is returned.

The return value is DEV_OK if the function is successful, DEVESC_ERROR if
an error occurs, or DEVESC_NOTIMPLEMENTED if the escape function is
not implemented for the specified code.

You can use the WinGetLastError function to retrieve the error value, which
may be one of the following values:

PMERR_ESC_CODE_NOT_SUPPORTED
PMERR_INV_ESCAPE_DATA
PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT

The standard escape functions and the corresponding DevEscape parameters are
listed in the following paragraphs.

The DEVESC_BREAK_EXTRA escape defines extra width to add to the break
character when that character is transmitted to the device specified by the hdc
parameter. The extra width is used in aligning text. The GpiQueryFonts function
can be used to determine the break character used in a specific font.

For DEVESC_BREAK_EXTRA, the DevEscape parameters contain the follow-
ing information:
Parameter Description

cbinData Specifies the number of bytes pointed to by the
pbInData parameter. This parameter must be either
zero (for no extra spacing) or 4 (for extra spacing).

pbInData Points to the fixed-point number (FIXED) that
specifies the amount of extra width (in world
coordinate units) to add to the break character.

pcbQutData Not used; can be NULL.
pbOutData Not used; can be zero.

62

DevEscape

Extra spacing is initialized to zero whenever a display context is opened. Any
change made to the extra spacing remains in effect until either the display con-
text is closed or a new change to the extra spacing is made.

The DEVESC_CHAR_EXTRA escape defines extra width to add to all charac-
ters when they are transmitted to the device specified by the hdc parameter. The
extra width is used in aligning text.

For DEVESC_CHAR_EXTRA, the DevEscape parameters contain the follow-
ing information:

Parameter Description

cbinData Specifies the number of bytes pointed to by the
pbInData parameter. This parameter must be either
zero (for no extra spacing) or 4 (for extra spacing).

pbinData Points to the fixed-point number (FIXED) that
specifies the amount of extra width to be added.

pcbOutData Not used; can be NULL.

pbOutData Not used; can be zero.

Extra spacing is initialized to zero whenever a display context is opened. Any
change made to the extra spacing remains in effect until either the display con-
text is closed or a new change to the extra spacing is made.

The extra width added to the break character is the sum of the break-extra and
character-extra amounts. Providing a width vector to GpiCharStringPos or Gpi-
QueryCharStringPosAt operates in addition to the extra spacing feature. Extra
spacing does not override kerning; extra spacing adjustments and kerning adjust-
ments simply sum.

Text drawn in a path is not affected by the extra spacing. This means that out-
lined text and text used for a clipping region are displayed as if the extra spacing
fields were set to zero.

The DEVESC_QUERYESCSUPPORT escape determines whether the device
driver has implemented a particular escape. The return value gives the result.
This escape is not stored in a metafile or recorded.

For DEVESC_QUERYESCSUPPORT, the DevEscape parameters contain the
following information:

Parameter Description

cbInData Specifies the number of bytes pointed to by the
pbInData parameter.

pbInData Specifies the escape-code value of the escape function
to be checked.

pcbOutData Not used; can be NULL.

pbOutData Not used; can be zero.

DevEscape 63

The DEVESC_QUERYVIOCELLSIZES escape returns the cell sizes supported
by the device identified by the hdc parameter.

For DEVESC_QUERYVIOCELLSIZES, the DevEscape parameters contain
the following information:

Parameter Description

cbIlnData Not used; can be zero.

pbInData Not used; can be NULL.

pcbOutData Points to the number of bytes of data pointed to by

the pbOutData parameter. Upon return, this parame-
ter contains to the number of bytes returned.

pbOutData Points to the buffer that receives the output from
this escape function. The output is returned in a
VIOSIZECOUNT structure and an array of
VIOFONTCELLSIZE structures. These structures
have the following forms:
typedef struct _VIOSIZECOUNT {
LONG maxcount;

LONG count;
} VIOSIZECOUNT;

typedef struct _VIOFONTCELLSIZE {
LONG cx;
LONG cy:
} VIOEONTCELLSIZE;

The number of VIOFONTCELLSIZE structures
returned is dependent on the value of the count field
of the VIOSIZECOUNT structure.

For a full description, see Chapter 4, “Types, Macros,
Structures.”

The DEVESC_GETSCALINGFACTOR escape returns the scaling factors for
the x and y axes of a printing device. For each scaling factor, an exponent of two
is put in the pbOutData parameter. For example, the value 3 is used if the scal-
ing factor is 8. Scaling factors are used by devices that cannot support graphics
at the same resolution as the device resolution.

For DEVESC_GETSCALINGFACTOR, the DevEscape parameters contain
the following information:

Parameter Description

cbinData Not used; can be zero.

pbinData Not used; can be NULL.

pcbOutData Points to the number of bytes of data pointed to by

the pbOutData parameter. Upon return, this parame-
ter contains the number of bytes returned.

pbOutData Points to the buffer that receives the output from this
escape. A structure is returned that specifies the scal-
ing factors for the x and y axes.

64

DevEscape

The DEVESC_STARTDOC escape indicates the start of a new print job. All
subsequent output to the device context, up to the next DEVESC_ENDDOC
escape, is spooled under the same job.

For DEVESC_STARTDOC, the DevEscape parameters contain the following
information:

Parameter . Description

cbInData Specifies the number of bytes pointed to by the
pbInData parameter.

pbInData Points to the null-terminated string that specifies the
name of the document.

pecbOutData Not used; can be NULL.

pbOutData Not used; can be NULL.

The DEVESC_ENDDOC escape ends a print job started by the
DEVESC_STARTDOC escape.

For DEVESC_ENDDOC, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Not used; can be zero.

pbInData Not used; can be NULL.

pcbOutData Points to the buffer that specifies the number of char-

acters in the string pointed to by the pbOutData
parameter. This parameter should be NULL if the
number of characters is zero.

pbOutData Points to the unsigned 16-bit integer that specifies the
job identifier if a spooler print job was created.

The DEVESC_NEXTBAND escape allows an application to signal that it has
finished writing to a “band,” or rectangle. The coordinates of the next band are
returned. This escape is used by applications that perform handle banding (“for-
printing”) themselves.

For DEVESC_NEXTBAND, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Not used; can be zero.

pbInData Not used; can be NULL.

pcbOutData Points to the number of bytes of data pointed to by

the pbOutData parameter. Upon return, this parame-
ter contains the number of bytes returned.

pbOutData Points to the address of the buffer that receives the
output from this escape. A structure is returned that
specifies the device coordinates of the next band.

DevEscape 65

The DEVESC_ABORTDOC escape stops the current job, erasing every-
thing written by the application to the device since the last call to the
DEVESC_ENDDOC escape function.

For DEVESC_ABORTDOC, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Not used; can be zero.
pbinData Not used; can be NULL.
pcbOutData Not used; can be NULL.
pbOutData Not used; can be NULL.

The DEVESC_NEWFRAME escape allows an application to signal when it has
finished writing to a page. This escape is typically used with a printer device to
advance to a new page. Using this escape is similar to processing the GpiErase
function for a screen device context.

For DEVESC_NEWFRAME, the DevEscape parameters contain the following
information:

Parameter Description

cblnData Not used; can be zero.
pbInData Not used; can be NULL.
pcbOutData Not used; can be NULL.
pbOutData Not used; can be NULL.

The DEVESC_DRAFTMODE escape turns draft mode on or off. Turning draft
mode on instructs the device driver to print faster and, if necessary, with lower
quality. You can change the draft mode only at page boundaries—for example,
after a DEVESC_NEWFRAME escape.

For DEVESC_DRAFTMODE, the DevEscape parameters contain the following
information:

Parameter Description

cbilnData Specifies the number of bytes pointed to by the
pbInData parameter.

pbinData Points to the signed 16-bit integer that specifies the
draft mode. This value is 1 if draft mode is on and
zero if draft mode is off.

pcbQutData Not used; can be NULL. '
pbOutData Not used; can be NULL.

The DEVESC_FLUSHOUTPUT escape removes any output from the device
buffer.

For DEVESC_FLUSHOUTPUT, the DevEscape parameters contain the follow-
ing information:

Parameter Description

cbInData Not used; can be zero.
pbInData Not used; can be NULL.

66 DevEscape

Parameter Description
pcbOutData Not used; can be NULL.
pbOutData Not used; can be NULL.

The DEVESC_RAWDATA escape allows an application to send data directly
to a device driver. For example, in the case of a printer device driver, the data
could be a printer data stream.

If raw data is mixed with other data—for example, Gpi data—being sent to the
same page of a device context, the results are unpredictable and depend upon
the action taken by the Presentation Manager device driver, which, in this case,
might ignore the GPI data completely. In general, you should send raw data
either to a separate page, using the DEVESC_NEWFRAME escape to obtain a
new page, or to a separate document, using the DEVESC_STARTDOC and
DEVESC_ENDDOC escapes to create a new document.

For DEVESC_RAWDATA, the DevEscape parameiérs contain the following
information: '

Parameter Description
cbInData Specifies the number of bytes pointed to by the
. pbInData parameter.
pbInData Points to the raw data.
pcbOutData Not used; can be NULL.
pbOutData Not used; can be NULL.
See Also GpiErase
Changes The escape functions DEVESC_BREAK_EXTRA, DEVESC_CHAR_EXTRA,
and DEVESC_QUERYVIOCELLSIZES have been added.
The DEVESC_STARTDOC and DEVESC_ENDDQC escapes indicate the start
and end of a print job.
DevPostDeviceModes Correction
LONG DevPostDeviceModes(hab, pbDriverData, pszDriverName, achDeviceName, pszName, flOptions)
HAB hab; /= anchor-block handle «/
PDRIVDATA pbDriverData; /« pointer to buffer for data »/
PSZ pszDriverName; /« pointer to string for driver name of
PSZ achDeviceName; /= pointer to device name o/

PSZ pszName;
ULONG fIOptions;

/« pointer to string for output device name »/
/~ specifies various options »/

The DevPostDeviceModes function causes a device driver to post a dialog box
so the user can set options for the device (resolution, font cartridges, and so
on).

The application can call this function first with a NULL data pointer to find how
much storage is needed for the data buffer. It then calls the function a second

Parameters

Return Value

DevPostDeviceModes 67

time to have the buffer filled with data. You can then pass the returned data to
the DevOpenDC function as the buffer data pointed to by the pbDriverData
parameter.

hab Identifies the anchor block.

pbDriverData Points to the data buffer that receives device data defined by
the driver. If this parameter is NULL, the function returns the required buffer
size. The format of the data is the same as for the pbData parameter of the
DevOpenDC function.

pszDriverName Points to the null-terminated string that contains the name of
the device driver.

achDeviceName Points to the null-terminated string that identifies the partic-
ular device (for example, its model number). This string must not exceed 32
bytes. Valid names are defined by device drivers.

pszName Points to the null-terminated string that contains the printer name.

fiOptions Specifies whether the function should display a dialog box that
allows the user to change job properties, display two dialog boxes that allow the
user to change job and printer properties, or simply return the current job pro-
perties. This parameter can be one of the following values:

Value Meaning

DPDMF_POSTJIOBPROP Display a dialog box that allows the user
to change job properties. The default
values for this dialog box are taken from
the PM_SPOOLER_DD section of the
os2.ini file if the pszName parameter
specifies a logical address. If pszName is
NULL, the default values are taken from
the pbDriverData parameter.

DPDMF_CHANGEPROP Display two dialog boxes. The first dialog
box allows the user to change job proper-
ties; the second allows the user to change
printer properties. The default values for
these dialog boxes are taken from the
PM_SPOOLER_DD section of the os2.ini
file. The function returns the new values in
the pbDriverData parameter. The pszName
parameter cannot be NULL when this
option is selected.

DPDMF_QUERYJOBPROP Return the current job properties.

The return value, if the pbDriverData parameter is NULL, is the size (in bytes)
required for the data buffer, DPDM_NONE if there are no settable options, or
DPDM_ERROR if an error occurs.

The return value, if pbDriverData is not NULL, is DEV_OK if the function is
successful, DPDM_NONE if there is no device mode, or DPDM_ERROR if an
error occurs.

68 DevPostDeviceModes

Errors

See Also
Corrections

DevQueryCaps

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_DEVICE_NAME
PMERR_INV_DRIVER_DATA
PMERR_INV_DRIVER_NAME
PMERR_INV_LOGICAL_ADDRESS

DevOpenDC

The sixth parameter (flOptions) was omitted in the previous description of the
function.

HDC hdec;

Correction
BOOL DevQueryCaps(hdc, /Startitem, citems, alltems)
/= device-context handle =/
/x first item to be returned o/

LONG /Startitem;
LONG cltems;
PLONG alltems;

Parameters

Return Value

Errors

Comments

/« number of items to be returned »/
/= array for device characteristics »/

The DevQueryCaps function queries the characteristics of the specified device.

hdc Identifies the device context.

IStartitem Specifies the first item of information to be returned in the array.
cltems Specifies the number of items to be returned in the array.

alltems Points to an array of device characteristics, starting with the item
specified by the IStartitern parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_HDC
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_QUERY_ELEMENT_NO

The following are possible values for the alltems parameter:

CAPS_FAMILY Specifies the device type. These values are the same as the
values for the fype parameter in the DevOpenDC function.

CAPS_TIO_CAPS Specifies the device input/output capability. The possible
values are as follows:

Value Meaning
CAPS_IO_DUMMY Dummy device
CAPS_IO_SUPPORTS_OP Output
CAPS_IO_SUPPORTS._IP Input

CAPS_IO_SUPPORTS_IO Output and input

DevQueryCaps 69

CAPS_TECHNOLOGY Specifies the technology. The possible values are as
follows:

Value Meaning
CAPS_TECH_UNKNOWN Unknown (for example, metafile)
CAPS_TECH_VECTOR_PLOTTER Vector plotter
CAPS_.TECH_RASTER_DISPLAY Raster display
CAPS_TECH_RASTER_PRINTER Raster printer
CAPS_TECH_RASTER_CAMERA Raster camera
CAPS_TECH_POSTSCRIPT PostScript printer

CAPS_DRIVER_VERSION Specifies the device-driver version number.

CAPS_HEIGHT Specifies the media depth (for a full-screen maximized win-
dow on a display) in pels. (For a plotter, a pel is defined as the smallest possible
displacement of the pen and can be smaller than a pen width.)

CAPS_WIDTH Specifies the media width (for a full-screen, maximized window
for displays) in pels.

CAPS_HEIGHT_IN_.CHARS Specifies the media depth (for a full-screen,
maximized window for displays) in character rows, for Vio calls only.

CAPS_WIDTH_IN_CHARS Specifies the media width (for a full-screen, max-
imized window for displays) in character columns, for Vio calls only.

CAPS_VERTICAL_RESOLUTION Specifies the vertical resolution (in pels
per meter) of the device.

CAPS_HORIZONTAL_RESOLUTION Specifies the horizontal resolution (in
pels per meter) of the device.

CAPS_CHAR_HEIGHT Specifies the default height (in pels) of the character
box.

CAPS_CHAR_WIDTH Specifies the default width (in pels) of the character
box.

CAPS_SMALL_CHAR_HEIGHT Specifies the default height (in pels) of the
small character box. This number is zero if there is only one size of the charac-
ter box.

CAPS_SMALL_CHAR_WIDTH Specifies the default width (in pels) of the-
small character box. This number is zero if there is only one size of the charac-
ter box.

CAPS_COLORS Specifies the number of distinct colors supported at the same
time, including reset (gray-scales count as distinct colors). If loadable color
tables are supported, this is the number of entries in the device color table. For
plotters, the value returned is the number of pens plus one (for the background).

CAPS_MOUSE_BUTTONS Specifies the number of mouse or tablet buttons
that are available. A returned value of zero indicates that there are no mouse or
tablet buttons available. i

70 DevQueryCaps

CAPS_FOREGROUND_MIX_SUPPORT Specifies the foreground-mix sup-
port. The possible values are as follows:

Value Meaning
CAPS_FM_OR OR
CAPS_FM_OVERPAINT Overpaint
CAPS_FM_XOR XOR
CAPS_FM_LEAVEALONE Leave alone
CAPS_FM_AND AND
CAPS_FM_GENERAL_BOOLEAN Mixes 7 through 17

The value returned is the sum of the values appropriate to the mixes supported.
A device capable of supporting the OR mix mode must, as a minimum, return 1
+ 2 + 16 = 19, signifying support for the mandatory mix modes OR, overpaint,
and “leave-alone.” Note that these numbers correspond to the decimal represen-
tation of a bit string that is seven bits long, with each bit set to 1 if the appropri-
ate mode is supported.

CAPS_BACKGROUND_MIX_SUPPORT Specifies the background mix sup-
port. The possible values are as follows:

Value Meaning
CAPS_BM_OR OR
CAPS_BM_OVERPAINT Overpaint
CAPS_BM_XOR XOR
CAPS_BM_.LEAVEALONE Leave alone

The value returned is the sum of the values appropriate to the mixes supported.
A device must, as a minimum, return 2 + 16 = 18 signifying support for the man-
datory background mixes overpaint and leave alone. Note that these numbers
correspond to the decimal representation of a bit string that is five bits long,
with each bit set to 1 if the appropriate mode is supported.

CAPS_LOADABLE_SYMBOL_SETS Specifies the number of fonts that may
be loaded for Vio.

CAPS_WINDOW_BYTE_ALIGNMENT Specifies whether the client area of
Vio windows should be byte-aligned. The possible values are as follows:
Value Meaning

CAPS_BYTE_ALIGN_REQUIRED Must be byte-aligned.

CAPS_BYTE_ALIGN_RECOMMENDED More efficient if byte-aligned, but
not required.

CAPS_BYTE_ALIGN_NOT_REQUIRED Does not matter whether byte-
aligned.

CAPS_BITMAP_FORMATS Specifies the number of bitmap formats sup-
ported by the device.

DevQueryCaps 71

CAPS_RASTER_CAPS Specifies the raster-operations capability of the
device. The possible values are as follows:

Value Meaning
CAPS_RASTER_BITBLT BitBIt supported
CAPS_RASTER_BANDING Banding supported
CAPS_RASTER_BITBLT..SCALING Scaling supported
CAPS_RASTER_SET_PEL Set PEL support

CAPS_MARKER_WIDTH Specifies the default width (in pels) of the marker
box.

CAPS_MARKER_HEIGHT Specifies the default depth (in pels) of the marker
box. :

CAPS_DEVICE_FONTS Specifies the number of device-specific fonts.

CAPS_GRAPHICS_SUBSET Specifies the graphics-drawing subset supported
(3 indicates GOCA DR/3).

CAPS_GRAPHICS_VERSION Specifies the graphics-architecture version sup-
ported (1 indicates version 1).

CAPS_GRAPHICS_VECTOR_SUBSET Specifies the graphics-vector-drawing
subset supported (2 indicates GOCA VS/2).

CAPS_GRAPHICS_CHAR_WIDTH Specifies the default Gpi character-box
width (in pels).

CAPS_GRAPHICS_CHAR_HEIGHT Specifies the default Gpi character-box
height (in pels).

CAPS_DEVICE_WINDOWING Specifies the support for device windows.
This value may be CAPS_DEV_WINDOWING_SUPPORT if the device sup-
ports windowing.

CAPS_ADDITIONAL_GRAPHICS Specifies additional graphics support.
The possible values are as follows:

Value Meaning
CAPS_GRAPHICS_KERNING_SUPPORT The device supports kerning.
CAPS_FONT_OUTLINE_DEFAULT Outline font is the default.
CAPS_FONT_IMAGE_DEFAULT Font image is the default.

CAPS_SCALED_DEFAULT_MARKERS Scaled default markers.

CAPS_RESERVED Specifies the maximum number of distinct colors available
at one time.

CAPS_PHYS_COLORS Specifies the maximum number of distinct colors that
can be specified on the device.

CAPS_COLOR_INDEX Specifies the maximum logical-color-table index sup-
ported for the device. This value must be at least 7. For the EGA and VGA
device drivers, the value is 63.

CAPS_COLOR_PLANES Specifies the number of color planes.

CAPS_COLOR_BITCOUNT Specifies the number of adjacent color bits for
each pel (within one plane).

72 DevQueryCaps

CAPS_COLOR_TABLE_SUPPORT Specifies the support for loadable color
tables. It can be one of the following values:

Value Meaning

CAPS_COLTABL_RGB_8 Set if the RGB color table can be
loaded, with a minimum support
of 8 bits each for red, green, and
blue.

CAPS_COLTABLE_RGB_8_PLUS Set if a color table with otfler
than 8 bits for each primary color
can be loaded.

CAPS_COLTABLE_TRUE_MIX Set if true mixing occurs when the
' logical color table has been real-

ized, providing that the size of the
logical color table is not greater

than the number of distinct colors

supported (see CAPS_COLORS).

CAPS_COLTABL_REALIZE Set if a loaded color table can be
realized. ’
See Also DevOpenDC
Changes DevQueryCaps can also retrieve information about colors by using the following
constants: '

CAPS_COLOR_BITCOUNT
CAPS_COLOR_PLANES
CAPS_COLOR_TABLE_SUPPORT
CAPS_COLTABL_REALIZE
CAPS_COLTABL_RGB_8
CAPS_COLTABLE_RGB_8_PLUS
CAPS_COLTABLE_TRUE_MIX
CAPS_GRAPHICS_CHAR_WIDTH
CAPS_GRAPHICS_CHAR_HEIGHT

B DosAllocHuge Change
USHORT DosAllocHuge (usNumSeg, usPartialSeg, psel, usMaxNumSeg, fsAttr)
USHORT usNumSeg; /= number of segments requested «/
USHORT usPartialSeg; /+ number of bytes in last segment /
PSEL psel; /= pointer to variable for selector allocated «f
USHORT usMaxNumSeg; /= maximum number of segments to reallocate »/
USHORT fsAttr; /= sharable/discardable flags «/

The DosAllocHuge function allocates a huge-memory block. This block consists
of one or more 65,536-byte memory segments and one additional segment of a
specified size.

The DosAllocHuge function allocates the segments and copies the selector of
the first segment to the variable pointed to by the psel parameter. Selectors for

the remaining segments are consecutive and must be computed by using an offset
from the first selector.

Parameters

Return Value

Comments

DosAllocHuge 73

The DosAllocHuge function can specify that segments can be shared by other
processes. If the SEG_GETTABLE flag is used, other processes can gain
access to the shared memory by calling the DosGetSeg function. If the
SEG._GIVEABLE flag is used, the memory can be shared by other processes
after the process allocating the memory has called the DosGiveSeg function. In
both cases, the process allocating the memory must pass the selector to the pro-
cess that will share the memory.

The DosAllocHuge function is a family API function.

usNumSeg Specifies the number of 65,536-byte segments to allocate.

usPartialSeg Specifies the number of bytes in the last segment. This number
can be any value in the range 0 through 65,535. If this value is zero, no addi-
tional segment is allocated.

psel Points to the variable that receives the selector of the first segment.

usMaxNumSeg Specifies the maximum number of segments that can be
specified in any subsequent call to the DosReallocHuge function. If this number
is zero, the memory cannot be reallocated to a size greater than its original size,
but it can be reallocated to a smaller size. .

fsAttr Specifies the segment attributes. This parameter can be one or more of
the following values:

Value Meaning

SEG_DISCARDABLE Creates a discardable, nonsharable segment.
- Once the segment is unlocked, it may be dis-
carded to satisfy another memory-allocation

request.
SEG_GETTABLE Creates a sharable segment that other processes
can retrieve by using the DosGetSeg function.
SEG_GIVEABLE Creates a sharable segment that the owning pro-

cess can give to other processes by using the Dos-
GlveSeg function.

SEG_NONSHARED Creates a nonsharable, nondiscardable segment.
This value cannot be combined with any other
value. .

SEG_SIZEABLE Specifies that a shared segment can be reduced in

size by DosReallocSeg.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_NOT_ENOUGH_MEMORY

Each segment in the huge memory block has a unique selector. The selectors are
consecutive. The psel parameter specifies the value of the first selector; the
remaining selectors can be computed by adding an offset to the first selector one
or more times—that is, once for the second selector, twice for the third, and so
on. The selector offset is a multiple of 2, as specified by the shift count retrieved
by using the DosGetHugeShift function. For example, if the shift count is 2, the
selector offset is 4 (1 << 2). If the selector offset is 4 and the first selector is 6,
then the second selector is 10, the third is 14, and so on.

74 DosAllocHuge

Restrictions

Example

See Also

Changes

Corrections

DosAllocSeg

If necessary, the system will discard an unlocked discardable segment in order to
satisfy another allocation request. The new allocation request can come from
any process, including the process that allocated the segment being discarded.

The DosFreeSeg function frees all segments when passed the first selector. If the
segments were declared as sharable, they will not be discarded from memory
until the last process using them calls DosFreeSeg.

