
M" I C R 0 S 0 F T"

Programmers Reference

Microsoft

OS2
PROGRAMMER'S
REFERENCE
LIBRARY

I

Microsoff
Operating System/2-
Programmers Reference

Version}.}

Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/ordatabase may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
purchaser's personal use, without the written permission of Microsoft Corporation.

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
16011 NE36th Way, Box 97017, Redmond, Washington 98073-9717

© Copyright Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging in Publication Data
Microsoft OS/2 programmer's reference.
Includes index.
1. Microsoft OS/2 (Computer operating system) I. Microsoft Press
QA76.76.063078 1989 005.4'469 89-2817
ISBN 1-55615~222-1(Vol. 3)

Printed and bound in the United States of America.
1 2 3 4 5 6 7 8 9 FGFG 3 2 1 0 9

Distributed to the book trade in the United States by Harper & Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

The character-set tables in this manual are reprinted by permission from the IBM
Operating Systeml2 User's Reference, © 1987 by International Business Machines
Corporation.

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of
Microsoft Corporation.

IBM®, PC/AT®, and Personal System/2® are registered trademarks of International
Business Machines Corporation.

Document No. LN0702C-llO-ROO-0289

iii
~miiitli§!i~fIf~miJ!!ii;;imijj~1i~i~IImn;~mt~iliilf~ili_ii1il'iiSl!§H;jiijJif.ils'fjllP~!if~~.!!iiiHiI-Hffi~ii!~~~mi;iiitiUii

Contents

Chapter 1 Introduction
1.1 Overview.. 3
1.2 How to Use This Manual.. 4
1.3 Naming Conventions .. 7
1.4 Notational Conventions 11

Chapter 2 Functions Directory
2.1 Introduction.. 15
2.2 Fu.nctions 16

Chapter 3 Input-and-Output Control Functions
3.1 Introduction.. 255
3.2 Category and Function Codes.. 255
3.3 Functions... 259

Chapter 4 Types, Macros, Structures
4.1 Introduction ~.. 321
4.2 Types... 322
4.3 Macros... 324
4.4 Structures... 330

Chapter 5 File Formats
5.1 Introduction.. 375
5.2 Keyboard Translation Tables... 375
5.3 Video Modes and Fonts.. 393
5.4 Resource-File Formats ... 396

Appendixes 405

Appendix A Error Values
A.l Introduction.. 409
A.2 Errors.. 409

Appendix B ANSI Escape Sequences
B.l Introduction ~.............................. 417
B.2 Cursor Functions... 417
B.3 Erase Functions .. 418
B.4 Screen Graphics Functions ... 418

iv
P.~;;:~ii§jiiim;fr~!if!jJii..ijjL~f~!J:mfi§illlrni~fr!ir,mH!flr':a;.!~j!,'IIffl!I!5il.fi~i~~iIDfa;~11!~_itij~mJ~I'i:lfi~JiI_iL~m

Appendix C Country and Code-Page Information
C.l Introduction.. 423
C.2 Supported Countries .. 423
C.3 Code Pages ... 424

Index .. 427

v
ii!!mtf~l:!mimiiiirufil:_Ei1ii'~ifr~millifriffi~_iff!~fi~m"lfi.jllii!llDjiilf§iiliilgliiJii.ifilifl!iiiiil~~ifiimi~imi:Et~ilID!friilljl~

Figures

Figure 1.1 Sample Reference Page .. . 4

vi
il_i!i1.~WM_iiBU!ftm~g~~:~iafSi5~iii~ne!m~!!!~'fi!~~_ll~Umiiil~!~miim~~~1!!!iU!i!i!jl!lfijreiilfi

Tables

Table 3.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5

Specific Category and Function Codes...................... 256
Table-Flag Values.. 378
Country and Language Codes.................................. 379
Shift-Key Masks .. 381
Text Modes... 394
Graphics Modes.. 394

Chapter

1

Introduction
1.1 Overview.. 3

1.2 How to Use This Manual... 4
1.2.1 C Format .. 5
1.2.2 MS OS/2 Include Files 5
1.2.3 MS OS/2 Calling Conventions............ 5
1.2.4 Bit Masks in Function Parameters......................... 6
1.2.5 Structures 7

1.3 Naming Conventions... 7
1.3.1 Parameter and Field Names 8

1.3.1.1 Prefixes... 8
1.3.1.2 Base Types 9

1.3.2 Constant Names.. 10

1.4 Notational Conventions... 11

Chapter 1: Introduction 3
~m~i!!UJi:ili~Kfb1!l!!!tiim~lmfBlIilf1lJ.It.~~hRill!l!ilaiISilf:!mli~lim~~~ifi~imF.i~flfi;:S1~i~~m5iif~gjmiilF,Hm!~filiijlliii~Uf~

1.1 Overview
This manual describes the Dos, Kbd, Mou, and Vio system functions of
Microsoft® Operating System/2 (MS® OS/2). These functions, also called the
base system functions, let MS OS/2 programs use the operating system to
carry out tasks such as reading from and writing to disk files; allocating memory;
starting other programs; and using the keyboard, mouse, and video screen.

MS OS/2 system functions are designed to be used in C, Pascal, and other high­
level-language programs, as well as in assembly-language programs. In MS OS/2,
all programs request operating-system services by calling system functions.

This chapter, "Introduction," shows how to use this manual, provides a brief
description of MS OS/2 calling conventions, illustrates function calls in various
languages, and outlines MS OS/2 naming conventions.

Chapter 2, "Functions Directory," is an alphabetical listing of MS OS/2 base
system functions. This chapter defines each function's purpose, gives its syntax,
describes the function parameters, and gives possible return values. Many func­
tions also show simple program examples that illustrate how the function is used
to carry out simple tasks.

Chapter 3, "Input-and-Output Control Functions," lists the input-and-output
control (IOetl) functions used to control input and output devices such as serial
ports, the keyboard, and the mouse.

Chapter 4, "Types, Macros, Structures," describes the types, macros, and struc­
tures used by MS OS/2 base system functions.

Chapter 5, "File Formats," describes the format of files and other large data
structures used by MS OS/2 base system functions. These formats include key­
board translation tables and video I/O fonts.

Appendix A, "Error Values," lists error codes and their corresponding values.

Appendix B, "ANSI Escape Sequences," lists the escape sequences used by
MS OS/2.

Appendix C, "Country and Code-Page Information," lists information contained
in the country and code-page files used by MS OS/2 system functions. This
includes code-page tables, code-page identifiers, and country-specific informa­
tion.

This manual is intended to fully describe MS OS/2 base system functions and
the structures and file formats used with these functions. It does not show how
to use these functions to carry out specific tasks. For more information on this
topic, see the Microsoft Operating System/2 Programmer's Reference, Volume 1.
Also, this manual does not describe MS OS/2 Presentation Manager functions.
Presentation Manager fllnctions let programs use the window-management and
graphics features of MS OS/2. For more information on MS OS/2 Presentation
Manager functions, see the Microsoft Operating System/2 Programmer's Refer­
ence, Volume 2.

4 MS OS/2 Programmer's Reference, Vol. 3
!!!j~fHl~!!~_'!HiIffl!im~i!i~!mIiU!iniUmi~!i!iiia!i!ii§liiiml_J!Ujflii!lij~_if~l!!l~iitlfi!iifJJlmiB!li!~iiP.~BiiJms!

1.2 How to Use This Manual

Figure 1.1

This manual provides detailed information about each MS OS/2 base system
function, macro, and structure. Each description has the following format:

Sample Reference Page

o. DosBeep

[

USHORT DosBeep(usFrequency. usDuration)
8 USHORT usFrequency; I. frequency in hertz .1

USHORT usDuration; I. duration in milliseconds .1

o Parameters

o Return Value

o Example

o See Also

• The DosBeep function generates sound from the speaker.

e The DosBeep function is a family API function.

usFrequency Specifies the frequency of the sound in hertz (cycle's-per­
second). This parameter can be any value from OxOO25 through Ox7FFF.

usDuration Specifies the length of the sound in milliseconds.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_INVALID_FREQUENCY

This example calls the DosBeep function and produces audible tones:

SHORT 1;
for (1 = 0; 1 < 10; i++) {

DosBeep(600, 175);
DosBeep (1200, 175);

WinAlarm

These are the elements shown:

1 The function, macro, or structure name.

2 The function, macro, or structure syntax. The syntax specifies the number of
parameters (or fields) and gives the type of each. It also gives the order (from
left to right) that parameters must be pushed on the stack. Comments to the
right briefly describe the purpose of the parameter.

3 A description of the function, macro, or structure, including its purpose and
details of operation.

4 Any special consideration for the function, including whether a function can be
used in family API programs.

5 A full description of each parameter (or field), including permitted values and
related structures.

6 A description of the function return value, including possible error values.

7 An example showing how the function can be used to accomplish a simple task.

S A list of related fUllctions and structures.

Chapter 1: Introduction 5
ilmi~f!iillfli~!ff;Ii~"i_mimt~.iW,miil!1jij.iidlifliB!lI~ij~~P.P.lfiif§j~iiilmiiJE_!iiifi!i!imi~~fmifiIr:nIl!lilifllf~f_!:r.f

1.2.1 C Format
In this manual, the syntax for MS OS/2 functions is given in C-Ianguage format.
In your C-Ianguage sources, the function name must be spelled exactly as given
in the syntax, and the parameters must be used in the order given in the syntax.
This syntax also applies to Pascal program sources.

The following example shows how to call the DosBeep function in a C-Ianguage
program:

It playa note for 1 second tl

DosBeep(660,
1000);

1.2.2 MS OS/2 Include Files

It 660 cycles-per-second tl
It play for 1000 milliseconds tl

This manual uses many types, structures, and constants that are not part of stan­
dard C language. These items, designed for MS OS/2, are defined in the MS
OS/2 C-Ianguage include files provided with the Microsoft OS/2 Presentation
Manager Softset and the Microsoft OS/2 Presentation Manager Toolkit.

In C-Ianguage programs, the #include directive specifying os2.h, the MS OS/2
C-Ianguage include file, can be placed at the beginning of the source file to
include the definitions for the special types, structures, and constants. Although
there are many MS OS/2 include files, the os2.h file contains the additional
#include directives needed to process the basic MS OS/2 definitions.

To speed up processing of the MS OS/2 C-Ianguage include files, many defini­
tions are processed only if the C-Ianguage program explicitly defines a corre­
sponding include constant. An include constant is simply a constant name, with
the prefix INCL_, that controls a portion of the include files. If a constant is
defined using the #define directive, the corresponding MS OS/2 definitions are
processed. For a list of the include constants and a description of the MS OS/2
system functions they enable, see the Microsoft Operating Systeml2 Programmer's
Reference, Volume 1.

1.2.3 MS OS/2 Calling Conventions
You must know MS OS/2 calling conventions to use MS OS/2 functions in other
high-level languages or in assembly language. MS OS/2 functions use the Pascal
(sometimes called the PLM) calling convention for passing parameters, and they
apply some additional rules to support dynamic-link libraries. The following
rules apply:

• You must push the parameters on the stack. In this manual, each function
description lists the parameters in the order they must be pushed. The left
parameter must be pushed first, the right parameter last. If a parameter
specifies an address, the address must be a far address; that is, it must have
the form selector:offset. The selector must be pushed first, then the offset.

• The function automatically removes the parameters from the stack as it
returns. This means the function must have a fixed number of parameters.

6 MS OS/2 Programmer's Reference, Vol. 3
il!ilimll~liniiiiiii~li!ii!rtil~lt;i!iummlil!!f:~;itrumi!l~i!i!§~;Uiruil!Niiii_I~_i!!ii .. !'ifft1iP.!;i_-i¥._1ai~~!m~!iIl§le!l§i;PF.i~

• You must use an inter segment call instruction to call the function. This is
required for all dynamic-link-library functions.

• The function returns a value, possibly an error value, in either the ax register
or the dx:ax register pair. Only the di and si register values are guaranteed to
be preserved by the function. MS OS/2 base system functions may preserve
other registers as well, but they do not preserve the flags register. The con­
tents of the flags register are undefined; specifically, the direction flag in the
register may be changed. However, if the direction flag was zero before the
function was called, it will be zero after the function returns.

The following example shows how MS OS/2 calling conventions apply to the
DosOpen function in an assembly-language program:

EXTRN DOSOPEN:FAR
name db
hFile dw
usAction dw

push
push
push
push
push
push
push
push
push
push
push
push
push
call

ds
offset name
ds
offset hFile
ds
offset usAction
o
100
o
0010H
0041H
o
o
DOSOPEN

"abc" , 0
o
o

filename to open

address of file handle

address to store action taken

size of new file 0100H

file's attribute
create file if it does not exist
open file for writing, share with all
reserved

The following example shows how to call the same DosOpen function in a C­
language program. In C, the DosOpen function name, parameter types, and con­
stant names are defined in os2.h, the MS OS/2 C-Ianguage include file.

include <os2.h>

HFILE hUle;
USHORT usAction;

DosOpen ("abc",
&hfile,
&usAction,
100L,
FILE_NORMAL,
FILE_CREATE,

/*
/*
/*
/*
/*
/*

OPEN_SHARE_DENYNONE I

filename to open
address of file handle
address to store action
size of new file
file's attribute
create file if it does

/* share with all
OPEN_ACCESS_WRITEONLY, /* open for writing
OL) ; /* reserved

1.2.4 Bit Masks in Function Parameters

*/
*/

taken */
*/
*/

not exist */
*/
*/
*/

Many MS OS/2 system functions accept or return bit masks as part of their
operation. A bit mask is a collection of two or more bit fields within a single
byte, or a short or long value. Bit masks provide a way to pack many Boolean

Chapter 1: Introduction 7
l~imiiliiMR1'\itifiiim\Ih'i'nW\iima~§!!'4!UBiii_S!~~\i.,\j\t§&!iSUUfi.l\iImll!iiigiB!~liil~~i.~i!SIiii1illlUirjjM~ifJ!UI!m"r.~fm

flags (flags whose values represent on/off or true/false values) into a single
parameter or structure field. In assembly-language programming, it is easy to
individually set, clear, or test the bits in a bit mask by using instructions that
modify or examine bits within a byte or a word. In C-Ianguage programming,
however, the programmer does not have direct access to these instructions, so
the bitwise AND and OR operators typically are used to examine and modify
the bit masks.

Since this manual presents the syntax of MS OS/2 system functions in C­
language syntax, it also defines bit masks in a way that is easiest to work with
using the C language: as a set of constant values. When a function parameter
is a bit mask, this manual provides a list of constants (named or numeric)
that represent the correct values used to set, clear, or examine each field
in the bit mask. For example, the tbType field of the VIOMODEINFO struc­
ture in the VioS~tMode function specifies three values: VGMT_OTHER,
VGMT_GRAPHICS, and VGMTJ)ISABLEBURST. These represent the "set"
values of the first three fields in the bit mask. Typically, the description associ­
ated with the value explains the result of the function if the given value is used;
that is, when the corresponding bit is set. Generally, the opposite result is
assumed when the value is not used. For example, using VGMT_GRAPHICS in
the tbType field enables graphics mode; not using it disables graphics mode.

1.2.5 Structures
Many MS OS/2 system functions use structures as input and output parameters.
This manual defines all structures and their fields using C-Ianguage syntax. In
most cases, the structure definition presented is copied directly from the C­
language include files provided with the Microsoft C Optimizing Compiler. Occa­
sionally, an MS OS/2 function may have a structure that has no corresponding
include-file definition. In such cases, this manual gives an incomplete form of
the C-Ianguage structure definition to indicate that the structure is not already
defined in an include file.

1.3 Naming Conventions
In this manual, all parameter, variable, structure, field, and constant names con­
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func­
tion parameters and structure fields. These conventions are also used in most
MS OS/2 sample program sources to make the sources more readable and infor­
mative.

8 MS OS/2 Programmer's Reference, Vol. 3
~!~!I~\iii~;~il-~~IU~i''''w.~mliiHaHlr:~~\~;rmi~~il~a_ws!\!ii§!i!~iiirii'fi§~I!l~.r.!ii1miim!l!il~~ii\!iii

1.3.1 Parameter and Field Names

1.3.1.1 Prefixes

With MS OS/2 naming conventions, all parameter and field names consist of up
to three elements: a prefix, a base type, and a qualifier. A name always consists
of at least a base type or a qualifier. In most cases, the name also includes a
prefix.

The base type, always written in lowercase letters, identifies the data type of the
item. The prefix, also written in lowercase letters, specifies additional informa­
tion about the item, such as whether it is a pointer, an array, or a count of
bytes. The qualifier, a short word or phrase written with the first letter of each
word uppercase, specifies the purpose of the item.

There are several standard prefixes and base types. These are used for the data
types most frequently used with MS OS/2.

The following is a list of standard prefixes used in MS OS/2 naming conventions:

Prefix

p

np

a

Description

Pointer. This prefix identifies afar, or 32-bit, pointer to a
given item. For example, pch is a far pointer to a character.

Near pointer. This prefix identifies a near, or 16-bit, pointer
to a given item. For example, npch is a near pointer to a
character.

Array. This prefix identifies an array of two or more items
of a given type. For example, ach is an array of characters.

Index. This prefix identifies an index into an array. For
example, ich is an index to one character in an array of
characters.

c Count. This prefix identifies a count of items. It is usually
combined with the base type of the items being counted
instead of the base type of the actual parameter. For exam­
ple, cch is a count of characters even though it may be
declared with the type USHORT.

h Handle. This prefix is used for values that uniquely identify
an object but that cannot be used to access the object
directly. For example, hftle is a handle of a file.

off Offset. This prefix is used for values that represent offsets
from the beginning of a buffer or a structure. For example,
off is the offset from the beginning of the given segment to
the specified byte.

id Identifier. This prefix is used for values that identify an
object. For example, idSession is a session identifier.

Chapter 1: Introduction 9
~Ua~_iai\l!iil~\'f!iii!iI_liillill~I!i!!!~!;;~l~_iittrmii!i~"\~~i~!~miiii.~iff.iiEiiiimiHJ1!~ii!1l'jl • .m~~Y!lnp.!

1.3.1.2 Base Types
The following is a list of standard base types used in MS OS/2 naming con­
ventions:

Base type

f

ch

s

Type/Description

BOOL. A 16-bit flag or Boolean value. The qualifier should
describe the condition associated with the flag when it is
TRUE. For example, fSuccess is TRUE if successful,
FALSE if not; fError is TRUE if an error occurs and
FALSE if no error occurs. For objects of type BOOL, a
zero value implies FALSE; a nonzero value implies TRUE.

CHAR. An 8-bit signed value.

SHORT. A 16-bit signed value.

LONG. A 32-bit signed value.

uch UCHAR. An 8-bit unsigned value.

us USHORT. A 16-bit unsigned value.

ul ULONG. A 32-bit unsigned value.

b BYTE. An 8-bit unsigned value. Same as uch.

sz CHAR[]. Array of characters, terminated with a null char­
acter (the last byte is set to zero).

fb UCHAR. Array of flags in a byte. This base type is used
when more than one flag is packed in an 8-bit value. Values
for such an array are typically created by using the logical
OR operator to combine two or more values.

fs USHORT. Array of flags in a short (16-bit unsigned value).
This base type is used when more than one flag is packed in
a 16-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

fl ULONG. Array of flags in a long (32-bit unsigned value).
This base type is used when more than one flag is packed in
a 32-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

sel SEL. A 16-bit value used to hold a segment selector.

10 MS OS/2 Programmer's Reference, Vol. 3
l!iijU~;n;~m~tm~~§11JI;I::mii5~Uim~i5U!!~!i~i~!itm_tigl!;m;;3Ui~iiaitm!!tr.~1if1ifSf;mIi!ltlll§f~lmlili!!itilmi!ii~~~U~~iiii

1.3.2

The base type for a structure is usually derived from the structure name. An
MS OS/2 structure name, always written in uppercase letters, is a word or
phrase that describes the size, purpose, and/or intended content associated
with the type. The base type is typically an abbreviation of the structure name.
The following list gives the base types for the structures described in this
manual:

ctryc kbdtyp ptbuf
etryi Inctl driv
date lis qrese
debinf mdmst resc
trckl mnin shftst
bspblk mnout kbsi
fdate mouev htky
sergrp moupl stdata
findbuf moups mnpos
flock mouqi stsdata
frm mourt rtdly
fsalloe mouse vioci
fsinf trekfmt viofi
dosfsrs mxs vioin
fsts mxsl vioint
ftime rxq viomi
gis dvpb1ck vioos
htype pidi viopal
kbci nmpinf viopb
kbstkbs pi vol
kbxl ptrdfnc

Constant Names
A constant name is a descriptive name for. a numeric value used with an MS
OS/2 function. All constant names are written in uppercase letters and have a
prefix derived from the name of the function, object, or idea associated with the
constant. The prefix is followed by an underscore (_) and the rest of the con­
stant name, which indicates the meaning of the constant and may specify a
value, action, color, or condition. A few common constants do not have pre­
fixes-for example, NULL is used for null pointers of all types, and TRUE and
FALSE are used with the BOOL data type.

Chapter 1: Introduction 11
!i!1i~J1!i§ifs!!ifitiB!.:,~.~l1i!nm;rt$mih1_im~~~JII~n~ii~n~niiiru!im_'a!1l~iU!l~Rli~ti!iiiP:i~H"im.~_mUIi~~~'5~titil!iiiii!l'i

1.4 Notational Conventidns
The following notational conventions are used throughout this manual:

Convention

bold

italics

monospace

Meaning

Boid type is used for keywords-for example, the
names of functions, data types, structures, and
macros. These names are spelled exactly as they
should appear in source programs.

Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

Monospace type is used for example program­
code fragments.

Chapter

2

Functions Directory
2.1 Introduction............................... 15

2.2 Functions.. 16

Chapter 2: Functions Directory 15
m~~l§ii§h'il!"§iI!!ifl~ilIF.!!i!~Im~_iUtUiU~r1G1tm4i1~Ufiii~R!~U1!ilil~Ei.i~ru!ru~llitiiiili8illBE~R.\ti~!!Iii5irr:iilliHR§li!!

2.1 Introduction
This chapter describes MS OSI2 Dos, Kbd, Moo, and Vio functions. These
functions, also called MS OS/2 base system functions, provide the support pro­
grams need to access the basic operating-system features of MS OSI2, such as
multitasking, memory management, and input and output. The Dos, Kbd, Moo,
and Vio functions represent four distinct function groups. As described in the
following list, programs use these function groups to carry out specific tasks:

Function group

Dos

Kbd

Moo

Vio

Usage

Use the disk operating system (Dos) functions in
full-screen and Presentation Manager sessions to
read from and write to disk files, to allocate
memory, to start threads and processes, to com­
municate with other processes, and to access
your computer's devices directly. Most functions
in this group can be used in Presentation
Manager applications.

Use the keyboard (Kbd) functions in full-screen
sessions to read keystrokes from the keyboard,
to manage multiple logical keyboards, and to
change code pages and translation tables. Since
the Presentation Manager session provides its
own keyboard support, Kbd functions are not
needed in Presentation Manager applications.

Use the mouse (Moo) functions in full-screen
sessions to read mouse input from the mouse­
event queue, to set the mouse-pointer shape, and
to manage the mouse for all processes in a ses­
sion. As with the keyboard, the Presentation
Manager session provides its own mouse support,
so Moo functions are not needed in Presentation
Manager applications.

Use the video input-and-output (Vio) functions in
full-screen sessions to write characters and char­
acter attributes to the screen, to create pop-up
windows for messages, to change the video
modes, and to access physical video memory.
Vio functions can also be used in advanced
video-input-and-output (A VIO) applications for
the Presentation Manager session to write charac­
ters and character attributes in a window. Most
Presentation Manager applications, however, use
the graphics programming interface (Gpi) to
write text in a window.

Many functions in this chapter are also family API functions. This means they
can be used in dual-mode programs-that is, programs that run in either MS
OS/2 or MS-DOS®. The family API functions are clearly marked.

In this chapter, complete syntax, purpose, and parameter descriptions are given
for each function. Types, macros, and structures used by a function are given

16 MS OS/2 Programmer's Reference, Vol. 3
BfiH.'!iitiiij~lmiif!!(i!li!~f~r~iii~I!~~!~jgiIm~YJimi:m~lmiii5.jr.~li~m~l:mfIml!itffimiiii~;;mn~~~U1!~~JiJi!

with the function; these are defined more fully in Chapter 4, "Types, Macros,
Structures." The numeric values for error values returned by the functions are
listed in Appendix A, "Error Values."

Many of the function descriptions in this chapter include examples. The exam­
ples show how to use the functions to accomplish simple tasks. In nearly all
cases, the examples are code fragments, not complete programs. A code frag­
ment is intended to show the context in which a function can be used, but often
assumes that variables, structures, and constants used in the example have been
defined and/or initialized. Also, a code fragment may use comments to represent

. a task instead of giving the actual statements.

Although the examples are not complete, you can still use them in your pro­
grams if you take the following steps:

• Include the os2.h file in your program.

• Define the appropriate include constants for the functions, structures, and
constants used in the example.

• Define and initialize all variables.

• Replace comments that represent tasks with appropriate statements.

• Check return values for errors and take appropriate actions.

2.2 Functions
The following is a complete list, in alphabetical order, of the MS OS/2 Dos,
Kbd, Moo, and Vio functions.

DosAliocHuge 17

• DosAliocHuge
USHORT DosAliocHuge(usNumSeg. usPartia/Seg. psel. usMaxNumSeg. fsAlloc)
USHORT usNumSeg; 1* number of segments to allocate *1
USHORT usPartia/Seg; 1* number of bytes in last segment *1
PSEL psel; 1* pOinter to variable for selector allocated *1
USHORT usMaxNumSeg; 1* maximum number of segments to reallocate *1
USHORT (sA/loc; 1* sharable/discardable flags *1

Parameters

The DosAllocHuge function allocates a huge memory block. This block consists
of one or more 65,536-byte memory segments and one additional segment of the
size specified by the usPartialSeg parameter.

The DosAllocHuge function allocates the segments and copies the selector of
the first segment to the variable pointed to by the pseZ parameter. Selectors for
the remaining segments are consecutive and must be computed by using the
selector offset.

The DosAllocHuge function can specify that segments be sharable or discard­
able. If the process that calls DosAllocHuge specifies that the segments can be
shared, then it can call the DosGiveSeg function to make the location or the
allocated segments available to another process. The other process must use the
DosGetSeg function to access the shared memory. For more information about
sharable and discardable segments, see the "Comments" section under the
DosAllocSeg function.

The DosAllocHuge function is a family API function.

usNumSeg Specifies the number of 65,536-byte segments to be allocated.

usPartialSeg Specifies the number of bytes in the last segment. This number
can be any value from 0 through 65,535. If it is zero, no additional segment is
allocated.

psel Points to the variable that receives the selector of the first segment.

usMaxNumSeg Specifies the maximum number of segments that can be
, specified in any subsequent call to the DosReaUocHuge function. If the usMax­
NumSeg parameter is zero, the memory cannot be reallocated to a size greater
than its original size, but it can be reallocated to a smaller size.

fsAlloc Specifies whether the segments can be shared with other processes or
can be discarded. The fsAlloc parameter can be one or more of the following
values:

Value

SEG_DISCARDABLE

SEG_GETTABLE

SEG_NONSHARED

Meaning

Create discardable segments.

Create sharable segments that other processes can
retrieve by using the DosGetSeg function.

Create sharable segments that the owning process
can give to other processes by using the Dos­
GlveSeg function.

Create nonsharable, nondiscardable segments.
This value cannot be combined with any other
value.

If the shared or discardable attributes are not specified, only the process that
creates the segment can access it, and the contents of the segment remain in
memory until the process frees the segment.

18 DosAliocHuge

Return Value

Comments

Restrictions

Example

See Also

DosAllocSeg

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROILNOT_ENOUGILMEMORY

Each segment in the huge memory block has a unique selector. The selectors are
consecutive. The pseZ parameter specifies the value of the first selector; the
remaining selectors can be computed by adding the selector offset to the first
selector one or more times-that is, once for the second selector, twice for the
third, and so on. The selector offset is a multiple of 2, as specified by the shift
count retrieved by using the DosGetHugeShift function. For example, if the shift
count is 2, the selector offset is 4 (1 « 2). If the selector offset is 4 and the
first selector is 6, then the second selector is 10, the third is 14, and so on.

The system may move or swap the memory segments as directed by the mem­
man command in the config.sys file. Moving and swapping have no effect on the
value of the segment selectors, so you can compute the selectors at any time and
save them; they will remain available for use as long as the memory remains allo­
cated.

The DosAllocHugeSegfunction automatically locks the segment. A locked seg­
ment cannot be discarded. You must use the DosUnlockSeg function to unlock
the segment and permit discarding. To prevent the memory manager from dis­
carding an unlocked discardable segment, use the DosLockSeg fUilction.

The DosFreeSeg function frees all segments if you pass it the first selector.

In real mode, the following restrictions apply to the DosAllocHuge function:

• The usPartiaZSeg parameter is rounded up to the next paragraph (16-byte)
value.

• The actual segment address is copied to the pseZ parameter.

This example calls the DosAllocHuge function to allocate two segments with 64K
and one segment with 200 bytes. It then converts the first selector to a huge
pointer that can access all the memory allocated.

CHAR huge *pchBuffer;
SEL sel;
DosAllocHuge(3,

200,
&sel,
S,
SEG_NONSHARED) ;

pchBuffer = MAKEP(sel, 0);

/* number of segments */
/* size of last segment */
/* address of selector */
/* maximum segments for reallocation */
/* sharing flag */
/* converts to a pointer */

DosAllocSeg, DosFreeSeg, DosGetHugeShift, DosGetSeg, DosGiveSeg,
DosLockSeg, DosReallocHuge, DosUnlockSeg

USHORT DosAllocSeg (usSizej psel. fsAlloc)
USHORT usSize; 1* number of bytes requested *1
PSEL pse/; 1* pointer to variable for selector allocated *1
USHORT fsAlloc; 1* sharable/discardable flags *1

The DosAllocSeg function allocates a memory segment and copies the segment
selector to the variable pointed to by the pseZ parameter. The segment can have
from 1 through 65,536 bytes.

Parameters

Return Value

Comments

DosAllocSeg 19

The DosAllocSeg function can specify that the segment be sharable or discard­
able. If the process that calls DosAllocSeg specifies that the segments can be
shared, then it can call the DosGiveSeg function to make the location or the
allocated segments available to another process. The other process must use the
DosGetSeg function to access the shared memory. .

The DosAllocSeg function is a family API function.

usSize Specifies the number of bytes to be allocated. This number can be any
value from 0 through 65,535. If it is zero, the function allocates 65,536 bytes.

psel Points to the variable that receives the segment selector.

fsAlioc Specifies whether the segment can be shared with other processes or
can be discarded. The fsAlloc parameter can be one or more of the following
values:

Value

SEG_DISCARDABLE

SEG_GETTABLE

SEG_NONSHARED

Meaning

Create a discardable segment.

Create a sharable segment that other processes
can retrieve by using the DosGetSeg function.

Create a sharable segment that the owning pro­
cess can give to other processes by using tl1e Dos-
GlveSeg function. .

Create a nonsharable, nondiscardable segment.
This value cannot be combined with any other
value.

If the sharable or discardable attributes are not specified, only the process that
creates the segment can access it, and the contents of the segment remain in
memory until the process frees the segment.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRO~NOTJ:NOUGILMEMORY

The system may move or swap the memory segment as directed by the memman
command in the config.sys file. Moving and swapping have no effect on the seg­
ment selectors.

A sharable segment is available to the process that created it and to other pro­
cesses. If necessary, the system will discard an unlocked discardable segment in
order to satisfy another allocation request. The new allocation request can come
from any process, including the process that allocated the segment being dis­
carded.

Discardable segments are useful for holding information that is accessed for
short periods of time and that can be regenerated quickly if discarded. Examples
are cache buffers for a database package, saved bitmap images for obscured win­
dows, and precomputed display images for a word-processing application.
Although the data in the segment is lost when the segmept is discarded, the seg­
ment can be restored to its original size by using the DosReallocSeg function.

The DosAllocSeg function automatically locks the segment. A locked segment
cannot be discarded. You must use the DosUnlockSeg function to unlock the
segment and permit discarding. To prevent the memory manager from discarding
an unlocked discardable segment, use the DosLockSeg function.

The DosFreeSeg function frees the segment.

20 DosAllocSeg

Restrictions

Example

S,ee Also

In real mode, the following restrictions apply to the DosAlIocSeg function:

• The usSize parameter is rounded up to the next paragraph (l6-byte)
value.

• The actual segment address is copied to the pse/ parameter.

This example calls the DosAllocSeg function to allocate 26,953 bytes. It then
converts the selector to a far pointer that can access the allocated bytes.

peH pchBuffer;
SEL sel;

DosAllocSeg(26953,
&sel,
SEG_NONSHARED);

pchBuffer = MAKEP(sel, 0);

/* bytes to allocate */
/* address of selector */
/* sharing flag */
/* converts to a pointer */

DosAllocHuge, DosFreeSeg, DosGetSeg, DosGiveSeg, DosLockSeg,
DosReallocSeg, DosUnlockSeg

• DosAliocShrSeg
USHORT DosAliocShrSeg(usSize, pszSegName, pse/)
USHORT usSize; /. number of bytes requested ./
PSZ pszSegName; /. pointer to segment name ./

PSEL pse/; /. pointer to variable for selector allocated ./

Parameters

Return Value

The DosAllocShrSeg function allocates a shared memory segment and copies the
segment selector to the variable pointed to by the pse/ parameter. The segment
can have from 1 through 65,536 bytes.

A shared segment can be accessed by any process that knows the segment name.
A process can retrieve a selector for the segment by specifying the name in a
call to the DosGetShrSeg function. (Shared segments allocated by using the
DosAllocSeg function must be explicitly given and retrieved by using the Dos­
GiveSeg and DosGetSeg functions.)

usSize Specifies the number of bytes to be allocated. This number can be any
value from 0 through 65,535. If it is zero, the function allocates 65,536 bytes.

pszSegName Points to a null-terminated string that identifies the shared mem­
ory segment. The string must have the following form:

\sharemmemm\nar.ne

The segment naine, nar.ne, must have the same format as an MS OS/2 filename
and must be unique. For example, the name \sharemmemm\public.dat is accept­
able.

pse/ Points to the variable that receives the segment selector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ALREADY~XISTS
ERROILINV ALIDJIANDLE
ERROR_NOT-ENOUGH~EMORY

Comments

Example

See Also

• DosBeep

DosBufReset 21

A process may allocate up to 30 shared segments.

The system may move or swap the memory segments as directed by the mem­
man command in the config.sys file. Moving and swapping have no effect on the
value of the segment selector.

The DosFreeSeg function frees a shared segment.

This example calls the DosAllocShrSeg function to allocate 26,953 bytes. It gives
the memory the name "\sharemem\abc.mem" so that other processes may use
the memory if they know the name.

SEL sel;

DosAllocShrSeg(26953,
"\\sharemem\\abc.mem",
&sel);

/* bytes to allocate */
/* memory name */
/* address of selector */

DosAllocHuge, DosAllocSeg, DosFreeSeg, DosGetSeg, DosGetShrSeg, Dos­
GiveSeg

USHORT DosBeep(usFrequency. usDuration)
USHORT usFrequency; /. frequency in hertz ./
USHORT usDuration; /. duration in milliseconds ./

Parameters

Return Value

Example

See Also

The DosBeep function generates sound from the speaker.

The DosBeep function is a family API function.

usFrequency Specifies the frequency of the sound in hertz (cycles-per­
second). This parameter can be any value from OXOO25 through Ox7FFF.

usDuration Specifies the length of the sound in milliseconds.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNV ALIDYREQUENCY

This example calls the DosBeep function and produces audible tones:

SHORT 1;
for (1 = 0; 1 < 10; i++) {

DosBeep(600, 175);
DosBeep(1200, 175);

}

WinAlarm

• DosBufReset
USHORT DosBufReset(hf)
HFILE hf; /. file handle .• /

The DosBufReset function flushes the file buffers for the specified file by writing
the current contents of the file buffer to the corresponding device. If the file is a
disk file, the function writes to the disk and updates the directory information
for the file.

22 DosBufReset

Parameters

Return Value

Comments

Example

See Also

• DosCaliback

Although DosButReset flushes and updates information as if the file were
closed, the file remains open.

The DosButReset function is a family API function.

hI Identifies the file whose buffers are flushed. This handle must have been
created previously by using the DosOpen function. If this parameter is set to
OxFFFF, the function flushes buffers for all currently open files.

The return value is zero if the function is successful. Otherwise, it is an error
value,which may be one of the following:

ERRO~CCESS_DENIED
ERRORYILE_NOTYOUND
ERRORJNVALIDJIANDLE

If the process has several open files on removeable disks, the function may have
the effect of requiring the user to repeatedly swap disks.

This example opens the file abc and writes the contents of the abBuf buffer to
the file. It then writes the data to the disk by calling the DosBufReset function
to flush the buffers.

BYTE abBuf [512] ;
HFILE hf;
USHORT usAction, cbBytesWritten, usError;
usError = DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,

FILE_CREATE I FILE_OPEN,
OPEN_ACCESS_WRITEONLY I OPEN_SHARE_DENYWRITE, OL);

if (lusError) {
DosWrite(hf, abBuf, sizeof(abBuf) , &cbBytesWritten);
DosBufReset(hf); 1* flush the buffers *1

DosClose, DosOpen, DosWrite

VOID DosCaliback(pfn)
PFN pfn; I. pointer to ring-3 function .1

Parameters

Return Value

Comments

The DosCallback function allows a process with ring-2 input! output privilege to
call a ring-3 function.

pIn Points to the ring-3 function to be called.

This function does not return a value.

When a process with ring-2 input/output privileges uses the DosCallback func­
tion to call a ring-3 function, the target function executes at ring 3 and returns to
the ring-2 calling process. The ring-3 function need not conform to the ring-2
privilege level. The ring-3 function that is called by the DosCaIlback function
may call a ring-2 segment before it returns.

All registers except FLAGS will be passed intact across this call/return sequence
and may be used to pass parameters or data back and forth between rings 2 and
3. Any addresses passed from ring 2 to ring 3 must be based on ring-3 selectors,
because ring-3 code cannot address ring-2 data selectors.

A ring-2 stack cannot be used to pass data to a ring-3 function.

DosCallNmPipe 23

The following Dos functions are valid when issued from ring 2:

• DosCallNmPipe

DosAlIocHuge
DosAlIocSeg
DosAlIocShrSeg
DosBeep
DosBumeset
DosCalIback
DosChDir
DosChgFilePtr
DosCIiAccess
DosClose
DosCloseSem
DosCreateCSAlias
DosCreateSem
DosCreateThread
DosCwait
DosDelete
DosDevConfig
DosDevIOCtl
DosDupHandle
DosEnterCritSec
DosErrClass
DosError
DosExecPgm
DosExit
DosExitCritSec
DosExitList
DosFileLocks
DosFindClose
DosFindFirst
DosFindNext
DosFlagProcess
DosFreeModule
DosFreeSeg
DosFSRamSemClear
DosFSRamSemRequest
DosGetCp
DosGetDateTime
DosGetEnv

DosGetHugeShift
DosGetInfoSeg
DosGetMachineMode
DosGetModHandle
DosGetModName
DosGetPID
DosGetPPID
DosGetProcAddr
DosGetPrty
DosGetResource
DosGetSeg
DosGetShrSeg
DosGetVersion
DosGiveSeg
DosHoldSignal
DosKillProcess
DosLoadModule
DosLockSeg
DosMakePipe
DosMemAvail
DosMkDir
DosMove
DosMuxSem Wait
DosNewSize
DosOpen
DosOpenSem
DosPhysicalDisk
DosPortAccess
DosQAppType
DosQCurDir
DosQCurDisk
DosQFHandState
DosQFileInfo
DosQFileMode
DosQFSInfo
DosQHandType
DosQVerify
DosRead

Do sReadA sync
DosRealIocHuge
DosRealIocSeg
DosResumeThread
DosRmDir
DosScanEnv
DosSearchPath
DosSelectDisk
DosSemClear
DosSemRequest
DosSemSet
DosSemSetWait
DosSemWait
DosSendSignal
DosSetCp
DosSetDateTime
DosSetFHandState
DosSetFilelnfo
DosSetFileMode
DosSetFSlnfo
DosSetMaxFH
DosSetPrty
DosSetSigHandler
DosSetVec
DosSetVerify
DosSizeSeg
DosSleep
DosSubAlIoc
DosSubFree
DosSubSet
DosSuspendThread
DosTimerAsync
DosTimerStart
DosTimerStop
DosUnlockSeg
DosWrite
Dos WriteAsync

USHORT DosCallNmPipe (pszName, pblnBuf, cblnBuf, pbOutBuf, cbOutBuf, pcbRead, ulTimeOut)
PSZ pszNamej I. pointer to pipe name .1
PBYTE pblnBufj I. pointer to input buffer .1
USHORT cblnBufj I. number of bytes in input buffer .1
PBYTE pbOutBufj I. pointer to output buffer .j

USHORT cbOutBuf; I. number of bytes in output buffer .1
PUSHORT pcbReadj I. pointer to variable for bytes read .1
ULONG ulTimeOutj I. timeout value .1

The DosCallNmPipe function opens a named pipe, writes to and reads from it,
and closes it.

24 DosCallNmPipe

Parameters

Return Value

Comments

See Also

• DosCaseMap

pszName Points to the name of the pipe. The name is in the form \pipe\name
for a local pipe and \\server\pipe\name for a remote pipe.

pblnBuf Points to the buffer containing the data that is written to the pipe.

cblnBuf Specifies the size (in bytes) of the input buffer.

pbOutBuf Points to the output buffer that receives the data read from the
pipe.

cbOutBuf Specifies the size (in bytes) of the output buffer.

pcbRead Points to the variable that receives the number of bytes read from
the pipe.

ulTimeOut Specifies a value (in milliseconds) that is the amount of time MS
OS/2 should wait for the pipe to become available.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILBADJ>IPE
ERROILINTERRUPT
ERRORJNVALIDYUNCTION
ERROILSE~TIMEOUT

The DosCallNmPipe function is equivalent to calling DosOpen, DosTransact­
NmPipe, and DosClose.

DosMakePipe, DosTransactNmPipe

USHORT DosCaseMap(usLength. pctryc. pchString)
USHORT usLength; 1* length of string to casemap *1
PCOUNTRYCODE pctryc; 1* pOinter to structure for country code *1
PCHAR pchString; 1* pOinter to character string *1

Parameters

The DosCaseMap function casemaps the characters in the given string. If neces­
sary, the function replaces characters in the string with the correct case-mapped
characters.

The DosCaseMap function uses the casemap information in the country .sys file
to casemap the string.

The DosCaseMap function is a family API function.

usLength Specifies the length of the given string.

pctryc Points to the COUNTRYCODE structure that contains the country
code and the code-page identifier for the casemap operation. The COUN­
TRYCODE structure has the following form:

typedef struct _COUNTRYCODE {
USHORT country;
USHORT codepage;

} COUNTRYCODE;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Restrictions

See Also

• DosChDir

DosChDir 25

pchString Points to the character string to be casemapped.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-NLSJ3AD_TYPE
ERROR-NLS_NO_COUNTRY_FILE
ERROILNLS_NO_CTRY_CODE
ERROR-NLS_OPEN_F AILED
ERROR-NLS_TABLE_TRUNCATED
ERROILNLS_TYPE_NOTYOUND

In real mode, the following restriction applies to the DosCaseMap function:

• There is no method of identifying the boot drive. The system assumes
that the country.sys file is in the root directory of the current drive.

DosGetCollate, DosGetCtrylnfo, DosSetCp

USHORT DosChDlr(pszDirPath. ulReserved)
PSZ pszDirPath; 1* directory path *1
ULONG ulReserved; 1* must be zero */

Parameters

Return Value

The DosChDir function changes the current directory to the specified directory.
When a process changes the current directory, subsequent calls to file-system
functions, such as the DosOpen function, use the new directory as the default
directory. The default directory is used if no explicit path is given with a
filename.

The DosChDir function is a family API function.

pszDirPath Points to the null-terminated string that specifies the new directory
path. The string must be a valid MS OS/2 directory path and must not be longer
than 125 characters.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ)RIVE~OCKED
ERRORYILR-NOTYOUND
ERROILNOTJ)OSJ)ISK
ERROR-NOT-ENOUG~EMORY
ERROR-PATILNOTYOUND

26 DosChDir

Comments

Example

See Also

• DO$ChgFilePtr

This function applies only to the proc~ss that is changing the directory. It does
not affect the currellt directories of other processes. When the process termi­
nates, the previous default directory becomes the default directory again.

When a process starts, it inherits its current directory from the paren! process.

This example stores the current default drive and path, then calls the DosChDir
function to change the default path t~ the root directory:

psz pszPath;
USHORT cbPath = 0, usDisk;
ULONG ulLogicalDrives;
SELselPath; .

DosQCurDisk(&usDisk, &ulLogicalDrives); /* gets current drive */
DosQCurDir(usDisk, NULL, &cbPath); /* gets size of buffer */
DosAllocSeg(cbPath, &selPath, SEG_NONSHARED); /* allocates memory */
pszPath =MAKEf(selPath, p); /* assigns it to a far pOinter */
DosQCurDir(usDisk, pszPath, &cbPath);/* gets current directory */
DosChDir("\\", OL); /* ch~nges to the root dir~ctory */

DosChDir(pszPath, OL); /* restores the directory */

DosMkDir, DosQCurDir, DosQCurDisk, DosRmDir, DosSele~tI>isk

USHORT DosChgFilePtr(hf, IDistance, fMethod, pulNewPtr)
HFILE hf: I. file handle .1
LONG IDistance:
USHORT fMethod:
PULOtiG pulNewPtr;

Parameters

I. distance to move .1
I. method of moving .1
I. new pointer location ./

The DosChgFilePtr function moves the file pointer to a new position in the file.
The file poiriter is maintained by the system. It points to the next byte to be read
from a file or to the next position in the file to receive a b~e~

The DosChgFilePtr function is a family API function.

hI Identifies the file. This handle must have been created previously by using
the DosOpen function.

lDistance Specifies the number of bytes to move the file pointer in the file. If
this value is positive, the pointer moves forward through the file. If the value is
negative, the pointer mpves backward.

IMethod Spec~fies where the move will start. This parameter must be one of
the following values:

Value Meaning

Start nlOve at the beginning of the file.

FILE_CURRENT Start move at the current location.

FILE-END Start move at the end of the file.

pulNewPtr Points to the long variable that receives the new file-pointer loca­
tion.

Return Value

Comments

Example

See Also

• DosCLIAccess

DosCLIAccess 27

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDYUNCTION
ERRORJNVALIDJIANDLE

The system automatically advances the file pointer for each byte read or written;
the pointer is at the beginning of the file when the file is opened.

This example opens the file abc for read and write access, calls the DosChg­
FilePtr function to set the file pointer at the end of the file, writes the string
"Hello World", and closes the file. The ulFilePointer variable contains the file's
current length when the pointer is at the end of the file.

HFILE hf;
USHORT usAction, cbBytesWritten;
ULONG ulFilePointer;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,

FILE_OPEN I FILE_CRE~TE,
OPEN_ACCESS_WRITEONLY I OPEN_SHARE_DENYWRITE, OL);

DosChgFilePtr(hf, /* file handle */
OL, /* distance to move * /
FILE_END, /* type of movement */
&ulFilePointer); /* address of new position */

DosWrite(hf, "Hello World\r\n", 13, &cbBytesWritten);
DosClose(hf);

DosNewSize, DosOpen, DosRead, DosWrite

USHORT DosCLIAcces$(VOID)

Return Value

Comments

See Also

The DosCLIAeeess function requests an input/output (I/O) privilege for dis­
abling and enabling interrupts. Assembly-language programs that use the eli and
sti instructions in IOPL segments must use the DosCLIAeeess function to
receive permission to use these instructions.

The DosCLIAeeess function is a family API function.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value.

Assembly-language programs that use the in and out instructions to read from
and write to I/O ports must use the DosPortAeeess function to receive permis­
sion to use these instructions. The DosPortAeeess function also grants permis­
sion to use the eli and sti instructions.

DosPortAeeess

28 DosClose

• DosClose
USHORT DosClose(hf)
HFILE hf; I. file handle .1

Parameters .

Return Value

Example

See Also

The DosClose function closes a specified file or pipe. DosClose causes the sys­
tem to write the contents of all the file's internal buffers to the device-for exam­
ple, to the disk-and to update all directory information.

The DosClose function is a family API function.

hi Identifies the file to close. This handle must have been created previously
by using the DosOpen function, the DosDupHandle function, or the Dos­
MakePipe function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILACCESSJ)ENIED
ERRORYILE_NOTYOUND
ERRORJNVALID_HANDLE

This example opens the file abc, reads from the file, and calls the DosClose
function to close it:

BYTE abBuf[S12];
HFILE hf;
USHORT usAction, cbBytesRead;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,

OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);
DosRead(hf, abBuf, sizeof(abBuf) , &cbBytesRead);
DosClose (hf) ; /* closes the file * /

DosButReset, DosDupHandle, DosFindClose, DosMakePipe, DosOpen,
DosRead .

• DosCloseQueue
USHORT DosCloseQueue (hqueue)
HQUEUE hqueue; I. queue handle.1

Parameters

Return Value

The DosCloseQueue function closes a queue. If the process calling DosClose­
Queue owns the queue, the function removes any outstanding elements from the
queue. If the process does not own the queue, the contents of the queue remain
unchanged and the queue remains available to other processes that have it open.

hqueue Identifies the queue to be closed. This queue must have been pre­
viously created or opened by using the DosCreateQueue or DosOpenQueue
function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRO~QUEJNVALID_HANDLE

Comments

Example

See Also

• DosCloseSem

DosCloseSem

After the owner closes the queue, any process that attempts to write to the
queue will receive an error value.

This example creates and opens a queue, then calls the DosCloseQueue function
to close the queue:

HQUEUE hqueue;
DosCreateQueue(&hqueue, QUE_FIFO, "\\queues\\abc.que");

DosCloseQueue(hqueue) ;

DosCreateQueue, DosOpenQueue, DosReadQueue, DosWrlteQueue

USHORT DosCloseSem(hsem)
HSEM hsem; 1* semaphore handle.1

Parameters

Return Value

Comments

Example

See Also

The DosCloseSem function closes a specified system semaphore. If another pro­
cess has the semaphore open, it remains open and can be used by that process,
although the semaphore cannot be used by the process that closes it. This func­
tion deletes the semaphore only when the last process using the semaphore
closes it.

hsem Identifies the semaphore to be closed. This handle must have been
previously created or opened by using the DosCreateSem or DosOpenSem
function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJIANDLE
ERROR_SEMJS_SET

If a process does not close its semaphores before terminating, the system closes
them.

This example opens a previously created system semaphore, then calls the Dos­
CloseSem function to close it:

HSEM hsem;
DosOpenSem(&hsem, "\\sem\\abc");

DosCloseSem(hsem);

DosCreateSem, DosOpenSem

/* semaphore handle */
/* opens the semaphore */

/* closes the semaphore */

I

(, ,JCOnnectNmPIPe

/ onnectNmPipe

/ o RT DosConnectNmPipe (hp)
PIPE hp; I. pipe handle .{

Parameters

Return Value

Comments

See Also

The DosConnectNmPipe function waits for a client to open a named pipe.

hp Identifies the named pipe. This handle must have been created previously
by using DosMakeNmPipe.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILBADYIPE
ERROILBROKENYIPE
ERRORJNTERRUPT
ERROR_INVALIDYUNCTION
ERRORYIPE_NOT_CONNECTED

If the client end of a named pipe is open, the DosConnectNmPipe function
returns immediately. If the client end of a named pipe is not open and the pipe
was created with blocking, the DosConnectNmPipe function waits until a client
opens the pipe. If the client end of a named pipe is not open and the pipe was
created with no blocking, the DosConnectNmPipe function returns an error
value immediately.

In nonblocking mode, multiple DosConnectNmPipe calls can be issued to poll
the state of a named pipe. If a client has not opened the pipe, the first call to the
DosConnectNmPipe function puts the named pipe into a listening state and
returns immediately with an ERRORYIPE_NOT_CONNECTED return value.
Subsequent calls to the DosConnectNmPipe function also return this error
value, until a client opens the named pipe.

If a named pipe was opened and closed by a client but has not been discon­
nected by the controlling process, the DosConnectNmPipe function returns
ERROR.J3ROKENYIPE.

DosDisConnectNmPipe, DosMakeNmPipe

• DosCreateCSAlias
USHORT DosCreateCSAlias(selDataSegment, pse/CodeSegment)
SEL selDataSegment; I. data-segment selector .1
PSEL pse/CodeSegment; I. pointer to code-segment selector ;7

The DosCreateCSAlias function creates an aliased code-segment selector for a
specified memory segment. The aliased code-segment selector can be used to
pass execution control to machine instructions in a data segment.

The DosCreateCSAlias function is a family API function.

Parameters

Return Value

Comments

Restrictions

See Also

DosCreateQueue 31

selDataSegment Specifies the data-segment selector that identifies the mem­
ory segment.

pselCodeSegment Points to the variable that receives the aliased code­
segment selector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR.ACCESSJ)ENIED

Shared memory segments, segments in huge memory blocks, and global data
segments from dynamic-link libraries cannot be used to create an aliased code
segment.

If the process has copied valid machine instructions to the data segment, the
aliased code-segment selector can be combined with a segment offse* to pass
execution control to the machine instructions. The instructions in the aliased
code segment can be called from either privilege level 2 (input! output privilege)
or privilege level 3.

The DosFreeSeg function frees the aliased code-segment selector. Freeing the
data-segment selector does not affect the alia sed code segment, or vice versa.
The segment is not removed from memory until both selectors have been freed.

In real mode, the following restrictions apply to the DosCreateCSAlias function:

• The selector returned is the address of the code.
• Freeing either the aliased selector or the original selector immediately

frees the block of memory.

DosAllocSeg, DosFreeSeg

• DosCreateQueue
USHORT DosCreateQueue(phqueue, fQueueOrder, pszQueueName)
PHQUEUE phqueue; 1* pOinter to variable for queue handle *1
USHORT fQueueOrder, 1* order in which elements are read-written *1
PSZ pszQueueName; 1* pointer to queue name *1

Parameters

The DosCreateQueue function creates and opens a queue. The new queue is
owned by the process that calls the function, but can be opened for use by other
processes.

phqueue Points to the variable that receives the queue handle.

32 DosCreateQueue

Return Value

Comments

See Also

• DosCreateSem

fQueueOrder Specifies the order in which elements are read from and written
to the queue. This parameter can be one of the following values:

Value

QUE_PRIORITY

Meaning

First-in/first-out queue. The first element put in the
queue is the first element to be removed.

Last-in/first-out queue. The last element put in the
queue is the first element to be removed.

Priority queue. The process that places the element in
the queue specifies a priority. Elements with the
highest priority are removed first. .

pszQueueName Points to a null-terminated string. The string identifies the
queue and must have the following form:

\queues\name

The string name, name, must have the same format as an MS OS/2 filename and
must be unique.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILQUE-»UPLICATE
ERROILQUEJNVALID_NAME
ERROILQUEJNVALIDYRIORITY
ERROILQUE_NO~EMORY

The process that creates a queue owns that queue. The owning process can write
elements to and read elements from the queue at any time, since DosCreate­
Queue automatically opens the queue for the owning process. Other processes
may open the queue by using the DosOpenQueue function and write elements to
it by using the DosWriteQueue function, but they cannot read elements from the
queue. Any thread belonging to the process that owns a queue can read from or
write to the queue.

If any process has a queue open when the owner closes it, subsequent requests
to write to the queue return an error value.

DosCloseQueue, DosOpenQueue

USHORT DosCreateSem (fNoExclusive, phssm, pszSemName)
USHORT fNoExclusive; /* exclusive/nonexclusive ownership flag */

PHSYSSEM phssm; /* pointer to variable for semaphore handle */

PSZ pszSemName; /* pOinter to semaphore name */

The DosCreateSem function creates a system semaphore and copies the sema­
phore handle to a variable. A process can use a system semaphore to indicate to
another process a change in the status of a shared resource.

Parameters

Return Value

Comments

Example

See Also

DosCreateSem 33

fNoExclusive Specifies ownership of the semaphore. If this parameter is
CSEMJRIVATE, the process receives exclusive ownership. If this parameter is
CSEMJUBLIC, the process does not receive exclusive ownership.

phssm Points to the variable that receives the semaphore handle.

pSf;SemName Points to a null-terminated string that identifies the semaphore.
The string must have the following form:

\sem\name
The string name, name, must have the same format as an MS OS/2 filename and
must 'be unique.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILALREADY J-XISTS
ERRORJNVALID_NAME
ERRORJNVALIDJ ARAMETER
ERRO~TOO~ANY_SEMAPHORES

The process that creates the system semaphore owns it. Other processes can
open the semaphore by using the DosOpenSem function, then wait for a change
in the status of the semaphore by using the DosSem Wait or DosMuxSem Wait
function. The owning process can change the status of the semaphore by using
the DosSemSet or DosSemClear functions.

The process calling the DosCreateSem function receives exclusive ownership of
a system semaphore, unless otherwise specified. Exclusive ownership prevents
other processes from setting or clearing the semaphore while the owning process
has it open. Other processes may open the semaphore and wait for it to change
status, but they cannot change its status.

This example calls DosCreateSem to create a system semaphore, then calls Dos­
SemSet to set it and DosSemClear to clear it:

HSYSSEM hssm;
DosCreateSem(CSEM_PRIVATE,

&Chssm,
"\\sem\\abc.sem") ;

DosSemSet(hssm);

DosSemClear(hssm) ;

/* handle to semaphore */
/* specifies ownership */
/* address of handle */
/* name of semaphore */
/* sets the semaphore */

/* clears the semaphore */

DosCloseSem, DosOpenSem, DosSemClear, DosSemRequest, DosSemSet,
DosSemSetWait, DosSem Wait

34 DosCreateThread

• DosCreateThread
USHORT DosCreateThread(pfnFunction, ptidThread, pbThrdStack)
PFNTHREAD pfnFunction(VOID); I. pointer to address of function .1
PTID ptidThread; I. pointer to variable for thread identifier .j
PBYTE pbThrdStack; I. pOinter to thread stack .1

Parameters

Return Value

Comments

The DosCreateThread function creates a new thread.

pfnFunction Points to a program-supplied function and represents the starting
address of the thread. For a full description, see the following "Comments" sec­
tion.

ptidThread Points to the variable that receives the thread identifier.

pbThrdStack Points to the address of the new thread's stack.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_NO_PROC_SLOTS
ERROR_NOT~NOUGILMEMORY

When a thread is created, the system makes a far call to the application-supplied
function whose address is specified by the pfnFunction parameter. This function
may include local variables and may call other functi()ns, as long as the thread's
stack has sufficient space. (The stack can be allocated by using the DosAllocSeg
function or by using a global array.) The address specified by the pbThrdStack
parameter should be the address of the last word in the stack, not the first, since
the stack grows down in memory. The thread terminates when the function
returns or caUs the DosE~it function.

The pfnFunction parameter points to a function that is supplied by the program.
This function should have the following form:

VOID FAR FuncName(VOID)
{
}

Since the system passes no arguments, no parameters are defined.

DosCreateThread can create up to 255 threads per process. A new thread inher­
its all files and resources owned by the parent process. Any thread in a process
can open a file, device, pipe, queue, or system semaphore. Other threads may
use the corresponding handles to access the given item.

Note that high-level-languages, run-time libraries, and stack checking may
severely limit or eliminate the ability to call the DosCreateThread function
directly from a high-level-language program. For lllore information, consult the
documentation that came with your language product.

Before calling the DosCreateThread function, either set the es register to zero
or assign to it a selector that will remain valid for the duration of the new
thread. If you fail to set the es register to one of these values, the thread may
unexpectedly terminate as a result of a general protection fault. For more infor-:­
mation, see the Microsoft Operating System12 Programmer's Reference, Volume 1.

Example

See Also

• DosCwait

DosCwait 35

This example sets aside a 512-byte buffer to be used as stack space for any
threads that are created. The first stack is set at the end of the array. The thread
is created by calling the DosCreateThread function. The thread terminates by
calling the DosExit function.

VOID FAR Thread1();
BYTE abStackArea[512];

}

PVOID pStack1 = abStackArea + 512;
TID tidThread1;

DosCreateThread(Thread1,
&tidThread1,
pStack1);

DosExit(EXIT_PROCESS, 0);

VOID FAR Thread1() {

DosExit(EXIT_THREAD, 0);
}

/* 512-byte stack */

/* name of thread function */
/* address of thread ID */
/* thread's stack */

DosExit, DosResumeThread, DosSuspendThread

USHORT DOSCW8it(fScope, fWait, prescResults, ppidProcess, pidWaitProcess)
USHORT fScope; 1* flag scope .1
USHORT fWait; 1* wait/no-wait flag *1
PRESULTCODES prescResults; 1* pointer to structure receiving result codes./
PPID ppidProcess; I. pointer to variable for process identifier ./
PID pidWaitProcess; I. process identifier of process to wait for ./

Parameters

The DosCwait function waits for a child process to terminate, then retrieves the
result codes from that process. The function copies the process identifier of the
terminated process to the variable pointed to by the ppidProcess parameter and
copies a termination code to the structure pointed to by the prescResults param­
eter.

fScope Specifies how many processes to wait for. If the value of this parame­
ter is DCW AJ>ROCESS, the thread waits until the specified process ends. If it
is DeW AJlROCESSTREE, the thread waits until the specified process and all
its child processes end.

jWait Specifies whether or not to wait for child processes. If this parameter is
DCWW _WAIT, the thread waits while child processes are running. If it is
DCWW _NOWAIT, the thread does not wait. This option is used to retrieve the
result codes of a child process that has already ended.

36 DosCwait

Return Value

Comments

Example

See Also

prescResults Points to the RESULTCODES structure that receives the
termination code and result code for the child process's termination. The
RESULTCODES structure has the following form:

typedef struct _RESULTCODES {
USHORT codeTerminate;
USHORT codeResult;

} RESULTCODES;

For a full description, see Chapter 4, "Types, Macros, Structures."

ppidProcess Points to the variable that receives the process identifier of the
ending process.

pidWaitProcess Specifies which process to wait for. If this parameter is a pro­
cess identifier, the thread waits for that process to end. If it is zero, the thread
waits until any child process ends.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_CHILD_NOT_COMPLETE
ERRORJNVALIDJROCID
ERRO~ WAIT -.NO_CHILDREN

The DosCwait function may wait for a child process and any processes started
by the child process to end before it returns, but it will not report the status of
the processes that were started by the child process.

When the function is waiting for more then one child process, the ppidProcess
variable is used to determine which child process has terminated.

Do not call the DosCwait function before starting a child process. When this
happens, the process calling DosCwait waits indefinitely, since a child process
cannot start asynchronously.

This example runs the cmd.exe program as a child process, then calls the
DosCwait function to wait until cmd.exe terminates:

CHAR achFailName[128];
RESULTCODES rescResults;
PID pidProcess;
DosExecPgm(achFailName, sizeof(achFailName),

EXEC,;..ASYNC, "cmd It, 0, &rescResults, "cmd.exe");

DosCwait(DCWA_PROCESS, 1* execution flag *1
DCWW_WAIT, 1* wait option *1
&rescResults, 1* address for result codes *1
&pidProcess, 1* address of process identifier *1
rescResults.codeTerminate); 1* process to wait for *1

DosExecPgm, DosExit, DosKilIProcess

DosDevConfig 37

• Dos Delete
USHORT Dos Delete (pszFileName, ulReserved)
PSZ pszFileName; 1* pointer to string specifying path name *1
ULONG ulReserved; 1* must be zero *1

Parameters

Return Value

Comments

Example

See Also

• DosDevConfig

The DosDelete function deletes a file.

The DosDelete function is a family API function.

pszFileN arne Points to a null-terminated string that specifies the file to be
deleted. This string must be a valid MS OS/2 filename and must not contain
wildcard characters.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESSJ)ENIED
ERROILFILE_NOTYOUND
ERROR-NOTJ)OSJ)ISK
ERROILPATILNOTYOUND
ERROR-SHARINGJ3UFFER-EXCEEDED
ERROR-SHARING_VIOLATION

Read-only files cannot be deleted by using the DosDelete function. The DosSet­
FileMode function can be. used to change a file's read-only attributes, making it
possible to delete that file.

The DosDelete function cannot delete directories; use the DosRmDir function to
delete directories.

This example calls the DosDelete function to delete the file abc, and displays a
message reporting success or failure:

USHORT usError;
usError = DosDelete("abc", OL);
if (usError)

VioWrtTTY("abc nof deleted\r\n", 21, 0);
else

VioWrtTTY("abc deleted\r\n", 17, 0);

DosRmDir, DosSetFileMode

USHO~T DosDevConfig(pvDev/nfo, us/tem, usReserved)
PVOID pvDev/nfo; 1* pOinter to variable for device information *1
USHORT us/tem; 1* item number *1
USHORT usReserved; 1* must be zero *1

The DosDevConfig function retrieves information about attached devices.

The DosDevConfig function is a family API function.

38 DosDevConfig

Parameters

Return Value

Example

See Also

pvDev/n[o Points to the variable that receives device information. The type of
information received depends on the value of the us/tern parameter.

us/tern Specifies what device information to retrieve. This parameter can be
one of the following values:

Value

DEVINFO_ADAPTER

DEVINFO_COPROCESSOR

DEVINFO_FLOPPY

DEVINFO_MODEL

DEVINFO_PRINTER

DEVINFO_RS232

DEVINFO_SUBMODEL

Meaning

The pvDevlnfo parameter points to a
BYTE variable that is set to FALSE if the
primary display adapter is a mono­
chrome/printer display adapter type, or to
TRUE for other display adapters.

The pvDevlnfo parameter points to a
BYTE variable that is set to TRUE if a
math coprocessor is present.

The pvDevlnfo parameter points to a
USHORT variable that receives the num­
ber of removeable-disk drives that are
installed.

The pvDevlnfo parameter points to a
BYTE variable that receives the PC model
type.

The pvDevlnfo parameter points to a
USHORT variable that receives the num­
ber of printers that are attached.

The pvDevlnfo parameter points to a
USHORT variable that receives the num­
ber of RS232 cards that are attached.

The pvDevlnfo parameter points to a
BYTE variable that receives the PC sub­
model type.

usReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDYARAMETER

This example calls the DosDevConfig function to determine if a math coproces­
sor is present:

BYTE bDevInfo;
DosDevConfig(&bDevInfo,

DEVINFO_COPROCESSOR,
0) ;

if (bDevInfo)

/* address of variable for device info. */
/* info~mation requested */
/* reserved */

VioWrtTTY("Math coprocessor present\r\n", 26, 0);
else

VioWrtTTY("Math coprocessor not present\r\n", 30, 0);

DosDevIOCtl, VioGetConfig

DosDevlOCtl 39

• DosDevlOCtl
USHORT DosDevlOCtl(pvData, pvParms, usFunction, usCategory, hDevice)
PVOID pvData; 1* pOinter to buffer for data area *1
PVOID pvParms; 1* pointer to buffer for command arguments *1
USHORT usFunction; 1* device function *1
USHORT usCategory; 1* device category *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

Restrictions

The DosDevIOCtl function passes device-control functions to the device
specified by the hDevice parameter.

The DosDevIOCtl function is a family API function.

pvData Points to a buffer that receives data from the given control function.
Some control functions may also read data from the buffer as part of their pro­
cessing.

pv Parms Points to a buffer that contains any data required for the given con­
trol function. Some control functions may copy data to the buffer as part of their
processing.

usFunction Specifies the device-control function. This parameter can be any
one of the device-control function codes described in Chapter 3, "Input-and­
Output Control Functions."

usCategory Specifies the device categories. This parameter can be anyone of
the device categories described in Chapter 3, "Input-and-Output Control Func­
tions."

hDevice Identifies the device that receives the device-control function. This
handle must have been created previously by using the DosOpen function or it
must be a standard (open) device handle.

In addition to the system error values, the DosDevIOCtl function returns device
driver return-value information. Return values in the range OxFFOO through
OxFFFF are user-dependent error values. Return values in the range OxFEOO
through OxFEFF are device-driver-dependent error values.

The error value may be one of the following:

ERRORJ3ADJ)RlVERJ-EVEL
ERRORJNVALID_CATEGORY
ERRORJNVALID_DRlVE
ERRORJNVALID_FUNCTION
ERROR_INV ALID_HANDLE
ERRORYROTECTION_ VIOLATION

In real mode, the following restrictions apply to the DosDevIOCtl function:

• Some control functions in categories 1, 5, and 8 can be used with MS­
DOS 3.x, but not with MS-DOS 2.x.

• Categories 2, 3, 4, 6, 7, 10, and 11 cannot be used.

40 DosDevlOCtl

Example

See Also

This example calls the DosDevIOCtl function to change the typamatic rate of the
keyboard. Before you can use the DosDevIOCtl function to access the keyboard
you must open the keyboard device and set the focus.

USHORT usParameters[2];
HKBD hkbd;
usParameters[O] = 500;
usParameters[l] = 60;
KbdOpen(&hkbd);
KbdGetFocus(O, hkbd);
DosDevIOCtl(OL,

,(PCHAR) usParameters,
Oxs4,
4,
hkbd) ;

DosOpen, KbdGetFocus, KbdOpen

/* delay in milliseconds */
/* characters per second */
/* opens the keyboard */
/* gets the focus */
/* data area */
/* command arguments */
/* function code */
/* device category */
/* handle to device keyboard */

• DosDisConnectNmPipe
USHORT DosDisConnectNmPipe(hp)
HPIPE hp; 1* pipe handle .1

Parameters

Return Value

Comments

See Also

• DosDupHandle

The DosDisConnectNmPipe function closes a client's handle of a named pipe.

hp Identifies the named pipe. This handle must have been created previously
by using the DosMakeNmPipe function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO}LBADYIPE
ERRORJNVALIDYUNCTION

If the client end of a named pipe is open, the DosDisConnectNmPipe function
forces that end of the named pipe closed. The client will receive an error value
the next time it attempts to access the pipe. Closing the client end of a named
pipe may discard data in the pipe before the client reads the data.

A client that is forced off a pipe by a call to DosDisConnectNmPipe must still
close its end of the pipe by using the DosClose function.

DosClose, DosConnectNmPipe, DosMakeNmPipe

USHORT DosDupHandle(hfOld. phfNew)
HFILE hfOld; 1* handle of existing file *1
PHFILE phfNew; I. pointer to variable containing new file handle .1

The DosDupHandle function duplicates a file handle. The new handle has the
same handle-specific information as the existing handle, such as its file-pointer
position and access method. The original handle and the duplicate are inter­
changeable, since most changes to one affect the other. For example, moving the

Parameters

Return Value

Comments

Example

See Also

DosEnterCritSec 41

file pointer for the original handle moves the pointer for the new handle. Closing
the original handle by using the DosClose function does not close the duplicate
handle, however, and closing the duplicate does not close the original. A file is
not closed until its last handle is closed.

The DosDupHandle function is a family API function.

hfOld Identifies the file handle to duplicate. This handle must have been
created previously by using the DosOpen function. The DosDupHandle function
closes the file before duplicating its handle.

phfNew Points to the variable that contains the new file handle. If this param­
eter is OxFFFF, the DosDupHandle function creates a new handle and copies it
to the variable pointed to by the phfNew parameter. Any specified value other
than OxFFFF is used as the handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJIANDLE
ERROR-INVALID_TARGET_HANDLE
ERROR-TOO-MANY_OPENYILES

You can change the inheritance, fail-on-error, and write-through flags for the
duplicate file handle by using the DosSetFHandState function.

This example calls the DosDupHandle function to duplicate the standard output
handle, and then writes "Hello World" to the new handle:

HFILE hfNew;
USHORT, cbBytesWritten;
hfNew = OxFFFF; /* create new handle */
DosDupHandle(l, &hfNew); /* duplicate standard output */
DosWrite(hfNew, "Hello World\r\n", 13, &cbBytesWritten);

DosChgFilePtr, DosClose, DosExecPgm, DosMakePipe, DosRead, DosSet­
FHandState, DosWrite

• DosEnterCritSec
VOID DosEnterCritSec(VOID)

Return Value

Comments

See Also

The DosEnterCritSec function suspends every thread in the current process,
except for the calling thread. Suspended threads will not execute until the
current thread calls the DosExitCritSec function.

This function has no parameters.

This function does not return a value.

The signal handler (if installed) is not suspended when the DosEnterCritSec
function is called. If a signal occurs, the processing done by the signal handler
must not interfere with the processing done by the thread calling the DosEnter­
CritSec function.

DosCreateThread, DosExitCritSec, DosHoldSignal, DosSetSigHandler

42 DosErrClass

• [)osErrClass
USHORT DosErrClass (usErrorCode, pus Class, pfsAction, pusLocus)
USHORT usErrorCode; 1* error value for analysis .1
PUSHORT pus Class; 1* pointer to variable for error classification *1
PUSHORT pfsAction; 1* pOinter to variable for action *1
PUSHORT pusLocus; 1* pOinter to variable for error origin *1

Parameters

The DosErrClass function retrieves a classification of an error value and a
recommended action.

The DosErrClass function is a family API function.

usErrorCode Specifies the error value returned by an MS OS/2 function.

pusClass Points to the variable that receives the classification of the error
value. This parameter can be one of the following values:

Value

ERRCLASS_ALREADY

ERRCLASS_APPERR

ERRCLASS_AUTH

ERRCLASS_BADFMT

ERRCLASS_CANT

ERRCLASS_HRDFAIL

ERRCLASS_INTRN

ERRCLASS_LOCKED

ERRCLASS_MEDIA

ERRCLASS_NOTFND

ERRCLASS_OUTRES

ERRCLASS_SYSF AIL

ERR CLASS_ TEMP SIT

Meaning

Action already taken.

An application error has probably occurred.

Authorization has failed.

Bad format for call data.

Cannot perform requested action.

A device-hardware failure has occurred.

An internal error has occurred.

Resource or data is locked.

Incorrect media; a CRC error has occurred.

The item was not located.

Out of resources.

A system failure has occurred.

This is a temporary situation.

ERRCLASS_TIME A time-out has occurred.

ERRCLASS_UNK The error is unclassified.

pfsAction Points to the variable that receives the recommended action for the
specific error. This parameter can be one of the following values:

Value

ERRACT_ABORT

ERRACT_DL YRET

ERRACT_IGNORE

ERRACT_INTRET

ERRACT_PANIC

ERR ACT_RETRY

ERRACT_USER

Meaning

Terminate in an orderly manner.

Delay and retry.

Ignore the error.

Retry after user intervention.

Terminate immediately.

Retry immediately.

Bad user input; get new values.

Return Value

Comments

Example

See Also

• DosError

DosError 43

pusLocus PoiIits to the variable that receives the error's origin in the system.
This parameter can be one of the following values:

Value

ERRLOC_MEM

ERRLOC_NET

ERRLOC_SERDEV

ERRLOC_UNK

Meaning

The error occurred in a random-access device,
such as a disk drive.

This is a memory-parameter error.

This is a network error.

This is a serial-deviCe error.

The origin of the error is unknown.

The return value is zero if the function is successful. Otherwise, it is an error
value.

the ERRACT_, ERRCLASS_, and ERRLOC_ constants are defined in the
bseerr.h file.

This example calls the DosQFileMode function to determine the status of the file
a:\abc.exe. If DosQFileMode returns an error, the DosErrClass function is
called to determine the class of the error. The process terminates if the error is
a device-hardware failure-for example, if a drive door is open or a specified
disk drive is nonexistent.

USHORT usAttribute, usError, usClass, fsAction, usLocus;
usErr6r = DosQFileMode("a:\\abc.ext", &u~Attribute, OL);
if (usError) {

DosErrClass(usError, /* error number */
&usClass, /* error classification */
&fsAction, /* recommended action */
&usLocus) ; /* error origin */

if (usClass == ERRCLASS_HRDFAIL) /* device-hardware failure */
DosExit(l, EXIT_PROCESS): /* exits application */

DosError, DosExit, DosQFileMode

USHORT Dos Error(tEnable)
USHORT tEnable; /* enable/disable error handling */

The DosError function enables or disables hard.:.error and exception processing
for a process. By default, the system displays a message and prompts for user
input when a hard error or exception occurs. A hard error is typically an error
that cannot be resolved by softWare-for example, when the drive door is
opened while a removeable disk is being read.

The DosError ftinction disables the default processing by forgoing the displayed
message and directing any function that encounters a hard error or exception to
return an appropriate error value. The process must determine the appropriate
action by referring to the error value.

The DosError function is a family API function.

44 DosError

Parameters

Return Value

Comments

Restrictions

Example

See Also

DosExecPgm

{Enable Specifies whether to disable or enable processing. This parameter can
be one of the following values:

Value

EXCEPTION_DISABLE

EXCEPTION_ENABLE

HARDERROR-DISABLE

HARDERROR_EN ABLE

Meaning

Disable exception processing.

Enable exception processing.

Disable hard-error processing.

Enable hard-error processing.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJ)ATA

By default, the system terminates any process in which an exception occurs.
Although the DosError function can disable the message when an exception
occurs, it cannot disable the termination of the process. To prevent a process
from being terminated, use the DosSetVec function to trap the exception and
carry out process-specific exception processing.

In real mode, the following restriction applies to the DosError function:

• If the fEnable parameter is HARDERRORJ)ISABLE, all subsequent
Int 24h requests fail until a call is made to the DosError function with
fEnable set to HARDERROR-ENABLE.

This example calls the DosError function to turn off hard-error processing, then
calls the DosErrClass function to process any error that is received:

USHORT usAttribute, usError, usClass, fsAction, usLocus;
DosError(HARDERROR_DISABLE); /* turn off hard-error processing */
usError = DosQFileMode("a:\\abc.ext", &usAttribute, OL);
if (usError) {

DosErrClass(usError, &usClass, &fsAction, &usLocus);
if (usClass == ERRCLASS_HRDFAIL)

DosExit(l, EXIT_PROCESS);

DosErrClass, DosSetFHandState

USHORT DosExecPgm(pchFaiIName, cbFailName, fExecFlags, pszArgs, pszEnv, prescResults, pszPgmName)
PCHAR pchFailName; 1* pointer to buffer for failed filename *1
SHORT cbFailName; 1* size of failed filename buffer *1
USHORT fExecFlags; I. synchronous/trace flags .1
PSZ pszArgs; 1* pointer to argument strings *1
PSZ pszEnv; 1* pOinter to environment strings .1
PRESUL TCODES prescResults; 1* pointer to structure receiving result codes .1
PSZ pszPgmName; 1* pointer to program name to execute .1

The DosExecPgm function loads and starts a child process.

The DosExecPgm function is a family API function.

Parameters

DosExecPgm 45

pchFailName Points to the buffer that receives the name of the object (such
as a dynamic-link module). The DosExecPgm function copies a name to this
buffer if it cannot load and start the specified program.

cbFailName Specifies the length (in bytes) of the buffer pointed to by the
pchFailName parameter.

/ExecFlags Specifies how a given program should be run. This parameter can
be one of the following values:

Value

EXEC_ASYNCRESULT

EXEC_BACKGROUND

Meaning

Execute asynchronously to the parent process.
The DosExecPgm function copies the process
identifier of the child process to the code­
Terminate field of the structure pointed to by
the prescResults parameter.

Execute asynchronously to the parent process.
Before returning, the DosExecPgm function
copies the process identifier of the child process
to the codeTermlnate field of the structure
pointed to by the prescResults parameter. When
the child process ends, the system saves the ter­
mination and result codes in memory it reserves
for these codes. This memory remains allocated
until the parent process calls the Do sCwalt func­
tion to retrieve the information.

Execute synchronously to the parent process.
When the child process ends, the DosExecPgm
function copies its termination and result codes
to the structure pointed to by the prescResults
parameter.

Execute asynchronously to the parent process
and detach from the screen group of the parent
process. The detached process executes in the
background. If a process terminates the parent
process-for example, by using the DosKlll­
Process function-the child process continues
to run. The child process should not require
screen output (other than through the
VloPopUp function). The child process also
should not call Vio, Kbd, or Mou functions.

Execute under conditions for tracing. The
parent process debugs the child process.

pszArgs Points to a set of null-terminated argument strings that represent the
program's command parameters. The argument strings are copied to the
process's environment segment. The string can have any format but must end
with two null characters. A typical format is the program name, a null character,
the program parameters (separated by spaces), and two null characters.

If this parameter is zero, no argument strings are passed to the child process.

46 DosExecPgm

Return Value

pszEnv Points to a set of null-terminated environment strings that represent
environment variables and their current values. The environment strings are
copied to the process's environment segment. These strings represent environ­
ment variables and their current values. An environment string has the following
form:

variable=value

Two or more strings can be concatenated to pass multiple environment strings to
the child process. The last environment string must end with two null characters.

If this parameter is zero, the child process inherits the unchanged environment
of the parent process.

prescResults Points to the RESULTCODES structure that receives the termi­
nation and result codes of the child process. The RESULTCODES structure has
the following form:

typedef struct _RESULTCODES {
USHORT codeTerminate;
USHORT codeResult;

} RESULTCODES;

For a full description, see Chapter 4, "Types, Macros, Structures."

psZPgmName Points to a null-terminated string that specifies the process to
load and start. The string must be a valid MS OS/2 filename and include the
filename extension. The string must specify an executable file.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESSJ)ENIED
ERROR-AUTODATASEG-EXCEEDS_~k
ERRO~AD-ENVIRONMENT
ERRO~ADYORMAT
ERROILDRlVE~OCKED
ERROILDYNLINICFROMJNVALIDJING
ERROR-EXE~ARKEDJNVALID
ERRORYILE_NOTYOUND
ERRORJNTERRUPT
ERRORJNVALIDJ)ATA
ERRORJNV ALID-EXE_SIGNATURE
ERRORJNVALIDYUNCTION
ERRORJNVALID~INALLOCSIZE
ERRORJNVALID~ODULETYPE
ERRORJNVALID_ORDINAL
ERRORJNV ALID_SEGDPL
ERRORJNVALID_SEGMENT_NUMBER
ERRORJNVALID_STACKSEG
ERRORJNV ALID_STARTING_CODESEG
ERRORJTERATEDJ)ATA-EXCEEDS_~K
ERRO~OCIC VIOLATION
ERROR_NOYROC_SLOTS
ERROlLNOTJ)OS_DISK
ERROR_NOT-ENOUGILMEMORY
ERRORYATHLNOTYOUND
ERRORYROC_NOTYOUND

Comments

Restrictions

Example

See Also

DosExecPgm 47

ERROR-RELOC_CHAIN-"EEDS_SEGLIM
ERRO~SHARING.-BUFFERY.XCEEDED
ERRO~SHARING_ VIOLATION
ERRO~TOO~ANY_OPENYILES

If the filename is a complete pathname (a drive name, path, and filename), the
DosExecPgm function loads the program from the specified location. If only a
filename is given and that filename is not found in the current directory, the
DosExecPgm function searches each directory specified in the parent process's
PATH environment variable for the given file.

The child process receives a discrete address space-that is, it receives its own
local descriptor table. This means that the parent process and the child process
cannot access each other's data. To pass data between processes, the parent
process typically opens a pipe by using the DosMakePipe function before start­
ing the child process, then lets the child process access one end of the pipe.

The environment segment of the child process consists of the environment
strings (at offset zero), the program filename, and the argument strings. The
system passes the offset to the argument strings in the bx register and the
environment segment's selector in the ax register. These values can also be
retrieved by using the DosGetEnv function.

When the child process starts, it inherits all pipe handles and all open file han­
dles from the parent process. (File handles that are opened with the fsOpenMode
parameter of the DosOpen function set to OPENYLAGS_NOINHERIT are
not inherited by the child process-for more information, see the DosOpen
function.) The child process can use these handles immediately, without opening
or preparing them in any way. This gives the parent process control over the files
associated with the standard input, output, and error file handles. For example,
the parent process can redirect the standard output from the screen to a file by
opening the file and duplicating its handle as the standard output handle
(OXOOO1). If the child process then writes to the standard output, the data goes to
the file, not to the screen.

In real mode, the following restrictions apply to the DosExecPgm function:

• The only value allowed for the fExecFlags parameter is EXEC_SYNC.
• The buffer pointed to by the pchFailName parameter is filled with

blanks, even if the function fails.
• The codeResult field of the RESULTCODES structure receives the exit

code from either the DosExit function or the MS-DOS int 21h, 4cH sys­
tem call, whichever is used to terminate the program.

This example calls the DosExecPgm function to execute the program abc. exe.
The program executes as a child process asynchronously with the parent pro­
gram.

CHAR achFailName[128];
RESULTCODES rescResults;
DosExecpgm(achFailName,

sizeof(achFailName) ,
EXEC_ASYNCH,
"abc = 0\0",
0,
&rescResults,
"abc.exe");

/* object-name buffer */
/* length of buffer */
/* async flag */
/* argument string */
/* environment string */
/* address of result */
/* name of program */

DosCreateThread, DosCwait, DosExit, DosGetEnv, DosKiIIProcess-, DosOpen

48 DosExit

• DosExit
VOID OosExit(fTerminate, usExitCode)
USHORT fTerminate; 1* terminate current/all threads *1
USHORT usExitCode; 1* result code for parent process *1

Parameters

Return Value

Comments

Restrictions

Example

See Also

The DosExit function ends a thread or a process and all its threads.

The DosExit function is a family API function.

fI'erminate Specifies whether to terminate the current thread or the process
and all its threads. If this parameter is EXIT_THREAD, only the current thread
ends. If it is EXITYROCESS, all threads in the process end.

usExitCode Specifies the program's exit code.

This function does not return a value.

If the !Terminate parameter is EXIT_THREAD, the function ends the current
thread. If the current thread is the last one in the process, the process also ends.
If the fTerminate parameter is EXITYROCESS, the DosExit function termi­
nates all threads in the process and creates a final temporary thread. The tem­
porary thread executes any functions given in the list created by the DosExitList
function. When this last thread ends, the system frees any resources used by the
process. The exit code specified by the last call to the DosExit function is sup­
plied to the parent process by using the DosCwait function.

In real mode, the following restriction applies to the DosExit function:

• The function always exits from the current program, since there are no
threads in the real-mode environment.

This example creates a thread, referred to as thread 2. This example shows two
ways of stopping thread 2: by stopping all threads in the process and by stopping
thread 2 specifically. Thread 1, the main process, exits and ends all threads by
calling the DosExit function with the first parameter set to EXITYROCESS.
Thread 2, the thread created with the call to DosCreateThread, ends only itself,
by calling DosExit with the first parameter set· to EXIT_THREAD.

BYTE bStackArea[2048];

main () {

PYOID pStack2 = bStackArea + 512;
TID tidThread2;
DosCreateThread(Thread2, &tidThread2, pStack2);

}

DosExit(EXIT_PROCESS,
0) ;

VO.ID FAR Thread2 () {

/* exit process
/* return value

*/
*/

DosExit(EXIT_THREAD,
0) ;

/* exit thread, process continues */
/* return value */

}

DosCwait, DosExecPgm, DosExitList

DosExitList 49

• DosExitCritSec
VOID DosExitCritSec(VOID)

Return Value

See Also

• DosExitList

The DosExitCritSec function restores execution of all threads in the process that
were suspended by the DosEnterCritSec function.

This function has no parameters.

This function does not return a value.

DosCreateThread, DosEnterCritSec

USHORT DosExitList (fFnCode. pfnFunction)
USHORT fFnCode; I. function code .1
PFNEXITLIST pfnFunction(USHORT); I. pOinter to address of function .1

Parameters

Return Value

Comments

The DosExitList function specifies a function that is executed when the current
process ends. This "termination function" may define additional termination
functions. The DosExitList function may be called one or more times: each call
adds or subtracts a function from an internal list that is maintained by the sys­
tem. When the current process terminates, MS OS/2 transfers control to each
function on the list.

fFnCode Specifies whether a function's address is added to or removed from
the list. This parameter can be one of the following values:

Value

EXLST_ADD

EXLST_EXIT

Meaning

Add function to termination list.

Termination processing complete; call the next func­
tion on termination list.

EXLST_REMOVE Remove function from termination list.

pfnFunction Points to the termination function to be added to the list. For a
full description, see the following "Comments" section.

The return value is zero if the function is successful. Otherwise, it is an error
value, which ~ay be one of the following:

ERRORJNVALIDJ)ATA
ERROR_NOT-ENOUG~EMORY

Dynamic-link-library modules often use the DosExitList function; this function
allows library modules to free resources or clear flags and semaphores if the
client process terminates without notifying them.

The termination function has one parameter and no return value. The function
should have the following form:

PFNEXITLIST FuncName(usTermCode)
USHORT usTarmCode;
{

DoaExitList(EXLST_EXIT, 0);
}

50 DosExitList

Example

See Also

The us Term Code parameter of the termination function specifies the reason the
process ended. This parameter is one of the following values:

Value

TC_EXIT

TC_HARDERROR

TC_KILLPROCESS

TC_TRAP

Meaning

Normal exit

Hard-error abort

Unintercepted DosKlIIProcess

Trap operation

Before transferring control to the termination function, MS OS/2 resets the
stack to its initial value. MS OS/2 then passes control to the function by using a
jmp instruction. The termination function should carry out its tasks and then
call the DosExitList function with the fFnCode parameter set to EXLST~XIT.
This parameter setting directs the system to call the next function on the termi­
nation list. When all functions on the list have been called, the process ends.

Termination functions should be as short and fail-safe as possible. When the ter­
mination functions are executed, all threads except for the one executing the
DosExitList function have been destroyed. A termination function must call the
DosExitList function to end; otherwise, the process "hangs," since MS OS/2
cannot terminate it.

A termination function can call most MS OS/2 system functions; however, it
must not call the DosCreateThread or DosExecPgm function.

This example calls the DosExitList function, which then adds the locally defined
function CleanUp to the list of routines to be called when the process termi­
nates. The CleanUp function displays a message that it is cleaning up, then calls
DosExitList, reporting that it has finished and that the next function on the ter­
mination list can be called.

}

DosExitList(EXLST_ADD,
CleanUp);

DosExit(EXIT_PROCESS, 0);

VOID PASCAL FAR CleanUp(usTermCode)
USHORT usTermCode;
{

/* adds address to the list */
/* function address */

VioWrtTTY("Cleaning up ... \r\n", 16, 0);

}

DosExitList(EXLST_EXIT,
OL) ;

DosCreateThread, DosExecPgm, DosExit

/* termination complete */

DosFileLocks 51

• DosFileLocks
USHORT DosFileLocks(hf, pfUnlock, pfLock)
HFILE hf; 1* file handle *1
PFILELOCK pfUnLock; 1* pointer to range to be unlocked *1
PFILELOCK pfLock; 1* pointer to range to be locked *1

Parameters

Return Value

Comments

Example

The DosFileLocks function unlocks and/or locks a region in an open file. Lock­
ing a region prevents other processes from accessing the locked region.

The DosFileLocks function is a family API function.

hf Identifies the file handle. This handle must have been created previously by
using the DosOpen function.

pfUnLock Points to the FILELOCK structure that specifies the starting posi­
tion in the file and the number of bytes of the file to unlock. This parameter is
ignored if NULL is specified instead of a structure address. The FILELOCK
structure has the following form:

typedef struct _FILELOCK {
LONG lOffset;
LONG lRange;

} FILELOCK;

For a full description, see Chapter 4, "Types, Macros, Structures."

pfLock Points to the FILELOCK structure that specifies the starting position
in the file and the number of bytes of the file to lock. This parameter is ignored
if NULL is specified instead of a structure address.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJIANDLE
ERROILLOCIC VIOLATION

The DosFileLocks function can both lock and unlock regions. The system
unlocks any specified region before locking any other region. Locked regions can
overlap, but if one region would entirely encompass another, the smaller region
should be unlocked first. The DosFileLocks function can lock any part of a file.
Attempting to lock bytes beyond the end of a file does not result in an error.

This example opens the file abc and calls the DosFileLocks function to lock 100
bytes of the file, starting with byte number three. No other file may read or write
to this range in the file until DosFileLocks is called to unlock the range Qr tile
file is closed. The same structure is used to lock the file and to unlock the file.

52 DosFileLocks

See Also

• DosFindClose

FILELOCK flock;
HFILE hf;
USHORT usAction;

1* open the file *1
DosOpen ("abc",

&hf,
&usAction,
100L,
FILE_NORMAL,
FILE_OPEN,
OPEN-ACCESS_READWRITE
OL);

flock.10ff~et = 3L;
flock.1Range = 100L;
DosFileLocks(hf,

NULL,
&flock) ;

1* filename to open *1
1* address of file handle *1
1* action taken *1
1* size of new file *1
1* file attribute *1
1* open if file exists *1

OPEN_SHARE_DENYNONE 1* open mode *1
1* reserved *1

1* offset to begin lock *1
1* range to lock *1
1* handle of file to lock *1
1* unlock range 1NULL to disable) *1
1* address of lock range *1

. 1* other file processing occurs here *1

DosF ileLocks (hf,
&flock,
NULL);

1* handle of file to unlock
1* address of unlock range
1* lock range (NULL to disable)

DosDupHandle, DosExecPgm, DosOpen

*1
*1
*1

USHORT DosFindClose (hdir)
HDIR hdir; 1* handle of search directory *1

Parameters

Return Value

Example

See Also

The DosFindClose function closes the specified search-directory handle. The
DosFindFirst and DosFindNext functions use the search-directory handle to
locate files with names that match a given name.

The DosFindClose function is a family API function.

hdir Identifies the search directory. This handle must have been previously
opened by using the DosFindFirst function.

The return value is zero if the function b successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJfANDLE

This example calls the DosFindFirst function to find all files that match "*. *" .
When DosFindFirst is finished, the handle is closed by calling the DosFindClose
function.

HDIR hdir = OxFFFF;
USHORT usSearchCount = 1;
FILEFINDBUF findbuf;
DosFindFirst("*.*", &hdir, FILE_NORMAL, &findbuf,

sizeof(findbuf), &usSearchCount, OL);

DosFindClose(hdir) ; 1* closes the search directory *1

DosFindFirst, DosFindNext, DosSearchPath

DosFlndFirst 53

• DosFindFirst
USHORT DosFindFirst(pszFileSpec, phdir, usAttribute, pfindbuf, usBufLen, pusSearchCount, ulReserved)
PSZ pszFileSpec; 1* pOinter to string specifying pathname *1
PHDIR phdir; 1* pOinter to variable for handle *1
USHORT usAttribute; 1* search attribute *1
PFILEFINDBUF pfindbuf; 1* pointer to structure receiving result *1
USHORT usBufLen; 1* length of result buffer *1
PUSHORT pusSearchCount; 1* pointer to variable for file count *1
ULONG ulReserved; 1* must be zero *1

Parameters

The DosFindFirst function searches a directory for the file or files whose
filename and attributes match the specified filename and attributes. The function
copies the name and directory information of the file to the FILEFINDBUF
structure. The information returned is as accurate as the most recent call to the
DosClose or DosButReset function.

The DosFindFirst function is a family API function.

pszFileSpec Points to a null-terminated string. This string must be a valid MS
OS/2 pathname and may contain wildcard characters.

phdir Points to the variable that contains the handle of the directory to be
searched.

If the phdir parameter is HDIR_SYSTEM, the system default search-directory
handle is used. If it is HDIR_CREATE, the search directory that is used by the
process is created, and the function copies the handle of this search directory to
the variable pointed to by the phDir parameter. If the handle was created by a
previous call to the DosFindFirst function, it can be used in subsequent calls to
the DosFindNext function.

usAttribute Specifies the file attribute(s) of the file to be located. This param­
eter can be a combination of the following values:

Value

FILE_NORMAL

FILE_READONL Y

FILE_HIDDEN

FILE_SYSTEM

FILE_DIRECTORY

FILE_ARCHIVED

Meaning

Search for normal files.

Search for read-only files.

Search for hidden files.

Search for system files.

Search for subdirectories.

Search for archived files.

pfindbuf Points to the FILEFINDBUF structure that receives the result of the
search. The FILEFINDBUF structure has the following form:

typedef struct _FILEFINDBUF {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;
UCHAR cchName;
CHAR achName[13];

} FILEFINDBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

54 DosFindFirst

Return Value

. Comments

Restrictions

usB ufL en Specifies the length (in bytes) of the structure pointed to by the
pfindbuf parameter.

pus Sea rch Count Points to a variable that specifies the number of matching
filenames to locate. The DosFindFirst function copies the number of filenames
found to this parameter before returning.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-BUFFER-OVERFLOW
ERRORJ)RIVEJ.OCKED
ERRORYILE_NOTYOUND
ERRORJNVALIDJIANDLE
ERRORJNVALIDYARAMETER
ERROR-NO~OREYILES
ERROR_NO~ORE_SEARCILHANDLES
ERROR_NOT~OS_DISK
ERRORY ATH_NOTYOUND

The pusSearchCount parameter specifies the number of file~ to search for. The
number of files whose information is copied is the number of files requested, the
number of files whose information fits in the structure, or the number of files
that exist, whichever is smallest. To receive information for more than one file,
the pfindbuf parameter must point to a buffer that consists of consecutive FILE­
FINDBUF structures-for example, an array of structures. If the DosFindFirst
function fails to find a match or cannot copy all of the information about the file
to the structure, it returns an error.

The DosFindFirst function obtains a handle that can be used in subsequent calls
to the DosFindNext function to specify the directory to search and the filename
to search for. Each call to the DosFindFirst function automatically closes the
handle of the search directory, if it has not been closed previously by using the
DosFindClose function.

Currently, the maximum filename length is 13 bytes: up to 8 characters in the
filename; 4 characters, including the period (.), in the filename extension; and
the terminating null character. The maximum filename length will change in
future versions of MS OS/2.

