
M I C R 0 S 0 F T~

Programmers Reference

~PROGRAMMER'S
;, REFERENCE
LIBRARY

Microsoff
Operating System/2
Programmers Reference

Version}.}

Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one 'copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
purchaser's personal use, without the written permission of Microsoft Corporation.

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

© Copyright Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging in· Publication Data
Microsoft OS/2 programmer's reference. '
Includes index.
1. Microsoft OS/2 (Computer operating system) I. Microsoft Press
QA76.76.063078 1989 005.4'469 89-2817
ISBN 1-55615-221-3(Vo1.2)

Printed and bound in the United States of America.
1 2 3 4 5 6 7 8 9 FGFG 3 2 1 0 9

Distributed to the book trade in the United States by Harper & Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

The character-set tables in this manual are reprinted by permission from the IBM
Operating Systeml2 User's Reference, © 1987 by International Business Machines
Corporation. '

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of
Microsoft Corporation.

IBM®, PC/ A T(8), and Personal System/2® are registered trademarks of International
Business Machines Corporation.

Document No. LN0702B-11O-R00-0289

iii
~1!~lii~l!liii~!r.!ilil~il1EI~~~¥:ml~l~~:r,i!l!r~~jruiE¥.l*mi!sm~~~w.I~~iiffi~ffiiiq;~l~li~l'@'iI!r:!H~lb;a~!ijimllif:~!D;ar§ilJii~i§

Contents

Chapter 1 Introduction
1.1 Overview.. 3
1.2 How to Use This Manual.. 4
1.3 Naming Conventions .. 7
1.4 Notational Conventions .. 10

Chapter 2 Functions Directory
2.1 Introduction.. 13
2.2 Functions........................ 14

Chapter 3 Messages Directory
3.1 Introduction.. 393
3.2 Messages................... ... 394

Chapter 4 Types, Macros, Structures
4.1 Introduction.. 471
4.2 Types... 472
4.3 Macros... 473
4.4 Structures... 485

Chapter 5 File Formats
5.1
5.2
5.3
5.4
5.5
5.6

Appendixes

Introduction
Font-File Format
Font Signature
Font Metrics .. .
Font Character Definition .. .
Code-Page Font Support .. .

Appendix A Error Values

529
529
530
530
536
540

543

A.l Introduction.. 547
A.2 Errors 547

Appendix B Device Capabilities
B.l Introduction.. 553
B.2 About Device Capabilities .. 553

Index .. 559

iv
!h1mfi1~~jf:i!iftffi~~Him~iii~i1ilirniffi!5i~li~~iiU~;;1i!!Im;~iii1l\f:iani!ilS1'imi~ffi~~~~rnn!!!lli!lli§m~mf,mtiffi~,§!i~;s~~!f;i$!iiitii!ii

Figures

Figure 1.1 Sample Reference Page .. . 4

v
!{~mmIM~l1f:mff:,*iW!IW~ii!I!~!f,jErn~Si~~e;!?~IEm.0~~I~ffli~~I!!fi!§mm~ijl~i!~imiruPlilMHro~i!m~f;r:IDjSj;§fmi§ifl;r~~mEmJifEi~W

Tables

Table 5.1 Additional Glyphs.. 541

Chapter

1

Introduction
1.1 Overview .. 3

1.2 How to Use This ManuaL...... 4
1.2.1 C Format.. 5
1.2.2 MS OS/2 Include Files 5
1.2.3 MS OS/2 Calli~g Conventions............................. 5
1.2.4 Bit Masks in Function Parameters......................... 7
1.2.5 Structures............... 7

1.3 Naming Conventions ... :... 7
1.3.1 Paramet'er" and Field Names 8

1.3.1.1 Prefixes... 8
1.3.1.2 Base Types... 9

1.3.2 Constant Names 10

1.4 Notational Conventions... 10

Chapter 1: Introduction 3
ffi§!m~~iiF.;!!~ffl:!~:ffi!;ruif~1~~~~liinmi!ttR~:m!~~a4~1~lli!~q;~\~~!!s.~m!im~Si1imi~h1ilrn.liii:mlmlj6!!is!EiiOO~tt~mjl~i~!~~am;~;~

1.1 Overview
This manual describes the Dev, Gpi, and Win system functions of Microsoft®
Operating System/2 (MS® OS/2). These functions, also called the Presentation
Manager functions, let programs use the window-management and graphics
features of MS OS/2.

MS OS/2 system functions are designed to be used in C, Pascal, and other high­
level-language programs, as well as in assembly-language programs. In MS OS/2,
all programs request operating-system services by calling system functions.

This chapter, "Introduction," shows how to use this manual, provides a brief
description of MS OS/2 calling conventions, illustrates function calls in various
languages, and outlines MS OS/2 naming conventions.

Chapter 2, "Functions Directory," is an alphabetical listing of MS OS/2 Presen­
tation Manager f~nctions. This chapter defines each function's purpose, gives
its syntax, describes the function parameters, and gives possible return values.
Many functions also show simple program examples that illustrate how the func­
tion is used to carry out simple tasks.

Chapter 3, "Messag~s Directory," lists the messages sent and received by MS
OS/2 Presentation Manager functions.

Chapter 4, "Types, Macros, Structures," describes the types, macros, and struc­
tures used by MS OS/2 Presentation Manager functions.

Chapter 5, "File Formats," describes the format of font files. Font files contain
bitmap or vector information that MS OS/2 needs for drawing characters using
Gpi functions.

Appendix A, "Error Values," lists error codes and their corresponding values.

Appendix B, "Device Capabilities," lists the device capabilities that can be
determined by using the DevQueryCaps function.

This manual is intended to fully describe MS OS/2 Presentation Manager func­
tions and the structures and file formats used with these functions. It does not
show how to use these functions to carry out specific tasks. For more informa­
tion on this topic, see the Microsoft Operating Systeml2 Programmer's Reference,
Volume 1. Also, this manual does not describe MS OS/2 base system functions.
MS OS/2 base system functions let programs use the operating system to carry
out tasks such as reading from and writing to disk files; allocating memory; start­
ing other programs; and using the keyboard, mouse, and video screen. For more
information on MS OS/2 base system functions, see the Microsoft Operating
System/2 Programmer's Reference, Volume 3.

4 MS OS/2 Programmer's Reference, Vol. 2
. :mfll!!il1ia!~~ifa.lrn~is!r.a~iai3!~~~!~~!~!;t!§:!i~n~*~!~i!!lID~l!~~!~I\lilmi!m!'ir~i~~i~~@'!~!wIS!~~imtJmiim§1L~i~I!~1im!illii~f;

1.2 How to Use This Manual

Figure 1.1

This manual provides detailed information about each MS OS)'2 Presentation
Manager function, message, macro, and structure. Each description has the fol­
lowing format:

Sample Reference Page

o. WinAlarm

[

BOOl WlnAlann(hwndDesktop, (sType)
f) HWND hwndDesktop: /~ ~andle of the desktop ./

USHORT (sType: /. alarm style ./

o Parameters

o Return Value

0) Example

o See Also

8 The WinAlann function generates an audible alarm that can be used to alert the
user about special conditions.

hwndDesklOp Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

[sType Specifies the alarm style. It can be one of the following values:

WA-,WARNING
WA-,NOTE

, WA-ERROR

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example caIls an application-defined initialization function, and if the func­
tion fails it calls WinAlarm to generate an audible alarm notifying the user the
initialization failed.

if (ICenericlnit () { II general initialization II
WinAlarm (HWND_DESKTOP. WA_ERROR);

WinFlashWindow, WinSetSysValue

These are the elements shown:

1 ~he function, message, macro, or structure name.

2 The function, message, macro, or structure syntax. The syntax specifies the
number of parameters (or fields) and gives the type of each. It also gives the
order (from left to right) that parameters must be pushed on the stack. Com­
ments to the right briefly describe the purpose of the parameter (or field).

3 A description of the function, message, macro, or structure, including its pur­
pose and details of operation.

4 A full description of each parameter (or field), including permitted values and
related structures.

5 A description of the function return value, including possible error values.

6 An example showing how the function can be used to accomplish a simple task.

7 A list of related functions, structures, macros, and messages.

Chapter 1: Introduction 5
§§miiHii~i!~§ilif~~ffElmi~Uf~ij~:!!ij1i5U8I~~1511!m!;1i~i~nll~:il!!1ffi!mmm"~ll!§!irnlmiml~flgitIDfijjf!ii!mmlllilli~!al~!me~i~Urill!~ilif!!E!~

1.2.1 C Format
In this manual, the syntax for MS OS/2 functions is given in C-Ianguage format.
In your C-language sources, the function name must be spelled exactly as given
in the syntax and the parameters must be used in the order given in the syntax.
This syntax also applies to Pascal program sources.

The following example shows how to call the WinAlarm function in a C-language
program:

/* sound an alarm when an error occurs */

WinAlarm (HWND_DESKTOP ,
WA_ERROR);

1.2.2 MS OS/2 Include Files

/* alarm for the desktop window */
/* tone for errors */

This manual uses many types, structures, and constants that are not part of stan­
dard C language. These items, designed for MS OS/2, are defined in the MS
OS/2 C-language include files provided with the Microsoft OS/2 Presentation
Manager Softset and the Microsoft OS/2 Presentation Manager Toolkit.

In C-language programs, the #include directive specifying os2.h, the MS OS/2
C-language include file, can be placed at the beginning of the source file to
include the definitions for the special types, structures, and constants. Although
there are many MS OS/2 include files, the os2.h file contains the additional
#include directives needed to process the basic MS OS/2 definitions.

To speed up processing of the MS OS/2 C-Ianguage include files, many
definitions are processed only if the C-Ianguage program explicitly defines a
corresponding include constant. An include constant is simply a constant name,
with the prefix INCL_, that controls a portion of the include files. If a constant
is defined using the #define directive, the corresponding MS OS/2 definitions
are processed. For a list of the include constants and a description of the MS
OS/2 system functions they enable, see the Microsoft Operating Systeml2
Programmer's Reference, Volume 1.

1.2.3 MS OS/2 Calling Conventions
You must know MS OS/2 calling conventions to use MS OS/2 functions in other
high-level languages or in assembly language. MS OS/2 functions use the Pascal
(sometimes called the PLM) calling convention for passing parameters, and they
apply some additional rules to support dynamic-link libraries. The following
rules apply:

• You must push the parameters on the stack. In this manual, each function
description lists the parameters in th~ order they must be pushed. The left
parameter must be pushed first, the right parameter last. If a parameter
specifies an address, the address must be a far address; that is, it must have
the form selector:offset. The selector must be pushed first, then the offset.

• The function automatically removes the parameters from the stack as it
returns. This means the function must have a fixed number of parameters.

• You must use an inter segment call instruction to call the function. This is
required for all dynamic-link-library functions.

6 MS OS/2 Programmer's Reference, Vol. 2
i~m!if.ilmnli~:Sli!l!i1i~i~~;Ufiji~!§!l~um~i!ltsr.t[~l~i~!§!iiimj~~I~ffiil~~JJ~i!!il!§!i~!ii~~~mmi!1!t~m\m~I~~EJ~!~~:g~!ml~~mi

• The function returns a value, possibly an error value, in either the ax register
or the dx:ax register pair. Only the di and si register values are guaranteed to
be preserved by the function. MS OS/2 Presentation Manager functions may
preserve other registers as well, but they do not preserve the flags register.
The contents of the flags register are undefined; specifically, the direction
flag in the register may be changed. However, if the direction flag was zero
before the function was called, it will be zero after the function returns.

The following example shows how MS OS/2 calling conventions apply to the
WinCreateStdWindow.function in an assembly-language program:

EXTRN WINCREATESTDWINDOW:FAR

hwndParent
flCreateFlags
szClientClass
szTitle
hwndClient

dd
dd
db
db
dd

01H
OFH

"MyClass", 0
"My Window", 0

01H

push word ptr [hwndParent+2]
push word ptr [hwnParent]
push 0

handle of the parent window

frame-window style
push 0
push ds
push offset flCreateFlags
push ds
push offset szClientClass
push ds
push offset szTitle
push 0
push 0
push 0
push 1
push ds
push offset hwndClient
call WINCREATESTDWINDOW

creation flags

client-window class name
address of title-bar text

client-window style

;. handle of the resource file
; resource identifier
; address of client-window handle

The following example shows how to call the same WinCreateStdWindow func­
tion in a C-Ianguage program. In C, the WinCreateStdWindow function name,
parameter types, and constant names are defined in os2.h, the MS OS/2 C­
language include file.

include <os2.h>

HWND hwndParent = HWND_DESKTOP;
ULONG flCreateFlags =

FCF_TITLEBAR I FCF_SYSMENU FCF_MENU I FCF_SIZEBORDER;
HWND hwndClient;

WinCreateStdWindow(
hwndParent,
OL,
&flCreateFlags,
"MyClass",
"My Window",
OL,
0,
1,
&hwndClient) ;

It handle of the parent window tl
It frame-window style il
It creation flags tl
Ii client-window class name il
Ii address of title-bar text il
Ii client-window style il
Ii handle of the resource file il
Ii resource identifier il
It address of client-window handle il

Chapter 1: Introduction 7
:ffirliiil!§iirn1§;1fr.!w.lSUJ:i~miffiii~Hf:i~~j!§#l~liffi!mmi~U51t:i:~ll~1i;n:;;~~mll~jl5j1mi$ii!igjl!lillii~m;Sli!llif~ii;mn,'liiiff:~liB~~~~~IU::i1U§§l

1.2.4 Bit Masks in Function Parameters
Many MS OS/2 system functions accept or return bit masks as part of their
operation. A bit mask is a collection of two or more bit fields within a single
byte, or a short or long value. Bit masks provide a way to pack many Boolean
flags (flags whose values represent on/off or true/false values) into a single
parameter or structure field. In assembly-language programming, it is easy to
individually set, clear, or test the bits in a bit mask by using instructions that
modify or examine bits within a byte or a word. In C-language programming,
however, the programmer does not have direct access to these instructions, so
the bitwise AND and OR operators typically are used to examine and modify the
bit masks.

Since this manual presents the syntax of MS OS/2 system functions in C­
language syntax, it also defines bit masks in a way that is easiest to work with
using the C language: as a set of constant values. When a function parameter
is a bit mask, this manual provides a list of constants (named or numeric) that
represent the correct values used to set, clear, or examine each field in the bit
mask. For example, the fsSelection field of the FATTRS structure in the Gpi­
CreateLogFont function specifies several values, such as FATIlCSELJTALIC
and FATflCSEL_UNDERSCORE. These represent the "set" values of the
fields in the bit mask. Typically, the description associated with the value
explains the result of the function if the given value is used; that is, when the
corresponding bit is set. Generally, the opposite result is assumed when the
value is not used. For example, using FATflCSELJTALIC in the fsSelection
field enables the italic font; not using it disables the italic font.

1.2.5 Structures
Many MS OS/2 system functions use structures as input and output parameters.
This manual defines all structures and their fields using C-language syntax. In
most cases, the structure definition presented is copied directly from the C­
language include files provided with the Microsoft C Optimizing Compiler. Occa­
sionally, an MS OS/2 function may have a structure that has no corresponding
include-file definition. In such cases, this manual gives an incomplete form of
the C-language structure definition to indicate that the structure is not already
defined in an include file.

1.3 Naming Conventions
In this manual, all parameter, variable, structure, field, and constant names con­
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate· both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func­
tion parameters and structure fields. These conventions are also used in most
MS OS/2 sample program sources to make the sources more readable and infor­
mative.

8 MS OS/2 Programmer's Reference, Vol. 2
ff~~i~aii1~~~lmlll:ifi~!i!!ir~:::r:!5~m!rt,~I!!#i~f!!1~ifru!!IU"~iUm:f4iiiILt!i~liimmml~~~!1.ge;i~~i~S!in!.~llil~~,ig~tm~1i!

1.3.1 Parameter and Field Names

1.3.1.1 Prefixes

With MS OS/2 naming conventions, all parameter and field names consist of up
to three elements: a prefix, a base type, and a qualifier. A name always consists
of at least a base type or a qualifier. In most cases, the name also includes a
prefix.

The base type, always written in lowercase letters, identifies the data type of the
item. The prefix, also written in lowercase letters, specifies additional informa­
tion about the item, such as whether it is a pointer, an array, or a count of
bytes. The qualifier, a short word or phrase written with the first letter of each
word uppercase, specifies the purpose of the item.

There are several standard prefixes and base types. These are used for the data
types most frequently used with MS OS/2.

The following is a list of standard prefixes used in MS OS/2 naming conventions:

Prefix

p

np

a

c

h

off

id

Description

Pointer. This prefix identifies a far, or 32-bit, pointer to a
given item. For example, pch is a far pointer to a character.

Near pointer. This prefix identifies a near, or 16-bit, pointer
to a given item. For example, npch is a near pointer to a
character.

Array. This prefix identifies an array of two or more items
of a given type. For example, ach is an array of characters.

Index. This prefix identifies an index into an array. For
example, ich is an index to one character in an array of
characters.

Count. This prefix identifies a count of items. It is usually
combined with the base type of the items being counted
instead of the base type of the actual parameter. For exam­
ple, cch is a count of characters even though it may be
declared with the type USHORT.

Handle. This prefix is used for values that uniquely identify
an object but that cannot be used to access the object
directly. For example, hfile is a handle of a file.

Offset. This prefix is used for values that represent offsets
from the beginning of a buffer or a structure. For example,
off is the offset from the beginning of the given segment to
the specified byte.

Identifier. This prefix is used for values that identify an
object. For example, idSession is a session identifier.

Chapter 1: Introduction 9
iiili!!lP:ifim~§;§!J.~i~~i!~~i!oi!Iilh~iiiijgiffi1l\~~I~~m~fillU~ii~l;~a~l~~~ft~~e5_1ffiiffii\Ei§!mffi!iroiiiii\~i!ilifw~l~i!ffi~~itMl.mnr:I!WJ

1.3.1.2 8 ase Types
The following is a list of standard base types used in MS OS/2 naming conven­
tions:

Base type

f

ch

s

Type/Description

BOOL. A 16-bit flag or Boolean value. The qualifier should
describe the condition associated with the flag when it is
TRUE. For example, fSuccess is TRUE if successful,
FALSE if not; fError is TRUE if an error occurs and
FALSE if no error occurs. For objects of type BOOL, a
zero value implies FALSE; a nonzero value implies TRUE.

CHAR. An 8-bit signed value.

SHORT. A 16-bit signed value.

LONG. A 32-bit signed value.

uch UCHAR. An 8-bit unsigned value.

us USHORT. A 16-bit unsigned value.

ul ULONG. A 32-bit uri signed value.

b BYTE. An 8-bit unsigned value. Same as uch.

sz CHAR[]. Array of characters, terminated with a null char­
acter (the last byte is set to zero).

fb UCHAR. Array of flags in a byte. This base type is used
when more than one flag is packed in an 8-bit value. Values
for such an array are typically created by using the logical
OR operator to combine two or more values.

fs USHORT. Array of flags in a short (16-bit unsigned value).
This base type is used when more than one flag is packed in
a 16-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

fl ULONG. Array of flags in a long (32-bit unsigned value).
This base type is used when more than one flag is packed in
a 32-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

sel SEL. A 16-bit value that is used to hold a segment selector.

10 MS OS/2 Programmer's Reference, Vol. 2
~~1~~eL~!ffigjiml~~iilm!iffimngi~Hfs!~!§l~~1i~l~1~m:(S~~j~~lm~~UfJi*~m~~~!lHli~§U~i~~1!!~HW.l~i~~~tilim~i~iilSiI~,

The base type for a structure is usually derived from the structure name. An MS
OS/2 structure name, always written in uppercase letters, is a word or phrase
that describes the size, purpose, and/or intended content associated with the
type. The base type is typically an abbreviation of the structure name. The fol­
lowing list gives the base types for the structures described in this manual:

ace fedata ptl
aeet fm ptri
a rep gradl qmsq
bmi hei refx
bmp hpga rcl
btned ibmd rgb
ebnd krnpr rgnre
clsi lbnd sbed
erst matlf sizfx
esri mbhdr sizl
etehbf mbnd smhs
dde mi swetl
ddei mqi swent
dop oi swp
dlgt pbnd ti
dlgti pib ubtn
driv proge wprm
erri progt wywin
fat ptfx

1.3.2 Constant Names
A constant name is a descriptive name for a numeric value used with an MS
OS/2 function. All constant names are written in uppercase letters and have a
prefix derived from the name of the function, object, or idea associated with the
constant. The prefix is followed by an underscore (_) and the rest of the con­
stant name, which indicates the meaning of the constant and may specify a
value, action, color, or condition. A few common constants do not have
prefixes-for example, NULL is used for null pointers of all types, and TRUE
and FALSE are used with the BOOL data type.

1.4 Notational Conventions
The following notational conventions are used throughout this manual:

Convention

bold

italics

rnonospace

Meaning

Bold type is used for keywords-for example, the
names of functions, data types, structures, and
macros. These names are spelled exactly as they
should appear in source programs.

Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

Monospace type is used for example program­
code fragments.

Chapter

2

Functions Directory
2.1 Introduction .. ~......... 13

2.2 Functions.. 14

Chapter 2: Functions Directory 13
!!~~!St~lffii~m!iSif!~mliE;;n~i!~im1~.dlili;imJ!m3Iiit~ii!W!m;mi!~~lm*~i!j:l~l~IDt;ii§iii/~UEliiillli.iBFJ~ii~iEi~ilAi1!!!m~~I~'fJBl!!ffii~

2.1 Introduction
This chapter describes MS OS/2 Dev, Gpi, and Win functions. These functions,
also called MS OS/2 Presentation Manager functions, provide the special Presen­
tation Manager features of MS OS/2, such as windows, message queues, and
device-independent graphics. The Dev, Gpi, and Win functions represent three
distinct function groups. As described in the following list, programs use these
function groups to carry out specific tasks:

Function group

Dev

Gpi

Win

Usage

Use the Presentation Manager device (Dev) functions
to open and control Presentation Manager device
drivers. These functions let you create device contexts
that you can associate with a presentation space and
use with the Gpi functions to carry out device­
independent graphics for displays, printers, and
plotters.

Use the graphics programming interface (Gpi) func­
tions to create graphics output for a display, printer,
and other output devices. The Gpi functions give you
a full range of graphics primitives, from lines to com­
plex curves to bitmaps . You choose the attributes for
the primitives, such as color, line width, and pattern,
and then draw lines, text, and shapes. The retained­
graphics capability lets you save the drawing in seg­
ments and build complex pictures by drawing a chain
of segments.

Use the window-manager (Win) functions to create
and manage windows. Presentation Manager applica­
tions use windows as the main interface with the user.
The Win functions let you create menus, scroll bars,
and dialog windows that let the user choose commands
and supply input. Your application receives all mouse
and keyboard input as messages from the message
queue. The Win functions let you retrieve messages
from the queue and dispatch them to the window the
input is intended for.

This chapter gives complete syntax, purpose, and parameter descriptions for
each function. Types, macros, and structures used by a function are given with
the function; these are described more fully in Chapter 4, "Types, Macros,
Structures." The numeric values for error values returned by the functions are
listed in Appendix A, "Error Values."

Many of the function descriptions in this chapter include examples. The exam­
ples show how to use the functions to accomplish simple tasks. In nearly all
cases, the examples are code fragments, not complete programs. A code frag­
ment is intended to show the context in which a function can be used, but often
assumes that variables, structures, and constants used in the example have been
defined and/or initialized. Also, a code fragment may use comments to represent
a task instead of giving the actual statements.

Although the examples are not complete, you can still use them in your

14 MS OS/2 Programmer's Reference, Vol. 2
imifSuiB.i!liiS:ig~~~~~1.:~f~i!!fLli§§imL~~i~llirumtiil;Bj~im$i~il!l~!mlk~(ijUifli.~i~~.J~~~.h~m~ii~MmB~j!i?~tfiii:lillii}!~

programs if you take the following steps:

• Include the os2.h file in your program.

• Define the appropriate include constants for the functions, structures, and
constants used in the example.

• Define and initialize all variables.

• Replace comments that represent tasks with appropriate statements.

• Check return values for errors and take appropriate actions.

2.2 Functions
The following is a complete list, in alphabetical order, of the MS OS/2 Dev,
Gpi, and Win functions.

DevEscape 15

• DevCloseDC
HMF OevCloseOC(hdc)
HOC hdc; f* device-context handle *f

Parameters

Return Value

See Also

• DevEscape

The DevCloseDC function closes the specified device context. If the device con­
text is associated with a presentation space or was created by using the Win­
Open WindowDC function, an error occurs and the device context is not closed.
This function decrements the use count (by one) of processes that have accessed
the device context. The device context is deleted when the use count reaches
zero.

hdc Identifies the device context. An error results if this parameter identifies
a screen device context or is associated with a micro presentation space.

The return value is DEV _OK if the function is successful and the device context
is not a metafile device context. The return value is DEV -ERROR if an error
occurs. Any other return value indicates that the function closed a metafile
device context and returned its handle.

DevOpenDC, WinOpenWindowDC

LONG OevEscape(hdc. cmdCode. cblnData. pblnData. pcbOutData. pbOutData)
HOC hdc; f* device-context handle *f
LONG cmdCode;
LONG cblnData;
PBYTE pblnData;
PLONG pcbOutData;
PBYTE pbOutData;

Parameters

f. escape function to perform

f. size of input buffer

f* pOinter to input buffer

f. pOinter to buffer for number of bytes received .f
f. pointer to output buffer .f

The DevEscape function allows applications to access facilities of a device not
otherwise available through the applications programming interface (API). Calls
to escape functions are, in general, sent to the device driver and must be under­
stood by it.

hdc Identifies the device context.

cmdCode Specifies the escape function to perform. The following escape
functions are currently defined: .

DEVESC_QUERYESCSUPPORT
DEVESC_GETSCALINGF ACTOR
DEVESC_STARTDOC
DEVESC-ENDDOC
DEVESC_NEXTBAND
DEVESC~BORTDOC
DEVESC_NEWFRAME
DEVESC~RAFTMODE
DEVESC~LUSHOUTPUT
DEVESC-RAWDATA

16 DevEscape

Return Value

Comments

Devices can define additional escape functions by using other cmdCode values in
the following ranges:

Range

32768-40959

40960-49151

49152-57343

57344-65535

Meaning·

Not stored in a metafile and not recorded (passed to the
device driver for P1LQ_STD).

Stored in a metafile only (passed to the device driver for
P1LQ_STD).

Stored in a metafile and recorded (not passed to the device
driver for P1LQ_STD).

Recorded only (not passed to the device driver for
P1LQ_STD).

cblnData Specifies the number of bytes of data in the buffer pointed to by the
pblnData parameter.

pblnData Points to the buffer that contains the input data required for the
escape function.

pcb Out Data Points to the buffer that receives the number of bytes of data
in the buffer pointed by the pbOutData parameter. If data is returned in the
pbOutData parameter, pcbOutData is updated to the number of bytes of data
returned.

pbOutData Points to the buffer that receives the output from this escape. If
this parameter is NULL, no data is returned.

The return value is DEV _OK if the function is successful, DEVESC-ERROR if
an error occurs, or DEVESC_NOTIMPLEMENTED if the escape function is
not implemented for the specified code.

The standard escape functions, or escapes, are listed as follows, with the con­
tents of each DevEscape parameter:

The DEVESC_QUERYESCSUPPORT escape determines whether the device
driver has implemented a particular escape. The return value gives the result.
This escape is not stored in a metafile or recorded.

For DEVESC_QUERYESCSUPPORT, the DevEscape parameters contain the
following information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter.

Specifies the escape-code value of the escape function
to be checked.

Not used; can be set to NULL.

Not used; can be set to NULL.

The DEVESC_GETSCALINGF ACTOR escape returns the scaling factors for
the x and y axes of a printing device. For each scaling factor, an exponent of two
is put in the pbOutData parameter. For example, the value 3 is used if the scal­
ing factor is 8. Scaling factors are used by devices that cannot support graphics
at the same resolution as the device resolution.

OevEscape 17

For DEVESC_GETSCALINGFACTOR, the DevEscape parameters contain
the following information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be set to zero.

Not used; can be set to NULL.

Points to the number of bytes of data pointed to by
the pbOutData parameter. Upon return, this parame-
ter is updated to the number of bytes returned.

Points to the buffer that receives the output from this
escape. A structure is returned that specifies the scal-
ing factors for the x and y axes.

The DEVESC_STARTDOC escape allows an application to indicate that a new
print job is starting and that all subsequent calls to DEVESC_NEWFRAME
should be spooled under th~ same job, until DEVESC-ENDDOC is called. This
ensures that documents longer than one page are not interspersed with other
jobs.

For DEVESC_STARTDOC, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData'

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter. .

Points to the null-terminated ASCII string that
specifies the name of the document.

Not used; can be set to NULL.

Not used; can be set to NULL.

The DEVESC-ENDDOC escape ends a print job started by the
DEVESC_STARTDOC escape.

For DEVESC-ENDDOC, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be set to zero.

Not used; can be set to NULL.

Points to the buffer that specifies the number of char­
acters in the string pointed to by the pbOutData
parameter. This parameter should be NULL if the
number of characters is zero.

Points to the USHORT value that specifies the job
identifier if a spooler print job was created.

The DEVESC_NEXTBAND escape allows an application to signal that it has
finished writing to a "band," or rectangle. The coordinates of the next band are
returned. This escape is used by applications that perform handle banding
("for-printing") themselves.

18 DevEscape

For DEVESC_NEXTBAND, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be set to zero.

Not used; can be set to NULL.

Points to the number of bytes of data pointed to by
the pbOutData parameter. Upon return, the escape
updates this parameter to the number of bytes
returned.

Points to the address of the buffer that receives the
output from this escape. A structure is returned that
specifies the device coordinates of the next band,
which is a rectangle.

The DEVESC~BORTDOC escape stops the current job, erasing everything
written by the application to the device since the DEVESC~NDDOC escape
was called.

For DEVESC~BORTDOC, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be set to zero.

Not used; can be set to NULL.

Not used; can be set to NULL.

Not used; can be set to NULL.

The DEVESC_NEWFRAME escape allows an application to signal when it has
finished writing to a page. You usually use this escape with a printer device to
advance to a new page. Calling this escape, which is similar to processing the
GpiErase function for a screen device context, resets the screen attributes.

For DEVESC_NEWFRAME, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be set to zero.

Not used; can be set to NULL.

Not used; can be set to NULL.

Not used; can be set to NULL.

The DEVESC~RAFTMODE escape turns draft mode on or off. Turning draft
mode on instructs the device driver to print faster and with lower quality . You
can change the draft mode only at page boundaries-for example, after a call to
the DEVESC_NEWFRAME escape.

See Also

DevEscape 19

For DEVESCJ)RAFfMODE, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Specifies the number of bytes pointed to by the
pblnData parameter.

Points to the SHORT value that specifies the draft
mode; 1 for on, 0 for off.

Not used; can be set to NULL.

Not used; can be set to NULL.

The DEVESCYLUSHOUTPUT escape removes any output from the device
buffer.

For DEVESCYLUSHOUTPUT, the DevEscape parameters contain the follow­
ing information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

Description

Not used; can be set to zero.

Not used; can be set to NULL.

Not used; can be set to NULL.

Not used; can be set to NULL.

The DEVESC~A WDATA escape allows an application to send "raw," or
binary, data directly to a device driver. For example, in the case of a printer
device driver, the data could be a stream of printer data.

If binary data is mixed with other data-for example, Gpi data-being sent to
the same page of a device context, the results are unpredictable and depend
upon the action taken by the Presentation Manager device driver, which, might
even ignore the Gpi data completely. In general, you should send binary data
either to a separate page, using the DEVESC_NEWFRAME escape to obtain a
new page, or to a separate document, using the DEVESC_STARTDOC and
DEVESC~NDDOC escapes to create a new document.

For DEVESC~A WDATA, the DevEscape parameters contain the following
information:

Parameter

cblnData

pblnData

pcbOutData

pbOutData

GpiErase

Description

Specifies the number of bytes pointed to by the
pblnData parameter.

Points to the binary data.

Not used; can be set to NULL.

Not used; can be set to NULL.

20 DevOpenDC

• DevOpenDC
HDC DevOpenDC (hab. type. pszToken. count. pbData. hdcComp)
HAB hab; I. anchor-block handle .1
LONG type; I. type of device context .1
PSZ pszToken; I. pOinter to device-information token .1
LONG count; I. number·of elements in structure .1
PDEVOPENDATA pbData: I. pointer to structure for device context .1
HOC hdcComp: I. handle of compatible device context .1

Parameters

The DevOpenDC function creates a device context. This function initializes the
use count (to one) of the number of processes that have access to the device
context.

hab Identifies the anchor block.

type Specifies the type of device context; it can be one of the following:
Value Meaning

A device, such as a printer or plotter, for which to
queue output.

A device, such as a printer or plotter, for which to
not queue output.

Same as for OD_DIRECT, but used only to retrieve
information (for example, font metrics). You can
draw to a presentation space associated with such a
device context, but you cannot update any output.

A device context that is used to draw a metafile. The
graphics field defines the area of interest within the
metafile picture.

A device context that is use~ to contain a bitmap.

pszToken Points to the null-terminated string that contains the device­
information token. This device information, which is held in the os2.ini file, is
the same as that which may be pointed to by the pbData parameter; any infor­
mation obtained from pbData overrides the information obtained by using this
parameter. If yciu specify an asterisk (*) for pszToken, no device information is
taken from the os2.ini file. MS OS/2 version 1.1 acts as if "*,, is specified but
allows you to specify any string.

count Specifies the number of elements in the structure pointed to by the
pbData parameter. This number may be less than the number of items in the full
list if omitted items are irrelevant or are supplied from the pszToken parameter
or elsewhere.

pbData Points to a data area that describes the output device. This area can
be either an array of pointers or a DEVOPENSTRUC structure, which has the
following form:

Return Value

DevPostDeviceModes 21

typedef struct _DEVOPENSTRUC {
psz pszLogAddress;
psz pszDriverName;
PDRIVDATA pdriv;
psz pszDataType;
psz pszComment;
psz pszQueueProcName;
psz pszQueueProcParams;
psz pszSpoolerParams;
psz pszNetworkParams;

} DEVOPENSTRUC;

For a full description, see Chapter 4, "Types, Macros, Structures."

hdcComp Identifies the compatible device context. When the type parameter
is OD~EMORY, this parameter identifies a device context that is compatible
with the bitmaps to be used with it. If you do not supply this parameter or if it is
NULL, the device context that MS OS/2 opens is compatible with the screen.

The return value identifies the device context if the function is successful. The
return value is DEV JRROR if an error occurs.

• DevPostDeviceModes
LONG DevPostDeviceModes(hab, pbDriverData, pszDriverName, achDeviceName, pszLogAddr)
HAB hab; 1* anchor-block handle *1
PDRIVDATA pbDriverData; 1* pointer to buffer for data *1
PSZ pszDriverName; 1* pointer to string for driver name *1
PSZ achDeviceName; 1* pointer to device name *1
PSZ pszLogAddr; 1* pointer to string for name of output device *1

Parameters

The DevPostDeviceModes function causes a device driver to post a dialog box
that allows the user to set options for the device-for example, resolution, font
cartridges, and so forth.

The application can call this function first with a NULL data pointer to find out
how much storage is needed for the data buffer. Having allocated the storage,
the application can then call the function a second time in order to have the
buffer filled with data.

Once the data has been returned, you can pass it to the DevOpenDC function as
the buffer data pointed to by the pbDriverData parameter.

hab Identifies the anchor block.

pbDriverData Points to the data buffer that receives device data defined by
the driver. If this parameter is NULL, the function returns the required size of'
the buffer. The format of the data is the same as for the pbData parameter of
the DevOpenDC function.

pszDriverName Points to the null-terminated string that contains the name of
the device driver.

achDeviceName Points to a null-terminated string that identifies the particular
device (model number, etc.). This string must not exceed 32 bytes. Valid names
are defined by device drivers.

pszLogAddr Points to the null-terminated string that contains the logical
address of the output device-for example, LPTl.

22 DevPostDeviceModes

Return Value

See Also

• DevQueryCaps

The return value if the pbDriverData parameter is NULL is the size (in bytes)
required for the data buffer, DPD~NONE if there are no options that can be
set, or DPD1LERROR if an error occurs.

The return value if pbDriverData is not NULL is DEV _OK if the function is
successful, DPD~NONE if there is no device mode, or DPD~RROR if an
error occurs.

DevOpenDC

BOOl OevQueryCaps(hdc, IStartitem, cltems, alltems)
HOC hdc; /. device-context handle ./
lONG IStartitem;
lONG cltems;
PlONG alltems;

Parameters

Return Value

See Also

/. first item to retrieve
/. number of items to retrieve ./
/. array for device characteristics ./

The DevQueryCaps function queries the characteristics of the specified device.

hdc Identifies the device context.

[Startitem Specifies the first item of information to retrieve.

cltems Specifies the number of items of information to retrieve.

alltems Points to an array of device characteristics, starting with the item
specified by the IStartitem parameter. For more information about device charac­
teristics, see Appendix B, "Device Capabilities."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

DevOpenDC

• DevQueryDeviceNames
BOOl OevQueryOeviceNames (hab, pszDriverName, pcMaxNames, achDeviceName, achDeviceDesc,

pcMaxDa ta Types, achDa ta Type)
HAB hab; /. anchor-block handle ./
PSZ pszDriverName; /. painter to string for device name ./
PlONG pcMaxNames; /. maximum number of device drivers ./
PSTR32 achDeviceName; /. painter to array of device names ./
PSTR64 achDeviceDesc; /. pointer to array of device descriptions ./

PlONG pcMaxDataTypes; /. maximum number of data types ./
PSTR16 achDataType; /. pointer to array of data types ./

The DevQueryDeviceNames function returns the device names, descriptions,
and d,ata types supported by the specified device driver.

The application can call the function first with the pcMaxNames and
pcMaxDataTypes parameters set to zero in order to find how much storage is

Parameters

Return Value

DevQueryHardcopyCaps 23

needed for the data buffers. Having allocated the storage, the application then
calls the function a second time in order to have the buffers filled with data
for the data to be filled in.

hab Identifies the anchor block.

pszDriverName Points to the null-terminated string that contains the name of
the device driver.

pcMaxNames Points to the maximum number of device names and descrip­
tions that can be returned. If this parameter is zero, the number of device
names and descriptions supported is returned and the arrays pointed to by the
achDeviceName and achDeviceDesc parameters are not updated. If this param­
eter is nonzero, then its value is updated to the number returned in the arrays
pointed to by achDeviceName and achDeviceDesc and the arrays are updated.

achDeviceName Points to an array of null-terminated strings, each element of
which identifies a particular device (for example, model number). Valid names
are defined by device drivers. IBM4201 is an example of a device name.

achDeviceDesc Points to an array of null-terminated strings, each element of
which is a description of a particular device (for example, model name). Valid
names are defined by device drivers. IBM 4201 Proprinter is an example of a
device description.

pcMaxDataTypes Points to the maximum number of data types that can be
returned. If this parameter is zero, the number of data types supported is
returned and the array pointed to by the achDataType parameter is not updated.
If this parameter is nonzero, then its value is updated to the number returned
and the array is updated.

achDataType Points to an array of null-terminated strings, each element of
which identifies a data type. Valid data types are defined by device drivers.
P~Q_STD is an example of a data type.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

• DevQueryHardcopyCaps
LONG OevQueryHardcopyCaps(hdc, iStartForm, cForms, phci)
HOC hdc; I. device-context handle .1
LONG iStartForm; I. Index of form code to start from .1
LONG cForms; I. number of forms to query .1
PHCINFO phci; I. pOinter to structure for results .1

The DevQueryHardcopyCaps function returns information about the hardcopy
capabilities of a device.

You can use the iSta'ftForm and cForms parameters together to enumerate all
available form codes without having to allocate a buffer large enough to hold
information on them all.

24 DevQueryHardcopyCaps

Parameters

Return Value

hdc Identifies the device context.

iStartForm Specifies the index of the form code from which to start the
query. The first form code is specified by the value o.
cForms Specifies the number of forms to query.

phci Points to the buffer that contains the results of the query. The result con­
sists of cForms copies of the HCINFO structure. The HCINFO structure has the
following form:

typedef struet _HCINFO {
CHAR szFormname[32];
LONG ex;
LONG ey;
LONG xLeftCllp;
LONG yBottomCllp;
LONG xRlghtCllp;
LONG yTopCllp;
LONG xPels;
LONG yPels;
LONG flAttrlbutes;

} HCINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

If there are five form codes defined and the iStartForm parameter is 2 and the
cForms parameter is 3, a query is performed for form codes 2, 3, and 4 and the
result is returned in the buffer pointed to by the phci parameter.

The return value if cForms is zero is the number of available forms, or if cForms
is nonzero, the number of forms returned. The return value is DQHC-'ERROR
if an error occurs.

GplAssociate 25

• GpiAssociate
BOOl GpiAssociate(hps. hdc)
HPS hps; I. presentation-space handle .1
HOC hdc; I. device-context handle .1

Parameters

Return Value

Errors

Comments

Example

See Also

The GpiAssociate function associates a presentation space with a device context
and resets the presentation space. Once a device context is associated with a
presentation space, all subsequent drawing in the presentation space is copied to
the device.

Only one device context can be associated with a presentation space at a time.
GpiAssociate cannot associate a new device context with a presentation space
until the current device context is released. The function releases the current
device context from the presentation space if hdc is NULL.

hps Identifies a normal presentation space. Micro and cached presentation
spaces cannot be used. .

hdc Identifies the device context. Although any type of device context may be
used, the device context must not be already associated with a presentation
space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR....DCJS.ASSOCIATED
PMERRJNV jiICROPSYUNCTION
..,MERILPSJS.ASSOCIA TED

When GpiAssociateresets the presentation space, it sets all attributes to their
default values, sets the model transform to unity, sets the current position to
(0,0), closes any open path, area, or element brackets, closes any open segment,
removes any clip path, viewing limits and clip region, and enables kerning if the
device supports kerning.

The GpiCreatePS function can also be used to associate a device context with a
pew presentation space. .

This example releases the current device context and associates a new device
~Qntext with the presentation space. . .

HPS hps;
HDC hdcPrinter;
GpiAssociate(hps, NULL); /* release the current device context */
CpiAssociate(hps, hdcPrinter); /* associate a printer device context */

GpiCreatePS, GpiResetPS

26 GpiBeginArea

• GpiBeginArea
BOOl GpiBeginArea(hps. f10ptions)
HPS hps; I. presentation-space hal"!dle .1
U~ONG f10ptions; I. area-option flag .1

Parameters

Return Value

Errors

Example

See Also

The GpiBeginArea function starts an area bracket, that is, it starts a sequence of
functions that define the shape of an area. All subsequent drawing functions, up
to the next GpiEndArea function, apply to the new area. The jlOptions parame­
ter specifies whether the figures in the area have boundary lines and which filling
mode to use for constructing the interior of the area ..

hps Identifies the presentation space.

flOptions Specifies the area options. It can be any combination of the follow­
ing values:

Value

BA_BOUNDARY

BA_NOBOUNDARY

BA_WINDING

Meaning

Constructs the interior in alternate mode
(def~ult).

Boundary lines are drawn.

Boundary lines are not drawn (default).

Constructs the interior in winding mode.

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-ALREADYJN~REA
PMERRJNV~REA-CONTROL
PMERRJNV JNJl ATH

This example uses the GpiBeginArea function to draw an area. The area, an
isosceles triangle, is drawn with boundary lines and filled using the alternate
filling mode ..