DosAllocHuge can be issued from ring 2, but the segments will be allocated as
ring-3 segments.

In real mode, the following restrictions éipply to the DosAllocHuge function:

B The usPartialSeg parameter is rounded up to the next paragraph (16-byte)
value.

B The actual segment address is copied to the psel parameter.
This example calls the DosAllocHuge function to allocate two segments with 64K

and one segment with 200 bytes. It then converts the first selector to a huge
pointer that can access all the memory allocated.

CHAR huge *pchBuffer;

SEL sel;

DosAllocHuge (2, /* number of segments *
200, /* size of last segment */
&sel, /* address of selector t/
5, /* maximum segments for reallocation %/
SEG_NONSHARED) ; /* sharing flag r/

pchBuffer = MAKEP (sel, O); /* converts selector to pointer */

DosAllocSeg, DosFreeSeg, DosGetHugeShift, DosGetSeg, DosGiveSeg,
DosLockSeg, DosReallocHuge, DosUnlockSeg

SEG_SIZEABLE is a possible value for the fsAttr parameter. It allows a shared
segment to be reduced in size by the DosReallocHuge function.

This request can be issued from ring 2, but the segment will be allocated as a
ring-3 segment.

The example incorrectly requested three 64K segments instead of the two
described.

USHORT DosAllocSeg(usSize, psel, fsAttr)

USHORT usSize;
PSEL psel;
USHORT fsAttr;

Change
/« number of bytes requested »/
/« pointer to variable for selector allocated »/
/« sharable/discardable flags «/

The DosAllocSeg function allocates a memory segment and copies the segment
selector to a specified variable.

The DosAllocSeg function can specify that segments can be shared by other
processes. If the SEG_GETTABLE flag is used, other processes can gain
access to the shared memory by calling the DosGetSeg function. If the
SEG_GIVEABLE flag is used, the memory can be shared by other processes

Parameters

Return Value

Comments

DosAllocSeg 75

after the process allocating the memory has called the DosGiveSeg function.
In both cases, the process allocating the memory must pass the selector to the
process that will share the memory.

The DosAllocSeg function is a family API function.
usSize Specifies the number of bytes to allocate. This number can be any

value in the range 0 through 65,535. If this value is zero, the function allocates
65,536 bytes.

psel Points to the variable that receives the segment selector.

fsAttr Specifies the segment attributes. This parameter can be one or more of
the following values:

Value Meaning

SEG_DISCARDABLE Creates a discardable, nonsharable segment.
Once the segment is unlocked, it may be dis-
carded to satisfy another memory-allocation

request.
SEG_GETTABLE Creates a sharable segment that other processes
can retrieve by using the DosGetSeg function.
SEG._GIVEABLE Creates a sharable segment that the owning pro-

cess can give to other processes by using the Dos-
GlveSeg function.

SEG_NONSHARED Creates a nonsharable, nondiscardable segment.
This value cannot be combined with any other
value.

SEG_SIZEABLE Specifies that a shared segment can be reduced in

size by DosReallocSeg.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following;:

ERROR_NOT_ENOUGH_MEMORY

If the SEG_DISCARDABLE attribute is set, the DosAllocSeg function
automatically locks the segment. The segment cannot be discarded until the
DosUnLockSeg function is called. Before a process accesses an unlocked dis-
cardable segment, it must call the DosLockSeg function to determine whether
the segment has been discarded, and to prevent the segment from being dis-
carded while it is accessing it.

If necessary, the system will discard an unlocked discardable segment in order to
satisfy another allocation request. The new allocation request can come from
any process, including the process that allocated the segment being discarded.

The DosFreeSeg function frees the segment. If the segment was declared as
sharable, it will not be discarded from memory until the last process using it
calls DosFreeSeg.

The DosAllocSeg function can allocate only up to 64K of contiguous memory.
To allocate more than 64K, use the DosAllocHuge function.

DosAllocSeg can be issued from ring 2, but the segment will be allocated as a
ring-3 segment.

76 DosAllocSeg -

Restrictions In real mode, the following restrictions apply to the DosAllocSeg function:

M The usSize parameter is rounded up to the next paragraph (16-byte)
value.

B The actual segment address is copied to the psel parameter.

Example This example calls the DosAllocSeg function to allocate 26,953 bytes. It then
converts the selector to a far pointer that can access the allocated bytes.

PCH pchBuffer:

SEL sel;
DosAllocSeg (26953, /* bytes to allocate */
&sel, /* address of selector Cxy
SEG_NONSHARED) ; /* sharing flag *
pchBuffer = MAKEP (sel, O); /* converts selector to pointer */
See Also DosAllocHuge, DosAllocShrSeg, DosFreeSeg, DosGetSeg, DosGiveSeg,

DosLockSeg, DosReallocSeg, DosUnlockSeg

Changes SEG_SIZEABLE is a possible value for the fsAtr parameter. It allows a shared
segment to be reduced in size by the DosReallocHuge function.

This request can be issued from ring 2, but the segment will be allocated as a
ring-3 segment.

DosAllocShrSeg Change
USHORT DosAllocShrSeg(usSize, pszSegName, psel)

USHORT usSize; /= number of bytes requested o/

PSZ pszSegName; /« pointer to segment name s/

PSEL psel; /« pointer to variable for selector allocated »/

The DosAllocth;Seg function allocates a shared-memory segment and copies the
segment selector to the specified variable.

A shared-memory segment can be accessed by any process that can identify the
segment name. A process can retrieve a selector for the segment by specifying
the name in a call to the DosGetShrSeg function. (Shared segments allocated by
using the DosAllocSeg function must be explicitly given or retrieved by using the
DosGiveSeg and DosGetSeg functions.)

Parameters: usSize Specifies the number of bytes to be allocated. This number can be any
value in the range 0 through 65,535. If this value is zero, the function allocates
65,536 bytes. ' :

pszSegName Points to a null-terminated string that identifies the shared
memory segment. The string must have the following form:

\sharemem\name

The segment name (ﬁame) must have the same format as an MS OS/2 filename
and must be unique. For example, the name \sharemem\public.dat is accept-
able.

psel Points to the variable that receives the segment selector.

Return Value

Comments

Example

See Also

Changes

DosCopy

DosCopy 77

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ALREADY_EXISTS
ERROR_INVALID_NAME
ERROR_NOT_ENOUGH_MEMORY

A process can allocate up to 256 shared segments. The number of segments that
can be allocated may be less due to system usage at the time the allocation
request is made.

The DosFreeSeg function frees the segment. The segment will not be discarded
from memory until the last process using it calls DosFreeSeg.

DosAllocShrSeg can be issued from ring 2, but the shared-memory segment will
be allocated as a ring-3 segment.

This example calls the DosAllocShrSeg function to allocate 26,953 bytes. It gives
the memory the name “\sharemem\abc.mem” so that other processes can use
the memory if they know the name.

SEL sel;

DosAllocShrSeg (26953, /* bytes to allocate */
"\\sharemem\\abc.mem", /* memory name *
&sel) ; /* selector address */

DosAllocHuge, DosAllocSeg, DosFreeSeg, DosGetSeg, DosGetShrSeg,
DosGiveSeg

The number of segments a process can allocate has been increased to approxi-
mately 256 (the actual number varies according to system usage).

The error message ERROR_INVALID_HANDLE has been changed to
ERROR_INVALID_NAME.

New

USHORT DosCopy(pszSrc, pszDest, usOpt, ulReserved)

PSZ pszSrc;

PSZ pszDest;
USHORT usOpt;
ULONG u/Reserved;

Parameters

/« pointer to name of source file «/
/» pointer to name of target file /
/« options »f
/« must be zero »/

The DosCopy function copies a file or subdirectory.

pszSrc Points to the null-terminated string that specifies the file or directory to
copy. This string must be a valid MS OS/2 filename and cannot contain wildcard
characters.

pszDest Points to the null-terminated string that specifies the name of the file,
directory, or device to copy the value of pszSrc to. This string must be a valid
MS OS/2 filename and cannot contain wildcard characters.

78 DosCopy

Return Value

Comments

Example

See Also

usOpt Specifies an option that can be used in the copy operation (it is ignored
if the destination is a device). This parameter can be one of the following values:

Value Meaning

DCPY_EXISTING Copy the source file to the destination file, even if
the destination file already exists. If neither this
option nor the DCPY_APPEND option is
specified, and the file exists, the value
ERROR_ACCESS_DENIED is returned.

DCPY_APPEND Append the data in the source file to the end of
) the destination file. If the destination file does not
exist, a new file is created.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_DIRECTORY
ERROR_DRIVE_LOCKED
ERROR_FILE_NOT_FOUND
ERROR_FILENAME_EXCED_RANGE
ERROR_INSUFFICIENT_DISK_SPACE
ERROR_INVALID_PARAMETER
ERROR_NOT_DOS_DISK
ERROR_PATH_NOT_FOUND
ERROR_SHARING_BUFFER_EXCEEDED
ERROR_SHARING_VIOLATION

The DosCopy function can be used to copy individual files or entire directories
(including any subdirectories within the directory). The source and destination
files can be on different drives.

If an I/O error occurs when a file is being copied, the destination file is deleted
from the destination directory unless the DCPY_APPEND option is specified. In
this case, the destination file is restored to its original size.

The DosCopy function copies the attributes of the source to the destination file,
except when appending to an existing file.

You cannot specify only the drive as the destination. You must give the path on
the drive where the file or directory is to be copied.

This example copies the directory xyz from drive C, including its files and sub-
directories, to the root directory on drive A.

DosCopy ("c:\\xyz", /* source directory */
"a:\\", * destination directory ./
DCPY_EXISTING, /* replaces existing files */
OL) ; /* reserved *

DosMove

M DosCreateSem

DosCreateSem 79

Correction

USHORT DosCreateSem(fExclusive, phssm, pszSemName)

USHORT fExclusive;
PHSYSSEM phssm;
PSZ pszSemName;

Parameters

Return Value

Comments

Example

See Also

Corrections

/« exclusive/nonexclusive ownership flag »/
/« pointer to variable for semaphore handle »/
/~ pointer to semaphore name »/

The DosCreateSem function creates a system semaphore and copies the sema-
phore handle to a variable. A process can use a system semaphore to indicate to
another process a change in the status of a shared resource.

fExclusive Specifies ownership of the semaphore. If this parameter is
CSEM_PRIVATE, the process receives exclusive ownership. If this parameter
is CSEM_PUBLIC, the process does not receive exclusive ownership.

phssm Points to the variable that receives the semaphore handle.

pszSemName Points to a null-terminated string that identifies the semaphore.
The string must have the form \sem\name. The string name, name, must have
the same format as an MS OS/2 filename and must be unique.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ALREADY_EXISTS
ERROR_INVALID_NAME
ERROR_INVALID_PARAMETER
ERROR_TOO_MANY_SEMAPHORES

The process calling DosSemCreate receives exclusive ownership of the sema-
phore if the CSEM_PRIVATE flag is set in the fExclusive parameter. Exclusive
ownership prevents other processes from setting or clearing the semaphore.
Other processes can open the semaphore and wait for it to change status, but
they cannot change its status. Another process can obtain ownership of the
semaphore, however, by calling the DosSemRequest function. If ownership of
the semaphore changed through DosSemRequest, the process that originally
called DosCreateSem no longer has ownership. It cannot change the status of
the semaphore until it regains ownership by calling DosSemRequest.

This example calls DosCreateSem to create a system semaphore, and then calls
DosSemSet to set it and DosSemClear to clear it:
HSYSSEM hssm; /* handle to semaphore */

DosCreateSem (CSEM_PRIVATE, ' /* specifies ownership */
&hssm, * address of handle */

"\\sem\\abc.sem") ; /* name of semaphore */
DosSemSet (hssm) ; /* sets semaphore *
DosSemClear (hssm) ; /* clears semaphore */

DosCloseSem, DosMuxSemWait, DosOpenSem, DosSemClear,
DosSemRequest, DosSemSet, DosSemSetWait, DosSemWait

The comments incorrectly indicated that the sefnaphore is always owned by the
process that calls DosCreateSem. The semaphore is owned by the calling pro-
cess only if the CSEM_PRIVATE flag is set in the fExclusive parameter.

80 DosCreateThread

DosCreateThread Correction
USHORT DosCreateThread(pfnFunction, ptidThread, pbThrdStack)

PFNTHREAD pinFunction(VOID); /= pointer to function »/

PTID ptidThread; /« pointer to variable for thread identifier »/

PBYTE pbThrdStack; /= pointer to thread stack «/

The DosCreateThread function creates a new thread.

Parameters pfnFunction Points to the application-supplied function and represents the
starting address of the thread. For a full description, see the following “Com-
ments” section.

ptidThread Points to the variable that receives the thread identifier.
pbThrdStack Points to the stack of the new thread.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NO_PROC_SLOTS
ERROR_NOT_ENOUGH_MEMORY

Comments When a thread is created, the system makes a far call to the application-supplied
function whose address is specified by the pfnFunction parameter. This function
can include local variables and can call other functions, as long as the thread’s
stack has sufficient space. (The stack can be allocated by using the DosAllocSeg
function or by using a global array.) The address specified by the pbThrdStack
parameter should be the address of the last word in the stack, not the first,
because the stack grows down in memory. The thread terminates when the func-
tion returns or calls the DosExit function.

The pfnFunction parameter points to a function supplied by the program. This
function should have the following form:

VOID FAR FuncName (VOID)
{
>

Because the system passes no arguments, no parameters are defined.

A new thread inherits all files and resources owned by the parent process. Any
thread in a process can open a file, device, pipe, queue, or system semaphore.
Other threads can use the corresponding handles to access the given item.

Note that high-level languages, run-time libraries, and stack checking may
severely limit or eliminate the ability to call the DosCreateThread function
directly from a high-level-language program. For more information, consult the
documentation that came with your language product.

Before calling the DosCreateThread function, set the es register to zero or
assign to it a selector that will remain valid for the duration of the new thread. If
you fail to set the es register to one of these values, the thread may unexpectedly
terminate as a result of a general protection fault.

Example This example sets aside a 2K buffer to be used as stack space for any threads
\ created. The first stack is set at the end of the array. The thread is created by
calling the DosCreateThread function. The thread terminates by calling the
DosExit function.

See Also
Corrections

DosDevIOCtI2

DosDevlOCtI2 81

VOID FAR Threadl():;
BYTE abStackArea[2048];

PVOID pStackl = abStackArea + sizeof (abStackArea):
TID tidThreadl;

DosCreateThread (Threadl, /* name of thread function */
&tidThreadl, /* address of thread ID */
pStackl); /* thread's stack */

6osExit(ExIT_PROCESS, 0);
VOID FAR Threadl() {
DosExit (EXIT_THREAD, O);

DosAllocSeg, DosExit, DosResumeThread, DosSuspendThread

The example indicated that a 512K-byte stack was allocated. This has been
changed to a 2K-byte stack.

New

USHORT DosDevlOCtI2(pvData, cbData, pvParmList, cbParmList, usFunct, usCat, hDev)

PVOID pvData;
USHORT cbData;
PVOID pvParmList;

/« pointer to buffer for data =/
/« length of data buffer »/
/x pointer to list of parameters »/

USHORT cbParmList; /x length of parameter list «/

USHORT usFunct;
USHQRT usCat;
HFILE hDev;

Parameters

/« function code /
/« device category =/
/« device handle s/

The DosDevIOCtI2 function performs control functions on the device specified
by the file or device handle.

pvData Points to a data buffer.
cbData Specifies the length (in bytes) of the data buffer.
pvParmList Points to an argument list for a specified command.

cbParmList Specifies the length (in bytes) of the argument list for a specified
command.

usFunct Specifies a function code for a specified device. This parameter can
be any value from 0 through 255.

usCat Specifies a device category. This parameter can be any value from 0
through 255.

hDev Identifies the device. This handle must have been created previously by
using the DosOpen function.

82 DosDeviOCti2

Return Value

Comments

See Also

DosEditName

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_CATEGORY
ERROR_INVALID_DRIVE
ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER

This function provides a way for a program to implement a customized IOCtl
function.

If the pvData parameter is zero, this parameter is not defined for the IOCtl func-
tion being specified, and the value passed in the cbData parameter is ignored.

If the pvParmList parameter is zero, this parameter is not defined for the IOCtl
function being specified, and the value passed in the cbParmList parameter is
ignored.

Whenever the pvData or pvParmList parameter is a value other than zero, the
associated length parameter cannot be zero. The length parameters are not
passed to device drivers that do not support them.

DosDevIOCt]

New

USHORT DosEditName (usEditLevel, pszSrc, pszEdit, pszDst, cbDst)
USHORT usEditLevel; /= edit level »/

PSZ pszSrc;
PSZ pszEdit;
PBYTE pszDst;
USHORT cbDst;

Parameters

Return Value

/« pointer to source string »/
/» pointer to editing string »/
/« pointer to target buffer ./
/« length of target buffer »/

The DosEditName function copies a source string to a revised destination string
by using an editing string and rules for converting wildcard characters.

usEditLevel Specifies the version of editing semantics to use in changing the

copy of the source string. (Editing semantics are the rules used by the system to
convert wildcard characters.) For MS OS/2, version 1.2, this parameter must be
0x0001.

pszSrc Points to the null-terminated string to copy. The string should contain
only the component of the path to be edited, not the entire path.

pszEdit Points to the null-terminated string to use for editing.

pszDst Points to the buffer that contains the new string.

cbDst Specifies the length (in bytes) of the buffer pointed to by the pszDst
parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_NAME
ERROR_INVALID_PARAMETER

DosEnterCritSec 83

Comments For MS 0S/2, version 1.2, the destination string is always converted to upper-
case.
The DosEditName function is typically used in copy and rename/move opera-
tions.)
Example This example takes the source name abc.txt and an editing string of *.doc and
calls DosEditName to produce the string ABC.DOC:
CHAR szDst[14]:
DosEditName (1, "abc.txt", "*.doc", szDst, sizeof (szDst)):
DosEnterCritSec Change

USHORT DosEnterCritSec(VOID)

Return Value

- Comments

See Also
Changes

The DosEnterCritSec function suspends execution of all threads in the current
process, except for the calling thread. Suspended threads cannot execute until
the current thread calls the DosExitCritSec function.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_CRITSEC_OVERFLOW

The signal handler (if installed) is not suspended when the DosEnterCritSec
function is called. If a signal occurs, the processing done by the signal handler
must not interfere with the processing done by the thread calling the DosEnter-
CritSec function.

MS OS/2 maintains the number of outstanding DosEnterCritSec requests. This
count is incremented by DosEnterCritSec requests and decremented by Dos-
ExitCritSec requests. If the count is greater than zero, a DosExitCritSec request
will not restore normal thread execution. If the count exceeds 65535, the error
ERROR_CRITSEC_OVERFLOW will be returned.

DosCreateThread, DosExitCritSec, DosHoldSignal, DosSetSigHandler

DosEnterCritSec now returns zero if the function is successful. Otherwise, it
returns an error value. It did not return a value in earlier versions.

For MS OS/2, version 1.2, a count is maintained of the number of times Dos-
EnterCritSec is called. Normal thread execution is not restored until an equal
number of calls are made to DosExitCritSec.

84 DosEnumAttribute

DosEnumAttribute ‘ New
USHORT DosEnumAttribute (usRefType, pvFile, ulEntry, pvBuf, cbBuf, pulCount, ullnfoLevel, ulReserved)
USHORT usRefType; /= reference type «f

PVOID pvFile; ' /x filename/handle «/

ULONG ulEntry; /= starting entry in list «/

PVOID pvBuf; /« data buffer «/

ULONG cbBuf; /= buffer size «/

PULONG pu/Count; /=~ number of entries to return »/

ULONG ulinfoLevel; /= info level /

ULONG u/Reserved; /= reserved »/

The DosEnumAttribute function enumerates extended attributes for a specified
file or subdirectory.

The DosEnumAttribute function is a family API function.
Parameters usRefType Specifies whether the pvFile parameter points to a file handle or to

a string that contains a file or directory name. This parameter can be one of the
following values:

Value . Meaning

ENUMEA_REFTYPE_FHANDLE A handle
ENUMEA_REFTYPE_PATH File or directory name

pvFile Points to the handle obtained from the DosOpen or DosOpen2 func-
tion or to a null-terminated string that contains a file or directory name.

ulEntry Specifies where to start enumerating extended attributes. A value of 1
specifies the first attribute for the file.

pvBuf Points to the buffer that receives the extended attributes. For a
ENUMEA_LEVEL_NO_VALUE-level request, the buffer is in the form of a
DENAI1 structure that contains only the names of the extended attributes. The
DENA1 structure has the following form:
typedef struct _DENAl {

UCHAR reserved;

UCHAR cbName;

USHORT cbValue;

UCHAR szName[1l]:;
} DENAL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

cbBuf Specifies the length (in bytes) of the buffer pointed to by the pvBuf
parameter.

pulCount Points to the variable that specifies the number of extended attri-
butes requested and, on return, contains the number retrieved. A value of
OxFFFFFFFF returns as many extended attributes as will fit in the supplied
buffer.

ullnfoLevel Specifies the information level requested. For MS OS/2, version
1.2, the only possible value is ENUMEA_LEVEL_NO_VALUE.

ulReserved Specifies a reserved value; must be zero.

Return Value

Comments

Example

H DosExitCritSec

DosExitCritSec 85

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_HANDLE
ERROR_ACCESS_DENIED
ERROR_PATH_NOT_FOUND
ERROR_NOT_ENOUGH_MEMORY
ERROR_INVALID_LEVEL
ERROR_INVALID_PARAMETER
ERROR_BUFFER_OVERFLOW

The order in which attributes are returned may not be the same if the Dos-
EnumAttribute function is called a second time because other threads or
processes may have changed the order.

This example allocates 1K of memory for the extended-attribute names, calls
DosEnumAttribute to retrieve the extended-attribute names for the file eafile,
and then displays the names one at a time:

#define BUFSIZE

SEL sel;

PDENAl pdenal;
ULONG ulCount;
USHORT offset = O;

DosAllocSeg (BUFSIZE, &sel, SEG_NONSHARED); /* allocates buffer */

pdenal = MAKEP(sel, O); /* initializes pointer to buffer */
ulCount = OxFEFFFFFFEF;

if (!DosEnumAttribute (ENUMEA_REFTYPE_PATH, /* path supplied */

"eafile", /* filename */

1L, /* starts enum. with first attr. */

pdenal, /* buffer address */

BUFSIZE, /* buffer size */

&ulCount, /* number of attributes to retrieve */

ENUMEA_LEVEL_NO_VALUE, /* type of request */

OL * reserved */

while (ulCount--) { * while there are attribute names */

VioWrtTTY (pdenal->szName, (USHORT) pdenal->cbName, OL):;
VioWrtTTY ("\r\n", 2, OL);

offset += sizeof (DENAl) + pdenal->cbName;

pdenal = MAKEP (sel, offset); /* points to next name */

}

Change

USHORT DosExitCritSec(VOID)

Return Value

The DosExitCritSec function restores execution of all threads suspended by the
DosEnterCritSec function.

This function has no parameters.

‘The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_CRITSEC_UNDERFLOW

86 DosExitCritSec

Comments MS OS/2 maintains the number of outstanding DosEnterCritSec requests. This
count is incremented by DosEnterCritSec requests and decremented by Dos-
ExitCritSec requests. If the count is greater than zero, a DosExitCritSec request
will not restore normal thread execution. If the count is less than zero, the
ERROR_CRITSEC_UNDERFLOW will be returned.

See Also DosCreateThread, DosEnterCritSec

Changes DosExitCritSec now returns an error value if it is called without a corresponding
call to DosEnterCritSec.

DosExitList Correction
USHORT DosExitList(fFnCode, pfnFunction)
USHORT fFnCode; /= function code «/

PFNEXITLIST pfnFunction(USHORT); /a pointer to address of function »/

The DosExitList function specifies a function that is executed when the current
process ends. This “termination function” can define additional termination
functions. The DosExitList function can be called one or more times: each call
adds or subtracts a function from an internal list maintained by the system.
When the current process terminates, MS OS/2 transfers control to each func-
tion in the list.

Parameters fFnCode Specifies whether a function’s address is added to or removed from
the list. If the function is added, the high byte of this parameter specifies the
order in which the function should be called. The exit-list routines with a low-
order high byte will be called before those with a high-order high byte. The low
byte of this parameter can be one of the following values:

Value Meaning

EXLST_ADD Adds the function to the termination list. If this flag is
specified, the high byte of the parameter specifies the
order in which the function is called. It can be a value
from O through 255. A value of O specifies that this
function is to be called first. In the event of duplicate
order numbers, the last function added with the dupli-
cate order number is called before the first function
added with the duplicate order number.