A search for read-only files, hidden files, system files, archived files, or sub­
directories includes all normal files in addition to those matching the specified
attribute.

In real mode, the following restriction applies to the DosFindFirst function:

• The phdir parameter must be set to HDIR-SYSTEM.

Example

See Also

• DosFindNext

DosFindNext 55

This example uses the DosFindFirst function to find the file abc. ext . An error
message is displayed if the file is not found.

HDIR hdir = HDIR_CREATE;
USHORT usSearchCount = 1;
FILEFINDBUF findbuf;
if (DosFindFirst("abc.ext". /* filename to search for */

&hdir. /* address of directory handle */
FILE_NORMAL. /* type of files to search for */
&findbuf. /* address of buffer */
sizeof(findbuf). /* size of buffer */
&usSearchCount. /* number of matching entries */
OL)) /* reserved * /

VioWrtTTY("File not found\r\n". 16. 0);
else {

DosButReset, DosClose, DosFindClose, DosFindNext, DosQFileMode,
DosQFSInfo

USHORT OosFindNext(hdir, pfindbuf, cbfindbuf, pusSearchCount)
HOIR hdir; I. handle of search directory *1
PFILEFINOBUF pfindbuf; I. pointer to structure receiving search result *1
USHORT cbfindbuf; I. length of result buffer *1
PUSHORT pusSearchCount; I. pOinter to variable for file count .1

Parameters

The DosFindNext function searches for the next file or group of files matching
the specified filename and attributes. The function copies the name and directory
information of the file to the FILEFINDBUF structure pointed to by the pfindbuj
parameter. The information returned is as accurate as the most recent call to the
DosClose or DosButReset function.

The DosFindNext function is a family API function.

hdir Identifies the search directory and the filename(s) to search for. This
handle must have been created previously by using the DosFindFirst function.

pfindbuf Points to the FILEFINDBUF structure that receives the result of the
search. The FILEFINDBUF structure has the following form:

typedef struct _FILEFINDBUF {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbF 11e;
ULONG cbFileAlloc;
USHORT attrFile;
UCHAR cchName;
CHAR achName[13];

} FILEFINDBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

56 DosFindNext

Return Value

Comments

Restrictions

Example

See Also

cbfindbuf Specifies the length (in bytes) of the structure pointed to by the
pfindbuf parameter.

pus Search Count Poin.ts to an unsigned variable that specifies the number of
matching filenames to locate. The DosFindNext function copies the number of
filenames found to the unsigned variable before returning.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-BUFFER-OVERFLOW
ERRORJNVALIDJIANDLE
ERROR-INV ALIDJ> ARAMETER
ERROR-NO-MOREYILES
ERROR_NOT~OS~ISK

The pusSearchCount parameter specifies the number of files to search for. The
number of files whose information is copied is the number of files requested, the
number of files whose information fits in the structure, or the number of files
that exist, whichever is smallest. If you want to receive information for more
than one file, the pfindbuf parameter must point to a buffer that consists of con­
secutive FILEFINDBUF structures-for example, an array of structures. If the
DosFindNext function fails to find a match or cannot copy all of the information
about the file to the structure, it returns an error.

Currently, the maximum filename length is 13 bytes: up to 8 characters in the
filename; 4 characters, including the period (.), in the filename extension; and
the terminating null character. The maximum filename length will change in
future versions of MS OS/2.

In real mode, the following restriction applies to the DosFindNext function:

• The hdir parameter must be set to HDIR-SYSTEM.

This example calls the DosFindFirst function to find all files matching "*. *", and
then uses the DosFindNext function to display them one at a time:

HDIR hdir = OxFFFF;
USHORT usSearchCount = 1;
FILEFINDBUF findbuf;
DosFindFirst("*.*", &hdir, OxOO, &findbuf, sizeof(findbuf),

&usSearchCount, OL);
do {

VioWrtTTY(findbuf.achName, findbuf.cchName, 0);
VioWrtTTY("\r\n", 2, 0); /* cursor to next line */

}
while (DosFindNext(hdir,

&findbuf,
sizeof(findbuf) ,
&usSearchCount)
== 0);

/* handle of directory */
/* address of buffer */
/* length of buffer */
/* number of files to find */
/* while no error */

DosButReset, DosClose, DosFindClose, DosFindFirst, DosQFileMode,
DosQFSlnfo

DosFlagProcess 57

• DosFlagProcess
USHORT OosFlagProcess(pidProcess, (Scope, usFlagNum, usFlagArg)
PIO pidProcess; I. identifier of process receiving flag .1
USHORT (Scope; I. flag process or all processes .1
USHORT usFlagNum; I. flag number .1
USHORT usFlagArg; I. flag argument .1

Parameters

Return Value

Comments

Example

See Also

The DosFlagProcess function generates a signal that is sent to the calling pro­
cess. By default, the process ignores these signals, but it can respond to them by
using the DosSetSigHandler function to define a signal handler. A process can
also refuse event-flag signals, causing the DosFlagProcess function to return an
error value.

pidProcess Specifies the process identifier of the process that receives the
flag.

fScope Specifies how many external event flags to set. If this parameter is
FLGP _SUBTREE, the function sets the external event flags for the specified
process and all of its child processes. If it is FLGP YID, the function sets the
event flag for only the specified process.

usFlagNum Specifies the number of the flag to set. This parameter can be
one of the following values:

Value Meaning

PFLG_A Process flag A.

PFLG_B Process flag B.

PFLG_C Process flag C.

usFlagArg Specifies an argument to pass to the specified process.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDYLAG_NUMBER
ERRORJNVALIDYUNCTION
ERRORJNV ALIDYROCID
ERRO~SIGNAL.-REFUSED

The current signal cannot be accepted if a signal of the same type is already
waiting to be processed.

This example executes a process called abc.exe. It then calls the DosFlag­
Process function to send the PFLG~ (process flag A) signal to that process.

CHAR achFailName[128];
RESULTCODES rescResults;
DosExecPgm(achFailName, sizeof(achFailName~,

EXEC_ASYNCH, "abc ", 0, &rescResults, 'abc.exe");

DosFlagProcess(rescResults.codeTerminate, /* process identifier */
FLGP_SUBTREE, /* notifies the entire subtree */
PFLG_A, /* sends process flag A */
1) ; /* value to send process * /

DosExecPgm, DosSetSigHandler

58 DosFreeModule

• DosFreeModule
USHORT DosFreeModule (hmod)
HMODULE hmod; 1* module handle *1

Parameters

Return Value

Comments

See·Also

• DosFreeSeg

The DosFreeModule function frees the specified dynamic-link module. After a
process has freed a module, any function addresses the process Play have
retrieved· from the module are no longer valid; a protection fault occurs if these
functions are called.

hmod Identifies the dynamic-link module to free. This handle must have been
created previously by using the DosLoadModule function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNTERRUPT
ERRORJNVALID_HANDLE

If other processes have loaded the module and not yet freed it, the module
remains in system memory for those processes. The system does not remove a
module from memory until it is no longer used by any process.

DosLoadModule

USHORT DosFreeSeg(se/)
SEL sel; 1* segment selector *1

Parameters

Return Value

Restrictions

The DosFreeSeg function frees the specified memory segment. The function
accepts selectors for memory segments, shared-memory segments, huge-memory
segments, and aliased code segments. DosFreeSeg frees a shared-memoryseg­
ment after the segment is freed by the last process accessing it. DosFreeSeg
frees the code-segment selector for ~liased code segments, but the corresponding
data-segment selector remains valid until it is freed.

The DosFreeSeg function is a family API function.

sel Specifies the selector of the segment to free.

The return value is zero if the function is successful. Otherwise, it is ~n error
value, which may be the following: .

ERROR.ACCESS-DENIED

In real mode, the following restriction applies to the DosFreeSeg function:

• A code-segment selector (created by using the DosCreateCSAlias func­
tion) and the corresponding data-segment selector are the same. Freeing
one frees both.

Example

See Also

DosFSRamSemRequest 59

This example allocates three segments of memory, then calls the DosFreeSeg
function to free the memory:

SEL sel;
DosAllocHuge(3, 200, &sel, 5, SEG_NONSHARED);

DosE'reeSeg(sel) ;

DosAlIocHuge, DosAlIocSeg, DosAlIocShrSeg, DosCreateCSAlias

• DosFSRamSemClear
USHORT DosFSRamSemClear(pdosfsrs)
PDOSFSRSEM pdosfsrs; I. pointer to structure for semaphore .1

Parameters

Return Value

Comments

See Also

The DosFSRamSemClear function releases ownership of a fast-safe RAM sema­
phore.

pdosfsrs Points to the DOSFSRSEM structure containing the information
about a fast-safe RAM semaphore. The DOSFSRSEM structure has the follow­
ing form:

typedef struct _DOSE'SRSEM {
USHORT cb;
PID pid;
TID tid;
USHORT cUsage;
USHORT client;
ULONG sem;

} DOSE'SRSEM;

For more information, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful. Otherwise, it is an error
value.

The DosFSRamSemClear function is used to release a semaphore obtained by
using the DosFSRamSemRequest function. If the semaphore-use count for the
current thread is zero, the semaphore is cleared and any threads that are
blocked on the semaphore are restarted.

DosFSRamSemClear cannot be issued against a fast-safe RAM semaphore that
is owned by another thread.

DosFSRamSemRequest

• DosFSRamSemRequest
USHORT' DosFSRamSemRequest (pdosfsrs, ITimeout)
PDOSFSRSEM pdosfsrs; I. pOinter to structure for semaphore .1
LONG ITimeout; I. time to wait for semaphore .1

The DosFSRamSemRequest function obtains a fast-safe RAM semaphore and
records'the current owner for potential cleanup by a DosExitList function.

60 DosFSRamSemRequest

Parameters

Return Value

Comments

pdosfsrs Points to the DOSFSRSEM structure containing information about a
fast-safe RAM semaphore. The DOSFSRSEM structure has the following form:

typedef struct _DOSFSRSEM {
USHORT cb;
PID pid;
TID tid;
USHORT cUsage;
USHORT client;
ULONG sem;

} DOSFSRSEM;

For more information, see Chapter 4, "Types, Macros, Structures."

lTimeout Specifies how long to wait for the semaphore to become available. If
the value is greater then zero, this parameter specifies the number of millisec­
onds to wait before returning. If the value is SEMJMMEDIATE~ETURN,
the function returns immediately. If the value is SEMJNDEFINITE_ WAIT, the
function waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value.

When the DosFSRamSemRequest function is called, it checks the status of the
semaphore. If the semaphore is not owned, DosFSRamSemRequest sets it to
owned, increases the use count, and returns immediately to the calling function.
If the semaphore is owned, DosFSRamSemRequest may block the thread until
the semaphore is not owned, then try again. The lTimeout parameter is used to
place an upper limit on the amount of time to block before returning.

When the thread is finished with the protected resource, it calls the DosFSRam­
SemClear function. DosFSRamSemClear decreases the use count and, if the
count is zero, sets the semaphore to unowned and starts any threads that were
blocked while waiting for the semaphore.

Recursive requests for fast-safe RAM semaphores are supported by a use count
of the number of times the owning process has issued a DosFSRamSemRequest
function without issuing a corresponding DosFSRamSemClear function.

The DosFSRamSemRequest function does not return unless the specified sema­
phore remains clear long enough for the calling thread to obtain it.

Fast-safe RAM semaphores operate by using the DOSFSRSEM structure. Before
the initial call to the DosFSRamSemRequest function, this structure must be ini­
tialized to zero and the cb field must be set to 14. The client field is provided to
allow the calling. process a means of identifying which resource is currently
owned by the owner of the semaphore. This field is initialized to zero when a
fast-safe RAM semaphore is first acquired. The owning process may use this
field to describe the resource currently being accessed. The values in the client
field may be useful to an DosExitList function handler in determining the
appropriate cleanup action.

When a process terminates that owns a fast-safe RAM semaphore, the Dos­
ExitList functions of that process (if any) will be given control. If important
resources are protected by fast-safe RAM semaphores, the DosExitList function
should call the DosFSRamSemRequest function to gain ownership of these
semaphores. When called during the processing of DosExitList termination func­
tions, the DosFSRamSemRequest function will examine the indicated fast-safe
RAM semaphore and, if it is owned by the active process, force the identifier of
the owning thread to be equal to the identifier of the current thread and set the

See Also

• DosGetColiate

DosGetColiate 61

use count to one. This allows the DosExitList function to be used without
requiring any handling instructions for fast-safe RAM semaphores. When the
execution of the DosExitList function is finished, it should call the DosFSRam­
SemClear function.

Except for the client field, the calling process should not modify any fields in the
DOSFSRSEM structure after the DosFSRamSemRequest function returns.

DosExitList, DosFSRamSemClear

USHORT DosGetCollate(cbBuf, pctryc, pchBuf, pcbTable)
USHORT cbBuf; I. size of buffer .1
PCOUNTRYCODE pctryc; I. pOinter to structure containing country code .1
PCHAR pchBuf; I. pointer to buffer for table .1
PUSHORT pcbTable; I. pOinter to variable receiving table length .1

Parameters

Return Value

The DosGetCollate function retrieves the collating-sequence table for the given
country code and code-page identifier. The collating-sequence table is a charac­
ter array with 256 elements in which each element specifies the sorting weight of
the corresponding character. (The sorting weight is the value used to determine
if a character appears before or after another character in a sorted list.) Sorting
weights and character values are not necessarily the same-for example, in a
given character set, the sorting weights for the letters A and B might be 1 and 2,
even though their character values are 65 and 66.

The DosGetCollate· function copies the collating-sequence table from the
country.sys file to a buffer. If the buffer is too small to hold all the information,
DosGetCollate truncates the information. If the buffer is larger than the infor­
mation, DosGetCollate fills any remaining bytes with zeros.

The DosGetCollate function is a family API function.

ebBu/ Specifies the size (in bytes) of the buffer that receives the collating­
sequence table.

pe/rye Points to the COUNTRY CODE structure that contains the country
code and the code-page identifier used to retrieve the collating-sequence table.
The COUNTRYCODE structure has the following form:

typedef struct _COUNTRYCODE {
USHORT country;
USHORT codepage;

} COUNTRYCODE;

For a full description, see Chapter 4, "Types, Macros, Structures."

pehBu/ Points to the buffer that receives the collating-sequence table.

peb Table Points to the variable that receives the number of bytes copied to
the buffer.

The return value is zero if the function is successful. Otherwise, it is an error
value.

62 DosGetColiate

Comments

Restrictions

See Also

• DosGetCp

The MS OS/2 sort command uses the DosGetCollate function to sort text
according to the collating-sequence table.

In real mode, the following restriction applies to the DosGetCollate function:

• There is no method of identifying the boot drive. The system assumes
that the country.sys file is in the root directory of the current drive.

DosCaseMap, DosGetCtryInfo

USHORT DosGetCp(cbBuf, pusBuf, pcbCodePgLst)
USHORT cbBuf; 1* number of bytes in buffer for list *1
PUSHORT pusBuf; 1* pointer to buffer receiving list *1
PUSHORT pcbCodePgLst; 1* pointer to variable receiving list length *1

Parameters

Return Value

Comments

See Also

The DosGetCp function retrieves a list that contains the current code page for
the process and all prepared system code pages. The code-page list consists of
one or more 16-bit values, each value representing a code-page identifier. The
first value in the list is the identifier for the process's current code page. A pro­
cess can set its current code page by using the DosSetCp function. Otherwise,
the process inherits its current code page from its parent process.

The DosGetCp function copies the code-page list to a buffer. If the buffer is too
small to hold all the information, DosGetCp truncates the information. If the
buffer is larger than the information, DosGetCp fills any remaining bytes with
zeros.

cbBuf Specifies the length (in bytes) of the buffer for the code-page list.

pusBuf Points to the buffer that receives the code-page list.

pcbCodePgLst Points to the variable that receives the number of bytes copied
to the code-page list.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The code-page identifier can be one of the following values:
Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

DosSetCp

DosGetCtrylnfo 63

• DosGetCtrylnfo
USHORT DosGetCtrylnfo (ebBuf, petrye, petryi, pebCountrylnfo)
USHORT ebBuf; 1* length of data area *1
PCOUNTRYCODE petrye; 1* pOinter to structure containing country info. *1
PCOUNTRYINFO petry;; 1* pointer to structure receiving country info. *1
PUSHORT pebCountrylnfo; 1* pOinter to variable for number of bytes *1

Parameters

The DosGetCtrylnfo function retrieves a copy of the country-dependent for­
matting information for the specified country code and code-page identifier.
Country-dependent formatting information defines the symbols and formats used
to express currency values, dates, times, and numbers in a given country.

The DosGetCtrylnfo function copies the information from the country.sys file to
the COUNTRYINFO structure. If this structure is too small to hold all the infor­
mation, DosGetCtrylnfo truncates the information. If the structure is larger than
the information, the function fills any remaining bytes with zeros.

The DosGetCtrylnfo function is a family API function.

ebBuf Specifies the size (in bytes) of the COUNTRYINFO structure.

petrye Points to the COUNTRYCODE structure that contains the country
code and the code-page identifier used to retrieve country-dependent informa­
tion. The COUNTRYCODE structure has the following form:

typedef struct _COUNTRYCODE {
USHORT country;
USHORT codepage;

} COUNTRYCODE;

For a full description, see Chapter 4, "Types, Macros, Structures."

petryi Points to the COUNTRYINFO structure that receives the country­
dependent formatting information. The COUNTRYINFO structure has the fol­
lowing form:

typedef struct _COUNTRYINFO {
USHORT country;
USHORT codepage;
USHORT fsDateFmt;
CHAR szCurrency[S];
CHAR szThousandsSeparator[2];
CHAR szDecimal[2];
CHAR szDateSeparator[2];
CHAR szTimeSeparator[2];
UCHAR fsCurrencyFmt;
UCHAR cDecimalPlace;
UCHAR fsTimeFmt;
USHORT abReservedl[2];
CHAR sZDataSeparator[2];
USHORT abReserved2[S];

} COUNTRYINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pcb Co untrylnfo Points to the variable that receives the number of bytes of
information copied to the COUNTRYINFO structure.

64 DosGetCtrylnfo

Return Value

Restrictions

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of .the following:

ERROR-NLS~AD,-TYPE
ERROR-NLS.-NO_COUNTRYYILE
ERROR-NLS_NO_CTRY_CODE
ERROR-NLS_OPENYAILED
ERROR-NLS_TABLE_TRUNCATED
ERROR-NLS_TYPE_NOTYOUND

In real mode, the following restriction applies to the DosGetCtryInfo function:

• There is no method of identifying the boot drive. The system assumes
that the country.sys file is in the root directory of the current drive .

• DosGetDateTime
USHORT DosGetDateTime(pdateTime)
PDATETIME pdateTime; 1* pOinter to structure for date and time *1

Parameters

Return Value

Comments

Example

See Also

The DosGetDateTime function retrieves the current date and time. Although MS
OS/2 maintains the current date and time, any process can change the date and
time by using the DosSetDateTime function; as a result, the current date and
time are as accurate as the most recent call to the DosSetDateTime function.

The DosGetDateTime function is a family API function.

pdateTime Points to the DATETIME structure that receives the date and time
information. The DATETIME structure has the following form:

typedef struct _DATETIME {
UCHAR hours;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
UCHAR day;
UCHAR month;
USHORT year;
SHORT timezone;
UCHAR weekday;

} DATETIME;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful. Otherwise, it is an error
value.

A process can also retrieve the current date and time by using the DosGet­
InfoSeg function. However, DosGetInfoSeg is available only to programs that
run with MS OS/2.

This example calls the DosGetDateTime function repeatedly until the time
is 9:30:

DATETIME date;
do

DosGetDateTime(&date) ;
/* do until 9:30 */

while (I (date.hours == 9 && date.minutes == 30»

DosGetInfoSeg, DosSetDateTime

DosGetDBCSEv 65

• DosGetDBCSEv
USHORT DosGetDBCSEv(cbBuf. pctryc. pchBuf)
USHORT cbBuf; /. length of buffer ./
PCOUNTRYCODE pctryc; /. pointer to structure for country code ./
PCHAR pchBufj /. pointer to buffer for OBCS Information ./

Parameters

Return Value

Comments

The DosGetDBCSEv function retrieves the double-byte character set (DBCS)
environment vector for the given country code and code-page identifier.

The DosGetDBCSEv function is a family API function.

cbBuf Specifies the size (in bytes) of the buffer that receives the DBCS
environment vector.

pctryc Points to the COUNTRYCODE structure that contains the country
code and code-page identifier used to retrieve the DBCS environment vector.
The COUNTRYCODE structure has the following form:

typedef struct _COUNTRYCODE {
USHORT country;
USHORT codepage;

} COUNTRYCODE;

For a full description, see Chapter 4, "Types, Macros, Structures."

pchBuf Points to the buffer that receives the country-dependent DBCS
environment vector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLNLSJ3AD_TYPE
ERROlLNLS_NO_COUNTRYYILE
ERROlLNLS_NO_CTRY_CODE
ERROlLNLS_OPENYAILED
ERROlLNLS_TABLE_TRUNCATED
ERROlLNLS_TYPE_NOTYOUND

The DBCS environment vector defines the first and last values in the ranges for
the DBCS lead-byte and second-byte values.

The DosGetDBCSEv function copies the information from the country.sys file to
a buffer. The first two bytes in the environment vector specify the first and last
values in the range for the DBCS lead-byte values. All subsequent pairs of bytes
(except for the last two bytes) specify the first and last values in the ranges for
DBCS second-byte values. The last two bytes are both set to zero. The form of
the information is similar to the following:

CHAR first!, last!;
CHAR first2, last2;

CHAR firstn, lastn;
CHAR firstend=O, lastend=O;

66 DosGetDBCSEv

Restrictions

See Also

• DosGetEnv

If the buffer is too small to hold all of the information, the DosGetDBCSEv
function truncates the information. To avoid this, make sure the buffer is at .least
ten bytes long. You can verify that all information has been copied by checking
the last two bytes to make sure they are zeros. If the structure is larger than the
information, the function fills ~ny remaining bytes with zeros.

In real mode, the following restriction applies to the DosGetDBCSEv function:

• There is no method of identifying the boot drive. The system assumes
that the country.sys file is in the root directory of the current drive.

DosCaseMap, DosGetCollate, DosGetCp, DosGetCtrylnfo, DosSetCp,
VioGetCp, VioSetCp

USHORT DosGetEnv(pseIEnviron, pusOffsetCmd)
PUSHORT pselEnviron; 1* pOinter to variable for selector *1
PUSHORT pusOffsetCmd; 1* pointer to variable for offset *1

Parameters

Return Value

Comments

The DosGetEnv function retrieves the address of the process's environment and
an offset into the environment where the command line is stored that was used
to start the process. This offset can be used to retrieve command-line arguments.

The environment is one or more null-terminated strings that name and define the
environment variables available to the current process. The command-line string
is a single null-terminated string that is a copy of the command line that was
used to run the process.

The DosGetEnv function is a family API function.

pselEnviron Points to the variable that receives the environment's segment
selector. The environment begins in the first byte of the segment identified by
this parameter.

pusOffsetCmd Points to the variable that receives the offset from the begin­
ning of the specified segment to the beginning of the command line.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNV ALID~CCESS

Each string in the environment has the following form:

stringname=va!ue

Each environment string ends with a null character. The last string is followed
by an additional null character to indicate the end of the environment. The two
null· characters are followed by the command-line string.

Example

See Also

DosGetlnfoSeg 67

The DosGetEnv function is typically used to retrieve the command-line argu­
ments. Although DosGetEnv can be used to retrieve a single environment vari­
able, an easier way to do this is to call the DosScanEnv function.

This example calls the DosGetEnv function to retrieve the selector to the
environment and the offset to the argument table within the environment. The
pszEnviron parameter points to the beginning of the environment, and the
pszArgument parameter points to the beginning of the argument table.

PSZ pszEnviron, pszArgument;
SEL selEnviron;
USHORT usOffsetCmd;
DosGetEnv(&selEnviron, &usOffsetCmd);
pszEnviron = MAKEP(selEnviron, 0);
pszArgument = MAKEP(selEnviron, usOffsetCmd);

DosExecPgm, DosScanEnv

• DosGetHugeShift
USHORT. DosGetHugeShift (pusShiftCount)
PUSHORT pusShiftCount; 1* pointer to variable receiving shift count *1

Parameters

Return Value

See Also

• DosGetlnfoSeg

The DosGetHugeShift function retrieves the shift count used to compute the
segment-selector offset for huge memory segments. (Huge memory segments are
allocated by using the DosAllocHuge function.) The shift count represents a
multiple of two, so the segment-selector offset is equal to the value 1 shifted left
by the shift count. For example, the segment-selector offset is eight if the shift
count is three.

The DosGetHugeShift function is a family API function.

pusShi!tCount Points to the variable that receives the shift count.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosAllocHuge

USHORT DosGetlnfoSeg (pseIG/oba/Seg. pselLoca/Seg)
PSEL pselG/oba/Seg; 1* pOinter to variable for global selector *1
PSEL pselLoca/Seg; 1* pointer to variable for local selector *1

The DosGetInfoSeg function retrieves segment selectors for the global and local
information segments. These read-only information segments contain general
information about the system and the process. The global information segment is
accessible only to all processes. The local information segment is accessible only
to the current process.

68 DosGetlnfoSeg

Parameters pselGlobalSeg Points to the GINFOSEG structure that contains global infor­
mation. The GINFOSEG structure has the following form:

typedef struct _GINFOSEG {
ULONG time;
ULONG msecs;
UCHAR hour;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
USHORT timezone;
USHORT cusecTimerlnterval;
UCHAR day;
UCHAR month;
USHORT year;
UCHAR weekday;
UCHAR uchMajorVersion;
UCHAR uchMinorVersion;
UCHAR chRevisionLetter;
UCHAR sgCurrent;
UCHAR sgMax;
UCHAR cHugeShift;
UCHAR fProtectModeOnly;
USHORT pidForeground;
UCHAR fDynamicSched;
UCHAR csecMaxWait;
USHORT cmsecMinSlice;
USHORT cmsecMaxSlice;
USHORT bootdrive;
UCHAR amecRAS[32];
UCHAR csgWindowableVioMax;
UCHAR csgPMMax;

} GINFOSEG;

For a full description, see Chapter 4, "Types, Macros, Structures."

pselLocalSeg Points to the LINFOSEG structure that contains local informa­
tion. The LINFOSEG structure has the following form:

typedef struct _LINFOSEG {
PID pidCurrent;
PID pidParent;
USHORT prtyCurrent;
TID tidCurrent;
USHORT sgCurrent;
UCHAR rfProcStatus;
UCHAR dummyl;
BOOL fForeground;
UCHAR typeProcess;
UCHAR dummy2;
SEL selEnvironment;
USHORT offCmdLine;
USHORT cbDataSegment;
USHORT cbStack;
USHORT cbHeap;
HMODULE hmod;
SEL selDS;

} LINFOSEG;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Example

See Also

DosGetMachineMode 69

The return value is zero if the function is successful. Otherwise, it is an error
value.

This example calls the DosGetInfoSeg· function to retrieve the selector of a sys­
tem global segment, converts the segment selector into a pointer to a structure,
and checks to determine if the current day of the week is Monday:

SEL selGlobalSeg, selLocalSeg;
GINFOSEG FAR *pgis;
DosGetlnfoSeg(&selGlobalSeg, &selLocalSeg);
pgis = MAKEPGINFOSEG(selGlobalSeg) ;
if (pgis->weekday == 1) {

. 1* this code is executed only on a Monday *1

DosGetDateTime

• DosGetMachineMode
USHORT DosGetMachineMode (pbMachineMode)
PBYTE pbMachineMode; 1* pointer to variable for machine mode *1

Parameters

Return Value

Example

The DosGetMachineMode function retrieves the current machine mode-that is,
whether the current mode is real or protected.

The DosGetMachineMode function is a family API function.

pbMachineMode Points to the variable that receives the machine mode. If
this parameter is MODE.-REAL, the current mode is real mode, 808x or 80x86.
If this parameter is MODEYROTECTED, the current mode is protected mode,
80x86.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The DosGetMachineMode function allows a program that is running in real
mode to avoid calling functions that are not available when it is in real mode.
The MS OS/2 functions that are available in both real and protected modes are
listed in the Microsoft Operating Systeml2 Programmer's Reference, Volume 1.

This example calls the DosGetMachineMode function and displays the machine
mode under which the current process is running:

BYTE bMode;
DosGetMachineMode(&bMode) ;
if (bMode == MODE_PROTECTED)

VioWrtTTY("Protected mode\r\n", 16, 0);
else

VioWrtTTY("Real mode\r\n" , 11, 0);

70 DosGetMessage

• DosGetMessage
USHORT DosGetMessage(ppchVTable, usVCount, pchBuf, cbBuf, usMsgNo, pszFileName, pcbMsg)
PCHAR FAR * ppchVTable; /* pOinter to table of pOinters to strings */

USHORT usVCount; /* number of pOinters in table */
PCHAR pchBuf; /* pointer to buffer receiving message */

USHORT cbBuf; /* number of bytes in buffer */

USHORT usMsgNo; /* message number to retrieve */

PSZ pszFileName; /* name of file containing message */
PUSHORT pcbMsg; /* number of bytes in returned message */

Parameters

Return Value

The DosGetMessage function retrieves a message from the specified system­
message file. DosGetMessage may insert one or more strings into the body of
the message as it retrieves the message.

The DosGetMessage function is a family API function.

ppch VTable Points to a table of pointers to substitution strings. Each entry in
the table points to a null-terminated string to be inserted into the message. Up to
nine pointers can be given.

us VCount Specifies the number of pointers in the table. This parameter can
be any value from 0 through 9. If this parameter is zero, the ppchVTabZe parame­
ter is ignored. If it is greater than 9, the DosGetMessage function returns an
error indicating that the us VCount parameter is out of range.

pchBuf Points to the buffer that receives the requested message.

cbBuf Specifies the length (in bytes) of the buffer.

usMsgNo Specifies the message number for the requested message.

pszFileN arne Points to a null-terminated string that specifies the MS OS/2
path and filename of the message file that contains the message.

pcbMsg Points to the variable that receives the number of bytes copied to the
buffer.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORYILE~OTYOUND
ERRO~RJNVJVCOUNT
ERRO~MRJNV ~SGF _FORMAT
ERRO~~ID_NOTYOUND
ERROR~~SG_TOO~ONG
ERRO~R_UN~CC~SGF
ERRO~~UNYERFORM

Comments

Restrictions

See Also

DosGetMessage 71

To retrieve the requested message, the DosGetMessage function first searches
the process's message segment, if there is one. If it cannot find the specified
message, the function then searches the specified message file. If no drive or
path is specified in the filename, DosGetMessage searches the system root direc­
tory for the message file, then searches the current directory on the current
drive. The DosGetMessage function may also search the directories specified by
the commands append (in real mode) and dpath (in protected mode) for the
given message file.

When the DosGetMessage function finds a message, it copies the message to the
buffer pointed to by the pchBuf parameter. As it copies the message, DosGet­
Message replaces any symbol in the form %x (where x is a digit from 1 through
9) with one of the strings pointed to in the table pointed to by the ppch VTable
parameter. For example, DosGetMessage replaces all symbols in the form % 1
with the string pointed to by the first pointer in the table. If there is no
corresponding string in the table, DosGetMessage copies the %x symbol,
unchanged, to the buffer.

The %x symbols used in a message are not necessarily enclosed in spaces. If you
want spaces, you may need to supply them as part of your substitution strings.

If the message is too long to fit in the buffer, the DosGetMessage function trun­
cates the message and returns an error code.

If the DosGetMessage function cannot retrieve a message because of a direct­
access-storage-device (DASD) hard error or because it cannot find the message
file, it places a default message in the buffer. This can occur when an invalid
parameter is specified-for example, an invalid usMsgNo parameter or an invalid
usVCount parameter; when the DosGetMessage function cannot read the
system-message file-for example, when a DASD error occurs or when format
of the message file is invalid; or when the DosGetMessage function cannot find
the system-message file. The DosGetMessage function retrieves messages that
have been prepared previously by using the mkmsgC utility to create a message
file. DosGetMessage also retrieves messages that have been added to the mes­
sage segment of the program's executable file by using the msgbind utility. It is
irrelevant to the process that calls the DosGetMessage function whether Dos­
GetMessage retrieves messages from the message segment or from the message
file. In either case, the function uses the usMsgNo and pszFileName parameters
to locate the message. For more information on the mkmsgf and msgbind utili­
ties, see Microsoft Operating System12 Programming Tools.

In real mode, the following restriction applies to the DosGetMessage function:

• There is no method of identifying the boot drive.

DoslnsMessage, DosPutMessage

72 DosGetModHandle

• DosGetModHandle
USHORT DosGetModHandle(pszModName, phMod)
PSZ pszModName; f .. module name a/

PHMODULE phMod; f .. pOinter to variable receiving module handle .. f

Parameters

Return Value

Comments

See Also

The DosGetModHandle function retrieves the handle of a dynamic-link module.
The DosGetModHandle function is typically used to make sure that a module
has been loaded into memory. If the module has not been loaded, the function
returns an error value.

pszModName Points to a null-terminated string that specifies the MS OS/2
filename of the module. The .dll filename extension is used for dynamic-link
libraries.

phM od Points to the variable that receives the module handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNTERRUPT
ERRO~OD_NOT-FOUND

The module name specified by the pszModName parameter must match the
name of the module that is already loaded. Otherwise, an error value is
returned.

DosFreeModule, DosGetModName, DosLoadModule

I DosGetModName
USHORT DosGetModName (hmod, cbBuf, pchBuf)
HMODULE hmod; f .. module handle *f

USHORT cbBuf; f .. number of bytes in buffer *f

PCHAR pchBuf; f .. pOinter to buffer receiving module name *f

Parameters

Return Value

The DosGetModName function retrieves the drive, path, and filename of the
specified module.

hmod Identifies the dynamic-link module. This handle must have been created
previously by using the DosLoadModule function.

cbBuf Specifies the maximum length (in bytes) of the buffer that receives the
the information about the module;

pchBuf Points to the buffer that receives the module's drive, path, and
filename.

The return value is zero if the function is successful. Otherwise, it is. an error
value, which may be one of the following:

ERROILBADJ-ENGTH
ERRORJNTERRUPT
ERRO~INVALID-HANDLE

Comments

See Also

• DosGetPID

DosGetPPID 73

The DosGetModName function returns an error if there is not enough room in
the buffer for the drive, path, and filename.

When a function within a dynamic-link library is called, or when the dynamic­
link library initializes itself, the di register contains the module handle for the
current process.

DosFreeModule, DosGetModHandle, DosLoadModule, DosMonOpen

USHORT DosGetPID(ppidi)
PPIDINFO ppidi; 1* pOinter to structure receiving identifiers *1

Parameters

Return Value

See Also

• DosGetPPID

The DosGetPID function retrieves the process, thread, and parent-process
identifiers for the current process.

ppidi Points to the PIDINFO structure that receives the process identifiers.
The PIDINFO structure has the following form:

typedef struct _PIOINFO {
PIO pid;
TID tid;
PIO pidParent;

} PIOINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosExecPgm, DosGetPPID

USHORT DosGetPPID(pidChild, ppidParent)
USHORT pidChild; 1* process identifier of child process *1
PUSHORT ppidParent: 1* point to variable for parent-process identifier *1

Parameters

Return Value

See Also

The DosGetPPID function retrieves the process identifier of a parent process.

pidChild Specifies the process identifier of the child process.

ppidParent Points to the variable that receives the process identifier of the
parent process.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDYROCID

DosGetPID

74 DosGetProcAddr

• DosGetProcAddr
USHORT DosGetProcAddr(hmod, pszProcName, ppfnProcAddress)
HMODULE hmod; /. handle of module *'
PSZ pszProcName;
PPFN ppfnProcAddress;

/. pointer to module-name string ./
/. pointer to variable for procedure address ./

Parameters

Return Value

Comments

Example

See Also

The DosGetProcAddr function retrieves the address of a procedure in a
specified dynamic-link module. This address can then be used to call the pro­
cedure.

hrnod Identifies the dynamic-link module. This handle must have been created
previously by using the DosLoadModule function.

pszProcN arne Points to a null-terminated string that specifies the procedure
name to retrieve. If this string starts with a number sign (#), the remaining part
of the string is treated as an ASCII ordinal. Alternately, if the selector portion
of the pointer is zero, the offset portion of the pointer is an explicit entry num­
ber (an ordinal) within the dynamic-link module.

ppfnProcAddress Points to the variable that receives the procedure address.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-INTERRUPT
ERRORJNVALID_HANDLE
ERROR-PROC_NOTYOUND

Although the DosGetProcAddr function can be used to retrieve procedure
addresses from the DOSCALLS dynamic-link module, these procedures are
available through ordinal values only. If you attempt to retrieve a procedure
address from the DOSCALLS module by using a procedure name, DosGet­
ProcAddr returns an error.

This example calls the DosLoadModule function to load the dynamic-link
module qhdll.dll. It then calls the DosGetProcAddr function to retrieve the
address of the BOXMESSAGE function that is defined in the module and calls
the DosFreeModule function to free the dynamic-link module. (This example is
accurate if qhdll.dll exists in a directory defined by the Iibpath parameter of the
config.sys file, and if qhdll.dll contains the BOXMESSAGE function that uses
the Pascal calling convention.)

CHAR achFailName[128];
HMODULE hmod;
VOID (PASCAL FAR *pfnBoxMsg) (PSZ, BYTE, BYTE, SHANDLE, SHANDLE, BOOL);

sizeof(achFailName), "qhdll", &hmod);
/* module handle */
/* name of function */

DosLoadModule(achFailName,
DosGetProcAddr(hmod,

"BOXMESSAGE",
&pfnBoxMsg) ;

pfnBoxMsg("Hello World",
/* variable for fUnction address */

Ox30, 1, 0,0);
DosFreeModule(hmod);

DosFreeModule, DosGetModName, DosLoadModule

DosGetResource 75

• DosGetPrty
USHORT DosGetPrty(usScope, pusPriority, pid)
USHORT usScope; 1* thread priority in current process/another process *1
PUSHORT pusPriority; 1* pOinter to variable for priority *1
USHORT pid; 1* process or thread identifier */

Parameters

Return Value

See Also

The DosGetPrty function retrieves the scheduling priority of a specified thread
in the current process or the priority of thread 1 in a specified process.

usScope Specifies whether to retrieve the priority for a thread in the current
process or the priority of thread 1 in some other process.

If the usScope parameter is PRTYS_PROCESS, the DosGetPrty function
retrieves the priority of thread 1 for the process specified by the pid parameter.
If thread 1 for that process has terminated, the DosGetPrty function returns an
error value.

If the usScope parameter is PRTYS_THREAD, the function retrieves the prior­
ity of the thread specified by the pid parameter.

pusPriority Points to the variable that receives the scheduling priority of the
specified thread. The high-order byte is set to the priority class; the low-order
byte is set to the priority level.

pid Specifies a process or thread identifier, depending on the value of the
usScope parameter. If the pid parameter is OXOOOO, the DosGetPrty function
retrieves the priority for the current process or thread.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNV ALIDYROCID
ERRO~INV ALID_SCOPE
ERRORJNV ALID_THREADID

DosSetPrty

• DosGetResource
USHORT DosGetResource(hmod, idType, idName, pse/)
HMODULE hmod; 1* module handle ./
USHORT idType; 1* resource-type identifier ./
USHORT idName; 1* resource-name identifier */
PSEL psel; 1* pointer to variable for resource selector *1

Parameters

The DosGetResource function retrieves the specified resource from a speCified
executable file. The function allocates a segment, copies the resource into the
segment, and returns the segment selector. A process can use this segment
selector to access the resource directly.

hmod Identifies the module that contains the resource. This parameter can be
either the module handle returned by the DosLoadModule function or NULL
for the application's module.

76 DosGetResource

Return Value

Comments

See Also

• DosGetSeg

idType Specifies the type of resource to retrieve.

idN ame Specifies the name of the resource to retrieve.

psel Points to the variable that receives the selector of the segment containing
the resource.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~CANTYIND~ESOURCE
ERROUNVALID.-MODULE
ERROUNVALID_SELECTOR

The following list describes the predefined types that can be used for the idType
parameter:

Type Meaning

RT_ACCELTABLE Accelerator tables

RT_BITMAP Bitmap

RT_CHARTBL Glyph to character tables

RT_DIALOG Dialog template

RT_DISPLA YINFO Screen-display information

RT_FONT Font

RT_FONTDIR Font directory

RT_KEYTBL Key to UGL tables

RT-.MENU Menu template

RT_MESSAGE Error-message tables

RT_POINTER Mouse-pointer shape

RT_RCDATA Binary data

RT_STRING String tables

RT_VKEYTBL Key to virtual-key tables

DosLoadModule

USHORT DosGetSeg(se/)
SEL sel; 1* selector of shared memory segment .1

Parameters

Return Value

The DosGetSeg function obtains access to the shared memory segment identified
by a specified segment selector. Although a process can receive the selector for
a shared memory segment from another process, it cannot use the selector to
access the segment until it uses the DosGetSeg function.

sel Specifies the selector for the shared memory segment.

The return value is zero if the function is successful. Otherwise, it is an error
value.

Comments

See Also

• DosGetShrSeg

DosGetVersion 77

DosGetSeg obtains access only to shared memory segments created by using the
DosAllocSeg function with the IAUoe parameter set to SEG_GETI ABLE.

DosAllocSeg, DosGetShrSeg, DosGiveSeg

USHORT DosGetShrSeg (pszName, pse/)
PSZ pszName; 1* pointer to memory-segment name *1
PSEL psel; 1* pointer to variable for selector *1

Parameters

Return Value

See Also

• DosGetVersion

The DosGetShrSeg function retrieves a selector to a shared memory segment.
The shared segment must have been allocated previously by another process.
The function increases the segment's reference count by one to indicate that the
segment is in use. The process receiving the new selector may use it to obtain
access to the shared memory segment.

pszName Points to a null-terminated string that identifies the shared memory
segment. This string must have the following form:

\sharennenn\pszJVanne

The string name, pszJVanne, must have the same format as an MS OS/2 filename
and must be unique.

psel Points to the variable that receives the new selector for the shared mem­
ory segment.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORYILE_NOTYOUND
ERRORJNVALID_HANDLE
ERROR-To.O~ANY_OPENYILES

DosAllocShrSeg, DosFreeSeg, DosGetSeg

USHORT DosGetVersion(pusVersion)
PUSHORT pus Version; 1* pointer to variable receiving version number *1

Parameters

The DosGetVersion function retrieves the operating system's version number.
For MS OS/2, version 1.1, both the major and minor version numbers are 10.

The DosGetVersion function is a family API function.

pus Version Points to the variable that receives the version number. The high­
order byte is set to the major version number; the low-order byte is set to the
minor version number.

78 DosGetVersion

Return Value

Example

See Also

• DosGiveSeg

The return value is zero if the function is successful. Otherwise, it is an error
value.

This example retrieves the version number and displays the major version num­
ber:

USHORT usVersion;
CHAR ch;

DosGetVersion(&usVersion) ;
ch = (LOBYTE(usVersion) I 10) + '0'; 1* gets major version number *1
VioWrtTTY("You are using MS OS/2 version ", 30, 0);
VioWrtTTY(&ch, L, 0);
VioWrtTTY("\r\n", 2, 0);

DosQSyslnfo

USHORT DosGiveSeg (sel, pidProcess, pselRecipient)
SEL sel; 1* selector of shared memory segment *1
PID pidProcess; 1* process identifier of recipient *1
PSEL pselRecipient; 1* pOinter to variable for selector of recipient *'

Parameters

Return Value

Comments

See Also

The DosGiveSeg function creates a new segment selector for a shared memory
segment. The new selector can then be used by another process to access the
shared memory segment.

The process that creates the new segment selector is responsible for passing the
selector to any process that uses the segment.

sel Specifies the segment selector of the shared memory segment.

pidProcess Specifies the process identifier of the process that receives access
to the shared memory segment.

pselRecipient Points to the variable that receives the new segment selector.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR.J\CCESSJ)ENIED
ERROR-NOT-ENOUG~EMORY

The DosGiveSeg function is successful even if the specified process already has
access to the segment.

DosGiveSeg applies only to shared memory segments created by using the
DosAllocSeg function with the fAlloc parameter set to SEG_GlVEABLE.

DosAllocSeg, DosGetSeg

DosHoldSlgnal 79

• DosHoldSignal
USHORT DosHoldSignal(fDisable)
USHORT fDisable; /* disable/enable signals */

Parameters

Return Value

Comments

Restrictions

Example

See Also

The DosHoldSignal function disables or enables signal processing for the current
process.

The DosHoldSignal function is a family API function.

[Disable Specifies whether to disable or enable signals that are intended for
the current process. If this parameter is HLDSIG_DISABLE, the function dis­
ables signals. If it is HLDSIG-ENABLE, the function enables signals and
restores the request count to its value before the last call to DosHoldSignal.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDYUNCTION

If the fDisable parameter is HLDSIG_DISABLE, the function holds all signals
without processing them until DosHoldSignal is called again with fDisable set to
HLDSIG~NABLE. Signals should be held for as little time as possible; if
necessary, a signal should be released and then held again.

Requests to disable and enable signal processing are cumulative. This means two
requests to disable processing must be followed by two requests to enable pro­
cessing before processing is enabled.

The DosHoldSignal function is intended to be used by library routines,subsys­
terns, and similar code that need to prevent a possible signal from interfering
with the completion of the current activity-for instance, activity in locked seg­
ments or in temporarily reserved resources.

In real mode, the following restriction applies to the DosHoldSignal function:

• Only the signal interrupt (SIG_CTRLC) and signal break
(SIG_CTRLBREAK) signals are recognized.

This example calls the DosHoldSignal function to disable signals and calls the
DosEnterCritSec function to stop all other threads. When the processing of the
critical section of code is completed, the DosHoldSignal function enables signals
again:

DosHoldSignal(HLDSIG_DISABLE) ;
DosEnterCritSec() ;

DosExitCritSec() ;
DosHoldSignal(HLDSIG_ENABLE);

/* disables signals */
/* enters critical section */

/* exits critical section */
/* enables signals */

DosCLIAccess, DosEnterCritSec, DosFlagProcess

80 DoslnsMessage

• DoslnsMessage
USHORT DoslnsMessage(ppchVTable, usVCount, pszMsg, cbMsg, pchBuf, cbBuf, pcbMsg)
PCHAR FAR * ppchVTable; I. pOinter to table of character pOinters .1
USHORT usVCount; I. number of pOinters in table .1
PSZ pszMsg; I. pointer to input message .1
USHORT cbMsg; I. number of bytes in input message .1
PCHAR pchBuf; I. pOinter to buffer for updated message .1
USHORT cbBuf; I. number of bytes in buffer .1
PUSHORT pcbMsg; I. pOinter to variable for length of message.1

Parameters

Return Value

Comments

Restrictions

See Also

The DosInsMessage function copies a specified message to a buffer. Unlike the
DosGetMessage function, DosInsMessage does not retrieve a message. Dos­
InsMessage is often used when messages are loaded before the insertion-text
strings are known.

The DosInsMessage function is a family API function.

ppchVTable Points to a table of pointers to null-terminated strings than can
be inserted into the message. Up to nine strings can be given.

us VCount Specifies the number of strings in the table. This parameter can be
any value from 0 through 9. If this parameter is zero, the ppchVTable parameter
is ignored. If this parameter is greater than 9, the function returns an error value
indicating that the usVCount parameter is out of range.

pszMsg Points to a null-terminated string that specifies the message to pro-
cess.

cbMsg Specifies the length (in bytes) of the message.

pchBuf Points to the buffer that receives the message.

cbBuf Specifies the length (in bytes) of the buffer that receives the message.

pcbMsg Points to the variable that receives the number of bytes copied to the
buffer.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~RJNVJVCOUNT
ERRO~~SG_TOO-LONG

As it copies a message, the DosInsMessage function replaces any symbol in the
form %x (where x is a digit from 1 through 9) with one of the strings pointed to
in the table pointed to by the ppch VTable parameter. For example, the function
replaces all symbols of the form % 1 with the first string pointed to in the table.
If there is no corresponding string in the table, DosInsMessage copies the %x
sequence to the buffer. If the message is too long to fit in the buffer, the Dos­
GetMessage function truncates the message and returns an error code.

In real mode, the following restriction applies to the DosInsMessage function:

• There is no method of identifying the boot drive. The system assumes
that the message file is in the root directory of the current drive.

DosGetMessage, DosPutMessage

DosKiliProcess 81.

• DosKiliProcess
USHORT DosKiIIProcess «(Scope. pidProcess)
USHORT (Scope; 1* flag for process only-parent and child processes *1
PID pidProcess; 1* process identifier of process to be ended *1

Parameters

Return Value

Comments

Example

See Also

The DosKillProcess function terminates the specified process, with the option of
also terminating all child processes that belong to it. Any subsequent request for
the process's termination code returns the TCJ(ILLPROCESS code, unless the
process intercepted the termination request.

fScope Specifies whether to terminate the child processes that belong to the
specified process that is terminated. If this parameter is DKP ..PROCESSTREE,
the function terminates the specified process and all of its child processes. If it
is DKP ..PROCESS, the function terminates the specified process only.

pidProcess Specifies the process identifier of the process to terminate.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNV ALIDYROCID

A process can intercept the termination request generated by the DosKiIl­
Process function by using the DosSetSigHandler function to create a signal
handler. When the process creates a signal handler, the process typically com­
pletes any termination tasks, such as copying data from local buffers to files,
then calls the DosExit function to terminate. If a process has no signal handler,
the DosKillProcess function terminates the process after flushing all system file
buffers and closing all handles opened by the process.

Before terminating, the process being terminated must flush file buffers that are
not managed by MS OS/2-for example, the buffers managed by the C run-time
library. MS OS/2 does not flush these buffers as part of its termination
sequence.

This example creates the child process abc.exe, then calls the DosKillProcess
function to terminate it;

CHAR achFailName[12B];
RESULTCODES resc;
DosExecPgm(achFailName, sizeof(achFailName),

EXEC_ASYNCH, "abc ", 0, &:resc, "abc.exe");

DosKillProcess(DKP_PROCESS, resc.codeTerminate);

DosCwait, DosExit, DosSetSigHandler

82 . DosLoadModule

• DosLoadModule
USHORT DosLoadModule (pszFailName, cbFileName, pszModName, phmod)
PSZ pszFailName; 1* pointer to buffer for name if failure *1
USHORT cbFileName; 1* length of buffer for name if failure *1
PSZ pszModName;
PHMODULE phmod;

Parameters

Return Value

Comments

Example

1* pointer to module name *1
1* pointer to variable for module handle *1

The DosLoadModule function loads a dynamic-link module and returns a handle
for the module. You can use the module handle to retrieve the entry addresses
of procedures in the module and to retrieve information about the module.

pszFailName Points to the buffer that receives a null-terminated string. The
DosLoadModule function copies a string to the buffer only if the function fails
to load the module. The string identifies the dynamic-link module responsible for
the failure. This module may be other than the one specified in the pszModName
parameter if the specified module links to other dynamic-link modules.

cbFileName Specifies the length (in bytes) of the buffer pointed to by the
pszFailName parameter.

pszModName Points to a null-terminated string. This string must be a valid
MS OS/2 filename that specifies the path and filename of the dynamic-link
module to be loaded. All dynamic-link modules have the .dll filename extension,
by default.

phmod Points to the variable that receives the handle of the dynamic-link
module.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILBADYORMAT
ERRORYILE_NOTYOUND
ERRORJNTERRUPT
ERRO~NOT~NOUGILMEMORY

The DosLoadModule function loads only MS OS/2 dynamic-link modules.
Attempts to load other executable files (such as MS-DOS executable files) result
in errors.

This example calls the DosLoadModule function to load the dynamic-link
module qhdll.dll. This example then calls the DosGetProcAddr function to
retrieve the address of the BOXMESSAGE function that is defined in the
module. After calling the BOXMESSAGE function, the example calls Dos­
FreeModule to free the dynamic-link module. (This example is accurate if
qhdll.dll exists in a directory defined by the libpath parameter of the config.sys
file, and if qhdll.dll contains the BOXMESSAGE function that uses the Pascal
calling convention.)

See Also

• DosLockSeg

DosLockSeg 83

CHAR achFailName[128];
HMODULE hmod;
VOID (PASCAL FAR *pfnBoxMsg) (PSZ, BYTE, BYTE, SHANDLE, SHANDLE, BOOL);

DosLoadModule(achFailName, /* failure name buffer
sizeof{achFailName), /* size of failure name
"qhdll ,l , /* module name
&hmod) ; /* address of handle

DosGetProcAddr(hmod, "BOXMESSAGE", &pfnBoxMsg);
pfnBoxMsg("Hello World", Ox30, 1, 0, 0, FALSE);
DosFreeModule(hmod) ;

*/
buffer */

*/
*/

DosExecPgm, DosFreeModule, DosGetModName, DosGetProcAddr

USHORT DosLockSeg(se/)
SEL sel; 1* selector of segment to lock *1

Parameters

Return Value

Comments

See Also

The DosLockSeg function locks a discardable segment in memory. A locked
segment cannot be discarded until it is unlocked by using the DosUnlockSeg
function.

If a segment has been discarded, the DosLockSeg function returns an error
value that specifies that the segment no longer exists. When this occurs, the
DosReallocSeg function can be called to allocate a new copy of the segment.
The program must recreate any discarded data. .

sel Specifies the selector of the segment to lock.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosLockSeg applies only to segments that have been allocated by using the
DosAllocSeg function with the fAUoe parameter· set to SEGJ)ISCARDABLE.

MS OS/2 can move and swap a locked segment as needed.

The DosLockSeg and DosUl)lockSeg functions may be nested. For example, if
DosLockSeg is called five times to lock a segment, DosUnlo~kSeg must be
called five times to unlock the segment. A segment becomes permanel1-tly locked
if it is locked 255 times without being unlocked.

DosAllocSeg, DosReallocSeg, DosUnloc~Seg

84 DosMakeNmPipe

• DosMakeNmPipe
USHORT DosMakeNmPipe (pszName. phP. fsOpenMode. fsPipeMode. cbOutBuf. cblnBuf. ulTimeOut)
psz pszName; /. pipe name ./
PHPIPE php; /. pOinter to pipe handle ./

USHORT fsOpenMode; /. open mode of pipe ./
USHORT fsPipeMode; /. pipe-specific modes ./
USHORT cbOutBuf; /. number of bytes in output buffer *'
USHORT cblnBuf; /. number of bytes in input buffer *'
ULONG ulTimeOut; /. timeout value ./

Parameters

The DosMakeNmPipe function creates a named pipe and retrieves a handle that
can be used in subsequent pipe operations.

pszName Points to a null-terminated string that identifies the name of the
pipe. The string must have the following form:

\pipe\name

The string name, name, must have the same format as an MS OS/2 filename.

php Points to the variable that receives the handle of the named pipe.

/sOpenMode Specifies the modes with which to open the pipe. This param­
eter is a combination of an access mode flag, an inheritance flag, and a write­
behind flag. The possible values are:

Value

PIPE_ACCESS_OUTBOUND

PIPE_INHERIT

PIPE_NOINHERIT

PIPE_NOWRITEBEHIND

PIPE_ WRITEBEHIND

Meaning

Pipe is full duplex-going to and
from server and client.

Pipe is inbound-going from client
to server.

Pipe is outbound-going from server
to client.

Pipe is inherited by any child
processes that are created by using
the DosExecPgm function.

Pipe is private to the current process
and cannot be inherited.

Write-behind to remote pipes is not
allowed.

Write-behind to remote pipes is
allowed.

/sPipeMode Specifies the pipe-specific modes of the pipe. This parameter is a
combination of an instance count, a read-mode flag, a type flag, and a wait flag.
The possible values are:

Value

PIPE_WAIT

Meaning

Reading from and writing to the pipe
waits if no data is available.

Reading from and writing to the pipe
returns immediately if no data is
available.

Return Value

See Also

• DosMakePipe

Value

PIPE_READMODE_BYTE

PIPE_READMODE_MESSAGE

PIPE_ TYPE_BYTE

PIPE_ TYPE_MESSAGE

PIPE_UNLIMITED_INST ANCES

DosMakePipe 85

Meaning

Read pipe as a byte stream.

Read pipe as a message stream.

Pipe is a byte-stream pipe.

Pipe is a message-stream pipe.

Unlimited instances of the pipe can
be created. If this value is not
specified, a value from 1 through 254
can be used for the number of
instances.

cbOutBu/ Specifies the number of bytes to reserve for the outgoing buffer.

cblnBu/ Specifies the number of bytes to reserve for the incoming buffer.

ul Time Out Specifies the default value (in milliseconds) of the timeout param­
eter of the DosWaitNmPipe function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALID_PARAMETER
ERRO~NOT~NOUG~EMORY
ERROR_OUT_OF _STRUCTURES
ERRORY ATILNOTYOUND
ERRORYIPE-.BUSY

DosClose, Dos WaitNmPipe

USHORT DosMakePipe(phfRead, phfWrite, cbPipe)
PHFILE phfRead; /* pOinter to variable for read handle */
PHFILE phfWrite; /* pointer to variable for write handle */
USHORT cbPipe; /* number of bytes reserved for pipe */

Parameters

The DosMakePipe function creates a pipe. The function creates the pipe, assign­
ing the specified pipe size to the storage buffer, and also creates handles that the
process can use to read from and write to the buffer in subsequent calls to the
DosRead and DosWrite functions.

ph/Read Points to the variable that receives the read handle for the pipe.

phfWrite Points to the variable that receives the write handle for the pipe.

cbPipe Specifies the size (in bytes) to allocate for the storage buffer for this
pipe. This parameter can be any value up to 65,536 minus the size of the pipe
header, which is currently 32 bytes. If this parameter is zero, the default buffer
size is used.

86 DosMakePipe

Return Value

Comments

See Also

• DosMemAvaii

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~NOT-"ENOUGILMEMORY
ERRO~TOO_MANY_OPENYILES

Pipes are typically used by a pair of processes. One process creates the pipe and
passes a handle to the other process. This lets one process write into the pipe
and the other read from the pipe. Since MS OS/2 provides no permission
checks on pipes, the cooperating processes must ensure that they do not attempt
to write to or read from the pipe at the same time.

When all of a pipe's handles are closed by using the DosClose function, MS
OS/2 deletes that pipe. If two processes are communicating by using a pipe and
the process ends that is reading the pipe, the next call to the DosWrite function
for that pipe returns the "broken pipe" error value.

MS OS/2 temporarily blocks any call to the Dos Write function that would have
written more data to the pipe than could fit in the storage buffer. The system
removes the block as soon as enough data is read from the pipe to make room
for the remaining unwritten data.

DosClose, DosDupHandle, DosRead, DosWrite

USHORT DosMemAvail(puIAvaiIMem)
PULONG pulAvailMem; 1* pointer to variable for available memory *1

Parameters

Return Value

Comments

Example

The DosMemA vail function retrieves the size of the largest block of free mem­
ory available when the function is called. The largest free block consists of all
free memory, whether consecutive or not. This function does not cause segments
to be moved, swapped, or discarded.

pulAvailMem Points to the variable that receives the size (in bytes) of the
largest free block of memory.

The return value is zero if the function is successful. Otherwise, it is an error
value.

Since other processes may allocate and free memory at any time, the size of the
largest free block can be expected to change.

The DosMemA vail function returns only the amount of memory currently avail­
able without swapping. More memory can be allocated than indicated by the
DosMemA vail function-when necessary, the system swaps memory or discards
unlocked memory to meet memory-allocation requests.

This example calls DosMemA vail to determine the amount of available memory.
It then allocates one third of that memory and allows for reallocation of up to
ten 64K segments.

See Also

• DosMkDir

#define SEGSIZE (64L * 1024L)
LONG lAvail;
SEL sel;

DosMonClose 87

DosMemAvail(&lAvail); 1* gets amount of current memory *1
lAvail 1= 3L; 1* calculate one third of memory *1
DosAllocHuge «USHORT) (lAvail I SEGSIZE), 1* number of segments * I

(USHORT) (lAvail % SEGSIZE), 1* size of last segment *1
&sel, 1* address 0 f selector * I
10, 1* allows reallocation up to 640K *1
SEG_NONSHARED) ; 1* sharing flag *1

DosAllocHuge

USHORT DosMkDir(pszDirName. ulReserved)
PSZ pszDirName; /. new directory name./
ULONG ulReserved; /. must be zero ./

Parameters

Return Value

Example

See Also

• DosMonClose

The DosMkDir function creates the specified directory. If the directory already
exists or the specified directory name is invalid, the function returns an error
value.

The DosMkDir function is a family API function.

pszDirName Points to a null-terminated string. This string must be a valid MS
OS/2 directory name.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORACCESSJ)ENIED
ERRORJ)RIVE.-LOCKED
ERROR-NOTJ)OSJ)ISK
ERRORY ATILNOTYOUND

This example calls the DosMkDir function to create the subdirectory abc and
report an error if it fails:

USHORT usError;
usError = DosMkDir("abc", OL);
if (usError)

VioWrtTTY("Can't open directory\r\n". 22. 0);
else {

DosRmDir

USHORT DosMonClose(hmon)
HMONITOR hmon; /. monitor handle to close ./

The DosMonClose function closes the specified monitor. The function flushes
and closes all monitor buffers associated with this process.

88 DosMonClose

Parameters

Return Value

See Also

• DosMonOpen

hmon Identifies the monitor to close. This handle must have been created pre­
viously by using the DosMonOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROILMON_INV ALIDJIANDLE

DosMonOpen, DosMonRead, DosMonReg, DosMonWrite

USHORT DosMonOpen(pszDevName, phmon)
PSZ pszDevName; 1* pointer to device name *1
PHMONITOR phmon; 1* pOinter to variable for monitor handle *1

Parameters

Return Value

Comments

See Also

• DosMonRead

The DosMonOpen function opens a monitor and creates a handle that can be
used to identify the monitor. Only one monitor per process is allowed-that is,
DosMonOpen must not be called more than once by any process.

pszDevName Points to a null-terminated string. This string specifies the name
of the device for which the monitor is to be opened.

phmon Points to the variable that receives the monitor handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILMON_INVALIDJ)EVNAME
ERROR_NOT~NOUGILMEMORY

You can determine whether a device supports a monitor by using the DosDev­
IOCtl function. For more information, see DEV _QUERYMONSUPPORT in
Chapter 3, "Input-and-Output Control Functions."

DosMonClose, DosMonRead, DosMonWrite

USHORT DosMonRead(pblnBuffer, twait, pbDataBuf, pcbDataBuf)
PBYTE pblnBuffer; I. pointer to buffer for monitor input *1
UCHAR twait; I. wait/no-wait flag *1
PBYTE pbDataBuf; I. pointer to buffer for data records .1
PUSHORT pcbDataBuf; I. pOinter to variable with size of buffer *1

Parameters

The DosMonRead function reads data records from the device associated with
the specified monitor and copies the records to a buffer.

pblnBuffer Points to the buffer for monitor input. This handle must have been
registered previously by using the DosMonReg function.

Return Value

Comments

See Also

• DosMonReg

DosMonReg 89

/Wait Specifies whether the function should wait for input. If this parameter is
DCWW _WAIT, the function waits until input is ready. If this parameter is
DCWW_NOWAIT, no input is ready, and the function returns immediately.

pbDataBuf Points to the buffer that receives the data records.

pcbDataBuf Points to the variable that contains the size (in bytes) of the
buffer that receives the data records. When the DosMonRead function returns,
it sets the variable to the number of bytes copied from the data record to the
buffer.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ON_BUFFER-EMPTY
ERRO~ON~UFFER-TOO_SMALL
ERRO~ONJNVALIDYARMS

Device monitors must respond rapidly to avoid delaying input and output (I/O).
(This rapid response is especially important for keyboard monitors.) A monitor
process should be written so that any threads that read and write the monitor
data run at a high priority. These threads should never perform operations that
might delay them, such as waiting for 1/0 or a semaphore. The monitor process
can have other threads running at normal priority to handle such operations.

DosMonClose, DosMonOpen, DosMonReg, DosMonWrite

USHORT DosMonReg(hmon. pblnBuf. pbOutBuf. fPosition. uslndex)
HMONITOR hmon; I. monitor handle to register .1
PBYTE pblnBuf; I. pointer to structure for Input buffer .1
PBYTE pbOutBuf; I. pointer to structure for output buffer .1
USHORT 'Position; I. position flag .1
USHORT uslndex; I. Index .1

Parameters

The DosMonReg function registers a monitor by placing it in a chain of other
monitors for the same device. Each monitor receives input from or sends output
to the device in the order in which it appears in the chain.

hmon Identifies the monitor to register. This handle must have been created
previously by using the DosMonOpen function.

pblnBuf Points to the MONIN structure that receives data from the device
driver or from the previous monitor in the chain. The MONIN structure has the
following form:

typed.ef struct _MONIN {
USHORT cb;
BYTE abReserved[18];
BYTE bBuffer[108];

} MONIN;

For a full description, see Chapter 4, "Types, Macros, Structures."

90 DosMonReg

Return Value

Comments

See Also

• DosMonWrite

pbOutBuf Points to the MONOUT structure that receives data for the next
monitor in the chain. The MONOUT structure has the following form:

typedef struct _MONOUT {
USHORT cb;
BYTE abReserved[18];
BYTE abBuffer[108];

} MONOUT;

For a full description, see Chapter 4, "Types, Macros, Structures."

[position Specifies the position of the monitor in the chain of input and out­
put. This parameter can be one of the following values:

Value

MONITOR_BEGIN

MONITOR_DEFAULT

Meaning

Place the monitor at the beginning of the chain,
in front of any other monitors already in the
chain. .

Place the monitor anywhere in the chain.

Place the monitor at the end of the chain, after
any other monitors already in the chain.

uslndex Specifies a device-specific value. If the device is the keyboard, this
parameter specifies the identifier for the screen group to monitor. If no screen­
group number is available (because the monitor is detached), the identifier of the
current foreground screen group can be obtained by calling the DosGetInfoSeg
function. (The current foreground screen group is the screen group that made
the most recent call to the KbdCharIn function.)

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR.-MON.J3UFFEICTOO_SMALL
ERROR-MONJNV ALIDJIANDLE
ERROR-MONJNV ALIDYARMS
ERROR_NOT-ENOUGILMEMORY

The MONIN and MONOUT structures must be in the same segment.

DosMonClose, DosMonOpen, DosMonRead, DosMonWrite, KbdCharIn

USHO~T DosMonWrite(pbOutBuf, pbDataBuf, cbDataBuf)
paYTE pbOutBuf; 1* monitor-output buffer *1
paYTE pbDataBuf; 1* buffer from which records are taken *1
USHORT cbDataBuf; 1* number of bytes -t

Parameters

The DosMonWrite function writes one or more data records into a device's out­
put stream. The output-buffer structure identifies the device that receives the
data records.

pbOutBuf Points to the output-buffer structure for the monitor. The monitor
must have been registered previously by using the DosMonReg function.

Return Value

Comments

See Also

• DosMove

DosMove 91

pbDataBuJ Points to the buffer that contains the data records to insert into
the device's output stream.

cbDataBuJ Specifies the number of bytes of data records in the buffer pointed
to by the pbDataBuJ parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ON~ATA-TOO-LARGE
ERROR-MONJNVALIDYARMS

Device monitors must respond rapidly to avoid delaying input and output (110).
(This rapid response is especially important for keyboard monitors.) A monitor
process should be written so that any threads that read and write the monitor
data run at a high priority. These threads should never perform operations that
might delay them, such as waiting for I/O or a semaphore. The monitor process
can have other threads running at normal priority to handle such operations.

DosMonClose, DosMonOpen, DosMonRead, DosMonReg

USHORT DosMove(pszOldName. pszNewName. ulReserved)
PSZ pszOldName; 1* pointer to old path and filename *1
PSZ pszNewName; 1* pOinter to new path and filename *1
ULONG ulReserved; 1* must be zero *1

Parameters

Return Value

The DosMove function moves a specified file to a specified new directory and/or
filename. The function is often used to rename an existing file by moving the file
to a new filename location in the same directory. The function can also be used
to move a file to a new directory while preserving the existing filename or to
rename any directory that is not the root directory.

The DosMove function is a family API function.

pszOldName Points to a null-terminated string. This string specifies the
current filename of the file to be moved. The string must be a valid MS OS/2
filename.

pszNewName Points to a null-terminated string. This string specifies the new
directory and filename of the file to be moved. The string must be a valid MS
OS/2 filename.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORACCESS~ENIED
ERRO~RlVE-LOCKED
ERRORYILE_NOTYOUND
ERRO~NOT~OS_DISK
ERRO~NOT_SAME~EVICE
ERRORY ATILNOT_FOUND
ERROR_SHARING_BUFFER-EXCEEDED
ERRO~SHARING_ VIOLATION

92 DosMove

Comments

Example

See Also

The DosMove function cannot move a file from one drive to another; if a drive
is used in the pszOldName string, the same drive must be used in the pszNew­
Name string.

Wildcard characters are not allowed in the filename.

This example calls the DosMove function to move the file abc to the root direc­
tory of the current drive and to rename the file xyz. This does not copy the file,
but it may change the subdirectory that the filename appears in and may change
the filename itself.
DosMove ("abo",

"\ \xyz" ,
OL);

DosDelete, DosSelectDisk

1* old filename and path *1
1* new filename and path *1
1* reserved *1

• DosMuxSemWait
USHORT DosMuxSemWait(pisemCleared, pmsxl,ITimeOut)
PUSHORT pisemC/eared; I. pOinter to variable for cleared semaphore .1
PYOID pmsxl; I. pointer to structure containing semaphore list .1
LONG ITimeOut; I. time-out value .1

Parameters

The DosMuxSem Wait function waits for one or more of the specified sema­
phores to clear. The function first checks the semaphores specified in the list
pointed to by the pmsxl parameter. If any of the semaphores in this list are
clear, the function returns. Otherwise, the function waits until the time specified
by the I Time Out parameter elapses or until one of the semaphores in the list
clears.

The semaphore list can contain up to 16 semaphores.

pisemCleared Points to the variable that receives the index number of the
most recently cleared semaphore.

pmsxl Points to the MUXSEMLIST structure containing a semaphore list that
defines the semaphores to be cleared. The semaphore list consists of one or
more semaphore handles. The MUXSEMLIST structure has the following form:
typedef struot _MUXSEMLIST {

USHORT omxs;
MUXSEM amxs[16];

} MUXSEMLIST;

The structure may contain up to 16 semaphores.

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Comments

Example

DosMuxSemWait 93

1 Time Out Specifies how long to wait for the semaphores to become available.
If the value is greater then zero, this parameter specifies the number of milli­
seconds to wait before returning. If it is SEMJMMEDIATEJETURN, the
function returns immediately. If it is SEMJNDEFINITE_ WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR~XCL_SE~LREADY_OWNED
ERRORJNTERRUPT
ERRORJNVALID~VENT_COUNT
ERROR_INV ALIDJIANDLE
ERRORJNVALID~IST_FORMAT
ERROR_SEM_TIMEOUT
ERROR-TOO~ANY~UXWAITERS

Although it is declared with the PVOID type, the second parameter of the
DosMuxSemWait function must point to a MUXSEMLIST structure. You can
create the structure by using the DEFINEMUXSEMLIST macro. The macro has
the following syntax:

DEFINEMUXSEMLIST(name, size)

The name parameter specifies the name of the structure to be created, and the
size parameter specifies the number of elements in the structure-that is, the
number of semaphores in the list. This macro creates an array of MUXSEMLIST
structures.

Unlike the other blocking semaphore functions (DosSemRequest, DosSem­
SetWait and DosSemWait), DosMuxSemWait returns whenever one of the
semaphores on its list is cleared, regardless of how long that semaphore may
remain cleared. It is possible that the semaphore could be reset before the
DosMuxSemWait function returns.

The DosMuxSemWait function does not set or claim any of the semaphores.

The DosMuxSemWait function can be used in conjunction with one or more
semaphores as a triggering or synchronizing device. One or more threads can use
DosMuxSemWait to wait for a semaphore. When an event occurs, another
thread can clear that semaphore and immediately set it again. Any threads that
waited for that semaphore by using DosMuxSemWait will return. Threads that
were waiting by using one of the "level-triggered" functions (DosSemRequest,
DosSemSetWait, or DosSemWait) mayor may not resume, depending on the
scheduler's dispatch order and the activity of other threads in the system.

This example creates a structure of system semaphore handles for use by the
DosMuxSem Wait function. It sets the first element of the structure to the num­
ber of handles stored and creates two semaphore handles. It then calls DosMux­
Sem Wait to wait until one of the semaphores is cleared. It uses the value of the
usSemlndex parameter to find out which semaphore is cleared, and if it is sema­
phore 1, the example sets that semaphore.

94 DosMuxSemWait

See Also

• DosNewSize

DEFINEMUXSEMLIST(MuxLlst, 2) /* creates structure array */
USHORT usSemlndex;
MuxLlst.cmxs = 2;
DosCreateSem(CSEM_PUBLIC, &MuxLlst.amxs[O] .hsem,

"\\sem\\tlmerO.sem");
DosCreateSem(CSEM_PUBLIC, &MuxLlst.amxs[l] .hsem,

"\\sem\\tlmer1.sem");

DosMuxSemWalt(&usSemlndex, &MuxLlst, SOOOL);
If (usSemlndex == 1) {

DosSemSet (MuxLlst.amxs [1] .hsem);

DosCreateSem, DosSemRequest, DosSemSet, DosSemSetWait, DosSemWait,
WinMsgMuxSem Wait

USHORT DosNewSize(hf, uINewS;ze)
HFILE hf; 1* file handle *1
ULONG uINewS;ze; 1* new size of file *1

Parameters

Return Value

Comments

Example

The DosNewSize function changes the size of the specified file. The function can
be used to truncate or extend a file. If a file is extended, the value of the new
bytes is undefined.

The DosNewSize function is a family API function.

hi Identifies the file to be changed. This handle must have been created previ­
ously by using the DosOpen function.

ulNewSize Specifies the file's new size (in bytes).

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESSJ)ENIED
ERROR_DISKYULL
ERRORJNVALIDJIANDLE
ERRORJNVALIDYARAMETER
ERROR-LOC~ VIOLATION
ERRO~NOTJ)OS_DISK

The DosNewSize function applies only to files that have been opened for writing.
To change the size of a read-only file, first change the file's attributes by using
the DosSetFileMode function, then open the file for writing.

If the function extends a file, the system will attempt to allocate sectors that are
contiguous with the existing file sectors.

This example opens the file abc and calls the DosNewSize function to set the
file's size to 100 bytes. If the file already exists and is larger than 100 bytes, it is
truncated to 100 bytes. If the file is smaller than 100 bytes, or if it was created by
using the DosOpen function, it is expanded to 100 bytes.

See Also

• DosOpen

HFILE hf;
USHORT usAction;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,

FILE_OPEN I FILE_CREATE,

DosOpen 95

OPEN_ACCESS_READWRITE I OPEN_SHARE_DENYREADWRITE, OL);
DosNewSize(hf, 100L);

DosOpen, DosQFilelnfo, DosSetFileMode

USHORT DosOpen(pszFileName, phf, pusAction, ulFileSize, usAttribute, fsOpenFlags, fsOpenMode,
ulReserved)

PSZ pszFileName;
PHFILE phf;

I. pointer to filename *1
I. pointer to variable for file handle .1

PUSHORT pusAction;
ULONG ulFileSize;
USHORT usAttribute;
USHORT fsOpenFlags;
USHORT fsOpenMode;
ULONG ulReserved;

I. pointer to variable for action taken .1
I. file size if created or truncated .1
I. file attribute .1
I. action taken if file exists/does not exist .1
I. open mode of file
I. must be zero

Parameters

The DosOpen function opens an existing file or creates a new file. This function
returns a handle that can be used to read from and write to the file, as well as to
retrieve information about the file.

The DosOpen function is a family API function.

pszFileN arne Points to the null-terminated string that specifies the name of
the file to be opened. The string must be a valid MS OS/2 filename and must not
contain wildcard characters.

ph! Points to the variable that receives the handle of the opened file.

pusAction Points to the variable receiving the value that specifies the action
taken by the DosOpen function. If DosOpen fails, this value has no meaning.
Otherwise, it is one of the following values:

Value

FILE_CREATED

FILE_EXISTED

Meaning

File was created.

File already existed.

FILE_TRUNCATED File existed and was truncated.

ulFileSize Specifies the file's new size (in bytes). This parameter applies only
if the file is created or truncated. The size specification has no effect on a file
that is opened only for reading.

usAttribute Specifies the file attributes. This parameter can be a combination
of the following values:

Value

FILE_NORMAL

FILE_READONL Y

Meaning

File can be read from or written to.

File can be read from, but not written to.

96 DosOpen

Value Meaning

File is hidden and does not appear in a directory
1isting~

FILE_SYSTEM

FILE_ARCHIVED

File is a system file.

File has been archived.

File attributes apply only if the file is created.

fsOpenFlags Specifies the action to take both when the file exists and when it
does not exist. This parameter may be one of the following values:

Value

FILE_TRUNCATE

Meaning

Create a new file; fail if the file
already exists.

Open an existing file; fail if the
file does not exist.

Open an existing file or create the
file if it does not exist.

Open an existing file and change
to a given size.

Open an existing file and truncate
it. or create the file if it does not
exist.

fsOpenMode Specifies the modes with which to open the file. It consists of
one access mode and one share mode. The other values are option and can be
given in any combination:

Value

OPEN_ACCESS_READWRITE

OPEN_ACCESS_ WRITEONL Y

OPEN_SHARE_DENYREADWRITE

Meaning

Data may be read from the file
but not written to it.

Data may be read from or written
to the file.

Data may be written to the file
but not read from it.

Other processes can open the file
for any access: read-only. write­
only. or read-write.

Other processes can open the file
for write-only access but they can­
not open it for read-only or read­
write access.

The current process has exclusive
access to the file. The file cannot
be opened by any process (includ­
ing the current process).

Value

OPEN_SHARE_DENYWRITE

OPEN_FLAGS_NOINHERIT

DosOpen 97

Meaning

Other processes can open the file
for read-only access but they can­
not open it for write-only or
read-write access.

The file handle represents a physi­
cal drive that has been opened for
direct access. (The pS'lFileName
parameter must specify a drive
name.) The DosDevIOCtl func­
tion can be used with this file han­
dle to bypass the file system and
to access the sectors of the drive
directly.

Any function that uses the file
handle returns immediately with
an error value if there is an 110
error-for example, when the
drive door is open or a sector is
missing. If this value is not
specified, the system passes the
error to the system critical-error
handler, which then reports the
error to the user with a hard-error
popup. The fail-on-error flag is
not inherited by child processes.

The fail-on-error flag applies to all
functions that use the file handle,
with the exception of the Dos­
DevIOCtl function.

The file handle is not available to
any child process started by the
current process. If this value is
not specified, any child process
started by the current process may
use the file handle.

This flag applies to functions,
such as DosWrlte, that write data
to the file. If this value is spec­
ified, the system writes data to the
device before the given function
returns. Otherwise, the system
may store the data in an internal
file buffer and write the data to
the device only when the buffer is
full or the file is closed.

ulReserved Specifies a reserved value; must be zero.

98 DosOpen

Return Value

Comments

Restrictions

Example

See Also

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILACCESSJ)ENIED
ERROR_CANNOT~AKE
ERRORJ)ISK_FULL
ERRORJ)RIVE_LOCKED
ERRO~FILE_NOT_FOUND
ERROR_INV ALID~CCESS
ERRORJNVALID_PARAMETER
ERRO~NOTJ)OS_DISK
ERRO~OPENYAILED
ERROR_PATH_NOTYOUND
ERRO~SHARING.J3UFFE~EXCEEDED
ERRO~SHARING_ VIOLATION
ERROR_TOO_MANY_OPENYILES

The ERROR~CCESS_DENIED value is returned if you try to open a file in a
mode that is incompatible with the file's current access and sharing modes-for
example, if you attempt to open a read-only file for writing. This error is also
returned if some other process has opened the file with a sharing method that
denies the type of access you have requested.

Once the file is opened, the DosSetFHandState function can be used to change
the OPENYLAGSY AIL_ON-ERROR, OPENYLAGS_NOINHERIT, and
OPENYLAGS_ WRITE_THROUGH flags specified in the jsOpenMode param­
eter.

MS OS/2 does not provide a built-in method to inform a child process that it has
inllerited a given file handle. The parent process must pass this information to a
child process. If the file is created without the OPENYLAGS_NOINH~RIT
flag, and the· parent process terminates without closing the file, the file will
remain open until all child processes have terminated.

In real mode, the following restriction applies to the DosOpen function:

• Only the access modes and the OPENYLAGSJ)ASD flag may be
specified for the jsOpenMode parameter.

This example calls the DosOpen function to create a file abc that is 100 bytes
long and open it for write-only access. The jsOpenFlags parameter is set to
FILE_CREATE so that DosOpen will return an error if the file already exists.

HE'ILE hf;
USHORT usAction;
DosOpen("abc",

&hf,
&usAction,
lOOL,
FILE_NORMAL,
FILE_CREATE,
OPEN_ACCESS_WRITEONLY
OL) ;

/* filename to open */
/* address of file handle */
/* action taken */
/* size of new file */
/* file attribute */
/* create the file */

OPEN_SHARE_DENYNONE, /* open mode */
/* reserved */

DosBuffieset, DosChgFilePtr, DosDevIOCtl, DosOupHandle, OosExecPgm,
DosQFHandState, DosQFilelnfo, DosQFileMode, DosQFSlnfo, DosSetFHand­
State, DosSetFileMode

DosOpenSem 99

• DosOpenQueue
USHORT DosOpenQueue (ppidOwner, phqueue, pszQueueName)
PUSHORT ppidOwner; I" pointer to variable for queue owner's identifier "I
PHQUEUE phqueue; I" pointer to variable for handle of queue "I
PSZ pszQueueName; I" pointer to name of queue .1

Parameters

Return Value

See Also

• DosOpenSem

The DosOpenQueue function opens a queue for the current process.

ppidOwner Points to the variable that receives the process identifier of the
queue owner.

phqueue Points to the variable that receives the handle of the queue.

pszQueueName Points to a null-terminated string. This string identifies the
queue and must have the following form:

\queues\name

The string name, name, must have the same format as an MS OS/2 filename and
must identify a queue that has been created previously by using the Dos­
CreateQueue function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_QUE_NAME_NOT-EXIST
ERROR_QUE_NO~EMORY

DosCloseQueue, DosCreateQueue, DosReadQueue, DosWriteQueue

USHORT DosOpenSem(phsem, pszSemName)
PHSEM phsem; I. pointer to variable for semaphore handle "I
PSZ pszSemName; I. pointer to semaphore name .1

Parameters

Return Value

The DosOpenSem function opens a system semaphore of the specified name and
returns a unique semaphore handle. The semaphore handle can then be used to
set and clear the semaphore and to carry out other tasks that use the semaphore.

phsem Points to the variable that receives the new semaphore handle.

pszSemName Points to the null-terminated string that identifies the sema­
phore. The string must have the following form:

\sem\name
The string name, name, must have the same format as an MS OS/2 filename and
must identify a semaphore that has been created previously by using the Dos­
CreateSem function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILINVALID_NAME
ERROR_SE~NOT_FOUND
ERROR_TOO~ANY-:..SEMAPHORES

100 DosOpenSem

Comments

Example

See·Also

The DosOpenSem function only returns the handle of the semaphore; it does
not test or change the value of the semaphore. The semaphore handle is the
same as the semaphore handle returned by the DosCreateSem function that
created the semaphore.

If a process creates a child process by using the DosExecPgm function, the new
process inherits any open semaphore handles.

Under'MS OS/2, system semaphores reside in a memory buffer rath~r than a
disk file. When the last process with an open semaphore terminates, that sema­
phore is closed and is no longer available to any other process.

This example calls the DosOpenSem function to open a system semaphore that
had been created previously:

HSEM hsem;
DosOpenSem(&hsem, "\\sem\\abc,ext");

DosCloseSem(hsem);

1* handle to semaphore *1
1* opens the semaphore *1

1* closes the semaphore *1

DosCloseSem, DosCreateSem, DosExecPgm, DosSemClear, DosSemRequest

• DosPeekNmPipe
USHORT DosPeekNmPipe(hp, pbBuf. cbBuf, pcbRead, pcbAvail, pfsState)
HPIPE hp; 1* pipe handle *1
PBYTE pbBuf; 1* pOinter to buffer for data *1
USHORT cbBuf; 1* length of buffer for data *1
PUSHORT pcbRead; 1* pointer to variable for number bytes read *1
PUSHORT pcbAvail; I*. pOinter to variable for number bytes available *1
PUSHORT pfsState; 1* pointer to variable for pipe state *1

Parameters

The DosPeekNmPipe function copies a pipe's data into a buffer.

hp Identifies the pipe to read from.

pbBuf Points to a buffer that receives the data from the pipe.

cbBuf Specifies the length (in bytes) of the buffer that receives the data from
the pipe.

pcbRead Points to the variable that receives a value specifying the number of
bytes read from the pipe.

pcbAvail Points to the variable that the receives a value specifying the number
of bytes that were available to be read. The first two bytes of this buffer specify
the number of bytes remaining in the pipe (including message-header bytes). The
next two bytes specify the number of bytes remaining in the current message.
(There will be zero bytes remaining in the current message for a byte-stream
pipe.)

pfsState Points to the variable that receives the state of the pipe. The state
may be one of the following values:

Return Value

Comments

See Also

• DosPeekQueue

Value

DosPeekQueue 101

Meaning

The pipe is closed and can no longer
be used.

The pipe has been opened and is
available for reading and writing.

The serving end must call the Dos­
ConnectNmPlpe function to put the
pipe into a listening state l>efore a
call to the DosOpen function will be
accepted. A pipe is in a discon­
nected state between a call to the
DosMakeNmPlpe function and a call
to the DosConnectNmPlpe function.

The pipe will accept a call to the
DosOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ3ADYIPE
ERRORYIPE_NOT_CONNECTED

The DosPeekNmPipe function never blocks, regardless of the blocking mode of
the pipe.

If the DosDisConnectNmPipe function has been called, the pipe will remain
disconnected until a call is made to the DosConnedNmPipe function.

DosConnectNmPipe, DosDisConnectNmPipe, DosMakeNmPipe, DosRead

USHORT DosPeekQueue(hqueue, pqresc, pcbElement, ppv, pusElementCode, fWait, pbElemPrty, hsem)
HQUEUE hqueue; 1* handle of queue to read from *1
PQUEUERESULT pqresc; 1* pOinter to structure for PID and request code *1
PUSHORT pcbElement; 1* pOinter to variable for number of bytes *1
PVOID FAR * ppv; 1* pOinter to buffer for element received *1
PUSHORT pusElementCode; 1* pOinter to variable for element position *1
UCHAR fWait; 1* wait/no wait indicator *1
PBYTE pbElemPrty; 1* pOinter to variable for priority of element *1
ULONG hsem; 1* semaphore handle *1

Parameters

The DosPeekQueue function retrieves an element without removing it from a
queue. It copies the address of the element to a pointer and fills a structure with
information about the element.

hqueue Identifies the queue to be read from. This handle must have been pre­
viously created or opened by using the DosCreateQueue or DosOpenQueue
function.

102 DosPeekQueue

Return Value

Comments

See Also

pqresc Points to the structure that receives information about the request. The
QUEUERESULT structure has the following form:

typedef struct _QUEUERESULT {
PlO pidProcess;
USHORT usEventCode;

} QUEUERESULT;

For a full description, see Chapter 4, "Types, Macros, Structures."

pcb Element Points to the variable that receives the length in bytes of the ele­
ment.

ppv Points to a pointer that receives the address of the element in the queue.

pusElementCode Points to the variable that specifies where to look in the
queue for the element. If the pusElementCode parameter is OXOOOO, the fUnction
looks at the beginning of the queue. Otherwise, the function assumes the value is
an element identifier and looks for the element that immediately follows the
specified element. When the function returns, it copies the identifier of the
retrieved element to the variable. The element identifier can then be used to
search for the next element or to read the given element from the queue.

/Wait Specifies whether the function should wait for an element to be placed
in the queue, if the queue is empty. If thefWait parameter is DCWW_WAIT,
the function waits until an element is available. If it is DCWW _NOW AIT, the
function returns immediately.

pbElemPrty Points to a variable that receives the priority value specified when
the element was added to the queue. This is a numeric value from 0 through 15;
15 is the highest priority.

hsem Identifies a semaphore. This value can be the handle of a system sema­
phore that has been previously created or opened by using the DosCreateSem or
DosOpenSem function, or it can be the address of a RAM semaphore. This
semaphore would typically be used in a call to the DosMuxSem Wait function to
wait until the queue has an element. If the fW ait parameter is DCWW _ WAIT,
hsem is ignored.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~QUE~LEMENT_NOT~XIST
ERRO~QUE~MPTY
ERRO~QUEJNVALIDJIANDLE
ERRO~QUEJNVALID_ WAIT
ERRO~QUEJ>ROC_NOT_OWNED

If the queue is empty, the DosPeekQueue function either returns immediately or
waits for an element to be written to the queue, depending on the value of the
fWait parameter.

Only the process that created the queue may call the DosPeekQueue function.

DosCreateQueue, DosCreateSem, DosMuxSemWait, DosOpenSem, DosOpen­
Queue, DosReadQueue

DosPhysicalDisk 103

• DosPhysicalDisk
USHORT DosPhysicaIDisk(usFunction, pbOutBuf, cbOutBuf, pbParmBuf, cbParmBuf)
USHORT usFunction; 1* action to take *1
PBYTE pbOutBuf; 1* pOinter to output buffer *1
USHORT cbOutBuf; 1* output-buffer length *1
PBYTE pbParmBuf; 1* pointer to user-supplied information *1
USHORT cbParmBuf; 1* length of user-supplied information *1

Parameters

Return Value

Comments

The DosPhysicalDisk function retrieves information about partitionable disks.

usFunction Specifies the action to take. It can be one of the following values:
Value

INFO_FREEIOCTLHANDLE

INFO_GETIOCTLHANDLE

Meaning

Retrieve the total number of
partitionable disks.

Release the handle obtained
by a previous call to Dos­
PhyslcalDlsk.

Retrieve a handle to use
with Category 9 IOCtl func­
tions.

pbOutBut Points to the buffer that receives output information. For a full
description, see the first list under "Comments."

cbOutBut Specifies the length (in bytes) of the output buffer.

pbParmBuf Points to a buffer that contains parameter data. For a full descrip­
tion, see the second list under "Comments."

cbParmBuf· Specifies the length (in bytes) of the parameter buffer.

The return value is zero if the function is successful. Otherwise, it is an error
value.

When DosPhysicalDisk is used to obtain a handle to a partition able physical
drive (a usFunction value of INFO_GETIOCTLHANDLE), the pbParmBuj
parameter should point to a null-terminated string that contains the drive num­
ber and a colon (:). The cbParmBuj parameter must contain the length of the
entire string, including the trailing null character. For example, to obtain a han­
dle for the first partitionable disk, pbParmBuj should point to "1:" and cbParm­
Buj should be 3.

The organization and content of the output buffer depend on the given function,
as follows:

Function cbOutBuf

1 2

2 2

3 o

Returned information

Total number of parti­
tionable disks in system
(one-b ased).
Handle for the specified
partitionable disk for
the Category 9 IOCti
functions.
None. Pointer must be
zero.

104 DosPhysicalDisk

Example

See Also

• DosPortAccess

This organization and content of the parameter buffer depend on the given func­
tion, as follows:

Function

1
2

3

cbParmBuf

o
Length of string, includ­
ing terminal null charac­
ter

2

Input parameters

None. Must be zero.
Null-terminated string
that specifies the parti­
tionable disk. The string
must have the following
form:

numben

The number parameter
specifies the partition­
able disk number. Parti­
tionable disk numbers
start at 1.
Handle retrieved by
function 2.

This example calls the DosPhysicaIDisk function to determine the total number
of partitionable disks. The total value is placed in the usDataBuffer variable.

USHORT usDataBuffer;
DosPhysicalDisk(INFO_COUNT_PARTITIONABLE_DISKS,

(PBYTE) &usDataBuffer, /* address of data buffer */
2, /* length of data buffer */
NULL, /* pointer to parameter list */
0); /* length of parameter list */

DosDevConfig, DosDevIOCtl

USHORT DosPortAccess (usReserved, fRelease, usFirstPort, usLastPort)
USHORT us Reserved; I. must be zero .1
USHORT (Release; I. request/release indicator .1
USHORT usFirstPort; I. first port number .1
USHORT usLastPort; I. last port number .1

Parameters

The DosPortAccess function requests or releases access to a port, or ports, for
input/output privilege.

usReserved Specifies a reserved value; must be zero.

IRelease Specifies the type of access request. If this parameter is FALSE, the
function requests access to a port. If it is TRUE, the function releases access to
a port.

usFirstPort Specifies either a single port or the starting port number (start-of­
range) in a contiguous range.

usLastPort Specifies either a single port or the ending port number (end-of­
range) in a contiguous range. If only one port is being used, the usFirstPort and
usLastPort parameters must be the same.

Return Value

Comments

See Also

• 'DosPTrace

DosPTrace 105

The return value is zero if the function is successful. Otherwise, it is an error
value.

Programs that perform input or output (1/0) to a port, or ports, in 10PL seg­
ments must request port access from the operating system.

Granting port access automatically grants eli and sti privileges from the operat­
ing system. Therefore, there is no need to make an additional call to the Dos­
CLIAeeess function.

DosCLIAeeess

USHORT DosPTrace (pvPtraceBuf)
PVOID pvPtraceBuf; I. pointer to structure receiving register values .1

Parameters

Return Value

The DosPTraee function provides access to the MS OS/2 debugging functions.
These debugging functions are available to any process that starts a protected­
mode child process by using the DosExeePgm function with the fExecFlags
parameter set to EXEC_TRACE.

pvPtraceBuf Points to the PTRACEBUF structure that receives the current
values of the child process's registers and a code that indicates the reason for
returning. The PTRACEBUF structure has the following form:
typedef struct PTRACEBUF {

PID pid;
TID tid;
USHORT cmd;
USHORTvalue;
USHORToffv;
USHORT segv;
USHORT mte;
USHORT rAX;
USHORT rBX;
USHORT rCX;
USHORT rDX;
USHORT rSI;
USHORT rDI;
USHORT rBP;
USHORT rDS;
USHORT rES;
USHORT rIP;
USHORT rCS;
USHORT rF;
USHORT rSP;
USHORT rSS;

} PTRACEBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILACCESSJ)ENIED
ERROR-IN V ALID..FUNCTION
ER'RORJNV ALID..PROCID

106 DosPTrace

Comments

See Also

To use the DosPTrace function, you need to provide the following function pro­
totype in your source file:

USHORT DosPTrace(PVOID);

The DosPTrace function lets a parent process control the execution of the child
process and access the child process's memory directly to insert break points or
change data.

The parent process starts the child process to be debugged, then stops the child
process by using the DosPTrace function with the cmdfieldof the PTRACEBUF
structure set to OxOOOA. The parent process can then insert break points or
change memory in the child process by using DosPTrace and the cmd field
values. Next, the parent process can start execution by setting the cmd field to
OxOOO7 (go until break point) or OxOOO9 (single step). The parent process can set'
initial register values by setting cmd to OxOOO6. After it is started, the child pro­
cess returns control to the parent process if it encounters a break point, a non­
maskable interrupt, a single-step interrupt, or the end of the program.

The DosPTrace function can be used to debug a process with multiple threads
by setting the tid field of the PTRACEBUF structure to the identifier of the
thread to be debugged. Other threads in the process are suspended. (The
address space is the same for all threads in a proces.s.) Commands to read from
or write to memory locations or set break points affect all threads in the pro­
cess, even if the command is issued with a specific thread identifier. If the
parent process uses the OxOOOB command, a selected thread or group of threads
can keep running while others are suspended. This allows only the selected
threads to be affected by the break points and manipulated.

DosExecPgm, DosGetInfoSeg

• DosPurgeQueue
USHORt DosPurgeQueue (hqueue)
HQUEUE hqueue; 1* handle of queue to be purged *1

Parameters

Return Value

Comments

See Also

The DosPurgeQueue function purges a queue of all elements.

hqueue Identifies the queue to be purged. This handle must have been created
previously by using the DosCreateQueue function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-QUEJNVALID_HANDLE
ERROILQUEJ>ROC_NOT_OWNED

Only the process that created the queue may call the DosPurgeQueue function.

DosCreateQueue

DosQAppType 107

• DosPutMessage,
USHORT DosPutMessage(hf, cbMsg, pchMsg)
HFILE hf; /. handle of output file/device ./
USHORT cbMsg; /. length of message buffer ./
PCHAR pchMsg; /* pointer to message buffer *1

Parameters

Return Value

Comments

Restrictions

See Also

• DosQAppType

The DosPutMessage function writes the message pointed to by the pchMsg
parameter to the file identified by the hi parameter.

The DosPutMessage function is a family API function.

hf Identifies the file that receives the message. This handle must have been
created previously by using the DosOpen function. Standard file handles (such
as 1 and 2) can also be used.

cbMsg Specifies the length (in bytes) of the message to output.

pchMsg Points to the message to output.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJIANDLE
ERROILMR-UNYERFORM
ERROR-WRITEYROTECT

The DosPutMessage function uses an 80-column screen width. If a word is
about to span column 80, the function "wraps" the word to a new line at column
1. If the last character to be positioned on a line is a double-byte character that
would be bisected, this rule ensures that the character is not bisected.

When handling word wrapping, the DosPutMessage function uses column 1 as
the starting position of the cursor.