HPS hps;
POINTL ptlStart = { 0, 0
POINTL ptlTriangle[] = {
GpiMove(hps, &ptlStart);
GpiBeginArea(hps,

}; /)

100, 100, 200, 0, 0, 0 };
I' move to starting point (0, 0) *1
I' start the area bracket */

BA_BOUNDARY I
BA_ALTERNATE);

GpiPolyLine(hps, 3L,
GpiEndArea(hps);

GpiEndArea

I' draw boundary lines '/
I' fill interior with alternate mode *1

ptlTr~angle);' I' draw the triangle *1
I' end the area bracket 'I
I' and fill the area 'I

GpiBeginPath 27

• GpiBeginElement
BOOl GpiBeginElement(hps. IType. pszOesc)
HPS hps; I. presentation-space handle .1
lONG IType; I. element type .1
PSZ pszOesc; I. pointer to element description .1

Parameters

Return Value

Errors

Comments

Example

See Also

• GpiBeginPath

The GpiBeginElement function starts an element bracket, that is, a sequence of
functions that define the contents of an element. All subsequent graphics func­
tions, up to the next GpiEndElement or GpiCloseSegment function,. apply to the
new element.

The GpiBeginElement may only be used while creating a segment. The element
type and element description, specified by the [Type and pszDesc parameters, are
values that the application supplies to distinguish one element from another
within a segment.

hps Identifies the presentation space.

I Type Specifies the element type. It can be any integer value.

pszDesc Points to a null-terminated string. If no description is needed, it may
point to an empty string.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-ALREADYJN-ELEMENT
PMERRJNV.-MICROPSYUNCTION

The GpiBeginElement function cannot be used within an element bracket.

This example uses the GpiBeginElement function to create an element in a seg­
ment. The element type is 1 and the element description is "Triangle". The
application can use these later to identify the element.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100,
GpiBeginElement(hps,

1L,
"Triangle");

GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiEndElement(hps) ;

200, 0, 0, 0 };
/* start element bracket */
/* element type is 1 */
/* element description */
/* move to start point (0, 0) */
/* draw triangle */
/* end element bracket */

GpiCloseSegment, GpiDeleteElement, GpiEndElement, GpiQueryElement, Gpi­
Query ElementPointer, GpiSetElementPointer

BOOl GpiBeginPath(hps. idPath)
HPS hps; I. presentation-space handle .1
lONG idPath; I. path identifier .1

The GpiBeginPath function starts a path bracket, that is, starts a sequence of
functions that define the shape and size of a path. GpiBeginPath sets the path

28 GpiBeginPath

Parameters

Return Value

Errors

Comments

Example

See Also

• GpiBitBlt

identifier and initializes the path, clearing any path created previously with this
identifier. All subsequent drawing functions, up to the next GpiEndPath func-
tion, apply to the new path. .

hps Identifies the presentation space.

idPath Specifies the path identifier; for MS OS/2 version 1.1, it must be 1.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRALREADYJNJ> ATH
PMERRJNV J> ATHJD

Since there is a limit to the size of a path, any line or curve drawing function
within a path bracket that would exceed the limit returns the
PMERRYATILTOOJ3IG error value.

This example uses the GpiBeginPath function to create a path. The path, an
isosceles triangle, is given path identifier 1. After the path bracket is ended using
GpiEndPath, a subsequent call to the GpiFilIPath function draws and fills the
path.

HPS hps;
POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200,
GpiBeginPath(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 2L, ptlTriangle);
GpiCloseFigure(hps);
GpiEndPath(hps);
GpiFillPath(hps, 1L, FPATH_ALTERNATE);

o };
I' start the path bracket 'I
I' move to starting point 'I
I' draw the three sides 'I
I' close the triangle 'I
I' end the path bracket 'I
I' draw and fill the path 'I

GpiCloseFigure, GpiEndPath, GpiFilIPath, GpiModifyPath, GpiSetClipPath,
GpiSetLine WidthGeom, GpiStrokePath .

LONG GpiBitBlt(hpsTarg, hpsSrc, cPoints, apt!,IRop, flOptions)
HPS hpsTarg; /* target presentation-space handle */
HPS hpsSrc; /* source presentation-space handle *1
LONG cPoints; 1* number of pOints in array *1
PPOINTL apt!; 1* pointer to array *1
LONG IRop; 1* mixing method *1
ULONG f10ptions; /* line/column-compression flag *1

The GpiBitBlt function copies a bitmap from one presentation space to another.
It can also modify the bitmap within a rectangle in a presentation space. The
exact operation carried out by GpiBitBIt depends on the raster operation
specified by the lRop parameter.

If lRop directs GpiBitBIt to copy a bitmap, the function copies the bitmap from
a source presentation space specified by hpsSrc to a target presentation space
specified by hpsTarg. Each presentation space must be associated with a device
context for the display, for memory, or for some other suitable raster device.
The target and source presentation spaces can be the same if desired. The aptl

Parameters

GpiBitBlt 29

parameter points to an array of points that specify the corners of a rectangle
containing the bitmap in the source presentation space as well as the corners of
the rectangle in the target presentation space to receive the bitmap. If the source
and target rectangles are not the same, GpiBitBIt stretches or compresses the
bitmap to fit the target rectangle.

If lRop directs GpiBitBIt to modify a bitmap, the function uses the raster opera­
tion to determine how to alter the bits in a rectangle in the target presentation
space. Raster operations include changes such as inverting target bits, replacing
target bits with pattern bits, and mixing target and pattern bits to create new
colors. For some raster operations, the function mixes the bits of a bitmap from
a source presentation space with the target and/or pattern bits.

hpsTarg Identifies the target presentation space.

hpsSrc Identifies the source presentation space.

cPoints Specifies the number of points pointed to by the aptl parameter. It
may be one of the following values:

Value

2

3

4

Meaning

The points specify the lower-left and upper-right corners of the
target rectangle. If 2 is given, the raster operation specified by the
lRop parameter must not include a source.

The points specify the lower-left and upper-right corners of the
target rectangle, and the lower-left corner of the source rectangle.
The upper-right corner of the source rectangle is computed such
that the target and source rectangles have equal width and height.
Any raster operation may be used. If the operation does not
include a source, the third point is ignored.

The points specify the lower-left and upper-right corners of the
target and the source rectangles. If the rectangles do not have
equal width and height, the source bitmap is stretched or
compressed to fit the target rectangle. GplBltBlt uses the
flOptions parameter to determine how the bitmap should be
compressed. If the raster operation does not include a source,
the source coordinates are ignored.

aptl Points to an array of POINTL structures containing the number of points
specified in the cPoints parameter. The points must be given in the following
order:

Element index

o

1

2

3

Coordinate

Specifies the lower-left corner of the target rect­
angle.

Specifies the upper-right corner of the target
rectangle.

Specifies the lower-left corner of the source
rectangle.

Specifies the upper-right corner of the source
rectangle.

All points must be in device coordinates. The POINTL structure has the follow­
ing form:

30 GpiBitBlt

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

lRop Specifies the raster operation for the function. It can be any value in the
range 0 through 255 or one of the following values, which represent common ras­
ter operations:

Value

ROP _DSTINVERT

ROP _MERGECOPY

ROP _MERGEPAINT

ROP _NOTSRCCOPY

ROP _NOTSRCERASE

ROP_SRCAND

ROP _SRCCOPY

ROP _SRCERASE

ROP_SRCINVERT

Meaning

Inverts the target.

Combines the source and the pattern using the
bitwise AND operator.

Combines the inverse of the source and the tar­
get using the bitwise OR operator.

Copies the inverse of the source to the target.

Combines the inverse of the source and the
inverse of the target bitmaps using the bitwise
AND operator.

Sets all target pels to 1.

Copies the pattern to the target.

Combines the target and the pattern using the
bitwise exclusive XOR operator.

Combines the inverse of the source, the pattern,
and target using the bitwise OR operator.

Combines the source and target bitmaps using
the bitwise AND operator.

Copies the source bitmap to the target.

Combines the source and the inverse of the tar­
get bitmaps using the bitwise AND operator.

Combines the source and target bitmaps using
the bitwise exclusive OR operator.

ROP_SRCPAINT Combines the source and target bitmaps using
the bitwise OR operator.

ROP _ZERO Sets all target pels to O.

flOptions Specifies how to compress a bitmap if the target rectangle is smaller
than the source. It can be one of the following values:

Value Meaning

Compresses two rows or columns into one by com­
bining them with the bitwise AND operator. This
value is useful for compressing bitmaps

Compresses two rows or columns by throwing
one out. This value is useful for compressing color
bitmaps. that have black images on a white back­
ground.

Return Value

Errors

Comments

Example

GpiBitBlt 31

Value Meaning

Compresses two rows or columns into one by com­
bining them with the bitwise OR operator. This
value is the default and is useful for compressing
bitmaps that have white images on a black back­
ground.

All values in the range Ox01oo through OxFFOO are reserved for privately sup­
ported modes for particular devices.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJ3ASE~RROR
PMERRJ3ITMAP _NOT_SELECTED
PMERRJNCOMP ATIBLEJ3ITMAP
PMERRJNV J3ITBLT~IX
PMERRJNV J3ITBLT_STYLE
PMERRJNV _COORDINATE
PMERRJNV -DC_TYPE
PMERRJNV _HBITMAP
PMERRJNV~DC
PMERRJNV JN~REA
PMERRJNV JNYATH
PMERRJNV~ENGT~O~COUNT

The source and target presentation spaces may be associated with any device
context having raster capabilities. Some raster devices, such as banded printers,
can receive bitmaps but cannot supply them. These devices cannot be used as a
source.

GpiBitBIt does not affect the pels in the upper and right boundaries of the target
rectangle. This means the function draws up to but does not include those pels.

If lRop includes a pattern, GpiBitBIt uses the current area color, area back­
ground color, pattern set, and pattern symbol of the target presentation space.
Although the function may stretch or compress the bitmap, it never stretches or
compresses the pattern.

If the target and source presentation spaces are associated with device contexts
that have different color formats, GpiBitBIt converts the bitmap color format as
it copies the bitmap. This applies to bitmaps copied to or from a device context
having a monochrome format. To convert a monochrome bitmap to a color bit­
map, GpiBitBlt converts 1 pels to the target's foreground color, and 0 pels to the
current area background color. To convert a color bitmap to a monochrome bit­
map, GpiBitBIt converts pels with the source's background color to the target's
background color, and all other pels to the target's foreground color.

The bitmap associated with a source presentation space is always a finite size.
Although GpiBitBIt will copy a bitmap when given a source rectangle that is
larger than the source bitmap or extends past the boundaries of the source bit­
map, any pels not associated with the source bitmap are undefined.

This example uses GpiBitBlt to copy and compress a bitmap in a presentation
space. The function copies the bitmap that is 100 pels wide and 100 pels high
into a SO-by-SO-pel rectangle at the location (300,400). Since the raster operation

32 GpiBitBlt

See Also

• GpiBox

is ROP_SRCCOPY, GpiBitBlt replaces the image previously in the target rect­
angle. The function compresses the bitmap to fit the new rectangle by discarding
extra rows and columns as specified by the BBOJGNORE option.

HPS hps;
POINTL aptl[4] = {

300, 400,
350, 450,
0, 0,
100, 100 };

GpiBitBlt(hps,
hps,
4L,
aptl,
ROP_SRCCOPY,
BBO_IGNORE);

/* lower-left corner of target
/* upper-right corner of target
/* lower-left corner of source
/* upper-right corner of source

*/
*/
*/
*/

/* target presentation space */
/* source presentation space */
/* four points needed to compress */
/* points to source and target */
/* copy source replacing target */
/* discard extra rows and columns */

DevOpenDC, GpiCreateBitmap, GpiLoadBitmap, GpiSetBitmap, GpiSet­
BitmapDimension, GpiSetBitmapld, GpiWCBitBlt

LONG GpiBox(hps, cmdControl, pptl, IHRound, IVRound)
HPS hps; /. presentation-space handle ./
LONG cmdControl; /. fill and outline indicator ./
PPOINTL ppt/; /. pointer to structure for box corners ./

LONG IHRound; /. horizontal length of rounding-ellipse axis ./
LONG IVRound: /. vertical length of rounding-ellipse axis ./

Parameters

The GpiBox function draws a rectangular box or a box with rounded corners.
The function draws the box by drawing the outline of a rectangle. The current
position specifies one corner and the point given by pptl specifies the other. The
sides of the box are always parallel to the x and y axes. The function may fill the
interior with the current fill pattern. If a rounded box is requested, the function
rounds the corners of the rectangle using quarter ellipses. The lHRound and
IV Round parameters specify the lengths of the major and minor axes for the
ellipse. If either the lHRound or the IV Round parameter is zero, no rounding
occurs.

The current position is unchanged by this function.

hps Identifies the presentation space.

cmdControl Specifies whether to draw the box's interior and/or outline. It
can be one of the following values:

Value

DRO_FILL

DRO_OUTLINE

DRO_OUTLINEFILL

Meaning

Fills the interior.

Draws the outline.

Draws the outline and fills the interior.

pptl Points to the POINTL structure that contains the coordinates of a corner
of the box. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

Return Value

Errors

Comments

Example

See Also

GpiCaliSegmentMatrix 33

For a full description, see Chapter 4, "Types, Macros, Structures."

IHRound Specifies the horizontal length (in world coordinates) of the full axis
of the ellipse used for rounding at each corner.

IVRound Specifies the vertical length (in world coordinates) of the full axis of
the ellipse used for rounding at each corner.

The return value is GPLOK or GPIJIITS if the function is successful (it is
GPIJIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following value: .

PMERRJNV_BOX-CONTROL

GpiBox can be used in an area bracket but only if DRO_OUTLINE is used. If
the current position is (xO,,yO), and pptl is set to (xl,yl), the box is drawn from
(xO,yO) to (xl,yO) to (xl,yl) to (xO,yl) to (xO,yO). This can affect the way the box
is filled when drawn in an area.

When correlating a segment, a box drawn using GpiBox will be "hit" if the box
boundary intersects in the pick aperture. If the pick aperture lies within the box,
a hit occurs only if the interior is drawn, that is, only if the DROYILL or
DRO_OUTLINEFILL option is used.

This example calls GpiBox to draw a series of rounded boxes, one inside
another.

POINTL ptl = { 100, 100 };
SHORT i;

for (i = 0; i < 5; i++)
GpiBox(hps,

DRO_OUTLINE,
(PPOINTL) &ptl,
i * 10L,
i * 10L);

GpiBeginArea, GpiEndArea

/* handle to a ps */
/* fill the interior */
/* address of the corner */
/* horizontal length */

./* vertical length */

• GpiCaliSegmentMatrix
LONG GpiCaIlSegmentMatrix(hps, idSegment, cElements, pmatlf, IType)
HPS hps; 1* presentation-space handle *1
LONG idSegment; 1* segment identifier *1
LONG cElements; 1* number of matrix elements to examine *1
PMATRIXLF pmatlf; 1* pointer to structure for matrix *1
LONG IType; 1* transformation modifier *1

The GpiCallSegmentMatrix function draws the specified segment using an
instance transformation. The function combines the instance transformation
pointed to by pmatlf with the current model transformation, then draws the seg­
ment as if calling the GpiDrawSegment function. The combined transformation
applies only while the function draws the segment. GpiCallSegmentMatrix does
not modify the current model transformation.

34 GpiCaliSegmentMatrix

Parameters

Return Value

Errors

Example

hps Identifies the presentation space.

idSegment Specifies the segment to draw. This value must be greater than
zero.

cElements Specifies the number of matrix elements pointed to by pmatlf. It
can be any value from 0 through 9.

pmatlf Points to a MATRIXLF structure that contains the matrix for the
instance transformation. Although a transformation requires nine matrix ele­
ments, the function copies from the structure only the number of matrix ele­
ments specified by cElements. If cElements is less than nine, the function sup­
plies the remaining elements by substituting corresponding elements from the
identity matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG IM13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

I Type Specifies how to combine the instance transformation with the model
transformation~ It can be one of the following values:

Value

TRANSFOR~ADD

TRANSFOR~PREEMPT

TRANSFOR~REPLACE

Meaning

Adds the model transformation to the
instance transformation (MODEL •
INSTANCE).

Adds the instance transformation to the
model transformation (INSTANCE •
MODEL).

Replaces the model transform with the
instance transformation.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following: .

PMERR-CALLED_SEGJS_CURRENT
PMERR-CALLED_SEG_NOTYOUND
PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERR-INV _TRANSFOR~TYPE
PMERR-SEG_CALL~ECURSIVE

This example calls the GpiCallSegmentMatrix function to draw a segment three
times. Each time the segment is drawn, the instance transformation doubles in
size. The result is three triangles with the last triangle twice the size of the
second, and the second twice the size of the first.

See Also

• GpiCharS1:ring

GpiCharString 35

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };
MATRIXLF matlflnstance {1, 0, 0, 0, 1, 0, 0, 0, 1 };

GpiOpenSegment(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

for (i = 0; i < 3; i++) {

I'

It open the segment tl
It move to start point (0, 0) tl
It draw the triangle tl
It close the segment tl

t Draw the segment after adding the matrix to the model

}

, transformation.
'I

GpiCallSegmentMatrix(hps, 1L, 9, &matlflnstance, TRANSFORM_ADD);
matlflnstance.fxM11 t= 2;
matlflnstance.fxM22 *= 2;

GpiDrawSegment

LONG GpiCharString(hps, cchString, pchString)
HPS hps; /* presentation-space handle */
lONG cchString; /* number of characters in string */
PCH pchString; /* pOinter to string to draw */

Parameters

Return Value

Example

See Also

The GpiCharString function draws a character string positioned at the current
position. After the function draws the string, it sets the current position to the
end of the character string.

hps Identifies the presentation space.

cchString Specifies the number of characters in the string pointed to by
pchString.

pchString Points to the character string to be drawn.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses the GpiCharString function to draw the string "Hello". The
GpiMove function moves the current position to (100,100) so that the string
starts there.

HPS hps;
POINTL ptlStart;

ptlStart.x = 100L;
ptlStart.y = 100L;

It Start string at (100, 100). 'I
GpiMove(hps, &ptlStart);

It Draw the S-character string. tl
GpiCharString(hps, SL, "Hello");

GpiCharStringAt, GpiCharStringPos

36 GpiCharStringAt

• GpiCharStringAt
LONG GpiCharStringAt(hps. pptlStart. cchString. pchString)
HPS hps; I. presentation-space handle .1
PPOINTL ppt/Start; ~. pointer to structure for starting position .1

LONG cchString; I. number of characters in string .1
PCH pchString; I. pointer to string to draw .1

Parameters

Return Value

Example

See Also

The GpiCharStringAt function draws a character string starting at the specified
position. After the function draws the string, it sets the current position to the
end of the character string.

hps . Identifies the presentation space.

pptlStart Points to the POINTL structure that contains the starting position in
world coordinates. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

cchString Specifies the number of characters pointed to by pchString.

pchString Points to the character string to be drawn.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

The example uses the GpiCharStringAt function to draw the string "Hello" start­
ing at the position (100,100). It then uses the GpiMove and GpiCharString func­
tions to draw the same string at exactly the same position.

HPS hps;
POINTL ptlStart;

ptlStart.x = 100L;
ptlStart.y = 100L;

/* Draw the string "Hello" at (100, 100). */

GpiCharStringAt(hps, &ptlStart, 5, "Hello");

/* These two calls are identical to the one above. */

GpiMove(hps, &ptlStart);
GpiCharString(hps, 5L, "Hello");

GpiCharString, GpiMove

GpiCharStringPos 37

• GpiCharStringPos
LONG GpiCharStringPos(hps, prel, flOptions, eehString, pehString, adx)
HPS hps; / .. presentation-space handle .. /
PRECTL prel; / .. pointer to structure for rectangle coordinates .. /
ULONG flOptions; / .. formatting flags .. /
LONG eehString; / .. number of characters In string .. /
PCH pehString; / .. pointer to string to draw .. /
PLONG adx; / .. pointer to array of increment values .. /

Parameters

The GpiCharStringPos function draws a character string starting at the current
position and using one or more formatting options. The options direct the func­
tion to draw a background for the string, clip the string to the given rectangle, or
position the characters in the string using distances given in an array. After
drawing the string, the function either leaves the current position at the end of
the string or resets it to the beginning of the string.

hps Identifies the presentation space.

prcl Points to a RECTL structure that contains the lower-left and upper-right
corners of a rectangle. The function draws the rectangle if the CHS_OP AQUE
option is given. It uses the rectangle to clip the string if the CHS_CLIP option is
given. Otherwise the rectangle is ignored. The RECTL structure has the follow­
ing form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

flOptions Specifies the formatting options. It can be one or more of the fol­
lowing values:

Value

All other values are reserved.

Meaning

Clips the string to the rectangle, omitting any por­
tion of any character outside the rectangle. The
function clips the string regardless of whether
CHS_OPAQUE is specified.

Resets the current position back to the start of the
string. If not given, GplCharStrlngPos moves the
current position to the end of string.

Draws the rectangle whose lower-left and upper­
right corners are specified by prcl, then fills the
rectangle with the current background color. The
string is drawn after filling the rectangle.

Advances the current position after each character
is drawn by using the next value in the arrayadx.
The current character direction defines which
direction the current position is advanced.

cchString Specifies the number of characters in the string pointed to by
pchString.

pchString Points to the character string to be drawn.

38 GpiCharStringPos

Return Value

Comments

See Also

adx Points to an array of increment values. Each value is a 4-byte, signed
integer specifying the distance in world coordinates to advance the current posi­
tion after drawing a character. There must be one value for each character in the
string. The first element specifies the distance to advance after drawing the first
character, the second element specifies the distance after the second character,
and so on.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

If CHS_OPAQUE is specified and the drawing mode is DM--RETAIN, Gpi­
CharStringPos uses the color mix mode B1LOVERP AINT to fill the rectangle.
In other drawing modes, the function uses the BMJ..,EA VEALONE. GpiChar­
StringPos draws the rectangle using the coordinates specified in prcl. It does not
use the start of the string to compute the rectangle's location.

GpiCharString, GpiCharStringAt, GpiCharStringPosAt

• GpiCharStringPosAt
LONG GpiCharStringPosAt(hps, pptlStart, prel, f10ptions, eehString, pehString, adx)
HPS hps; I. presentation-space handle .1
PPOINTL pptlStart; I. pointer to structure for starting position *'
PRECTL pre I; I. pointer to structure for rectangle coordinates .1
ULONG f10ptions; I. formatting flags .1
LONG eehString; I. number of characters in string .1
PCH pehString; I. pointer to string to draw .1
PLONG adx; I. increment vector *'

Parameters

The GpiCharStringPosAt function draws a character string starting at the
specified position and using one or more formatting options. The options direct
the function to draw a background for the string, clip the string to the given rect­
angle, or position the characters in the string using distances given in an array.
After drawing the string, the function either leaves the current position at the
end of the string or resets it to the beginning of the string.

hps Identifies the presentation space.

pptlStart Points to a POINTL structure that contains the starting position in
world coordinates.' The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

pre! Points to a RECTL structure that contains the lower-left and upper-right
corners of a rectangle. The function draws the rectangle if the CHS_OP AQUE
option is given. It uses the rectangle to clip the string if the CHS_CLIP option is .
given. Otherwise the rectangle is ignored. The RECTL structure has the follow­
ing form:

Return Value

Comments

See Also

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

GpiCharStringPosAt 39

For a full description, see Chapter 4, "Types, Macros, Structures."

flOptions Specifies the formatting options. It can be one or more of the fol­
lowing values:

Value

All other values are reserved.

Meaning

Clips the string to the rectangle, omitting any por­
tion of any character outside the rectangle. The
function clips the string regardless of whether
CHS_OPAQUE is specified.

Resets the current position back to the start of the
string. If not given, GplCharStrlngPos moves the
current position to the end of string.

Draws the rectangle whose the lower-left and
upper-right corners are specified by prcl, then fills
the rectangle with the current background color.
The string is drawn after filling the rectangle.

Advances the current position after each character
is drawn by using the next value in the array adx.
The current character direction defines which
direction the current position is advanced.

cchString Specifies the number of characters in the string pointed to by
pchString.

pchString Points to the character string to be drawn.

adx Points to an array of increment values. Each value is a 4-byte, signed
integer specifying the distance in world coordinates to advance the current posi­
tion after drawing a character. There must be one value for each character in the
string. The first element specifies the distance to advance after drawing the first
character, the second element specifies the distance after the second character,
and so on.

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

If CHS_OP AQUE is specified and the drawing mode is DMJETAIN, Gpi­
CharStringPosAt uses the color mix mode B1LOVERP AINT to fill the rect­
angle. In other drawing modes, the function uses the BMJ..,EA VEALONE.
GpiCharStringPos draws the rectangle using the coordinates specified in prcl.
It does not use the start of the string to compute the rectangle's location.

GpiCharStringPos

40 GpiCloseFigure

• GpiCloseFigure
BOOl GpiCloseFigure(hps)
HPS hps; I. presentation-space handle.1

Parameters

Return Value

Example

See Also

The GpiCloseFigure function closes an open figure in a path bracket. A figure is
open unless it is explicitly closed by using the GpiCloseFigure function. A figure
can be open even if the current point and the starting point of the figure are
equal.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GplCloseFigure function to close a triangle drawn in a
path bracket. The triangle starts at (0,0). Since the current position just before
the GpiCloseFigure is (200,0), the function closes the triangle by drawing a line
from (200,0) to (0,0).

HPS hps;
POINTL ptlStart = { 0, 0 };
POINTL ptlPoints[] = { 100, 100, 200, 0 };

GpiBeginPath(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 2L, ptlPoints);
GpiCloseFigure(hps);
GpiEndPath(hps);

GpiBeginPath, GpiEndPath

/* start the path bracket */
/* move to starting point */
/* draw the three sides */
/* close the triangle */
/* end the path bracket */

• GpiCloseSegment
BOOl GpiCloseSegment (hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Errors

Comments

The GpiCloseSegment function closes the current segment. Closing a segment
does not delete the segment or affect output on the current device. If any ele­
ment bracket is open, GpiCloseSegment automatically closes it.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~REA--INCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV -MICROPSYUNCTION
PMERRJNV -MODEYOILREOPEN_SEG
PMERRY ATIUNCOMPLETE

You must explicitly end any area or path bracket before closing the segment.
Failing to end an area or path may invalidate the segment.

GpiCloseSegment resets the current viewing transformation to identity.

Example

See Also

GpiCombineRegion 41

This example uses the GpiCloseSegment function to close a segment. The
GpiOpenSegment opens the segment; GpiMove and GpiPolyLine draw a tri­
angle.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100,100, 200,0, 0,0 };

GpiOpenSegment(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

GpiOpenSegment

1* open the segment *1
1* move to start point (0,0) *1
1* draw triangle *1
1* close the segment *1

• GpiCombineRegion
LONG GpiCombineRegion (hps, hrgnDest, hrgnSrc 1 , hrgnSrc2, cmdMode)
HPS hps; I. presentation-space handle .1
HRGN hrgnDest; I. handle of destination region *'
HRGN hrgnSrc1; I. handle of first source region .1
HRGN hrgnSrc2; I. handle of second source region .1
LONG cmdMode; I. combination method *'

Parameters

The GpiCombineRegion function combines two source regions identified by
hrgnSrcl and hrgnSrc2. The new region replaces the destination region identified
by hrgnDest. If one of the source regions is also given as the destination region,
the function replaces that source region with the new region, but does not affect
the other source region.

hps Identifies the presentation space. The presentation space must be associ­
ated with a device context.

hrgnDest Identifies the destination region.

hrgnSrcl Identifies the first source region.

hrgnSrc2 Identifies the second source region.

cmdMode Specifies how to combine the source regions. It can be one of the
following values:

Value Meaning

CRGN_AND Creates the intersection of the source regions (hrgnSrc1
INTERSECT hrgnSrc2). The new region contains only the
parts of the source regions that are common.

CRGN_COPY Copies the first source region to the destination. The function
does not use the hrgnSrc2 parameter.

CRGN~IFF Creates the difference of the source region (hrgnSrc1
INTERSECT NOT hrgnSrc2). The new region contains the
parts of the first source region that are not also in the second
region.

CRGN_OR Creates the union of the two source regions (hrgnSrcl UNION
hrgnSrc2). The new region contains all parts of both source
regions.

Creates the "symmetric" difference of the source regions
(hrgnSrc1 - hrgnSrc2). The new region contains only the parts
of the source regions that are not common.

42 GpiCombineRegion

Return Value

Errors

Comments

Example

See Also

• GpiComment

The return value is RGN_NULL, RGN~ECT, or REGN_COMPLEX if the
function is successful. The return value is RGN~RROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~EGION~IX

The source and destination regions must belong to the same presentation space
or to presentation spaces associated with a similar device context.

This example uses the GpiCombineRegion function to create a complex region
consisting of everything in two rectangles except where they overlap.

HRGN hrgn1, hrgn2, hrgn3;
RECTL rclRect1 = { 0, 0, 100, 100 };
RECTL rclRect2 = { 50, 50, 200, 200 };

hrgn1 GpiCreateRegion(hps, 1L, &rclRect1); 1* create first region *1
hrgn2 = GpiCreateRegion(hps, "lL, &rclRect2); 1* create second region *1
hrgn3 = GpiCreateRegion(hps, OL, NULL); 1* create empty region *1

1* Combine first and second regions, replacing the empty region. *1

GpiCombineRegion(hrgn3, hrgn1, hrgn2, CRGN_XOR);

GpiCreateRegion

BOOl GpiComment(hps, cbData, pbData)
HPS hps; 1* presentation-space handle *1
lONG cbData; 1* length of comment string *1
PBYTE pbData; 1* pointer to the comment string *1

Parameters

Return Value

Example

See Also

The GpiComment function adds a comment string to a segment.

hps Identifies the presentation space.

cbData Specifies the length in bytes of the comment string pointed to by
pbData.

pbData Points to the comment string. The 'string must not be longer than 255
bytes.

The return value is GPLOK if the function is successful or GPURROR if an
error occurred.

This example uses the GpiComment function to comment the contents of a seg­
ment.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiOpenSegment(hps, OL);
GpiComment(hps, 18L, "Start point (0, 0)");
GpiMove(hps, &ptlStart);
GpiComment(hps, 13L, "Draw triangle");
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps); "

1* open the segment *1

1* close the segment *1

GpiCloseSegment, GpiMove, GpiOpenSegment, GpiPolyLine

GpiConvert 43

• GpiConvert
Baal GpiConvert(hps, ISrc, ITarg, cPoints, aptl)
HPS hps: I. presentatien-space handle .1
lONG ISrc: I. seurce ceerdinate space .1
lONG ITarg: I. target ceerdinate space .1
lONG cPoints: I. number ef ceerdinate pairs in structure .1
PPOINTl apt!; I. peinter to. structure fer ceerdinate pairs .1

Parameters

Return Value

See Also

The GpiConvert function converts one or more points from one coordinate
space to another. For each POINTL structure in the array pointed to by aptl, the
function replaces the original x- and y-coordinate values with the converted
values.

hps Identifies the presentation space.

ISre Specifies the source coordinate space. It can be one of the following
values:

Value

CVTC_DEFAULTPAGE

CVTC_DEVICE

CVTC_MODEL

Meaning

Page space prier to. default viewing transferm

Device space

Medel space

CVTC_P AGE Page space after default viewing transferm

CVTC_WORLD Werld ceerdinates

lTarg Specifies the target coordinate space. it can be one of the following
values:

Value Meaning

CVTC_DEFAULTPAGE Page space prier to. default viewing transferm

CVTC_DEVICE Device space

CVTC_MODEL Medel space

CVTC_P AGE Page space after default viewing transferm

CVTC_ WORLD Werld ceerdinates

ePoints Specifies the number of coordinate pairs pointed to by aptl.
aptl Points to an array of POINTL structures containing the coordinate pairs.
The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiSetModelTransformMatrix, GpiSetPage Viewport, GpiSetSegment­
TransformMatrix, GpiSet ViewingTransformMatrix

44 GpiCopyMetaFile

• GpiCopyMetaFile
HMF GpiCopyMetaFile(hmfSrc)
HMF hmfSrc; 1* handle of source metafile *1

Parameters

Return Value

Example

See Also

The GpiCopyMetaFile function creates a copy of the metafile identified by
hmfSrc and returns a handle for the new metafile. The new metafile can be
edited or deleted without affecting the original metafile.

hmfSrc Identifies the source metafile. The source metafile must have been
loaded previously using the GpiLoadMetaFiIe function or created previously
using the DevOpenDC and DevCloseDC functions.

The return value is the handle of the new metafile if the function is successful,
or it is GPLERROR if an error occurred.

This example uses the GpiCopyMetaFile function to copy make a copy of the
metafile loaded using the GpiLoadMetaFiIe function.

HMF hmfl, hmf2;

GpiLoadMetaFile(hmfl, "sample.met"); /* load the metafile from disk */
hmf2 = GpiCopyMetaFile(hmfl); /* copy the metafile */

DevCloseDC, DevOpenDC, GpiLoadMetaFiIe

• GpiCorrelateChain
LONG GpICorrelateChain(hps, IType, pptJ, IMaxHits, IMaxDepth, a/SegTag)
HPS hps; 1* presentation-space handle *1
LONG IType; 1* segment type *1
PPOINTL pptJ; 1* pointer to structure for aperture center *'
LONG IMaxHits; 1* maximum number of hits *'
LONG IMaxDepth; 1* maximum number of segment/tag pairs to return *1
PLONG a/SegTag; 1* pointer to array of segment and tag identifiers *1

Parameters

The GpiCorrelateChain function correlates the segment chain, identifying each
tagged primitive that intersects the current aperture, as set by the GpiSetPick­
ApertureSize function.

The GpiCorrelateChain function correlates a segment chain by searching for
each tagged primitive in each segment that lies completely or partially within the
aperture. Each instance of a tagged primitive in the aperture is called a "hit."
The function records a hit by copying the identifier of the segment containing
the primitive (along with the identifier for its tag) to the array pointed to by
alSegTag. After searching all segments in the chain, GpiCorrelateChain returns
the number of hits it located.

hps Identifies the presentation space.

1 Type Specifies the type of segment to.correlate. It can be one of the following
values:

Return Value

Errors

Comments

See Also

GplCorrelateChain 45

Value Meaning

Correlate all segments with nonzero identifiers
regardless of the detectability and visibility attri­
butes of the segments.

PICKSEL_ VISIBLE Correlate visible and detectable segments with
nonzero identifiers.

pptl Points to the POINTL structure that contains the position (in presentation
page units) of the center of the aperture. The POINTL structure has the follow­
ing form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

lMaxHits Specifies the maximum number of hits to record.

lMaxDepth Specifies the maximum number of segment/tag pairs to record for
each hit.

a ISeg Tag Points to the array to receive the segment/tag pairs. The array must
be large enough to receive 8 X lMaxHits X lMaxDepth bytes.

The return value is the number of hits that occurred if the function is successful
or GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-AREAJNCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV_CORRELATE~EPrH
PMERRJNV_CORRELATE_TYPE
PMERRJNV ~AXJIITS
PMERRJNV ~ICROPSYUNCTION
PMERRJ ATIUNCOMPLETE

GpiCorrelateChain may record more than one segment for each hit. It first
records the segment containing the hit, then the segment that called the first seg­
ment, and so on until the function either records the original segment in this
chain or has recorded lMaxDepth segments. If the function finds less than lMax­
Depth segments for the hit, the function records zeros so that exactly lMaxDepth
records are copied for each hit. The function records all hits up to lMaxHits,
then continues to count the hits even though it no longer records them. The
return value specifies the complete number of hits, not just those recorded.

The function searches only segments that have nonzero identifiers. If the func­
tion encounters a segment with a zero identifier, it stops the search even if sub­
sequent segments in the chain have nonzero identifiers. During the search, the
function ignores primitives that do not have nonzero identifiers. The function
never records more than one hit for a tag in a segment even if that tag is used
with many primitives.

GpiCorrelateFrom, GpiCorrelateSegment, GpiSetPickApertureSize

46 GpiCorrelateFrom

• GpiCorrelateFrom
LONG GpiCorrelateFrom(hps, idFirstSegment, idLastSegment, IType, pptl, IMaxHits, IMaxDepth, a/SegTag)
HPS hps; /. presentation-space handle ./
LONG idFirstSegment; /. first segment to correlate ./
LONG idLastSegment; /. last segment to correlate ./
LONG IType; /. segment type ./
PPOINTL pptl; /. pOinter to structure for aperture center ./
LONG IMaxHits; /. maximum number of hits ./
LONG IMaxDepth; /. maximum number of segment/tag pairs to return ./
PLONG a/SegTag; /. pOinter to array of segment and tag identifiers ./

Parameters

The GpiCorrelateFrom function correlates a portion of the segment chain, iden­
tifying each tagged primitive that intersects the current aperture, as set by the
GpiSetPickApertureSize function.

The GpiCorrelateFrom function correlates a portion of the segment chain by
searching for each tagged primitive that lies completely or partially within the
aperture. Each instance of a tagged primitive in the aperture is called a "hit."
The function records a hit by copying the identifier of the segment containing
the primitive (along with the identifier for its tag) to the array pointed to by
a lSeg Tag . The function starts the search with the segment identified by idFirst­
Segment and includes chained and called segments up to, and including, the seg­
ment identified by idLastSegment. After searching these segments, Gpi­
CorrelateFrom returns the number of hits it located.

hps Identifies the presentation space.

idFirstSegment Specifies the first segment to correlate. This value must be
greater than zero.

idLastSegment Specifies the last segment to correlate. This value must be
greater than zero.

1 Type Specifies the type of segment to correlate. It can be one of the following
values:

Value

PICKSEL_ VISIBLE

Meaning

Correlate all segments with nonzero identifiers
regardless of the detectability and visibility attri­
butes of the segments.

Correlate visible and detectable segments with
nonzero identifiers.

pptl Points to the POINTL structure that contains the position (in presentation
page units) of the center of the aperture. The POINTL structure has the follow­
ing form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

IMaxHits Specifies the maximum number of hits to record.

IMaxDepth Specifies the maximum number of segment/tag pairs to record.

Return Value

Errors

Comments

See Also

GpiCorrelateSegment 47

a ISeg Tag Points to the array to receive the segment/tag pairs. The array must
be large enough to receive 8 X lMaxHits X lMaxDepth bytes.

The return value is the number of hits that occurred if the function is successful
or GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-AREAJNCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV_CORRELATE~EPTH
PMERRJNV_CORRELATE_TYPE
PMERRJNV _MAXJIITS
PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERRY ATHJNCOMPLETE

GpiCorrelateFrom may record more than one segment for each hit. It first
records the segment containing the hit, then the segment that called the first seg­
ment, and so on until the function either records the original segment in this
chain or has recorded lMaxDepth segments. If the function finds less than lMax­
Depth segments for the hit, the function records zeros so that exactly lMaxDepth
records are copied for each hit. The function records all hits up to lMaxHits,
then continues to count the hits even though it no longer records them. The
return value specifies the complete number of hits, not just those recorded.

The function searches only segments that have nonzero identifiers. If the func­
tion encounters a segment with a zero identifier, it stops the search even if sub­
sequently called segments have nonzero identifiers. During the search, the func­
tion ignores primitives that do not have nonzero identifiers. The function never
records more than one hit for a tag in a segment even if that tag is used with
many primitives.

If the idFirstSegment parameter does not exist, or is not in the segment chain,
the function returns an error. If the segment specified by idLastSegment does not
exist, is not in the chain, or is chained before idFirstSegment, no error results
and the function continues to the end of the chain.

GpiCorrelateChain, GpiCorrelateSegment

• GpiCorrelateSegment
LONG GpiCorrelateSegment(hps. idSegment.IType. pptl.IMaxHits.IMaxDepth. a/SegTag)
HPS hps; I. presentation-space handle .1
LONG idSegment; I. segment to correlate .1
LONG IType; I. segment type .1
PPOINTL pptl; I. pointer to structure for aperture center .1
LONG IMaxHits; I. maximum number of hits .1
LONG IMaxDepth; I. maximum number of segment/tag pairs to return .1
PLONG a/SegTag; I. pointer to array of segment and tag identifiers .1

The GpiCorrelateSegment function correlates the specified segment, identifying
each tagged primitive that intersects the current aperture, as set by the GpiSet­
PickApertureSize function.

48 GpiCorrelateSegment

Parameters

Return Value

Errors

The GpiCorrelateSegment function correlates a segment by searching for each
tagged primitive in the segment that lies completely or partially within the aper­
ture. Each instance of a tagged primitive in the aperture is called a "hit." The
function records a hit by copying the identifier of the segment containing the .
primitive (along with the identifier for its tag) to the array pointed to by
alSegTag. The function also searches segments that are called by the specified
segment. After searching all segments, GpiCorrelateSegment returns the number
of hits it located.

hps Identifies the presentation space.

idSegment Specifies the segment to correlate. This value must be greater than
zero.

I Type Specifies the type of segment to correlate. It can be one of the following
values:

Value Meaning

PICKSEL_ VISIBLE

Correlate all segments with nonzero identifiers
regardless of the detectability and visibility attri­
butes of the segments.

Correlate visible and detectable segments with
nonzero identifiers.

pptl Points to the POINTL structure that contains the position (in presentation
page units) of the center of the aperture. The POINTL structure has the follow­
ing form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

lMaxHits Specifies the maximum number of hits to record.

lMaxDepth Specifies the maximum number of segment/tag pairs to record.

alSegTag Points to the array to receive the segment/tag pairs. The array must
be large enough to receive 8 X IMaxHits X IMaxDepth bytes.

The return value is the number of hits that occurred if the function is successful
or GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~REAJNCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV_CORRELATE-DEPTH
PMERRJNV _CORRELATE_TYPE
PMERRJNV ~AXJIITS
PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERRY ATHJNCOMPLETE

Comments

See Also

GpiCreateBitmap 49

GpiCorrelateSegment may record more than one segment for each hit. It first
records the segment containing the hit, then the segment that called the first seg­
ment, and so on until the function either records the original segment in this
chain or records lMaxDepth segments. If the function finds less than lMaxDepth
segments for the hit, the function records zeros so that exactly lMaxDepth
records are copied for each hit. The function records all hits up to lMaxHits,
then continues to count the hits even though it no longer records them. The
return value specifies the complete number of hits, not just those recorded.

The function searches only segments that have nonzero identifiers. If the func­
tion encounters a segment with a zero identifier, it stops the search even if sub­
sequently called segments have nonzero identifiers. During the search, the func­
tion ignores primitives that do not have nonzero identifiers. The function never
records more than one hit for a tag in a segment even if that tag is used with
many primitives.

GpiCorrelateChain, GpiCorrelateFrom

• GpiCreateBitmap
HBITMAP GpiCreateBitmap(hps, pbmpFormat, flOptions, pbData, pbmiData)
HPS hps; 1* presentation-space handle *1
PBITMAPINFOHEADER pbmpFormat; 1* pointer to structure for format data *1
ULONG flOptions; 1* options *1
PBYTE pbData; 1* pointer to buffer of image data *1
PBITMAPINFO pbmiData; 1* pointer to structure for color and format *1

Parameters

The GpiCreateBitmap function creates a bitmap and returns a bitmap handle
identifying the bitmap. The new bitmap has the width, height, and format
specified by fields of the structure pointed to by pbmpFormat. The flOptions
parameter specifies whether to initialize the bitmap color and image. If the
parameter is CBMJNIT, the function uses the bitmap image data pointed to by
pbData and the bitmap color data pointed to by pbmiData to initialize the bit­
map. If CBMJNIT is not given, the bitmap's initial image and color are
undefined.

