I R R RII™™™ —— ISR - e N i 2

MICROSUOTFT

OS/2

- Programmers Reference

"""

Microsoft

PROGRAMMER'’S

Operating System/2

Programmer? Reference

Distributed by Microsoft Press

Microsoft

052

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
purchaser’s personal use, without the written permission of Microsoft Corporation.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

© Copyright Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging in Publication Data

Microsoft OS/2 programmer’s reference.

Includes index.

1. Microsoft OS/2 (Computer operating system) I. Microsoft Press
QA76.76.063078 1989 005.4'469 89-2817

ISBN 1-55615-222-1(Vol. 3)

Printed and bound in the United States of America.
123456789FGFG 321009

Distributed to the book trade in the United States by Harper & Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada

by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

The character-set tables in this manual are reprinted by permission from the IBM
Operating System/2 User’s Reference, © 1987 by International Business Machines
Corporation.

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of
Microsoft Corporation.

IBM®, PC/AT®, and Personal System/2® are registered trademarks of International
Business Machines Corporation.

Document No. LN0702C-110-R00-0289

S R e B s T S i R R N S T B S R R S R B

Contents
Chapter 1 Introduction
Tl OVEIVIEW euinineniieeiieeieeienreseseerursensecasareesensernsesessnsesasosnrnns
1.2 How to Use This Manual......cccveireieninirnrniiinieeinenececscncnces
1.3 Naming Conventions.....cccceeeuverreeimueieieniiesiaeneneessrserannans
1.4 Notational Conventionsceeeeveeveeeeeeereeniareeeenecssensascesanacnes
Chapter 2 Functions Directory
2% RS 0315 00 Yo 13 (o1 £ 0 s D
2.2 FUNCHONS teuiiiiiiiiiiiiniiieieeeeteseiscssasasseserasenseosenssscansansancarnns
Chapter 3 Input-and-Output Control Functions
G0 SRS 6115 Yo Yo 11 Lot 5 o) 1 DR UUURPRPPPRt
3.2 Category and Function Codes......cccceeuvervinveiininieniicnieninnennn.
3.3 FUDCHOMNS iiieteiiiiiieiiiiiiieireeeneenenraraaeseerescnrensensosensansonsasnns
Chapter 4 Types, Macros, Structures
4.1 INLTOAUCHON . eeueerneeneerneeieereenannesenesenacennssnnseneennsennsensennnse
T B N oY oS
Z< SC TS Y £ 103 o - TSPV PP PP
v B N § V131§ o X SO
Chapter 5 File Formats
RIS R 1115 oY 1) Toi Vo) o SN
5.2 Keyboard Translation Tables.....ccccceeeeiiemiernrreiienienniennninns
5.3 Video Modes and FONtS....c.veveeuieieieiiiieiiiiieniniinesenenineennannen
5.4 Resource-File FOIMALs ..covveieiuiieieieiieirieeiernrnrencneneeeeeencecens

Appendixes

...

Appendix A Error Values

0N RS (315 o Ye (1 Lol 5 7o)+ DO RS

PN S's Jo) o D T
Appendix B ANSI Escape Sequences

B.l Introduction...cccieceeeiieiiiiiiireereerernreeieenenensesensesnsnssannsnensn

B.2 Cursor FUDNCHONS cc.uuuiniiniiiiiiriienienencnneieneeeenenenens reveeraenenns

B.3 Erase FUNCHONS couieiiiuiiiiiiiieieieiiieieeteieieeenreercsenrnsssssnnnnns

B.4 Screen Graphics Functionsc.ccceeveeiiiirieneireinneneennnnnnees

iv
R R e e R S T S S B R e S S R R T R S

Appendix C Country and Code-Page Information

C.1 Introduction......cceueiiieniiimniriieniriuuieiiiseieneriesssianocesceasns 423
C.2 Supported COuntriescoveveurierrevirmniierniniemiiemreeerieeenennane, 423
C.3 Code Pages.......ccuvuviiiiniiiniiiiinniiiinii i e 424

v
i S S S R T R S N R DR e S e S e R e s R e

Figures

Figure 1.1 Sample Reference Pagecccvveviuniieniiniiinniinniinnan. 4

vi

R B R B B S e S B R T s e

Tables

Table 3.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5

Specific Category and Function Codescc.euuene..... 256
Table-Flag Valuescccveirieneiiiinninieiiniiniionnnenees 378
Country and Language Codesc.cocevruiruuirieennennnenn. 379
Shift-Key Masksooouiiiniiiiiiiiiiiiiiiiiiiiiiiieenns 381
Text Modes. ..cccivmiiiuiiiuieiiiineienrenierensonceenensennnns 394

Chapter

1

R S R S S R R s R s e S R R ST S

Introduction

1.1 OVEIVIEW wiriiiiiiiiiiiiiiieieiterieiseesesneeressseessnncasesnsananaes 3
1.2 How to Use This Manual.......ccccciieiiiiiiiirieeienieineennens 4
1.2.1 CFOIMAL cuiviiriiinrierntreniseetsnesessssssesssseecssnnennss 5

122 MS OS/2Include FIles covviiiieiiiinniiireieieineeneeennens 5

1.2.3 MS 0S/2 Calling Conventionscceeeereciereenneerannns 5

1.2.4 Bit Masks in Function Parameters.........cvvvvvvvnennnens 6

1.2.5 StIUCHUIES cvvverrierrereneenserereessnssnneessessennnssssnsonons 17

1.3 Naming Conventions......cceeeeueerenineerienraeeeesnenceneeronasess 7
1.3.1 Parameter and Field Names .voevevenrrereeereeinnnnranecses 8
1.3.1.1 PrefiXeS veueerrennnieesnsensncesosnneecessscennes 8

1.3.1.2 Base TYPES.cururriernrssrenraeeressorsensnssnsass 9

1.3.2 Constant NAIMES cuovevreenrenreneieerinrreeenernsenaceneensons 10

1.4 Notational ConvVENtioNS ...cveeereienreerenrinirerenneereensenecancns 11

Chapter 1: Introduction 3
S e O L T e e S R BT A R S S

1.1 Overview

This manual describes the Dos, Kbd, Mou, and Vio system functions of
Microsoft® Operating System/2 (MS® OS/2). These functions, also called the
base system functions, let MS OS/2 programs use the operating system to

carry out tasks such as reading from and writing to disk files; allocating memory;
starting other programs; and using the keyboard, mouse, and video screen.

MS OS/2 system functions are designed to be used in C, Pascal, and other high-
level-language programs, as well as in assembly-language programs. In MS OS/2,
all programs request operating-system services by calling system functions.

This chapter, “Introduction,” shows how to use this manual, provides a brief
description of MS OS/2 calling conventions, illustrates function calls in various
languages, and outlines MS OS/2 naming conventions.

Chapter 2, “Functions Directory,” is an alphabetical listing of MS OS/2 base
system functions. This chapter defines each function’s purpose, gives its syntax,
describes the function parameters, and gives possible return values. Many func-
tions also show simple program examples that illustrate how the function is used
to carry out simple tasks.

Chapter 3, “Input-and-Output Control Functions,” lists the input-and-output
control (IOCtl) functions used to control input and output devices such as serial
ports, the keyboard, and the mouse.

Chapter 4, “Types, Macros, Structures,” describes the types, macros, and struc-
tures used by MS OS/2 base system functions.

Chapter 5, “File Formats,” describes the format of files and other large data
structures used by MS OS/2 base system functions. These formats include key-
board translation tables and video 1/0 fonts.

Appendix A, “Error Values,” lists error codes and their corresponding values.

Appendix B; “ANSI Escape Sequences,” lists the escape sequences used by
MS OS§/2.

Appendix C, “Country and Code-Page Information,” lists information contained
in the country and code-page files used by MS OS/2 system functions. This
includes code-page tables, code-page identifiers, and country-specific informa-
tion.

This manual is intended to fully describe MS OS/2 base system functions and
the structures and file formats used with these functions. It does not show how
to use these functions to carry out specific tasks. For more information on this
topic, see the Microsoft Operating System/2 Programmer’s Reference, Volume 1.
Also, this manual does not describe MS OS/2 Presentation Manager functions.
Presentation Manager functions let programs use the window-management and
graphics features of MS OS/2. For more information on MS OS/2 Presentation
Manager functions, see the Microsoft Operating System/2 Programmer’s Refer-
ence, Volume 2.

4 MS 0S/2 Programmer’s Reference, Vol. 3 o
T B B e R e S S R R R R e RIS R

1.2 How to Use This Manual

This manual provides detailed information about each MS OS/2 base system
function, macro, and structure. Each description has the following format:

Figure 1.1
Sample Reference Page

© ¥ DosBeep
l: USHORT DosBeep(usFrequency, usDuration)

USHORT usFrequency; /= frequency in hertz o
USHORT usDuration; /« duration in milliseconds +/
© The DosBeep function generates sound from the speaker.
O The DosBeep function is a family API function.
© Parameters usFrequency Specifies the frequency of the sound in hertz (cycles-per-
second). This parameter can be any value from 0x0025 through Ox7FFF.
usDuration Specifies the length of the sound in milliseconds.

@ Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_INVALID_FREQUENCY

. e Example This example calls the DosBeep function and produces audible tones:

SHORT 1{;

for {1 = 0; 1 < 10; i++) {
DosBeep (600, 175) ;
DosBeep (1200, 175);

0O see Also WinAlarm

These are the elements shown:

1 The function, macro, or structure name.

2 The function, macro, or structure syntax. The syntax specifies the number of
parameters (or fields) and gives the type of each. It also gives the order (from
left to right) that parameters must be pushed on the stack. Comments to the
right briefly describe the purpose of the parameter.

3 A description of the function, macro, or structure, including its purpose and
details of operation.

4 Any special consideration for the function, including whether a function can be
used in family API programs.

5§ A full description of each parameter (or field), including permitted values and
related structures.

6 A description of the function return value, including possible error values.

~

An example showing how the function can be used to accomplish a simple task.
8 A list of related functions and structures.

Chapter 1: Introduction 5
R S A e S S R R e R B P R s B T e B R B R R S iR

1.2.1 C Format

In this manual, the syntax for MS OS/2 functions is given in C-language format.
In your C-language sources, the function name must be spelled exactly as given
in the syntax, and the parameters must be used in the order given in the syntax.
This syntax also applies to Pascal program sources.

The following example shows how to call the DosBeep function in a C-language

program:

/* play a note for 1 second */

DosBeep (660, /* 660 cycles-per-second */
1000) ; /* play for 1000 milliseconds */

1.2.2 MS 0S/2 Include Files

This manual uses many types, structures, and constants that are not part of stan-
dard C language. These items, designed for MS OS/2, are defined in the MS
08/2 C-language include files provided with the Microsoft OS/2 Presentation
Manager Softset and the Microsoft OS/2 Presentation Manager Toolkit.

In C-language programs, the #include directive specifying 0s2.k, the MS OS/2
C-language include file, can be placed at the beginning of the source file to
include the definitions for the special types, structures, and constants. Although
there are many MS OS/2 include files, the 0s2.h file contains the additional
#include directives needed to process the basic MS OS/2 definitions.

To speed up processing of the MS OS/2 C-language include files, many defini-
tions are processed only if the C-language program explicitly defines a corre-
sponding include constant. An include constant is simply a constant name, with
the prefix INCL_, that controls a portion of the include files. If a constant is
defined using the #define directive, the corresponding MS OS/2 definitions are
processed. For a list of the include constants and a description of the MS OS/2
system functions they enable, see the Microsoft Operating System/2 Programmer’s
Reference, Volume 1.

1.2.3 MS 08/2 Calling Conventions

You must know MS OS/2 calling conventions to use MS OS/2 functions in other
high-level languages or in assembly language. MS OS/2 functions use the Pascal
(sometimes called the PLM) calling convention for passing parameters, and they
apply some additional rules to support dynamic-link libraries. The following
rules apply:

B You must push the parameters on the stack. In this manual, each function
description lists the parameters in the order they must be pushed. The left
parameter must be pushed first, the right parameter last. If a parameter
specifies an address, the address must be a far address; that is, it must have
the form selector:offset. The selector must be pushed first, then the offser.