In real mode, the following restriction applies to the DosPutMessage function:

• There is no method of identifying the boot drive. The system assumes
that the message file is in the root directory of the current drive.

DosGetMessage, DoslnsMessage, DosOpen

USHORT DosQAppType (pszPrgName, pusType)
PSZ pszPrgName; /. pointer to executable-file name .;
PUSHORT pusType; /. pointer to application-type flags .;

Parameters

The DosQAppType function retrieves the application type of an executable file.
The application type is specified at link time in the module-definition file.

pszPrgName Points to the null-terminated string that contains . the name of the
executable file for which the flags are to be returned. If the string appears to be
a fully qualified path (that is, it contains a colon in the second position and/or
contains a backslash), the file will be searched for in the indicated directory on
the indicated drive. If neither of these conditions is true and the file is not in the

108 DosQAppType

Return Value

• DosQCurDir

current directory, each drive and directory specification in the path defined in
the current program's environment will be searched. The default extension for
an executable file is .exe, although any extension is acceptable.

pus Type Points to a word containing flags that specify the application type, as
determined from the header of the executable file specified by the pszPrgName
parameter. Upon return, the variable pointed to by the pusType parameter will
have one or more of the following flags set:

Value

BOUND

DOSFORMAT

DYNAMICLINK

NOTSPECIFIED

NOTWINDOCOMPAT

WINDOWAPI

WINDOWCOMPAT

Meaning

Application has been "bound" and can run
either in protected mode or with MS-DOS
(either the compatibility box or MS-DOS,
version 3.x).

Application will only run with MS-DOS.

Application is a dynamic-link module.

Application type is not specified in executable
header.

Application will run only in a full screen ses­
sion.

Application runs as a Presentation Manager
window.

Application will run in a VIO window.

The return value is zero if the function is successful. Otherwise, it is one of the
following values:

ERROlLBAD..FORMAT
ERRORJ)RIVE_LOCKED
ERRO~XE..MARKEDJNVALID
ERROlLFILE_NOT..FOUND
ERRORJNV ALID-EXE_SIGNATURE
ERROR_TOO..MANY _OPEN..FILES

USHORT DosQCurDlr(usDrlveNumber, pszPathBuf, pcbPathBuf)
USHORT usDrlveNumber; 1* drive number *1
PBYTE pszPathBuf; 1* pointer to buffer receiving directory path */
PUSHORT pcbPathBuf; 1* pointer to variable receiving length of path */

The DosQCurDir function retrieves the path of the current directory on the
specified drive. DosQCurDlr copies a null-terminated string identifying the
current directory to the buffer pointed to by the pszPathBuj parameter. The
string consists of one or more directory names separated by backslashes (\).
The drive letter is not part of the returned string.

The DosQCurDlr function is a family API function.

Parameters

Return Value

Example

See Also

• DosQCurDisk

DosQCurDisk 109

usDriveNumber Specifies the drive number. The default drive is 0, drive A is
1, drive B is 2, and so on.

pszPathBuf Points to a buffer that receives the path of the current directory.
The path of the current directory is copied to this buffer only if the buffer is
large enough to contain the complete directory.

pcbPathBuf Points to the variable that contains the size (in bytes) of the
pszPathBuf buffer. If the buffer is too small to contain the current path, the
error value ERROILBUFFEICOVERFLOW is returned and this variable
receives the size of the buffer required to contain the complete pathname.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BUFFEICOVERFLOW
ERRORJ)RIVE-LOCKED
ERROICINVALIDJ)RIVE
ERROR_NOTJ)OSJ)ISK
ERROR_NOT-.READY

This example calls the DosQCurDisk function to retrieve the current drive num­
ber, sets the buffer length to zero, and calls DosQCurDir. Since the buffer is too
small to contain a path of any size, DosQCurDir returns the size needed in the
cbPath variable. The DosAllocSeg function is called to allocate the memory
needed for the buffer, and DosQCurDir is called again to retrieve the path
name. This method of setting the buffer length will be successful in any version
of MS OS/2, including future versions, in which the maximum path length may
be longer. .

psz pszPath;
USHORT cbPath, usDisk;
ULONG ulDrives;
SEL selPath;

cbPath = 0;
DosQCurDisk(&usDisk, &ulDrives); 1* gets current drive *1
1* First call DosQCurDir to find out the size of the buffer needed. *1

DosQCurDir(usDisk, NULL, &cbPath);
DosAllocSeg(cbPath, &selPath, SEG_NONSHARED); 1* allocates memory *1
pszPath = MAKEP(selPath, 0); 1* assigns it to a far pointer */
DosQCurDir(usDisk, 1* drive number *1

pszPath, 1* buffer for directory path *1
&cbPath) ; 1* length of directory buffer *1

DosChDir, DosQCurDisk, DosSelectDisk

USHORT DosQCurDisk(pusDriveNumber, pulLogicalDrives)
PUSHORT pusDriveNumber; 1* pointer to variable receiving drive number *1
PULONG pulLogicalDrives; 1* pointer to variable receiving drive map *1

The DosQCurDisk function retrieves the current drive number and a map of the
logical drives.

The DosQCurDisk function is a family API function.

110 DosQCurDisk

Parameters

Return Value

Comments

Example

See Also

pusDriveNumber Points to the variable that receives the number of the
default drive. For example, drive A is 1, drive B is 2, and so on.

pulLogicalDrives Points to the variable that receives the map of the logical
drive.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The current drive number identifies the disk drive to be searched for a given file
if no explicit drive name is given when the filename is specified. The current
drive number is used by functions such as DosOpen and DosFindFirst. Each
process has its own current drive and may change this drive, by using the Dos­
ChDir function, without affecting other processes. The default current drive for
a process is the drive on which the process is called.

The map of the logical drives identifies which of the 26 possible disk drives exist.
The map is a 32-bit value in which each bit of the low-order 26 bits represents a
single drive. For example, bit 0 represents drive A, bit 1 represents drive B, and
so on. If a bit is set to 1, the drive exists; if it is cleared to 0, the drive does not
exist.

This example calls the DosQCurDisk function to determine the current default
drive and how many logical drives exist. The example then displays the letter of
every logical drive after checking whether its bit is set in the ulDrives variable.

CHAR chDrives;
USHORT usDisk;
ULONG ulDrives;
DosQCurDisk(&usDisk, &ulDrives);
for (chDrives = 'A'; chDrives <= 'Z';

if (ulDrives & 1)
VioWrtTTY(&chDrives, 1, 0);

ulDrives »= 1;
}

/* gets current drive */
chDrives++) {

/* if the drive bit is set, */
/* displays the drive letter */

DosChDir, DosFindFirst, DosOpen, DosQCurDir, DosSelectDisk

• DosQFHandState
USHORT DosQFHandState (hf, pfsOpenMode)
HFILE hf; I. file handle .1
PUSHORT pfsOpenMode; I. pointer to variable for file-handle state .1

Parameters

The DosQFHandState function retrieves the state of the specified file handle.
The file-handle state indicates whether the file may be read from or written to
and whether it may be opened for reading or writing by other processes.

The DosQFHandState function is a family API function.

hf Identifies the file whose file-handle state is to be retrieved. This handle
must have been previously created by using the DosOpen function.

Return Value

DosQFHandState 111

pfsOpenMode Points to the variable that receives the file-handle state. The
file-handle state consists of one access mode, one share mode, and optional
flags. It is identical to the values specified in the fsOpenMode parameter of the
DosOpen function. Which values are set can be determined by using the AND
operator to combine the value returned in the pfsOpenMode parameter with one
or more of the following values:

Value

OPEN_ACCESS_READWRITE

OPEN_ACCESS_ WRITEONL Y

Meaning

Data may be read from the file
but not written to it.

Data may be read from or written
to the file.

Data may be written to the file
but not read from it.

Other processes can open the file
for any access: read-only, write­
only, or read-write.

Other processes can open the file
for write-only access but they can­
not open it for read-only or read­
write access.

The current process has exclusive
access to the file.

Other processes can open the file
for read-only access but they can­
not open it for write-only or
read-write access.

The file handle represents a physi­
cal drive that has been opened for
direct access.

Any function that uses the file
handle returns immediately with
an error code if there is an 110
error.

The file handle is private to the
current process.

The system writes data to the
device before the given function
returns.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJIANDLE

112 DosQFHandState

Example

See Also

• DosQFilelnfo

This example calls the DosQFHandState function using the handle of a previ­
ously opened file, and then checks the JsOpenMode variable and reports if the
file is opened for read/write access:

HFILE hf;
USHORT fsOpenMode;

DosQFHandState(hf, &fsOpenMode);
if (fsOpenMode & OPEN_ACCESS_READWRITE)

VioWrtTTY("File opened for read/write access\r\n", 35, 0);
if (fsOpenMode & OPEN_SHARE_DENYREADWRITE)

VioWrtTTY("File cannot be shared\r\n", 23, 0);

DosDevIOCtl, DosExecPgm, DosOpen, DosSetFHandState

USHORT DosQFilelnfo (hf, uslnfoLevel, pfstslnfo, cblnfoBuf)
HFILE hf; I. handle of file about which data sought .1
USHORT uslnfoLevel;
PFILESTATUS pfstslnfo;
USHORT cblnfoBuf;

I. level of file data required
I. pOinter to file-data buffer
I. length of file-data buffer

Parameters

The DosQFileInfo function retrieves information about a specific file. The file
information consists of the date and time the file was created, the date and time
it was last accessed, the date and time it was last written to, the size of the file,
and its attributes.

The file information is based on the most recent call to the DosClose or Dos­
ButReset function.

The DosQFileInfo function is a family API function.

hf Identifies the file about which information is to be retrieved. This handle
must have been created previously by using the DosOpen function.

usInfoLevel Specifies the level of file information required. In MS OS/2, ver­
sion 1.1, this value must be OxOOOl.

pfstsInfo Points to the structure that receives the file information. The FILE­
STATUS structure has the following form:

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

For a full description, see Chapter 4, "Types, Macros, Structures."

chInfoBuf Specifies the length (in bytes) of the buffer that receives the file
information.

Return Value

Example

See Also

• DosQFileMode

DosQFileMode 113

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJJUFFER_OVERFLOW
ERRORJ)IRECT~CCESSJIANDLE
ERRORJNVALIDJIANDLE
ERRORJNVALID~EVEL

This example opens the file abc, calls the DosQFileInfo function to retrieve the
current allocated size, and then calls the DosNewSize function to increase the
file's size by lK:

HFILE hf;
USHORT usAction:
FILESTATUS fstsFile;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL,

FILE_OPEN I FILE_CREATE,
OPEN_ACCESS_WRITEONLY I OPEN_SHARE_DENYNONE, OL);

DosQF ileInfo (hf, 1* file handle
1, 1* level of information
(PBYTE) &fstsFile, 1* address of file-data
sizeof(fstsFile»: 1* size of data buffer

DosNewSize(hf, fstsFile.cbFileAlloc + 1024L);

*1
*1

buffer *1
*1

DosBufReset, DosClose, DosOpen, DosQFileMode, DosSetFileInfo

USHORT DosQFileMode (pszFileName, pusAttribute, ulReserved)
PSZ pszFileName; 1* pointer to filename *1
PUSHORT pusAttribute: 1* pointer to variable for file attributes *1
ULONG ulReserved; 1* must be zero *1

Parameters

The DosQFileMode function retrieves the attributes (mode) of the specified file.
The file attributes are set when the file is created and can be changed at any time
by using the DosSetFileMode function.

The DosQFileMode function is a family API function.

pszFileName Points to a null-terminated string that specifies the name of the
file to be checked. The string must be a valid MS OS/2 filename.

pusAttribute Points to the variable that receives the file attributes. It can be
one or more of the following values:

Value

FILE_NORMAL

FILE_READONL Y

FILE_HIDDEN

FILE_SYSTEM

FILE_DIRECTORY

FILE_ARCHIVED

Meaning

File can be read from and written to.

File can be read from but not written to.

File is hidden and does not appear in a directory
listing.

File is a system file.

File is a subdirectory.

File has been archived.

114 DosQFileMode

Return Value

Comments

Example

See Also

• DosQFSlnfo

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ)RIVE_LOCKED
ERRO~FILE_NOT_FOUND
ERROR_NOTJ)OSJ)ISK
ERRO~PATILNOTYOUND

Y()U cannot use the DosQFileMode function to retrieve the attributes of the
volume label. The attributes of a volume label can be retrieved by using the
DosQFSlnfo function.

This example calls the DosQFiIeMode function and displays a message if the
filename abc is a subdirectory:

USHORT usAttribute;
DosQFileMode("abc". /* filename */

&usAttribute. /* address of variable for file's attribute */
OL) ; /* reserved */

if (usAttribute == FILE_DIRECTORY)
VioWrtTTY("abc is a subdirectory\r\n". 23. 0);

DosQFHandState, DosQFSlnfo, DosSetFiIeMode

USHORT DosQFSlnfo (usDriveNumber, uslnfoLevel, pblnfo, cblnfo)
USHORT usDriveNumber; 1* drive number *1
USHOAT uslnfoLevel; 1* type of information 4
PBYTE pblnfo; 1* pointer to buffer for information *1
USHORT cblnfo; 1* length of information buffer *1

Parameters

The DosQFSlnfo function retrieves file-system information from the disk in the
specified drive. This file-system information defines characteristics of the disk,
such as its size.

There are two levels of file-system information. Levell file-system information
specifies the number of sectors per allocation unit on the disk, the number of
allocation units, the available allocation units, and the number of bytes per sec­
tor. Level 2 file-system information defines the volume label and the date and
time at which the label was created.

The DosQFSlnfo function is a family API function.

uSDriveNUInber Specifies the logical drive number for the disk about which
information is to be retrieved. This parameter can be any value from 0 through
26. If this parameter is zero, information about the disk in the current drive is
retrieved. Otherwise, 1 specifies drive A, 2 specifies drive B, and so on.

uslnfoLevel Specifies the level of file information to be retrieved. In MS
OS/2, version 1.1, this value can be 1 or 2.

Return Value

Example

See Also

• DosQHandType

DosQHandType 115

pblnfo Points to the structure that receives the file-system information. For
levell information, it points to an FSALLOCATE structure. For level 2, it
points to an FSINFO structure. An FSALLOCATE structure has the following
form:

typedef struct _FSALLOCATE {
ULONG idFileSystem;
ULONG cSectorUnit;
ULONG cUriit;
ULONG cUnitAvail;
USHORT cbSector;

} FSALLOCATE;

An FSINFO structure has the following form:

typedef struct _FSINFO {
FDATE fdateCreation;
FTIME ftimeCreation;
VOLUME LABEL vol;

} FSINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

cblnfo Specifies the length (in bytes) of the buffer that receives the file-system
information.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILBUFFER_OVERFLOW
ERROR_INVALID_DRIVE
ERRORJNVALID_LEVEL
ERRO~NO_ VOLUME-LABEL

This example calls the DosQFSlnfo function and displays the volume label of
drive C:

FSINFO fsinf;
DosQFSlnfo (3, /* drive number (c:) * /

2, /* level of information requested */
(PBYTE) &fsinf, /* address 0 f buffer * /
sizeof(FSlnfoBuf»; /* size of buffer' */

VioWrtTTY(fsinf~vol.szVolLabel, fsinf.vol.cch, 0);

DosQFHandState, DosQFileMode, DosSetFSlnfo

USHORT DosQHandType(hf, pfsType, pusDeviceAttr)
HFILE hf; 1* file handle *1
PUSHORT pfsType; 1* pointer to variable for handle type *1
PUSHORT pusDeviceAttr, 1* pointer to variable for device attribute *1

Parameters

The DosQHandType function retrieves information that specifies whether the
given file handle identifies a file, device, or pipe.

hf Identifies the file. This handle must have been created previously by using
the DosOpen function.

116 DosQHandType

Return Value

Comments

Example

See Also

p/sType Specifies the type of file or device associated with the file handle. It
can be one of the following:

Value

HANDTYPE_DEVICE

HAND TYPE_FILE

HANDTYPE_PIPE

Meaning

The handle is to a device, such as a printer.

The handle is to a file.

The handle is to a pipe.

If the file or device is located on a network, this parameter is a combination of
one of the values given above and the value HANDTYPE_NETWORK (OxBOOO).

pusDeviceAttr Points to the variable that receives the device-driver attribute
word.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJIANDLE

The DosQHandType function allows some interactive or file-oriented programs
to determine the source of their input. For example, the cmd.exe program
suppresses the system prompt if the input is from a disk file.

This example calls the DosQHandType function to determine if standard output
has been redirected to a file. The LOBITE macro is an important part of this
example; it allows the handle type to be determined even if the handle is to a file
or device on a network:

USHORT fsType. usDeviceAttr;
DosQHandType(l, It file handle tl

&usHandType. It type of handle tl
&usDeviceAttr); It device attribute tl

if (LOBYTE(fsTr.pe) == HANDTYPE_DEVICE~
VioWrtTTY('stdout is a device\r\n'. 20. 0);

else if (LOBYTE(fsType) & HANDTYPE_FILE) {
if (fsType & HANDTYPE_NETWORK)

}

VioWrtTTY("stdout is a networked file\r\n". 28, 0);
else

VioWrtTTY("stdout is a local file\r\n", 24. 0);

DosOpen, DosQFHandState

• DosQNmPHandState
USHORT DosQNmPHandState(hp, pfsState)
HPIPE hp; /. pipe handle ./
PUSHORT pfsState; /. pointer to variable receiving handle state ./

The DosQNmPHandState function retrieves information about the state of a
specified pipe handle.

Parameters

Return Value

Comments

See Also

DosQNmPipelnfo 117

hp Identifies the pipe to read from.

plsState Points to the variable that receives the handle state. This parameter is
a combination of an instance count, a read-mode flag, a type flag, an end-point
flag, and a wait flag. The possible values are:

Value

PIPE_END_CLIENT

PIPE~OWAIT

Meaning

The handle is the client end of a
named pipe.

The handle is the server end of a
named pipe.

Reading from the pipe returns
immediately if no data is available. If
this flag is not set, reading from the
pipe waits until data is available.

Read the pipe as a message stream.
If this flag is not set, the pipe is read
as a byte stream.

The pipe is a message-stream pipe. If
this flag is not set, the pipe is a
byte-stream pipe.

Unlimited instances of the pipe can
be created. If this flag is ~ot spec­
ified, a value from 1 through 254 can
be used for the number of instances.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ3ADYIPE
ERRORYIPE_NOT_CONNECTED

If the handle is the server end of the pipe, the handle-state values are identical
to those set by the call to the DosMakeNmPipe function that created the pipe. If
the handle is the client end of the pipe, the handle-state values are determined
by the DosOpen function that opened the pipe or are set by the DosSetNm­
PHandState function.

DosMakeNmPipe, DosOpen, DosSetNmPHandState

• DosQNmPipelnfo
USHORT DosQNmPipelnfo(hp. uslnfoLevel. pbBuf. cbBuf)
HPIPE hp; I. pipe handle .1
USHORT uslnfoLevel; I. level of information to retrieve .1
PBYTE pbBuf; I. pointer to buffer receiving information .1
USHORT cbBuf; I. number of bytes in buffer .1

The DosQNmPipelnfo function retrieves information about a named pipe.

Parameters hp Identifies the pipe to read from.

118 DosQNmPipelnfo

Return Value

See Also

uslnfoLevel Specifies the level of information to retrieve. Levell is miscel­
laneous information about the pipe. Level 2 identifies the pipe's clients.

pbBuf Points to the buffer that receives the information. For level-2 informa­
tion, the buffer will contain a unique 2-byte identifier of the client. For level-l
information, the data is stored in the PIPEINFO structure, which has the follow­
ing form:

typedef struct _PIPE INFO {
USHORT cbOut;
USHORT cbIn;
BYTE cbMaxInst;
BYTE cbCurInst;
BYTE cbName;
CHAR szName[l];

} PIPEINFO;

For more information, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies the size (in bytes) of the buffer receiving the information.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_BAD_PIPE
ERROR-BUFFE~OVERFLOW
ERRORJNVALID-LEVEL
ERRORJNVALIDJ> ARAMETER
ERRORJ>IPE_NOT_CONNECTED

DosQNmPHandState, DosQNmPipeSemState

• DosQNmPipeSemState
USHORT DosQNmPipeSemState (hsem, pbBuf, cbBuf)
HSEM hsem; 1* semaphore handle *1
PBYTE pbBuf; 1* pointer to buffer receiving information *1
USHORT cbBuf; 1* buffer size *1

Parameters

Return Value

See Also

The DosQNmPipeSemState function returns information about all local named
pipes that are in blocking mode and are associated with a specified system sema­
phore.

hsem
pbBuf
cbBuf
tion.

Identifies the semaphore that is associated with the named pipe.

Points to the buffer that receives the information.

Specifies the length (in bytes) of the buffer that receives the informa-

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDJ> ARAMETER
ERROR_SE~NOT_FOUND

DosSetNmPipeSem

DosQueryQueue 119

• DosQSyslnfo
USHORT DosQSyslnfo(index, pbSyslnfoBuf, cbSyslnfoBuf)
USHORT index; I. index of value to look up .1
PBYTE pbSyslnfoBuf; I. pointer to buffer receiving information .1
USHORT cbSyslnfoBuf; I. number of bytes in buffer receiving information .1

Parameters

Return Value

See Also

The DosQSysInfo function retrieves system-format information, such as max­
imum path length, that is constant for a particular release of MS OS/2.

index Specifies the index of the information to retrieve. In MS OS/2, version
1.1, the only available index is zero, which returns the maximum path length
(including the trailing null character).

pbSyslnfoBuf Points to the buffer that receives the system information. When
the value of the index is zero, the DosQSysInfo function puts the maximum path
length into the first two bytes of the buffer.

cbSyslnfoBuf Specifies the length (in bytes) of the buffer to receive the sys­
tem information.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-BUFFER-OVERFLOW
ERRORJNVALIDJ> ARAMETER

DosGetVersion

• DosQueryQueue
USHORT DosQueryQueue (hqueue, pusElemCount)
HQUEUE hqueue; I. queue handle .1
PUSHORT pusElemCount; I. pOinter to variable for element count .1

Parameters

Return Value

See Also

The DosQueryQueue function retrieves a count of the number of elements in the
given queue. Any process that has a queue open can call this function.

hqueue Identifies the queue about which information is sought. This handle
must have been previously created or opened by using the DosCreateQueue or
DosOpenQueue function.

pusElemCount Points to the variable that receives the count of elements in
the queue.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-QUEJNVALIDJIANDLE

DosCreateQueue, DosOpenQueue

120 DosQVerify

• DosQVerify
USHORT DosQVerify(pfVerifyOn)
PBOOL pfVerifyOn; I. verification-mode indicator .1

Parameters

Return Value

Example

See Also

The DosQVerify function retrieves the verification mode. The verification mode
specifies whether the system verifies the data each time it writes data to a disk.

The DosQVerify function is a family API function.

pfVerifyOn Points to the variable that receives the verification mode. The
pfVerifyOn parameter is set to TRUE if the system verifies the data. Otherwise,
it is set to FALSE.

The return value is zero if the function is s1,lccessful. Otherwise, it is an error
value.

This example calls the DosQVerify function to determine if write verification is
active and then displays the result:

BOOL fVerifyOn;
DosQVerify(&fVerifyOn) ;
if (fVerifyOn == TRUE)

VioWrtTTY("Verify mode is active\r\n", 23, 0);
else

VioWrtTTY("Verify mode is not active\r\n", 27, 0);

DosSetVerify

• DosR2StackRealioc
USHORT DosR2StackRealioc (usSize)
USHORT usSize; 1* new size for stack.1

Parameters

Return Value

The DosR2StackRealloc function changes the size of a thread's ring-2 stack.
The function reallocates the stack as requested.

This function cannot be used from ring 2;

usSize Specifies the size (in bytes) of the ring-2 stack. The new stack size can­
not be less than the current stack size.

The return value is zero if the function is successful. Otherwise, it is an error
value.

COIR.ad 121

• DosRead
USHORT DosRead(hf. pvBuf. cbBuf. pcbBytesRead)
HFILE hf; I. file handle .1
PVOID pvBuf; I. pointer to buffer receiving data .1
USHORT cbBuf; I. number of bytes In buffer .1
PUSHORT pcbBytesRead; I. pointer to variable for number of bytes read .1

Parameters

Return Value

Comments

Example

See Also

The DosRead function reads up to a specified number of bytes of data from a
file into a buffer. The function may read fewer than the specified number of
bytes if it reaches the end of the file.

The DosRead function is a family API function.

hf Identifies the file to be read. This handle must have been created previously
by using the DosOpen function.

pv Buf Points to the buffer that receives the data.

cbBuf Specifies the number of bytes to read from the file.

pcbBytesRead Points to the variable that receives the number of bytes read
from the file. This parameter is zero if the file pointer is positioned at the end of
the file prior to the call to the DosRead function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILACCESSJ)ENIED
ERROR..BROKENJIPE
ERRORJNVALIDJIANDLE
ERROILLOCIL VIOLATION
ERROILNOTJ)OSJ)ISK

The DosRead function does not return an error if the file pointer is at the end of
the file when the read operation begins.

This example opens, reads, and displays the file abc:
BYTE abBu f [512] ;
HFILE hf;
USHORT usAet1on, cbBytesRead, cbBytesWr1tten;
DosOpen("abc", &hf, &usAct1on, OL, FILE_NORMAL,

OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE,
do <

}

DosRead (hf,
abBuf,
s1zeof(abBuf),
&cbBytesRead);

DosWr1te(1, abBuf,

wh1le (cbBytesRead);

1* f1le handle *1
1* address of buffer *1
1* s1ze of buffer *1
1* address for number of bytes read *1

cbBytesRead, &cbBytesWr1tten);

DosChgFllePtr, DosOpen, DosReadAsyne, DosWrite, KbdStringIn

122 DosReadAsync

• DosReadAsync
USHORT DosReadAsync(hf. hsemRam. pusErrCode. pvBuf. cbBuf. pcbBytesRead)
HFILE hf; 1* file handle *1
PULONG hsemRam; 1* pOinter to RAM semaphore *1
PUSHORT pusErrCode; 1* pointer to variable for error return code *1
PVOID pvBut, 1* pointer to input buffer *1
USHORT cbBufj I. length· of input buffer *1
PUSHORT pcbBytesRead; 1* pOinter to variable for number of bytes read *1

Parameters

Return Value

Comments

The DosReadAsync function reads one or more bytes of data from the file
identified by the hf parameter. The function reads the data asynchronously; that'
is, the function returns immediately to the process that called it but continues to
copy data to the specified buffer while the execution of the process continues.

hf Identifies the file to be read. This handle must have been previously opened
by using the DosOpen function.

hsemRam Points to the RAM semaphore that indicates when the function has
finished reading the data.

pusErrCode Points to the variable that receives any error code the function
generates while reading data. The possible error codes are identical to those
returned by the DosRead function.

pvBuf Points to the buffer that receives the data being read.

cbBuf Specifies the number of bytes to be read from the file identified by the
hf parameter.

pcbBytesRead Points to the variable that receives the number of bytes read
from the file.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following: .

ERRO~CCESSJ)ENIED
ERROlLBROKEN_PIPE
ERRORJNVALIDJIANDLE
ERRO~OC~ VIOLATION
ERROILNO_PROC_SLOTS
ERROILNOTJ)OSJ)ISK

The DosReadAsync function reads up to the number of bytes specified in the
cbBuf parameter, put it may read fewer if it reaches the end of the file. In any
case, the function copies the number of bytes read to the variable pointed to by
the pcbBytesRead parameter. The pcbBytesRead parameter is zero if all the bytes
in the file have been read (that is, the end of file has been reached).

If the process intends to use the RAM semaphore pointed to by the hsemRam
parameter to determine when data is available, it must set the semaphore by
using the DosSemSet function before calling DosReadAsync. When Dos­
R~adAsync has read· the data, it clears the RAM: semaphore.

The DosReadAsync function carries out the asynchronous operation by creating
a new thread that reads from the specified file. The function tenninates the
thread when the operation is complete or when an error qccurs.

Example

See Also

• DosReadQueue

DosReadQueue 123

This example opens the file abc, sets a RAM semaphore, and calls the Dos­
ReadAsync function to read part of the file. While the file is being read, program
execution continues until the call to the DosSemWait function, which does not
return until the DosReadAsync thread completes its work.

BYTE abBuf[512];
ULONG hReadSemaphore = 0;
HFILE hf;
USHORT usAction, cbBytesRead;
USHORT usReadReturn;
DosOpen("abc", &hf, &usAction, OL, FILE_NORMAL, FILE_OPEN,

OPEN_ACCESS_READONLY I OPEN_SHARE_DENYNONE, OL);
DosSemSet(&hReadSemaphore); /* sets RAM semaphore */
DosReadAsync(hf, /* handle to file */

&hReadSemaphore, /* address of semaphore */
&usReadReturn, /* address to store return code */
abBuf, /* address of buffer */
sizeof(abBuf) , /* size of buffer */
&cbBytesRead) ; /* number of bytes read */

. /* other processing takes place here */

DosSemWait(&hReadSemaphore, -lL);

DosOpen, DosRead, DosSemSet, DosSemWait, DosWriteAsync

USHORT DosReadQueue(hqueue, pqresc, pcbE/ement, ppV, usE/ement, (Wait, pbE/emPrty, hsem)
HQUEUE hqueue; f. handle of queue to read .f
PQUEUERESULT pqresc; f. pointer to structure for PID and request code ./

PUSHORT pcbE/ement; f. pointer to variable for length of element ./
PVOID FAR * ppv; f. pOinter to buffer for element ./
,",SfiORT usE/ement; f. element number to read ./
UCHAR twait; f. wait/no wait indicator ./
PBYTE pbE/emPrty; f. pointer to variable for priority of element ./

HSEM hsem; f. semaphore handle ./

Parameters

The DosReadQueue function retrieves an element from a queue and removes it
from the queue. It copies the element to the buffer pointed to by the ppv param­
eter and fills the structure pointed to by the pqresc parameter with information
about the element.

hqueue Identifies the queue to be read. This handle must have been previously
created or opened by using the DosCreateQueue or DosOpenQueue function.

pqresc Points to the structure that receives information abo~t the request. The
QUEUERESULT structure has the following form:

typedef struct _QUEUERESULT {
PID pidProcess;
USHORT usEventCode;

} QUEUERESULT;

For a full description, see Chapter 4, "Types, Macros, Structures."

pcb Element Points to the variable that receives the length in bytes of the ele­
ment.

ppv Points to a pointer that receives the address of the element in the queue.

124 DosReadQueue

Return Value

Comments

See Also

usElement Specifies where to look in the queue for the element. If the us­
Element parameter is OXOOOO, the function looks at the beginning of the queue.
Otherwise, the function assumes the value is an element identifier retrieved by
using the DosPeekQueue function and looks for the specified element.

[Wait Specifies whether to wait for an element to be placed in the queue, if
the queue is empty. If the fW ait parameter is DCWW _ WAIT, the function waits
until an element is available. If it is DCWW _NOWAIT, the function returns
immediately with a code that indicates there are no entries in the queue.

pbElemPrty Points to a variable that receives the priority value specified when
the element was added to the queue. This is a numeric value from 0 through 15;
15 is the highest priority.

hsem Identifies a semaphore. This value can be the handle of a system sema­
phore that has been previously created or opened by using the DosCreateSem or
DosOpenSem function, or it can be the address of a RAM semaphore. This
semaphore would typically be used in a call to the DosMuxSem Wait function to
wait until the queue has an element. If the fWait parameter is DCWW _WAIT,
hsem is ignored.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~QUE_ELEMENT_NOT~XIST
ERRO~QUE~MPTY
ERRO~QUEJNVALIDJIANDLE
ERROR_QUEJNVALID_ WAIT
ERRO~QUE_PROC_NOT_OWNED

If the queue is empty, the DosReadQueue function either returns immediately or
waits for an element to be written to the queue, depending on the value of the
fW ait parameter.

Only the process that created the queue may call the DosReadQueue function.

DosCreateQueue, DosMuxSem Wait, DosOpenQueue, DosPeekQueue, Dos­
WriteQueue

• DosRealiocHuge
USHORT DosRealiocHuge (usNumSeg, usPartia/Seg, se/)
USHORT usNumSeg; 1* number of 65, S36-byte segments *1
USHORT usPartia/Seg; 1* number of bytes in last segment *1
SEL se/; 1* segment selector *1

The DosReallocHuge function reallocates a huge memory block. The function
changes the size of the huge memory to the number of 65,536-byte segments
specified by the usNumSeg parameter plus an additional segment of the size
specified by the usPartialSeg parameter.

The DosReallocHuge function is a family API function.

Parameters

Return Value

Comments

Restrictions

See Also

• DosReallocSeg

DosReallocSeg 125

usNumSeg Specifies the number of 65,536-byte segments to allocate.

usPartialSeg Specifies the number of bytes in the last segment. This number
can be any value from 0 through 65,535. If it is zero, no additional segment is
allocated.

sel Specifies the selector for the huge memory block to be reallocated. The
selector must have been created previously by using the DosAllocHuge function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNV ALIDJ ARAMETER
ERROR-NOT-ENOUG~EMORY

The DosReaUocHuge function does not change the sharable and discardable
attributes of the segments in the huge memory block. If it was originally a shar­
able or discardable block, it remains a sharable or discardable block. However,
if DosReallocHuge reallocates a discardable block, it also locks the segments.
The DosUnlockSeg function must be used to unlock the segments and permit
discarding.

The memory block cannot be reallocated for a size larger than the maximum
specified by the usMaxNumSeg parameter in the original call to the DosAlloc­
Huge function.

Each segment in the huge memory block has a unique selector. The selectors are
consecutive. The sel parameter specifies the value of the first selector; the
remaining selectors can be computed by adding the selector offset to the first
selector one or more times-that is, once for the second selector, twice for the
third, and so on. The selector offset is a multiple of 2, as specified by the shift
count retrieved by using the DosGetHugeShift function. For example, if the shift
count is 2, the selector offset is 4 (1 « 2). If the selector offset is 4 and the
first selector is 6, the second selector is 10, the third is 14, and so on.

In real mode, the following restriction applies to the DosReallocHuge function:

• The usPartialSeg parameter is rounded up to the next paragraph (16-byte)
value.

DosAllocHuge, DosFreeSeg, DosGetHugeShift, DosLockSeg, DosReallocSeg,
DosUnlockSeg

USHORT DosReallocSeg(usNewSize, se/)
USHORT usNewSize; 1* new segment size *1
SEL set; 1* segment selector *1

The DosReallocSeg function reallocates a segment. The function changes the
size of the segment to the number of bytes specified in the usNewSize parameter.

The DosReallocSeg function is a family API function.

126 DosReallocSeg

Parameters

Return Value

Comments

Restrictions

See Also

usNewSize Specifies the new size (in bytes). The size can be any number from
o through 65,535. If it is zero, the function allocates 65,536 bytes.

sel Specifies the selector of the segment to be reallocated. The selector must
have been created previously by using the DosAllocSeg function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORACCESS_DENIED
ERROR-NOT~NOUGILMEMORY

The DosReallocSeg function does not change the sharable and discardable attri­
butes of the segment. If it was originally a sharable or discardable segment, it
remains a sharable or discardable segment.

However, if DosReallocSeg reallocates a discardable segment, it also locks the
segment. You must use the DosUnlockSeg function to unlock the segment and
permit discarding.

The DosReallocSeg function cannot reallocate a shared segment to a size
smaller than its original size.

In real mode, the following restriction applies to the DosReallocSeg function:

• The usNewSize parameter is rounded up to the next paragraph (16-byte)
value.

DosAllocSeg, DosFreeSeg, DosLockSeg, DosReallocHuge, DosUnlockSeg

• DosResumeThread
USHORT DosResumeThread (tid)

TID tid; 1* identifier of thread to be resumed *'

Parameters

Return Value

See Also

The DosResumeThread function restarts a thread that was previously stopped by
the DosSuspendThread function.

tid Specifies the thread identifier of the thread to be resumed. The thread
must have been created previously by using the DosCreateThread function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALID_THREADID

DosCreateThread, DosSuspendThread

DosRmDir 127

• DosRmDir
USHORT DosRmDir(pszDirName, ulReserved)
PSZ pszDirName; I. directory name .1
ULONG ulReserved; I. must be zero .1

Parameters

Return Value

Comments

Example

See Also

The DosRmDir function removes the specified directory. The directory must be
empty before it can be removed; that is, it must not contain files of any kind,
including hidden files and other directories. If the specified directory cannot be
found or is not empty, DosRmDir returns an error.

The DosRmDir function is a family API function.

pszDirName Points to a null-terminated string that specifies the directory to
be removed. This string must be a valid MS OS/2 directory name.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILACCESSJ)ENIED
ERROR-CURRENT_DIRECTORY
ERRORJ)RIVEJ.OCKED
ERRORYILE_NOTYOUND
ERROR-NOTJ)OS_DISK
ERROR-P ATILNOTYOUND

The DosRmDir function cannot remove the current directory or the root direc­
tory.

If necessary, use the DosDelete function to remove files from the directory.

This example deletes all files in the subdirectory abc and then calls the DosRm­
Dir function to delete the subdirectory. If the subdirectory contains other sub­
directories or files that cannot be deleted, the DosRmDir function returns an
error.

USHORT usError;

DosDelete("abc*.*", OL); /* removes all files */
usError = DosRmDir("abc", OL); /* removes subdirectory */
if (usError)

VioWrtTTY("Can't delete subdirectory\r\n", 27, 0);
else {

DosChDir, DosDelete, DosMkDir

128 DosScanEnv

• DosScanEnv
USHORT DosScanEnv(pszVarName. ppszResult)
PSZ pszVarName; /. pointer to environment-variable name./
PSZ FAR * ppszResult; /. pOinter to variable for result pOinter ./

Parameters

Return Value

See Also

• DosSearchPath

The DosScanEnv function searches an environment for a specified environment
variable. The environment is one or more null-terminated strings that name and
define the environment variables available to the current process. Environment
variables can be used to pass information to a program-for example, a variable
might name a list of directories that contain data files to be used by the program.

An environment variable has the following form:

name=value

The DosScanEnv function searches for the environment variable whose name
matches the name pointed to by the pszVarName parameter. If DosScanEnv
finds the variable, it copies the address of the first character of the environment
variable's value to the variable pointed to by the ppszResult parameter. The first
character of the environment variable's value is the character following the equal
sign (=).

pszVarName Points to a null-terminated string that specifies the name of an
environment variable. The string must not include a trailing equal sign (=), since
the equal sign is not part of the name.

ppszResult Points to the pointer variable that receives the address of the
environment string.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosExecPgm, DosGetEnv, DosSearchPath

USHORT DosSearchPath(fsSearch. pszPath. pszFileName. pbBuf. cbBuf)
USHORT fsSearch; /. search flags ./

PSZ pszPath; /. pOinter to search path or environment variable *'
PSZ pszFileName; /. pointer to filename ./
PBYTE pbBuf; /. pointer to result buffer ./
USHORT cbBuf; /. length of result buffer ./

The DosSearchPath function searches the specified search path for the given
filename. A search path is a null-terminated string that consists of a sequence of
directory paths separated by semicolons (;). The function searches for the
filename by looking in each directory (one directory at a time) in the order
given.

Parameters

Return Value

Comments

DosSearchPath 129

fsSearch Specifies how to interpret the pszPath parameter and whether or not
to search the current directory. This parameter can be a combination of the fol­
lowing values:

Value

SEARClLCUR_DIRECTORY

SEARClLENVIRONMENT

SEARClLPATH

Meaning

The function searches the current direc­
tory before it searches the first directory
in the search path. If this value is not
specified, the function searches the
current directory only if it is explicitly
given in the search path.

The pszPath parameter points to the
name of an environment variable. The
function retrieves the value of the
environment variable from the process's
environment segment and uses it as the
search path. If this value is not specified,
psZPath points to a string that specifies
the search path.

The pszPath parameter specifies the
search path. This value cannot be used
with the SEARCILENVIRONMENT
value.

pszPath Points to a null-terminated string that specifies the search-path refer­
ence.

pszFileName Points to a null-terminated string that specifies the filename to
search for. The string must be a valid MS OS/2 filename and can contain wild­
card characters.

pbBuf Points to the buffer that receives the full pathname of the file if the
filename is found.

cbBuf Specifies the length in bytes of the structure that is pointed to by the
pbBuf parameter. .

The return value is zero if the function is successful. Otherwise, it is an error
value.

The DosSearchPath function uses the search path pointed to by the pszPath
parameter to look for the filename pointed to by the pszFileName parameter.
The pszPath parameter can point to an environment variable name, such as
PATH or DPATH, or it can point to a search path (as specified by the fsSearch
parameter). The filename must be a valid MS OS/2 filename and can contain
wildcard characters. If DosSearchPath finds a matching filename in any of the
directories specified by the search path, the function copies the full, null­
terminated pathname to the buffer pointed to by the pbBuf parameter. If the
filename pointed to by the pszFileName parameter contains wildcard characters,
the resulting pathname will also contain wildcard characters; the DosFindFirst
function can be used to retrieve the actual filename(s).

The DosSearchPath function does not check for the validity of filenames. If the
filename is not valid, the function returns an error indicating that the file was not
found.

130 DosSearchPath

Example

See Also

• DosSelectDisk

This example uses the search path specified by the DPATH environment variable
to search for the abc.txt filename:

CHAR szFoundFile[128];
DosSearchPath(SEARCH_ENVIRONMENT,

"DPATH" ,
"abc.txt",
szFoundFile,
sizeof(szFoundFile» ;

/* uses environment variable */
/* uses DPATH search path */
/* filename */
/* receives resulting filename */
/* length of result buffer */

The following example is identical to the first example if the DPATH variable is
defined as shown:

DPATH=c:\sysdir;c:\init

DosSearchPath(SEARCH_PATH,
"c:\\sysdir;c:\\init",
"abc.txt" ,
szFoundFile,
sizeof(szFoundFile» ;

DosFindFirst, DosScanEnv

/* uses search path */
/* search path */
/* filename */
/* receives resulting filename */
/* length of result buffer */

UStiORT DosSelectDisk(usDriveNumber)
USHORT usDriveNumber; I. default-drive number .1

Parameters

Return Value

Example

See Also

The DosSelectDisk function selects the specified drive as the default drive for
the calling process.

The DosSelectDisk function is a family API function.

usDriveNumber Specifies the number of the default drive. Drive A is 1, drive
B is 2, and so on.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALIDJ)RIVE

This example calls the DosSelectDisk function to change the default drive to
drive C. It then changes the default path to the root and opens the file abc.txt.
HFiLE hf;
USHORT usAction;
DosSelectDisk(3); /* selects drive C: */
DosChDir~"\\", OL); /* changes to the root directory */
DosOpen('abc.txt", &hf, &usAction, OL, FILE_NORMAL,

FILE_OPEN I FILE_CREATE,
OPEN_AGCESS_READWRITE I OPEN_SHARE_DENYWRITE, OL);

DosChDir, DosQCurDisk

DosSemClear 131

• DosS,electSession
USHORT DosSelectSession(idSession, ulReserved)
USHORT idSession; 1* session identifier *1
ULONG ulReserved; 1* must be zero *1

Parameters

Return Value

Comments

See Also

• DosSemClear

The DosSelectSession function switches the specified child session to the fore­
ground. Only the parent session can call DosSelectSession to switch a session,
and the parent session, or one of its descendant sessions, must be currently exe­
cuting in the foregrourid when DosSelectSession is called. If the parent session
is not in foreground, it can use DosSelectSession to switch itself to the fore­
ground.

idSession Specifies the identifier of the session to be switched to the fore­
ground. This identifier must have been created previously by using the DosStart­
Session function. If idSession is OxOOOO, the function switches the parent session
to the foreground.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The DosSelectSession function can only select a child session that was created
by using the DosStartSession function with the Related field of the START­
DATA structure set to TRUE. In other words, this function cannot select ses­
sions started as independent sessions.

DosSetSession; DosStartSession, DosStopSession

USHORT DosSemClear(hsem)
HSEM hsem; 1* semaphore handle *1

Parameters

Return Value

Comments

The DosSemClear function clears a system or RAM semaphore that has been
set by using the DosSemRequest, DosSemSet, or DosSemSetWait function.

hsem Identifies the semaphore to set. This value can be the handle of a
system semaphore that has been previously created or opened by using the Dos­
CreateSem or DosOpenSem function, or it can be the address of a RAM sema­
phore.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR..EXCL_SE1LALREADY_OWNED
ERRORJNV ALIDJIANDLE

The DosSemClear function cannot clear a system semaphore that is owned by
another process unless the semaphore is nonexclusive.

132 DosSemClear

Example

See Also

This example uses the DosSemClear function to clear a RAM semaphore and a
system semaphore:

ULONG hsem = 0;
HSY'SSEM hsys;
DosSemClear(&hsem) ;
DosSemClear(&hsys);

/* clears a RAM semaphore */
/* clears a system semaphore */

DosCreateSem, DosMuxSemWait, DosOpenSem, DosSemRequest, DosSem­
Set, DosSemWait

• DosSemRequest
USHORT DosSemRequest(hsem.ITimeOut)
HSEM hsem; 1* semaphore handle *1
LONG ITimeOut; /* time-out */

Parameters

Return Value

Comments

The DosSemRequest function. requests that the specified semaphore be set as
soon as it is clear. If no previous thread has set the semaphore, DosSemRequest
sets the semaphore and returns immediately. If the semaphore has already been
set by another thread, the function waits until a thread clears the semaphore (by
using the DosSemClear function) or until a time-out occurs.

hsem Identifies the semaphore to set. This value can be the handle of a
system· semaphore that has been previously created or opened by using the Dos­
CreateSem or DosOpenSem function, or it can be the address of a RAM sema­
phore.

I TimeOut Specifies how long to wait for the semaphore to clear. If the value
is greater then zero, this parameter specifies the number of milliseconds to wait
before returning. If the value is SEMJMMEDIATE_RETURN, the function
returns immediately. If the value is SEMJNDEFINITE_ WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
'value, which may be one of the following:

ERRORJNTERRUPT
ERRORJNVALIDJIANDLE
ERRO~SE~OWNER~IED
ERRO~SE~TIMEduT
ERRO~TOO~ANY_SEMLREQUESTS

The effects of DosSemRequest are cumulative. If multiple calls to DosSem­
Request set the semaphore, the same number of calls to the DosSemClear func­
tion are required to clear the semaphore.

If more than one thread has requested to set the semaphore, a thread may have
to wait through several changes of the semaphore before it continues (depending
on which thread clears the semaphore and when the system scheduler passes
control to the thread). As long as the semaphore is set (even if it has been
cleared and reset since the thread originally called the function), the thread must
wait.

Example

See Also

• DosSemSet

DosSemSet 133

The DosSemRequest function cannot set a system semaphore that is set by
another process, unless the semaphore is nonexclusive.

The DosSemRequest function can set system or RAM semaphores. A system
semaphore is initially clear when it is created. A RAM semaphore is clear if its
value is zero. Programs that use RAM semaphores should assign the initial value
of zero.

This example uses the DosSemRequest function to create a RAM semaphore. It
also shows how to set and clear the semaphore.

ULONG hsem = 0;
DosSemRequest(&hsem,

-lL) ;

DosSemClear(&hsem) ;

1* address of handle
1* waits indefinitely

*1
*1

1* clears the semaphore */

DosCreateSem, DosExitList, DosMuxSemWait, DosOpenSem, DosSemClear,
DosSemSet, DosSemSetWait, DosSemWait

USHORT DosSemSet(hsem)
HSEM hsem; I. semaphore handle .1

Parameters

Return Value

Comments

Example

See Also

The DosSemSet function sets a specified semaphore. A process typically uses
this function to set a semaphore, then waits for the semaphore to clear by using
the DosSemWait or DosMuxSemWait function.

hsem Identifies the semaphore to set. This value can be the handle of a
system semaphore that has been previously created or opened by using the Dos­
CreateSem or DosOpenSem function, or it can be the address of a RAM sema­
phore.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLEXCL_SEM-ALREADY_OWNED
ERRORJNVALIDJIANDLE
ERROR-TOO~ANY_SEMLREQUESTS

The DosSemSet function cannot set a system semaphore that is owned by
another process unless the semaphore is nonexclusive.

This example uses the DosSemSet function to set a RAM semaphore and a sys­
tem semaphore:

ULONG hsem = 0;
HSYSSEM hsys;
DosSemSet(&hsem);
DosSemSet(hsys);

1* sets a RAM semaphore *1
1* sets a system semaphore *1

DosCreateSem, DosMuxSemWait, DosOpenSem, DosSemClear, DosSem­
Request, DosSemSetWait, DosSemWait

134 DosSemSetWait

• DosSemSetWait
USHORT DosSemSetWait(hsem,ITimeOut)
HSEM hsem; /* semaphore handle */
LONG ITimeOut; /* time-out ./

Parameters

Return Value

Comments

Example

See Also

The DosSemSetWait function sets the specified semaphore (if it is not already
set) and then waits for another thread to clear the semaphore (by using the Dos­
SemClear function) or for a time-out to occur. The only difference between the
DosSemSetWait function and the DosSemWait function is that the DosSem­
SetWait function will first set the semaphore if it is not already set.

hsem Identifies the semaphore to set. This value can be the handle of a
system. semaphore that has been previously created or opened by using the Dos­
CreateSem or DosOpenSem function, or it can be the address of a RAM sema­
phore.

lTimeOut Specifies how long to wait for the semaphore to become clear. If
the value is greater then zero, this parameter specifies the number of mil­
liseconds to wait before returning. If it is SEM_IMMEDIATE_RETURN, the
function returns immediately. If it is SEMJNDEFINITE_WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-EXCL_SEM~LREADY_OWNED
ERRORJNTERRUPT
ERRORJNVALID_HANDLE
ERRO~SE~TIMEOUT
ERRO~TOO~ANY_SE~EQUESTS

If more than one thread is setting and clearing the semaphore, a thread may
have to wait through several changes of the semaphore before it can continue
(depending on which thread clears the semaphore and when the system
scheduler passes control to the thread). As long as the semaphore is set (even if
it has been cleared and reset since the thread originally called the function), the
thread must wait.

The DosSemSetWait function cannot be used to wait for a system semaphore
that is set by another process unless the semaphore is nonexclusive.

This example calls DosSemSetWait to set the specified RAM semaphore and
then waits until another thread clears the semaphore. It waits for up to 5
seconds and then returns an ERRO~SE~TIMEOUT error value if a time-out
occurs before the semaphore is cleared.

idefine INCL_DOSERRORS I' include error constants 'I

ULONG hsem = 0;
if (DosSemSetWait(&hsem. SOOOL) == ERROR_SEM_TIMEOUT) {

. I' error processing 'I

}
else {

DosCreateSem, DosMuxSemWait, DosOpenSem, DosSemClear, DosSem­
Request, DosSemWait

DosSemWait 135

• DosSemWait
USHORT DosSemWait(hsem, ITimeOut)
HSEM hsem; I. semaphore handle.1
LONG ITimeOut; I. time-out .1

Parameters

Return Value

Comments

Example

See Also

The DosSemWait function waits for a specified semaphore to be cleared. Dos­
SemWait waits until a thread uses the DosSemClear function to clear the sema­
phore or until a time-out occurs. If no previous thread has set the semaphore,
DosSem Wait returns immediately.

hsem Identifies the semaphore to set. This value can be the handle of a
system semaphore that has been previously created or opened by using the Dos­
CreateSem or DosOpenSem function, or it can be the address of a RAM sema­
phore.

I TimeOut Specifies how long to wait for the semaphore to clear. If the value
is greater then zero, this parameter specifies the number of milliseconds to wait
before returning. If the value is SEMJMMEDIATE-.RETURN, the function
returns immediately. If the value is SEMJNDEFINITE_ WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILEXCL_SE~LREADY_OWNED
ERRORJNTERRUPT
ERRORJNVALIDJIANDLE
ERRO~SE~TIMEOUT

The DosSem Wait function cannot be used to wait for a system semaphore that
is owned by another process unless the semaphore is nonexclusive.

If more than one thread is setting and clearing the semaphore, the thread calling
DosSem Wait may have to wait through several changes of the semaphore before
it continues (depending on which thread clears the semaphore and when the sys­
tem scheduler passes control to the calling thread). The thread must wait for as '
long as the semaphore is set, even if the semaphore has been cleared and reset
since the thread originally called the function.

This example calls the DosSem Wait function to wait for up to 5 seconds for a
RAM semaphore. If a time-out occurs before the semaphore handle is retrieved,
the function returns an ERRO~SE~TIMEOUT error value.

ULONG hsem = 0;
if (DosSemWait(&hsem, SOOOL) == ERROR_SEM_TIMEOUT) {

. /* error processing */

}
else {

DosCreateSem, DosMuxSemWait, DosOpenSem, DosSemRequest, DosSem­
SetWait, WinMsgSemWait

136 DosSendSignal

• DosSendSignal
USHORT DosSendSignal (idProcess, usSigNumber)
USHORT idProcess; 1* process identifier of subtree root .1
USHORT usSigNumber; I. signal to send .1

Parameters

Return Value

See Also

• DosSetCp

The DosSendSignal function sends a CTRL+C or CTRL+BREAK signal to the last
descendant process that has a corresponding signal handler installed.

idProcess Specifies the process identification code (PID) of the root process
of the subtree. It is not necessary that this process still be running, but it is
necessary that this process be a direct child of the process that issues this call.

usSigNumber Specifies the signal to send. It can be SIG_CTRLC to send a
CTRL+C signal, or SIG_CTRLBREAK to send a CTRL+BREAK signal.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosFlagProcess, DosHoldSignal, DosSetSigHandler

USHORT DosSetCp(usCodePage, usReserved)
USHORT usCodePage; 1* code-page identifier .1
USHORT usReserved; I. must be zero *1

Parameters

Return Value

Comments

See Also

The DosSetCp function sets the code-page identifier for the current process.
The code-page identifier defines which translation table the system should use to
translate input from the keyboard or to translate output to the screen and
printer.

usCodePage Specifies the code-page identifier.

usReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The file system activates the current code page for printer output whenever the
printer is opened.

The code-page identifier can be one of the following values:
Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

DosGetCp

DosSetFHandState 137

• DosSetDateTime
USHORT DosSetDateTime(pdateTime)
PDATETIME pdateTime; I. pOinter to structure for date and time .1

Parameters

Return Value

Example

See Also

The DosSetDateTime function sets the current date and time. Although MS
OS/2 maintains the current date and time, any process can change the date and
time by using the DosSetDateTime function.

The DosSetDateTime function is a family API function.

pdateTime Points to the structure that contains the date and time informa­
tion. The DATETIME structure has the following form:

typedef struct _DATETIME {
UCHAR hours;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
UCHAR day;
UCHAR month;
USHORT year;
SHORT timezone;
UCHAR weekday;

} DATETIME;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRO~TSJ)ATETIME

This example retrieves the current date and time and then calls the DosSetDate­
Time function to change the month to September and the day to the 26th:

DATETIME dateTime;
DosGetDateTime{&dateTime);
dateTime.month = 9;
dateTime.day = 26;
DosSetDateTime{&dateTime);

DosGetDateTime

/* gets the current date and time */
/* changes the month */
/* changes the day */
/* sets the new date and time */

• DosSetFHandState
USHO RT DosSetFHandState (hf. fsSta te)
HFILE hf; I. file handle .1
USHORT fsState; I. file-state flags .1

Parameters

The DosSetFHandState function modifies a file's inheritance, fail-on-error, and
write-through. These flags are originally set by using the DosOpen function when
the file is opened.

The DosSetFHandState function is a family API function.

hI Identifies the handle of the file to be set. This handle must have been
created previously by using the DosOpen function.

138 DosSetFHandState

Return Value

Restrictions

Example

JsState Specifies the state of the file-handle. This parameter can be one or
more of the following values:

Value Meaning

Any function that uses the file han­
dle returns immediately with an
error value if there isan 110
error-for example, if the drive
door is open or a sector is missing.
If this value is riot specified, the
system passes the error to the sys­
tem critical-error handler, which
then reports the. error to the user
with a hard-error popup. The fail­
on-error flag is not inherited by
child processes.

The fail-on-error flag applies to all
functions that use the file handle,
with the exception of the Dos­
DevIOCtl function.

The file handle is not available to
any child process started by the
current process. If this value is not
specified, any child process started
by the current process can use the
file handle.

This flag applies to functions, such
as DosWrlte, that write data to the
file. If this value is specified, the
system writes data to the device
before the given function returns.
Otherwise, the system may store
the data in an internal file buffer
and write the data to the device
only when the buffer is full or the
file is closed.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_INV ALIDJIANDLE
ERRORJNVALIDYARAMETER

In real mode, the following restriction applies to the DosSetFHandState func':'
tion:

• Only the OPEN_FLAGS_NOINHERIT flag can be set.

This example opens the file abc with the inheritance flag set to zero (all child
processes inherit the file handle). It retrieves the current file-handle state, clears
the bits that are required to be zero, sets the inheritance flag using the OR
operator, and calls the DosSetFHandState function.

See Also

• DosSetFilelnfo

HFILE hf;
USHORT usAction, fState;
DosQFH~ndState(hf. &fState);
DosSetFHa~dState(hf,

(fState I OPEN_FLAGS_NOINHERIT));

DosSetFilelnfo 139

/* gets the current state */
/* handle to the file */
/* set noinheritance flag */

DosButReset, DosClose, DosDupHandle, DosExecPgm, DosOpen, DosQF­
HandState,. DosSetMode, DosWrite

USHORT DosSetFilelnfo (hf, uslnfoLevel, pfstsBuf, cbBuf)
HFILE hf; 1* file handle *1
USHORT uslnfoLevel;
PBYTE pfstsBuf;
USHORT cbBuf;

Parameters

Return Value

1* level of file information *'
1* pOinter to file-status information *1
1* length of file-information buffer *1

The DosSetFilelnfo function changes the time and date information for the
specified file. The function replaces a file's time and date information with the
information given in the structure pointed to by the pfstsBuf parameter.

The DosSelFilelnfo function is a family API function.

hf Identifies the file whose time and date information is being changed. This
handle must have been created previously by using the DosOpen function.

uslnfoLevel Specifies the level of file information being defined. In MS OS/2,
version 1.1, this value must be OXOOO1.

pfstsBuf Points to the FILESTATUSstructure that contains the new informa­
tion. The FILESTATUS structure has the following form:

typedefstruct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
F~IME ftimeLastWrite;
ULPNG cbF 11e;
ULONG cbFileAlloc;
USHORT attrF11e;

} FILESTATUS;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies the length in bytes of the structure pointed to by the pfstsBuf
parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which niay be one of the following:

ERROR-ACCESSJ)ENIED
ERRORJ)IRECT~CCESS_HANDLE
ERRORJNSUFFICIENT_BUFFER
ERRORJNVALIPYUNCTION
ERRORJNVALIDJ!ANDLE
ERRORJNV ALID-LEVEL

140 DosSetFilelnfo

Comments

See Also

The DosSetFileInfo function does not change information in read-only files.

A zero in matching date and time fields will cause that aspect of file information
to be left unchanged. For example, if both the fdateCreation and ftimeCreation
fields are set to zero, both of these attributes are left unchanged.

DosNewSize, DosQFileInfo, DosSetFileMode

• DosSetFileMode
USHORT DosSetFileMode (pszFileName, usAttribute, ulReserved)
PSZ pszFileName; I. filename .1
USHORT usAttribute; I. new file attribute .1
ULONG ulReserved; I. must be zero .f

Parameters

Return Value

See Also

The DosSetFileMode function sets the file attributes of the specified file. A file's
mode is defined by the settings of its attributes.

The DosSetFileMode function is a family API function.

pszFileName Points to a null-terminated string that specifies the name of the
file. The string must be a valid MS OS/2 filename.

usAttribute Specifies the file's new attributes. This parameter can be a combi­
nation of the following values:

Value

FILE_NORMAL

FILE_READ ONLY

FILE_HIDDEN

FILE_SYSTEM

FILE_ARCHIVED

Meaning

File can be read from or written to.

File can be read from but not written to.

File is hidden and does not appear when a directory
is listed.

File is a system file.

File has been archived.

The FILE.-NORMAL value can be combined only with the FILE-ARCHIVED
value.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESSJ)ENIED
ERRORJ)RIVE.-LOCKED
ERROR-FILE_NOTJOUND
ERROR-NOT_DOSJ)ISK
ERRORYATILNOTJOUND
ERROR-SHARINGJ3UFFE~XCEEDED
ERROR-SHARING_ VIOLATION

DosQFileMode

DosSetMaxFH 141

• DosSetFSlnfo
USHORT DosSetFSlnfo (usDriveNumber, uslnfoLeve/, pbBuf, cbBuf)
USHORT usDriveNumber; 1* drive number *1
USHORT uslnfoLeve/; I. level of file-system information *1
PBYTE pbBuf; I. pointer to structure for file-system information *1
USHORT cbBuf; 1* length of buffer for file-system information .1

Parameters

Return Value

See Also

• DosSetMaxFH

The DosSetFSlnfo function sets information for a file-system device.

The DosSetFSlnfo function is a family API function.

usDriveNumber Specifies the logical drive number. The usDriveNumber
parameter must be a value from 0 through 26. The default drive is 0, drive A is
1, drive B is 2, and so on.

uslnfoLevel Specifies the level of file information required. In MS OS/2, ver­
sion 1.1, this value must be OXOOO2.

pbBuf Points to the structure that receives the information. When the request
is for level-2 file information, this parameter points to a structure that contains
the volume-label information. The VOLUMELABEL structure has the following
form:

typedef struct _VOLUMELABEL {
BYTE cch;
CHAR achVolLabel[12];

} VOLUMELABEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies the length (in bytes) of the VOLUMELABEL structure
pointed to by the pbBuf parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~CANNOT~AKE
ERRORJNSUFFICIENT-BUFFER
ERRORJNVALIDJ)RIVE
ERRORJNV ALIDJ.,EVEL
ERRORJNVALID_NAME
ERRORJ.,ABEL_TOOJ.,ONG

DosQCurDisk, DosQFSInfo

USHORT DosSetMaxFH (usHandles)
USHORT usHandles; 1* number of file handles .1

The DosSetMaxFH function sets the maximum number of file handles for the
current process. The number of available handles limits the number of files that
can be opened at once. However, all handles are not always available for use by
the process. When determining the required number of handles, add several for
the dynamic-link modules (these modules use several handles) and three for the
default system input/output handles.

142 DosSetMaxFH

Parameters

Return Value

Comments

See Also

usHandles Specifies the maximum number of file handles provided to the call­
ing process. The maximum value for this parameter is 255; the default is 20.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDY ARAMETER
ERROR-NOT-ENOUG~EMORY

This function preserves all currently open file handles.

DosDupHandle, DosOpen

• DosSetNmPHandState
USHORT DosSetNmPHandState (hp, fsSta te)
HPIPE hp; 1* pipe handle *'
USHORT fsState; 1* state flag *1

Parameters

Return Value

See Also

The DosSetNmPHandState function is used to set the read mode and the block­
ing mode of a named pipe.

hp Identifies the pipe to read from.

IsState Specifies the new mode. The mode is a combination of a read-mode
flag and a wait flag. The possible values are:

Value

PIPE_READMODE_BYTE

PIPE_READMODE_MESSAGE

PIPE_NOWAIT

PIPE_WAIT

Meaning

Read pipe as a byte stream.

Read pipe as a message stream.

Reading from and writing to the pipe
returns immediately if no data is avail­
able.

Reading from and writing to the pipe
waits if no data is available.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ3ADYIPE
ERRORJNVALIDY ARAMETER
ERRORYIPE_NOT_CONNECTED

DosQNmPHandState

DosSetProcCp 143

• DosSetNmPipeSem
USHORT DosSetNmPipeSem(hp, hsem, usKeyVa/)
HPIPE hp; 1* pipe handle *1
HSEM hsem; 1* semaphore handle *1
USHORT usKeyVa/; 1* key value to associate *1

Parameters

Return Value

Comments

See Also

• DosSetProcCp

The DosSetNmPipeSem function associates a semaphore with a named pipe.

hp Identifies the named pipe.

hsem Identifies the semaphore to associate with the pipe.

usKeyVal Specifies a key identifier to associate with the named pipe.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDYUNCTION
ERROILPIPE_NOT_CONNECTED
ERRO~SE~NOTYOUND

Up to two semaphores can be attached to a named pipe; one for the serving end
of the pipe and one for the client end of the pipe. If a semaphore is already
attached to one end of the named pipe, the old semaphore will be overwritten.

The DosSetNmPipeSem function only returns successfully for local named pipes.
If the DosSetNmPipeSem function attempts to associate a semaphore with a
remote named pipe, an ERRORJNV ALIDYUNCTION error value is returned
by the DosSetNmPipeSem function. ,

The DosSetNmPipeSem function allows a serving application that needs to han­
dle a large number of incoming named pipes to avoid dedicating a thread for
each named pipe and avoid polling the pipes. An application can instead call the
DosSemWait or DosMuxSemWait function to determine when 1/0 can be per­
formed on the pipe semaphore(s). This allows a large number of named pipes to
be handled in an event-driven way, using only a small number of threads. The
DosQNmPipeSemState function can be used to provide additional information
about what I/O can be performed on the set of pipes.

DosMuxSem Wait, DosQNmPipeSemState, DosSem Wait

USHORT DosSetProcCp(usCodePage, usReserved)
USHORT usCodePage; 1* code-page identifier *1
USHORT us Reserved; 1* must be zero *1

Parameters

The DosSetProcCp function allows a process to set its code page.

usCodePage Specifies a code-page-identifier word that has one of the follow­
ing values:

144 DosSetProcCp

Comments

See Also

• DosSetPrty

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

usReserved Specifies a reserved value; must be zero.

This function sets the process code page of the calling process. The code page
of a process is used in three ways. First, the printer code page is set to the pro­
cess code page through the file system and Printer spooler (the system spooler
must be installed) when the process makes a request to open the printer. Calling
DosSetProcCp does not affect the code page of a printer opened before the call,
nor does it affect the code page of a printer opened by another process. Second,
country-dependent information will, by default, be retrieved encoded in the code
page of the calling process. Third, a newly created process inherits its process
code page from its parent process.

DosSetProcCp does not affect the screen or keyboard code page.

DosSetCp

USHORT DosSetPrty (fScope. fPrtyClass. sChange. id)
USHORT fScope; I. indicates the scope of change *'
USHORT fPrtyClass; I. priority class to set .1
SHORT sChange; I. change in priority level .1
USHORT id; I. process or thread identifier .1

Parameters

The DosSetPrty function sets the scheduling priority of the specified process or
thread by changing the priority class and/or the priority level.

Within each class, a thread's priority level may vary-either through system
action or through the DosSetPrty function. The system changes a thread's prior­
ity levels based on that thread's actions and the overall system activity.

fScope Specifies the scope of the request. This parameter can be one of the
following values:

Value

PRTYS_PROCESS

PRTYS_PROCESSTREE

Meaning

Priority for the process and all its threads.

Priority for the process and all child pro­
cesses.

Priority for one thread in the current process.

Return Value

See Also

• DosSetSession

DosSetSession 145

[prtyClass Specifies the priority class of a process or thread. This parameter
can be one of the following values:

Value

PRTYC_IDLETIME

PRTYC_NOCHANGE

Meaning

Idle-time.

No change; leave as is.

PRTYC_REGULAR Regular.

PRTYC_ TIMECRITI CAL Time-critical.

sChange Specifies the relative change in the current priority level of the pro­
cess or thread. This parameter can be any value from - 31 through +31, or the
constants PRTYD~INIMUM or PRTYD~AXIMUM, which specify the
minimum and maximum change allowed.

id Specifies a process or thread identifier, depending on the value of the
JScope parameter.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDYCLASS
ERRORJNVALIDYDELTA
ERRORJNVALIDYROCID
ERRORJNVALID_SCOPE
ERRORJNV ALID_THREADID
ERROR_NOT~ESCENDANT

DosEnterCritSec, DosGetInfoSeg, DosGetPrty

USHORT DosSetSession(idSession, pstsdata)
USHORT idSession; 1* session identifier *1
PSTATUSDATA pstsdata; 1* prior to structure for session-status data *1

Parameters

Return Value

The DosSetSession function sets the status of a child session.

idSession Specifies the identifier of the session for which the status is set.
This identifier must have been created previously by using the DosStartSession
function.

pstsdata Points to a STATUSDATA structure that contains the session-status
data. The STATUSDATA structure has the following form:

typedef struct _STATUSDATA {
USHORT Length;
USHORT Selectlnd;
USHORT Bindlnd;

} STATUSDATA;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful. Otherwise, it is an error
value.

146 DosSetSession

Comments

See Also

The DosSetSession function allows a parent session to use the SelectInd and
Bindlnd fields of the STATUSDATA structure to specify whether the child ses­
sion can be selected by the user and whether or not the child s~ssion will also be
brought to the foreground when the user brings the parent session to the fore­
ground. These fields affect selections made by the user from the switch list; they
do not affect selections made by the parent session. Each of these fields can be
set individually, without affecting the current setting of the other.

A pareht session can call the DosSetSession function only for a child session;
neither the parent session itself nor any second-level child session can be set by
using this function. The DosSetSession function can change the status of a child
session only if that child was started as a related session; DosSetSession cannot
change the status of sessions that were started as independent sessions.

A bond between a parent session and a child session can be broken by calling
the DosSetSession function and specifying either Bindlnd = 2 to break the bond,
or Bindlnd = 1 to break the bond and establish a new bond with a different child
session.

A child session that is bound to a parent session will be brought to the fore­
ground when the user selects the parent session, even if the status of the child
session is nonselectable. If there is a bond between a parent session and a child
session, and another bond between that child and a second-level child session,
the second-level child session will be brought to the foreground when the user
selects the parent session.

A parent session may be running in either the foreground or the background
when DosSetSession is called.

The DosSetSession function may be called only by the process that started the
sessiori identified by the idSession parameter.

DosSelectSession, DosStartSession, DosStopSession

• DosSetSigHandler
USHORT DosSetSigHandler(pfnSigHandler, pfnPrev, pfAction, fAction, usSigNumber)
PFNSIGHANDLER pfnSigHandler; I. pointer to signal-handler function .1
PFNSIGHANDLER FAR * pfnPrev; I. pointer to previous handler address .1
PUSHORT pfAction; 1* pointer to variable for previous handler action .1
USHORT fAction; I. type of request .1
USHORT usSigNumber; I. signal number .1

Parameters

The DosSetSigHandler function installs or removes a signal handler for a
specified signal. This function can also be used to ignore a signal or install a
default action for a signal.

The DosSetSigHandler function is a family API function.

p/flSigH andler Points to the address of the signal-handler function that
receives control when a given signal occurs. For a full description, see the fol­
lowing "Comments" section.

pfnPrev Points to the variable that receives the address of the previous signal
handler.

Return Value

Comments

DosSetSigHandler 147

pfAction Points to the variable that receives the value of the previous signal
handler's fAction parameter. The pfAction parameter can be a value from 0
through 3.

fAction Specifies the type of request. This parameter can be one of the fol­
lowing values:

Value Meaning

SIGA_ACCEPT The signal handler specified in the pfnSigHandler
parameter will accept the signal specified in the
usSigNumber parameter.

SIG~ACKNOWLEDGE The signal specified in the usSigNumber parameter
is acknowledged. The signal handler specified in
the pfnSigHandler parameter will accept the signal.

SIGA_ERROR It is an error for any other process to signal this
process with the signal specified in the usSig­
Number parameter.

SIGA_IGNORE Ignore the signal.

SIGA_KILL Remove the signal handler~

usSigNumber Specifies the signal number. This parameter can be one of the
following values:

Value

SIG_BROKENPIPE

SIG_CTRLBREAK

SIG_CTRLC

SIG_KILLPROCESS

SIG_PFLG_A

SIG_PFLG_B

SIG_PFLG_C

Meaning

Connection to a pipe was broken.

CfRL+BREAK.

CfRL+C.

Program terminated.

Process flag A.

Process flag B.

Process flag C.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJNVALIDYUNCTION
ERRORJNVALID_SIGNAL_NUMBER

The DosSetSigHandler function installs the signal handler that the system will
call whenever the corresponding signal occurs. The signal handler is a function
that responds to a signal by carrying out tasks (such as cleaning up files). A sig­
nal is an action initiated by the user or another process that temporarily
suspends execution of the process while the signal is processed. Signals occur
when the user presses the CTRL+C or CTRL+BREAK key sequences, when the pro­
cess ends, or when another process calls the DosFlagProcess function. By
default, the CTRL+C, CTRL+BREAK, and end-of-process signals terminate the pro­
cess.

148 DosSetSigHandler

Restrictions

See Also

The signal-handler function can use the address and fAction parameter value of
the previous signal handler to pass the signal through a chain of previous signal
handlers. The new signal handler can also use the previous address and fAction
value to restore the previous handler.

The DosSetSigHandler function acknowledges a signal and reenables it for sub­
sequent input if the fAction parameter is set to SIG~ACKNOWLEDGE. A
process must acknowledge the signal while processing it to permit the signal to
be used again. ,

The signal handler has the following form:

VOID PASCAL FAR FuncName(usSigArg, usSigNum)
USHORT usSigArg; /* furnished by DosFlagProcess if appropriate */
USHORT usSigNum; /* signal number being processed */
{

return;
}

Parameters

usSigArg

usSigNum

Description

Specifies the signal argument passed by the process that sends
the process-flag signal.

Specifies the signal number. This parameter can be any of the
values listed for the usSigNumber parameter of the DosSet-
SlgHandler function.

When a signal occurs, the system calls the corresponding signal handler, which
then carries out tasks, such as displaying a me~sage and writing and closing files.
The signal handler receives control under the first thread of a process (thread 1).
The thread that was executing when the signal occurred waits for signal process­
ing to be completed. The signal handler can use the return statement to return
control and restore execution of the waiting thread or the DosExit function to
terminate the process. '

The signal handler is not suspended when the D,osEnterCritSec function is
called. If a signal occurs, the processing done py the signal handler must not
interfere with the processing that is done by the thread calling the DosEnter­
CritSec function.

All registers other than cs, ip, ss, sp, and flags in assembly-language signal
handlers contain the same values as when the signal was received. The signal
handler may exit by executing a far return instruction; execution resumes where
it was interrupted, and all registers are restored to their values at the time of the
interruption.

In real mode, the following restriction applies to the DosSetSigHandler function:

• Only the signal-break (SIG_CTRLBREAK) and signal-interrupt
(SIG_CTRLC) signals are available. DosSetSigHandler may be used to
install signal handlers for only these two signals.

DosCreateThread, DosFlagProcess, DosHoldSignal

DosSetVec 149

• DosSetVec
USHORT DosSetVec(usVecNum, pfnFunction, ppfnPrev)
USHORT usVecNum; /. type of exception ./
PFN pfnFunction; /. pointer to function ./
PPFN ppfnPrev; /. pointer to variable for previous function's address ./

Parameters

Return Value

Comments

The DosSetVee function installs or removes an exception handler for a specified
exception. An exception is a program error, such as division by zero, that causes
the system to pass control to the exception handler. The exception handler is an
assembly-language routine that corrects errors or cleans up programs before ter­
minating. The system calls the exception handler whenever the specified excep­
tion occurs. If a process does not install its own exception handler, the default
exception handler terminates the process when an exception occurs.

The DosSetVee function is a family API function.

usVecNum Specifies the number of the exception vector. This parameter can
be one of the following values:

Value

VECTOR_DIVIDE_BY _ZERO

VECTOR_EXTENSION_ERROR

VECTOR_INV ALIDOPCODE

VECTOR_NO_EXTENSION

VECTOR_OUTOFBOUNDS

Meaning

Division by zero

Processor extension error

Invalid opcode

Processor extension not available

Out of bounds

VECTOR_OVERFLOW Overflow

pfnFunction Points to the address of the exception handler that receives con­
trol when the specified exception occurs. If this parameter is zero, the DosSet­
Vee function removes the current exception handler. For a full description, see
the following "Comments" section.

ppfnPrev Points to the variable that receives the address of the previous
exception handler. The new exception handler can use this address to chain
exception handling through all previous handlers or to restore the previous
exception handler.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-INVALIDYUNCTION

When the system calls the exception handler, interrupts are enabled and the
machine status word and far return address are pushed on the stack. If the
exception handler returns, it must use the iret (return from interrupt) instruc­
tion.

If the DosSetVee function is used to install an exception handler for vector
VECTOR-EXTENSION-ERROR (processor extension not available), the func­
tion sets the machine status word (MSW) to indicate that no 80287 is available.

150 DosSetVec

Restrictions

See Also

• DosSetVerify

The emulate bit is set and the monitor processor bit is cleared. (This is done
without regard for the true state of the hardware.) If the DosSetVec function is
used to remove the exception handler for VECTOR.-E,XTENSION-ERROR,
the function sets the machine status word to reflect the true state of the
hardware.

In real mode, the following restriction applies to the DosSetVec function:

• Since the 8086 amd 8088 microprocessors do not raise this exception,
usVecNum may not be VECTOlLEXTENSION-ERROR.

DosDevConfig, DosError

USHORT DosSetVerify (fVerify)
USHORT fVerify; /* verify on/off */

Parameters

Return Value

Comments

See Also

• DosSizeSeg

The DosSetVerify function enables or disables data verification. When
verification is enabled, the system verifies that data is written correctly whenever
a process writes to a disk file.

The DosSetVerify function is a family API function.

[Verify Specifies whether data verification is enabled. If the /Verify parameter
is TRUE, verification is enabled. If it is FALSE, verification is disabled.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR.-INVALID_ VERIFY_SWITCH

Errors when writing to a disk file are very rare. This DosSetVerify function
allows a process to verify the proper recording of critical data.

DosQVerify

USHORT DosSizeSeg(sel, pu/Size)
SEL sel; /* segment selector 4
PULONG pu/Size; /* receives segment size */

Parameters

The DosSizeSeg function retrieves the size (in bytes) of a specified segment.

The DosSizeSeg function is a family API function.

sel Specifies the selector of the segment. For huge segments, this must be the
base selector.

Return Value

See Also

• DosSleep

Do.Sleep 151

pulSize Points to the variable that receives the segment size (in bytes). (For
huge segments, the number of full segments will be in the high word, and the
size of the last segment will be in the low word. These values are equivalent to
the values of the usNumSeg and usPartialSeg parameters that were passed to the
DosAllocHuge or DosReallocHuge function.)

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosAllocHuge, DosAllocSeg, DosReallocHuge

USHORT DosSleep(uITime)
ULONG ulTime; 1* number of milliseconds to wait *1

Parameters

Return Value

Comments

Example

See Also

The DosSleep function causes the current thread to wait for a specified interval
or, if the specified interval is zero, to give up the remainder of the current time
slice.

The DosSleep function is a family API function.

ulTime Specifies the number of milliseconds that the thread waits. This value
is rounded up to the next clock tick.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROILTS_ WAKEUP

The time the thread waits can be different from the specified time by a clock tick
or two, depending on the execution status of the other threads running in the
system. If the specified interval is zero, the process forgoes the remainder of its
CPU time slice but is scheduled normally for its next time slice. When a process
continues after suspension, its scheduled execution time could be delayed by
hardware interrupts or by another thread running at a higher priority. If the time
interval is not zero it is given in milliseconds, which are rounded up to the reso­
lution of the scheduler clock. The DosSleep function should not be substituted
for a real-time clock, because the rounding of the wait interval will cause inaccu­
racies to accumulate.

This example sets up a loop that waits for one second and then retrieves the
time and date:

DATETIME date;
for (;;) {

}

DosSleep(lOOOL) ;
DosGetDateTime(&date) ;

/* waits for one second */
/* retrieves the time and date */

DosGetInfoSeg, DosTimerAsync, DosTimerStart

152 DosStartSession

• DosStartSession
USHORT DosStartSession(pstdata. pidSession. ppid)
PSTARTDATA pstdata; I. pOinter to structure containing session data .1
PUSHORT pidSession; I. pointer to variable for session identifier .1
PUSHORT ppid; I. pointer to variable for process identifier *'

Parameters

Return Value

Comments

The DosStartSession function starts a session (screen group) and specifies the
name of the program to start in that session. This function creates either an
independent session or a child session, depending on the value of the Related
field in the STARTDATA structure.

pstdata Points to the STARTDATA structure that contains data describing the
session to start. The STARTDATA structure has the following form:

typedef struct _STARTDATA {
USHORT Length;
USHORT Related;
USHORT E'gBg;
USHORT TraceOpt;
PSZ PgmTitle;
PSZ pgmName;
PBYTE pgmlnputs;
PBYTE TermQ;
PBYTE Environment;
USHORT InheritOpt;
USHORT SessionType;
PSZ IconE'ile;
ULONG pgmHandle;
USHORT PgmControl;
USHORT InitXPos;
USHORT InitYPos;
USHORT InitXSize;
USHORT InitYSize;

} STARTDATA;

For a full description, see Chapter 4, "Types, Macros, Structures."

pidSession Points to the variable that receives the identifier of the child ses­
sion.

ppid Points to the variable that receives the process identifier of the child pro­
cess.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The MS OS/2 session manager writes a data element into the specified queue
when the child session created by the DosStartSession function terminates. A
parent session can be notified when a child session has terminated by using the
DosReadQueue function. When the child session terminates, the request value
returned by DosReadQueue is zero, and the data-element format consists of two
unsigned values: the session identifier and the result code.

Only the process that calls the DosStartSession function should call the Dos­
ReadQueue function. Only this process can address the notification data ele­
ment. After reading and processing the data element, the calling process must
use the DosFreeSeg function to free the segment that contains the data element.

A child session is created when the Related field of the STARTDATA structure
is set to TRUE. The process identifier of the child process cannot be used with
MS OS/2 functions, such as DosSetPrty, that require a parent process/child pro­
cess relationship.

See Also

DosStopSession 153

An independent session is created when the Related field of the STARTDATA
structure is set to TRUE. An independent session is not under the control of the
starting session. The DosStartSession function does not copy session and pro­
cess identifiers for an independent session to the pidSession and ppid parame­
ters.

New sessions can be started in the foreground only when the caller's session (or
one of the caller's descendant sessions) is currently executing in the foreground.
The new session appears in the shell switch list.

DosCreateQueue, DosExecPgm, DosFreeSeg, DosReadQueue, DosSelect­
Session, DosSetSession, DosStopSession

• DosStopSession
USHORT DosStopSession (fScope, idSession, ulReserved)
USHORT fScope; 1* all sessions/specified session stopped *1
USHORT idSession; 1* session identifier *1
ULONG ulReserved; 1* must be zero *1

Parameters

Return Value

Comments

See Also

The DosStopSession function terminates a session that was started by using the
DosStartSession function.

fScope Specifies whether the function stops all sessions or only the specified
session. If the JScope parameter is OXOOOO, the function stops only the specified
session. If it is OxOOOl, the function stops all sessions.

idSession Specifies the identifier of the session to be stopped. This identifier
must have been created previously by using the DosStartSession function. This
parameter is ignored if the JScope parameter is set to OxOOOl.

ulReserved Specifies a reserved value; must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The DosStopSession function cart terminate only child sessions that were started
by using the DosStartSession function (child sessions of the terminated session
will terminate as well). Sessions that were started as independent sessions cannot
be terminated by using DosStopSession.

A parent session can be running in either the foreground or the background
when DosStopSession is issued. If a child session is in the foreground when it is
stopped, the parent session becomes the foreground session. The DosStopSes­
sion function breaks any bond between the parent session and the specified child
session.

A process running in the session specified by the idSession parameter can refuse
to terminate. If this happens, DosStopSession returns zero. To verify that the
target session has terminated, a process can wait for notification through the ter­
mination queue that is specified in the Do~StartSession function.

DosSetSession, DosStartSession

154 DosSubAlioc

• DosSubAlloc
USHORT DosSubAlloc(sel, pus Offset, cbBlock)
SEL sel; /. segment selector ./
PUSHORT pusOffset; /. pointe~ to variable for offset ./
USHORT cbBlock; /. number of bytes of requested memory ./

Par~meters

Return Value

Comments

See Also

• DosSubFree

The DosSubAlIoc function allocates memory in a segment that was allocated
previously py using theJ)osAlIocSeg or DosAlIocShrSeg function and that was
initialized by using the DosSubSet function.

The DosSlIbAlIoc function is a family API function.

sel Specifies the selector of the data segment in which lhe memory should be
allocated.

pusOf!set
cbBlock

Points to the variable that receives the offset to the allocated block.

Specifies the size (in bytes) of the requested memory block.

The return value is zero if the function is successful. Otherwise, it is an error
vahle, which may be one of the following:

ERRORJ)OSSUB-.BADSIZE
ERRORJ)OSSUB_NOMEM

The cbBlock parameter must not be greater than the maximum size of the seg­
ment minus 8 bytes. Since all memory blocks ar~ aligned on byte boundarie~, the
cbBlock parameter does not need to be a multiple of 16.

DosAllocSeg, DosAllocShrSeg, DosSubFree, DosSubSet

USHORT DosSubFree (sel, off Block, c;bBlock)
SEL sel; /. segment selector ./
USHORT off Block; /. block offset ./
USHORT cbBlock; /. number of bytes in block to free ./

Parameters

The DosSubFree function frees memory that was allocated previously by using
the DosSubAlIoc function.

The DosSubFree function is a family API function.

sel Specifies the selector of the data segment from which th~ memory should
be freed.

of!Block Specifies the offset of the memory block to be freed. This offset
must have been created previously by using the DosSubAlloc functi(Jn.

cbBlo(:k Specifies the size (in bytes) of the block to free.

Return Value

See Also

• DosSubSet

DosSubSet 155

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlCDOSSUB~ADSIZE
ERROlCDOSSUB_OVERLAP

DosAlIocSeg, DosSubAlIoc, DosSubSet

USHORT DosSubSet(sel, fFlags, cbSeg)
SEL sel; /. segment selector ./
USHORT fFlags; /. initialize/increase size of segment ./
USHORT cbSeg; /. new size of block ./

Parameters

Return Value

Comments

See Also

The DosSubSet function initializes a segment for suballocation or changes the
size of a previously initialized segment.

The DosSubSet function is a family API function.

sel Specifies the selector of the data segment.

[Flags Specifies whether to initialize the segment or increase its size. If the
fFlags parameter is OXOOO1, the function initializes the segment. If fFlags is
OXOOOO, the function changes the size of the segment.

cbSeg Specifies the new size (in bytes) of the segment.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ)OSSUB~ADFLAG
ERRORJ)OSSUB~ADSIZE
ERROILDO S SUB_SHRINK

If the fFlags parameter is OXOOO1, the DosSubSet function initializes the segment
so that the DosSubAlIoc function can be used to allocate memory blocks in the
segment. The segment must have been allocated previously by using the Dos­
AlIocSeg or DosAlIocShrSeg function.

If the fFlags parameter is OXOOOO, the DosSubSet function changes the size of
the segment to the number of bytes specified by the cbSeg parameter. If the
specified size is greater than the current size of the segment, the DosReallocSeg
function must be called before DosSubSet. If DosSubSet is not called after
changing the size of a segment by using DosReallocSeg, the results can be
unpredictable.

When changing the size of a segment by using the DosSubSet function, the cbSeg
parameter must be a multiple of 4 bytes that is greater than or equal to 12 bytes,
or it must be zero. Otherwise, the size is rounded up to the next multiple of 4.
In the DosSubSet function, setting the cbSeg parameter to zero indicates that the
segment is 64K, but in the DosSubAlIoc and DosSubFree functions, it is an
error when the cbSeg parameter is equal to zero.

DosAlIocSeg, DosAlIocShrSeg, DosReallocSeg, DosSubAlIoc, DosSubFree

156 DosSuspendThread

• DosSuspendThread
USHORT DosSuspendThread(tid)
TID tid; 1* identifier of thread to suspend .1

Parameters

Return Value

Comments

See Also

• DosTimerAsync

The DosSuspendThread function suspends the execution of a thread until a call
to the DosResumeThread function is made that specifies the suspended thread's
identifier.' '

tid Specifies the thread identifier of the thread to be suspended.

The retprn value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJNVALID_THREADID

The specified thread may not be suspended immediately if it has called a system
function that has locked some system resources; the locked resources must be
freed before the thread is suspended. The thread will not continue to execute
until a DosResumeThread function is called.

A thread can suspend threads only within its process.

DosCreateThread, DosEnterCritSec, DosResumeThread

USHORT DosTitnerAsync(ulTime. hsem. ph timer)
ULONG ulTime; I~ time before semaphore is cleared *1
HSEM hsem; I. system-semaphore handle *1
PHTIMER ph timer; I. pointer to variable for timer handle *1

Parameters

Return Value

Comments

The DQsTimerAsync function creates a timer that counts for a specified number
of milliseconds, then clears a specified semaphore.

ulTime Specifies the time (in milliseconds) before the semaphore is cleared.
This value is rou~ded up to the next clock tick, 'if necessary.

hsem Identifies the system semaphore that signals the end of the timer. This
handle must have been 'created previously by using the DosCreateSem function.

phtimer Points to the variable that receives the timer handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLTS_NOTIMER
ERROlLTS_SEMHANDLE

The timer runs asynchronously-that is, while the timer counts the time, the
DosTbl)erAsync function returns to let the process continue to execute other
tasks. The timer counts the time only once.

The given semaphore must be a system semaphore. If the process uses the sema­
phore to determine when' data is available, it must use the DosSemSet function
to set the semaphore before calling the DosTimerAsync function.

See Also

• DosTimerStart

DosTimerStart 157

The timer handle specified by the phtimer parameter can be used by the Dos­
TimerStop function to cancel the timer.

The DosTimerAsync function is similar to the DosSleep function except that
DosTimerAsync returns immediately; DosSleep returns only after the specified
time has elapsed.

DosSemSet, DosSleep, DosTimerStart, DosTimerStop

USHORT DosTimerStart (uITime, hsem, ph timer)
ULONG ulTime; 1* time before semaphore is cleared *'
HSEM hsem; 1* system-semaphore handle *1
PHTIMER phtimer; 1* pointer to variable for timer handle *1

Parameters

Return Value

Comments

See Also

The DosTimerStart function creates a timer that counts for a specified number
of milliseconds, then clears the specified semaphore. The function repeats this
process continually, counting the time and clearing the semaphore, until the pro­
cess stops it by using the DosTimerStop function. The timer handle is used in
the DosTimerStop function to cancel the timer.

ulTime Specifies the time (in milliseconds) before the semaphore is cleared.

hsem Identifies the system semaphore that signals the end of the timer. This
handle must have been created previously by using the DosCreateSem function.

phtimer Points to the variable that receives the timer handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILTS_NOTIMER
ERROILTS_SEMHANDLE

The timer runs asynchronously-that is, while the timer counts the time, the
function returns to let the process continue to execute other tasks.

The given semaphore must be a system semaphore. If the process uses the sema­
phore to determine when data is available, it must use the DosSemSet function
to set the semaphore before calling the DosTimerStart function.

If necessary, the DosTimerStart function rounds up the ulTime parameter to the
next clock tick.

The timer may clear the semaphore several times before a process that is waiting
for the semaphore resumes execution. If the process requires an accurate count
of the time it waited, it should retrieve the current system time from the global
information segment before and after waiting for the semaphore and compare
these times.

DosGetInfoSeg, DosSemSet, DosTimerStop

158 DosTimerStop

• DosTimerStop
USHORT DosTimerStop(htimer)
HTIMER htimer, 1* timer handle *'

Parameters

Return Value

Comments

See Also

The DosTimerStop function stops a specified timer.

htimer Identifies the timer to be stopped. This handle must have been created
previously by using the DosTimerAsync or DosTimerStart function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR_TSJIANDLE

When the DosTimerStop function stops a timer, it does not clear the corre­
sponding semaphore. If a process is waiting for the semaphore to clear, the pro­
cess that stops the timer should also clear the semaphore.

DosTimerAsync, DosTimerStart

• DosTransactNmPipe
USHORT DosTransactNmPipe (hp, pbOutBuf, cbOutBuf, pblnBuf, cblnBuf, pcbRead)
HPIPE hp; 1* pipe handle *1
paYTE pbOutBuf; 1* pOinter to buffer containing data *1
USHORT cbOutBuf; 1* number of bytes in output buffer *1
PBYTE pblnBuf; 1* pointer to buffer receiving data *'
USHORT cblnBuf; 1* number of bytes in input buffer *1
PUSHORT pcbRead; 1* pointer to variable receiving number of bytes read *1

Parameters

Return Value

The DosTransactNmPipe function writes data to and reads data from a named
pipe.

hp Identifies the named pipe.

pbOutBuf Points to the buffer containing the data that is written to the pipe.

cbOutBuf Specifies the size (in bytes) of the output buffer.

pblnBuf Points to the input buffer that receives the data read from the pipe.

cblnBuf Specifies the size (in bytes) of the input buffer.

pcbRead Points to the variable that receives the number of bytes read from
the pipe.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-BAD_PIPE
ERRORJNTERRUPT
ERRORJNVALIDYUNCTION
ERRO~SE~TIMEOUT

Comments

See Also

• DosUnlockSeg

DosWaltNmPipe 159

The DosTransactNmPipe function fails if the named pipe contains any unread
data or if the named pipe is not in message mode. A named pipe's blocking state
has no effect on the DosTransactNmPipe function. The DosTransactNmPipe
function does not return until data is written into the output buffer.

DosCallNmPipe

USHORT DosUnlockSeg (se/)
SEL sel; I. selector of segment to unlock .1

Parameters

Return Value

Comments

See Also

The DosUnlockSeg function unlocks a discardable segment. Once a segment is
unlocked, the system may discard it to make space available for other segments.

sel Specifies the selector of the segment to unlock.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosUnlockSeg applies only to segments that are allocated by using the Dos­
AllocSeg function with the fsAlloc parameter set to SEGJ)ISCARDABLE.

The DosLockSeg and DosUnlockSeg functions may be nested. If DosLockSeg is
called 5 times to lock a segment, DosUnlockSeg must be called 5 times to
unlock the segment. A segment becomes permanently locked if it is locked 255
times without being unlocked.

DosAllocSeg, DosLockSeg

• DosWaitNmPipe
USHORT DosWaitNmPipe (pszName, ulTimeOut)
PSZ pszName; I. pointer to pipe name.1
ULONG ulTimeOut; I. timeout value .1

Parameters

Return Value

The Dos WaitNmPipe function waits for a named pipe to become available.

pszName Points to the name of the pipe. The name is in the form \pipe\name
for a local pipe and \\server\pipe\name for a remote pipe.

ulTimeOut Specifies a value (in milliseconds) that is the amount of time MS
OS/2 should wait for the pipe to become available.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ3ADJIPE
ERRORJNTERRUPT
ERROR.SEM_TIMEOUT

160 DosWaitNmPipe

Comments

See Also

• DosWrite

The DosWaitNmPipe function should be used only when the DosOpen function
returns the ERRORYIPEJ3USY error value.

If more than one process has requested a named pipe that has become available,
the system gives the pipe to the process that has been waiting the longest.

DosOpen

USHORT DosWrite(hf, pv8uf, cb8uf, pcb8ytesWritten)
HFILE hf; /* file handle */
PVOID pv8uf; /* pointer to buffer */
USHORT cb8uf; /* number of bytes to write */
PUSHORT pcb8ytesWritten; /* pointer to variable receiving byte count */

Parameters

Return Value

Comments

The Dos Write function writes data from a buffer to a file, then copies the num­
ber of bytes written to a variable.

The Dos Write function is a family API function.

hf Identifies the file that receives the data. This handle must have been created
previously by using the DosOpen function.

pvBuf Points to the buffer that contains the data to write.

cbBuf Specifies the number of bytes to write.

pcbBytesWritten Points to the variable receiving the number of bytes written.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-ACCESSJ)ENIED
ERROILBROKENYIPE
ERRORJNVALIDJIANDLE
ERROR-LOCIL VIOLATION
ERROR-NOTJ)OSJ)ISK
ERROR-WRITEJAULT

The DosWrite function begins to write at the current file-pointer position. The
file-pointer position can be changed by using the DosChgFilePtr function.

If the specified file has been opened using the write-through flag, the Dos Write
function writes data to the disk before returning. Otherwise, the system collects
the data in an internal file buffer and writes the data to the disk only when the
buffer is full.

The Dos Write function may write fewer bytes to the file than the number
specified in the cbBuj parameter if there is not enough space on the disk for all
of the requested bytes. The cbBuj parameter can be zero without causing an
error-that is, writing no bytes is acceptable.

The efficiency with which the Dos Write function writes to a disk is improved
when the cbBuj parameter is set to a multiple of the disk's bytes-per-sector size.
When cbBuj is set this way, the function writes directly to the disk, without first
copying the data to an internal file buffer. (The DosQFSlnfo function retrieves
the byters-per-sector value for a disk.)