The bitm.ap handle can be used in subsequent functions that accept bitmap han­
dles. In mos~ cases, the bitmap is set to a memory presentation space using the
GpiSetBitmap function, then copied to the screen or a printer using the Gpi­
BitBlt function.

hps Identifies the presentation space.

pbmpFormat Points to the BITMAPINFOHEADER structure that contains
the bitmap format data. The BITMAPINFOHEADER structure has the following
form:

typedef struct _BITMAPINFOHEADER {
ULONG cbFix; ,
USHORT ex;
USHORT cy;
USHORT cPlanes;
USHORT cBitCount;

} BITMAPINFOHEADER;

For a full description, see Chapter 4, "Types, Macros, Structures."

50 GpiCreateBitmap

Return Value

Errors

Comments

flOp/ions Specifies whether to initialize the bitmap. It can one of the following
values:

Value Meaning

CB~INIT Initializes the bitmap, using the bitmap image and
color data specified by the pbData and pbmiData
parameters.

Ox()()()() Does not initialize the bitmap.

pbData Points to the buffer that contains bitmap image data. The image data
defines the color of each pel in the bitmap. This parameter is ignored if
CBMJNIT is not given.

pbmiDa/a Points to a BITMAPINFO structure that contains the bitmap for­
mat and color data. The format data is identical to the data pointed to by the
pbmpFormat parameter. The color data follows immediately after the format
data, and consists of two or more RGB color values. The exact number depends
on the bitmap format. This parameter is ignored if CBMJNIT is not given. The
BITMAPINFO structure has the following form:

typedef struet _BITMAPINFO {
ULONG ebFix;
USHORT ex;
USHORT ey;
USHORT ePlanes;
USHORT eBitCount;
RGB argbColor[l];

} BITMAPINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value identifies the new bitmap if the function is successful, or is
GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _USAGE

The full number of bitmap formats depends on what the associated device sup­
ports. However, most devices support the following standard bitmap formats:

Format

Monochrome

16-color

Description

1 bit per pel and 1 color plane

4 bits per pel and 1 color plane

256-color 8 bits per pel and 1 color plane

Full-color 24 bits per pel and 1 color plane

When initializing the bitmap, the bitmap color data must consist of an appropri­
ate number of RGBcolor values. For monochrome format, it must have 2
values; for 16-color format, 16 values; and for 256-color format, 256 values. No
color values are required for the full-color format, since the image data for each
pel fully specifies the pel color.

When CBMJNIT is given, the function continues to copy data from the buffer
until the entire bitmap is initialized. The function expects each row of image
data to contain a multiple of 32 bits (4 bytes). Although the bitmap width does
not have to be a multiple of 32, the image data must be. Any extra bits at the
end of a row are ignored.

Example

See Also

GpiCreateLogColorTable 51

The new bitmap belongs to the device context associated with the given presen­
tation space. It can be set to any presentation space having the same device con­
text or having a compatible device context.

The following example loads a bitmap resource from memory and uses the Gpi­
CreateBitmap function to create the bitmap. This is similar to using the Gpi­
LoadBitmap function, except it gives the application the chance to modify the
bitmap image data before creating the bitmap.

SEL sel; 1* selector for segment containing bitmap resource *1
PBITMAPFILEHEADER pbfh; 1* bitmap resource header information *1
PBYTE pb; 1* pointer to bitmap image data in resource *1
HBITMAP hbm; 1* bitmap handle *1
DosGetResource(NULL, RT_BITMAP, 1, &sel); 1* load bitmap resource #1 *1
pbfh = MAKEP(sel, 0); 1* bitmap file header in resource *1
pb = MAKEP(sel, pbfh->offBits); 1* image data starts at off Bits *1

1* make any changes to bitmap image data here *1

hbm = GpiCreateBitmap(hps, 1* presentation space
& (pbfh->bmp) , 1* bitmap information in
CBM_INIT, 1* initialize the bitmap
pb, 1* bitmap data
&(pbfh->bmp» ; 1* bitmap information in

DosFreeSeg(sel); 1* free bitmap resource

DosFreeSeg, DosGetResource, GpiDeleteBitmap, GpiLoadBitmap, Gpi­
QueryDeviceBitmapFormats

*1
file *1

*1
*1

file *1
*1

• GpiCreateLogColorTable
BOOl GpiCreatelogColorTable(hps, flOptions, IFormat, iStart, cITable, a/Tab/e)
HPS hps; 1* presentation-space handle *1
UlONG flOptions; 1* options *1
lONG IFormat; 1* format of entries *1
lONG iStart; 1* starting index *1
lONG cITable; 1* number of entries in table *1
PlONG alTable; 1* pOinter to array for table *1

The GpiCreateLogColorTable function creates a logical color table. The logical
color table has the format specified by IFormat, with the initial value of each
entry specified by the array alTable.

Parameters hps Identifies the presentation space.

flOptions Specifies whether the logical color table uses pure, realizable, or
default color values. It can be one of the following values:

Value

OxOOOO

Meaning

Creates a logical color table having the entries
specified by alTable. The logical color table entries
map to existing device colors in the physical palette
or to dithered colors if no matching device color is
in the palette. This means the table is not realized
and does not require pure colors.

52 GpiCreateLogColorTable

Return Value

Value

LCOL_PURECOLOR

LCOL_REALIZABLE

Meaning

Creates a logical color table whose entries map to
pure (nondithered) colors only. If not given, the
function creates a color table whose entries map to
dithered colors if the physical palette does not con­
tain matching device colors.

Creates a logical color table that can be realized by
using the GplReaUzeColorTable function. Until the
logical color table is realized, colors in the table
map to the existing device colors in the physical
palette. This option is useful only for devices that
permit realization of logical color tables.

Resets all entries in the logical color table to
default values before initializing the entries
specified by the alTable parameter. This option is
useful for quickly initializing all entries without
supplying initial values for every element in
alTable.

IFormat Specifies the logical color table format. It can be one of the following
values:

Value Meaning

LCOLF _CONSECRGB Creates a color table having consecutive entries.
The first entry has the index specified by iStart.

Creates a color table. The entries are not required
to be consecutive. The alTable array specifies both
the index and RGB color value for each entry.

Enables direct RGB color mapping. Applications
use RGB values instead of color indexes to specify
the colors in subsequent drawing functions.

iStart Specifies the color index of the first entry for a color table having
LCOLF _CONSECRGB format. If LCOLF _CONSECRGB is not given, this
parameter is ignored.

clTable Specifies the number of elements in the array alTable. If the format
LCOLF JNDRGB is given, this parameter must be an even number (that is,
two elements for each entry). If LCOL~ESET or LCOLF ~GB is given, this
parameter can be zero.

alTable Specifies the start address of the array that contains the color table
entries. The format depends on the value of [Format, as follows:

Value

LCOLF _CONSECRGB

LCOLF _INDRGB

Format

Each element is a 4-byte RGB color value.

Each pair of elements contains a 4-byte color
index and a 4-byte RGB color value, in that
order.

No elements required.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Errors

Comments

Example

See Also

GpiCreateLogFont 53

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV_COLOR-DATA
PMERRJNV_COLOR-FORMAT
PMERRJNV _COLOR-OPTIONS

Although GpiCreateLogColorTable can create a realizable color table, it does
not realize the colors. Until the color table is realized by using the GpiRealize­
ColorTable function, the logical color table entries are mapped to the existing
colors in the physical palette. Realizing the logical color table causes the physical
palette colors to be replaced with the realized colors for the logical color table
entries.

The default physical palette contains at least the standard 16 PC colors (unless
this is not physically possible). If a device supports more than 16 colors, the
physical palette may have additional colors, but there is no guarantee that these
additional colors are the same on every device.

This example uses the GpiCreateLogColorTable function to create a logical
color table, using data from the previous logical color table:

ULONG alTable[16]; 1* assume 16'entries

1* retrieve the current table *1
GpiQueryLogColorTable(hps, OL, OL, 16L, alTable);

*1

alTable[l] = oxooooeo;

GpiCreateLogColorTable(hps,
OL,

1* change the second entry to light blue *1

LCOLF_CONSECRGB,
OL,
16,
alTable) ;

1* presentation space *1
1* no special options *1
1* consecutive RGB values *1
1* start with color index 0 *1
1* 16 entries *1
1* RGB color values *1

DevQueryCaps, GpiErase, GpiQueryColorData, GpiQueryLogColorTable,
GpiRealizeColorTable, GpiSetBitmapBits, WinSetSysColors

• GpiCreateLogFont
LONG GpiCreateLogFont(hps. pchName.lcid. pfat)
HPS hps: I. presentation-space handle .1
PSTR8 pchName: I. pointer to logical-font name .1
LONG /cid: I. local Identifier .1
PFATTRS pfat: I. pOinter to structure for font attributes .1

The GpiCreateLogFont function creates a logical font. A logical font is a list of
font attributes, such as face name, average width, and maximum height, that an
application uses to request a physical font. A physical font is the bitmap or vec­
tor information the system uses to draw characters on a device. Applications
create logical fonts to specify the fonts they need, and the system maps the logi­
cal fonts to matching physical fonts.

GpiCreateLogFont creates a logical font using the font attributes specified in the
structure pointed to by the plat parameter. Each logical font has a local identi­
fier and logical font name, specified by the lcid and pchName parameters, to
uniquely identify it. The local identifier can then be used in subsequent graphics
functions to identify the font.

54 GpiCreateLogFont

Parameters

Return Value

Errors

Comments

Example

Since a physical font that exactly matches the logical font may not be available,
the system usually maps the logical font to the closest matching physical font.
The system uses rules to map the font-for example, it chooses a font with a
greater height if a font of the exact height is not available. An application can
force the system to choose a particular font by setting the value of the IMatch
field in the FATTRS structure to be that returned for the desired font by the
GpiQueryFonts function. After GpiCreateLogFont chooses the physical font,
this choice does not change for a particular logical font.

hps Identifies the presentation space.

pchName Points to an 8-character logical-font name. It can be NULL, if no
logical font name is desired.

lcid Specifies the local identifier that the application uses to refer to this font.
It must be in the range 1 through 254. It is an error if this parameter is already
in use to refer to a font or bitmap.

pfat Points to a FA TTRS structure that will contain the attributes of the logical
font that is created. The FATTRS structure has the following form:

typedef struct _FATTRS {
USHORT usRecordLength;
USHORT fsSelection;
LONG IMatch;
CHAR szFaceName[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG IMaxBasellneExt;
LONG lAveCharWldth;
USHORT fsType;
SHORT sQuallty;
USHORT fsFontUse;

} FATTRS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is 2 if a matching font is found, 1 if a matching font could not
be found, or zero if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILFONT_NOT-LOADED
PMERRJNVYONT~TTRS

To choose the system default font, set the face name to NULL and all other
attributes in the FATTR structure, except the code page, to zero.

To use a font, the application sets the font for the presentation space by specify­
ing the local identifier for the corresponding logical font with the GpiSetCharSet
function. Once a font is set, the system uses the font for subsequent text output.

This example uses the GpiCreateLogFont function to create a logical font with
the local identifier 1. The logical font has the face name "Courier" and requested
width and height of 12 pels. Once the font is created, the example sets the font
using the local identifier and displays a string in the font at the point (100,100).

See Also

• GpiCreatePS

GpiCreatePS 55

USHORT i;
POINTL ptl = { 100, 100 };
E'ATTRS fat;

fat.usRecordLength = sizeof(E'ATTRS); /* set size of structure */
fat.fsSelection = 0; /* use default selection */
fat.1Match = OL; /* do not force match */
fat.idRegistry = 0; /* use default registry */
fat.usCodePage = 850; /* code page 850 */
fat.1MaxBaselineExt = 12L; /* requested font height is 12 pels */
fat.1AveCharWidth = 12L; /* requested font width is 12 pels */
fat.fsType = E'ATTR_TYPE_E'IXED; /* fixed-spacing font */
fat.fsE'ontUse = E'ATTR_E'ONTUSE_NOMIX; /* do not mix with graphics */

/* copy Courier to szE'acename field */

for (i=O; fat.szE'acename[i]

GpiCreateLogE'ont(hps,
NULL,
1L,
&fat) ;

"Courier" [i]; i++);

/* presentation space
/* do not use logical font name
/* local identifier
/* structure with font attributes

*/
*/
*/
*/

GpiSetCharSet(hps, 1L); /* set font for presentation space */
GpiCharStringAt(hps, &ptl, 5L, "Hello"); /* display a string */

GpiCharStringAt, GpiCreateLogFont, GpiQueryFonts, GpiSetCharSet

HPS GpiCreatePS(hab. hdc. psiz/. flOptions)
HAB hab; I. anchor-block handle *1
HOC hdc; 1* device-context handle *1
PSIZEL psizl; I. pOinter to structure for page size *1
ULONG flOptions; 1* presentation-space options *1

Parameters

The GpiCreatePS function creates a presentation space. The presentation space
has the presentation type, page size, page unit, and storage format specified by
psizl and jlOptions. The function also associates the device context specified by
hdc with the presentation space if a device context is given. The presentation
space, identified by the handle returned by GpiCreatePS, can be used in subse­
quent Gpi functions to draw to the associated device.

hab Identifies the anchor block.

hdc Identifies a device context. It is required only if the GPIA-ASSOC
option is given in jlOptions. It must be a handle to a device context if the
GPIT~ICRO option is given. Otherwise, it can be NULL.

psizl Points to a SIZEL structure that contains the width and height of the
presentation page. The width and height can be zero if the GPIA-ASSOC
option is given. The width and height must be non-zero if the PU-A.RBITRARY
option is given. The SIZEL structure has the following form:

typedef struct _SIZEL {
LONG cx;
LONG cy;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

flOptions Specifies the presentation-space options. The options define the
page unit, storage format, and presentation type for the presentation space, as

56 GpiCreatePS

Return Value

Errors

well as specifying whether to associate a device context with the new presenta­
tion space. The jlOptions parameter must include exactly one of the following
page unit options combined with no more than one each of the following storage
format, presentation type, and association options:

Page unit

PU_HIENGLISH

PU_HIMETRIC

PU_LOENGLISH

PU_LOMETRIC

PUJ>ELS

PU_TWIPS

Storage format

GPIFJ)EFAULT

GPIF_LONG

GPIF_SHORT

Presentation type

GPIT.-NORMAL

Association

GPIA.-NOASSOC

Meaning

Sets units initially to pels but permits the units to
be modified later using the GplSetPageVlewport
function.

Sets units to O.OOlinch.

Sets units to 0.01 millimeter.

Sets units to 0.01 inch.

Sets units to 0.1 millimeter.

Sets units to pels.

Sets units to 111440 inch (1120 point).

Meaning

Stores coordinates as 2-byte integers.
GPIF_DEFAULT is the default if no storage for­
mat is given.

Stores coordinates as 4-byte integers.

Stores coordinates as 2-byte integers.

Meaning

Creates a micro presentation space. The presenta­
tion space must be associated with a screen device
context. The GPIA_ASSOC option and a device
context must also be given.

Creates a normal presentation space. The presenta­
tion space can be associated with any device con­
text and used with retained graphics. If a
presentation-space type is not given, the default is
GPIT_NORMAL.

Meaning

Associates the device context specified by hdc with
the new presentation space. If hdc identifies a
memory device context, GPIT_MICRO must be set
or the system will issue a warning.

Creates presentation space without associating a
device context. GPIA_NOASSOC is the default if
an association option is not given.

The return value is the handle of the presentation space if the function is suc­
cessful or GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _ORJNCOMPAT_OPTIONS

Comments

Example

See Also

GpiCreateRegion 57

The presentation type can be normal or micro. Normal presentation spaces can
be associated with any device context and can be used for retained graphics.
Micro presentation spaces can be associated with any device, but only when
they are created. They can never be reassociated. The GPIA-ASSOC and
GPIA-NOASSOC options specify whether the new presentation space is to be
associated with the device context identified by hdc. If not associated, the
GpiAssociate function must be used to associate a device context. A presenta­
tion space can not be used without an associated device.

The page unit specifies the unit of measure used to draw to the device. For
example, if the page unit is pels, a line 100 units long in world space coordinates
is 100 pels long on the device.

The presentation page size specifies the width and height of the presentation
page. The presentation page and page viewport define how points in the presen­
tation page space are mapped to the· pels in the device space. This is important
for programs that need to change the page unit without recreating the presenta­
tion space.

The storage format specifies the internal format for coordinate values stored in
the segments. This is important for applications that edit segments.

This example uses the GpiCreatePS function to create a micro presentation
space for a memory device context. The function associates the presentation
space with the device context and sets the page units to pels. By default, the
presentation space is a normal presentation space that uses local storage format.

HOC hdc;
HPS hps;
SIZEL siz1 = { 0, 0 };. It use same page size as device *1
DEVOPENSTRUC dop;

dop.pszLogAddress NULL;
dop.pszDriverName (PSZ) "DISPLAY";
dop.pdriv = NULL;
dop.pszDataType = NULL;

1* Create the memory device context. *1

hdc = DevOpenDC(hab, OD_MEMORY, "*", 4L, &dop, NULL);

1* Create the presentation and associate the memory device context. tl

hps = GpiCreatePS(hab, hdc, &siz1, PU_PELS I GPIT_MICRO I GPIA_ASSOC);

GpiDestroyPS, GpiSetPageViewport

• GpiCreateRegion
HRGN GpiCreateRegion(hps, erel, pre/)
HPS hps; I. presentation-space handle .1
LONG erel; I. number of rectangles *1
PRECTL prel; I. pointer to structure for rectangles *1

Parameters

The GpiCreateRegion function creates a region for the device associated with
the specified presentation space. The region is the union of the rectangles
specified by the prcl parameter.

hps Identifies the presentation space.

crcl Specifies the number of rectangles specified in the prcl parameter. If the
crcl parameter is equal to zero, an empty region is created, and prcl is ignored.

58 GpiCreateRegion

Return Value

Example

See Also

pre/ Points to an array of RECTL structures. The RECTL structure has the
following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is a handle to the region if the function is successful or zero if
an error occurred. It is an error if this function is issued when there is no device
context associated with the presentation space.

This example uses the GpiCreateRegion function to create a region consisting of
the union of three rectangles:

HRGN hrgn;
RECTL arcl[3] = { 100, 100, 200, 200,

150, 150, 250, 250,
200, 200, 300, 300 };

I' handle for region 'I
I' 1st rectangle 'I
I' 2nd rectangle 'I
I' 3rd rectangle 'I

hrgn GpiCreateRegion(hps,
3L,
arcl);

GpiCombineRegion, GpiDestroyRegion

I' presentation space 'I
I' three rectangles 'I

I' pointer to array of rectangles 'I

• GpiDeleteBitmap
BOOl GpiDeleteBitmap(hbm)
HBITMAP hbm; 1* bitmap handle *1

Parameters

Return Value

Errors

Example

See Also

The GpiDeleteBitmap function deletes the bitmap specified by hbm.

hbm Identifies the bitmap to delete.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLllstError function to retrieve the error value, which may be the
fu~~: .

PMERILBITMAP JS_SELECTED

This example uses the GpiDeleteBitmap function to delete a bitmap. The
GpiSetBitmap function releases the bitmap from the presentation space before
deleting it. This is needed only if the bitmap is set in the presentation space.

HBITMAP hbm, hbmPrevious;

hbm = GpiLoadBitmap(hps, NULL, 1, OL, OL); I' load the bitmap 'I
hbmPrevious = GpiSetBitmap(hps, hbm); I' set bitmap for PS 'I

I' use GpiBitBlt to display bitmap 'I

GpiSetBitmap(hps, hbmPrevious);
GpiDeleteBitmap(hbm);

I' release bitmap from PS 'I
I' delete the bitmap 'I

GpiCreateBitmap, GpiLoadBitmap, GpiQueryDeviceBitmapFormats, GpiSet­
Bitmap

GpiDeleteElementRange 59

• GpiDeleteElement
BOOl GpiDeleteElement(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Errors

Example

See Also

The GpiDeleteElement function deletes an element from the currently open seg­
ment. The function deletes the element pointed to by the element pointer, then
moves the element pointer to the preceding element (if any). The segment con­
taining the element must be open and the drawing mode must be DM-RETAIN.

GpiDeleteElement cannot be used in an element bracket.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~ICROPSYUNCTION

This example uses the GpiDeleteElement function to delete the third element
from the previously created segment 2:

GpiOpenSegment(hps, 2L);
GpiSetElementPointer(hps, 3L);
GpiDeleteElement(hps);
GpiCloseSegment(hps);

1* open segment #2 *1
1* move to third element *1
1* delete element *1
1* close the segment *1

GpiBeginElement, GpiEndElement, GpiQueryElement, GpiQueryElement­
Pointer, GpiSetElementPointer

• GpiDeleteElementRange
BOOl GpiDeleteElementRange (hps, idFirstElement, idLastElement)
HPS hps; I. presentation-space handle .1
lONG idFirstElement; I. first element .i
lONG idLastElement; I. last element .1

Parameters

The GpiDeleteElementRange function deletes one or more elements from the
currently open segment. The function deletes all elements between and including
the elements specified by idFirstElement and idLastElement, then moves the ele­
ment pointer to the preceding element (if any). The function rounds idFirst­
Element or idLastElement to a valid element-pointer position if the given posi­
tion does not point to an element. The segment containing the element must be
open and the drawing mode must be D~ETAIN.

GpiDeleteElementRange cannot be used in an element bracket.

hps Identifies the presentation space.

idFirstElement Specifies the element-pointer position of the first element to
delete.

idLastElement Specifies the element-pointer position of the last element to
delete.

60 GpiDeleteElementRange

Return Value

Errors

Example

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV.-MICROPSYUNCTION

This example uses the GpiDeleteElementRange function to delete the second
through fifth elements in the previously created segment 2:

Gpl0penSegment(hps, 2L); /* open segment # 2 */
GplDeleteElementRange(hps, 2L, SL); /* delete elements 2 through 5 */
GplCloseSegment(hps); /* close the segment */

GpiOffsetElementPointer, GpiQueryElementPointer, GpiSetElementPointer

• GpiDeleteElementsBetweenLabels
BOOl GpiDeleteElementsBetweenlabels(hps, idFirstLabel, idLastLabe/)
HPS hps; I. presentation-space handle .1
lONG idFirstLabe/j I. label of first element .1
lONG idLastLabe/j I. label of last element .1

Parameters

Return Value

Errors

Example

See Also

The GpiDeleteElementsBetweenLabeIs function deletes one or more elements
from the currently o'pen segment. The function deletes all elements between but
not including the elements having the labels specified by the idFirstLabel and
idLastLabel parameters, then moves the element pointer to the element preced­
ing the deleted elements (if any). If either label cannot be found between the
current element-pointer position and the end of the segment, the function
deletes no elements and returns an error value. The segment containing the ele­
ment must be open and the drawing mode must be D~ETAIN.

GpiDeleteElementBetweenLabels cannot be used in an element bracket.

hps Identifies the presentati,on space.

idFirstLabel Specifies the label that marks the start of the elements to delete.

idLastLabel Specifies the label that marks the end of the 'elements to delete.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV.-MICROPSYUNCTION
PMERR...LABEL_NOTYOUND

This example uses the GpiDeleteElementsBetweenLabeIs function to delete the
elements between but not including the elements having the labels 1 and 2:

GpiOpenSegment(hps, 2L); /* open segme~t #2 */

/* delete elements between 1 and 2 */

GplDeleteElementsBetweenLabels(hps, lL, 2L);
GplCloseSegment(hps); /* close the segment */

GpiLabel, GpiSetElementPointerAtLabeI

GpiDeleteSegment 61

• GpiDeleteMetaFile
BOOl GpiDeleteMetaFile (hmf)
HMF hmf; I. metafile handle .1

Parameters

Return Value

See Also

The GpiDeleteMetaFile function deletes the metafile specified by hmf.

hmf Identifies the metafile.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

DevCloseDC, DevOpenDC, GpiLoadMetaFile

• GpiDeleteSegment
BOOl GpiDeleteSegment(hps. idSegment)
HPS hps; I. presentation-space handle .1
lONG idSegment; I. Identifier of segment to delete .1

Parameters

Return Value

Errors

Example

See Also

The GpiDeleteSegment function deletes the segment specified by idSegment. If
the segment is open, the function automatically closes the segment before delet­
ing it. If the segment is in the picture chain, the function removes it from the
chain.

This function deletes only segments created using the GpiOpenSegment func­
tion.

hps Identifies the presentation space.

idSegment Specifies the segment to delete; it must be greater than zero.

The return value is TRUE if the function is successful or FALSE if an error
occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME

This example uses the GpiDeleteSegment function to delete segment 4:

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiOpenSegment(hps, 4L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

GpiDeleteSegment(hps, 4L);

/* open the segment
/* move to start point
/* draw triangle
/* close the segment

/* delete segment #4

*/
(0, 0) */

*/
*/

*/

GpiCloseSegment, GpiDeleteSegments, GpiOpenSegment, GpiQuerySegment­
Names

62 GpiDeleteSegments

• GpiDeleteSegments
BOOl GpiDeleteSegments (hps, idFirstSegment, idLastSegment)
HPS hps; I. presentation-space handle .1
lONG idFirstSegmentj I. identifier of first segment .1
lONG idLastSegment; I. identifier of last segment .1

Parameters

Return Value

Errors

Example

See Also

• GpiDeleteSetld

The GpiDeleteSegments function deletes the segments between and including
the segments specified by the idFirstSegment and idLastSegment parameters. If
idFirstSegment and idLastSegment are equal, the function deletes only that seg­
ment. If idFirstSegment is greater than idLastSegment, the function deletes only
the segment specified by idFirstSegment. If any of the segments is open, the
function closes the segment before deleting it. If any of the segments is in the
picture chain, the function removes the segment from the chain.

This function deletes only segments created using the GpiOpenSegment func­
tion.

hps Identifies the presentation space.

idFirstSegment Specifies the identifier of the first segment to delete. This
parameter must be greater than zero.

idLastSegment Specifies the identifier of the last segment to delete. This
parameter must be greater than zero.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME

This example uses the GpiDeleteSegments function to delete segments 4
through 6:

GplDeleteSegments(hps, 4L, 6L); /* delete segments 4 through 6 */

GpiCloseSegment, GpiDeleteSegment, GpiOpenSegment, GpiQuerySegment­
Names

BOOl GpiDeleteSetld(hps,lcid)
HPS hps; I. presentation-space handle *'
lONG Icidj I. local identifier for font or bitmap .1

The GpiDeleteSetId function deletes a logical font or removes the tag from a
tagged bitmap, depending on the object identified by local identifier lcid. If the
object is a logical font, the function deletes it, making it no longer available for
use. If the object is a bitmap, the function removes the tag, but the bitmap han­
dle remains valid. In either case, the function frees the local identifier for use
with another object.

Parameters

Return Value

Example

See Also

• GpiDestroyPS

GpiDestroyPS 63

hps Identifies the presentation space.

lcid Specifies the local identifier for the object. If this parameter is set to
LCID-ALL, the function deletes all logical fonts and removes the tags from all
tagged bitmaps.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiDeleteSetId function to delete a logical font. The
GpiSetCharSet function is required only if the logical font is the current font for
the presentation space.

E'ATTRS fat;

1* create and set the font *1

GpiCreateLogE'ont(hps, NULL, lL, &fat);
GpiSetCharSet(hps, lL);

GpiSetCharSet(hps, OL);
GpiDeleteSetld(hps, lL);

GpiSetBitmapld, GpiSetCharSet

1* release the font before deleting *1
1* delete the logical font" *1

BOOl GpiDestroyPS(hps)
HPS hps; 1* presentation-space handle *1

Parameters

Return Value

Example

See Also

The GpiDestroyPS function destroys the presentation space and releases all
resources owned by the presentation space. This function should only be used to
destroy presentation spaces created by the GpiCreatePS function.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiDestroyPS function to destroy the presentation space
associated with a memory device context:

HDC hdc;
HPS hps;
SIZEL page = { 0, 0 };

1* create the memory device context and presentation space *1
hdc DevOpenDC(hab, OD_MEMORY, Hi", OL, NULL, NULL);
hps GpiCreatePS(hab, hdc, &page, PU_PELS I GPIT_MICRO I GPIA_ASSOC);

GpiDestroyPS(hps);
DevCloseDC(hdc);

GpiCreatePS

1* destroy the presentation space *1
1* close the device context *1

64 GpiDestroyRegion

• GpiDestroyRegion
BOOl GpiDestroyRegion(hps, hrgn)
HPS hps; I. presentation-space handle .1
HRGN hrgn; I. handle of region to destroy.1

Parameters

Return Value

Example

See Also

• GpiDrawChain

The GpiDestroyRegion function destroys the region specified by hrgn. The func­
tion destroys the region only if the device context containing the region is associ­
ated with the given presentation space.

hps Identifies the presentation space.

hrgn Identifies the region to destroy.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiDestroyRegion function to destroy a region after
drawing a complex figure:

HRGN hrgn;
RECTL arcl[3] = { 10, 10, 20, 20, 15, 15, 25, 25, 20, 20, 30, 30 };

hrgn = GpiCreateRegion(hps, 3L, arcl); I' use 3 rectangles 'I
GpiPaintRegion(hps, hrgn); I' paint the region 'I
GpiDestroyRegion(hps, hrgn); I' destroy the region 'I

GpiCreateRegion

BOOl GpiDrawChain(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Errors

See Also

The GpiDrawChain function draws the picture chain. The function draws all seg­
ments in the picture chain, including called segments. GpiDrawChain draws the
segments using the current draw controls (except correlation control), as set by
the GpiSetDrawControl function. The function does not affect drawing modes or
open segments.

The function cannot be used in an area, path, or element bracket.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-AREAJNCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV _MICROPSYUNCTION
PMERRY ATHJNCOMPLETE
PMER~STOP J)RA W _OCCURRED

GpiCloseSegment, GpiDrawDynamics, GpiDrawFrom, GpiDrawSegment, Gpi­
QuerySegmentNames, GpiSetDrawControl

GpiDrawFrom 65

• GpiDrawDynamics
BOOl GpiDrawDynamics(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Errors

See Also

• GpiDrawFrom

The GpiDrawDynamics function draws the dynamic segments in the picture
chain. The function draws all dynamic segments unless a previous call to the
GpiRemoveDynamics function restricts the drawing to a selected range. The
function draws the segments using the current draw controls (except correlation
control), as set by the GpiSetDrawControl function.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-AREAJNCOMPLETE
PMERRJNV -MICROPSYUNCTION
PMERlLP ATHJNCOMPLETE
PMER~STOP~RAW_OCCURRED

GplCloseSegment, GpiDrawChain, GpiDrawFrom, GpiDrawSegment, Gpi­
QuerySegmentNames, GpiRemoveDynamics, GpiSetDrawControl

BaOl GpiDrawFrom(hps, idFirstSegment, idLastSegment)
HPS hps; I. presentation-space handle .!
lONG idFirstSegment; I. first chain segment to draw ./
lONG idLastSegment; I. last chain segment to draw ./

Parameters

The GpiDrawFrom function draws one or more segments in the picture chain.
The function draws all chained and called segments between and including the
segments identified by the idFirstSegment and idLastSegment parameters.
Although idFirstSegment must identify an existing segment, idLastSegment need
not. If idLastSegment does not specify an existing segment, the function draws to
the end of the picture chain.

GpiDrawFrom draws the segments using the current draw controls (except corre­
lation control), as set by the GpiSetDrawControl function. The function does
not affect drawing modes or open segments. Also, GpiDrawFrom cannot be
used in an area, path, or element bracket.

hps Identifies the presentation space.

idFirstSegment Specifies the identifier of the first segment to draw. This
parameter must be greater than zero.

idLastSegment Specifies the identifier of the last segment to draw. This
parameter must be greater than zero.

66 GpiDrawFrom

Return Value

Errors

Example

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILAREAJNCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERRY ATIUNCOMPLETE
PMER~STOP~RAW_OCCURRED

This example uses the GpiDrawFrom function to draw all segments in the pic­
ture chain between and inc1uqing the segments 1 and 4:

GplDrawFrom(hps, IL, 4L);

GpiCloseSegment, GpiDrawChain, GpiDrawDynamics, GpiDrawSegment,
GpiQuerySegmentNames, GpiSetDrawControl

• GpiDrawSegment
Baal GpiDrawSegment(hps, idSegment)
HPS hps; I. presentation-space handle *'
lONG idSegment; I. identifier of segment to draw .1

Parameters

Return Value

Errors

The GpiDrawSegment function draws the specified segment. The function draws
the segments using the current draw controls (except correlation control), as set
by the GpiSetDrawControl function. The function does not affect drawing
modes or open segments.

GpiDrawSegment cannot be used in an area, path, or element bracket.

hps . Identifies the presentation space.

idSegment Identifies the segment to draw. This parameter must be greater
than zero.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILAREAJNCOMPLETE
PMERRJMAGEJNCOMPLETE
PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERRY ATHJNCOMPLETE
PMER~STOP ~RA W _OCCURRED

Example

See Also

• GpiElement

GpiElement 67

This example uses the GpiDrawSegment function to draw segment 4:

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiOpenSegment(hps, 4L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps) ;

GpiDrawSegment(hps, 4L);

/* open the segment
/* move to start point
/* draw triangle
/* close the segment

/* draw segment #4

*/
(0, 0) */

*/
*/

*/

GpiCloseSegment, GpiDrawChain, GpiDrawDynamics, GpiDrawFrom, Gpi­
QuerySegmentNames, GpiSetDrawControl

LONG GpiElement(hps.IType. psz. cb. pb)
HPS hps; 1* presentation-space handle .1

LONG IType; I. element type .1
PSZ psz; I. pointer to element descriptor .1
LONG cb; 1* length in bytes of buffer for graphics orders *1
PBYTE pb; 1* pointer to buffer for graphics orders .1

Parameters

Return Value

Errors

The GpiElement function draws an element. The element consists of one or
more graphics orders in the buffer pointed to by pb. The function executes each
order as if it were the corresponding Gpi function.

The function adds the element to the current open segment if the drawing mode
is D~ETAIN or DMJ)RAWANDRETAIN. Otherwise, it just draws the
element. The element must not contain graphics orders for an element bracket.
Similarly, the function cannot be used in an element bracket.

The function sets the type and descriptor for the element to the values given by
IType and psz. The type and descriptor are a useful way of uniquely identifying
the element when it is added to a segment. The type and descriptor can be
retrieved at any time by using the GpiQueryElementType function.

hps Identifies the presentation space.

I Type Specifies the integer value to use for the eiement type.

psz Points to the null-terminated string to use for the element descriptor.

cb Specifies the length of graphics order data for the element.

pb Points to the buffer that contains the graphics orders for the element. The
buffer must not exceed 63K.

The return value is GPLOK or GPUIITS if the function is successful. (It is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs.) The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR-DATA-TOO-LONG
PMERRJNV -LENGTH
PMERRJNV ~ICROPSYUNCTION

68 GpiElement

Comments

See Also

• GpiEndArea

GpiElement does not convert coordinates. This may affect drawing the element
if the format for the coordinates in the graphics orders is not the correct format
for the presentation space.

GpiBeginElement, GpiDeleteElement, GpiEndElement, GpiQueryElement, Gpi­
QueryElementPointer, GpiQueryElementType, GpiSetElementPointer

lONG GpiEndArea(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Example

See Also

• GpiEndElement

The GpiEndArea function ends an area bracket-that is, it ends the sequence of
functions (starting with the GpiBeginArea function) that define the outline of an
area. The function automatically closes any open figure in the area, if necessary,
by drawing a line from the current position to the starting point of the figure,
then draws the area using the filling mode specified by the GpiBeginArea func­
tion that started the area bracket.

The GpiEndArea function does not change the current position unless it must
draw a line to close a figure in the area. In this case the new position is the last
point in the line.

hps Identifies the presentation space.

The return value is GPLOK or GPUIITS if the function is successful. (It is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs.) The return value is GPLERROR if an error occurs.

This example uses the GpiEndArea function to end an area bracket. The func­
tion draws the area (a triangle) by filling the outline with the current fill pattern.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiBeginArea(hps, BA_NOBOUNDARY I BA_ALTERNATE);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiEndArea(hps) ;

GpiBeginArea

BOOl GpiEndElement(hps)
HPS hps; I. presentation-space handle *1

The GpiEndElement function ends an element bracket-that is, it ends the
. sequence of functions (starting with the GpiBeginElement function) that define
the contents of an element. The GpiEndElement function may only be used
while creating a segment.

Parameters

Return Value

Errors

Example

See Also

• GpiEndPath

GpiEndPath 69

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~ICROPSYUNCTION

This example uses the GpiEndElement function to end an element bracket:

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiBeginElement(hps, 1L, "Triangle");
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiEndElement(hps) ;

1* begin the element bracket *1
1* move to start point (0, 0) *1
1* draw triangle *1
1* end element bracket *1

GpiBeginElement, GpiDeleteElement, GpiQueryElement, GpiQueryElement­
Pointer, GpiSetElementPointer

BOOl GpiEndPath(hps)
HPS hpsj I. presentation-space handle .1

Parameters

Return Value

Example

See Also

The GpiEndPath function ends a path bracket-that is, it ends the sequence of
functions (starting with the GpiBeginPath function) that define the outline of a
path.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiEndPath function to end a path bracket. When the
path bracket is ended, a subsequent call to the GpiFiIlPath function draws and
fills the path.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0 };

GpiBeginPath(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 2L, ptlTriangle);
GpiCloseFigure(hps);
GpiEndPath(hps);
GpiFillPath(hps, lL, FPATH_ALTERNATE);

GpiBeginPath

1* start the path bracket *1
1* move to starting point *1
1* draw the three sides *1
1* close the triangle *1
1* end the path bracket *1
1* draw and fill the path *1

70 GpiEqualRegion

• GpiEqualRegion
lONG GpiEqualRegion (hps, hrgn 1, hrgn2)
HPS hps; I. presentation-space handle .1
HRGN hrgn1; I. handle of the first region .1
HRGN hrgn2; I. handle of the second region .1

Parameters

Return Value

See Also

• GpiErase
BOOl GpiErase(hps)

The GpiEqualRegion function checks two regions for equality. Regions are
equal if the difference between the two regions is an empty region. The function
compares the regions only if the device context containing the regions is associ­
ated with the given presentation space.

hps Identifies the presentation space.

hrgnl Identifies the first region.

hrgn2 Identifies the second region.

The return value is EQRGN_NOTEQUAL or EQRGN~QUAL if the function
is successful, or EQRGN~RROR if an error occurred.

WinEqualRect

HPS hps; I. presentation-space handle .1

Parameters

Return Value

Example

See Also

The GpiErase function clears the display associated with the specified presenta­
tion space. The function clears the display by filling it with the color specified by
the CLRJ3ACKGROUND color index for the presentation space. The function
clips the output to the current clipping region, graphics field, and visual region
(if any), but does not clip to the current viewing limits and clipping path. Also,
the function ignores the the current draw controls (as set by the GpiSetDraw­
Control function).

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiErase function to clear the display before drawing:

GpiErase(hps) ;
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);

/' clear the display '/
/' draw a triangle '/

GpiCloseSegment, GpiSetColor, GpiSetDrawControl

GpiErrorSegmentData 71

• GpiErrorSegmentData
LONG GpiErrorSegmentData(hps, pidSegment, plContext)
HPS hps; I. presentation-space handle .1
PLONG pidSegment; I. pOinter to segment Identifier *1
PLONG pICon text; I. pointer to variable for error type *1

Parameters

Return Value

Errors

See Also

The GpiErrorSegmentData function returns information about the last error that
occurred while drawing a segment. The function copies the segment identifier
and error type to the variables pointed to by pidSegment and plContext, then
returns either a byte offset or an element pointer position, depending on the type
of error.

hps Identifies the presentation space.

pidSegment Points to a variable to receive the identifier of the segment caus­
ing the error.

plContext Points to a variable to receive the error type. It can be one of the
following values:

Value Meaning

A graphics order in the buffer for the GplPutData
function caused an error. The return value is the
byte offset from the beginning of the buffer to this
graphics order.

A graphics order in the buffer for the GplElement
function caused an error. The return value is the
byte offset from the beginning of the buffer to this
graphics order.

An element in the given segment caused an error.
The return value is the position of the element
pointer for this element.

The return value is either a byte offset or an element pointer position if the func­
tion is successful. Otherwise, it is GPLALTERROR.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPSYUNCTION

GpiCloseSegment, GpiElement, GpiOpenSegment, GpiPutData

72 GpiExcludeClipRectangle

• GpiExcludeClipRectangle
LONG GpiExcludeClipRectangle(hps. pre/)
HPS hpsj 1* presentation-space handle *1
PRECTL pre/j 1* pointer to structure for rectangle coordinates *1

Parameters

Return Value

See Also

• GpiFiliPath

The GpiExcludeClipRectangle function excludes a rectangle from the clip
region. The function excludes all points in the rectangle except points on the top
and right boundary.

hps Identifies the presentation space.

prcl Points to a RECTL structure containing the rectangle. The RECTL struc­
ture has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RGN_COMPLEX, RGN_NULL, or RGN-RECT if the
function is successful or RGN~RROR if an error occurred.

GpiIntersectClipRectangle, WinExcludeUpdateRegion

LONG GpiFiIIPath(hps. idPath. flFiII)
HPS hpsj 1* presentation-space handle *1 .
LONG idPathj 1* Identifier of path *1
LONG flFillj 1* fill mode *'

Parameters

The GpiFiIIPath function draws the interior of the path specified by idPath by
filling it with the current fill pattern. The function first closes any open figures in
the path, then fills the closed figures using the filling mode specified by flFill.
Finally, the function deletes the path.

hps Identifies the presentation space.

idPath Specifies the path whose interior is to be drawn; it must equal1.

flFill Specifies the fill option. It can be one of the following values:
Value

FP ATfLALTERNA TE

FPATfL WINDING

Meaning

~ills the path using the alternate (even/odd) rule.

Fills the path using the winding rule.

The default is FPATILALTERNATE.

Return Value

Errors

Example

See Also

• GpiFuliArc

GpiFullArc 73

The return value is GPLOK or GPUUTS if the function is successful. (It is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs.) The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV J>ATIUD
PMERRJ>ATHLUNKNOWN

This example uses the GpiFilIPath function to draw the interior of the given
path. The path, an isosceles triangle, is not closed when it is created, so the
GpiFilIPath function closes it before filling.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiBeginPath(hps, lL); It create a path tl
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiEndPath(hps) ;

GpiFillPath(hps, 1L, FPATH_ALTERNATE); It fill the path tl

GpiBeginPath, GpiEndPath

LONG GpiFuIlArc(hps. flFlags. fxMultiplier)
HPS hps; 1* presentation-space handle .1
LONG flFlags; I. fill and outline indicator .1
FIXED fxMultiplier, 1* arc-size multiplier .1

Parameters

The GpiFullArc function creates a full arc. A full arc is a complete circle or
ellipse, drawn by using the current arc parameters. The function first scales the
width and height of the arc by using the multi pier specified by the jxMultiplier
parameter, then draws either the outline of the arc, the interior of the arc, or
both, depending on the flags specified by the flFlags parameter.

The function uses the current position as the center of the arc but does not
change the current position. The function uses the arc parameters to determine
whether to draw the full arc clockwise or counterclockwise. When an arc is used
as part of an area or path, the direction in which the arc is drawn can affect how
it is filled.

hps Identifies the presentation space.

jlFlags Specifies whether to fill and/or outline the arc. It can be one of the
following values:

Value

DRO_OUTLINEFILL

Meaning

Fills the interior of the arc with the current fill pat­
tern.