B The function automatically removes the parameters from the stack as it
returns. This means the function must have a fixed number of parameters.

6 MS 0S/2 Programmer’s Reference, Vol. 3
R s e B e B e i S e S R R RS R B RS S SRS

B You must use an intersegment call instruction to call the function. This is
required for all dynamic-link-library functions.

B The function returns a value, possibly an error value, in either the ax register
or the dx:ax register pair. Only the di and si register values are guaranteed to
be preserved by the function. MS OS/2 base system functions may preserve
other registers as well, but they do not preserve the flags register. The con-
tents of the flags register are undefined; specifically, the direction flag in the
register may be changed. However, if the direction flag was zero before the
function was called, it will be zero after the function returns.

The following example shows how MS OS/2 calling conventions apply to the
DosOpen function in an assembly-language program:

EXTRN DOSOPEN:FAR

name db "abc", O

hFile dw [0}

usAction dw (0]

push ds ; filename to open

push offset name

push ds ; address of file handle

push offset hFile

push ds ; address to store action taken
push offset usAction

push (o] . ; size of new file O100H

push 100

push o ; file's attribute

push O010H ., create file if it does not exist
push O041H ; open file for writing, share with all
push [o] ; reserved

push]

call DOSOPEN

The following example shows how to call the same DosOpen function in a C-
language program. In C, the DosOpen function name, parameter types, and con-
stant names are defined in 0s2., the MS OS/2 C-language include file.

include <os2.h>

HFILE hfile;
USHORT usAction;

DosOpen ("abc", /* filename to open) */
&hfile, /* address of file handle */
&usAction, /* address to store action taken */
100L, /* size of new file */
FILE_NORMAL, /* file's attribute */
FILE_CREATE, /* create file if it does not exist */
OPEN_SHARE_DENYNONE | /* share with all *
OPEN_ACCESS_WRITEONLY, /* open for writing */
OL) ; /* reserved */

1.2.4 Bit Masks in Function Parameters

Many MS OS/2 system functions accept or return bit masks as part of their
operation. A bit mask is a collection of two or more bit fields within a single
, byte, or a short or long value. Bit masks provide a way to pack many Boolean

: Chapter 1: Introduction 7
B T L B e B B R S S R R S R B R s e it

flags (flags whose values represent on/off or true/false values) into a single
parameter or structure field. In assembly-language programming, it is easy to
individually set, clear, or test the bits in a bit mask by using instructions that
modify or examine bits within a byte or a word. In C-language programming,
however, the programmer does not have direct access to these instructions, so
the bitwise AND and OR operators typically are used to examine and modify
the bit masks.

Since this manual presents the syntax of MS OS/2 system functions in C-
language syntax, it also defines bit masks in a way that is easiest to work with
using the C language: as a set of constant values. When a function parameter

is a bit mask, this manual provides a list of constants (named or numeric)

that represent the correct values used to set, clear, or examine each field

in the bit mask. For example, the fbType field of the VIOMODEINFO struc-
ture in the VioSetMode function specifies three values: VGMT_OTHER,
VGMT_GRAPHICS, and VGMT_DISABLEBURST. These represent the “set”
values of the first three fields in the bit mask. Typically, the description associ-
ated with the value explains the result of the function if the given value is used;
that is, when the corresponding bit is set. Generally, the opposite result is
assumed when the value is not used. For example, using VGMT_GRAPHICS in
the fbType field enables graphics mode; not using it disables graphics mode.

1.2.5 Structures

Many MS OS/2 system functions use structures as input and output parameters.
This manual defines all structures and their fields using C-language syntax. In
most cases, the structure definition presented is copied directly from the C-
language include files provided with the Microsoft C Optimizing Compiler. Occa-
sionally, an MS OS/2 function may have a structure that has no corresponding
include-file definition. In such cases, this manual gives an incomplete form of
the C-language structure definition to indicate that the structure is not already
defined in an include file.

1.3 Naming Conventions

In this manual, all parameter, variable, structure, field, and constant names con-
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func-
tion parameters and structure fields. These conventions are also used in most
MS OS/2 sample program sources to make the sources more readable and infor-
mative.

8 MS 0S/2 Programmer’s Reference, Vol. 3
B e e S e S R R B e

1.3.1 Parameter and Field Names

1.3.1.1 Prefixes

With MS OS/2 naming conventions, all parameter and field names consist of up
to three elements: a prefix, a base type, and a qualifier. A name always consists
of at least a base type or a qualifier. In most cases, the name also includes a
prefix.

The base type, always written in lowercase letters, identifies the data type of the
item. The prefix, also written in lowercase letters, specifies additional informa-
tion about the item, such as whether it is a pointer, an array, or a count of
bytes. The qualifier, a short word or phrase written with the first letter of each
word uppercase, specifies the purpose of the item.

There are several standard prefixes and base types. These are used for the data
types most frequently used with MS OS/2.

The following is a list of standard prefixes used in MS OS/2 naming conventions:

Prefix Description

4 Pointer. This prefix identifies a far, or 32-bit, pointer to a
given item. For example, pch is a far pointer to a character.

np Near pointer. This prefix identifies a near, or 16-bit, pointer
to a given item. For example, npck is a near pointer to a
character.

a Array. This prefix identifies an array of two or more items
of a given type. For example, ach is an array of characters.

i Index. This prefix identifies an index into an array. For
example, ich is an index to one character in an array of
characters.

c Count. This prefix identifies a count of items. It is usually

combined with the base type of the items being counted
instead of the base type of the actual parameter. For exam-
ple, cch is a count of characters even though it may be
declared with the type USHORT.

h Handle. This prefix is used for values that uniquely identify
an object but that cannot be used to access the object
directly. For example, hfile is a handle of a file.

off Offset. This prefix is used for values that represent offsets
from the beginning of a buffer or a structure. For example,
off is the offset from the begmmng of the given segment to
the specified byte.

id Identifier. This prefix is used for values that identify an
object. For example, idSession is a session identifier.

Chapter 1: Introduction 9
R e R R B e S N S R S R e N e R e R T e

1.3.1.2 Base Types

The following is a list of standard base types used in MS OS/2 naming con-
ventions:

Base type Type/Description

f BOOL. A 16-bit flag or Boolean value. The qualifier should
describe the condition associated with the flag when it is
TRUE. For example, fSuccess is TRUE if successful,
FALSE if not; fError is TRUE if an error occurs and
FALSE if no error occurs. For objects of type BOOL, a
zero value implies FALSE; a nonzero value implies TRUE.

ch CHAR. An 8bit signed value.

K SHORT. A 16-bit signed value.

l LONG. A 32-bit signed value.

uch UCHAR. An 8-bit unsigned value.

us USHORT. A 16-bit unsigned value.

ul ULONG. A 32-bit unsigned value.

b BYTE. An 8-bit unsigned value. Same as uch.

K74 CHAR[]. Array of characters, terminated with a null char-
acter (the last byte is set to zero).

fb UCHAR. Array of flags in a byte. This base type is used

when more than one flag is packed in an 8-bit value. Values
for such an array are typically created by using the logical
OR operator to combine two or more values.

fs USHORT. Array of flags in a short (16-bit unsigned value).
This base type is used when more than one flag is packed in
a 16-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

fl ULONG. Array of flags in a long (32-bit unsigned value).
This base type is used when more than one flag is packed in
a 32-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

sel SEL. A 16-bit value used to hold a segment selector.

10 MS 0S/2 Programmer’s Reference, Vol. 3
R B T S R e e e R e S R R R

The base type for a structure is usually derived from the structure name. An
MS OS/2 structure name, always written in uppercase letters, is a word or
phrase that describes the size, purpose, and/or intended content associated
with the type. The base type is typically an abbreviation of the structure name.
The following list gives the base types for the structures described in this

manual:

ctryc kbdtyp ptbuf
ctryi Inctl driv
date lis qresc
dcbinf mdmst resc
trckl mnin shftst
bspblk mnout kbsi
fdate mouev htky
scrgrp moupl stdata
findbuf moups mnpos
flock mougi stsdata
frm mourt redly
Ssalloc mousc vioci
fsinf trckfmt viofi
dosfsrs mxs vioin
Jsts mxsl vioint
frime rxq viomi
gis dvpblck vioos
htype pidi viopal
kbci nmpinf viopb
kbstkbs pi vol
kbxl ptrdfnc

1.3.2 Constant Names

A constant name is a descriptive name for a numeric value used with an MS
0S/2 function. All constant names are written in uppercase letters and have a
prefix derived from the name of the function, object, or idea associated with the
constant. The prefix is followed by an underscore (_) and the rest of the con-
stant name, which indicates the meaning of the constant and may specify a
value, action, color, or condition. A few common constants do not have pre-
fixes—for example, NULL is used for null pointers of all types, and TRUE and
FALSE are used with the BOOL data type.

o o . y _ Chapter 1: Introduction 11
R e R S SR R S A s R S T C e B Lt I s CH s BTl S e o e el B E

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Convention Meaning

bold Bold type is used for keywords—for example, the
names of functions, data types, structures, and
macros. These names are spelled éxactly as they
should appear in source programs.

italics Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

monospace Monospace type is used for example program-
code fragments.

T R e S B R B R HEB e R R

Functions Directory

2.1 INtrOQUCHION cuviiiieiiieeiiniiieiererneeerenenaesssssneensnsesesases 15
P2/ 21 V32 ol 5 1o o TR 16

Chapter 2: Functions Directory 15
T e R A A e e i R e R B R e e e S e R R R R S Rt

2.1 Introduction

This chapter describes MS OS/2 Dos, Kbd, Mou, and Vie functions. These
functions, also called MS OS/2 base system functions, provide the support pro-
grams need to access the basic operating-system features of MS OS/2, such as
multitasking, memory management, and input and output. The Dos, Kbd, Mou,
and Vio functions represent four distinct function groups. As described in the
following list, programs use these function groups to carry out specific tasks:

Function group Usage

Dos Use the disk operating system (Dos) functions in
full-screen and Presentation Manager sessions to
read from and write to disk files, to allocate
memory, to start threads and processes, to com-
municate with other processes, and to access
your computer’s devices directly. Most functions
in this group can be used in Presentation
Manager applications.

Kbd Use the keyboard (Kbd) functions in full-screen
sessions to read keystrokes from the keyboard,
to manage multiple logical keyboards, and to
change code pages and translation tables. Since
the Presentation Manager session provides its
own keyboard support, Kbd functions are not
needed in Presentation Manager applications.

Mou Use the mouse (Mou) functions in full-screen
sessions to read mouse input from the mouse-
event queue, to set the mouse-pointer shape, and
to manage the mouse for all processes in a ses-
sion. As with the keyboard, the Presentation
Manager session provides its own mouse support,
so Mou functions are not needed in Presentation
Manager applications.

Vio Use the video input-and-output (Vio) functions in
full-screen sessions to write characters and char-
acter attributes to the screen, to create pop-up
windows for messages, to change the video
modes, and to access physical video memory.
Vio functions can also be used in advanced
video-input-and-output (AVIO) applications for
the Presentation Manager session to write charac-
ters and character attributes in a window. Most
Presentation Manager applications, however, use
the graphics programming interface (Gpi) to

- write text in a window.

Many functions in this chapter are also family API functions. This means they
can be used in dual-mode programs—that is, programs that run in either MS
0S/2 or MS-DOSe®. The family API functions are clearly marked.

In this chapter, complete syntax, purpose, and parameter descriptions are given
for each function. Types, macros, and structures used by a function are given

16 MS 0S/2 Programmer’s Reference, Vol. 3
e T e Ry e S i G N e N S S P P R e e s

with the function; these are defined more fully in Chapter 4, “Types, Macros,
Structures.” The numeric values for error values returned by the functions are
listed in Appendix A, “Error Values.”