Example

See Also

• DosWriteAsync

DosWriteAsync 161

This example creates the file abc and calls the Dos Write function to write the
contents of the abBuf buffer to the file:

BYTE abBuf [512] ;
HE'ILE hf;
USHORT usAction, cbBytesWritten, usError;
usError = DosOpen (ltabc lt , &hf, &usAction, OL, FILE_NORMAL,

FILE_CREATE,
OPEN_ACCESS_WRITEONLY OPEN_SHARE_DENYWRITE, OL);

if (lusError) {
DosWrite (hf,

abBuf,
sizeof (abBuf) ,
&cbBytesWritten) ;

/* file handle */
/* buffer address */
/* buffer size */
/* address of bytes written */

DosCbgFilePtr, DosOpen, DosRead, DosWriteAsync

USHORT DosWriteAsync(hf, hsemRam, pusErrCode, pvBuf, cbBuf, pcbBytesWritten)
HFILE hf; . 1* file handle *1
PULONG hsemRam; 1* pointer to RAM semaphore *1
PUSHORT pusErrCode; 1* pointer to variable for error value *1
PVOID pvBuf; 1* pointer to buffer containing data to write *1
USHORT cbBuf; 1* number of bytes in buffer *1
PUSHORT pcbBytesWritten; 1* pointer to variable for bytes written *'

Parameters

Return Value

The DosWriteAsync function writes one or more bytes of data to a specified file.
The function writes the data asynchronously-that is, the function returns
immediately, but continues to copy data to the specified file while the process
continues with other tasks.

hi Identifies the file that receives the data. This handle must have been created
previously by using the DosOpen function.

hsemRam Points to the RAM semaphore that indicates when the function has
finished reading the data.

pusErrCode Points to the variable that receives an error value.

pvBul Points to the buffer that contains the data to write.

cbBul Specifies the number of bytes to write.

pcbBytesWritten Points to the variable receiving the number of bytes written.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORACCESSJ)ENIED
ERRORJ3ROKENYIPE
ERRORJNVALIDJIANDLE
ERRORJ.,OCIC VIOLATION
ERROR-NOYROC_SLOTS
ERROR-NOTJ)OSJ)ISK
ERROR-WRITE.....FAULT

162 DosWriteAsync

Comments

Example

See Also

The DosWriteAsync function starts writing at the current file-pointer position.
The file-pointer position can be changed by using the DosChgFilePtr function.

Ii the specified file has been opened using the write-through flag, the Dos­
WriteAsync function writes data to the disk as well as to the file before return­
ing. If the write-through flag has not been set, the system collects the data in an
internal file buffer and writes the data to the disk only when the buffer is full.

The DosWriteAsync function may write fewer bytes to the file than the number
specified in the cbBuj parameter if there is not enough space on the disk for all
of the requested bytes. The cbBuj parameter can be zero without causing an
error-that is, writing no bytes is acceptable.

When the Dos WriteAsync function has written the data, it clears the RAM
semaphore pointed to by the hsemRam parameter. If the process uses the sema­
phore to determine when data is available, it must use the DosSemSet function
to set the semaphore before calling DosWriteAsync.

The efficiency with which the Dos WriteAsync function writes to a disk is
improved when the cbBuj parameter is set to a multiple of the disk's bytes-per­
sector size. When cbBuj is set this way, the function writes directly to the disk,
without first copying the data to an internal file buffer. (The DosQFSlnfo func­
tion retrieves the byters-per-sector value for a disk.)

This example creates the file abc.ext, sets a RAM semaphore, and calls the
DosWriteAsync function to write the contents of the buffer abBuj to a file.
When any additional processing is finished, the example calls the DosSemWait
function to wait until DosWriteAsync has finished writing to the file.

ULONG hsemWrlte = 0;
BYTE abBuf[1024];
HFILE hf;
USHORT usActlon, cbBytesWritten;
USHORT usWriteAsyncError;
DosOpen(ltabc.ext", &hf, &usAction, OL, FILE_NORMAL,

FILE_CREATE,
OPEN_ACCESS_WRITEONLY OPEN_SHARE_DENYWRITE, OL);

/* sets the semaphore
/* file handle

*/
*/

DosSemSet(&hsemWrite);
DosWriteAsync(hf,

&hsemWrite,
&usWriteAsyncError,
abBuf,
sizeof(abBuf),
&cbBytesWritten);

/*
/*
/*
/*
/*

semaphore address */
return-code address */
buffer address */
buffer size */
address of bytes written */

. /* Other processing would go here */

DosSemWait(&hsemWrite, -lL);
if (usWriteAsyncError) {

/* waits for DosWriteAsync */

. /* Error processing would go here. */

DosChgFilePtr, DosOpen, DosQFSlnfo, DosReadAsync, DosSemSet, Dos­
SemWait, DosWrite

DosWriteQueue 163

• DosWriteQueue
USHORT DosWriteQueue(hqueue, usRequest, cbBuf, pbBuf, usPriority)
HQUEUE hqueue; I. handle of target queue .;
USHORT usRequest; I. request/identification data .1
lJSHORT cbBuf; I. number of bytes to write .1
PBYTE pbBuf; I. pointer to buffer containing element to write .1
UCHAR usPriority; I. priority of element to write .1

Parameters

Return Value

Comments

Example

See Also

The DosWriteQueue function writes an element to the specified queue. The
position of the element in the queue is determined by the value that was
specified in the fQueueOrder parameter of the DosCreateQueue function when
the queue was created; if the value of this parameter was set to OxOOO2 (priority
queue), the usPriority parameter of the DosWriteQueue function can be used to
set the priority of the element. After the element is written, the process that
owns the queue may read the element by using the DosPeekQueue or DosRead­
Queue function.

hqueue Identifies the queue to be written to. This handle must have been pre­
viously created or opened by using the DosCreateQueue or DosOpenQueue
function.

usRequest Specifies a program-supplied event code. MS OS/2 does not use
this field; it is reserved for the program's use. The queue owner can retrieve this
value by using the DosPeekQueue or DosReadQueue function.

cbBuf Specifies the number of bytes to be copied to the buffer that is pointed
to by the pbBuf parameter.

pbBuf Points to the buffer that contains the element to be written to the
queue.

usPriority Specifies the element priority. This parameter can be any value
from 0 through 15; 15 is the highest priority.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_QUE_INV ALIDJIANDLE
ERRO~QUE_NO~EMORY

The DosWriteQueue function returns an error value if the queue has been
closed by the process that owns it.

If the queue owner uses a RAM semaphore to notify it when elements are added
to the queue, the semaphore must be shared. If the notifying semaphore is a sys­
tem semaphore, the writing process must have opened the semaphore by using
the DosOpenSem function.

This example creates a queue and calls the DosWriteQueue function to write the
string "Hello World" to the queue:

HQUEUE hqueue;
DosCreateQueue(&hqueue, 0,
DosWriteQueue(hqueue,

0,
11,
"Hello World",
0) ;

"\\queues\\abc.que") ;
/* handle to queue */
/* request data */
/* length of data */
/* data buffer */
/* element priority */

DosCreateQueue, DosOpenQueue, DosReadQueue

164 KbdCharln

• KbdCharln
USHORT KbdCharln (pkbci, fWait. hkbd)
PKQOKEYINFO pkbci; I. pointer to structure for keystroke info . • 1
USHORT twait; I. wait/no-wait flag .1
HKBO hkbd; I. keyboard handle· *'

Parameters

Return Value

Comments

The KbdCharIn function retrieves; c.haracter and scan-code information from a
logical keyboard. The fUnctioQ. c~pies the information to the structure pointed to
by the pkbci parameter. Keystroke ihformation includes the character value of a
given key, the scan code, the key~troke status, the state of the shift keys,and
the system time (in milliseconds) when the keystroke occurred. For information
on scan codes, key codes, and MS OS/2 control and editing keys, see Chapter
5, "File Formats."

The KbdCharIh function is a family API function.

pkbci Points to the KBDKEYINFO structure that receives the keystroke infor­
mation. The KBDKEYINFO structure has the following form:

typedef str\,lct _KBDKEYINFO {
UCHAR cihChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONO time;

} KBDKEYINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

/Wait Specifies whether to wait for keystroke information if none is available.
If this parameter is 10_ WAIT, the function waits for. a keystroke· if one is not
available. If the parameter is 10_NOWAIT, the function returns immediately
whether or not it retrieved any keystroke information. The tbStatus field in the
KBDKEYINFO structure specifies whether a keystroke is received. The tbStatus
field is nonzero if a keystroke is received or zero if not.

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ(BDYOCUS.-REQUIRED
ERRORJ(BDJNVALIDJOWAIT

The KbdCharIn function copies and removes keystroke information from the
input buffer of the specified logi<;,al keyboard. Although echo mode for the logi­
cal keyboard may be turn~cl on, KbdCharIn does not echo the characters it
reads. If the keyboard is in ASCII mode, KbdCharIn retrieves keystroke infor­
mation for each key pressed except shift keys and MS OS/2 CTRL keys. If the
keyboard is in binary mode, KbdCharIn retrieves keystroke information for any
key pressed except shift keys. In most cases, a shift key is pressed in combina­
tion with other keys to create a single keystroke. In binary mode with shift
report turned on, a key by itself creates a keystroke that this function can
retrieve. For more information on binary mode· and shift-report mode, see the
KbdSetStatus function.

Restrictions

Example

See Also

• KbdClose

KbdClose 165

The KbdCharIn function retrieves extended ASCII codes, such as when the ALT
key and another key, called the primary key, are pressed simultaneously. When
the function retrieves an extended code, it sets the chChar field of the
KBDKEYINFO structure to OxOOOO or OxOOEO and copies the extended code to
the chScan field. The extended code is usually the scan code of the primary key.
In ASCII mode, the function retrieves only complete extended codes, which
means that if both bytes of the extended code do not fit in the buffer, neither
byte is retrieved. For more information on extended ASCII codes, see Appen­
dix C, "Country and Code-Page Information."

This function must be called twice to retrieve a code for a double-byte character
set (DBCS). If the code retrieved is the first byte of a double-byte character, the
tbStatus field of the KBDKEYINFO structure is set to OxOO80.

In real mode, the following restrictions apply to the KbdCharIn function:

• It does not copy the system time to the KBDKEYINFO structure and
there is no interim character support.

• It retrieves characters only from the default logical keyboard (handle 0).
• The tbStatus field· may be OXOOOO or SHIFT.J(EYJN.
• The hkbd parameter is ignored.

This example calls the KbdCharIn function to retrieve a character, and then dis­
plays the character on the screen:

KBDKEYINFO kbci;
KbdCharIn(&kbci,

IO_WAIT,
0) ;

VioWrtTTY(&kbci.chChar, 1, 0);

1* structure for data *1
1* waits for key *1
1* keyboard handle *1

KbdGetStatus, KbdOpen, KbdPeek, KbdSetStatus, KbdStringln

USHORT KbdClose(hkbd)
HKBD hkbd; 1* keyboard handle *1

Parameters

Return Value

The KbdClose function closes the specified logical keyboard. The function
removes any remaining keystrokes from the input buffer and automatically frees
the focus (if the logical keyboard has it).

The default keyboard cannot be closed. If you specify the default keyboard (han­
dle 0), the KbdClose function ignores the request.

hkbd Identifies the logical keyboard to close. The handle must have been
created previously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR.J(BDJNV ALIDJIANDLE

166 KbdClose

Example

See Also

• KbdDeRegister

This example opens a logical keyboard and calls KbdClose to close it:

HKBD hkbd;
KbdOpen(&hkbd) ;

KbdClose(hkbd);

KbdFlushBuffer, KbdFreeFocus, KbdOpen

USHORT KbdDeRegister(void)

Parameters

Return Value

See Also

• KbdFlushBuffer

The KbdDeRegister function restores the default Kbd subsystem and releases
any previously registered Kbd subsystem. The function restores the default Kbd
subsystem for all processes in the current screen group.

Once a process registers a Kbd subsystem, no other process in the screen group
may register a Kbd subsystem until the default subsystem is restored. Only the
process registering a Kbd subsystem may call the KbdDeRegister function to
restore the default subsystem.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJ{BDJ)EREGISTER

KbdRegister

USHORT KbdFlushBuffer(hkbd)
HKBD hkbd; 1* keyboard handle *1

Parameters

Return Value

Restrictions

The KbdFlushBuffer function removes all keystroke information from the input
buffer of the specified logical keyboard, but only if the keyboard has the focus or
is the default keyboard.

The KbdFlushBuffer function is a family API function.

hkbd Identifies the logical keyboard to clear. The handle must have been
created previously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

In real mode, the following restriction applies to the KbdFlushBuffer function:

• The hkbd parameter is ignored.

Example

See Also

• KbdFreeFocus

KbdGetCp 167

This example opens a logical keyboard and calls KbdFlushBuffer to remove any
keystrokes from the input buffer:

HKBD hkbd;
KbdOpen(&hkbd) ;

KbdFlushBuffer(hkbd);

KbdCharln

USHORT KbdFreeFocus (hkbd)
HKBD hkbd; 1* keyboard handle *1

Parameters

Return Value

Comments

Example

See Also

• KbdGetCp

The KbdFreeFocus function frees the focus from the specified logical keyboard.
Other logical keyboards can then use the focus.

hkbd Identifies the logical keyboard that loses the focus. The handle must
have been created previously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

If a process has been waiting for the focus as a result of calling the KbdGet­
Focus function, MS OS/2 assigns the focus to the logical keyboard as soon as it
is free. If more than one process is waiting, MS OS/2 chooses a logical keyboard
and assigns the focus. The other processes continue to wait until the focus is
free.

This example frees a logical keyboard: if other logical keyboards have been wait­
ing, MS OS/2 assigns the focus to one of them; if no other logical keyboards
have been waiting, MS OS/2 uses the default keyboard:

HKBD hkbd;
KbdOpen(&hkbd) ;
KbdGetFocus(IO_WAIT, hkbd);

KbdFreeFocus(hkbd);

KbdGetFocus, KbdOpen

/* gets focus */

/* frees focus */

USHORT KbdGetCp(ulReserved, pidCodePage, hkbd)
ULONG ulReserved; 1* must be zero *1
PUSHORT pidCodePage; 1* pointer to code-page identifier *1
HKBD hkbd; 1* keyboard handle *1

The KbdGetCp function retrieves the current code-page identifier for the speci­
fied logical keyboard. The code-page identifier defines which translation table
MS OS/2 uses to translate keystrokes into character values. The KbdGetCp
function copies the identifier to the variable pointed to by the pidCodePage
parameter.

168 KbdGetCp

Parameters

Return Value

Comments

Example

See Also

• KbdGetFocus

ulReserved Specifies a reserved value; must be zero.

pidCodePage Points to the variable that receives the code-page identifier. The
ioliowing are the valid code-page numbers:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The code-page identifier may be any value specified in a codepage command in
the config.sys file. The identifier is OXOOOO if MS OS/2 is using the default trans­
lation table for the logical keyboard.

For a description of the possible code-page identifiers and translation tables, see
Appendix C, "Country and Code-Page Information."

This example calls the KbdGetCp function to identify which code page is being
used to translate scan codes for the specified logical keyboard.

USHORT idCodePage;
KbdGetCp(OL,

&idCodePage,
0) ;

/* must be zero */
/* pointer to code-page identifier */
/* keyboard handle */

DosGetCp, KbdOpen, KbdSetCp

USHORT KbdGetFocus(fWait, hkbd)
USHORT fWait; I .. wait/no-wait flag *1
HKBD hkbdj 1* keyboard handle *1

The KbdGetFocus function retrieves the focus for the specified logical keyboard.
The focus determines which logical keyboard receives keystrokes from the physi­
cal keyboard. A logical keyboard cannot receive keystrokes unless it has the
focus.

A process can retrieve the focus at any time, but it must wait if the focus is
already being used by another process or thread. If a process has the focus,
another process cannot receive the focus until the original process frees it by
using the KbdFreeFocus function. If more than one process is waiting for the
focus, MS OS/2 chooses which one receives the focus.

An application must set the focus to an opened keyboard handle before calling
functions such as KbdCharIn.

Parameters

Return Value

Example

See Also

• KbdGetStatus

KbdGetStatus 169

jWait Specifies whether to wait for the focus to become available. If this
parameter is 10_ WAIT, the function waits for the focus. If the parameter is
10_NOW AIT, the function returns immediately whether or not it retrieved the
focus.

hkbd Identifies the logical keyboard that receives the focus. The handle must
have been created previously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORJ(BDYOCUS~LREADY~CTlVE
ERRORJ<BD_UNABLE_TOYOCUS

This example opens a logical keyboard and calls KbdGetFocus to retrieve the
focus for the opened keyboard. Once the KbdFreeFocus function is called, the
focus goes to any process that is waiting for it by calling KbdGetFocus. If no
process is waiting, MS OS/2 uses the default keyboard:

HKBD hkbd;
KbdOpen(&:hkbd);
KbdGetFocus(IO_WAIT, hkbd); /* retrieves focus of logical keyboard */

KbdFreeFocus(hkbd); /* frees the focus */

KbdCharln, KbdFreeFocus, KbdOpen

USHORT KbdGetStatus (pkbstKbdlnfo, hkbd)
PKBDINFO pkbstKbdlnfo; 1* pointer to structure for keyboard status *1
HKBD hkbd; 1* keyboard handle *1

Parameters

Return Value

The KbdGetStatus function retrieves the status of the specified logical keyboard.
The keyboard status specifies the state of the keyboard echo mode, input mode,
turnaround character, interim character flags, and shift state.

The KbdGetStatus function is a family API function.

pkbstKbdlnfo Points to the KBDINFO structure that receives the keyboard
status. The KBDINFO structure has the following form:

typedef struct _KBDINFO {
USHORT cp;
USHORT fsMask;
USHORT chTurnAround;
USHORT fslnterim;
USHORT fsState;

} KBDINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. OtherWise, it is an error
value, which may be the following:

ERRORJ<BDJNVALID.LENGTH

170 KbdGetStatus

Comments

Restrictions

Example

See Also

• KbdOpen

Although the initial status of a logical keyboard depends on the system, thelogi­
cal keyboard typically has echo and ASCII modes turned 00, and has a single­
byte turnaround character whose value corresponds to the ENTER key.

In real mode, the following restriction applies to the KbdGetStatus function:

•. Interim and turnaround characters are not supported.

This example calls the KbdGetStatus function to retrieve the status of the
default keyboard. It then checks to see if echo mode is turned on:

KBDINFO kbstlnfo;
kbstlnfo.cb = sizeof(kbstlnfo); /* length of status buffer */
KbdGetStatus(&kbstlnfo, 0);
if (kbstlnfo.fsMask & KEYBOARD_ECHO_ON) {

VioWrtTTY("Echo is on\n\r" , 12, 0);

KbdSetStatus, KbdOpen

USHORT KbdOpen(phkbd)
PHKBD phkbd; /* pOinter to variable for keyboard handle */

Parameters

Return Value

Comments

Example

See Also

• KbdPeek

The KbdOpen function opens a logical keyboard and creates a unique handle
that identifies a logical keyboard for use in subsequent Kbd (or other MS OS/2)
functions. The KbdOpen function initializes the logical keyboard to use the
default system code page.

phkbd Points to the variable that receives the handle of the logical keyboard.

The return value is zero if the function is successful. Otherwise, it is an error
value.

Any MS OS/2 function that can receive input through a handle (for example, the
DosRead function) can use the handle created by the KbdOpen function.

This example calls the KbdOpen function to create and open a handle for a logi­
cal keyboard. Before you can access this logical keyboard, you must call the
KbdGetFocus function to retrieve the focus:

HKBD hkbd;
KbdOpen(&hkbd) ;
KbdGetFocus(IO_WAIT, hkbd);

DosRead, KbdClose, KbdGetFocus

USHORT KbdPeek(pkbciKeylnfo, hkbd)
PKBDKEYINFO pkbciKeylnfo; /* pOinter to structure for keystroke info. *1
HKBD hkbd; 1* keyboard handle */

The KbdPeek function retrieves character and scan-code information from a log­
ical keyboard. The function copies information to the structure pointed to by the
pkbciKeylnjo parameter. The keystroke information includes the character value

Parameters

Return Value

Comments

Restrictions

KbdPeek 171

of the key, the scan code, the keystroke status, the state of the shift keys, and
the system time (in milliseconds) when the keystroke occurred. For information
on scan codes, key codes, and MS OS/2 control and editing keys, see Chapter
5, "File Formats."

The KbdPeek function is a family API function.

pkbciKeylnfo Points to the KBDKEYINFO structure that receives the key­
stroke information. The KBDKEYINFO structure has the following form:

typedef struct _KBDKEYINFO {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;

} KBDKEYINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The KbdPeek function copies but does not remove keystroke information from
the input buffer of the specified logical keyboard. Although echo mode for the
logical keyboard may be turned on, the KbdPeek function does not echo the
characters it reads. If the keyboard is in ASCII mode, KbdPeek retrieves key­
stroke information for each key pressed, except shift keys and MS OS/2 CTRL
keys. If the keyboard is in binary mode, KbdPeek retrieves keystroke informa­
tion for any key pressed, except shift keys. In most cases, a shift key is pressed
in combination with other keys to create a single keystroke. In binary mode with
shift report turned on, a shift key by itself creates a keystroke that this function
can retrieve. For more information on binary mode and shift-report mode, see
the KbdSetStatus function.

The KbdPeek function retrieves extended ASCII codes, such as wheri the ALT
key and another key, called the primary key, are pressed simultaneously. When
the KbdPeek function retrieves an extended ASCII code, it sets the chChar field
of the KBDKEYINFO structure to OxOOOO or OxOOEO and copies the code to the
chScan field. The extended code is usually the scan code of the primary key. In
ASCII mode, the function retrieves only complete extended codes, which means
that if both bytes of the extended code do not fit in the buffer, neither byte is
retrieved. For more information on extended ASCII codes, see Appendix C,
"Country and Code-Page Information."

The KbdPeek function must be called twice to retrieve a code for a double-byte
character set (DBCS). If the code retrieved is the first byte of a double-byte
character, the tbStatus field of the KBDKEYINFO structure is set to OxOOSO.

In real mode, the following restrictions apply to the KbdPeek function:

• It does not copy the system time to the KBDKEYINFO structure, and
there is no interim character support.

• It retrieves characters only from the default logical keyboard (handle 0).
• The tbStatus field may be OXOOOO or SHIFTJ(EYJN.
• The hkbd parameter is ignored.

172 KbdPeek

Example

See Also

• KbdRegister

This example calls the KbdPeek function to read a character from the default
keyboard without removing it from the keyboard .input buffer. If there is already
a character 111 the buffer, the fbStatus field specifies this by setting the sixth bit
(Ox40):

KBDKEYINFO kbciKeylnfo:

KbdPeek(&kbciKeylnfo, 0):
if (kbciKeylnfo.fbStatus & Ox40) {

KbdCharIn, KbdGetStatus, KbdOpen, KbdSetStatus

USHORT KbdReQister(pszModuleName, pszEntryName, fFunctions)
PSZ pszModuleName; /* pointer to string for module name */

PSZ pszEntryName; /* pOinter to string for entry-point name */

ULONG fFunctions; /* function flags */

Parameters

The KbdRegister function registers a Kbd subsystem for the specified logical
keyboard. The function temporarily replaces the one or more default Kbd func­
tions, as specified by the fFunctions parameter, with the function(s) in the mod­
ule named by the pszModuleName parameter. Once KbdRegister replaces a
function, MS OS/2 passes any subsequent call to the replaced function to a func­
tion in the given module. If you do not replace a function, MS OS/2 continues
to call the default Kbd function.

pszModuleName Points to the null-terminated string that contains the name
. of the dynamic-link module specifying the replacement Kbd functions. The string

Inust be a valid filename.

pszEntryName Points to the null-terminated string that contains the dynamic­
link entry-point name of the function that replaces the specified Kbd function(s).
For a full description, see the following "Comments" section.

fFunctions Specifies the flags for the function(s) to replace. This parameter
can. be any combination of the following values:

Value

KR_KBDCHARIN

KRJ{BDPEEK

KR_KBDFLUSHBUFFER

KR_KBDGETSTATUS

KR_KBDSETSTA TUS

KR_KBDSTRINGIN

KR_KBDOPEN

KR_KBDCLOSE

KR_KBDGETFOCUS

KR_KBDFREEFOCUS

KR_KBDGETCP

Meaning

Replace KbdCharIn.

Replace KbdPeek.

Replace KbdFlushBuft'er.

Replace KbdGetStatus.

Replace KbdSetStatus.

Replace KbdStrlngIn.

Replace KbdOpen.

Replace KbdClose.

Repiace KbdGetFocus.

Replace KbdFreeFocus.

Replace KbdGetCp.

Return Value

Comments

Value

KR_KBDSETCP

KR_KBDXLA TE

KR_KBDSETCUSTXT

Meaning

Replace KbdSetCp.

Replace KbdXlate.

Replace KbdSetCustXt.

KbdRegister 173

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILKBDJNV ALID.-ASCIIZ
ERROR.J(BDJNV ALID~ASK
ERROILKBD-REGISTER

MS OS/2 passes a Kbd function to the given module by preparing the stack and
calling the function pointed to by the pszEntryName parameter. The specified
module must export the entry-point function name. The entry-point function
must check the function code on the stack to determine which function is being
requested, and then pass control to the appropriate function in the module. The
entry-point function may then access any additional parameters placed on the
stack by the original call to KbdRegister.

Only one process in a screen group may use the KbdRegister function at any
given time. That is, only one process can replace Kbd functions at any given
time. The process can restore the default Kbd functions by calling the KbdDe­
Register function. A process can replace Kbd functions any number of times,
but it may do so only by first restoring the default functions, and then reregis­
tering the new functions.

The entry-point function (FuncName) must have the following form:

SHORT FAR FuncName(seIDataSeg, usReservedl, fFunction,
ulReserved2, usParaml, usParam2, usParam3, usParam4,
usParam5, usParam6)

SEL selDataSeg;
USHORT usReservedl;
USHORT fFunction;
ULONG ulReserved2;
USHORT usParaml;
USHORT usParam2;
USHORT usParam3;
USHORT usParam4;
USHORT usParam5;
USHORT usParam6;

Parameters

selDataSeg

usReservedl

Description

Specifies the data-segment selector of the process that
calls the Kbd function.

Specifies a reserved value that must not be changed.
This value represents a return address for the MS
OSI2 function that routes Kbd function calls.

174 KbdRegister

See Also

Parameters

[Function

uiReserved2

usParaml-usParam6

Description

Specifies the function code of the function request.
This parameter can be one of the following values:

Value Meaning

OXOOOO KbdCharIn called.

Ox0001 KbdPeek called.

Ox0002 KbdFlushBuffer called.

Ox0003 KbdGetStatus called.

OxOOO4 KbdSetStatus called.

Ox0005 KbdStrlngIn called.

OxOOO6 KbdOpen called.

OxOOO7 KbdClose called.

Ox0008 KbdGetFocus called.

OxOOO9 KbdFreeFocus called.

OxOOOA KbdGetCp called.

OxOOOB KbdSetCp called.

OXOOOC KbdXlate called.

OxOOOD KbdSetCustXt called.

Specifies a reserved value that must not be changed.
This parameter represents the return address of the
program that calls the specified Kbd function.

Specify up to six unsigned values passed with the call
to the Kbd function. The number and type of parame-
ters used depend on the specific function.

The entry-point function should determine which function is requested and then
carry out an appropriate action by using the passed parameters. If necessary, the
entry-point function can call a function within the same module to carry out the
task. The entry-point or replacement function must leave the stack in the same
state as it was received. This is required since the return addresses on the stack
must be available in the correct order to return control to the program that origi­
nally called the KbdRegister function.

The registered function should return - 1 if it wants the original function called,
o if no error occurred, or an error value.

In general, if the replacement function needs to access the keyboard, it must use
the input-and-output control functions for the keyboard. For more information,
see Chapter 3, "Input-and-Output Control Functions."

The KbdRegister function itself cannot be replaced.

KbdDeRegister, KbdFlushBuffer

KbdSetCp 175

• KbdSetCp
USHORT KbdSetCp(usReserved, idCodePage, hkbd)
USHORT usReserved; I. must be zero .1
USHORT idCodePage; I. code-page identifier .1
HKBD hkbd; I. keyboard handle .1

Parameters

Return Value

Comments

Example

See Also

The KbdSetCp function sets the code-page identifier for the specified logical
keyboard. The code-page identifier defines which translation table MS OSI2 uses
to translate keystrokes into character values. The code-page identifier may be
any value specified in a codepage command in the config.sys file, or OxOOOO for
the default translation table for the logical keyboard.

The KbdSetCp function also clears the input buffer of the logical keyboard.

usReserved Specifies a reserved value; must be zero.

idCo dePage Specifies the code-page identifier. If the identifier is OXOOOO, the
default translation table is used. The following are the valid code-page numbers:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

For a description of the possible code-page identifiers and translation tables, see
Appendix C, "Country and Code-Page Information."

This example calls KbdSetCp to change the Kbd subsystem so that it uses the
U.S. multilingual code page (850) when translating keystrokes for the default
keyboard. The code page must be installed by the config.sys file or this function
returns an error value:

KbdSetCp(O,
850,
0) ;

It reserved tl
It code-page identifier tl
It keyboard handle tl

DosSetCp, KbdGetCp, KbdOpen, KbdSetCustXt

176 KbdSetCustXt

• KbdSetCustXt
USHORT KbdSetCustXt(pusTransTbl, hkbd)
fiUSHORT pusTransTbl; I. pOinter to translation table .1
HKBD hkbd; I. keyboard handle .1

Parameters

Return Value

See Also

• KbdSetFgnd

The KbdSetCustXt function installs a custom translation table for the specified
logical keyboard. MS OS/2 uses the translation table to generate character
values for all subsequent keystrokes from the logical keyboard.

The KbdSetCustXt function does not copy the translation table, so the process
must maintain the table in memory while it is in use, where it remains until the
process calls the KbdSetCp or KbdSetCustXt function to set another translation
table, or calls the KbdClose function to close the logical keyboard.

pusTransTbl Points to the translation table. The table has the size and format
described in Appendix C, "Country and Code-Page Information."

hkbd Identifies the logical keyboard that uses the new code page. The handle
must have been created previously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosSetCp, KbdClose, KbdOpen, KbdSetCp, KbdXlate

USHORT KbdSetFgnd(void)

Parameters

Return Value

• KbdSetStatus

The KbdSetFgnd function raises the priority of the foreground keyboard's
thread. This function is used by a Kbd subsystem, not by an application.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value.

USHORT KbdSetStatus (pkbstKbdlnfo, hkbd)
PKBDINFO pkbstKbdlnfo; I. pointer to structure for keyboard status .1
HKBD hkbd; I. keyboard handle .1

The KbdSetStatus function sets the status for the specified logical keyboard. The
keyboard status specifies the state of the keyboard echo mode, input mode, turn­
around character, interim character flags, and shift state.

The KbdSetStatus function is a family API function.

Parameters

Return Value

Comments

Restrictions

Example

See Also

• KbdStringln

KbdStringln 177

pkbstKbdlnfo Points to the KBDINFO structure that contains the keyboard
status. The KBDINFO structure has the following form:

typedef struct _KBDINFO {
USHORT cb;
USHORT fsMask;
USHORT chTurnAround;
USHORT fsInterim;
USHORT fsState;

} KBDINFO;

For a ful~ description, see Chapter 4, "Types, Macros, Structures."

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value~ which may be one of the following:

ERROILKBDJNV ALID.-ECHO.MASK
ERROILKBDJNV ALID_INPUT.MASK
ERRORJ(BDJNV ALIDJ.ENGTH

In most cases, a shift key is pressed in combination with other keys to create a
single keystroke. In binary mode with shift report turned on, a shift key by itself
freates a keystroke that the KbdCharIn or KbdPeek function can retrieve.

lit real mode, the following restrictions apply to the KbdSetStatus function:

• Interim and turnaround characters are not. supported.
• Binary mode with echo mode on is not supported.
• The hkbd parameter is ignored.

This example retrieves the current status of the default keyboard, masks the
ASCII-mode bit, uses the OR operator to set the biriary-mode bit, and calls the
KbdSetStatus function to change the keyboard status to binary mode:

KBDINFO kbstInfo;
kbstInfo.cb = sizeof(kbstInfo);
KbdGetStatus(&kbstInfo, 0);
kbstInfo;fsMask =

(kbstInfo.fsMask & OxOOF7)
I Ox0004;

KbdSetStatus(&kbstInfo, 0);

/* gets current status */

/* masks out ASCII mode */
/* OR into binary mode */
/* sets new status */

KbdCharIn, KbdGetStatus, KbdOpen, KbdPeek

USHORT KbdStringln(pchBuffer, psibLength, fWait, hkbd)
PCH pchBuffer; I. pOinter to buffer for string .1
PSTRINGINBUF psibLength; I. pOinter to structure for string length .1
USHORT fWait; I. wait/no-wait flag .1
HKBD hkbd; I. keyboard handle .1

The KbdStringIn function reads a string of characters from a logical keyboard.
The function copies the character value of each keystroke to the buffer pointed
to by the pchBuffer parameter. Depending on the input mode of the keyboard

178 KbdStringln

Parameters

Return Value

Comments

Restrictions

and on the value of .the [Wait parameter, KbdStringIn continues to copy charac­
ters until it fills the buffer, retrieves the turnaround character, or reaches the
end of the buffer.

The KbdStringIn function is a family API function.

pchBuffer Points to the buffer that receives the character string.

psibLength Points to the STRINGINBUF structure that contains the length of
the buffer that receives the string. The STRINGINBUF structure has the follow­
ing form:
typedef struct _STRINGINBUF {

USHORT cb;
USHORT cchln;

} STRINGINBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

/Wait Specifies whether to wait for the entire string to be read. If this param­
eter is 10_WAIT, the function waits for all characters up to the next turn­
around character or until it reaches the end of the buffer. If the parameter is
IO_NOWAIT, the function returns immediately with whatever characters are
available.

hkbd Identifies the logical keyboard to read from. The handle must have been
created previously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The KbdStringIn function removes keystroke information from the input buffer
of the specified logical keyboard as it copies a character. If echo and ASCII
modes are turned on, the function echoes characters on the screen as they are
typed. If the keyboard is in ASCII mode, the function retrieves a character for
each key pressed, except shift keys and MS OS/2 CTRL and editing keys. If the
keyboard is in binary mode, the function retrieves a character for any key
pressed except shift keys.

The KbdStringIn function can retrieve extended ASCII codes, such as when the
ALT key, and another key; called the primary key, are pressed simultaneously.
When the function retrieves an extended code, the first character is OXOOOO or
OxOOEO and the second is the extended code. The extended code is usually the
scan code of the primary key. In ASCII mode, the function retrieves only com­
plete extended codes, which means that if both bytes of the extended code do
not fit in the buffer, neither byte is retrieved. For more information on extended
ASCII codes, see Appendix C, "Country and Code-Page Information."

In ASCII mode, KbdStringIn recognizes the MS OS/2 editing keys. These keys
can be used to display and edit the previously entered string. The KbdStringIn
function permits editing of the previous string only if the cchIn field of the
STRINGINBUF structure is set to the length of the previous string before the
function is called. If this field is set to zero, the line cannot be edited.

In real mode, the following restriction applies to the KbdStringln function:

• The hkbdparameter is ignored.

Example

See Also

• KbdSynch

KbdXlate 179

This example calls the KbdStringIn function to read a character string from the
default keyboard. In ASCII mode, the function waits for the RETURN key to be
pressed; in binary mode, it waits for the buffer to be filled:

CHAR achBuf[40];
STRINGINBUF kbsiBuf;
kbsiBuf.cb = sizeof(achBuf);
KbdStringln(achBuf, 1* address of buffer *1

&kbsiBuf, 1* address of length structure *1
IO_WAIT, 1* waits for characters *1
0) ; 1* keyboard handle *1

VioWrtTTY("\n", 1, 0); 1* sends linefeed character *1
VioWrtTTY(achBuf, kbsiBuf.cchln, 0); 1* displays string *1

DosRead, KbdCharIn, KbdGetStatus, KbdOpen, KbdSetStatus

USHORT KbdSynch (fWait)
USHORT fWait; /. wait/no-wait flag ./

Parameters

Return Value

Comments

See Also

• KbdXlate

The KbdSynch function synchronizes access to the keyboard device driver.

This function should be used by a Kbd subsystem, not by an application. You
cannot replace the KbdSynch function by using the KbdRegister function.

/Wait Specifies whether to wait for access to the keyboard router if access is
not available. If this parameter is 10_ WAIT, the function waits for access to the
keyboard router. If the parameter. is 10_NOWAIT, the function does not wait
and returns immediately.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The KbdSynch function requests an exclusive system semaphore that blocks all
other threads within a screen group until the semaphore is cleared. This sema­
phore is cleared when a called Kbd function returns.

DosDevIOCtl, KbdRegister

USHORT KbdXlate (pkbxIKeyStroke. hkbd)
PKBDXLATE pkbxlKeyStroke; /. pointer to structure for scan code */
HKBD hkbd; /* keyboard handle */

The KbdXlate function translates a scan code and its shift states into a character
value. The function uses the current translation table of the specified logical key­
board.

In order to be translated, accent-key combinations, double-byte characters, and
extended ASCII characters may require several calls to the KbdXlate function.

180 KbdXlate

Parameters

Return Value

See Also

pkbxlKeyStroke Points to the KBDTRANS structure that contains the scan
code to translate. It also receives the character value when the function returns.
The KBDTRANS structure has the following for~~

typedef struct _KBDTRANS {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;
USHORT fsDD;
USHORT fsXlate";
USHORT fsShift;
USHORT sZero;

} KBDTRANS;

For a full description, see Chapter 4, "Types, Macros, Structures."

hkbd Identifies the logical keyboard. The handle must have been created pre­
viously by using the KbdOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

DosMonReg, KbdOpen, KbdSetCustXt

MouDeRegister 181

• MouClose
USHORT MouClose(hmou)
HMOU hmou; 1* mouse handle */

Parameters

Return Value

Example

See Also

• MouDeRegister

The MouClose function closes the mouse identified by the given handle. The
function removes the mouse pointer from the screen only if the process is the
last one in the screen group to have the mouse open.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-MOUSE_NOJ)EVICE

This example creates a mouse handle then calls the MouClose function to close
the open handle:

HMOU hmou;
MouOpen(OL, &hmou);

MouClose(hmou);

MouOpen

USHORT MouDeRegister(void)

Parameters

Return Value

See Also

The MouDeRegister function restores the default Mou subsystem functions and
releases any previously registered Mou subsystem. This function restores the
default Mou subsystem for all processes in the current screen group.

Once a process registers a Mou subsystem, no other process in the screen group
may register a Mou subsystem until the default subsystem is restored. Only the
process that registers a Mou subsystem may call the MouDeRegister function to
restore the default subsystem.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-MOUSEJ)EREGISTER

MouRegister

182 MouDrawPtr

• MouDrawPtr
USHORT MouDrawPtr(hmou)
HMOU hmou; 1* mouse handle *1

Parameters

Return Value

Comments

Example

See Also

• MouFlushQue

The MouDrawPtr function enables the mouse pointer to be drawn on the
screen, using the pointer shape defined by the most recent call to the
MouSetPtrShape function. The MouDrawPtr function releases any exclusion
rectangle that may have been previously set by using the MouRemovePtr func­
tion. An exclusion rectangle defines a rectangular region of the screen in which
MS OS/2 will not display the pointer.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRO~OUSE_NOJ)EVICE

The MouDrawPtr function does not itself draw the mouse pointer. Instead, it
directs MS OS/2 to call the mouse device driver at each mouse interrupt. If the
mouse device driver has been disabled (by the MouSetDevStatus function),
MouDrawPtr releases the current exclusion rectangle but does not draw the
pointer.

This example creates a mouse handle then calls the MouDrawPtr function to
enable the mouse pointer to be drawn on the screen:

HMOU hmou;
MouOpen(OL, &hmou);
MouDrawPtr(hmou) ;

MouOpen, MouRemovePtr, MouSetDevStatus, MouSetPtrShape

USHORT MouFlushQue (hmou)
HMOU hmou; 1* mouse handle *1

Parameters

Return Value

The MouFlushQue function removes any existing mouse events from the mouse
event queue.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRO~OUSE_NOJ)EVICE

Example

See Also

MouGetDevStatus 183

This example creates a mouse handle then calls the MouFlushQue function to
remove any events from the existing mouse event queue:

HMOU hmou;
MouOpen(OL, &hmou);

MouFlushQue(hmou) ;

MouGetNumQueEl, MouOpen, MouReadEventQue

• MouGetDevStatus
USHORT MouGetDevStatus(pfsDevStatus, hmou)
PUSHORT pfsDevStatus; 1* pointer to buffer for status *1
HMOU hmou; 1* mouse handle *1

Parameters

Return Value

Example

See Also

The MouGetDevStatus function retrieves the device status for the specified
mouse.

pfsDevStatus Points to the variable that receives the device status. It can be
any combination of the following values:

Value

MOUSE_QUEUEBUSY

MOUSE_BLOCKREAD

MOUSE_FLUSH

MOUSE_UN SUPPORTED_MODE

MOUSE_DISABLED

MOUSE_MICKEYS

Meaning

Event queue is busy with input/output
(I/O).

Block read is in progress.

Flush buffer is in progress.

Mouse device driver is disabled because
of unsupported mode.

Mouse device driver is disabled.

Mouse motion is given in mickeys. not in
pels.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-MOUSE_NOJ)EVlCE

This example creates a mouse handle then calls the MouGetDevStatus function
to retrieve the status for the mouse identified by the handle:

USHORT fsDevStatus;
HMOU hmou;
MouOpen(OL, &hmou);
MouGetDevStatus(&fsDevStatus, hmou);
if (fsDevStatus & MOUSE_DISABLED I I

fsDevStatus & MOUSE_UNSUPPORTED_MODE)
VioWrtTTY("mouse is disabled\r\n", 19, 0);

MouOpen, MouSetDevStatus

184 MouGetEventMask

• MouGetEventMask
USHORT MouGetEventMask(pfsEvents. hmou)
PUSHORT pfsEvents; /. pointer to buffer for event mask ./
HMOU hmou; /. mouse handle ./

Parameters

Return Value

Comments

Example

See Also

The MouGetEventMask function retrieves the event mask for the specified
mouse. The event mask specifies the user actions that cause MS OS/2 to gen­
erate mouse events. MS OS/2 responds to a user action by copying a mouse
event to the event queue.

pfsEvents Points to the variable that receives the event mask. It can be any
combination of the following values:

Value Meaning

MOUSE.-MOTION Mouse motion.

MOUSE.-MOTION_ WITILBNLDOWN Mouse motion with button-I-down
event.

MOUSE_BNLDOWN Button-I-down event.

MOUSE_MOTION_ WITILBN2_DOWN Mouse motion with button-2-down
event.

MOUSE_BN2_DOWN Button-2-down event.

MOUSE_MOTION_ WITILBN3_DOWN Mouse motion with button-3-down
event.

Button-3-down event.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRORJvlOUSE_NOJ)EVICE

Button 1 is the left button on the mouse.

This example creates a mouse handle, calls the MouGetEventMask function,
and checks the event mask to see if events are accepted from a third button on
the mouse:

HMOU hmou;
USHORT fsEvents;
MouOpen(OL, &hmou);
MouGetEventMask(&fsEvents, hmou);
if(fsEvents & (MOUSE_MOTION_WITH_BN3_DOWN I MOUSE_BN3_DOWN)

VioWrtTTY("Three buttons enabled\n\r" , 23, 0);

MouOpen, MouReadEventQue, MouSetEventMask

MouGetNumMickeys 185

• MouGetNumButtons
USHORT MouGetNumButtons(pusButtons, hmou)
PUSHORT pusButtons; /. pOinter to variable for number of mouse buttons ./
HMOU hmou; /. mouse handle ./

Parameters

Return Value

Example

See Also

The MouGetNumButtons function retrieves the number of buttons on the
current mouse.

pusButtons Points to the variable that receives the number of buttons on the
mouse.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROILMOUSE_NO_DEVICE

This example creates a mouse handle then calls the MouGetNumButtons func­
tion to retrieve the number of mouse buttons:

HMOU hmou;
USHORT usButtons;
MouOpen(OL, &hmou);
MouGetNumButtons(&usButtons, hmou);
if(usButtons == 2)

VioWrtTTY("Your mouse has two buttons\n\r", 28, 0);

MouOpen

• MouGetNumMickeys
USHORT MouGetNumMickeys(pusMickeys, hmou)
PUSHORT pusMickeys; /. pOinter to variable for mickeys per centimeter ./
HMOU hmou; /. mouse handle ./

Parameters

Return Value

The MouGetNumMickeys function retrieves the number of mickeys that the
specified mouse travels for each centimeter of motion. A mickey is the smallest
unit of motion a mouse can measure. The number of mickeys per centimeter for
a mouse depends on the device and may also depend on the current setting of
the device. .

pusMickeys Points to the variable that receives the number of mickeys per
centimeter.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR310USE_NOJ)EVICE

186 MouGetNumMickeys

Example

See Also

This example creates a mouse handle then calls the MouGetNumMickeys func­
tion to retrieve the current number of mickeys per centimeter:

HMOU hmou;
USHORT usMickeys;
MouOpen (OL, &hmou);
MouGetNumMickeys(&usMickeys, hmou);

MouOpen

• MouGetNumQueEI
USHORT MouGetNumQueEI(pmouqi, hmou)
PMOUQUEINFO pmouqi; 1* pointer to structure for number of events *1
HMOU hmou; 1* mouse handle */

Parameters

Return Value

Example

See Also

The MouGetNumQueEI function retrieves the number of events in the mouse
event queue.

pmouqi Points to the MOUQUEINFO structure that receives the number of
events in the mouse event queue. The MOUQUEINFO structure has the follow­
ing form:

typedef struct _MOUQUEINFO {
USHORT cEvents;
USHORT cmaxEvents;

} MOUQUEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function. .

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:· .

ERROR-MOUSE_NOJ)EVICE

This example creates a mouse handle, enables the mouse pointer to be drawn,
and runs within an infinite for loop until there are no events in the queue:

HMOU hmou;
MOUEVENTINFO mouevEvent;
MOUQUEINFO mouqi;
USHORT fWait = FALSE;
MouOpen(OL, &hmou);
Mo~DrawPtr(hmou);
for (;;) {

MouGetNumQueEl(&mouqi,
hmou;

}

if (mouqi.cEvents > 1)
MouReadEventQue(&mouevEvent,

else
break;

/* retrieves queue */

/* until the last queue ... */
&fWait, hmou);

MouFlushQue, MouOpen, l'douReadEventQue

MouGetPtrShape 187

• MouGetPtrPos
USHORT MouGetPtrPos(pmoupIPosition, hmou)
PPTRLOC pmoupl; /. pointer to structure for current mouse position ./
HMOU hmou; /. mouse handle ./

Parameters

Return Value

Comments

Example

See Also

The MouGetPtrPos function retrieves the current position of the mouse device.
This position is given in screen coordinates.

pmoupl Points to the PTRLOC structure that receives the coordinates of the
mouse position. The PTRLOC structure has the following form:

typedef struct _PTRLOC {
USHORT row;
USHORT col;

} PTRLOC;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-MOUSE_NOJ)EVICE

The current device status as defined by the MouSetDevStatus function does not
affect the row and col fields of the PTRLOC structure. These fields always
specify an absolute position relative to the upper-left corner of t~e screen.

This example creates a mouse handle and enables the mouse pointer to be
drawn. It then displays the text "Place mouse here" at the top of the screen and
repeatedly calls the MouGetPtrPos function until the mouse is moved over the
text:

PTRLOC moup 1 ;
HMOU hmou;
BYTE bAttr = Ox72; /* green character on white background */
MouOpen(OL, &hmou);
MouDrawPtr(hmou);
VioWrtCharStrAtt("Place mouse here", 16, 0, 35, &bAttr, 0);
do

MouGetPtrPos(&moupl, hmou);
while (moupl.row 1= 0 I I (moupl.col < 35 I I moupl.col > 50»;

MouOpen, MouSetDevStatus, MouSetPtrPos

• MouGetPtrShape
USHORT MouGetPtrShape(pbBuffer, pmoupslnfo, hmou)
PBYTE pbBuffer; /. pOinter to buffer for shape masks ./
PPTRSHAPE pmoupslnfo; /. pOinter to structure for shape information ./
HMOU hmou; /. mouse handle ./

The MouGetPtrShape function retrieves the AND and XOR masks that define
the shape of the pointer for the specified mouse. MouGetPtrShape also retrieves
information about the pointer, su~h as the width and height of masks and the
location of the hot spot. '

188 MouGetPtrShape

Parameters

Return Value

Comments

Example

See Also

pbBuffer Points to the buffer that receives the masks.

pmoupslnJo Points to the PTRSHAPE structure. that receives the pointer
iniormation. The PTRSHAPE structure has the following form:

typedef struct _PTRSHAPE {
USHORT cb;
USHORT col;
USHORT row;
USHORT colHot;
USHORT rowHot;

} PTRSHAPE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is· an error
value, which may be one of the following:

ERROR-MOUSEJNV J> ARMS
ERROR-MOUSE_NOJ)EVICE

The MouGetPtrShape function copies the AND and XOR masks to the buffer
pointed to by the pbBuffer parameter. The format and size of the masks depend
on the display device and the video mode. In text mode, each mask is typically a
character/attribute pair. In graphics mode, each mask is a bitmap.

The MouGetPtrShape function copies information about the pointer to the
structure pointed to· by the pmoupslnJo parameter. This structure defines the
length (in bytes) of the AND and XOR masks, the width and height of each
mask, and the offset from the current mouse position (or hot spot) to the
upper-left corner of the pointer shape.

Before calling MouGetPtrShape, you must. set the cb field of the PTRSHAPE
structure to the appropriate buffer size. If the field does not specify an appropri­
ate size, the function copies the current size to the field and returns an error
without copying the masks to the specified buffer.

This example creates a mouse handle, draws the mouse pointer, and calls the
MouGetPtrShape function to retrieve the shape of the mouse pointer:

PTRSHAPE moupslnfo;
BYTE abBuffer[4];
HMOU hmou;
MouOpen(OL, &hmou);
MouDrawPtr(hmou);
moupslnfo.cb = sizeof(abBuffer);
MouGetPtrShape(abBuffer, &moupslnfo, hmou);

MouOpen, MouSetPtrShape

MoulnitReal 189

• MouGetScaleFact
USHORT MouGetScaleFact(pmouscFactors, hmou)
PSCALEFACT pmouscFactors; I. pointer to structure for scaling factors .1
HMOU hmou; I. mouse handle .1

Parameters

Return Value

Example

See Also

• MoulnitReal

The MouGetScaleFact function retrieves the horizontal and vertical scaling fac­
tors for the specified mouse. The scaling factors define the number of mickeys
the mouse must travel horizontally or vertically in order to cause MS OS/2 to
move the mouse pointer one screen unit.

pmouscFactors Points to the SCALEFACT structure that receives the scaling
factors. The SCALEF ACT structure has the following form:

typedef struct _SCALEFACT {
USHORT rowScale;
USHORT colScale;

} SCALEFACT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-MOUSE_NOJ)EVICE

This example creates a mouse handle then calls the MouGetScaleFact function
to retrieve the scaling factors for the row and column coordinates:

SCALEFACT mouscFactors;
HMOU hmou;
MouOpen(OL, &hmou);
MouGetScaleFact(&mouscFactors, hmou); /* retrieves scaling factors */

MouGetNumMickeys, MouOpen, MouSetScaleFact

USHORT MoulnitReal(pszOriverName)
PSZ pszOriverName; I. pointer to string for name of mouse device driver .1

Parameters

Return Value

The MouInitReal function loads and initializes the real-mode mouse device
driver pointed to by the pszDriverName parameter. You must specify the name
of the mouse device driver by using a device command in the config.sys file.

This function is used only by the Task Manager.

pszDriverName Points to the null-terminated string that specifies the name of
the mouse device driver. The name must be a valid filename. You can initialize
the default mouse device driver by setting this parameter to zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERRO~OUSR-NOJ)EVICE

190 MoulnitReal

Comments

See Also

• MouOpen

The Mou functions are not available in real-mode programs. Instead, all real­
mode mouse input and output must be carried out using the real-mode (int 33h)
interface,

MouOpen

USHORT MouOpen(pszDriverName, phmou)
PSZ pszDriverName; 1* pointer to mouse driver name *1
PHMOU phmou; 1* pOinter to variable for mouse handle *1

Parameters

Return Value

Example

See Also

The MouOpen function opens the mouse for the current screen group and
creates a handle that can be used in subsequent Mou functions (to display the
mouse pointer, retrieve the current location of the mouse pointer, etc.).

The MouOpen function creates the mouse handle for the current screen group
only. Any number of processes may open this handle, but all processes in the
screen group share it. For example, if one process changes the color of the
mouse pointer, the pointer color changes for all other processes in the same
screen group.

When the mouse handle is first created, MouOpen does not display the mouse
pointer. The MouDrawPtr function must be called to display the pointer. (A
mouse device driver is required to draw the pointer. If the mouse device driver
pointed by the pszDriverName parameter does not exist or cannot be opened, an
error occurs and the pointer is not drawn. If pszDriverName is set to zero, the
default mouse device driver is used; that is, the driver specified in a device com­
mand in the config.sys file is used.)

pszDriverName Points to the null-terminated string that contains the name of
the mouse device driver. The name must be a valid filename. If this parameter is
set to zero, the default pointer-draw driver is used.

phmou Points to the variable that receives the mouse handle.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~OUSEJNV~ODULE
ERRO~OUSE_NOJ)EVICE

This example calls the MouOpen function to create a mouse handle to be used
by the current screen group:

HMOU hmou;
MouOpen(OL, &hmou);

MouClose, MouDrawPtr

MouReadEventQue 191

• MouReadEventQue
USHORT MouReadEventQue(pmouevEvent, pfWait, hmou)
PMOUEVENTINFO pmouevEvent; 1* pOinter to structure for mouse event *1
PUSHORT pfWait; 1* wait/no-wait flag *'
HMOU hmou; 1* mouse handle *1

Parameters

Return Value

Comments

The MouReadEventQue function retrieves a mouse event from the event queue
of the specified mouse. The event queue is a buffer to which MS OS/2 copies
each mouse event. A mouse event is a structure that specifies the user action
that generated the event, the location of the mouse when the event occurred,
and system time when the event occurred.

MS OS/2 copies a mouse event to the event queue whenever the user moves the
mouse or presses or releases a mouse button. The mouse event can specify a sin­
gle action or a combination of actions, such as the mouse being moved with a
button down. MS OS/2 copies a mouse event for a given action only if the event
mask enables reporting for that action. For more information, see the MouSet­
EventMask function.

pmouevEvent Points to the MOUEVENTINFO structure that receives the
mouse event. The MOUEVENTINFO structure has the following form:

typedef struct _MOUEVENTINFO {
USHORT fs;
ULONO time;
USHORT row;
USHORT col;

} MOUEVENTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pfWait Points to the variable that specifies whether the function waits for an
event. If this parameter is MOU_NOWAIT and the queue is empty, the function
fills the MOUEVENTINFO structure with zeros and returns immediately. If the
parameter is MOU_ WAIT, the function waits for a mouse event if none is avail­
able.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~OUSEJNV YARMS
ERRO~OUSE_NOJ)EVICE
NO~RROR-MOUSE_NOJ)ATA

Button 1 is the left button on the mouse.

The meaning of the row and col fields of the MOUEVENTINFO structure
depends on the current device status as defined by the most recently used
MouSetDevStatus function. The values may be absolute or relative, and the
units may be mickeys, character cells, or pels.

Although a specific action may not generate a mouse event, the fs field of the
MOUEVENTINFO structure may include information about the action when

192 MouReadEventQue

Example

See Also

• MouRegister

some other event occurs. For example, even if button 2 is disabled, fs is set to
OXOO14 if the user presses button 1 when button 2 is also down. If the pfWait
parameter is MOU_NOW.A . ..IT, fs will be zero if either a mouse-button-up event
occurs or no event occurs. To see whether an event occurred, check the time
field; it will be zero if there was no event.

This example creates a mouse handle, enables the mouse pointer to be drawn,
and calls the MouReadEventQue function, telling it to wait until a mouse event
occurs. If the mouse event is the left mouse button down, the message "Left
Button" is displayed:

MOUEVENTINFO mouevEvent;
HMOU hmou;
USHORT fWait = TRUE; /* waits for mouse event */
MouOpen(OL, &hmou);
MouDrawPtr(hmou);
MouReadEventQue(&mouevEvent, &fWait, hmou);
if (mouevEvent.fs & Ox04) /* if left button pressed ... */

VioWrtTTY("Left Button\n\r", 13, 0);

MouGetNumQueEI, MouOpen, MouSetDevStatus, MouSetEventMask

USHORT MouRegister(pszModuleName, pszEntryName, flFunctions)
PSZ pszModuleName; 1* pointer to string for module name *1
PSZ pszEntryName; 1* pointer to string for entry name *1
ULONG flFunctions; 1* function flags *1

Parameters

The MouRegister function registers a Mou subsystem for the specified mouse.
The function temporarily replaces the one (or more) default Mou functions, as
specified by the flFunctions parameter, with the functions in the module pointed
to by the pszModuleName parameter. Once MouRegister replaces a function,
MS OS/2 passes any subsequent calls to the replaced function to a function in
the given module. If you do not replace a function, MS OS/2 continues to call
the default Mou function.

pszModuleName Points to the null-terminated string that contains the name
of the dynamic-link module containing the replacement Mou functions.

pszEntryName Points to the null-terminated string that contains the dynamic­
link entry-point name of the function that replaces the specified Mou function.
For a full description, see the following "Comments" section.

flFunctions Specifies the flags of the Mou functions to replace. It can be any
combination of the following values:

Value Meaning

MR_MOUGETNUMBUTTONS Replace MouGetNumButtons.

MR_MOUGETNUMMICKEYS Replace MouGetNumMlckeys.

MR_MOUGETDEVST A TUS Replace MouGetDevStatus.

MR_MOUGETNUMQUEEL Replace MouGetNumQueEI.

MR_MOUREADEVENTQUE Replace MouReadEventQue.

Return Value

Comments

Value

MR_MOUGETSCALEFACT

MR-MOUGETEVENTMASK

MR_MOUSETSCALEFACT

MR_MOUSETEVENTMASK

MR_MOUOPEN

MR_MOUCLOSE

MR_MOUGETPTRSHAPE

MR_MOUSETPTRSHAPE

MR_MOUDRA WPTR

MR_MOUREMOVEPTR

MR_MOUGETPTRPOS

MR_MOUSETPTRPOS

MR_MOUINITREAL

MR_MOUSETDEVSTATUS

MouRegister 193

Meaning

Replace MouGetScaleFact.

Replace MouGetEventMask.

Replace MouSetScaleFact.

Replace MouSetEventMask.

Replace MouOpen.

Replace MouClose.

Replace MouGetPtrShape.

Replace MouSetPtrShape.

Replace MouDrawPtr.

Replace MouRemovePtr.

Replace MouGetPtrPos.

Replace MouSetPtrPos.

Replace MouInltReal.

Replace MouSetDevStatus.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORjiOUSEJNV ALID_ASCIIZ
ERRORjiOUSEJNVALIDjiASK
ERR0Rj10USE~EGISTER

MS OS/2 passes a Mou function to the given module by preparing the stack and
calling the function pointed to by the pszEntryName parameter. Specified
module must export the entry-point function name. The entry-point function
must check the function code on th~ stack to determine which function is being
requested, then pass control to the appropriate function in the module. The
entry-point function may then access any additional parameters placed on the
stack by the MouRegister function:

Only one process in a screen group may use the MouRegister function at any
given time. That is, only one process at a time can replace MOll functions. The
process can restore the default Mou functions by calling the MouDeRegister
function. A process can replace a Mou function any number of times, but only
by first restoring the default functions and then reregistering the new functions.

The entry-point function (FuncName) must have the following form:

SHORT FAR FuncName(usReservedl, usFunction, ulReserved2,
usParaml, usParam2, usParam3, usParam4, usParam5)

USHORT usReservedl;
USHORT usFunction;
ULONG ulReserved2;
USHORT usParaml;
USHORT usParam2;
USHORT usParam3;
USHORT usParam4;
USHORT usParam5;

194 MouRegister

Parameter

usReservedl

usFunction

uiReserved2

usParaml-usParam5

Description

Specifies a reserved value that must not be changed.
This value represents a return address for the MS OS/2
function that routes Mou functiqn calls.

Specifies the function code that identifies the function
request. It can be one of the following values:

Value Meaning

OXOOOO MouGetNumButtons called.

OxOOOl MouGetNumMlckeys called.

OxQ002 MouGetDevStatus called.

OXOOO3 MouGetNumQueEI called.

OxOOO4 MouReadEventQue called.

OXOOO5 MouGetScaleFact calJed.

OxOOO6 MouGetEventMask called.

OXOOO7 MouSetScaleFact called.

Ox00Q8 MouSetEventMask called.

OxOOO9 Mouc:;etHotKey called.

OxOOOA MouSetHotKey called.

OxOOOB MouOpen called.

OXOOOC MouClose called.

OxOOOD l\{o~GetPtrShape called.

OxOOOE MouSetPtrShape called.

OxOOOF MouDrawPtr called.

OxOOlO MouRemovePtr called.

OxOOll MouGetPtrPos called.

OXOO12 MouSetPtrPos called.

OxOO13 MQuInltReaI called.

OXOO14 MouFlushQue called.

OxOO15 MouSetDevStatus called.

Specifies ~ reserved value that must not be changed~
This value represents the return address of the program
that calls the specified Mou function.

Specifies up to five values passed with the original Mou
function call. The actual number and type of parame-
ters used depend on the specific function.

The registered function should return -1 if it wants the original function called,
o if no error occ!lrred, or an error value. .

The entry-point function should determine which function is requested and then
carry out an appropriate action using the passed parameters. If ne~essary, the
entry-point function can call a replacement function within'the given m04uleto

See Also

• MouRemov~Ptr

MouRemovePtr 195

carry out the task. The entry-point or replacement function must leave the stack
in the same state it was r~ceived. This is required since the return addresses on
the stack must be available iii the correct order to return control to the program
that originally called the MouRegister function.

in general, if the replacement function needs to access the mouse, it must use
the input-ariq-:output control functions for the niouse. For more information, see
Chapter 3, "Input-and-Output Control Functions."

The MoriRegister function itself cannot be replaced.

MouDeRegister

USHORT MouRemovePtr(pmourtRect. hinou)
PNOPTRRECT pmourtRect; /. pointer to structure with exclusion rectangle */
HMOU hmou; /. mouse handle */

Parameters

Return Value

Comments

The MouRemovePtr function remoyes the mouse pointer from a portion of the
screen or from the entire screen. This part of the screen is called an exclusion
rectangle, because when the mouse pointer moves into it, the pointer
disappears-it is still present and can be moved, but it will not appear until it is
moved out of the exclusion rectangle. If the poiriter is outside the exclusion rec­
tangle and is not currently displayed, MS OS/2 draws the mouse pointer.

The MoriRemovePtr function may be called by any process in the screen group.
Only one exclusion rectangle is active at a time, so each call to the function
replaces the previous rectangle; The MouDrawptr function removes the exclu­
sion rectangle completely.

pmourtRect Points to the NOPTRRECT structure that contains the coordi­
nates of the exclusion rectangle. The NOPTRRECT structure has the following
form:

typedef struct _NOPTRRECT {
USHORT row;
USHORT col;
USHORT cRow;
USHORT cCol;

} NOPTRRECT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The. return vallie is zero.if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROILMOUSEJNV YARMS
ERROILMOUSE_NOJ)EVICE

You should exclude the mouse pointer from any portion of the screen that is
likely to change, such as a text-entry field. When you position the mouse pointer,
MS OS/2 saves the character beneath it; when you move the mouse again,

196 MouRemovePtr

Example

See Also

MS OS/2 restores the character. If the character changed between the time you
positioned the mous~ and the time you moved it, the new character is lost when
:MS OS/2 restores the old character.

This example creates a mouse handle and enables the mouse pointer to be
drawn. It then defines an exclusion rectangle in the center of the screen and calls
the MouRemovePtr function to notify the mouse device driver that this rectangle
is for the exclusive use of the process. When you move the mouse pointer into
this rectangle, the pointer disappears:

NOPTRRECT mourtRect;
HMOU hmou;
MouOpen(OL,&hmou) ;
MouDrawPtr(hmou) ;
mourtRect.row = 6;
mourtRect.col = 30;
mourtRect.cRow = 18;
mourtRect.cCol = SO;
MouRemovePtr(&mourtRect, hmou);

/* upper-left y-coordinate
/* lower-right x-coordinate
/* lower-right y-coordinate

MouDrawPtr, MouOpen, MouSetPtrShape

*/
*/
*/

• MouSetDevStatus
USHORT MouSetDevStatus(pfsDevStatus, hmou)
PUSHORT pfsDevStatus; I. pointer to buffer with status .1
HMOU hmou; I. mouse handle .1

Parameters

Return Value

Comments

The MouSetDevStatus function sets the device status for the specified mouse.
The device status enables or disables the mouse device driver and defines
whether the mouse position is reported in mickeys or in screen units (character
cells or pels).

pfsDevStatus Points to the variable that contains the device status to be set.
This parameter can be any combination of the following values:

Value Meaning

MOUSE_DISABLED Disable the default mouse device driver. If this value is
not given, the function enables the mouse device
driver.

MOUSE_MICKEYS Report mouse motion in mickeys; that is, MS OS/2
reports motion as a number of mickeys moved from the
last-reported position. If the value is not given, MS
OS/2 reports mouse motion in screen units relative to
the upper-left corner of the screen.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following: ..
ERRO~OUSEJNVJARMS
ERRO~OUSE_NOJ)EVICE

The MouSetDevStatus function enables or disables the mouse device driver.
When this device driver is enabled, it draws the pointer by combining the AND
and XOR masks of the pointer shape with the contents of the screen at the

Example

See Also

MouSetEventMask 197

current mouse location~ It draws the pointer whenever the mouse moves (or
when an interrupt associated with the mouse occurs). When the mouse device
driver is disabled, the function does not draw the pointer. In such cases, the
process must draw the pointer for itself.

The MouSetDevStatus function also directs the mouse to report relative or abso­
lute positions. If the device is set to report absolute positions, the x- and y­
coordinates given for a mouse position are in screen units relative to the upper­
left corner of the screen. The type of unit depends on the screen mode. In text
mode, the position is given in character cells; in graphics mode, the position is
given in pels. Screen coordinates increase from left to right on the x-axis and
from top to bottom on the y-axis. If the device is set to report relative positions,
the x- and y-coordinates for a mouse position are given in mickeys and are rela­
tive to the most recently reported position. In this case, the coordinates are
signed values, defining both the direction and distance of the move. The x­
coordinate is negative when the mouse moves left; the y-coordinate is negative
when the mouse moves up.

This example creates a mouse handle then calls the MouGetDevStatus function
to set the device status so that mouse-movement information is returned in terms
of mickeys, not pels. This allows the process to obtain mouse information in
terms of relative movement rather than in terms of absolute pel position:

USHORT fsDevStatus = Ox0200;
HMOU hmou;
MouOpen(OL, &hmou);
MouSetDevStatus(&fsDevStatus, hmou);

MouGetDevStatus, MouOpen

It returns mickeys tl

It sets device status tl

• MouSetEventMask
USHORT MouSetEventMask(pfsEvents, hmou)
PUSHORT pfsEvents; I. pOinter to buffer with event mask .1
HMOU hmou; I. mouse handle .1

Parameters

The MouSetEventMask function sets the event mask for the specified mouse.
The event mask defines the user actions that generate mouse events (movement
or pressing or releasing a button).

The MouSetEventMask function enables or disables specific user actions. When
an action is enabled, MS OS/2 copies a mouse event to the event queue when­
ever the user carries out the action. When an action is disabled, no mouse event
is copied.

pfsEvents Points to the variable that contains the event mask. The variable
can be any combination of the following values:

Value Meaning

MOUSE-MOTION Enable mouse motion with no­
buttons-down event.

MOUSE_MOTION_ WITlLBNLDOWN Enable mouse motion with button­
l-down event.

198 MouSetEventMask

Return Value

Comments

Example

See Also

• MouSetPtrPos

Value Meaning

MOUSE_BNLDOWN Enable button-i-down event.

MOUSE_MOTION_ WITlLBN2_DOWN Enable mouse motion with button-
2-d own event.

MOUSE_BN2_DOWN Enable button-2-down event.

MOUSE_MOTION_ WITH_BN3_DOWN Enable mouse motion with button-
3-d own event.

Enable button-3-down event.

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRORMOUSEJNV _PARMS
ERRO~MOUSE_NO_DEVICE

Button 1 is the left button on the mouse.

This example creates a mouse handle then calls the MouSetEventMask function
to set the event mask so that only the mouse motion or the pressing of the left
button are recognized by the MouReadEventQue function:

USHORT fsEvents;
HMOU hmou;
MouOpen(OL, &hmou);

/* detect motion and button 1 */

fsEvents = MOUSE_MOTION I
MOUSE_MOTION_WITH_BN1_DOWN I MOUSE_MOTION_WITH_BN1_DOWN;

MouSetEventMask(&fsEvents, hmou);

MouGetEventMask, MouOpen, MouReadEventQue

USHORT MouSetPtrPos(pmoupIPosition, hmou)
PPTRLOC pmouplPosition; 1* pOinter to structure for new mouse position *1
HMOU hmou; 1* mouse handle *1

The MouSetPtrPos function sets the current mouse position to the position
pointed to by the pmouplPosition parameter. If the pointer is visible, the func­
tion moves the mouse pointer to the new location on the screen. The new posi­
tion is always in screen units and is relative to the upper-left corner of the
screen.

Parameters

Return Value

Comments

Example

See Also

MouSetPtrShape 199

pmouplPosition Points to the PTRLOC structure that contains the new mouse
position. The PTRLOC structure has the following form:

typedef struct _PTRLOC {
USHORT row;
USHORT col;

} PTRLOC;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlCMOUSE_INV J> ARMS
ERROR~OUSE_NO_DEVICE

MS OS/2 hides the pointer if the new position is in the exclusion rectangle
defined by the most recent call to the MouRemovePtr function.

This example creates a mouse handle and calls the MouSetPtrPos function to
initialize the mouse pointer in the upper-left corner of the screen. It then calls
the MouDrawPtr function to enable the mouse pointer to be drawn:

PTRLOC mouplPosition;
HMOU hmou;
MouOpen(OL, &hmou);
mouplPosition.row = 0;
mouplPosition.col = 0;
MouSetPtrPos(&mouplPosition, hmou);
MouDrawPtr(hmou);

/* row zero */
/* column zero */
/* sets mouse position */

MouDrawPtr, MouGetPtrPos, MouOpen, MouRemovePtr

• MouSetPtrShape
USHORT MouSetPtrShape(pbBuffer, pmoupslnfo, hmou)
PBYTE pbBuffer, 1* pointer to buffer with shape masks *1
PPTRSHAPE pmoupslnfo; 1* pOinter to structure with shape info. *1
HMOU hmou; 1* mouse handle *1

Parameters

The MouSetPtrShape function sets the AND and XOR masks that define the
shape of the mouse pointer for the specified mouse. MouSetPtrShape also sets
information about the pointer, such as the width and height of masks and the
location of the hot spot.

pbBuffer Points to the buffer that contains the new masks.

pmoups[n!o Points to the PTRSHAPE structure that contains the new pointer
information. The PTRSHAPE structure has the following form:

typedef struct _PTRSHAPE {
USHORT cb;
USHORT col;
USHORT row;
USHORT colHot;
USHORT rowHot;

} PTRSHAPE;

For a full description, see Chapter 4, "Types, Macros, Structures."

200 MouSetPtrShape

Return Value

Comments

See Also

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlLMOUSEJNV J> ARMS
ERROlLMOUSE.flOJ)EVICE

The MouSetPtrShape function copies the AND and XOR masks from the buffer
pointed to by the pbBuffer parameter. The format and size of the masks depend
on the display device and the video mode. In text mode, each mask is typically a
character/attribute pair. In graphics mode, each mask is a bitmap.

The MouSetPtrShape function copies information about the pointer from the
structure pointed to by the pmoupslnjo parameter. The structure defines the
length (in bytes) of the AND and XOR masks, the width and height of each
mask, and the offset from the current mouse position (or hot spot) to the
upper-left corner of the pointer.

If the pointer is displayed, the MouSetPtrShape function may not display a
new shape immediately. If the pointer is not displayed, you must use the
MouRemovePtr and MouDrawPtr functions to display the new shape.

The pointer shape is dependent on the device driver used to support the display
device. In text mode, MS OS/2 supports the pointer shape as a reverse block
character. This character has a one-character height and width; that is, in text
modes, the height and width fields must each be one. You can determine the
current pointer shape in effect for the screen group by using the MouGetPtr­
Shape function.

MouDrawPtr, MouGetPtrShape, MouOpen, MouRemovePtr

• MouSetScaleFact
USHORT MouSetScaleFact(pmouscFactors, hmou)
PSCALEFACT pmouscFactors; /* pOinter to structure for scaling factors */

HMOU hmou; /* mouse handle */

Parameters

The MouSetScaleFact function sets the horizontal and vertical scaling factors for
the specified mouse. The scaling factors define the number of mickeys the mouse
must travel horizontally or vertically to cause MS OS/2 to move the mouse
pointer one screen unit.

pmouscFactors Points to the SCALEFACT structure that contains the scaling
factors. The SCALEFACT structure has the following form:

typedef struct _SCALEFACT {
USHORT rowScale;
USHORT colScale;

} SCALEFACT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hmou Identifies the mouse. The handle must have been created previously by
using the MouOpen function.

Return Value

Example

See Also

• MouSynch

MouSynch 201

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROLMOUSE_NOJ)EVICE

This example creates a mouse handle, enables the mouse pointer to be drawn,
and retrieves the current scaling factor. It then doubles the scaling factor and
calls the MouSetScaleFact function to set the new factor. The result is that you
must move the mouse twice as far in order to move the pointer on the screen:

SCALEFACT mouscFactors;
HMOU hmou;
MouOpen(OL, &hmou);
MouDrawPtr(hmou) ;
MouGetScaleFact(&mouscFactors,

hmou);
mouscFactors.rowScale *= 2;
mouscFactors.colScale *= 2;
MouSetScaleFact(&mouscFactors,

hmou);

MouGetScaleFact, MouOpen

/* retrieves scaling factors */

/* vertical scaling factor */
/* horizontal scaling factor */
/* sets new scaling factors */

USHORT MouSynch(fWait)
USHORT fWait; 1* wait/no-wait flag *1

Parameters

Return Value

Comments

See Also

The MouSynch function synchronizes access to the mouse. This function should
be used by a Mou subsystem to prevent more than one process from accessing
the mouse handle at anyone time.

jW ail Specifies whether to wait if the mouse device driver is currently busy. If
this parameter is FALSE, the function returns control immediately without wait­
ing for the device to become free. If the parameter is TRUE, the function waits
until the mouse handle is free.

The return value is zero if the function is successful: Otherwise, it is an error
value.

The MouSynch function requests an exclusive system semaphore that clears
when the Mou subsystem returns to the mouse router. The MouSynch function
blocks all other threads within a screen group until the semaphore clears.

DosCloseSem, DosDevIOCtl, MouRegister

202 VioAssociate

• VioAssociate
USHORT VioAssociate(hdc, hvps)
HDChdc; 1* device-context handle *1
HVPS hvps; 1* presentation-space handle *1

Parameters

Return Value

See Also

The VioAssociate function associates an advancedvideo-input-and-output
(A VIO) presentation space with a device context. Subsequent calls to the
VioShowPS and VioShowBuf functions direct output to this device context.

A scre~i1 device context is the only kind of device context that may be associ­
ated with an A VIO presentation space. If the A VIO presentation space is
currently associated with another device context, it is disassociated. Similarly,
if another A VIO presentation space is currently associated with the device
context, it too is disassociated.

If you specify a NULL handle for the device context, the presentation space is
disassociated from the currently associated device context.

hdc Identifies the device context to associate with the presentation space. If
this parameter is NULL, the function disasssociates the previous device context.

hvps Identifies the A VIO presentation space. The space must have been
created previously by using the VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS, VioShowBuf, VioShowPS, WinOpen WindowDC

• VioCreateLogFont
USHORT VioCreateLogFont(pfat, Icid, pstr8Name, hvps)
PFATIRS pfat; 1* pointer to structure for font attributes *1
LONG Icid; 1* local identifier for font *1
PSTR8 pstr8Name; 1* pOinter to descriptive name of logical font *1
,HVPS hvps; 1* presentation-space handle *1

The VioCreateLogFont function creates a logical font for the given. advanced
video-input-and-output (A VIO) presentati<;>n space. A logical font is a list of
attributes, such as character size and weight, that specifies the font used for
writing text. When a font is needed, MS OS/2 chooses from the available physi­
cal fonts the one that most closely matches the logical font. A program may,
however, force selection of a particular font by setting the IMatch field in the
F ATTRS structure to the value returned for the requested font by the
VioQueryFonts function.

If the szFaceName field in the FATTRS structure is NULL and all of the attri­
butes except the code page are set to zero, the system default font is selected, in
the specified code page.

Parameters

Return Value

See Also

• VioCreatePS

VioCreatePS 203

ptat Points to the FATTRS structure that contains the attributes of the font.
The FA TIRS structure has the following form:

typedef struct _FATTRS {
USHORT usRecordLength;
USHORT fsSelection;
LONG IMatch;
CHAR. szFaceName[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG IMaxBaselineExt;
LONG lA~eCharWidth;
USHORT usWidthClass;
USHORT usWeightClass;
USHORT fsType;
SHORT sQuality;
USHORT fsFontUse;

} FATTRS;

For a full description; see Chapter 4, "Types, Macros, Structures."

lcid Specifies the local identifier for the font. This parameter must be 1, 2, or
3. If the identifier is already being used to refer to a font or bitmap, the function
returns an error.

pstr8N arne Points to an 8-character name that you may use to describe the
logical font.

hvps Identifies the A VIa presentation space. This presentation space must
have been created previously by using the VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value, indicating that an error occurred.

VioQueryFonts

USHORT VioCreatePS(phvps, cRows, cColumns, (Format, cAttrBytes, hvps)
PHVPS phvps; 1* pointer to variable for presentation-space handle *1
SHORT cRows; 1* height of presentation space *1
SHORT cColumns; 1* width of presentation space *1
SHORT (Format; 1* format of attribute byte(s) *1
SHORT cAttrBytes; 1* number of attributes *1
HVPS hvps; 1* presentation-space handle *1

Parameters

The VioCreatePS function creates an advanced video-input-and-output (A VIa)
presentation space, the size of which must not exceed 32K. To determine the
size of the presentation space, multiply the cColumns, cRows, and cAttrBytes
parameters as follows: cColumns X cRows X (cAttrBytes + 1).

phvps Points to the variable that receives the presentation-space handle. You
may use this handle in subsequent Vio functions.

cRows Specifies the height (in character cells) of the presentation space.

cColurnns Specifies the width (in character cells) of the presentation space.

204 VioCreatePS

Return Value

See Also

• VioDeleteSetld

[Format Identifies the format of the attribute byte(s) in the presentation
space. The content of the attribute bytes depends on the format. Currently, the
only defined format is zero. If the format is zero, the attribute bytes have the fol­
lowing meanings:

Value Meaning

Specifies a eGA format of two attribute bytes. The first
byte contains the character value. The second byte con­
tains bit fields that specify the background and fore­
ground colors. Blink and intensity fields are not sup­
ported.

Specifies an extended format of four attribute bytes.
The first byte contains the character value. The ~econd
byte contains bit fields that specify the background and
foreground colors. The third byte contains bit fields
that specify the underscore, reverse video, the back­
ground opacity, and the font identifier. The fourth byte
is an extra byte to be used by programs.

cAttrBytes Specifies the number of attribute bytes per character cell in the
presentation space. This number may be 1 or 3.

hvps Identifies the A VIO presentation space. This parameter must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioDestroyPS

USHORT VioDeleteSetld(/cid. hvps)
LONG Icid; /. local identifier for object ./
HVPS hvpS; /. presentation-space handle *f

Parameters

Return Value

See Also

The VioDeleteSetId function deletes the logical font specified by the lcid param­
eter. Do not use this function to delete the object specified by the local identifier
zero.

lcid Specifies the local identifier for the object. This parameter must be 1, 2,
or 3. If you specify -1, this function deletes all logical fonts.

hvps Identifies the advanced video-input-and-output (A VIO) presentation
space. This presentation space must have been created previously by using the
VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreateLogFont, VioCreatePS

VioEndPopUp 205

• VioDeRegister
USHORT VioDeRegister(VOID)

Parameters

Return Value

See Also

• VioDestroyPS

The VioDeRegister function restores the functions of the default Vio subsystem
and releases any previously registered Vio subsystem. The function restores the
default Vio subsystem for all processes in the current screen group.

Once a process registers a Vio subsystem, no other process in the screen group
may register a Vio subsystem until the default subsystem is restored. Only the
process registering a Vio subsystem may call the VioDeRegister function to
restore the default Vio subsystem.

This function has no parameters.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROlC VIOJ)EREGISTER

VioRegister

USHORT VioDestroyPS(hvps)
HVPS hvps; /* presentation-space handle */

Parameters

Return Value

See Also

• VioEndPopUp

The VioDestroyPS function destroys the specified advanced video-input-and­
output (A VIO) presentation space.

hvps Identifies the A VIO presentation space to destroy. This presentation
space must have been created previously by using the VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS

USHORT VioEndPopUp(hvio)
HVIO hvio; /* video handle */

The VioEndPopUp function closes a pop-up screen and restores the physical
video buffer to its previous contents. Only the process that opened the pop-up
screen may close it.

VioEndPopUp may not completely restore the screen to its previous state. For
example, programs that modify the video registers or use graphics modes may
have to restore the state of the registers as the pop-up screen is being closed.
By calling the VioModeWait function, a program can request to be notified of
the change in video mode. Whenever a process has a pending request, MS
OS/2 notifies the process of a mode change when the pop-up screen is closed.

206 VioEndPopUp

Parameters

Return Value

Example

See Also

• VioG etAnsi

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCn~atePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlL VIOJNVALIDJIANDLE
ERROlL VIO_NOYOPUP

This example creates a pop-up screen, displays a message, waits three seconds,
then calls VioEndPopUp to close the pop-up screen:

USHORT fWait = VP_WAIT;
VioPopUp(&fWait, 0); 1* creates pop-up screen *1
VioWrtTTY("This is a VIO pop-up screen\n\r", 29, 0);
DosSleep(3000L); 1* waits 3 seconds *1
VioEndPopUp(O); 1* ends pop-up screen */

VioModeWait, VioPopUp

USHORT VioGetAnsi(pfAnsi. hvio)
PUSHORT pfAnsi; 1* pointer to variable for ANSI flag *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

Example

See Also

The VioGetAnsi function retrieves the state of the ANSI flag, which determines
whether the processing of ANSI escape sequences is enabled or disabled.

plAnsi Points to the variable that receives the ANSI flag. If this flag is
ANSLON, ANSI processing is enabled. If the flag is ANSLOFF, ANSI pro­
cessing is disabled.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROlL VIOJNVALIDJIANDLE

This example calls VioGetAnsi and, if ANSI processing enabled, calls the
Vio WrtTfY function to display a message:

USHORT fAnsi;
VioGetAnsi(&fAnsi,O);
if (fAnsi == ANSI_ON)

VioWrtTTY("ANSI is on\n\r", 12,0);

VioSetAnsi, Vio WrtTTY

VioGetBuf 207

• VioGetBuf
USHORT VioGetBuf(puILVB, pcbLVB, hvio)
PULONG puILVB; I. pointer to variable for address of LVB./
PUSHORT pcbLVB; I. pointer to variable for length of LVB ./
HVIO hvio; I. video handle ./

Parameters

Return Value

Example

See Also

The VioGetBuf function retrieves the address of the logical video buffer (LVB),
which contains the current character attributes for the text output of a process.
The logical video buffer is identical in content and format to the physical video
buffer when the process is the foreground process. The logical video buffer is
available for text-mode screens only.

A process can access and modify the contents of the logical video buffer at any
time, even if the process is in the background. Changes made to the logical
video buffer do not affect the physical screen until the process calls the Vio­
ShowBuf function.

The VioGetBuf function is a family API function.

pulL VB Points to the variable that receives the address of the logical video
buffer.

pcbLVB Points to the variable that specifies the length (in bytes) of the logical
video buffer . You can use the VioGetMode function to determine the dimen­
sions of the buffer.

hvio Identifies an advanced video-input-and-output (A VlO) presentation
space. For A VlO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROlC VlOJNV ALIDJIANDLE

This example calls VioGetBuf to retrieve the address of the logical video buffer.
It sets the character attributes in the buffer for foreground blinking by using the
OR operator to set the high bit, then it calls the VioShowBuf function to display
the character attributes:

PBYTE pbLVB;
USHORT cbLVB, i;
VioGetBuf«PULONG) &pbLVB, &cbLVB, 0);
for (i = 0; i < cbLVB; i += 2)

1* OR in the high bit to make it a blinking attribute *1

* (pbLVB + i + 1) = * (pbLVB + i + 1) I Ox80;
VioShowBuf(O, cbLVB, 0); 1* displays buffer *1

VioGetMode, VioGetPhysBuf, VioShowBuf

2~08 VioGetConfig

• VioGetConfig
USHORT VioGetConfig(usReserved~ pvioin~ hvio)
USHORT usReserved; /* must be zero */
PVIOCONFIGINFO pvioin; /* pOinter to structure for configuration */

HVIO hvio; /* video handle */

Parameters

Return Value

Comments

Example

See Also

The VioGetConfig function retrieves the video display configuration, which
defines the type of display adapter, the type of display, and the amount of video
memory available.

The VioGetConfig function is a family API function.

usReserved Specifies a reserved value. This parameter must be zero.

pVlom Points to the VIOCONFIGINFO structure that receives the display
configuration for the primary display adapter. The VIOCONFIGINFO structure
has the following form:

typedef struct _VIOCONFIGINFO {
USHORT cb;
USHORT adapter;
USHORT display;
ULONG cbMemory;

} VIOCONFIGINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ VIOJNVALID-LENGTH
ERRO~ VIOJNVALIDJ> ARMS

MS OS/2 derives the values for the adapter and display fields for the display
configuration by using various tests, including checking the switch settings on the
card.

This example calls VioGetConfig to determine whether the display type is an
enhanced color display:

VIOCONFIGINFO vioinConfig;
vioinConfig.cb = sizeof(vioinConfig);
VioGetConfig(O,

&vioinConfig,
0) ;

if (vioinConfig.display == 2)

/* structure length */
/* must be zero */
/* configuration data */
/* video handle */

VioWrtTTY("Enhanced color display\n\r", 24, 0);

VioGetMode, VioGetState

VioGetCurPos 209

• VioGetCp
USHORT VioGetCp(usReserved, pldCodePage, hvio)
USHORT us Reserved; 1* must be zero -I
PUSHORT pldCodePage; 1* pOinter to code-page identifier *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

Example

See Also

• VioGetCurPos

The VioGetCp function retrieves the identifier of the code page for the current
screen group. This code page defines the character set being used to display text
on the screen. If the identifier is OxOOOO, the system default code page is being
used. Any other value identifies a code page that has been set by using the Vio­
SetCp function or that has been inherited from the parent process.

usReserved Specifies a reserved value. This parameter must be zero.

pJdCo dePage Points to the variable that receives the code-page identifier. The
following are the valid code-page numbers:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROIL VIO_INV ALIDJIANDLE

This example calls VioGetCp to retrieve the current system code page:

USHORT idCodePage;
VioGetCp(O,

&idCodePage,
0) ;

I' must be zero 'I
I' code-page identifier 'I
I' video handle 'I

DosGetCp, DosSetCp, VioSetCp

USHORT VioGetCurPos(pusRow, pus Column , hvio)
PUSHORT pusRow; 1* pointer to variable for row *1
PUSHORT pusColumn; 1* pointer to variable for column *1
HVIO hvio; , 1* video handle *1

The VioGetCurPos function retrieves the position of the cursor on the screen.

The VioGetCurPos function is a family API function.

210 VioGetCurPos

Parameters

Return Value

Example

See Also

• Vi()GetCurType

pusRow Points to the variable that receives the current row position of the
cursor.

pusColumn Points to the variable that receives the current column position of
the cursor.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space; For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-VIOJNVALIDJIANDLE

This example calls VioGetCurPos to retrieve the current row-and-column posi­
tion of the cursor:

USHORT usRow, usColumn;
VioGetCurPos(&usRow,

&usColuinn,
0) ;

/* row address */
/* column address */
/* video handle */

VioGetCurType, VioSetCurPos

USHORT VioGetCurType (pviociCursor, hvio)
PVIOCURSORINFO pviociCursor, I. pointer to structure for cursor info *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

The VioGetCurType function retrieves information about the cursor type. This
information defines the height and width of the cursor, as well as whether it is
currently visible. The VioGetCurType function is a family API function.

pviociCursor Points to the VIOCURSORINFO structure that receives infor­
mation about the cursor type. The VIOCURSORINFO structure has the follow­
ing form:

typedef struct _VIOCURSORINFO {
USHORT yStart;
USHORT cEnd;
USHORT ex;
USHORT attr;

} VIOCURSORINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input~and-output (A VIO) presentation
space. For A VIO· programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is .zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-VIOJNVALiDJIANDLE

Example

Se~ Also

VioGetFont 211

This example calls VioGetCurType to retrieve the current cursor type, changes
the attribute to hidden or visible (the opposite of what it was), and calls
VioSetCurType to set the new cursor type:

VIOCURSORINFO viociCursor;
VioGetCurType(&viociCursor, 0); 1* retrieves current cursor type *1
viociCursor.attr = 1* flips attribute to hidden/visible *1

(viociCursor.attr == -1) ? 0 : -1;
VioSetCurType(&viociCursor, 0); 1* sets new cursor type *1

VioGetCurPos, VioSetCurType

• VioGetDeviceCeliSize
USHORT VioGetDeviceCeIiSize(pcRows, pcColumns, hvps)
PSHORT pcRows; 1* pointer to variable for cell height */
PSHORT pcColumns; 1* pOinter to variable for cell width */

I1VPS hvps; 1* presentation-space handle */

Parameters

Return Value

See Also

• VioGetFont

The VioGetDeviceCellSize function retrieves the size of the current device cell.

pcRows Points to the variable that specifies the height (in pels) of the device
cell.

pcCoiUlnns Points to the variable that specifies the width (in pels) of the
device cell.

hvps Identifies the advanced video-input-and-output (A VIO) presentation
space. This presentation space must have been created previously by using the
VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS, VioSetDeviceCellSize

USHORT VioGetFont(pviofi, hvio)
PVIOFONTINFO pviofi; /* pointer to structure for font information */
HVIO hvio; /* video handle .;

Parameters

The VioGetFont function retrieves a specified font. A font consists of one bit­
map for each character in a character set. The bitmaps define the character
shapes. The VioGetFont function retrieves a copy of 'either the current font or a
font from the ROM of the video display adapter.

pvioji Points to the VIOFONTINFO structure that specifies the request type
and receives the font information. The VIOFONTINFO structure has the follow-
ing form: . ,

212 VioGetFont

Return Value

Comments

Example

See Also

• VioGetMode

typedef struct _VIOFONTINFO {
USHORT cb;
USHORT type;
USHCRT cxCell;
USHORT cyCell;
PYOID pbData;
USHORT cbData;

} VIOFONTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be N!1LL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIO_COL
ERROIL VIOYONT
ERR OIL VIOJNVALIDYARMS
ERROILVIO-ROW

Although the VioGetFont function can retrieve fonts for many display adapt­
ers, the fonts for some adapters are not available. In most cases, the function
retrieves a full 256-character font. This font may consist of a complete ROM
font, or it may be derived from downloaded fonts that are saved in the adapter's
BIOS. The current font is defined by the most recent DosSet~p or VioSetCp
function, or it can be set by using the VioSetFont function.

This example calls the VioGetFont function to obtain the current font. When it
returns, the cxCeUand cyCell fields will contain the dimensions (in points) of a
character cell. The pbData field points to the font:

VIOFONTINFO viofiFont;
viofiFont.cb = sizeof(viofiFont);
viofiFont.type = VGFI_GETCURFONT;
viofiFont.cxCell 0;
viofiFont.cyCell = 0;
viofiFont.pbData = OL;
viofiFont.cbData = 0;
VioGetFont(&viofiFont, 0);

DosSetCp, VioSetCp, VioSetFont

/* length of structure */
/* retrieves current font */
/* clears columns */
/* clears rows */
/* address of data area */
/* length of data area */

USHORT VioGetMode(pviomi, hvio)
PVIOMODEINFO pviomi; /. pointer to structure for screen mode information ./
HVIO hvio; /. video handle ./

The VioGetModefunction retrieves the current screen mode. The screen mode
defines the display mode (text or graphics), the number of colors being used (2,
4, or 16), and the width and height of the screen in both character cells and
pels.

The VioGetMode function is a family API function.

Parameters

Return Value

Example

See Also

• VioGetOrg

VioGetOrg 213

pviomi Points to the VIOMODEINFO structure that receives the screen-mode
information. The VIOMODEINFO structure has the following form:

typedef struct _VIOMODEINFO {
USHORT cb;
UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;

} VIOMODEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIOJNVALID_HANDLE
ERROR-VIOJNV ALID-LENGTH

This example calls VioGetMode to retrieve the mode information for the screen:

VIOMODEINFO viomi;
viomi.cb = sizeof(viomi);
VioGetMode(&viomi, 0);
if (viomi.fbType == 0)

VioWrtTTY("Monochrome display\n\r", 20, 0);

VioGetState, VioSetMode

USHORT VioGetOrg(psRow, psColumn, hvps)
PSHORT psRow; I. pointer to variable for row number *1
PSHORT psColumn; I. pointer to variable for column number *1
HVPS hvps; 1* presentation-space handle *1

Parameters

Return Value

See Also

The VioGetOrg function retrieves the origin of an advanced video-input-and­
output (A VIO) presentation space.

psRow Points to the variable that receives the row number of the cell cur­
rently mapped to the upper-left corner of the window.

psColumn Points to the variable that receives the column number of the cell
currently mapped to the upper-left corner of the window.

hvps Identifies the A VIO presentation space. This presentation space must
have been created previously by using the VioCreatePS function

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS, VioSetOrg

214 VioGetPhysBuf

• VioGetPhysBuf
USHORT VioGetPhysBuf(pviopb, usReserved)
PVIOPHYSBUF pviopb; 1* pointer to structure for physical video buffer *1
USHORT us Reserved; 1* must be zero *1

Parameters

Return Value

Comments

Example

See Also

The VioGetPhysBuf function retrieves the selector of the physical video buffer.
The physical video buffer contains the text or graphics information that defines
the current screen image. In text mode, the buffer contains the character and
attribute for each character cell. In graphics mode, the buffer is a bitmap (in one
or more planes) of the image on the screen. The content of the screen depends
on the current screen mode and the type of display adapter.

The VioGetPhysBuf function is a family API function.

pviopb Points to the VIOPHYSBUF structure that specifies the address and
length of the physical video buffer, and receives the selector(s) used to address
the video buffer. The VIOPHYSBUF structure has the following form:

typedef struct _VIOPHYSBUF {
PBYTE pBuf;
ULONG cb;
SEL ase1[1];

} VIOPHYSBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

usReserved Specifies a reserved value. This parameter must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIOJNJ3G
ERROR-VIOJNV ALIDJIANDLE

Since the physical video buffer is subject to change by the current foreground
process, only the foreground process should access the buffer. To ensure that
the foreground process has complete control of the physical buffer, use the
VioScrLock function.

This example locks the screen, calls VioGetPhysBuf to retrieve the address of
the physical video buffer, unlocks the screen, and assigns the address of the
physical video buffer to a pointer:

VIOPHYSBUF vlopbBuffer;
PCH pchScreen;
USHORT fStatus;
vlopbBuf.pBuf = OxB8000L;
vlopbBuf.cb = 4000;
VloScrLock(LOCKIO_WAIT, &fStatus, 0);
VloGetPhysBuf(&vlopbBuf, 0);
VloScrUnLock(O) ;
pchScreen = MAKEP(vlopbBuf.asel[O]),O);

VioGetBuf, VioScrLock, VioScrUnLock, VioShowBuf

VioGetState 215

• VioGetState
USHORT VioGetState(pvoidState, hvio)
PVOID pvoidState; I. pOinter to structure for state information .t
HVIO hvio; I. video handle .1

Parameters

Return Value

Example

See Also

The VioGetState function retrieves the current settings of the palette registers,
the overscan (border) color, or the blink/background intensity switch.

pvoidState Points to the structure that receives the state information. The
structure type, which depends on the request type specified in
the type field of each structure, is one of the following: VIOPALSTATE,
VIOOVERSCAN, or VIOINTENSITY. These structures have the following
forms:

typedef struct _VIOPALSTATE {
USHORT cb; .
USHORT type;
USHORT if irst;
USHORT acolor[l];

} VIOPALSTATE;

typedef struct _VIOOVERSCAN {
USHORT cb;
USHORT type;
USHORT color;

} VIOOVERSCAN;

typedef struct _VIOINTENSITY {
USHORT cb;
USHORT type;
USHORT fs;

} VIOINTENSITY;

For each structure, you must set the cb and type fields before calling the func­
tion. Not all values for the type field are valid for all screen modes.

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_INVALIDJIANDLE
ERRO~ VIOJNVALID-LENGTH

This example calls the VioGetState function to retrieve the settings for each of
the 16 palette registers:

BYTE abState[38];
PVIOPALSTATE pviopal;
pviopal = (PVIOPALS+ATE) abState;
pviopal->cb = sizeof(abState); /* structure size */
pviopal->type = 0; /* retrieves palette registers */
pviopal->iFirst = 0; /* first palette register to return */
VioGetState(pviopal, 0);

VioGetMode, VioSetState

216 VioModeUndo

• VioModeUndo
USHORT VioModeUndo (fRelinquish, fTerminate, hvio)
USHORT fRelinquish; 1* ownership flag *1
USHORT fTerminate; 1* termination flag *1
USHORT hvio; 1* video handle *1

Parameters

Return Value

See Also

• VioModeWait

The VioModeUndo function cancels a request by a process to be notified of a
change in video mode. A process makes this request by calling the VioMode­
Wait function. The request forces the calling thread to wait until the video mode
changes. The VioModeUndo function cancels the request and permits the thread
to continue (or ends the thread, if requested to do so).

MS OS/2 permits only one process in a screen group to request notification of
a video-mode change. The first process to make a request owns it. Thereafter,
other processes must wait for the owning process to relinquish the request
before being granted ownership. To force a process to relinquish ownership of
the request, use the VioModeUndo function.