Draws the outline of the arc by using the current
line style and color.

Draws the outline and fills the arc interior.

Do not use DROJILL or DRO_OUTLINEFILL when using GpiFullArc in an
area bracket.

74 GpiFuliArc

Return Value

Errors

Comments

Example

See Also

• GpiGetData

fxMultiplier Specifies'how much to scale the width and height of the arc. It
must be a fixed-point value in the range 1 through 255 (or in the range OxlOOOO
through OxFFOOOO if expressed as 32-bit values). This means the function can
scale the arc from 1 to 255 times the current arc-parameter dimensions.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV~RC_CONTROL
PMERRJNV ~ULTIPLIER

When correlating an arc, the system generates a hit if the arc boundary inter­
sects the pick aperture. If the pick aperture is inside the arc, the system gener­
ates a hit only if the interior of the arc has been filled.

This example uses GpiFulIArc to draw five concentric circles. The arc parame­
ters are set before drawing the arc. Only the outline is drawn for the arc.

SHORT i;
ARCPARAMS arcp = { 1, 1, 0, 0 };

GpiSetArcParams(hps, &arcp);

for (i = 5; i > 0; i --)
GpiE'ullArc (hps,

DRO_OUTLINE,
MAKEFIXED(i, 0»;

1* presentation-space handle *1
1* outline * I
1* converts integer to fixed point *1

GpiMove, GpiPointArc, GpiQueryArcParams, GpiSetArcParams, GpiSetAttrs,
GpiSetColor, GpiSetCurrentPosition, GpiSetLineType

LONG GpiGetData(hps, idSegment, off, pcmdFormat, cb, pb)
HPS hps; I. presentation-space handle .1
LONG idSegment; 1* segment identifier *1
PLONG off; 1* pointer to variable for segment offset *1
LONG pcmdFormat; 1* conversion type *1
LONG cb; 1* length in bytes of the data buffer *1
PBYTE pb; 1* pointer to buffer for data *1

The GpiGetData function copies graphics orders from the specified segment to
the specified buffer. The function continues to copy the graphics orders from the
segment to the buffer until all orders in the segment have been copied or the
number of bytes specified by the cb parameter have been copied. If the function
fills the buffer, the last order in the buffer may not be complete since the func­
tion does not stop on an order boundary when copying to the buffer. In any
case, the function returns the number of bytes copied to the buffer.

The function starts copying graphics-order data from the location specified by
the off parameter. If this parameter is zero, the function copies from the begin­
ning of the segment. After copying the data, the function replaces the value in
off with the offset to the next byte of data to copy from the segment (if any).
This value can be used to specify the next location to copy.

Parameters

Return Value

Errors

Example

GpiGetData 75

The GpiGetData function cannot be used to copy data from an open segment,
but it can be used to copy data while some other segment is open.

hps Identifies the presentation space.

idSegment Specifies the segment identifier.

off Specifies the offset from the beginning of the segment to the next byte of
graphics order data to copy. If this parameter is zero, the function copies from
the beginning of the segment.

pcmdFormat Points to the variable that contains the coordinate conversion
type. The variable can be one of the following values:

Value

DFOR~NOCONV

DFOR~PCLONG

DFOR~PCSHORT

DFOR~S370SHORT

Meaning

Copies coordinates without converting. The coordi­
nates are in the format used by the presentation
space.

Converts coordinates to PC-format long (4-byte)
integers.

Converts coordinates to PC-format short (2-byte)
integers.

Converts coordinates to S/370-format short (2-byte)
integers.

cb Specifies the length in bytes of the buffer to receive the graphics orders.

pb Points to the buffer that receives the graphics-order data.

The return value is the number of graphics-order bytes copied if the function is
successful or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~AT~TOO~ONG
PMER~NV_GETDAT~CONTROL
PMER~NV ~ENGTH
PMER~NV ~ICROPSYUNCTION
PMER~NV _SEG_OFFSET
PMER~SEG_NOTYOUND

This example uses the GpiGetData function to copy data from one segment to
another:

LONG fFormat = DFORM_NOCONV;
LONG off Segment = OL;
LONG offNextElement = OL;
LONG cb = OL;
BYTE abBuffer[S12];

I' do not convert coordinates 'I
I' offset in segment 'I
I' offset in segment to next element 'I
I' bytes retrieved 'I

GpiOpenSegment(hps, 3L); I' open segment to receive the data 'I
do {

off Segment += cb;
offNextElement = off Segment;
cb = GpiGetData(hps, 2L, &offNextElement, fFormat, S12L, abBuffer);

76 GpiGetData

See Also

• Gpilmage

1* put data in other segment 'I

if (cb > OL) GpiPutData(hps,
fFormat,
&cb,
abBuffer);

I' presentation-space handle 'I
I' format of coordinates 'I
I' number of bytes in buffer *1
I' buffer with graphics-order data 'I

} while (cb > 0);
GpiCloseSegment(hps); I' close segment that received the data 'I

GpiPutData

LONG Gpilmage(hps.IFormat. psizl. cbData. pbData)
HPS hps; 1* presentation-space handle *1
LONG IFormat; 1* image data format *1
PSIZEL psizl; 1* pointer to structure for image width and height *1
LONG cbData; 1* length in bytes of the image data *1
PBYTE pbData; 1* pOinter to image data *1

Parameters

Return Value

The Gpilmage function draws an image. An image is a rectangular array of pels,
each pel having either the current foreground or background color. Each image
has a width and height specified by the psizl parameter. The width and height
determines how many pels there are in the horizontal and vertical directions.

Gpilmage draws the image by using the image data pointed to by the pbData
parameter to set the color of each pel in the image. Each pel is represented by
one bit in the image data. If the bit is 1, the pel has the foreground color; if the
bit is 0, the pel has the background color. The function combines each pel with
the color already on the display by using the foreground mix mode for fore­
ground pels and the background mix mode for background pels. The function
places the upper-left corner of the image at the current position but does not
change the current position.

hps Identifies the presentation space.

[Format Specifies the format of the image data. This is a reserved field; it
must be set to zero.

psizl Points to a SIZEL structure containing the width and height of the image
in pels. The maximum width allowed is 2040 pixels. The SIZEL structure has the
following form:

typedef struct _SIZEL {
LONG cx;
LONG cy;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbData Specifies the length in bytes of the image data.

pbData Points to the image data. The pels must be given, row by row, starting
at the top and running from left to right within each row.

The return value is GPLOK or GPLHITS if the function is' successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

. Errors

Comments

Example

See Also

GpiintersectClipRectangle 77

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNVJMAGEJ)ATAJ.ENGTH
PMERRJNV JMAGEJ)IMENSION
PMERRJNVJMAGEYORMAT

The image data is an array of bytes. Each byte in the array represents ~ight pels,
with the high bit representing the leftmost pel. The function draws the image
from left to right and top to bottom. For each row of the image, the function
continues to read bytes from the array until all pels in the row are set. If the
image width is not a multiple of 8, any remaining bits in the last byte for the row
are ignored. The function continues until all rows are set. This means the
number of bytes in the image data (and the length specified for the data) must be
equal to the height in pels multiplied by the width in bytes.

This example uses Gpilmage to draw an 8-by-8 image. The image data is speci­
fied as an array of bytes.

SIZEL sizl = { 8, 8 }; /* image is 8 pels wide by 8 pels high */
BYTE-ablmage[] = { OxOO, OxlB, Ox3c, Ox7e, Oxff,

Oxff, Ox7e, Ox3c, Ox18, OxOO };

Gpilmage(hps, OL, &sizl, BL, ablmage); /* draws the image */

GplSetAttrs

• GpiintersectCHpRectangle
LONG GpiintersectClipRectangle (hps. pre/)
HPS hps; 1* presentation-space handle *1
PRECTL prel; 1* pointer to structure for rectangle coordinates *1

Parameters

Return Value

See Also

The GpiIntersectClipRectangle function sets the new clip region (in device coor­
dinates) to the intersection of the current clip region and the specified rectangle.

hps
prcl
form:

Identifies the presentation space.

Points to a RECTL structure. The RECrL structure has the following

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RGN_NULL, RGN-RECT, or RGN_COMPLEX if the
function is successful, or RGN~RROR if an error occurred.

GpiExcludeClipRectangle

78 GpiLabel

• GpiLabel
BOOl Gpilabel(hps, idLabe/)
HPS hps; 1* presentation-space handle *1
lONG idLabel; 1* label .1

Parameters

Return Value

Errors

Comments

Example

See Also

• GpiLine

The GpiLabel function creates a label element. A label element is an element in
a segment that contains nothing more than a 32-bit value. The function creates a
label for an element in the current open segment. If no segment is open, no
label is created.

The GpiLabel function cannot be used in an element bracket.

hps Identifies the presentation space.

idLabel Specifies the label. It can be any value in the range OxOOOOOOOO
through OxFFFFFFFF.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WlnGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPS_FUNCTION

The GpiLabel function is intended to be used to uniquely identify elements in a
segment that may be edited. Label elements are typically placed near elements to
be edited. The label can be used with the GpiSetElementPointerAtLabel func­
tion to move the element pointer to the given element.

This example uses the GpiLabel function to create label elements in a segment.
If the segment is subsequently edited, the label elements can still be used to
locate the elements near it.

POINTL ptlStart = { 0, a };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, a };

GpiOpenSegment(hps, 4L);
GpiLabel(hps, SL);
GpiLabel(hps, 10L);
GpiMove(hps, &ptlStart);
GpiCloseSegment(hps) ;
GpiPolyLine(hps, 3L, ptlTriangle);

GpiSetElementPointerAtLabel

It creates a segment tl
It creates labelS tl
It creates label 10 tl

lONG Gpiline (hps, ppt/)
HPS hps; 1* presentation-space handle .1

PPOINTl ppt/; I. pointer to structure for the end point .1

The GpiLine function draws a straight line from the current position to the
specified end point. The function then moves the current position to the end
point.

The function draws the line by using the current values of the line-color, line­
mix, line-width, and line-type attributes. These values are set by using the
GpiSetAttrs function.

Parameters

Return Value

Example

See Also

• GpiLoadBitmap

GpiLoadBitmap 79

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the end point of the line. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses GpiLine to draw an X.

POINTL ptl[4] = { 0, 0, 100, 100, 0, 100, 100, 0 };

GpiMove(hps, &ptl[O]);
GpiLine(hps, &ptl[l]);
GpiMove(hps, &ptl[2]);
GpiLine(hps, &ptl[3]);

GpiMove, GpiPolyLine, GpiSetAttrs, GpiSetColor, GpiSetCurrentPosition,
GpiSetLineType

HBITMAP GpiLoadBitmap(hps. hmod. idBitmap.IWidth.IHeight)
HPS hps; I. presentation-space handle .1
HMODULE hmod; I. module handle .1
USHORT idBitmap; I. bitmap identifier .1
LONG IWidth; I. width In pels of the bitmap .1
LONG IHeight; I. height in pels of the bitmap .1

Parameters

The GpiLoadBitmap function loads a bitmap resource from the specified
module and uses it to create a bitmap having the specified width and height. The
function uses the image data in the bitmap resource to initialize the bitmap
image. If the lWidth or lHeight parameter is zero, the function creates a bitmap
having the width or height given in the bitmap resource. If lWidth or lHeight is
not zero, the function stretches or compresses the bitmap image to the specified
width or height.

The bitmap handle can be used in subsequent functions that accept bitmap han­
dles. In most cases, the bitmap is set to a memory presentation space by using
the GpiSetBitmap function then copied to the screen or a printer by using the
GpiBitBlt function.

hps Identifies the presentation space.

hmod Specifies the module handle of the dynamic-link library containing the
bitmap resource. If this parameter is NULL, the function loads the bitmap from
the application's executable file.

idBitmap Specifies the identifier of the bitmap within the resource file.

lWidth Specifies the width in pels of the bitmap.

lHeight Specifies the height in pels of the bitmap.

80 GpiLoadBitmap

Return Value

Errors

Example

See Also

• GpiLoadFonts

The return value is a handle to the bitmap if the function· is successful or
GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV JUTMAP J)IMENSION

This example uses the GpiLoadBitmap function to create a bitmap by using the
bitmap resource in the application's executable file. The bitmap must have been
added to the executable file by using Resource Compiler.

HBITMAP hbm;

hbm = GpiLoadBitmap(hps,
NULL,
1,
64L,
64L);

/* handle of the bitmap */

/* presentation-space handle */
/* loads from application's file */
/* bitmap resource #1 */
/* sets width to 64 pels */
/* sets height to 64 pels */

GpiCreateBitmap, GpiDeleteBitmap, GpiSetBitmap, GpiSetBitmapBits,
GpiSetBitmapDimension, GpiSetBitmapld, WinGetSysBitmap

BOOl GpiloadFonts(hab. pszModName)
HAB hab; 1* anchor-block handle *1
PSZ pszModName; 1* pOinter to module name *1

Parameters

Return Value

Example

See Also

The GpiLoadFonts function loads fonts from the specified resource file. Once
loaded, the fonts are private fonts and can be used by any thread in the process.
Any other process can use the fonts but only if it also loads the font by using the
GpiLoadFonts. The function loads a copy of the fonts once only. Any subse­
quent call to the function by another process for the same fonts simply incre­
ments the use count for the resource and gives that process access.

hab Identifies the anchor block.

pszModName Points to a null-terminated string. This string must be a valid
MS OS/2 filename. If it does not specify a path and the filename extension, the
function appends the default extension (.dll) and searches for the font resource
file in the directories specified by the Iihpath command in the config.sys file.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred. '

This example uses the GpiLoadFonts function to load all fonts from the font
resource file helv.fon. The GpiQueryFonts function retrieves the number of fonts
loaded. .

LONG cFonts = OL;

GpiLoadFonts(hab, "helv");
cFonts = GpiQueryFonts(hps, QF_PRIVATE, NULL, &cFonts, OL, NULL);

GpiCreateLogFont, GpiDeleteSetId, GpiQueryFonts, GpiUnloadFonts

GpiMarker 81

• GpiLoadMetaFile
HMF GpiLoadMetaFile(hab, pszFilename)
HAB hab; 1* anchor-block handle *1
PSZ pszFilename; 1* pointer to filename of metafile *1

Parameters

Return Value

Example

See Also

• GpiMarker

The GpiLoadMetaFile function loads data from a file into a metafile. The func­
tion first creates the metafile, then copies the data and returns the metafile han­
dle. The metafile handle can be used in subsequent calls to the GpiPlayMetaFile
or GpiDeleteMetaFile function.

hab Identifies the anchor block.

pszFilename Points to a null-terminated string. This string must be a valid MS
OS/2 filename that specifies the path and filename of the file to load into a
metafile.

The return value is a handle to the metafile if the function is successful or
GPLERROR if an error occurred.

This example uses the GpiLoadMetaFile function to load a metafile with data
from the file sample.met. Later, the metafile is deleted by using the Gpi­
DeleteMetaFile function.

HMF hmf;

GpiLoadMetaFile(hmf, "sample.met"); 1* loads metafile from disk *1

GpiDeleteMetaFile(hmf); 1* deletes metafile *1

GpiCopyMetaFile, GpiDeleteMetaFile, GpiPlayMetaFile, GpiSaveMetaFile,
GpiSetMetaFileBits

LONG GpiMarker(hps, pptl)
HPS hps; 1* presentation-space handle *1
PPOINTL pptl; 1* pOinter to structure for marker position *1

Parameters

The GpiMarker function draws a marker, placing the center of the marker at the
point specified by the pptl parameter. The current marker set and marker symbol
attributes specify the marker to draw.

The function moves the current position to the specified point.

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the position of the marker.
The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, and Structures."

82 GpiMarker

Return Value

Example

See Also

• GpiModifyPath

The return value is GPLOK or GPUUTS if the function is successful (it is
GPUUTS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses the GpiMarker function to draw a marker at the point
(10,10).

POINTL ptl = { 10, 10 };

GpiMarker(hps, &ptl);

GpiMove, GpiPolyMarker, GpiSetAttrs, GpiSetCurrentPosition, GpiSetMarker­
Box, GpiSetMarkerSet

Baal GpiModifyPath(hps, idPath, cmdMode)
HPS hps; /* presentation-space handle */
lONG idPath; /* path Identifier */
lONG cmdMode; /* modification options */

Parameters

Return Value

The GpiModifyPath function modifies a path. Modifying a path affects the way
the GpiFiIlPath function draws the path. For example, a modified path can be
used to draw a wide line; that is, a line having a width specified by the current
geometric-line width. The function modifies the path as specified by the cmd­
Mode parameter.

The GpiModifyPath can modify the path for drawing as a wide lihe. In this case,
the GpiFiIlPath function draws a line that follows the path. The line has the
current geometric-line width and is filled with the current fill pattern. Further­
more, the current line-join attribute defines how to draw the intersection of two
lines at their end points and the current line-end attribute defines how to draw
the end of a line, respectively. GpiModifyPath prevents GpiFiIlPath from closing
open figures in the path. The line-end attribute applies to the start and end
points of open figures. If a figure is closed by using the GpiCloseFigure func­
tion, the line-join attribute applies to the start and end points. If a line is joined·
to an arc, the line-join attribute applies to the intersection at the end points. If
two lines intersect at any place other than their end points, the GpiFiIIPath func­
tion draws the wide line so that the intersection is filled despite the fill mode.

hps Identifies the presentation space.

idPath Specifies the identifier of the path to modify; it must be 1.

cmdMode Specifies how to modify the path. It can be the following value:
Value

MPATILSTROKE

Meaning

Converts the path to a wide line. The line width is
the current geometric-line width set by using the
GpiSctLinc WidthGcom function.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Errors

Example

See Also

• GpiMove

GpiMove 83

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV J> ATHJD
PMERRYATELUNKNOWN

This example uses the GpiModifyPath function to modify the given path. The
GpiFillPath function then draws the path.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiBeginPath(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiEndPath (hps) ;

GpiModifyPath(hps,
1L,

I" creates path "l

MPATH_STROKE) ; I" modifies path for wide line "l
GpiFillPath(hps, 1L, FPATH_ALTERNATE); I" draws the wide line "l

GpiBeginPath, GpiCloseFigure, GpiEndPath, GpiSetLineEnd, GpiSetLineJoin,
GpiSetLine WidthGeom

BOOl GpiMove(hps, pptl)
HPS hps; I. presentation-space handle .1
PPOINTl pptl; I. pointer to structure for new position .1

Parameters

Return Value

Example

See Also

The GpiMove function moves the current position to the specified point. When
used in an area bracket, the function closes the current open figure (if any) and
marks the start of a new figure.

hps Identifies the presentation space.

pptl Points to a POINTL structure containing the position to move to. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures~"

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses the GpiMove function to draw an X. The function moves the
current position to the starting point of each leg of the character.

POINTL ptl[4] = { 0, 0, 100, 100, 0, 100, 100, 0 };

GpiMove(hps, &ptl [0]) I" move to (0,0) "l
GpiLine(hps, &ptl[l])
GpiMove(hps, &ptl [2]) I" move to (0,100) "l
GpiLine(hps, &ptl [3])

GpiSetCurrentPosition

84 GpiOffsetClipRegion

• GpiOffsetClipRegion
lONG GpiOffsetClipRegion(hps, pptl)
HPS hps; 1* presentation-space handle *1
PPOINTl pptl; 1* pointer to structure for offset increments *1

Parameters

Return Value

See Also

The GpiOffsetClipRegion function moves the clip region. The function moves
the clip region by adding the x- and y-coordinates in the point specified by the
pptl parameter to the region's current position. The x- and y-coordinates may be
either positive or negative, so the region can move in any direction.

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the offset increments in world
coordinates. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RGN.-NULL, RGNJECT, or RGN_COMPLEX if the
function is successful, or RGN.-ERROR if an error occurred.

GpiSetClipRegion

• GpiOffsetElementPointer
BOOl GpiOffsetElementPointer(hps, off)
HPS hps; 1* presentation-space handle *1
lONG off; 1* offset to add to element pointer *1

Parameters

Return Value

The GpiOffsetElementPointer function moves the element pointer by the
number of elements specified by the off parameter. The function starts the move
at the current element-pointer position, and moves the element pointer either
toward the beginning or end of the segment, depending on whether off is nega­
tive or positive. If off specifies more elements than actually exist between the
current position and the beginning or end, the function sets the element pointer
to zero or to the last element in the segment, depending on the direction of the
move.

The GpiOffsetElementPointer function affects the current open segment. If no
segment is open, the function is ignored. Also, the function cannot be used in
an element bracket.

hps Identifies the presentation space.

off Specifies the offset to be added to the element pointer.

The return value is GPLOK if the function is successful or GPURROR if an
error occurred.

Errors

Example

See Also

GpiOffsetRegion 85

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~CROPSYUNCTION

This example uses the GpiOffsetEIementPointer function to move to the element
associated with a label element. Combining the GpiSetEIementPointerAtLabeI
and GpiOffsetEIementPointer functions is a convenient way to locate elements
in segments that have been edited.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiOpenSegment(hps, 4L); /* creates a segment with labels */
GpiLabel(hps, SL); GpiMove(hps, &ptlStart);
GpiLabel(hps, 10L); GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps);

GpiOpenSegment(hps, 4L);
GpiSetElementPointerAtLabel(hps, 10L) /* move to label 10 */
GpiOffsetElementPointer(hps, 1L); /* move to polyline element */

GpiSetEditMode, GpiSetEIementPointer, GpiSetEIementPointerAtLabel

• GpiOffsetRegion
BOOl GpiOffsetRegion(hpsJ hrgn J ppt/)
HPS hps; I. presentation-space handle .1
HRGN hrgn; I. regIon handle .1
PPOINTl ppt/; I. poInter-to structure for offset Increments .1

Parameters

Return Value

See Also

The GpiOffsetRegion function moves a region. The function moves the region
by adding the x- and y-coordinates in the point specified by the pptl parameter
to the region's current position. The x- and y-coordinates may be either positive
or negative, so the region can move in any direction.

hps Identifies the presentation space.

hrgn Identifies the region to move. The region must belong to the device con­
text associated with the presentation space.

pptl Points to a POINTL structure that contains the offset increments for the
move. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

Fora full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiCreateRegion, GpiDestroyRegion

86 GpiOpenSegment

• GpiOpenSegment
BOOl GpiOpenSegment(hps. idSegment)
HPS hps: /. presentation-space handle ./
lONG idSegment; /. segment identifier ./

Parameters

Return Value

Errors

Comments

The GpiOpenSegment function opens the segment specified by the idSegment
parameter. The function creates a new segment if a segment having the specified
identifier does not already exist. Otherwise, it opens the segment. Once a seg­
ment is opened or created, the system stores an element in the segment for each
subsequent primitive and attribute function, up to the next call to the Gpi­
CloseSegment function. If the segment previously existed, the system either
replaces the old elements with the new or inserts the new elements, depending
on the segment editing mode.

The function can create a segment when the drawing mode is set to either
D1LRETAIN or DMJ)RA WAND RETAIN but can open an existing segment
only when the drawing mode is D1LRETAIN. (The GpiOpenSegment function
can also create a segment when the drawing mode is DMJ)RA W, but subse­
quent elements are not stored.)

hps Identifies the presentation space.

idSegment Specifies the segment identifier. The segment identifier must be a
positive integer. If the identifier is unique-that is, has not been used before
with the presentation space-the function creates a new segment. Zero is
reserved for unnamed segments.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR.AREAJNCOMPLETE
PMERRnYNAMIC_SEG-ZEROJNV
PMERRJMAGEJNCOMPLETE
PMERRJNV ~ICROPSYUNCTION
PMERRJNV ~ODEYO~OPEN~YN
PMERRJNV ~ODEYO~EOPEN_SEG
PMERRY ATHJNCOMPLETE

If the segment identifier is zero, the function creates an unnamed segment. An
unnamed segment is like any other segment except it cannot be referenced by
identifiers in subsequent segment functions. For example, an unnamed segment
cannot be drawn directly since the GpiDrawSegment function requires a segment
identifier, but the unnamed segment can be drawn if it is added to the picture
chain. GpiOpenSegment creates a new unnamed segment for each call specifying
the zero identifier. Any number of unnamed segments can be created, and the
unnamed segments continue to exist until all segments are deleted.

The GpiOpenSeginent function assigns segment attributes to each new segment.
The initial segment attributes are set by the GpiSetInitialSegmentAttrs function.
If the initial attributes specify a dynamic segment, the segment can be created
only in D1LRETAIN drawing mode.

Only one segment per presentation space can be open at a time.

Example

See Also

• GpiPaintRegion

GpiPaintRegion 87

This example uses the GpiOpenSegment to create a new segment. The segment
is subsequently drawn by using the GpiDrawSegment function.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[] = { 100, 100, 200, 0, 0, 0 };

GpiOpenSegment(hps, 1L);
GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment(hps) ;

GpiDrawSegment (hps, 1L) ';

/' opens the segment '/
/' moves to starting point (0,0) '/
/' draws triangle '/
/' closes the segment '/

GpiCloseSegment, GpiErrorSegmentData, GpiSetInitialSegmentAttrs, GpiSet­
SegmentAttrs, GpiSetViewingTransformMatrix

LONG GpiPaintRegion(hps, hrgn)
HPS hps; /* presentation-space handle */
HRGN hrgn; /* region handle */

Parameters

Return Value

Example

See Also

The GpiPaintRegion function paints the region specified by the hrgn parameter.
The function paints a region by filling it with the current fill pattern, applying the
current area colors and mix modes as it fills the region.

hps Identifies the presentation space.

hrgn Identifies the region.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses the GpiPaintRegion function to fill a complex region consist­
ing of three, intersecting rectangles. The region is filled with a red, diagonal
pattern.

HRGN hrgn;
RECTL arcl[3] = { 100, 100, 200, 200,

150, 150, 250, 250,
200, 200, 300, 300 };

hrgn = GpiCreateRegion(hps, 3L, arcl);
GpiSetColor(hps, CLR_RED);
GpiSetPattern(hps, PATSYM_DIAG1);
GpiPaintRegion(hps, hrgn);

/' handle for region '/
/' 1st rectangle '/
/' 2nd rectangle '/
/' 3rd rectangle '/

GpiCreateRegion, GpiSetAttrs, GpiSetColor, GpiSetPattern, GpiSetPatternRef­
Point, GpiSetPatternSet

88 GpiPartialArc

• GpiPartialArc
LONG GpiPartiaIArc(hps, pptl, fxMultiplier, fxStartAngle, fxSweepAngle)
HPS hps; /. presentation-space handle ./
PPOINTL pptl; /. pointer to structure for center point ./
FIXED fxMultiplier, /. arc-size multiplier ./
FIXED fxStartAngle; /. start angle of arc ./
FIXED fxSweepAngle; /. sweep angle of arc ./

Parameters

Return Value

Errors

Comments

The GpiPartialArc function draws a partial arc. The function actually draws two
figures: a straight line, from the current position to the start point of an arc; and
the arc itself, with its center at the specified point. The function determines the
start and end points of the arc by using the start and sweep angles specified by
the JxStartAngle and JxSweepAngle functions.

The GpiPartialArc function moves the current position to the end point on the
partial arc.

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the center point. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

JxMuitiplier Specifies the amount to scale the width and height of the arc. It
must be a fixed-point value in the range 1 through 255 (or in the range Oxl0000 to
OxFFOOOO if expressed as a 32-bit value). This means the function can scale the
arc from 1 to 255 times the current arc-parameter dimensions.

JxStartAngle Specifies the start angle in degrees. It must be a positive, fixed­
point value.

JxSweepAngle Specifies the sweep angle in degrees. It must be a positive,
fixed-point value.

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~ULTIPLIER

To draw the arc, the GpiPartialArc function first constructs an imaginary unit
circle at the specified center point. The function locates the start point of the arc
by measuring counterclockwise from the x-axis of the circle by the number of
degrees in the start angle. It then locates the end point of the arc by measuring
counterclockwise from the start point by the number of degrees in the sweep
angle. Finally, the function draws the arc by applying the current arc parameters
and the arc-size multiplier. The direction in which the function draws the arc
depends on the arc parameters. The direction may affect the way a closed figure
containing an arc is filled.

Example

See Also

GpiPlayMetaFile 89

If the sweep angle is greater than 360 degrees, the function draws one or more
complete circles or ellipses (depending on the original sweep-angle value) fol­
lowed by an arc. The sweep angle of the final arc is the remainder after dividing
the original sweep angle by 360.

This example uses the GpiPartialArc function to draw a chord. A chord is an
arc whose end points are connected by a straight line.

POINTL ptl = {.100, 100 }: /* center point for arc */

GpiSetLineType(hps, LINETYPE_INVISIBLE):
GpiPartialArc(hps, &ptl, MAKEFIXED(SO, 0), MAKEFIXED(O, 0),

MAKEFIXED(180, 0»:
GpiSetLineType(hps, LINETYPE_SOLID):
GpiPartialArc(hps, &ptl, MAKEFIXED(SO, 0), MAKEFIXED(O, 0),

MAKEFIXED(180, 0»:

GpiFuIlArc, GpiLine, GpiMove, GpiPointArc, GpiQueryArcParams, GpiSet­
ArcParams, GpiSetAttrs, GpiSetColor, GpiSetCurrentPosition, GpiSetLine­
Type

• GpiPlayMetaFile
LONG GpiPlayMetaFile(hps, hmf, captions, a/Options, pcSegments, cchDesc, pszDesc)
HPS hps; I. presentation-space handle .1
HMF hmf; I. metafile handle .1
LONG captions;
PLONG a/Options;
PLONG pcSegments;
LONG cchDesc;
PSZ pszDesc;

Parameters

I. number of elements in array .1
I. pointer to array of load options .1
I. pointer to count of renumbered segments .1
I. number of bytes in record .1
I. pointer to buffer for descriptive record .1

The GpiPlayMetaFile function plays the metafile specified by the hmJ parameter.
The function plays the metafile file by converting the graphics data in the file to
graphics operations for the given presentation space. The function uses the load
options specified by the alOptions parameter to determine how to prepare the
presentation space for playing the metafile. This may include resetting the
presentation space, replacing tagged bitmaps and logical fonts, and replacing the
logical color table.

Since the metafile may create segments, the application must close any open seg­
ment before calling GpiPlayMetaFile. If the metafile creates segments, the func­
tion retains the segments only if the current drawing mode is DMJETAIN or
DMJ)RA W AND RETAIN . If chained segments are retained, the function adds
them to the end of the existing segment chain.

The GpiPlayMetaFile function can playa metafile any number of times.

hps Identifies a presentation space.

hmf Identifies the metafile to play. It must have been created or loaded previ-
ously by using the DevOpenDC or GpiLoadMetaFile function. .

cOptions Specifies the number of elements in the array pointed to by the
alOptions parameter.

alOptions Points to the array specifying the load options. For a full descrip­
tion, see the following "Comments" section.

90 GpiPlayMetaFile

Return Value

Errors

Comments

pcSegments Points to a variable for the count of renumbered segments. This
parameter is reserved and is set to zero.

cchDesc Specifies the number of bytes in the buffer pointed to by the pszDesc
parameter.

pszDesc Points to the buffer that receives the null-terminated string describing
the metafile. This descriptive record is the record set by the DevOpenDC func­
tion for the metafile. If the buffer is smaller than the record, the function trun­
cates the record. .

The return value is GPLOK or GPIJIITS if the function is successful (it is
GPIJIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNCOMPATIBLE~ETAFILE
PMERRJNV -LENGTH '
PMERRJNV _PLAY~ETAFILE_OPTION
PMER~STOPJ)RA W_OCCURRED

The GpiPlayMetaFile function uses several options to control how a metafile is
played. The options are specified in an array passed to the function by using the
alOptions parameter. The array has at most ten elements, and there are eight
predefined array indexes that can be used to access these elements. The follow­
ing list describes the purpose and possible values for e~ch element:

Index Meaning

PMF _SEGBASE Specifies a reserved element. It must be zero.

PMF _LOADTYPE Specifies the transformation to use when playing the
metafile. It can be one of the following:

Value

LT _ORIGIN ALVIEW

Meaning

Default; same as
LT_NOMODIFY.

Use the current viewing
transformation as set by the
application by using the
GplSetVlewlngTransform­
Matrix function. This is the
default action.

Use the viewing transforma­
tions defined in the metafile.

Specifies a reserved element. It must be RS_DEFAULT
or RS_NODISCARD.

Specifies whether to use tagged bitmaps and logical fonts
from the metafile or from the application. It can be one
of the following:

Value Meaning

Default; same as
LC_NOLOAD.

Use the tagged bitmaps and
logical fonts defined by the

Value

GpiPlayMetaFile 91

Meaning

application. The application
must define the appropriate
objects and local identifiers
before playing the metafile.
This is the default.

Use the tagged bitmaps and
logical fonts defined in the
metafile. The function loads
the object from the metafile
and assigns a local identi­
fier. If the local identifier is
already defined by the appli­
cation, the function deletes
the identifier before creating
the new object.

Specifies whether the presentation space should be reset
before playing the metafile, with the page units and size
being set as defined in the metafile. It can be one of the
following:

Value Meaning

Default; same as
RES_N ORESET.

Does not reset the presenta­
tion space.

Resets the presentation
space. The function resets
the page units and page size
to the values specified by
the metafile. It then sets up
default transformations,
based on page units and
size, as if the presentation
space had just been created
with these values, and
modifies the device transfor­
mation (if necessary) to
ensure that the physical size
of the metafile picture is
preserved. Finally, it resets
the presentation space as if
calling the GplResetPS
function with the
GRES_ALL option.

Specifies whether to continue playing the metafile after
resetting the presentation space. It can be one of the fol­
lowing values:

Value Meaning

SUP_DEFAULT Default; same as
SUP _NOSUPPRESS.

92 GpiPlayMetaFile

Example

See Also

Value

SUP _NOSUPPRESS

SUP_SUPPRESS

Meaning

Does not suppress the
metafile.

Suppresses the metafile after
the presentation space is
reset as specified by the
PMF _RESET option. All
other options are ignored.

PMF _COLORTABLES
Specifies whether to use logical color tables from the
metafile or from the application. It can be one of the fol­
lowing:

Value

CTAB_DEFAULT

CTAB_NOMODIFY

Meaning

Default; same as
CTAB_NOMODIFY.

Uses the logical color table
defined by the application.
This is the default.

Uses the logical color tables
implied by or given in the
metafile. The application's
existing logical color table is
overwritten. .

PMF _COLORREALIZABLE
Specifies whether the logical color tables defined by the
metafile should be realizable. It can be one of the follow­
ing values:
Value

CREA_DEFAULT

CREA_REALIZE

CREA~OREALIZE

Meaning

Default; same as
CREA_REALIZE.

Creates realizable color
tables. This is the default.

Does not create realizable
color tables.

PMF _P A THBASE Specifies a reserved element. It must be zero.

PMF _RESOLVEPATH
Specifies a reserved element. It must be RSP_DEFAULT
or RSP _NODISCARD.

This example uses the GpiPlayMetaFile function to play the given metafile. The
function uses all the default actions for playing the metafile.

HMF hmf;
LONG cSegments;
CHAR szBuffer[BO];

hmf = GpiLoadMetafile(hab, "sample.met");
GpiPlayMetafile(hps, hmf, OL, NULL, &cSegments, BOL, szBuffer);

DevCloseDC, DevOpenDC, GpiCreateLogColorTable, GpiCreateLogFont,
GpiLoadMetaFile, GpiResetPS, GpiSetDrawingMode, GpiSetViewing­
TransformMatrix

GpiPolyFillet 93

• GpiPointArc
LONG GpiPointArc(hps, ppt!)
HPS hps; I. presentation-space handle .1
PPOINTL pptl; I. pointer to structure for points .1

Parameters

Return Value

Example

See Also

• GpiPolyFiliet

The GpiPointArc function draws an arc through three points. The function uses
the current arc parameters to determine the shape of the arc, then starts the arc
at the current position, draws it through the first point specified by pptl, and
ends the arc at the second point specified by pptl.

The GpiPointArc function moves the current position to the end point of the
point arc.

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains intermediate and end points.
The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros,Structures."

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses the GpiPointArc function to draw an arc through the three
points of a triangle. The GpiPolyLine function then draws the triangle:

POINTL ptlTriangle[] = { 0, 0, 100, 100, 200, ° };

GpiMove(hps, &ptlTriangle[O]); /* moves to start point (0, 0) */
GpiPointArc(hps, &ptlTriangle[l]); /* draws the arc */
GpiMove (hps, &ptlTriangle[O]); /* moves to start point (0, 0) */
GpiPolyLine(hps, &ptlTriangle[l]) ; /* draws the triangle */

GpiFullArc, GpiMove, GpiQuery ArcParams, GpiSetArcParams, GpiSetAttrs,
GpiSetColor, GpiSetCurrentPosition, GpiSetLineType

LONG GpiPolyFillet(hps, cpt!, apt!)
HPS hps; I. presentation-space handle .1
LONG cpt!; I. number of points in array .1
PPOINTL apt!; I. pointer to array of structures for points .1

The GpiPolyFillet function draws one or more fillets. The function draws the
fillets by using the points specified by the aptl parameter. The function needs at
least two points to draw a fillet. If exactly two points are specified, the function

. draws the fillet from the current position to the second point, using the first
point as a control point. If more than two points are given, the function uses
each point (except the last) as a control point, computing the end point of each
fillet as needed. The function draws each fillet by using the current line-color,
line-mix, line-width, and line-type attributes.

94 GpiPolyFillet

Parameters

Return Value

Comments

Example

See Also

The GpiPolyFillet function moves the current position to the end point of the
last fillet.

hps Identifies the presentation space.

cptl Specifies the number of points.

aptl Points to an array of POINTL structures that contain the points. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

A fillet is a smooth curve whose path is controlled by three points: a start point,
an end point, and a control point.

When given two points, the GpiPolyFillet function draws a fillet by first con­
structing two imaginary straight lines, one from the current position to the con­
trol point (the first point) and another from the control point to the end point
(the second point). The function then draws the curve from the current position
to the end point. The curve is drawn so that the first imaginary line is tangent to
the curve at the current position and the second imaginary line is tangent to the
curve at the second point. Only the curve is drawn, never the imaginary lines.

When given more than two points, the function constructs a series of imaginary
straight lines, then draws a series of curves. The function draws the first curve
from the current position to the midpoint of the second imaginary line, the
second curve from the midpoint of the second line to the midpoint of the
third, and so on until it draws the last curve from a midpoint to the last point
specified.

The maximum number of fillets allowed in the polyfillet depends on the length of
coordinates, but is at least 4000.

This example uses the GpiPolyFillet function to draw a curve with a loop. The
four points are the four points of a rectangle. The curve is drawn from the
lower-left corner, through the midpoint of the top edge, and back to the lower­
right corner.

POINTL ptlStart = { 0, a };
POINTL aptl[3] = { 200, 100, 0, 100, 200, a };

GpiMove(hps, &ptlStart);
GpiPolyFillet(hps, 3L, aptl};

/* move to the lower-left corner */
/* draw the curve */

GpiMove, GpiPolyFilletSharp, GpiPolyLine, GpiSetAttrs, GpiSetColor,
GpiSetCurrentPosition, GpiSetLineType

GpiPolyFilletSharp 95

• GpiPolyFilietSharp
LONG GpiPolyFilletSharp(hps. cpt!. apt!. afxSharpness)
HPS hps; 1* presentation-space handle *'
LONG cpt!; 1* number of paints *1
PPOINTL apt!; 1* painter to array of structures for paints *1
PFIXED afxSharpness; 1* pointer of array of structures for sharpness values *1

Parameters

Return Value

Comments

The GpiPolyFilletSharp function creates one or more fillets. The function draws
the fillets by using the control and end points specified by the apt! parameter and
the fillet sharpness values specified by the ajxSharpness parameter. The function
draws the first fillet from the current position to the first end point, by using the
first control point and first sharpness value to construct the path of the fillet.
The second fillet is drawn from the first end point to the second end point using
the second control point and sharpness values. The function continues with each
successive point, using the last end point as the starting point for the next fillet,
until the function draws one fillet for each control and end-point pair.

For each fillet, the array pointed to by apt! contains a control and end-point
pair. The first pair of points is the control and end points for the first fillet, with
the control point given first. The array pointed to by ajxSharpness contains the
sharpness values for each fillet, with the sharpness value for the first fillet given
first.

The GpiPolyFilletSharp function moves the current position to the end point of
the last fillet.

hps Identifies the presentation space.

cptl Specifies the number of points in the array pointed to by apt!. This must
be twice the number of fillets since each fillet requires a control and end-point
pair.

aptl Points to an array of POINTL structures that contain the points. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

a/xSharpness Points to an array of sharpness values giving the sharpness of
successive fillets. Each value must be a fixed-point value. Each value controls the
type of curve drawn for the fillet. If this value is greater than 1.0, the curve is a
hyperbola. If the value is 1.0, the curve is a parabola. If the value is less than
1.0, the curve is an ellipse.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs .

. A fillet is a smooth curve whose path is controlled by three points: a start point,
an end point, and a control point. The smoothness of the fillet is controlled by a
sharpness value.

96 GpiPolyFilletSharp

Example

See Also

• GpiPolyLine

The GpiPolyFilIetSharp function draws a fillet by first constructing two imag­
inary straight lines, one from the start point to the control point and another
from the control point to the end point. The function then draws the fillet from
the start to end point, such that the first imaginary line is tangent to the fillet at
the current position and the second imaginary line is tangent to the fillet at the
end point.

GpiPolyFilIetSharp uses the control point and the sharpness value to determine
the path of the curve. The function always draws the curve through a fourth
point. It locates the point by constructing two more imaginary straight lines, one
from the start to end point, and another from the control point to the midpoint
of this first line. The fourth point lies on the imaginary line drawn from the con­
trol point to the midpoint. It is placed such that the ratio of the lengths of the
bottom and top pieces of this line is equal to the sharpness value.

The maximum number of fillets allowed depends upon the length of coordinates
and is not less than 2000.

This example uses the GpiPolyFilIetSharp· function to draw a curve with a loop.
The curve is drawn within a rectangle. The sharpness values are chosen to draw
the curve close to the control points.

POINTL ptlStart = { 0, 0 };
POINTL aptl[4] = { 100, 100, 200, 100, 0, 100, 200, 0 };
FIXED afx[2] = { MAKEFIXED(4, 0), MAKEFIXED(4, 0) };

GpiMove(hps, &ptlStart);
GpiPolyFilletSharp(hps,

4L,
aptl,
afx);

/* move to first starting point */
/* presentation-space handle */
/* 4 points in the array */
/* pointer to array of points */
/* pointer to array of sharpness values */

GpiMove, GpiPolyFilIet, GpiPolyLine, GpiSetAttrs, GpiSetColor, GpiSet­
CurrentPosition, GpiSetLineType

LONG GpiPolyLine(hps, cpt/, apt/)
HPS hps; I. presentation-space handle .1
LONG cpt/; I. number of points in array .1
PPOINTL apt/; I. pointer to array of structures for pOints *'

Parameters

The GpiPolyLine function draws one or more straight lines. The function draws
the lines by using the points specified by the aptl parameter. The function needs
at least one point to draw a line. If a point is specified, the function draws the
line from. the current position to the point. For each additional line, the function
needs exactly one more point, and uses the end point of the last line as the start­
ing point for the next. The function draws the lines by using the current values
of the line-color, line-mix, line-width, and line-type attributes.

The GpiPolyLine function moves the current position to the end point of the last
line.

hps Identifies a presentation space.

cptl Specifies the number of points. This parameter must be greater than or
equal to zero.