Many of the function descriptions in this chapter include examples. The exam-
ples show how to use the functions to accomplish simple tasks. In nearly all
cases, the examples are code fragments, not complete programs. A code frag-
ment is intended to show the context in which a function can be used, but often
assumes that variables, structures, and constants used in the example have been
defined and/or initialized. Also, a code fragment may use comments to represent
a task instead of giving the actual statements.

Although the examples are not complete, you can still use them in your pro-
grams if you take the following steps:
8 Include the 0s2.h file in your program.

B Define the approprlate include constants for the functions, structures, and
constants used in the example.

B Define and initialize all variables.
B Replace comments that represent tasks with appropriate statements.
B Check return values for errors and take appropriate actions.

2.2 Functions

The following is a complete list, in alphabetical order, of the MS OS/2 Dos,
Kbd, Mou, and Vio functions.

B DosAllocHuge

DosAllocHuge 17

USHORT DosAllocHuge (usNumSeg, usPartialSeg, psel, usMaxNumSeg, fsAlloc)

USHORT usNumSeg; - /= number of segments to allocate »/
USHORT usPartialSeg; /= number of bytes in last segment «/
PSEL psel; /= pointer to variable for selector allocated «/

USHORT usMaxNumSeg; /= maximum number of segments to reallocate »/

USHORT fsAlloc;

Parameters

/» sharable/discardable flags «/

The DosAllocHuge function allocates a huge memory block. This block consists
of one or more 65,536-byte memory segments and one additional segment of the
size specified by the usPartialSeg parameter.

The DosAllocHuge function allocates the segments and copies the selector of
the first segment to the variable pointed to by the psel parameter. Selectors for
the remaining segments are consecutive and must be computed by using the
selector offset.

The DosAllocHuge function can specify that segments be sharable or discard-
able. If the process that calls DosAllocHuge specifies that the segments can be
shared, then it can call the DosGiveSeg function to make the location or the
allocated segments available to another process. The other process must use the
DosGetSeg function to access the shared memory. For more information about
sharable and discardable segments, see the “Comments” section under the
DosAllocSeg function.

The DosAllocHuge function is a family API function.

usNumSeg Specifies the number of 65,536-byte segments to be allocated.

usPartialSeg Specifies the number of bytes in the last segment. This number
can be any value from 0 through 65,535. If it is zero, no additional segment is
allocated.

psel Points to the variable that receives the selector of the first segment.

usMaxNumSeg Specifies the maximum number of segments that can be

. specified in any subsequent call to the DosReallocHuge function. If the usMax-
NumSeg parameter is zero, the memory cannot be reallocated to a size greater
than its original size, but it can be reallocated to a smaller size.

fsAlloc Specifies whether the segments can be shared with other processes or
can be discarded. The fsAlloc parameter can be one or more of the following
values:

Value Meaning

SEG_DISCARDABLE Create discardable segments.

SEG_GETTABLE Create sharable segments that other processes can
retrieve by using the DosGetSeg function.

SEG_GIVEABLE Create sharable segments that the owning process

can give to other processes by using the Dos-
GlveSeg function.

SEG_NONSHARED Create nonsharable, nondiscardable segments.
This value cannot be combined with any other
value.

~ If the shared or discardable attributes are not specified, only the process. that
creates the segment can access it, and the contents of the segment remain in
memory until the process frees the segment.

18 DosAllocHug‘e

Return Value

Comments

Restrictions

Example

See Also

DosAllocSeg

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_NOT_ENOUGH_MEMORY

Each segment in the huge memory block has a unique selector. The selectors are
consecutive. The psel parameter specifies the value of the first selector; the
remaining selectors can be computed by adding the selector offset to the first
selector one or more times—that is, once for the second selector, twice for the
third, and so on. The selector offset is a multiple of 2, as specified by the shift
count retrieved by using the DosGetHugeShift function. For example, if the shift
count is 2, the selector offset is 4 (1 << 2). If the selector offset is 4 and the
first selector is 6, then the second selector is 10, the third is 14, and so on.

The system may move or swap the memory segments as directed by the mem-
man command in the config.sys file. Moving and swapping have no effect on the
value of the segment selectors, so you can compute the selectors at any time and
save them; they will remain available for use as long as the memory remains allo-
cated.

The DosAllocHugeSeg function automatically locks the segment. A locked seg-
ment cannot be discarded. You must use the DosUnlockSeg function to unlock
the segment and permit discarding. To prevent the memory manager from dis-
carding an unlocked discardable segment, use the DosLockSeg function.

The DosFreeSeg function frees all segments if you pass it the first selector.

In real mode, the following restrictions apply to the DosAllocHuge function:

B The usPartialSeg parameter is rounded up to the next paragraph (16-byte)
value.

B The actual segment address is copied to the psel parameter.

This example calls the DosAllocHuge function to allocate two segments with 64K

and one segment with 200 bytes. It then converts the first selector to a huge
pointer that can access all the memory allocated.

CHAR huge *pchBuffer;

SEL sel;
DosAllocHuge (3, /* number of segments */
, /* size of last segment */
&sel, /* address of selector */
S, /* maximum segments for reallocation */
SEG_NONSHARED) ; /* sharing flag */
pchBuffer = MAKEP (sel, O); /* converts to a pointer */

DosAllocSeg, DosFreeSeg, DosGetHugeShift, DosGetSeg, DosGiveSeg,
DosLockSeg, DosReallocHuge, DosUnlockSeg

USHORT DosAllocSeg(usSize; psel, fsAlloc)

USHORT usSize;

PSEL pse/;

USHORT fsAlloc;

/= number of bytes requested «/
/= pointer to variable for selector allocated »/
/+ sharable/discardable flags «/

The DosAllocSeg function allocates a memory segment and copies the segment
selector to the variable pointed to by the psel parameter. The segment can have
from 1 through 65,536 bytes.

Parameters

Return Value

Comments

DosAllocSeg 19

The DosAllocSeg function can specify that the segment be sharable or discard-
able. If the process that calls DosAllocSeg specifies that the segments can be
shared, then it can call the DosGiveSeg function to make the location or the
allocated segments available to another process. The other process must use the
DosGetSeg function to access the shared memory. '

The DosAllocSeg function is a family API function.

usSize Specifies the number of bytes to be allocated. This number can be any
value from 0 through 65,535. If it is zero, the function allocates 65,536 bytes.
psel Points to the variable that receives the segment selector.

fsAlloc Specifies whether the segment can be shared with other processes or
can be discarded. The fsAlloc parameter can be one or more of the following
values:

Value Meaning

SEG_DISCARDABLE Create a discardable segment.

SEG_GETTABLE Create a sharable segment that other processes
can retrieve by using the DosGetSeg function.

SEG_GIVEABLE Create a sharable segment that the owning pro-

cess can give to other processes by using the Dos-
GiveSeg function.

SEG_NONSHARED Create a nonsharable, nondiscardable segment.
This value cannot be combined with any other
value.

If the sharable or discardable attributes are not specified, only the process that
creates the segment can access it, and the contents of the segment remain in
memory until the process frees the segment.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_NOT_ENOUGH_MEMORY

The system may move or swap the memory segment as directed by the memman
command in the config.sys file. Moving and swapping have no effect on the seg-
ment selectors.

A sharable segment is available to the process that created it and to other pro-
cesses. If necessary, the system will discard an unlocked discardable segment in
order to satisfy another allocation request. The new allocation request can come
from any process, including the process that allocated the segment being dis-
carded.

Discardable segments are useful for holding information that is accessed for
short periods of time and that can be regenerated quickly if discarded. Examples
are cache buffers for a database package, saved bitmap images for obscured win-
dows, and precomputed display images for a word-processing application.
Although the data in the segment is lost when the segment is discarded, the seg-
ment can be restored to its original size by using the DosReallocSeg function.

The DosAllocSeg function automatically locks the segment. A locked segment
cannot be discarded. You must use the DosUnlockSeg function to unlock the
segment and permit discarding. To prevent the memory manager from discarding
an unlocked discardable segment, use the DosLockSeg function.

The DosFreeSeg function frees the segment.

20 DosAllocSeg

Restrictions

Example

See Also

' In real mode, the following restrictions apply to the DosAllocSeg function:

B The usSize parameter is rounded up to the next paragraph (16-byte)
value.

® The actual segment address is copied to the psel parameter.

This example calls the DosAllocSeg function to allocate 26,953 bytes. It then
converts the selector to a far pointer that can access the allocated bytes.

PCH pchBuffer;

SEL sel:

DosAllocSeg (26953, /* bytes to allocate */
&sel, /* address of selector */
SEG_NONSHARED) ; /* sharing flag =

pchBuffer = MAKEP (sel, O): /* converts to a pointer */

DosAllocHuge, DosFreeSeg, DosGetSeg, DosGiveSeg, DosLockSeg,
DosReallocSeg, DosUnlockSeg

DosAllocShrSeg

USHORT DosAllocShrSeg(usSize, pszSegName, psel)

USHORT usSize;
PSZ pszSegName;
PSEL psel;

Parameters

Return Value

/= number of bytes requested «/
/= pointer to segment name «/
/= pointer to variable for selector allocated »/

The DosAllocShrSeg function allocates a shared memory segment and copies the
segment selector to the variable pointed to by the psel parameter. The segment
can have from 1 through 65,536 bytes.

A shared segment can be accessed by any process that knows the segment name.
A process can retrieve a selector for the segment by specifying the name in a
call to the DosGetShrSeg function. (Shared segments allocated by using the
DosAllocSeg function must be explicitly given and retrieved by using the Dos-
GiveSeg and DosGetSeg functions.)

usSize Specifies the number of bytes to be allocated. This number can be any
value from 0 through 65,535. If it is zero, the function allocates 65,536 bytes.

pszSegName Points to a null-terminated string that identifies the shared mem-
ory segment. The string must have the following form:

\sharemem\name

The segment naine, name, must have the same format as an MS OS/2 filename
and must be unique. For example, the name \sharemem\public.dat is accept-
able. .

psel Points to the variable that receives the segment selector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ALREADY_EXISTS
ERROR_INVALID_HANDLE
ERROR_NOT_ENOUGH_MEMORY

DosBufReset 21

Comments A process may allocate up to 30 shared segments.

The system may move or swap the memory segments as directed by the mem-
man command in the config.sys file. Moving and swapping have no effect on the
value of the segment selector.

The DosFreeSeg function frees a shared segment.
Example This example calls the DosAllocShrSeg function to allocate 26,953 bytes. It gives

the memory the name “\sharemem\abc.mem” so that other processes may use
the memory if they know the name.

SEL sel;

DosAllocShrSeg (26953, /* bytes to allocate */
"\\sharemem\\abc .mem", /* memory name *
&sel) ; /* address of selector */

See Also DosAllocHuge, DosAllocSeg, DosFreeSeg, DosGetSeg, DosGetShrSeg, Dos-
GiveSeg

DosBeep

USHORT DosBeep(usFrequency, usDuration)

USHORT usFrequency; /= frequency in hertz »/

USHORT usDuration; /« duration in milliseconds »/

The DosBeep function generates sound from the speaker.
The DosBeep function is a family API function.

Parameters usFrequency Specifies the frequency of the sound in hertz (cycles-per-
second). This parameter can be any value from 0x0025 through Ox7FFF.
usDuration Specifies the length of the sound in milliseconds.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_INVALID_FREQUENCY

Example This example calls the DosBeép function and produces audible tones:
SHORT 1i;
for (1 = 0; 1 < 10; i++) {

DosBeep (600, 175);

DosBeep (1200, 175);
See Also WinAlarm
DosBufReset

USHORT DosBufReset (hf)
HFILE hf; /= file handle «/

The DosBufReset function flushes the file buffers for ‘the specified file by writing
the current contents of the file buffer to the corresponding device. If the file is a
disk file, the function writes to the disk and updates the directory information
for the file.

22 DosBufReset

Parameters

Return Value

Comments

Example

See Also

DosCallback

Although DosBufReset flushes and updates information as if the file were
closed, the file remains open.