EXLST_EXIT Termination processing is complete. Calls the next
function on the termination list.
EXLST_REMOVE Removes the function from the termination list.

pfnFunction Points to the termination function to be added to the list. For a
full description, see the following “Comments” section.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_DATA
ERROR_NOT_ENOUGH_MEMORY

Comments

Example

DosExitList 87

" When adding an exit-list function, it is important that the exit-list function not

call any system functions with a lower exit-list order. The order is determined by
the high-byte of the fFnCode parameter. The following list defines the orders of
the various system components:

Order Component

0x80-0x88 Extended Edition Database Manager
0x90-0x98 Extended Edition Communication Manager
OxA0-0xA8 Presentation Manager

0xBO KBD component

0xCO0 VIO component

0xDO IPC Queues component

Dynamic-link-library modules often use the DosExitList function. It allows
dynamic-link-library modules to free resources or clear flags and semaphores if
the client process terminates without notifying them.

The termination function has one parameter and no return value. The function
should have the following form:
VOID PASCAL FAR FuncName (usTermCode)

USHORT usTermCode;
{

DosExitList (EXLST_EXIT, NULL);

The usTermCode parameter of the termination function specifies the reason the
process ended. This parameter can be one of the following values:

Value Meaning

TC_EXIT Normal exit
TC_HARDERROR Hard-error abort
TC_KILLPROCESS Unintercepted DosKillProcess
TC_TRAP Trap operation

Before transferring control to the termination function, MS OS/2 resets the
stack to its initial value. MS OS/2 then passes control to the function by using a
jmp instruction. The termination function should carry out its tasks and then
call the DosExitList function with the fFnCode parameter set to EXLST_EXIT.
This parameter setting directs the system to call the next function on the termi-
nation list. When all functions on the list have been called, the process ends.

Termination functions should be as short and fail-safe as possible. Before the
termination functions are executed, all threads except for the one executing the
DosExitList function are destroyed. Note that a termination function must call
the DosExitList function to end; otherwise, the process “hangs” because MS
0OS/2 cannot terminate it.

A termination function can call most MS OS/2 system functions; however, it
must not call the DosCreateThread or DosExecPgm function.

This example calls DosExitList, which then adds the locally defined function
CleanUp to the list of routines to be called when the process terminates.

88 DoskExitList

See Also
Corrections

DosFilelO

The CleanUp function displays a message that it is cleaning up, and then calls
DosExitList, reporting that it has finished and that the next function on the ter-
mination list can be called.

/* Add the function, and have it be called last. */

DosExitList (EXLST_ADD | OxEFF00, CleanUp):

DosExit (EXIT_PROCESS, O);
VOID PASCAL FAR CleanUp (usTermCode) K
USHORT usTermCode;

VioWrtTTY("Cleaning up...\r\n", 16, 0):

6osExltList(EXLST_EXIT, /* termination complete */
NULL) ;
}

DosCreateThread, DosExecPgm, DosExit, DosKillProcess

When the EXLST_ADD constant is used in the fFnCode parameter, the high
byte of the parameter contains an order number (0 through 255). You can use
this number to specify the order in which your exit-list function is called.

The function template in the example incorrectly listed the prototype of the ter-
mination function as PENEXITLIST. It should be VOID PASCAL FAR.

USHORT DosFilelO (hf, pbCmd, cbCmd, pusErr)

HFILE hf;

PBYTE pbCmd;
USHORT c¢bCmud;
PUSHORT pusErr;

Parameters

. New
/« file handle =/
/= pointer to buffer for commands »/
/~ length of command buffer »/
/= pointer to error offset «/

The DosFileIO function performs multiple lock, unlock, seek, read, and write
operations on a file.

hf Identifies the file on which to perform the commands. This handle must
have been created previously by using the DosOpen function.

pbCmd Points to the buffer that contains one or more of the following
structures: FIOLOCKCMD, FIOLOCKREC, FIOUNLOCKCMD,
FIOUNLOCKREC, FIOSEEKCMD, or FIOREADWRITE. The structures have
the following forms: ‘

typedef struct _FIOLOCKCMD {
USHORT usCmd;
USHORT cLockCnt;
ULONG cTimeOut;

} FIOLOCKCMD;

typedef struct _FIOLOCKREC {
USHORT fShare;
ULONG cbStart;
ULONG cbLength;

} FIOLOCKREC;

Return Value

Comments

DosFilelO 89

typedef struct _FIOUNLOCKCMD {
USHORT usCmd;
USHORT cUnlockCnt;

} FIOUNLOCKCMD;

typedef struct _FIOUNLOCKREC {
ULONG cbStart;
ULONG cbLength;

} FIOUNLOCKREC;

typedef struct _FIOSEEKCMD {
USHORT usCmd;
USHORT fsMethod;
ULONG cbDistance;
ULONG cbNewPosition;
} FIOSEEKCMD;

typedef struct _FIOREADWRITE {
USHORT usCmd;
PVOID pbBuffer;
USHORT cbBufferlLen;
USHORT cbActuallen;
} FIOREADWRITE;

For a full description, see Chapter 4, “Types, Macros, Structures.”
cbCmd Specifies the length (in bytes) of the ppCmd parameter.

pusErr Points to a variable that receives the byte offset of the structure that
caused an error. The offset is relative to the beginning of the buffer pointed to
by the pbCmd parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR._DIRECT_ACCESS_HANDLE
ERROR_INTERRUPT
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER
ERROR_LOCK_VIOLATION
ERROR_NEGATIVE_SEEK
ERROR_SEEK_ON_DEVICE
ERROR_SHARING_BUFFER_EXCEEDED

The DosFilelO function allows you to combine the following opérations into a
single function call: '

B Locking and unlocking multiple file ranges
B Changing the file-position pointer
W Reading and/or writing

Combining these operations into one call can improve system performance, par-
ticularly in a networking environment.

The DosFileIO function provides a simple mechanism for denying other
processes read/write or write access to regions of the file. If another process
attempts to read from or write to a no-access region, or attempts to write in a
read-only region, an error is returned. If a time-out occurs before the locking
operation is complete, DosFileIO returns an error to the calling process.

Since the calling process may return after the time-out period has expired
without receiving an ERROR_SEM_TIMEOUT message, semaphore time-out

90 DosFilelO

values should not be used for exact timing or for determining the sequence of

. I/O operations.

Example

See Also

DosFindFirst2

Before a range is locked, it must be cleared of any locked subranges or locked
overlapping ranges.

Each I/O operation completes before the next one begins. The operations con-
tinue until all are complete or until one fails.

This example opens the file abc.xt, allocates memory for the command buffer,
initializes the commands in that buffer, and calls DosFileIO to move the file
10 bytes into the file and then read from the file:

HEILE hf;

USHORT usAction;
SEL sel;

BYTE abBuf[512];
LONG 1lError;

PFIOREADWRITE pfiorw;
PFIOSEEKCMD pfioseek;

DosOpen ("abc.txt", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READONLY | OPEN_SHARE_DENYNONE, OL);
DosAllocSeg(sizeof (FIOSEEKCMD) + sizeof (FIOREADWRITE),
&sel, SEG_NONSHARED) ;

pfioseek = MAKEP (sel, 0):
pfloseek->usCmd = FIO_SEEK;
pfioseek->fsMethod = FILE_BEGIN;
pfloseek->cbDistance = 10L;

pfiorw = MAKEP (sel, sizeof (FIOSEEKCMD));
pfiorw->usCmd = FIO_READ;
pfiorw->pbBuffer = (PVOID) abBuf;
pfiorw->cbBufferLen = sizeof (abBuf);

DosFileIO(hf, /* file handle */
MAKEP (sel, O), /* buffer address */
(sizeof (FIOSEEKCMD) + sizeof (FIOREADWRITE)), /* buffer size t/
&lError) ; /* address of error variable */

DosChgFilePtr, DosFileLocks, DosOpen, DosRead, DosWrite

New
USHORT DosFindFirst2(pszFileName, phDir, usAttribute, pBuf, cbBuf, pusSearchCount, usinfolevel,
ulReserved)
/« pointer to filename »/

PSZ pszFileName;
PHDIR phDir;
USHORT usAttribute;
PVOID pBuf;

/= pointer to directory handle »/
/» attributes of file to be found «/
/« pointer to buffer for results =/

USHORT cbBuf; /= size of results buffer «/
PUSHORT pusSearchCount; /« number of entries found «/
USHORT usinfolLevel; /= level of information to retrieve «/
ULONG u/Reserved; /= must be zero »/

The DosFindFirst2 function searches a directory for the file or files whose
filename and attributes match the specified filename and attributes.

The DosFindFirst2 function is a family API function.

Parameters

DosFindFirst2 91

pszFileName Points to a null-terminated string. This string must be a valid
MS 0OS/2 path and can contain wildcard characters.

phDir Points to the variable that contains the handle of the directory to
search.

usAttribute Specifies the file attribute(s) of the file to be located. This param-
eter can be a combination of the following values:

Value Meaning
FILE_NORMAL Search for normal files.
FILE_READONLY Search for read-only files.
FILE_HIDDEN Scarch for hidden files.
FILE_SYSTEM Search for system files.
FILE_DIRECTORY Search for subdirectories:
FILE_ARCHIVED Search for archived files.

pBuf Points to the buffer in which the file information is returned. The format
for this buffer is determined by the value specified in the usInfoLevel parameter.

cbBuf Specifies the size (in bytes) of the buffer pointed to by pBuf.

pusSearchCount Points to the variable that specifies the number of matching
entries to locate. The DosFindFirst2 function copies the number of entries
found to this parameter before returning.

uslnfoLevel Specifies the type of file information to retrieve. This parameter
can be one of the following values:

Value Meaning

FIL_STANDARD Return a FILEFINDBUF structure with the
results of the search. The information
returned is identical to that returned by the
DosFindFirst function.

FIL_QUERYEASIZE Return a FILEFINDBUF?2 structure with the
results of the search, and that contains the
size of the buffer needed to retrieve the
extended attributes.

FIL_QUERYEASFROMLIST Return a buffer that contains both the file
information and the extended attributes for
the file.

The FILEFINDBUF structure has the following form:

typedef struct _FILEFINDBUF {
FDATE fdateCreation;
FTIME ftimeCreatlion;
EDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite:
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;
UCHAR cchName;
CHAR achName [13];

} FILEFINDBUF;

92 DosFindFirst2

Return Value

Comments

The FILEFINDBUF2 structure has the following form:

typedef struct _FILEFINDBUF2 {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG <cbFileAlloc;
USHORT attrFlle;
USHORT cbList:
UCHAR cchName;
CHAR achName[13];

} FILEFINDBUF2;

For a full description, see Chapter 4, “Types, Macros, Structures.”
ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_EAS_DIDNT_FIT
ERROR_EA_LIST_INCONSISTENT
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_EA_NAME
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER
ERROR_META_EXPANSION_TOO_LONG
ERROR_NO_MORE_FILES
ERROR_NO_MORE_SEARCH_HANDLES
ERROR_PATH_NOT_FOUND

. The DosFindNext function uses the directory handle pointed to by the phDir

parameter of the DosFindFirst2 function to repeat the search. If DosFindFirst2
returns an error value other than ERROR_EAS_DIDNT_FIT, no directory han-
dle is allocated.

If the phDir parameter is HDIR_SYSTEM, the system-default search-directory
handle is used; any previous search that used HDIR_SYSTEM terminates if this
parameter is HDIR_CREATE, the search directory used by the process is
created, and the function copies the handle of this search directory to the vari-
able pointed to by the phDir parameter. If the handle was created by a previous
call to DosFindFirst, it can be used in subsequent calls to DosFindNext.

If the value of the usinfoLevel parameter is FILE_QUERYEASIZE, the cbList
field of the FILEFINDBUF2 structure can be used to calculate the size of the
buffer necessary for a FILE_QUERYEASFROMLIST information request. For
MS OS/2 version 1.2, the value of cbList will never exceed 65,535.

To use a FILE_QUERYEASFROMLIST information request, you must supply
a buffer large enough for an EAOP structure and a FILEFINDBUF structure,
plus enough space for the the extended attributes. You must initialize the first
portion of this buffer as an EAOP structure, and fill in the GEALIST structure
with the extended-attribute names to retrieve..On return, the EAOP structure
will be unchanged. It will be followed immediately by a FILEFINDBUF2 struc-
ture, without the last three fields. This is followed by an FEALIST structure (the
address is the same as the cbList field of the FILEFINDBUF?2 structure). The
FEALIST structure is in turn followed by a single byte that specifies the length of
the filename, and that is followed by a null-terminated string that specifies the

DosFindNext

93

filename. For an example of how to use structure pointers to access each of
these fields, see the “Example” section.

If there is not enough room in the output buffer to hold the extended-attribute

information, the error ERROR_EAS_DIDNT_FIT is returned. The search han-

dle will be allocated, however, and can be used in subsequent calls to the Dos-
FindNext function. If no extended attribute is found, the FEA structure for that

extended attribute will contain the name of the attribute, but the cbValue field
will be zero.

USHORT DosFindNext (hdir, pfindbuf, cbfindbuf, pcSearch)

HDIR hdir;

/+ handle of search directory =/

PFILEFINDBUF pfindbuf; /« pointer to structure for search result «/

USHORT cbfinabuf;

/» length of result buffer /

PUSHORT pcSearch; /+ pointer to variable for file count »/

The DosFindNext function searches for the next file or group of files matching
the specified filename and attributes. The function copies the name and

requested information about the file to the specified structure. The information

Example This example shows how to set up pointers to access the various fields of the

buffer returned by a FIL_QUERYEASFROMLIST level request:
/* Declare a structure to retrieve the .TYPE attribute name. */
typedef struct _TYPEATTR {

ULONG cbList;

BYTE cbName;

CHAR szName[6]:
} TYPEATTR;
#define BUEFSIZE 2 * 1024 /* default buffer size *
SEL sel; /* selector for buffer */
HDIR hdir = HDIR_CREATE; /* directory handle */
USHORT usSearchCount = 1; /* number of files to retrieve */
TYPEATTR typeattr; /* TYPE attribute structure */
PEAOP peaop:;
PFILEFINDBUF2 pfindbuf2;
PFEALIST pfeal;
PSZ pszFileName;
PUCHAR pcchFileName:
DosAllocSeg (BUFSIZE, &sel, SEG_NONSHARED); /* creates buffer */
peaop = MAKEP (sel, 0):; /* sets up peaop pointer */
typeattr.cbList = sizeof (TYPEATTR): /* structure size */
strcpy(typeattr.szName, ".TYPE"); * EA name */
typeattr.cbName = sizeof (typeattr.szName) - 1; /* name length */
peaop->fpGEAList = (PGEALIST) &typeattr; /* size of GEALIST struc. */
if (!DosFindFirst2("eafile", &hdir, FILE_NORMAL,

peaop, BUFSIZE,
&usSearchCount, FIL_QUERYEASFROMLIST, OL)) {

pfindbuf2 = MAKEP (sel, sizeof (EAOP)); /* FILEFINDBUF structure */

pfeal = (PFEALIST) &pfindbuf2->cbList; /* FEALIST structure */

pcchFileName = ((PSZ) pfeal) + pfeal->cbList; /* filename length */

pszFileName = pcchFileName + 1; /* filename x/
}

See Also DosFindClose, DosFindFirst, DosFindNext, DosQFileMode, DosQFSInfo
. DosFindNext Change

94 DosFindNext

Parameters

Return Value

Comments

Restrictions

Example

returned is as accurate as the most recent call to the DosClose or DosBufReset
function.

The DosFindNext function is a family API function.

hdir Identifies the search directory and the filename(s) to search for. This
handle must have been created previously by using the DosFindFirst function.

pfindbuf Points to the structure that receives the result of the search. This

structure will be either a FILEFINDBUF or FILEFINDBUF2 structure, depend-
ing on the information level requested in the DosFindFirst or DosFindFirst2
function that preceded this function. For specific information on the format of
these structures, see the DosFindFirst and DosFindFirst2 functions.

cbfindbuf Specifies the length (in bytes) of the structure pointed to by the
pfindbuf parameter.

pcSearch Points to the variable that specifies the number of matching
filenames to locate. The function copies the number of filenames found to the
variable before returning.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_INVALID_HANDLE
ERROR_INVALID_PARAMETER
ERROR_NO_MORE_FILES
ERROR_NOT_DOS_DISK
ERROR_EAS_DIDNT_FIT

The pcSearch parameter specifies the number of files to search for. The number
of files whose information is copied is the number of files requested, the number
of files whose information fits in the structure, or the number of files that exist,
whichever is smallest. If you want to obtain information for more than one file,
the pfindbuf parameter must point to a buffer that consists of consecutive struc-
tures. If the DosFindNext function fails to find a match or cannot copy all the
information about the file to the structure, it returns an error.

In real mode, the following restriction applies to the DosFindNext function:
B The hdir parameter must be set to HDIR_SYSTEM.

This example calls the DosFindFirst function to find all files matching “*.*”, and
then uses the DosFindNext function to display them one at a time:

FILEFINDBUF findbuf;

HDIR hdir = HDIR_CREATE;

USHORT cSearch = 1;

DosFindFirst("*.*", &hdir, FILE_NORMAL, &findbuf, sizeof(findbuf),
&cSearch, OL):

do {
VioWrtTTY (findbuf.achName, findbuf.cchName, O);

y VioWrtTTY ("\r\n", 2, 0); . /* cursor to next line */

while (DosFindNext (hdir, /* handle of directory */
&findbuf, /* address of buffer */
sizeof (findbuf), /* length of buffer */
&cSearch) /* number of files to find */

== 0); /* while no error occurs */

DosFreeSeg 95

See Also DosBufReset, DosClose, DosFindClose, DosFindFirst, DosFindFirst2

Changes DosFindNext returns the same type of structure as requested by the most recent
call to either DosFindFirst or DosFindFirst2.

DosFreeResource New

USHORT DosFreeResource { pvData)
PVOID pvData; /= pointer to data to free »/

The DosFreeResource function frees memory allocated by a previous call to the
DosGetResource2 function.

Parameters pvData Points to the buffer to free. This pointer should have been returned by
a previous call to the DosGetResource2 function.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value.

See Also DosGetResource, DosGetResource2

DosFreeSeg Change

USHORT DosFreeSeg(se/)
SEL sel; /« segment selector »/

The DosFreeSeg function frees the specified memory segment. This function
accepts selectors for memory segments, shared-memory segments, huge-memory
segments, aliased code segments, and resource segments allocated by Dos-
GetResource. DosFreeSeg frees a shared-memory segment after the segment is
freed by the last process accessing it. DosFreeSeg frees the code-segment selec-
tor for aliased code segments, but the corresponding data-segment selector
remains valid until it is freed.

The DosFreeSeg function is a family API function.

Parameters sel Specifies the segment to free.
Return Value The return value is zero if the function is successful. Otherwise, it is an error
- value, which may be the following:
ERROR_ACCESS_DENIED
Comments DosFre;:Seg can be issued from ring 2, but the segment to free must be a ring-3
segment.

DosFreeSeg should not be used to free resource segments allocated by the Dos-
GetResource2 function. To free those segments, use the DosFreeResource func-
tion.

Restrictions In real mode, the following restriction applies to the DosFreeSeg function:

M A code-segment selector (created by using the DosCreateCSAlias func-
tion) and the corresponding data-segment selector are the same. Freeing
one frees both.

96 DosFreeSeg

Example

See Also

Changes

DosFSAttach

This example allocates three segments of memory, then calls the DosFreeSeg
function to free the memory:

SEL sel;
DosAllocHuge (3, 200, &sel, 5, SEG_NONSHARED) ;

DosE;eeSeg(sel);

DosAllocHuge, DosAllocSeg, DosAllocShrSeg, DosCreateCSAlias,
DosFreeResource, DosGetResource, DosGetResource2

DosFreeSeg should not be used to free segments allocated by the
DosGetResource2 function.

PSZ pszDevName;
PSZ pszFSD;
PBYTE pData;
USHORT cbData;
USHORT fs0p;

New
USHORT DosFSAttach(pszDevName, pszFSD, pData, cbData, fsOp, ulReserved)
/« pointer to device name of
/= pointer to file system »/
/« pointer to buffer for file-system arguments «/
/« length of argument buffer »/
/« attach or detach connection /
/« must be zero »/

ULONG u/Reserved;

Parameters

Return Value

The DosFSAttach function attaches or detaches a drive or pseudo-character
device from a remote file system.

pszDevName Points to a null-terminated string that specifies the drive letter
followed by a colon or a pseudo-character device name. If this parameter is a
pseudo-character device name, the format of the strmg is \DEV\filename, where
filename is a valid MS OS/2 filename.

pszFSD Points to a null-terminated string that specifies the name of the
remote file system to attach to or detach from the device specified by the
pszDevName parameter. -

pData Points to a buffer that contains the file-system arguments. The meaning
of the arguments is specific to the file system. The first word of the buffer
specifies the number of strings it contains; the rest of the buffer contains con-
tiguous strings.

cbData Specifies the length (in bytes) of the data buffer.

fsOp Specifies the type of operation to perform. A value of FS_ATTACH
attaches a file-system connection. A value of FS_DETACH detaches a file-
system connection.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ALREADY_ASSIGNED
ERROR_INVALID_DRIVE
ERROR_INVALID_FSD_NAME
ERROR_INVALID_LEVEL
ERROR_INVALID_PATH
ERROR_NOT_ENOUGH_MEMORY

Comments

Example

See Also

DosFSCtl

DosFSCtI 97

Drive letters that represent local drives cannot be redirected.

When a drive is attached to a file system, all requests to that drive are routed to
the file system. When a drive is detached from a file system, the drive name can
no longer be used.

When a pseudo-character device name is attached to a file system, all requests to
that name are routed to the file system. When a pseudo-character device is
detached from a file system, the device name can no longer be used unless it
overlaid the name of an existing device; in this case, the previous device regains
control.

This example calls DosFSAttach to attach a LAN server to drive X, and then
calls DosFSAttach again to detach the LAN server:

CHAR szShareName([] = { 1, O, /* number of strings *
"\\SERVER\SHARE" }; /* name of server and share point */
DosFSAttach("X:", "LAN", szShareName, sizeof(szShareName),

ES_ATTACH, OL);

DosEéAttach("x:", "LAN", szShareName, sizeof(szShareName),
EFS_DETACH, OL);
DosFSCtl

New

USHORT DosFSCtl(pbData, cbData, pcbData, pbParms, cbParm, pcbParm, usFunct, pszRoute, hf,

usRouteMethod, ulReserved)

PBYTE pbData; /= pointer to data buffer s/

USHORT cbData; /= buffer length «/

PUSHORT pcbData; /= pointer to buffer for actual length »/

PBYTE pbParms; /= pointer to parameter list «/

USHORT cbParm; /= size of parameter list »/

PUSHORT pcbParm; /= pointer to buffer for actual length «/

USHORT usFunct; /= function code «/

PSZ pszRoute; /» pointer to file-system name /

HFILE hf; i /= file or device handle /

USHORT usRouteMethod; /= routing method /

ULONG u/Reserved; /= must be zero /
The DosFSCtl function is used to call functions provided in a file system that are
not part of the standard set of I/O functions.

Parameters pbData Points to the buffer that receives data from the nonstandard function.

cbData Specifies the length (in bytes) of the buffer pointed to by the pbDara
parameter. If this value is not at least as large as the value pointed to by the
pcbData parameter, the system returns the ERROR_BUFFER_OVERFLOW
error value and the value pointed to by pcbData will contain the correct length.

pcbData Points to the variable that receives the actual length of data returned.
pbParms Points to a list of command-specific parameters.

98 DosFSCtl

Return Value

Comments

See Also

cbParm Specifies the length (in bytes) of the pbParms parameter. If the buffer
size is insufficient, the error value ERROR_BUFFER_OVERFLOW will is
returned and pcbParm will contain the size of buffer needed.

pcbParm Points to the variable that contains the length of the commands
passed to the function and, on return, contains the length of the commands
returned by the function. usFunct Specifies a function code specific to the file
system. This parameter can be one of the following values:

Value Meaning

0x0000-0x7FFF Reserved for MS OS8/2. :
0x8000-0xBFFF Functions to be handled by local file systems.
0xCO00-OxFFFF Functions to be handled by remote file systems.

pszRoute Points to the string that contains the name of the file system or the
path of a file or directory that the operation applies to.

hf Identifies the file or device.

usRouteMethod Specifies how the request will be routed. This parameter can
be one of the following values:

Value Meaning

FSCTL_HANDLE Route via the file handle. The pszRoute parameter
. must be NULL, and the hf parameter must be a
valid file or device handle.

FSCTL_PATHNAME Route via a path. The Af parameter must be -1,
and the pszRoute parameter must be a valid MS
0OS/2 path.