Return Value

Example

See Also

• GpiPolyMarker

GpiPolyMarker 97

apt! Points to an array of POINTL structures that contains the points. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, ,see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

This example uses the GpiPolyLine function to draw a triangle:

POINTL ptlTriangle[] = { 0, 0, 100, 100, 200, 0 };

GpiMove(hps, &ptlTriangle[O]);
GpiPolyLine(hps, &ptlTriangle[l]);

I' moves to start point (0, 0) 'I
I' draws the triangle 'I

GpiLine, GpiMove, GpiSetAttrs, GpiSetColor, GpiSetCurrentPosition, GpiSet­
LineType

LONG GpiPolyMarker(hps, cpt!, apt!)
HPS hps; 1* presentation-space handle *1
LONG cpt!; 1* number of points .1
PPOINTL apt!; 1* pointer to array of structures for point .1

Parameters

Return Value

The GpiPolyMarker function draws a marker at each point specified by the aptl
parameter. The function places the center of each marker at the given point.
The current marker set and marker-symbol attributes specify the marker to
draw.

The function moves the current position to the point of the last marker.

hps Identifies a presentation space.

cpt! Specifies the number of points.

apt! Points to an array of POINTL structures that contain the points. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

98 GpiPolyMarker

Example

See Also

GpiPolySpline

This example uses the GpiPolyMarker function to draw a series of markers. It
then uses the GpiPolyLine function to connect to markers with lines.

POINTL pt1Start = { 0, 0 };
POINTL apt1[5] = { 10, 8, 20, 17, 30, 28, 40, 51, 50, 46 };

GpiPo1yMarker(hps, 51, apt1);
GpiMove(hps, &pt1Start);
GpiPo1yLine(hps, 5L, apt1);

GpiMarker, GpiMove, GpiSetAttrs, GpiSetCurrentPosition, GpiSetMarkerBox,
GpiSetMarkerSet

LONG GpiPolySpline (hps, cpt/, apt/)
HPS hps; 1* presentation-space handle .1
LONG cpt!; I. number of paints in array *1
PPOINTL apt!; I. pointer to array of structures for paints *1

Parameters

Return Value

Comments

The GpiPolySpline function creates one or more Bezier splines. The function
draws the Bezier splines by using the points specified by the aptl parameter. The
function needs at least three points to draw a spline. If exactly three points are
specified, the function draws the spline from the current position to the third
point, by using the first and second points as control points. For each additional
spline, the function needs exactly three more points, and uses the end point of
the last spline as the next starting point. The function draws each fillet by using
the current line-color, line-mix, line-width, and line-type attributes.

For each Bezier spline, the array pointed to by aptl contains two control points
and an end point. The first triplet of points are the control and end points for
the first spline, with the control points given first.

The GpiPolySpline function moves the current position to the last specified
point.

hps Identifies a presentation space.

cptl Specifies the number of points in the array pointed to by aptl. This must
be three times the number of splines since each spline requires two control
points and an end point.

aptl Points to an array of POINTL structures that contains the points. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK or GPIJIITS if the function is successful (it is
GPIJIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

A Bezier spline is a smooth curve whose path is controlled by four points: a
start point, an end point, and two control points.

Example

See Also

• GpiPop

GpiPop 99

As the GpiPolySpline function draws a spline, all points contribute to the direc­
tion of the path, with one point having the greatest amount of control. The point
with the greatest control tends to pull the path toward it. Greatest control moves
from the start point, to the first control point, to the second control point, and
finally to the end point as the path progresses.

If the function draws more than one spline, it does not automatically ensure con­
tinuity of the curve at the end points. If an application wants a smooth transition
from one curve to the next, it must supply the appropriate end and control
points.

This example uses the GpiPolySpline function to draw a curve. The curve is
drawn within a skewed rectangle, with the bottom corners being the start and
end points and the top corners being the control points.

POINTL ptlStart = { 0, 0 };
POINTL aptl[3] = { 0, 100, 200, 150, 200, 50 };

GpiMove(hps, &ptlStart);
GpiPolySpline(hps,

3L,
aptl) ;

/* moves to start point */
/* presentation-space handle */
/* 3 points in the array */
/* pointer to array of points */

GpiMove, GpiSetAttrs, GpiSetColor, GpiSetCurrentPosition, GpiSetLineType

Baal GpiPop(hps, cAttrs)
HPS hps; 1* presentation-space handle *1
lONG cAttrs; 1* number of attributes to restore .1

Parameters

Return Value

Errors

Comments

The GpiPop function restores one or more primitive attributes by popping the
previous attribute values from the attribute stack. The system saves the previous
value of a primitive attribute, such as color, line type, and fill pattern, on the
attribute stack whenever an application changes an attribute while the attribute
mode is AMJ>RESER VE. The function pops the number of attributes specified
bycAttrs from the stack in last-in, first-out order.

hps Identifies a presentation space.

cAttrs Specifies the number of attributes to restore.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -MICROPSYUNCTION
PMERRJ>RIMITIVE_STAC~MPTY

Although GpiPop can be used in an area or path bracket, an application must
ensure that the attribute to be restored is valid within the bracket. Once an attri­
bute is on the stack, there is no way to check it for validity.

The attribute stack is especially useful when you are drawing segments. Any
attributes changed by the segment can be quickly restored by popping the stack.
Note that a segment automatically pops the stack when it returns, so a call to the
GpiPop function is not required.

100 GpiPop

Example

See Also

GpiPtlnRegion

This example uses the GpiPop function to restore the fill pattern and color attri­
bute after painting a path:

GpiSetAttrMode(hps, AM_PRESERVE); 1* preserves attributes on stack *1

GpiSetColor(hps, CLR_RED); 1* sets color to red *1
GpiSetPattern(hps, PATSYM_DIAG1); 1* sets pattern to a diagonal *1
GpiPaintRegion(hps, 3L);
GpiPop(hps, 2L); 1* restores values of last two attributes set *1

GpiRestorePS, GpiSavePS

LONG GpiPtlnRegion(hps, hrgn, pptl)
HPS hps; I. presentation-space handle .1
HRGN hrgn; I. region handle .1
PPOINTL_ppt/; I. pointer to structure for pOint .1

Parameters

Return Value

See Also

GpiPtVisible

The GpiPtInRegion function checks whether a point lies in the region specified
by the hrgn parameter. The function checks the region only if the device context
containing the region is associated with the given presentation space.

hps Identifies a presentation space.

hrgn Identifies a region.

pptl Points to a POINTL data structure that contains the coordinates of the
point. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is PRGN_OUTSIDE or PRGNJNSIDE if the function is suc­
cessful, or PRGN~RROR if an error occurs.

GpiRectlnRegion

LONG GpiPtVisible (hps, ppt/)
HPS hps; I. presentation-space handle .1
PPOINTL pptl; I. pointer to structure for point .1

The GpiPtVisible function checks whether a point is visible on the device associ­
ated with the specified presentation space. A point is visible if it lies within the
intersection of the current graphics field, viewing limit, clip path, clip region,
and visible region (if any).

Parameters

Return Value

See Also

• GpiPutData

GpiPutData 101

hps Identifies a presentation space.

pptl Points to a POINTL data structure that contains the coordinates of the
point. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is PVIS_ VISIBLE or PVISJNVISIBLE if the function is suc­
cessful or PVIS-ERROR if an error occurred.

GpiConvert, GpiQueryPel

LONG GpiPutOata(hps. cmdFormat. pcb. pb)
HPS hps; I. presentation-space handle .1
LONG cmdFormat; I. coordinate type .1
PLONG pcb; I. pointer to variable for length of order data .1
PBYTE pb; I. pointer to buffer for order data .1

Parameters

The GpiPutData function draws the graphics orders given in the buffer pointed
to by the pb parameter. The function carries out the graphics operation specified
by each graphics order. The buffer can contain any number of graphics orders as
long as the buffer does not exceed 63K. The pcb parameter specifies the number
of bytes of graphics-order data in the buffer. The function converts the coordi­
nates in the graphics orders if the format specified by the cmdFormat parameter
is not the same as the format used by the presentation space.

The GpiPutData function is used typically with the GpiGetData function to copy
graphics orders from one segment to another. For convenience, the last order in
the buffer does not have to be complete. If the order is not complete, the func­
tion does not copy the order. Instead, it replaces the count in pcb with the count
of bytes copied. This count can be used to locate the incomplete order in the
buffer.

hps Identifies a presentation space.

cmdFormat Specifies the type of coordinates used in the graphics orders. It
can be one of the following values:

Value

DFORK-S370SHORT

DFORK-PCSHORT

DFORK-PCLONG

Meaning

Uses S/370-format short (2-byte) integers.

Uses PC-format short (2-byte) integers.

Uses PC-format long (4-byte) integers.

102 GpiPutData

Return Value

Errors

Comments

Example

See Also

pcb Points to the count of bytes in the buffer pointed to by the pb parameter.
After copying the data, the function replaces the count with the number of bytes
copied.

pb Points to the buffer that contains the graphics-order data. It must not con­
tain more than 63K of data.

The return value is GPLOK or GPUIITS if the function is successful (it is
GPUIITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~AT~TOO-LONG
PMERRJNV -.EDIT.-MODE
PMERRJNV -.ELEMENTYOINTER
PMERRJNV-LENGTELO~COUNT
PMERRJNV.-MICROPSYUNCTION
PMERRJNV_ORDER-LENGTH

The current drawing mode determines whether the function draws the graphics
orders or copies them to a segment. To copy the graphics orders to the currently
open segment, an application must set the current segment editing mode to
SEGEMJNSERT and move the element pointer to the last element in the seg­
ment. The function can be used in an element bracket if the graphics-order data
does not contain an element bracket.

This example uses the GpiPutData function to copy graphics orders from one
segment to another:

LONG fFormat = DFORM_NOCONV;
LONG off Segment = OL;

/* do not convert coordinates */
/* offset in segment */

LONG offNextElement = OL;
LONG cb = OL;

/* offset in segment to next element */
/* bytes retrieved */

BYTE abBuffer[SI2];

GpiOpenSegment(hps, 3L); /* open segment to receive the data */
do {

off Segment += cb;
offNextElement = off Segment;
cb = GpiGetData(hps, 2L, &offNextElement, fFormat, SI2L, abBuffer);

/* Put data in other segment. */

if (cb > OL) GpiPutData(hps, /* presentation-space handle */
fFormat, /* format of coordinates */
&cb, /* number of bytes in buffer */
abBuffer) ; /* buffer with graphics-order data */

} while (cb > OL);
GpiCloseSegment(hps); /* close segment that received data */

GpiBeginElement, GpiEndElement, GpiGetData, GpiSetDrawingMode, GpiSet­
EditMode

GpiQueryAttrMode 103

• GpiQueryArcParams
BOOl GpiQueryArcParams(hps. parcp)
HPS hps; I. presentation-space handle .1
PARCPARAMS parcp; I. pointer to structure for arc parameters .1

Parameters

Return Value

See Also

The GpiQueryArcParams function retrieves the current arc parameters used to
draw arcs, circles, and ellipses. The function cannot be used in an open segment
when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

parcp Points to the ARCPARAMS structure that receives the current arc
parameters. The ARCPARAMS structure has the following form:

typedef struct _ARCPARAMS {
LONG 1P;
LONG 1Q;
LONG 1R;
LONG lS;

} ARCP ARAMS ;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiSetArcParams, GpiSetDrawingMode

• GpiQueryAttrMode
lONG GpiQueryAttrMode(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

Errors

See Also

The GpiQueryAttrMode function retrieves the current value of the attribute
mode, as set by the GpiSetAttrMode function.

hps Identifies the presentation space.

The return value is the current attribute mode if the function is successful or
A~RROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following: ,

PMERRJNV jiICROPSYUNCTION

GpiSetAttrMode

104 GpiQueryAttrs

• GpiQueryAttrs
LONG GpiQueryAttrs(hps,IPrimType, flAttrsMask, pbunAttrs)
HPS hps; I. presentation-space handle .1
LONG IPrimType; I. primitive type .1
ULONG flAttrsMask; I. attribute mask .1
PBUNDLE pbunAttrs;

Parameters

I. pointer to buffer for nondefault attributes .1

The GpiQueryAttrs function retrieves the current attributes for the specified
primitive type. The function copies the attribute values specified by the flAttrs­
Mask parameter to the buffer pointed to by the pbunAttrs parameter, then
returns a mask that specifies which attributes have the default values. The func­
tion sets the bit in the mask if the corresponding attribute has its default value.

The GpiQueryAttrs function cannot be used in an open segment when the draw­
ing mode is D~ETAIN.

hps Identifies the presentation space.

lPrim Type Specifies which primitive type to retrieve attributes for. It can be
one of the following values:

Value

PRI~AREA

PRI~CHAR

PRI~IMAGE

Meaning

Area primitives

Character primitives

Image primitives

PRI~LINE Line and arc primitives

PRI~MARKER Marker primitives

flAttrsMask Specifies which attributes to retrieve. The values for this parame­
ter depend on the primitive type specified by the IPrim Type parameter. This
parameter can be any combination of the following values for a specific type:

Type

PRI~AREA

PRI~CHAR

PRI~IMAGE

PRI~LINE

PRI~MARKER

Values

ABB_COLOR, ABB_BACK_COLOR,
ABB_MDLMODE, ABB_BACK_MDLMODE,
ABB_SET, ABB_SYMBOL, ABB_REF _POINT

CBB_COLOR, CBB_BACK_COLOR,
CBB_MDLMODE, CBB_BACK_MDLMODE,
CBB_SET, CBB_MODE, CBB_BOX, CBB_ANGLE,
CBB_SHEAR, CBB_DIRECTION

IBB_COLOR, IBB_BACK_COLOR, IBB_MDLMODE,
IBB_BACK_MDLMODE

LBB_COLOR, LBB_MDLMODE, LBB_ WIDTH,
LBB_GEO~ WIDTH, LBB_ TYPE, LBB_END,
LBB_JOIN

MBB_COLOR, MBB_BACK_COLOR,
MBB_MDLMODE, MBB_BACK_MDLMODE,
MBB_SET, MBB_SYMBOL, MBB_BOX

Return Value

Errors

Example

See Also

GpiQueryBackColor 105

If this parameter is zero, the function does not retrieve attributes but still returns
a mask specifying the attributes with default values.

pbunAttrs Points to the·buffer that receives the attribute values specified by
the flAttrsMask parameter. The buffer format depends on the primitive type
specified by the [Prim Type parameter. The following structures can be used for
the specified primitive types:

Type Structure

PRI~AREA AREABUNDLE

PRI~CHAR CHARBUNDLE

PRI~IMAGE IMAGEBUNDLE

PRI~LINE LINEBUNDLE

PRI~MARKER MARKERBUNDLE

The return value is the default mask if the function is successful or
GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV YRIMITIVE_TYPE

This example uses the GpiQueryAttrs function to retrieve the current attributes
for the line primitive:

LINEBUNDLE lbnd;
LONG flDefMask;

flDefMask = GpiQueryAttrs(hps,
PRIM_LINE,
LBB_COLOR I
LBB_MIX_MODE I
LBB_WIDTH I
LBB_GEOM_WIDTH
LBB_TYPE I
LBB_END I
LBB_JOIN,
&lbnd);

if (flDefMask & LBB_COLOR)

/* presentation-space handle */
/* line primitive */
/* line color */
/* color-mix mode */
/* line width */
/* geometric-line width */
/* line style */
/* line-end style */
/* line-join style */
/* buffer for attributes */

/* The line color has the default value. */

GpiSetAttrs, GpiSetDrawingMode

• GpiQueryBackColor
LONG GpiQueryBackColor(hps)
HPS hps; I. presentation-space handle .1

Parameters

The GpiQueryBackColor function retrieves the current value of the line
background-color attribute, as set by the GpiSetBackColor function. The
function cannot be used in an open segment when the drawing mode is
D~ETAIN.

hps Identifies the presentation space.

106 GpiQueryBackColor

Return Value

See Also

The return value is the background color if the function is successful or
CLILERROR if an error occurred.

GpiQueryBackMix, GpiQueryColor, GpiSetBackColor

• GpiQueryBackMix
LONG GpiQueryBackMix(hps)
HPS hpsj I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryBackMix function retrieves the current value of the line
background-color mix mode, as set by the GpiSetBackMix function.

hps Identifies the presentation space.

The return value is the background-color mix mode if the function is successful
or B1LERROR if an error occurred.

GpiQueryBackColor, GpiQueryMix, GpiSetBackMix

• GpiQueryBitmapBits
LONG GpiQueryBitmapBits(hps. IScanStart. cScan. pbBuffer, pbmi)
HPS hpsj I. presentation-space handle .1
LONG IScanStartj I. number for first scan line to retrieve .1
LONG cScanj I. number of scan lines to retrieve .1
PBYTE pbBuffer; I. pointer to buffer for bitmap image data .1
PBITMAPINFO pbmi; I. pointer to structure for bitmap info .1

The GpiQueryBitmapBits function copies image data from a bitmap to the
buffer pointed to by the pbBuffer parameter. The function copies the image data
from the bitmap currently set for the presentation space. The presentation space
must be associated with a memory device context.

To copy the image data, the function needs the count of planes and adjacent
color bits specified in the fields of the structure pointed to by the pbmi parame­
ter. That is, the cPlanes and cBitCount fields must be set before you call the
function. Also, the cbFix field must be set to 12. The function then copies the
image data to the buffer. The buffer must have sufficient space to hold all the
bytes of image data being copied. The number of bytes for the buffer is equal to
the number of scan lines to copy, multiplied by the width of the bitmap in bytes
(rounded up to the next multiple of 4), multiplied by the number of color planes.
The width has to be a multiple of 4, since the function rounds the length of each
scan line to a multiple of 4 bytes before copying. Also, the width must be multi­
plied by the number of adjacent color bits before rounding.

After copying the image data, the GpiQueryBitmapBits function fills the remain­
ing fields in the structure pointed to by pbmi. These fields are the width and
height of the bitmap and the array of RGB color values for the bitmap pels. An
application must make sure there is sufficient space in the structure to receive all
elements of the array of RGB color values. The number of elements in the array
depends on the format of the bitmap.

Parameters

Return Value

Errors

Comments

Example

GpiQueryBitmapBits 107

hps Identifies the presentation space.

lScanStart Specifies the number of the first scan line to copy to the buffer. If
this parameter is zero, the function copies the first scan line in the bitmap.

cScan Specifies the number of scan lines to copy.

pbBuffer Points to the buffer that receives the bitmap image data. It must be
large enough to hold all the bytes of the image data, from the scan line specified
by the IScanStart parameter to the end of the bitmap.

pbmi Points to the BITMAPINFO structure that receives the bitmap informa­
tion table. The BITMAPINFO structure has the following form:

typedef struct _BITMAPINFO {
ULONG cbFix;
USHORT cx;
USHORT cy;
USHORT cPlanes;
USHORT cBitCount;
RGB argbColor[l];

} BITMAPINFO;

Depending on the format of the given bitmap, an application may need to allo­
cate extra bytes for the structure to hold the additional elements for the
argbColor field. For a full description, see Chapter 4, "Types, Macros, Struc­
tures."

The return value is the number of scan lines retrieved if the function is success­
ful or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _DC_TYPE
PMERRJNV JNFO_TABLE

If the requested color format is not the same as the bitmap's color format, the
function converts the bitmap image data to the requested format.

This example uses the GpiQueryBitmapBits to copy the image data of a bitmap
from a presentation space associated with a memory d~vice context.

BITMAPINFOHEADER bmp = { 12, 640, 350, 1, 1 };
LONG cbBuffer, cbBitmaplnfo;
SEL selBuffer, selBitmaplnfo;
PBYTE pbBuffer;
PBITMAPINFO pbmi;

/*
* Compute the size of the image-data buffer
* and the bitmap information structure.
*/

cbBuffer = «(bmp.cBitCount * bmp.cx) + 31) / 32)
* 4 * bmp.cy * bmp.cPlanes;

cbBitmaplnfo= sizeof(BITMAPINFO) +
(sizeof(RGB) * (1 « bmp.cBitCount»;

/* Allocate memory for the image data-buffer
* and the bitmap information structure.
*/

DosAllocSeg(cbBuffer, &selBuffer, SEG_NONSHARED);
pbBuffer = MAKEP(selBuffer, 0);
DosAllocSeg(cbBitmaplnfo, &selBitmaplnfo, SEG_NONSHARED);
pbmi = MAKEP(selBitmaplnfo, 0);

108 GpiQueryBltmapBits

See Also

/* Copy the image data. */

pbmi->ebFix = 12; pbmi->ePlanes = 1; pbmi->eBitCount = 1;
GpiQueryBitmapBits(hps, OL, (LONG) bmp.ey, pbBuffer, pbmi);

GpiLoadBitmap, GpiQueryBitmapParameters, GpiSetBitmapBits

GpiQueryBitmapDimension
BOOl GpiQueryBitmapDimension(hbm, psiz/)
HBITMAP hbm; I. bitmap handle *'
PSIZEl psiz/; I. pointer to structure for bitmap size info .1

Parameters

Return Value

See Also

The GpiQueryBitmapDimension function retrieves the width and height of a bit­
map, as specified by a previous call to the GpiSetBitmapDimension function. If
the bitmap dimensions have not been set by GpiSetBitmapDimension, the width
and height are zero.

hbm Identifies the bitmap.

psizl Points to the SIZEL structure that receives the width and height of the
bitmap in 0.1 millimeter units. The SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred. .

GpiQueryBitmapParameters, GpiSetBitmapDimension

GpiQueryBitmapHandle
HBITMAP GpiQueryBitmapHandle(hps,/cid)
HPS hps; I. presentation-space handle .1
lONG /cid; I. local identifier .1

Parameters

Return Value

Errors

See Also

The GpiQueryBitmapHandle function retrieves the handle of the bitmap
currently tagged with the specified local identifier. The function returns a null
handle if a bitmap is not currently tagged with the specified local identifier.

hps Identifies the presentation space.

lcid Specifies the local identifier.

The return value is a handle to the bitmap if the function is successful or
GPLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJUTMAP _NOTYOUND

GpiSetBitmapld

GpiQueryBoundaryData 109

• GpiQueryBitmapParameters
BOOl GpiQueryBitmapParameters (hbm. pbmp)
HBITMAP hbm; I. bitmap handle .1
PBITMAPINFOHEADER pbmp; I. pointer to structure for bitmap info .1

Parameters

Return Value

See Also

The GpiQueryBitmapParameters function retrieves information about the bit­
map identified by the hbm parameter. The function copies the bitmap width,
height, and number of color planes and adjacent color bits to the structure
pointed to by the pbmp parameter.

hbm Identifies the bitmap.

pbmp Points to the BITMAPINFOHEADER structure that receives the infor­
mation for the specified bitmap. The BITMAPINFOHEADER structure has the
following form:

typedef struet _BITMAPINFOHEADER {
ULONG ebFix;
USHORT ex;
USHORT ey;
USHORT ePlanes;
USHORT eBitCount;

} BITMAPINFOHEADER;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiCreateBitmap, GpiLoadBitmap, GpiQueryBitmapDimension

• GpiQueryBoundaryData
BOOl GpiQueryBoundaryData(hps. pre/)
HPS hps; I. presentation-space handle .1
PRECTL prel; I. pOinter to structure for boundary data .1

Parameters

The GpiQueryBoundaryData function retrieves the current boundary data.
Boundary data is the smallest rectangle in model space that encloses previous
graphics output. The previous output includes all output since the application
reset the boundary data by using the GpiResetBoundaryData function or started
accumulating boundary data by using the DCTLJ30UNDARY option of the
GpiSetDrawControl function.

The boundary data is inclusive, meaning some output may lie on one or more
edges of the given rectangle. If there has been no output, the boundary data is
empty. In this case, the values for the upper-right corner in the given rectangle
will be less than the values for the lower-left corner.

hps Identifies the presentation space.

prcl Points to the RECTL structure that receives the boundary data. The
RECTL structure has the following form:

typedef struet _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

110 GpiQueryBoundaryData

Return Value

Errors

Example

See Also

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~ICROPSYUNCTION

This example uses the GpiQueryBoundaryData function to retrieve the rectangle
enclosing the output. The boundary data is then used to draw a border around
the output.

POINTL ptlStart = { 0, 0 };
POINTL ptlTriangle[3] = { 100, 100, 200, 0, 0, 0 };
RECTL rcl;

GpiSetDrawControl(hps,
DCTL_BOUNDARY, DCTL_ON);

GpiMove(hps, &ptlStart);
GpiPolyLine(hps, 3L, &ptlTriangle);

/. accumulate boundary data

/. produce output

GpiQueryBoundaryData(hps, &rcl); /. copy boundary data to rcl
if (rcl.xLeft < rcl.xRight) { /. verify output exists

./

./

./

./
ptlStart.x = rcl.xLeft; ptlStart.y = rcl.yBottom;
GpiMove(hps, &ptlStart); /. move to lower-right corner ./

}

ptlStart.x = rcl.xRight; ptlStart.y = rcl.yTop;
GpiBox(hps, ORO_OUTLINE, &ptlStart, OL, OL);

GpiResetBoundaryData, GpiSetDrawControl

/. draw border ./

• GpiQueryCharAngle
BOOl GpiQueryCharAngle (hps, pgradlAngle)
HPS hps; f. presentation-space handle .f
PGRADIENTl pgradlAngle; f. pOinter to structure for baseline-angle point .f

Parameters

The GpiQueryCharAngle function retrieves the current value of the character­
baseline angle. The character-baseline angle is set by the GpiSetCharAngle func­
tion.

The GpiQueryCharAngle function cannot be used in an open segment when the
drawing mode is D~ETAIN.

hps Identifies the presentation space.

pgradlAngle Points to the GRADIENTL structure that receives a point that
specifies the end of a vector defining the baseline angle. The GRADIENTL struc­
ture has the following form:

typedef struct _GRADIENTL {
LONG x;
LONG y;

} GRADIENTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

GpiQueryCharDirection 111

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryAttrs, GpiQueryCharMode, GpiQueryCharShear, GpiSetCharAngle

• GpiQueryCharBox
BOOl GpiQueryCharBox(hps. psizfxBox)
HPS hps; /. presentation-space handle ./
PSIZEF psizfxBox; /. pointer to structure for character-box size ./

Parameters

Return Value

See Also

The GpiQueryCharBox function retrieves the current value of the character-box
attribute, as set by the GpiSetCharBox function. This function cannot be used in
an open segment when the drawing mode is DMJETAIN.

hps Identifies the presentation space.

psiz/xBox Points to the SIZEF structure that receives the character-box size.
The SIZEF structure has the following form:

typedef struet _SIZEF {
FIXED ex;
FIXED ey;

} SIZEF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryAttrs, GpiQueryCharMode, GpiQueryDefCharBox, GpiSetCharBox,
GpiSetDrawingMode

• GpiQueryCharDirection
lONG GpiQueryCharDirection (hps)
HPS hps; /. presentation-space handle ./

Parameters

Return Value

Comments

See Also

The GpiQueryCharDirection function retrieves the current value of the
character-direction attribute. This function cannot be used in an open segment
when the drawing mode is D1LRETAIN.

hps Identifies the presentation space.

The return value is the current character-direction attribute if the function is suc­
cessful or CHDIRN.-ERROR if an error occurred.

Under MS OS/2 version 1.1, the only character directions available are
CHDIRNJ)EFAULT and CHDIRN~EFTRIGHT.

GpiSetCharDirection, GpiSetDrawingMode

112 GpiQueryCharMode

• GpiQueryCharMode
lONG GpiQueryCharMode (hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryCharMode function retrieves the current value of the character­
mode attribute, as set by the GpiSetCharMode function. This function cannot
be used in an open segment when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

The return value is the current character-mode attribute if the function is suc­
cessful or C~RROR if an error occurred.

GpiQuery Attrs, GpiQueryCharAngle, GpiQueryCharShear, GpiSetCharMode,
GpiSetDrawingMode

• GpiQueryCharSet
lONG GpiQueryCharSet(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryCharSet function retrieves the character-set local identifier. This
function cannot be used in an open segment when the drawing mode is set to
D~ETAIN.

hps Identifies the presentation space.

The return value is the local identifier for the current character set if the func­
tion is successful or LCID-ERROR if an error occurred.

GpiQueryAttrs, GpiSetCharSet, GpiSetDrawingMode

• GpiQueryCharShear
BOOl GpiQueryCharShear(hps, ppt/Shear)
HPS hps; I. presentation-space handle .1
PPOINTl ppt/Shear; I. pointer to structure for shear-vector point .1

Parameters

The GpiQueryCharShear function retrieves the value of the current character­
shear angle. This function cannot be used in an open segment when the drawing
mode is D~ETAIN.

hps Identifies the presentation space.

pptlShear Points to the POINTL structure that receives the point defining the
character-shear vector. The POINTL structure has the following form:
typedef struct _POINTL {

LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

GpiQueryCharStringPos 113

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryAttrs, GpiQueryCharAngle, GpiQueryCharMode, GpiSetCharShear,
GpiSetDrawingMode

• GpiQueryCharStringPos
BOOl GpiQueryCharStringPos(hps, flOptions, cchString, pchString, adx, apt/)
HPS hps; I. presentation-space handle .1
UlONG flOptions; I. option flags .1
lONG cchString; I. length of the string .1
PCH pchString; I. pOinter to string to examine .1
PlONG adx; I. pointer to array for increment values .1
PPOINTl apt/; I. pOinter to array of structures for pOints .1

Parameters

The GpiQueryCharStringPos function determines a position for each character
in the string pointed to by the pchString parameter. Each position is the position
of the character in world coordinates as if it were drawn by using the GpiChar­
StringPos function.

The GpiQueryCharStringPos function copies the character positions to the array
of structures pointed to by the aptl parameter. It uses the current character attri­
butes or the array of vector increments specified by the adx parameter to deter­
mine the positions. The function cannot be used in an open segment when the
drawing mode is DM-RETAIN.

hps Identifies the presentation space.

flOptions Specifies whether to use the vector increments specified by the adx
parameter. It can be one of the following values:

Value

o

CHS_VECTOR

Meaning

Advances the current position after each character
by using the width of the character. The adx
parameter is ignored.

Advances the current position after each character
by using the next value in the array adx. The
current character direction defines the direction in
which the current position is advanced.

cchString Specifies the length of the string pointed to by the pchString param­
eter.

pchString Points to the character string to examine.

adx Points to an array of increment values. Each value is a 4-byte signed
integer specifying the distance (in world coordinates) to advance the current
position for each character. There must be one value for each character in the
string. The first element specifies the distance for the first character, the second
element for the second character, and so on.

aptl Points to the array of POINTL structures that receives the position (in
world coordinates) of each character in the string. The POINTL structure has
the following form:

114 GpiQueryCharStringPos

Return Value

Example
t

See Also

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQueryCharStringPos function to determine the loca­
tion of each character in the string. Vector increments are not used.

POINTL aptl[ll];

GpiQueryCharStringPos(hps,
OL,
llL,
"This string",
NULL,
aptl) ;

/* presentation-space handle */
/* do not use vector increments */
/* 11 characters in string */
/* character string */
/* no vector increments */
/* array of structures for points */

GpiCharStringPos, GpiQueryCharStringPosAt, GpiSetDrawingMode

• GpiQueryCharStringPosAt
BOOl GpiQueryCharStringPosAt(hps, ppt/Start, flOptions, cchString, pchString, adx, apt!)
HPS hps; 1* presentation-space handle .1
PPOINTl ppt!Start; 1* pointer to structure for starting point *1
UlONG flOptions; 1* option flag *'
lONG cchString; 1* length of the string *1
PCH pchString; 1* pOinter to string to examine .. I
PlONG adx; 1* pointer to array for increment values .. I
PPOINTl apt!; I .. pointer to array of structures for points .1

Parameters

The GpiQueryCharStringPosAt function determines a position for each charac­
ter in the character string pointed to by the pchString parameter. The positions
are determined as if the application had called the GpiCharStringPosAt function
and are specified in world coordinates.

The GpiQueryCharStringPosAt function copies the character positions to the
array of structures pointed to by the aptl parameter. It uses the current character
attributes or the array of vector increments specified by the adx parameter to
determine the positions. The function cannot be used in an open segment when
the drawing mode is DMJETAIN.

hps Identifies the presentation space.

pptlStart Points to the POINTL structure that specifies the starting point (in
world coordinates) of the character string. The POINTL structure has the follow­
ing form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Example

See Also

GpiQueryClipBox 115

flOptions Specifies whether to use the vector increments specified by the adx
parameter. It can be one of the following values:

Value

o

CHS_VECTOR

Meaning

Advances the current position after each character
by using the width of the character. The adx
parameter is ignored.

Advances the current position after each character
by using the next value in the array adx. The
current character direction defines the direction in
which the current position is advanced.

cchString Specifies the length (in bytes) of the string pointed to by the
pchString parameter.

pchString Points to the character string to examine.

adx Points to an array of increment values. Each value is a 4-byte signed
integer specifying the distance (in world coordinates) to advance the current
position for each character. There must be one value for each character in the
string. The first element specifies the distance for the first character, the second
element for the second character, and so on.

aptl Points to the array of POINTL structures that receives the position (in
world coordinates) of each character in the string.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQueryCharStringPosAt function to determine the
location of each character in the string. Vector increments are not used.

POINTL ptlStart = { 100, 100 };
POINTL aptl[ll];

GpiQueryCharStringPosAt(hps,
&ptlStart,
OL,
llL,
"This string",
NULL,
aptl) ;

1* presentation-space handle *1
1* starting point for string *1
1* do not use vector increments *1
1* 11 characters in string *1
1* character string *1
1* no vector increments *1
1* array of structures for points *1

GpiCharStringPosAt, GpiQueryCharStringPos, GpiSetDrawingMode

• GpiQueryClipBox
LONG GpiQueryClipBox(hps. pre/)
HPS hps; I. presentation-space handle *1
PRECTL prel; I. pointer to structure for clip box *1

The GpiQueryClipBox function retrieves the world coordinates of the smallest
rectangle that encloses the inter~ection of the current graphics field, viewing
limit, clip path, clip region, and visible region (if any). If the clip box is empty,
the function sets the left and right sides of the rectangle to equal values.

116 GpiQueryClipBox

Parameters

Return Value

See Also

hps Identifies the presentation space.

prcl Points to the RECTL structure that receives the coordinates of the clip
box. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RGN_NULL, RGN~ECT, or RGN_COMPLEX if the
function is successful or RGN~RROR if an error occurred.

GpiQueryClipRegion, GpiQueryGraphicsField, GpiQueryRegionBox, Gpi­
QueryViewingLimits

• GpiQueryClipRegion
HRGN GpiQueryClipRegion(hps)
HPS hps; 1* presentation-space handle *1

Parameters

Return Value

See Also

• GpiQueryColor

The GpiQueryClipRegion function retrieves the handle of the currently selected
clip region.

hps Identifies the presentation space.

The return value is the handle of the clip region, if one is selected, or NULL if
no clip region is selected. The return value is HRGN~RROR if an error
occurred.

GpiQueryClipBox, GpiQueryGraphicsField, GpiQueryViewingLimits, GpiSet­
ClipRegion

LONG· GpiQueryColor(hps)
HPS hps; 1* presentation-space handle *1

Parameters

Return Value

See Also

The GpiQueryColor function returns the current value of the line-color attri­
bute, as set by the GpiSetColor function. The function cannot be used in an
open segment when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

The return value is the current line-color attribute if the function is successful or
CL~RROR if an error occurred.

GpiQueryAttrs, GpiSetColor

GpiQueryColorData 117

• GpiQueryColorData
BOOl GpiQueryColorData(hps, c/Data, a/Data)
HPS hps; I. presentation-space handle .1
lONG c/Data: I. number of elements .1
PlONG a/Data: I. three-element array .1

Parameters

Return Value

Example

See Also

The GpiQueryCGlorData function retrieves the format flag and index-value range
for the current logical color table. The format flag specifies whether the color
table has the default, indexed-RGB, or RGB format. The index-value range
specifies the first and last indexes in the table. (These apply to color tables hav­
ing the default or indexed RGB formats.)

The function typically copies the format flags and the first and last index values
to the array pointed to by the alData parameter; however, the function uses the
clData parameter to determine the number of values to copy. The clData param­
eter must be set to 3 in order to copy all values.

hps Identifies the presentation space.

clData Specifies the number of values to copy to the array pointed to by the
alData parameter.

alData Points to the array that receives the format flag and index-value range.
The elements of the array have the following meanings:

Element index Meaning

Specifies the format of color table. It is
LCOLF_DEFAULT if the current color
table is the default color table;
LCOLF _INDRGB if the color table
translates indices to RGB color values; or
LCOLF _RGB if the color-table indices
and RGB color values are equal.

Specifies the smallest color index. For the
default color table, the smallest index is
zero.

Specifies the largest color index. For the
default color table, the largest index is one
less than the maximum number of entries
in the table.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQueryColorData function to retrieve the smallest
color-table index. The GpiQueryLogColorTable function is then used to retrieve
the RGB color value for this index.

LONG alData[3];
LONG alColor[l];

GpiQueryColorData(hps, 3L, alData);
GpiQueryLogColorTable(hps, OL, alData[QCD_LCT_LOINDEX], lL, alColor);

GpiQueryLogColorTable, GpiQueryNearestColor, GpiQueryRealColors, Gpi­
QueryRGBColor

118 GpiQueryColorlndex

• GpiQueryColorlndex
LONG GpiQueryColorlndex(hps. flClrType.IRgbColor)
HPS hps; I. presentation-space handle .1
ULONG flClrType; I. color type .1
LONG IRgbColor, I. RGB color value .1

Parameters

Return Value

See Also

• GpiQueryCp

The GpiQueryColorIndex function returns a color index for the specified RGB
color value. The function maps the RGB color value to the closest match in the
physical palette for the device associated with the presentation space. It then
returns the index in the current logical color table that corresponds to this
physical-palette color.

If the current logical color table is realizable but has not been realized, the
LCOLOPT~EALIZED option maps the RGB color value as if the logical color
table has been realized. Since realizing a logical color table affects the contents
of the physical palette, the color index value returned with this option may be
different than the value returned without the option.

hps Identifies the presentation space.

jlClrType Specifies whether the color index is based on realized colors. If it is
LCOLOPT~EALIZED, the function returns a color index based on the colors
in the physical palette after the current logical color table is realized. If the
parameter is zero, the function returns a color index based on the colors in the
current physical palette.

lRgbColor Specifies the RGB color value.

The return value is a color index that is the closest possible match of the
specified color if the function is successful, or QLCT-ERROR if an error
occurred.

GpiQueryLogColorTable, GpiQueryRGBColor

USHORT GpiQueryCp(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryCp function returns the identifier of the current graphics code
page, as set by the GpiSetCp function. The system uses the current graphics
code-page identifier as the default code-page identifier when the GpiCreateLog;.
Font function selects fonts.

hps Identifies the presentation space.

The return value is the currently selected graphics code-page identifier if the
function is successful, or GPURROR if an error occurred.

GpiCreateLogFont, GpiQueryFontMetrics, GpiSetCp

GpiQueryDefaultViewMatrix 119

• GpiQueryCurrentPosition
BaaL GpiQueryCurrentPosition(hps. ppt/)
HPS hps; 1* presentation-space handle *1
PPOINTL ppt/; 1* pointer to structure for current position .1

Parameters

Return Value

See Also

The GpiQueryCurrentPosition function returns the value of the current position.
The function cannot be used in an open segment when the drawing mode is
D~ETAIN.

hps Identifies the presentation space.

pptl Points to a POINTL structure that receives the current position. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiMove, GpiSetCurrentPosition

• GpiQueryDefaultViewMatrix
BaaL GpiQueryDefaultViewMatrix(hps. cElements. pmatlf)
HPS hps; I. presentation-space handle .1
LONG cElements; I. number of elements .1
PMATRIXLF pmatlf; I. pointer to structure for transformation matrix .1

Parameters

The GpiQueryDefaultViewMatrix function retrieves the current default viewing
transformation.

hps Identifies the presentation space.

cElements Specifies the number of elements in the transformation to retrieve.
It must be an integer in the range 0 through 9.

pmatlf Points to a MATRIXLF structure that receives the elements of the
default viewing transformation matrix. The MATRIXLF structure has the follow­
ing form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

120 GpiQueryDefaultViewMatrix

Return Value

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiSetDefaultViewMatrix

• GpiQueryDefCharBox
BOOl GpiQueryOefCharBox(hps. psiz/)
HPS hps; /. presentation-space handle ./
PSIZEl psizl; /. pointer to structure for character-box size ./

Parameters

Return Value

See Also

The GpiQueryDefCharBox function retrieves the size of the default graphics­
character box in world coordinates.

hps Identifies the presentation space.

psizl Points to a SIZEL structure that receives the default character-box size.
The SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryCharBox

• GpiQueryDevice
HOC GpiQueryOevice(hps)
HPS hps; /. presentation-space handle ./

Parameters

Return Value

Example

The GpiQueryDevice function retrieves a device-context handle for the currently'
associated presentation space.

hps Identifies the presentation space.

The return value is a handle to a device context if the function is successful or
NULL if no device context is currently associated with the presentation space.
The return value is HDC-ERROR if an error occurred.

This example uses the GpiQueryDevice function to retrieve a device-context han­
dle for the presentation space of the desktop window. The handle is used in the
DevQueryCaps function to determine the width and height of the Presentation
Manager screen.

HPS hps;
HOC hde;
LONG lWidth, IHeight;

See Also

GpiQueryDeviceBitmapFormats 121

hps = WinGetScreenPS(HWND_DESKTOP);
hdc = GpiQueryDevice(hps);
DevQueryCaps(hdc, CAPS_WIDTH, 1L, &lWidth);
DevQueryCaps(hdc, CAPS_HEIGHT, 1L, &lHeight);

DevOpenDC, GpiAssociate, WinQueryWindowDC

• GpiQueryDeviceBitmapFormats
BOOl GpiQueryDeviceBitmapFonnats(hps. c/Data. a/Data)
HPS hps; 1* presentation-space handle *1
lONG c/Data; 1* number of elements *1
PlONG a/Data; 1* array of elements *1

Parameters

Return Value

Example

See Also

The GpiQueryDeviceBitmapFormats function retrieves the bitmap formats for
the raster or memory device associated with the given presentation space. The
function copies the formats to the array pointed to by the alData parameter. A
bitmap format consists of two 32-bit values, the first specifying the number of
color planes, and the second specifying the number of color bits per pel. The
first format copied to the array is the format that most closely matches the
device.

The GpiQueryDeviceBitmapFormats function uses the clData parameter to
determine how many formats to return. Since each format fills two elements in
the array, the clData must be a multiple of 2. Although there are several stan­
dard bitmap formats, most devices use just a few. If clData specifies more for­
mats than the device supports, the functions fills the extra elements with zero.
The DevQueryCaps function can be used to retrieve the actual number of bit­
map formats for the device.

hps Identifies the presentation space.

clData Specifies the number of elements to copy to the array. Since each bit­
map format fills two elements, this parameter must be a multiple of 2.

alData Points to the array to receive the bitmap formats.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQueryDeviceBitmapFormats function to retrieve a bit­
map format for the given device. The format is then used to create a bitmap that
is compatible with the device.