Only the process that owns the change-mode request may call the VioModeUndo
function.

[Relinquish Specifies whether the process should retain or relinquish owner­
ship of the request. If this parameter is UNDOLGETOWNER, the process
retains ownership and can make the request again without competing with other
processes. If this parameter is UNDOLRELEASEOWNER, the process relin­
quishes o~\mership of the request and is canceled by VioModeUndo.

fl'erminate Specifies whether to terminate the thread waiting for the mode
change. If this parameter is UNDOK-ERRORCODE, the thread continues and
receives an error value from the VioModeWait function. If the parameter is
UNDOK_TERMINATE, the thread terminates.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIOYUNCTION_OWNED
ERRO~ VIOJNV ALID.Y ARMS
ERRO~ VIO_NO_MODE_THREAD

VioMode Wait

USHORT VioModeWait(fEvent, pfNotify, hvio)
USHORT fEvent; 1* event flag *1
PUSHORT pfNotify; 1* pointer to variable for notify flag *1
USHORT hvio; 1* video handle *1

The VioMode Wait function waits for a change in the current video mode before
returning. When a change occurs, MS OS/2 sets the variable pointed to by the

Parameters

Return Value

Comments

See Also

VioModeWait 217

pfNotify parameter to a value indicating the type of change. The thread may then
restore the video registers or carry out other tasks related to restoring the video
mode for the process.

The VioMode Wait function is used typically by graphics programs (or text pro­
grams that access video registers directly) to restore the screen after a pop-up
screen has closed. Pop-up screens often change the video mode and video-reg­
ister values without fully restoring them when closed. A thread that calls the
VioMode Wait function waits until a pop-up screen closes so that it can restore
the screen.

MS OS/2 permits only one process in a screen group to wait for a video-mode
change. The first process to make a request owns it.

fEvent Specifies the event flag of the event to wait for. If this parameter is
VMWRJ>OPUP, the function waits for a pop-up screen to close. No other flags
are permitted.

pfNotify Points to the variable that receives a flag specifying the action to
carry out in response to the given event. If this flag is VMWNJOPUP, the pro­
cess should restore the video mode. No other values are returned.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIOYUNCTION_OWNED
ERROIL VIOJNV ALIDJ ARMS
ERROIL VIO-RETURN

A program should use the VioMode Wait function if it changes the video regis­
ters directly. MS OS/2 automatically saves and restores the physical video buffer
and screen mode whenever a pop-up screen is used.

The thread that calls VioMode Wait should carry out only those tasks directly
related to restoring the screen mode. Whenever a mode change occurs, the
thread should restore the mode and call VioModeWait as quickly as possible.
The thread should not call MS OS/2 functions (netiher directly nor indirectly
through other functions) that may generate pop-up screens or error pop-up
screens. Doing so may cause MS OS/2 to lock up (that is, each call of the
thread generates a pop-up screen, which in turn calls the thread and generates
another pop-up screen, and so on). You can use the VioModeUndo function to
end the thread when it is no longer needed:

Programs that save and restore the video mode and screen before and after a
screen switch should use the VioSaveRedrawWait function.

VioModeUndo, VioPopUp, VioSaveRedrawWait

218 VioPopUp

• VioPopUp
USHORT VioPopUp(pfWait, hvio)
PUSHORT pfWait; 1* pointer to variable for wait/no-wait flag *1
HVIO hvio; 1* video handle *1

Parameters

The VioPopUp function opens a pop-up screen. A pop-up screen is a temporary
text-mode screen that a process can use to display error and warning messages
without altering the content of the foreground screen. Pop-up screens ~re used
typically by background processes to display messages when the screen is not
available. .

The pop-up screen can be opaque or transparent, as specified by the flag pointed
to by the pfWait parameter. If the pop-up screen is opaque, the function changes
the screen mode (if the mode is not already set for 25 lines by 80 columns of
text) and clears the screen, moving tlte cursor to the upper-left corner. If the
pop-up screen is transparent, the function uses the current screen mode and
leaves the screen and the cursor unchanged.

Once the pop-up screen is open, the process may call any of the fol~owing Vio
functions:

VioEndPopUp
VioGetAnsi
VioGetCp
VioGetConfig
VioGetCurPos
VioGetCurType
VioGetFont
VioGetMode
VioGetState

VioReadCellStr
VioReadCharStr
VioScrollDn
VioScrollLf
VioScrollRt
VioScrollUp
VioSetCp
VioSetCurPos
VioSetCurType

VioSetFont
VioSetState
Vio WrtCellStr
Vio WrtCharStr
Vio WrtCharStrAtt
Vio WrtNAttr
Vio WrtNCell
VioWrtNChar
VioWrtTTY

The process opening the pop-up screen receives all subsequent keyboard input,
and MS OS/2 disables the keys that it normally uses switch from one screen
group to another. While the pop-up screen is open, the process must not access
or modify the physical video buffer. Also, it must not call the DosExecPgm
function.

Only one pop-up screen may be open at any given time. If a process attempts to
open one pop-up screen while another is· already open~ the VioPopUp function
waits until the previous screen is closed before opening the neW one.

pfWait Points to tlw variable that specifies whether the pop-up screen is to
be opaque or transparent, and whether the function should wait for any open
pop-up screen to close. It can be any combination of either VP _NOWAIT or
VP_WAIT and either VP_OPAQUE or VP_TRANSPARENT. These flags are
defined as follows:

Value

VP_NOWAIT

VP_WAIT

Meaning

Return immediately if a pop-up screen already
exists. .

Wait if a pop-up screen already exists. The func­
tion opens a new pop-up screen as soon as the
existing one is closed.

Return Value

Comments

Example

See Also

Value

VP _TRANSPARENT

VioPopUp 219

Meaning

Set the screen mode for 25 lines by 80 columns of
text, clear the screen, and move the cursor to the
upper-left corner.

Create a transparent pop-up screen. The function
does not change the screen mode, clear the
screen, or move the cursor. To create a trans­
parent pop-up screen, the screen must be in text
mode already.

hvio Identifies a reserved value. This parameter must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_EXISTINGYOPUP
ERROR_ VIOJNV ALID_HANDLE
ERROR_ VIO_NOYOPUP

Before opening a pop-up screen, MS OS/2 saves the physical video buffer of the
existing screen. While the pop-up screen is open, MS OS/2 blocks any Vio func­
tions called by the process that owns the previous screen. If this process gen­
erates any output, MS OS/2 displays the output after the pop-up screen closes.

You can close a pop-up screen by using the VioEndPopUp function. VioEnd­
PopUp restores the screen mode and the screen buffer; it also restores keyboard
input to the previous process and enables the key combination MS OS/2 uses to
switch screen groups; In some cases, the VioEndPopUp function may not com­
pletely restore the screen. For these cases, use the VioModeWait function to
restore the screen.

You cannot use transparent pop-up screens if the foreground process has called
the VioSavRedrawWait function.

If a process registers a replacement VioPopUp function (by calling the Vio­
Register function), MS OS/2 uses the replacement function only if the fore­
ground process requests a pop-up screen. If a background process requests
a pop-up screen, MS OS/2 uses the default VioPopUp function.

This example calls the VioPopUp function to create a pop-up screen, and waits
for the pop-up screen if another pop-up screen is already active:

USHORT fWait = VP_WAIT I VP_OPAQUE;
VioPopUp(&fWait, 0);

. /* message and user interaction would go here */

VioEndPopUp(O); /* ends pop-up screen */

DosExecPgm, VioEndPopUp, VioGetPhysBuf, VioModeWait, VioRegister,
VioSavRedrawWait

220 VioPrtSc

• VioPrtSc
USHORT VioPrtSc(hvio)
HVIO hvio;· I. video handle.1

. The VioPrtSc function copies the contents of the screen to the printer.

Parameters

Return Value

See Also

• VioPrtScToggle

This function is reserved for system use. It is called whenever the PRINTSCREEN
key is pressed. A process can, however, replace VioPrtSc with a custom screen­
printing function by using the VioRegister function. If a process does replace
the VioPrtSc function, all other processes in the screen group will also use the
replacement function. This gives a process the capability of capturing input from
the PRINTSCREEN key.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ VIOJNVALIDJIANDLE
ERRO~ VIO_SMG_ONLY

VioPrtScToggle, VioRegister

USHORT VioPrtScToggle (hvio)
HVIO hvio; I. video handle.1

Parameters

Return Value

See Also

The VioPrtScToggle function enables or disables the printer echo feature.

This function is reserved for system use. It is called whenever the CTRL+PRTSC
key combination is pressed. The first press enables the printer echo feature, the
second disables it. A process can replace VioPrtScToggle, however, with a cus­
tom function by using the VioRegister function. If a process does replace the
VioPrtScToggle function, all processes in the screen group will also use the
replacement function. This gives a process the capability of capturing input from
the CTRL+PRTSC key combination.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ VIOJNV ALIDJIANDLE
ERRO~ VIO_SMG_ONL Y

VioPrtSc, VioRegister

VioQueryFonts 221

• VioQueryFonts
USHORT VioQueryFonts(pcbMetrics. pfm. cbMetrics. pcFonts. pszFacename. flOptions. hvps)
PLONG pcbMetrics; /. pOinter to variable for structure length ./
PFONTMETRICS pfm; /. pOinter to structure for font metrics ./
LONG cbMetrics; /. length of structure ./
PLONGpcFonts; /. pointer to variable for number of fonts ./
PSZ pszFacename;
ULONG flOptions;
HVPS hvps;

Parameters

/. pointer to string for face name
/. enumeration options
/. presentation-space handle

The VioQueryFonts function retrieves a font-metrics structure (or structures)
that contains characteristics of the fonts that match the specified face name.
These characteristics, or font metrics, are returned for as many matching fonts
as will fit in the structure pointed to by the pfm parameter.

After examining the returned data, the application selects the font most appro­
priate for its requirements, and if necessary, forces selection of a particular
font by specifying the IMatch field (as returned in the pfm parameter) in the
FATTRS structure for the VioCreateLogFont function.

By specifying zero for the pcFonts parameter and then examining the value
returned, the application determines how many fonts match the specified face
name.

All sizes are returned in world coordinates. For more information, see the
Microsoft Operating Systeml2 Programmer's Reference, Volume 1.

pcbMetrics Points to the variable that receives the length (in bytes) of each
FONTMETRICS structure. The structure pointed to by the pfm parameter must
contain the number of bytes given by pcFonts X pcMetrics.

pfm Points to the FONTMETRICS structure that receives the font metrics of
the specified matching fonts. The format for each record is as defined in the
GpiQueryFontMetrics function. The FONTMETRICS structure has the following
form:

typedef struct _FONTMETRICS {
CHAR szFamilyname[FACESIZE);
CHAR szFacename[FACESIZE);
USHORT idRegistry;
USHORT usCodePage;
LONG lEmHeight;
LONG lXHeight;
LONG lMaxAscender;
LONG lMaxDescender;
LONG lLowerCaseAscent;
LONG lLowerCaseDescent;
LONG lInternalLeading;
LONG lExternalLeading;
LONG lAveCharWidth;
LONG lMaxCharlnc;
LONG lEmlnc;
LONG lMaxBaselineExt;
SHORT sCharSlope;
SHORT sInlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXDeviceRes;
SHORT sYDeviceRes;
SHORT sFirstChar;
SHORT sLastChar;

222 VioQueryFonts

Return Value

See Also

• VioQuerySetlds

SHORT sDefaultChar;
SHORT sBreakChar;
SHORT sNominalPointSize;
SHORT sMinimumPointSize;
SHORT sMaximumPointSize;
USHORT fsType;
USHORT fsDefn;
USHORT fsSelection;
USHORT fsCapabilities;
LONG lSubscriptXSize;
LONG lSubscriptYSize;
LONG lSubscriptXOffset;
LONG lSubscriptYOffset;
LONG lSuperscriptXSize;
LONG lSuperscriptYSize;
LONG lSuperscriptXOffset;
LONG lSuperscriptYOffset;
LONG lUnderscoreSize;
LONG lUnderscorePosition;
LONG lStrikeoutSize;
LONG lStrikeoutPosition;
SHORT sKerningPairs;
SHORT sReserved;
LONG lMatch;

} FONTMETRICS;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbMetrics Specifies the length (in bytes) of the font-metrics structure(s).

pcFonts Points to the variable that receives the number of fonts for which the
application requires metrics.

pszFacename Points to the null-terminated string that specifies the face name.

flOptions Specifies whether to enumerate public or private fonts. This param­
eter may be any combination of the following values:

Value Meaning

Enumerate public fonts.

VQF _PRIV A TE Enumerate private fonts.

hvps Identifies the advanced video-input-and-output (A VIO) presentation
space. This handle must have been created previously by using the VioCreatePS
function.

The return value is the number of fonts not retrieved. The return value is - 1 if
an error occurs.

GpiQueryFonts, VioCreateLogFont, VioCreatePS

USHORT VioQuerySetlds(palcids, pachNames, palTypes, cSets, hvps)
PLONG palcids; 1* pointer to array for local identifiers for fonts *1
PSTR8 pachNames; 1* pointer to array for font names *1
PLONG palTypes; 1* pointer to array for object types *1
LONG cSets; 1* number of local identifiers in use *1
HVPS hvps; 1* presentation-space handle *1

The VioQuerySetIds function retrieves information about all available logical
fonts. This function is similar to the GpiQuerySetIds function.

Parameters

Return Value

See Also

• VioReadCellStr

VioReadCellStr 223

palcids Points to the array that receives the local identifiers for the fonts.

pachNames Points to the array that receives the 8-character names for the
fonts.

pal Types Points to the array that receives the object types for the fonts. All
fonts have the object type LCIDT_FONT.

cSets Specifies the number of local identifiers currently in use and therefore
the maximum number of objects for which information can be returned. You
can determine this value by using the GpiQueryNumberSetIds function.

hvps Identifies the advanced video-input-and-output (A VIO) presentation
space. This handle must have been created previously by using the VioCreatePS
function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

GpiQueryNumberSetIds, GpiQuerySetIds, VioCreatePS

USHORT VioReadCellStr(pchCellString, pcb, usRow, usColumn, hvio)
PCH pchCellString; 1* pointer to buffer for string *1
PUSHORT pcb; 1* pointer to variable for string length *1
USHORT usRow; 1* starting location (row) *1
USHORT usColumn; 1* starting location (column) 4
HVIO hvio; 1* video handle *1

Parameters

Return Value

The VioReadCellStr function reads one or more cells (character-attribute pairs)
from the screen, starting at the specified location. If the string is longer than the
current line, the function continues reading it at the beginning of the next line
but does not read past the end of the screen.

The VioReadCellStr function is a family API function.

pchCellString Points to the buffer that receives the cell string.

pcb Points to the variable that specifies the length (in bytes) of the buffer. The
length should be an even number. On return, this function copies the length of
the string to the variable.

usRow Specifies the starting row of the cell string to read.

usColumn Specifies the starting column of the cell string to read.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIC VIO_COL
ERROR_ VIO_INV ALIDJIANDLE
ERROIC VIO-ROW

224 VioReadCellStr

Example

See Also

This example calls VioReadCellStr to read Line 0, then calls the Vio WrtCellStr
function to write the cell string to Line 24:

CHAR achCells[160];
USHORT cb = sizeof(achCells);
VioReadCellStr(achCells, /* buffer for string */

&cb, /* pointer to variable for string length */
0, /* starting location (row) */
0, /* starting location (column) */
0) ; /* video handle */

VioWrtCellStr(achCells, cb, 24, 0, 0);

VioReadCharStr, Vio WrtCell Str

• VioReadCharStr
USHORT VioReadCharStr(pchString, pcb, usRow, usColumn, hvio)
PCH pchString; 1* pointer to buffer for string *1
PUSHORT pcb; 1* pointer to variable for lengtl1 of buffer *1
USHORT usRow; 1* starting location (row) *1
USHORT usColumn; 1* starting location (column) *1
HVIO hvio;

Parameters

Return Value

1* video handle

The VioReadCharStr function reads a character string from the screen, starting
at a specified location. If the character string is longer than the current line, the
function continues reading it at the beginning of the next line but does not read
past the end of the screen.

The VioReadCharStr function is a family API function.

pchString Points to the buffer that receives the character string.

pcb Points to the variable that specifies the length (in bytes) of the buffer. On
return, the function copies the length of the string to the variable.

usRow Specifies the starting row of the character to be read.

usColumn Specifies the starting column of the character to be read.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIO_COL
ERROR-VIOJNV ALIDJIANDLE
ERRO~ VIO~OW

Example

See Also

• VioRegister

VioRegister 225

This example calls VioReadCharStr to read a character string that is 80 charac­
ters long, starting at Row 1, Column 0 of the screen. It then calls the VioWrt­
CharStr function to write the character string to Row 24, Column O.

CHAR achString[80];
USHORT cb = sizeof(achString);
VioReadCharStr(achString,

&cb,
1,
0,
0) ;

VioWrtCharStr(achString, cb, 24,

VioReadCellStr, Vio WrtCharStr

0, 0) ;

/* string buffer */
/* length of buffer */
/* row */
/* column */
/* video handle */

USHORT VioRegister(pszModuleName, pszEntryName, flFunction1, flFunction2)
PSZ pszModuleName; I .. pOinter to module name .. I
PSZ pszEntryName; I .. pointer to entry-point name .. 1
ULONG flFunction1; I .. function flag 1 .. I
ULONG flFunction2; I .. function flag 2 .. I

Parameters

The VioRegister function registers a Vio subsystem within a screen group.
VioRegister temporarily replaces one or more default Vio functions, as specified
by the flFunctionl and flFunction2 parameters, with the functions pointed to by
the pszModuleName parameter. Once VioRegister replaces a function, MS OS/2
passes any subsequent call to the replaced function to a function in the given
module. If you do not replace a function, MS OS/2 continues to call the default
Vio function.

pszModuleName Points to the null-terminated string that specifies the name
of the dynamic-link module containing the replacement Vio functions. The string
must be a valid filename.

pszEntryName Points to the null-terminated string that specifies the dynamic­
link entry-point name of the function that replaces the specified Vio functions.
For a full description, see the following "Comments" section.

flFunctionl Specifies the Vio function(s) to replace. This parameter can be
any combination of the following values:

Value

VR_ VIOGETCURPOS

VR_ VIOGETCURTYPE

VR_ VIOGETMODE

VR_ VIOGETBUF

VR_ VIOGETPHYSBUF

VR_ VIOSETCURPOS

VR_VIOSETCURTYPE

VR_ VIOSETMODE

VR_ VIOSHOWBUF

Meaning

Replace VloGetCurPos.

Replace VloGetCurType.

Replace VloGetMode.

Replace VloGetBuf.

Replace VloGetPhysBuf.

Replace VloSetCurPos.

Replace VloSetCurType.

Replace VloSetMode.

Replace VloShowBuf.

226 VioRegister

Value

VR_ VIOREADCHARSTR

VR_ VIOREADCELLSTR

VR_ VIOWRTNCHAR

VR_ VIOWRTNA TTR

VR_ VIOWRTNCELL

VR_ VI 0 WRTTTY

VR_ VIOWRTCHARSTR

VR_ VIOWRTCHARSTRA 'IT

VR_ VIOWRTCELLSTR

VR_ VIOSCROLLUP

VR_ VIOSCROLLDN

VR_ VIOSCROLLLF

VR_ VIOSCROLLRT

VR_ VIOSETANSI

VR_ VIOGETANSI

VR_ VIOPRTSC

VR_ VIOSCRLOCK

VR_ VIOSCRUNLbCK

VR_ VIOSA VREDRA WW AIT

Meaning

Repiace VioReadCharStr.

Replace Vlo:ReadCeIlStr.

Replace Vlo WrtNChar.

Replace Vlo WrtNA.ttr.

Replace Vlo WrtNCell.

Replace Vlo WrtTTY.

Replace Vlo WrtCharStr.

Replace Vlo WrtCharStrAtt.

Replace Vlo WrtCellStr.

Replace VloScrollUp.

Replace VloScrollDn.

~eplace VloScrollLf.

Replace VloScrollRt.

Replace VloSetAnsl.

Replace VloGetAnsl.

Replace VloPrtSc.

Replace VloScrLock.

Replace VloScrUnLock.

Repl~ce VloSavRedrawWalt.

VR_ VIOSA VREDRA WUNDO Replace VloSavRedrawUndo.

VR_ VIOPOPUP Replace VloPopUp.

VR_ VIOENDPOPUP Replace VloEndPopUp.

VR_ VIOPRTSCTOGGLE Replace VloPrtScToggle.

flFunction2 Specifies the Vio function(s) to replace. This parameter can be
any combination of the following value~:

Value

VR_ VIOMODEWAIT

VR_ VIOMODEUNDO

VR_ VIOGETFONT

VR_ VIOGETCONFIG

VR_ VIOSETCP

VR_VIOGETCP

VR_ VIOSETFONT

VR_ VIOGETSTATE

VR_ VIOSETSTATE

~eaning

Replace VloMode Walt.

Replace VloMo~eUndo.

Replace VloGetFont.

Replace VloGetConfig.

Replace VloSetCp.

Replace VloGetCp.

Replace VloSetFont.

Replace VloGetState.

Replace VioSetState.

Return Value

Comments

VioRegister 227

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROlL VIOJNVALID~SCIIZ
ERROlL VIOJNV ALID-.MASK
ERROR_ VIO..REGISTER

MS OS/2 passes a Vio function to the given module by preparing the stack and
calling the function pointed to by the pszEntryName parameter. The specified
inodule must export the entry-point function name. The entry-point function
must determine which function is being requested (by checking the function code
on the stack), then pass control to the appropriate function in the module. The
entry-point functiori may then access any additional parameters placed on the
stack by the original call.

Only one process hi a screen group may use the VioRegister function at any
given time. That is, only one process at a time canteplace Vio fUnctions. The
process can restore the default Vio functions by calling the VioDeRegister func­
tion. A process can replace Vio functions any number of times, but only by first
restoring the default functions and then reregistering the new functions.

The entry-point function (FuncName) must have the following form:

SHOUT FAR FuncName(seIDataSeg, usReservedl, jFunction, ulReserved2,
usParaml, usParam2, usParam3, usParam4, usParam5, usParam6)

SEL selDataSeg;
USHORT usReservedl;
USHORT jfunction;
ULONG ulReserVed2;
U~HORT usParaml;
USHORT usParani2;
USHORT usParam3;
USHORT usParam4;
USHORT usParam5;
USHORT usParam6;

Parameter

selDataSeg

usReservedl

fFunction

Description

Specifies the data segment selector of the process call­
ing the Vlo function.

Specifies a reserved value that must not be changed.
This value represents a return address for the MS OS/2
function that routes calls to Vlo functions.

Specifies the function code of the function request.
This parameter can be one of the following values:
Value

OXOOOO

OxOOOl

OXOOO2

OXOOO3

Meaning

VloGetPbysBuf called.

VloGetBuf called.

VloSbowBuf called.

VloGetCurPos called.

228 VioRegister

Value

OxOOO4

OxOOOS

OxOOO6

OxOOO7
OxOOO8

OxOOO9

OxOOOA

OxOOOB

OXOOOC

OxOOOD

OxOOOE

OxOOOF

OXOO10

OxOOll

OXOO12

OXOO13

OXOO14

OXOO15

OXOO16

OXOO17

OXOO18

OXOO19

OxOO1A

OxOO1B

OxOO1C

OxOO1D

OxOO1E

OxOO1F

Ox0020

Ox0021

OXOO22

Ox0023

Ox0024

OXOO25

Ox0026

Ox0027

OxOO28

Meaning

VloGetCurType called.

VloGetMode called.

VloSetCurPos called.

VloSetCurType called.

VloSetMode called.

VloReadCharStr called.

VloReadCellStr called.

Vlo WrtNChar called.

VloWrtNAttr called.

Vlo WrtNCell called.

Vlo WrtCharStr called.

Vlo WrtCharStrAtt called.

VloWrtCellStr called.

Vlo WrtTIY called.

VloScrollUp called.

VloScrollDn called.

VloScrollLf called.

VloScrollRt called.

VloSetAnsl called.

VloGetAnsl called.

VloPrtSc called.

VloScrLock called.

VloScrUnLock called.

VloSavRedrawWalt called.

VloSavRedrawUndo called.

VloPopUp called.

VloEndPopUp called.

VloPrtScToggle called.

VloModeWalt called.

VloModeUndo called.

VloGetFont called.

VloGetConftg called.

VloSetCp called.

VloGetCp called.

VloSetFont called.

VloGetState called.

VloSetState called.

See Also

Parameter

uiReserved2

usParaml-usParam6

VioSavRedrawUndo 229

Description

Specifies a reserved value that must not be changed.
This value represents the return address of the program
that calls the specified Vlo function.

Specifies up to six values passed with the original call to
the Vlo function. Not all requests include all six param­
eters since not all Vlo functions use six parameters.
The number and type of parameters used depend on
the specific function.

The entry-point function should determine which function is requested and then
carry out an appropriate action by using the passed parameters. The entry-point
function can call a function within the same module to carry out the task. The
entry-point or replacement function must leave the stack in the same state as it
was received. This is required since the return addresses on the stack must be
available in the correct order to return control to the program that originally
called the VioRegister function.

The registered function should return -1 if it wants the original function called,
o if no error occurred, or an error value.

In general, if the function needs to access the display, it must use the input-and­
output control functions for the display. For more information, see Chapter 3,
"Input-and-Output Control Functions."

The VioRegister function itself cannot be replaced.

If a process replaces the VioPopUp function, only the foreground process has
access to the replacement function. Background processes continue to call the
default VioPopUp function.

VioDeRegister, VioPopUp, VioSetCurPos

• VioSavRedrawUndo
USHORT VioSavRedrawUndo(fRelinquish, fTerminate, hvio)
USHORT fRelinquish; /. retain/relinquish ownership flag ./
USHORT fTerminate; /. terminate/continue flag ./
HVIO hvio; I. video handle .1

The VioSavRedrawUndo function cancels a request by a process to be notified
when MS OS/2 switches screen groups. A process requests to be notified by
calling the VioSavRedrawWait function. The request forces the calling thread to
wait until a screen switch occurs. VioSavRedrawUndo cancels the request and
allows the thread to continue (or terminates the thread, if requested to do so).

MS OS/2 permits only one process in a screen group to request screen switch
notification. The first process to make a request owns it. Thereafter, other pro­
cesses must wait for the owning process to relinquish the request before being
given ownership. To force the process to relinquish ownership of the request,
use the VioSavRedrawUndo function.

Only the process that owns the change-mode request can call the VioSav­
RedrawUndo function.

230 VioSavRedrawUndo

Parameters

Return Value

See Also

[Relinquish Specifies whether a process should retain or relinquish owner­
ship of the request. If this parameter is UNDOLGETOWNER, the process
relinquishes ownership and is canceled by this function. If the parameter is
UNDOLRELEASEOWNER, the process retains ownership and can repeat the
request without competing with other processes.

[Terminate Specifies whether to terminate the thread waiting for the mode
change. If this parameter is UNDOILERRORCODE, the thread continues and
receives an error value from the VioSavRedrawWait function. If the parameter
is UNDOILTERMINATE, the thread terminates.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
. space. For A VIa programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIOYUNCTION_OWNED
ERROR_ VIOJNV ALIDJ> ARMS
ERROR-VIO_NO_SA VEJESTORE_THD

VioModeUndo, VioSavRedrawWait

• VioSavRedrawWait
USHO RT VioSavRedrawWait (fEvent, pfNotify, usReserved)
USHORT fEvent; /* event flag */

PUSHORT pfNotify; /* pointer to variable for notify flag */
USHORT us Reserved; /* must be zero */

Parameters

The VioSavRedrawWait function waits for a screen switch to occur. When a
switch occurs, MS OS/2 sets the variable pointed to by the pfNotify parameter to
a value that indicates the type of changes. The thread may then save or restore
the display depending on the value pointed to by the pfNotify parameter. The
thread must also save or restore the complete video mode, the state information,
the registers, and the contents of the physical video buffer.

MS OS/2 permits only one process in a screen group to wait for a screen switch.
The first process to make a request owns it.

The VioSavRedrawWait function is used typically by graphics programs (or text­
mode programs that change the video registers directly) to save and restore the
screen before and after MS OS/2 switches from one screen group to another.
Screen switching often changes the screen mode and video register values. A
thread that calls the VioSavRedrawWait function waits until a screen switch
occurs and is then given control so that it can save or restore the screen.

[Event Specifies the event flag of the event to wait for. If this flag is
VSR WLSA VEANDREDRA W, the function returns when the screen needs
to be either saved or restored. If the flag is VSRWLREDRAW, the function
returns only when the screen needs to be restored.

pfNotify Points to the variable that receives the flag specifying the action to
carry out in response to the given event. If this flag is VSWRN_SA VE, the

Return Value

Comments

See Also

• VioScrLock

VioScrLock 231

thread saves the video buffer, the registers, and the state information. If the flag
is VSWRN-.R,EDRAW, the thread restores the video buffer, the registers, and
the state information.

usReserved Specifies a reserved value. This parameter must be zero.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERR OIL VIOYUNCTION_OWNED
ERROR_ VIOJNVALIDYARMS
ERROIL VIO-.R,ETURN

When an application is notified that it should save its screen image, it saves its
physical video buffer, video mode, and any other information the application
needs in order to redraw its screen.

The thread that calls VioSavRedrawWait should carry out all tasks directly
related to saving and restoring the screen information. Whenever a screen switch
occurs, the thread should save or restore the screen and call VioSavRedrawWait
as quickly as possible. The thread can access the physical video buffer, if neces­
sary, but since the thread may not be the foreground process, it must not use the
VioScrLock function to lock the screen. The thread should not call MS OS/2
functions (neither directly nor indirectly through other functions) that may gen­
erate pop-up screens or error pop-up screens. Doing so may cause MS OS/2 to
lock up (that is, each call of the thread generates a pop-up screen, which in turn
calls the thread and generates another pop-up screen, and so on). You can use
the VioSavRedrawUndo function to end the thread when it is no longer needed.

In some cases, a thread may receive a request to restore the screen before
receiving a request to save the screen. For such requests, the thread must deter­
mine whether the given request is valid.

Programs that need to save and restore the screen after a pop-up screen should
use the VioModeWait function.

VioGetPhysBuf, VioMode Wait, VioSavRedrawUndo

USHORT VioScrLock(fWait, pfNotLocked, hvio)
USHORT fWait; 1* wait/no-wait flag *1
PBYTE pfNotLocked; 1* pointer to variable for status *1
HVIO hvio; 1* video handle *1

The VioScrLock function locks the physical video buffer for a process. While
the buffer is locked,. no other process may lock it. This function is used typically
to coordinate the output of graphics programs so that only one process writes to
the physical video buffer at a time. The function indicates when the screen is
locked by another process and is not available for writing, rather than denying
processes access to the physical video buffer.

Only one process in a screen group may lock the screen. If the screen is already
locked, VioScrLock either waits for the screen to become unlocked or returns
immediately, as determined by the fWait parameter. Processes that lock the
screen should unlock it by using the VioScrUnLock function as soon as they
have completed the output.

232 VioScrLock

Parameters

Return Value

Restrictions

Example

See Also

• VioScrollDn

If a screen-switch request occurs while the screen lock is in effect, the switch is
held for at least thirty seconds. If the process does not unlock the screen before
thirty seconds elapse, MS OS/2 susPends the process and switches the screen.
The suspended process remains in the background until it is switched back to
the foreground.

The VioScrLock function is a family API function.

jWait Specifies the flag that determines whether the process is to wait until the
screen input or output can occur. If this flag is LOCKIO_NOWAIT, the process
returns immediately if the screen is not available. If the flag is LOCKIO_ WAIT,
the process waits for the screen to become available.

pfNo/Locked Points to the variable that receives the flag specifying whether
the screen is locked. If this flag is LOC~SUCCESS, the screen is locked. If
the flag is LOCKY AIL, the screen is not locked.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIOJNVALIDJIANDLE
ERROR-VIOJ.,OCK
ERROR-VIO_ WAITYLAG

In real mode, the following restriction applies to the VioScrLock function:

• The function always indicates that the lock was successful.

This example calls VioScrLock and waits until the screen lock can be performed
(the process is in the foreground):

USHORT fNotLocked;
VioScrLock(LOCKIO_WAIT,

&fNotLocked,
0) ;

VioScrUnLock(O) ;

1* waits until I/O can take place *1
1* variable to receive lock status *1
1* video handle *1

VioGetPhysBuf, VioScrUnLock

USHORT VioScroIlDn(usTopRow, usLeftCol, usBotRow, usRightCol, cbLines, pbCell, hvio)
USHORT usTopRow; 1* top row *1
USHORT usLeftCol; 1* left column *1
USHORT usBotRow; 1* bottom row *1
USHORT usRightCol; 1* right column *1
USHORT cbLines; 1* number of blank lines *1
PBVTE pbCell; 1* pointer to cell to write *1
HVIO hvio; 1* video handle *1

The VioScrollDn function scrolls the current screen downward.

The V.oScrollDn function is a family API function.

Parameters

Return Value

Comments

Example

See Also

VioScrollDn 233

usTopRow Specifies the top row of the screen area to scroll.

usLeftCol Specifies the leftmost column of the screen area to scroll.

usBotRow Specifies the bottom row of the screen area to scroll.

usRightCol Specifies the rightmost column of the screen area to scroll.

cbLines Specifies the number of lines to be inserted at the top of the screen
area being scrolled. If this parameter is zero, no lines are scrolled.

pbCell Points to a character/attribute pair, called a cell, that fills the screen
area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIa) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIa_COL
ERROR_ VIOJNVALIDJIANDLE
ERRO~ VIOJOW

If the usTopRow and usLeftCol parameters are zero, they identify the upper­
left corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbLines, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollDn function to clear the screen by setting usTopRow
and usLeftCol to zero and usBotRow, usRightCol, and cbLines to their maximum
values. The function clears the screen by using the character/attribute pair
pointed to by the pbCell parameter.

This example creates a cell containing the space character (Ox20) and a white
character attribute (OX07 on an EGA color monitor), and calls VioScrollDn to
clear the screen by using this cell. By changing the character attribute, you could
change the background color of the screen while clearing it at the same time
(using the value OxFFFF for usBotRow, usRightCol, and cbLines clears the
screen):

BYTE bCeU [2] ;
bCell[O] = Ox20;
bCell[l] = Ox07;
VioScrollDn(O,

0,
OxFFFF,
OxFFFF,
OxFFFF,
bCell,
0) ;

/* space character
/* white attribute
/* top row
/* left column
/* bottom row
/* right column
/* number of lines
/* cell to write
/* video handle

VioScrollLf, VioScrollRt, VioScrollUp

*/
(EGA) * /

*/
*/
*/
*/
*/
*/
*/

234 VioScrollLf

• VioScrollLf
USHORT VioScrollLf(usTopRow. usLeftCol. usBotRow, usRightCo/! cbColumns! pbCell! hvio)
USHO~T usTopRow; I. top row .1
USHORT usLeftCol; I. left column .1
USHORT uS8otRow; I. bottom row .1
USHORT usRightCol; I. right column .1
U5HORT cbColumns; I. number of blank columns .1
PBYTE pbCell; I. pointer to the cell to write .1
HVIO hvio; I. video handle .1

Parameters

Return Value

Comments

Example

The VioScrollLf function seroUs the current screen toward the left.

The VioScrollLf function is a family API function.

usTopRow Specifies the top row of the screen area to scroll.

usL eft Col Specifies the leftmost column of the screen area to scroll.

usBotRow Specifies the bottom row of the screen area to scroll.

usRightCol Specifies the rightmost column of the screen area to scroll.

cbColumns Specifies the number of columns of spaces to be inserted at the
right. If this parameter is zero, no columns are hiserted.

pbCell Points to a character/attribute pair, called a cell, that fills the screen
area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIa) presentation
space. For A VIa programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIa_COL
ERROR_ VIOJNVALID_HANDLE
ERROR_ VIO_ROW

If the usTopRow and usLeftCol parameters are zero, they identify the upper-
left corner of the screen. If you specify a value greater than th~ maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbColumns, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollLf function to clear the screen by setting usTopRow
and usLeftCol to zero and usBofRow, usRightCol, and cbColumns to their max­
imum values. The function clears the screen by using the character/attribute pair
pointed to by the pbCell parameter.

This example calls VioScrollLf to fill the last ten columns at the right of the
screen with red hearts on a black background (a value of OxFFFF is used for
usBotRow and usRightCol):

See Also

• VioScroliRt

BYTE beell [2] ;
beell [0] = Ox03;
beell [1] = Ox04;
VioScrollL f (0,

0,
OxFFFF,
OxFFFF,
10,
beell,
0) ;

1* heart character *1
1* red attribute (EGA) *1
1* top row *1
1* left column *1
1* bottom row *1
1* right column *1
1* columns *1
1* cell to write *1
1* video handle *1

VioScrollDn, VioScrollRt, VioScrollUp

VioScroliRt 235

USHORT VioScrollRt(usTopRow, usLeftCo/, usBotRow, usRightCo/, cbColumns, pbCell, hvio)
USHORT usTopRow; 1* top row *1
USHORT usLeftCol; 1* left column *1
USHORT usBotRow; 1* bottom row *1
USHORT usRightCol; 1* right column *1
USHORT cbColumns; 1* number of blank columns *1
PBYTE pbCeJl; 1* pointer to cell to write *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

Comments

The VioScrollRt function scrolls the current screen toward the right.

The VioScrollRt function is a family API function.

us TopRow
usLeftCol
usBotRow
usRightCol

Specifies the top row of the screen area to scroll.

Specifies the leftmost column of the screen area to scroll.

Specifies the bottom row of the screen area to scroll.

Specifies the rightmost column of the screen area to scroll.

cbColumns Specifies the number of columns of spaces to be inserted at the
left. If this parameter is zero, no columns are inserted.

pbCell Points to a character/attribute pair, called a cell, that fills the screen
area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERROR_ VIO_INV ALID_HANDLE
ERRO~ VIO~OW

If the usTopRow and usLeftCol parameters are zero, they identify the upper-
left corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbColul1ms, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

236 VioScroliRt

Example

See Also

• VioScroliUp

You can use the VioScrollUp function to clear the screen by setting usTopRow
and usLeftCol to zero and usBotRow, usRightCol, and cbColumns to their max­
imum values. The fl~nction clears the screen by using the character/attribute pair
pointed to by the pbCell parameter.

This example calls VioScrollRt to fill the first ten columns at the left of the
screen with red hearts on a black background (a value of OxFFFF is used for
usBotRow and usRightCol):

BYTE bCell [2] ;
bCell[O] = Ox03;
bCell [1] = Ox04;
VioScrollRt (0,

0,
OxE'E'E'E',
OxE'E'E'E',
10,
beell,
0) ;

1* heart character *1
1* red attribute (EGA) *1
1* top row *1
1* left column *1
1* bottom row *1
1* right column *1
1* columns *1
1* cell to write *1
1* video handle *1

VioScrollDn, VioScrollLf, VioScrollUp

USHORT VioScroIlUp(usTopRow. usLeftCol. usBotRow. usRightCol. cbLines. pbCell. hvio)
USHORT usTopRow; 1* top row *1
USHORT usLeftCol; 1* left column *1
USHORT usBotRow; 1* bottom row *1
USHORT usRightCol; 1* right column *1
USHORT cbLines; 1* number of blank lines *1
PBYTE pbCell; 1* pointer to cell to write *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

The VioScrollUp function scrolls the current screen upward.

The VioScrollUp function is a family API function.

usTopRow Specifies the top row of the screen area to scroll.

usLeftCol Specifies the leftmost column of the screen area to scroll.

usBotRow
usRightCol

Specifies the bottom row of the screen area to scroll.

Specifies the rightmost column of the screen area to scroll.

cbLines Specifies the number of blank lines to insert at the bottom of the
screen area being scrolled. If this parameter is zero, no lines are inserted.

pbCell Points to a character/attribute pair, called a cell, that fills the screen
area left blank by the scrolling.

hvio Identifies an advanced video-input-and-output (A VIa) presentation
space. For A VIa programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

Comments

Example

See Also

• VioScrUnLock

ERROR. VIO_COL
ERROR. VIOJNVALIDJIANDLE
ERROR. VIO-ROW

VioScrUnlock 237

If the usTopRow and usLeftCol parameters are zero, they identify the upper­
left corner of the screen. If you specify a value greater than the maximum for
usTopRow, usLeftCol, usBotRow, usRightCol, or cbLines, the maximum value
for that parameter is used. Maximum values depend upon the dimensions of the
screen being used.

You can use the VioScrollUp function to clear the screen by setting usTopRow
and usLeftCol to zero and usBotRow, usRightCol, and cbLines to their maximum
values. The function clears the screen by using the character/attribute pair
pointed to by the pbCell parameter.

This example calls VioScrollUp to scroll the entire screen up (by using the value
OxFFFF for usBotRow, usRightCol, and cbLines) and to fill the screen area left
blank by the scrolling with spaces on a green background (Ox22 on an EGA
color monitor):

BYTE bCell [2] ;
bCell [0] = Ox20;
bCell [1] = Ox22;
VioScrollUp (0,

0,
OxE'E'E'E',
OxE'E'E'E',
OxE'E'E'E',
bCell,
0) ;

VioSetCurPos(O, 0 0);

/* space character
/* green attribute
/* top row
/* left column
/* bottom row
/* right column
/* number of lines
/* cell to write
/* video handle

VioScrollDn, VioScrollLf, VioScrollRt

*/
(EGA) */

*/
*/
*/
*/
*/
*/
*/

USHORT VioScrUnLock(hvio)
HVIO hvio; /* video handle */

Parameters

Return Value

The VioScrUnLock function unlocks the screen previously locked by the pro­
cess.

The VioScrUnLock function is a family API function.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR. VIOJNVALIDJIANDLE
ERROR. VIO_UNLOCK

238 VioScrUnLock

Example

See Also

• VioSetAnsi

This example calls the VioScrLock function to lock the screen, then calls Vio­
ScrUnLock to unlock the screen:

USHORT fNotLocked;
VioScrLock(LOCKIO_WAIT, &fNotLocked, 0);

VioScrUnLock(O) ;

VioScrLock

USHORT VioSetAnsi(fAnsi, hvio)
USHORT fAnsi; I. ANSI flag .1
HVIO hvio; I. video handle.1

Parameters

Return Value

Example

See Also

The VioSetAnsi function enables or disables processing of ANSI escape
sequences by setting or clearing the ANSI flag, which specifies whether the
VioWrtTTY function processes ANSI escape sequences.

When a screen group is started, ANSI processing is enabled for the screen
group.

fAnsi Specifies the ANSI flag, which determines whether ANSI processing is
enabled or disabled. If this flag is ANSLON, ANSI processing is enabled. If the
flag is ANSLOFF, ANSI processing is disabled.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-VIOJNVALIDJIANDLE

This example displays two identical strings. Before the first string is displayed,
VioSetAnsi disables ANSI processing. As a result, the Vio WrtTTY function dis­
plays the ANSI escape sequences as characters. Before VioWrtTTY displays the
second string, VioSetAnsi enables ANSI processing, and the string is displayed
in inverse video (black characters on a white background):

VioSetAnsi(ANSI_OFF, 0); /* disables ANSI processing */
VioWrtTTY("\33[7mHello World\33[Om\n\r", 21, 0);
VioSetAnsi(ANSI_ON, 0); /* enables ANSI processing */
VioWrtTTY("\33[7mHello World\33[Om\n\r", 21, 0);

VioGetAnsi

VioSetCurPos 239

• VioSetCp
USHORT VioSetCp(usReserved, idCodePage, hvio)
USHORT usReserved; /. must be zero ./
USHORT idCodePage; /. code-page identifier ./
HVIO hvio; /. video handle ./

Parameters

Return Value

Example

See Also

• VioSetCurPos

The VioSetCp function sets the code page for the current screen group. The
code page defines the character set used to display characters on the screen.

usReserved Specifies a reserved value; must be zero.

idCo dePage Specifies the code-page identifier. This parameter can be any
code-page identifier specified in the codepage command line in the config.sys
file. If this parameter is OXOOOO, the function uses the system default code page.
The following are the valid code-page numbers:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIOJ3AD_CP
ERROR_ VIOJNVALIDJIANDLE

This example calls VioSetCp to set the current system code page to the standard
United States code page:

if (VioSetCp(O, /* must be zero */
437, /* code-page identifier */
0» { /* video handle */

VioWrtTTY("Code page not specified in CONFIG.SYS\n\r", 39, 0);

DosSetCp, VioGetCp

USHORT VioSetCurPos(usRow, usColumn, hvio)
USHORT usRow; /. row position ./
USHORT usColumn; /. column position ./

HVIO hvio; /* video handle ./

The VioSetCurPos function sets the screen position of the cursor.

The VioSetCurPos function is a family API function.

240 VioSetCurPos

Parameters

Return Value

Example

See Also

• VioSetCurType

usRow Specifies the row position of the cursor, where zero is the top row.

usColumn Specifies the column position of the cursor. where zero is the left-
most column. A & •

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ VIO_COL
ERRO~ VIOJNVALIDJIANDLE
ERRO~ VIO-ROW

This example calls VioSetCurPos to place the cursor in the first column of the
last row on the screen, and then displays the text "Hello World!":

VioSetCurPos(24, I' cursor row 'I
0, I' cursor column 'I
0) ; I' video handle 'I

VioWrtTTY("Hello Worldl", 12, 0);

VioGetCurPos, VioSetCurType

USHORT VioSetCurType(pvioci. hvio)
PVIOCURSORINFO pvioci; 1* pointer to structure for cursor characteristics *1
HVIO hvio; 1* video handle *1

Parameters

The VioSetCurType function sets the cursor type.

The cursor is a shared resource for all processes in a screen group. If one pro­
cess changes it, it is changed for all processes in the group.

The VioSetCurType function is a family API function.

pvioci Points to the VIOCURSORINFO structure that specifies the character­
istics of the cursor. The VIOCURSORINFO structure has the following form:

typedef struct _VIOCURSORINFO {
USHORT yStart;
USHORT cEnd;
USHORT cx;
USHORT attr;

} VIOCURSORINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

Return Value

Example

See Also

VioSetFont 241

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIOJNVALIDJIANDLE
ERROR-VIO_ WIDTH

This example calls VioSetCurType to set the current cursor type to a block cur­
sor with 14 scan lines:

VIOCURSORINFO vioci;
vioci.yStart = 0; /* beginning scan line for cursor */
vioci.cEnd = 13; /* ending scan line, zero~based */
vioci.cx = 0; /* default width, one character */
vioci.attr = 0; /* normal attribute */
VioSetCurType(&vioci, 0);

VioGetCurType, VioSetCurPos

• VioSetDeviceCeliSize
USHORT VioSetDeviceCellSize (cRows, cColumns, hvps)
SHORT cRows; 1* cell height *1
SHORT cColumns; 1* cell width *1
HVPS hvps; 1* presentation-space handle *1

Parameters

Return Value

See Also

• VioSetFont

The VioSetDeviceCellSize function sets the size of the device character cell.

cRows Specifies the height (in pels) of the character cell.

cColumns Specifies the width (in pels) of the character cell.

hvps Identifies the advanced video-input-and-output (A VIO) presentation
space. This handle must have been created previously by using the VioCreatePS
function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS, VioGetDeviceCellSize

USHORT VioSetFont(pviofi, hvio)
PVIOFONTINFO pviofi; 1* pOinter to structure for display font *1
HVIO hvio; 1* video handle *1

The VioSetFont function sets the font used to display charaCters on the screen.
A font consists of several bitmaps, one for each character in a character set.
The bitmaps define the character shapes. The font must be compatible with the
current screen m.ode; that is, the bitmap size must match the current character­
cell size.

The VioSetFont function resets the current code page. A subsequent call to the
VioGetCp function returns an error value.

Not all display adapters permit the font to be set.

242 VioSetForit

Parameters

Return Value

See Also

• VioSetMode

pvioji Points to the VIOFONTINFO structure that specifies the display font.
The VIOFONTINFO structure has the following form:

typedef struct _VIOFONTINFO {
USHORT cb;
USHORT type;
USHORT cxCell;
tiSHORT cyCell;
ULONG pbData;
USHORT cbData;

} VIOFONTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hVio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-VIOJNV ALIDJ.-ENGTH

VioGetCp, VioGetFont

USHORT VioSetMode(pviomi, hvio)
PVIOMODEINFO pviomi; 1* pointer to structure for screen mode *1
HVIO hvio; 1* video handle *1

Parameters

The VioSetMode function sets the screen mode. The screen mode defines the
display mode (text or graphics), the number of colors being used (2, 4, or 16);
and the width and height of the screen in both character cells and pels. VioSet­
Mode also initializes the cursor position and type, but does not clear the screen.

The VioSetMode function is a family API function.

pviomi Points to the VIOMODEINFO structure that specifies the screen
mode. The VIOMODEINFO structure has the following form.:

typedef struct _VIOMODEINFO {
USHORT cb;
UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;

). VIOMODEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

Return Value

Comments

Example

See Also

• VioSetOrg

VioSetState 243

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_INV ALIDJIANDLE
ERROR_ VIOJNV ALID_LENGTH
ERROR_ VIO.MODE

Not all screen-mode values are valid for all displays.

This example calls the VioGetMode function to retrieve the current display
mode, changes the mode, and calls VioSetMode to enable the new display
mode.

VIOMODEINFO viomi;
viomi.cb = sizeof(viomi);
VioGetMode(&viomi, 0);
if (viomi.vres > 350)

viomi.row = (viomi.row
else

viomi.row = (viomi.row
VioSetMode(&viomi, 0);

VioGetMode, VioSetState

50) ? 25 50;

43) ? 25 43;

/* VGA display */

/* EGA display */

USHORT VioSetOrg(sRow, sColumn, hvps)
SHORT sRow; I. row number of cell .1
SHORT sColumn; I. column number of cell .1
HVPS hvps; I. presentation-space handle .1

Parameters

Return Value

See Also

• VioSetState

The VioSetOrg function sets the origin for an advanced video-input-and-output
(A VIO) presentation space. It moves the specified character cell to the upper­
left corner of the screen.

sRow Specifies the row number of the character cell that is to be the origin.

sColumn Specifies the column number of the character cell that is to be the
origin.

hvps Identifies the A VIO presentation space. This hanqle must have been
created previously by using the VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS, VioGetOrg

USHORT VioSetState(pvoidState, hvio)
PVOID pvoidState; I. pointer to buffer with new state .1
HVIO hvio; I. video handle .1

The VioSetState function sets the palette-register values, the overscan (border)
color, or the blink/background intensity switch.

244 VioSetState

Parameters

Return Value

Example

See Also

pvoidState Points to the structure that contains the request type and the
values toset. The structure type, which depends on the request type specified
in the type fieid oi each structure, is one oi the foiiowing: VIOPALSTATE,
VIOOVERSCAN, or VIOINTENSITY. These structures have the following
forms:

typedef struct _VIOPALSTATE {
USHORT cb;
USHORT type;
USHORT iFirst;
USHORT acolor[l);

} VIOPALSTATE;

typedef struct _VIOOVERSCAN {
USHORT cb;
USHORT type;
USHORT color;

} VIOOVERSCAN;

typedef struct _VIOINTENSITY {
USHORT cb;
USHORT type;
USHORT fs;

} VIOINTENSITY;

Not all request-type values are valid for all screen modes.

For a full description, see Chapter 4, "Types, Macros, Structures."

hvio Identifies an advanced video-input-and-output (A VIa) presentation
space. For A VIa programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value.

This example retrieves the current settings of the palette registers, switches
palette registers #0 and #7, and calls VioSetState to enable the new settings:

BYTE abState[38);
PVIOPALSTATE pviopal;
USHORT usTmp;
pviopal = (PVIOPALSTATE) abState;
pViopal->cb = sizeof(abState);
pviopal->type = 0; /* retrieves palette
pviopal->iFirst = 0; /* first register to
VioGetState(pviopal, 0); /* retrieves current
usTmp = pviopal->acolor[O); /* swaps# 0 and# 7
pviopal->acolor[O) = pviopal->acolor(7);

registers */
retrieve */
settin~s */

*/

pviopal->acolor[7) = usTmp;
VioSetState(pviopal, 0); /* enables new settings */

VioGetState, VioSetMode

VioShowPS 245

• VioShowBuf
USHORT VioShowBuf(offLVB, cbOutput, hvio)
USHORT offLVB; 1* offset into logical video buffer *1
USHORT cbOutput; 1* length *1
HVIO hvio; 1* video handle .;

Parameters

Return Value

Example

See Also

• VioShowPS

The VioShowBuf function updates the physical screen from the logical video
buffer (LVB). You may use the logical video buffer to directly manipulate infor­
mation displayed on the screen.

The VioShowBuf function is a family API function.

offL VB Specifies the offset into the logical video buffer at which the screen
update is to start.

cbOutput Specifies the length (in bytes) of the screen area to update.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIa programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-VIOJNVALIDJIANDLE

This example retrieves the address of the logical video buffer, makes changes to
that buffer, and calls VioShowBuf to update the physical video buffer from the
logical video buffer:

PBYTE pbLVB;
USHORT cbOutput;
VioGetBuf«PULONG) &pbLVB, &cbOutput, 0);

VioShowBuf(O,
cbOutput,
0) ;

/* offset into logical video buffer */
/* length of screen area */
/* video handle */

VioGetBuf, VioGetPhysBuf

USHORT VioShowPS(cRows, cColumns, off, hvps)
SHORT cRows; 1* height of rectangle .;
SHORT cColumns; I. width of rectangle *1
SHORT off; 1* upper-left corner of rectangle *1
HVPS hvps; 1* presentation-space handle *1

The VioShowPS function updates the display by copying all the latest changes in
the specified rectangle to the display.

246 VioShowPS

Parameters

Return Value

See Also

• VioWrtCellStr

cRows Specifies the height (in character cells) of the rectangle to update.

cColumns Specifies the width (in character cells) of the rectangle to update.

off Specifies the position of the upper-left corner of the rectangle to update.
The position is relative to the first character cell in the advanced video-input­
and-output (A VIO) presentation space.

hvps Identifies the A VIO presentation space. This handle must have been
created previously by using the VioCreatePS function.

The return value is zero if the function is successful. Otherwise, it is an error
value.

VioCreatePS

USHORT VioWrtCeIlStr(pchCeIlString, cbCellString, usRow, usColumn, hvio)
PCH pchCellString; /. pointer to cell string ./
USHORT cbCellStringj /. length of string ./
USHORT usRow; /. starting position (row) ./
USHORT usColumn; /. starting position (column) ./
HVIO hvio; /. video handle ./

Parameters

Return Value

The Vio WrtCellStr function writes a cell string to the screen. A cell string is one
or more character/attribute pairs. A character/attribute pair defines the charac­
ter to be written and the character attribute by which it is displayed.

If the string is longer than the current line, the function continues writing it at
the beginning of the next line, but does not write past the end of the screen.

The Vio WrtCell Str function is a family API function.

pchCellString Points to the cell string to write.

cbCellString Specifies the length (in bytes) of the cell string. The length
should be an even number.

usRow Specifies the row at which to start writing the cell string.

usColumn Specifies the column at which to start writing the cell string.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIO_COL
ERROR_ VIOJNVALIDJIANDLE
ERROR-VIO~OW

Example

See Also

• VioWrtCharStr

VioWrtCharStr 247

This example calls the Vio WrtCellStr function to display the string "Hello
World!" using 12 different attributes:

CHAR achCellString [] = "H\le\21 \31 \40\5 \6W\70\10r\111 \13d\141" ;

VioWrtCellStr(achCellString,
sizeof(achCellString) ,
10,
35,
0) ;

/* character/attribute string */
/* length of string */
/* row */
/* column * /
/* video handle */

VioReadCellStr, Vio WrtCharStr, Vio WrtTTY

USHORT VioWrtCharStr(pchString, cbString, usRow, us Column , hvio)
PCH pchString; f. pointer to string to write .f
USHORT cbString; f. length of character string a/

USHORT usRow; f. starting position (row) .f
USHORT usColumn; f. starting position (column) .f
HVIO hvio; f* video handle .f

Parameters

Return Value

Example

See Also

The VioWrtCharStr function writes a character string to the screen. A character
string contains one or more character values, but no attributes. The function
uses the present screen attributes to display the new characters. If the string is
longer than the current line, the function continues writing it at the beginning of
the next line but does not write past the end of the screen.

The VioWrtCharStr function is a family API function.

pchString

cbString

Points to the character string to write.

Specifies the length (in bytes) of the character string.

usRow Specifies the row at which to start writing the string.

usColumn Specifies the column at which to start writing the string.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For AVIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR-VIO_COL
ERROR-VIOJNVALIDJIANDLE
ERROR-VIO.-ROW

This example calls VioWrtCharStr to display the string "Hello World!" on the
screen at Row 12, Column 30:

VioWrtCharStr("Hello Worldl",
12,
12,
30,
0) ;

/* string to display */
/* length of string */
/* row */
/* column */
/* video handle */

VioReadCharStr, VioWrtCharStr, VioWrtTTY

248 VioWrtCharStrAtt

• VioWrtCharStrAtt
USHORT VioWrtCharStrAtt(pchString. cbString. usRow. usColumn. pbAttr. hvio)
PCH pchString; 1* pOinter to string to write *1
USHORT cbString; 1* length of string *1
USHORT usRow; 1* starting position (row) *1
USHORT usColumn; 1* starting position (column) *1
PBYTE pbAttr; 1* pointer to attribute *1
HVIO hvio; 1* video handle *1

Parameters

Return Value

Example

See Also

The VioWrtCharStrAtt function writes a character string to the screen, using the
specified attribute. If the string is longer than the current line, the function con­
tinues writing it at the beginning of the next line but does not write past the end
of the screen.

The VioWrtCharStrAtt function is a family API function.

pchString
cbString

Points to the character string to write.

Specifies the length (in bytes) of the character string.

usRow Specifies the row at which to start writing the string.

usColumn Specifies the column at which to start writing the string.

pbAttr Points to the variable that specifies the attribute to be used for each
character in the string.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROIL VIO_COL
ERROR_ VIOJNVALIDJIANDLE
ERROR_ VIO.-ROW

This example calls VioWrtCharStrAtt to display the string "Hello World!" in the
center of the screen in green characters on a white background (on an EGA
color monitor):

BYTE bhAttr = Ox72; 1* green
VioWrtCharStrAtt("Hello Worldl",

12,
12,
35,
&bhAttr,
0) ;

character, white background *1
1* string to display *1
1* length of string *1
1* row *1
1* column *1
1* address of attribute *1
1* video handle *1

VioWrtCharStr, VioWrtNAttr, VioWrtTTY

VioWrtNCell 249

• VioWrtNAttr
USHORT VioWrtNAttr(pbAttr, cb, usRow, usColumn, hvio)
POYTE pbAttr; 1* pointer to attribute to write *1
USHORT cb; 1* number of times to write *1
USHORT usRow;' 1* starting position (row) *1
USHORT usColumn; 1* starting position (column) *1
HVIO hvio; 1* video handle .1

Parameters

Return Value

Example

See Also

• VioWrtNCell

The Vio WrtNAttr function writes a character attribute to the screen a specified
number of times. If the attribute is repeated more times than can fit on the
current line, the function continues writing it at the beginning of the next line
but does not write past the end of the screen.

The VioWrtNAttr function is a family API function.

pbAttr Points to the variable that specifies the character attribute to write.

cb Specifies the number of times to write the character attribute.

usRow Specifies the row at which to start writing the attribute.

usColumn Specifies the column at which to start writing the attribute.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~ VIO_COL
ERRO~ VIOJNVALIDJIANDLE
ERRO~ VIO~OW

This example calls Vio WrtNAttr to change all the character attributes on the
screen to green letters on a black background (on an EGA color monitor):

BYTE bAttr = Ox02;
VioWrtNAttr(&bAttr,

25 * 80,
0,
0,
0) ;

/* green character, black background */
/* address of attribute */
/* number of times to write attribute */
/* row */
/* column */
/* video handle * /

Vio WrtCharStrAtt, Vio WrtNCell

USHORT VioWrtNCell(pbCell, cb, usRow, usColumn, hvio)
POYTE pbCell; I. pointer to cell to write .1
USHORT cb; 1* number of times to write *1
USHORT usRow; I. starting position (row) *'
USHORT usColumn; 1* starting position (column) *1
HVIO hvio; 1* video handle .1

The VioWrtNCell function writes a cell to the screen a specified number of
times. A cell (also called a character/attribute pair) consists of two unsigned
byte values that specify the character and attribute to be written.

250 VioWrtNCell

Parameters

Return Value

Example

See Also

• VioWrtNChar

If the number of times that a cell is repeated is greater than the screen width,
the Vio WrtNCelI function continues writing the cell at the beginning of the next
Hne but does not write past the end oi the screen.

The Vio WrtNCell function is a family API function.

pbCell Points to the cell to write.

cb Specifies the number of times to write the cell.

usRow Specifies the row at which to start writing the cell.

us Column Specifies the column at which to start writing the cell.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERROR_ VIO_COL
ERROR-VIOJNVALIDJIANDLE
ERROR-VIO~OW

This example calls the Vio WrtNCell function to fill the screen with green capital
letter A's (on an EGA color monitor):

BYTE abCell [2] ;
abCel1 [0] = 'A';
abCell[l] = Ox02;
VioWrtNCell(abCell,

80 * 25,
0,
0,
0) ;

VioWrtNChar

/* character/attribute pair */
/* character (letter A) */
/* attribute (green) */
/* address of attribute */
/* number of cells to write */
/* row * /
/* column */
/* video handle */

USHORT VioWrtNChar(pchChar, cb, usRow, us Column , hvio)
PCH pchChar, 1* pointer to character to write *1
USHORT cb; 1* number of times to write *1
USHORT usRow; 1* starting position (row) *1
USHORT usColumn; 1* starting position (column) *1
HVIO hvio; 1* video handle *1

The Vio WrtNChar function writes a character to the screen a specified number
of times. The function uses the present screen character attribute to display the
new character.

If the character is repeated more times than can fit on the current line, the
Vio WrtNChar function continues writing it at the beginning of the next line but
does not write past the end of the screen.

The Vio WrtNChar function is a family API function.

Parameters

Return Value

Example

See Also

• VioWrtTTY

VioWrtTTY 251

pchChar Points to the character to write.

cb Specifies the number of times to write the character.

usRow Specifies the row at which to start writing the character.

usColumn Specifies the column at which to start writing the character.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handle must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following: .

ERROR-VIO_COL
ERROR-VIOJNVALIDJIANDLE
ERROR-VIO~OW

This example calls the Vio WrtNChar function to fill the screen with capital letter
A's:

VioWrtNChar ("A",
80 * 25,
0,
0,
0) ;

VioWrtNCell

/* address of character */
/* number of characters to write */
/* row */
/* column '" /
/* vi4eo handle */

USHORT VioWrtTTY(pchString. cbString. hvio)
PCH pchString; f* pointer to string to write *f

USHORT cbString; f* length of string *f

HVIO hvio; f* video handle *f

Parameters

Return Value

The VioWrtTTY function writes a character string to the screen, starting at the
current cursor position. This function advances the cursor as it writes each char­
acter, using a default attribute for each character. If the function reaches the
end of the line, it continues writing at the beginning of the next line. If it reaches
the end of the last line on the screen, it scrolls the screen and continues writing
at the begin~ing of a new line.

The VioWrtTTY function is a family API function.

pchString Points to the character string to write~

cbString Specifies the length (in bytes) of the character string.

hvio Identifies an advanced video-input-and-output (A VIO) presentation
space. For A VIO programs, this handl~ must have been created previously using
the VioCreatePS function. For other programs, hvio must be NULL.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be the following:

ERROR-VIOJNVALIDJIANDLE

252 VioWrtTTY

Comments

Example

See Also

For some ASCn values, VioWrtTTY carries out an action rather than displaying
a character. The following list describe~ the action taken when the given ASCII
byte value is in the string:

Value Meaning

Ox08

Ox09

OxOA

OxOD

Ox07

BACKSPACE. Move the cursor left by one position, without
deleting any character that is under the cursor. If the cursor is
at the beginning of the line, take no action.

TAB. Copy spaces from the current cursor position to the next
tab stop. Tab stops are placed at every eighth character posi­
tion on a line.

LINEFEED. Move the cursor down to the next line. The screen
will scroll up one line if the current line is at the bottom of the
screen.

RETURN. Move the cursor to the beginning of the line.

Bell. Generate a beep on the computer's speaker.

If the process has enabled ANSI processing by using the VioSetAnsi function,
Vio WrffTY processes any ANSI escape sequences in the string.

The following example calls VioWrtTTY to write a message to the screen and
beep the computer's speaker:

VioWrtTTY("Fil~ not found\r\n\007". 17. 0);

VioSetCurPos, VioWrtCellStr, VioWrtCharStr

Input-and-Output
Control Functions

Chapter

3

3.1 Introduction.. 255

3.2 Category and Function Codes 255

3.3 Functions.. 259

Chapter 3: Input-and-Output Control Functions 255
~Uit.i!lI~m~!~iftilln~;mii!JRI~t§S~I!Himii~i!\!'~~I!!i¥.iiii\~~I~ltiiiiliru]!i1i.i~Utlif;rsef!Jmi~itfiilm\iii~;mlm~ij!J!;'!lu.~~im'~

3.1 Introduction
This chapter describes the input-and-output control (IOCtl) functions. A pro­
gram can send commands to and retrieve data from a device driver by using the
DosDevIOCtl function. The DosDevIOCtl function sends the specified codes
and data directly to the given device driver, which then carries out the specified
action.

IOCtl functions typically are used to get information about or data from a device
driver that is not available through standard MS OS/2 functions. For example,
IOCtl functions can be used to set the baud rate of a serial port or read input
from a mouse.

3.2 Category and Function Codes
Each IOCtl function has a category and a function code. The category code
defines the type of device to be accessed. MS OS/2 has several predefined
categories. In general, all codes in the range OxOOOO through OxOO7F are reserved
for predefined categories. A device driver may also use additional categories,
but these must be explicitly defined by the device and be in the range OxOOBO
through OxOOFF. The following list shows which devices correspond to the given
categories:

Category Device

OxOOOl Serial-device control

OxOOO3 Screen/pointer-draw control

OXOOO4 Keyboard control

OXOOO5 Printer control

OxOOO6 Light-pen control (Reserved)

OxOOO7 Pointing-device (mouse) control

OXOOO8 Disk/ diskette control

OxOOO9 Physical-disk control

OxOOOA Character-monitor control

OxOOOB General device control

The function code defines the action to carry out, such as reading from or writ­
ing to the device and retrieving or setting the device modes. The number and
meaning of each function code depend on the device driver and the specified
category. Function codes range from OxOOOO through OxOOlF and are combined
with one or more of the following values:

Value

OxOO20

Meaning

Retrieve data or information from the device. If OXOO20
is not part of the code, the function sends data or com­
mands to the device.

256 MS OS/2 Programmer's Reference, Vol. 3
iUii=rJ!iiif~~§ir.iillimiil~m!fiiiiii1i!hfii~it!iii~r~5\\I~_nR~11~!~:ill1IWlfiEI1D1ii_~-;;!mtBiia\1tIi~n

Value Meaning

Ox0040 Pass the command to the device driver. If Ox0040 is not
part of the code, MS OS/2 intercepts the command.

OxOO80 Ignore the command if the device driver does not sup­
port it. If OXOO80 is not part of the code, the function
returns an error code if the command is not supported.

The following table lists the IOCtI functions by category and function codes and
shows the corresponding function name:

Table 3.1 Specific Category and Function Codes

Serial-Device Control

Category, Function

OXOOO1,0X0041

OxOOO1,0x0042

OxOOO1,OxOO44

OXOOO1,0X0045

OXOOO1,0X0046

OxOOO1,0x004B

OXOOO1,0X0047

OXOOO1,0X0048

OXOOO1,OXOO53

OxOOO1,0x0061

OXOOO1,0X0062

OxOOO1,0x0064

OXOOO1,0X0065

OXOOO1,0X0066

OXOOO1,0X0067

OXOOO1,0X0068

OXOOO1,0X0069

OxOOO1,0x006D

OXOOO1,OXOO72

OxOOO1,OxOO73

Function name

ASYNC_SETBAUDRATE

ASYNC_SETLINECTRL

ASYNC_TRANSMITIMM

A SYNC_SETBREAK OFF

ASYNC_SETMODEMCTRL

ASYNC_SETBREAKON

ASYNC_STOPTRANSMIT

ASYNC_STARTTRANSMIT

ASYNC_SETDCBINFO

ASYNC_GETBAUDRATE

ASYNC_GETLINECTRL

A SYNC_GETCOMMSTA TUS

ASYNC_GETLINESTATUS

ASYNC_GETMODEMOUTPUT

ASYNC_GETMODEMINPUT

ASYNC_GETINQUECOUNT

ASYNC_GETOUTQUECOUNT

A SYNC_GETC OMMERR OR

ASYNC_GETCOMMEVENT

ASYNC_GETDCBINFO

Screen/Pointer-Draw Control

Category, Function

OXOOO3, Ox0072

Keyboard Control

Category, Function

OXOOO4,OXOO50

OXOOO4,OXOO51

Function name

PTR_GETPTRDRA W ADDRESS

Function name

KBD_SETTRANSTABLE

KBD_SETINPUTMODE

Chapter 3: Input-and-Output Control Functions 257
j\!BU~_~!iiilmSU!if.!j.iU~l;;\ililli~li§jili~ia;I_~i!\\I\!~!lmmiiB!l!al~iim~lij~lilmmliilft~i~iW~i\limi

Table 3.1 (Continued) Category, Function Function name ---
OxOOO4,OxOO52

OxOOO4,OxOO53

OXOOO4,OXOO54

OXOOO4,OXOO55

OXOOO4,OXOO56

OXOOO4,OXOO57

OxOOO4,OxOO58

OXOOO4,OXOO5C

OxOOO4,OxOO5D

OxOOO4,OxOO5E

OxOOO4,0x0071

OxOOO4,0x0072

OxOOO4,0x0073

OXOOO4.OXOO74

OxOOO4.OxOO75

OXOOO4,OX0076

OXOOO4.OXOO77

OXOOO4,OXOO78

OxOOO4,OxOO79

Printer Control

Category, Function

OxOOO5,Ox0042

OxOOO5,OxOO44

OXOOO5,OX0046

OXOO5,OX0048

OXOOO5.0X0062

OXOOO5.0X0064

OXOOO5.0X0066

OXOOO5.0X0069

OxOOO5,OxOO6A

KBD_SETINTERIMFLAG

KBD_SETSHIFfST ATE

KBD_SETIVP AMATICRATE

KBD_SETFGNDSCREENGRP

KBD_SETSESMGRHOTKEY

KBD_SETFOCUS

KBD_SETKCB

KBD_SETNLS

KBD_CREATE

KBD_DESTROY

KBD_GETINPUTMODE

KBD_GETINTERIMFLAG

KBD_GETSHIFfSTATE

KBD_READCHAR
KBD_PEEKCHAR

KBD_GETSESMGRHOTKEY

KBD_GETKEYBDTVPE

KBD_GETCODEPAGEID

KBD_XLATESCAN

Function name

PRT_SETFRAMECTL

PRT_SETINFINITERETRY

PRT_INITPRINTER

PRT_ACTIVATEFONT

PRT_GETFRAMECTL

PRT_GETINFINITERETRY

PRT_GETPRINTERSTATUS

PRT_QUTRYACTIVEFONT

PRT_ VERIFYFONT

Pointing-Device (Mouse) Control

Category, Function

OxOOO7 ,OxOO50

OxOOO7 • OxOO51

OxOOO7 .OxOO52

OxOOO7 , OxOO53

OxOOO7 , OxOO54

Function name

MOU_ALLOWPTRDRA W

MOU_UPDATEDISPLA YMODE

MOU_SCREENSWITCH

MOU_SETSCALEFACTORS

MOU_SETEVENTMASK

258 MS OS/2 Programmer's Reference, Vol. 3
!j~~i~1i1mni§1jg§m~!miffs~~_;li§YiI~\iil!11~iHI;!Ili~~r.im_niinMHID~!lil_l~~ngilii~IiW,{§!~~tfi!lii1!~ili¥iUMii~ii\

Table 3.1 (Continued) Category, Function Function name
----------~----==============~------------~---------

OxOOO7 ,Ox0Q55

OxOOO7,OxOO56

OXOOO7 ,Ox0Q57

OXOOO7 ,OXOO58

OxOOO7,0x0Q59

OxOOO7 ,OxQ05A

OXOOO7 ,OxOO5B

OxOOO7 , OxOO5C

OxOOO7 ,OxOQ6O

OxOOO7 ,Ox0061

OxOOO7 , Ox0Q62

OXOOO7,0X0063

OXOOO7 , OxOO64

OxOOO7 ,Ox0Q65

OxOOO7,0x0066

OxOOO7 ,Ox0067

OxOOO7 ,Ox0068

OxOOO7,0x0069

Disk/Diskette Control

Category, Function

OxQOO8,OxOOOO

OXOOO8, OxOOOl

OxOOO8,OxOOO2

OXOOO8, OXOOO3

OxOOO8, OXOO20

Ox0Q08,0x0021

OXOOO8,0X0043

OxOOO8,0x0044

OXOOO8,0X0045

OXOOO8,0X0063

OXOOO8,0X0064

OXOOO8, Ox0065

Physical-Disk Control

Category, Function

OxOOO9,OxOOOO

OxOOO9, OxOOOl

MOU_SETHOTKEYBUTTON

MOU_SETPTRSHAPE

MOU_DRA WPTR

MOU_REMOVEPTR

MOU_SETPTRPOS

MOU_SETPROTDRA W ADDRESS

MOU_SETREALDRA W ADDE-ESS

MOU_SETMOUSTATUS

MOU_GETBUTTONCOUNT

MOU_GETMICKEYCOUNT

MOU_GETMOUSTATUS

MOU_READEVENTQUE

MOU_GETQUESTATUS

MOU_GETEVENTMASK

MOU_GE'!.'SCALEFACTORS

MOU_GETPTRPOS

MOU_GETPTRSHAPE

MOU_GETHOTKEYBUTTON

Function name

DSK_LOCKDRIVE

DSK_UNLOCKDRIVE

DSK_REDETERMINEMEDIA

DSK_SETLOGICALMAP

DSK_BLOCKREMOV ABLE

DSK_GETLOGICALMAP

DSK_SETDEVICEPARAMS

DSK_ WRITETRACK

DSK_FORMATVERIFY

pSK_GETDEVICEPARAMS

DSK_READTRACK

PSK_ VERIFYTRACK

Function name

PDSK_LOCKPIiYSDRIVE

PDSK_UNLOCKPHYSDRIVE

Chapter 3: Input-and-Output Cohtrol Functions 259
~nlllil!~~~flftm~.imii!iIf.imlmllD51iI!mii~~iil\!m~~lr_l!i~~iii~iili§!jSiil~.l~tm;miil\ffi!B!!u'~i!§I~\;!liie1~~\~l~m'~

Table 3.1 (Continued) Category, Function Function name ---

3.3 Functions

OxOOO9 ,Ox0044

OxOOO9 ,Ox0063

Oxobo9 ,OxOO64

OxOOO9 ,Ox0065

Character-Monitor Control

Category, Function

OxOOOA,Ox0040

General Device Control

Category, Function

OxOOOB,OxOOOl

OxOOOB,OxOOO2

OxOOOB ,OxOO6O

PDSK_ WRITEPHYSTRACK

PDSILGETPHYSDEVICEPARAMS

PDSK_READPHYSTRACK

PDSK_ VEiuPYPHYSTRACK

Function name

MON_REGISTERMONITOR

Function name

DEV _FLUSHINPUT

DEV _PLUSHOUTPUT

DEV _QUERYMONSUPPORT

This section lists the IOCtl functions in alphabetical order. Each function's sYn­
tax is given and the parameters and return values are described.

260 ASYNC_GETBAUDRATE

• ASYNC_GETBAUDRATE
USHORT DosDevIOCtl(pusBaudRate, OL,Ox0061! Ox0001~ hOevice)
PUSHORT pusBaudRate; /* pointer to variable for baud rate */
HFILE hOe vice; /* device handle */

Parameters

Return Value

See Also

The ASYNC_GETBAUDRATE fUllction retrieves the baud rate for the
specified serial device. The baud rate specifies the number of bits per second
that the serial device transmits or receives.

pusBaudRate Points to the variable that receives the baud rate.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

'the return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, ASYNC_SETBAUDRATE

• ASYNC_GETCOMMERROR
USHORT DosDevlOCtl(pfCommErr, OL, Ox006D, Ox0001, hOevice)
PUSHORT pfCommErr; /* pointer to variable for error */
HFILE hOe vice; /* device handle */

Parameters

Return Value

The ASYNC_GETCOMMERROR function retrieves the communication error
word. After copying the error-word value to the specified variable, the function
clears the error word.

pfCommErr Points to the variable that receives the communication status of
the device. This variable can be a combination of the following values:

Value

R)LQUE_OVERRUN

R)LHARDWARE_OVERRUN

Meaning

Receive-queue overrun. There is no room
in the device-driver receive queue to
put a character read in from the receive
hardware.

Receive-hardware overrun. A character
arrived before the previous character was
completely read. The previous character is
lost.

The hardware detected a parity error.

FRAMING_ERROR The hardware detected a framing error.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful. When an error occurs, the
function returns an error value, and any value copied to the variable pointed to
by the pfCommErr parameter is not valid, and the function does not clear the
error word.

Comments

See Also

ASYNC_GETCOMMEVENT 261

Other than using this function, the only way to clear the communications error
word for a device is to open the device when there are no outstanding open han­
dles for it. For more information, see the ASYNC_SETDCBINFO function
(OXOOO1, OXOO53).

DosOpen, ASYNC_GETCOMMEVENT, ASYNC_GETCOMMSTATUS,
ASYNC_SETDCBINFO

• ASYNC_GETCOMMEVENT
USHORT DosDevIOCtl(pfEvent, OL, Ox0072, Ox0001, hDevice)
PUSHORT pfEvent; I. pOinter to variable for events .j
HFILE hDevice; 1* device handle .1

Parameters

Return Value

Comments

See Also

The ASYNC_GETCOMMEVENT function retrieves the communications event
flags from the internally maintained event word. After the function copies the
event flags to the specified variable, it clears the event word.

pfEvent Points to the variable that receives the event flags. This variable can
be a combination of the following values:

Value

CHAR_RECEIVED

CTS_CHANGED

DSR_CHANGED

DCD_CHANGED

BREAK_DETECTED

ERROR_OCCURRED

RLDETECTED

Meaning

A character has been read from the serial-device
receive hardware and placed in the receive queue.

The last character in the device-driver transmit
queue has been sent to the serial-device transmit
hardware. This does not mean there is no data to
send in any outstanding write requests.

The clear-to-send (CTS) signal has changed state.

The data-set-ready (DSR) signal has changed state.

The data-carrier-detect (DCD) signal has changed
state.

A break has been detected.

A parity. framing, or overrun error has occurred.
An overrun can be a receive hardware overrun or a
receive queue overrun.

The trailing edge of the ring indicator (RI) has
been detected.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

This function clears the event word only when it is successful. The event word
remains unchanged until the device is fully closed (there are no outstanding open
handles) and then reopened.

DosOpen, ASYNC_GETCOMMSTATUS, ASYNC_GETCOMMERROR

262 ASYNC_GETCOMMSTATUS •

• ASYNC_GETCOMMSTATUS
USHORT DosDevIOCtl(pbStatus~ OL~ Ox0064~ Ox0001~ hDevice)
PBYTE pbStatus; 1* pOinter to variable for status *1
HFILE hDevice; 1* device handle *1

Parameters

The ASYNC_GETCOMMSTATUS function retrieves the communication
status of the specified device.

pbStatus Points to the variable that receives the communication status. This
variable can be a combination of the following values:

Value Meaning

Transmission is waiting for the dear­
to-send (CTS) signal to be turned
on. For a full description, see the
ASYNC_SETDCBINFO function
(OxOOOl, OXOO53).

Transmission is waiting for the data­
set-ready (DSR) signal to be turned
on. For a full description, see the
ASYNC_SETDCBINFO function
(OxOOOl, OXOO53).

Transmission is waiting for the data­
carrier-detected (DCD) signal to be
turned on. For a full description, see
the ASYNC_SETDCBINFO function
(OxOOOl, OXOO53).

Transmission is waiting because the
XOFF character is received. For a full
description, see the following "Com­
ments" section.

T~ WAITING_TO_SEND_XON Transmission is waiting because the
XOFF character is transmitted. For a
full description, see the following
"Comments" section.

T~ W AITING_ WHILE_BREAK_ON Transmission is waiting because a
break is being transmitted. For
a full description, see the
ASYNC_SETBREAKON
function (OXOOO1, OxOO4B).

T~ W AITING_TO_SENDJMM Character is waiting to transmit
immediately. For a full description,
see the ASYNC_TRANSMITIMM
function (OxooOl, Ox0044).

R~ W AITING_FOR_DSR Receive state is waiting for the data­
set-ready (DSR) signal to be turned
on. For a full description, see the
ASYNC_SETDCBINFO function
(OxOOOl, OxOO53).

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

Return Value

Comments

See Also

ASYNC_GETDCBINFO 263

The return value is zero if the function is successful or an error value if an error
occurs.

Transmit status indicates why transmission is not occurring, regardless of
whether or not there is data to transmit. However, the device driver must be
enabled for the given condition (for example, enabled for output handshaking
for the modem-control signal) for the status to reflect that the device driver is
waiting for the given condition to transmit.

For example, T}C WAITINGYOILCTS means that the device driver puts
receive characters in the device-driver receive queue, the device driver is not
waiting to transmit a character immediately, and characters from the device­
driver transmit queue are not transmitted because the clear-to-send (CTS) signal
for output handshaking is used and CTS does not have the proper value.

The communication status can include T}CWAITING_TO_SEND.-XON if the
device driver is enabled for automatic transmit flow control (XON/XOFF) or
if the ASYNC_STOPTRANSMIT function (OxOOOl, OXOO47) has been used
to tell the device driver to function as if an XOFF character is received. The
ASYNC_TRANSMITIMM function (OXOOO1, OXOO44) can still be used to
transmit characters immediately. The device driver can still automatically
transmit XON and XOFF characters due to automatic receive flow control
(XON/XOFF) when the device driver is in this state.

The communication status can include T}C WAITINGYOR_XON if the device
driver is enabled for automatic receive flow control. When in this state, the
ASYNC_TRANSMITIMM function (OxOOO1, OXOO44) can still be used to
transmit characters immediately, and the device driver can still automatically
transmit XON characters.

DosOpen, ASYNC_GETCOMMEVENT, ASYNC_GETLINESTATUS,
ASYNC_SETDCBINFO, ASYNC_STAR TIRANSMIT,
ASYNC_STOPTRANSMIT, ASYNC_TRANSMITIIMM

• ASYNC_GETDCBINFO
USHORT DosDevIOCtl(pusDCB, OL, Ox0073, Ox0001, hDevice)
PUSHORT pusDCB; I. pointer to structure for device-control information .1
HFILE hDevice;

Parameters

I. device handle

The ASYNC_GETDCBINFO function retrieves device-control block informa­
tion.

pusDCB Points to the DCBINFO structure that receives the device-control
block information. The DCBINFO structure has the following form:

typedef struct _DCBINFO {
USHORT usWriteTimeout;
USHORT usReadTimeout;
BYTE bFlagsl
BYTE bFlags2
BYTE bFlags3
BYTE bErrorReplacementChar;
BYTE bBreakReplacementChar;
BYTE bXONChar;
BYTE bXOFFChar;

} DCBINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

264 ASYNC_GETDCBINFO

Return Value

Comments

See Also

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful. When an error occurs, the
function returns an error value, and any data copied to the DCBINFO structure
pointed to by the pusDCB parameter is not valid.

To ensure that only valid values are set in the device-control block, the program
should call the ASYNC_GETDCBINFO function to fill the block, and then
modify the settings and call the ASYNC_SETDCBINFO function with the
modified block.

DosOpen, ASYNC_SETDCBINFO

• ASYNC GETINQUECOUNT
USHORT DosDevIOCtl(pcReceiveQue, OL, Ox0068, Ox0001, hDevice)
PUSHORT pcReceiveQue; 1* pOinter to structure for character count *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

Comments

See Also

The ASYNC_GETINQUECOUNT function retrieves the number of characters
in the receive queue.

pcReceiveQue Points to the RXQUEUE structure that receives the count of
characters in the receive queue. The RXQUEUE structure has the following
form:

typedef struct _RXQUEUE {
USHORT cbChars;
USHORT cbQueue;

} RXQUEUE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The device-driver receive queue is a memory buffer between the memory pointed
to by the read-request packet and the receive hardware for this serial device.
The application may not assume that there are no unsatisfied read requests if
there are characters in the device-driver receive queue. The behavior of data
movement between the read request and the receive queue may change from
release to release of the device driver. Programs should not be written to have a
dependency on this information.

Programs should be written to be independent of the receive queue being a fixed
size. The information in this field allows the application to get the size of the
receive queue. The current size of the receive queue is approximately lK but is
subject to change.

The application should be written to avoid device-driver receive queue overruns
by using an application-to-application block protocol with the system the applica­
tion is communicating with.

DosOpen, ASYNC_GETOUTQUECOUNT

ASV~C_GETLINESTATUS 265

• ASYNC_GETLINECTRL
USHORT DosDevIOCtl(pbLineCtrl. OL. Ox0062. Ox0001. hDevice)
PBYTE pbLineCtrl; I. pOinter to structure for control settings .1
HFILE hDevice: I. device handle .1

Parameters

Return Value

See Also

The ASYNC_GETLINECTRL function retrieves the line characteristics (stop
bits, parity, data bits, break) for the specified device.

pbLineCtrl Points to a LINECONTROL structure that receives the settings for
the ,number of data bits, parity, and number of stop bits. The LINECONTROL
structure has the following form:

typedef struct _LINECONTROL {
BYTE bDataBlts;
BYTE bParlty;
BYTE bStopBlts;
BYTE fbTransBreak;

} LINECONTROL;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, ASYNC_SETLINECTRL

• ASYNC_GETLINESTATUS
USHORT DosDevIOCtl(pbTransStatus. OL. Ox0065. Ox0001. hDevice)
PBYTE pbTransStatus: I. pointer to variable for status.1
HFILE hDevice: I. device handle .1

Parameters

The ASYNC_GETLINESTATUS function retrieves the data-transmission status
for the specified serial device.

pb TransStatus Points to the variable that receives the data-transmission
status. This variable can be a combination of the following values:

Value

WRITE_REQUEST_QUEUED

HARDW ARE_TRANSMITTING

Meaning

Write-request packets in progress or
queued.

Data in the device-driver transmit
queue.

Transmit hardware currently transmit­
ting data.

Character waiting to be transmitted
immediately.

266 ASYNC_GETLINESTATUS

Return Value

See Also

Value

liT A t'T'T1I..Tr!. 'T'A ~D1I..T-n. VA1I..T
yy C'),..I..I..J.~''-'_.l '-J_~.1....4~'L.J_..n..V~'

Meaning

Waiting to automatically transmit
XON.

Waiting to automatically transmit
XOFF.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, ASYNC_GETCOMMSTATUS

• ASYNC_GETMODEMINPUT
USHORT DosDevIOCtl(pbCtrISignals, Ol, Ox0067, Ox0001, hDevice)
PBYTE pbCtrlSignals; /* pOinter to variable for control Signals */
HFllE hDevice;

Parameters

Return Value

See Also

/* device handle

The ASYNC_GETMODEMINPUT function retrieves the modem-control input
signals for the specified device.

pbCtrlSignals Points to the variable that receives the modem-control signals.
This variable can be a combination of the following values:

Value Meaning

Clear-to-send (CTS) signal is on. If not given, .the signal is off.

Data;'set-ready (DSR) signal is on. If not given, the signal is
off.

Ring-indicator (RI) signal is on. If not given, the signal is off.

Data-carrier-detect (DCD) signal is on. If not given, the signal
is off.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, ASYNC_GETMODEMOUTPUT, ASYNC_SETMODEMCTRL

• ASYNC_GETMODEMOUTPUT
USHORT DosDevIOCtl(pbCtrISignals, ()l, Ox0066, Ox0001, hDevice)
PBYTE pbCtrlSignals; /* pointer to variable for control signals ./
HFllE hDevice; /* device handle */

The ASYNC_GETMODEMOUTPUT function retrieves the modem-control out­
put signals for the specified device.

Parameters

Return Value

See Also

ASYNC_GETOUTQUECOUNT 267

pbCtrlSignaIs Points to the variable that receives the modem-control signals.
This variable can be one or both of the following values:

Value Meaning

Data-terminal-ready (DTR) signal is on. If not given, the signal
is off.

Request-to-send (RTS) signal is on. If not given, the signal is
off.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, ASYNC_GETMODEMINPUT, ASYNC_SETMODEMCTRL

• ASYNC_GETOUTQUECOUNT
USHORT DosDevIOCtl(pcTransmitQue, OL, Ox0069, Ox0001, hOevice)
PUSHORT pcTransmitQue; 1* pointer to structure for character count *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

Comments

See Also

The ASYNC_GETOUTQUECOUNT function retrieves a count of characters in
the transmit queue.

pc TransmitQue Points to the RXQUEUE structure that receives the count of
characters in the transmit queue. The RXQUEUE structure has the following
form:

typedef struct _RXQUEUE {
USHORT cbChars;
USHORT cbQueue;

} RXQUEUE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The device-driver transmit queue is a memory buffer between the memory
pointed to by the write-request packet and the transmit hardware for this serial
device. If the transmit queue is empty, the program may not assume that all
write requests are completed or that no write requests are outstanding. The
behavior of data movement between the write request and the transmit queue
may change from release to release of the device driver. Programs should not be
written to have a dependency on this information.

Programs should be written to be independent of the transmit queue being a
fixed size. The information in this field allows the application to get the size of
the transmit queue. The current size of the transmit queue is approximately 128
bytes but is subject to change.

DosOpen, ASYNC_GETINQUECOUNT

268 ASYNC_SETBAUDRATE

• ASYNC_SETBAUDRATE
USHORT DosDevIOCtl(OL~ pusBitRate! Ox0041, Ox0001; hDt:Jv;ce)
PUSHORT pusBitRatej I. pointer to variable with baud rate .1
HFILE hDevicej I. device handle .1

Parameters

Return Value

Comments

See Also

The ASYNC_SETBAUDRATE function sets the baud rate for the specified
serial device. The baud rate specifies the number of bits per second that the
serial device transmits or receives.

pusBitRate Points to the variable that contains the baud rate. This parameter
can be anyone of the following values: 110, 150, 300, 600, 1200, 2400, 4800,
9600, or 19200.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if the
specified baud rate is out of range or an error occurs.

The initial rate for a serial device is 1200 baud. Once the rate is set, it remains
unchanged until set again, even if the device is closed and then reopened.

DosOpen, ASYNC_GETBAUDRATE

• ASYNC_SETBREAKOFF
USHORT DosDevIOCtl(pfCommErr, OL, Ox0045, Ox0001, hDevice)
PUSHORT pfCommErr, I. pointer to variable for error value *'
HFILE hDev;ce; I. device handle .1

Parameters

The ASYNC_SETBREAKOFF function turns off the break character. The
device driver stops generating a break signal. It is not considered an error if the
device driver is not generating a break signal. The device driver then resumes
transmitting characters, taking into account all the other reasons why it· mayor
may not transmit characters.

pfCommErr Points to the variable that receives the communication status of
the device. This variable can be a combination of the following values:

Value

RJLQUE_OVERRUN

RJLHARDWARE_OVERRUN

PARITY_ERROR

FRAMINGj3RROR

Meaning

Receive queue overrun. There is no room
in the device-driver receive queue to
put a character read in from the receive
hardware.

Receive hardware overrun. A character
arrived before the previous character was
completely read. The previous character is
lost.

The hardware detected a parity error.

The hardware detected a framing error.

The function sets the variable to zero if it encounters an error.

Return Value

See Also

ASYNC_SETBREAKON 269

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, ASYNC_SETBREAKON

• ASVNC_SETBREAKON
USHORT DosDevIOCtl(pfCommErr, OL, Ox004B, Ox0001, hDevice)
PUSHORT pfCommErr, /* pointer to variable for error value */
HFILE hDevice; /* device handle */

Parameters

Return Value

Comments

See Also

The ASYNC_SETBREAKON function turns on the break character. The
device driver generates the break signal immediately. It is not considered an
error if the device driver is already generating a break signal. The device driver
does not wait for the transmit hardware to become empty. However, more data
will not be given to the transmit hardware until the break is turned off. The
break signal will always be transmitted, regardless of whether the device driver is
or is not transmitting characters due to other reasons.

pfCommErr Points to the variable that receives the communication status of
the device. This variable can be a combination of the following values:

Value

RX-QUE_OVERRUN

RX-HARDWARE_OVERRUN

PARITY_ERROR

FRAMING_ERROR

Meaning

Receive queue overrun. There is no room
in the device-driver receive queue to
put a character read in from the receive
hardware.

Receive hardware overrun. A character
arrived before the previous character was
completely read. The previous character is
lost.

The hardware detected a parity error.

The hardware detected a framing error.

The function sets the variable to zero if it encounters an error.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

Closing the device turns off the break character if there are no outstanding open
device handles.

DosOpen, ASYNC_SETBREAKOFF

270 ASYNC_SETDCBINFO

• ASYNC_SETDCBINFO
USHORT DosDevIOCtl(OL. pusOCB. Ox0053~ Ox0001~ hOevice)
PUSHORT pusOCB; I. pointer to structure with device-control information .1
HFILE hOe vice; I. device handle *'

Parameters

Return Value

Comments

See Also

The ASYNC_SETDCBINFO function sets device-control block information.

pusDCB Points to the DCBINFO structure that receives the device-control
block information. The DCBINFO structure has the following form:

typedef struct _DCBINFO {
USHORT usWriteTimeout;
USHORT usReadTimeout;
BYTE bFlagsl
BYTE bFlags2
BYTE bFlags3
BYTE bErrorReplacementChar;
BYTE bBreakReplacementChar;
BYTE bXONChar;
BYTE bXOFFChar;

} DCBINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful. When an error occurs, the
function returns an error value, and the device-control block characteristics of
the device driver for this serial device remain unchanged.

A program can prevent making unwanted changes to device modes by calling
the ASYNC_GETDCBINFO function (OxOOO1,OxOO73) to retrieve a copy of the
current DCB. The program can then modify only those fields it needs to and
use the modified DCB with the ASYNC_SETDCBINFO function.

DosOpen, ASYNC_GETDCBINFO

• ASYNC_SETLINECTRL
USHORT DosDevIOCtl(OL. pbLineCtrl. Ox0042. Ox0001. hOevice)
PBYTE pbLineCtrl; I. pointer to structure with line settings *1
HFILE hDevice; I. device handle *1

Parameters

The ASYNC_SETLINECTRL function sets the line characteristics (stop bits,
parity, and data bits) for the specified serial device.

pbLineCtrl Points to the LINECONTROL structure that contains the
settings for the number of data bits, parity, and number of stop bits. The
LINECONTROL structure has the following form:

typedef struct _LINECONTROL {
BYTE bDataBits;
BYTE bParity;
BYTE bStopBits;
BYTE fbTransBreak;

} LINECONTROL;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Comments

See Also

ASYNC_SETMODEMCTRL 271

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if any of
the specified line characteristics is out of range. When an error occurs, line
characteristics remain unchanged.

When a device is first opened, the initial line characteristics are 7 data bits,
even parity, and 1 stop bit. After line characteristics are changed, they remain
changed until the function is used again, even if the device is closed and
reopened.

If the number of data bits is less than 8, the device driver fills with zeros the
unused high-order bits of each character it receives from the device; the device
driver ignores the unused high-order bits of characters it receives from the pro­
gram. Therefore, if the number of data bits is 7 but the XOFF character is Ox80,
the device driver does not recognize the XOFF character even when automatic­
transmission control is enabled. If the error substitution character is Ox80, the
device driver still places Ox80 in the receive queue. Programs must see that these
characters match the specified data size. Any characters that were in the receive
queue before the function is called remain unchanged.

DosOpen, ASYNC_GETLINECTRL

• ASYNC_SETMODEMCTRL
USHORT DosDevlOCtl(pfCommErr, pbCtrlSigna/s, Ox0046, Ox0001, hDevice)
PUSHORT pfCommErr; 1* pointer to variable for error value 4
PBYTE pbCtrlSigna/s; 1* pointer to structure with control signals *1
HFILE hDevice; 1* device handle 4

Parameters

The ASYNC_SETMODEMCTRL function sets the modem-control signals. This
function turns on or off the data-terminal-ready (DTR) and ready-to-transmit
(RTS) signals (initially, the DTR and RTS signals are turned off).

pfCommErr Points to the variable that receives the communication status of
the device. This variable can be a combination of the following values:

Value

RX-QUE_OVERRUN

RX-HARDWARE_OVERRUN

PARITY_ERROR

FRAMING_ERROR

Meaning

Receive queue overrun. There is no room
in the device driver receive queue to
put a character read in from the receive
hardware.

Receive hardware overrun. A character
arrived before the previous character was
completely read. The previous character is
lost.

The hardware detected a parity error.

The hardware detected a framing error.

The fUllction sets the variable to zero if it encounters an error.

272 ASYNC_SETMODEMCTRL

Return Value

Comments

See Also

pbCtrlSignals Points to the MODEMSTATUS structure that contains the set­
tings for the modem-control signals. The MODEMSTATUS structure has the fol­
iowing form:

typedef struct _MODEMSTATUS {
BYTE fbModemOn;
BYTE fbModemOff;

} MODEMSTATUS;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if the
specified signal settings are invalid. When an error occurs, the signal settings
remain unchanged.