FSCTL_FSDNAME Route via a file-system name. The hf parameter
must be -1 and the pszRoute parameter must point
to the name of a valid file system.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_INTERRUPT
ERROR_INVALID_CATEGORY
ERROR_INVALID_FSD_NAME
ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_INVALID_LEVEL
ERROR_INVALID_PARAMETER
ERROR_NOT_SUPPORTED

A usFunct value of 0x0001 returns new error code information from the file sys-
tem; a value of 0x0002 returns the maximum size of individual extended attri-
butes in the first word of the buffer pointed to by pbData and the maximum size
of the full extended-attribute list in the second word of the buffer.

DosFSAttach

DosGetDBCSEv 99

N DosGetDBCSEv Correction

USHORT DosGetDBCSEv(cbBuf, pctryc, pchBuf)

USHORT cbBuf;

/« length of buffer /

PCOUNTRYCODE pctryc; /= pointer to structure for country code «/

PCHAR pchBuf;

Parameters

Return Value

Comments

/=« pointer to buffer for DBCS information »/

The DosGetDBCSEYv function retrieves the double-byte character set (DBCS)
environment vector for the given country code and code-page identifier.

The DosGetDBCSEv-function is a family API function.

cbBuf Specifies the size (in bytes) of the buffer that receives the DBCS
environment vector.

pctryc Points to the COUNTRYCODE structure that contains the country
code and code-page identifier used to retrieve the DBCS environment vector.
The COUNTRYCODE structure has the following form:
typedef struct _COUNTRYCODE {

USHORT country:

USHORT codepage;
} COUNTRYCODE;

pchBuf Points to the buffer that receives the country-dependent DBCS
environment vector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NLS_BAD_TYPE
ERROR_NLS_NO_COUNTRY_FILE
ERROR_NLS_NO_CTRY_CODE
ERROR_NLS_OPEN_FAILED
ERROR_NLS_TABLE_TRUNCATED
ERROR_NLS_TYPE_NOT_FOUND

The DBCS environment vector defines the low and high ranges for the DBCS
lead-byte values.

The DosGetDBCSEv function copies the information from the country.sys file to
a buffer. The first two bytes in the environment vector specify the low and high
values in the range for the DBCS lead-byte values. The last two bytes are both
set to zero. The form of the information is similar to the following:

BYTE lowl, highil;
BYTE low, high2;

BYTE lown, highn;
BYTE O, O:

If the buffer is too small to hold all of the information, the DosGetDBCSEy
function truncates the information. To avoid this, make sure the buffer is at least
ten bytes long. You can verify that all information has been copied by checking
the last two bytes to make sure they are zeros. If the structure is larger than the
information, the function fills any remaining bytes with zeros.

100 DosGetDBCSEv

Restrictions In real mode, the following restriction applies to the DosGetDBCSEyv function:

B There is no method of identifying the boot drive. The system assumes
that the country.sys file is in the root directory of the current drive.

See Also DosCaseMap, DosGetCollate, DosGetCp, DosGetCtryInfo, DosSetCp,
VioGetCp, VioSetCp

Corrections The DosGetDBCSEYv function returns only the range for the lead byte of the
character set, not for the range of the trail byte.

DosGetModHandle Correction

USHORT DosGetModHandle (pszModName, phMod)

PSZ pszModName;
PHMODULE phMod;

Parameters

Return Value

Example

See Also

/« pointer to module name «/
/« pointer to variable receiving module handle »/

The DosGetModHandle function retrieves the handle of a dynamic-link module.
The DosGetModHandle function is typically used to make sure that a module
has been loaded into memory. If the module has not been loaded, the function
returns ERROR_MOD_NOT_FOUND, and the DosLoadModule function must
be used to load the module.

pszModName Points to the null-terminated string that specifies the module
name. This string must be a valid MS OS/2 filename. If it does not specify a
path and the filename extension, the function appends the default extension
(.dll) and searches for the dynamic-link module in the directories specified by
the libpath command in the config.sys file.

phMod - Points to the variable that receives the module handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INTERRUPT
ERROR_MOD_NOT_FOUND

This example calls DosGetModHandle to determine if the dynamic-link module
mydll.dll is currently in memory. If mydll.dll is not in memory, DosGetMod-
Handle calls DosLoadModule to load it. It then calls DosGetModName to get
the full path of the module. (This example is accurate if mydll.dll exists in a
directory defined by the libpath parameter of the config.sys file.)

USHORT usError;

HMODULE hmod;
CHAR achFailName[128], szModName[128];
if (usError = DosGetModHandle("mydll", &hmod)) {
if (usError == ERROR_MOD_NOT_FOUND)
DosLoadModule (achFailName, sizeof(achFailName),
"mydl1l", &hmod):

y
DosGetModName (hmod, sizeof (szModName), szModName) ;

DosFreeModule, DosGetModNéme, DosLoadModule

DosGetResource 101

Corrections If the pszModName parameter does not specify a path and the filename exten-
sion, the DosGetModHandle function appends the default extension (.dll) and
searches for the dynamic-link module in the directories specified by the libpath
command in the config.sys file.

DosGetResource : Change

USHORT DosGetResource (hmod, idType, idName, psel)

HMODULE hmod; /~ module handle =/

USHORT idType; /« resource-type identifier «/

USHORT idName; /= resource-name identifier «f

PSEL psel;

Parameters

Return Value

"Comments

/« pointer to variable for resource selector «/

The DosGetResource function retrieves the specified resource from a specified
executable file. The function allocates a segment, copies the resource into the
segment, and returns the segment selector. A process can use this segment
selector to access the resource directly.

This function is included in MS OS/2 version 1.2 for compatibility purposes
only. All new applications should use the DosGetResource2 function, which
returns a far pointer to the resource, rather than a selector.

hmod Identifies the module that contains the resource. This parameter can be
either the module handle returned by the DosLoadModule function or NULL
for the application’s module.

idType Specifies the type of resource to retrieve.

idName Specifies the name of the resource to retrieve.

psel Points to the variable that receives the selector of the segment containing
the resource.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_CANT_FIND_RESOURCE
ERROR_INVALID_MODULE
ERROR_INVALID_SELECTOR

The following list describes the predefined types that can be used for the idType
parameter:

Type Meaning
RT_ACCELTABLE Accelerator tables
RT_BITMAP Bitmap

RT_CHARTBL Glyph-to-character tables
RT_DIALOG Dialog template
RT_DISPLAYINFO Screen-display information
RT_DLGINCLUDE Dialog include file.
RT_FONT Font

RT_FONTDIR Font directory

102 DosGetResource

Type Meaning

RT_HELPSUBTABLE Help-subtable resource.

RT_HELPTABLE Help-table resource.
RT_KEYTBL Key to UGL tables
RT_MENU Menu template
RT_MESSAGE Error-message tables
RT_POINTER Mouse-pointer shape
RT_RCDATA Binary data
RT_STRING String tables
RT_VKEYTBL Key to virtual-key tables
See Also DosGetResource2, DosLoadModule
Changes This function is included in MS OS/2, version 1.2, for compatibility purposes
only. All new applications should use DosGetResource2.
DosGetResource2 New
USHORT DosGetResource2(hmod, idType, idName, ppData)
HMODULE hmod; /= module handle »/
USHORT idType; /+ resource-type identifier «/
USHORT idName; /= resource-name identifier «f

PVOID FAR * ppData;

Parameters

Return Value

Comments

/= pointer to variable for resource address »/
The DosGetResource2 function retricves a pointer to a resource.

hmod Identifies the module that contains the resource. This parameter can be
the module handle returned by the DosLoadModule function or NULL for the
application’s module.

idType Specifies the type of resource to retrieve.
idName Specifies the name of the resource to retrieve.

ppData Points to the variable that receives the pointer to the resource.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_PARAMETER
ERROR_INVALID_MODULETYPE

The DosGetResource2 function allocates a segment, copies the resource into the
segment, and returns a pointer to the resource. A process can use this pointer to
access the resource directly. For compatibility with future versions of MS 0S/2,
this function should be used instead of the DosGetResource function, which
returns a selector instead of a pointer.

DosGetVersion 103

The following list describes the predefined types that can be used for the idType

parameter:
Type

Meaning

RT_ACCELTABLE
RT_BITMAP
RT_CHARTBL
RT_DIALOG
RT_DISPLAYINFO
RT_DLGINCLUDE
RT_FONT
RT_FONTDIR
RT_HELPSUBTABLE
RT_HELPTABLE

Accelerator tables

Bitmap

Glyph-to-character tables
Dialog template
Screen-display information
Dialog include file.

Font

Font directory
Help-subtable resource.

Help-table resource.

RT_KEYTBL Key to UGL tables
RT_MENU Menu template
RT_MESSAGE Error-message tables
RT_POINTER Mouse-pointer shape
RT_RCDATA Binary data
RT_STRING String tables
RT_VKEYTBL Key to virtual-key tables
Example This example calls DosGetResource2 to retrieve a resource from the
application’s module, and then the calls DosFreeResource to free the memory
used by the resource:
PBYTE pResource;
if (!DosGetResource2(NULL, /* loads from application's module */
RT_MENU * gets a menu resource *
IDM_MENU, * ID of the menu to get */
&pResource)) { /* pointer address */
6osEreeResource(pResource); /* frees resource */
See Also DosFreeResource, DosGetResource, DosLoadModule

M DosGetVersion

Correction

USHORT DosGetVersion(pusVersion)
PUSHORT pusVersion;

/« pointer to variable receiving version number »/

The DosGetVersion function retrieves version number of the operating system.
For MS OS/2, version 1.1, both the major and minor version numbers are 10.
For MS OS/2, version 1.2, the minor version number is 20.

The DosGetVersion function is a family API function.

104 DosGetVersion

Parameters pusVersion Points to the variable that receives the version number. The high-
order byte is set to the major version number; the low-order byte is set to the
minor version number.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value.
Example This example retrieves and displays the major and minor version number:

USHORT usVersion;
CHAR ch;

DosGetVersion(&usVersion)
ch = (HIBYTE (usVersion) / 10) + 'O'; /* gets maj. version number */

VioWrtTTY ("You are using MS 0S/2 version ", 30, 0);
VioWrtTTY (&ch, 1, 0);
VioWrtTTY (".", 1,

0):
ch = (LOBYTE(usVersion) / 10) + '0'; /* gets min. version number */
VioWrtTTY (&ch, 1, 0);
VioWrtTTY ("\r\n", 2, 0);

See Also DosQSysInfo
Corrections The example incorrectly retrieved the minor version number, instead of the

major version number. It has been changed to show how to get and display both
major and minor version numbers.

Dosl.oadModule Correction

USHORT DosLoadModule (pszFailName, cbFileName, pszModName, phmod)
PSZ pszFailName; /« pointer to buffer for name if failure »/
USHORT cbFileName; /= length of buffer for name if failure »/
PSZ pszModName; /« pointer to module name «/

PHMODULE phmod; /« pointer to variable for module handle »/

The DosLoadModule function loads a dynamic-link module and returns a handle
for the module. You can use the module handle to retrieve the entry addresses
of procedures in the module and to retrieve information about the module.

Parameters pszFailName Points to the buffer that receives a null-terminated string. The
DosLoadModule function copies a string to the buffer only if the function fails
to load the module. The string identifies the dynamic-link module responsible for
the failure. This module may be other than the one specified in the pszModName
parameter if the specified module links to other dynamic-link modules.

cbFileName Specifies the length (in bytes) of the buffer pointed to by the
pszFailName parameter.

pszModName Points to the null-terminated string that specifies the module
name. This string must be a valid MS OS/2 filename. If it does not specify a
path and the filename extension, the function appends the default extension
(.dll) and searches for the dynamic-link module in the directories specified by
the libpath command in the config.sys file.

phmod Points to the variable that receives the handle of the dynamic-link
module.

Return Value

Comments

Example

See Also
Corrections

DosMakePipe

DosMakePipe 105

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_FORMAT
ERROR_FILE_NOT_FOUND
ERROR_INTERRUPT
ERROR_INVALID_NAME
ERROR_NOT_ENOUGH_MEMORY

The DosLoadModule function loads only MS OS/2 dynamic-link modules.
Attempts to load other executable files (such as MS-DOS executable files)
results in an error.

This example calls the DosLoadModule function to load the dynamic-link
module ghdll.dil. This example then calls the DosGetProcAddr function to
retrieve the address of the BOXMESSAGE function that is defined in the
module. After calling the BOXMESSAGE function, the example calls Dos-
FreeModule to free the dynamic-link module. (This example is accurate if
ghdil.dll exists in a directory defined by the libpath parameter of the config.sys -
file, and if ghdll.dll contains the BOXMESSAGE function that uses the Pascal
calling convention.)

CHAR achFailName[128];

HMODULE hmeod; .)
VOID (PASCAL FAR *pfnBoxMsg) (PSZ, BYTE, BYTE, SHANDLE, SHANDLE, BOOL);

DosLoadModule (achFailName, /* faillure name buffer *
sizeof (achFailName), /* size of faillure name buffer */
"ghdll", /* module name */
&hmod) ; * address of handle */

DosGetProcAddr (hmod, "BOXMESSAGE", &pfnBoxMsg):
pfnBoxMsg("Hello World", Ox30, 1, O, O, FALSE);
DosFreeModule (hmod) ;

DosExecPgm, DosFreeModule, DosGetModName, DosGetProcAddr

If the pszModName parameter does not specify a path and the filename exten-
sion, DosLoadModule function appends the default extension (.dll) and searches
for the dynamic-link module in the directories specified by the libpath command
in the config.sys file.

Change

USHORT DosMakePipe (phfRead, phfWrite, cbPipe)

PHFILE phfRead;
PHFILE phfWrite;
USHORT cbPipe;

Parameters

/« pointer to variable for read handle «/
/« pointer to variable for write handle «/
/« number of bytes reserved for pipe «/

The DosMakePipe function creates a pipe. The function creates the pipe, assign-
ing the specified pipe size to the storage buffer, and also creates handles that the
process can use to read from and write to the buffer in subsequent calls to the
DosRead and DosWrite functions.

DhfRead Points to the variable that receives the read handle for the pipe.
PhfWrite Points to the variable that receives the write handle for the pipe.

106 DosMakePipe

cbPipe Specifies the size (in bytes) to allocate for the storage buffer for this
pipe. This can be any value up to 65,536 minus the size of the pipe header,
which is currently 32 bytes. If this parameter is zero, the default buffer size is
used. (The buffer size is advisory only. MS OS/2 may allocate more or less
space.)

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NOT_ENOUGH_MEMORY
ERROR_TOO_MANY_OPEN_FILES

Comments Pipes are typically used by a pair of processes. One process creates the pipe and
passes a handle to the other process. This lets one process write into the pipe
and the other read from the pipe. Since MS OS/2 provides no permission
checks on pipes, the cooperating processes must ensure that they do not attempt
to write to or read from the pipe at the same time.

When all of a pipe’s handles are closed by using the DosClose function, MS
0S/2 deletes that pipe. If two processes are communicating by using a pipe and
the process that is reading the pipe ends, the next call to the DosWrite function
for that pipe returns the “broken pipe” error value.

MS OS/2 temporarily blocks any call to the DosWrite function that would write
more data to the pipe than can fit in the storage buffer. The system removes the
block as soon as enough data is read from the pipe to make room for the
remaining unwritten data.

See Also DosClose, DosDupHandle, DosRead, DosWrite

Changes The cbPipe parameter is advisory only. The actual buffer space allocated by the
system may be larger (to a maximum of 65,536 minus the pipe header size) or
smaller.

DosMkDir2 New

USHORT DosMkDir2(pszDir, peaop, ulReserved)

- PSZ pszDir; /= pointer to directory name »/
PEAOP peaop; /« pointer to structure for extended attributes «/
ULONG u/Reserved; /= must be zero s/

The DosMkDir2 function creates a directory.

Parameters pszDir Poilits to a null-terminated string that specifies a valid MS OS/2 direc-
tory name.

peaop Points to the EAOP structure that defines extended attributes for the
directory.

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value

Comments

See Also

DosMonReg

DosMonReg 107

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_EA_LIST_INCONSISTENT
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_EA_NAME
ERROR_PATH_NOT_FOUND

Prior to the function call, the fpFEAList ficld of the EAOP structure should be
set to point to the buffer that contains the relevant list of extended attributes.

If the peaop parameter is NULL, no extended attributes are defined for the
directory.

If an error occurs during the creation of the extended attributes, the oError field
of the EAOP structure will contain the offset within the list where the error
occurred.

DosMKkDir

Change

USHORT DosMonReg(hmon, pbinBuf, pbOutBuf, fPosition, usindex)

HMONITOR hmon;
PBYTE pbinBuf;

PBYTE pbOutBuf;
USHORT fPosition;
USHORT usindex;

Parameters

/+ monitor handle to register »/
/= pointer to structure for input buffer »/
/= pointer to structure for output buffer «/
/« position flag «f
/+ index «/

The DosMonReg function registers a monitor by placing it in a chain of other
monitors for the same device. Each monitor receives input from or sends output
to the device in the order in which it appears in the chain.

hmon Identifies the monitor to register. This handle must have been created
previously by using the DosMonOpen function.

pbInBuf Points to the MONIN structure that receives data from the device
driver or from the previous monitor in the chain. The MONIN structure has the
following form:

typedef struct _MONIN {
USHORT cb;
BYTE abReserved([18];
BYTE bBuffer[108];
} MONIN;

pbOutBuf Points to the MONOUT structure that receives data: for the next
monitor in the chain. The MONOUT structure has the following form:

typedef struct _MONOUT {
USHORT cb;
BYTE abReserved([18];
BYTE abBuffer [108];
} MONOUT;

108 DosMonReg

fPosition Specifies the position of the monitor in the chain of input and out-
put. This parameter can be one of the following values:

Value Meaning

MONITOR_BEGIN Place the monitor at the beginning of the chain,
ahead of any other monitors in the chain.

MONITOR._DEFAULT Place the monitor anywhere in the chain.

MONITOR_END Place the monitor at the end of the chain.

Any of the fPosition values may be combined with MONITOR_SPECIAL by
using the OR operator to allow the monitor to continue to receive data even if
the device is disabled or another monitor further down the chain is blocked. If
the MONITOR_SPECIAL constant is not set, no monitors will receive input
when the device driver is disabled or any monitor is blocked.

uslndex Specifies a device-specific value. If the device is the keyboard,
usIndex specifies the ID for the screen group to monitor. If no screen-group
number is available (the monitor is detached), the ID of the current foreground
screen group can be obtained by calling DosGetInfoSeg. (The current fore-
ground screen group is the group that most recently called KbdCharln.)

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_MON_BUFFER_TOO_SMALL
ERROR_MON_INVALID_HANDLE
ERROR_MON_INVALID_PARMS
ERROR_NOT_ENOUGH_MEMORY

Comments The MONIN and MONOUT structures must be in the same segment.

See Also DosGetInfoSeg, DosMonClose, DosMonOpen, DosMonRead, DosMonWrite,
KbdCharln

Changes A new value, MONITOR_SPECIAL, can be combined with any other position

value for the fPosition parameter. This constant lets a monitor receive input even
if the device is disabled or another monitor in the chain is blocked.

DosOpen Change
USHORT DosOpen(pszFileName, phf, pusAction, ulFileSize, usAttribute, fsOpenFlags, fsOpenMode,
ulReserved) ’

PSZ pszFileName; /= pointer to filename «/

PHFILE phf; /~ pointer to variable for file handle »/

PUSHORT pusAction; /» pointer to variable for action taken «/

ULONG ulFileSize; /« file size if created or truncated »f

USHORT usAttribute; /= file attribute /

USHORT fsOpenFlags; /» action taken if file exists/does not exist »/

USHORT fsOpenMode; /= open mode of file «/

ULONG u/Reserved; /~ must be zero =/

The DosOpen function opens an existing file or creates a new file. This function
returns a handle that can be used to read from and write to the file, as well as to

Parameters

DosOpen 109

retrieve information about the file. The DosOpen function can also be used to
open a device or a named pipe.

The DosOpen function is a family API function.
pszFileName Points to the null-terminated string that specifies the name of

the file to be opened. The string must be a valid MS OS/2 filename and must not
contain wildcard characters.

phf Points to the variable that receives the handle of the opened file.

pusAction Points to the variable receiving the value that specifies the action
taken by the DosOpen function. If DosOpen fails, this value has no meaning.
Otherwise, it is one of the following values:

Value Meaning
FILE_CREATED

FILE_EXISTED
FILE_.TRUNCATED

File was created.

File already existed.

File existed and was truncated.

ulFileSize Specifies the file’s new size (in bytes). This parameter applies only

if the file is created or truncated. The size specification has no effect on a file
that is opened only for reading.

usAttribute Specifies the file attributes. This parameter can be a combination
of the following values:

Value Meaning

FILE_.NORMAL
FILE_READONLY
FILE_HIDDEN

File can be read from or written to.
File can be read from, but not written to.

File is hidden and does not appear in a directory
listing.

FILE_SYSTEM
FILE_ARCHIVED

File is a system file.

File has been archived.

File attributes apply only if the file is created.

fsOpenFlags Specifies the action to take both when the file exists and when it
does not exist. This parameter may be one of the following values:

Value

Meaning

FILE_CREATE

FILE_OPEN

FILE_OPEN | FILE_CREATE
FILE_TRUNCATE

FILE_TRUNCATE | FILE_.CREATE

Create a new file; fail if the file
already exists.

Open an existing file; fail if the
file does not exist.

Open an existing file or create the
file if it does not exist.

Open an existing file and change
to a given size.

Open an existing file and truncate
it, or create the file if it does not
exist. :

110 DosOpen

fsOpenMode Specifies the modes with which to open the file. It consists of
one access mode and one share mode. The other values are optional and can be
given in any combination:

Value

Meaning

OPEN_ACCESS_READONLY
OPEN_ACCESS_READWRITE
OPEN_ACCESS_WRITEONLY

OPEN_SHARE_DENYNONE

OPEN_SHARE_DENYREAD

OPEN_SHARE_DENYREADWRITE

OPEN_SHARE_DENYWRITE

OPEN_FLAGS_DASD

OPEN_FLAGS_FAIL_ON_ERROR

Data can be read from the file but
not written to it.

Data can be read from or written
to the file.

Data can be written to the file but
not read from it.

Other processes can open the file
for any access: read-only, write-
only, or read-write.

Other processes can open the file
for write-only access but they can-
not open it for read-only or read-
write access.

The current process has exclusive
access to the file. The file cannot

be opened by any process (includ-
ing the current process).

Other processes can open the file
for read-only access but they can-
not open it for write-only or
read-write access.

The file handle represents a physi-
cal drive that has been opened for
direct access. (The pszFileName
parameter must specify a drive
name.) The DosDevIOCt! func-
tion can be used with this file han-
dle to bypass the file system and
to access the sectors of the drive
directly.

Any function that uses the file
handle returns immediately with
an error value if there is an I/0
error—for example, when the
drive door is open or a sector is
missing. If this value is not
specified, the system passes the
error to the system critical-error
handler, which then reports the
error to the user with a hard-error
popup. The fail-on-error flag is
not inherited by child processes.

The fail-on-error flag applies to all
functions that use the file handle,
with the exception of the Dos-
DevIOCtI function.

Value

DosOpen 111

Meaning

OPEN_FLAGS_NOINHERIT

OPEN_FLAGS_WRITE_THROUGH

.

OPEN_FLAGS_NO_LOCALITY

OPEN_FLAGS_SEQUENTIAL
OPEN_FLAGS_RANDOM
OPEN_FLAGS_RANDOMSEQUENTIAL

OPEN_FLAGS_NO_CACHE

The file handle is not available to
any child process started by the
current process. If this value is
not specified, any child process
started by the current process may
use the file handle.

This flag applies to functions,
such as DosWrite, that write data
to the file. If this value is
specified, the system writes data
to the device before the given
function returns. Otherwise, the
system may store the data in an
internal file buffer and write the
data to the device only when the .
buffer is full or the file is closed.

There is no specific information
regarding the locality of reference
(the degree of randomness with
which the file is accessed).

The file is accessed sequentially.
The file is accessed randomly.

The file is accessed randomly, but
that there is a degree of sequential
1/O within that random access.
For example, this flag is specified
if large blocks of data are to be
read or written at random loca-
tions in the file.

The disk drive should not cache
data in I/0O operations on this file.

ulReserved Specifies a reserved value; must be zero.

Return Value
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_CANNOT_MAKE
ERROR_DISK_FULL
ERROR_DRIVE_LOCKED
ERROR_FILE_NOT_FOUND
ERROR_INVALID_ACCESS
ERROR_INVALID_PARAMETER
ERROR_NOT_DOS_DISK
ERROR_OPEN_FAILED
ERROR_PATH_NOT_FOUND

The return value is zero if the function is successful. Otherwise, it is an error

ERROR_SHARING_BUFFER_EXCEEDED

ERROR_SHARING_VIOLATION
ERROR_TOO_MANY_OPEN_FILES

112 DosOpen

Comments

Restrictions

Example

See Also

Changes

The ERROR_ACCESS_DENIED value is returned if you try to open a file in a
mode that is incompatible with the file’s current access and sharing modes—for
example, if you attempt to open a read-only file for writing.