The DosBufReset function is a family API function.

hf Identifies the file whose buffers are flushed. This handle must have been
created previously by using the DosOpen function. If this parameter is set to
OxFFFF, the function flushes buffers for all currently open files.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_FILE_NOT_FOUND
ERROR_INVALID_HANDLE

If the process has several open files on removeable disks, the function may have
the effect of requiring the user to repeatedly swap disks.

- This example opens the file abc and writes the contents of the abBuf buffer to

the file. It then writes the data to the disk by calling the DosBufReset function
to flush the buffers.

BYTE abBuf[512];
HFILE hf;
USHORT usAction, cbBytesWritten, usError;
usError = DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,
FILE_CREATE | FILE_OPEN,
OPEN_ACCESS_WRITEONLY | OPEN_SHARE_DENYWRITE, OL);
if (!tusError) {
DosWrite(hf, abBuf, sizeof (abBuf), &cbBytesWritten):
DosBufReset (hf) ; /* flush the buffers */

DosClose, DosOpen, DosWrite

VOID DosCallback(pfn)
PFN pfn; /= pointer to ring-3 function »/

Parameters
Return Value
Comments

The DosCallback function allows a process with ring-2 input/output privilege to
call a ring-3 function.

pfn Points to the ring-3 function to be called.
This function does not return a value.

When a process with ring-2 input/output privileges uses the DosCallback func-
tion to call a ring-3 function, the target function executes at ring 3 and returns to
the ring-2 calling process. The ring-3 function need not conform to the ring-2
privilege level. The ring—3 function that is called by the DosCallback function
may call a ring-2 segment before it returns.

All registers except FLAGS will be passed intact across this call/return sequence
and may be used to pass parameters or data back and forth between rings 2 and
3. Any addresses passed from ring 2 to ring 3 must be based on ring-3 selectors,
because ring-3 code cannot address ring-2 data selectors.

A ring-2 stack cannot be used to pass data to a ring-3 function.

DosCallNmPipe

The following Dos functions are valid when issued from ring 2:

DosAllocHuge
DosAllocSeg
DosAllocShrSeg
DosBeep
DosBufReset
DosCallback
DosChDir
DosChgFilePtr
DosCliAccess
DosClose
DosCloseSem
DosCreateCSAlias
DosCreateSem
DosCreateThread
DosCwait
DosDelete
DosDevConfig
DosDevIOCtl
DosDupHandle
DosEnterCritSec
DosErrClass
DosError
DosExecPgm
DosExit
DosExitCritSec
DosExitList
DosFileLocks
DosFindClose
DosFindFirst
DosFindNext
DosFlagProcess
DosFreeModule
DosFreeSeg

DosFSRamSemClear
DosFSRamSemRequest

DosGetCp
DosGetDateTime
DosGetEnv

DosGetHugeShift
DosGetInfoSeg

DosGetMachineMode

DosGetModHandle
DosGetModName
DosGetPID
DosGetPPID
DosGetProcAddr
DosGetPrty
DosGetResource
DosGetSeg
DosGetShrSeg
DosGetVersion
DosGiveSeg
DosHoldSignal
DosKillProcess
DosLoadModule
DosLockSeg
DosMakePipe
DosMemAvail
DosMkDir
DosMove
DosMuxSemWait
DosNewSize
DosOpen
DosOpenSem
DosPhysicalDisk
DosPortAccess
DosQAppType
DosQCurDir
DosQCurDisk
DosQFHandState
DosQFileInfo
DosQFileMode
DosQFSInfo
DosQHandType
DosQVerify
DosRead

DosReadAsync
DosReallocHuge
DosReallocSeg
DosResumeThread
DosRmDir
DosScanEny
DosSearchPath
DosSelectDisk
DosSemClear
DosSemRequest
DosSemSet
DosSemSetWait
DosSemWait
DosSendSignal
DosSetCp
DosSetDateTime
DosSetFHandState
DosSetFileInfo
DosSetFileMode
DosSetFSInfo
DosSetMaxFH
DosSetPrty
DosSetSigHandler
DosSetVec
DosSetVerify
DosSizeSeg
DosSleep
DosSubAlloc
DosSubFree
DosSubSet
DosSuspendThread
DosTimerAsync
DosTimerStart
DosTimerStop
DosUnlockSeg
DosWrite
DosWriteAsync

B DosCallNmPipe
USHORT DosCallNmPipe (pszName, pbinBuf, cbinBuf, pbOutBuf, cbOutBuf, pcbRead, ulTimeQut)

PSZ pszName; /« pointer to pipe name »/
PBYTE pbinBuf; /= pointer to input buffer /
USHORT cbinBuf; /= number of bytes in input buffer «/
PBYTE pbOutBuf; /= pointer to output buffer +/
USHORT cbOutBuf; /= number of bytes in output buffer ./
PUSHORT pcbRead; /= pointer to variable for bytes read »/

ULONG u/TimeOut; /= timeout value »/

The DosCallNmPipe function opens a named pipe, writes to and reads from it,
and closes it.

24 DosCallNmPipe

Parameters

Return Value

Comments

See Also

DosCaseMap

pszName Points to the name of the pipe. The name is in the form \pipe\name
for a local pipe and \\server\pipe\name for a remote pipe.

pbInBuf Points to the buffer containing the data that is written to the pipe.
cbInBuf Specifies the size (in bytes) of the input buffer.

pbOutBuf Points to the output buffer that receives the data read from the
pipe. ,

¢bOutBuf Specifies the size (in bytes) of the output buffer.

pcbRead Points to the variable that receives the number of bytes read from
the pipe.

ulTimeOut Specifies a value (in milliseconds) that is the amount of time MS
0S/2 should wait for the pipe to become available.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_PIPE
ERROR_INTERRUPT
ERROR_INVALID_FUNCTION
ERROR_SEM_TIMEOUT

The DosCallNmPipe function is equivalent to calling DosOpen, DosTransact-
NmPipe, and DosClose. '

DosMakePipe, DosTransactNmPipe

USHORT DosCaseMap(usLength, pctryc, pchString)

USHORT usLength;

/« length of string to casemap »/

PCOUNTRYCODE pctryc; /= pointer to structure for country code »/

PCHAR pchString;

Parameters

/= pointer to character string’ =/

The DosCaseMap function casemaps the characters in the given string. If neces-
sary, the function replaces characters in the string with the correct case-mapped
characters.

The DosCaseMap function uses the casemap information in the country.sys file
to casemap the string.

The DosCaseMap function is a family API function.

usLength Specifies the length of the given string.

pctryc Points to the COUNTRYCODE structure that contains the country
code and the code-page identifier for the casemap operation. The COUN-
TRYCODE structure has the following form:
typedef struct _COUNTRYCODE {

USHORT country;

USHORT codepage:;
} COUNTRYCODE:;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value

Restrictions

See Also

DosChDir

DosChDir 25

pchString Points to the character string to be casemapped.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NLS_BAD_TYPE
ERROR_NLS_NO_COUNTRY_FILE
ERROR_NLS_NO_CTRY_CODE
ERROR_NLS_OPEN_FAILED
ERROR_NLS_TABLE_TRUNCATED
ERROR_NLS_TYPE_NOT_FOUND

In real mode, the following restriction dpplies to the DosCaseMap function:

B There is no method of identifying the boot drive. The system assumes
that the country.sys file is in the root directory of the current drive.

DosGetCollate, DosGetCtryInfo, DosSetCp

USHORT DosChDir(pszDirPath, ulReserved)

PSZ pszDirPath;

ULONG u/Reserved;

Parameters

Return Value

/= directory path «/
/« must be zero «/

The DosChDir function changes the current directory to the specified directory.
When a process changes the current directory, subsequent calls to file-system
functions, such as the DosOpen function, use the new dlrectory as the default
directory. The default directory is used 1f no explicit path is given with a
filename.

The DosChDir function is a family API function.

pszDirPath . Points to the null-terminated string that specifies the new directory
path. The string must be a valid MS OS/2 directory path and must not be longer
than 125 characters.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwxse, it is an error
value, which may be one of the following:

ERROR_DRIVE_LOCKED
ERROR_FILE_NOT_FOUND
ERROR_NOT_DOS_DISK
ERROR_NOT_ENOUGH_MEMORY
ERROR_PATH_NOT_FOUND

26 DosChDir

Comments

Example

See Also

DosChgFilePtr

This function applies only to the process that is changing the directory. It does
not affect the current directories of other processes. When the process termi-
nates, the previous default directory becomes the default directory agam

When a process starts, it inherits its current directory from the parent process.

This example stores the current default drive and path, then calls the DosChDir
function to change the default path to the root directory:

PSZ pszPath; R
USHORT cbPath = O, usDisk;
ULONG ulLogicalDrives;

SEL selPath;

DosQCurDisk (&usDisk, &ulLogicalDrives): /* gets current drive */
DosQCurDir (usDisk, NULL, &cbPath); /* gets size of buffer */
DosAllocSeg(cbPath, &selPath, SEG_NONSHARED); /* allocates memory */
pszPath’ = MAKEP (selPath, 0). /* assigns it to a. far pointer */
DosQCurDir (usDisk, pszPath, &cbPath); /* gets current directory */
DosChDir("\\" OL) ; /* changes to the root directory */
DosChDir (pszPath, OL); /* restores the directory */

DosMkDir, DosQCurDir, DosQCurDisk, DosRmDir, DosSelectDisk

USHORT DosChgFilePtr(hf, IDistance, fMethod, puINethr)

HFILE hf;

LONG /Distance;
USHORT fMethod;
PULONG pu/NewPtr;

Parameters

/« file handle »/
/« distance to move +/
/« method of moving «/
/» new pointer location »/

The DosChgFilePtr function moves the file pointer to a new position in the file.
The file pointer is ' maintained by the system. It pomts to the next byte to be read
from a file or to the next pOSlthll in the file to receive a byte.

The DosCthllePtr function is a family API function.
hf Identifies the file. This handle must have been created prev1ously by using
the DosOpen function.

{Distance Specifies the number of bytes to move the file pointer in the file. If
this value is positive, the pointer moves forward through the file. If the value is
negative, the pointer moves backward

JMethod Specifies where the move will start. This parameter must be one of
the following values: ;

Value Meaning

FILE_BEGIN Start move at the beginning of the file.
FILE_CURRENT Start move at the current location.
FILE_END Start move at the end of the file.

pulNewPtr Points to the long variable that receives the new file-pointer loca-
tion. -

Return Value

Comments

Example

See Also

DosCLIAccess

DosCLIAccess 27

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE

The system automatically advances the file pointer for each byte read or written;
the pointer is at the beginning of the file when the file is opened.

This example opens the file abc for read and write access, calls the DosChg-
FilePtr function to set the file pointer at the end of the file, writes the string
“Hello World”, and closes the file. The ulFilePointer variable contains the file’s
current length when the pointer is at the end of the file.

HFILE hf;

USHORT usActlion, cbBytesWritten;

ULONG ulFilePointer;

DosOpen ("abc", &hf, &usAction, OL, FILE_NORMAL,
FILE_OPEN | FILE_CREATE,
OPEN_ACCESS_WRITEONLY | OPEN_SHARE_DENYWRITE, OL);

DosChgFilePtr (hf, /* file handle */
oL, /* distance to move */
FILE_END, /* type of movement */
&ulFilePointer); /* address of new position */

DosWrite(hf, "Hello World\r\n", 13, &cbBytesWritten);
DosClose (hf) .

DosNewSize, DosOpen, DosRead, DosWrite

USHORT DosCLIAccess(VOID)

Return Value

Comments

See Also

The DosCLIAccess function requests an input/output (I/0) privilege for dis-
abling and enabling interrupts. Assembly-language programs that use the cli and
sti instructions in IOPL segments must use the DosCLIAccess function to
receive permission to use these instructions.

The DosCLIAccess function is a family API function.
This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value.