This function must not be used to enable or disable the DTR or RTS signal if
the signal is being used for input handshaking or toggling on transmit. Any
attempt to do so will cause a "general failure" error.

Although the function copies the communication error status to the variable
pointed to by the pfCommErr parameter, it does not clear the error.

If the serial device is opened after having been closed, the DTR and RTS signals
are set to the values specified by the DTR control mode and the RTS control
mode, respectively. For a full description, see the ASYNC_SETDCBINFO
function (OxOOO1,OxOO53).

After a serial device has been closed, the device driver turns off the DTR and
RTS signals, but only after the device has transmitted all data and has waited for
at least as long as it would take to transmit 10 additional characters.

DosOpen, ASYNC_GETMODEMINPUT, ASYNC_GETMODEMOUTPUT

• ASVNC_STARTTRANSMIT
USHORT DosDevlOCtl (OL, OL, Ox0048, Ox0001, hDevice)
HFILE hDev;ce; 1* device handle *1

Parameters

Return Value

The ASYNC_STARTTRANSMIT function starts transmission. This function
allows data transmission to be resumed by the device driver if data transmission
is halted due to the ASYNC_STOPTRANSMIT function (OxOOO1,0x0047) or due
to an XOFF character being received while the device driver is in automatic
transmit flow control mode. This function is similar to the device receiving the
XON character.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created preyiously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

Comments

See Also

ASYNC_ TRANSMITIMM 273

There may be other reasons why transmission is disabled; transmission may
not be resumed. For more information, see the ASYNC_GETCOMMSTATUS
function (OxOOO1,0x0064).

DosOpen, ASYNC_GETCOMMSTATUS, ASYNC_STOPTRANSMIT

• ASYNC_STOPTRANSMIT
USHORT DosDevIOCtl(9L. OL. Ox0047, Ox0001. hDevice)
HFILE hDevice; 1* device handle *1

Parameters

Return Value

Comments

See Also·

The ASYNC_STOPTRANSMIT function stops the device from transmitting.
This function stops data transmission by preventing the device driver from send­
ing additional data to the transmit hardware. This function is similar to the
device receiving the XOFF character.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

If automatic-transmission control is enabled, this request causes the device
driver to behave exactly as if it received the XOFF character. Transmission
can be resumed if an XON character is received by the· device driver, if an
ASYNC_STARTTRANSMIT (OxOOO1,OxOO48) function is received, or if the
device driver is told to disable automatic-transmission control and in the previ­
ous state automatic-transmission control was enabled.

If automatic-transmission control is disabled, the ASYNC_STARTTRANSMIT
function (OxOOO1,OxOO48) must be called for transmission to resume. If, after this
request is received, the device driver is told to enable automatic-transmission
control, transmission is still disabled. It can be re-enabled by any of the
scenarios discussed above.

There still may be other reasons why transmission may be disabled. For more.
information, see the ASYNC_GETCOMMSTATUS function (OXOOO1,0X0064).

DosOpen, ASYNC_GETCOMMSTATUS, ASYNC_STARTTRANSMIT

• ASYNC_TRANSMITIMM
USHORT DosDevIOCtl(OL. pbChar. Ox0044; Ox0001. hDevice)
PBYTE pbChar, 1* pOinter to character *1
FILE hDevice; 1* device handle *1

Parameters

Return Value

The ASYNC_TRANSMITIMM function transmits the specified byte immedi­
ately.

pbChar Points to the character to be transmitted.

hDevice Identifies the serial device that receives the device-control function.
The handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

274 ASYNC_TRANSMITIMM

Comments

See Also

The device driver queues the character as the next character to be transmitted
even if there are already characters in the transmit queue.

If automatic-receiving control is enabled, an XON or XOFF character may be
transmitted before the requested character.

The function always returns before the character is actually transmitted.

If a character is already waiting to be transmitted immediately, the function
returns an error. The ASYNC_GETCOMMSTATUS function (OxOOOl,0x0064)
can be used to determine whether a character is currently waiting to be transIllit­
ted immediately.

The device driver will not immediately transmit the character that is waitirig to
be transmitted immediately if the device driver is not transmitting characters due
to modem-control signal-output handshaking or if the device driver is currently
transmitting a break.

If the device driver is not transmitting characters due to automatic transmission
or receiving control (XON/XOFF) being enabled or due to operating as if an
XOFF character had been received, the device driver still transmits a character
that is waiting to be transmitted immediately due to this request. An application
that requests that the device driver transmit a character immediately if automatic
transmission or receiving control is enabled may cause unexpected results to
happen to the communications line flow control protocol.

This function is generally used to manually send XON and XOFF characters.

The character waiting to be transmitted immediately is not considered part of
the device driver transmit queue and is not flushed due to a flush request.
XON/XOFF characters that are automatically transmitted due to automatic­
receiving control mayor may not be placed ahead of the character waiting to be
transmitted immediately. Applications should not be dependent on this ordering.

DosOpen, ASYNC_GETCOMMSTATUS

• DEV_FLUSHINPUT
USHORT DosDevIOCtl(OL, pbCommand, Ox0001, OxOOOB, hDevice)
PBVTE pbCommand; 1* pointer to variable with command *'
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The DEV _FLUSHINPUT function flushes the input buffer.

pbComlnand Points to the variable that contains a reserved value. This value
must be zero.

hDevice Identifies the device that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DEV YLUSHOUTPUT

DSK_BLOCKREMOVABLE 275

• DEV_FLUSHOUTPUT
USHORT DosDevIOCtl(OL, pbCommand, Ox0002, OxOOOB, hDevice)
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hDevice; 1* device handle • *1

Parameters

Return Value

See Also

The DEV YLUSHOUTPUT function flushes the output buffer.

pbCommand Points to the variable that contains a reserved value. This value
must be zero.

hDevice Identifies the device that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DEVYLUSHINPUT

• DEV_QUERYMONSUPPORT
USHORT DosDevIOCtl(OL, pbCommand, Ox0060, OxOOOB, hDevice)
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The DEV _QUERYMONSUPPORT function queries a device driver for monitor
support.

pbCommand Points to the variable that contains a reserved value. This value
must be zero.

hDevice Identifies the device that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the device supports character monitors or an error
value if an error occurs.

DosOpen

• DSILBLOCKREMOVABLE
USHORT DosDevIOCtl(pfNonRemovable, pbCommand, Ox0020, Ox0008, hDevice)
PBYTE pfNonRemovable; 1* pointer to removable/nonremovable flag *1
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hDevice; 1* device handle .;

Parameters

The DSKJ3LOCKREMOV ABLE function indicates whether the block device is
removable.

pfNonRemovable Points to the variable that receives the medium type. This
variable is OXOOOO if the medium is removable or OxOOOl if it is nonremovable.

pbComlnand Points to the variable that contains a reserved value. This value
must be zero.

276 DSILBLOCKREMOVABLE

Return Value

See Also

hDevice Identifies the disk-drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs. •

DosOpen

• DSILFORMATVERIFY
USHORT DosDevIOCtl(OL, pbCommand, Ox0045, Ox0008, hDevice)
PBYTE pbCommand; I. pointer to structure with command */
HFILE hDevice; I. device handle */

Parameters

Return Value

Comments

See Also

The DSICFORMATVERIFY function formats and verifies a track on a disk
drive according to the information passed in the format table. The format table
is passed to the controller and the controller performs whatever operations are
necessary for formatting.

pbCommand Points to the TRACKFORMAT structure that contains informa­
tion about the format operation. The TRACKFORMAT structure has the follow­
ing form:

typedef struct _TRACKFORMAT {
BYTE bCommand;
USHORT head;
USHORT cylinder;
USHORT reserved;
USHORT cSectors;
struct {

BYTE bCylinder;
BYTE bHead;
BYTE idSector;
BYTE bBytesSector;

} FormatTable[l];
} TRACKFORMAT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the disk-drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

Some controllers do not support formatting tracks with varying sector sizes. The
program must make sure that the sector sizes specified in the format table are all
the same.

DosOpen

DSILGETLOGICALMAP 277

• DSILGETDEVICEPARAMS
USHORT DosDeviOCtl(pbBPB, pbCommand, Ox0063, Ox0008, hDevice)
PBYTE pbBPB; 1* pointer to structure for BIOS parameter blocks *1
PBYTE pbCommand; 1* pointer to variable with command *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The DSILGETDEVICEP ARAMS function retrieves the device parameters for
an MS OS/2 block device. The device driver maintains two BIOS parameter
blocks (BPB) for each disk drive. One block corresponds to the medium
currently in the disk drive. The other is a recommended BPB, based on the type
of medium that corresponds to the physical device. For example, a high-density
disk drive has a BPB for a 96 tracks-per-inch (tpi) floppy disk; a low-density disk
drive has a BPB for a 48-tpi floppy disk.

pbBPB Points to the BIOSPARAMETERBLOCK structure that receives the
BPB. The BIOSPARAMETERBLOCK structure has the following form:

typedef struct _BIOSPARAMETERBLOCK {
USHORT usBytesPerSector;
BYTE bSectorsPerCluster;
USHORT usReservedSectors;
BYTE cFATs;
USHORT cRootEntries;
USHORT cSectors;
BYTE bMedia;
USHORT usSectorsPerFAT;
USHORT usSectorsPerTrack;
USHORT cHeads;
ULONG cHiddenSectors;
ULONG cLargeSectors;
USHORT cCylinders;
BYTE bDeviceType;
USHORT fDeviceAttr;

} BIOSPARAMETERBLOCK;

For a full description, see Chapter 4, "Types, Macros, Structures."

pbCommand Points to the variable that specifies which BPB to retrieve. If
the variable is OXOOOO, the function retrieves the recommended BPB for the drive
(the BPB for the physical device). If the variable is OxOOOl, the function retrieves
the BPB for the medium currently in the drive.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DSK_SETDEVICEP ARAMS

• DSILGETLOGICALMAP
USHORT DosDevlOCtl(pbDrive, pbCommand, Ox0021, Ox0008, hDevice)
PBYTE pbDrive; 1* pointer to variable for drive number *1
PBYTE pbCommand; 1* pointer to variable with command *1
HFILE hDevice; 1* device handle *1

The DSILGETLOGICALMAP function retrieves the mapping of a logical
drive.

278 DSILGETLOGICALMAP

Parameters

Return Value

See Also

pbDrive Points to the variable that receives the logical-drive number. This can
be 1 for drive A, 2 for drive B, and so on. The function sets the variable to zero
if only one logical drive is mapped to the physical drive.

pbCommand Points to a variable that contains a reserved value. The value
must be zero.

hDevice Identifies the physical device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen func­
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, SETLOGICALMAP

• DSK.LOCKDRIVE
USHORT DosDevIOCtl(OL. pbCommand. OxOOOO. Ox0008. hDevice)
PBYTE pbCommand; I. pointer to variable with command .1
HFILE hDevice; I. device handle .1

Parameters

Return Value

See Also

The DSICLOCKDRlVE function locks a disk drive, preventing file I/O by
another process on the volume in the disk drive. This function succeeds if there
is only one file handle open on the volume in the disk drive because the desired
result is to exclude all other I/O to the volume.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DSK_UNLOCKDRlVE

• DSK.READTRACK
USHORT DosDevIOCtl(pbBuffer. pbCommand. Ox0064. Ox0008. hDevice)
PBYTE pbBuffer, I. pOinter to buffer for data .1
PBYTE pbCommand; I. pointer to structure with command *1
HFILE hDevice; 1* device handle *1

Parameters

The DS~EADTRACK function reads from a track on a specified disk drive.
The track table passed in the call determines the sector number, which is passed
to the disk controller for the operation. When the sectors are odd-numbered or
nonconsecutive, the request is broken into an appropriate number of single­
sector operations, and one sector at a time is read.

pbBuffer Points to the buffer that receives data read from the track.

Return Value

Comments

See Also

DSK_REDETERMINEMEDIA 279

pbCommand Points to the TRACKLAYOUT structure that contains the infor­
mation about the read operation. The TRACKLAYOUT structure has the follow­
ing form:

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT head;
USHORT cylinder;
USHORT firstSector;
USHORT cSectors;
struct {

USHORT sectorNumber;
USHORT sectorSize;

} TrackTable[l];
} TRACKLAYOUTi

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The device driver will not correctly read sectors of sizes other than 512 bytes if
reading would generate a direct-memory-access (DMA) violation error. Programs
must ensure that this error does not occur.

DosOpen, DSK_ WRITETRACK

• DSILREDETERMINEMEDIA
USHORT DosDevlOCtl(OL, pbCommand, Ox0002, Ox0008, hOevice)
PBYTE pbCommand; I. pointer to variable with command .1
HFILE hOevice; I. device handle .1

Parameters

Return Value

See Also

The DS~REDETERMINEMEDIA function redetermines the media on a
block device and updates the volume in the drive. This function is normally
issued after the volume identification information has been changed (for exam­
ple, by formatting the disk). This function should be called only if the volume is
locked.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

280 DSICSETDEVICEPARAMS

• DS~SETDEVICEPARAMS

USHORT DosDevIOCtl(pbBPB, pbCommand! Ox0043! Ox0008! hOevice)
PBYTE pbBPB; 1* pointer to structure with BIOS parameter blocks *1
PBYTE pbCommand; 1* pointer to buffer with command *'
HFILE hOevice; 1* device handle *1

Parameters

Return Value

See Also

The DSILSETDEVICEP ARAMS function sets the device parameters for an
MS OS/2 block device. The device driver maintains two BIOS parameter blocks
(BPB) for each disk drive. One block is the BPB that corresponds to the
medium currently in the disk drive. The other block is a recommended BPB,
based on the type of medium that corresponds to the physical device. For exam­
ple, a high-density disk drive has a BPB for a 96 tracks per inch (tpi) floppy
disk; a low-density disk drive has a BPB for a 48-tpi floppy disk.

pbBPB Points to the BIOSPARAMETERBLOCK structure that contains the
device parameters to be set for the drive. The BIOSPARAMETERBLOCK
structure has the following form:

typedef struct _BIOSPARAMETERBLOCK {
USHORT usBytesPerSector;
BYTE bSectorsPerCluster;
USHORT usReservedSectors;
BYTE cE'ATs;
USHORT cRootEntries;
USHORT cSectors;
BYTE bMedia;
USHORT usSectorsPerE'AT;
USHOR~ usSectorsPerTrack;
USHORT cHeads;
ULONG cHiddenSectors;
ULONG cLargeSectors;
USHORT cCylinders;
BYTE bOeviceType;
USHORT fOeviceAttr;

} BIOSPARAMETERBLOCK;

For a full description, see Chapter 4, "Types, Macros, Structures."

pbCommand Point to the variable that contains the command description.
This variable can be one of the following values:

Value

REPLACE_BPB_FOR~EDIUM

Meaning

Build the BIOS parameter block (BPB)
from the medium for all subsequent
build BPB requests.

Change the default BPB for the physical
device.

Change the BPB for the medium to the
specified BPB. Return the new BPB as
the BPB for the medium for all subse­
quent build BPB requests.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DSILGETDEVICEPARAMS

DSK..VERIFYTRACK 281

• DSILSETLOGICALMAP
USHORT DosDevIOCtl(pbDrive, pbCommana, Ox0003, Ox0008, hDevice)
PBYTE pbDrive; 1* pOinter to variable with drive number *1
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hDev;ce; 1* device handle 4

Parameters

Return Value

See Also

The DSK-SETLOGICALMAP function sets the logical-drive mapping for a
block device.

pbDrive Points to the variable that contains the logical-drive number. This can
be 1 for drive A, 2 for drive B, and so on. When the function returns, it copies
the specified drive's current logical-drive number to the variable. If only one log­
ical device is mapped to the physical drive, the function sets the variable to zero.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DSK-GETLOGICALMAP

• DSILUNLOCKDRIVE
USHORT DosDevIOCtl(OL, pbCommand, Ox0001, Ox0008, hDev;ce)
PBYTE pbCommand; 1* pointer to variable with command *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The DSK_UNLOCKDRIVE function unlocks a drive. The drive requires the
locked volume represented by the handle.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DS~OCKDRlVE

• DSILVERIFYTRACK
USHORT DosDevIOCtl(OL, pbCommand, Ox0065, Ox0008, hDev;ce)
PBYTE pbCommand; I. pointer to structure with command .1
HFILE hDevice; I. device handle *1

The DSK-VERIFYTRACK function verifies an operation on a specified disk
drive.

282 DSK..VERIFYTRACK

Parameters

Return Value

Comments

See Also

pbCommand Points to the TRACKLAYOUT structure that contains informa­
tion about the verification operation. The TRACKLAYOUT structure has the fol­
lowing form:

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT head;
USHORT cylinder;
USHORT firstSector;
USHORT cSectors;
struct {

USHORT sectorNumber;
USHORT sectorSize;

} TrackTable[l];
} TRACKLAYOUT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The track-layout table passed in the function determines the sector number,
which is passed to the disk controller. When the sectors are odd-numbered or
nonconsecutive, the request is broken into an appropriate number of single­
sector operations, and one sector at a time is verified.

DosOpen, DSK.-READTRACK, PDSI<-VERIFYPHYSTRACK,
DSI<-WRITETRACK

• DSK-WRITETRACK
USHORT DosDevIOCtl(pbBuffer, pbCommand, Ox0044, Ox0008, hOevice)
PBYTE pbBuffer; / .. pointer to buffer with data .. /

PBYTE pbCommand; / .. pointer to structure with command .. /

HFILE hOevice; / .. device handle */

Parameters

The DSIL WRITETRACK function writes to a track on a specified disk drive.

pbBuffer Points to the buffer that contains the data to be written.

pbCommand Points to the TRACKLAYOUT structure that contains informa­
tion about the write operation. The TRACKLAYOUT structure has the following
form:

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT head;
USHORT cylinder;
USHORT firstSector;
USHORT cSectors;
struct {

USHORT sectorNumber;
USHORT sectorSize;

} TrackTable[l];
} TRACKLAYOUT;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Comments

See Also

• KBD_CREATE

KBD_DESTROY 283

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The track-layout table passed in the function determines the sector number,
which is passed to the disk controller. When the sectors are odd-numbered or
nonconsecutive, the request is broken into an appropriate number of single­
sector operations, and one sector at a time is written.

DosOpen, DSICREADTRACK, PDSICREADPHYSTRACK,
PDS~ WRITEPHYSTRACK

USHORT DosDevIOCtl(OL, pbCommand, Ox005D, Ox0004, hOevice)
PBYTE pbCommand; f. pOinter to buffer with handle and pid .f
HFILE hDevice; f. device handle .f

Parameters

Return Value

See Also

• KBD_DESTROY

The KBD_CREATE function allocates memory for a logical keyboard (KCB).
This function obtains physical memory for a new logical keyboard. The process
ID and a logical-keyboard handle passed by the caller stored in allocated
memory for use later by the KBD_SETKCB function. A logical keyboard is not
created if the handle is zero.

pbCommand Points to the buffer that contains the value to use as the logical­
keyboard handle and the code-page identifier to use with the logical keyboard.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if the logi­
cal keyboard cannot be created.

KBD_SETKCB,KBD~ESTROY

USHORT DosDevIOCtl(OL, pbCommand, Ox005E, Ox0004, hOevice)
PBYTE pbCommand; f. pOinter to buffer with handle and pid .f
HFILE hDevice; f. device handle .f

Parameters

The KBD_DESTROY function frees memory for a logical keyboard (KCB).
This function searches for the existing logical keyboard that has the specified
logical-keyboard handle and process ID combination and frees the physical
memory associated with the logical keyboard. No action is taken if the specified
handle is zero.

pbCommand Points to the buffer that contains the logical-keyboard handle.

hDevice Identifies the keyboard that receives the device-control function. The
handle mUst have been created previously by using the DosOpen function.

284 KBD_DESTROY

Return Value

See Also

The return value is zero if the function is successful or an error value if the logi­
cal keyboard identified by the given handle cannot be found.

• KBD_GETCODEPAGEID
USHORT DosDevIOCtl(pbCPID, Ol, Ox0078, Ox0004, hDevice)
PBYTE pbCPID; 1* pointer to buffer for code page id *1
HFllE hDevice; 1* device handle *1

Parameters

Return Value

Comment

See Also

The KBD_GETCODEPAGEID function retrieves the identifier of the code page
being used by the current logical keyboard.

pbCPID Points to the CPID structure that receives the code-page identifier.
The CPID structure has the following form:

typedef struct _CPID {
USHORT idCodePage;
USHORT Reserved;

} CPID;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

This function sets the identifier to zero to indicate that PC US 437 is being used.

KbdGetCp

• KBD_GETINPUTMODE
USHORT DosDevIOCtl(pblnputMode, Ol, Ox0071, Ox0004, hDevice)
PBYTE pblnputMode; 1* pOinter tel variable for input mode *1
HFllE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The KBD_GETINPUTMODE function retrieves the input mode of the screen
group of the active process. The input mode defines whether the following keys
are processed as commands or as keystrokes: CONTROL+C, CONTROL+BREAK,
CONTROL+S, CONTROL+P, SCROLL LOCK, PRINTSCREEN.

pblnputMode Points to the variable that receives the input mode. If the vari­
able is ASCII~ODE, the keyboard has ASCII input mode. If the variable is
BINARY_MODE, the keyboard has binary input mode.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, KBD_SETINPUTMODE

KBD_GETSESMGRHOTKEY 285

• KBD_GETINTERIMFLAG
USHORT DosDevIOCtl(pfFlags, OL, Ox0072, Ox0004, hDevice)
PBYTE pfFlags; 1* pOinter to variable for flags *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The KBD_GETINTERIMFLAG function retrieves interim character flags.

pfFlags Points to the variable that receives interim flags. If the variable is
CONVERSION~EQUEST, the program requested conversion. If it is
INTERIM_CHAR, the interim console flag is set.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, KBD_SETINTERIMFLAG

• KBD_GETKEYBDTYPE
USHORT DosDevIOCtl(pbType, OL, Ox0077, Ox0004, hDevice)
PBYTE pbType; 1* pointer to structure for keyboard type *1
HFILE hDevice; 1* device handle *'

Parameters

Return Value

See Also

The KBD_GETKEYBDTYPE function retrieves information about the type of
keyboard being used.

pbType Points to the KBDTYPE structure that receives the keyboard type.
The KBDTVPE structure has the following form:

typedef struct _KBDTYPE {
USHORT usType;
USHORT reservedl;
USHORT reserved2;

} KBDTYPE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

• KBD_GETSESMGRHOTKEY
USHORT DosDevIOCtl(pbHotKeyBuf, pcHotKeys, Ox0076, Ox0004, hDevice)
PBYTE pbHotKeyBuf; 1* pointer to structure for hot-key information *1
PUSHORT pcHotKeys; 1* pointer to variable for hot-key count *1
HFILE hDevice; 1* device handle *1

The KBD_GETSESMGRHOTKEY function retrieves the hot-key information
structures for the currently defined hot keys.

286 KBD_GETSESMGRHOTKEY

Parameters

Return Value

Comments

See Also

pbHotKeyBuf Points to the HOTKEY structure that receives hot-key informa­
tion structures. The buffer must be at least as large as the number of structures
requested. The HOTKEY structure has the following form:

typedef struct _HOTKEY {
USHORT fHotKey;
UCHAR scancodeMake;
UCHAR scancodeBreak;
USHORT idHotKey;

} HOTKEY;

For a full description, see Chapter 4, "Types, Macros, Structures."

peHotKeys Points to the variable that specifies the number of hot-key infor­
mation structures to retrieve. If this variable is HOTKEY ~A)CCOUNT, the
function copies a value to the variable that specifies the maximum number
of hot keys the keyboard device driver can support. If this variable is
HOTKEY_CURRENT_COUNT, the function copies a value to this variable
that specifies the actual number of hot keys currently supported. The function
also copies the hot-key information to the buffer pointed. to by the pbHotKeyBuf
parameter.

hDeviee Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

If the variable pointed to by pcHotKeys is HOTKEY ~A)CCOUNT, the func­
tion returns the number of currently defined hot keys. The program uses this
number to allocate sufficient space to retrieve the actual hot-key information
(retrieved by setting the variable to HOTKEY_CURRENT_COUNT).

Programs should retrieve the number of hot keys first, allocate sufficient space
for the buffer pointed to by the pbHotKeyBuf parameter, then retrieve the hot
keys.

DosOpen, KBD_SETSESMGRHOTKEY

• KBD_GETSHIFTSTATE
USHORT DosDevIOCtl(pbShiftState, OL, Ox0073, Ox0004, hDevice)
PBYTE pbShiftState; 1* pOinter to structure for shift state *1
HFILE hDevice; 1* device handle *1

Parameters

The KBD_GETSHIFTST ATE function retrieves the shift state of the default
keyboard of the current screen group. The shift state identifies whether the
SHIFf, CONTROL, ALT, INSERT, and SYSREQ keys are up or down and whether
the SCROLL LOCK, NUMLOCK, CAPSLOCK, and INSERT modes are on.

pbShiftState Points to the SHIFTSTATE structure that receives the shift state.
The SHIFTSTATE structure has the following form:

typedef struct _SHIFTSTATE {
USHORT fsState;
BYTE fbNLS;

} SHIFTSTATE;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Comments

See Also

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The shift state is set by incoming keystrokes. It can also be set by using the
KBD_SETSHIFTSTATE function (OXOOO4, OXOO53).

DosOpen, KBD_SETSHIFTSTATE

• KBD_PEEKCHAR
USHORT DosDevlOCtl(pkkiBuffer, pusStatus, Ox0075, Ox0004, hDevice)
PKBDKEYINFO pkkiBuffer; 1* pOinter to structure for keystroke *1
PUSHORT pusStatus; 1* pointer to variable for status *1
HFILE hDevice; 1* device handle .1

Parameters

Return Value

Comments

See Also

The KBDYEEKCHAR function retrieves one character data record from the
head of the keyboard-input buffer of the screen group of the active process. The
character data record is not removed from the keyboard-input buffer.

pkkiBuffer Points to the KBDKEYINFO structure that contains keyboard
input. The KBDKEYINFO structure has the following form:

typedef struct _KBDKEYINFO {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;

} KBDKEYINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pusStatus Points to the variable that receives the keyboard status. It can be
one or both of the following values:

Value Meaning

Character data record is retrieved. If not set,
no character data was retrieved.

Input mode is binary. If not set, input mode
is ASCII.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

If the shift-reporting input mode is enabled, the keystroke information retrieved
may specify only a shIft-state change and no character input.

DosOpen, KBD-READCHAR

288 KBD_READCHAR

• KBD_READCHAR
USHORT Do-sDevIOCtl(pkkiBuffer, pcRecords, Ox0074, Ox0004, hDevice)
PKBDKEYINFO pkkiBuffer; /. pointer to structure for keystrokes ./
PUSHORT pcRecords; /. pOinter to variable for record count ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

Comments

See Also

The KBD~EADCHAR function retrieves one or more character data records
from the keyboard-input buffer for the screen group of the active process.

pkkiBuffer Points to the structure that receives the character data records.
The structure must be at least as large as the size of an individual record multi­
plied by the requested number of records to be read. The KBDKEYINFO struc­
ture has the following form:

typedef struct _KBDKEYINFO {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;

} KBDKEYINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pcRecords Points to the variable that contains the number of records to
be read. When the function returns, it copies the actual number of records
retrieved to the variable.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

This function copies the records to the buffer pointed to by the pkkiBuffer
parameter. The variable pointed to by the pcRecords parameter specifies the
number of records to copy. The function can copy up to 16 characters.

If the variable pointed to by pcRecords is KBD~EAD_ WAIT, the function
waits for the requested number of keystrokes; it blocks the calling process
until all records have been read. If the variable is KBD~EAD_NOWAIT,
the function retrieves any available records (up to the specified number) and
returns immediately. When the function returns, it copies the actual number of
records retrieved to the variable. It sets the sign bit to 0 if the input mode is
ASCII; it sets the sign bit to 1 (Ox8000) if the input mode is binary.

DosOpen, KbdCharIn, KBDYEEKCHAR

• KBD_SETFGNDSCREENGRP
USHORT DosDevIOCtl(OL, pusScreenGrp, Ox0055, Ox0004, hDevice)
PUSHORT pusScreenGrp; /. pointer to structure with screen group ./
HFILE hDevice; /. device handle ./

The KBD_SETFGNDSCREENGRP function sets the new foreground screen
group. When the keyboard switches to the new screen group, it switches to the
shift state, input buffer, and monitor chain defined for that screen group.

This function is reserved for the session manager.

Parameters

Return Value

See Also

KBD_SETINPUTMODE 289

pusScreenGrp Points to the SCREEN GROUP structure that contains
the screen-group identifier of the new foreground screen group. The
SCREENGROUP structure has the following form:

typedef struct _SCREENGROUP {
USHORT idScreenGrp;
USHORT fTerminate;

} SCREENGROUP;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, KBD_SETSESMGRHOTKEY

• KBD_SETFOCUS
USHORT DosDevIOCtl(OL, phkbd, Ox0057, Ox0004, hDevice)
PHKBD phkbd; I. pointer to logical keyboard handle .1
HFILE hDevice;

Parameters

Return Value

See Also

1* device handle

The KBD_SETFOCUS function sets the keyboard focus to the specified logical
keyboard.

phkbd Points to the logical keyboard handle. The handle must have been
created previously by using the KbdOpen function.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, KbdOpen

• KBD_SETINPUTMODE
USHORT DosDevIOCtl(OL, pblnputMode, Ox0051, Ox0004, hDevice)
PBYTE pblnputMode; 1* pOinter to variable with input mode .1
HFILE hDevice; I. device handle .1

Parameters

The KBD_SETINPUTMODE function sets the input and shift-report modes
for the keyboard device driver. The input mode defines whether the following
input keys are processed as keystrokes or as commands: CONTROL+C,
CONTROL+BREAK, CONTROL+S, CONTROL+P, SCROLL LOCK, PRINTSCREEN.

The shift-report mode defines whether the shift keys are processed as shift keys
or as keystrokes.

pblnputMode Points to the variable that contains the input mode for the key­
board. If the variable is ASCILMODE, the input mode is ASCII. If the vari­
able is BINARY~ODE, the input mode is binary. If these values are combined
with SHIFf~EPORT~ODE, the function enables the shift-report mode;
otherwise, the s~ift-report mode is disabled.

290 KBD_SETINPUTMODE

Return Value

Comments

See Also

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The default input mode is ASCII. The keyboard device driver maintains an
input mode for each screen group.

DosOpen, KBD_GETINPUTMODE

• KBD_SETINTERIMFLAG
USHORT DosDevIOCtl(OL, pfFlags, Ox0052, Ox0004, hDevice)
PBYTE pfFlags; I. pointer to variable with flags .1
HFILE hDevice; I. device handle ./

Parameters

Return Value

Comments

See Also

• KBD_SETKCB

The KBD_SETINTERIMFLAG function sets the interim character flags.

pfFlags Points to the variable that contains the interim flags. If the variable is
OXOO20, the program requested conversion. If the variable is OXOO80, the interim
character flag is set.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The keyboard device driver maintains the interim character flags for each screen
group and passes the interim character flags (with each character data record) to
the keyboard monitors. The interim character flags set by this function are not
the same as the interim character flags in a character data record.

DosOpen, KBD_GETINTERIMFLAG

USHORT DosDevIOCtl(OL, phKbd, Ox0058, Ox0004, hDevice)
PHKBD phKbd; I. logical-keyboard handle .1
HFILE hDevice;

Parameters

Return Value

See Also

I. device handle

The KBD_SETKCB function binds the specified logical keyboard (KCB) to the
physical keyboard for this session.

phKbd Points to the handle that identifies the logical keyboard.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by uSing the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

KbdGetFocus

KBD_SETSESMGRHOTKEY 291

• KBD_SETNLS
USHORT DosDevIOCtl(OL, pbCodePage, Ox005C, Ox0004, hDevice)
PBYTE pbCodePage; /. pOinter to structure with code-page info ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

Comment

See Also

The KBD_SETNLS function installs one of two possible code pages into the
device driver and updates entry number one or number two of the code-page
control block. Entry zero is the device-driver resident code page.

pbCo dePage Points to the CODEPAGEINFO structure that specifies the
translation table and code page to be set. The CODEPAGEINFO structure has
the following form:

typedef struct _CODEPAGE INFO {
PBYTE pbTransTable;
USHORT idCodePage;
USHORT idTable;

} CODEPAGE INFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successfui or an error value if an error
occurs.

This function is similar to KBD_SETTRANSTABLE (OxOOO4,OxOO50) except it
updates different entries in the code-page control block.

DosOpen, KBD_SETTRANSTABLE, KbdSetCustCp

• KBD_SETSESMGRHOTKEV
USHORT DosDevlOCtl(OL, pbHotKey, Ox0056, Ox0004, hDevice)
PBYTE pbHotKey; /. pointer to structure with hot key ./

HFILE hDevice; /. device handle ./

Parameters

Return Value

The KBD_SETSESMGRHOTKEY function sets the session-manager hot keys.
A new hot key applies to all screen groups. The session manager can define up
to 16 hot keys.

pbHotKey Points to the HOTKEY structure that contains the hot-key informa­
tion. The HOTKEY structure has the following form:

typedef struct _HOTKEY {
uSHORT fHotKey;
UCHAR scancodeMake;
UCHAR scancodeBreak;
USHORT idHotKey;

} HOTKEY;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

292 KBD_SETSESMGRHOTKEV

Comments

. See Also

The KBD_SETSESMGRHOTKEY·function is successful only if it is performed
by the process that initially called the KBD_SETFGNDSCREENGRP function
'n.._1VV'\ ,t n.._Ar>.t:' t:''I.
\ VAV\J\M, VAVV.J.J).

A hot key can be specified as a combination of shift flags and scan codes,
including key combinations such as ALT+ESC. The system detects the hot key
when the specified scan code is received. If a hot key has already been defined
for a given hot-key identifier, specifying the identifier again replaces the previous
definition.

DosOpen, KBD_GETSESMGRHOTKEY, KBD_SETFGNDSCREENGRP

• KBD_SETSHIFTSTATE
USHORT DosDevIOCtl(OL, pbShiftState, Ox0053, Ox0004, hDevice)
PBYTE pbShiftState; I. pointer to structure with shift state .1
HFILE hDevice; I. device handle .1

Parameters

Return Value

Comments

See Also

The KBD_SETSHIFTSTATE function sets the shift state for the default key­
board in the current screen group. The shift state identifies whether the SHIFT,
CONTROL, ALT, INSERT, and SYSREQ keys are up or down and whether the
SCROLL LOCK, NUMLOCK, CAPSLOCK, and INSERT modes are on.

pbShi!tState Points to the SHIFf STATE structure that contains the shift state.
The SHIFf STATE structure has the following form:

typedef struct _SHIFTSTATE {
USHORT fsState;
BYTE fbNLS;

} SHIFTS TATE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The system puts the shift state into the character data record built for each
incoming keystroke; the shift state then can be used to interpret the meaning of
keystrokes. The function sets the shift state to the specified state regardless of
the state of the actual keys. The shift remains as set until the user presses or
releases the corresponding key.

The keyboard device driver maintains a shift state for each screen group.

DosOpen, KBD_GETSHIFTSTATE

• KBD_SETTRANSTABLE
USHORT DosDevIOCtl(OL, pbTransTable, Ox0050, Ox0004, hDevice)
PBYTE pbTransTable; I. pointer to translation table.1
HFILE hDevice; I. device handle .1

The KBD_SETTRANSTABLE function passes a new translation table to the
keyboard translation function. The new table, which overlays the current table,
translates subsequent keystrokes.

Parameters

Return Value

Comments

See Also

KBD->C:LATESCAN 293

pbTransTable Points to the translation table.

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

The default translation table is U.S. English.

DosOpen

• KBD_SETTYPAMATICRATE
USHORT DosDevIOCtl(OL, pusRateDelay, Ox0054, Ox0004, hDevice)
PUSHORT pusRateDelay; 1* structure with typamatic rate and delay *1
HFILE hDev;ce; 1* device handle *1

Parameters

Return Value

See Also

The KBD_SETIYP AMATICRATE function sets the keyboard typamatic rate
and delay.

pusRateDelay Points to the RATEDELAY structure that contains the
typamatic rate and delay. The RATEDELAY structure has the following form:

typedef struct _RATEDELAY {
USHORT delay;
USHORT rate;

} RATEDELAY;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, GETIYPAMATICRATE

• KBD.-XLATESCAN
USHORT DosDevlOCtl(pkbxl, pidCodePage, Ox0079, Ox0004, hDevice)
PKBDXLATE pkbxl; 1* pointer to structure for scan code *1
PBYTE pidCodePage; 1* pointer to code page for translation *1
HFILE hDevice; 1* device handle *1

Parameters

The KBD-XLATESCAN function translates a scan code in a character data
record to an ASCII character.

pkbxl Points to the KBDTRANS structure that contains the scan code to
translate. It also receives the character value when the function returns. The
KBDTRANS structure has the following form:

294 KBD-XLATESCAN

Return Value

Comments

See Also

typedef struct _KBDTRANS {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;
USHORT fsDD;
USHORT fsXlate;
USHORT fsShift;
USHORT sZero;

} KBDTRANS;

For a full description, see Chapter 4, "Types, Macros, Structures."

pidCodePage Points to a code-page identifier that specifies which code page
to use for the translation. The code-page identifier can be one of the following
values:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French -Canadian

865 Nordic

hDevice Identifies the keyboard that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

You may specify a code page to use for translation. Otherwise, the code page of
the active keyboard is used. On entry, the KBDTRANS structure specifies the
code page to use for translation.

KbdXlate

• MON_REGISTERMONITOR
USHORT DosDevIOCtl(puslnfo, pbCommand, Ox0040, OxOOOA, hOevice)
PUSHORT puslnfo; I. pointer to structure with monitor-register info .1
PBYTE pbCommand; I. pointer to command .1
HFILE hOevice; I. device handle .. I

Parameters

The MON_REGISTERMONITOR function registers a monitor.

puslnfo Points to the MONITORPOSITION structure that contains the
monitor-registration information. The MONITORPOSITION structure has the
following form:

typedef struct _MONITORPOSITION {
USHORT position;
USHORT index;
PBYTE pblnBuf;
USHORT offset;

} MONITORPOSITION;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

MOU_DRAWPTR 295

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the device that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosMonRead, DosMonReg, DosMonWrite, DosOpen

• MOU-ALLOWPTRDRAW
USHORT DosDevlOCtl(OL, OL, Ox0050, Ox0007, hDevice)
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The MOU.-ALLOWPTRDRA W function notifies the mouse device driver that
the screen group has been switched and that the pointer can now be drawn.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

• MOU_DRAWPTR
USHORT DosDevIOCtl(OL, OL, Ox0057, Ox0007, hDevice)
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The MOU_DRA WPTR function removes the current exclusion rectangle, allow­
ing the pointer to be drawn anywhere on the screen. If an exclusion rectangle
has been declared for the screen group, that rectangle is released and the pointer
position is checked. If the pointer was in the released rectangle, it is drawn. If
the pointer was not in the released rectangle, the pointer-draw operation occurs.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

296 MOU_GETBUTTONCOUNT

• MOU_GETBUTTONCOUNT
USHORT DosDevIOCtl(pusCount; Ol; Ox0060. Ox0007 j hDell/ee)
PUSHORT pusCount; I. pointer to variable for button count .1
HFILE hDevice; I. device handle .1

Parameters

Return Value

See Also

The MOU_GETBUTTONCOUNT function retrieves a count of the number of
mouse buttons.

pusCount Points to the variable that receives the count mouse buttons.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

• MOU_GETEVENTMASK
USHORT DosDevlOCtl(pfEvents, OL, Ox0065, Ox0007, hDevice)
PUSHORT pfEvents; I. pOinter to variable for event mask .1
HFILE hDevice; I. device handle .1

Parameters

Return Value

See Also

The MOU_GETEVENTMASK function retrieves the event mask of the current
pointing device.

pfEvents Points to the variable that receives the event mask. This variable can
be a combination of the following values:

Value

MOUSE_MOTION

MOUSE_MOTION_ WITILBNLDOWN

MOUSE_BNLDOWN

MOUSE_MOTION_ WITlLBN2_DOWN

MOUSE_BN2_DOWN

MOUSE_MOTION_ WITlLBN3_DOWN

MOUSE_BN3_DOWN

Meaning

Motion; no buttons pressed.

Motion with button 1 pressed.

Button 1 pressed.

Motion with button 2 pressed.

Button 2 pressed.

Motion with button 3 pressed.

Button 3 pressed.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_SETEVENTMASK

MOU_GETMICKEYCOUNT 297

• MOU_GETHOTKEYBUTTON
USHORT DosDevIOCtl(pfHotKey, Ol, Ox0069, Ox0007, hDevice)
PUSHORT pfHotKey; /. pointer to variable for hot key./
HFllE hDevice; /. device handle ./

Parameters

Return Value

See Also

The MOU_GETHOTKEYBUTTON function retrieves the mouse-button
equivalent for the system hot key.

pfH o/Key Points to the variable that receives the hot key. This variable can be
one or more of the following values:

Value

MHK_NO_HOTKEY

MHK_BUTTONl

MHK_BUTTON2

MHK_BUTTON3

Meaning

No system hot key used.

Button 1 is system hot key.

Button 2 is system hot key.

Button 3 is system hot key.

If OxOOOl is specified, no system hot-key support is provided. If multiple values
are given (excluding OxOOOl) the system hot key requires that the indicated but­
tons be pressed simultaneously.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_SETHOTKEYBUTTON

• MOU_GETMICKEYCOUNT
USHORT DosDevIOCtl(pcMickeys, Ol, Ox0061, Ox0007, hDevice)
PUSHORT pcMickeys; /. pOinter to variable for mickeys ./
HFllE hDevice; /. device handle ./

Parameters

Return Value

See Also

The MOU_GETMICKEYCOUNT function retrieves the count of mickeys per
centimeter for a given pointing device.

pcMickeys Points to the variable that receives the number of mickeys per
centimeter. The number can be any value from 0 through 32,767.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

298 MOU_GETMOUSTATUS

• MpU_GETMOUSTATUS
USHORT DosDevIOCtl(pfStatus. OL. Ox0062. Ox0007. hDevice)
PUSHORT pfStatus; I. pOinter to variable for status flags .1
HFILE hDevice; I. device handle .1

Parameters

Return Value

See Also

The MOU_GETMOUSTATUS function retrieves the current status flags of the
mouse device driver.

plStatus Points to the variable that receives the status flags. This variable can
be a combination of the following values:

Value

MOUSE_QUEUEBUSY

MOUSE_BLOCKREAD

MOUSE_UNSUPPORTED_MODE

MOUSE_DISABLED

MOUSE_MICKEYS

Meaning

Event queue is busy with I/O.

Block read is in progress.

Flush is in progress.

Pointer-draw routine is disabled (device
in unsupported mode).

Interrupt-level pointer-draw routine is
not called.

Mouse data is returned in mickeys (not
pels).

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_SETMOUSTATUS

• MOU_GETPTRPOS
USHORT DosDevIOCtl(ppIPosition. OL. Ox0067. Ox0007. hDevice)
PPTRLOC pplPosition; I. pointer to structure for position .1
HFILE hDevice; I. device handle .1

Parameters

The MOU_GETPTRPOS function retrieves the position of the current screen's
pointer.

pplPosition Points to the PTRLOC structure that receives the new pointer
position. The PTRLOC structure has the following form:

typedef struct _PTRLOC {
USHORT row;
USHORT col;

} PTRLOC;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

Return Value

Comments

See Also

MOU_GETPTRSHAPE 299

The return value is zero if the function is successful or an error value if an error
occurs.

The coordinate values depend on the display mode. If the display is in text
mode, character-position values are used. If the display is in graphics mode,
pel values are used.

DosOpen, MOU_SETPTRPOS

• MOU_GETPTRSHAPE
USHORT DosDevIOCtl(pbBuffer, ppsShape, Ox006S, Ox0007, hDevice)
PBYTE pbBuffer; 1* pOinter to buffer for pOinter masks *1
PPTRSHAPE ppsShape; 1* pointer to structure for shape information *1
HFILE hDev;ce; 1* device handle *1

Parameters

Return Value

Comments

See Also

The MOU_GETPTRSHAPE function retrieves the current pointer shape.

pbBuffer Points to the buffer that receives the pointer shape. The image for­
mat depends on the mode of the display. For currently supported modes, the
buffer always consists of the AND image data followed by the XOR image data.
The buffer always describes one display plane.

ppsShape Points to the PTRSHAPE structure that receives the pointer infor­
mation and shape. The PTRSHAPE structure has the following form:

typedef struct _PTRSHAPE {
USHORT cb;
USHORT col;
USHORT row;
USHORT colHot;
USHORT rowHot;

} PTRSHAPE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The function exits in a normal state if the input pointer-:image buffer is large
enough to store the pointer image. The current pointer information is returned
in the pointer-data record, and the pointer-image data is copied into the data­
packet buffer.

An "invalid buffer. size" error occurs if the input pointer-image buffer is smaller
than the amount of storage necessary for copying the data. The buffer length
returned will be minimum value.

The parameter values are in the same mode as the current screen-group display
mode. For text mode, these are character values; for graphics mode, these are
pel values.

On input, the only field in the pointer-definition record used by the mouse
device driver is the length of the pointer-image buffer.

DosOpen, MOU_SETPTRSHAPE

300 MOU_GETQUESTATUS

• MOU GETQUESTATUS
USHORTDosDevIOCtl(pmqiStatus, OL, Ox0064, Ox0007, hDevice)
PMOUQUEINFO pmqiStatus; /. pOinter to structure for queue status ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The MOU_GETQUESTATUS function retrieves the number of elements in the
event queue and the maximum number of elements allowed in an event queue.

pmqiStatus Points to the MOUQUEINFO structure that receives the queue
status. The MOUQUEINFO structure has the following form:

typedef struct _MOUQUEINFO {
USHORT cEventsi
USHORT cmaxEvents;

} MOUQUEINFOi

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

• MOU_GETSCALEFACTORS
USHORT DosDevIOCtl(psfFactors, OL, Ox0066, Ox0007, hDevice)
PSCALEFACT psfFactors; /. pointer to structure for scaling factors *'
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The MOU_GETSCALEF ACTORS function retrieves the scaling factors of the
current pointing device. Scaling factors are the ratio values that determine how
much relative movement is necessary before the mouse device driver reports a
pointing-device event. In graphics mode, this ratio is given in mickeys-per-pel. In
text mode, this ratio is given in mickeys-per-character. The default values are
one mickey-per-row and one mickey-per-column.

psfFactors Points to the SCALEFACT structure that receives the scaling fac­
tors. The SCALEFACT structure has the following form:

typedef struct _SCALEFACT {
USHORT rowScale;
USHORT colScale;

} SCALEFACTi

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_SETSCALEF ACTORS

MOU_REMOVEPTR 301

• MOU_READEVENTQUE
USHORT DosDevIOCtl(pmeiEvent, pfWait, Ox0063, Ox0007, hDevice)
PMOUEVENTINFO pmeiEvent; 1* pointer to structure for event information *1
PUSHORT pfWait; 1* pointer to wait/no-wait flag *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The MOU_READEVENTQUE function reads the event queue for the pointing
device.

pmeiEvent Points to the MOUEVENTINFO structure that receives event­
queue information. The MOUEVENTINFO structure has the following form:

typedef struct _MOUEVENTINFO {
USHORT fs;
ULONG Time;
USHORT row;
USHORT col;

} MOUEVENTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pJW ait Points to the variable that specifies how to read from the queue if no
event is available. If the variable is WAIT, the function returns immediately
without an event. If the variable is NOW AIT, the function waits until an event is
available.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MouReadEventQue

• MOU_REMOVEPTR
USHORT DosDevlOCtl(OL, pnprBuffer, Ox0058, Ox0007, hDevice)
PNOPTRRECT pnprBuffer, 1* pOints to structure with exclusion rectangle *1
HFILE hDevice; 1* device handle *1

Parameters

The MOUJEMOVEPTR function specifies the exclusion rectangle to be used
by the device driver. The exclusion rectangle specifies an area on the screen
where the pointer-draw routine cannot draw the pointer.

pnprBuffer Points to the NOPTRRECT structure that contains the dimensions
of the exclusion rectangle. The NOPTRRECT structure has the following form:

typedef struct _NOPTRRECT {
USHORT row;
USHORT col;
USHORT cRow;
USHORT cCol;

} NOPTRRECT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing. device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

302 MOU_REMOVEPTR

Return Value

Comments

See Also

The return value is zero if the function is successful or an error value if an error
occurs.

The pointer is not drawn in the exclusion rectangle until a different area is speci­
fied by another call of this function.

If the exclusion rectangle is defined as the entire screen, pointer-draw operations
are disabled for the entire screen group.

DosOpen

• MOU_SCREENSWITCH
USHORT DosDevIOCtl(OL, pbNotify, Ox0052, Ox0007, hDevice)
PBYTE pbNotify; 1* pOinter to structure with screen group *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The MOU_SCREENSWITCH function notifies the mouse device driver that
the screen group is about to be switched, and then sets a system pointer-draw
enable! disable flag. Any pointer drawing is locked until the flag is cleared by
using the MOU-ALLOWPTRDRAW function (OXOOO7, OXOO50).

pbNotify Points to the SCREENGROUP structure that contains the notifi­
cation type and screen-group identifier. The SCREENGROUP structure has the
following form:

typedef struct _SCREENGROUP {
USHORT idScreenGrp;
USHORT fTerminate;

} SCREENGROUP;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

• MOU_SETEVENTMASK
USHORT DosDevIOCtl(OL, pfEvent, Ox0054, Ox0007, hDevice)
PUSHORT pfEvent; 1* pointer to variable for event mask *1
HFILE hDevice; 1* device handle *1

The MOU_SETEVENTMASK function sets the event mask of the pointing
device.

Parameters

Return Value

See Also

MOU_SETHOTKEYBUTTON 303

pfEvent Points to the variable that contains the event mask. This variable can
be a combination of the following values:

Value

MOUSE_MOTION

MOUSE_MOTION_ WITlLBNLDOWN

MOUSE_BNLDOWN

MOUSE_MOTION_ WITlLBN2_DOWN

MOUSE_BN2_DOWN

MOUSE_MOTION_ WITlLBN3_DOWN

MOUSE_BN3_DOWN

Meaning

Motion; no buttons pressed.

Motion with button 1 pressed.

Button 1 pressed.

Motion with button 2 pressed.

Button 2 pressed.

Motion with button 3 pressed.

Button 3 pressed.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU....;GETEVENTMASK

• MOU_SETHOTKEYBUTTON
USHORT DosDevIOCtl(OL, pfHotKey, Ox0055, Ox0007, hDevice)
PUSHORT pfHotKey; 1* pointer to variable with hot key *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

The MOU_SETHOTKEYBUTTON function sets the mouse-button equivalent
for the system hot key.

pfHotKey Points to the variable that specifies the hot key. This variable can
be a combination of the following values:

Value

MHK_NO_HOTKEY

MHK_BUTTONl

MHK_BUTTON2

MHK_BUTTON3

Meaning

No system hot key used.

Button 1 is system hot key.

Button 2 is system hot key.

Button 3 is system hot key.

If OxOOOl is specified, no system hot-key support is provided. If multiple values
are given (excluding OXOOO1), the system hot key requires that the indicated but­
tons be pressed simultaneously.

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

304 MOU_SETHOTKEYBUTTON

Comments

See Also

This function can be called only by the process that initially issues it and should
be used only by the command shell.

DosOpen, MOU_GETHOTKEYBUTTON

• MOU_SETMOUSTATUS
USHORT DosDevlOCtl(Ol, pfStatus, Ox005C, Ox0007, hDevice)
PUSHORT pfStatus; 1* pointer to variable with status .1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The MOU_SETMOUSTATUS function sets a subset of the current mouse
device-driver status flags.

p!Status Points to the variable that contains the status flags for the pointing
device. If the variable is MOUSEJ)ISABLED, the interrupt-level pointer-draw
routine is not called. If the variable is MOUSEj1ICKEYS, mouse data is
returned in mickeys (not pels).

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_GETMOUSTATUS

• MOU_SETPROTDRAWADDRESS
USHORT DosDevlOCtl(Ol, pbFunction, Ox005A, Ox0007, hDevice)
PBYTE pbFunction; I .. pointer to structure with drawing function .1
HFllE hDevice; I. device handle *1

Parameters

Return Value

The MOU_SETPROTDRA WADDRESS function notifies the mouse device
driver of the address of a protected-mode pointer-draw function. This function
is valid for protected mode only.

pbFunction Points to the PTRDRA WFUNCTION structure that contains the
address of the pointer-draw function. The PTRDRA WFUNCTION structure has
the following form:

typedef struct _PTRDRAWFUNCTION {
PFN pfnDraw;
PCH pchDataSeg;

} PTRDRAWFUNCTION;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

Comments

See Also

MOU_SETPTRPOS 305

The pointer-draw routine is an installed, pseudo-character device driver. The
mouse handler must do the following:

• •
•

Open the pointer-draw device driver.
Query the pointer-draw device driver for the address of its entry point.
Pass the resulting address of the pointer-draw entry point to the mouse
device driver that uses this function.

DosOpen, MOU_SETREALDRA W ADDRESS

• MOU_SETPTRPOS
USHORT DosDevIOCtl(O~, pplPosition, Ox0059, Ox0007, hDevice)
PPTRLOC pplPosition; 1* pointer to structure with pointer position *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

Comments

See Also

The MOU_SETPTRPOS function sets a new screen position for the pointer
image.

pplPosition Points to the PTRLOC structure that contains the new position
for the pointer. The PTRLOC structure has the following form:

typedef struct _PTRLOC {
USHORT row;
USHORT col;

} PTRLOC;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

The coordinate values depend on the display mode. If the display is in text
mode, character-position values are used. If the display is in graphics mode,
pel values are used.

This function has no effect on the current exclusion-rectangle definitions. If a
pointer image is already defined for the screen group, it is replaced by the new
pointer image.

If the pointer image is directed into an existing exclusion rectangle, it remains
hidden (invisible) until sufficient movement places the pointer outside the exclu­
sion rectangle or until the exclusion rectangle is released.

DosOpen, MOU_GETPTRPOS

306 MOU_SETPTRSHAPE

• MOU_SETPTRSHAPE
USHORT DosDevIOCtl(pbBuffer~ ppsShape= Ox005S. Ox0007. hDevice)
PBYTE pbBuffer, I. pOinter to structure with shape masks .1
PPTRSHAPE ppsShape; I. pointer to structure with shape information .1
HFllE hDevice; I. device handle .1

Parameters

Return Value

Comments

See Also

The MOU_SETPTRSHAPE function sets the pointer shape.

pbBuffer Points to the buffer that contains the pointer image. The image for­
mat depends on the mode of the display. For currently supported modes, the
buffer always consists of the AND image data, followed by the XOR image data.
The buffer always describes one display plane.

ppsShape Points to the PTRSHAPE structure that receives the pointer infor­
mation and shape. The PTRSHAPE structure has the following form:

typedef struct _PTRSHAPE {
USHORT cb;
USHORT col;
USHORT row;
USHORT colHot;
USHORT rowHot;

} PTRSHAPE;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

The parameter values must be in the same mode as the current screen-group
display mode. For text mode, these must be character values; for graphics
mode, these must be pel values.

DosOpen, MOU_GETPTRSHAPE

• MOU_SETREALDRAWADDRESS
USHORT DosDevlOCtl(Ol, pbFunction, Ox005B, Ox0007, hDevice)
PBYTE pbFunction; I. pointer to structure with function .1
HFllE hDevice; I. device handle .1

Parameters

The MOU_SETREALDRA WADDRESS function notifies the real-mode mouSe
device driver of the entry point of a real-mode pointer-draw routine. This func­
tion is intended for use by the session manager at the end of system initialization
and is valid for real mode only.

pbFunction Points to the PTRDRA WFUNCTION structure that contains the
address of the pointer-draw function. The PTRDRA WFUNCTION structure has
the following form:

typedef struct _PTRDRAWFUNCTION {
PFN pfnDraw;
PCH pchDataSeg;

} PTRDRAWFUNCTION;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

MOU_UPDATEDISPLAYMODE 307

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_SETPROTDRA WADDRESS

• MOU_SETSCALEFACTORS
USHORT DosDevIOCtl(OL, psfFactors, Ox0053, Ox0007, hDevice)
PSCALEFACT psfFactors; /. pOinter to structure with factors ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The MOU_SETSCALEF ACTORS function reassigns the scaling factors of the
current pointing device. Scaling factors are ratio values that determine how
much relative movement is necessary before the mouse device driver reports a
pointing-device event. In graphics mode, the ratio is given in mickeys-per-pel. In
text mode, the ratio is given in mickeys-per-character. The default ratio values
are one mickey-per-row and one mickey-per-column.

psfFactors Points to the SCALEFACT structure that contains the scale fac­
tors. The SCALEFACT structure has the following form:

typedef struct _SCALEFACT {
USHORT rowScale;
USHORT colScale;

} SCALEFACT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, MOU_GETSCALEF ACTORS

• MOU_UPDATEDISPLAYMODE
USHORT· DosDevlOCtl (OL, pviomi, Ox0051, Ox0007, hDevice)
PVIOMODEINFO pviomi; /. pOinter to structure with screen !'lode ./
HFILE hDevice; /. device handle ./

Parameters

The MOU_UPDATEDISPLAYMODE function notifies the mouse device driver
that the display mode has been modified.

pviomi Points to the VIOMODEINFO structure that contains the display­
mode information. The VIOMODEINFO structure has the following form:

308 MOU_UPDATEDISPLAYMODE

Return Value

Comments

See Also

typedef struct _VIOMODEINFO {
USHORT cb;
UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;
UCHAR fmt_ID;
UCHAR attrib;

} VIOMODEINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen
function.

The return value is zero if the function is successful or an error value if an error
occurs.

When the video I/O subsystem or registered video 1/0 subsystem sets the
display mode, it must notify the mouse device driver prior to switching display
modes, in order to synchronize the mouse device driver's functions that update
the pointer.

DosOpen, VioSetMode

• PDSILGETPHYSDEVICEPARAMS
USHORT DosDevIOCtl(pbBlock, pbCommand, Ox0063, Ox0009, hDevice)
PBYTE pbBlock; I. pointer to structure for device parameters .1
PBYTE pbCommand; I. pOinter to variable with command .1
HFILE hDevice; I. device handle .1

Parameters

The PDSICGETPHYSDEVICEP ARAMS function retrieves the device parame­
ters for a physical device. The retrieved parameters apply to the entire physical
disk. /

pbBlock Points to the DEVICEPARAMETERBLOCK structure that receives
the device parameters. The DEVICEPARAMETERBLOCK structure has the fol­
lowing form:

typedef struct _DEVICEPARAMETERBLOCK {
USHORT reservedl;
USHORT cCylinders;
USHORT cHeads;
USHORT cSectorsPerTrack;
USHORT reserved2;
USHORT reserved3;
USHORT reserved4;
USHORT reserved5;

} DEVICEPARAMETERBLOCK;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

PDSK_READPHYSTRACK 309

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the physical device that receives the device-control func­
tion. The handle must have been created previously by using the DosPhysical.
Disk function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosPhysicalDisk

• PDSILLOCKPHYSDRIVE
USHORT DosDevIOCtl(OL, pbCommand, OxOOOO, Ox0009, hDevice)
PBYTE pbCommand; 1* pointer to variable with command *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The PDS~OCKPHYSDRIVE function locks the physical drive and any of its
associated logical units.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the disk-drive device that receives the device-control func­
tion. The handle must have been created previously by using the DosPhysical.
Disk function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosPhysicalDisk, PDSK-UNLOCKPHYSDRIVE

• PDSILREADPHYSTRACK
USHORT DosDevIOCtl(pbBuffer. pbCommand. Ox0064. Ox0009. hDevice)
PBYTE pbBuffer; 1* pointer to structure for data *1
PBYTE pbCommand; 1* pOinter to structure with command *1
HFILE hDevice; 1* device handle *1

Parameters

The PDSK-READPHYSTRACK function reads from a physical track on the
device specified in the request.

pbBuffer Points to the buffer that receives the data to be read.

pbCommand Points to the TRACKLA YOUT structure that contains informa­
tion about the read operation. The TRACKLAYOUT structure has the following
form:

31 0 PDS~READPHYSTRACK

Return Value

Comments

See Also

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT head;
USHORT oylinder;
USHORT firstSector;
USHORT cSectors;
struct {

USHORT sectorNumber;
USHORT sectorSize;

} TrackTable[l];
} TRACKLAYOUT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosPhysicalDisk func­
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

This function is similar to the DSICREADTRACK function (OXOOO8, Ox0064)
except that I/O is offset from the beginning of the physical drive instead of from
the unit number.

The track table passed in the function determines the sector number, which is
passed to the disk controller. When the sectors are odd-numbered or noncon­
secutive, the request is broken into an appropriate number of single-sector
operations, and one sector at a time is read.

The device driver will not correctly read sectors of sizes other than 512 bytes if
doing so would generate a direct-memory-access (DMA) violation error.

DosPhysicalDisk, DSIC WRITETRACK, PDSIC VERIFYPHYSTRACK,
PDSIC WRITEPHYSTRACK

• PDSILUNLOCKPHYSDRIVE
USHORT DosDevIOCtl(OL, pbCommand, Ox0001, Ox0009, hDevice)
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hDevice; 1* device handle *'

Parameters

Return Value

See Also

The PDSICUNLOCKPHYSDRIVE function unlocks the physical disk drive and
any of its associated logical units and also affects the logical units on the physical
disk drive.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosPhysicalDisk func­
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, DosPhysicalDisk, PDSK-LOCKPHYSDRIVE

PDSILWRITEPHYSTRACK 311

• PDSILVERIFYPHYSTRACK
USHORT DosDevIOCtl(OL. pbCommand. Ox0065. Ox0009. hDevice)
PBYTE pbCommand; / .. pOinter to structure with verification data .. /
HFILE hDevice; / .. device handle .. /

Parameters

Return Value

Comments

See Also

The PDSI<-VERIFYPHYSTRACK function verifies I/O on a physical track on
the device specified in the request.

pbCommand Points to the TRACKLAYOUT structure that contains informa­
tion about the verify operation. The TRACKLAYOUT structure has the follow­
ing form:

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT head;
USHORT cylinder;
USHORT firstSector;
USHORT cSectors;
struct {

USHORT sectorNumber;
USHORT sectorSize;

} TrackTable[l];
} TRACKLAYOUT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the physical device that receives the device-control func­
tion. The handle must have been created previously by using the DosPhysical.
Disk function.

The return value is zero if the function is successful or an error value if an error
occurs.

This function is similar to the DSI<-VERIFYTRACK function (OXOOO8, Ox0065)
except that I/O is offset from the beginning of the physical drive instead of from
the unit number.

The track-layout table passed in the function determines the sector number,
which is passed to the disk controller. When the sectors are odd-numbered or
nonconsecutive, the request is broken into an appropriate number of single­
sector operations, and one sector at a time is verified.

DosPhysicalDisk, DSK_ VERIFYTRACK, PDSK_READPHYSTRACK,
PDSK_ WRITEPHYSTRACK

• PDSILWRITEPHYSTRACK
USHORT DosDevIOCtl(pbBuffer. pbCommand. Ox0044. Ox0009. hDevice)
PBYTE pbBuffer, / .. pOinter to buffer with data .. /
PBYTE pbCommand; / .. pointer to structure with command */
HFILE hDevice; / .. device handle */

Parameters

The PDSI<-WRITEPHYSTRACK function writes to a physical track on the
device specified in the request.

pbBuffer Points to the buffer that contains the data to be written.

pbCommand Points to the TRACKLAYOUT structure that contains informa­
tion about the write operation. The TRACKLAYOUT structure has the following
form:

312 PDSILWRITEPHYSTRACK

Return Value

Comments

See Also

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT head;
USHORT cylinda%"';
USHORT firstSector;
USHORT cSectors;
struct {

USHORT sectorNumber;
USHORT sectorSize;

} TrackTable[l];
} TRACKLAYOUT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hDevice Identifies the disk drive that receives the device-control function. The
handle must have been created previously by using the DosPhysicalDisk func­
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

This function is similar to the DSIL WRITETRACK function (OXOOO8, OXOO44)
except that 1/0 is offset from the beginning of the physical drive instead of from
the unit number.

The track-layout table passed in this function determines the sector number,
which is passed to the disk controller. When the sectors are odd-numbered or
nonconsecutive, the request is broken into an appropriate number of single­
sector operations, and one sector at a time is written.

DosPhysicalDisk, DSIL WRITETRACK, PDSILREADPHYSTRACK,
PDSIL VERIFYPHYSTRACK

• PRT-ACTIVATEFONT
USHORT DosDevIOCtl(pbFontlnfo, pbCommand, Ox0048, Ox0005, hDevice)
PBYTE pbFontinfo; 1* pointer to structure for font info *1
PBYTE pbCommand; 1* pointer to byte with command info *1
HFILE hDevice; 1* device handle .;

Parameters

Return Value

See Also

The PRT_ACTIVATEFONT function activates a font for printing.

pbFontInfo Points to a FONTINFO structure that specifies the font to
activate. the FONTINFO structure has the followmg form:

typedef struct _FONTINFO {
USHORT idCodePage;
USHORT idFont;

} FONTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pbCommand Points to a reserved 8-bit value. The value must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

PRT_QUERYACTIVEFONT

PRT_GETINFINITERETRY 313

• PRT_GETFRAMECTL
USHORT DosDevIOCtl(pbFrameCtl. pbCommand. Ox0062. Ox0005. hDevice)
PBYTE pbFrameCtI; /. pointer to structure for frame settings ./
PBYTE pbCommand; /. pOinter to variable with command ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The PRT_GETFRAMECTL function retrieves frame-control information for a
printer.

pbFrameCtl Points to the FRAME structure that receives the frame-control
information. The FRAME structure has the following form:

typedef struct _FRAME {
BYTE bCharsPerLine;
BYTE bLinesPerInch;

} FRAME;

For a full description, see Chapter 4, "Types, Macros, Structures."

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, PRT_SETFRAMECTL

• PRT_GETINFINITERETRV
USHORT DosDevIOCtl(pfRetry. pbCommand. Ox0064. Ox0005. hDevice)
PBYTE pfRetry; /. pOinter to variable for retry flag ./
PBYTE pbCommand; /. pOinter to variable with command ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The PRT_GETINFINITERETRY function retrieves an infinite retry setting for a
printer. .

pfRetry Points to the variable that receives the infinite retry setting. The vari­
able is FALSE if infinite retry is disabled orTRUE if retry is enabled.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, PRT_SETINFINITERETRY

314 PRT _GETPRINTERSTATUS

• PRT_GETPRINTERSTATUS
USHORT DosDevlOCtl(pfStatus, pbCommand, Ox0066, Ox0005. hOevice)
PBYTE pfStatus; /. pointer to printer status flag ./
PBYTE pbCommand; /. pointer to variable with command ./
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The PRT_GETPRINTERSTATUS function retrieves the status of a printer.

plStatus Points to the variable that receives the printer status. This variable
can be a combination of the following values:

Value

PRINTER_TIMEOUT

PRINTER_IO~RROR

PRINTER_SELECTED

PRINTER_aUT_OF _P APER

PRINTER_ACKNOWLEDGED

Meaning

Time-out occurred.

110 error occurred.

Printer selected.

Printer out of paper.

Printer acknowledged.

PRINTER_NaT_BUSY Printer not busy.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

• PRT _INITPRINTER
USHORT DosDevIOCtl(OL, pbCommand, Ox0046, Ox0005, hDevice)
PBYTE pbCommand; /. command value .. /
HFILE hDevice; /. device handle ./

Parameters

Return Value

See Also

The PRT_INITPRINTER function initializes a printer.

pbCommand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen

PRT_SETFRAMECTL 315

• PRT_QUERYACTIVEFONT
USHORT DosDevIOCtl(pbFontlnfo, pbCommand, Ox0069, Ox0005, hDevice)
PBYTE pbFontlnfo; I. pointer to structure for font information *1
PBYTE pbCommand; I. pOinter to byte with command information *1
HFIL'E hDevice; I. device handle *1

Parameters

Return Value

See Also

The PRT_QUERYACTIVEFONT function determines which code page and
font are currently active.

pbFontlnfo Points to a FONTINFO structure that specifies the active font.
The FONTINFO structure has the following form:

typedef struct _FONTINFO {
USHORT idCodePage;
USHORT idFont;

} FONTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pbCommand Points to a reserved 8-bit value. The value must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

PRT~CTIVATEFONT

• PRT_SETFRAMECTL
USHORT DosDevIOCtl(pbFrameCtl, pbCommand, Ox0042, Ox0005, hDevice)
PBYTE pbFrameCtI; 1* pointer to structure with frame settings .1
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hDevice; 1* device handle *1

Parameters

Return Value

See Also

The PR T _SETFRAMECTL function sets the frame-control information for a
printer.

pbFrameCtl Points to the FRAME structure that contains the frame-control
information. The FRAME structure has the following form:

typedef struct _FRAME {
BYTE bCharsPerLine;
BYTE bLinesPerInch;

} FRAME; .

For a full description, see Chapter 4, "Types, Macros, Structures."

pbComlnand Points to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using tile DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, PRT_GETFRAMECTL

316 PRT _SETINFINITERETRY

• PRT_SETINFINITERETRY
USHORT DosDevIOCtl(pfRetry~ pbCoinmand~ Ox0044, Ox0005, hDevice)
PBYTE pfRetry; 1* pointer to retry flag *'
PBYTE pbCommand; 1* pOinter to variable with command *1
HFILE hOe vice; 1* device handle *1

Parameters

Return Value

See Also

The PRT_SETINFINITERETRY function sets infinite retry for a printer.

pfRetry Points to the variable that specifies whether to enable infinite retry. If
the variable is FALSE, the function disables infinite retry. If the variable is
TRUE, the function enables infinite retry.

pbCommand Poiilts to the variable that contains a reserved value. The value
must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, PRT,","GETINFINITERETRY

• PRT_VERIFYFONT
USHORT DosDevlOCtl(pbFontlnfo, pbCommand, Ox006A, Ox0005, hOevice)
PBYTE pbFontlnfo; 1* points to structure for font info *1
PBYTE pbCommand; 1* pOints to byte with command info *1
HFILE hOevice; 1* device handle *1

Parameters

Return Value

See Also

The PRT_ VERIFYFONT function verifies that a particular code page and font
are available for the specified printer.

pbFontlnfo Points to the FONTINFO structure that receives information for
the available font. The FONTINFO structure has the following form:

typedef struct _FONTINFO {
USHORT idCodePage;
USHORT idFont;

} FONTINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

pbCommand Points to a reserved 8-bit value. The value must be zero.

hDevice Identifies the printer that receives the device-control function. The
handle must have been created previously by using the DosOpen function.

The return value is zero if the function is successful or an error value if an error
occurs.

DosOpen, PRT-ACTIVATEFONT

PTR_GETPTRDRAWADDRESS 317

• PTR_GETPTRDRAWADDRESS
USHORT DosDevIOCtl(pbFunctionlnfo. Ol. Ox0072. Ox0003. hDevice)
PBYTE pbFunctionlnfoi 1* pointer to structure for function */
HFllE hDevicei 1* device handle *1

Parameters

Return Value

Comments

See Also

The PTILGETPTRDRA WADDRESS function retrieves the entry-point address
and other information for the pointer-draw function (the function that draws the
mouse pointer on the screen).

pbFunctionlnfo Points to the PTRDRA WFUNCTION structure that receives
the function information. The PTRDRA WFUNCTION structure has the follow­
ing form:

typedef struct _PTRDRAWFUNCTION {
PFN pfnDraw;
PCH pchDataSeg;

} PTRDRAWFUNCTION;

For a full description, see Chapter 4, "Types, Macros, Structures."

. hDevice Identifies the pointing device that receives the device-control func­
tion. The handle must have been created previously by using the DosOpen func­
tion.

The return value is zero if the function is successful or an error value if an error
occurs.

The mouse device driver uses the pointer-draw function to update the pointer
image on the screen, and retrieves the address and saves it to use whenever the
pointer moves.

DosOpen

Chapter

4

Types, Macros, Structures
4.1 Introduction.. 321

4.2 Types ... 322

4.3 Macros... 324

4.4 Structures... 330

Chapter 4: Types, Macros, Structures 321
mll~!I1~!fi!t!I~\l1N!!.~~itmr!l».f.fltitiint_lir.IP.ti!~iMilmii1§~~li~I.lIiiii~~!almlj.ieil~i_~;iii!le.\!i!fi\lI~la~i~lg

4.1 Introduction
This chapter describes the types, macros, and structures used with MS OS/2
Dos, Kbd, MOll, and Vio functions. The MS OS/2 functions use many types,
macros, and structures that are not part of the standard C language. These
types, macros, and structures have been defined to make the task of creating MS
OS/2 programs easier and to make program sources clearer and easier to under­
stand.

All types, macros, and structures in this manual are defined in the MS OS/2 C­
language include files. Programmers may also wish to use these when developing
MS OS/2 programs in other computer languages, such as Pascal or assembly­
language. If include files for a given language are not available, a programmer
can translate the definitions given in this chapter by following these guidelines:

• Numbers must be integers or fixed-point real numbers. MS OS/2 functions
do not support floating-point numbers. An MS OS/2 program can use
floating-point numbers if an appropriate run-time library or coprocessor is
supplied and if floatihglpoint numbers are not used as parameters to the MS
OS/2 functions.

• Structures must be packed. Some compilers align each new field in a struc­
ture on word or double-word boundaries. This may leave unused bytes in a
structure if a given field is smaller than the width between boundaries. MS
OS/2 functions require that unused bytes be removed from structures.

• Reserved fields in structures should be set to zero. Unless otherwise speci­
fied, MS OS/2 functions require that reserved fields be set to zero to avoid
compatibility problems with future releases of MS OS/2.

• Variable-length structures must be supported. Several MS OS/2 functions
use variable-length structures to receive and/or return information. In a
variable-length structure, the number of fields varies depending on when the
structure is used. In the C language, programs typically support variable­
length structures by allocating· enough memory for the current number of
fields and accessing those fields by using a pointer to· the structure. Programs
in other languages may use this method or devise their own method for sup­
porting variable-length structures.

• All 16-bit pointers must be relative to an explicitly defined segment register.
Some compilers assume that the ds and ss registers contain the same value
and implicitly use one segment for both. MS OS/2 does not guarantee that
the ds and ss registers will be equal. This is especially true in dynamic-link
libraries and programs that use callback functions (for example, window pro­
cedures).

• All 32-bit pointers must consist of a selector:offset pair. A physical address,
that is, an address that represents a 32-bit offset from the beginning of physi­
cal memory, cannot be used by MS OS/2 functions. (One exception to this
rule is the VioGetPhysBuf function, which requires a physical address to
video memory.)

322 MS OS/2 Programmer's Reference, Vol. ~
rtutitf!!~Ii!il!J.!~alij!~§:=ilfin.mi~]imi!ii~jl~illinr!iiHmim!Iii!tm!!!!iu.iis\li~iiimlii~iiiliirr:~!~iii~lmUil~iiiiiUti!BiJumi5.lRl~ijiir

4.2 Types
The following is a complete list, in alphabe~ical order, of the types that have
been defined for the functions described in this manual. Many of these types
begin with a letter that identifies what the type is used for-for example, H
identifies a handle; P, a far pointer; NP, a near pointer; and U, an unsigne4
variable. '

Type

IJOOL

BYTE

CIIAR
COLOR

ERRORID

FALSE

HDC

HDIR

HFILE

HKBD

HMF

HMODULE

HMONITOR

HMOU

HPIPE

UPS
HQUEUE

HRGN

HSEM

HSYSSEM

HTIMER

HVIO

INT

LONG

NPBYTE

NPCH

NPFN

Meaning

16-bit Boolean value.

8-bit unsigned value.

8-bit signed value.

32-bit signed value used to hold a color value.

32-bit value used as an error identifier.

Predefined constant set to zero.

32-bit value us~d as a device-context handle.

16-bit value used as a directory handle.

16-bit value psed as a file handle.

16-bit value used as a logical-keyboard han4le.

32-bit value ~sed as a metafile handle.

16-bit value used ;tS a module handle.

~6-bit value used as a monitor handle.

16-bit value used as a mouse handle.

16-bit value used as a pipe handle.

32-bit value used as a presenf;ttion-space handle.

16-bit value used as a queue handle.

Hi-bit value used as a region handle.

32-bit valu,e used as a semaphore handle.

32-bit value used as a systept semaphor~ handle.

16-bit value used as a timer handle.

16-bit value used as a video-device handle.

16-bit signed value.

32-bit signed value.

16-bit pointer to an 8-bit unsigne4 value.

1(>-bit pointer to a value or array of values.

16-bit pointer to a function with Pilscal calling
type.

Chapter 4: Types, Macros, Structures 323
fi!iiimUiii!~_~fEll~:F.i~~lGi!n!!lmitmtf.'i'mlJjR:~~fif~iinB!!~t!!!~~i§~!!j!filiflk1i~JimiJji!fm~=:!!Hflff§!~5i!1:1Hiilfm!~

Type

NPSZ

NULL

PBOOL

PBYTE

PCH

PCHAR

PCOLOR

PERRORID

PFN

PFNSIGHANDLER

PHDC

PHDIR

PHFILE

PHKBD

PBMF

PHMODULE

PHMONITOR

PHMOU

PHPIPE

PHPS

PHQUEUE

PHRGN

PHSEM

PHSYSSEM

PBTIMER

PHVIO

PID

PiNT

PLONG

PPID

PSEL

Meaning

16-bit pointer to a null-terminated string.

Predefined null-pointer value set to zero.

32-bit pointer to a Boolean value.

32-bit pointer to an 8-bit unsigned value.

32-bit pointer to a value or array of values.

32-bit pointer to a value or array of values.

32-bit pointer to a color value.

32-bit pointer to an error identifier.

32-bit pointer to a function with pascal calling
type.

32-bit pointer to a function with pascal calling
type.

32-bit pointer to a device-context handle.

32-bit pointer to a directory handle.

32-bit pointer to a file handle.

32-bit poiriter to a logical-keyboard handle.

32-bit pointer to a metafile handle.

32-bit pointer to a module handle.

32-bit pointer to a monitor handle.

32-bit pointer to a mouse handle.

32-bit pointer to a pipe handle.

32-bit pointer to a presentation-space handle.

32-bit pointer to a queue handle.

32-bit pointer to a region handle.

32-bit pointer to a semaphore handle.

32-bit pointer to a system-semaphore handle.

32-bit pointer to a timer handle.

32-bit pointer to a video-device handle.

16-bit value used to hold a process identifier.

32-bit pointer to a 16-bit signed value.

32-bit pointer to a 32-bit signed value.

32-bit pointer to a process identifier.

32-bit pointer to a selector.

324 MS OS/2 Programmer's Reference, Vol. 3
mii;Liff.miUii~_i~irlJei!li~ii§Ifi_§i~ml~~imiiiifiJfism;!i!~~~i~ii~BtR!!I~liif!i..JfiiHlliHiliiifHiiliili!!1fi!ltitl§l§!lm!!!t!ii;1ii!9l

4.3 Macros

Type

PSHORT

PSZ

PTID

PUCHAR

PUINT

PULONG

PUSHORT

PYOID

SEL

SHORT

TID

TRUE

UCHAR

UINT

ULONG

USHORT

Meaning

32-bit pointer to a 16-bit signed value.

32-bit pointer to a null-terminated string.

32-bit pointer to a thread identifier.

32-bit pointer to an unsigned value or array of
values.

32-bit pointer to a 16-bit unsigned value.

32.:bit pointer to a 32-bit unsigned value.

32-bit pointer to a 16-bit unsigned value.

32-bit pointer to an unspecified data type.

16-bit value used to hold a segment selector.

16-bit signed value.

16-bit value used to hold a thread identifier.

Predefined constant set to 1.

8-bit unsigned value.

16-bit unsigned value.

32-bit unsigned value.

16-bit unsigned value.

The following is a complete list, in alphabetical order, of the macros that can be
used with the functions described in this manual.

HIUSHORT 325

• DEFINEMUXSEMLIST
DEFINEMUXSEMLIST (name, size)

Parameters

See Also

The DEFINEMUXSEMLIST macro creates a structure that is used to hold the
semaphore list for the DosMuxSemWait function.

name Specifies the name of the structure to be created.

size Specifies the size of the structure; that is, the number of semaphores in
the list.

DosMuxSem Wait

• FIELDOFFSET
FIELDOFFSET (type, field)

Parameters

• HIBYTE
HIBYTE(w)

Parameters

See Also

• HIUCHAR
HIUCHAR(w)

Parameters

See Also

• HIUSHORT
HIUSHORT(/)

The FIELD OFFSET macro computes the address offset of the specified field in
the structure specified by the type parameter.

type
field

Specifies the name of the structure.

Specifies the name of a field defined within the given structure.

The HIBYTE macro retrieves the high-order unsigned byte from the 16-bit value
specified by the w parameter.

w Specifies a 16-bit value.

HIUCHAR, LOBYTE

The HIUCHAR macro retrieves the high-order unsigned byte from the 16-bit
value specified by the w parameter.

w Specifies a 16-bit value.

HIBYTE, LOUCHAR

The HIUSHORT macro retrieves the high-order, unsigned 16-bit word from the
32-bit value specified by the 1 parameter.

326 HIUSHORT

Parameters

• LOBYTE
LOBYTE(w)

Parameters

See Also

• LOUCHAR
LOUCHAR(w)

Parameters

See Also

• LOUSHORT
LOUSHORT(/)

Parameters

See Also

• MAKELONG
MAKELONG (I, h)

Parameters

See Also

Specifies a 32-bit value.

The LOBYTE macro retrieves the low-order byte from the 16-bit value specified
by the w parameter.

w Specifies a 16-bit value.

HIBYTE, LOUCHAR

The LOUCHAR macro retrieves the low-order unsigned byte from the 16-bit
value specified by the w parameter.

w Specifies a 16-bit value.

HIUCHAR, LOBYTE

The LOUSHORT macro retrieves the low-order unsigned 16-bit word from the
32-bit value specified by the I parameter.

I Specifies a 32-bit value.

HIUSHORT

The MAKELONG macro combines two 16-bit word values to create a 32-bit long
integer.

I Specifies the low-order 16-bit word value for the new integer.

h Specifies the high-order 16-bit word value for the new integer.

MAKESHORT,MAKEULONG

• MAKEP
MAKEP (se/, off)

Parameters

See Also

MAKEPLINFOSEG 327

The MAKEP macro combines a segment selector and an address offset to create
a far (32-bit) pointer to a memory address.

sel Specifies a segment selector. It must be a valid segment selector-for
example, if it were created by using the DosAlIocSeg function.

off Specifies an offset from the beginning of the given segment to the desired
byte. The offset must specify an address within the segment.

DosAlIocSeg, OFFSETOF, SELECTOROF

• MAKEPGINFOSEG
MAKEPGINFOSEG (se/)

Parameters

Example

See Also

The MAKEPGINFOSEG macro creates a far (32-bit) pointer to the first byte in
the global information segment. The macro assumes that the selector specified
by the sel parameter has been retrieved by using the DosGetInfoSeg function.

sel Specifies the segment selector of the global information segment.

SEL se1G1oba1Seg, se1Loca1Seg;
GINFOSEG FAR *pgis;
DosGetlnfoSeg(&se1G1oba1Seg, &se1Loca1Seg);
pgis = MAKEPGINFOSEG(se1G1oba1Seg);

DosGetInfoSeg, MAKEPLINFOSEG

• MAKEPLINFOSEG
MAKEPLINFOSEG (se/)

Parameters

Example

See Also

The MAKEPLINFOSEG macro creates a far (32-bit) pointer to the first byte in
the local information segment. The macro assumes that the selector specified by
the sel parameter has been retrieved by using the DosGetinfoSeg function.

sel Specifies the segment selector of the local information segment.

SEL se1G1oba1Seg, se1Loca1Seg;
LINFOSEG FAR *p1is;
DosGetlnfoSeg(&se1G1oba1Seg, &se1Loca1Seg);
19is = MAKEPGINFOSEG(se1G1oba1Seg);

DosGetInfoSeg, MAKEPGINFOSEG

328 MAKESHORT

• MAKESHORT
MAKESHORT(/. h)

Parameters

See Also

• MAKETYPE
MAKETYPE(v, type)

Parameters

• MAKEULONG
MAKEULONG(/, h)

Parameters

See Also

• MAKEUSHORT
MAKEUSHORT(/, h)

Parameters

See Also

The MAKESHORT macro combines two 8-bit values to create a 16-bit integer.

I Specifies the low-order 8-bit value of the new integer.

h Specifies the high-order 8-bit value of the new integer.

MAKELONG,MAKEUSHORT

The MAKETYPE macro casts the variable specified by the v parameter as a vari­
able having the type specified by the type parameter. This macro permits the
contents of the variable to be accessed as if the variable had the specified type.

v Specifies the name of the variable to be cast.

type Specifies the name of the data type for the cast.

The MAKEULONG macro combines two 16-bit values to create a 32-bit unsigned
integer.

I Specifies the low-order 16-bit value of the new integer.

h Specifies the high-order 16-bit value of the new integer.

MAKELONG,MAKEUSHORT

The MAKEUSHORT macro combines two 8-bit values to create a 16-bit
unsigned integer.

I Specifies the low-order 8-bit value of the new integer.

h Specifies the high-order 8-bit value of the new integer.

MAKESHORT,MAKEULONG

• OFFSETOF
OFFSETOF(p)

Parameters

See Also

• SELECTOROF
SELECTOROF(p)

Parameters

See Also

SELECTOROF 329

The OFFSETOF macro retrieves the address offset of the specified far pointer.

p Specifies a far (32-bit) pointer.

SELECTOROF

The SELECTOROF macro retrieves the selector from the specified far pointer.

p Specifies a far (32-bit) pointer.

OFFSETOF

330 MS OS/2 Programmer's Reference, Vol. 3
~~!~~i2~~im~~I!':!t~~\iliti~!sI~~1il!iii.~~!.iliii~~Siffiiimjjiaii5iiil~~i~;~l.§!!!n!t51;;tt!.;ii!mlf.di!i!~iWffi~I~Uii!tii!f:!;llS!IS

4.4 Structures
The following is a complete list, in alphabetical order, of the structures used by
the functions described in this manual.

BIOSPARAMETERBLOCK 331

• BIOSPARAMETERBLOCK

Fields

typedef struct _BIOSPARAMETERBLOCK {
USHORT usBytesPerSector;
BYTE bSectorsPerCluster;
USHORT usReservedSectors;
BYTE cE'ATs;
USHORT cRootEntries;
USHORT cSectors;
BYTE bMedia;
USHORT usSectorsPerE'AT;
USHORT usSectorsPerTrack;
USHORT cHeads;
ULONG cHiddenSectors;
ULONG cLargeSectors;
BYTE abReserved[6];
USHORT cCylinders;
BYTE bOeviceType;
USHORT fsOeviceAttr;

} BIOSPARAMETERBLOCK;

/* bspblk */

The BIOSPARAMETERBLOCK structure contains BIOS parameter blocks.

usBytesPerSector Specifies the bytes per sector.

bSectorsPerCluster Specifies the sectors per cluster.

usReservedSectors Specifies the reserved sectors.

cFATs Specifies the number of file-allocation tables.

cRootEntries Specifies the maximum number of entries in the root directory.

cSectors Specifies the number of sectors.

bMedia Specifies the media descriptor.

usSectorsPerFAT Specifies the number of sectors per file-allocation table.

usSectorsPerTrack Specifies the number of sectors per track.

cHeads Specifies the number of heads.

cHiddenSectors Specifies the number of hidden sectors.

cLargeSectors Specifies the number of large sectors.

abReserved[6] Specifies six reserved bytes. These must be zero.

cCylinders Specifies the number of cylinders defined for the device.

bDeviceType Specifies the type of device. It can be one of the following
values:

Value

DEVTYPE_48TPI

DEVTYPE_96TPI

DEVTYPE_35

DEVTYPE_8SD

DEVTYPE_8DD

DEVTYPE_FIXED

DEVTYPE_TAPE

DEVTYPE_UNKNOWN

Meaning

48 tracks-per-inch, low-density floppy-disk drive

96 tracks-per-inch; high-density floppy-disk drive

3.5-inch (720K) floppy-disk drive

8-inch, single-density floppy-disk drive

8-inch, double-density floppy-disk drive

Fixed disk

Tape drive

Other (unknown type of device)

332 BIOSPARAMETERBLOCK

See Also

fsDeviceAttr Specifies information about the drive. If this value is OXOOO1, the
media are not removable. If it is OxOOO2, the media can detect changes. This field
can be one or both of these values.

DSK_GETDEVICEP ARAMS, DSK_SETDEVICEP ARAMS

• CODEPAGEINFO

Fields

See Also

typedef struct _CODEPAGE INFO {
PBYTE pbTransTable;
USHORT idCodePage;
USHORT idTable;

} CODEPAGE INFO;

/* cpi * /

The CODEPAGEINFO structure specifies the code page and the translation
table to be set.

pbTransTable Points to the keyboard translation table.

idCodePage Specifies a code-page identifier. It can be one of the following
values:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

idTable Specifies the translation table to be replaced. If this value is OxFFFF,
it specifies the custom translation table.

• COUNTRYCODE

Fields

typedef struct _COUNTRYCODE {
USHORT country;
USHORT codepage;

} COUNTRYCODE;

/* ctryc */

The COUNTRYCODE structure contains the country code and code-page
identifier.

country Specifies the country code. It can be one of the following values:
Country code Country

001 United States

002 Canada (French)

003 Latin America

031 Netherlands

032 Belgium

See Also

• COUNTRYINFO

COUNTRYINFO 333

Country code Country

033 France

034 Spain

039 Italy

041 Switzerland (French)

041 Switzerland (German)

044 United Kingdom

045 Denmark

046 Sweden

047 Norway

049 Germany

061 Australia

351 Portugal

358 Finland

If this field is zero, the function uses the current country code.

codepage Specifies the code-page identifier. It can be one of the following
values:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

If this field is zero, the function uses the current code-page identifier.

DosCaseMap, DosGetCollate, DosGetCtryInfo, DosGetDBCSEv

typedef struct _COUNTRYINFO { /* ctryi */
USHORT country;
USHORT codepage;
USHORT fsDateFmt;
CHAR sZCurrency[S];
CHAR szThousandsSeparator[2];
CHAR szDecimal[2];
CHAR sZDateSeparator[2];
CHAR szTimeSeparator[2];
UCHAR fSCurrencyFmt;
UCHAR cDecimalPlace;
UCHAR fsTimeFmt;
USHORT abReservedl[2];
CHAR sZDataSeparator[2];
USHORT abReserved2[S];

} COUNTRYINFO;

The COUNTRYINFO structure contains country-dependent formatting informa­
tion.

334 COUNTRYINFO

Fields country Specifies the country code. It can be one of the following values:
Country code Country

001

002

003

031

032

033

034

039

041

041

044

045

046

047

049

061

351

358

codepage
fsDateFmt

Value

United States

Canada (French)

Latin America

Netherlands

Belgium

France

Spain

Italy

Switzerland (French)

Switzerland (German)

United Kingdom

Denmark

Sweden

Norway

Germany

Australia

Portugal

Finland

Specifies a reserved value; must be zero.

Specifies the date format. It can be one of the following values:
Meaning

DA TEFMT_MM-DD_ YY

DATEFMT_DD_MM-YY

Month, day, year (mm/dd/yy)

Day, month, year (dd/mm/yy)

DATEFMT_YY_MM-DD Year, month, day (yy/mm/dd)

szCurrency[S] Specifies the currency indicator. It is a null-terminated string.

szThousandsSeparator[2] Specifies the thousands separator. It is a null­
terminated string.

szDecimal[2] Specifies the decimal separator. It is a null-terminated string.

szDateSeparator[2] Specifies the date separator. It is a null-terminated
string.

szTimeSeparator[2] Specifies the time separator. It is a null-terminated
string.

fsCurrencyFmt Specifies the currency format. It can be any combination of
the following values:

Value

CURRENCY_FOLLOW

Meaning

Currency indicator follows the money value. If
this value is not given, the currency indicator
precedes the money value.

See Also

• CPID

Fields

See Also

Value

CURRENCY_SPACE

CURRENCY_DECIMAL

CPID 335

Meaning

One space appears between the currency indica­
tor and the money value. If this value is not
given, no space appears between the currency
indicator and the money value.

Specified currency indicator replaces the
decimal indicator. If this value is given, other
fsCurrencyFmt values are ignored.

cDecimalPlace Specifies the number of decimal places (in binary) used in the
currency value.

fsTimeFmt Specifies the time format for file directory presentation. If this
field is OxOOO1, the time is presented in 24-hour (military-time) format. Other­
wise, time is presented in a 12-hour format, with "a" and "p" used for A.M. and
P.M. indicators.

abReservedl[2] Specifies a reserved value; must be zero.

szDataSeparator[2] Specifies a data-list separator. It is a null-terminated
string.

abReserved2[S] Specifies a reserved value; must be zero.

DosGetCtrylnfo

typedef struet _CPID {
USHORT idCodePage;
USHORT Reserved;

} CPID;

/* epid */

The CPID structure specifies the code-page identifier for a logical keyboard.

idCodePage Specifies the code-page ID. It can be one of the following
values:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

Reserved Specifies a reserved value; must be zero.

KBD_GETCODEP AGEID

336 DATETIME

• DATETIME

Fields

See Also

• DCBINFO

Fields

typedef struct _DATETIME {
UCHAR hours;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
UCHAR day;
UCHAR month;
USHORT year;
SHORT timezone;
UCHAR weekday;

} DATETIME;

i' date wi

The DATETIME structure contains the date and time.

hours Specifies the current hour using values from 0 through 23.
minutes Specifies the current minute using values from 0 through 59.
seconds Specifies the current second using values from 0 through 59.
hundredths Specifies the current hundredths of a second using values from 0
through 99.
day Specifies the current day of the month using values from 1 through 31.
month Specifies the current month of the year using values from 1 through 12.
year Specifies the current year.

timezone Specifies the difference (in minutes) between the current time zone
and Greenwich Mean Time (GMT). This field is positive for time zones west of
Greenwich; it is negative for time zones east of Greenwich. For example, for
Eastern Standard Time this field is 300 (that is, five hours, 5 X 60, after GMT).
If this field is -1, the time zone is undefined.

weekday Specifies the current day of the week using values from 0 through 6
(Sunday equals zero).

DosGetDateTime, DosSetDateTime

typedef struct _DCBINFO { /* dcbinf */
USHORT usWriteTimeout;
USHORT usReadTimeout;
BYTE fbCtlHndShake;
BYTE fbFlowReplace;
BYTE fbTimeout;
BYTE bErrorReplacementChar;
BYTE bBreakReplacementChar;
BYTE bXONChar;
BYTE bXOFFChar;

} DCBINFO;

The DCBINFO structure holds device-control block information.

usWriteTimeo~t Specifies the time-out in one-hundredths of a second. If set
to zero, the time-out is 0.01 seconds; if set to 1, the time-out is 0.02 seconds,
and so on.

usReadTimeout Specifies the time-out in one-hundredths of a second. If set
to zero, the time-out is 0.01 seconds; if set to 1, the time-out is 0.02 seconds,
and so on.

DCBINFO 337

tbCtlHndShake Specifies the control and handshaking modes for the DTR
and other signals. It can be a combination of the following values:

Value Meaning

MODE_DTR_CONTROL Enable the data-terminal-ready (DTR) control
mode.

MODE_DTR_HANDSHAKE Enable the data-terminal-ready (DTR) input
handshaking mode.

MODE_CTS_HANDSHAKE Enable output handshaking using the clear­
to-send (CTS) signal.

MODE_DSR_HANDSHAKE Enable output handshaking using the data­
set-ready (DSR) signal.

MODE_DCD_HANDSHAKE Enable output handshaking using the data­
carrier-detect (DCD) signal.

MODE_DSR_SENSITIVITY Enable input sensitivity using the data-set­
ready (DSR) signal.

tbFlowReplace Specifies the flow control and replacement character modes.
It can be a combination of the following values:

Value

MODE_ERR OR_CHAR

MODE_NULL_STRIPPING

MODE_BREAK_CHAR

MODE_RTS_CONTROL

Meaning

Enable automatic transmit flow control
(XON/XOFF).

Enable automatic receive flow control
(XON/XOFF).

Enable error replacement character.

Enable null stripping (remove null bytes).

Enable break replacement character.

Enable the request-to-send (RTS) control
mode.

Enable the request-to-send (RTS) input
handshaking mode.

MODE_TRANSMIT_TOGGLE Enable toggling on transmit mode.

fbTimeout Specifies the time-out processing for the device. It can be a com­
bination of the following values:

Value Meaning

MODE_NO_WRITE_TIMEOUT Enable write infinite time-out
processing.

MODE_READ_TIMEOUT Enable normal read time-out
processing.

MODE_ W AIT_READ_ TIMEOUT Enable wait-for-something read
time-out processing.

MODE_NOWAIT_READ_TIMEOUT Enable no-wait read time-out
processing.

bErrorReplacementChar
bBreakReplacementChar

Specifies the error replacement character.

Specifies the break replacement character.

338 DCBINFO

See Also

bXONChar Specifies the transmission on (XON) character.

bXOFFChar Specifies the transmission off OCOFF) character.

ASYNC_GETDCBINFO, ASYNC_SETDCBINFO

• DEVICEPARAMETERBLOCK

Fields

See Also

• DOSFSRSEM

Fields

typedef struct _DEVICEPARAMETERBLOCK {
USHORT reserved1;
USHORT cCylinders;
USHORT cHeads;
USHORT cSectorsPerTrack;
USHORT reserved2;
USHORT reserved3;
USHOR! reserved4;
USHORT reserved5;

} DEVlCEPARAMETERBLOCK;

/* dvpblck */

The DEVICEPARAMETERBLOCK structure contains device parameters for the
physical disk.

reserved!

cCylinders

Specifies a reserved value; must be zero.