The ERROR_SHARING_VIOLATION value is returned if some other process
has opened the file with a sharing method that denies the type of access you
have requested.

Once the file is opened, the DosSetFHandState function can be used to change
the OPEN_FLAGS_FAIL_ON_ERROR, OPEN_FLAGS_NOINHERIT, and
OPEN_FLAGS_WRITE_THROUGH flags specified in fsOpenMode.

MS OS/2 does not provide a built-in method to inform a child process that it has
inherited a given file handle. The parent process must pass this information to a
child process. If the file is created without the OPEN_FLAGS_NOINHERIT
flag, and the parent process terminates without closing the file, the file will
remain open until all child processes have terminated.

In real mode, the following restriction applies to the DosOpen function:

B Only the access modes and the OPEN_FLAGS_DASD flag can be
specified for the fsOpenMode parameter.

This example calls the DosOpen function to create a file abc that is 100 bytes
long and open it for write-only access. The fsOpenFlags parameter is set to
FILE_CREATE so that DosOpen will return an error if the file already exists.

HFILE hf;

USHORT usAction;

DosOpen ("abc", /* filename to open */
&hf, /* address of file handle */
&usAction, /* action taken */
100L, /* size of new file */
FILE_NORMAL, /* file attribute */
FILE_CREATE, /* create the file */
OPEN_ACCESS_WRITEONLY | OPEN_SHARE_DENYNONE, /* open mode */
OL) ; /* reserved /

DosBufReset, DosClose, DosDevIOCtl, DosDupHandle, DosQFHandState,
DosQFilelnfo, DosQFileMode, DosQFSInfo, DosSetFHandState, DosSet-
FileMode, DosWrite

The following constants are new for the stpenMode parameter:
Value Meaning

OPEN_FLAGS_NO_LOCALITY There is no specific information
regarding the locality of reference
(the degree of randomness with
which the file is accessed).

OPEN_FLAGS_SEQUENTIAL The file is accessed sequentially.
OPEN_FLAGS_RANDOM The file is accessed randomly.

OPEN_FLAGS_RANDOMSEQUENTIAL The file is accessed randomly, but
‘ that there is a degree of sequential
1/0 within that random access.
For example, this flag is specified
if large blocks of data are to be
read or written at random loca-
tions in the file.

Corrections

DosOpen2

DosOpen2 113

Value Meaning

OPEN_FLAGS_NO_CACHE The disk drive should not cache
data in I/O operations on this file.

The comments incorrectly stated that ERROR_ACCESS_DENIED would be
returned if another process had previously opened the file in an incompatible
mode. The correct error code is ERROR_SHARING_VIOLATION.

New

USHORT DosOpen2(pszFileName, phfHand, pusAction, ulFileSize, usAttribute, usOpenFlags,

ulOpenMode, peaop, ulReserved)

PSZ pszFileName; /= pointer to filename »/
PHFILE phfHand; /=~ pointer to variable for file handle »/
PUSHORT pusAction; /+ pointer to variable for action taken »/
ULONG ulFileSize; /« file size if created or truncated »/
USHORT usAttribute; /« file attribute «/
USHORT usOpenFlags; /« action if file exists/does not exist «/
ULONG u/OpenMode; /= open mode of file «/

PEAOP peaop;
ULONG u/Reserved;

Parameters

/= pointer to structure for extended attributes »/
/= must be zero s/

The DosOpen2 function opens an existing file or creates a new file. This func-
tion returns a handle that can be used to read from and write to the file, as well
as to retrieve information about the file.

For compatibility with future versions of MS OS/2, the DosOpen2 function
should be used instead of the DosOpen function.

pszFileName Points to the null-terminated string that specifies the name of
the file to be opened. The string must be a valid MS OS/2 filename and must not
contain wildcard characters.

DhfHand Points to the variable that receives the handle of the opened file.

pusAction Points to the variable receiving the value that specifies the action
taken by the DosOpen2 function. If DosOpen2 fails, this value has no meaning.
Otherwise, it is one of the following values:

Value Meaning

FILE_CREATED File was created.
FILE_EXISTED File already existed.
FILE_TRUNCATED File existed and was truncated.

ulFileSize Specifies the file’s new size (in bytes). The size specification has no
effect on a file that is opened only for reading.

usAttribute Specifies the file attributes. This parameter can be a combination
of the following values:

Value Meaning

FILE_NORMAL File can be read from or written to.
FILE_READONLY File can be read from, but not written to.

114

DosOpen2

Value Meaning

FILE_HIDDEN

FILE_SYSTEM
FILE_ARCHIVED

File attributes apply only if the file is created.

usOpenFlags

File is hidden and does not appear in a directory
listing.

File is a system file.

File has been archived.

Specifies the action to take both when the file exists and when it

does not exist. This parameter can be one of the following values:

Value

Meaning

FILE_CREATE
FILE_OPEN
FILE_OPEN | FILE_CREATE

FILE_TRUNCATE

FILE_TRUNCATE | FILE_CREATE

ulOpenMode

Create a new file; fail if the file
already exists.

Open an existing file; fail if the
file does not exist.

Open an existing file or create the
file if it does not exist.

Open an existing file and change
its size to a given size.

Open an existing file and truncate
it, or create the file if it does not
exist.

Specifies the modes with which to open the file. This parameter

consists of one access mode and one share mode. All other values are optional;
one locality mode can be specified, and the others can be given in any combina-

tion:
Value

Meaning

OPEN_ACCESS_READONLY
OPEN_ACCESS_READWRITE
OPEN_ACCESS_WRITEONLY

OPEN_SHARE-DENYNONE

OPEN_SHARE_DENYREAD

OPEN_SHARE_DENYREADWRITE

OPEN_SHARE_DENYWRITE

Data can be read from the file but
not written to it.

Data can be read from or written
to the file.

Data can be written to the file but
not read from it.

Other processes can open the file
for any access: read-only, write-
only, or read-write.

Other processes can open the file

for write-only access but they can-
not open it for read-only or read-

write access.

The current process has exclusive
access to the file. No process
(including the current process)
can be open the file.

Other processes can open the file
for read-only access but cannot
open it for write-only or read-
write access.

Value

DosOpen2

115

Meaning

OPEN_FLAGS_DASD

OPEN_FLAGS_FAIL_ON_ERROR

OPEN_FLAGS_NOINHERIT

OPEN_FLAGS_WRITE_THROUGH

OPEN_FLAGS_NO_LOCALITY

OPEN_FLAGS_SEQUENTIAL
OPEN_FLAGS_RANDOM

The file handle represents a physi-
cal drive that has been opened for
direct access. (The pszFileName
parameter must specify a drive
name.) The DosDevIOCtl func-
tion can be used with this file han-
dle to bypass the file system and
to access the sectors of the drive
directly.

Any function that uses the file
handle returns immediately with
an error value if there is an I/O
error—for example, when the
drive door is open or a sector is
missing. If this value is not
specified, the system passes the
error to the system critical-error
handler, which then reports the
error to the user with a hard-error
popup. The fail-on-error flag is
not inherited by child processes.

The fail-on-error flag applies to all
functions that use the file handle,
with the exception of the Dos-
DevIOCt] function.

The file handle is not available to
any child process started by the
current process. If this value is
not specified, any child process
started by the current process can
use the file handle.

This flag applies to functions (for
example, DosWrite) that write
data to the file. If this value is
specified, the system writes data
to the device before the given
function returns. Otherwise, the
system can store the datain a
buffer and write the data to the
device only when the buffer is full
or the file is closed.

There is no specific information
regarding the locality of reference
(the degree of randomness with
which the file is accessed).

The file is accessed sequentially.

The file is accessed randomly.

116 DosOpen2

Value . Meaning

OPEN_FLAGS_RANDOMSEQUENTIAL The file is accessed randomly, but
that there is a degree of sequential
I/0 within that random access.
For example, this flag would be
specified if large blocks of data
were to be read or written at ran-
dom locations in the file.

OPEN_FLAGS_NO_CACHE The disk driver should not cache
data in I/0 operations on this file.

peaop Points to an EAOP structure that defines extended attributes for the

file. If this value is NULL, the file will not use extended attributes. Before you
call the DosOpen2 function, the fpFEAList field of the EAOP structure must
point to a data area where the relevant extended-attribute information is stored.
The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP; .

For a full description, see Chapter 4, “Types, Macros, Structures.”

. ulReserved Specifies a reserved value; must be zero.

Return Value

Comments

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_DISK_FULL
ERROR_EA_LIST_INCONSISTENT
ERROR_EA_VALUE_UNSUPPORTABLE
ERROR_FILE_NOT_FOUND
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_ACCESS
ERROR_INVALID_EA_NAME
ERROR_INVALID_PARAMETER
ERROR_OPEN_FAILED
ERROR_PATH_NOT_FOUND
ERROR_SHARING_BUFFER_EXCEEDED
ERROR_SHARING_VIOLATION
ERROR_TOO_MANY_OPEN_FILES

The read/write pointer is initially set at the first byte of the file.

The ulFileSize parameter affects the size of the file only when it is created, trun-
cated, or replaced. The value specified for this parameter is the recommended
file size. The file can be opened even if allocation of the full amount of bytes
fails. '

The value of the usOpenFlags parameter provides a disk-access mechanism that
is independent of the file system. When this value is used, the DosOpen2 func-

‘tion returns a handle to the calling process that represents the physical drive as a

file. In order to prevent other processes from accessing the disk, the calling pro-
cess must also issue a DosDevIOCtl DSK_LOCKDRIVE subcall, which requires
the file handle returned by the DosOpen2 function for the physical drive.

DosQFHandState 117

Extended attributes that require contiguous disk space may cause the function to
fail if the file system is unable to allocate contiguous space.

DosOpen2 sets extended attributes when a file is created, replaced, or truncated.
Extended attributes are ordinarily set when a file is opened for reading. When a
file is replaced, the extended attributes are also replaced. Extended attributes are
discarded if the peaop parameter is NULL.

The pszFileName parameter cannot point to a volume label, because volume
labels cannot be opened.

Any sharing restrictions placed on a file when it is opened are removed when it
is closed. When a file is inherited by a child process, all sharing and access res-
trictions are also inherited.

The DosOpen2 function opens the client end of a named pipe and returns a han-
dle of the pipe. The pipe must be in “listen” state for the open operation to
succeed; otherwise the open operation fails and the ERROR_PIPE_BUSY error
value is returned. Until a given instance of a named pipe has been closed by a
client, that same instance cannot be opened by another client; however, the
opening process can duplicate the open handle as many times as required. The
access and sharing modes specified when a pipe is opened must be consistent
with the modes specified in the call to the DosMakeNmPipe function. Pipes are
always opened with the pipe-specific states set to lock read and write operations
and are read as a byte stream.

See Also DosClose, DosDevIOCtl, DosDupHandle, DosMakeNmPipe, DosOpen,
DosSetFHandState, DosSetFileInfo
DosQFHandState Change

USHORT DosQFHandState (hf, pfsOpenMode)

HFILE hf;

/= file handle N

PUSHORT pfsOpenMode; /= pointer to variable for file-handle state »/

- Parameters

The DosQFHandState function retrieves the state of the specified file handle.
The file-handle state indicates whether the file may be read from or written to
and whether it may be opened for reading or writing by other processes.

The DosQFHandState function is a family API function.

hf Identifies the file whose file-handle state is to be retrieved. This handle
must have been previously created by using the DosOpen function.’

pfsOpenMode Points to the variable that receives the file-handle state. The
file-handle state consists of one access mode, one share mode, and optional
flags. It is identical to the values specified in the fsOpenMode parameter of the
DosOpen function. Which values are set can be determined by using the AND
operator to combine the value returned in the pfsOpenMode parameter with one
or more of the following values:

Value Meaning

OPEN_ACCESS_READONLY Data can be read from the file but
not written to it.

OPEN_ACCESS_READWRITE Data can be read from or written

to the file.

118 DosQFHandState

Value : Meaning

OPEN_ACCESS_WRITEONLY Data can be written to the file but
. not read from it.

OPEN_SHARE_DENYNONE Other processes can open the file

for any access: read-only, write-
only, or read-write.

OPEN_SHARE_DENYREAD Other prdcesses can open the file
for write-only access but not for
read-only or read-write access.

OPEN_SHARE_DENYREADWRITE The current process has exclusive
access to the file.
OPEN_SHARE_DENYWRITE Other processes can open the file

for read-only access but not for
write-only or read-write access.

OPEN_FLAGS_DASD 4 The file handle represents a physi-
cal drive that has been opened for
direct access.

OPEN_FLAGS_FAIL_ON_ERROR Any function that uses the file
handle returns immediately with
an error code if there is an 1/0O
error.

OPEN_FLAGS_NOINHERIT The file handle is private to the
current process.
OPEN_FLAGS_WRITE_THROUGH The system writes data to the
device before the given function
returns.
OPEN_FLAGS_NO_CACHE The system does not cache file
data.
Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:
ERROR_INVALID_HANDLE
Example This example calls the DosQFHandState function using the handle of a previ-

ously opened file, and then checks the variable fsOpenMode and reports if the
file is opened for read/write access:

HFILE hf;
USHORT fsOpenMode;

DosQFHandState (hf, &fsOpenMode);
if (fsOpenMode & OPEN_ACCESS_READWRITE)

VioWrtTTY ("File opened for read/write access\r\n", 35, 0);
if (fsOpenMode & OPEN_SHARE_DENYREADWRITE)

VioWrtTTIY("File cannot be shared\r\n", 23, 0):

See Also DosDevIOCtl, DosExecPgm, DosOpen, DosSetFHandState

Changes The OPEN_FLAGS_NO_CACHE value can be specified for the pfsOpenMode
parameter. If specified, the system does not cache file data.

M DosQFilelnfo

DosQFilelnfo 119

Change

USHORT DosQFilelnfo (hf, usinfoLevel, pvinfo, cbinfoBuf)

HFILE hf; /» handle of file about which data sought »/
USHORT usinfoLevel; /= level of file data required =/
PVOID pvinfo; /= pointer to file-data buffer o/
USHORT cbinfoBuf; /= length of file-data buffer /

The DosQFilelnfo function retrieves information about a specific file. The file
information consists of the date and time the file was created, the date and time
it was last accessed, the date and time it was last written to, the size of the file,
and its attributes. It can also be used to return information about the extended

. attributes used for a file.

Parameters

The file information is based on the most recent call to the DosClose or the
DosBufReset function.

The DosQFilelnfo function is a family API function.
hf Identifies the file about which information is to be retrieved. This handle
must have been created by using the DosOpen function.

usinfoLevel Specifies the level of file information required. It may be one of
the following values:

Value Meaning

FILE_INFO_1 Level-1 information request. This will return a
FILESTATUS structure. Any time and data fields
in the structure that the file-system device does not
support are set to zero.

FILE_INFO_2 Level-2 information request. This will return a
FILESTATUS2 structure, which contains the same
information as FILESTATUS plus the size of the
structure used by the FILE_INFO_3 value (for MS
0OS/2 version 1.2, this size cannot exceed 65,535
bytes).

FILE_INFO_3 Level-3 information request. This will return an
EAOP structure that contains a subset of the file’s
extended-attribute information. '

pviInfo Points to the structure that receives the file information. This structure |
will be FILESTATUS for FILE_INFO_1 information, FILESTATUS2 for
FILE_INFOQO_2 information, and EAOP for FILE_INFO_3 information.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

120 DosQFilelnfo

The FILESTATUS?2 structure has the following form:

typedef struct _FILESTATUS2 {
FDATE fdateCreation;
FTIME ftimeCreation;
EDATE fdateLastAccess;
FTIME ftimeLastAccess;
FEDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;
USHORT cbList;

} FILESTATUS2;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, “Types, Macros, Structures.”

cbInfoBuf Specifies the length (in bytes) of the buffer that receives the file
information.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_EA_NAME
ERROR_EA_LIST_INCONSISTENT
ERROR_BUFFER_OVERFLOW
ERROR_DIRECT_ACCESS_HANDLE
ERROR_INVALID_HANDLE
ERROR_INVALID_LEVEL

Comments Prior to the function being called, the fpFEAlist field in the EAOP structure
should be initialized so that it points to the FEALIST structure that contains the
relevant FEA structure. The cbList field in the FEALIST structure is valid, giv-
ing the size of the FEA structure.

If the FEALIST structure is not large enough to hold the returned information
(indicated by ERROR_BUFFER_OVERFLOW), cbList will still be valid,
assuming there is at least enough space for it. Its value will be the size of the
entire set of extended attributes for the file, even if only a subset of attributes
was requested.

Example This example opens the file abc, calls the DosQFileInfo function to retrieve the
current allocated size, and then calls the DosNewSize function to increase the
file’s size by 1K:

HFILE hf;

USHORT usAction;

FILESTATUS fstsFile;

DosOpen ("abc", &hf, &usAction, OL, FILE_NORMAL,
FILE_OPEN | FILE_CREATE,
OPEN_ACCESS_WRITEONLY | OPEN SHARE DENYNONE, OL):

DosQFilelInfo (hf, file handle */
FILE_INFO_1, /' level of information */
&fstsFile, /* address of file-data buffer */
sizeof(fstsFile)); /* slze of data buffer *

DosNewSize (hf, fstsFile.cbFileAlloc + 1024L);

See Also

Changes

DosQFSAttach

DosQFSAttach 121

DosBufReset, DosClose, DosNewSize, DosOpen, DosQFileMode,
DosQPathInfo, DosSetFileInfo

Parameters and structures for FILE_INFO_2 and FILE_INFO_2 information
have been added. The type of the pvinfo parameter has changed from
PFILESTATUS to PVOID because one of three structures can be used for this
parameter.

New

USHORT DosQFSAttach(pszDev, usOrdinal, usinfoLevel, pFSAttBuf, pcbAttBuf, ulReserved)

PSZ pszDev; /« pointer to drive or device »/
USHORT usOrdinal; /« index to drive or device »f
USHORT usinfolevel; /« level of information =/

PBYTE pFSAttBuf;,

/« pointer to structure for file-system attributes »/

PUSHORT pcbAttBuf; /= pointer to structure length »/

ULONG u/Reserved;

Parameters

/= must be zero »/

The DosQFSAttach function queries information about an attached remote file
system or a local file system. The function can also query information about a
character device or pseudo-character device attached to a local or remote file

" system.

pszDev Points to a null-terminated string that specifies the drive letter fol-
lowed by a colon or to the name of a character or pseudo-character device. If
this parameter is a character or pseudo-character device name, the format of the
string is \DEV\filename, where filename is a valid MS OS/2 filename.

This parameter is ignored if the usinfoLevel parameter is set to either
FSAIL_DEVNUMBER or FSAIL_DRVNUMBER.

usOrdinal Specifies an index into the list of character or pseudo-character
devices or the set of drives. The first item in the list is always 1. This parameter
is ignored if the usinfoLevel parameter is set to FSAIL_QUERYNAME.

usInfoLevel Specifies the type of information requested. This parameter can
be one of the following values:

Value Meaning

FSAIL_QUERYNAME Returns information about the drive or device
pointed to by the pszDev parameter. When this value
is specified, the usOrdinal parameter is ignored.

FSAIL_DEVNUMBER Returns information about the character or pseudo-
character device specified by the usOrdinal parame-
ter. When this value is specified, the pszDev parame-
ter is ignored.

FSAIL_DRVNUMBER Returns information about the drive specified by the
usOrdinal parameter. When this value is specified,
the pszDev parameter is ignored.

122 DosQFSAttach

Return Value

Comments

Example

See Also

pFSAttBuf Points to the buffer that receives information about the file system.
The buffer is organized as a FSQBUFFER structure. Because the name fields can
vary length, however, the structure cannot be used directly to retrieve the data.
The PFSQBUFFER structure has the following form:

typedef struct _ESQBUFFER {
USHORT iType;
USHORT cbName;
UCHAR szName[1];
USHORT cbFSDName;
UCHAR szFSDName([1}:;
USHORT cbFSAData;
UCHAR rgESAData (1]

} ESQBUEFER;

For a full description, see Chapter 4, “Types, Macros, Structures.”

pcbAntBuf Points to the variable that receives the length (in bytes) of the
buffer.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_INVALID_DRIVE
ERROR_INVALID_LEVEL
ERROR_NO_MORE_ITEMS

The DosQFSAttach function can be used to ensure that the correct file system is
loaded for a disk. Without this information, there is potential for the data on the
disk to be destroyed because the wrong file system could be attached to the disk
by default.

This example calls DosQFSAttach to get information about drive C, and then
displays the device and file-system names:

PSZ psz;

PUSHORT pcb;

USHORT cb;

SEL sel;

DosAllocSeg (1024, &sel, SEG_NONSHARED):; /* allocates buffer */

if (!DosQFSAttach("c:", O, FSAIL_QUERYNAME, MAKEP (sel, O), &cb, OL))
pecb = MAKEP (sel, 2):; /* points to length of device name */
psz = MAKEP (sel, 4); /* polnts to device name */
VioWrtTTY (psz, *pcb, NULL); /* displays device name */
VioWrtTTY ("\r\n", 2, OL);
psz += *pcb + 3; /* add null char. and name-length var. */
pcb = (PUSHORT) (psz - 2); /* points to length of name */
VioWrtTTY (psz, *pcb, NULL); /* displays file-system name */

VioWrtTTY ("\r\n", 2, OL):;
}

DosFSAttach, DosQFSInfo

DosQNmPipeilnfo 123

B DosQNmPipelnfo Change

USHORT DosQNmPipelnfo (hp, usinfoLevel, pbBuf, cbBuf)

HPIPE hp;

/s pipe handle o/

USHORT usinfolLevel; /= level of information to retrieve «/

PBYTE pbBuf;
USHORT cbBuf:

Parameters

Return Value

Comments

See Also
Changes

Corrections

/= pointer to buffer fpr information «/
/= number of bytes in buffer »/

The DosQNmPipelnfo function retrieves information about a named pipe.

hp Identifies the pipe to read from.

“usInfoLevel Specifies the level of information to retrieve. Level 1 is miscel-

laneous information about the pipe.

pbBuf Points to the buffer that receives the information. For level-1 informa-
tion, the data is stored in the PIPEINFO structure. The PIPEINFO structure has
the following form:
typedef struct _PIPEINFO {

USHORT cbOut;

USHORT cblIn;

BYTE cbMaxInst;

BYTE cbCurlnst;

BYTE cbName;

CHAR szName (1] ;
} PIPEINEO;

cbBuf Specifies the size (in bytes) of the buffer receiving the information.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_PIPE
ERROR_BUFFER_OVERFLOW
ERROR_INVALID_LEVEL
ERROR_INVALID_PARAMETER
ERROR_PIPE_NOT_CONNECTED

For level-1 information, if the pipe name is longer than 255 bytes, zero will be
returned in the cbName field of the PIPEINFO structure. The full null-
terminated string that contains the name will be returned in the location
specified by the szName field. :

DosQNmPHandState, DosQNmPipeSemState

Pipe names longer than 255 bytes are now supported. For names longer than 255
bytes, however, zero is returned in the cbName field of the PIPEINFO structure.

This function returns only level-1 information. Erroneous references to level-2
information have been removed.

124 DosQNmPipeSemState

DosQNmPipeSemState Correction

USHORT DosQNmPipeSemState (hsem, pnmpsmst, cbBuf)

HSEM hsem; /= semaphore handle /
PPIPESEMSTATE pnmpsmst; /= pointer to buffer receiving information «/
USHORT cbBuf; /= buffer size «f

The DosQNmPipeSemState function returns information about all local named
pipes that are in blocking mode and are associated with a specified system sema-
phore.

Parameters hsem Identifies the semaphore that is associated with the named pipe.

pnmpsmst Points to the PIPESEMSTATE structure that receives the informa-
tion. The PIPESEMSTATE structure has the following form:

typedef struct _PIPESEMSTATE {
BYTE fStatus;
BYTE fFlag;
USHORT usKey;
USHORT usAvail;
} PIPESEMSTATE;

For a full description of these structures, see Chapter 4, “Types, Macros, Struc-
tures.”

cbBuf Specifies the length (in bytes) of the structure that receives the informa-
tion. Programs written in the C language should use the sizeof operator to set
this parameter.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_PARAMETER
ERROR_SEM_NOT_FOUND

See Also DosSetNmPipeSem

Corrections The second parameter has been replaced by a PIPESEMSTATE structure.
DosQPathinfo New
USHORT DosQPathinfo (pszPath, usinfoLevel, pinfoBuf, cbinfoBuf, ulReserved)

PSZ pszPath; /= pointer to path /

USHORT usinfoLevel; /= level of information «/

PBYTE pinfoBuf; /x pointer to buffer for information »/

USHORT cbinfoBuf; /» length of information buffer o/

ULONG u/Reserved; /+ must be zero «/

The DosQPathInfo function returns information about a specified file or direc-
tory.
The DosQPathInfo function is a family API function.