Assembly-language programs that use the in and out instructions to read from
and write to I/O ports must use the DosPortAccess function to receive permis-
sion to use these instructions. The DosPortAccess function also grants permis-
sion to use the cli and sti instructions.

DosPortAccess

28 - DosClose

DosClose

USHORT DosClose (hf)
HFILE hf; /«file handle «/

Parameters

Return Value

Example

See Also

The DosClose function closes a specified file or pipe. DosClose causes the sys-
tem to write the contents of all the file’s internal buffers to the device—for exam-
ple, to the disk—and to update all directory information.

The DosClose function is a family API function.

hf Identifies the file to close. This handle must have been created previously
by using the DosOpen function, the DosDupHandle function, or the Dos-
MakePipe function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_FILE_NOT_FOUND
ERROR_INVALID_HANDLE

This example opens the file abc, reads from the file, and calls the DosClose
function to close it:

BYTE abBuf[512];

HFILE hf;

USHORT usAction, cbBytesRead;

DosOpen ("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,
OPEN_ACCESS_READONLY | OPEN_SHARE_DENYNONE, OL):;

DosRead (hf, abBuf, sizeof (abBuf), &cbBytesRead):

DosClose (hf): /* closes the file */

DosBufReset, DosDupHandle, DosFindClose, DosMakePipe, DosOpen,
DosRead

DosCloseQueue

USHORT DosCloseQueue (hqueue)

HQUEUE hqueue;

Parameters

Return Value

/= queue handle »/

The DosCloseQueue function closes a queue. If the process calling DosClose-

Queue owns the queue, the function removes any outstanding elements from the
queue. If the process does not own the queue, the contents of the queue remain
unchanged and the queue remains available to other processes that have it open.

hqueue Identifies the queue to be closed. This queue must have been pre-
viously created or opened by using the DosCreateQueue or DosOpenQueue
function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_QUE_INVALID_HANDLE

Comments

Example

See Also

DosCloseSem

DosCloseSem 29

After the owner closes the queue, any process that attempts to write to the
queue will receive an error value.

This example creates and opens a queue, then calls the DosCloseQueue function
to close the queue:

HQUEUE hqueue;
DosCreateQueue (&hqueue, QUE_FIFO, "\\queues\\abc.que");

DosCioseQueue(hqueue);

DosCreateQueue, DosOpenQueue, DosReadQueue, DosWriteQueue

USHORT DosCloseSem(hsem)

HSEM hsem;

Parameters

Return Value

Comments

Example

See Also

/« semaphore handle «/

The DosCloseSem function closes a specified system semaphore. If another pro-
cess has the semaphore open, it remains open and can be used by that process,
although the semaphore cannot be used by the process that closes it. This func-
tion deletes the semaphore only when the last process using the semaphore
closes it.

hsem Identifies the semaphore to be closed. This handle must have been
previously created or opened by using the DosCreateSem or DosOpenSem
function.

The return value is zero if the function is successful. Otherwise, 1t is an error
value, which may be one of the following:

ERROR_INVALID_HANDLE
ERROR_SEM_IS_SET

If a process does not close its semaphores before terminating, the system closes
them.

This example opens a previously created system semaphore, then calls the Dos-
CloseSem function to close it:

HSEM hsem; /* semaphore handle */
DosOpenSem (&hsem, "\\sem\\abc"):; /* opens the semaphore */
DosCioseSem(hsem); ' /* closes the semaphore */

DosCreateSem, DosOpenSem

4ConnectNmPipe

ConnectNmPipe
/‘O RT DosConnectNmPipe (hp)
,A‘IPE hp; /= pipe handie »/

The DosConnectNmPipe function waits for a client to open a named pipe.

Parameters hp Identifies the named pipe. This handle must have been created previously
by using DosMakeNmPipe.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_PIPE
ERROR_BROKEN_PIPE
ERROR_INTERRUPT
ERROR_INVALID_FUNCTION
ERROR_PIPE_NOT_CONNECTED

Comments If the client end of a named pipe is open, the DosConnectNmPipe function
returns immediately. If the client end of a named pipe is not open and the pipe
was created with blocking, the DosConnectNmPipe function waits until a client
opens the pipe. If the client end of a named pipe is not open and the pipe was
cteated with no blocking, the DosConnectNmPipe function returns an error
value immediately.

In nonblocking mode, multiple DosConnectNmPipe calls can be issued to poll
the state of a named pipe. If a client has not opened the pipe, the first call to the
DosConnectNmPipe function puts the named pipe into a listening state and
returns immediately with an ERROR_PIPE_NOT_CONNECTED return value.
Subsequent calls to the DosConnectNmPipe function also return this error
value, until a client opens the named pipe.

If a named pipe was opened and closed by a client but has not been discon-
nected by the controlling process, the DosConnectNmPipe function returns
ERROR_BROKEN_PIPE.

See Also DosDisConnectNmPipe, DosMakeNmPipe

DosCreateCSAlias

USHORT DosCreateCSAlias (se/DataSegment, pselCodeSegment)
SEL se/DataSegment; /« data-segment selector »/
PSEL pse/CodeSegment; /= pointer to code-segment selector »/

The DosCreateCSAlias function creates an aliased code-segment selector for a
specified memory segment. The aliased code-segment selector can be used to
pass execution control to machine instructions in a data segment.

The DosCreateCSAlias function is a family API function.

Parameters

Return Value

Comments

Restrictions

See Also

DosCreateQueue 31

selDataSegment Specifies the data-segment selector that identifies the mem-
ory segment.

pselCodeSegment Points to the variable that receives the aliased code-
segment selector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_ACCESS_DENIED

Shared memory segments, segments in huge memory blocks, and global data
segments from dynamic-link libraries cannot be used to create an aliased code
segment.

If the process has copied valid machine instructions to the data segment, the
aliased code-segment selector can be combined with a segment offset to pass
execution control to the machine instructions. The instructions in the aliased
code segment can be called from either privilege level 2 (input/output privilege)
or privilege level 3.

The DosFreeSeg function frees the aliased code-segment selector. Freeing the
data-segment selector does not affect the aliased code segment, or vice versa.
The segment is not removed from memory until both selectors have been freed.

In real mode, the following restrictions apply to the DosCreateCSAlias function:

B The selector returned is the address of the code.

B Freeing either the aliased selector or the original selector immediately
frees the block of memory.

DosAllocSeg, DosFreeSeg

DosCreateQueue

USHORT DosCreateQueue (phqueue, fQueueOrder, pszQueueName)

PHQUEUE phqueue;

/+ pointer to variable for queue handle »f

USHORT fQueueOrder; /= order in which elements are read-written »/

PSZ pszQueueName;

Parameters

/= pointer to queue name »/

The DosCreateQueue function creates and opens a queue. The new queue is
owned by the process that calls the function, but can be opened for use by other
processes.

Phqueue Points to the variable that receives the queue handle.

32 DosCreateQueue

Return Value

Comments

See Also

DosCreateSem

fQueueOrder Specifies the order in which elements are read from and written
to the queue. This parameter can be one of the following values:

Value Meaning

QUE_FIFO First-in/first-out queue. The first element put in the
queue is the first element to be removed.

QUE_LIFO Last-in/first-out queue. The last element put in the
queue is the first element to be removed.

QUE_PRIORITY Priority queue. The process that places the element in

the queue specifies a priority. Elements with the
highest priority are removed first.

pszQueueName Points to a null-terminated string. The string identifies the
queue and must have the following form:

\queues\name

The string name, name, must have the same format as an MS OS/2 filename and
must be unique.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_QUE_DUPLICATE
ERROR_QUE_INVALID_NAME
ERROR_QUE_INVALID_PRIORITY
ERROR_QUE_NO_MEMORY

The process that creates a queue owns that queue. The owning process can write
elements to and read elements from the queue at any time, since DosCreate-
Queue automatically opens the queue for the owning process. Other processes
may open the queue by using the DosOpenQueue function and write elements to
it by using the DosWriteQueue function, but they cannot read elements from the
queue. Any thread belonging to the process that owns a queue can read from or
write to the queue.

If any process has a queue open when the owner closes it, subsequent requests
to write to the queue return an error value.

DosCloseQueue, DosOpenQueue

USHORT DosCreateSem(fNoExclusive, phssm, pszSemName)
USHORT fNoExclusive; /= exclusive/nonexclusive ownership flag »/

PHSYSSEM phssm;
PSZ pszSemName;

/« pointer to variable for semaphore handle »/
/« pointer to semaphore name »f

The DosCreateSem function creates a systém semaphore and copies the sema-
phore handle to a variable. A process can use a system semaphore to indicate to
another process a change in the status of a shared resource.

Parameters

Return Value

Comments

Example

See Also

DosCreateSem 33

fNoExclusive Specifies ownership of the semaphore. If this parameter is

CSEM_PRIVATE, the process receives exclusive ownership. If this parameter is
CSEM_PUBLIC, the process does not receive exclusive ownership.

phssm Points to the variable that receives the semaphore handle.

psgSemName Points to a null-terminated string that identifies the semaphore.
The string must have the following form:

\sem\name

The string name, name, must have the same format as an MS OS/2 filename and
must be unique. ‘

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ALREADY_EXISTS
ERROR_INVALID_NAME
ERROR_INVALID_PARAMETER
ERROR_TOO_MANY_SEMAPHORES

The process that creates the system semaphore owns it. Other processes can
open the semaphore by using the DosOpenSem function, then wait for a change
in the status of the semaphore by using the DosSemWait or DosMuxSemWait
function. The owning process can change the status of the semaphore by using
the DosSemSet or DosSemClear functions.

The process calling the DosCreateSem function receives exclusive ownership of
a system semaphore, unless otherwise specified. Exclusive ownership prevents
other processes from setting or clearing the semaphore while the owning process
has it open. Other processes may open the semaphore and wait for it to change
status, but they cannot change its status.

This example calls DosCreateSem to create a system semaphore, then calls Dos-
SemSet to set it and DosSemClear to clear it:
HSYSSEM hssm; /* handle to semaphore */

DosCreateSem (CSEM_PRIVATE, /* specifies ownership */
&hssm, *+ address of handle */

: "\\sem\\abc.sem") ; /* name of semaphore */
DosSemSet (hssm) ; /* sets the semaphore */
DosSémClear(hssm): /* clears the semaphore */

DosCloseSem, DosOpenSem, DosSemClear, DosSemRequest, DosSemSet,
DosSemSetWait, DosSemWait

34 DosCreateThread

DosCreateThread
USHORT DosCreateThread(pfnFunction, ptidThread, pbThrdStack)
PFNTHREAD pfnFunction(VOID); /+ pointer to address of function »/

PTID ptidThread;
PBYTE pbThrdStack;

Parameters

Return Value

Comments

/« pointer to variable for thread identifier «/
/= pointer to thread stack /

The DosCreateThread function creates a new thread.

pfaFunction Points to a program-supplied function and represents the startlng
address of the thread. For a full description, see the following “Comments” sec-
tion.

ptidThread Points to the variable that receives the thread identifier.
pbThrdStack Points to the address of the new thread’s stack.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NO_PROC_SLOTS
ERROR_NOT_ENOUGH_MEMORY

When a thread is created, the system makes a far call to the application-supplied
function whose address is specified by the pfnFunction parameter. This function
may include local variables and may call other functions, as long as the thread’s

- stack has sufficient space. (The stack can be allocated by using the DosAllocSeg

function or by using a global array.) The address specified by the pbThrdStack
parameter should be the address of the last word in the stack, not the first, since
the stack grows down in memory. The thread terminates when the function
returns or calls the DosExit function.

The pfnFunction parameter points to a function that is supplied by the program.
This function should have the following form:

VOID FAR FuncName (VOID)

1 .

¥

Since the system passes no arguments, no parameters are defined.

DosCreateThread can create up to 255 threads per process. A new thread inher-
its all files and resources owned by the parent process. Any thread in a process
can open a file, device, pipe, queue, or system semaphore. Other threads may
use the corresponding handles to access thé given item.