Specifies the number of cylinders on the physical device.

cHeads Specifies the number of heads on the physical device.

cSectorsPerTrack Specifies the number of sectors per track on the physical
device.

reserved2-reservedS Specifies a reserved value; must be zero.

PDSK_GETPHYSDEVICEP ARAMS

typedef struct _DOSFSRSEM {
USHORT cb;
PlD pid;
TID tid;
USHORT cUsage;
USHORT client;
ULONG sem;

} DOSFSRSEM;

/* dosfsrs */

The DOSFSRSEM structure contains information for a fast-safe RAM sema­
phore.

cb Specifies the ltmgth of the structure (in bytes). It must be set to i4.
pid Specifies the process identifier of the process that owns the semaphore. If
this field is zero, the semaphore is not owned.

tid Specifies the thread identifier of the thread that owns the semaphore.

cUsage Specifies the number of times the owner has issued a DosFSRamSem­
Request function without a corresponding DosFSRamSemClear function.

See Also

• FDATE

Fields

See Also

• FILEFINDBUF

Fields

FILEFINDBUF 339

client Specifies any owner-recorded information that may be needed through
maintain the semaphore and the resource being managed.

sem Specifies the RAM semaphore to be used in this request.

DosFSRamSemClear, DosFSRamSemRequest

typedef str~ct _FDATE { /* fdate */
unsigned day : 5;
unsigned month 4;
unsigned year : 7;

} FDATE;

The FDATE structure is used in various other structures to specify the day,
month, and year.

day Specifies the day.

month Specifies the month.

year Specifies the year.

FILEFINDBUF, FILESTATUS, FSINFO

typedef struct _FILEFINDBUF {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile;
ULONG cbFileAlloc;
USHORT attrFile;
UCHAR cchName;
CHAR achName[13];

} FILEFINDBUF;

/* findbuf ~/

The FILEFINDBUF structure contains information about a file.

fdateCreation Specifies the date the file was created.

ftimeCreation Specifies the time the file was created.

fdateLastAccess Specifies the date the file was last accessed.

ftimeLastAccess Specifies the time the file was last accessed.

fdateLastWrite Specifies the date the file was last written to.

ftim~LastWrite Specifies the time the &le was last written to.

cbFile Specifies the end of file data.

(!bFileAlloc Specifies the allocated file size.

attrFile Specifies the file attributes.

340 FILEFINDBUF

See Also

• FILELOCK

Fields

See Also

• FILESTATUS

Fields

Comments

See Also

cchName Specifies the length of the null-terminated filename.

achName [13] Specifies the null-terminated filename.

DosFindFirst, DosFindNext, FDATE, FTIME

typedef struct _FILELOCK {
LONG lOffset;
LONG lRange;

} FILELOCK;

/* flock * /

The FILELOCK structure contains information about the starting position and
number of bytes of a portion of a file to be locked or unlocked.

IFileOffset Specifies the offset from the beginning of the file to the start of
the area to be locked or unlocked.

IRangeLength Specifies the length of the locked or unlocked area (in bytes).

DosFileLocks

typedef struct _FILESTATUS {
FDATE fdateCreation;
FTIME ftimeCreation;
FDATE fdateLastAccess;
FTIME ftimeLastAccess;
FDATE fdateLastWrite;
FTIME ftimeLastWrite;
ULONG cbFile; .
ULONG cbFileAlloc;
USHORT attrFile;

} FILESTATUS;

/* fsts */

The FILESTATUS structure contains information about the status of a file.

fdateCreation Specifies the date the file was created.

ftimeCreation Specifies the time the file was created.

fdateLastAccess Specifies the date the file was last accessed.

ftimeLastAccess
fdateLastWrite

Specifies the time the file was last accessed.

Specifies the date the tile was last written to.

ftimeLastWrite Specifies the time the file was last written to.

cbFile Specifies the end of file data.

cbFileAlloc Specifies the allocated file size.

attrFile Specifies the file attributes ..

The cbFile, cbFileAlloc, and attrFile fields are not used by the DosSetFilelnfo
function.

DosQFilelnfo, DosSetFilelnfo

• FONTINFO

Fields

See Also

• FRAME

Fields

See Also

• FSALLOCATE

Fields

typedef struct _FONTINFO {
USHORT idCodePage;
USHORT idFont;

} FONTINFO;

FSALLOCATE 341

1* finfo *1

The FONTINFO structure specifies the code-page and font identifiers for a
printer font.

idCodePage Specifies the code-page ID. It can be one of the following
values:

Number Code page

437

850

860

863

865

United States

Multilingual

Portuguese

French-Canadian

Nordic

idFont Specifies the font. The permitted font ID depends on the printer and
on the loaded fonts.

PRT-ACTIVATEFONT, PRT_QUERYACTIVEFONT, PRT_VERIFYFONT

typedef struct _FRAME {
BYTE bCharsPerLine;
BYTE bLinesPerInch;

} FRAME;

1* frm *1

The FRAME structure contains frame-control information for a printer.

bCharsPerLine Specifies the number of characters on a line, either 80 or
132.

bLinesPerInch Specifies the number of lines per inch, either 6 or 8.

PRT_GETFRAMECTL, PRT_SETFRAMECTL

typedef struct _FSALLOCATE {
ULONG idFileSystem;
ULONG cSectorUnit;
ULONG cUnit;
ULONG cUnitAvail;
USHORT cbSector;

} FSALLOCATE;

1* fsalloc *1

The FSALLOCATE structure contains information about a disk drive.

idFileSystem Specifies the file-system identifier.

cSectorUnit Specifies the number of sectors per allocation unit.

342 FSALLOCATE

See Also

• FSINFO

Fields

See Also

• FTIME

Fields

See Also

cUnit Specifies the number of allocation units.

cUnitAvaii Specifies the available allocation units.

cbSector Specifies the bytes per sector.

DosQFSlnfo

typedef struct _FSINFO {
FDATE fdateCreation;
FTIME ftimeCreation;
VOLUMELABEL vol;

} FSINFO;

/* fsinf * /

The FSINFO structure contains information about the volume label of a disk.

fdateCreation Specifies the date the volume label was created.

ftimeCreation Specifies the time the volume label was created.

vol Specifies a VOLUMELABEL structure that will contain the name of the
volume label.

DosQFSlnfo, VOLUMELABEL

typedef struct _FTIME { /* ftime */
unsigned twosecs : 5;
unsigned minutes : 6;
unsigned hours : 5;

} FTIME;

The FTIME structure contains the time in seconds, minutes, and hours.

twosecs Specifies the number of seconds divided by two. To get the actual
value, you must multiply it by two. For example, a value of 1 specifies 2 seconds,
a value of 2 specifies 4 seconds, and so on.

minutes Specifies the minutes.

hours Specifies the hours.

FILEFINDBUF, FILESTATUS

• GINFOSEG

Fields

typedef struct _GINFOSEG { I' gis 'I
ULONG time;
ULONG msecs;
UCHAR hour;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
USHORT timezone;
USHORT cusecTimerlnterval;
UCHAR day;
UCHAR month;
USHORT year;
UCHAR weekday;
UCHAR uchMajorVersion;
UCHAR uchMinorVersion;
UCHAR chRevisionLetter;
UCHAR sgCurrent;
UCHAR sgMax;
UCHAR cHugeShift;
UCHAR fProtectModeOnly;
USHORT pidForeground;
UCHAR fDynamicSched;
UCHAR csecMaxWait;
USHORT cmsecMinSlice;
USHORT cmsecMaxSlice;
USHORT bootdrive;
UCHAR amecRAS[32];
UCHAR csgWindowableVioMax;
UCHAR csgPMMax;

} GINFOSEG;

GINFOSEG 343

The GINFOSEG structure contains various global information.

time Specifies the time from January 1, 1970 (in seconds).

msecs Specifies the current system time (in milliseconds).

hour Specifies the current hour using values from 0 through 23.

minutes Specifies the current minute using values from 0 through 59.

seconds Specifies the current second using values from 0 through 59.

hundredths Specifies the current hundredths of a second using values from 0
through 99.

timezone Specifies the difference (in minutes) between the current time zone
and Greenwich Mean Time (GMT). This field is positive for time zones west of
Greenwich; it is negative for time zones east of Greenwich. For example, for
Eastern Standard Time this field is 300 (that is, five hours, 5 X 60, after GMT).
If this field is -1, the time zone is undefined.

cusecTimerlnterval Specifies the timer interval (in milliseconds).

day Specifies the current day of the month using values from 1 through 31.

month Specifies the current month of the year using values from 1 through 12.

year Specifies the current year.

weekday Specifies the current day of the week using values from 0 through 6
(Sunday equals zero).

uchMajorVersion Specifies the major version number.

uchMinorVersion Specifies the minor version number.

chRevisionLetter Specifies the revision letter.

344 GINFOSEG

See Also

• HOTKEY

Fields

sgCurrent Specifies the current foreground screen group.

sgMax Specifies the maximum number of screen groups.

cHugeShift Specifies the shift count for huge segments.

fProtectModeOnly Specifies the protected-mode-only indicator.

pidForeground

fDynamicSched

Specifies the identifier of the current foreground process.

Specifies the dynamic variation flag (1 equals enabled).

csecMaxWait

cmsecMinSlice

Specifies the maximum wait (in seconds).

Specifies the minimum time slice (in milliseconds).

cmsecMaxSlice Specifies the maximum time slice (in milliseconds).

bootdrive Specifies the boot drive.

amecRAS [32] Specifies that each bit corresponds to a system-trace major
code from OxOOOO through OxOOFF. The most significant bit (leftmost) of the first
byte in the array corresponds to major code OXOOOO. If a bit is cleared, the trace
is disabled. If a bit is set, the trace is enabled.

csgWindowable VioMax Specifies the maximum number of VIO window­
compatible sessions.

csgPMMax Specifies the maximum number of Presentation Manager ses­
sions.

DosGetInfoSeg, LINFOSEG

typedef struct _HOTKEY { /* htky */
USHORT fsHotKey;
UCHAR uchScancodeMake;
UCHAR uchScancodeBreak;
USHORT idHotKey;

} HOTKEY;

The BOTKEY structure contains information for the session-manager hot key.

fsHotKey Specifies the setting for the session-manager hot key. It can be a
combination of the following values:

Value Meaning

RIGHTSHIFT Right SHIff key down.

LEFTSHIFT Left SHIff key down.

LEFTCONTROL Left CONTROL key down.

LEFTALT Left ALT key down.

RIGHTCONTROL Right CONTROL key down.

RIGHTALT Right ALT key down.

SCROLLLOCK SCROLL LOCK key down.

NUMLOCK NUMLOCK key down.

CAPSLOCK CAPSLOCK key down.

SYSREQ SYSREQ key down.

Comments

See Also

• KBDINFO

Fields

KBDINFO 345

uchScancodeMake Specifies the scan code of the hot-key "make." If this
field is given, the system detects the hot key when the user presses the key that
generates this scan code.

uchScancodeBreak Specifies the scan code of the hot-key "break." If this
field is given, the system detects the hot key when the user releases the key that
generates this scan code.

idHotKey Specifies the session-manager hot-key identifier. It must be a value
from 0 through 15.

The scancodeMake and scancodeBreak fields are mutually exclusive; only one
may be specified.

KBD_GETSESMGRHOTKEY, KBD_SETSESMGRHOTKEY

typedef struct _KBDINFO {
USHORT cb;
USHORT fsMask;
USHORT chTurnAround;
USHORT fslnterim;
USHORT fsState;

} KBDINFO;

/* kbst */

The KBDINFO structure contains status information for a logical keyboard.

cb Specifies the length (in bytes) of the KBDINFO structure. It must be set
to 10.

fsMask Specifies the current keyboard modes. It can be a combination of the
following values:

Value

KEYBOARD_ECHO_ON

KEYBOARD_ECHO_OFF

KEYBOARD_BINARY_MODE

KEYBOARD_ASCILMODE

KEYBOARD_MODIFY_STATE

KEYBOARD_MODIFY _TURN AROUND

KEYBOARD_2B_ TURNAROUND

Meaning

Echo mode turned on.

Echo mode turned off.

Binary mode turned on.

ASCII mode turned on.

The fsState field is to be
modified. Applies to the
KbdSetStatus function only.

The fsInterim field is to be
modified. Applies to the
KbdSetStatus function only.

The chTumAround field is to
be modified. Applies to the
KbdSetStatus function only.

Two-byte turn-around charac­
ter. If not given, the turn­
around character is one byte.

Shift reporting turned on.

346 KBDINFO

See Also

• KBDKEYINFO

Fields

Note that echo mode is either'turned on or off. Only one input mode:binary or
ASCII, can be turned on at any given time.

chTurnAround Specifies the turn-around character. If this field value
includes Ox0080, the character is two-bytes packed in the low a~d high bytes
of this field. Otherwise, the character is a single byte in the low byte.

fsInterim Specifies the interim character flags. If this field is OXOO20, the pro­
gram has requested character copversion. If it is OxOO80, the interim character
flag is on.

fsState Specifies the state of the shift keys. It can be any combin~tion of the
following values: '

Value

RIGHTSHIFT

LEFTSHIFT

CONTROL

ALT

SCROLLLOCK_ON

NUMLOCK_ON

CAPSLOCK_ON

INSERT_ON

Meaning

Right SHIFT key down.

Left SHIFT key down.

CONTROL key down.

ALT key down.

SCROLL LOCK mode turned on.

NUMLOCK mode turned on.

CAPSLOCK mode turned on.

INSERT mode turned on.

KbdGetStatus, KbdSetStatus

typedef struct _KBDKEYINFO {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShlft;
USHORT fsState;
ULONG time;

} KBDKEYINFO;

1* kbci *1

The KBDKEYINFO structure contains information when a key is pressed.

chChar Specifies the character derived from translation of the chScan field.

chScan Specifies the scan code received from the keyboard, identifying the
key pressed. This scan code maybe modified during the translation process.

fbStatus Specifies the state of the retrieved scan code. It can be any combina­
tion of the following values:

Value

CONVERSION_REQUEST

FIN AL_CHAR_IN

INTERIM_CHAR_IN

Meaning

Shift key is received (valid only in binary
mode when shift reporting is turned on).

Conversion requested.

Final character received.

Interim character received.

bNlsShift Specifies a reserved value; must be zero.

See Also

• KBDTYPE

Fields

See Also

KBDTYPE 347

fsState Specifies the state of the shift keys. It can be any combination of the
following values:

Value

RIGHTSHIFT

LEFTSHIFT

CONTROL

ALT

SCROLLLOCK_ON

NUMLOCK_ON

CAPSLOCK_ON

INSERT_ON

LEFTCONTROL

LEFTALT

RIGHTCONTROL

RIGHTALT

SCROLLLOCK

NUMLOCK

CAPSLOCK

SYSREQ

Meaning

Right SHIFf key down.

Left SHIFf key down.

Either CONTROL key down.

Either ALT key down.

SCROLL LOCK mode turned on.

NUMLOCK mode turned on.

CAPSLOCK mode turned on.

INSERT key turned on.

Left CONTROL key down.

Left ALT key down.

Right CONTROL key down.

Right ALT key down.

SCROLL LOCK key down.

NUMLOCK key down ..

CAPSLOCK key down.

SYSREQ key down.

time Specifies the time stamp of the keystroke (in milliseconds).

KbdCharIn, KbdPeek, KBDYEEKCHAR

typedef struct _KBDTYPE {
USHORT usType;
USHORT reservedl;
USHORT reserved2;

} KBDTYPE;

/* kbdtyp */

The KBDTYPE structure contains information about the keyboard type.

usType Specifies the keyboard type. If this field is OXOOOO, an IBM PC/AT
keyboard is specified. If it is OxOOOl, an IBM enhanced keyboard is specified.
Values from OxOOO2 to OxOOO7 are reserved for Japanese keyboards.

reservedl Specifies a reserved value; must be zero.

reserved2 Specifies a reserved value; must be zero.

KBD_GETKEYBDTYPE

348 KBDTRANS

• KBDTRANS

Fields

typadaf struct _KBDTRANS {
UCHAR chChar;
UCHAR chScan;
UCHAR fbStatus;
UCHAR bNlsShift;
USHORT fsState;
ULONG time;
USHORT fsOO;
tJSHORT fsXlate;
USHORT fsShift;
USHORT sZero;

} KBOTRANS;

/* kbxl */

The KBDTRANS structure contains translated character information.

chChar Specifies the character value of the translated scan code. The func­
tion copies the value to this field before returning.

chScan Specifies the scan code of the keystroke to be translated. This field
must be set .before the function is called.

fbStatus Specifies the state of the returned scan code. It can be any combina­
tion of the following values:

Value

CONVERSION_REQUEST

FINAL_CHAR_IN

INTERIM-CHAR_IN

Meaning

Shift key received (valid only in binary mode
when shift reporting is turned on).

Conversion requested.

Final character received.

Interim character received.

bNlsShift
fsState
values:

Specifies a reserved value; must be zero.

Specifies the state of the shift keys. It can be one of the following

Value

RIGHTSHIFT

LEFTSHIFT

CONTROL

ALT

SCROLLLOCK_ON

NUMLOCK_ON

CAPSLOCK_ON

INSERT_ON

LEFTCONTROL

LEFTALT

RIGHTCONTROL

RIGHTALT

SCROLLLOCK

NUMLOCK

CAPSLOCK

SYSREQ

Meaning

Right SHIFf key down.

Left SHIFf key down.

Either CONTROL key down.

Either ALT key down.

SCROLL LOCK mode turned on.

NUMLOCK mode turned on.

CAPSLOCK mode turned on.

INSERT mode turned on.

Left CONTROL key down.

Left ALT key down.

Right CONTROL key down.

Right ALT key down.

SCROLL LOCK key down.

NUMLOCK key down.

CAPSLOCK key down.

SYSREQ key down.

See Also

• LINECONTROL

Fields

LINECONTROL 349

time Specifies the time stamp of the keystroke (in milliseconds).

fsDD Defined for monitor packets. For more information, see the DosMon­
Reg function.

fsXlate Specifies the translation flags. If this field is OXOOOO, translation is
incomplete. If it is OxOOOl, translation is complete.

fsShift Specifies the state of translation across successive calls. Initially, this
field should be zero. It should be reset to zero when the caller wants to start a
new translation. Note that it may take several calls to the KbdXlate function to
complete a character, so this field should not be changed unless a new transla­
tion is desired. This field is cleared when translation is complete.

sZero Specifies a reserved value; must be zero.

DosMonReg, KbdXlate

typedef struct _LINECONTROL {
BYTE bDataBits;
BYTE bParity;
BYTE bStopBits;
BYTE fbTransBreak;

} LINECONTROL;

It lnctl *1

The LINECONTROL structure contains line characteristics for a device.

bDataBits Specifies the number of data bits to be used. It can be one of the
following values:

Value Meaning

OX05 5 data bits

Ox06 6 data bits

OX07 7 data bits

OX08 8 data bits

bParity Specifies the type of parity checking. It can be one of the following
values:

Value Meaning

OXOO No parity

OX01 Odd parity

OX02 Even parity

OX03 Mark parity (parity bit always 1)

Ox04 Space parity (parity bit always 0)

350 LlNECONTROL

Comments

See Also

• LINFOSEG

Fields

bStopBits
ing values:

Specifies the number of stop bits used. It can be one of the follow-

Value Meaning

1 stop bit OXOO

OxOl

Ox02

1.5 stop bits (valid only with 5-bit word length)

2 stop bits (not valid with 5-bit word length)

tbTransBreak Specifies whether the device is transmitting a break character.
If this field is OXOO, a break character is not transmitted. If it is OxOl, a break
character is transmitted.

The ASYNC_GETLINECTRL function (OxOOOl, Ox0062) uses all four bytes.
The ASYNC_SETLINECTRL function (OxOOOl, OXOO42) uses only the first three
bytes.

ASYNC_GETLINECTRL, ASYNC_SETLINECTRL

typedef struct _LINFOSEG {
PIO pidCurrent;
PIO pidParent;
USHORT prtyCurrent;
TIO tidCurrent;
USHORT sgCurrent;
UCHAR rfProcStatus;
UCHAR dummyl;
BOOL fForeground;
UCHAR typeProcess;
UCHAR dummy2 ;
SEL selEnvironment;
USHOR~ offCmdLine;
USHORT cbOataSegment;
USHORT cbStack;
USHORT cbHeap;
HMODULE hmod;
SEL selDS;

} LINFOSEG;

/* lis */

The LINFOSEG structure contains information local to the current process.

pidCurrent Specifies the identifier of the current process.

pidParent Specifies the identifier of the parent process.

prtyCurrent Specifies the priority of the current thread.

tidCurrent Specifies the identifier of the current thread.

sgCurrent Specifies the current screen group.

rfProcStatus Specifies the sub screen group.

dummyl Reserved.

fForeground Specifies that the current process is in foreground.

typeProcess Specifies the process type. It can be one of the following values:
Value

o
1

Meaning

Process is running in a full-screen protected mode session.

Process is running in the compatibility box.

Comments

See Also

MODEMSTATUS 351

Value Meaning

2

3

4

Process is running in a VIO-windowed session.

Process is running in the Presentation Manager screen group.

Process is running as a detached process.

dummy2 Reserved.

selEnvironment Specifies the selector to the application's copy of the
environment.

o ft'CmdLine Specifies the offset to the environment where the command line
that is used to run the current application is copied.

cbDataSegment Specifies the size of the default data segment.

cbStack Specifies the size of the stack.

cbHeap Specifies the size of the heap.

hmod Identifies the program.

selDS Specifies the default data segment.

The following fields are contained in registers at startup:
Field Register

SelEnvlronment ax

offCmdLlne bx

ebDataSegment ex

ebStaek dx

ebHeap 51

hmod dl

5eIDS d5

. DosGetInfoSeg, GINFOSEG

• MODEMSTATUS

Fields

typedef struct _MODEMSTATUS {
BYTE fbModemOn;
BYTE fbModemOff;

} MODEMSTATUS;

It mdmst tl

The MODEMSTATUS structure contains information about modem-control
signals.

tbModemOn Specifies the modem-control signals to be enabled. It can be
one or both of the following values:

Value Meaning

DTR_ON Data-terminal-ready (DTR) signal enabled.

RTS_ON Ready-to-transmit (RTS) signal enabled.

If it is OxOO, no signals are enabled.

352 MODEMSTATUS

Comments

See Also

• MONIN

Fields

See Also

fbModemOft' Specifies the modem-control signals to be disabled. It can be
one or both of the following values:

Value Meaning

Data-terminal-ready (RTR) signal disabled.

Ready-to-transmit (RTS) signal disabled.

If it is OxFF, no signals are enabled.

Any values other than those specified for thefbModemOn and fbModemOff
fields will cause an error value.

ASYNC_SETMODEMCTRL

typedef struct _MONIN {
USHORT cb;
BYTE abReserved[18];
BYTE abBuffer[lOB];

} MONIN;

/* mnin */

The MONIN structure contains monitor-input information.

cb Specifies the length of the structure (in bytes). The structure must be at
least 64 bytes; 128 bytes is the recommended length.

abReserved[18] Specifies a reserved space.

abBuft'er[108] Specifies a buffer area which must be greater than or equal to
the buffer used by the device driver.

DosMonReg

• MONITORPOSITION

Fields

typedef struct _MONITORPOSITION {
USHORT fPosition;

/* mnpos */

USHORT index;
PBYTE pbInBuf;
USHORT offOutBuf;

} MONITORPOSITION;

The MONITORPOSITION structure contains information about a monitor.

fposition Specifies the position-flag parameter used in the DosMonReg func­
tion. It can be one of the following values:

Value

MONITOR_DEFAULT

MONITOR_BEGIN

Meaning

Place the monitor anywhere in the chain.

Place the monitor at the beginning of the chain, in
front of any other monitors already in the chain.

Place the monitor at the end of the chain, after any
other monitors already in the chain.

See Also

• MONOUT

Fields

See Also

MOUEVENTINFO 353

index Specifies a device-specific value.

pblnBuf Points to the monitor-input buffer that is initialized by the monitor
dispatcher and used by the DosMonRead function.

offOutBuf Specifies the offset to the monitor-output buffer that is initialized
by the monitor dispatcher and used by the DosMon Write function.

DosMonRead, DosMonReg, DosMonWrite, MON~EGISTERMONITOR

typedef struct _MONOUT {
USHORT cb;
BYTE abReserved[lS];
BYTE abBuffer[lOS];

} MONOUT;

/' mnout '/

The MONOUT structure contains monitor-output information.

cb Specifies the length of the structure (in bytes). The structure must be at
least 64 bytes; 128 bytes is the recommended length.

abReserved[l8) Specifies a reserved space.

abBuffer[108] Specifies a buffer area which must be greater than or equal to
the buffer used by t~e device driver.

DosMonReg

• MOUEVENTINFO

Fields

typedef struct _MOUEVENTINFO { /' mouev '/
USHORT fs;
ULONG time;
USHORT row;
USHORT col;

} MOUEVENTINFO;

The MOUEVENTINFO structure contains information about a mouse event.

fs Specifies the action that generated the mouse event. It can be any combina-
tion of the following values: ..

Value

MOUSE_MOTION

MOUSE_MOTION_ WITfLBNLDOWN

MOUSE_BNLDOWN

Meaning

Mouse moved with no buttons
down.

Mouse moved with button 1
down.

Button 1 down.

354 MOUEVI;NTINFO

See Also

• MOUQUEINFO

Fields

See Also

• MUXSEM

Fields

See Also

MOUSE_BN2_DOWN

MOUSE_MOTION_ WITfLBN3_DOWN

M.aning

~Tiouse moved with button 2
down.

Button 2 <lown.

Mouse moved with button 3
down.

Button ~ down.

If the mouse button is released with no motion, this field is zero.

time Specifies the number of milliseconds since MS OS/2 was b()oted.

row Specifies the x-coordinat~ of the mouse.

col Specifies the y-:-coordinate of the mouse.

MouRea~EventQue

typedef struct _MOUQUEINFO {
USHORT cEvents;
USHORT cma~Events;

} MOUQUEINFO;

/* mouqi */

The MOUQUEINFO structure contains information about the mouse queue.

cEvents Specifies the number of event-queue elements. It can be any value
between zero and the maximum queue size.

cmaxEvents Specifies the maximum queue size (the maximum number of
queue' elements).

MouGetNumQueEI

typedef struct _MUXSEM {
USHORT zero;
HSEM hsem;

} MUXSEM;

/* mxs */

The MUXSEM structure contains the semaphore used in the MUXSEMLIST
str~cture. '

zero Specifies a reserved value; must be zero.

hsem Identifies the semaphore. The handle must have been created previously
by using the DosCreat~Sem or Do~OpenSem function.

DosCreateSem, DosOpenSem, MUXSEMLIST

• MUX8EMLIST

Fields

See Also

• NOPTRREC,T

Fields

Comments

See Also

typedef struct _MUXSEMLIST {
USHORT cmxs;
MQXSEM amxs[16];

} MUXSEMLIST;

NOPTRRECT 355

/* mxsl */

The MUXSEMLIST structure contains a list of up to 16 semaphores.

crnxs Specifies the number of semaphores in the list.

arnxs[16] Specifies an array of MUXSEM structures.

DosMuxSem Wait, MUXSEM

typedef struct _NOPTRRECT {
USHORT row;
USHORT col;
USHORT cRow;
USHORT cCol;

} NOPTRRECT;

/* mourt */

The NdPTRRECT structure contains the exclusion rectangle for the mouse.

row Specifies the x-coordinate of the upper-left corner.

col Specifies the y-coordinate of the upper-left corner.

cRow Specifies the x-coordinate of the lower-right comer.

ceol Specifies the y-coordinate of the lower-right corner.

The units for these fields depend on the current video mode. For text mode,
values are given in character cells. For graphics mode, values are given in pels.
The fields must not exceed the minimum and maximum coordinate values for
screen height and width.

MouRemovePtr

356 PIDINFO

• PIDINFO

Fields

See Also

• PIPEINFO

Fields

See Also

typedef struct _PIDINFO {
PID pid;
TID tid;
PIDpidParent;

} PIDINFO;

iw pidi wi

The PIDINFO structure contains process identifiers.

p'id Specifies the process identifier of the calling process.

tid . ., Specifies the thread identifier of the calling thread.

pidParent Specifies the process identifier of the parent process of the calling
process.

DosGetPID

typedef struct _PIPE INFO {
USHORT cbOut;
USHORT cbIn;
BYTE cbMaxInst;
BYTE cbCurInst;
BYTE cbName;
CHAR szName[l];

} PIPEINFO;

1* nmpinf *1

The PIPEINFO structure contains named-pipe information retrieved by using the
DosQNmPipelnfo function. The length of the structure varies depending on the
length of the szName field.

cbOut Specifies the size of the buffer for outgoing data.

cbIn Specifies the size of the buffer for incoming data.

cbMaxInst Specifies the maximum number of pipe instances that can be
created.

cbCurInst Specifies the number of current pipe instances.

cbName Specifies the length of the pipe name.

szName[1] Contains a null-termiriated string with the pipe name, including
the computer name if the pipe is remote.

DosQNmPipelnfo

• PTRACEBUF

Fields

PTRACEBUF 357

typedef struct _PTRACEBUF { 1* ptrcbf *1
PID pid;
TID tid;
USHORT cmd;
USHORT value;
USHORT offv;
USHORT segv;
USHORT mte;
USHORT rAX;
USHORT rBX;
USHORT rCX;
USHORT rDX;
USHORT rSI;
USHORT rDI;
USHORT rBP;
USHORT rDS;
USHORT rES;
USHORT rIP;
USHORT rCS;
USHORT rF;
USHORT rSP;
USHORT rSS;

} PTRACEBUF;

The PTRACEBUF structure contains various debugging information.

pid Specifies the process identifier of the program being debugged.

tid Specifies the thread identifier of the program being debugged.

cmd Specifies the command to carry out. It can be one of the following
values:

Value

OxOOOl

OxOOO2

OxOOO3

OxOOO4

OxOOOS

OxOOO6

OxOOO7

OxOOO8

OxOOO9

OxOOOA

OxOOOB

OXOOOC

OxOOOD

OxOOOE

Meaning

Read memory I-space.

Read memory D-space.

Read registers.

Write memory I-space.

Write memory D-space.

Write registers.

Go (with signal).

Terminate child process.

Single step.

Stop child process.

Freeze child process.

Resume child process.

Convert segment number to selector.

Get floating-point registers. The segv and offv fields must
specify the address of a 94-byte buffer that receives the
floating-point register values.

358 PTRACEBUF

Value Meaning

OxOOOF Set floating-point registers. The segv and oft'v fields must
specify the address of a 94-byte buffer that contains the ,
floating-point register values.

OxOOlO Get library-module name. The value field must contain the
handle of the library module. The segv and offv fields must
contain the address of the buffer that receives the name. This
command should be used instead of the DosGetModHandle
and DosGetModName functions to verify the name of a library
loaded by the program being debugged.

When the function returns, it copies a code that specifies the command
result to the field. The return code can be one of the following values:

Value

OXOOOO

OxFFFF

OxFFFE

OxFFFD

OxFFFC

OxFFFB

OxFFFA

OxFFF9

OxFFF8

OxFFF7

Meaning

Success return code.

Error. The error code is in the value field.

About to receive signal.

Single-step interrupt.

Hit break point.

Parity error.

Process dying.

General protection fault occurred. The fault type is in the
value field. The segv and offv fields contain the address that
caused the fault.

Library module has just been loaded. The value field contains
the library-module handle.

Process has not used 287 yet.

value Specifies the value to be used for a given command, or a return value
from a command. If an error occurs, the field is set to one of the following
values:

Value

OxOOOl

OxOOO2

OXOOO5

Meaning

Bad command.

Child process not found.

Child process untraceable.

offv Specifies the offset from the given segment.

segv Specifies a segment selector.

mte Specifies the module handle that contains the segment.

r AX Specifies the ax register.

rBX Specifies the bx register.

reX Specifies the ex register.

rDX Specifies the dx register.

rSI Specifies the si register.

rDI Specifies the di register.

PTRLOC 359

rBP Specifies the bp register.

rDS Specifies the ds register.

rES Specifies the es register.

rIP Specifies the ip register.

res Specifies the cs register.

rF Specifies flags.

rSP Specifies the sp register.

rSS Specifies the ss register.

See Also DosGetModHandle, DosGetModName, DosPTrace

• PTRDRAWFUNCTION

Fields

See Also

• PTRLOC

Fields

Comments

See Also

typedef struct _PTRDRAWFUNCTION {
PFN pfnDraw;
PCH pchDataSeg;

} PTRDRAWFUNCTION;

/* ptrdfnc */

The PTRDRA WFUNCTION structure contains information about a pointer-draw
function.

pfnDraw Points to the pointer-draw function.

pchDataSeg Points to the data segment of the pointer-draw function.

MOU_SETPROTDRA WADDRESS, MOU_SETREALDRA WADDRESS,
PT~GETPTRDRA WADDRESSFUNCTION

typedef struct _PTRLOC {
USHORT row;
USHORT col;

} PTRLOC;

/* moupl */

The PTRLOC structure contains the position of the mouse.

row Specifies the x-coordinate of the mouse.

col Specifies the y-coordinate of the mouse.

The values of the row and col fields depend on the current video mode of the
screen (as defined by the VioSetMode function). For text mode, values are given
in character cells. For graphics mode, values are given in pels.

MouGetPtrPos, MouSetPtrPos, VioSetMode

360 PTRSHAPE

• PTRSHAPE

Fields

Comments

See Also

• QUEUERESUL T

Fields

See Also

typedef struct _PTRSHAPE {
USHORT cb;
USHORT col;
USHORT row;
USHORT colHot;
USHORT rowHot;

} PTRSHAPE;

/* moups */

The PTRSHAPE structure contains information about the shape of the mouse.

cb Specifies the length in bytes of the AND and XOR masks.

col Specifies the width of each mask. For text mode, the width is' given in
character cells. For graphics mode, the width is given in pels. This value must be
greater than or equal to 1.

row Specifies the height of each mask. For text mode, the width is given in
character cells. For graphics mode, the height is given in pels. This value must
be greater than or equal to 1.

colHot Specifies the horizontal offset from the upper-left corner of the
pointer shape to the hot spot. For text mode, the offset is given in character
cells. For graphics mode, the offset is given in pels.

rowHot Specifies the vertical offset from the upper-left corner of the pointer
shape to the hot spot. For text mode, the offset is given in character cells. For
graphics mode, the offset is given in pels.

The cb field of this structure is always equal to the height times the width (row X
col). If the current video mode requires multiple bit planes, the row and col
fields specify the width and height of the first plane only, but the function copies
all bit planes to the specified buffer.

MouGetPtrShape, MouSetPtrShape

typedef struct _QUEUERESULT {
PID pidProcess;
USHORT usEventCode;

} QUEUERESULT;

/* qresc */

The QUEUERESULT structure contains the result of a queue-reading operation.

pidProcess Specifies the process identifier of the process that added the ele­
ment to the queue.

usEventCode Specifies a program-supplied event code. MS OS/2 does not
use this field and reserves it for any use a program may make of it.

DosPeekQueue, DosReadQueue

• RATEDELAY

Fields

See Also

• RESUL TCODES

Fields

See Also

• RXQUEUE

typedef struct _RATEDELAY {
USHORT usDelay;
USHORT usRate;

} RATEDELAY;

/* rtdly */

The RATEDELA Y structure contains typamatic information.

RXQUEUE 361

u sDelay Specifies the typamatic delay (in milliseconds). A value greater than
the maximum value defaults to the maximum value.

usRate Specifies the typamatic rate (characters-per-second). A value greater
than the maximum value defaults to the maximum value.

KBD_SETIYP AMATICRATE

typedef struct _RESULTCODES {
USHORT codeTerminate;
USHORT codeResult;

/* resc */

} RESULTCODES;

The RESULTCODES structure contains the results of a process when it ter­
minates.

codeTerminate Specifies the child-process identifier if the child process is
asynchronous. Otherwise, it specifies the termination code of the child process.
The termination code can be one of the following values:

Value

TC.-EXIT

TC_HARDERROR

TC_TRAP

Meaning

Normal exit

Hard-error termination

Trap operation

TC_KILLPROCESS Unintercepted DosKlllProcess function

codeResult Specifies the result code of the'terminating process in its last call
to the DosExit function. Specifies the exit code of the child process if the child
process is synchronous. This field is not used for an asynchronous child process.
The exit code is specified in the last call by the child process to the DosExit
function.

DosCwait, DosExecPgm, DosExit, DosKillProcess

typedef struct _RXQUEUE {
USHORT cch;
USHORT cb;

} RXQUEUE;

/* rxq */

The RXQUEUE structure contains the number of characters in the queue and
the size of the queue.

362 RXQUEUE

Fields cch Specifies the number of characters received or to be transmitted in the
device-driver queue.

See Also

• SCALEFACT

Fields

Comments

See Also

cb Specifies the size of the queue (in bytes).

ASYNC_GETINQUECOUNT, ASYNC_GETOUTQUECOUNT

typedef struct ~SCALEFACT {
USHORT rowScale;
USHORT eolSeale;

} SCALEFACT;

/' mouse '/

The SCALEF ACT structure contains information for scaling the mouse.

rowScale Specifies the vertical scaling factor (the number of mickeys the
mouse must move to change the vertical mouse position by one screen unit).

colScale Specifies the horizontal scaling factor (the number of mickeys the
mouse must move to change the horizontal mouse position by one screen unit).

The rowScale and colScale fields specify mickeys and will always be in the range
1 through 32,767. The screen units may be character cells or pels, depending on
the current video mode.

MouGetScaleFact, MouSetScaleFact

• SCREENGROUP

Fields

See Also

I SHIFTSTATE

typedef struet _SCREENGROUP {
USHORT idSereenGrp;
USHORT fTerminate;

} SCREENGROUP;

/' scrgrp '/

The SCREENGROUP structure contains information about the screen group.

idScreenGrp Specifies the screen-group identifier of the new foreground
screen or for notification action. The identifier .can range from zero to the max­
imum number of screen groups. The sgMax field in the global descriptor table
(GDT) information segment specifies the maximum number of screen groups.

ITerminate Specifies if the screen group is terminating. If it is OXOOOO, the
screen group is switching. If it is OxFFFF, the screen group is terminating.

KBD_SETFGNDSCREENGRP, MOU_SCREENSWITCH

typedef struct _SHIFTSTATE {
USHORT fsState;
BYTE fNLS;

} SHIF:'STATE;

/' shftst '/

The SHIFTSTATE structure contains information about the shift state of the
default keyboard of the current screen group.

Fields

See Also

• STARTDATA

START DATA 363

fsState Specifies the state of the shift keys. It can be any combination of the
following values:

Value

RIGHTSHIFT

LEFT SHIFf

CONTROL

ALT

SCROLLLOCK_ON

NUMLOCK_ON

CAPSLOCK_ON

INSERT_ON

LEFTCONTROL

LEFTALT

RIGHTCONTROL

RIGHTALT

SCROLLLOCK

NUMLOCK

CAPSLOCK

SYSREQ

Meaning

Right SHIFf key down.

Left SHIFf key down.

Either CONTROL key down.

Either ALT key down.

SCROLL LOCK mode turned on.

NUMLOCK mode turned on.

CAPSLOCK mode turned on.

INSERT mode turned on.

Left CONTROL key down.

Left ALT key down.

Right CONTROL key down.

Right ALT key down.

SCROLL LOCK key down.

NUMLOCK key down.

CAPSLOCK key down.

SYSREQ key down.

fNLS Specifies the state of the national-language-support keys. This is zero for
the United States.

KBD_GETSHIFISTATE, KBD_SETSHIFISTATE

typedef struct _STARTDATA {
USHORT Length;
USHORT Related;
USHORT FgBg;
USHORT TraceOpt;
PSZ PgmTitle;
PSZ PgmName;
PBYTE Pgmlnputs;
PBYTE TermQ;
PBYTE Environment;
USHORT InheritOpt;
USHORT SessionType;
PSZ IconFile;
ULONG PgmHandle;
USHORT PgmControl;
USHORT InitXPos;
USHORT InitYPos;
USHORT InitXSize;
USHORT InitYSize;

} STARTDATA;

/* stdata */

The STARTDATA structure contains information about a session that will be
started with the DosStartSession function.

364 START DATA

Fields Length Specifies the length of the structure (in bytes). It must be set to 50
bytes.

Related Specifies whether the session created is related to the calling session.
If this field is FALSE, the new session is an independent session (not related).
If it is TRUE, the new session is a child session (related).

FgBg Specifies whether the new session is started in the foreground or in the
background. If this field is TRUE, the session is started in the background. If it
is FALSE, the session is started in the foreground.

TraceOpt Specifies whether the program started in the new session isexe­
cuted under conditions for tracing. If this field is 0, there is no tracing. If it is 1,
there is tracing.

PgmTitle Points to the null-terminated string that specifies the program title.
The string can be up to 32 bytes long, including the null terminating character. If
the address specified is zero or if the null-terminated string is NULL, the initial
title is the value of the PgmName field minus any leading drive and path infor­
mation.

PgmName Points to the null-terminated string that specifies the drive, path,
and filename of the program to be loaded.

PgmInputs Points to the null-terminated string that specifies the input argu­
ments to be passed to the program.

TermQ Points to the null-terminated string that specifies the full path name of
an MS OS/2 queue or is equal to zero. This parameter is optional.

Environment Points to an environment string that is to be passed to the pro­
gram started in the new session. If this field is zero, the program in the new
session inherits the environment of the parent session if the InheritOpt field
is zero, or the environment of the program calling DosStartSession if the
InheritOpt field is one.

InheritOpt Specifies whether the program started in the new session inherits
the environment and open file handles of the calling process. If this field is zero,
inheritance is from the parent session. If this field is 1, inheritance is from the
calling process.

SessionType Specifies the type of session that should be created. It is one of
the following values:

Value

o

1

2

3

Meaning

Use the data specified by the PgmHandle field or allow MS
OS/2 to establish the session type.

Start the process in a full-screen session.

Start the process in a window session for programs using the
base video subsystem.

Start the process in a window session for programs using the
Presentation Manager application programming interface.

IconFile Points to a null-terminated string that contains the fully-qualified
device, path name, and filename of an icon definition. The system provides an
icon for window applications if an icon filename is not provided by the
DosStartSession call.

PgmHandle 0;, Specifies a program handle.

See Also

• STATUSDATA

Fields

STATUSDATA 365

PgmControl Specifies the initial state for a window application. This field is
ignored by full-screen sessions. It can be any combination of the following
values:

Value

o
2

4

Meaning

Invisible

Maximize

Minimize

No auto close 8

32768 Use specified position and size

InitXPos Specifies the initial x coordinate (in pels) for the initial-session win­
dow, where (0,0) is the lower-left corner of the display. This field is ignored for
full-screen sessions.

InitYPos Specifies the initial y coordinate (in pels) for the initial-session win­
dow, where (0,0) is the lower-left corner of the display. This field is ignored for
full-screen sessions.

InitXSize Specifies the width (in pels) for the initial-session window. This
field is ignored for full-screen sessions.

InitYSize Specifies the height (in pels) for the initial-session window. This
field is ignored for full-screen sessions.

DosStartSession

typedef struct _STATUSDATA {
USHORT Length;
USHORT Selectlnd;
USHORT Bindlnd;

} STATUSDATA;

/* stsdata */

The STATUSDATA structure contains status information about a session.

Length Specifies the length of the data structure (in bytes).

Selectlnd Specifies whether the target session should be set as selectable or
nonselectable. It can be one of the following values:

Value

TARGET_UNCHANGED

TARGET_SELECTABLE

Meaning

Leave current setting unchanged.

Set as selectable.

TARGET~OT_SELECT ABLE Set as nonselectable.

Bindlnd Specifies which session to bring to the foreground the next time the
parent session is selected. It can be one of the following values:

Value

BIND_UNCHANGED

BIND_CHILD

Meaning

Leave current setting unchanged.

A bond between the parent session and the
child session is established. The child session is
brought to the foreground the next time the

366 STATU S DATA

See Also

• STRINGINBUF

Fields

See Also

Value

DosSetSession

Meaning

Darent session is selected. If the child session is
~elected. the child session is brought to the fore­
ground.

Any bond previously established with the speci­
fied child session is broken. The parent session
is brought to the foreground the next time the
parent session is selected and the child session
is brought to the foreground the next time the
child session is selected.

typedef struct _STRINGINBUF {
USHORT cb;

/* kbsi */

USHORT cchIn;
} STRINGINBUF;

The STRINGINBUF structure contains information about the length of the buffer
used by the KbdStringIn function.

cb Specifies the length of the buffer (in bytes). The maximum value is OxOOFF.

cchIn Specifies the number of bytes read. The maximum value is OxOOFF.

KbdStringIn

• TRACKFORMAT

Fields

typedef struct _TRACKFORMAT {
BYTE bCommand;
USHORT usHead;
USHORT usCylinder;
USHORT usReserved;
USHORT cSectors;
struct {

BYTE bCylinder;
BYTE bHead;
BYTE idSector;
BYTE bBytesSector;

} FormatTable[l];
} TRACKFORMAT;

/* trckfmt */

The TRACKFORMAT structure contains information about the disk drive.

bCommand Specifies the type of track layout. If this field is OXOOOO, the track
layout contains nonconsecutive sectors or does not start with sector 1. If it is
OxOOOl, the track layout starts with sector 1 and contains only consecutive sec­
tors.

usHead Specifies the number of the physical head on which to perform the
operation.

usCylinder Specifies the cylinder number for the operation.

cSectors Specifies the number of sectors on the track being formatted.

See Also

• TRACKLAYOUT

Fields

TRACKLAYOUT 367

FormatTable[l] Specifies the format table. It is an array of structures that
contain the cylinder number, head number, sector identifier, and bytes per sec­
tor for each sector on the track. The bCylinder field specifies the cylinder
number. The bHead field specifies the head number. The idSector field specifies
the sector identifier, and the bBytesSedor field specifies the number of bytes per
sector. The first element defines these values for the first sector. The number of
elements depends on the number of sectors on the track. The bBytesSedor field
can be one of the following values:

Value Meaning

OXOOOO

OxOOO1

OxOOO2

OxOOO3

128 bytes per sector

256 bytes per sector

512 bytes per sector

1024 bytes per sector

All the cylinder and head numbers must be the same.

DSKYORMATVERIFY

typedef struct _TRACKLAYOUT {
BYTE bCommand;
USHORT usHead;
USHORT usCylinder;
USHORT usFirstSector;
USHORT cSectors;
struct {

USHORT usSectorNumber;
USHORT usSectorSize;

} TrackTable[l];
} TRACKLAYOUT;

I' trckl 'I

The TRACKLAYOUT structure contains track-layout information.

bCommand Specifies the type of track layout. If this field is OXOOOO, the track
layout contains nonconsecutive sectors or does not start with sector 1. If it is
OXOOO1, the track layout starts with sector 1, and contains only consecutive sec­
tors.

usHead Specifies the physical head on the disk drive on which to perform th~
operation.

usCylinder Specifies the cylinder number on which to perform the operation.

usFirstSector Specifies the logical sector number at which to start the opera­
tion. The logical sector number is the index in the track-layout table to the first
sector. Index 0 specifies the first sector, index 1 the second, and so on.

cSectors Specifies the number of sectors on which to perform the operation,
up to the maximum specified in the track-layout table. The function does not
step heads and tracks.

TrackTable[1] Specifies the track-layout table. It is an array of structures
that contain the numbers and sizes of the sectors in the track. The first element
in this field defines the sector number and size (in bytes) of the first sector on
the track, the second element defines the second sector, and so on. For each

368 TRACKLAYOUT

See Also

element of TrackTable, the usSectorNumber field specifies the sector number,
and the usSectorSize field specifies the size of the sector. The number of ele­
ments depends un the number of sectors on the track.

PDSILREADPHYSTRACK, DSILREADTRACK,
PDSK_ VERIFYPHYSTRACK, DSL VERIFYTRACK,
DSL WRITETRACK, PDSL WRITEPHYSTRACK

• VIOCONFIGINFO

Fields

See Also

. typedef struct _VIOCONFIGINFO {
USHORT cb;
USHORT adapter;
USHORT display;
ULONG cbMemory;

} VIOCONFIGINFO;

/* vioin */

The VIOCONFIGINFO structure contains configuration information about the
screen.

cb Specifies the length of the structure (in bytes). This field must be set to 10
before calling the VioGetConfig function ..

adapter Specifies the display-adapter type. It can be one of the following
values:

Value

DISPLAY_MONOCHROME

DISPLAY_CGA

DISPLAY_EGA

Meaning

Monochrome/printer adapter

Color graphics adapter

Enhanced graphics adapter

DISPLAY_ VGA Video graphics array or IBM Personal
Systeml2 display adapter

DISPLA Y _8514A PS/2 Display adapter 8514/ A

display Specifies the display/monitor type. It can be one of the following
values:

Value

MONITOR_MONOCHROME

MONITOR_COLOR

MONITOR_ENHANCED

MONITOR_8503

MONITOR_851JLCOLOR

Meaning

Monochrome display

Color display

Enhanced color display

8503 monochrome display

8512 or 8513 color display

MONITOR_8514 8514 color display

cbMemory Specifies the amount of memory on the adapter (in bytes).

VioGetConfig

VIOFONTINFO 369

• VIOCURSORINFO

Fields

See Also

• VIOFONTINFO

Fields

typedef struet _VIOCURSORINFO {
USHORT yStart;
USHORT eEnd;
USHORT ex;
USHORT attr;

} VIOCURSORINFO;

/* vioei * /

The VIOCURSORINFO structure contains information about the cursor.

yStart Specifies the horizontal scan line that marks the top line of the cursor.
Scan lines are numbered from 0 to n-1, where n is the maximum height of a
character cell. Scan line 0 is at the top of the character cell.

eEnd Specifies the horizontal scan line that marks the bottom line of the cur­
sor.

ex Specifies the width of the cursor in columns (for text mode) or in pels (for
graphics mode). The maximum width in text mode is 1. If zero is given, the
function uses a default width: 1 for text mode or the width of a character cell for
graphics mode.

attr Specifies the attribute of the cursor. If this field is OxFFFF, the function
hides the cursor (removes it from the screen). Any other value sets the current
character attribute of the cursor.

VioGetCurType, VioSetCurType

typedef struet _VIOFONTINFO {
USHORT eb;
USHORT type;
USHORT exCell;
USHORT eyCell;
PVOID pbData;
USHORT ebData;

} VIOFONTINFO;

/* viofi */

The VIOFONTINFO structure contains information about the font.

eb Specifies the length of the structure (in bytes). It must be set to 14.

type Specifies the request type. This field must be VGFLGETCURFONT to
retrieve the current font. It must be VGFLGETROMFONT to retrieve a ROM
font. It must be OXOOOO to set a font.

exCell Specifies the width (in pels) of each character cell in the font.

eyCell Specifies the height (in pels) of each character cell in the font.

pbData Points to the buffer that receives the requested font table or can be
set to NULL to direct the VioGetFont function to supply an address. In the
latter case, the function copies the address of the font to this field. The address
specifies either a RAM or a ROM address, depending on the request type.

For the VioSetFont function, it points to the buffer that contains the font table
to set a font. The format of the font table depends on the display adapter and
screen mode.

ebData Specifies the length of the font (in bytes).

370 VIOFONTINFO

Comments

See Also

• VIOINTENSITY

Fields

See Also

• VIOMODEINFO

Fields

When requesting a ROM font, the cxCell and cyCell fields must be set before
calling the VioGetFont function. These fields identify the font to be retrieved.

VioGetFont, VioSetFont

typedef struct _VIOINTENSITY {
USHORT cb;

/* vioint */

USHORT type;
USHORT fs;

} VIOINTENSITY;

The VIOINTENSITY structure contains status information about foreground and
background color.

cb Specifies the length of the structure (in bytes). It must be set to 6.

type Specifies the request type. To retrieve the blink/background intensity
switch, this field must be set to OxOOO2.

fs . Specifies foreground and background color status. This field must be set to
OXOOOO for blinking foreground colors, or OxOOOl for high-intensity background
colors.

VioGetState, VioSetState, VIOOVERSCAN, VIOPALSTATE

typedef struct _VIOMODEINFO {
USHORT cb;

/* viomi */

UCHAR fbType;
UCHAR color;
USHORT col;
USHORT row;
USHORT hres;
USHORT vres;

} VIOMODEINFO;

The VIOMODEINFO structure contains information about the screen mode.

cb Specifies the length of the data structure (in bytes). This field must be set
to 12.

fbType Specifies the screen mode. It is one of the following values:
Value

VGMT_GRAPHICS

VGMT_DISABLEBURST

Meaning

Set adapter to other than a monochrome/printer
adapter. If this value is not given. the
monochrome/printer adapter is assumed by
default.

Set graphics mode. If this value is not given. the
adapter is set to text mode.

Disable color-burst mode. If this value is not
given. color-burst mode is enabled.

See Also

• VIOOVERSCAN

Fields

See Also

• VIOPALSTATE

Fields

VIOPALSTATE 371

color Specifies the number of colors (defined as a power of 2). This is
equivalent to the number of color bits that define the color. It is one of the
following values:

Value Meaning

COLORS_2 2 colors

COLORS_4 4 colors

COLORS_16 16 colors

col Specifies the number of text columns.

row Specifies the number of text rows.

hres Specifies the number of pel columns (horizontal resolution).

vres Specifies the number of pel rows (vertical resolution).

VioGetMode, VioSetMode

typedef struct _VIOOVERSCAN {
USHORT cb;
USHORT type;
USHORT color;

} VIOOVERSCAN;

1* vioos *1

The VIOOVERSCAN structure contains the overscan (border) screen color.

cb Specifies the length of the structure (in bytes). It must be set to 6.

type Specifies the request type. To retrieve the overscan (border) color, this
field must be set to OxOOOl.

color Specifies the color value.

VioGetState, VioSetState, VIOINTENSITY, VIOPALSTATE

typedef struct _VIOPALSTATE {
USHORT cb;
USHORT type;
USHORT iFirst;
USHORT acolor[l];

} VIOPALSTATE;

1* viopal *1

The VIOPALSTATE structure contains the screen-palette registers.

cb Specifies the length of the structure (in bytes). The length determines how
many palette registers are retrieved. The maximum length is 38 bytes for 16
registers.

type Specifies the request type. To retrieve the palette register state, this field
must be set toOxOOOO.

372 VI 0 PALSTATE

See Also

• VIOPHYSBUF

Fields

Comments

See Also

• VOLUMELABEL

Fields

See Also

iFirst Specifies the first palette register to be retrieved. This field must be a
value from OxOOOO to OxOOOF. The function retrieves the palette registers in
sequential order. The number of registers retrieved depends on the structure size
specified by the cb field.

acolor[l] Specifies the array that receives the color values for the palette
registers.

VioGetState, VioSetState, VIOINTENSITY, VIOOVERSCAN

typedef struct _VIOPHYSBUF {
PBYTE pBuf;
ULONG cb;
SEL asel[l];

} VIOPHYSBUF;

/* viopb */

The VIOPHYSBUF structure contains information about the physical video
buffer.

pBuf Points to the physical video buffer. The address must be in the range
OxOOOAOOOO through OxOOOBFFFF; this depends on the display adapter and the
video mode.

cb Specifies the length of the physical video buffer (in bytes).

asel[1] Specifies the array that receives the selectors used to address the
physical video buffer. If more than one selector is received, the first selector
addresses the first 64K bytes of the physical video buffer, the second selector
addresses the next 64K bytes, and so on. The number of selectors depends on
the actual size of the physical buffer as specified by the cb field. The last selector
may address less than 64K bytes of buffer.

The actual size of the asel[l] field depends on the size of physical memory. The
program must ensure that there is adequate space to receive all selectors.

VioGetPhysBuf

typedef struct _VOLUMELABEL {
BYTE cch;
CHAR szVolLabel[12];

} VOLUMELABEL;

/* vol */

The VOLUMELABEL structure contains the volume label.

cch Specifies the length of the achVoILabel[12] field (excluding the null­
terminating character).

ach VoILabel[12] Specifies a null-terminated string that specifies the volume
label. When a volume label is being set by using the DosSetFSInfo function, any
trailing spaces are ignored. .

DosQFSInfo, DosSetFSInfo

Chapter

5

File Formats
5.1 Introduction .. 375
5.2 Keyboard Translation Tables 375

5.2.1 Predefined Translation Tables •..........•.•.•...••.....•.•. 375
5.2.2 Translation-Table Format ..•....••.•.•....•....•.......•.... 376
5.2.3 Key Types ..•..••.•..•....•••.....•.•••...•..•.......••......... 379

5.2.3.1 Alphabetic Key (Type OXOO(1) 381
5.2.3.2 Special-Character Key (Type OXOO(2) •.•..•...... 382
5.2.3.3 Special-Character Key (Type OXOO(3) •.•.•.••.... 382
5.2.3.4 Special-Character Key (Type OXOO(4) ..•..•.•...• 383
5.2.3.5 Special-Character Key (Type OXOO(5) •........... 384
5.2.3.6 Function Key (Type OxOOO6) 385
5.2.3.7 Keypad Key (Type OxOO(7) ...•....•..•..•....•.... 386
5.2.3.8 Special-Action Key (Type OXOO(8) •....•....•...• 388
5.2.3.9 PRINTSCREEN Key (Type OxOOO9)•......•.. 388
5.2.3.10 SYSREQ Key (Type OxOOOA) •....•..........•..... 388
5.2.3.11 Accent Key (Type OxOOOB) 389
5.2.3.12 Shift Key (Type OXOOOC) ...•.•.•••••....•...••.... 389
5.2.3.13 General Toggle Key (Type OxOOOD)•.....•... 390
5.2.3.14 ALT Key (Type OxOOOE) ...•.•..•.•....•.•..•..•..• 390
5.2.3.15 NUMLOCK Key (Type OxOOOF)•.......•... 390
5.2.3.16 CAPSLOCK Key (Type OXOO10) 391
5.2.3.17 SCROLL LOCK Key (Type Ox0011) 391
5.2.3.18 Extended-Shift Key (Type OXOO12) •.••.•...•..... 391
5.2.3.19 Extended-Toggle Key (Type OXOO13) ...•....•.•.. 392
5.2.3.20 Special Foreign Key (Type OxOO14)• 392
5.2.3.21 Special Foreign Key (Type OxOO15) 393

5.3 Video Modes and Fonts .. 393
5.3.1 Screen Modes ••.•.••••.•...•.••.•..•.•• · .••••••......•....•...• 393
5.3.2 Screell Attributes ..•...•••....•.•..•.....•..•..•....•...•....• 395

5.3.3 Physical-Screen Buffer Addresses
5.3.4 Video Fonts•.............

5.4 Resource-File Formats
5.4.1 Pointer and Icon Resources
5.4.2 Bitmap Format
5.4.3 String and Message Resources
5.4.4 Menu Resource .. .
5.4.5 Accelerator-Table Resource
5.4.6 Dialog Templates .. .
5.4.7 Dialog-Include Resource
5.4.8 Font Resource
5.4.9 Font-Directory Resource
5.4.10 Binary Data .. .
5.4.11 MS OS/2 Internal Resources•.......................

396
396
396
398
398
399
400
400
401
402
402
402
402
403

Chapter 5: File Formats 375
lIiamil!iiir~I.HH~I[*i!.~~ln!jjlJi!~!ltiim!;mI!~ri2f!ilimitiiiififlfitiill!i;!!iim:mI~Iff:Bi~~~~.~~i1i_~

5.1 Introduction
This chapter describes the format of the files and related structures used by
MS OS/2 functions. The following topics are described in detail:

• Keyboard translation tables

• Video fonts

• Resources

This chapter describes the formats as returned by or required by the MS OS/2
functions that use them. The formats described here may not fully describe the
format of data when it is stored in an MS OS/2 system file. For example, the
system default keyboard translation tables are stored in the keyboarq.dcp file.
This file usually contains header information and several translation tables.
Although the translation-table format is described in this chapter, the header
information and the organization of the tables in the files are not.

In general, this chapter describes only the details needed to develop data for­
mats for use with MS OS/2 programs. The programmer can choose an appro­
priate file-storage format.

5.2 Keyboard Translation Tables
This section describes the format and contents of MS OS/2 translation tables.
MS OS/2 uses translation tables to translate keystroke scan codes into character
values.

5.2.1 Predefined Translation Tables
MS OS/2 provides several predefined translation tables. These tables, defined in
the keyboard.dcp file, specify the translations for keyboard scan codes to charac­
ter values for a variety of character sets and languages. Each translation table is
identified by a code-page identifier. The code-page ID may be used in the Dos­
SetCp, KbdSetCp, and VioSetCp functions to set the translation table for the
system. The DosGetCp, KbdGetCp, and VioGetCp functions also retrieve the
code-page ID for the current system translation table.

The following is a list of the MS OS/2 predefined translation tables and their
code-page identifiers:

Number Code page

437 United States

850 Multilingual

860 Portuguese

863 French-Canadian

865 Nordic

OXOOOO Default (none)

376 MS OS/2 Programmer's Reference, Vol. 3
~~milil~j!Uiia.:mfiBfoi!lr:~ai;;m~mr;~lmim~fjjiii!iiifiUd~iliiJ.e!i~~I¥I!lWe_!iJmifi!li~f.i1m_~~_~

A user can set the translation tables for the system by using the codepage and
devinfo commands in the config.sys file. The keyb comman.d can be used to
change the current translation table.

5.2.2 Translation-Table Format
MS OS/2 lets a program create and set custom translation tables for the key­
board by using the KbdSetCustXt function. The function takes a pointer to
translation table. The translation table is a structure that has the following
general form:

Translation-table header
Key-definition 1
Key-definition 2

Key-definition 127
Accent-key table

The translation-table header defines the translation table's code-page ID, the
size of the translation table, the keyboard for which it was designed, and other
information about the translation table. The key-definition entries define key­
translation type, the accent keys that can be used in combination with this key,
and the actual translated character values. A translation table may have up
to 127 key-definition entries. The accent-table entry defines the scan- and
character-code translations for accent-and-character key combinations. This
accent table contains seven accent entries and accent-key definitions.

struct {

};

USHORT XTableID;
USHORT XTableFlagsl;
USHORT XTableFlags2;
USHORT KbdType;
USHORT KbdSubType;
USHORT XTableLen;
USHORT EntryCount;
USHORT EntryWidth;
USHORT country;
USHORT TableTypeID;
USHORT Reserved[lO];
struct {

USHORT AccentFlags:7;
USHORT KeyType:9;
CHAR Charl;
CHAR Char2;
CHAR Char3;
CHAR Char4;
CHAR CharS;

} KeyDef[127];
struct {

BYTE NonAccent[2];
BYTE CtlAccent[2];
BYTE AltAccent[2];
BYTE Map [20] [2] ;

} AccentEntry[7];

Chapter 5: File Formats 377
&I_flllilil.lim~~;Iil~iir.iU!:=if!f!l!!!Ir.!fiiim~iiU!·§f~Hit~_ib_l~!iil!~U!fi!!ligg;~tflii!~If!frrumiil!minlJ1Miln

Field

XTableID

XTableFlagsl

XTabieFlags2

KbdType

KbdSubType

XTableLen

EntryCount

EntryWidth

Country

TabieTypeID

Reserved [10]

AccentFlags

KeyType

Chari

Char2

Char3

Char4

CharS

Description

Specifies the code-page ID for this translation.

Specifies the first set of table flags. For more
information, see the values listed in Table 5.1.

Specifies a reserved value; must be zero.

Specifies the keyboard type. This field is OXOOOO
for an IBM PCI AT keyboard· and OXOOO1 for an
IBM Enhanced keyboard.

Specifies a reserved value; must be zero.

Specifies the length of the translation table
(in bytes).

Specifies the number of key-definition entries.

Specifies the width of each key-definition entry
(in bytes).

Specifies the country-code or language ID. This
ID consists of two letters that repre$ent the name
of a country. The first letter is stored in the high­
order byte, the second in the low-order byte.
For more information, see the codes listed in
Table 5.2.

Specifies the table type. The low-order byte
specifies the type, the high-order byte the sub­
type. This field must be OXOOOl.

Specifies an array of reserved values. Each ele­
ment must be zero.

Specifies the translation for accent keys. This
field occupies bits 0 through 6.

Specifies the translation of the keys . .This field
occupies bits 11 through 15.

Specifies a translated-character value. Typically
used when no shift keys are pressed.

Specifies a translated-character value. Typically
used when shift keys are pressed.

Specifies a translated-character value. Typically
used when the ALT GR (alternate-graphics) key is
pressed.

Specifies a translated-character value.

Specifies a translated-character value.

378 MS OS/2 Programmer's Reference, Vol. 3
!ii~iii!iliiti~~i~m:~Ii!iii~nmirf!JU;rj;r~iIl~~;rr~m~\iii~!~ili~i!lii1iltii~\\!i~r~~i!i~~iil;ni~immi~l.Ri\i!i~nl~iiliiiUi!~llmiiim

Field

NonAccent[2]

CtIAccent[2]

AltAccent[2]

Map [20] [2]

Description

Specifies the character value and scan code for
the key when not used as an accent character.
The first byte contains the character value, the
second the scan code.

Specifies the character value and scan code for
the key when used 'with the CONTROL key. The
first byte contains the character value, the second
the scan code.

Specifies the character value and scan code for
the key when used with the ALT key. The first
byte contains the character value, the second the
scan code.

Specifies an array of scan-code and character­
value pairs for accented translation. The artay
has 20 elements. Each element has two bytes; the
first byte contains the scan code of a key to be
accented and the second contains the character
value of the accented key.

The XTableFlagsl field can be any combination of the values listed in Table 5.1:

Table 5.1 Table-Flag Values
---Value

OxOQOl

OXOOO2

OxOOO4

OxOOOS

OxOOlO

OxOO20

Ox0040

OxOOSO

Meaning

SHIFf+ALT is used in place of CONTROL+ALT.

Left ALT key is the ALT GR (alternate-graphics) key.

Right ALT key is the ALT GR (alternate-graphics) key.

CAPSLOCK key is interpreted as a SHIFTLOCK key.

Default table for the language. Used by the keyb com­
mand to locate the default translation table if switch­
ing between several translation tables.

SHIFTLOCK key is a toggle key. If not given, the key is
a latch key.

Accent is sent as a character. If not valid, beep is
sounded.

When the CAPSLOCK is down and the SHIFf key is
presseq, the CharS field is used in the key-definition
entry.

Chapter 5: File Formats 379
i~!~!§'if;ltir~!'UUm~!!ilil!iiltm~~~~~\lii!i~Ui!t§ii~ll§iifi!lWsiiElil!w.~rnil!!lmii~IUm!E1~~~~<li~rnm'~\fa!~~!lifll~i~mlf~i!!§i~!

The Country field specifies the country or language identifier. It can be any of
the codes listed in Table 5.2:

Table 5.2 Country and Language Codes

Code Country/Language

US United States

UK United Kingdom

GR Germany

FR France

IT Italy

SP Spain

DK Denmark

NL Netherlands

SU Finland

NO Norway

PO Portugal

SV Sweden

SF Switzerland (French)

SG Switzerland (German)

CF French-Canadian

BE Belgium

LA Latin America (Spanish)

Note that each accent entry should have the space character defined as one of its
accented characters and be translated to the same value as the accent character
itself. The reason for this is that, by definition, an accent key followed by the
space character maps to the accent character alone. If the table is not set up this
way, a "not-an-accent" beep sounds when the accent key, followed by a space, is
pressed.

5.2.3 Key Types
The KeyType field specifies whether the scan code represents an alphabetic, spe­
cial, function, shift, or other type of key. It also defines how to translate the key
when a given shift key is down or active. This field can be one of the following
values:

Value

OxOOOl

OxOOO2

OXOOO3

Meaning

Alphabetic-character key

Special nonalphabetic-character key

Special nonalphabetic-character key with CAPSLOCK
translation

380 MS OS/2 Programmer', Reference, Vol. 3
~1!t~\Ii_![ui!iI~lii~Ui.\m~'i§!li!!t!Miiil~!ifJR!i\~ml!p-i!~_ril!.!!im~'D;1ti~ih1iifmesli!!_~~_B~~~i\!if41

Value

OxOOO4

OxOOO5

OxOOO6

OXOOO7

OXOOO8

OxOOO9

OxOOOA

OxOOOB

OxOOOC

OxOOOD

OxOOOE

OxOOOF

OxOOlO

OxOOll

OXOO12

OXOO13

OXOO14

OxOO15

Meaning

Special nonalphabetic-character key with ALT translation

Special nonalphabetic-character key with CAPSLOCK and
ALT translations

Function key

Keypad key

Action key that performs a special action when the
CONTROL key is pressed

PRINTSCREEN key

SYSREQ key

Accent key (also called a dead key)

Shift key (for example, SHIFf or CONTROL)

General toggle key

ALT key

NUMLOCK key

CAPSLOCK ~ey

SCROLL LOCK key

Extended-shift key

Extended-toggle key

Special character key with CAPSLOCK translations for
foreign-language keyboards

Special character key with ALT translations for foreign-
language keyboards .

The AccentFlags field of a key-definition entry has seven flags that are individ­
ually set if a: corresponding entry in the accent table applies to this scan code.
If an accent key is pressed immediately before the current key, and if the
bit for that accent key is set in the AccentFlags field for the current key, the
corresponding accent-table entry is searched for the replacement character
value. If no replacement is found, the "not-an-accent" beep sounds and the
accent character and current character are passed as two separate characters.

The SPACEBAR should have a flag set in its AccentFlags field for each possible
accent (that is, for each defined accent entry in the accent table).

When no shift keys are pressed, the Chari field specifies the translated-character
value (except where otherwise noted).

The ALT key, the ALT-GR key, or both, may be present on a keyboard as speci­
fied by the XTableFlagsl field in the translation-table header. In most cases,
if the ALT GR key is specified, the Char3 field specifies the translated-character
value when the given key is pressed at the same time as the ALT key.

Chapter 5: File Formats 381
!il!i!iiHiiril1~~;i_i~!~il;;;itMmmmru~!iilifiii\;U~J_iW~ji\&ll~i~iilmiiififit\1fiimilfu'§~lt\~1lfit~Im!ii!B.~~l~I~~il.f!ii~~i

Any key combination that does not have an explicit definition is assumed to be
undefined-for example, pressing the CONTROL key with the 3 key. The system
marks the keystroke packet as an undefined translation and passes the packet on
to any keyboard monitors. The scan code in the packet remains unchanged but
the character value is set to zero. Although the system passes the packet to mon­
itors, it does not copy the undefined translation to the keyboard-input buffer.

The system uses the masks listed in Table 5.3 to set and clear the lCeyboard
shift-status word:

Table 5.3 Shift-Key Masks

5.2.3.1

Key Char1 Char2 Char3

SHIFf (right) OxOl OXOO OxOO

SHIFf (left) Ox02 OXOO OxOO

CONTROL+SHIFf Ox04 OxOl Ox04

ALT+SHIFf OX08 Ox02 OX08

SCROLL LOCK OxlO OxlO OxlO

NUMLOCK Ox20 Ox20 Ox20

CAPSLOCK Ox40 Ox40 Ox40

SYSREQ Ox80 Ox80

The following sections describe the key types in detail.

Alphabetic Key (Type OxOOO1)

An alphabetic key (type OxOOOl) is any character key that represents a letter.

Shift key

None

SHIFf

CAPSLOCK

SHIFf and
CAPSLOCK

CONTROL

ALT

ALTGR

Field used

Chari

Char2

Char2

Chari

Chari to compu~e an ASCII control value.

Chari to compute an IBM PC keyboard scan code.

Char3 if this field is not zero.

If a CONTROL key is pressed, the system subtracts 95 from the Chari field to
compute an ASCII control value. The final value ranges from 1 through 26.

382 MS OS/2 Programmer's Reference, Vol. 3
WII~;:tm~~fM1.Iff:Hlflliiiff;~SI!ll!!i~J~L~im!ti~f:ffi~iigIJ~~_!l~~tlj~l~i§~~jliff!§P.l1Iif:g-~!~i~!!fi~IlIR~!!!"~I!!!i

If an ALT key is pressed, the system uses the Chari field as an index to a table
of IBrv1 PC keyboard scan codes. The fin.al value is t\\'O bytes. The first bj1e is
OXOO. The second byte is the corresponding IBM PC scan code.

5.2.3.2 Special-Character Key (Type Ox0002)
A special-character key (type OxOOO2) represents a nonalphabetic character for
which there is no CAPSLOCK or ALT translation.

Shift key

None

SHIFf

CAPS LOCK

CONTROL

ALT

ALTGR

Field used

Chari

Char2

Chari

Computed ASCII control code.

Undefined translation.

Chad if this field is not zero.

If a CONTROL key is pressed, the system uses the scan code of the given key to
generate an ASCII control code, as shown in the following list:

Scan code Control code

Ox03 OXOO

OX07 OxlE

OxOC OxlF

OxlA OxlB

OxlB OxlD

Ox2B OxlC

Only the scan codes listed generate control codes. A hyphen-character (-) key
always generates control code OxlF, even if the corresponding scan code is not
listed. A hyphen-character key is any key whose Chari field is Ox2D.

5.2.3.3 Special-Character Key (Type Ox0003)
A special-character key (type OxOOO3) represents a nonalphabetic character for
which there is a CAPSLOCK translation but no ALT translation.

Shift key

None

SHIFf

CAPSLOCK

SHIFf and
CAPSLOCK

CONTROL

Field used

Chari

Char2

Char2

Chari

Computed ASCII control code.

Chapter 5: File Formats 383
liiii1i!mIl!Bijj!ilI~~_.ii~1iiiiiiirm!~le~ri!Jl~I!!l!m!lm~ft!BIiBfi.~flfillllifimff'Ji.~liSi~~.ij~!ij,iiP~iiiiftiia.aijmJl!i

Shift key

ALT

ALTGR

Field used

Undefined translation.

Char3 if this field is not zero.

If a CONTROL key is pressed, the system uses the scan code of the given key to
generate an ASCII control code, as shown in the following list:

Scan code Control code

Ox03 OXOO

OX07 OxIE

OxOC OxlF

OxIA OxIB

OxIB OxlD

Ox2B OxIC

Only the scan codes listed generate control codes. A hyphen-character (-) key
always generates control code OxIF, even if the corresponding scan code is not
listed. A hyphen-character key is any key whose CharI field is Ox2D.

5.2.3.4 Special-Character Key (Type Ox0004)
A special-character key (type OxOOO4) represents a nonalphabetic, non-action key
for which there is an ALT translation but no CAPSLOCK translation. Typically,
these keys represent numeric and punctuation characters. The SPACEBAR key is
also a type OxOOO4 key.

Shift key

None

SHIFT

CAPSLOCK

CONTROL

ALT

ALTGR

Field used

Chari

Char2

Chari

Computed ASCII control code.

Computed extended ASCII code.

Char3 if this field is not zero.

If a CONTROL key is pressed, the system uses the scan code of the given key to
generate an ASCII control code, as shown in the following list:

Scan code

OX03

OX07

OxOC

OxIA

Control code

OXOO

OxlE

OxIF

OxlB

384 MS OS/2 Programmer's Reference, Vol. 3
lif:!iii.imiii\~ii!mllil!iiS;~\\i.ijI§g~~dl~ml!;!~im~Ti!!9ii~m.t~I!ir~f~i~=\l\m~mi~1Ij8i~!\W~~1§!Rilaunumim1"~m

Scan code

OxlB

Ox2B

Control code

OxlD

OxlC

Only the scan codes listed generate control codes. A hyphen-character (-) key
always generates control code OxlF, even if the correspoqding scan code is not
listed. A hyphen-character key is any key whose Chari field is Ox2D. Both the
ALT+SPACEBAR and CONTROL+SPACEBAR combinations generate the ASCII
space character.

If the ALT key is pressed, the system uses the scan code of the given key to gen­
erate an extended ASCII code, as shown in the following list:

Scan code Control code

OX02 Ox78

OX03 Ox79

OX04 Ox7A

OX05 Ox7B

Ox06 Ox7C

OX07 Ox7D

OX08 Ox7E

Ox09 Ox7F

OxOA Ox80

OxOB Ox8l

OxOC Ox82

OxOD Ox83

The final value is two bytes. The first byte is OXOO or OxEO. The second byte is
the corresponding extended ASCII code.

5.2.3.5 Special-Character Key (Type Ox0005)
A special-character key (type OxOOO5) represents a nonalphabetic character that
has both CAPSLOCK and ALT translations.

Shift key

None

SHIFf

CAPSLOCK

SHIFf and
CAPSLOCK

CONTROL

Field used

Chari

Char2

Char2

Chart

Computed ASCII control code.

Chapter 5: File Formats 385
n~~fltil!~miii1~mr.:eml!ftii1liilF.!l\\P'~~inmii§iE*~l.!I!J!liil!i_l3l§1iallF.!il!l(t~JImiI!.fili\i\irni!U!§{iilill5i!1ii!!ta!iii~iF.itm~!!;'1miW,

Shift key

ALT

ALTGR

Field used

Computed extended ASCII code.

Char3 if this field is not zero.

Only the scan codes listed generate control codes. A hyphen-character (-) key
always generates control code OxlF, even if the corresponding scan code is not
listed. A hyphen-character key is any key whose Charl field is Ox2D.

If the ALT key is pressed, the system uses the scan code of the given key to gen­
erate an extended ASCII code, as shown in the following list:

Scan code Control code

OX02 Ox78

OX03 Ox79

OX04 Ox7A

OX05 Ox7B

Ox06 Ox7C

OX07 Ox7D

OX08 Ox7E

Ox09 Ox1F

OxOA Ox80

OxOB Ox81

OxOC Ox82

OxOD Ox83

The final value is two bytes. The first byte is OXOO or OxEO. The second byte is
the corresponding extended ASCII code.

5.2.3.6 Function Key (Type Ox0006)
A function key (type OxOOO6) represents a non-ASCII key that may be used to
direct an action. The system uses the Charl field to generate an extended ASCII
code for the given key. The Chari field should be set to the same value as the
key-for example, 1 for the FI key, 2 for the F2 key, and so on. The system gen­
erates the extended ASCllcode by adding a value to Chari, as shown in the fol-
lowing list: -

Shift key

None

SHIFT

Extended code

Adds Ox3A to Charlo The FH and Fl2 keys are
always Qx8B ,and Ox8C , respectively.

Adds Ox53 to Charlo The SHIFT+Fll and SHIFT+FI2
keys are always Ox8D and Ox8E, respectively.

386 MS OS/2 Programmer's Reference, Vol. 3
~mllii~I!.B\~lilimh1mr:!girsi~~~~~1~!i~U;m~i~i!§"iJ!li4mm!iM:;\i~1~~j:t~~lmlL~~~~~~~Iiiiiiijif:mf!iii'!':n;imiijmmi!ir~

Shift key

CAPSLOCK

CONTROL

ALT

ALTGR

5.2.3.7 Keypad Key (Type Ox0007)

Extended code

Same as no shift key.

Adds Ox5D to Charlo The CONTROL+Fll and
CONTROL+F12 keys are always Ox8F and Ox90,
respectively.

Adds Ox67 to Charlo The ALT+Fll and ALT+F12
keys are always Ox91 and Ox92, respectively.

Char3 if this ~eld is not zero.

A keypad key (type OxOOO7) represents a keypad character such as a direction or
a numeric key.

Shift key

None

SHIFT

NUMLOCK

SHIFT and
NUMLOCK

CAPSLOCK

CONTROL

ALT

ALTGR

Field used

Chart used to compute an extended ASCII code.

Char2

Char2

Same as no shift key.

Same as no shift key.

Special keypad codes.

Build a character.

Char3 if this field is not zero.

The following list shows the required Chart v~lues based on the key-top labels:

Key-top label Chari value

HOME/7 OXOO

up/8 OX01

PAGE up/9 Ox02

Ox03

LEFT/4 Ox04

5 Ox05

RIGHT/6 Ox06

+ Ox07

END/1 Ox08

DOWN/2 Ox09

Chapter 5: File Formats 387
§fi'if.'Dlti!fif:imiffmir;mr:iif!famliFii§l!iJMiifil:rfJjffilifiiSiimf~~iaum~!r.I§!~j,~~~~mfjlimfiiilii~iljjlli:~leIlSJ~IF..l.i§mJlU;UiIRiiSlliiiliiP'

Key-top label

PAGE DOWN/3

INS/O

DELI.

Chari value

OxOA

OxOB

OxOC

The Chad value should represent the ASCII equivalent of the key-top label.
For example, Char2 for the HOME/7 key should be the ASCII character 7.

When the system generates ail extended ASCII code, it creates two bytes. The
first byte is OxOO or OxEO. The second byte is a scan code equal to the Chari
field plus Ox47. The plus (+) arid minus (-) keypad keys never generate extended
ASCII values; they always return the Char2 field.

If the ALT key is pressed and held down, the system builds a character value by
accumulating keystrokes .. For each keystroke, the system mUltiplies the accumu­
lated value bylO, then adds the decimal value of the given key. For example,
pressing the HOME/7 key adds 7 to the accumulated value. If the result is greater
than 255, the high bits are truncated. If any key other than the numeric keys is
pressed, the accumulated value is reset to zero. When the ALT key is released,
the accumulated value becomes the character value and the scan code is set to
zero.

If the CONTROL key is pressed, the system generates special extended ASCII
codes for the keypad keys, as shown in the following list:

Key-top label Extended code

HOME/7 Ox77

up/8 Ox8D

PAGE up/9 Ox84

Ox8E

LEFT/4 Ox73

5 Ox8F

RIGHT/6 Ox74

+ Ox90

ENDIl Ox75

DOWN12 Ox91

PAGE DOWN/3 Ox76

INS/O Ox92

DELI. Ox93

388 MS OS/2 Programmer's Reference, Vol. 3
:1it~~iIil_f~gfl~IIUEI~P.r..;;r:!Ii.iiI~!!l!!~~~m~iJU1!.UilJiii~fg!_!Y!mif:!!!!liliiim~ii!ij;ffM~fi!2I!!;,~tf:!iiiiii

5.2.3.S Special-Action Key (Type OxOOOS)
A special-action key (type OxOO(8) represents an action key that carries out a
special action when the CONTROL key is pressed. For example, the ENTER key
generates the newline character in combination with the CONTROL key. When
pressed alone, it generates the carriage-return character. The special action keys
are given in the following list:

Shift key

None

SHIFf

CAPSLOCK

CONTROL

ALT

ALTGR

Field used

Chad

Chari

Chari

Char2

Undefined translation.

Char3 if this field is not zero.

5.2.3.9 PRINTSCREEN Key (Type Ox0009)
The PRINTSCREEN (print:-screen) key (type OxOOO9) directs the system to copy the
screen contents to the printer.

Shift key

None

SHIFf

CAPSLOCK

CONTROL

ALT

ALTGR

5.2.3.10 SYSREQ Key (Type OxOOOA)

Field used

Chari

Directs the system to print the screen.

Chari

Directs the system to echo each screen line to the
printer.

Undefined translation.

Char3 if this field is not zero.

The SYSTEQ (system-request) key (type OxOOOA) represents a special shift key.
The CharI field holds a bit mask that the system uses to set or clear the lower
byte of the keyboard shift-status word. The Char2 field contains a bit mask that
the system uses to set or clear the upper byte of the system's shift-status word.
When the user presses this key, the system sets the shift-status word and clears
it when the. user releases the key. If a secondary-key prefix (OxEO) is received
immediately prior to a shift key, the Char3 field is used in place of Char2 to set
or clear the shift-status word.

Chapter 5: File Formats 389
iiiii~frlif;1W;1i!Hm!ii~!fIP,!inl1i~i~~1~;jl;Jft5iii!B~n;tmmii~iiw.um~mnli:Y!ii!l*i~l!i!BJi§jl!rdllf!"~fli~~iSSl!;I~~!!lI~!WnHU

5.2.3.11 Accent Key (Type OxOOOB)
An accent key (also called a dead key) (type OxOOOB) represents a character that
is combined with another character to form a new character. For example, an
umlaut key can be combined with the letter u to form an umlaut-u character.
The Chari, Char2, and Char3 fields are indexes into the translation table's
accent table. Each field must be a value from 1 through 7.

Shift key

None

SHIFf

CAPSLOCK

CONTROL

ALT

ALTGR

Field used

Chari

Char2

Chari

Chari, but use CtlAccent field in accent entry.

Chari, but use AItAccent field in accent entry.

Char3

When an accent key is pressed with a CONTROL or ALT key, the system retrieves
the character value from the CtIAccent[2] or AltAccent[2] field in the accent­
table entry indexed by the Chari field. These fields contain the scan and charac­
ter codes for the key. If the fields are both zero, the key has an undefined trans­
lation.

When an accent key is pressed by itself, the system uses the Chari field as an
index to an accent-table entry. When an accent key is pressed with a SHIFf key,
the system uses the Char2 field as an index to an accent-table entry. When an
accent key is pressed with an ALT GR key, the system uses the Char3 field as an
index to an accent-table entry. The system then waits for the next key. If the
next key does not specify accent keys in the corresponding AccentFlags field or
the next key is not found in the Map [20] [2] field of the accent-table entry, then
the character specified by the NonAccent field is used for the accent key and the
second key is translated normally. Both characters are passed to the keyboard­
input buffer after the "not-an-accent" beep sounds.

If a key does not change when a left or right SHIFT key is held down, it should
use the same value for Chari and Char2 so that the accent will apply in both the
shifted and non-shifted cases. If the accent value is undefined when used with a
SHIFf key or with the ALT GR key, the value in Char2 or Chad should be zero.

If an accent key does not have ALT or CONTROL key mapping, the AItAccent and
CtlAccent fields should be set to zero.

5.2.3.12 Shift Key (Type OxOOOC)
A shift key (type OxOOOC) represents a shift whose state changes when the key is
pressed or released. The SHIFf and CONTROL keys are typical shift keys.

The Chari field holds a bit mask that the system uses to set or clear the lower
byte of the keyboard shift-status word. The Char2 field contains a bit mask that
the system uses to set or clear the upper byte of the system's shift-status word.
When the user presses the key, the system sets the shift-status word, and then
clears it when the user releases the key. If a secondary-key prefix (OxEO) is
received immediately prior to a shift key, the Char3 field is used in place of
Char2 to set or clear the shift-status word.

390 MS OS/2 Programmer's Reference, Vol. 3
~[~~iifEL~~er:i5.niW!l~!§U!{!;M~r~~~1m1iilim'Jijmrulf~~Utt\ii!I~~imiBiii!~'iIf~*iE!ti!ij~~mliifl'mll~~III~.ii!ilil~fit!il~

5.2.3.13 General Toggle Key (Type OxOOOD)

A general toggle key (type OxOOOD) represents a shift key whose state changes
when the key is pressed but not when it is released. The CAPSLOCK key is a typi­
cal toggle key.

The Chari field holds a bit mask that the system uses to set or clear the lower
byte of the keyboard shift-status word. The Char2 field contains a bit mask that
the system uses to set or clear the upper byte of the system's shift-status word.
The system uses Chari to set the lower byte of the shift-status word when the
user first presses the key. Thereafter the system alternates between setting and
clearing on each subsequent press. The system uses Char2 to set the upper-byte
word when the user presses the key and to clear it when the user releases the
key. If a secondary-key prefix (OxEO) is received immediately prior to a toggle
key, the Char3 field is used in place of Char2 to set or clear the shift-status
word.

5.2.3.14 ALT Key (Type OxOOOE)

The ALT key (type OxOOOE) represents a special shift key that works in combina­
tion with the keypad keys to build character values. The ALT key requires its
own key type so that the system knows to clear the accumulated value when the
user begins to build a character using the keypad. Otherwise, the system treats
the ALT key the same as any other shift key.

The Chari field holds a bit mask that the system uses to set or clear the lower
byte of the keyboard shift-status word. The Char2 field contains a bit mask that
the system uses to set or clear the upper byte of the system's shift-status word.
When the user presses the key, the system sets the shift-status word and clears
it when the user releases the key. If a secondary-key prefix (OxEO) is received
immediately prior to a shift key, the Char3 field is used in place of Char2 to set
or clear the shift-status word.

If the XTableFlagsl field specifies an ALT GR key, the ALT key may be treated as
that key.

5.2.3.15 NUMLOCK Key (Type OxOOOF)

The NUMLOCK key (type OxOOOF) represents a special toggle key that, when
pressed in combination with the CONTROL key, directs the system to temporarily
stop screen output. Otherwise, the system treats the NUMLOCK the same as any
other toggle key. When CONTROL+NUMLOCK stops screen output, the next key­
stroke (if it generates a valid character) restores output.

The Chari field holds a bit mask that the system uses to set or clear the lower
byte of the keyboard shift-status word. The Char2 field contains a bit mask that
the system uses to set or clear the upper byte of the system's shift-status word.
The system uses Chari to set the lower byte of the shift-status word when the
user first presses the key. Thereafter the system alternates between setting and
clearing on each press. The system uses Char2 to set the upper-byte word when
the user presses the key and to clear it when the user releases the key. If a
secondary-key prefix (OxEO) is received immediately prior to a toggle key, the
Char3 field is used in place of Char2 to set or clear the shift-status word.

Chapter 5: File Formats 391
l!il~milm~r~§§~i~li!i!l~i!m~ii5ii1ET;!!liU{filmiiia\g~i~n~.mr~ii!U;~immiiii~itiiruJi!lii'S~lt~!!I~m:I!!~~IS~\i1ffi~~.b.~~

5.2.3.16 CAPSLOCK Key (Type Ox0010)
The CAPSLOCK key (type OxOOlO) represents a special toggle key. This key type
only applies when the XTableFlagsi field specifies that the CAPSLOCK key is to
be processed like a SHIFf LOCK key. When processed as a SHIFf LOCK key, the
CAPSLOCK key sets the keyboard shift-status word but cannot be used to clear
the word. To do this, a SHIFf key must be pressed.

The CharI field holds a bit mask that the system uses to set the lower byte of
the keyboard shift-status word. The Char2 field contains a bit mask that the sys­
tem uses to set or clear the upper byte of the system's shift-status word. The sys­
tem uses Chari to set the lower byte of the shift-status word when the user first
presses the key. Thereafter the system clears the byte only if the user presses a
SHIFf key. The system uses Char2 to set the upper-byte word when the user
presses the key and to clear it when the user releases the key. If a secondary-key
prefix (OxEO) is received immediately prior to a toggle key, the Char3 field is
used in place of Char2 to set or clear the shift-status word.

5.2.3.17 SCROLL LOCK Key (Type Ox0011)
The SCROLL LOCK key (type OxOOll) represents a special toggle key that gen­
erates a CONTROL+BREAK signal for a program when it is pressed with the
CONTROL key. Otherwise, the system treats the SCROLL LOCK key the same as
any other toggle key.

The Chart field holds a bit mask that the system uses to set or clear the lower
byte of the keyboard shift-status word. The Char2 field contains a bit mask that
the system uses to set or clear the upper byte of the system's shift-status word.
The system uses CharI to set the lower byte of the shift-status word when the
user first presses the key. Thereafter the system alternates between setting and
clearing on each press. The system uses Char2 to set the upper-byte word when
the user presses the key and to clear it when the user releases the key. If a
secondary-key prefix (Ox EO) is received immediately prior to a toggle key, the
Char3 field is used in place of Char2 to set or clear the shift-status word.

5.2.3.18 Extended-Shift Key (Type Ox0012)
An extended-shift key (type OxOO12) represents a shift key that is used in con­
junction with national-language support. The key is similar to the shift key
(type OxOOOC) but sets or clears the extra national-language-support byte of the
keyboard-status word.

The character fields are defined as follows:

Field

Chari

Description

Specifies the bit mask in which the bits that are on define
the field used for the Char2 value. Only the bits in the
national-language-support shift-status byte that corre­
spond to the bits in this byte will be altered by the Char2
value.

392 MS OS/2 Programmer's Reference, Vol. 3
~iftl;~iiilw.$illl!hf~ai!iP.iirii1illE\lmiii~~_~mUmUil~l!1ifii~~il!;miiiiiiifii~.lie9e.lmtil!~'~~Ii!_lrmimf:~!'-Jm~in\!~"!n;

Field

Char2 '

Char3

Description

Specifies the bit mask used to set or clear bits in the
extended-status byte when the key is pressed or released.

Specifies the replacement bit mask for Char2 when the
secondary key prefix (OxEO) is recognized immediately
prior to this key being pressed.

Chari and Char2 can define single shift-status bits to set, clear, or toggle. Char2
can be a set of coded bits (delineated by Chari) that will be set to a numeric
value when the key is pressed and cleared to zero when released. When Chari
has all bits on, the whole byte can be set to Char2.

5.2.3.19 Extended-Toggle Key (Type Ox0013)
An extended-toggle key (type OxOO13) represents a shift key that is used in con­
junction with national-language support. The key is similar to the toggle key
(type OxOOOD) but it sets or clears the extra national-language-support byte of the
keyboard-status word.

The character fields are defined as follows:

Field

Chari

Char2

Char3

Description

Specifies the bit mask in which the bits that are on define
the field used for the Char2 value. Only the bits in the
national-language-support shift-status byte that corre­
spond to the bits in this byte will be altered by the Char2
value.

Specifies the bit mask used to set or clear bits in the
extended-status byte when the key is pressed.

Specifies the replacement bit mask for Char2 when the
secondary-key prefix (OxEO) is recognized immediately
prior to this key being pressed.

Chari and Char2 can define single shift-status bits to set, clear, or toggle. Char2
can be a set of coded bits (delineated by Chari) that will be set to a numeric
value when the key is pressed and set to zero when released. When Chari has
all bits on, the whole byte can be set to Char2.

5.2.3.20 Special Foreign Key (Type Ox0014)
A special foreign key (type OxOO14) represents any character that may need a
CAPSLOCK translation.

Shift key

None

SHIFf

CAPSLOCK

Field used

Charl

Char2

Char4

Chapter 5: File Formats 393
i1iJ.1l~lIi~li·Z.iii1ll!1l!fII~I~Riil!ilnlii'-i~!~.IlJiiiiiH\§il[€J'mt;l!iiilmirnliHimiUll§nlm§i§nll~~~~t~iU~~1ifiiiUffia;nl~'1

Shift key

CAPSLOCK
and SHIFf

CONTROL

ALT

ALT-GR

Field used

CharS

Computed ASCII control value.

No effect.

Char3

5.2.3.21 Special Foreign Key (Type Ox0015)
A special foreign key (type OxOO15) represents any character that may need an
ALT translation.

Shift key

None

SHIFf

CAPSLOCK

CONTROL

ALT

ALT-GR

Field used

CharI

Char2

No effect.

Computed ASCII control value.

Char4

Char3

When ALT or ALT+SHIFf is pressed, the scan code and translated character code
are equal.

5.3 Video Modes and Fonts
This section provides brief descriptions of the device-dependent values that may
be used with the MS OS/2 video functions. In particular, it describes screen
l.11odes, screen attributes, video fonts, and physical-screen buffer addresses for
the following display adapters:

IBM Monochrome/Printer Adapter
IBM Color Graphics Adapter (CGA)
IBM Enhanced Graphics Adapter (EGA)
IBM PS/2 Video Graphics Array (VGA)
IBM PS/2 Display Adapter

5.3.1 Screen Modes
The VioSetMode function sets the screen mode for the display adapter. The
screen mode defines the type of output (text or graphics) and the resolution of
the output; that is, it defines the width and height of the screen in character cells
or pels. The available screen modes depend on the display's device driver as well
as on the display adapter. Not all screen modes for a given display adapter are
supported by the corresponding MS OS/2 display device driver. In general, an
MS OS/2 display device driver supports at least one text mode and one graphics
mode and, in many cases, the device driver supports all modes.

394 MS OS/2 Programmer's Reference, Vol. 3
mml~!iifiil!il~i~t~ilf;ll!~ii9i~i~miir.ti[~imiiamtitl .. ~~rl~fi~!jitmiISii§~ii1~tr~~qiliSmilfnii~ii§i~mil[:iilIJiU~iw~r~~!;ll~ni

Tables 5.4 and 5.5 list the screen modes available for the IBM Monochrome/
Printer Adapter, Color Graphics Adapter, Enhanced Graphics Adapter, Video
Graphics Array, PS/2 Display Adapter, and any adapter that is one-hundred per­
cent compatible with these.

Table 5.4 Text Modes

Cell Cell Vertical Horizontal
Columns Rows Colors width height resolution resolution Display

80 25 2 9 14 720 350 Monochrome/Printer Adapter
80 25 2 9 16 720 400 VGA, PS/2 Display Adapter
40 25 16 8 8 320 200 eGA, * EGA, VGA, PS/2

Display Adapter
40 25 16 8 14 320 350 EGA, VGA, and PS/2

Display Adapter
40 25 16 9 16 360 400 VGA, PS/2 Display Adapter
80 25 16 8 8 640 200 eGA, * EGA, VGA, PS/2

Display Adapter
80 25 16 8 14 640 350 EGA, VGA, PS/2 Display

Adapter
80 25 16 9 16 720 400 VGA, PS/2 Display Adapter

Note * The color burst is turned off on the GGA.

Table 5.5 Graphics Modes

Vertical Horizontal
Colors resolution resolution Display

4 320 200 eGA, * EGA, VGA, and
PS/2 Display Adapter

2 640 200 eGA, * EGA, VGA, and
PS/2 Display Adapter

16 320 200 EGA, VGA, PS/2 Display
Adapter

16 640 200 EGA, VGA, PS/2 Display
Adapter

2 640 350 EGA, VGA, PS/2 Display
Adapter

16 640 350 EGA, ** VGA, PS/2 Display
Adapter

2 640 480 VGA, PS/2 Display Adapter

i6 640 480 VGA, PS/2 Display Adapter

256 320 200 VGA. PS/2 Display Adapter

Note * The color burst is turned off on the GGA.