Parameters pszPath Points to the null-terminated string that specifies the path of the file

or directory. Wildcard characters are valid in the path only when the value of the
uslnfoLevel parameter is FIL_QUERYFULLNAME or FIL_NAMEISVALID.

DosQPathinfo 125

uslnfoLevel Specifies the level of information required. This parameter can
be one of the following values:

Value Meaning
FIL_STANDARD Return a FILESTATUS structure.
FIL_QUERYEASIZE Return a FILESTATUS structure followed by

a 4-byte value that specifies the buffer size
needed to retrieve the entire extended attri-
bute.

FIL_QUERYEASFROMLIST Recturn extended-attribute information using
an EAOP structure for the pInfoBuf parame-
ter.

FIL_QUERYFULLNAME Return the fully qualified path of the buffer
pointed to by the pInfoBuf parameter. When
this value is specified, the path pointed to by
the pszPath parameter can contain wildcard
characters.

FIL_NAMEISVALID Verify the correctness (according to MS OS/2
syntax rules) of the path pointed to by the
pszPath parameter. If the path is incorrect
(for example, a filename is too long for the
current file system), an error will be returned.
The path can contain wildcard characters.

pInfoBuf Points to the buffer that contains a FILESTATUS or EAOP struc-
ture. The structure used is determined by the value specified for the uslnfoLevel
parameter. '

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
EDATE fdateCreation;
FTIME ftimeCreation;
EDATE fdateLastAccess;
FETIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, sece Chapter 4, “Types, Macros, Structures.” '

cbinfoBuf Specifies the length (in bytes) of the buffer pointed to by the
pInfoBuf parameter.

ulReserved Specifies a reserved value; must be zero.

126 DosQPathinfo

Return Value

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_EA_LIST_INCONSISTENT
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_EA_NAME
ERROR_INVALID_LEVEL
ERROR_PATH_NOT_FOUND

Comments If the usinfoLevel parameter is FIL_QUERYEASFROMLIST, a subset of the
extended-attribute information for the file is returned. Prior to the call to the
DosQPathInfo function, the fpGEAList field of the EAOP structure should
point to a list that defines the attribute names for which values will be returned,
and the fpFEAList field should point to a buffer in which the relevant extended-
attribute list will be returned.

See Also DosQFileInfo, DosSetPathInfo

DosRead Correction

USHORT DosRead(hf, pvBuf, cbBuf, pcbBytesRead)

HFILE hf; /= file handle /

PVOID pvBuf; /=« pointer to butfer receiving data «/

USHORT cbBuf; /= number of bytes in buffer o/

PUSHORT pcbBytesRead; /= pointer to variable for number of bytes read »/

Parameters

Return Value

Comments

The DosRead function reads up to a specified number of bytes of data from a
file into a buffer. The function may read fewer than the specified number of
bytes if it reaches the end of the file.

The DosRead function is a family API function.

hf Identifies the file to be read. This handle must have been created by using
the DosOpen function.

pvBuf Points to the buffer that receives the data.

cbBuf Specifies the number of bytes to read from the file.

pcbBytesRead Points to the variable that receives the number of bytes read
from the file. This parameter is zero if the file pointer is positioned at the end of
the file prior to the call to the DosRead function.

. The return value is zero if the function is successful. Otherwise, it is an error

value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_BROKEN_PIPE
ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION
ERROR_NOT_DOS_DISK

The DosRead function does not return an error if the file pointer is at the end of
the file when the read operation begins.

Example

See Also

Corrections

DosRead 127

When DosRead is used to read a byte pipe, the pipe must be in byte-read mode,
an error is returned if the pipe is in message-read mode. All currently available
data, up to the size requested, is returned.

For a message pipe in message-read mode, a read operation that is larger than
the next available message returns only that message, with pcbBytesRead set to
indicate the size of the returned message. A read operation that is smaller than
the next available message returns with the number of bytes requested and an
ERROR_MORE_DATA error code. Subsequent DosRead calls will continue
reading the message. The DosPeekNmPipe function can be used to determine
how many bytes are left in the message.

~ For a message pipe in byte-read mode, DosRead reads the pipe as if it were a

byte stream, skipping over message headers. This is the same as reading a byte
pipe in byte mode.

When blocking mode is set, the read operation blocks until data is available. In
this case, the read operation will never return with the pcbBytesRead parameter
equal to zero except when it has read an end-of-file (EOF) character. Note that
in message-read mode, messages are always read entirely, except in the case
where the message is larger than the size specified for the read operation.

When nonblocking mode is set, the read operation returns with the
pcbBytesRead parameter equal to zero upon reading the EOF character. An
error will be returned if no data is available.

When resuming reading a message after an ERROR_MORE_DATA error
occurs, the read operation always blocks until the next part of the message can
be transferred. When nonblocking mode is set, the read operation can return
with pcbBytesRead equal to zero if, upon attempting to read at the start of a
message, it determines that no message is available.

This example opens, reads, and displays the file abc:

BYTE abBuf[S12};

HFILE hf;

USHORT usActlon, cbBytesRead, cbBytesWritten;

DosOpen ("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READONLY | OPEN_SHARE_DENYNONE, OL);

do {

DosRead (hf, /* file handle */
abBuf, /* address of buffer */
sizeof (abBuf), /* size of buffer */
&cbBytesRead) ; /* address for number of bytes read */

DosWrite (1, abBuf, cbBytesRead, &cbBytesWritten);

}
wvhile (cbBytesRead):;

DosChgFilePtr, DosOpen, DosPeekNmPipe, DosReadAsync, DosWrite,
KbdStringIn

DosRead can be used to read from a named pipe. The comments have been
updated to contain the relevant information about reading from a named pipe.

128 DosReadAsync

DosReadAsync Change
USHORT DosReadAsync(hf, hsemRam, pusErrCode, pvBuf, cbBuf, pcbBytesRead)

HFILE hf; /= file handle /

PULONG hsemRam; /= pointer to RAM semaphore /

PUSHORT pusErrCode; /= pointer to variable for error return code »/

PVOID pvBuf; /= pointer to input buffer «/

USHORT cbBuf; /« length of input buffer «/

PUSHORT pcbBytesRead; /= pointer to variable for number of bytes read «/

The DosReadAsync function reads one or more bytes of data from the file
identified by the hf parameter. The function reads the data asynchronously; that
is, the function returns immediately to the process that called it but continues to
copy data to the specified buffer while the process continues.

Parameters hf Identifies the file to be read. This handle must have been previously opened
by using the DosOpen function.

hsemRam Points to the RAM semaphore that indicates when the function has
finished reading the data.

pusErrCode Points to the variable that receives any error code the function
generates while reading data. The possible error codes are identical to those
returned by the DosRead function.

pvBuf Points to the buffer that receives the data being read.

cbBuf Specifies the number of bytes to be read from the file identified by the
hf parameter.

pcbBytesRead Points to the variable that receives the number of bytes read
from the file.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_BROKEN_PIPE
ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION
ERROR_NO_PROC_SLOTS
ERROR_NOT_DOS_DISK

Comments The DosReadAsync function reads up to the number of bytes specified in the
cbBuf parameter, but it may read fewer if it reaches the end of the file. In any
case, the function copies the number of bytes read to the variable pointed to by
the pcbBytesRead parameter. The pcbBytesRead parameter is zero if all the bytes
in the file have been read (that is, the end of file has been reached).

If the process intends to use the RAM semaphore pointed to by the hsemRam
parameter to determine when data is available, it must set the semaphore by
using the DosSemSet function before calling DosReadAsync. When Dos-
ReadAsync has read the data, it clears the RAM semaphore.

The DosReadAsync function carries out the asynchronous operation by creating
a new thread that reads from the specified file. The function terminates the
thread when the operation is complete or when an error occurs.

Example

See Also

Changes

DosReadAsync 129

When DosReadAsync is used to read a byte pipe, the pipe must be in byte-read
mode; an error is returned if the pipe is in message-read mode. All currently
available data, up to the size requested, is returned.

For a message pipe in message-read mode, a read operation that is larger than
the next available message returns only that message; pcbBytesRead is set to indi-
cate the size of the message returned. A read operation that is smaller than the
next available message returns with the number of bytes requested and an
ERROR_MORE._DATA error code. Subsequent DosReadAsync calls will con-
tinue reading the message. DosPeekNmPipe may be used to determine how
many bytes are left in the message.

For a message pipe in byte-read mode, DosReadAsync reads the pipe as if it
were a byte stream, skipping over message headers. This is the same as reading a
byte pipe in byte mode.

When blocking mode is set, a read operation blocks until data is available. In
this case, the read operation will not return with the pcbBytesRead parameter
equal to zero except when it has read an end-of-file (EOF) character. Note that
in message-read mode, messages are always read entirely, except in the case
where the message is larger than the size specified for the read operation.

When nonblocking mode is set, a read operation returns with pcbBytesRead
equal to zero upon reading the EOF character. An error will be returned if there
is no data available.

When resuming reading a message after an ERROR_MORE_DATA message,
the read operation always blocks until the next part of the message can be
transferred. When nonblocking mode is set, the read operation can return with
pcbByteRead equal to zero if, upon attempting to read at the start of a message,
it determines that no message is available. '

This example opens the file abc, sets a RAM semaphore, and calls the Dos-
ReadAsync function to read part of the file. While the file is being read, program
execution continues until the call to the DosSemWait function, which does not
return until the DosReadAsync thread completes its work.

BYTE abBuf[512];

ULONG hReadSemaphore = O;

HFILE hf;

USHORT usAction, cbBytesRead;

USHORT usReadReturn;

DosOpen ("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READONLY | OPEN_SHARE_DENYNONE, OL);

DosSemSet (&hReadSemaphore) ; /* sets RAM semaphore */
DosReadAsync (hf, /* handle to file x/
&hReadSemaphore, /* address of semaphore */
&usReadReturn, /* address to store return code */
abBuf, /* address of buffer */
sizeof (abBuf), : /* size of buffer */
&cbBytesRead) ; /* number of bytes read */

. /* Other processing occurs here. */

DosSémWait(&hReadSemaphore. -1L);

DosOpen, DosPeekNmPipe, DosRead, DosSemSet, DosSemWait,
DosWriteAsync

Information about using this function with pipes has been added.

130 DosReadQueue

DosReadQueue

HQUEUE hqueue;

PVOID FAR * ppv;
USHORT usElement;
UCHAR fWait;
PBYTE pbElemPrty;

Correction

USHORT DosReadQueue (hqueue, pqresc, pcbElement, ppv, usElement, fWait, pbElemPrty, hsem)

/« handle of queue to read «f
PQUEUERESULT pgresc; /« pointer to structure for PID and request code »/
PUSHORT pcbElement; /« pointer to variable for length of element »/

/« pointer to buffer for element =/

/« element number to read «/

/« wait/no wait indicator «/

/« pointer to variable for priority of element »/

/« semaphore handle »/

HSEM hsem;

Parameters

The DosReadQueue function retrieves an element and then removes it from a
queue. It copies the address of the clement to the supplied pointer and fills a
structure with information about the element.

hqueue Identifies the queue to read. This handle must have been created or
opened by using the DosCreateQueue or DosOpenQueue function.

pgresc Points to the QUEUERESULT structure that receives information
about the request. The QUEUERESULT structure has the following form:
typedef struct _QUEUERESULT { '

PID pidProcess;

USHORT usEventCode;
} QUEUERESULT;

pcbElement Points to the variable that receives the length (in bytes) of the
element. o

ppv - Points to the pointer that receives the address of the element in the
queue.

usElement Specifies where to look in the queue for the element. If this
parameter is 0x0000, the function looks at the beginning of the queue. Other-
wise, the function assumes the value is an element identifier retrieved by using
the DosPeekQueue function and looks for the specified element.

fWalt Specifies whether to wait for an element to be placed in the queue, if
the queue is empty. If this parameter is DCWW_WALIT, the function waits until
an element is available. If this parameter is DCWW_NOWALIT, the function
returns immediately with a code that indicates there are no entries in the queue.

pbElemPrty -Points to the variable that receives the priority value specified
when the element was added to the queue. This is a value in the range 0 through
15; 15 indicates the highest priority.

hsem Identifies a semaphore. This value can be the handle of a system sema-
phore that has been created or opened by using the DosCreateSem or DosOpen-
Sem function, or it can be the address of a RAM semaphore. This semaphore
would typically be used in a call to the DosMuxSemWait function to wait until
the queue has an element. If the fWait parameter is DCWW_WAIT, hsem is
1gnored

DosReallocHuge 131

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following: ,

ERROR_QUE_ELEMENT_NOT_EXIST
ERROR_QUE_EMPTY
ERROR_QUE_INVALID_HANDLE
ERROR_QUE_INVALID_WAIT
ERROR_QUE_PROC_NOT_OWNED

Comments If the queue is empty, the DosReadQueue function either returns immediately or
waits for an element to be written to the queue, depending on the value of the
fWait parameter.

Only the process that created the queue can call the DosReadQueue function.

Example This example reads the queue and waits until an element is received. After the
element is read and the data processed, the process frees the shared memory
that was passed to it. This assumes the process writing to the queue created a
shared-memory segment. For more information, see the DosWriteQueue func-
tion.

QUEUERESULT qresc;
USHORT cbElement:
PVOID pv:

BYTE bElemPrty;

DosReadQueue (hqueue, /* queue handle */
&qresc, address of result structure */
&cbElement, /* receives element number */
&pv, /* receives data address */
0, /* element number to read */
DCWW_WAIT, /* walts until something is written */
&bElemPrty, /* receives priority level */

NULL) ; /* semaphore not needed, since waiting */
. /* Process the data. %/
DosFreeSeg (SELECTOROF (pv)) ; /* frees shared memory */

See Also DosCreateQueue, DosMux_SemWait, DosOpenQueue, DosOpenSem,
: DosPeekQueue, DosWriteQueue

Corrections The description incorrectly stated that the element was copied to the supplied
buffer. It is the address of the element that is copied to the supplied pointer. No
data is actually copied; only the pointer to the data is copied.

DosReallocHuge ' Change
USHORT DosReallocHuge (usNumSeg, usPartialSeg, sel)

USHORT usNumSeg; /= number of 65,536-byte segments »/

USHORT usPartialSeg; /= number of bytes in last segment «/

SEL sel; /« segment selector /

The DosReallocHuge function reallocates a huge—memory block. This function
changes the size of the huge memory to the specified number of 65,536-byte seg-
ments plus an additional segment of a specified size.

The DosReallocHuge function is a family API function.

132 DosReallocHuge

Parameters

Return Value

Comments

Restrictions

See Also

Changes

usNumSeg Specifies the number of 65,536-byte segments to allocate.

usPartialSeg Specifies the number of bytes in the last segment. This number
can be any value in the range 0 through 65,535. If this number is.zero, no addi-
tional segment is allocated.

sel Specifies the selector for the huge-memory block to be reallocated. The
selector must have been created by using the DosAllocHuge function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

The DosReallocHuge function does not change the sharable and discardable
attributes of the segments in the huge-memory block. If it was originally a shar-
able or discardable block, it remains a sharable or discardable block. However,
if DosReallocHuge reallocates a discardable block, it also locks the segments.
The DosUnlockSeg function must be used to unlock the segments and permit
discarding.

. The huge-memory block cannot be reallocated for a size larger than the max-

imum specified by the usMaxNumSeg parameter in the original call to the
DosAllocHuge function.

Each segment in the huge-memory block has a unique selector. The selectors are
consecutive. The sel parameter specifies the value of the first selector; the
remaining selectors can be computed by adding the selector offset to the first
selector one or more times—that is, once for the second selector, twice for the
third, and so on. The selector offset is a multiple of 2, as specified by the shift
count retrieved by using the DosGetHugeShift function. For example, if the shift
count is 2, the selector offset is 4 (1 << 2). If the selector offset is 4 and the
first selector is 6, the second selector is 10, the third is 14, and so on.

Typically, DosReallocHuge can increase, not decrease, the size of shared huge
segments. If the shared segment is allocated by the DosAllocHuge function, the
segment can be decreased in size by setting the fsAttr parameter to '
SEG_SIZEABLE.

DosReallocHuge can be issued from ring 2, but only ring-3 segments are affected
by this function.

In real mode, the following restriction applies to the DosReallocHuge function:

B The usPartialSeg parameter is rounded up to the next paragraph (16-byte)
value.

DosAllocHuge, DosFreeSeg, DosGetHugeShift, DosLockSeg, DosReallocSeg,
DosUnlockSeg

Typically, DosReallocHuge can increase, not decrease, the size of shared huge
segments. If the shared segment is allocated by the DosAllocHuge function, the
segment can be decreased in size by setting the fsAttr parameter to
SEG_SIZEABLE.

DosReallocHuge can be issued from ring 2, but only ring-3 segments are affected
by this function.

B DosReallocSeg

DosReallocSeg 133

Change

USHORT DosReallocSeg(usNewSize, sel)

USHORT usNewSize;

SEL sel;

Parameters

Return Value

Comments

Restrictions

Example

See Also
Changes

/« new segment size «/
/= segment selector «/

The DosReallocSeg function reallocates a segment. The function changes the
size of the segment to the number of bytes specified by the usNewSize parameter.

The DosReallocSeg function is a family API function.

usNewSize Specifies the new size (in bytes). The size can be any number from
0 through 65,535. If it is 0, the function allocates 65,536 bytes.

sel Specifies the selector of the segment to be reallocated. The selector must
have been created previously by using DosAllocSeg or DosAllocShrSeg.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_NOT_ENOUGH_MEMORY

The DosReallocSeg function does not change the sharable and discardable attri-
butes of the segment. If it was originally a sharable or discardable segment, it
remains a sharable or discardable segment. If DosReallocSeg reallocates a dis-
cardable segment, however, it also locks the segment. You must use the Dos-
UnlockSeg function to unlock the segment and permit discarding.

If the DosReallocSeg function is used to reallocate a shared segment to a size
smaller than its original size, the segment must have been created using the
DosAllocSeg function with the SEG_SIZEABLE attribute set. This request can
be issued from ring 2 or ring 3; the segment to be reallocated can be a ring-2 or
a ring-3 segment.

The DosReallocSeg function cannot be used to reallocate a segment created by
the DosCreateCSAlias function.

In real mode, the following restriction applies to the DosReallocSeg function:

B The usNewSize parameter is rounded up to the next paragraph (16-byte)
value.

This example allocates a segment with 16,000 bytes, and then calls DosReal-
locSeg to increase the size to 32,000 bytes:

SEL sel;
DosAllocSeg (16000, &sel, SEG_NONSHARED):; /* allocates memory */
DosRéallocSeg(SZOOO, sel) ; /* reallocates memory */

DosAllocSeg, DosFreeSeg, DosLockSeg, DosReallocHuge, DosUnlockSeg

If DosReallocSeg is used to reallocate a shared segment to a size smaller than its
original size, the segment must have been created using the DosAllocSeg func-
tion with the SEG_SIZEABLE attribute set. This request can be issued from
ring 2 or ring 3; the segment to be reallocated can be either a ring-2 or a ring-3
segment.

134 DosSearchPath

DosSearchPath Change

USHORT DosSearchPath(fsSearch, pszPath, pszFileName, pbBuf, cbBuf)
USHORT fsSearch; /= search flags /
PSZ pszPath; /« pointer to search path or environment variable «/
PSZ pszFileName; /= pointer to filename of
PBYTE pbBuf; /= pointer to result buffer «/
USHORT cbBuf; /= length of result buffer »/

The DosSearchPath function searches the specified search path for the given
filename. The search path is a null-terminated string that consists of a sequence
of directory paths separated by semicolons (;). The function searches for the
filename by looking in each directory (one directory at a time) in the order

given.

Parameters fsSearch Specifies how to interpret the pszPath parameter and whether to
search the current directory. This parameter can be a combination of the follow-
ing values:

Value Meaning
DSP_ENVIRONMENT The pszPath parameter points to the

name of an environment variable. The
function retrieves the value of the
environment variable from the environ-
ment segment of the process and uses it
as the search path. If this value is not
specified, pszPath points to a string that
specifies the search path. This value can-
not be used with the DSP_PATH value.

DSP_IGNORE_NET_ERR If this value is set, the search ignores any
network errors encountered during during
processing and continues to search the
remainder of the path. If this value is not
specified, a network error (for example,
when a server is unavailable) causes the
search to halt.

DSP_CUR_DIRECTORY The function searches the current direc-
tory before it searches the first directory
in the search path. If this value is not
specified, the function searches the
current directory only if it is explicitly
given in the search path.

DSP_PATH The pszPath parameter points to a string
that specifies the search path. This
value cannot be used with the
DSP_ENVIRONMENT value.

pszPath Points to the null-terminated string that specifies the search path. If
DSP_PATH is specified for the fsSearch parameter, the pszPath parameter
points to an environment variable. Otherwise, the pszPath parameter points to
one or more paths to search. The paths are separated by semicolons ().

DosSemClear 135

pszFileName Points to a null-terminated string that specifies the filename to
search for. The string must be a valid MS OS/2 filename and can contain wild-
card characters.

pbBuf Points to the buffer that receives the full path name of the file if the
filename is found.

cbBuf Specifies the length (in bytes) of the buffer pointed to by the pbBuf

parameter.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value.

Comments If DosSearchPath finds a matching filename in any of the directories specified by

the search path, the function copies the full, null-terminated path name to the
buffer pointed to by the pbBuf parameter. If the filename pointed to by the
pszFileName parameter contains wildcard characters, the resulting path name
will also contain wildcard characters; the DosFindFirst function can be used to
retrieve the actual filename(s).

The DosSearchPath function does not check for the validity of filenames. If the
filename is not valid, the function returns an error, indicating that the file was
not found.

Example This example uses the search path specified by the DPATH environment variable
to search for the abc.txt filename:

CHAR szFoundFile[128];

DosSearchPath (DSP_ENVIRONMENT, /* uses environment variable */
"DPATH", /* uses DPATH search path */
"abc.txt", /* filename *
szFoundFile, /* receives resulting filename */
sizeof (szFoundFile)); /* length of result buffer t/

The following example is identical to the first example if the DPATH variable is
defined as shown:

DPATH=c:\sysdir;c:\init

DosSearchPath (DSP_PATH, /* uses search path */
"e:\\sysdir;c:\\init", /* search path */
"abc.txt", /* filename */
szFoundFile, /* recelves resulting filename */
sizeof (szFoundFile)) /* length of result buffer *
See Also DosFindFirst, DosScanEnv
Changes " The constants SEARCH_PATH, SEARCH_CUR_DIRECTORY, and

SEARCH_ENVIRONMENT have been changed to DSP_PATH,
DSP_CUR_DIRECTORY, and DSP_ENVIRONMENT, respectively. A new
constant, DSP_IGNORE_NET_ERR, has been added to allow searches to con-
tinue when a network drive specified in the path might not be available at the
time of the search.

B DosSemClear ’ Correction

USHORT DosSemClear(hsem)
HSEM hsem; /» semaphore handle »/

The DosSemClear function clears a system or RAM semaphore that has been
set by using the DosSemRequest, DosSemSet, or DosSemSetWait function.

136 DosSemClear

Parameters

Return Value

hsem Identifies the semaphore to clear. This value can be the handle of a sys-
tem semaphore that has been previously created or opened by using the Dos-
CreateSem or DosOpenSem function, or it can be the address of a RAM sema-
phore.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_EXCL_SEM_ALREADY_OWNED

Comments The DosSemClear function cannot clear a system semaphore that is owned by
another process unless the semaphore is nonexclusive.

Example This example uses the DosSemClear function to clear a RAM semaphore and a
system semaphore:
ULONG hsem = O;
HSYSSEM hsys;
DosSemClear (&hsem) ; /* clears RAM semaphore */
DosSemClear (hsys) ; /* clears system semaphore */

See Also DosCreateSem, DosMuxSemWait, DosOpenSem, DosSemRequest, DosSem-

‘ Set, DosSemSetWalt DosSemWait

Corrections The example incorrectly used the address of the system semaphore rather than
the handle of the system semaphore. System semaphores require the handle of
the semaphore; RAM semaphores require the address of the semaphore.