LONG alFormats[2];
BITMAPINFOHEADER bmp;
HBITMAP hbm;

1* Retrieve the format that most closely matches the device. *1

GpiQueryDeviceBitmapFormats(hps, 2L, alFormats);

1* Set the bitmap dimensions and format and create the bitmap. *1

bmp.cbFix = 12;
bmp.cx = 100;
bmp.cy = 100;
bmp.cPlanes = alFormats[O];
bmp.cBitCount = alFormats[l];
hbm = GpiCreateBitmap(hps, &bmp, OL, NULL, NULL);

DevQueryCaps, GpiBitBlt, GpiCreateBitmap, GpiLoadBitmap

122 GpiQueryDrawControl

• GpiQueryDrawControl
LONG GpiQueryDrawControl(hps. f1Draw)
HPS hps; 1* presentation-space handle *1
LONG f1Draw; 1* drawing-control flag *1

Parameters

Return Value

Errors

See Also

The GpiQueryDrawControl function checks the state of the drawing control
specified by flDraw. The function returns DCTL_ON or DCTL_OFF to specify
whether the control is on or off.

hps Identifies the presentation space.

flDraw Specifies the drawing control to check. It can be one of the following
values:

Value

DCTL_BOUNDARY

DCTL_CORRELATE

DCTL_DISPLA Y

DCTL_DYNAMIC

DCTL_ERASE

Meaning

Accumulates boundary data.

Correlates output with pick aperture.

Allows drawing to occur on the output
medium.

Draws dynamic segments.

Erases before drawing.

The return value is DCTL_ON or DCTL_OFF if the function is successful, or a
negative number if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV-DRAW_CONTROL
PMERRJNV ~ICROPSYUNCTION

GpiDrawDynamics, GpiRemoveDynamics, GpiSetDrawControl

• GpiQueryDrawingMode
LONG GpiQueryDrawingMode (hps)
HPS hps; 1* presentation-space handle *1

Parameters

Return Value

See Also

The GpiQueryDrawingMode function returns the drawing mode, as set by
GpiSetDrawingMode.

hps Identifies the presentation space.

The return value is the current drawing mode if the function is successful, or
D~RROR if an error occurred.

GpiSetDrawingMode

GpiQueryElement 123

• GpiQueryEditMode
LONG GpiQueryEditMode(hps)
HPS hps; 1* presentation-space handle *1

Parameters

Return Value

Errors

See Also

The GpiQueryEditMode function returns the current editing mode.

hps Identifies the presentation space.

The return value is SEGEMJNSERT or SEGEM...REPLACE if the function is
successful, or SEGE~RROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV.-MICROPSYUNCTION

GpiQueryElementPointer, GpiQueryElementType, GpiSetEditMode

• GpiQueryElement
LONG GpiQueryElement(hps, off, cbMax, pb)
HPS hps; 1* presentation-space handle *1

*1
*1

LONG off; 1* offset to first byte to copy
LONG cbMax;
PBYTE pb;

Parameters

Return Value

1* size of the buffer
1* pOinter to buffer for graphics-order data *1

The GpiQueryElement function retrieves the graphics-order data for an element
in the currently open segment. The element pointer must point to the element to
retrieve. The function copies the data to the buffer pointed to by the pb parame­
ter, copying all bytes in the current element or the number of bytes specified by
cbMax, whichever is smaller. If off is not zero, the function uses this parameter
as an offset from the beginning of the element to the first byte to copy to the
buffer. .

The function can be used only in an open segment and only when the drawing
mode is DM....RETAIN. It cannot be used in an element bracket.

hps Identifies the presentation space.

off Specifies the offset from the beginning of the segment to the first byte of
graphics-order data for the element.

cbMax Specifies the size in bytes of the pb buffer.

pb Points to a buffer that receives the graphics-order data for the element.

The return value specifies the number of bytes returned if the function is suc­
cessful or GPLALTERROR if an error occurred.

124 GpiQueryElement

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following: .

Example

See Also

PMERRJNV -LENGTH
PMERRJNV jiICROPSYUNCTION
PMERR-NO_CURRENT-ELEMENT
PMERR-NOTJN~ETAINjiODE

This example uses the GpiQueryElement function to retrieve the graphics-order
data for an element.

BYTE abElement[512];

/* Move pointer to first element in segment. */

CpiSetElementPointer(hps, 1L);
CpiQueryElement(hps, /* presentation space */

OL, /* start with first byte in element */
512L, /* copy no more than 512 bytes */
abElement) ; /* buffer to receive data */

GpiBeginElement, GpiDeleteElement, GpiEndElement, GpiQueryElement­
Pointer, GpiSetElementPointer

• GpiQueryElementPointer
LONG GpiQueryElementPointer(hps)
HPS hps; 1* presentation-space handle *1

Parameters

Return Value

Errors

See Also

The GpiQueryElementPointer function retrieves the current element pointer.
The function can be used only in an open segment and only when the drawing
mode is D~ETAIN. .

hps Identifies the presentation space.

The return value is the current element pointer if the function is successful or
GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV jiICROPSYUNCTION
PMERR-NOTJNJlliTAINjiODE

GpiBeginElement, GpiDeleteElement, GpiEndElement, GpiQueryElement,
GpiSetElementPointer

GpiQueryElementType 125

• GpiQueryElementType
LONG GpiQueryElementType(hps, plType, cbOesc, pszOesc)
HPS hps; 1* presentation-space handle *1
PLONG plType; 1* pointer to variable for type *'
LONG cbOesc; 1* length In bytes of buffer *1
PSZ pszOesc; 1* pointer to buffer for description *1

Parameters

Return Value

Errors

Example

See Also

The GpiQueryElementType function retrieves the type and description for an
element in current open segment. It also returns the size in bytes of the element.
The element pointer must point to the element to retrieve. The function copies
the type to the variable pointed to by the plType parameter, and copies the
description, up to the number of bytes specified by cbDesc, to the buffer pointed
to by the pszDesc parameter.

The function can be used only in an open segment and only when the drawing
mode is D1LRETAIN. It cannot be used in an element bracket.

hps Identifies the presentation space.

pi Type Points to the variable that receives the element type.

cbDesc Specifies the maximum number of bytes of description to copy to the
buffer specified by the pszDesc parameter.

pszDesc Points to the buffer that receives the description, a null-terminated
string, for the element. The buffer must have the number of bytes specified by
cbDesc. If the description is longer than the buffer, it is truncated.

The return value is the size of the data required to hold the element if the func­
tion is successful or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -LENGTH
PMERRJNV -MICROPSYUNCTION
PMER~NO_CURRENT~LEMENT
PMER~NOTJNJETAIN-MODE

This example uses the GpiQueryElementType function to retrieve the size of the
current element. The size is used to retrieve the graphics-order data in the ele­
ment.

BYTE abElement[S12];
LONG cbElement;
LONG lType;

I' move pointer to first element in segment 'I

GpiSetElementPointer(hps, lL);
cbElement = GpiQueryElementType(

hps, I' presentation space 'I
&lType, I' variable to receive type 'I
OL, I' copy zero bytes of description 'I
NULL); I' no buffer for description 'I

GpiQueryElement(hps, OL, cbElement, abElement);

GpiBeginElement, GpiElement, GpiQueryElement, GpiQueryElementPointer

126 GpiQueryFontFileDescriptions

• GpiQueryFontFileDescriptions
LONG GpiQueryFontFileDescriptions(hab, pszFileName, pcFonts, pffdescs)
HAB hab; /. anchor-block handle ./
PSZ pszFileName;
PLONG pcFonts;
PFFDESCS pffdescs;

Parameters

Return Value

Example

See Also

/. pOinter to the font-resource filename ./
/. pOinter to variable with number of fonts ./
/. array of names

The GpiQueryFontFileDescriptions function retrieves the typeface family and
names contained in the specified file if the file is a font-resource file. The func­
tion copies the names to the array pointed to by the pffdescs parameter. Each
name is a null-terminated string up to 32 characters long. The function copies all
names in the file up to the number of names specified by the pcFonts parameter.

hab Identifies the anchor block.

pszFileName Points to a null-terminated string. This string must be a valid
MS OS/2 filename. If it does not specify a path and the .Jon filename extension,
the function appends the default extension (.dll) and looks for the font-resource
file in the directories specified by the Iibpath command in the config.sys file.

pcFonts Points to a variable specifying the maximum number of typeface fam­
ily and name pairs to retrieve. The function copies the actual number of descrip­
tions it retrieved to this variable.

pffdescs Points to the array to receive the typeface family and names for each
font. Each array element is itself a two-element array of type FFDESCS.

The return value is the number of fonts for which details were not returned if
the function is successful, or GPLALTERROR if an error occurred.

This example uses the GpiQueryFontFileDescriptions to retrieve the typeface
family and names for the fonts in the helv.Jon file. The function is called twice,
once to determine the actual number of fonts in the file, and again to retrieve
the descriptions.

PFFDESCS pffdescs;
SEL sel;
LONG cFonts;

/* Retrieve a count of all fonts in the file. */

cFonts = GpiQueryFontFileDescriptions(hab, "helv", &cFonts, NULL);

/* Allocate space for the descriptions. */

DosAllocSeg((USHORT) (cFonts * sizeof(FFDESCS», &sel, SEG_NONSHARED);
pffdescs = MAKEP(sel, 0);

/* Retrieve the descriptions. */

GpiQueryFontFileDescriptions(hab, "helv", &cFonts, pffdescs);

GpiQueryFonts

GpiQueryFontMetrics 127

• GpiQueryFontMetrics
BOOl GpiQueryFontMetrics(hps, cbMetrics, pfm)
HPS hps; I. presentation-space handle .1
lONG cbMetrics; .I. length of the structure .1
PFONTMETRICS pfm; I. pointer to structure for font metrlcs.1

Parameters

The GpiQueryFontMetrics function retrieves the font metrics for the currently
selected logical font. The font metrics describe the typeface family, name, max­
imum height, average width, and other information about the font. All sizes the
function retrieves are in world coordinates.

hps Identifies the presentation space.

cbMetrics Specifies the length of the font metrics.

pfm Points to a FONTMETRICS structure that receives font metrics for the
logical font. This FONTMETRICS structure has the following form:

typedef struct _FONTMETRICS {
CHAR szFamilyname[FACESIZE];
CHAR szFacename[FACESIZE];
SHORT idRegistry;
SHORT usCodePage;
LONG lEmHeight;
LONG lXHeight;
LONG lMaxAscender;
LONG lMaxDescender;
LONG lLowerCaseAscent;
LONG lLowerCaseDescent;
LONG lInternalLeading;
LONG lExternalLeading;
LONG lAveCharWidth;
LONG lMaxCharInc;
LONG lEmInc;
LONG lMaxBaselineExt;
SHORT sCharSlope;
SHORT sInlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXDeviceRes;
SHORT sYDeviceRes;
SHORT sFirstChar;
SHORT sLastChar;
SHORT sDefaultChar;
SHORT sBreakChar;
SHORT sNominalPointSize;
SHORT sMinimumPointSize;
SHORT sMaximumPointSize;
USHORT fsType;
USHORT fsDefn;
USHORT fsSelection;
USHORT fsCapabilities;
LONG lSubscriptXSize;
LONG lSubscriptYSize;
LONG lSubscriptXOffset;
LONG lSubscriptYOffset;
LONG lSuperscriptXSize;
LONG lSuperscriptYSize;
LONG lSuperscriptXOffset;
LONG lSuperscriptYOffset;
LONG lUnderscoreSize;
LONG lUnderscorePosition;
LONG lStrikeoutSize;
LONG lStrikeoutPosition;
SHORT sKerningPairs;
SHORT sReserved;
LONG lMatch;

} FONTMETRICS;

For a full description, see Chapter 4, "Types, Macros, Structures."

128 GplQueryFontMetrics

Return Value

Errors

Example

See Also

• GpiQueryFonts

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV J..ENGTH

This example uses the GpiQueryFontMetrics function to retrieve the font
metrics for the current font.

FONTMETRICS fm;

GplQueryFontMetrlcs(hps, slzeof(FONTMETRICS), &fm);

GpiQueryCp, GpiQueryFonts, GpiQueryKemingPairs

LONG GpiQueryFonts(hps, flOptions, pszFacename, pcFonts, cbMetrics, pfm)
HPS hps; /. presentation-space handle ./
ULONG flOptions; /. type of fonts to retrieve ./
PSZ pszFacename; /. pointer to typeface name of the fonts ./
PLONG pcFonts; /. number of fonts to retrieve ./
LONG cbMetrics; /. length of the structure ./
PFONTMETRICS pfm; /. pointer to structure(s) for font metrlcs ./

Parameters

The GpiQueryFonts function retrieves the font metrics for loaded fonts. The
function copies the font metrics for the fonts that have the typeface name
specified by the pszFacename parameter to the structure or array of structures
pointed to by the pfm parameter. The function retrieves font metrics for all fonts
up to the number specified by the pcFonts parameters. If the function does not
retrieve font metrics for all the fonts, it returns the number of remaining fonts.

All sizes retrieved by. the function are in world coordinates.

hps Identifies the presentation space.

flOptions Specifies the type of fonts to retrieve. It can be a combination of
the following values:

Value

QFJ>UBLIC

Meaning

Retrieve public fonts. Public fonts were loaded by the
system and are available to all applications.

Retrieve private fonts. Private fonts were loaded by the
application and are available only to it.

pszFacename Points to the typeface name of the fonts. If the pszFacename
parameter is a NULL pointer, the function retrieves metrics for all available
fonts regardless of their typeface names.

pcFonts Points to a variable containing the number of fonts for which to
retrieve metrics. The function copies to this variable the actual number of fonts
it retrieved.

Return Value

Example

GpiQueryFonts 129

cbMetrics Specifies the length of one FONTMETRICS structure.

pfm Points to one or more FONTMETRICS structures that receive the metrics
of the fonts. The number of structure required is specified by the pcFonts param­
eter. This FONTMETRICS structure has the following form:

typedef struct _FONTMETRICS {
CHAR szFamilyname[FACESIZE];
CHAR szFacename[FACESIZE];
USHORT idRegistry;
USHORT usCodePage;
LONG lEmHelght;
LONG lXHeight;
LONG lMaxAscender;
LONG lMaxDescender;
LONG lLowerCaseAscent;
LONG lLowerCaseDescent;
LONG lInternalLeading;
LONG lExternalLeading;
LONG lAveCharWidth;
LONG lMaxCharlnc;
LONG lEmlnc;
LONG lMaxBaselineExt;
SHORT sCharSlope;
SHORT sInlineDir;
SHORT sCharRot;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT sXDeviceRes;
SHORT sYDeviceRes;
SHORT sFirstChar;
SHORT sLastChar;
SHORT sDefaultChar;
SHORT sBreakChar;
SHORT sNominalPointSize;
SHORT sMinimumPointSize;
SHORT sMaximumPointSize;
USHORT fsType;
USHORT fsDefn;
USHORT fsSelectlon;
USHORT fsCapabilities;
LONG lSubscriptXSize;
LONG lSubscriptYSize;
LONG lSubscriptXOffset;
LONG lSubscriptYOffset;
LONG lSuperscriptXSlze;
LONG lSuperscriptYSize;
LONG lSuperscriptXOffset;
LONG lSuperscriptYOffset;
LONG lUnderscoreSize;
LONG lUnderscorePosition;
LONG lStrikeoutSize;
LONG lStrikeoutPosition;
SHORT sKerningPairs;
SHORT sReserved;
LONG lMatch;

} FONTMETRICS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the number of fonts not returned if the function is success­
ful, or GPLALTERROR if an error occurred.

This example uses the GpiQueryFonts function to retrieve the font metrics for
all private fonts having the "Helv" typeface name. The function is called twice,
once to determine the number of fonts available, again to retrieve the font
metrics for all the fonts.

130 GpiQueryFonts

See Also

LONG cFonts, lTemp OL;
SEL sel;
PFONTMETRICS pfm;

1* Determine the number of fonts. *1

cFonts = GpiQueryFonts(hps, QF_PRIVATE, "Helv", &lTemp,
(ULONG) sizeof(FONTMETRICS), NULL);

1* Allocate space for the font metrics. *1

DosAllocSeg «USHORT) (sizeof (FONTMETRICS) * cFonts),
&sel, SEG_NONSHARED);

pfm = MAKEP(sel, 0);

1* Retrieve the font metrics. *1
cFonts = GpiQueryFonts(hps, QF_PRIVATE, "Helv", &cFonts,

(ULONG) sizeof(FONTMETRICS), pfm);

GpiCreateLogFont, GpiQueryFontMetrics

• GpiQueryGraphicsField
BOOL GpiQueryGraphicsField (hps, prelField)
HPS hps; I. presentation-space handle .1
PRECTL pre/Field; I. pOinter to structure for the graphics field .1

Parameters

Return Value

See Also

The GpiQueryGraphicsField function retrieves the coordinates, in presentation­
page units, of the graphics field. The function copies the coordinates of the
lower-left and upper-right corners of the field to the structure. pointed to by the
prclField parameter.

hps Identifies the presentation space.

prclField Points to the RECTL structure that receives the graphics field. This
RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred. .

GpiQueryClipBox, GpiQueryClipRegion, GpiQueryGraphicsField, GpiQuery­
ViewingLimits, GpiSetGraphicsField

GpiQueryKerningPairs 131

• GpiQuerylnitialSegmentAttrs
lONG GpiQuerylnitialSegmentAttrs (hps. IAttribute)
HPS hps; 1* presentation-space handle *1
lONG IAttribute; 1* attribute *1

Parameters

Return Value

Errors

See Also

The GpiQueryDrawControl functiori checks whether the initial segment attri­
bute specified by lAttribute is enabled. The function returns A TT}LON or
ATT}LOFF to specify whether the given attribute is enabled or disabled.

hps Identifies the presentation space.

[Attribute Specifies the attributes to check. It can be one of the following
values:

Value

A TTR_CHAINED

ATTR_DETECTABLE

A TTR_DYNAMIC

A TTR_FASTCHAIN

ATTR_PROP_DETECTABLE

A TTR_PROP _VISIBLE

ATTR_VISIBLE

Meaning

Chained

Detectability

Dynamic

Fast chaining

Propagate detectability

Propagate visibility

Visibility

The return value is A TT}LON or A TT}LOFF if the function is successful, or
ATTlLERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPSY-UNCTION

GpiSetInitialSegmentAttrs

.. GpiQueryKerningPairs
BOOl GpiQueryKerningPairs(hps. ckrnpr. akrnpr)
HPS hps; I. presentation-space handle .1
LONG ckrnpr, I .. number of kerning pairs .1
PKERNINGPAIRS akrnpr, I. pointer to array of kerning-pair structures .1

Parameters

The GpiQueryKerningPairs function retrieves kerning-pair information for the
current font for the presentation space. The kerning-pair information specifies
the characters to be kerned and the amount of space in world coordinates to
kern. The number of kerned pairs for a given font is specified in the font metrics
for that font.

hps Identifies the presentation space.

ckrnpr Specifies the number of kerning pairs to retrieve.

132 GpiQueryKerningPairs

Return Value

Example

See Also

akrnpr Points to the array of KERNINGPAIRS structures that receives the
kerning-pair information. The array must have the number of elements specified
by the ckrnpr parameter. The KERNINGPAIRS structure has the following form:

typedef struct _KERNINGPAIRS {
SHORT sFirstChar;
SHORT sSecondChar;
SHORT sKerningAmount;

} KERNINGPAIRS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQueryKemingPairs function to retrieve the kerning
information for the current font.

FONTMETRICS fm;
SEL sel;
PKERNINGPAIRS akrnpr;

GpiQueryFontMetrics(hps, (LONG) sizeof(FONTMETRICS), &fm);
DosAllocSeg(fm.sKerningPairs ' sizeof(KERNINGPAIRS), &sel,

SEG_NONSHARED);
akrnpr = MAKEP(sel, 0);
GpiQueryKerningPairs(hps, (LONG) fm.sKerningPairs, akrnpr);

GpiQueryFontMetrics

• GpiQueryLineEnd
LONG GpiQueryLineEnd(hps)
HPS hps; /. presentation-space handle ./

Parameters

Return Value

See Also

The GpiQueryLineEnd function returns the current line-end attribute. The
function cannot be used in an open segment when the drawing mode is
D1LRETAIN.

hps Identifies the presentation space.

The return value is the current line-end attribute if the function is successful, or
LINEEND~RROR if an error occurred.

GpiQuery Attrs, GpiSetDrawingMode, GpiSetLineEnd

• GpiQueryLineJoin
LONG GpiQueryLineJoin(hps)
HPS hps; /. presentation-space handle ./

Parameters

The GpiQueryLineJoin function returns the current line-join attribute. The
function cannot be used in an open segment when the drawing mode is
D1LRETAIN.

hps Identifies the presentation space.

Return Value

See Also

GpiQueryLineWidthGeom 133

The return value is the current line-join attribute if the function is successful, or
LINEJOIN.£RROR if an error occurred.

GpiQueryAttrs, GpiSetDrawingMode, GpiSetLineJoin

• GpiQueryLineType
LONG GpiQueryLineType (hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryLineType function returns the current cosmetic line-type attribute,
as set by the GpiSetLineType function. The function cannot be used in an open
segment when the drawing mode is DMJ{ETAIN.

hps Identifies the presentation space.

The return value is the current cosmetic line-type attribute if the function is suc­
cessful, or LINETYPaERROR if an error occurred.

GpiQueryAttrs, GpiSetDrawingMode, GpiSetLineType

• GpiQueryLineWidth
FIXED GpiQueryLineWidth (hps)
HPS hpsj I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryLine Width function returns the current value of the cosmetic line­
width attribute, as set by the GpiSetLine Width function. The function cannot be
used in an open segment when the drawing mode is DMJ{ETAIN.

hps Identifies the presentation space.

The return value is the current value of the cosmetic line-width attribute if the
function is successful, or LINEWIDTILERROR if an error occurred.

GpiQuery Attrs, GpiSetDrawingMode, GpiSetLine Width

• GpiQueryLineWidthGeom
LONG GpiQueryLineWidthGeom(hps)
HPS hpsj I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryLine WidthGeom function returns the current geometric line-width
attribute. The function cannot be used in an open segment when the drawing
mode is DMJ{ETAIN.

hps Identifies the presentation space.

The return value is the current geometric line-width attribute if the function is
successful, or LINEWIDTHGEO~RROR if an error occurred.

GpiQueryAttrs, GpiSetDrawingMode, GpiSetLineWidthGeom

134 GpiQueryLogColorTable

• GpiQueryLogColorTable
LONG GpiQueryLogColorTable(hps, f10ptions, iStart, cITable, alTable)
HPS hps; I. presentation-space handle .1
ULONG f10ptions; I. color type to retrieve .1
LONG iStart; I. starting Index .1
LONG cITable; I. maximum number of values to copy .1
PLONG alTable; I. pointer to array for elements .;

Parameters

Return Value

Errors

The GpiQueryLogColorTable function retrieves the current logical-color-table
entries. This function copies the RGB color values from the current logical color
table to the array pointed to by alTable. It may also copy the color-table index
values for each RGB color value, depending on the value ofjlOptions.

GpiQueryLogColorTable uses iStart as the index of the first color table entry to
copy. It continues to copy subsequent entries until it reaches the end of the table
or it has copied the number of values specified by clTable. If a logical color-table
entry has no corresponding RGB color value, the function either copies - 1 to
the array or skips the entry, depending on the value of flOptions. It skips the
entry only if it is copying both the color-table index and the RGB value to the
array.

hps Identifies the presentation space.

flOptions Specifies whether to retrieve indexes and RGB color values or just
RGB values. IfflOptions is LCOLOPTJNDEX, the function retrieves indexes
and RGB color values. If it is OXOOOO, the function retrieves RGB color values
only.

iStart Specifies the color-table index for the first entry to copy. The function
copies this entry and all subsequent entries up to the number of values specified
by clTable or the end of the logical color table.

clTable Specifies the maximum number of values to copy to the array pointed
to by alTable. If flOptions is OXOOOO, this parameter specifies the number of RGB
color values to retrieve. IfjlOptions is LCOLOPTJNDEX, this parameter
specifies the combined total of index and RGB values to retrieve and must be an
even value.

alTable Points to the array to receive the color-table entries. If flOptions is
equal to OxOOOO, each element in the array receives an RGB color value. If
flOp/ions is LCOLOPTJNDEX, each pair of array elements receives an index
and a corresponding RGB value, with the first element in the pair receiving the
index.

The return value is the number of values copied to the array if the function is
successful. The return value is QLCT~RROR if an error occurred. The func­
tion returns QLCT~GB if flOptions is LCOLOPTJNDEX and the current logi­
cal color table does not use indexes.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _COLOR-OPTIONS

Example

See Also

GpiQueryMarkerBox 135

This example uses the GpiQueryLogColorTable function to retrieve all the
entries in the current logical color table.

LONG cColors;
SEL sel;
PLONG alColor;

I' Find out how many colors are in the color table. 'I

DevQueryCaps(GpiQueryDevice(hps), CAPS_COLORS, lL, &cColors);

I' Allocate space for the color values and indexes. 'I

DosAllocSeg((USHORT) (cColors ' 2 ' sizeof (LONG», &sel, SEG_NONSHARED);
alColor = MAKEP(sel, 0);

I' Retrieve the values. 'I

GpiQueryLogColorTable(hps,
LCOLOPT_INDEX,
OL,
cColors ' 2,
alColor);

I' presentation space 'I
I' retrieve indexes and RGB values 'I
I' start with first entry 'I
I' copy 2 values for each entry 'I
I' array to receive values 'I

GpiCreateLogColorTable, GpiQueryColorData, GpiQueryNearestColor, Gpi­
QueryRealColors, GpiQueryRGBColor

• GpiQueryMarker
lONG GpiQueryMarker(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryMarker function returns the current value of the marker-symbol
attribute. The function cannot be used in an open segment when the drawing
mode is D~ETAIN.

hps Identifies the presentation space.

The return value is the current marker symbol if the function is successful, or
MARKS~RROR if an error occurred.

GpiMarker, GpiPolyMarker, GpiQuery Attrs, GpiSetDrawingMode

• GpiQueryMarkerBox
BOOl GpiQueryMarkerBox(hps, psizfxBox)
HPS hps; I. presentation-space handle .1
PSIZEF psizfxBox; I. pOinter to structure for marker-box size .1

Parameters

The GpiQueryMarkerBox function retrieves the current value of the marker-box
attribute, set by the GpiSetMarkerBox function. The function cannot be used in
an open segment when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

psizJxBox Points to the SIZEF structure that receives the size of the marker
box. The SIZEF structure has the following form:

typedef struct _SIZEF {
FIXED cx;
FIXED cy;

} SIZEF;

136 GpiQueryMarkerBox

Return Value

See Also

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryAttrs, GpiSetDrawingMode, GpiSetMarkerBox

• GpiQueryMarkerSet
LONG GpiQueryMarkerSet(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryMarkerSet function returns the current value of the marker-set
attribute, as set by the GpiSetMarkerSet function. The function cannot be used
in an open segment when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

The return value is the local identifier for the marker set if the function is suc­
cessful, or LCID.-ERROR if an error occurred.

GpiQuery Attrs, GpiSetDrawingMode, GpiSetMarkerSet

• GpiQueryMetaFileBits
BOOl GpiQueryMetaFileBits(hmf, off, cbBuffer, pbBuffer)
HMF hmf; I. metafile handle .1
LONG off; I. offset to the first metafile byte to copy .1
LONG cbBuffer; I. length In bytes of buffer .1
PBYTE pbBuffer; I. pOinter to buffer for metafile data .1

Parameters

Return Value

Errors

The GpiQueryMetaFileBits function copies data from the metafile specified by
hmJ to the buffer pointed to by the pbBuffer parameter. The function copies the
bytes of the metafile, up to the number of bytes specified by cbBuffer, starting at
the byte whose offset from the beginning of the metafile is specified by the off
parameter.

hm/ Identifies the memory metafile.

off Specifies the offset in bytes from the beginning of the metafile to the first
byte to copy.

cbBuffer Specifies the number of bytes of metafile data to copy.

pbBuffer Points to the buffer to receive the metafile data. It must have the
number of bytes specified by the cbBuffer parameter.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR...INV ~ETAFILE-LENGTH
PMERR...INV ~ETAFILE_OFFSET

Example

See Also

GpiQueryMix 137

This example uses the GpiQueryMetaFileBits function to retrieve the graphics­
order data from the specified metafile. The GpiQueryMetaFileLength function
returns the length of the metafile.

HMF hmf;
LONG cBytes;
SEL sel;
LONG off;

hmf = GpiLoadMetaFile(hps, "sample.met");

I' Allocate the buffer for the metafile data. 'I

DosAllocSeg(O, &sel, SEG_NONSHARED);
pbBuffer = MAKEP(sel, 0);

cBytes = GpiQueryMetaFileLength(hmf); I' get length of metafile 'I

I' Continue to'retrieve data in 64K blocks. 'I

for (off = OL; off < cBytes; off += 65536L)
GpiQueryMetaFileBits(

hps, I' presentation space 'I
off, I' offset of next byte to retrieve 'I
65536L, I' retrieve as much as possible 'I
pbBuffer); I' buffe~ to receive metafile data 'I

GpiQueryMetaFileLength, GpiSetMetaFileBits

• GpiQueryMetaFileLength
LONG GpiQueryMetaFileLength(hmf)
HMF hmf; /. metafile handle ./

Parameters

Return Value

See Also

• GpiQueryMix

The GpiQueryMe'taFileLength function returns the total length, in bytes, of the
metafile specified by hmf. The function is typically used to determine the number
of bytes of data to retrieve using the GpiQueryMetaFileBits function.

hmf Identifies the metafile.

The return value is the metafile length if the function is successful, or
GPLALTERROR if an error occurred.

GpiQueryMetaFileBits, GpiSetMetaFileBits

LONG GpiQueryMix(hps)
HPS hps; /. presentation-space handle ./

Parameters

The GpiQueryMix function returns the current value of the (line) foreground
color-mixing mode, as set by the GpiSetMix function. The function cannot be
used in an open segment when the drawing mode is DMJtETAIN.

hps Identifies the presentation space.

138 GpiQueryMix

Return Value

See Also

The return value is the current foreground mix mode if the function is success­
ful, or F~RROR if an error occurred.

GpiQuery Attrs, GpiQueryBackMix, GpiSetDrawingMode, GpiSetMix

• GpiQueryModelTransformMatrix
BOOl GpiQueryModelTransfonnMatrix(hps, cElements, pmatlf)
HPS hps; 1* presentation-space handle *1
lONG cElements; 1* number of elements *1
PMATRIXlF pmatlf; 1* pointer to structure for transformation matrix *1

Parameters

Return Value

See Also

The GpiQueryModelTransformMatrix function retrieves the matrix for the
current model transformation. The function cannot be used in an open segment
when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

cElements Specifies the number of elements of the matrix to retrieve. It must
be an integer in the range 0 through 9.

pmatlf Points to the MATRIXLF structure the receives the model transforma­
tion matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG IM13;
FIXED fxM21;
FIXED fxM22;
LONG IM23;
LONG IM31;
LONG IM32;
LONG IM33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiSetDrawingMode, GpiSetModelTransformMatrix

• GpiQueryNearestColor
lONG GpiQueryNearestColor(hps, flOptions, IRgbColorln)
HPS hps; 1* presentation-space handle *1
UlONG flClrType; I. color type .1
lONG IRgbColorln; I. RGB color value .1

The GpiQueryColorlndex function returns the RGB color value from the physi­
cal palette that most closely matches the RGB color value specified by the
lRgbColorln parameter. The function uses the physical palette of the device asso­
ciated with the given presentation space.

If the current logical color table is realizable but has not been realized, the
LCOLOPT~EALIZED option maps the RGB color value as if the logical color
table has been realized. Since realizing a logical color table affects the contents

Parameters

Return Value

Errors

See Also

GpiQueryPageViewport 139

of the physical palette, the RGB color value returned with this option may be
different than the value returned without the option.

hps Identifies the presentation space.

ji Clr Type Specifies whether the RGB color value is based on realized colors.
If it is LCOLOPT~EALIZED, the function returns a RGB color based on the
colors in the physical palette after the current logical color table is realized. If
the parameter is zero, the function returns a RGB color based on the colors in
the current physical palette.

lRgbColorln Specifies a RGB color value.

The return value is the nearest available color if the function is successful or
GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _COLOILOPTIONS
PMERRJNV~GBCOLOR

GpiCreaieLogColorTable, GpiQueryColorData, GpiQueryRealColors, Gpi­
QueryRGBColor

• GpiQueryNumberSetlds
lONG GpiQueryNumberSetlds(hps)
HPS hps; /. presentation-space handle ./

Parameters

Return Value

See Also

The GpiQueryNumberSetIds function returns the number of local identifiers
currently in use that refer to fonts or bitmaps. The function is typically used
before calling the GpiQuerySetIds function.

hps Identifies the presentation space.

The return value is the number of local identifiers in use if the function is suc­
cessful or GPLERROR if an error occurred.

GpiQuerySetIds, GpiSetBitmapld, GpiSetCharSet

• GpiQueryPageViewport
BOOl GpiQueryPageViewport(hps, pre/Viewport)
HPS hps; /. presentation-space handle ./
PRECTl pre/Viewport; /. pointer to structure for viewport ./

Parameters

The GpiQueryPageViewport function retrieves the page viewport. The function
cannot be used if no device context is associated with the presentation space.

hps Identifies the presentation space.

prclViewport Points to the RECTL structure that receives the page viewport.
The RECTL structure has the following form:

140 GpiQueryPageViewport

Return Value

See Also

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiCreatePS, GpiSetPage Viewport

II GpiQueryPattern
lONG GpiQueryPattem(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

The GpiQueryPattern function returns the current value of the shading-pattern
symbol, as set by the GpiSetPattern function. The function cannot be used in an
open segment when the drawing mode is DMJETAIN.

hps Identifies the presentation space.

The return value is the current shading-pattern symbol if the function is success­
ful or PATS~RROR if an error occurred.

GpiQueryPattemRelPoint, GpiQueryPatternSet, GpiSetDrawingMode, GpiSet­
Pattern

• GpiQueryPatternRefPoint
BOOl GpiQueryPattemRefPoint (hps, pptlRefPoint)
point"
HPS hps;
PPOINTl pptlRefPoint;

I. presentation-space handle .1
I. pointer to structure for pattern-reference .1

Parameters

Return Value

See Also

The GpiQueryPatternRelPoint function retrieves the current pattern-reference
point. The function cannot be used in an open segment when the drawing mode
is DMJETAIN.

hps Identifies the presentation space.

pptlRefPoint Points to the POINTL structure that receives the pattern­
reference point. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryPattern, GpiQueryPatternSet, GpiSetDrawingMode

GpiQueryPel 141

• GpiQueryPatternSet
LONG GpiQueryPattemSet(hps)
HPS hps; I. presentation-space handle .1

Parameters

Return Value

See Also

• GpiQueryPel

The GpiQueryPatternSet function returns the current value of the pattern-set
identifier, as set by the GpiSetPatternSet function. The function cannot be used
in an open segment when the drawing mode is DMJETAIN.

hps Identifies the presentation space.

The return value is the current pattern-set identifier if the function is successful
or LCID~RROR if an error occurred.

GpiQueryPattern, GpiQueryPatternRelPoint, GpiSetDrawingMode, GpiSet­
PatternSet

LONG GpiQueryPel(hps, pptl)
HPS hps; I. presentation-space handle .1
PPOINTL pptl; I. pointer to structure with point to query .1

Parameters

Return Value

See Also

The GpiQueryPel function returns the color of a pel at the specified point. The
point, given in world coordinates, must be in any of the current clipping objects:
clip path, viewing limits, graphics field, clip region, or visible region.

hps Identifies the presentation space.

pptl Points to the POINTL structure that contains the world coordinates of the
point. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the color index of the pel if the function is successful or
GPLALTERROR if an error occurred.

GpiPtVisible, GpiSetPel

142 GpiQueryPickAperturePosition

• GpiQueryPickAperturePosition
BOOl GpiQueryPickAperturePosition(hps, pptl)
HPS hps; 1* presentation-space handle .1
PPOINTl pptl; 1* pOinter to structure for center point .1

Parameters

Return Value

See Also

The GpiQueryPickAperturePosition function retrieves the position of the center
of the pick aperture.

hps Identifies the presentation space.

pptl Points to the POINTL structure that receives the coordinates, in presenta­
tion page units, of the center. The POINTL structure has the following form:

typedef struet _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryPickApertureSize, GpiSetPickAperturePosition

• GpiQueryPickApertureSize
BOOl GpiQueryPickApertureSize(hps, psiz/)
HPS hps; I. presentation-space handle .1
PSIZEl psiz/; I. pOinter to structure for pick-aperture size .1

Parameters

Return Value

See Also

The GpiQueryPickApertureSize function retrieves the width and height of the
the pick aperture. The pick aperture is set using the GpiSetPickApertureSize
function.

hps Identifies the presentation space.

psizl Points to a SIZEL structure that receives the pick-aperture size. The
SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryPickAperturePosition, GpiSetPickApertureSize

GpiQueryRealColors 143

• GpiQueryPS
ULONG GpiQueryPS(hps, pSizlPage)
HPS hps; I .. presentation-space handle .1
PSIZEL psizlPage; I. pOinter to structure for page size .1

Parameters

Return Value

Comment

See Also

The GpiQueryPS function retrieves the page parameters and returns the
presentation-space options for the presentation space. The page parameters
specify the dimensions of the presentation page. The presentation-space options
specify the page unit, storage format, and presentation type for the presentation
space. These are the values set for the presentation space when it is created
using the GpiCreatePS function.

hps Identifies the presentation space.

psizlPage Points to a SIZEL structure that receives the presentation-page size.
The SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the presentation-space options if the function is successful or
GPLERROR if an error occurred.

The individual presentation-space options can be extracted from the return value
by using the bitwise AND operator and the constants defined for the jlOptions
parameter of the GpiCreatePS function.

GpiCreatePS, GpiQueryPage Viewport

• GpiQueryRealColors
LONG GpiQueryReaIColors(hps, f1ClrType, IStart, eelr, aelr)
HPS hps; I. presentation-space handle .1
ULONG f1ClrType; I. color options .1
LONG IStart; I. ordinal number of first color .1
LONG eelr, I. number of colors .1
PLONG aelr, 1* painter to array of colors *1

The GpiQueryRealColors function retrieves the RGB values in the physical
palette of the device associated with the presentation space. These colors
represent the only device colors currently available to the application. The func­
tion copies the RGB color values, up to the number specified by the celr param­
eter, to the array pointed to by the aelr parameter. The function uses the IStart
parameter to determine which physical palette color to start copying. If this
parameter is zero, the function copies from the start of the physical palette. The
function returns the number of colors actually r~trieved.

An application can change the contents of the physical palette by realizing a
color table, for devices that permit realizable color tables. If the current logical
color table is realizable but has not been realized, the LCOLOPT~EALIZED

144 GpiQueryRealColors

Parameters

Return Value

Errors

See Also

option retrieves the RGB color values as if the logical color table has been real­
ized. Since realizing a logical color table affects the contents of the physical
palette, the RGB color values retrieved with this option may be different from
the values retrieved without the option.

The GpiQueryRealColors function can also map the colors from the physical
palette to the color-index values in the current logical color table. If the
LCOLOPTJNDEX option is specified, the function copies a color-index and
RGB-color pair to the array pointed to by aelr. Each value in the pair fills one
element in the array, with the color index appearing first.

hps Identifies the presentation space.

jiClrType Specifies whether the RGB color values are realized colors and
whether color-index values are retrieved. It can be one of the following:

Value

OxOOOO

LCOLOPT-REALIZED

LCOLOPT_INDEX

Meaning

Retrieves ROB colors based on the colors in the
current physical palette.

Retrieves the ROB colors corresponding to the
realized logical color table. This option does not
realize the table, but does return values as if the
table had been realized.

Retrieves indexes and ROB color values.

The LCOLOPTJEALIZED and LCOLOPTJNDEX options can be com­
bined.

IStart Specifies the ordinal number of the first color to copy.

celr Specifies the number of RGB color values to retrieve. If the
LCOLOPTJNDEX option is specified, this parameter must specify the total
number of color indexes and RGB colors to retrieve; this value must be a multi­
ple of 2.

aelr Points to the array that receives the RGB color values. It must have the
number of elements specified by the celr parameter. If the LCOLOPTJNDEX
option is given, the first element in each pair of elements is the color index.

The return value is the number of elements returned if the function is successful
or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _COLOR-OPTIONS

GpiCreateLogColorTable, GpiQueryColorData, GpiQueryNearestColor, Gpi­
QueryRGBColor

GpiQueryRegionRects 145

• GpiQueryRegionBox
lONG GpiQueryRegionBox(hps. hrgn. prell
HPS hps; I. presentation-space handle .1
HRGN hrgn; I. region handle .1
PRECTl pre/; I. pOinter to structure for enclosing rectangle .1

Parameters

Return Value

See Also

The GpiQueryRegionBox function retrieves the dimensions of the smallest rect­
~ngle that encloses the region identified by hrgn. If the region is empty, the func­
tion sets the left and right coordinates and top and bottom coordinates to equal
values. The function cannot be used if no device context is associated with the
presentation space.

hps Identifies the presentation space.

hrgn Identifies the region.

prcl Points to the RECTL structure that receives the coordinates of the
enclosing rectangle. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RGN_NULL, RGN-RECT, or RGN_COMPLEX if the
function is successful, or RGN-ERROR if an error occurred.

GpiQueryClipBox

• GpiQueryRegionRects
BeOl GpiQueryRegionRects(hps. hrgn. pre/Bound. prgnre. arc/)
HPS hps; I. presentation-space handle .1
HRGN hrgn; I. region handle .1
PRECTl pre/Bound; I. pointer to structure for enclosing rectangle .1
PRGNRECT prgnrc; I. pointer to structure controlling processing .1
PRECTl arc/; I. pOinter to array of rectangle structures .1

The GpiQueryRegionRects function retrieves the rectangles that define the
region identified by the hrgn parameter. The rectangles can be used to recreate
the region, by using the GpiCreateRegion function. The function copies the
coordinates of one or more of the defining rectangles to the array of structures
pointed to by the arcl parameter. It uses the rectangle pointed to by the prcl­
Bound parameter to determine which rectangles to retrieve. Only rectangles
within this rectangle are retrieved. If the prclBound parameter is NULL, the
function retrieves all rectangles in the region.

The GpiQueryRegionRects function uses the fields of the RGNRECT structure
pointed to by the prgnrc parameter to control how the defining rectangles are
retrieved. Since a region may comprise several rectangles, the RGNRECT struc­
ture lets an application retrieve a few rectangles at a time. The structure specifies
which rectangle to start with and how many to retrieve. The function copies

146 GpiQueryRegionRects

Parameters

Return Value

Errors

See Also

the actual number of rectangles retrieved to the structure. Also, a field in this
structure specifies the direction through the region the function is to take as it
retrieves rectangles.

The GpiQueryRegionRects function cannot be used if no device context is asso­
ciated with the presentation space.

hps Identifies the presentation space.

hrgn Identifies the region.

prclBound Points to the RECTL structure that contains the enclosing rect­
angle. Only rectangles within this rectangle are retrieved. The RECTL structure
has the following form:

typedef struet _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

prgnrc Points to the RGNRECT structure that specifies how to retrieve the
rectangles. The RGNRECT structure has the following form:

typedef struet _RGNRECT {
USHORT ireStart;
USHORT ere;
USHORT ereReturned;
USHORT usDireetion;

} RGNRECT;

For a full description, see Chapter 4, "Types, Macros, Structures."

arcl Points to the array of RECTL structures that receives the defining rect­
angles.