Note that high-level-languages, run-time libraries, and stack checking may
severely limit or eliminate the ability to call the DosCreateThread function
directly from a high-level-language program. For more information, consult the
documentation that came with your language product.

Before calling the DosCreateThread function, either set the es register to zero
or assign to it a selector that will remain valid for the duration of the new
thread. If you fail to set the es register to one of these values, the thread may
unexpectedly terminate as a result of a general protection fault. For more infor-
mation, see the Microsoft Operating System/2 Programmer’s Reference, Volume 1.

Example

See Also

DosCwait

DosCwait 35

This example sets aside a 512-byte buffer to be used as stack space for any
threads that are created. The first stack is set at the end of the array. The thread
is created by calling the DosCreateThread function. The thread terminates by
calling the DosExit function.

VOID FAR Threadl();
BYTE abStackArea[512];

PVOID pStackl = abStackArea + 512; /* 512-byte stack x/
TID tidThreadl;

DosCreateThread (Threadl, /* name of thread function */

&tidThreadl, /* address of thread ID */
pStackl); /* thread's stack */

DosExit (EXIT_PROCESS, O);
}

VOID EAR Threadl() {

DosExit (EXIT_THREAD, O);

DosExit, DosResumeThread, DosSuspendThread

USHORT DosCwait(fScope, fWait, prescResults, ppidProcess, pidWaitProcess)

USHORT fScope;
USHORT fWait;

/« flag scope »/
/= wait/no-wait flag «/

PRESULTCODES prescResults; /« pointer to structure receiving result codes »/

PPID ppidProcess;
PID pidWaitProcess;

Parameters

/« pointer to variable for process identifier s/
/~ process identifier of process to wait for «/

The DosCwait function waits for a child process to terminate, then retrieves the
result codes from that process. The function copies the process identifier of the
terminated process to the variable pointed to by the ppidProcess parameter and

copies a termination code to the structure pointed to by the prescResults param-
eter.

fScope Specifies how many processes to wait for. If the value of this parame-
ter is DCWA_PROCESS, the thread waits until the specified process ends. If it
is DCWA_PROCESSTREE, the thread waits until the specified process and all
its child processes end.

fWait Specifies whether or not to wait for child processes. If this parameter is
DCWW_WALIT, the thread waits while child processes are running. If it is
DCWW_NOWALIT, the thread does not wait. This option is used to retrieve the
result codes of a child process that has already ended.

36 DosCwait

Return Value

Comments

Example

See Also

prescResults Points to the RESULTCODES structure that receives the
termination code and result code for the child process’s termination. The
RESULTCODES structure has the following form:
typedef struct _RESULTCODES {

USHORT codeTerminate;

USHORT codeResult;
} RESULTCODES;

For a full description, see Chapter 4, “Types, Macros, Structures.”

ppidProcess Points to the variable that receives the process identifier of the
ending process.

pidWaitProcess Specifies which process to wait for. If this parameter is a pro-
cess identifier, the thread waits for that process to end. If it is zero, the thread
waits until any child process ends.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_CHILD_NOT_COMPLETE
ERROR_INVALID_PROCID
ERROR_WAIT_NO_CHILDREN

The DosCwait function may wait for a child process and any processes started
by the child process to end before it returns, but it will not report the status of
the processes that were started by the child process.

When the function is waiting for more then one child process, the ppidProcess
variable is used to determine which child process has terminated.

Do not call the DosCwait function before starting a child process. When this
happens, the process calling DosCwait waits indefinitely, since a child process
cannot start asynchronously.

This example runs the cmd.exe program as a child process, then calls the
DosCwait function to wait until cmd.exe terminates:

CHAR achFailName[128]:

RESULTCODES rescResults;

PID pidProcess;

DosExecPgm(achFailName, sizeof (achFailName),

EXEC_ASYNC, "cmd ", O, &rescResults, "cmd.exe"):;

DosCQait(DCWA_PROCESS, /* execution flag */
DCWW_WAIT, /* wait option */
&rescResults, /* address for result codes */
&pidProcess, *

address of process identifier */
rescResults.codeTerminate); /* process to wait for *

DosExecPgm, DosExit, DosKillProcess

B DosDelete

DosDevConfig 37

USHORT DosDelete (pszFileName, ulReserved)

PSZ pszFileName;
ULONG u/Reserved;

Parameters

Return Value

Comments

Example

See Also

B DosDevConfig

/« pointer to string specifying pathname »/
/« must be zero «/

The DosDelete function deletes a file.
The DosDelete function is a family API function.

pszFileName Points to a null-terminated string that specifies the file to be
deleted. This string must be a valid MS OS/2 filename and must not contain
wildcard characters.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_FILE_NOT_FOUND
ERROR_NOT_DOS_DISK
ERROR_PATH_NOT_FOUND
ERROR_SHARING_BUFFER_EXCEEDED
ERROR_SHARING_VIOLATION

Read-only files cannot be deleted by using the DosDelete function. The DosSet-
FileMode function can be used to change a file’s read-only attributes, making it
possible to delete that file.

The DosDelete function cannot delete directories; use the DosRmDir function to
delete directories.

This example calls the DosDelete function to delete the file abc, and displays a
message reporting success or failure:

USHORT usError;
usError = DosDelete("abc", OL);
if (usError))

VioWrtTTY ("abc not deleted\r\n", 21, 0):
else
VioWrtTTY ("abc deleted\r\n", 17, 0):

DosRmDir, DosSetFileMode

USHORT DosDevConfig(pvDevinfo, usltem, usReserved)

PVOID pvDevinfo;
USHORT usltem;

/= pointer to variable for device information »/
/« item number «/

USHORT usReserved; /« must be zero =/

The DosDevConfig function retrieves information about attached devices.
The DosDevConfig function is a family API function.

38 DosDevConfig

Parameters pvDevInfo Points to the variable that receives device information. The type of
information received depends on the value of the usltem parameter.

usltem Specifies what device information to retrieve. This parameter can be
one of the following values:

Value Meaning

DEVINFO_ADAPTER The pvDevinfo parameter points to a
BYTE variable that is set to FALSE if the
primary display adapter is a mono-
chrome/printer display adapter type, or to
TRUE for other display adapters.

DEVINFO_COPROCESSOR The pvDevinfo parameter points to a
BYTE variable that is set to TRUE if a
math coprocessor is present.

DEVINFO_FLOPPY The pvDevinfo parameter points to a

USHORT variable that receives the num-
ber of removeable-disk drives that are

installed.

DEVINFO_MODEL The pvDevinfo parameter points to a
BYTE variable that receives the PC model
type.

DEVINFO_PRINTER The pvDevinfo parameter points to a

USHORT variable that receives the num-
ber of printers that are attached.

DEVINFO_RS232 The pvDevinfo parameter points to a
USHORT variable that receives the num-
ber of RS232 cards that are attached.

DEVINFO_SUBMODEL The pvDevinfo parameter points to a
BYTE variable that receives the PC sub-
model type.

usReserved Specifies a reserved value; must be zero.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_INVALID_PARAMETER

Example This example calls the DosDevConfig function to determine if a math coproces-
sor is present:

BYTE bDevInfo;

DosDevConfig(&bDevInfo, /* address of variable for device info. */
DEVINFO_COPROCESSOR, /* information requested *
0): /* reserved */

if (bDevInfo)
VioWrtTTY ("Math coprocessor present\r\n", 26, 0);

else -

VioWrtTTY ("Math coprocessor not present\r\n", 30, 0):

See Also DosDevIOCtl, VioGetConfig

B DosDeviOCtl

DosDeviOCtI 39

USHORT DosDeviOC
PVOID pvData;
PVOID pvParms;
USHORT usFunction;
USHORT usCategory;
HFILE hDevice;

Parameters

Return Value

Restrictions

ti(pvData, pvParms, usFunction, usCategory, hDevice)

/« pointer to buffer for data area »/
/= pointer to buffer for command arguments »/
/= device function «/
/= device category «f
/« device handle »/

The DosDevIOCt] function passes device-control functions to the device
specified by the hDevice parameter.

The DosDevIOCH] function is a family API function.

pvData Points to a buffer that receives data from the given control function.
Some control functions may also read data from the buffer as part of their pro-
cessing.

pvParms Points to a buffer that contains any data required for the given con-
trol function. Some control functions may copy data to the buffer as part of their
processing.

usFunction Specifies the device-control function. This parameter can be any
one of the device-control function codes described in Chapter 3, “Input-and-
Output Control Functions.”

usCategory Specifies the device categories. This parameter can be any one of
the device categories described in Chapter 3, “Input-and-Output Control Func-
tions.”

hDevice Identifies the device that receives the device-control function. This
handle must have been created previously by using the DosOpen function or it
must be a standard (open) device handle.

In addition to the system error values, the DosDevIOCt] function returns device
driver return-value information. Return values in the range 0xFF00 through
OxFFFF are user-dependent error values. Return values in the range 0xFE0O
through OXFEFF are device-driver-dependent error values.

The error value may be one of the following:

ERROR_BAD_DRIVER_LEVEL
ERROR_INVALID_CATEGORY
ERROR_INVALID_DRIVE
ERROR_INVALID_FUNCTION
ERROR_INVALID_HANDLE
ERROR_PROTECTION_VIOLATION

In real mode, the following restrictions apply to the DosDevIOCH] function:

B Some control functions in categories 1, 5, and 8 can be used with MS-
DOS 3.x, but not with MS-DOS 2.x.

8 Categories 2, 3, 4, 6, 7, 10, and 11 cannot be used.

40 DosDevIlOCtl

Example This example calls the DosDevIOCH function to change the typamatic rate of the
, keyboard. Before you can use the DosDevIOCtI function to access the keyboard
you must open the keyboard device and set the focus.
USHORT usParameters[2];
HKBD hkbd;
usParameters[0] = 500; /* delay in milliseconds */
usParameters[l] = 60; /* characters per second */
KbdOpen (&hkbd) ; /* opens the keyboard */
KbdGetFocus (O, hkbd) ; /* gets the focus */
DosDevIOCt1 (OL, /* data area */
. (PCHAR) usParameters, /* command arguments t/
Ox54, /* function code */
4, /* device category *
hkbd) ; /* handle to device keyboard */
See Also DosOpen, KbdGetFocus, KhdOpen
DosDisConnectNmPipe

USHORT DosDisConnectNmPipe (hp)
HPIPE hp; /« pipe handle «/

Parameters

Return Value

Comments

See Also

DosDupHandle

The DosDisConnectNmPipe function closes a client’s handle of a named pipe.

hp Identifies the named pipe. This handle must have been created previously
by using the DosMakeNmPipe function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_PIPE
ERROR_INVALID_FUNCTION

If the client end of a named pipe is open, the DosDisConnectNmPipe function
forces that end of the named pipe closed. The client will receive an error value
the next time it attempts to access the pipe. Closing the client end of a named
pipe may discard data in the pipe before the client reads the data.

A client that is forced off a pipe by a call to DosDisConnectNmPipe must still
close its end of the pipe by using the DosClose function.

DosClose, DosConnectNmPipe, DosMakeNmPipe

USHORT DosDupHandle (hfO/d, phfNew)

HFILE hfOla;
PHFILE phfNew;

/« handle of existing file «/
/~pointer to variable containing new file handle »/

The DosDupHandle function duplicates a file handle. The new handle has the
same handle-specific information as the existing handle, such as its file-pointer
position and access method. The original handle and the duplicate are inter-
changeable, since most changes to one affect the other. For example, moving the

Parameters

Return Value

Comments

Example

See Also

DosEnterCritSec 41

file pointer for the original handle moves the pointer for the new handle. Closing
the original handle by using the DosClose function does not close the duplicate
handle, however, and closing the duplicate does not close the original. A file is
not closed until its last handle is closed.