DosSemRequest Correction

USHORT DosSemRequest(hsem, ITimeQOut)

HSEM hsem;

LONG /TimeOQut;

Parameters

Return Value

/« semaphore handle »/
/« time-out «/

The DosSemRequest function obtains and sets a semaphore. If no previous
thread has set the semaphore, DosSemRequest sets the semaphore and returns
immediately. If the semaphore has already been set by another thread, the func-
tion waits until a thread clears the semaphore (by using the DosSemClear func-
tion) or until a time-out occurs. The DosSemRequest function is also used to
obtain ownership of a system semaphore created with the CSEM_PRIVATE flag
set (see DosCreateSem).

hsem Identifies the semaphore to set. This value can be the handle of a sys-
tem semaphore that has been previously created or opened by using the Dos-
CreateSem or DosOpenSem function, or it can be the address of a RAM sema-
phore.

{TimeOut Specifies how long to wait for the semaphore to clear. If the value
is greater then zero, this parameter specifies the number of milliseconds to wait
before returning. If the value is SEM_IMMEDIATE_RETURN, the function
returns immediately. If the value is SEM_INDEFINITE_WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INTERRUPT
ERROR_SEM_OWNER_DIED

Comments

Example

See Also

Corrections

DosSetFilelnfo

DosSetFileinfo 137

ERROR_SEM_TIMEOUT
ERROR_TOO_MANY_SEM_REQUESTS

If DosSemRequest is used to obtain exclusive ownership of a semaphore created
by another process, it will wait (if /TimeOut is non-zero) until the semaphore is
clear, or until the process that currently owns the semaphore closes the sema-
phore or terminates. If the process owning the semaphore terminates, DosSem-
Request will return with an error value of ERROR_SEM_OWNER_DIED, how-
ever ownership will be transferred and the semaphore will be set and can be
used by the calling process.

The effects of DosSemRequest are cumulative. If multiple calls to the DosSem-
Request function set the semaphore, the same number of calls to the DosSem-
Clear function are required to clear the semaphore.

If more than one thread has requested to set the semaphore, a thread may have
to wait through several changes of the semaphore before it continues (depending
on which thread clears the semaphore and when the system scheduler passes
control to the thread). As long as the semaphore is set (even if it has been
cleared and reset since the thread originally called the function), the thread must
wait.

The DosSemRequest function can set system or RAM semaphores. A system

semaphore is initially clear when it is created. A RAM semaphore is clear if its
value is zero. Programs that use RAM semaphores should assign the initial value -
of zero.

This example uses the DosSemRequest function to create a RAM semaphore. It
also shows how to set and clear the semaphore.

ULONG hsem = O;

DosSemRequest (&hsem, /* address of handle */
SEM_INDEFINITE_WAIT) ; /* waits indefinitely */
DosSemClear (&hsem) ; /* clears semaphore */

DosCreateSem, DosExitList, DosMuxSemWait, DosOpenSem, DosSemClear,
DosSemSet, DosSemSetWait, DosSemWait

DosSemRequest is used not only to set a semaphore once it becomes clear, but

also to obtain exclusive ownership of a system semaphore created with the
CSEM_PRIVATE flag.

Change

USHORT DosSetFilelnfo (hf, usinfoLevel, pinfoBuf, cbinfoBuf)

HFILE hfy /« handle of file about which data sought »/
USHORT .usinfolLevel; /= level of file data required Y
PBYTE pinfoBuf; /= pointer to file-data buffer «/
USHORT cbinfoBuf; /= length of file-data buffer «/

The DosSetFileInfo function sets information about a specific file. The file infor-
mation consists of the date and time the file was created, the date and time it
was last accessed, the date and time it was last written to, the size of the file,
and its attributes. It can also be used to set extended attributes for a file.

The DosSetFileInfo function is a family API function.

138 DosSetFilelnfo

Parameters

Return Value

Comments

hf Identifies the file about which information is to be set. This handle must
have been created by using the DosOpen function.

uslnfoLevel Specifies the level of file information. This may be one of the fol-
lowing values:

Value Meaning

FILE_INFO_1 Level-1 information request. This uses a
FILESTATUS structure. Any date and time fields
in this structure that the file system does not sup-
port should be set to zero. -

FILE_INFO_2 Level-2 information request. This uses an EAOP
structure, which contains the file’s extended-
attribute information.

pInfoBuf Points to the structure that contains the file information. This struc-
ture will be FILESTATUS or EAOP, depending on the usinfoLevel parameter.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
EDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFlile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS:;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PFEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, “Types, Macros, Structures.”

cbInfoBuf Specifies the length (in bytes) of the buffer that contains the file
information.

The return valite is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_DIRECT_ACCESS_HANDLE
ERROR_EA_LIST_INCONSISTENT
ERROR_INVALID_EA_NAME
ERROR_INVALID_HANDLE
ERROR_INVALID_LEVEL

DosSetFileInfo works only for files opened in a mode that allows write access.

Prior to the function being called, the fpFEAlist field in the EAOP structure
should be initialized so that it points to the FEALIST structure that contains the
relevant FEA structure. The cbList field in the FEALIST structure is valid, giv-
ing the size of the FEA structure.

A zero value in both the date and time components of a field causes that field to
be unchanged. For example, if both the fdateLastWrite and ftimeLastWrite

See Also

Changes

DosSetMaxFH

DosSetPathinfo 139

fields are zero in the FILESTATUS structure, both attributes of the file remain
unchanged. If either of these fields are nonzero, both attributes of the file are set
to the new values. If extended attributes are modified, the file’s last modification
date and time are changed.

DosBufReset, DosClose, DosNewSize, DosOpen, DosSetFileMode,
DosQFilelnfo

The constant FILE_INFO_2 has been added.

Change

USHORT DosSetMaxFH(usHandles)

USHORT usHandles;

Parameters

Return Value

/= number of file handles »/

The DosSetMaxFH function sets the maximum number of available file handles
for the current process and any of its child processes. The number of available
handles limits the number of files that can be opened at the same time.

usHandles Specifies the maximum number of file handles provided to the call-
ing process. The maximum value for this parameter is 32,767; the minimum is
20. This number must not be smaller than the current number of file handles
allocated.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_PARAMETER
ERROR_NOT_ENOUGH_MEMORY

Comments This function preserves all currently open file handles.
There are three handles in use when a process is started—for standard input,
standard output, and standard error. The number of available handles set by the
DosSetMaxFH function includes these handles. The DosOpenQueue, KbdOpen
and MouOpen functions also use these handles.

See Also DosDupHandle, DosOpen, DosOpenQueue, KbdOpen, MouOpen

Changes The maximum number of handles has been increased from 255 to 32,767.

DosSetPathinfo New

USHORT DosSetPathiInfo(pszPathName, usinfoLevel, pinfoBuf, cbinfoBuf, fsOptions, ulReserved)

PSZ pszPathName; /= pointer to path «f

USHORT usinfolLevel; /= level of information /

PBYTE pinfoBuf; /« pointer to buffer for information »/

USHORT cbinfoBuf; /« length of information buffer f

USHORT fsOptions; /« options /

ULONG ul/Reserved; /= must be zero »/

The DosSetPathInfo function sets information for a specified file or directory.
The DosSetPathInfo function is a family API function.

140 DosSetPathinfo

Parameters

Return Value

Comments

pszPathName Points to the null-terminated string that specifies the path of
the file or directory. The string must be a valid MS-OS/2 path.

uslnfoLevel Specifies the level of information to set. This parameter can be
one of the following values:

Value Meaning

FIL_STANDARD Use a FILESTATUS structure.
FIL_QUERYEASIZE Use an EAOP structure to set extended attributes

pInfoBuf Points to the buffer where path information is stored. The buffer
contains a FILESTATUS structure for FIL_STANDARD information or an
EAOP structure for FIL_QUERYEASIZE information.

The FILESTATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG <cbFile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

The EAOP structure has the following form:

typedef struct _EAOP {
PGEALIST fpGEAList;
PEEALIST fpFEAList;
ULONG oError;

} EAOP;

For a full description, see Chapter 4, “Types, Macros, Structures.”

cbinfoBuf Specifies the length (in bytes) of the buffer pointed to by the
pInfoBuf parameter.

f5Options Specifies one or more options. For MS OS/2, version 1.2,
DSPI_WRTTHRU is the only available option. The DSPI_WRTTHRU option
means all data, including extended attributes, must be written to the disk before
the function returns.

ulReserved Specifies a reserved value; must be zero.

~ The return value is zero if the function is successful. Otherwise, it is an error

value, which may be one of the following:

ERROR_BUFFER_OVERFLOW
ERROR_EA_LIST_INCONSISTENT
ERROR_FILENAME_EXCED_RANGE
ERROR_INVALID_EA_NAME
ERROR_INVALID_LEVEL
ERROR_PATH_NOT_FOUND

If the DosSetPathInfo, function is used to set extended-attribute information, the
fpFEALIst field of the EAOP structure should point to the FEALIST structure
that contains the extended atmbutes The fpGEAList field of the EAOP struc-
ture will be ignored.

See Also

DosSetPrty

DosSetPrty 141

DosSetPathlInfo fails if another process has the same file or directory.

A zero value in both the date and time fields of an attribute cause those attri-
butes to remain unchanged. For example, if both the fdateLastWrite and
ftimeLastWrite fields of the FILESTATUS structure are zero, both attributes are
unchanged. If either field is nonzero, both fields are set to the new values. If
extended attributes are modified, the file’s last modification date and time will be
changed.

DosQPathInfo, DosSetFileInfo

USHORT fScope;

USHORT fPrtyClass;

Change
USHORT DosSetPrty(fScope, fPrtyClass, sChange, id)
/= scope of change /
/= priority class to set «/
/= change in priority level /

SHORT sChange;
USHORT id;

Parameters

/« process or thread identifier »/

The DosSetPrty function sets the scheduling priority of the specified process or
thread by changing the priority class and/or the priority level.

Within each class, a thread’s priority level may vary—either through system
action or through the DosSetPrty function. The system changes a thread’s prior-
ity level based on that thread’s actions and the overall system activity.

fScope Specifies the scope of the request. This parameter can be one of the
following values: :

Value Meaning

PRTYS_PROCESS Priority for the process and all its threads.

PRTYS_PROCESSTREE Priority for the process and all its child
processes.

PRTYS_THREAD Priority for one thread in the current process.

fPrtyClass Specifies the priority class of a process or thread. This parameter
can be one of the following values:

Value Meaning
PRTYC_IDLETIME Idle time.
PRTYC_NOCHANGE No change; leave as is.
PRTYC_REGULAR Regular.
PRTYC_FOREGROUND Foreground server.
PRTYC_TIMECRITICAL Time-critical.

sChange Specifies the relative change in the current priority level of the pro-
cess or thread. This parameter can be any value from - 31 through +31, or the
constants PRTYD_MINIMUM or PRTYD_MAXIMUM, which specify the
minimum and maximum change allowed.

id Specifies the process or thread identifier, depending on the value of the
fScope parameter. If the value is a process identifier, it must be for the calling
process or a child of the calling process. A value of zero can be used to specify
the current thread or process.

142 DosSetPrty

Return Value

Comments

See Also
Changes

DosSetVec

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_PCLASS
ERROR_INVALID_PDELTA
ERROR_INVALID_PROCID
ERROR_INVALID_SCOPE
ERROR_INVALID_THREADID
ERROR_NOT_DESCENDANT

The PRTYC_FOREGROUND priority is higher than PRTYC_REGULAR, but
lower than PRTYC_TIMECRITICAL. PRTYC_FOREGROUND is a static
priority that is not changed by the system. This allows a thread or process in a
background screen group to service requests of a foreground process in a timely .
manner. Because the priority level is static, this priority should be used only
when absolutely necessary. Indiscriminate use degrades system performance.

DosEnterCritSec, DosGetInfoSeg, DosGetPrty
A new value, PRTYC_FOREGROUND, can be specified for fPrtyClass.

USHORT usVecNum;

: Correction
USHORT DosSetVec(usVecNum, pfnFunction, ppfnPrev)
/= type of exception o/
/~ pointer to function »/

PFN pfnFunction;
PPFN ppfnPrev;

Parameters

/« pointer to variable for previous function’s address «/

The DosSetVec function installs or removes an exception handler for a specified
exception. An exception is a program error, such as division by zero, that causes
the system to pass control to the exception handler. The exception handler is an
assembly-language routine that corrects errors or cleans up programs before ter-
minating. The system calls the exception handler whenever the specified excep-
tion occurs. If a process does not install its own exception handler, the default
exception handler terminates the process when an exception occurs.

The DosSetVec function is a family API function.

usVecNum Specifies the number of the exception vector. This parameter can
be one of the following values:

Value Meaning
VECTOR_DIVIDE_BY_ZERO Division by zero
VECTOR_EXTENSION_ERROR Processor extension error
VECTOR_INVALIDOPCODE Invalid operation code (opcode)
VECTOR_NO_EXTENSION Processor extension not available
VECTOR_OUTOFBOUNDS Out of bounds
VECTOR_OVERFLOW Overflow

pfnFunction Points to the address of the exception handler that receives con-
trol when the specified exception occurs. If this parameter is zero, the DosSet-

Vec function removes the current exception handler. For a full description, see

the following “Comments” section.

Return Value

Comments

Restrictions

See Also
Corrections

DosShutdown

DosShutdown 143

ppfnPrev Points to the variable that receives the addréss of the previous
exception handler. The new exception handler can use this address to chain
exception handling through all previous handlers or to restore the previous
exception handler.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_INVALID_FUNCTION

When the system calls the exception handler, it enables interrupts and pushes
the machine status word and far return address on the stack. If the exception
handler returns, it must use the iret (return-from-interrupt) instruction.

If the DosSetVec function is used to install an exception handler for the vector
VECTOR_EXTENSION_ERROR, the function sets the machine status word to
indicate that no 80287 processor is available. The emulation bit is set and the
monitor-processor bit is cleared. (This is done without regard for the true state
of the hardware.) If the DosSetVec function is used to remove the exception
handler for VECTOR_EXTENSION_ERROR, the function sets the machine
status word to reflect the true state of the hardware.

If the routine being registered is in a segment that has the iopl instruction indi-
cated, the exception when it occurs, causes a general protection fault and the
process is terminated.

In real mode, the following restriction applies to the DosSetVec function:

B Because the 8086 and 8088 microprocessors do not raise this exception,
usVecNum cannot be VECTOR_EXTENSION_ERROR.

DosDevConfig, DosError

The exception handler must not be in an IOPL segment or the exception will
cause a general protection fault.

New

USHORT DosShutdown (u/Reserved)

-ULONG u/Reserved;

Parameters
Return Value

Comments

/« must be zero »/

The DosShutdown function flushes all system buffers and closes down the file
system. After calling DosShutdown, no process can access the file system until
the computer is rebooted.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_INVALID_PARAMETER

The DosShutdown function may take as much as several minutes to return,
depending on the amount of data being written to the disk.

Because it is not possible to swap memory to the disk once the DosShutdown
function has been called, some functions may fail due to a lack of memory in

144 DosShutdown

DosStartSession

low memory situations. All memory that the calling process may need should be
allocated before calling DosShutdown; this includes implicit memory allocation
that may be done by system functions for the calling process.

Correction

USHORT DosStartSession(pstdata, pidSession, ppid)

PSTARTDATA pstdata;
PUSHORT pidSession;

PUSHORT ppid;

Parameters

Return Value

Comments

/~ pointer to structure with session data »/
/« pointer to variable for session Identifier «/
/« pointer to variable for process identifier «/

The DosStartSession function starts a session (screen group) and specifies which
program to start in that session. This function creates an independent session or
a child session, depending on the value of the Related field in the STARTDATA

structure.

pstdata Points to the STARTDATA structure that contains data describing the
session to start. The STARTDATA structure has the following form:

typedef struct _STARTDATA {
USHORT Length;
USHORT Related;
USHORT FgBg:
USHORT TraceOpt;
PSZ PgmTitle;

PSZ PgmName;
PBYTE PgmlInputs;
PBYTE TermQ:

PBYTE Environment;

USHORT InheritOpt;
USHORT SessionType:;
PSZ IconFile;
ULONG PgmHandle;
USHORT PgmControl;
USHORT InitXPos;
USHORT InitYPos;
USHORT InitXSize;
USHORT InitYSize;
} STARTDATA;

pidSession Points to the variable that receives the identifier of the child ses-
sion.

ppid Points to the variable that receives the process identifier of the child
process.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The MS OS/2 session manager writes a data element into the specified queue
when the child session created by the DosStartSession function terminates. A
parent session can be notified when a child session has terminated by using the
DosReadQueue function. When the child session terminates, the request value
returned by DosReadQueue is zero, and the data-element format consists of two
unsigned values: the session identifier and the result code.

Only the process that calls the DosStartSession function should call the Dos-
ReadQueue function. Only this process can address the notification data ele-
ment. After reading and processing the data element, the calling process must
use the DosFreeSeg function to free the segment that contains the data element.

DosSubAlloc 145

A child session is created when the Related field of the STARTDATA structure
is set to TRUE.

The process identifier of the child process cannot be used with MS OS/2 func-
tions, such as DosSetPrty, that require a parent process/child process relation-
ship.

An independent session is created when the Related field of the STARTDATA
structure is set to FALSE. An independent session is not under the control of
the starting session. The DosStartSession function does not copy session and
process identifiers for an independent session to the pidSession and ppid parame-
ters.

New sessions can be started in the foreground only when the caller’s session (or
one of the caller’s descendant sessions) is currently executing in the foreground.
The new session appears in the shell switch list.

See Also DosCreateQueue, DosExechm, DosFreeSeg, DosReadQueue, DosSelect-
Session, DosSetPrty, DosSetSession, DosStopSession

Corrections The comments incorrectly stated that an independent session was created when
the Related field of the STARTDATA structure is set to TRUE. The Related
field must be set to FALSE to create an independent session.

DosSubAlloc Correction
USHORT DosSubAlloc(se/, pusOffset, cbBlock)

SEL sel; /» segment selector «f

PUSHORT pusOffset; /= pointer to variable for offset »/

USHORT cbBlock; /= requested size of memory block »/

The DosSubAlloc function allocates memory in a segment that was allocated
previously by using the DosAllocSeg or DosAllocShrSeg function and that was
initialized by using the DosSubSet function,

The DosSubAlloc function is a family API function.

Parameters sel Specifies the selector of the data segment in which the memory should be
allocated.

pusOffset Points to the variable that receives the offset to the allocated block.
cbBlock Specifies the size (in bytes) of the requested memory block.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_DOSSUB_BADSIZE
ERROR_DOSSUB_NOMEM

Comments The cbBlock parameter must not be greater than the maximum size of the seg-
ment minus 8 bytes. Since all memory blocks are aligned on byte boundaries, the
cbBlock parameter does not need to be a multiple of 16; however, it will be
rounded to a multiple of 4.

DosSubAlloc can be issued from ring 2 or ring 3; the suballocation segment can
be either a ring-2 or a ring-3 segment.

146 DosSubAlloc

See Also

Corrections

DosSubFree

DosAllocSeg, DosAllocShrSeg, DosSubFree, DosSubSet

The cbBlock parameter is rounded to a multiple of 4 before being processed.

Correction

USHORT DosSubFree(sel, offBlock, cbBlock)

SEL sel;
USHORT offBlock;
USHORT cbBlock;

Parameters

Return Value

Comments

See Also

Corrections

DosWaitNmPipe

/« segment selector -/
/= block offset ‘ «f
/« number of bytes in block to free «/

The DosSubFree function frees memory that was allocated previously by using
the DosSubAlloc function.

The DosSubFree function is a family API function.

sel Specifies the selector of the data segment from which the memory should
be freed.

offBlock Specifies the offset of the memory block to be freed. This offset
must have been created previously by using the DosSubAlloc function.

c¢bBlock Specifies the size (in bytes) of the block to free. This parameter
should by a multiple of 4. If it is not, it will be rounded prior to being used by
this function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_DOSSUB_BADSIZE
ERROR_DOSSUB_OVERLAP

DosSubFree can be issued from ring 2 or ring 3; and the suballocation segment
can be ecither a ring-2 or a ring-3 segment.

DosAllocSeg, DosSubAlloc, DosSubSet

The cbBlock parameter is rounded to a multiple of 4 before being processed.

Correction

USHORT DosWaitNm
PSZ pszName;
ULONG u/TimeOut;

Pipe (pszName, ulTimeQut)
/« pointer to pipe name »/
/« time-out value =/

The DosWaitNmPipe function waits for a named pipe to become available.

Parameters pszName Points to the pipe name. The name is in the form \pipe\name for a

local pipe and \\server\pipe\name for a remote pipe.

ulTimeOut Specifies the amount of time (in milliseconds) MS OS/2 should
wait for the pipe to become available. A value of NP_INDEFINITE_WAIT
causes an infinite wait. A value of NP_DEFAULT_WAIT causes the system to
wait for the default time specified by the call to the DosMakeNmPlpe function
call that created this named pipe.

Return Value

Comments

See Also

Corrections

DosWrite

DosWrite 147

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_PIPE
ERROR_INTERRUPT
ERROR_SEM_TIMEOUT

The DosWaitNmPipe function should be used only when the DosOpen function
returns the ERROR_PIPE_BUSY error value.

If more than one process has requested a named pipe that has become available,
MS OS/2 gives the pipe to the process that has been waiting the longest.
DosOpen

A value of NP_INDEFINITE_WAIT for the ulTimeOut parameter specifies an
infinite wait; a value of NP_DEFAULT_WALIT for ulTimeOut uses the default
time-out specified in the DosMakeNmPipe function.

HFILE hf;
PVOID pvBuf;

Correction
USHORT DosWrite (hf, pvBuf, cbBuf, pcbBytesWritten)
/« file handle «/
/» pointer to buffer «/
/= number of bytes to write «/

USHORT cbBuf;

PUSHORT pcbBytesWritten; /= pointer to variable receiving byte count «/

Parameters

Return Value

Comments

The DosWrite function writes data from a buffer to a file, then copies the
number of bytes written to a variable.

The DosWrite function is a family API function.

hf Identifies the file that reccives the data. This handle must have been created
by using the DosOpen function.

pvBuf Points to the buffer that contains the data to write.
cbBuf Specifies the number of bytes to write.
pcbBytesWritten Points to the variable receiving the number of bytes written.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_BROKEN_PIPE
ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION
ERROR_NOT_DOS_DISK
ERROR_WRITE_FAULT

The DosWrite function bégins to write at the current file-pointer position. The
file-pointer position can be changed by using the DosChgFilePtr function.

If the specified file has been opened using the write-through flag, the DosWrite
function writes data to the disk before returning. Otherwise, the system collects
the data in an internal file buffer and writes the data to the disk only when the
buffer is full.

148 DosWrite

The DosWrite function may write fewer bytes to the file than the number
specified in the cbBuf parameter if there is not enough space on the disk for all
of the requested bytes. The cbBuf parameter can be zero without causing an
error—that is, writing no bytes is acceptable.

The efficiency with which DosWrite writes to a disk is improved when cbBuf is
set to a multiple of the disk’s bytes-per-sector size. When cbBuf is set this way,
DosWrite writes directly to the disk, without first copying the data to an internal
file buffer. (DosQFSInfo retrieves the bytes-per-sector value for a disk.)

DosWrite can be used to write bytes or messages to a pipe. Each write to a mes-
sage pipe writes a message whose size is the length of the write; DosWrite
automatically encodes message lengths in the pipe, so applications need not
encode this information in the buffer being written.

Writes in blocking mode always write all requested bytes before returning. In
nonblocking mode, writes return either with all bytes written or none written;
the latter will occur in cases where DosWrite would have to block in order to
complete the request—for example, if there is no room in the pipe buffer or if
the buffer is currently being written to by another client).

An attempt to write to a pipe whose other end has been closed will return the
error ERROR_BROKEN_PIPE.

Example This example creates the file abc and calls the DosWrite function to write the
contents of the abBuf buffer to the file:

BYTE abBuf[512];

HFILE hf;

USHORT usAction, cbBytesWritten, usError;

usError = DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,
FILE..CREATE,
OPEN_ACCESS_WRITEONLY | OPEN_SHARE_DENYWRITE, OL):

if (lusError) {
DosWrite (hf, /* file handle */

abBuf, /* buffer address */

sizeof (abBuf), /* buffer size

&cbBytesWritten) ; /* address of bytes written */
See Also DosChgFilePtr, DosOpen, DosQFSInfo, DosRead, DosWriteAsync
Corrections DosWrite can be used to write bytes or messages to a pipe. Relevant informa-

tion about writing to a named pipe has been added.

DosWriteAsync Correction
USHORT DosWriteAsync (hf, hsemRam, pusErrCode, pvBuf, cbBuf, pcbBytesWritten)

HFILE hf; /= file handle . «f

PULONG hsemRam:; /« pointer to RAM semaphore «/

PUSHORT pusErrCode; /= pointer to variable for error value »/

PVOID pvBuf; /= pointer to buffer containing data to write »/

USHORT cbBuf; /+ number of bytes in buffer /

PUSHORT pcbBytesWritten; /= pointer to variable for bytes written »f

The DosWriteAsync function writes one or more bytes of data to a specified file.
The function writes the data asynchronously—that is, the function returns
immediately, but continues to copy data to the specified file while the process
continues with other tasks.