The return value is GPLOK if the function is successful or GPI~RROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~EGION_CONTROL

GpiCombineRegion, GpiCreateRegion

• GpiQueryRGBColor
LONG GpiQueryRGBColor(hps, flClrType,/Colorlndex)
HPS hps; / .. presentation-space handle .. /
ULONG flClrType; / .. color type .. /

LONG IColorlndex; / .. color-index value .. /

The GpiQueryRGBColor function returns the RGB color value in the physical
palette that corresponds to the color-index value specified by the lColorlndex
parameter.

Parameters

Return Value

Errors

See Also

GpiQuerySegmentAttrs 147

If the current logical color table is realizable but has not been realized, the
LCOLOPT~EALIZED option maps the color-index value as if the logical
color table has been realized. Since realizing a logical color table affects the con­
tents of the physical palette, the RGB color value returned with this option may
be different from the value returned without the option.

If the current logical color table was created using the LCOLF ~GB option, the
lColorlndex parameter is interpreted as an RGB color value. In this case, the
function is identical to the GpiQueryNearestColor function.

hps Identifies the presentation space.

ji Clr Type Specifies whether the RGB color value is based on realized colors.
If it is LCOLOPT~EALIZED, the function returns an RGB color based on
the colors in the physical palette after the current logical color table is realized.
If the parameter is zero, the function returns an RGB color based on the colors
in the current physical palette.

lColorlndex Specifies the color index. This may be any valid color-index value
except CLRnEFAULT.

The return value is the RGB color that is the closest match if the function is
successful or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~NV_COLO~NDEX
PMER~NV _COLO~OPTIONS

GpiCreateLogColorTable, GpiQueryColorData, GpiQueryNearestColor, Gpi­
QueryRealColors, GpiQueryRGBColor, GpiSetColor

• GpiQuerySegmentAttrs
LONG GpiQuerySegmentAttrs(hps, idSegment,IAttribute)
HPS hps; /. presentation-space handle ./
LONG idSegment; /. segment identifier ./
LONG IAttribute: /. attribute ./

Parameters

The GpiQuerySegmentAttrs function checks a segment for the specified attri­
bute. The function returns ATT~ON or ATT~OFF to specify whether the
segment has or does not have the given attribute. The function can be used to
check the attributes of any segment, including the currently open segment (if
any).

hps Identifies the presentation space.

idSegment Specifies the segment identifier. It must be greater than zero.

lAttribute Specifies the attribute to check. It must be one of the following
values:

Value

A TTR_CHAINED

ATTR_DETECTABLE

A TTR_DYN AMIC

Meaning

Chained

Detectability

Dynamic

148 GpiQuerySegmentAttrs

Return Value

Errors

See Also

Value

A TTR_FASTCHAIN

ATTR_PROP_DETECTABLE

A TTR_PROP _VISIBLE

A TTR_ VISIBLE

Meaning

Fast chaining

Propagate detectability

Propagate visibility

Visibility

The return is ATTR-ON or ATTR-OFF if the fmiction is successful, or
ATTR-ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -MICROPSYUNCTION
PMERRJNV _SEG_NAME

GpiSetSegmentAttrs

• GpiQuerySegmentNames
LONG GpiQuerySegmentNames(hps, idFirstSegment, idLastSegment, cidMax, aidSegments)
HPS hps; 1* presentation-space handle *1
LONG idFirstSegment; 1* first segment *1
LONG idLastSegment; 1* last segment *1
LONG cidMax; 1* maximum number of segments *1
PLONG aidSegments; 1* pointer to array for segments *1

Parameters

Return Value

Errors

See Also

The GpiQuerySegmentNames function retrieves the identifiers of all existing seg­
ments whose identifiers are in the range specified by the idFirstSegment and
idLastSegment parameters.

If the idFirstSegment parameter is equal to or greater than the idLastSegment
parameter, the function only checks for the segment having the identifier
specified by idFirstSegment.

hps Identifies the presentation space.

idFirstSegment Specifies the first segment in the range; it must be greater
than zero.

idLastSegment Specifies the last segment; it must be greater than zero.

cidMax Specifies the maximum number of segment identifiers to retrieve.

aidSegments Points to the array to receive the segment identifiers. It must
have the number of elements specified by the cidMax parameter.

The return value is the number of segment identifiers returned if the function is
successful or GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -MICROPSYUNCTION
PMERRJNV _SEG_NAME

GpiOpenSegment

GpiQuerySegmentPriority 149

• GpiQuerySegmentPriority
LONG GpiQuerySegmentPriority(hps. idRefSegment. cmdOrder)
HPS hps; 1* presentation-space handle .1
LONG idRefSegment; I. reference-segment identifier .1
LONG cmdOrder, I. segment order *1

Parameters

Return Value

Errors

See Also

The GpiQuerySegmentPriority function returns the identifier of the segment hav­
ing the next-highest or next-lowest priority, relative to the segment specified by
idRefSegment. The priority of a segment affects how segments in the picture
chain are drawn.

The function uses the cmdOrder parameter to determine whether to look for the
segment with next-highest or next-lowest priority. The function returns zero if
there is no segment with next-highest or next-lowest priority.

hps Identifies the presentation space.

idRefSegment Specifies the identifier of the segment whose priority is com­
pared, or is zero to specify the segment with lowest or highest priority.

cmdOrder Specifies whether to check for a segment with higher or lower
priority. It can be one of the following values:

Value Meaning

Return the identifier for the segment with next­
lowest priority. If idRefSegment is zero, the func­
tion returns the identifier of the segment with the
lowest priority.

Return the identifier of the segment with next­
highest priority. If idRefSegment is zero, the func­
tion returns the identifier of the segment with the
highest priority.

The return value is the identifier of the segment with the next-highest or
next-lowest priority if the function is successful. The return value is
GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV ~CROPSYUNCTION
PMERRJNV _SEG_NAME

GpiDrawChain, GpiDrawFrom, GpiSetSegmentPriority

150 GpiQuerySegmentTransformMatrix

• GpiQuerySegmentTransformMatrix
BOOl GpiQuerySegmentTransfonnMatrix(hps, idSegment, eE/ements, pmatlf)
HPS hps; /. presentation-space handle ./
lONG idSegment; /. segment identifier ./
lONG eE/ements; /. number of elements ./
PMATRIXLF pmatlf; /.polnter to structure for matrix elements ./

Parameters

Return Value

Errors

See Also

The GpiQuerySegmentTransformMatrix function retrieves one or more elements
of the segment-transformation matrix for the segment specified by idSegment.

hps Identifies the presentation space.

idSegment Specifies the segment identifier.

cElements Specifies the number of elements to retrieve. It must be an integer
value in the range 0 through 9.

pmatlf Points to the MATRIXLF structure that receives the transformation
matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV..MICROPSY-UNCTION
PMERRJNV _SEG_NAME

GpiSetSegmentTransformMatrix

• GpiQuerySetlds
BOOl GpiQuerySetlds(hps, eSets, a/Types, pstr8, a/eid)
HPS hps; /. presentation-space handle ./
LONG eSets; /. number of objects to query ./
PLONG a/Types; /. pointer to array of types ./
PSTR8 pstr8; /. pointer to array for names ./
PLONG a/eid; /. pointer to array for local identifiers ./

The GpiQuerySetIds function retrieves a list of types, names, and local iden­
tifiers for all current logical fonts and tagged bitmaps. The function copies the
information to the arrays pointed to by the alTypes, pstr8, and alcid parameters.

Parameters

Return Value

Example

See Also

GpiQuerySetlds 151

The type specifies whether the object is a logical font or tagged bitmap. The
name is an 8-character string that uniquely identifies the object. Not all objects
have names.

The GpiQuerySetIds function retrieves information for only the number of
objects specified by the cSets parameter, starting with the object having local
identifier 1. If information for all objects is needed, the GpiQueryNumberSetIds
function returns a count of all local identifiers in use.

hps Identifies the presentation space.

eSets Specifies the number of objects to retrieve. It must not be greater than
the number of local identifiers currently in use.

alTypes Points to the array to receive the type for each object. The function
sets each element in this array to either LCIDTYONT or LCIDTJUTMAP.
The array must have the number of elements specified by cSets.

pstr8 Points to the array to receive the name for each object. Each element,
itself an array, receives an object name of up to eight characters. If an object
has no name, the element is set to zero. The array must have the number of ele­
ments specified by cSet.

alcid Points to the array that receives the local identifiers. The array must
have the number of elements specified by cSets.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQuerySetIds function to retrieve the local identifier
for all logical fonts. It then uses the identifiers to delete the logical fonts.

LONG cIds;
SEL sel;
PLONG plType;
PSTRS pstrS;
PLONG plcid;

cIds = GpiQueryNumberSetIds(hps); /* get number of local identifiers */

/* Allocate space for type, name, and local-identifier arrays. */

DosAllocSeg«USHORT) cIds * sizeof(LONG) , &sel, SEG_NONSHARED);
plType = MAKEP(sel, 0);
DosAllocSeg«USHORT) cIds * sizeof(STRS), &sel, SEG_NONSHARED);
pstrS = MAKEP(sel, 0);
DosAllocSeg«USHORT) cIds * sizeof(LONG) , &sel, SEG_NONSHARED);
plcid = MAKEP(sel, 0);

/* Get the types, names, and local identifiers. */ .
GpiQuerySetIds(hps, cIds, plType, pstrS, plcid);

/* Delete each local identifier that has LCIDT_FONT type. */

for (i = 1; i < cIds; i++)
if (plTypes[i] == LCIDT_FONT)

GpiDeleteSetId(hps, plcid[i]);

GpiCreateLogFont, GpiQueryNumberSetIds, GpiSetBitmapld

152 GpiQueryStopDraw

• GpiQueryStopDraw
LONG GpiQueryStopDraw(hps)
HPS hps: I. presentation-space handle .1

Parameters

Return Value

Errors

See Also

• GpiQueryTag

The GpiQueryStopDraw function returns the state of the stop-draw condition.

hps Identifies the presentation space.

The return value is TRUE if the stop-draw condition is on or FALSE if it is not.
The return value is GPLALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPSYUNCTION

GpiSetStopDraw

BOOL GpiQueryTag(hps, plTag)
HPS hps: I. presentation-space handle .1
PLONG plTag: I. tag Identifier .1

Parameters

Return Value

Errors

See Also

The GpiQueryTag function retrieves the current value of the tag identifier, as set
by the GpiSetTag function. The function cannot be used in an open segment
when the drawing mode is D~ETAIN.

hps Identifies the presentation space.

plTag Points to the variable to receive the tag.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPSYUNCTION

GpiSetDrawingMode, GpiSetTag

GpiQueryTextBox 153

• GpiQueryTextBox
BOOl GpiQueryTextBox(hps. cchString. pchString. cpt!. apt!)
HPS hps; . /. presentation-space handle ./
lONG cchString; /. number of characters ./
PCH pchString; /. pointer to string ./
lONG cptl; /. number of points ./
PPOINTl apt!; /. pointer to array of point structures ./

Parameters

The GpiQueryTextBox function retrieves the text box and concatenation point
for the string pointed to by the pchString parameter. The text box is four points
specifying the parallelogram that, if drawn, encloses the given string when the
string is displayed on the device. The concatenation point is the point the cur­
rent position advances to after the string is drawn. All coordinates are relative to
the start point of the string-that is, the text box and concatenation point are
given as if the string were drawn at the world-space origin.

The GpiQueryTextBox function computes the text box and concatenation point
using the current character attributes. It then copies the computed points to the
array pointed to by the aptl parameter. In most cases, the function copies the
upper-left, lower-left, upper-right, and lower-right corners of the text box first,
followed by the concatenation point, but not all points need to be copied at all
times. The function uses the cptl parameter to determine how many of these
points to retrieve and copies only that number. .

Depending on the character attributes, the "upper-left" corner of the text box
may not seem so when the text box is actually drawn. For this reason, the func­
tion copies the coordinates of the text box to the array prior to applying charac­
ter attributes, such as base-line angle, that affect the orientation of the points.

The function cannot be used in an open segment when the drawing mode is
DMJETAIN.

hps Identifies the presentation space.

cchString Specifies the number of characters in the string pointed to by
pchString.

pchString Points to the character string.

cptl Specifies the number of points to retrieve. If it is TXTBOX-COUNT, the
function retrieves the maximum number of points for the text box.

aptl Points to the array of POINTL structures that receives a list of points.
The list of points contains the relative coordinates of the character box. The ele­
ments of the array are defined as follows:

Value

TXTBO}LTOPLEFf

TXTBO}LBOTTOMLEFf

TXTBO)LTOPRIGHT

TXTBO}LBOTTOMRIGHT

TXTBO}LCONCAT

Meaning

Upper-left corner

Lower-left corner

Upper-right corner

Lower-right corner

Concatenation point

154 GpiQueryTextBox

Return Value

Example

See Also

The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiQueryTextBox function to draw a line under the
string. The GpiCharString function draws the string at the point (100,100). Since
the points retrieved by GpiQueryTextBox are relative to the start of the string,
the starting point needs to be added to the points that are used to draw the
underline.

POINTL aptl[TXTBOX_COUNT];
POINTL ptl = { 100, 100 };

GpiQueryTextBox(hps, 11L, "This string", TXTBOX_COUNT, aptl);
aptl[l].x += ptl.x; .
aptl[l].y += ptl.y;
GpiMove(hps, &aptl[l]);
aptl[3].x += ptl.x;
aptl[3].y += ptl.y;
GpiLine(hps, &aptl[3]);
GpiMove(hps, &ptl);
GpiCharString(hps, 11L, "This string");

GpiCharStringAt, GpiSetDrawingMode

• GpiQueryViewingLimits
BOOl GpiQueryViewingLimits(hps, pre/Limits)
HPS hps; i. presentation-space handle ./
PRECTl pre/Limits; /. pointer to structure for viewing limits ./

Parameters

Return Value

See Also

The GpiQueryViewingLimits function retrieves the current value of the viewing
limits, as set by the GpiSetViewingLimits function. The function cannot be used
in an open segment when tpe drawing mode is DMJETAIN.

hps Identifies the presentation space.

prclLimits Points to the RECTL structure that receives the viewing limits. The
RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryClipBox, GpiQueryClipRegion, GpiQueryGraphicsField, GpiQuery­
ViewingLimits, GpiSetDrawingMode, GpiSet ViewingLimits

GpiQueryWidthTable 155

• G piQ ueryViewingTransformMatrix
BOOl GpiQueryViewingTransfonnMatrix(hps, cE/ements, pmatlf)
HPS hps; I. presentation-space handle .1
lONG cElements; I. number of elements .1
PMATRIXlF pmatlf; I. pointer to structure for transformation matrix.1

Parameters

Return Value

Errors

See Also

The GpiQueryViewingTransformMatrix function retrieves the current viewing­
transformation matrix.

hps Identifies the presentation space.

cElements Specifies the number of elements to retrieve. It must be an integer
in the range 0 through 9.

pmatlf Points to the MATRIXLF structure that receives the elements of the
viewing-transformation matrix. The MATRIXLF structure has the following
form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPSY-UNCTION

GpiSetViewingTransformMatrix

• GpiQueryWidthTable
BOOl GpiQueryWidthTable(hps, /FirstChar, c/Widths, a/Widths)
HPS hps; I. presentation-space handle *1
lONG /FirstChar, 1* code point of first character *1
lONG c/Widths; 1* number of elements *1
PlONG a/Widths; I. pointer to array for width table *1

The GpiQueryWidthTable function retrieves the widths of one or more charac­
ters in the current font. A character width is the distance (in world coordinates)
the system advances along the baseline after drawing the character. The function
copies the widths, starting with the width for the character specified by the
IFirstChar parameter, to the array pointed to by the alWidths parameter. The
function uses the clWidths parameter to determine how many widths to retrieve.

If the widths for all characters in the font are desired, the GpiQueryFontMetrics
function can be used to retrieve the number of characters in the font.

156 GpiQueryWidthTable

Parameters

Return Value

Errors

See Also

hps Identifies the presentation space.

lFirstChar Specifies the code point of the first character for which a width is
retrieved.

clWidths Specifies the number of widths to retrieve.

alWidths Points to the array that receives the character widths. The array
must have the number of elements specified by clWidths.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV YIRST_CHAR

GpiQueryFontMetrics

• GpiRealizeColorTable
BOOl GpiRealizeColorTable (hps)
HPS hps; /. presentation-space handle ./

Parameters

Return Value

Example

The GpiRealizeColorTable function realizes the logical color table. The function
realizes the color table by replacing the colors in the physical palette. It replaces
the physical palette colors with the device colors that most closely match the
RGB color values given in the logical color table.

To realize a logical color table, the application must create the table using the
LCOL-REALIZABLE option of the GpiCreateLogColorTable function and the
device must be capable of realizing logical color tables. The DevQueryCaps
function and CAPS_COLOR option can be used to determine if logical color
tables can be realized.

If the presentation space is currently associated with a screen window device,
this function should be used only when the associated window is maximized.
Changing the physical palette colors for the screen affects output for all visible
windows.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

This example uses the GpiRealizeColorTable function to realize the logical color
table. The GpiUnrealizeColorTable function is used to restore the physical
palette after the drawing is complete.

RGB argb[16]; /* RGB color values for new logical color table */

/* Create a realizable logical color table. */

GpiCreateLogColorTable(hps, LCOL_REALIZABLE, LCOLF_CONSECRGB,
OL, 16L, argb);

GpiRectVisible 157

GpiRealizeColorTable(hps) ; /* realizes the logical color table */

GpiUnrealizeColorTable(hps); /* restores the physical palette */

See Also DevQueryCaps, GpiUnrealizeColorTable

• GpiRectlnRegion
LONG GpiRectinRegion(hps, hrgn, pref)
HPS hps; 1* presentation-space handle *1
HRGN hrgn; 1* region handle *1
PRECTL pref; 1* pointer to rectangle structure *1

Parameters

Return Value

See Also

• GpiRectVisible

The GpiRectInRegion function checks whether any part of a rectangle lies within
the specified region. The function cannot be used if no device context is as~oci­
ated with the presentation space.

hps Identifies the presentation space.

hrgn Identifies the region.

prc1 Points to the RECTL structure that contains the rectangle to check. The
RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RRGN_OUTSIDE, RRGNJARTIAL, or RRGNJNSIDE
if the function is successful, or RRGN~RROR if an error occurred.

GpiPtInRegion

LONG GpiRectVisible (hps, pref)
HPS hps; 1* presentation-space handle *1
PRECTL pref; I. pointer to rectangle structure *1

Parameters

The GpiRectVisible function checks whether any part of a rectangle is visible on
the device associated with the specified presentation space. A point in the rect­
angle is visible if it lies withiD: the intersection of the current graphics field, view­
ing limit, clip path, clip region, and visible region (if any).

hps Identifies the presentation space.

prc1 Points to a RECTL structure that contains the rectangle in world coordi­
nates. The RECTL structure has the following form:

158 GpiRectVisible

Return Value

See Also

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is RVISJNVISIBLE, RVISYARTIAL, or RVIS_ VISIBLE if
the function is successful, or RVIS~RROR if an error occurred.

GpiPtVisible

• GpiRemoveDynamics
BOOL GpiRemoveDynamics(hps, idFirstSegment, idLastSegment)
HPS hps; 1* presentation-space handle *1
LONG idFirstSegment; 1* first segment identifier *1
LONG idLastSegment; I. last segment identifier *1

Parameters

Return Value

Errors

Comments

The GpiRemoveDynamics function removes from the display any images drawn
using dynamic segments. The function removes the image for any dynamic seg­
ment that is in the current picture chain and whose segment identifier is in the
range specified by the idFirstSegment and idLastSegment parameters. The func­
tion removes only the image drawn using the dynamic segment and by the
dynamic segment's segment calls.

The GpiRemoveDynamics function checks for the segments specified by idFirst­
Segment and idLastSegment. If they do not exist, or are not in the chain, or
idLastSegment is less than idFirstSegment, the function returns without removing
segments and without an error value.

hps Identifies the presentation space.

idFirstSegment Specifies the name of the first segment in the section. It must
be greater than zero.

idLastSegment Specifies the last segment in the section. It must be greater
than zero.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMER~REAJNCOMPLETE
PMERRJNV _MICROPSYUNCTION
P11ERRJNV _SEG_NAME
PMERRY ATIUNCOMPLETE

An application should remove dynamic segments before associating a new device
context with the presentation space.

Example

See Also

GpiResetPS 159

This example uses the GpiRemoveDynamics function to remove the image
drawn by the dynamic segment whose segment identifier is 4. It then edits the
segment and redraws it, using the GpiDrawDynamics function.

POINTL ptl = {30, 40};

/* Remove the image for dynamic segment #4. */

GpiRemoveDynamics(hps, 4L, 4L);

/* Edit the segment. */

GpiSetDrawingMode(DM_RETAIN) ;
GpiOpenSegment(hps, 4L);
GpiSetElementPointer(hps, lL);
GpiMove(hps, &ptl);
GpiCloseSegment(hps);

GpiDrawDynamics(hps) ; /* redraws the edited segment */

GpiCloseSegment, GpiDrawDynamics

• GpiResetBoundaryData
BOOl GpiResetBoundaryData(hps)
HPS hps; /* presentation-space handle */

Parameters

Return Value

Errors

See Also

• GpiResetPS

The GpiResetBoundaryData function resets the boundary data, copying the max­
imum boundary value to the lower corner and the minimum boundary value to
the upper corner of the boundary-data rectangle.

The function is only necessary when accumulating boundary date in DMJ)RA W
drawing mode. For other drawing modes, drawing functions automatically reset
the boundary data. (However, the GpiOpenSegment function does not reset the
boundary data.)

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MICROPSJUNCTION

GpiSetDrawControl

BOOl GpiResetPS(hps, flOption)
HPS hps; /* presentation-space handle */
UlONG f10ption; /* reset option */

The GpiResetPS function resets the presentation space. In general, resetting the
presentation space restores attributes to their default values-that is, the values
given to the attributes when the presentation space was created. The function
can reset the presentation space in three ways: as if a segment were closed; as if
the presentation space had just been created, but without deleting any resources;

160 GpiResetPS

Parameters

and as if the presentation space had just been created. It uses the flOption
parameter to determine how to reset the presentation space.

The GpiResetPS function does not draw or erase the device. It is up to the
application to erase the screen, if this is required. Also, the function does not
affect the association between the specified presentation space and a device con­
text.

hps Identifies the presentation space.

flOption Specifies the reset option. It can be one of the following:

Return Value

Errors

See Also

• GpiRestorePS

Value Meaning

Sets all current attributes to their default values,
the current model transform to unity, and the
current position to (0,0). The option also ends any
open path, area, or element brackets and closes
any open segment. Finally, it sets the current clip
path and viewing limits to their widest possible
values.

Resets as described for GRES_A TTRS, plus it
deletes all retained segments, clears any boundary
data, releases the clip region (if any), enables kern­
ing (if the device supports it), and sets the default
values for initial segment attributes, default viewing
transform, graphics field, drawing mode, draw con­
trols, edit mode, and attribute mode.

Resets as described for GRES_A TTRS and
GRES_SEGMENTS, plus it deletes any logical
fonts and local identifiers for bitmaps and sets the
logical color table to its default value.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~ESET_OPTIONS

GpiAssociate, GpiCreatePS

BOOl GpiRestorePS(hps, idPS)
HPS hps; I. presentation-space handle *1
lONG idPS; 1* identifier for the presentation space *1

The GpiRestorePS function restores the state· of the presentation space by pop­
ping the state from the presentation space (PS) stack. The function sets the attri­
butes and resources of the presentation space to the values that were saved pre­
viously by using the GpiSavePS function.

The PS stack, maintained internally by the system, can contain one or more
saved presentation spaces. Each saved presentation space has a unique identifier.
The GpiRestorePS function restores a specific presentation space if the idPS

Parameters

Return Value

Errors

Comments

See Also

GpiSaveMetaFile 161

parameter contains the corresponding identifier. The function also accepts nega­
tive identifiers. In this case, the function uses the absolute value of the identifier
to determine how many presentation spaces to pop from the PS stack. For exam­
ple, if it is - 2, the function pops two presentation spaces from the stack. In
either case, identifier or negative number, the function discards any presentation
spaces that are skipped over on the PS stack.

hps Identifies the presentation space.

idPS Specifies the identifier of the saved presentation space to restore, or a
negative number indicating the number of saved presentation spaces to pop. If it
is an identifier, it must have been returned previously by the GpiSavePS func­
tion. It must not be zero.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNVJD

The function can be used in an open segment only if the drawing mode is
DMJ)RAW. The function can also be used in an element, area, or path
bracket. If it is in an area or path bracket, the corresponding GpiSavePS func­
tion must have been called in the same bracket.

If an error occurs, the function leaves the PS stack and the current presentation
space unchanged.

GpiPop, GpiSavePS, GpiSetDrawingMode

• GpiSaveMetaFile
BOOl GpiSaveMetaFile(hmf, pszFilename)
HMF hmf; I. metafile handle .1
PSZ pszFilename; I. pOinter to filename .1

Parameters

Return Value

See Also

The GpiSaveMetaFile function saves a metafile to disk. The function deletes the
metafile from memory and invalidates the metafile handle. The application can
load the metafile by using the GpiLoadMetaFile function.

hmf Identifies the metafile.

pszFilename Points to a null-terminated string. This string must be a valid MS
OS/2 filename that specifies the path and filename of the file to receive the
metafile.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiLoadMetaFile, GpiPlayMetaFile

162 GpiSavePS

• GpiSavePS
lONG GpiSavePS(hps)
HPS hps; /. presentation-space handle ./

Parameters

Return Value

Comments

See Also

The GpiSavePS function saves the state of the presentation space on the
presentation-space (PS) stack. The PS stack is a last-in, first-out stack,
maintained by the system, on which an application can save one or more
presentation-space states. The function saves the state and returns a unique
identifier. The identifier can be used with the GpiRestorePS function to restore
the given state.

The GpiSavePS function saves the current position of the presentation space,
the viewing limits, all attributes, and transformation matrices. It also saves the
clip path, clip region, logical color table, and references to any loaded logical
fonts and the regions created on the associated device context. It does not save
the visible region. The function does not actually copy resources such as logical
fonts and regions to the PS stack. Instead, it copies a reference to the resource.
The application must ensure that the resources are available when these refer­
ences are restored.

hps Identifies the presentation space. If it identifies a micro presentation
space, the drawing mode must be DMJ)RAW.

The return value is an identifier of the saved presentation space if the function is
successful or GPLERROR if an error occurred. The identifier is equal to the
depth of the saved presentation space on the save/restore stack, with 1 as the
base level.

The function can be used in an open segment, but only if the drawing mode is
DMJ)RA W. It can also be used in an element bracket. When it occurs within
an open area or path bracket, then the corresponding call to the GpiRestorePS
function should take place before the bracket is closed. Although the function
can be used when creating a metafile, the drawing mode must be DMJ)RA W
when replaying the metafile.

The PS stack is not the same as the attribute stack (that is, the stack llsed to
save attributes when the attribute mode is AMJRESER VE).

GpiPop, GpiRestorePS, GpiSetDrawingMode

• GpiSetArcParams
BOOl GpiSetArcParams(hps, parcp)
HPS hps; /. presentation-space handle ./
PARCPARAMS parcp; /. painter to structure for arc parameters./

The GpiSetArcParams function sets the current arc parameters. The arc param­
eters define the shape and orientation of the ellipse used by the GpiPointArc,
GpiFullArc, and GpiPartialArc functions to construct arcs.

The arc parameters define a four-element transformation that maps the unit cir~
cle to the ellipse. The transformation has the form:

x' = IP X x + IR X Y
y' = IS X x + IQ X Y

Parameters

Return Value

Comments

See Also

GpiSetAttrMode 163

In the transformation, IP, IR, IS, and IQ are the fields of the structure pointed to
by the parcp parameter. The IP and IQ fields determine the width and height of
ellipse, and the IS and IR fields determine the shear of the ellipse.

The fields also determine the direction of drawing for arcs drawn using the Gpi­
FullArc and GpiPartialArc functions. If IP X IQ is greater than IR X IS, the
direction is counterclockwise. If IP X IQ is less than IR X IS, the direction is
clockwise. If IP X IQ is equal to IR X IS, a straight line is drawn.

If the attribute mode is AMYRESER VE, the function saves the previous arc
parameters on the attribute stack when it sets the new parameters. The previous
arc parameters can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

parcp Points to an ARCPARAMS structure that contains the arc parameters.
The ARCPARAMS structure has the following form:

typedef struct _ARCPARAMS {
LONG lP;
LONG lQ;
LONG lR;
LONG is;

} ARCPARAMS;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Although the arc parameters define the shape and orientation of arcs drawn by
the GpiPointArc, GpiFullArc, and GpiPartialArc functions, the functions define
the center point and the size of each arc. The GpiFullArc and GpiPartialArc
functions use an explicit center point and a multiplier to scale the ellipse to a
desired size. The GpiPointArc function computes the center point and size of
the final ellipse so that it fits the given points.

Orthogonal transformation provides the most accurate arcs. A transformation is
orthogonal if IP X IR plus IS X IQ equals zero. By default, the arc parameters
are as follows:

IP = 1
IS = 0

IR = 0
IQ = 1

These values produce a unit circle.

Arc-parameter transformation takes place in world coordinates. Any other
transformations in force will change the shape of the figure accordingly.

GpiFullArc, GpiPartialArc, GpiPointArc, GpiQueryArcParams

• GpiSetAttrMode
BOOl GpiSetAttrMode(hps, cmdMode)
HPS hps; /. presentation-space handle ./
lONG cmdMode; /. attribute mode ./

The GpiSetAttrMode function sets the current attribute mode. If the attribute
mode is A~PRESERVE, the system saves the old value of a primitive attribute
whenever the attribute is changed to a new value. The saved value of an &ttribute

164 GpiSetAttrMode

Parameters

Return Value

Errors

Comments

See Also

• GpiSetAttrs

can be restored by using the GpiPop function. Any attributes that have been
saved in a called segment are automatically restored on return to the caller.

hps Identifies the presentation space.

cmdMode Specifies the attribute mode. It can be one of the following values:
Value

A1LPRESERVE

A1LNOPRESERVE

Meaning

Preserve attributes.

Do not preserve attributes.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV~TT~ODE
PMERRJNV ~ICROPSYUNCTION

The attribute mode is an API mode, meaning it does not affect attribute-setting
functions that have been stored in a segment. The mode used for functions
stored in a segment is the mode in effect when the function was stored. This is
also true for any attribute-setting functions that are part of the graphics-order
data in a GpiPutData, GpiElement, or GpiPlayMetaFile function.

GpiElement, GpiPlayMetaFile, GpiPop, GpiPutData, GpiSetAttrs, GpiSetColor

BOOl GpiSetAttrs(hps. f1PrimType. f1AttrsMask. f1DefsMask. pbunAttrs)
HPS hps; I. presentation-space handle .1
lONG f1PrimType; I. primitive type .1
UlONG f1AttrsMask; I. attribute mask .1

. UlONG f1DefsMask; I. defaults mask .1
PBUNDlE pbunAttrs; I. pointer to structure for attributes .1

Parameters

The GpiSetAttrs function sets attributes for the specified primitive type. The
function uses the ftPrimType parameter to determine the type of primitive attri­
bute to set, then uses the ftAttrsMask parameter to determine which attributes to
set for that primitive. If the ftDefsMask parameter specifies an attribute that is
also specified by ftAttrsMask, the function sets the attribute to its default value.
Otherwise, the function uses the value found in the appropriate field of the
buffer pointed to by pbunAttrs.

The GpiSetAttrs function does not accept default values in the buffer fields. To
set an attribute to its default value, both the ftAttrsMask and ftDefsMask param­
eters must specify the attribute. Any attribute not specified by ftAttrsMask
remains unchanged, regardless of the ftDefsMask setting. If the attribute mode is
AMJ>RESERVE (as set by the GpiSetAttrMode function), the system saves the
previous valu~ of each attribute that is changed.

hps Identifies the presentation space.

jiPrim Type Specifies which primitive type to set attributes for. It can be one
of the following values:

Value

PRIM.-AREA

PRIM.-CHAR

PRIM.-IMAGE

Meaning

Area primitives

Character primitives

Image primitives

GpiSetAttrs 165

PRIM.-LINE Line and arc primitives

PRIM.-MARKER Marker primitives

flAttrsMask Specifies which attributes to set. The values for this parameter
depend on the primitive type specified by flPrimType. It can be any combination
of the following values for a specific type:

Type

PRIM.-AREA

PRIM.-CHAR

PRIM.-IMAGE

PRIM.-LINE

PRIM.-MARKER

Values

ABB_COLOR, ABB_BACK_COLOR,
ABB_MDCMODE, ABB_BACK_MIX-MODE,
ABB_SET, ABB_SYMBOL,
ABB_REF _POINT

CBB_COLOR, CBB_BACK_COLOR,
CBB_MIX-MODE, CBB_BACK_MIX-MODE,
CBB_SET, CBB_MODE, CBB_BOX,
CBB_ANGLE, CBB_SHEAR,
CBB_DIRECTION

IBB_COLOR, IBB_BACK_COLOR,
IBB_MIX-MODE, IBB_BACK_MIX-MODE

LBB_COLOR, LBB_MIX-MODE,
LBB_ WIDTH, LBB_GEOM.-WIDTH,
LBB_TYPE, LBB_END, LBB_JOIN

MBB_COLOR, MBB_BACK_COLOR,
MBB_MIX-MODE,
MBBJ3ACK_MIX-MODE, MBB_SET,
MBB_SYMBOL, MBB_BOX

If this parameter is zero, no attributes are set, regardless of the value of the
flDefsMask and pbunAttrs parameters.

flDefsMask Specifies which attributes to set to default values. The values for
this parameter depend on the primitive type specified by flPrim Type. Although it
can be any combination of the values specified for the flAttrsMask parameter,
only the attributes that are also specified by flAttrsMask are set.

pbunAttrs Points to a buffer that contains attribute values for each attribute
specified by flAttrsMask and not also specified by flDefsMask. The buffer format
depends on the primitive type specified by flPrim Type. The following structures
can be used for the specified primitive types:

Type Structure

PRIM.-AREA

PRIM.-CHAR

PRIM.-IMAGE

PRIM.-LINE

PRIM.-MARKER

AREABUNDLE

CHARBUNDLE

Il\fAGEBUNDLE

LINEBUNDLE

MARKERBUNDLE

166 GpiSetAttrs

Return Value

Errors

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV .J3ACKGROUND.-MDCA TTR
PMERRJNV_CHAR-ANGLE~TTR
PMERRJNV _CHAR.J)IRECTION~ TTR
PMERRJNV_CHAR.-MODE~TTR
PMERRJNV _CHA~SET~TTR
PMERRJNV~CHA~SHEAR-ATTR
PMERRJNV_COLOR-ATTR
PMERRJNV _GEOM~INE_ WIDT~ TTR
PMERRJNV ~INE~ND~TTR
PMERRJNV -LINEJOIN~TTR
PMERRJNV -LINE_TYPE~TTR
PMERRJNV -LINE_ WIDT~TTR
PMERRJNV.-MARKER.J30~TTR
PMERRJNV.-MARKE~SET~TTR
PMERRJNV .-MI~TTR
PMERRJNV~ATTERN~TTR
PMERRJNV~ATTERN_SET~TTR
PMERRJNV ~RIMITIVE_TYPE

GpiQueryAttrs, GpiSetBackMix, GpiSetCharAngle, GpiSetCharBox,
GpiSetColor, GpiSetCp, GpiSetLineType, GpiSetLine Width, GpiSetMarker­
Box, GpiSetMarkerSet, GpiSetMix, GpiSetPattem, GpiSetPatternRelPoint,
GpiSetPattemSet

• GpiSetBackColor
BOOl GpiSetBackColor(hps, clf)
HPS hps; /* presentation-space handle */

lONG clr; /* background color */

Parameters

The GpiSetBackColor function sets the current background color for all primi­
tive types. The background color specifies the color used to fill the background
of the primitive, such as the gaps between dashes in a styled line. The function
sets the background color to the color specified by clr. The clr parameter is
either an RGB color value or a color-index value, depending on the current logi­
cal color table. The actual color the clr parameter represents also depends on
the current logical color table.

If the attribute mode is A~RESERVE, the function saves the previous back­
ground color on the attribute stack when it sets the new color. The previous
background color can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

elr Specifies the color. The values depend on the current logical color table. If
the logical color table has been created using the LCOLF ~GB constant, the
values must be RGB color values. Otherwise, the values must be color-index

Return Value

Errors

Comments

See Also

• GpiSetBackMix

GpiSetBackMix 167

values. If the default logical color table is used, the parameter can be anyone of
the following standard color-index values:

Value

CLR_FALSE

CLR_TRUE

CLR_DEFAULT

CLR_WHITE

CLR_BLACK

CLR_BACKGROUND

CLR_BLUE

CLR_RED

CLR_PINK

CLR_GREEN

CLR_CYAN

CLR_YELLOW

CLR_NEUTRAL

Meaning

All color planes are zero.

All color planes are 1.

Set to default value; same as zero.

White.

Black.

Reset color (used by the GplErase function).

Blue.

Red.

Pink.

Green.

Cyan.

Yellow.

Neutral.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV-BACKGROUND_COL~TTR

The functions that draw primitives use the background-mix mode to combine the
background color with colors already on the display surface. If the background­
mix mode is BMJ.EA VEALONE, the background color is ignored and existing
colors remain unchanged.

GpiCreateLogColorTable, GpiErase, GpiPop, GpiSetBackMix

BOOl GpiSetBackMix(hps. IMixMode)
HPS hps; /. presentation-space handle ./
lONG IMixMode: /. background-mix mode ./

The GpiSetBackMix function sets the current background-mix mode for all
primitive types. The background-mix mode specifies how the background color is
combined with colors in underlying primitives. The available background-mix
modes depend on the device associated with the presentation space, but all
devices support the BMJ.EA VEALONE and B1LOVERPAINT mix modes.
If the mix mode specified by lMixMode is not supported, the function uses
FMJ.EA VEALONE instead. The DevQueryCaps function can be used to
determine which mix modes are supported.

If the attribute mode is AMYRESER VE, the function saves the previous
background-mix mode on the attribute stack when it sets the new mode. The
previous background-mix mode can be retrieved by using the GpiPop function.

168 GpiSetBackMix

Parameters

Return Value

Errors

Comments

See Also

• GpiSetBitmap

hps Identifies the presentation space.

lMixMode Specifies the background-mix mode. It can be one of the following
values:

Value

BMJ)EFAULT

B~LEAVEALONE

B~OR

B~OVERPAINT

B~XOR

Meaning

The default value (B~LEA VEALONE).

The background color is ignored. The existing
color remains unchanged.

The individual pel colors are combined using the
OR operator.

The background color replaces the existing color.

The individual pel colors are combined using the
XOR operator.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV J3ACKGROUND~DCATIR

The background-mix mode is used when drawing areas, images, markers, and
characters. For areas and images, the mix mode applies to pels that are not set
by the shading pattern. For markers, the mix mode applies to pels not set by the
marker pattern. For characters, the mix mode applies to pels not set by the
character pattern.

DevQueryCaps, GpiPop, GpiSetBackColor

HBITMAP GpiSetBitmap(hps, hbm)
HPS hps; 1* presentation-space handle *1
HBITMAP hbm; 1* bitmap handle *1

Parameters

The GpiSetBitmap function sets a bitmap as the current bitmap in a memory
device context. The function sets the bitmap specified by hbm. This bitmap must
not be set for any other device context and must not be set for area shading. If
another bitmap is already set in the device context, the function releases the old
bitmap and returns its handle.

The specified presentation space must be currently associated with a memory
device context. If the bitmap format is not the same as the device context, the
bitmap format must be convertible to one supported by the device. This is
guaranteed if the bitmap has one of the standard formats.

hps Identifies the presentation space.

hbm Identifies the bitmap to set. If it is NULL, the function releases the bit­
map currently set in the associated device.

Return Value

See Also

GpiSetBitmapBits 169

The return value is the old bitmap handle, NULL for a null handle, or
HBM-ERROR if an error occurred.

DevOpenDC, GpiCreateBitmap, GpiLoadBitmap, GpiSetBitmapId

• GpiSetBitmapBits
LONG GpiSetBitmapBits(hps, iScanStart, cScans, pbBuffer, pbmi)
HPS hps; /. presentation-space handle ./

LONG iScanStart; /. index of first scan line ./
LONG cScans; /. number of scan lines ./
PBYTE pbBuffer; /. pointer to buffer with bitmap data ./
PBITMAPINFO pbmi; /. pOinter to structure with bitmap header table ./

Parameters

Return Value

The GpiSetBitmapBits function copies image data to a bitmap from the buffer
pointed to by pbBuffer. The function copies the image data to the bitmap
currently set for the presentation space. The presentation space must be associ­
ated with a memory device context.

To copy the image data, the function needs the width and height of the bitmap,
the count of planes and adjacent color bits, and the array of RGB color values
for the bitmap pels. These values must be specified in the fields of the structure
pointed to by pbmi. An application must make sure there is sufficient space in
the structure to hold all elements of the array of RGB color values. The number
of elements in the array depends on the format of the bitmap.

The buffer holding the image data must have sufficient image data to set all pels
in the bitmap. The number of bytes for the buffer is equal to the number of scan
lines to be copied, multiplied by the width of the bitmap in bytes (multiplied by
the number of adjacent color bits and rounded up to the next multiple of 4),
multiplied by the number of color planes. If the bitmap width (in bytes) is not an
exact multiple of 4, the function discards any extra bits. If the format of the bit­
map does not match the device format, the function converts the bitmap. The
function can convert standard formats only.

hps Identifies the presentation space.

iScanStart Specifies the number of the first scan line to copy to the buffer. If
it is zero, the function copies the first scan line in the bitmap.

cScans Specifies the number of scan lines to copy.

pbBuffer Points to the buffer that contains the image data for the bitmap.

pbmi Points to the BITMAPINFO structure that contains the bitmap informa­
tion table. The BITMAP INFO structure has the following form:

typedef struet _BITMAPINFO {
ULONG ebFix;
USHORT ex;
USHORT ey;
USHORT cPlanes;
USHORT cBitCount;
RGB argbColor[l];

} BITMAPINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the number of scan lines set, or GPLALTERROR if an
error occurred.

170 GpiSetBitmapBits

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

See Also

PMERRJNV -.DC_TYPE
PMERRJNV JNFO_TABLE

GpiAssociate, GpiCreateBitmap, GpiLoadBitmap

GpiSetBitmapDimension
BOOl GpiSetBitmapDimension(hbm. psizlBitmap)
HBITMAP hbm; I. bitmap handle .1
PSIZEl psizlBitmap; I. pOinter to structure with size of bitmap .1

Parameters

Return Value

See Also

I GpiSetBitmapld

The GpiSetBitmapDimension function sets the width and height of a bitmap (in
0.1 millimeter units). Although the system does not use the values set by this
function, an application can retrieve the values by using the GpiQueryBitmap­
Dimension function.

hbm Identifies the bitmap to be set.

psizlBitmap Points to the SIZEL structure that contains the width and height
of the bitmap, in 0.1 millimeter units. The SIZEL structure has the following
form:

typedef struet _S~ZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiCreateBitmap, GpiQueryBitmapDimension, GpiQueryBitmapParameters

BOOl GpiSetBitmapld (hps. hbm. Icid)
HPS hps; I. presentation-space handle .1
HBITMAP hbm; I. bitmap handle .1
lONG Icid; I. local identifier .1

Parameters

The GpiSetBitinapld function tags the bitmap with the local identifier specified
by lcid. The tagged bitmap can subsequently be used for area shading by specify­
ing the local identifier in a call to the GpiSetPatternSet function. The bitmap
must have a format supported by the device associated with the presentation
space, and it must not be set in any other device.