The DosDupHandle function is a family API function.

hfOld Identifies the file handle to duplicate. This handle must have been
created previously by using the DosOpen function. The DosDupHandle function
closes the file before duplicating its handle.

phfNew Points to the variable that contains the new file handle. If this param-
eter is OxFFFF, the DosDupHandle function creates a new handle and copies it
to the variable pointed to by the phfNew parameter. Any specified value other
than OxFFFF is used as the handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following;:

ERROR_INVALID_HANDLE
ERROR_INVALID_TARGET_HANDLE
ERROR_TOO_MANY_OPEN_FILES

You can change the inheritance, fail-on-error, and write-through flags for the
duplicate file handle by using the DosSetFHandState function.

This example calls the DosDupHandle function to duplicate the standard output
handle, and then writes “Hello World” to the new handle:

HEILE hfNew;

USHORT, cbBytesWritten;

hfNew = OxFFFF; /* create new handle */
DosDupHandle (1, &nhfNew): /* duplicate standard output */
DosWrite (hfNew, "Hello World\r\n", 13, &cbBytesWritten);

DosChgFilePtr, DosClose, DosExecPgm, DosMakePipe, DosRead, DosSet-
FHandState, DosWrite

DosEnterCritSec

VOID DosEnterCritSec(VOID)

Return Value
Comments

See Also

The DosEnterCritSec function suspends every thread in the current process,
except for the calling thread. Suspended threads will not execute until the
current thread calls the DosExitCritSec function.

This function has no parameters.
This function does not return a value.

The signal handler (if installed) is not suspended when the DosEnterCritSec
function is called. If a signal occurs, the processing done by the signal handler
must not interfere with the processing done by the thread calling the DosEnter-
CritSec function.

DosCreateThread, DosExitCritSec, DosHoldSignal, DosSetSigHandler

5

42 DosErrClass

DosErrClass

USHORT DosErrClass (usErrorCode, pusClass, pfsAction, pusLocus)
USHORT usErrorCode; /= error value for analysis =/
PUSHORT pus(Class; /= pointer to variabie for error classification »/
PUSHORT pfsAction; /= pointer to variable for action «/
PUSHORT pustLocus; /= pointer to variable for error origin »/

The DosErrClass function retrieves a classification of an error value and a
recommended action.

The DosErrClass functlon isa family API function.

Parameters usErrorCode Specifies the error value returned by an MS OS/2 function.

pusClass Points to the variable that receives the classification of the error
value. This parameter can be one of the following values:

Value Meaning

ERRCLASS_ALREADY Action already taken.
ERRCLASS_APPERR An application error has probably occurred.
ERRCLASS_AUTH Authorization has failed.
ERRCLASS_BADFMT Bad format for call data.
ERRCLASS_CANT Cannot perform requested action.
ERRCLASS_HRDFAIL A device-hardware failure has occurred.
ERRCLASS_INTRN An internal error has occurred.
ERRCLASS_LOCKED Resource or data is locked.
ERRCLASS_MEDIA Incorrect media; a CRC error has occurred.
ERRCLASS_NOTFND The item was not located.
ERRCLASS_OUTRES Out of resources.

ERRCLASS_SYSFAIL A system failure has occurred.
ERRCLASS_TEMPSIT This is a temporary situation.
ERRCLASS_TIME A time-out has occurred.
ERRCLASS_UNK The error is unclassified.

DPfsAction Points to the variable that receives the recommended action for the
specific error. This parameter can be one of the following values:

Value Meaning

ERRACT_ABORT Terminate in an orderly manner.
ERRACT_DLYRET Delay and retry.
ERRACT_IGNORE Ignore the error.
ERRACT_INTRET Retry after user intervention.
ERRACT_PANIC Terminate immediately.
ERRACT_RETRY Retry immediately.

ERRACT_USER Bad user input; get new values.

Return Value
Comments

Example

See Also

B DosError

DosError 43

pusLocus Points to the variable that receives the error’s origin in the system.
This parameter can be one of the following values:

Value Meaning

ERRLOC_DISK The error occurred in a random-access device,
such as a disk drive.

ERRLOC_MEM This is a memory-parameter error.

ERRLOC_NET This is a network error.

ERRLOC_SERDEV This is a serial-device error.

ERRLOC_UNK The origin of the error is unknown.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The ERRACT._, ERRCLASS_, and ERRLOC_ constants are defined in the
bseerr.h file.

This example calls the DosQFileMode function to determine the status of the file
a:\abc.exe. If DosQFileMode returns an error, the DosErrClass function is
called to determine the class of the error. The process terminates if the error is
a device-hardware failure—for example, if a drive door is open or a specified
disk drive is nonexistent.

USHORT usAttribute, usError, usClass, fsAction, usLocus;
usError = DosQFileMode ("a:\\abc.ext", &usAttribute, OL);
if (usError) {

DosErrClass (usError, /* error number */
&usClass, /* error classification */
&fsAction, /* recommended action */
&usLocus) ; * error origin */

if (usClass == ERRCLASS_HRDFAIL) /* device-hardware fallure */
DosExit (1, EXIT._PROCESS): /* exits application */

DosError, DosExit, DosQFileModé

USHORT DosError(fEnable)

USHORT fEnable;

/= enable/disable error handling »/

The DosError function enables or disables hard-error and exception processing
for a process. By default, the system displays a message and prompts for user
input when a hard error or exception occurs. A hard error is typically an error
that cannot be resolved by software—for example, when the drive door is
opened while a removeable disk is being read.

The DosError function disables the default processing by forgoing the displayed
message and directing any function that encounters a hard error or exception to
return an appropriate error value. The process must determine the appropriate
action by referring to the error value.

The DosError function is a family API function.

44 DosError

Parameters fEnable Specifies whether to disable or enable processing. This parameter can
' be one of the following values:

Value Meaning
EXCEPTION_DISABLE Disable exception processing.
EXCEPTION_ENABLE Enable exception processing.
HARDERROR_DISABLE Disable hard-error processing.
HARDERROR_ENABLE Enable hard-error processing.

Return Value The return value is zero if the function is successful. Otherwise, it is an error

’ value, which may be the following:
ERROR_INVALID_DATA
Comments By default, the system terminates any process in which an exception occurs.

Although the DosError function can disable the message when an exception
occurs, it cannot disable the termination of the process. To prevent a process
from being terminated, use the DosSetVec function to trap the exception and
carry out process-specific exception processing.

Restrictions In real mode, the following restriction applies to the DosError function:

B If the fEnable parameter is HARDERROR_DISABLE, all subsequent
int 24h requests fail until a call is made to the DosError function with
fEnable set to HARDERROR_ENABLE.

Example This example calls the DosError function to turn off hard-error processing, then
calls the DosErrClass function to process any error that is received:

USHORT usAttribute, usError, usClass, fsAction, usLocus;
DosError (HARDERROR_DISABLE) ; /* turn off hard-error processing */
usError = DosQFileMode ("a:\\abc.ext", &usAttribute, OL):
if (usError) {
DosErrClass (usError, &usClass, &fsAction, &usLocus);
if (usClass == ERRCLASS_HRDFAIL)
DosExit (1, EXIT.PROCESS):;

See Also DosErrClass, DosSetFHandState

DosExecPgm

USHORT DosExecPgm(pchFailName, cbFailName, fExecFlags, pszArgs, pszEnv, prescResults, pszPgmName)
PCHAR pchFailName; /« pointer to buffer for failed filename »/

SHORT cbFailName; /« size of failed filename buffer »f

USHORT fExecFlags; /= synchronous/trace flags »/

PSZ pszArgs; /= pointer to argument strings »/

PSZ pszEnv; /« pointer to environment strings «/

PRESULTCODES prescResults; /= pointer to structure receiving result codes »/

PSZ pszPgmName; /= pointer to program name to execute /

The DosExecPgm function loads and starts a child process.
The DosExecPgm function is a family API function.

Parameters

DosExecPgm

45

pchFailName Points to the buffer that receives the name of the object (such
as a dynamic-link module). The DosExecPgm function copies a name to this
buffer if it cannot load and start the specified program.

cbFailName Specifies the length (in bytes) of the buffer pointed to by the

pchFailName parameter.

fExecFlags Specifies how a given program should be run. This parameter can

be one of the following values:
Value

EXEC_ASYNC

EXEC_ASYNCRESULT

EXEC_SYNC

EXEC_BACKGROUND

EXEC_TRACE

Execute asynchronously to the parent process.
The DosExecPgm function copies the process
identifier of the child process to the code-
Terminate field of the structure pointed to by
the prescResults parameter.

Execute asynchronously to the parent process.
Before returning, the DosExecPgm function
copies the process identifier of the child process
to the codeTerminate field of the structure
pointed to by the prescResults parameter. When
the child process ends, the system saves the ter-
mination and result codes in memory it reserves
for these codes. This memory remains allocated
until the parent process calls the DosCwait func-
tion to retrieve the information.

Execute synchronously to the parent process.
When the child process ends, the DosExecPgm
function copies its termination and result codes
to the structure pointed to by the prescResults
parameter.

Execute asynchronously to the parent process
and detach from the screen group of the parent
process. The detached process executes in the
background. If a process terminates the parent
process—for example, by using the DosKill-
Process function—the child process continues
to run. The child process should not require
screen output (other than through the
VioPopUp function). The child process also
should not call Vie, Kbd, or Mou functions.

Execute under conditions for tracing. The
parent process debugs the child process.

program’s command parameters. The argument strings are copied to the

process’s environment segment. The string can have any format but must end
with two null characters. A typical format is the program name, a null character,
the program parameters (separated by spaces), and two null characters.

If this parameter is zero, no argument strings are passed to the child process.

- pszArgs Points to a set of null-terminated argument strings that represent the

46 DosExecPgm

Return Value

pszEnv Points to a set of null-terminated environment strings that represent
environment variables and their current values. The environment strings are
copied to the process’s environment segment. These strings represent environ-
ment variables and their current values. An environment string has the following
form:

variable=value

Two or more strings can be concatenated to pass multiple environment strings to
the child process. The last environment string must end with two null characters.

If this parameter is zero, the child process inherits the unchanged environment
of the parent process.

prescResults Points to the RESULTCODES structure that receives the termi-
nation and result codes of the child process. The RESULTCODES structure has
the following form:
typedef struct _RESULTCODES {

USHORT codeTerminate;

USHORT codeResult;
} RESULTCODES;

For a full description, see Chapter 4, “Types, Macros, Structures.”

pszPgmName Points to a null-terminated string that specifies the process to
load and start. The string must be a valid MS OS/2 filename and include the
filename extension. The string must specify an executable file.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ACCESS_DENIED
ERROR_AUTODATASEG_EXCEEDS_64k
ERROR_BAD_ENVIRONMENT
ERROR_BAD_FORMAT
ERROR_DRIVE_LOCKED
ERROR_DYNLINK_FROM_INVALID_RING
ERROR_EXE_MARKED_INVALID
ERROR_FILE_NOT_FOUND
ERROR_INTERRUPT
ERROR_INVALID_DATA
ERROR_INVALID_EXE_SIGNATURE
ERROR_INVALID_FUNCTION
ERROR._INVALID MINALLOCSIZE
ERROR_INVALID_MODULETYPE
ERROR_INVALID_ORDINAL
ERROR_INVALID_SEGDPL
ERROR_INVALID_SEGMENT_NUMBER
ERROR_INVALID_STACKSEG
ERROR_INVALID_STARTING_CODESEG
ERROR_ITERATED_DATA_EXCEEDS_64K
ERROR_LOCK_VIOLATION
ERROR_NO_PROC_SLOTS
ERROR_NOT_DOS_DISK
ERROR_NOT_ENOUGH_MEMORY
ERROR_PATH_NOT_FOUND
ERROR_PROC_NOT_FOUND

Comments

Restrictions

Example

See Also

DosExecPgm 47

ERROR_RELOC_CHAIN_XEEDS_SEGLIM
ERROR_SHARING_BUFFER_EXCEEDED
ERROR_SHARING_VIOLATION
ERROR_TOO_MANY_OPEN_FILES

If the filename is a complete pathname (a drive name, path, and filename), the
DosExecPgm function loads the program from the specified location. If only a
filename is given and that filename is not found in the current directory, the
DosExecPgm function searches each directory specified in the parent process’s
PATH environment variable for the given file.