Parameters

Return Value

Comments

DosWriteAsync 149

hf Identifies the file that receives the data. This handle must have been created
previously by using the DosOpen function.

hsemRam Points to the RAM semaphore that indicates when the function has
finished reading the data.

pusErrCode Points to the variable that receives an error value.

pvBuf Points to the buffer that contains the data to write.

cbBuf Specifies the number of bytes to write.

pcbBytesWritten Points to the variable receiving the number of bytes written.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_BROKEN_PIPE
ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION
ERROR_NO_PROC_SLOTS
ERROR_NOT_DOS_DISK
ERROR_WRITE_FAULT

The DosWriteAsync function starts writing at the current file-pointer position.
The file-pointer position can be changed by using the DosChgFilePtr function.

If the specified file has been opened using the write-through flag, the Dos-
WriteAsyne function writes data to an internal file buffer and to the disk before
returning. If the write-through flag has not been set, the system collects the data
in an internal file buffer and writes the data to the disk only when the buffer is
full.

The DosWriteAsync function may write fewer bytes to the file than the number
specified in the cbBuf parameter if there is not enough space on the disk for all
the requested bytes. The cbBuf parameter can be zero without causing an
error—that is, writing no bytes is acceptable.

When the DosWriteAsync function has written the data, it clears the RAM
semaphore pointed to by the hsemRam parameter. If the process uses the sema-
phore to determine when data is available, it must use the DosSemSet function
to set the semaphore before calling DosWriteAsync.

The efficiency with which the DosWriteAsync function writes to a disk is
improved when the cbBuf parameter is set to a multiple of the disk’s bytes-per-
sector size. When cbBuf is set this way, the function writes directly to.the disk,
without first copying the data to an internal file buffer. (The DosQFSInfo func-
tion retrieves the byters-per-sector value for a disk.)

DosWriteAsync can be used to write bytes or messages to a pipe. Each write to
a message pipe writes a message whose size is the length of the write; DosWri-
teAsync automatically encodes message lengths in the pipe, so applications need
not encode this information in the buffer being written.

In blocking mode, write operations always write all requested bytes before
returning. In nonblocking mode, write operations return either with all bytes
written or none written; the latter occurs in cases where DosWriteAsync has to
block in order to complete the request (for example, if there is no room in the
pipe buffer or if the buffer is currently being written to by another process).

When the function tries to write to a pipe whose other end has been closed, it
returns the error ERROR_BROKEN_PIPE.

150 DosWriteAsync

Example

See Also

Corrections

DosWriteQueue

This example creates the file abc.ext, sets a RAM semaphore, and calls the
DosWriteAsync function to write the contents of the buffer abBuf to a file.
When any additional processing is finished, the example calls the DosSemWait
function to wait until DosWriteAsync has finished writing to the file.

ULONG hsemWrite = O;

BYTE abBuf[1024}]:;

HFILE hf;

USHORT usAction, cbBytesWritten;

USHORT usWriteAsyncError;

DosOpen ("abc.ext", &hf, &usAction, OL, FILE_NORMAL,
FILE_CREATE,
OPEN_ACCESS_WRITEONLY | OPEN_SHARE_DENYWRITE, OL):

DosSemSet (&hsemWrite) ; /* sets semaphore */
DosWriteAsync (hf, /* file handle */
&hsemWrite, /* semaphore address */
&usWriteAsyncError, /* return-code address */
abBuf, /* buffer address */
sizeof (abBuf), /* buffer size */
&cbBytesWritten) ; /* address of bytes written */

: /* Other processing would go here. */

DosSemWait (&hsemWrite, -1L); /* walts for DosWriteAsync */
if (usWriteAsyncError) {

. /* Error processing would go here. */

DosChgFilePtr, DosOpen, DosQFSInfo, DosReadAsync, DosSemSet,
DosSemWait, DosWrite

Information about using DosWriteAsync with named pipes has been added.

HQUEUE hqueue;
USHORT usRequest;
USHORT cbBuf;
PBYTE pbBuf;

Correction
USHORT DosWriteQueue (hqueue, usRequest, cbBuf, pbBuf, usPriority)
"/« target-queue handle «/
/= request/identification data) o/
/+ number of bytes to write »/
/« pointer to buffer with element to write »/
/= priority of element to write =/

UCHAR usPriority;

The DosWriteQueue function writes an element to the specified queue. The

_position of the element in the queue is determined by the value specified in the

Parameters

fQueueOrder parameter of the DosCreateQueue function when the queue was
created; if this parameter was set to 0x0002 (priority queue), the wusPriority
parameter of the DosWriteQueue function can be used to set the priority of the
element. After the element is written, the process that owns the queue can read
the element by using the DosPeekQueue or DosReadQueue function.

hqueue Identifies the queue to be written to. This handle must have been
created or opened by using the DosCreateQueue or DosOpenQueue function.

usRequest Specifies a program-supplied event code. MS OS/2 does not use
this field; it is reserved for the program’s use. The queue owner can retrieve this
value by using the DosPeekQueue or DosReadQueue function.

cbBuf Specifies the number of bytes to be copied from the buffer pointed to
by the pbBuf parameter.

DosWriteQueue 151

pbBuf Points to the buffer that contains the element to be written to the
queue.

usPriority Specifies the element priority. This parameter can be any value
from O through 15; 15 is the highest priority.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_QUE_INVALID_HANDLE
ERROR_QUE_NO_MEMORY

Comments The DosWriteQueue function returns an error value if the queue has been
closed by the process that owns it.

If the queue owner uses a RAM semaphore to notify it when elements are added
to the queue, the semaphore must be shared. If the notifying semaphore is a sys-
tem semaphore, the writing process must have opened the semaphore by using
the DosOpenSem function.

Example This example opens a queue called \queues\queuename. In order to write to the
queue, the process allocates shared memory, gives the memory to the queue
owner, copies data to the shared memory, and calls DosWriteQueue. The pro-
cess then frees the shared memory. The queue owner must also free the shared
memory before it becomes available to the system again. For more information,
see DosReadQueue.

PID pidOwner;
SEL sel, selRecipient;

DosOpenQueue (&pidOwner, &hqueue,

"\\queues\\queuename") ; /* opens queue */
DosAllocSeg (512, &sel, SEG_GIVEABLE): /* allocates shared memory */
DosGiveSeg(sel, pidOwner, &selRecipient); /* gives it to queue owner */

. /* Copy the data to the shared memory segment. */

DosWriteQueue (hqueue, /* queue handle */
o, /* request data */
11, * length of data */
MAKEP (selRecipient, 0), /* data buffer */
0); * element priority */
DosFreeSeg(sel); /* frees shared memory segment */
See Also DosCreateQueue, DosOpenQueue, DosOpenSem, DosPeekQueue, DosRead-
Queue
Corrections The example worked only for interthread communication. It has been replaced

with an example that works for interprocess communication.

The description of the cbBuf parameter incorrectly stated that this parameter
contained the number of bytes to be written to the buffer. It now correctly states
that this is the number of bytes to be written from the buffer.

152 EM_QUERYREADONLY

EM_QUERYREADONLY | New
EM_ QUERYRBADONLY
mpl = /* not used, must be zero */

mp2 = OL; /* not used, must be zero */

An application sends the EM_QUERYREADONLY message to retrieve the
read-only state of an entry field.

Parameters This message does not use any parameters.
Return Value The return value is TRUE if the read-only state is set; otherwise it is FALSE.
See Also EM_SETREADONLY

EM_SETINSERTMODE New
EM_SETINSERTMODE
mpl = MPEROMSHORT(fInsertMode) /* insert-mode flag t/
mp2 = OL; /* not used, must be zero */

An application sends the EM_SETINSERTMODE message to set or clear the
system insert-mode state.

Parameters fInsertMode Low word of mpl. Specifies whether to set or clear the insert
mode. If this parameter is TRUE, insert mode is turned on; if it is FALSE,
insert mode is turned off.

Return Value The return value is TRUE if the previous insert mode was on or FALSE if the
previous insert mode was off.

Comments This message changes the SV_INSERTMODE syStem constant to reflect the
. current insert-mode state. It also sends an EN_INSERTMODETOGGLE
notification message.

See Also EN_INSERTMODETOGGLE

EM_SETREADONLY New
EM_SETREADONLY
mpl = MPFROMSHORT (fReadOnly) ; /* read-only state */
mp2 = OL; /* not used, must be zero */

An application sends the EM_SETREADONLY message to set the read-only
state of an entry field.

Parameters fReadOnly Low word of mpl. Specifies whether to set or remove the read-
only state of the entry field. A value of TRUE sets the state.

Return Value The return value is TRUE if the read-only state is set; otherwise, it is FALSE.

Comments When the read-only state of an entry field is set, the user cannot change the text
within the entry field.

See Also EM_QUERYREADONLY

EN_INSERTMODETOGGLE 153

B EM_SETTEXTLIMIT Change

Parameters
Return Value

Comments

See Also
Changes

EM_SETTEXTLIMIT
mpl = MPFROMSHORT ((SHORT) cchMax); /* max. number of bytes */
mp2 = OL; /* not used, must be zero */

An application sends an EM_SETTEXTLIMIT message to set the maximum
number of bytes an entry-field control can contain.

cchMax Low word of mpl. Specifies the maximum number of bytes an entry
field can hold.

The return value is TRUE if the operation is successful or FALSE if there is not
enough memory to hold the requested number of characters.

Sending an EM_SETTEXTLIMIT message causes memory to be allocated from
the control heap for the specified maximum number of bytes. Failure to-allocate
sufficient memory results in a WM_CONTROL message, with the
EN_MEMERROR notification code being sent to the owner window.

WM._.CONTROL

All references to characters have been replaced by bytes to accommodate sys-
tems in which a character may be composed of more than one byte.

B EN_CHANGE New
' WM_CONTROL :
id = (USHORT) SHORT1EROMMP (mpl) ; /* control-window ID */
usNotifyCode = EN_CHANGE;
hwndEdit = HWNDEROMMP (mp2) ; /* window handle of entry field */

Parameters

Return Value

The EN_CHANGE notification message is sent when the text in an entry field
changes.

id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to EN_CHANGE.
hwndEdit Low and high word of mp?2. Identifies the entry-field window.

An application should return zero if it processes this message.

See Also WM_CONTROL
B EN_INSERTMODETOGGLE , New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl) ; /* control-window ID */
usNotifyCode = EN_INSERTMODETOGGLE
hwndEdit = HWNDEROMMP (mp2) ; /* window handle of entry fileld */

The EN_INSERTMODETOGGLE notification message is sent when the insert
mode of an entry-field control is toggled.

154 EN_INSERTMODETOGGLE

Parameters id Low word of mpl. TIdentifies the control window.
usNotifyCode High word of mpl. Set to EN_JINSERTMODETOGGLE.
hwndEdit Low and high word of mp2. Identifies the entry-field window.

Return Value An application should return zero if it processes this message.
See Also EM_SETINSERTMODE, WM_CONTROL
B EN_KILLFOCUS New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mpl) ; /* control-window ID */
usNotifyCode = EN_KILLFOCUS;
hwndEdit = HWNDFROMMP (mp2) ; /* window handle of entry field */

The EN_KILLFOCUS notification message is sent when an entry-field control
loses the input focus.

Parameters " id Low word of mpl. Identifies the control window.
usNotifyCode High word of mp1. Set to EN_KILLFOCUS.
hwndEdit Low and high word of mp2. Identifies the entry-field window.

See Also EN_SETFOCUS, WM_CONTROL
® EN_MEMERROR New
WM_CONTROL '
id = (USHORT) SHORT1FROMMP (mp1l) ; /* control-window ID */
usNotifyCode = EN_MEMERROR;
hwndEdit = HWNDEROMMP (mp2) : /* window handle of entry fileld */

The EN_MEMERROR notification message is sent when an entry-field control
cannot allocate the memory necessary to accommodate wmdow text of the length
specified by the EM_SETTEXTLIMIT message.

Parameters id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to EN_.MEMERROR.
hwndEdit Low and high word of mp2. Identifies the entry-field window.

See Also EM_SETTEXTLIMIT, WM_CONTROL
B EN_OVERFLOW New
WM_CONTROL '
id = (USHORT) SHORT1FROMMP (mpl); /* control-window ID */
usNotifyCode = EN_OVERFLOW
hwndEdit = HWNDEROMMP (mp2) ; /* window handle of entry field */

The EN_OVERFLOW notification message is sent when the text limit in an
entry field is exceeded.

Parameters

Return Value

EN_SETFOCUS 155

id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to EN_OVERFLOW.
hwndEdit Low and high word of mp2. Identifies the entry-field window.

An application should return TRUE to retry the operation.

See Also WM_CONTROL

EN_SCROLL New
EN_SCROLL

. 1d = (USHORT) SHORT1FROMMP (mp1l) ; /* control-window ID */

usNotifyCode = EN_SCROLL; '
hwndEdit = HWNDEROMMP (mp2) ; /* window handle of entry field */
The EN_SCROLL notification message is sent to the owner of the entry-field
window when a scroll-bar event occurs.

Parameters id Low word of mpI. Identifies the control window.

Return Value
See Also

usNotifyCode High word of mpl. Set to EN_SCROLL.
hwndEdit Low and high word of mp2. Identifies the entry-field window.

An application should return zero if it processes this message.

WM_CONTROL

EN_SETFOCUS New
WM_CONTROL
id = (USHORT) SHORT1FROMMP (mp1l) : /* control-window ID */
usNotifyCode = EN_SETFOCUS;
hwndEdit = HWNDEROMMP (mp2) ; /* window handle of entry field */

Parameters

See Also

The EN_SETFOCUS notification message notifies an application when an entry
field receives the input focus.

id Low word of mpl. Identifies the control window.
usNotifyCode High word of mpl. Set to EN_SETFOCUS.
hwndEdit Low and high word of mp2. Identifies the entry-field window.

EN_KILLFOCUS, WM_CONTROL

156 GpiCallSegmentMatrix

GpiCallSegmentMatrix Correction
LONG GpiCallSegmentMatrix(hps, idSegment, cElements, pmatlf, IType) :

HPS hps; /= presentation-space handle =/

LONG idSegment; /+ segment identifier +/

LONG cElements; /= number of matrix elements to examine «/

PMATRIXLF pmatif; /« address of structure for matrix »/

LONG /Type; /» transformation modifier «/

The GpiCallSegmentMatrix function draws the specified segment using an
instance transformation. The function combines the instance transformation
pointed to by pmatlf with the current inodel transformation, then draws the seg-
ment as if calling the GpiDrawSegment function. The combined transformation
applies only while the function draws the segment. GpiCallSegmentMatrix does
not modify the current model transformation.

Parameters hps Identifies the presentation space.
idSegment Specifies the segment to draw. This value must be greater than
zero.

cElements Specifies the number of matrix elements pointed to by pmatlf. It
can be any value from 0 through 9.

pmatlf Points to a MATRIXLF structure that contains the matrix for the
instance transformation. Although a transformation requires nine matrix ele-
ments, the function copies from the structure only the number of matrix ele-
ments specified by cElements. If cElements is less than nine, the function sup-
plies the remaining elements by substituting corresponding elements from the
identity matrix.

The MATRIXLF structure has the following form:

typedef struct _MATRIXLE {
FIXED fxM11;
FIXED £xM12;
LONG 1M13;
FIXED £xM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;

LONG 1M32;
LONG 1M33;
} MATRIXLE;

For a full description, see Chapter 4, “Types, Macros, Structures.”

IType = Specifies how to combine the instance transformation with the model
transformation. It can be one of the following values:

Value Meaning

TRANSFORM_ADD Adds the model transformation to the
instance transformation (MODEL *
INSTANCE).

TRANSFORM_PREEMPT Adds the instance transformation to the
model transformation (INSTANCE *

. MODEL).
TRANSFORM_REPLACE Replaces the model transform with the

instance transformation.

Return Value

Errors

Example

See Also

Corrections

GpiCallSegmentMatrix 157

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_CALLED_SEG_IS_CURRENT
PMERR_CALLED_SEG_NOT_FOUND
PMERR_INV_HPS
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_MATRIX_ELEMENT
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME ‘
PMERR_INV_TRANSFORM_TYPE
PMERR_PS_BUSY '
PMERR_SEG_CALL_RECURSIVE
PMERR_SEG_NOT_FOUND

This example calls the GpiCallSegmentMatrix function to draw a segment three
times. Each time the segment is drawn, the instance transformation doubles in
size. The result is three triangles with the last triangle twice the size of the
second, and the second twice the size of the first.

POINTL ptlStart = { O,

o };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };
= { MAKEFIXED(1, O), MAKEFIXED (O, 0),

MATRIXLF matlfInstance o,
MAKEFIXED (0, O), MAKEFIXED(1, 0), O,
o, o, 1}
GpiOpenSegment (hps, 1L):; /* opens segment x/
GpiMove (hps, &ptlStart); /* moves to start point (O, 0) */
GpiPolyLine (hps, 3L, ptlTriangle); /* draws triangle */
GpiCloseSegment (hps) ; /* closes segment */

for (L = 0; 1 < 3; i++) {

*

* Draw the segment after adding the matrix to the model
* transformation.
*

GpiCallSegmentMatrix (hps, 1L, 9, &matlflInstance, TRANSFORM_ADD) :
matlfInstance. fxM11l *= 2; .
matlfInstance.fxM22 #*= 2;

GpiDrawSegment

In the example, the MAKEFIXED macro is required to create FIXED values for
initializing the structure.

158 GpiCreateLogFont

GpiCreateLogFont Correction
LONG GpiCreateLogFont(hps, pchName, lcid, pfat)

HPS hps; /= presentation-space handle «/

PSTR8 pchName; /« address of logical-font name »/

LONG /cid; /= local identifier «/

PFATTRS pfat; /~ address of structure for font attributes »/

The GpiCreateLogFont function creates a logical font. A logical font is a list of
font attributes, such as face name, average width, and maximum height, that an
application uses to request a physical font. A physical font is the bitmap or vec-
tor information the system uses to draw characters on a device. Applications
create logical fonts to specify the fonts they need, and the system maps the logi-
cal fonts to matching physical fonts.

GpiCreateLogFont creates a logical font using the font attributes specified in the
structure pointed to by the pfar parameter. Each logical font has a local identifier
and logical font name, specified by the Icid and pchName parameters, to
uniquely identify it. The local identifier can then be used in subsequent graphics
functions to identify the font.

Since a physical font that exactly matches the logical font may not be available,
the system usually maps the logical font to the closest matching physical font.
The system uses rules to map the font—for example, it chooses a font with a
greater height if a font of the exact height is not available. An application can
force the system to choose a particular font by setting the value of the IMatch
field in the FATTRS structure to be that returned for the desired font by the
GpiQueryFonts function. After GpiCreateLogFont chooses the physical font,
this choice does not change for a particular logical font.

Parameters hps Identifies the presentation space.

pchName Points to an 8-character logical-font name. It can be NULL, if no
logical font name is desired. .

lcid Specifies the local identifier that the application uses to refer to this font.
It must be in the range 1 through 254. It is an error if this parameter is already
in use to refer to a font or bitmap.

pfat Points to a FATTRS structure that will contain the attributes of the logical
font that is created. The FATTRS structure has the following form:

typedef struct _FATTRS {
USHORT usRecordLength;
USHORT fsSelection;
LONG 1Match;
CHAR szFaceName [FACESIZE]:;
USHORT idRegistry;
USHORT usCodePage;
LONG 1MaxBaselineExt;
LONG lAveCharWidth;
USHORT f£sType;
SHORT sQuality;
USHORT fsFontUse;

} EATTIRS;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value The return value is FONT_MATCH if a matching font is found,
FONT_DEFAULT if a matching font could not be found, or zero if an error
occurred.

Errors

Comments

Example

See Also
Corrections

GpiCreateLogFont 159

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_FONT_NOT_LOADED
PMERR_INV_FONT_ATTRS
PMERR_INV_HPS

PMERR_INV_SETID
PMERR_KERNING_NOT_SUPPORTED
PMERR_PS_BUSY
PMERR_SETID_IN_USE

To choose the system default font, set the face name to NULL and all other
attributes in the FATTRS structure, except the code page, to zero.

To use a font, the application sets the font for the presentation space by specify-
ing the local identifier for the corresponding logical font with the GpiSetCharSet
function. Once a font is set, the system uses the font for subsequent text output.

This example uses the GpiCreateLogFont function to create a logical font with
the local identifier 1. The logical font has the face name “Courier” and requested
width and height of 12 pels. Once the font is created, the example sets the font
using the local identifier and displays a string in the font at the point (100,100).

USHORT i;

POINTL ptl = { 100, 100 };

FATTRS fat;

fat.usRecordLength = sizeof (FATTRS):; /* sets size of structure x/
fat.fsSelection = O; /* uses default selection */
fat.1lMatch = OL; /* does not force match k/
fat.idRegistry = O; /* uses default registry */
fat.usCodePage = 850; /* code-page 850 */
fat.1lMaxBaselineExt = 12L; /* requested font height is 12 pels */
fat.lAveCharWidth = 12L; /* requested font width is 12 pels */
fat.£fsType = O; /* uses default type */
fat.fsFontUse = FATTR_FONTUSE_NOMIX; /* does not mix with graphics */

/* Copy Courler to szFacename field. */

for (i=0; fat.szFacename[i] = "Courier"[i]; i++);

GpiCreateLogFont (hps, /* presentation space *
NULL, /* does not use logical font name */
1L, /* local identifier */
&fat) /* structure with font attributes */

GpiSetCharSet (hps, 1L):; /* sets font for presentation space */

GpiCharStringAt (hps, &ptl, 5L, "Hello"); /* displays a string */

GpiCharStringAt, GpiCreateLogFont, GpiQueryFonts, GpiSetCharSet

In the example, the fat.fsType field should be set to 0 rather than to
FATTR_TYPE_FIXED.

160 GpiDestroyPS

I GpiDestroyPS

Correction

BOOL GpiDestroyPS(hps)
HPS hps; /« presentation-space handle «/

LY

Parameters
Return Value

Errors

Example

See Also

Corrections

N GpiGetData

The GpiDestroyPS function destroys the presentation space and releases all
resources owned by the presentation space. This function should only be used to
destroy presentation spaces created by the GpiCreateP$S function.

hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_HPS
PMERR_PS_BUSY
PMERR_PS_IS_ASSOCIATED

This example uses the GpiDestroyPS function to destroy the presentation space
associated with a memory device context:

HDC hdc;

HPS hps:;

SIZEL page = { O, O };

/* Create the memory device context and presentation space. */

hdc = DevOpenDC (hab, OD_MEMORY, "#", OL, NULL, NULL):
hps = GpiCreatePS (hab, hdc, &page, PU_PELS | GPIT_MICRO | GPIA_ASSOC):;

GpiAssociate (hps, NULL);

GpiDestroyPs (hps) ; /* destroys presentation space */
DevCloseDC (hdc) ; /* closes device context */
GpiCreatePS

In the example, GpiAssociate must be called before DevCloseDC. This is true
whenever a device context is associated with a presentation space.

HPS hps;
LONG idSegment;
PLONG poff;

LONG cmdFormat;

LONG cb;

Correction
LONG GpiGetData(hps, idSegment, poff, cmdFormat, cb, pb)
/ presentation-space handle »f
/~ segment identifier »/
/« address of variable for segment offset »/
/« conversion type »/
/« length in bytes of the data buffer »/
/« address of buffer for data »/

PBYTE pb;

The GpiGetData function copies graphics orders from the specified segment to
the specified buffer. The function continues to copy the graphics orders from the
segment to the buffer until all orders in the segment have been copied or the
number of bytes specified by the cb parameter have been copied. If the function

Parameters

Return Value

Errors

GpiGetData 161

fills the buffer, the last order in the buffer may not be complete since the func-
tion does not stop on an order boundary when copying to the buffer. In any
case, the function returns the number of bytes copied to the buffer.

The function starts copying graphics-order data from the location specified by
the poff parameter. If this parameter is zero, the function copies from the begin-
ning of the segment. After copying the data, the function replaces the value in
poff with the offset to the next byte of data to copy from the segment (if any).
This value can be used to specify the next location to copy.

The GpiGetData function cannot be used to copy data from an open segment,
but it can be used to copy data while some other segment is open.

hps Identifies the presentation space.

idSegment Specifies the segment identifier.

poff Points to the variable that contains the offset from the beginning of the
segment to the next byte of graphics order data to copy. If this parameter is
zero, the function copies from the beginning of the segment.

cmdFormat Specifies the coordinate conversion type. It can be one of the
following values:

Value Meaning

DFORM_NOCONV Copies coordinates without converting. The coordi-
nates are in the format used by the presentati