** Only 4 colors are available on an EGA configuration with less than 128K of video
memory.

Chapter 5: File Formats 395
i!~iml!mlEUiil_i5iimli!;-rui§Urm!rnmi\litiiil~n!i~U~iSjiii2lIUi~~6i~~~il§~!ia~i!ti1j~!~~~li\~~~~It!s'-!ft1UmUr.i~~~if!lii

When the screen is in graphics mode, MS OS/2 supports only the following Vio
functions:

VioRegister
VioDeRegister
VioGetPhysBuf
VioSavRedrawWait
VioSavRedrawUndo
VioScrLock
VioScrUnLock
VioPopUp
VioEndPopUp
VioMode Wait
VioModeUndo
VioGetFont (request type 1 only)
VioGetConfig
VioSetState (request types 0 and 1 only)
VioGetState (request types 0 and 1 only)
VioSetMode
VioGetMode

5.3.2 Screen Attributes
The screen attributes define the background and foreground colors and appear­
ance of text when the screen is in text mode. A screen attribute is an 8-bit bit
mask whose fields define the color and intensity of a character, as well as other
attributes, such as underlining and blinking. The VioWrtCellStr, VioWrtChar­
StrAtt, VioWrtNAttr, and VioWrtNCell functions use screen attributes as input
parameters. The meaning of the fields within a screen-attribute bit mask depends
on the display adapter.

For the Monochrome/Printer Adapter, the screen attribute can be a combina­
tion of the following values:

Value

OXOO

OxOl

OX07

OX08

Ox70

Ox80

Meaning

Blank character

Underlined character

Normal character

High-intensity character

Reverse-video character

Blinking character or high-intensity background
(depends on whether display-adapter blinker is active)

396 MS OS/2 Programmer's Reference, Vol. 3
~1~~l~~&:i'f}I~1!ili~m_il!i~tmiilmlffi!m1j!Ii~i~!fImift!iiiiaf!~~i§iirmi~lml!J!Rmliim~;iifUiliiiilr~iii.!i;~;fiiiL'fimn!l!1m!

For the Color Graphics Adapter and the Enhanced Graphics Adapter, the
screen attribute can be a combination of the following values:

Value Meaning

OXOO Black character

OxOl Blue character

Ox02 Green character

Ox04 Red character

Ox08 High-intensity character

Ox10 Blue background

Ox20 Green background

Ox40 Red background

OxBO Blinking character

5.3.3 Physical-Screen Buffer Addresses
The physical-screen buffer address is the starting address of the display adapter's
video-buffer memory. This starting address, as well as the size of the video
memory and the format and meaning of the contents of the memory, depends on
the display adapter and the screen mode.

5.3.4 Video Fonts
The VioGetFont and VioSetFont functions retrieve and set video fonts for the
text-mode screen. These functions can be used with displays, such as the
Enhanced Graphics Adapter and the Video Graphics Array, that accept down­
loadable fonts. To use a custom font, a program can either create it or modify
a copy of an existing font. A program uses the VioSetFont function to set
the current font and the VioGetFont function to copy existing fonts from the
display.

For the Enhanced Graphics Adapter and Video Graphics Array, a video font is
an array of 256 character cells. Each cell consists of an array of scan-line data.
The cell height specifies number of scan lines for each cell. The width of the cell
specifies the number of bytes for each scan line. Each bit represents a single pel
in the character cell. If the bit is 1, the pel is the foreground color. If the bit is
0, the pel is the background color.

Some VGA text modes specify character widths of 9 pels. The video fonts used
with this mode supply only 8 bits. The display provides the additional back­
ground pel automatically.

5.4 Resource-File Formats
An application can access the resources of an application or dynamic-link library
by using the DosGetResource function. MS OS/2 has several predefined
resource formats that Presentation Manager applications can use to create

Chapter 5: File Formats 397
HllIim!!i!i~m;i~§~iiiimiitliHllI!t!Jil!.ilim!m!ii.~ianmmlffiurll"m~iiill!!i~ilii!_!i!liiU&iiill!il!itmlllil![!it!WiftDlliliftrBiEliiii

pointers, icons, bitmaps, menus, accelerator tables, and dialog windows. Other
MS OS/2 programs can also access these resources directly, or they can define
and access their own resources. The following is a list of the predefined resource
formats:

Resource type

RTYOINTER

RT_BITMAP

RT~ENU

RTJ)IALOG

RT_STRING

RTYONTDIR

RTYONT

RT~CCELTABLE

RT-RCDATA

RT~ESSAGE

RTJ)LGINCLUDE

RT_VKEYfBL

RT.J{EYfBL

RT_CHARTBL

RTJ)ISPLA YINFO

Resource format

Mouse-pointer shape

Bitmap

Menu template

Dialog template

String tables

Font directory

Font

Accelerator tables

Binary data

Error-message tables

Dialog-include filename

Scan-code to virtual-key tables

Key to font-glyph tables

Glyph to character tables

Screen-display information

Predefined resources such as pointers, dialog windows, and fonts can be created
using Presentation Manager applications such as Icon Editor, Dialog Editor, and
Font Editor. Other resources can be generated by using the MS OS/2 Resource
Compiler (rc). Resource Compiler also adds resources to the executable file for
applications and dynamic-link libraries.

Presentation Manager applications use the following functions to retrieve
resources from an application's executable file or a dynamic-link library. Some
functions carry out additional steps, such as creating windows and bitmaps, and
do not provide direct access to the data loaded.

• GpiLoadBitmap

• GpiLoadFonts

• WinLoadPointer

• WinLoadMenu

• WinLoadDlg

• WinLoadAccelTable

• WinLoadMessage

• WinLoadString

398 MS OS/2 Programmer's Reference, Vol. 3
Itsi~~~lRlmiami&liiilUi!~!P.I!i\~li~~ilii_Jii~it§II!!ii!i~tmfl!nilfii5Um~!mnml:1i~\llii9!i111i§ii~\i\l!i!li!F.I\I\&i~~YUffiii\~lniim

The following sections describe the internal format of the predefined resources.
The format descriptions are useful for MS OS/2 programs that create new
resources or that load these resources directly by using the DosGetResource
function.

5.4.1 Pointer and Icon Resources
The RTYOINTER resource represents a pointer or icon resource. A pointer
or icon resource is a special bitmap that contains two bit masks. Presentation
Manager applications use the resource to draw mouse pointers or icons on the
display. The WinLoadPointer function is typically used to load a pointer or icon
resource and create a pointer handle. An application can draw the pointer or
icon by passing the pointer handle to the WinDrawPointer function.

The pointer and icon resources have the following format:

1* These fields are identical to the BITMAPFILEHEADER structure. *1

USHORT usType;
ULONG cbSize;
USHORT xHotspot;
USHORT yHotspot;
ULONG off Bits;

1* PT for pointer or IC for icon
1* size of resource (in bytes)
1* x-coordinate of hot spot
1* y-coordinate of hot spot
1* offset to abANDMask array

*1
*1
*1
*1
*1

1* These fields are identical to the BITMAPINFOHEADER structure. *1

U~C;>NG cbFix;
USHORT cx;
USHORT cy;
USHORT cPlanes;
USHORT cBitCount;

1* size of BITMAPINFOHEADER structure *1
1* width of bitmap (in pels) *1
1* height of bitmap (in pels) *1
1* count of color planes in bitmaps *1
1* count of bits per pel *1

1* These fields define the masks and mask colors. *1

RGB argbColor[l];
BYTE abANDMask[l];
BYTE abXORMask[l];

1* array of RGB colors
1* array for AND mask
1* array for XOR mask

*1
*1
*1

The only difference between resources is the usType field. For icon resources
this field is set to IC; for pointer resources the field is PT.

The size of the argbColor, abANDMask, and abXORMask fields depends on
the number of color planes and bits per pel specified by the cPlanes and
cBitCount fields. The size of each bit mask also depends on the width and height
of the bitmap. The bytes of the abXORMask field start immediately after the
last byte in abANDMask.

Icon Editor can be used to create pointers and icons. The POINTER and ICON
statements in Resource Compiler use the pointer and icon files created by Icon
Editor to generate pointer and icon resources.

5.4.2 Bitmap Format
The RT.]3ITMAP resource represents a bitmap. Presentation Manager applica­
tions typically load the bitmap by using the GpiLoadBitmap function. This func­
tion returns a handle to the bitmap. An application can use the GpiSetBitmap
function subsequently to set the bitmap as the current bitmap of a memory
device context.

Chapter 5: File Formats 399
!i1~Hittil~lil\~li!iiil~li~I!~Ii8ii~l~~!li!U~~;rrSmttrii!~!\:1UMii~Rmm!fiD~W[ID1r'NJ.iiii;t~.;;Ii\~!liil.~iI~

A bitmap resource has the following format:

/* These fields are identical to the BITMAPFILEHEAOER structure. */

USHORT usType;
ULONG cbSize;
USHORT xHotspot;
USHORT yHotspot;
ULONG off Bits;

/* BM
/* size of resource (in bytes)
/* x-coordinate of hot spot
/* y-coordinate of hot spot
/* offset to abBitmap array

/* These fields are identical to the BITMAPINFOHEAOER structure. */

*/
*/
*/
*/
*/

ULONG cbFix;
USHORT cx;

/* size of BITMAPINFOHEAOER structure */
/* width of bitmap (in pels) */
/* height of bitmap (in pels) */ USHORT cy;

USHORT cPlanes;
USHORT cBitCount;

/* count of color planes in bitmaps */
/* count of bits per pel */

/* These fields define the bitmap and its colors. */

RGB argbColor[l];
BYTE abBitmap[l];

/* array of RGB colors
/* array for bitmap bits

*/
*/

The size of the argbColor and abBitmap fields depends on the number of color
planes and bits per pel specified by the cPlanes and cBitCount fields. The size of
the abBitmap field also depends on the width and height of the bitmap.

Icon Editor can be used to create bitmaps. The BITMAP statement in Resource
Compiler uses the bitmap files created by Icon Editor to generate bitmap
resources.

5.4.3 String and Message Resources
The RT_STRING or RT-MESSAGE resource is a table of exactly 16 charac­
ter strings representing error messages and other text used by an application.
Presentation Manager applications typically load individual strings from a table
by using the WinLoadString or WinLoadMessage function. These functions use
a string identifier to determine the table containing the string and the string's
location in the table.

Each string or message resource consists of a table of exactly 16 entries. Each
entry has the following form:

BYTE cchText; /* length of string including zero terminator */
SZ szText[cchText]; /* zero-terminated string */

String and message tables have resource identifiers starting at 1. Each string also
has a unique identifier. A string's identifier determines which table the string is
in and where in the table it is located. The following C-Ianguage expressions
specify the location of a string:
USHORT idString;
USHORT idTable;
USHORT iString;

/* string IO */
/* resource IO of string or message table */
/* index in table of string */

idTable = (idString / 16) + 1;
iString = idString % 16;

For example, if the string identifier is 1, the string is in table 1 at entry 1. If the
string identifier is 17, the string is in table 2 at entry 1. .

The STRINGTABLE and MESSAGETABLE statements in Resource Compiler
generate string and message resources.

400 MS OS/2 Programmer's Reference, Vol. 3
!.ft~tf:iBfJt_il!i!iMJ!I,,![alUlmiHfiA;§nm~tmmiti!iiWma~Umn~ell~:m~I§1~~IQ;1ii~m!t1i1m!~1~~~i.ttii!ita'_~ii~'~i

5.4.4 Menu Resource
The RT-MENU resource represents a menu template. A menu template con­
tains all the data needed to create a menu. A Presentation Manager application
typically loads a menu-template resource by using the WinLoadMenu function.

A menu-template resource has the following format:

ULONG cbSize;
USHORT idCodePage;
USHORT idClass;
USHORT cItems;

/* size of menu template (in bytes) */
/* code page for menu names */
/* menu window-class ID */
/* number of items in menu */

/* These fields are repeated for each item. */

USHORT fStyle;
USHORT fAttributes;
USHORT cmd;
SZ szItemName[l);

/* menu-style flags
/* menu-attribute flags
/* menu-item ID
/* null-terminated menu name

*/
*/
*/
*/

If a menu item is a submenu, its fields are followed immediately by the menu­
template resource that defines the menu items in that submenu.

The length of the szItemName field is variable and depends on the menu item. If
the menu item has no name, for example, if it is a menu separator, no szItem­
Name field is given.

The MENU statement in Resource Compiler generates menu templates.

5.4.5 Accelerator-Table Resource
The RT-ACCELTABLE resource represents a keyboard-accelerator table.
Accelerator tables are used by Presentation Manager applications to translate
keystrokes into commands; that is, they translate W1LCHAR messages into
WM..COMMAND, WM..SYSCOMMAND, or WMJIELP messages. An appli­
cation typically loads accelerator tables by using the WinLoadAccelTable func­
tion.

The accelerator-table resource has the following format:

/* These fields are identical to the ACCELTABLE structure. */

USHORT cAccel;
USHORT codepage;

/* number of accelerators in the table */
/* code page for text */

/* These fields are identical to the ACCEL structure. */

USHORT fs;
USHORT key;
USHORT cmd;

/* accelerator flags */
/* keystroke to be translated */
/* command ID of translated keystroke */

The fields defining the keystroke and command are repeated for each accelerator
in the table. The fs field specifies whether the key field represents a virtual key,
a scan code, or a key combination.

The ACCELTABLE statement in Resource Compiler generates accelerator-table
resources.

Chapter 5: File Formats 401
t!!i!I~~!miH!rl!mJ~!i!faJU!~e!fi!~'l~li~i!tlflttfiliiitiifilmmt~l!!.r~~izi!~~!ijlffiill~iaI~jfimg#~~!i2I~lm~~f~i!Uilillk'

5.0.1 Dialog Templates
The RT.J)IALOG resource represents a dialog-template resource. A dialog­
template resource contains all the data needed to create a dialog window and
corresponding child controls. Presentation Manager applications typically use the
WinLoadDlg or WinDlgBox function to load the resource. The function creates
the dialog window and control windows specified by the template.

Some applications load the resource directly by using the DosGetResource func­
tion. Loading a dialog-template resource directly allows an application to exam­
ine and modify the data before creating the dialog window. The application can
then pass the data to the WinCreateDlg function to create the dialog window, or
extract individual parameters from the data and pass the parameters to functions
such as WinCreate Window to create other types of windows.

A dialog-template resource has the following form:

/* These fields are identical to the OLGTEMPLATE structure. */

USHORT
USHORT
USHORT
USHORT
USHORT
USHORT
USHORT
OLGTITEM

cbTemplate;
type;
codepage;
offadlgti;
fsTemplateStatus;
iltemFocus;
coffPresParams;
adlgti [1]

/* number of bytes in the template */
/* dialog type * /
/* code-page for text */
/* offset to 1st dialog item (12) */
/* template-status flags */
/* index to initial focus window */
/* offset to presentation parameters */
/* array of OLGTITEM structures */

/* These fields are identical to the OLGTITEM structure. */

USHORT
USHORT
USHORT
USHORT
USHORT
USHORT
ULONG
SHORT
SHORT
SHORT
SHORT
USHORT
USHORT
USHORT

fst~emStatus;
cChildren;
cchCiassNaine;
offClassName;
cchText;
off Text;
flStyle;
x;
y;
cx;
cy.;
id;
of fPresParams;
offCtlOata;

/* item-status flags */
/* number of child windows */
/* number of characters in class name */
/* offset to class name or class IO */
/* number of characters in window text */
/* offset to window text */
/* window styles * /
/* x-coordinate of window */
/* y-coordinate of window */
/* width of window * /
/* height of window */
/* window IO */
/* offset to presentation parameters */
/* offset to class-specific data */

The fields defining the dialog items are repeated for each window in the tem­
plate. Data such as class name and window text appears after the fields for the
last window. If a window has child windows, the fields of the child wi9dows
immediately follow the fields for the parent window. If the cchClassName field
is zero, the offClassName field must contain a valid window-class identifier. The
format of the class-specific data depends on the window class. In general, the
first word of the presentation parameter data and the class-specific data must
specify the length of that data in bytes.

Dialog Box Editor can be used to create dialog-template resources. The
Resource Compiler statements DLGTEMPLATE and WINDOWTEMPLATE
generate dialog-template resources.

402 MS OS/2 Programmer's Reference, Vol. 3
!f:_Iil~imlliil;;iiiH!S1f:!m~~iiii~i!i¥!/iJ~Y!@i§:~jfm'.i~iir.lii@.if!lffjjl~JJlL~iii!1ii1~i6jlf~liifiiiif~~lriii~l!mi~iifrilalfl!l1iiliiiliii"ftmiJmi~i~,

5.0.2 Dialog-Include Resource
The RTJ)LGINCLUDE resource is a filename. This resource typically is used
in conjunction with a dialog-template resource that has the same resource
identifier. The dialog-include resource specifies the include file that contains
definitions for constants used in the dialog template. Although the resource is
useful to Dialog Box Editor, other applications probably will not need it.

The DLGINCLUDE statement in Resource Compiler generates dialog-include
resources.

5.0.3 Font Resource
The RTYONT resource represents a font resource. A font resource consists of
the font metrics and character data that describe a font. Presentation Manager
applications load font resources by using the GpiLoadFont function. This func­
tion makes all font resources in a specified dynamic-link library available to the
application.

A font resource is identical in format to a font file. For more information, see
the Microsoft Operating System/2 Programmer's Reference, Volume 2.

Font Editor can be used to create fonts. The FONT statement in Resource
Compiler uses the font created by Font Editor to generate font resources.

5.0.4 Font-Directory Resource
The RTYONTDIR resource represents a font directory. A font directory con­
sists of the font metrics of a corresponding font resource. MS OS/2 uses font
directories to load information about a font without having to load the entire
font into memory.

The font-directory resource has the following form:

USHORT usFontOir;
USHORT cFonts;
USHORT cbSize;

/* resource type (always 6) */
/* count of fonts in directory */
/* size of each directory entry (in bytes) */

/* These fields are repeated for each font. */

USHORT idFont;
FOCAMETRICS foca;

/* resource IO for corresponding font
/* font metrics from font file

*/
*/

The FONTDIR statement in Resource Compiler generates a font-directory
resource. The FONT statement of Resource Compiler also generates a font
directory. It does this as it generates the font resource, so the FONTDIR state­
ment is rarely used.

5.0.5 Binary Data
The RT~CDATA resource represent one or more bytes of binary data. The
binary can have any format. The application defines the content of the data.

The RCDATA statement in Resource Compiler generates binary-data resources.

Chapter 5: File Formats 403
~tmin~ll~tm~'iimn\iil!i~i.'~lil~fS1!l~l1!\!!U~J.~~~mm~jii~~ifi!tm~~limi!!~~!tii~iii~l!!~mi~migUfinr:iii!lmiiisr:jP.!i~l

5.4.11 MS OS/2 Internal Resources
The RT_ VKEYTBL, RTJ(EYTBL, RT_CHARTBL, and RT~ISPLA YINFO
resources represent data used internally by MS OS/2. MS OS/2 uses this data to
carry out system-level tasks-for example, translating scan codes to virtual keys
and translating code points in a code page to font gylphs.

405
lir~i-~~~i~iei\~lii;ifilmmi\U~tilil§"U!liiP.lU~J_iW~jilfi!il~ii1mfiglltt.iIb~;m~1lftU;lI"1~~!!~n~iifi\iiif~!!i!ijf~~U;~1jj

Appendixes
Appendix A Error Values ... 407

Appendix B ANSI Escape Sequences .. 415

Appendix C Country and Code-Page Information..................... 421

Appendix

A

Error Values
A.1 Introduction .. 4()9

A.2 Errors ... 0 o. 00 0 0 o. 4()9

Appendix A: Error Values 409
ii\milRS~~fi.!!S~ftiml~~5!Jitii~§t~fiiifiW~Jiilift@~li!!!~mw_gg~!i':=t!!iUlimliiiii1fi\imil!iaimliim~§!i.\1!i1l!lI!ma~l~~

A.1 Introduction

A.2 Errors

This chapter contains the possible error values that can be returned by the MS
OS/2 base system functions. Before you can use these errors in your application,
you must define the INCL.]3ASE, INCL.-ERRORS, or INCLJ)OSERRORS
constant before including the os2.h file. The following code is a typical example:

#define INCL_DOS
#define INCL_DOSERRORS

#include <os2.h>

The following list gives the error values that may be returned by the Dos, Kbd,
Mou, and Vio functions. The error values are listed in numerical order, and the
corresponding error constant is given for each value. .

410 MS OS/2 Programmer's Reference, Vol. 3
~r:;I~~i~!§ilijlfID~i~ii!l~lfSUlin~~$1tDi_~fi!~!~!~~Hln~~~r.~~~E¥~~a~mt~!1!~UiJ!fLit~i\m!m~~i~ii!fi!iiil!J~l~~~

NO-ERROR 107 ERRORJ)ISK..CHANGE
108 ERRORJ)RIVE.J.OCKED

1 ERROR-INVALIDYUNCTION 109 ERROR-BROKEN..PIPE
2 ERRORYILR-NOTYOUND 110 ERROR-OPENYAILED

ERROR..PATH~OTYOUND 111 ERROR-BUFFER-OVERFLOW
ERROR-TOO..MANY _OPENYILES 112 ERROR-DlSKYULL
ERROR..ACCESSJ)ENIED 113 ERRO~O..MORE..SEARCH_HANDLES

ERROR-INVALID_HANDLE 114 ERROR-INVALlD_TARGET_HANDLE
ERROR..ARENA_TRASHED 11S ERROR..PROTECTION_VIOLATION
ERRO~OT_ENOUGH..MEMORY 116 ERROR-VIOKBD-REQUEST
ERROR-INVALID_BLOCK 117 ERROR-INVALlD_CA TEGORY

10 ERROR-BAD-ENVIRONMENT 118 ERROR-INVALID_VERIFY _SWITCH
11 ERROR-BADYORMAT 119 ERROR-BADJ)RIVER..LEVEL
12 ERROR-INVALID-i\CCESS 120 ERROR-CALL~OT _IMPLEMENTED
13 ERRORJNV ALlDJ)ATA 121 ERROR-SEM_TIMEOUT

122 ERROR-INSUFFICIENT_BUFFER
IS ERROR-INVALID_DRIVE 123 ERROR-INVALID~AME

16 ERROR-CURRENTJ)IRECTORY 124 ERROR_INVALID..LEVEL
17 ERRO~OT_SAMEJ)EVICE 12S ERRO~O_VOLUME.J.ABEL

18 ERRO~O_MOREYILES 126 ERROR..MOD~OTYOUND

19 ERROR-WRITE..PROTECT 127 ERROR-PROC~OTYOUND

20 ERROR-BAD_UNIT 128 ERROR-WAIT~O_CHILDREN
21 ERRO~OT-READY 129 ERROR-CHILD~OT_COMPLETE

22 ERROR-BAD_COMMAND 130 ERRORJ)IRECT-i\CCESS_HANDLE
23 ERROR-CRC 131 ERRO~EGATIVE_SEEK

24 ERROR-BAD..LENGTH 132 ERROR-SEEK..ONJ)EVICE
2S ERROR-SEEK 133 ERROR-ISJOIN_TARGET
26 ERRO~OT J)OSJ)ISK 134 ERROR-ISJOINED
27 ERROR-SECTO~OTYOUND 13S ERROR-IS_SUBSTED
28 ERROR-OUT _OF..P APER 136 ERRO~OTJOINED

29 ERROR-WRITEYAULT 137 ERRO~OT_SUBSTED

30 ERROR-READYAULT 138 ERRORJOIN_TOJOIN
31 ERROR-GENYAILURE 139 ERROR-SUBST _TO_SUBST
32 ERROR-SHARING_VIOLATION 140 ERRORJOIN_TO_SUBST
33 ERROR..LOCK.. VIOLATION 141 ERROR-SUBSTSOJOIN
34 ERROR-WRONGJ)ISK 142 ERROR-BUSY J)RIVE
3S ERRORYCB_UNAVAILABLE 143 ERROR-SAMEJ)RIVE
36 ERROR-SHARING_BUFFER..EXCEEDED 144 ERRORJ)I~OT-ROOT

SO ERRO~OT _SUPPORTED 14S ERRORJ)I~OT-EMPTY

146 ERROR-IS_SUBST..PA TH
80 ERRORYILE-EXISTS 147 ERROR-ISJOIN..PATH
81 ERRORJ)UPYCB 148 ERROR-P ATH_BUSY
82 ERROR-CANNOT..MAKE 149 ERROR-IS_SUBST _TARGET
83 ERRORYAILJ24 ISO ERROR-SYSTEM_TRACE
84 ERROR-OUT _OF_STRUCTURES lSI ERROR-INVALID-EVENT _COUNT
8S ERROR..ALREADY -i\SSIGNED IS2 ERROR-TOO..MANY..MUXWAlTERS
86 ERROR-INVALID_PASSWORD IS3 ERROR-INVALID..LIST YORMAT
87 ERROR-INV ALlD..P ARAMETER IS4 ERROR..LABEL_TOO..LONG
88 ERROR.-NET_ WRITEYAULT ISS ERROR-TOO..MANLTCBS
89 ERRO~O..PROC_SLOTS 1S6 ERROR-SIGNAL-REFUSED
90 ERRO~OTYROZEN IS7 ERRORJ)ISCARDED
91 ERR_TSTOVFL IS8 ERRO~OT..LOcKED

92 ERR-TSTDUP IS9 ERROR-BAD_THREADID-i\DDR
93 ERRO~O_ITEMS 160 ERROR-BAD-i\RGUMENTS
9S ERROR-INTERRUPT 161 ERROR-BAD..PATHNAME
100 ERROR-TOO_MANY _SEMAPHORES 162 ERROR-SIGNAL..PENDING
101 ERROR..EXCL_SEM-i\LREADY _OWNED 163 ERROR-UNCERTAIN..MEDIA
102 ERROR-SEM_IS_SET 164 ERROR..MAX-THRDS_REACHED
103 ERROR-TOO_MANY _SEM-REQUESTS 16S ERROR..MONIl'ORS~OT_SUPPORTED

104 ERROR-INVALID-i\T _INTERRUPT SIME 166 ERROR-UNCJ)RIVE~OT_INSTALLED

lOS ERROR-SEM_OWNERJ)IED 167 ERROR..LOCKYAILED
106 ERROR-SEM_USER-LlMIT 168 ERROR-SWAPIOYAILED

Appendix A: Error Values 411
fieWJ!m!;Ulm~UWi!ii!~I~il~~i~~iii~~illi~~i~~\~ii!I!~i~ffii!i~el*:iiilltilr.i~ifw.i~m!\i~~liffii!I~~~mH!~niUiii,S§liiiMii~ii~iit!ii

169 ERROR-SWAPINYAILED 317 ERROR..MR..MID..NOT YOUND
170 ERROR-BUSY 318 ERROR..MR-UN-ACC~SGF

319 ERROR..MR-INV ~SGF YORMAT
180 ERROR-INVALID_SEGMENT ..NUMBER 320 ERROR..MR-INV _IV COUNT
181 ERROR-INV ALID_CALLGA TE 321 ERROR..MR-UNYERFORM
182 ERROR-INVALID_ORDINAL 322 ERROR-TS_WAKEUP
183 ERROR-ALREADY..EXISTS 323 ERROR-TS_SEMHANDLE
184 ERROR..NO_CHILDYROCESS 324 ERROR-TS..NOTIMER
185 ERROR-CHILD-ALIVE..NOWAIT 326 ERROR-TS_HANDLE
186 ERROR-INVALIDYLAG..NUMBER 327 ERROR-TSJ)A TETIME
187 ERROR-SEM..NOTYOUND 328 ERROR-SYS_INTERNAL
188 ERROR-INVALlD_STARTING_CODESEG 329 ERROR-QUE_CURRENT~AME

189 ERROR-INVALID_STACKSEG 330 ERROR-QUEYROC..NOT _OWNED

190 ERROR-INV ALID~ODULETYPE 331 ERROR-QUEYROC_OWNED

191 ERROR-INVALID..EXE_SIGNATURE 332 ERROR-QUEJ)UPLICA TE
192 ERROR..EXE.>\ARKED_INV ALID 333 ERROR-QUE..ELEMENT ..NOT ..EXIST
193 ERROR-BAD..EXE_FORMA T 334 ERROR-QUE..NO_MEMORY
194 ERROR-ITERATEDJ)ATA..EXCEEDS_64K 335 ERROR-QUE_INVALID..NAME
195 ERROR-INVALID.>\INALLOCSIZE 336 ERROR-QUE_INV ALIDYRIORITY
196 ERRORJ)YNLINKYROM_INVALID~ING 337 ERROR_QUE_INVALID_HANDLE
197 ERROR-IOPL..NOT ..ENABLED 338 ERROR-QUEJ-INK..NOTYOUND
198 ERROR-INVALID_SEGDPL 339 ERROR-QUE.>\EMORY..ERROR
199 ERROR-AUTODATASEG..EXCEEDS_64k 340 ERROR-QUEYREV -A T ..END
200 ERRO~ING2SEG'>\USLBE.>\OVABLE 341 ERROR-QUEYROC..NO-ACCESS
201 ERROR~ELOC_CHAIN..xEEDS_SEGLIM 342 ERROR-QUE..EMPTY
202 ERROR-INFLOOP _IN~ELOC_CHAIN 343 ERROR-QUE..NAMK.NOT ..EXIST
203 ERROR..ENVV AR..NOTYOUND 344 ERROR-QUE..NOLINITIALIZED
204 ERROR..NOT_CURRENT_CTRY 345 ERROR-QUE_UNABLE_TO-ACCESS
205 ERROR..NO_SIGNAL_SENT 346 ERROR-QUE_UNABLE30-ADD
206 ERROR-FILENAME..EXCED~ANGE 347 ERROR-QUE_UNABLE30_INIT
207 ERROR-RING:LSTACICIN_USE 349 ERROR-VIO_INVALlD.>\ASK
208 ERROR..META..EXPANSION_TOOJ-ONG 350 ERROR-VIOYTR
209 ERROR-INVALID_SIGNAL..NUMBER 351 ERROR-VIO-APTR
210 ERROR-THREAD_CINACTIVE 352 ERROR-VIO~PTR
211 ERROR-INFO..NOT -A V AIL 353 ERROR-VIO_CPTR
212 ERRORJ-OCKED 354 ERROR-VIOJ-PTR
213 ERROR-BADJ)YNALINK 355 ERROR-VIO~ODE
214 ERROR-TOO.>\ANY~ODULES 356 ERROR-VIO_ WIDTH
215 ERROR..NESTING..NOT -ALLOWED 357 ERROR-VIO-ATTR

358 ERROR-VIO~OW
230 ERROR-BADYIPE 359 ERROR-VIO_COL
231 ERRORYIPE_BUSY 360 ERROR-VIO_TOPROW
232 ERROR..NOJ)ATA 361 ERROR-VIO_BOTROW
233 ERRORYIPE..NOT _CONNECTED 362 ERROR-VIO~IGHTCOL

,.' 234 ERROR..MOREJ)ATA 363 ERROR-VIOJ-EFTCOL
364 ERROR-SCS_CALL

240 ERROR-VCJ)ISCONNECTED 365 ERROR-SCS_ VALUE
366 ERROR-VIO_WAITYLAG

303 ERROR-INVALIDYROCID 367 ERROR.. VIO_UNLOCK
304 ERROR-INVALIDYDEL TA 368 ERROR-SGS..NOLSESSION~GR

305 ERROR..NOTJ)ESCENDANT 369 ERROR-SMG_INVALID_SGID
306 ERROR..NOT_SESSION.>\ANAGER 369 ERROR-SMG_INVALID_SESSION_ID
307 ERROR-INV ALID_PCLASS 370 ERROR-SMG..NOSG
308 ERROR-INVALID_SCOPE 370 ERROR-SMG..NO_SESSIONS
309 ERROR-INVALID_THREADID 371 ERROR-SMG_GRP ..NOTYOUND
310 ERRORJ)OSSUB_SHRINK 371 ERROR-SMG_SESSION..NOTYOUND
311 ERRORJ)OSSUB..NOMEM 372 ERROR..SMG_SE·CTITLE
312 ERRORJ)OSSUB_OVERLAP 373 ERRORJ<BDY ARAMETER
313 ERROR..DOSSUB_BADSlZE 374 ERRORJ(BD..NOJ)EVICE
314 ERROR..DOSSUB_BADFLAG 375 ERRORJ<BD_INV ALID_IOWAIT
315 ERRORJ)OSSUB_BADSELECTOR 376 ERRORJ<BD_INVALIDJ-ENGTH
316 ERROR-MR..MSG_TOOJ-ONG 377 ERRORJ<BD_INVALID..ECHO~ASK

412 MS OS/2 Programmer's Reference, Vol. 3
i~1U~i!Um~iI!'Il~~lm'i1liii~i~U!!\!!!iim!~~iF.~:rulii~i!iil!iiiijg~if.!!fi~i;iifitiJii!mtam~~iiiie:ifi~~;til!u.liti!l~~ll§i!iiti

378 ERROR..KBDJNVALID_INPur~ASK 439 ERROR..KBD_INV ALID_HANDLE
379 ERRO~ON_INVALIDJ>ARMS 440 ERROR..KBD~O~OREjHANDLE

380 ERRO~ON_INVALIDJ)EVNAME 441 ERROR..KBD_CANNOT_CREATE-KCB
381 ERRO~ON_INVALID_HANDLE 442 ERROR..KBD_CODEPAGE-LOAD_INCOMPL
382 ERRO~ON-BUFFER-TOO_SMALL 443 ERROR..KBD_INVALID_CODEPAGE_ID
383 ERRO~ON_BUFFER-EMPTY 444 ERROR..KBD~O_CODEPAGE_SUPPORT

384 ERRO~ONJ)ATA_TOO-LARGE 445 ERROR..KBDYOCUS-REQUIRED
385 ERRO~OUSE~OJ)EVICE 446 ERROR..KBDYOCUS-ALREADY -ACTIVE
386 ERRO~OUSE-INV _HANDLE 447 ERROR..KBD-KEYBOARD_BUSY
387 ERRO~OUSE-INV J>ARMS 448 ERROR..KBD_INVALID_CODEPAGE
388 ERRO~OUSE_CANT-RESET 449 ERROR..KBD_UNABLE_TOYOCUS
389 ERRO~OUSEJ)ISPLA YJ>ARMS 450 ERROR-SMG_SESSION~ON_SELECT

390 ERRO~OUSE_INV ~ODULE 451 ERROR-SMG_SESSION~OTYOREGRND

391 ERRO~OUSE-INV -ENTRYJ>T 452 ERROR-SMG_SESSION~OT J> ARENT
392 ERRO~OUSE-INV ~ASK 453 ERROR-SMG_INVALID_START~ODE

393 NO-ERRO~OUS~OJ)ATA 454 ERROR-SMG_INVALID-RELA TED_OPT
394 NO-ERRO~OUSEJ>TR-DRA WN 455 ERROR-SMGJNVALID_BOND_OPTION
395 ERROR-INVALIDYREQUENCY 456 ERROR-SMG_INVALID_SELECT _OPT
396 ERRO~LS~O_COUNTRY YILE 457 ERROR-SMG_START_IN_BACKGROUND
397 ERRO~LS_OPENYAILED 458 ERROR-SMG_INV ALID_STOP _OPTION
398 ERROR-NLS~O_CTRY_CODE 459 ERROR-SMG_BAD-RESERVE
398 ERRO~O_COUNTRY_OR-CODEPAGE 460 ERROR-SMGJ>ROCESS~OTJ> ARENT
399 ERRO~LS_TABLE_TRUNCATED 461 ERROR-SMGJNVALIDJ)ATA-LENGTH
400 ERROR-NLS_BAD_TYPE 462 ERROR-SMG~OT_BOUND

401 ERRO~LS_TYPE~OTYOUND 463 ERROR-SMG-RETRY_SUB-ALLOC
402 ERROR-VIO_SMG_ONLY 464 ERROR..KBDJ)ETACHED
403 ERROR-VIO_INVALID-ASCIIZ 465 ERROR-VIOJ)ET ACHED
404 ERROR-VIOJ)EREGISTER 466 ERRO~OUJ)ETACHED

405 ERROR-VIQ~OJ>OPUP 467 ERROR-VIOYONT
406 ERROR-VIO-EXISTINGJ>OPUP 468 ERROR-VIO_USERYONT
407 ERROR..KBD_SMG_ONLY 469 ERROR-VIO_BAD_CP
408 ERROR..KBD_INVALID-ASCIIZ 470 ERROR-VIO~O_CP
409 ERROR..KBD_INVALID~ASK 471 ERROR-VIO~A_CP

410 ERROR..KBD-REGISTER 472 ERROR-INVALID_CODEJ>AGE
411 ERROR..KBDJ)EREGISTER 473 ERROR-CPLIST _TOO_SMALL
412 ERRO~OUSE-SMG_ONLY 474 ERROR-CP ~OT~OVED
413 ERRO~OUSE_INVALID-ASCIIZ 475 ERRO~ODE-SWITCHJNIT

414 ERRO~OUSE-INVALID~ASK 476 ERROR-CODEJ>AG~OTYOUND

415 ERRO~OUSE-REGISTER 477 ERROR-UNEXPECTED_SLOT-RETURNED
416 ERRO~OUSEJ)EREGISTER 478 ERROR-SMG_INVALID_TRACE-OPTION
417 ERROR-SMG_BAD-ACTION 479 ERROR-VIO_INTERNAL-RESOURCE
418 ERROR-SMG_INVALID_CALL 480 ERROR-VIO_SHELL_INIT
419 ERROR-SCS_SG~OTFOUND 481 ERROR-SMG~OjHARD-ERRORS

420 ERROR-SCS~OLSHELL 482 ERROR-CP _SWITCH-INCOMPLETE
421 ERROR-VIOJNVALIDJ>ARMS 483 ERROR-VIO_TRANSPAaENTJ>OPUP
422 ERROR-YIOYUNCTION_OWNED 484 ERROR-CRITSEC_OVERFLOW
423 ERROR-VIO-RETURN 485 ERROR-CRITSEC.;..UNDERFLOW
424 ERROR-SCS_INV ALIDYUNCTION 486 ERROR-VIO_BAD-RESERVE
425 ERROR-SCS~OT_SESSION~GR 487 ERROR-INVALID-ADDRESS
426 ERROR-VIO-REGISTER 488 ERROR-ZERO_SELECTORS-REQUESTED
427 ERROR-VIO~O~ODE-THREAD 489 ERRO~OT-ENOUGH_SELECTORS-A VA
428 ERROR-VIO~O_SAVE-RESTORE-THD 490 ERROR-INVALID_SELECTOR
429 ERROR-VIO_IN_BG 491 ERROR-SMG_INVALIDJ>ROGRAM_TYPE
430 ERROR-VIOJLLEGAL..DURINGJ>OPUP 492 ERROR-SMG_INVALIDJ>GM_CONTROL
431 ERROR-SMG~OT _BASES HELL 493 ERROR-SMG_INVALID_INHERIT_OPT
432 ERROR-SMG_BAD_STA TUSREQ 494 ERROR-VIO..EXTENDED_SG
433 ERROR-QUE-INVALID_ WAIT 495 ERROR-VIO~OTJ>RES~GR-SG
434 ERROR-VIO-LOCK 496 ERROR-VIO_SHIELD_OWNED
435 ERRO~OUSE_INVALID_IOWAIT 497 ERROR-VIO~O~ORE_HANDLES
436 ERROR-VIO_INVALID_HANDLE 498 ERROR-VIO_SEE-ERROR-LOG
437 ERROR-VIO_ILLEGAL..DURING-LOCK 499 ERROR-VIO-ASSOCIA TEDJ)C
438 ERROR-VIO_INVALID-LENGTH 500 ERROR..KBD~O_CONSOLE

Appendix A: Error Values 413
i!~~!p.iL_m~i~::mrsif~ifil";;I!iii!~!mi§te~lg.fffiitl!illlilliUi6l11i1~Ur~~l§ImMme.h,;!!l'd!!I~mbll~1m1

501 ERRO~OUSE-NO_CONSOLE /. Values for error LOCUS ./
502 ERRO~OUSILINVALID_HANDLE

503 ERROR-SMG_lNVALIDJ)EBUG..P ARMS 1 ERRLOC_UNK
504 ERROR-KBD~TENDED_SG 2 ERRLOCJ)ISK
505 ERRO~OU~TENDED_SG ERRLOC.-NET
506 ERROR-SMG_INVALID_ICON..FILE ERRLOC_SERDEV

ERRLOC..MEM

OxFOOO ERROR-USERJ)EFINED_BASE /. ./

/. intercomponent error codes ./

ERROR-I24_ WRITE..PROTECf /. (from 8000H or 32768) ./

1 ERROR-I24_BAD_UNIT /. ./

2 ERROR-I24.-NOT -READY 32768 ERROR-SWAPPER-NOT-ACfIVE
ERROR-I24_BAD_COMMAND 32769 ERROR-INVALID_SWAPID

4 ERROR-I24_CRC 32770 ERROR-IOERR-SWAP ..FILE
5 ERROR-I24_BADJ..ENGTH 32771 ERROR-SWAP_TABLE..FULL
6 ERROR-I24_SEEK 32772 ERROR-SWAP ..FILE..FULL

ERROR-I24.-NOTJ)OSJ)ISK 32773 ERROR-CANLINIT _SWAPPER
ERROR-I24_SECfOR-NOT ..FOUND 32774 ERROR-SWAPPER-ALREADY _INIT
ERROR-I24_0UT _OF..P APER 32775 ERROR..PMM_INSUFFICIENT ..MEMORY

10 ERROR-I24_ WRlTE..F AULT 32776 ERROR..PMM_INV ALlD..FLAGS
11 ERROR-I24-READ..FAULT 32777 ERROR..PMM_INVALID-ADDRESS
12 ERROR-I24_GEN..FAILURE 32778 ERROR..PMMJ..OCK..F AILED
13 ERROR-I24J)ISK..CHANGE 32779 ERROR..PMM_UNLOCK..F AILED
15 ERROR-I24_ WRONGJ)ISK 32780 ERROR..PMM..MOVILINCOMPLETE
16 ERROR-I24_UNCERTAIN..MEDIA 32781 ERROR-UCOMJ)RIVE-RENAMED
17 ERROR-I24_CHAR-CALL.JNTERRUPTED 32782 ERROR-UCOM..FILENAME_TRUNCATED
18 ERROR-I24.-NO..MONITOR-SUPPORT 32783 ERROR-UCOM_BUFFERJ,.ENGTH
19 ERROR-I24_INV ALID..P ARAMETER 32784 ERROR..MON_CHAIN_HANDLE

32785 ERROR..MON.-NOT-REGISTERED
/. Values for error CLASS ./ 32786 ERROR-SMG-ALREADY _TOP

32787 ERROR..PMM-ARENA..MODIFIED
ERRCLASS_OUTRES 32788 ERROR-SMG..PRINTER-OPEN

2 ERRCLASS_TEMPSIT 32789 ERROR..PMM_SET..FLAGS..FAILED
3 ERRCLASS-AUTH 32790 ERROR-INVALIDJ)OSJ)D

ERRCLASSJNTRN 65026 ERROR-CPSIO_CODE..P AGE_INVALID
ERRCLASS_HRDFAIL 65027 ERROR-CPSIO.-NO_SPOOLER
ERRCLASS_SYSFAIL 65028 ERROR-CPSIO..FONT _ID_INVALID
ERRCLASS-APPERR 65033 ERROR-CPSIO_INTERNAL..ERROR

8 ERRCLASS..NOTFND 65034 ERROR-CPSIO_INVALID..PTR..NAME
ERRCLASS_BADFMT 65037 ERROR-CPSIO..NOT-ACfIVE

10 ERRCLASSJ..OCKED 65039 ERROR-CPSIOJ>ID..FULL
11 ERRCLASS..MEDIA 65040 ERROR-CPSIO..PID..NOT ..FOUND
12 ERRCLASS-ALREADY 65043 ERROR-CPSIO-READ_CTL..SEQ
13 ERRCLASS_UNK 65045 ERROR-CPSIO-READ..FNT J)EF
14 ERRCLASS_CANT 65047 ERROR-CPSIO_ WRITE..ERROR
15 ERRCLASS3IME 65048 ERROR-CPSIO_ WRITE..FULL..ERROR

65049 ERROR-CPSIO_ WRITE_HANDLE_BAD
/. Values for error ACTION ./ 65074 ERROR-CPSIO_SWIT -LOAD

65077 ERROR-CPS IO_INV _COMMAND
1 ERRACf-RETRY 65078 ERROR-CPSIO..NO..FONLSWIT
2 ERRACf J)LYRET

ERRACf_USER
4 ERRACf-ABORT
5 ERRACf..PANIC
6 ERRACf_IGNORE
7 ERRACf _INTRET

Appendix

B

ANSI Escape Sequences

B.l Introduction .. 417

B.2 Cursor Functions ... 417
B.2.l Cursor Position ... 417
B.2.2 Cursor Up ... 417
B.2.3 Cursor Down .. 417
B.2.4 Cursor Forward ... 417
B.2.5 Cursor Backward ... 418
B.2.6 Save Cursor Position ... 418
B.2.7 Restore Cursor Position 418

B.3 Erase Functions... 418
B.3.l Erase Display ... 418
B.3.2 Erase Line ... 418

B.4 Screen Graphics Functions .. 418
BA.l Set Graphics Rendition...................................... 419
B.4.2 Set Mode... 420
B.4.3 Reset Mode .. 420

Appendix B: ANSI Escape Sequences 417
iffjlifiliffiH;I~_i!iimmii§m!~d~iiil!f~Jl!!latrnjm~~iifa$li~liJilifliim~ill§1lifitliiGl!mI§jfle!f.!51~ILmim!~lm!iiimffi!!!!iium

B.1 Introduction
This appendix lists all the escape sequences that can be used in the functions
such as Dos Write and Vio WrtTTY to control the operation of the screen while
in text mode. The escape sequences can be used in family API, advanced video­
input-and-output (A VIO) and full-screen programs.

The ANSI escape sequences affect cursor positioning, erase functions, and
screen graphics. The sequences must be typed exactly as shown with all parame­
ters replaced with appropriate values. No spaces are allowed. The ESC in the
syntax represents the escape character (27).

B.2 Cursor Functions
The following functions affect the movement of the cursor.

8.2.1 Cursor Position
ESC [row;colH

or

ESC [row;colf

These two sequences move the cursor to the position specified by the parame­
ters. When no parameters are provided, the cursor moves to the home position
(the upper-left corner of the screen).

,8.2.2 Cursor Up
ESC[nA

This sequence moves the cursor up n rows without changing columns. If the cur­
sor is already on the top line, MS OS/2 ignores this sequence.

8.2.3 Cursor Down
ESC[nB

This sequence moves the cursor down n rows without changing columns. If the
cursor is already on the bottom row, MS OS/2 ignores this sequence.

8.2.4 Cursor Forward
ESC[nC

This sequence moves the cursor forward n columns without changing lines. If
the cursor is already in the far-right column, MS OS/2 ignores this sequence.

418 MS OS/2 Programmer's Reference, Vol. 3
~~~!i!!!fif9i!~lil~~1~t~~i~I~';i;'!lia~iffi!~~ru~i!~nRJ:in~51iii!!i!i~flfim!§Ii~~.!iP,19~~Wlii5!im~1!~l!§1jili1m!_!liIllii~!iti 

B.2.5 Cursor Backward 
ESC[nD 

This sequence moves the cursor back n columns without changing lines. If the 
cursor is already in the far-left column, MS OS/2 ignores this sequence. 

B.2.6 Save Cursor Position 
ESC[s 

This sequence saves the current cursor position. This position can be restored 
with the Restore Cursor Position sequence. 

B.2.7 Restore Cursor Position 
ESC[u 

This sequence restores the cursor position to the Save Cursor Position value. 

B.3 Erase Functions 
The following functions erase the screen. 

B.3.1 Erase Display 
ESC[2J 

This sequence erases the screen and moves the cursor to the home position (the 
upper-left corner of the screen). 

B.3.2 Erase Line 
ESC[K 

This sequence erases from the cursor to the end of the line (including the cursor 
position). 

B.4 Screen Graphics Functions 
The following functions affect screen graphics. 



Appendix B: ANSI Escape Sequences 419 
1!H~§i!m!~;J,;~f.Haim!iiiirJ.miiUii:~iii!!\t~\ti1iiimim~~~i~~~WI~~Uil!~mmm~~lili~liil!!l~I~~'~fElli~lffi!lii~I~tl!!i~i~i~!! 

8.4.1 Set Graphics Rendition 
ESC[g; ... ;gm 

This sequence calls the graphics functions specified by the following numeric 
values. These functions remain until the next occurrence of this sequence. This 
sequence works only if the screen device supports graphics. 

The g variable may be any of the following values: 

Value Function 

0 All attributes off 

1 Bold on 

2 Faint on 

3 Italic on 

5 Blink on 

6 Rapid-blink on 

7 Reverse video on 

8 Concealed on 

30 Black foreground 

31 Red foreground 

32 Green foreground 

33 Yellow foreground 

34 Blue foreground 

35 Magenta foreground 

36 Cyan foreground 

37 White foreground 

40 Black background 

41 Red background 

42 Green background 

43 Yellow background 

44 Blue background 

45 Magenta background 

46 Cyan background 

47 White background 

48 Subscript 

49 Superscript 

The values 30 through 47 meet the ISO 6429 standard. 



420 MS OS/2 Programmer's Reference, Vol. 3 
~;IIf.;t~~if:f'~l!jll!liiimill§[iniiiim~iii~lm1l!_iiii~iIJ!i§11I~\~g)mi~.fii~~~~;J.1ifi~sI!liflm~iir~ii!§j~i{ia~ 

B.4.2 Set Mode 
ESC [=sh 

This sequence changes the screen width or type. The s variable can be one of 
the following numeric values: 

Value Function 

o 40 X 25 black and white 

1 40 X 25 color 

2 80 X 25 black and white 

3 80 X 25 color 

4 320 X 200 color 

5 320 X 200 black and white 

6 640 X 200 black and white 

7 Wraps at the e~d of each line 

B.4.3 Reset Mode 
ESC [=sl 

The values for this escape sequence are the same as for Set Mode, except that 
the value 7 resets the mode that causes wrapping at the end of each line. 



Appendix 

C 

Country and Code-Page 
Information 

C.l Introduction............................................................ 423 

C.2 Supported Countries................................................. 423 

C.3 Code Pages ............................................................. 424 





Appendix C: Country and Code-Page Information 423 
=~~I~l!1mUMiil.!m~i~!I!m!;1S!~!i~lllR;~lfJt~~HiIi~iiH~!i:~.raiitf~iRiiil~mUIt\Ulm~i!!!UmisiP._m~lIiii~maJliS!iiw.~H!Iif..wi!l!Uinli: 

C.1 Introduction 
MS OS/2 supports multiple countries and languages, allowing for customization. 
This appendix lists the countries and languages supported by MS OS/2 and gives 
the related country and keyboard codes. The five supported code pages are also 
given. 

C.2 Supported Countries 
MS OS/2 supports these countries: 

Country 

United States 
Canada (French) 
Latin America 
Netherlands 
Belgium 
France 
Spain 
Italy 
Switzerland (French) 
Switzerland (German) 
United Kingdom 
Denmark 
Sweden 
Norway 
Germany 
Australia 
Portugal 
Finland 

Country code 

001 
002 
003 
031 
032 
033 
034 
039 
041 
041 
044 
045 
046 
047 
049 
061 
351 
358 

Keyboard code 

US 
CF 
LA 
NL 
BE 
FR 
SP 
IT 
SF 
SG 
UK 
DK 
SV 
NO 
GR 

PO 
SU 



424 MS OS/2 Programmer's Reference, Vol. 3 
i~iiiiB=mm&iif~ifi~_il!lii~iU§lillirJIi!;IJ!!!;Ur.~!ilB~liiii!-IDlfili1!ti!.nimH!!IIiI~!§!J.ii!lil!iltil'~mt~;tI1I11~!~J;i~!~~1JIUii 

C.3 Code Pages 
A code page is a set of symbols used to display text. Each symbol represents a 
letter, digit, punctuation mark, or other character found in written languages. 
Each symbol in a code page is identified by a unique value called a code point. 
A program displays a given symbol by supplying its corresponding code point. 

MS OS/2 provides predefined code pages. Each code page, identified by a 
unique number, contains a set of symbols for a given written language. For 
example, code page 860 contains the symbols needed to display messages in 
Portuguese. 

MS OS/2 supports the following five code pages: 

437 United States 

""UtlPll 

hi .. 0- 1- 2- 3- 4- s- 6- 7- 8- 9- A- B- c- D- E-
2DC1 t-

-0 • 0 @ p , 
p C; E Ii L ..lL a ... 

-1 © ~ ! I A Q a q ii z i m~ ...L =;= ~ 

-2 • : II 2 B R b r C ,£ 6 III T "1r r 
-3 • " # 3 C S c: 5 Ii 0 u I ~ IL Jt 

-4 • ~ $ 4 D T d t i 0 ii -1 - b 1: 

-s .. § % 5 E U c u a " ~ =9 + F (J 

-6 • - & 6 F V f v I Ii ! 11 1= rr ~ 

-7 • ; I 
7 G W g w ~ Ii !! "11 I~ * t 

-8 a t ( 8 H X h x e y i. 9 l!:: =F Cl> 

-9 0 + ) 9 I Y i y C 0 r- ~I r;= -1 e 
-A ttl - . : J Z j z C 0 --, II ...JL r n 
-8 cf" .- + ; K [ k { i ¢ Y. =;] -,r • 5 

-c <? 1.- < L \ I I i £ Y. :dJ 1:= - <X) 

-0 Jt ... . - M ] m } i ¥ i JJ - I (J 

-E fi ... > N 
,.. - A Pt d ...JL I & n « ,r 

-F -¢- ... I ? 0 0 c A f » -, d: - n 

F-

= 

± 
~ 

S 

r 
J 
+ 

~ 

0 

· 
· 
J 

· 
2 

• 



Appendix C: Country and Code-Page Information 425 
!iti~Umn!f!~r!i!!i§f~i1iii!l"dM!ill~i~mi!lmUfii!i\iji~U_il1ii~_iiij;\mii~m!iiiiiml!!lmi~IiiM!~!~m!»m~mmJjil_~~_igr:\i\ii'iii!fi 

850 Multilingual 

HuDipli 

hI .. 0- 1- 2- 3- 4- s- 6- 7- 8- 9- A- B- C- D- E- F-
lad + 

-0 .. 0 @ p , 
p ~ E Ii L 6 6 . ... 

-1 <:;) ~ ! 1 A Q a q ii a: i ~ ..L D P ± 
-2 • t " 2 8 R b r C ..E 6 III ~ 0 -T 

-3 • " # 3 C S C 5 Ii 0 iI I r- ~ 6 'I. 
-4 • ~ S 4 D T d t i 0 ii -l - E 0 ~ 

-5 • § % 5 E U c u Ii 6 N A + I 0 § 

-6 • - & 6 F V f v i ii ! A- i t ~ 

-7 • t · 7 G W U g A A i ~ g w I; -
-8 a t ( 8 H X h x e y i. <0 lb , I> 0 

-9 0 ~ ) 9 I Y i y e 0 ® ~I If ~ 0 .. 
-A [;] ... · : J Z j z C 0 -, II .JL 

r 0 
-8 d' 4- + ; K [ Ie { i " Yl "il =;r • 0 I 

-c <? L... · < L \ I I i £ Y. dI I}= - y J 

-D JI - · - M ) m } i 0 i ¢ - I Y 2 
I 

-E ~ A > N 
,., 

n - A x « ¥ .JL I • ,r 
-F ~ "f' I ? 0 0 Cl A f II .., C -

860 Portuguese 

H<alJlpli 

hI .. 0- 1- 2- 3- 4- s- 6- 7- 8- 9- A- B- C- D- E- F-
2ad + 

-0 .. 0 @ p p ~ E a L .JL a -... 
-1 <:;) ~ ! 1 A Q a q ii A i 

::::: ..L 
""r P ± :~~ 

-2 • t " 2 8 R b r C E 6 11\ T -rr r ~ 

-3 • " # 3 C S C 5 ii 0 iI I r- lL 1t ::;; 

-4 • ~ S 4 D T d t Ii 0 ii -l - b t r 
-5 • § % 5 E U c u Ii 6 N =l + F (J J 

-6 • - & 6 F V f v A 0 ! 11 1= rr ~ 

-7 • t · 7 G W g w I; U /I '11 I~ * t ::::: 

-8 a t ( 8 H X h x e i i. 9 lb =F <I> 0 

-9 0 ~ ) 9 I Y i Y E 0 6 ~I If ~ e . 
-A [;] ... · : J Z j z C 0 -, II .JL 

r n 
-8 d' 4- + ; K [ Ie { i ¢ Yl "il ,r • 0 .j 

-C <? L... < L \ I I 0 £ Y. dI I}= - co a 

-D JI - - M ) m } i 0 i JJ - I ~ 2 

-E ~ A > N 
,., 

n - A Pt (( d .JL I £ • ,r 
-F ~ "f' I ? 0 0 Cl A- 6 II .., ...L - n 



426 MS OS/2 Programmer's Reference, Vol. 3 
fi~iimm~i!!!e.!mnr;;fl~~~ii1IiT.~it~ilimf~~illi~lf!ii~§i~ii!3ia\R§gllil~i~!l!i~i!~i_!&l~i1§!iiilmti,!r.~r~~lif!m~fi~mu.~1 

863 French-Canadian 

Hca"'II" 

hi .. 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-
2ad .. 

-0 ~ 0 @ p , 
p ~ E I L ...lL a -I ... 

-1 © ~ ! 1 A Q a q ii E , ~~m ...L ... P ± 
-2 • l " 2 B R b r e ~ 6 III T """II r ~ 

-3 • !! # 3 C S C 5 a 0 u 1 l- LL 7t :s; 

-4 • ~ S 4 0 T d t A £ 
.. -l - b 1: r 

-5 tit § % 5 E U e u Ii J - =9 + F (J J 

-6 • - & 6 F V f v ~ Ii 3 11 F rr ~ .,... 

-7 • t 7 G W g w ~ U 11 I~ * t :::::: 

-8 a t ( 8 H X h x e 0 I =t lb =f= <I> 0 

-9 0 .. ) 9 I Y i Y C 0 r ~I rr= .J 0 . 
-A til ... . : J Z j z e 0 -, II ...JL 

r n 
-8 c:J 4- + ; K [ Ie { i ¢ Yz '1l ..,r • 0 J 
-C 9 L... < L \ 1 I i £ Yo .:!.l If: - r:JJ n 

-D ) ... = M ] m } = 0 ~. ...1J - I ~ 2 

-E fl & > N 
..... 

n - A 0 « d ...JL I E • ..,r 
-F ~ T / ? 0 0 Cl § f )) ..., ....L - n 

865 Nordic 

H"UlII" 

hi .. 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-
2ad .. 

-0 ~ 0 @ p , 
p ~ E a L ...lL a -... 

-1 © ~ ! 1 A Q a q ii II: i ~1~~~ ...L ... P ± 
-2 • l " 2 B R b r e IE 6 III r ~ T """II 

-3 • " # 3 C S C 5 a 0 u I l- LL 7t :s; 

-4 • ~ S 4 0 T d t ii 0 ii -l - b 1: r 
-5 tit § % 5 E U e u a 0 N =9 + F (J J 

-6 • - & 6 F V f v a ii ! 11 F rr ~ 

-7 • t 7 G W g w ~ U 2 11 I~ * t :::::: 

-8 a t ( 8 H X h x e y i. =t lb =f= <I> 0 

-9 0 .. ) 9 I Y i y e 0 r ~I rr= .J 0 . 
-A til ... . : J Z j z e 0 -, II ...JL 

r n 
-8 c:J 4- + ; K [ Ie { . i " Yz '1l ..,r • 0 J 
-C 9 L... < L \ I I i £ Y. :::!J If: - r:JJ n 

-D ) ... = M ] m } i " i ...1J - I ¢ 2 

-E fi & > N 
..... 

n - A Pt d ...JL I E • « ..,r 
-F p. T / ? 0 0 - Cl A f c ..., ....L - n 



Index 
A 
ANSI escape sequences, 417-420 
ASYNC_GETBAUDRATE, 260 
ASYNC_GETCOMMERROR, 260 
ASYNC_GETCOMMEVENT, 261 
ASYNC_GETCOMMSTA TUS, 262 
ASYNC_GETDCBINFO, 263 
ASYNC_GETINQUECOUNT, 264 
ASYNC_GETLINECTRL, 265 
ASYNC_GETLINESTA TUS, 265 
ASYNC_GETMODEMINPUT, 266 
ASYNC_GETMODEMOUTPUT, 

266 
ASYNC_GETOUTQUECOUNT, 

267 
ASYNC_SETBAUDRA TE, 268 
ASYNC_SETBREAKOFF, 268 
ASYNC_SETBREAKON, 269 
A SYNC_SETDCBINFO , 270 
ASYNC_SETLINECTRL, 270 
ASYNC_SETMODEMCTRL, 271 
ASYNC_STARTTRANSMIT, 272 
ASYNC_STOPTRANSMIT, 273 
ASYNC_TRANSMITIMM, 273 

B 
BIOSP ARAMETERBLOCK, 331 
Bit masks, 6 

C 
Calling conventions, 5 
C-language format, 5 
Code pages, 423-426 
CODEPAGEINFO, 332 
Constant names, 10 
COUNTRYCODE, 332 
COUNTRYINFO, 333 
CPID, 335 

o 
DA TETIME, 336 
DCBINFO, 336 
DEFINEMUXSEMLIST, 325 
DEV _FLUSHINPUT, 274 
DEV _FLUSHOUTPUT, 275 
DEV _QUERYMONSUPPORT, 275 
DEVICEPARAMETERBLOCK, 

338 

DosAllocSeg, 18 
DosAllocShrSeg, 20 
DosBeep, 21 
DosBufReset, 21 
DosCallback, 22 
DosCallNmPipe, 23 
DosCaseMap, 24 
DosChDir, 25 
DosChgFilePtr, 26 
DosCLIAccess, 27 
DosClose, 28 
DosCloseQueue, 28 
DosCloseSem, 29 
DosConnectNmPipe, 30 
DosCreateCSAlias, 30 
DosCreateQueue, 31 
DosCreateSem, 32 
DosCreateThread, 34 
DosCwait, 35 
DosDelete, 37 
DosDevConfig, 37 
DosDevIOCtl, 39 
DosDisConnectNmPipe, 40 
DosDupHandle, 40 
DosEnterCritSec, 41 
DbsErrClass, 42 
DosError, 43 
Dos~xecPgm, 44 
DosExit, 48 
DosExitCritSec, 49 
DosExitList, 49 
DosFSRamSemClear, 59 
DosFSRamSemRequest, 59 
DOSFSRSEM, 338 
DosFileLocks, 51 
DosFindClose, 52 
DosFindFirst, 53 
DosFindNext, 55 
DosFlagProcess, 57 
DosFreeModule, 58 
DosFreeSeg, 58 
DosGetCollate, 61 
DosGetCp, 62 
DosGetCtryInfo, 63 
DosGetDateTime, 64 
DosGetDBCSEv, 65 
DosGetEnv, 66 
DosGetHugeShift, 67 
DosGetInfoSeg, 67 
DosGetMachineMode, 69 
DosGetMessage, 70 

A-O 427 

DosGetModHandle, 72 
DosGetModN arne, 72 
DosGetPID, 73 
DosGetPPID, 73 
DosGetProcAddr, 74 
DosGetPrty, 75 
DosGetResource, 75 
DosGetSeg, 76 
DosGetShrSeg, 77 
DosGetVersion, 77 
DosGiveSeg, 78 
DosHoldSignal, 79 
DosInsMessage, 80 
DosKillProcess, 81 
DosLoadModule, 82 
DosLockSeg, 83 
DosMakeN mPipe, 84 
DosMakePipe, 85 
DosMemA vail, 86 
DosMkDir, 87 
DosMonClose, 87 
DosMonOpen, 88 
DosMonRead, 88 
DosMonReg, 89 
DosMon Write, 90 
DosMove, 91 
DosMuxSemWait, 92 
DosNewSize, 94 
DosOpen, 95 
DosOpenQueue, 99 
DosOpenSem, 99 
DosPTrace, 105 
DosPeekN mPipe, 100 
DosPeekQueue, 101 
DosPhysicalDisk, 103 
DosPortAccess, 104 
DosPurgeQueue, 106 
DosPutMessage, 107 
DosQAppType, 107 
DosQCurDir, 108 
DosQCurDisk, 109 
DosQFHandState, 110 
DosQFileInfo, 112 
DosQFileMode, 113 
DosQFSInfo, 114 
DosQHandType, 115 
DosQN mPHandState, 116 
DosQNmPipeInfo, 117 
DosQN Il1PipeSemState, 118 
DosQSysInfo, 119 
DosQueryQueue, 119 



428 O-M 
¥i~a5¥fi~!mai~Sim;lffi:iHtSiiiU~;!imif~U~DI:!U~i_fi~i!mim!i~iaiifJ;!i5i§~iilmil~i!Uiiiiili'eiih1lliiimiithi~i!i!5i;~~i{;:~f~ 

DosQ Verify, 120 
DosR2StackRealloc, 120 
DosRead, 121 
DosReadAsync, 122 
DosReadQueue, 123 
DosReallocHuge, 124 
DosReallocSeg, 125 
DosResumeThread, 126 
DosRmDir, 127 
DosScanEnv, 128 
DosSearchPath, 128 
DosSelectDisk, 130 
DosSelectSession, 131 
DosSemClear, 131 
DosSemRequest, 132 
DosSemSet, 133 
DosSemSetWait, 134 
DosSemWait, 135 
DosSendSignal, 136 
DosSetCp, 136 
DosSetDateTime, 137 
DosSetFHandState, 137 
DosSetFilelnfo, 139 
DosSetFileMode, 140 
DosSetFSlnfo, 141 
DosSetMaxFH, 141 
DosSetNmPHandState, 142 
DosSetNmPipeSem, 143 
DosSetProcCp, 143 
DosSetPrty, 144 
DosSetSession, 145 
DosSetSigHandler, 146 
DosSetVec, 149 
DosSetVerify, 150 
DosSizeSeg, 150 
DosSleep, 151 
DosStartSession, 152 
DosStopSession, 153 
DosSubAlloc, 154 
DosSubFree, 154 
DosSubSet, 155 
DosSuspendThread, 156 
DosTimerAsync, 156 
DosTimerStart, 157 
DosTimerStop, 158 
DosTransactNmPipe, 158 
DosUnlockSeg, 159 
DosWaitNmPipe, 159 
DosWrite, 160 
DosWriteAsync, 161 
DosWriteQueue, 163 
DSK_BLOCKREMOV ABLE, 275 
DSKYORMATVERIFY, 276 
DSK_GETDEVICEP ARAMS, 277 
o SK_GETLOGICALMAP , 277 

DSK_LOCKDRIVE, 278 
DSK_READTRACK, 278 
o SK_REDETERMINEMEDIA , 

279 
DSK_SETDEVICEP ARAMS, 280 
DSK_SETLOGICALMAP, 281 
DSK_UNLOCKDRIVE, 281 
DSK_ VERIFYTRACK, 281 
DSK_WRITETRACK, 282 

E 
Errors, 409-413 
Escape sequences (ANSI), 417-420 

F 
FDATE, 339 
Field names, 8 
FIELD OFFSET, 325 
File formats, 375-403 
FILEFINDBUF, 339 
FILELOCK, 340 
FILEST A TUS, 340 
FONTINFO, 341 
FRAME, 341 
FSALLOCA TE, 341 
FSINFO, 342 
FTIME, 342 
Functions 

G 

directory, 15-252 
IOCtI, 255-317 

GINFOSEG, 343 

H 
HIBYTE, 325 
HIUCHAR, 325 
HIUSHORT, 325 
HOTKEY, 344 

IOCtI functions, 255-317 

K 
KBD_CREA TE, 283 
KBD_DESTROY, 283 
KBD_GETCODEPAGEID, 284 
KBD_GETINPUTMODE, 284 
KBD_GETINTERIMFLAG, 285 

KBD_GETKEYBDTYPE, 285 
KBD_GETSESMGRHOTKEY, 285 
KBD_GETSHIFTSTA TE, 286 
KBD_PEEKCHAR, 287 
KBD_READCHAR, 288 
KBD_SETFGNDSCREENGRP, 

288 
KBD_SETFOCUS, 289 
KBD_SETINPUTMODE, 289 
KBD_SETINTERIMFLAG, 290 
KBD_SETKCB, 290 
KBD_SETNLS, 291 
KBD_SETSESMGRHOTKEY, 291 
KBD_SETSHIFTST ATE, 292 
KBD_SETTRANST ABLE, 292 
KBD_SETTYP AMATICRATE, 

293 
KBD_XLA TESCAN, 293 
KbdCharIn, 164 
KbdClose, 165 
KbdDeRegister, 166 
KbdFlushBuffer, 166 
KbdFreeFocus, 167 
KbdGetCp, 167 
KbdGetFocus, 168 
KbdGetStatus, 169 
KBDINFO, 345 
KBDKEYINFO, 346 
KbdOpen, 170 
KbdPeek, 170 
KbdRegister, 172 
KbdSetCp, 175 
KbdSetCustXt, 176 
KbdSetFgnd, 176 
KbdSetStatus, 176 
KbdStringln, 177 
KbdSynch, 179 
KBDTRANS, 348 
KBDTYPE, 347 
KbdXlate, 179 

L 
LINECONTROL, 349 
LINFOSEG, 350 
LOBYTE, 326 
LOUCHAR, 326 
LOUSHORT, 326 

M 
Macros, 325-329 
MAKELONG, 326 
MAKEP, 327 
MAKEPGINFOSEG, 327 



M-V 429 
imii!itUilmliii~miiiil~;;Wiiim!~"iii~iiiiiMi1i!~\S\IS\~I!iiiim~'ti!F.mi~~~ii'liUiUi!liH§i~ili18!ii~iiiilmii~~~l\i~:?1i~~~mf~ 

MAKEPLINFOSEG, 327 
MAKESHORT, 328 
MAKETYPE, 328 
MAKEULONG, 328 
MAKEUSHORT, 328 
MODEMST ATUS, 351 
MONIN, 352 
MONITORPOSITION, 352 
MONOUT, 353 
MON_REGISTERMONITOR, 294 
MOU_ALLOWPTRDRAW, 295 
MOU_DRA WPTR, 295 
MOU_GETBUTTONCOUNT, 296 
MOU_GETEVENTMASK, 296 
MOU_GETHOTKEYBUTTON, 

297 
MOU_GETMICKEYCOUNT, 297 
MOU_GETMOUSTA TUS, 298 
MOU_GETPTRPOS, 298 
MOU_GETPTRSHAPE, 299 
MOU_GETQUESTATUS, 300 
MOU_GETSCALEFACTORS, 300 
MOU_READEVENTQUE, 301 
MOU_REMOVEPTR, 301 
MOU_SCREENSWITCH, 302 
MOU_SETEVENTMASK, 302 
MOU_SETHOTKEYBUTTON, 303 
MOU_SETMOUSTATUS, 304 
MOU_SETPROTDRA W ADDRESS, 

304 
MOU_SETPTRPOS, 305 
MOU_SETPTRSHAPE, 306 
MOU_SETREALDRA W ADDRESS, 

306 
MOU_SETSCALEF ACTORS, 307 
MOU_UPDATEDISPLA YMODE, 

307 
MouClose, 181 
MouDeRegister, 181 
MouDrawPtr, 182 
MOUEVENTINFO, 353 
MouFlushQue, 182 
MouGetDevStatus, 183 
MouGetEventMask, 184 
MouGetNumButtons, 185 
MouGetNumMickeys, 185 
MouGetNumQueEI, 186 
MouGetPtrPos, 187 
MouGetPtrShape, 187 
MouGetScaleFact, 189 
MouInitReal, 189 
MouOpen, 190 
MOUQUEINFO, 354 
MouReadEventQue, 191 
MouRegister, 192 

MouRemovePtr, 195 
MouSetDevStatus, 196 
MouSetEventMask, 197 
MouSetPtrPos, 198 
MouSetPtrShape, 199 
MouSetScaleFact, 200 
MouSynch, 201 
MUXSEM, 354 
MUXSEMLIST, 355 

N 
Naming conventions, 7-10 
NOPTRRECT, 355 
Notational conventions, 11 

o 
OFFSETOF, 329 

p 
Parameter names, 8 
PDSK_GETPHYSDEVICEPARAMS, 

308 
PDSK_LOCKPHYSDRIVE, 309 
PDSK_READPHYSTRACK, 309 
PDSK_UNLOCKPHYSDRIVE, 

310 
PDSK_ VERIFYPHYSTRACK, 311 
PDSK_ WRITEPHYSTRACK, 311 
PIDINFO, 356 
PIPEINFO, 356 
Prefixes, 8 
PRT_ACTIVATEFONT, 312 
PRT_GETFRAMECTL, 313 
PRT _GETINFINITERETR Y, 313 
PRT_GETPRINTERSTATUS, 314 
PRT_INITPRINTER, 314 
PRT_QUERYACTIVEFONT, 315 
PRT _SETFRAMECTL, 315 
PRT_SETINFINITERETRY, 316 
PRT_ VERIFYFONT, 316 
PTR_GETPTRDRA W ADDRESS, 

317 
PTRACEBUF, 357 
PTRDRA WFUNCTION, 359 
PTRLOC, 359 
PTRSHAPE, 360 

Q 
QUEUERESULT, 360 

R 
RATEDELAY, 361 
Resource-file formats, 396-403 
RESULTCODES, 361 
RXQUEUE, 361 

S 
SCALEFACT, 362 
SCREENGROUP, 362 
SELECTOROF, 329 
SHIFTST ATE, 362 
STARTDATA, 363 
STATUSDATA, 365 
STRINGINBUF, 366 
Structures, 7, 331-372 

T 
TRACKFORMAT, 366 
TRACKLA YOUT, 367 
Translation tables, 375-393 
Types, 8-10, 321-324 

V 
Video fonts, 396 
Video modes, 393-396 
VioAssociate, 202 
VIOCONFIGINFO, 368 
VioCreateLogFont, 202 
VioCreatePS, 203 
VIOCURSORINFO, 369 
VioDeleteSetld, 204 
VioDeRegister, 205 
VioDestroyPS, 205 
VioEndPopUp, 205 
VIOFONTINFO, 369 
VioGetAnsi, 206 
VioGetBuf, 207 
VioGetConfig, 208 
VioGetCp, 209 
VioGetCurPos, 209 
VioGetCurType, 210 
VioGetDeviceCellSize, 211 
VioGetFont, 211 
VioGetMode, 212 
VioGetOrg, 213 
VioGetPhysBuf, 214 
VioGetState, 215 
VI OINTEN SITY, 370 
VIOMODEINFO, 370 
VioModeUndo, 216 
VioModeWait, 216 
VIOOVERSCAN, 371 



430 V 
itmm~~!i!fiil!!ii!ii1i7i~jj§1l00~fi!iEi:Wlii.lI!3if!!mBii{jUjll!iifriit!~IWi!fiif~ili~lfIf.~jiJ&c;llfm~~llJiiiiiE~iii'dit~it~~l!iill~~W 

VIOP ALST ATE, 371 
VIOPHYSBUF, 372 
VioPopUp, 218 
VioPrtSc, 220 
VioPrtScToggle, 220 
VioQueryFonts, 221 
VioQuerySetIds, 222 
VioReadCellStr, 223 
VioReadCharStr, 224 
VioRegister, 225 
VioSavRedrawUndo, 229 
VioSavRedrawWait, 230 
VioScrLock, 231 
VioScrollDn, 232 
VioScrollLf. 234 
VioScrollRt, 235 
VioScrollUp, 236 
VioScrUnLock, 237 
VioSetAnsi, 238 
VioSetCp, 239 
VioSetCurPos, 239 
VioSetCurType, 240 
VioSetDeviceCellSize, 241 
VioSetFont, 241 
VioSetMode. 242 
VioSetOrg. 243 
VioSetState, 243 
VioShowBuf, 245 
VioShowPS, 245 
VioWrtCellStr. 246 
Vio WrtCharStr, 247 
VioWrtCharStrAtt, 248 
Vio WrtN Attr, 249 
VioWrtNCell, 249 
VioWrtNChar, 250 
VioWrtTTY. 251 
VOLUMELABEL, 372 



Step up to 
Presentation Manager with 

the Microsoft OS/2 
Presentation Manager 

Softset. 
Congratulations on your purchase of the Microsoft® OS/2 Programmer's Reference Library, 
a complete guide to the features of the Microsoft OS/2 Presentation Manager. Now that 
you have the documentation, the next step is to purchase Microsoft OS/2 Presentation 
Manager ~oftset version 1.1, which Microsoft designed to help software developers create 
the new generation of graphically based, intuitive, easy-to-use software applications. 
Softset provides a complete, fully documented set of visual software tools to help you 
create popular applications for the graphical environment of Presentation Manager. 

Softset Features 

• Dialog Editor helps you design on-screen dialog boxes. 
• Icon Editor helps you customize icons, cursors, and bitmap images for graphical 

applications. 

• Font Editor helps you create your own fonts. 
• Resource Compiler helps you bind resource-definition files created with the Dialog, 

Icon, and Font Editors to .EXE files. 

• Other Softset tools help you create and maintain libraries, create message files and 
dual-mode (DOS-OS/2) programs, and perform many other tasks. 

Combine the Softset with the Microsoft OS/2 Programmer's Reference Library and a 
programming language such as Microsoft C Optimizing Compiler or Microsoft Macro 
Assembler with OS/2 support for a complete Presentation Manager software development 
kit. The applications you create in Presentation Manager are fully compatible with IBM® 
SAA (Systems Application Architecture). Trust the software tools from Microsoft - the 
company that developed MS® OS/2. 

Contact your nearest local software dealer for more information. 



Also Available From Microsoft Press 
Authoritative Information for OS/2 Programmers 
INSIDE OS/2 
Gordon Letwin 
, 'The best way to understand the overall philosophy of OS/2 will be to read this book. " 

-BillGates 

Here-from Microsoft's Chief Architect of Systems Software-is an exciting 
technical examination of the philosophy, key development issues, programming 
implications, and role of OS/2 in the office of the future. And Letwin provides 
the first in-depth look at each of OS/2' s design elements. This is a valuable and 
revealing programmer-to-programmer discussion of the graphical user interface, 
multitasking, memory management, protection, encapsulation, interprocess 
communication, and direct device access. You can't get a more inside view. 
304 pages, 13/8 x 91/4, softcover, $19.95. 
[Order Code 86-96288] 

ADVANCED OS/2 PROGRAMMING 
Ray Duncan 
Authoritative information, expert advice, and great assembly-language code 
make this comprehensive overview of the features and structure of OS/2 in­
dispensable to any serious OS/2 programmer. Duncan addresses a range of 
significant OS/2 issues: programming the user interface; mass storage; memory 
management; multitasking; interprocess communications; customizing filters, 
device drivers, and monitors; and using OS/2 dynamic link libraries. A valuable 
reference section includes detailed information on each of the more than 250 
system service calls in version 1.1 of the OS/2 kernel. 
800 pages, 13/8 x 91/4, softcover, $24.95 
[Book Code 86-96106] 

PROGRAMMING THE OS/2 PRESENTATION MANAGER 
Charles Petzold 
New! Here is the first full discussion of the features and operation of the OS/2 1.1 
Presentation Manager. If you're developing OS/2 applications, this book will 
guide you through Presentation Manager's system of windows, messages, and 
function calls. Petzold includes scores of valuable C programs and utilities. 



Endorsed by the Microsoft Systems Software group, this book is unparalleled for 
its clarity, detail, and comprehensiveness. Petzold covers: managing windows _ 
handling input and output _ controlling child windows _ using bitmaps, icons, 
pointers, and strings _ accessing the menu and keyboard accelerators _ working 
with dialog boxes _ understanding dynamic linking _ and more. 

864 pages, 73/8 x 91/4, softeover, $29.95 
[Order Code 86-96791] 

ESSENTIAL OS/2 FUNCTIONS: Programmer's Quick Reference 
Ray Duncan 
Concise information on the essential OS/2 function calls within the application 
program interface (API). Entries are included for all kernel API functions for 
OS/2 version 1.0: Dos, Kbd, Mou, and Vio. Brief descriptions of each function 
are included, as well as a list of the required parameters, returned results, pro­
gramming notes and warnings, family API call identification, and error codes. 
Conveniently arranged to provide quick access to the information you need. 

172 pages, 43/4 x 8, softeover, $9.95 . 
[Order Code 86-96866] 

For the Windows Programmer 
PROGRAMMING WINDOWS 
Charles Petzold 
Your fastest route to successful application programming with Windows. 
Full of indispensable reference data, tested programming advice, and page after 
page of creative sample programs and utilities. Topics include getting the most 
out of the keyboard, mouse, and timer; working with icons, cursors, bitmaps, and 
strings; exploiting Windows' memory management; creating menus; taking 
advantage of child window controls; incorporating keyboard accelerators; using 
dynamically linkable libraries; and masterinr the Graphics Device Interface 
(GDI). A thorough, up-to-date, and authoritative look at Windows' rich graphical 
environment. 

864 pages, 73/8 x 91/4 
$24.95 (se) [Order Code 86-96049] 
$34.95 (he) [Order Code 86-96l30] 



Solid Technical Information for MS-DOS® Programmers 
ADVANCED MS·DOS@ PROGRAMMING, 2nd ed. 
Ray Duncan 
The preeminent source of MS-DOS information for assembly-language and 
C programmers - now completely updated with new data and programming 
advice covering: ROM BIOS for the IBM@ PC, PC/AT~ PS/2~ and related periph­
erals; MS-DOS through version 4.0; version 4.0 of the LIM EMS; and OS/2 
compatibility considerations.·Duncan addresses key topics, including character 
devices, mass storage, memory allocation and management, and process man­
agement. In addition, there is a healthy assortment of updated assembly-language 
and C listings that range from code fragments to complete utilities. And the ref­
erence section, detailing each MS-DOS function and interrupt, is virtually a 
book within a book. 

512 pages, 73/8 x 91f4, softcover, $24.95 
[Order Code 86·96668] 

THE MS·DOS@ENCYCLOPEDIA 
General Editor, Ray Duncan 
The ultimate reference for insight, data, and advice to make your MS-DOS pro­
grams reliable, robust, and efficient. 1600 pages packed with version-specific 
data. Annotations of more than 100 system function calls, 90 user commands, 
and a host of key programming utilities. Hundreds of hands-on examples, thou­
sands of lines of code, and handy indexes. Plus articles on debugging, writing 
filters, installable device drivers, TSRs, Windows, memory management, the fu­
ture of MS-DOS, and much more. Researched and written by a team of MS-DOS 
experts-many involved in the creation and development of MS-DOS. Covers 
MS-DOS through version 3.2, with a special section on version 3.3. 

1600 pages, 73/4 x 10 
hardcover $134.95 [Order Code 86-96122] 
softcover $ 69.95 [Order Code 86-96833] 



Programmer's Quick Reference Series 
MS·DOS$ FUNCTIONS 
Ray Duncan 
The kind of information every seasoned programmer needs right at hand. 
Includes detailed information on MS-DOS system service calls, along with 
valuable programming notes. Covers MS-DOS through version 4. 

128 pages, 43/4 x 8, softcover, $5.95 
[Order Code 86-96411] 

IBM$ ROM BIOS 
Ray Duncan 
Essential for every assembly-language or C programmer at any experience level. 
Designed for quick and easy access to information, this guide includes all the 
core information on each of the ROM BIOS services. 

128 pages, 43/4 x 8, softcover, $5.95 
[Order Code 86-96478] 

MS·DOS$ EXTENSIONS 
Ray Duncan 
Brings together the hard-to-find programming information on the Lotu~/Intel$/ 
Microsof~ Expanded Memory Specification (EMS) version 4.0, the Lotus/ 
Intel/Microsoft/AST Extended Memory Specification (XMS) version 2.0, the 
Microsoft CD-ROM Extensions version 2.1, and the Microsoft Mouse driver, 
version 6. An overview of each function is accompanied by a list of its required 
parameters, returned results, and applicable programming notes. 

128 pages, 43/4 x 8, softcover, $6.95 
[Order Code 86-97229] 

Solid Language References 
MICROSOFT$ C: SECRETS, SHORTCUTS & SOLUTIONS 
KrisJamsa 
Here is a fact-filled, example-packed resource for any current or aspiring 
Microsoft C programmer working in the DOS environment. Each chapter high­
lights specific C programming facts, tips, and traps so that key information or 



items of special interest are immediately accessible. Hundreds of short sample 
programs support Jamsa's instruction and encourage experimentation. 
If you're new to C, Microsoft C, or even Microsoft QuickC, Jamsa's fast-paced, 
highly readable style will help you quickly master the fundamentals. If you're 
a seasoned programmer, you'll find page after page of advanced information 
that will hone your programming skills and makeoyour Microsoft C programs 
fast, clean, and efficient. Jamsa shows you how to: 
access the DOS command line _ expand wildcard characters into matching 
filenames _ use I/O redirection _ master dynamic memory allocation _ take 
advantage ofC's predefined global variables _ optimize your programs for 
increased speed _ enhance your program's video appearance _ make full use 
of the MAKE and LIB tools 

500 pages, 73/8 x 91/4, softcover, $24.95 
[Order Code 86-97112] 

PROFICIENT C 
Augie Hansen 
, 'A beautifully-conceived text, clearly written and logically organized ... 
a superb guide." Computer Book Review 

An information-packed handbook for intermediate to advanced DOS program­
mers that includes dozens of file-oriented and screen-oriented C programs and 
specially developed utilities. A successful blend of programming advice and 
practical example programs. 

512 pages, 73/8 x 91/4, softcover, $22.95 
[Order Code 86-95710] 

VARIATIONS IN C 
Steve Schustack 
Foreword by Gerald Weinberg 
A superb guide for experienced programmers who want to develop efficient, 
portable, high-quality application software using C in the DOS environment. 
In addition to an overview of the basic syntax of C, Schustack provides valuable 
techniques for structured programming. A complete, ISDO-line source code 
sample program illustrates key topics. Special comments and cautions are 
highlighted throughout. 

368 pages, 73/8 x 91/4, softcover, $19.95 
[Order Code 86-95249] 



STANDARD C: Programmer's Quick Reference 
P.l. Plauger and lim Brodie 
All the basic information needed to read and write Standard C programs that 
conform to the recently approved ANSI and ISO standard for the C program­
ming language. Scores of diagrams illustrate the syntax rules. Whether you're 
new to C or familiar with an earlier dialect, this will prove a handy companion. 

224 pages, 43/4 x 8, softcover, $7.95 
[Order Code 86-96676] 

MICROSOFT~ QUICKC PROGRAMMING 
The Waite Group 
Your springboard to the core of the Microsoft QuickC. This book is loaded with 
practical information and advice on every element of QuickC, along with hun­
dreds of specially constructed listings. Included are the tools to help you master 
QuickC's built-in libraries; manage file input and output; work with strings, 
arrays, pointers, structures, and unions; use the graphics modes; develop and 
link large C programs; and debug your source code. 

624 pages, 13/8 x 91/4, softcover, $19.95 
[Order Code 86-96114] 

MICROSOFT~ QUICKBASIC~ 2nd ed. 
Douglas Hergert 
"No matter what your level ofprogramming experience, you' llfind this book 
irreplaceable when you start to program in QuickBASIC." Online Today 

Here's a great introduction to all the development tools, features, and user­
interface enhancements in Microsoft QuickBASIC. And there's more-six 
specially designed, full-length programs including a database manager, an 
information-gathering and data-analysis program, and a chart program that 
reenforce solid structured programming techniques. 

464 pages, 13/8 x 91/4, softcover, $19.95 
[Order Code 86-96387] 



THE MICROSOFT~ QUICKBASIC PROGRAMMER'S TOOLBOX 
John Clark Craig 
This essential library of subprograms, functions, and utilities-developed to 
supercharge your QuickBASIC programs-addresses common and unusual pro­
gramming tasks: ANSI.SYS screen control. mouse support. pop-up windows. 
graphics. string manipulations. bit manipulation. editing routines. game 
programming. interlanguage calling. and more. Each program takes maxi­
mum advantage of QuickBASIC's capabilities. You're guaranteed to turn to this 
superb collection again and again. 

512 pages, 'P/s x 91f4, softcover, $22.95 
[Order Code 86·96403] 

Unbeatable Programmer's References 
PROGRAMMER'S GUIDE TO PC & PS/2~ VIDEO SYSTEMS 
Richard Wilton 
No matter what your hardware configuration, here is all the information you 
need to create fast, professional, even stunning video graphics on IBM PCs, 
compatibles, and PS/2s. No other book offers such detailed, specialized pro­
gramming data, techniques, and advice to help you tackle the exacting 
challenges of programming directly to the video hardware. And no other book 
offers the scores of invaluable source code examples included here. Whatever 
graphic output you want - text, circles, region fill, alphanumeric character sets, 
bit blocks, animation - you'll do it cleaner, faster, and more effectively with 
Wilton's book. 

544 pages, 'P/s x 91f4, softcover, $24.95 
[Order Code 86-96163] 

THE 80386 BOOK 
Ross P. Nelson 
A clear, comprehensive, and authoritative introduction for every serious pro­
grammer. Included are scores of superb assembly-language examples along with 
a detailed analysis of the 80386 chip. Topics covered include: the CPU, the 
memory architecture, the instructions sets of the 80386 microprocessor and the 



80387 math coprocessor, the protection scheme, the implementation of a virtual 
memory system through paging, and compatibility with earlier Intel micropro­
cessors. Of special note is the comprehensive, clearly organized instruction set 
reference - guaranteed to be a valuable resource. 

464 pages, 73/8 x 91J4, soft cover , $24.95 
[Order Code 86-96494] 

THE PROGRAMMER'S PC SOURCEBOOK 
ThomHogan 
At last! A reference to save you the time required to find key pieces of technical 
data. Here is important factual information- previously published in scores of 
other sources - organized into one convenient reference. Focusing on IBM PCs 
and compatibles, PS/2s and MS-DOS, the hundreds of charts and tables cover: 
_ numeric conversions and character sets _ DOS commands and utilities _ 
DOS function calls and support tables _ DOS BIOS calls and support tables _ 
other interrupts, mouse, and EMS support _ Microsoft Windows _ keyboards, 
video adapters, and peripherals _ chips, jumpers, switches, and registers _ hard­
ware descriptions _ and more. 

560 pages, 81J2 x 11, soft cover , $24.95 
[Order Code 86-96296] 

THE NEW PETER NORTON PROGRAMMER'S GUIDE 
TO THE IBM@ PC & PS/2@ 
Peter Norton and Richard Wilton 
A must-have classic on mastering the inner workings of IBM micros- now 
completely updated to include the PS/2 line. Sharpen your programming skills 
and learn to create simple, clean, portable programs with this successful combi­
nation of astute programming advice, proven techniques, and solid technical 
data. Covers 8088, 80286 and 80386 microprocessors; ROM BIOS basics and 
ROM BIOS services; video, disk and keyboard basics; DOS basics, interrupts, 
and functions (through version 4); interrupts, device drivers, and video pro­
gramming. Accept no substitutes; this is the book to have. 

528 pages, 73/8 x 91J4, soft cover , $22.95 
[Order Code 86-96635] 



The Microsoft Press CD-ROM Library 
THE MICROSOFr CD·ROM YEARBOOK: 1989/1990 
Microsoft Press 
Foreword by Bill Gates 
A dynamic, fact-filled portrait and analysis of the wide-ranging, fast-paced CD­
ROM industry. Indispensable for anyone involved in the industry as well as an 
information-packed compendium for those curious about CD-ROM. Readers can 
use the book as a valuable sourcebook of facts, statistics, and forecasts, or dip 
into it for fascinating articles, reviews, and analyses of the industry. Articles 
include: 

• an absorbing history-in text and pictures-of the CD-ROM industry 
• reviews of products-hardware and software-considered outstanding or 

standard-setting 
• profiles of the leading companies and people in the industry 
• an overview of the process of developing a CD-ROM product 
• a review of the legal issues of protection,. rights and permissions, contracts and 

royalties surrounding CD-ROM publishing 
• the strategies and pitfalls involved in getting a CD-ROM product to market 

The breadth of accurate, up-to-date information in THE MICROSOFT 
CD-ROM YEARBOOK is impressive including: 

• comprehensive reference listings of the people, equipment, available titles, 
sources, and resources in the CD ROM industry 

• a glossary of industry terms 
• a calendar of industry events and conferences 
• specialized bibliographies 

This is the reference of fact and opinion on the industry. 

960 pages, "PIs x 91f4, softcover, $79.95 
[Order Code 86-97203] 



CD ROM: THE NEW PAPYRUS 
Edited by Steve Lambert and Suzanne Ropiequet 
"This 6J9-page compendium, with contributions from more than 30 optical­
memory specialists, promises to become the bible of CD ROM." David Bunnell, 
Mac world 

This special compendium of 45 articles by leading authorities examines every 
facet of compact disc read only memory technology: hardware, software, 
applications, publishing systems, marketing, and the user interface. Includes 
introductory as well as technical information. 

608 pages, 13/8 x 91/4, softcover, $21.95 
[Order Code 86-95454] 

CD ROM 2: OPTICAL PUBLISHING 
Edited by Suzanne Ropiequet with John Einberger and Bill Zoellick 
"Recommended reading for any information professional." Online Today 

This is a comprehensive overview of the entire optical publishing process. 
Topics include: evaluating and defining storage and retrieval methods; collect­
ing, preparing, and indexing data; updating strategies; data protection and 
copyrighting; and more. Plus information on the High Sierra Logical Format. In 
addition, the editors trace the development of two CD ROM projects from initial 
concept to final product. For publishers, technical managers, and entrepreneurs. 

384 pages, 13/8 x 91/4, softcover, $22.95 
[Order Code 86-95686] 

INTERACTIVE MULTIMEDIA 
Foreword by John Sculley 

Edited by Sueanne Ambron and Kristina Hooper 
Apple Computer Corp. brought together leading researchers and developers to 
produce this informative collection of21 articles. The result is a sourcebook of 
ideas and inspiration for software and hardware developers, educators, pub­
lishers, and information providers. The contributors, including Doug Englebart, 
Sam Gibbon, and Peter Cook, represent the industries - computers, television, 
and publishing - whose products will provide the content and media for educa­
tion in the future. Filled with examples and pilot projects that define the new 
meaning of multimedia. Published with Apple Computer, Inc. 

352 pages, 13/8 x 91/4, softcover, $24.95 
[Order Code 86-96379] 



Also of Note 
COMPUTER LIB/DREAM MACHINES 
Ted Nelson 
"An exuberant, multifont compendium of computing proverbs, anecdotes,jokes, 
predictions, and politics. Still asfresh and relevant as it was a dozen years ago, 
Computer Lib is a browser's gold mine." PC World 

Published in 1974, Ted Nelson's COMPUTER LIB was an original, off-the-wall 
compendium of Nelson's visionary wisdom on the state of computing. Immedi­
ately embraced by hackers, COMPUTER LIB/DREAM MACHINES provided 
inspiration to today's industry greats. Nelson anticipated the personal computer 
revolution, made outlandish predictions (many of which have proven true), and 
expounded on his vision of non-sequential data storage - something he dubbed 
hypertext. Long unavailable, COMPUTER LIB has been updated with new 
commentaries and insights from Nelson. 

336 pages, 91/4 x 93/4, softcover, $18.95 
[Order Code 86-96031] 

Microsoft Press books are available wherever books and software are sold. 
Or you can place a credit card order by calling 1-800-638-3030 (8 AM to 4:30 PM EST). 

In Maryland, call collect: 824-7300. 



'. 

U.S.A. 
U.K. 
Austral. 

M I C R 0 SO . F T '" 

OS2 Pf9grammers 
Reference 

The Microsoft'" Operating System/2 Programmer's Reference Library should 
be the cornerstone of every OS/2 developer's programming library. These vol­
umes are required references for professional developers creating applications 
for the retail market; for corporate programmers creating in-house software pro­
grams; for hardware manufacturers creating software to support their products; 
and for all other experienced programmers working in the OS/2 environment. 

Each volume in the series is written by a team of OS/2 specialists - many 
involved in the development and ongoing enhancement of OS/2 at Microsoft. 
These books provide in-depth, accurate, and up-to-date information from the 
Microsoft OS/2 Presentation Manager Toolkit - the software development kit 
essential for creating OS/2 applications. 

Volume 1 
Volume 1 details the conceptual framework of the MS· OS/2 Application Pro­
gramming Interf~ce (API). Included are thorough descriptions of MS· OS/2 
programming models, overviews of basic programming considerations, and 
explanations of the interactio~ between the API and the rest of the MS'" OS/2 
system. Sections include Introducing MS" OS/2 , Window Manager, Graphics 
Programming Interface, and System Services. 

Volume 2 -------------
Volume 2 is a comprehensive, alphabetic listing of MS· OS/2 Presentation 
Manager functions as well as the structures and file formats used with these 
functions. Each function entry includes information on syntax; descriptions of 
the function's actions and purpose; parameters and field definitions; return 
values, error values, and restrictions; source-code examples; and programming 
notes. Appendix included. 

Volume 3 -------------
Similar in format to Volume 2, Volume 3 is a comprehensive alphabetic listing 
of MS· OS/2 base functions, including their structures and file formats. 
Appendixes included. 

ISBN 1-55615-222-1 

$19.95 
£18.95 
$29.95 

51995 

(recommended) 9 7 221 