The child process receives a discrete address space—that is, it receives its own
local descriptor table. This means that the parent process and the child process
cannot access each other’s data. To pass data between processes, the parent
process typically opens a pipe by using the DosMakePipe function before start-
ing the child process, then lets the child process access one end of the pipe.

The environment segment of the child process consists of the environment
strings (at offset zero), the program filename, and the argument strings. The
system passes the offset to the argument strings in the bx register and the
environment segment’s selector in the ax register. These values can also be
retrieved by using the DosGetEnv function.

When the child process starts, it inherits all pipe handles and all open file han-
dles from the parent process. (File handles that are opened with the fsOpenMode
parameter of the DosOpen function set to OPEN_FLAGS_NOINHERIT are
not inherited by the child process—for more information, see the DosOpen
function.) The child process can use these handles immediately, without opening
or preparing them in any way. This gives the parent process control over the files
associated with the standard input, output, and error file handles. For example,
the parent process can redirect the standard output from the screen to a file by
opening the file and duplicating its handle as the standard output handle
(0x0001). If the child process then writes to the standard output, the data goes to
the file, not to the screen.

In real mode, the following restrictions apply to the DosExecPgm function:

B The only value allowed for the fExecFlags parameter is EXEC_SYNC.

W The buffer pointed to by the pchFailName parameter is filled with
blanks, even if the function fails.

B The codeResult field of the RESULTCODES structure receives the exit
code from either the DosExit function or the MS-DOS int 21h, 4cH sys-
tem call, whichever is used to terminate the program.

This example calls the DosExecPgm function to execute the program abc.exe.
The program executes as a child process asynchronously with the parent pro-
gram.

CHAR achFailName[128];
RESULTCODES rescResults;

DosExecPgm(achFailName, ' /* object-name buffer */
sizeof (achFailName), /* length of buffer */
EXEC_ASYNCH, /* async flag */
"abc = O\O", /* argument string */
o, /* environment string */
&rescResults, /* address of result */
"abc.exe") /* name of program */

DosCreateThread, DosCwait, DosExit, DosGetEnv, DosKillProcess, DosOpen .

48 DosExit

DosExit

VOID DosEXxit(fTerminate, usExitCode)

USHORT fTerminate;
USHORT usExitCode;

Parameters

Return Value
Comments

Restrictions

Example

See Also

/= terminate current/all threads «/
/= result code for parent process »/

The DosExit function ends a thread or a process and all its threads.
The DosExit function is a family API function.

fTerminate Specifies whether to terminate the current thread or the process
and all its threads. If this parameter is EXIT_THREAD, only the current thread
ends. If it is EXIT_PROCESS, all threads in the process end.

usExitCode Specifies the program’s exit code.
This function does not return a value.

If the fTerminate parameter is EXIT_THREAD, the function ends the current
thread. If the current thread is the last one in the process, the process also ends.
If the fTerminate parameter is EXIT_PROCESS, the DosExit function termi-
nates all threads in the process and creates a final temporary thread. The tem-
porary thread executes any functions given in the list created by the DosExitList
function. When this last thread ends, the system frees any resources used by the
process. The exit code specified by the last call to the DosExit function is sup-
plied to the parent process by using the DosCwait function.

In real mode, the following restriction applies to the DosExit function:

B The function always exits from the current program, since there are no
threads in the real-mode environment.

This example creates a thread, referred to as thread 2. This example shows two
ways of stopping thread 2: by stopping all threads in the process and by stopping
thread 2 specifically. Thread 1, the main process, exits and ends all threads by
calling the DosExit function with the first parameter set to EXIT_PROCESS.
Thread 2, the thread created with the call to DosCreateThread, ends only itself,
by calling DosExit with the first parameter set to EXIT_THREAD.

BYTE bStackArea[2048];
main() {

PVOID pStack2 = bStackArea + 512;
TID tidThread2;
DosCreateThread (Thread2, &tidThread2, pStack2);

6osBxit(EXIT_PROCESS, /* exit process */
o) /* return value */
3 .
VOID FAR Thread2() {
bosExit(EXIT_THREAD, /* exit thread, process continues */
0): . /* return value *

}
DosCwait, DosExecPgm, DosExitList

B DosExitCritSec

DosExitList 49

VOID DosExitCritSec(VOID)

Return Value
See Also

B DosExitList

The DosExitCritSec function restores execution of all threads in the process that
were suspended by the DosEnterCritSec function.

This function has no parameters.
This function does not return a value.

DosCreateThread, DosEnterCritSec

USHORT DosExitList(fFnCode, pfnFunction)

USHORT fFnCode;

/= function code »/

PFNEXITLIST pfnFunction(USHORT); /= pointer to address of function »/

Parameters

Return Value

Comments

The DosExitList function specifies a function that is executed when the current
process ends. This “termination function” may define additional termination
functions. The DosExitList function may be called one or more times: each call
adds or subtracts a function from an internal list that is maintained by the sys-
tem. When the current process terminates, MS OS/2 transfers control to each
function on the list.

fFnCode Specifies whether a function’s address is added to or removed from
the list. This parameter can be one of the following values:

Value , Meaning

EXLST_ADD Add function to termination list.

EXLST_EXIT Termination processing complete; call the next func-
tion on termination list.

EXLST_REMOVE Remove function from termination list.

pfnFunction Points to the termination function to be added to the list. For a
full description, see the following “Comments” section.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_DATA
ERROR_NOT_ENOUGH_MEMORY

Dynamic-link-library modules often use the DosExitList function; this function
allows library modules to free resources or clear flags and semaphores if the
client process terminates without notifying them.

The termination function has one parameter and no return value. The function
should have the following form: '

PENEXITLIST FuncName (usTermCode)
USHORT usTermCode;
{

DosExitList (EXLST_EXIT, O);

50 DosExitList

Example

See Also

The usTermCode parameter of the termination function specifies the reason the
process ended. This parameter is one of the following values:

Value Meaning

TC_EXIT Normal exit
TC_HARDERROR Hard-error abort
TC_KILLPROCESS Unintercepted DosKillProcess
TC_TRAP Trap operation

Before transferrmg control to the termination function, MS OS/2 resets the
stack to its initial value. MS OS/2 then passes control to the function by using a
jmp instruction. The termination function should carry out its tasks and then
call the DosExitList function with the fFnCode parameter set to EXLST_EXIT.
This parameter setting directs the system to call the next function on the termi-
nation list. When all functions on the list have been called, the process ends.

Termination functions should be as short and fail-safe as possible. When the ter-
mination functions are executed, all threads except for the one executing the
DosExitList function have been destroyed. A termination function must call the
DosExitList function to end; otherwise, the process “hangs,” since MS OS/2
cannot terminate it.

A termination function can call most MS OS/2 system functions; however, it
must not call the DosCreateThread or DosExecPgm function.

This example calls the DosExitList function, which then adds the locally defined
function CleanUp to the list of routines to be called when the process termi-
nates. The CleanUp function displays a message that it is cleaning up, then calls
DosExitList, reporting that it has finished and that the next function on the ter-
mination list can be called.

DosExitList (EXLST_ADD, /* adds address to the list */
CleanUp); /* function address

DosExit (EXIT_PROCESS, O);

VOID PASCAL FAR CleanUp (usTermCode)
USHORT usTermCode;

VioWrtTTY("Cleaning up...\r\n", 16, 0);

DosExitList (EXLST_EXIT, /* termination complete */
OL) ;

}
DosCreateThread, DosExecPgm, DosExit

B DosFileLocks

DosFileLocks 51

USHORT DosFileLocks(hf, pfUnlock, pfLock)

HFILE hf;

/« file handle «f

PFILELOCK pfUnLock; /« pointer to range to be unlocked »/

PFILELOCK pflLock;

Parameters

Return Value

Comments

Example

/= pointer to range to be locked «/

The DosFileLocks function unlocks and/or locks a region in an open file. Lock-
ing a region prevents other processes from accessing the locked region.

The DosFileLocks function is a family API function.

hf Identifies the file handle. This handle must have been created previously by
using the DosOpen function.

pfUnLock Points to the FILELOCK structure that specifies the starting posi-
tion in the file and the number of bytes of the file to unlock. This parameter is
ignored if NULL is specified instead of a structure address. The FILELOCK
structure has the following form:
typedef struct _FILELOCK {

LONG 10ffset;

LONG 1lRange;
} FILELOCK;

For a full description, see Chapter 4, “Types, Macros, Structures.”

pfLock Points to the FILELOCK structure that specifies the starting position
in the file and the number of bytes of the file to lock. This parameter is ignored
if NULL is specified instead of a structure address.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INVALID_HANDLE
ERROR_LOCK_VIOLATION

The DosFileLocks function can both lock and unlock regions. The system
unlocks any specified region before locking any other region. Locked regions can
overlap, but if one region would entirely encompass another, the smaller region
should be unlocked first. The DosFileLocks function can lock any part of a file.
Attempting to lock bytes beyond the end of a file does not result in an error.

This example opens the file abc and calls the DosFileLocks function to lock 100
bytes of the file, starting with byte number three. No other file may read or write
to this range in the file until DosFileLocks is called to unlock the range or the
file is closed. The same structure is used to lock the file and to unlock the file.

52 DosFileLocks

FILELOCK flock;
HFILE hf;
USHORT usAction;

/* open the file */

DosOpen ("abc", /* filename to open */
he, /* address of file handle */
&usAction, - /* action taken *
100L, /* size of new file */
FILE_NORMAL, /* file attribute */
FILE_OPEN, /* open if file exists */
OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE /* open mode */
oL): /* reserved *
flock.lO0ffset = 3L; /* offset to begin lock */
flock.1lRange = 1O00L; /* range to lock */
DosFileLocks (hf, /* handle of file to lock */
NULL, /* unlock range (NULL to disable) */
&flock) ; /* address of lock range d

. /* other file processing occurs here */

DosEileLocks(hf, /* handle of file to unlock */
&flock, /* address of unlock range */
NULL) ; /* lock range (NULL to disable) */
See Also DosDupHandle, DosExecPgm, DosOpen

DosFindClose

USHORT DosFindClose (hdir)
HDIR hdir; /= handle of search directory «/

The DosFindClose function closes the specified search-directory handle. The
DosFindFirst and DosFindNext functions use the search-directory handle to
locate files with names that match a given name.

The DosFindClose function is a family API function.

Parameters hdir Identifies the search directory. This handle must have been previously
: opened by using the DosFindFirst function.

Return Value The return value is zero if the function is successful. Otherwise, it is an error
, value, which may be the following:

ERROR_INVALID_HANDLE

Example This example calls the DosFindFirst function to find all files that match “**”.
When DosFindFirst is finished, the handle is closed by calling the DosFindClose
function. '

HDIR hdir = OxFFFF;

USHORT usSearchCount = 1;

FILEFINDBUF findbuf;

DosFindFirst("*.#", &hdir, FILE_NORMAL, &findbuf,
sizeof (findbuf), &usSearchCount, OL);

DosEindClose(hdir); /* closes the search directory */

See Also DosFindFirst, DosFindNext, DosSearchPath

B DosFindFirst

DosFindFirst 53

USHORT DosFindFirst(pszFileSpec, phdir, usAttribute, pfindbuf, usBuflLen, pusSearchCount, ulReserved)

PSZ pszFileSpec; /x pointer to string specifying pathname »/
PHDIR phdir; /= pointer to variable for handle /
USHORT usAttribute; /= search attribute /
PFILEFINDBUF pfindbuf; /« painter to structure receiving result +/
USHORT usBufLen; /x length of result buffer »/
PUSHORT pusSearchCount; /» pointer to variable for file count «
ULONG u/Reserved; /+ must be zero »/

Parameters

The DosFindFirst function searches a directory for the file or files whose
filename and attributes match the specified filename and attributes. The function
copies the name and directory information of the file to the