The GpiDeleteSetId function can subsequently be used to release the identifier.

hps
hbm

Identifies the presentation space.

Identifies the bitmap to tag.

Return Value

See Also

GpiSetCharAngle 171

lcid Specifies the local identifier for the bitmap. It can be any integer in the
range 1 through 254 that has not already been used as a bitmap tag or local
identifier for a logical font.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiBitBlt, GpiDeleteSetId, GpiSetBitmap, GpiSetPatternSet

• GpiSetCharAngle
BOOl GpiSetCharAngle (hps, pgradlAngle)
HPS hps; f. presentation-space handle .f
PGRADIENTL pgradlAngle; /. pointer to structure with baseline angle ./

,
Parameters

Return Value

Errors

Comments

The GpiSetCharAngle function sets the character angle; The character angle
specifies the angle at which characters are drawn, relative to the x-axis. The
function uses the point specified by the pgradlAngZe parameter to compute the
character angle. Any characters drawn are set on a baseline that is parallel to a
line drawn through the specified point and the origin.

If the attribute mode is AMYRESERVE, the function saves the previous char­
acter angle on the attribute stack when it sets the new angle. The previous char­
acter angle can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

pgradlAngle Points to the GRADIENTL structure that contains a point that
defines the character angle. If both fields in the structure are zero, the function
sets the character angle to the default value. The GRADIENTL structure has the
following form:

typedef struct _GRADIENTL {
LONG x;
LONG y;

} GRADIENTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV_CHAR-ANGLE-ATTR

The character angle is used only when the character mode is C~ODE2 or
C~ODE3, as set by the GpiSetCharMode function. In C~ODE2, the
system uses the character angle to compute the position of each character along
the baseline. However, when the system draws a character, it places only the
lower-left corner of the character box at the computed position. The orientation
of the character box remains relative to the x-axis instead of the baseline. In
C~ODE3, the character boxes are rotated to be perpendicular to the charac­
ter baseline. If the world-coordinate system is such that one x-axis unit is not

172 GpiSetCharAngle

See Also

• GpiSetCharBox

physically equal to one y-axis unit, a rotated character string appears to be
sheared.

GpiQueryCharAngle, GpiSetAttrMode, GpiSetAttrs, GpiSetCharMode

BOOl GpiSetCharBox(hps, psizfxBox)
HPS hps; I. presentation-space handle .1
PSIZEF psizfxBox; I. pointer to structure with character-box size .1

Parameters

Return Value

See Also

The GpiSetCharBox function sets the current character-box attribute to the
specified value. The character-box attribute specifies the width and height of the
character box. The character box determines the spacing of consecutive charac­
ters along the baseline and the orientation of characters relative to the baseline.

Both width and height can be positive, negative, or zero. When either value is
negative, the spacing occurs in the opposite direction to normal and each char­
acter is drawn reflected in character-mode 3. For example, a negative height in
the standard direction in mode 3 means that the characters are drawn upside
down and the string is drawn below the baseline (assuming no other transforma­
tions cause inversion). A zero character width or height is also valid; in this
case, the string of characters collapses into a line. If both values are zero, the
string is drawn as a single point.

If the attribute mode is AMYRESER VB, the function saves the previous
character-box attribute on the attribute stack when it sets the new character box.
The previous character-box attribute can be retrieved by using the GpiPop func­
tion.

hps Identifies the presentation space.

psizJxBox Points to a SIZEF structure that contains the width and height of
the character box in world coordinates. The SIZEF structure has the following
form:

typedef struet _SIZEF {
FIXED ex;
FIXED ey;

} SIZEF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryCharBox, GpiSetAttrMode, GpiSetAttrs

• GpiSetCharDirection
BOOl GpiSetCharDirection(hps, flDirection)
HPS hps; I. presentation-space handle .1
lONG flDirection; I. character direction .1

The GpiSetCharDirection function sets the character direction for drawing char­
acters. The character direction specifies the direction to advance after drawing a
character, relative to the baseline.

Parameters

Return Value

Errors

See Also

GpiSetCharMode 173

If the attribute mode is AM.JlRESER VE, the function saves the previous char­
acter direction on the attribute stack when it sets the new direction. The previ­
ous character direction can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

ftDirection Specifies the character direction. If it is CHDIRNJ..,EFfRIGHT,
the character direction is from left to right. If it is CHDIRNJ)EFAULT, the
function sets the default character direction. The default is from left to right.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _CHARJ)IRECTION-A TTR

GpiQueryCharDirection, GpiSetAttrMode, GpiSetAttrs

• GpiSetCharMode
BOOl GpiSetCharMode(hps, flMode)
HPS hps; /. presentation-space handle ./
lONG flMode; /. character mode ./

Parameters

The GpiSetCharMode function sets the character mode. The character mode
specifies which character attributes to use when drawing characters.

If the attribute mode is AM.JlRESERVE, the function saves the previous char­
acter mode on the attribute stack when it sets the new mode. The previous char­
acter mode can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

ftMode Specifies the character mode. It can be one of the following values:
Value Meaning

CMJ)EFAULT Use the default.

C~MODEl Use an image font, as determined by the character-set attri­
bute. The positioning of characters is influenced only by the
character-direction attribute; other character attributes are
ignored.

C~MODE2 Use an image font, as determined by the character-set attri­
bute. The character box, character angle, character direc­
tion, character shear, character spacing, character extra,
and character break extra values are taken into considera­
tion for positioning successive characters. Individual charac­
ter definitions are not scaled or rotated.

C~MODE3 Use a vector font, as determined by the character-set attri­
bute. All character attributes are followed exactly for posi­
tioning individual characters, scaling, rotating, and shear­
ing.

If the specified mode is not valid, the default is used.

174 GpiSetCharMode

Return Value

Errors

See Also

• GpiSetCharSet

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV_CHA~ODE~TTR

GpiQueryAttrMode, GpiSetAttrMode

BOOl GpiSetCharSet(hps,lcid)
HPS hps; 1* presentation-space handle *1
lONG Icid; 1* local identifier *1

Parameters

Return Value

Errors

See Also

The GpiSetCharSet function sets the current value of the character-set attribute.
The character-set attribute specifies the logical font to use for drawing character
strings. The logical font, specified by the lcid parameter, must have be~n previ­
ously created using the GpiCreateLogFont function.

If the attribute mode is A~RESERVE, the function saves the previous char­
acter set on the attribute stack when it sets the new character set. The previous
character set can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

lcid Specifies the local identifier for a logical font. It can be any value in the
range 1 through 254 that has been previously set as a local identifier for a logical
font. If it is zero, the function sets the character-set attribute to the default char­
acter set.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _CHA~SET~TTR

GpiQueryCharSet, GpiSetAttrMode, GpiSetAttrs

• G piSetCharShear
BOOl GpiSetCharShear(hps, pptlShear)
HPS hps; 1* presentation-space handle *1
PPOINTl pptlShear, 1* pointer to structure with shear angle *1

The GpiSetCharShear function sets the character-shear attribute. The character
shear specifies how much to shear (tilt) characters from their normal vertical
orientation. The function uses the coordinates of the point specified by pptlShear
as the end point of a line originating at (0,0). The vertical strokes in subsequent
character strings are drawn parallel to the line. The top of the character box
remains parallel to the character baseline.

Parameters

Return Value

Errors

See Also

• GpiSetClipPath

GpiSetClipPath 175

The system draws upright characters if pptlShear specifies the point (0,1). This is
the default character-shear attribute. If coordinates in the point are both positive
or both negative, the characters slope from bottom-left to top-right. If the coor­
dinates have opposite signs (one is positive and one is negative), the characters
slope from top-left to bottom-right. Zero should not be used for the y-coordinate
since it implies an infinite shear. However, if both coordinates are zero, the .
attribute is set to the default value.

If the attribute mode is AMJ>RESER VE, the function saves the previous
character-shear attribute on the attribute stack when it sets the new character
shear. The previous character-shear attribute can be retrieved by using the Gpi­
Pop function.

hps Identifies the presentation space.

pptlShear Points to a POINTL structure that contains a point that defines the
character shear. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;
I

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV_CHA~SHEAR-ATTR

GpiQueryCharShear, GpiSetAttrMode, GpiSetAttrs

BOOl GpiSetClipPath(hps. idPath. cmdOptions)
HPS hps; 1* presentation-space handle *1
lONG idPath; I. clip path identifier .1
lONG cmdOptions; 1* options *1

Parameters

The GpiSetClipPath function sets the clip path. The clip path specifies a path in
device space that the system uses to clip output. The clip path includes all points
inside and on the boundary of the path specified by idPath. Since the path coor­
dinates are assumed to be device coordinates, no conversion is applied.

The function creates the clip path by closing any open figures. It then releases
any existing clip path (deleting the previous path, if any), and sets the specified
path as the clip path. After a path is set as the clip path, it cannot be used
again. However, its identifier is free to use for another path.

hps Identifies the presentation space.

idPath Specifies the identifier of the path to set to the clip path. It can be 1 to
specify a path or zero to specify no clip path.

176 GpiSetClip~ath

Return Value

Errors

Comments

See Also

cmdOptions Specifies the filling and combining modes. It can be one or two
of the following values:

Value Meaning

SCP_ALTERNATE Computes the interior of the clip path, using alternate
mode. This is the default if neither SCP _ALTERN A TE
nor SCP _WINDING is given.

SCP _AND Intersects the specified path with the current clip path.
This value must be specified if the idPath parameter is 1.

SCP _RESET Resets the clip path, releasing the current clip path if
any. This value must be specified if the idPath parameter
is O. This is the default if neither SCP _AND nor
SCP _RESET is given.

SCP _WINDING Computes the interior of the clip path, using winding
mode.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV J> ATHJD
PMERRYATHLUNKNOWN

Unless the segments in the picture chain have the fast-chaining attribute, the sys­
tem releases the clip path when it draws each segment. Also, the GpiResetPS
function releases the current clip path.

GpiBeginArea, GpiQueryClipBox, GpiResetPS

• GpiSetClipRegion
LONG GpiSetClipRegion(hps. hrgn. phrgn)
HPS hps; 1* presentation-space handle *1
HRGN hrgn; 1* region handle *1
PHRGN phrgn; 1* pointer to variable for previous region handle *1

Parameters

The GpiSetClipRegion function sets the clip region. The clip region specifies a
region in device space that the system uses to clip output. The clip region
includes all points inside and on the boundary of the region specified by hrgn.
Since the region coordinates are assumed to be device coordinates, no conver­
sion is applied.

The" function creates the clip region by releasing the previous clip region, copy­
ing the handle of this region to the variable pointed to by phrgn, and setting the
specified region as the clip region. Once a region is set as the clip region, it can­
not be used in subsequent region operations. Once released from the clipping
region, a region can be used again to restore the previous clip region.

hps Identifies the presentation space. The presentation space must be cur­
rently associated with the device context for which the specified regions were
created.

hrgn Identifies the region. If the hrgn parameter is NULL, the function
releases any previous clip region and sets no clip region.

Return Value

See Also

• GpiSetColor

GpiSetColor 177

phrgn Points to the variable that receives the handle of the previous region. If
no previous clip region exists, the function copies NULL to the variable.

The return value is RGN_NULL, RGN~ECT, or RGN_COMPLEX if the
function is successful, or RGN-ERROR if an error occurred.

GpiCreateRegion, GpiOffsetClipRegion

BOOl GpiSetColor(hps. elf)
HPS hps; 1* presentation-space handle *1
lONG elr, 1* color value .1

Parameters

The GpiSetColor function sets the current foreground color for all primitive
types. The foreground color specifies the color used to draw the foreground of
the primitive, such as the dashes in a styled line or the diagonal bars in a diago­
nal shading pattern. The function sets the foreground color to the color specified
by clr. The clr parameter is either an RGB color value or a color index value,
depending on the current logical color table. The actual color the clr parameter
represents also depends on the current logical color table.

If the attribute mode is A~RESER VE, the function saves the previous fore­
ground color on the attribute stack when it sets the new color. The previous
foreground color can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

dr Specifies the color. The values depend on the current logical color table. If
the logical color table has been created using the LCOLF ~GB, the values must
be RGB color values. Otherwise, the values must be color-index values. If the
default logical color table is used, the parameter can be anyone of the following
standard color-index values:

Value

CLR_FALSE

CLR_TRUE

CLILDEFAULT

CLR_WHITE

CLR_BLACK

CLR_BACKGROUND

CLRJJLUE

CLR_RED

CLR_PINK

CLR_GREEN

CLR_CYAN

CLR_YELLOW

CLR_NEUTRAL

CLR_DARKGRAY

CLR_DARKBLUE

Meaning

All color planes are zeros.

All color planes are ones.

Default value; same as CLILNEUTRAL.

White.

Black.

Reset color (used by the GplErase function).

Blue.

Red.

Pink.

Green.

Cyan.

Yellow.

Neutral.

Dark gray.

Dark blue.

178 GpiSetColor

Return Value

Errors

Comments

See Also

• GpiSetCp

Value

CLR_DARKRED

CLR_DARKPINK

CLR_DARKGREEN

CLR_DARKCY AN

CLR_BROWN

CLR_PALEGRA Y

Meaning

Dark red.

Dark pink.

Dark green.

Dark cyan.

Brown.

Light gray.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV_COLOR-ATTR

The CLRJ3ACKGROUND color for the default logical color table is the
natural background color for the device (for example, the paper color for a
printer). For the display, the CLRJ3ACKGROUND color is the default window
color as set by the WinSetSysColors function. The CLR-NEUTRAL color for
the default logical color table is a device-dependent color that provides a con­
trasting color to CLR,J3ACKGROUND (for example, it is the ink color for a
one-color printer). For the display, it is the default window-text color.

GpiErase, GpiPop, GpiQueryAttrs, GpiQueryColor, GpiSetAttrMode,
GpiSetAttrs, GpiSetMix WinSetSysColors

BOOl GpiSetCp(hps, idcp)
HPS hps; I. presentation-space handle .1
USHORT idcp; I. code-page identifier .1

Parameters

Return Value

Errors

See Also

The GpiSetCp function selects the code-page identifier to be used for graphics
characters for the default character set.

When a presentation space is first created, the code page used is the one defined
by the process code page, as set by the DosSetProcCp function.

hps Identifies the presentation space.

idcp Specifies the code-page identifier. The WinQueryCpList function can be
used to find which code pages are available.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following: .

PMERRJNV_CODEPAGE

DosSetProcCp, GpiQueryCp, WinQueryCpList

,

GpiSetDefaultViewMatrix 179

• GpiSetCurrentPosition
BOOl GpiSetCurrentPosition(hps, pptl)
HPS hps; /. presentation-space handle */

PPOINTl pptl; /* pointer to structure with new position */

Parameters

Return Value

See Also

The GpiSetCurrentPosition function sets the current position to the specified
point. When used in an area bracket, the function closes the current open figure
(if any) and marks the start of a new figure.

This function is equivalent to the GpiMove function, except that, if the current
attribute mode is AMJlRESERVE (see the GpiSetAttrMode function), the
function saves the current position before setting it to the new value. It can be
restored by using the GpiPop function.

hps Identifies the presentation space.

pptl Points to the POINTL structure that contains the new value of the current
position. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiMove, GpiPop, GpiQueryCurrentPosition, GpiSetAttrMode

• GpiSetDefaultViewMatrix
BOOl GpiSetDefaultViewMatrix(hps, cElements, pmatlf, flType)
HPS hps; /* presentation-space handle */
lONG cElements;
PMATRIXlF pmatlf;
lONG flType;

Parameters·

/* number of elements */

/* pointer to structure with transform matrix */

/* transformation type */

The GpiSetDefaultViewMatrix function sets the default viewing transformation.
The function sets the transformation by adding or replacing the existing transfor­
mation matrix with the matrix pointed to by the pmatlf parameter. The function
adds, preempts, or replaces the existing transformation matrix as specified by
the jiType parameter.

The GpiSetDefaultViewMatrix function requires a nine-element matrix to set the
default viewing transformation. If the specified matrix does not contain nine ele­
ments, the function uses the corresponding elements of the identity matrix for
each unspecified element. The cElements parameter specifies the number of ele­
ments in the matrix. If this parameter equals zero, the identity matrix is used.

hps Identifies the presentation space.

cElements Specifies the number of elements in the matrix to set. It can be
any integer in the range 0 to 9.

pmatlf Points to a MATRIXLF structure that contains the transformation
matrix. The MATRIXLF structure has the following form:

180 GpiSetDefaultViewMatrix

Return Value

Errors

See Also

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M3l;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

jlType Specifies how a specified transformation matrix should be used to
modify the default viewing transformation. It can be one of the following values:

Value

TRANSFOR~ADD

TRANSFOR~PREEMPT

TRANSFORMLREPLACE

Meaning

Additive. The specified transformation matrix
is combined with the existing default viewing
transformation, in the order of the existing
transformation first, the new transformation
second. This option is useful for incremental
updates to transformations.

Preemptive. The specified transformation
matrix is combined with the existing default
viewing transformation, in the order of the
new transformation first, the existing transfor­
mation second.

New/replace. The previous default viewing
transformation is discarded and replaced by
the specified transformation matrix.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred. '

Use the WinGetLastError function to retrieve the error value, which may be the
following: .

PMERRJNV_TRANSFORMLTYPE

GpiQueryDefaultViewMatrix

• GpiSetDrawControl
BOOL GpiSetDrawControl(hps, IControl, f1Draw)
HPS hps; /* presentation-space handle ./

LONG IControl; /. draw control to change ./

LONG f1Draw; /. drawing flag ./

The GpiSetDrawControl function sets the current draw controls. The draw con­
trols specify whether the system carries out certain actions, such as accumulating
boundary data, when the application draws. The function sets the draw control
specified by the lControl parameter by turning it on or off as specified by the
flDraw parameter. By default, all draw controls except DCTLJ)ISPLAY are
off.

Parameters

GpiSetDrawControl 181

The function cannot be used in an open segment or in an area, path, or element
bracket.

hps Identifies the presentation space.

IControl Specifies the draw control to set. It can be one of the following
values:

Value

DCTL_BOUNDARY

DCTL_CORRELATE

DCTL~YNAMIC

Meaning

Accumulate boundary data. During any out­
put operations except GplErase, accumulate
the bounding rectangle of the drawing. This
control can be used with a micro presentation
space.

Correlate the GplPutData, GplElement, and
primitive functions. This control causes these
functions to return GPLHITS if the drawing
intersects with the pick aperture. This con­
trol applies only to drawing functions used
when the drawing mode is D1LDRA W or
D1LDRAWANDRETAIN. Also, it does not
effect execution of functions stored in a seg­
ment. This control can be used with a micro
presentation space.

Allow drawing to occur on the device. If this
control is off, no output, other than output
for GplErase, appears on the device associ­
ated with the presentation space. This control
can be used with a micro presentation space.

Draw dynamic segments. This control causes
the GplDrawChaln, GplDrawFrom, and
GplDrawSegment functions to call the
GpiRemoveDynamics function before draw­
ing and the GplDrawDynamics function after
drawing. The effect is to update the dynamic
segments each time the picture chain or a
segment is drawn.

Erasing before drawing. This control causes
the GplDrawChaln, GplDrawFrom, and Gpi­
DrawSegment functions to call the GplErase
function before drawing.

flDraw Specifies whether to turn a draw control on or off. It can be one of
the following values:

Value Meaning

Set control off.

Set control on.

182 GpiSetDrawControl

Return Value

Errors

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV~RAW_CONTROL
PMERRJNV~RAW_VALUE
PMERRJNV ~ICROPSYUNCTION

GpiDrawChain, GpiDrawDynamics, GpiDrawFrom, GpiDrawSegment,
GpiElement, GpiErase, GpiPutData, GpiQueryDrawControl, GpiRemove­
Dynamics

• GpiSetDrawingMode
BOOl GpiSetDrawingMode(hps, flMode)
HPS hps; 1* presentation-space handle *1
lONG flMode; 1* drawing mode *1

Parameters

Return Value

The GpiSetDrawingMode function sets the drawing mode. The drawing mode
affects all subsequent drawing and attribute functions, including the GpiPutData
function, that occur in open chained segments. The drawing mode specifies
whether the functions are drawn, retained, or drawn and retained.

The drawing mode does not affect the functions in unchained segments or out­
side of segments. For chained segments, the system stores the functions if
the D~ETAIN or D~RAWANDRETAIN mode is set. If the
D~RAWANDRETAIN mode is set, the system draws as well as stores the
functions. If the mode is D~RAW, the functions draw only. For unchained
segments, drawing and attribute functions are always retained regardless of the
drawing mode. Outside of segments, the functions draw only.

The function cannot be used in an open segment or in an area, path, or element
bracket.

hps Identifies the presentation space.

jlMode Specifies the mode used for subsequent drawing and attribute func­
tions. It can be one of the following values:

Value

D1LDRAW

D1LRETAIN

D1LDRA W AND RET AIN

Meaning

Draw only.

Retain only.

Draw and retain.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Errors

See Also

GpiSetEditMode 183

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV~RA~NG~ODE
PMERRJNV ~ICROPSYUNCTION

GpiCloseSegment, GpiOpenSegment, GpiPutData, GpiQueryDrawingMode

• GpiSetEditMode
BOOl GpiSetEditMode(hps. flEditMode)
HPS hps; /. presentation-space handle ./
lONG flEditMode; /. editing mode ./

Parameters

Return Value

Errors

See Also

The GpiSetEditMode function sets the current editing mode. The editing mode
specifies whether new elements added to a retained segment are inserted into the
segment or whether they replace existing elements. The default editing mode (set
by the GpiCreatePS or GpiResetPS function) is insert.

Although the editing mode applies to retained segments only, the GpiSetEdit­
Mode function can be used to change the editing mode at any time, regardless of
the drawing mode. However, the function cannot be used in an element bracket.

hps Identifies the presentation space.

flEditMode Specifies the editing mode. It can be one of the following values:
Value

SEGE~INSERT

SEGE~REPLACE

Meaning

Insert. The system inserts a new element after the
element pointed to by the element pointer. The ele­
ment pointer is updated to point to the new ele­
ment.

Replace. The system replaces the element pointed
by the element pointer. The element pointer does
not change.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV _EDIT~ODE
PMERRJNV ~ICROPSYUNCTION

GpiCreatePS, GpiQueryEditMode, GpiResetPS, GpiSetElementPointerAtLabel

184 GpiSetElementPointer

• GpiSetElementPointer
BOOl GpiSetElementPointer(hps. idElement)
HPS hps; I. presentation-space handle .1
lONG idElement; I. element number .1

Parameters

Return Value

Errors

See Also

The GpiSetElementPointer function moves the element pointer to the element
specified by idElement. The function uses idElement as the number of elements
to move from the beginning of the segment to reach the new element.

The function can be used only in an open segment and only with DMJETAIN
as the drawing mode. The function cannot be used in an element bracket.

hps Identifies the presentation space.

idElement Specifies the element number. If the element number is negative,
the element pointer is set to zero. If the value is greater than the number of ele­
ments in the segment, the element pointer is set to the last element.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV ~ICROPSYUNCTION
PMERR-NOTJN-RETAIN~ODE

GpiQueryElementPointer

• GpiSetElementPointerAtLabel
BOOl GpiSetElementPointerAtlabel(hps. idLabe/)
HPS hps; I. presentation-space handle .1
lONG idLabel; 1* label identifier *1

Parameters

Return Value

The GpiSetElementPointerAtLabel function moves the element pointer to the
element containing the specified label. The function starts the search at the next
element after the current element-pointer position. If the function does not find
the label before reaching the end of the segment, the function leaves the element
pointer unchanged and returns an error.

The function can be used only in an open segment and only with DMJETAIN
drawing mode. The function cannot be used in an element bracket.

hps Identifies the presentation space.

idLabel Specifies the label.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Errors

See Also

GpiSetlnitialSegmentAttrs 185

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV.MICROPSYUNCTION
PMERILLABEL_NOTYOUND
PMER~NOTJN.-RETAIN.MODE

GpiLabel, GpiQueryElementPointer

• GpiSetGraphicsField
BOOl GpiSetGraphicsField(hps. prelField)
HPS hps; I. presentation-space handle .1
PRECTl prelField; I. pointer to structure with field .1

Parameters

Return Value

See Also

The GpiSetGraphicsField function sets the size and position of the graphics field
in presentation-page units. The graphics field defines the rectangle in the presen­
tation page to clip. Any output outside the graphics field is not drawn on the
device.

The graphics field includes all points in the rectangle interior and all points on
the lower and left edges, but not the points on the upper and right edges. Ini­
tially, the graphics field has the same size as the page space. The units for the
graphics field are not affected by any transformation except the final device
transformation.

hps Identifies the presentation space.

prc1Field Points to a RECTL structure containing the graphics field. It is an
error if the top coordinate is less than the bottom, or the right coordinate less
than the left. All values must be presentation-page units. The RECTL structure
has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryGraphicsField

• GpiSetlnitialSegmentAttrs
BOOl GpiSetlnitiaISegmentAttrs(hps. flAttribute. flAttrFlag)
HPS hps; I. presentation-space handle .1
lONG flAttribute; I. attribute type .1
lONG flAttrFlag; I. attribute onloff flag .1

The GpiSetInitialSegmentAttrs function sets the initial segment attributes. The
system applies these attributes to each new segment as it is created. The function
can change these attributes, one at a time, by turning them on or off.

186 GpiSetlnitialSegmentAttrs

Parameters

When the presentation space is first created, the initial segment attributes create
visible, chained, dynamic, and fast-chaining segments that propagate visibility
and detectability, even though they are not detectable. These attribute have no
effect on primitives outside of segments.

hps Identifies the presentation space.

flAttribute Specifies the segment attribute to change. It can be one of the fol­
lowing values:

Value Meaning

A TTR_CHAINED Adds the segment to the picture chain. If
this attribute is off, a new segment is an
unchained segment. Although unchained seg­
ments can be drawn individually, they cannot
be added to the picture chain. (However,
they can be called from a segment in the pic­
ture chain.)

A TTR_DETECTABLE Enables correlation for the segment. If this
attribute is on, the GplCorrelateChaln, Gpl­
CorrelateFrom, and GplCorrelateSegment
functions can be u'sed to correlate each new
segment.

ATTR_DYNAMIC Creates a dynamic segment. Dynamic seg­
ments are designed to be rapidly updated
without affecting other segments in the pic­
ture chain. The system draws dynamic seg­
ments using the exclusive-OR operator. This
lets the segments be erased. Only retained
segments can be dynamic.

A TTR_F ASTCHAIN Relaxes the automatic reset of primitive attri­
butes for the segment. If this attribute is off,
the system resets all primitive attributes just
before a segment in the picture chain is
drawn.

A TTR_PROP _DETECTABLE Forces all segments beneath the segment to
inherit the detectable attribute. If this attri­
bute is on, all segments called by the segment
can be correlated.

ATTR_VISIBLE

Forces all segments beneath the segment to
be visible. The visibility lasts only as long as
the segment is called by the segment with this
attribute on. .

Makes the segment visible. The attribute lets
the system draw the segment on the output
device.

flAttrFlag Specifies whether to turn the attribute on or off. If it is
ATT~ON, the function turns the attribute on. If it is ATT~OFF, the
function turns the attribute off.

Return Value

Errors

See Also

• GpiSetLineEnd

GpiSetLineEnd 187

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -MICROPSYUNCTION
PMERRJNV _SEG-A TTR

GpiCorrelateChain, GpiCorrelateFrom, GpiCorrelateSegment, GpiOpen­
Segment, GpiSetDrawControl, GpiSetDrawingMode

Baal GpiSetlineEnd(hps,IUneEnd)
HPS hps; 1* presentation-space handle *1
lONG IUneEnd; 1* line end *1

Parameters

Return Value

See Also

The GpiSetLineEnd function sets the current line-end attribute. The line-end
attribute specifies the shape of the ends of lines drawn by the GpiStrokePath
function or by the GpiModifyPath and GpiFillPath function pair.

If the attribute mode is A~PRESERVE, the function saves the previous line­
end attribute on the attribute stack when it sets the new line end. The previous
line-end attribute can be retrieved by using the GpiPop function.

hps Identifies a presentation space.

lLineEnd Specifies the line end. It may be one of the following values:
Value

LINEEND_DEFAULT

LINEEND_FLA T

LINEEND_ROUND

LINEEND_SQUARE

Meaning

Use default.

Flat. The line is ended at the end point of the
original path.

Round. The line is ended as if a circle having a
diameter equal to the line width is drawn centered
on the end point of the original path.

Square. The line is ended as if a square having the
same width as the line is drawn centered on the
end point of the original path.

The return value is TRUE if the function is successful. Otherwise, it is FALSE,
indicating that an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~INE~ND~TTR

GpiFilIPath, GpiModifyPath, GpiPop, GpiQueryAttrs, GpiQueryLineEnd,
GpiSetAttrMode

188· GpiSetLineJoin

• GpiSetLineJoin
Baal GpiSetlineJoin(hps, flLineJoin)
HPS hps: I. presentation-space handle.1
lONG flLineJoin: I. line-join flags .1

Parameters

The GpiSetLineJoin function sets the current line-join attribute to the specified
value. The line-join attribute specifies how the intersection of lines (at the end
points) are drawn by the GpiStrokePath function or by the GpiModifyPath and
GpiFillPath function pair.

If the attribute mode is AMYRESER VE, the function saves the previous line­
join attribute on the attribute stack when it sets the new line join. The previous
line-join attribute can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

jiLineJoin Specifies line-join flags. It can be one of the following values:

Return Value

Errors

See Also

• GpiSetLineType

Value

LINEJOIN_BEVEL

LINEJOIN_DEF AULT

LINEJOIN_MITRE

LINEJOIN_ROUND

Meaning

Bevel

Default

Mitre

Round

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV .-LINEJOIN~TTR

GpiFillPath, GpiModifyPath, GpiPop, GpiQuery Attrs, GpiQueryLineJ oin,
GpiSetAttrMode, GpiSetAttrs, GpiStrokePath

BOOl GpiSetllneType(hps, flLineType)
HPS hps: I. presentation-space handle .1
lONG flLineType: I. line type .1

Parameters

The GpiSetLineType function sets the current cosmetic line-type attribute to the
specified value.

hps Identifies the presentation space.

jiLineType Specifies the line type. If the specified line type is not valid, the
default is used. A valid line type is one of the following:

Return Value

Errors

Comments

See Also

LINETYPEJ)OT
LINETYPE_SHORTDASH
LINETYPEJ)ASHDOT
LINETYPE~OUBLEDOT
LINETYPE-LONGDASH
LINETYPEJ)ASHDOUBLEDOT
LINETYPE_SOLID
LINETYPEJNVISIBLE
LINETYPE~LTERNATE

GpiSetLineWidth 189

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -LINE_TYPE~TTR

A non-solid line type consists of a sequence of on-and-off runs that gives the
appearance of a dotted line.

This attribute specifies the cosmetic line type, which is used for all line and
curve drawing. It does not depend on transforms. For example, dashes do not
become longer if a "zoom in" occurs.

The eight standard line types are implemented on each device to give a good
appearance based on the "pel" resolution. Their definitions cannot be changed
by applications, nor can applications define additional cosmetic line types.

The system maintains position within the line-type definition. For example, a·
curve may be implemented as a polyline. However, the following functions cause
the position to be reset:

GpiCallSegmentMatrix
GpiMove
GpiPop
GpiSetCurrentPosition
GpiSetModelTransformMatrix
GpiSetPage Viewport
GpiSetSegmentTransformMatrix

The attribute mode (see GpiSetAttrMode) determines whether the current value
of the line type attribute is preserved.

GpiQueryAttrs, GpiQueryLineType, GpiSetAttrMode, GpiSetAttrs

• GpiSetLineWidth
BOOl GpiSetLineWidth(hps. fxLineWidth)
HPS hps; I. presentation-space handle .1
FIXED fxLineWidth; I. line width .1

The GpiSetLine Width function sets the current cosmetic line-width attribute to
the specified value. The line width specifies the width of cosmetic lines, that is,
lines drawn by functions such as GpiLine. The function treats the line width as a
multiplier for the normal line thickness for the device.

190 GpiSetLineWidth

Parameters

Return Value

Errors

Comments

See Also

If the attribute mode is AMYRESER VE, the function saves the previous line
width on the attribute stack when it sets the new width. The previous line width
can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

JxLine Width Specifies the line-width multiplier. It must be a fixed-point
number or one of the following values:

Value

LINEWIDTILDEFAULT

LINEWIDTILNORMAL

Meaning

Default

Normal width (1.0)

Any other positive value is a multiplier on the normal line width. Only
normal line widths are currently supported. Any value greater than
LINEWIDTILNORMAL will result in a warning.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV ~INE_ WIDTILATTR

The thickness of cosmetic lines is not affected by transformations.

GpiLine, GpiPop, GpiQueryAttrs, GpiQueryLineWidth, GpiSetAttrMode,
GpiSetAttrs

• GpiSetLineWidthGeom
BOOl GpiSetlineWidthGeom(hps, ILineWidth)
HPS hps; 1* presentation-space handle *1
lONG ILineWidth; ;* line width *1

Parameters

Return Value

The GpiSetLine WidthGeom function sets the current geometric-line-width attri­
bute to the specified value. The geometric line width specifies the width of lines
drawn by using the GpiStrokePath function or the GpiModifyPath and Gpi­
FillPath pair.

If the attribute mode is AMYRESER VE, the function saves the previous
geometric-line width on the attribute stack when it sets the new width. The pre­
vious geometric-line width can be retrieved using the GpiPop function.

hps Identifies the presentation space.

lL ine Width Specifies the geometric-line width in world coordinates. This
value cannot be negative. If it is zero, the resulting line has zero width.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Errors

See Also

• GpiSetMarker

GpiSetMarker 191

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV _GEO~INE_ WIDTJLATTR

GpiFiIlPath, GpiModifyPath, GpiPop, GpiQueryAttrs, GpiQueryLineWidth­
Geom, GpiSetAttrMode, GpiSetAttrs, GpiStrokePath

BaaL GpiSetMarker(hps, ISymbo/)
HPS hps; 1* presentation-space handle *1
LONG ISymbo/; 1* marker symbol *1

Parameters

Return Value

See Also

The GpiSetMarker function sets the value of the marker attribute. The marker
attribute specifies the marker drawn by the GpiMarker function.

If the attribute mode is A~RESER VE, the function saves the previous
marker attribute on the attribute stack when it sets the new marker. The pre­
vious marker attribute can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

ISymbol Specifies the identity of the required marker symbol. Zero selects the
default marker symbol; a value in the range 1 through 255 identifies a symbol in
the current marker set. If the default maker set is used, the parameter can be
one of the following values:

Value

MARKS'ThLCROSS

MARKS'ThLPLUS

MARKS'ThLDIAMOND

MARKS'ThLSQUARE

MARKS'ThLSIXPOINTST AR

MARKS'ThLEIGHTPOINTST AR

MARKS'ThLSOLIDDIAMOND

MARKS'ThLSOLIDSQUARE

MARK S'ThLD OT

MARKS'ThLSMALLCIRCLE

MARKS'ThLBLANK

Meaning

Cross

Plus sign

Diamond

Square

Six-pointed star

Eight-pointed star

Solid diamond

Solid square

Dot

Small circle

Blank (nothing drawn)

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiMarker, GpiPop, GpiQueryMarker

192 GpiSetMarkerBox

• GpiSetMarkerBox
BOOl GpiSetMarkerBox(hps, psizfxBox)
HPS hps; I. presentation-space handle .1
PSIZEF psizfxBox; I. pointer to structure with marker box size .1

Parameters

Return Value

Errors

See Also

The GpiSetMarkerBox function sets the current marker-box attribute. The
marker box specifies the width and height of markers drawn by the GpiMarker
function.

If the attribute mode is AMYRESER VE, the function saves the previous
marker-box attribute on the attribute stack when it sets the new marker box. The
previous marker-box attribute can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

psiz/xBox Points to a SIZEF structure containing the size of the marker box,
in world coordinates. The SIZEF structure has the following form:

typedef struet _SIZEF {
FIXED ex;
FIXED ey;

} SIZEF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV~ARKE~O~TTR

GpiQueryAttrs, GpiQueryMarkerBox, GpiSetAttrs

• GpiSetMarkerSet
BOOl GpiSetMarkerSet(hps, Icid)
HPS hps; I. presentation-space handle .1
lONG Icid; 1* local identifier .1

'I

Parameters I

The GpiSetMarkerSet function sets the current marker..,set attribute. The
marker-set attribute specifies the marker or character set from which markers
can be chosen. The marker set can be the default marker set or any logical font
created by using the GpiCreateLogFont function.

If the attribute mode is AMYRESER VE, the function saves the previous
marker-set attribute on the attribute stack when it sets the new marker set. The
previous marker-set attribute can be retrieved by using the GpiPop function.

hps Identifies the presentation space.

lcid Specifies the logical identifier for the marker set. It can be any integer
in the range 1 to 254 for which a logical font has be created, or it can be
LCIDJ)EFAULT to specify the default marker set.

Return Value

Errors

See Also

GpiSetMetaFileBits 193

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV -MARKElLSET~TTR

GpiCreateLogFont, GpiPop, GpiQueryAttrs, GpiQueryMarkerSet, GpiSetAttrs

• GpiSetMetaFileBits
BOOL GpiSetMetaFileBits(hmf, off, cbBuffer, pbBuffer)
HMF hmf; I. message-queue handle .1
LONG off; I. offset into the metafile .1
LONG cbBuffer; I. length of the metafile data .1
PBYTE pbBuffer; I. pOinter to the metafile data .1

Parameters

Return Value

Errors

See Also

The GpiSetMetaFileBits function copies data to the metafile specified by hmJ
from the buffer pointed to by the pbBufjer parameter. The function inserts the
bytes into the metafile, up to the number of bytes specified by cbBufjer, at
the byte in'the metafile where the offset from the beginning of the metafile is
specified by the off parameter.

The application must ensure that the metafile data has the correct format. The
data should not be changed after it is created by the GpiQueryMetaFileBits func­
tion.

hmf Identifies the metafile memory.

off Specifies the offset in bytes from the beginning of the metafile to the first
byte that receives copied data.

cbBuffer Specifies the number of bytes of metafile data to copy.

pbBuffer Points to the buffer to receive the metafile data. It must have the
number of bytes specified by the cbBufjer parameter.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred. .

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -METAFILE~ENGTH
PMERRJNV -METAFILE_OFFSET

GpiQueryMetaFileBits

194 GpiSetMix

• GpiSetMix
BOOl GpiSetMix(hps, f1MixMode)
HPS hps; I. presentation-space handle .1
lONG f1MixMode; I. color-mixing mode .1

Parameters

The GpiSetMix function sets the current foreground-mix mode. The foreground­
mix mode specifies how the foreground color is combined with the colors in
underlying primitives. The available mixing modes depend on the device
that is associated with the presentation space, but all devices support the mix­
ing modes FMJ.-EA VEALONE, FM-XOR, and F~OVERPAINT. If the
mixing mode specified by flMixMode is not supported, the function uses
FM-OVERP AINT instead. The DevQueryCaps function can be used to deter­
mine which mixing modes are supported.

If the attribute mode is A~RESER VE, the function saves the previous
foreground-mix mode on the attribute stack when it sets the new mode. The
previous foreground-mix mode can be retrieved using the GpiPop function.

hps Identifies the presentation' space.

jlMixMode Specifies the color-mixing mode. It can be one of the following
values:

Value

F~AND

~DEFAULT

~INVERT

F~LEAVEALONE

F~MASKSRCNOT

~MERGENOTSRC

~MERGESRCNOT

F~NOTCOPYSRC

F~NOTMASKSRC

F~NOTMERGESRC

~NOTXORSRC

F~ONE

F~OR

Meaning

The individual pel colors are combined using the
AND operator.

Default. This is the same as F~OVERPAINT.

All existing pel colors are inverted. The foreground
color is ignored.

The foreground color is ignored. The existing color
remains unchanged.

The individual pel colors are combined using the
AND operator after inverting the existing pel
colors. .

The individual pel colors are combined using the
OR operator after inverting the foreground color.

The individual pel colors are combined using the
OR operator after inverting the existing pel colors.

The inverse of the foreground color replaces the
existing color.

The individual pel colors are inverted after being
combined using the AND operator.

The individual pel colors are inverted after being
combined using the OR operator.

The individual pel colors are inverted after being
combined using the XOR operator.

All pels are set to one.

The individual pel colors are combined using the
OR operator.

Return Value

See Also

Value

F1LOVERPAINT

F~SUBTRACT

F~XOR

F1LZERO

GpiSetModelTransformMatrix 195

Meaning

The foreground color replaces the existing color.

The individual pel colors are combined using the
AND operator after inverting the foreground color.

The individual pel colors are combined using the
XOR operator.

All pels are set to zero.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

DevQueryCaps, GpiQueryMix, GpiSetBackMix

• GpiSetModelTransformMatrix
BOOl GpiSetModeITransfonnMatrix(hps, cElements, pmatlf, flType)
HPS hps; I. presentation-space handle .1
lONG cElements; I. number of elements .1
PMATRIXlF pmatlf; I. pointer to structure with transformation matrix .1
lONG flType; I. transformation types .1

Parameters

The GpiSetModelTransformMatrix function sets the model transformation. The
model transformation applies to all primitives used inside and outside of seg­
ments. The function sets the transformation by adding or replacing the existing
transformation matrix with the matrix pointed to by the pmatlf parameter. The
function adds, preempts, or replaces the existing transformation matrix as
specified by the jlType parameter.

The GpiSetModelTransformMatrix function requires a nine-element matrix to
set the model transformation. If the specified matrix does not contain nine ele­
ments, the function uses the corresponding elements of the identity matrix for
each unspecified element. The cElements parameter specifies the number of ele­
ments in the matrix. If this parameter equals zero, the identity matrix is used. If
scaling values greater than one are given, care must be taken that the combined
effect of this and any other relevant transformations do not exceed the limit for
fixed-point numbers.

If the attribute mode is AMYRESER VE, the function saves. the previous model
transformation on the attribute stack when it sets the new transformation. The
previous model transformation can be retrieved using the GpiPop function.

hps Identifies the presentation space.

cElements Specifies the number of elements in the matrix to set. It can be
any integer in the range 0 through 9.

pmatlf Points to a MATRIXLF structure that contains the transformation
matrix. The MATRIXLF structure has the following form:

196 GpiSetModelTransformMatrix

Return Value

Errors

See Also

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see the "Structures" section.

jlType Specifies how a specified matrix should be used to modify the segment
transformation. It can be one of the following values:

Value Meaning

TRANSFOR1LADD Additive. The specified transformation matrix is
combined with the existing model transforma­
tion, in the order of the existing transformation
first, the new transformation second. This
option is useful for incremental updates to
transformations.

TRANSFOR1LPREEMPT Preemptive. The specified transformation matrix
is combined with the existing model transforma­
tion,. in the order of the new transformation
first, the existing transformation second.

TRANSFOR~REPLACE New/replace. The previous model transforma­
tion is discarded and replaced by the specified
transformation matrix.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV_TRANSFORMLTYPE

GpiQueryModelTransformMatrix, GpiSetAttrMode

• GpiSetPageViewport
BOOl GpiSetPageViewport (hps. pre/Viewport)
HPS hps; I. presentation-space handle .1
PRECTl pre/Viewport; I. pointer to structure with page viewport .1

Parameters

The GpiSetPage Viewport function sets the page viewport within device space.
The page viewport and the presentation page size (specified by the GpiCreatePS
function) specify the device transformation.

The function can only be used if the presentation space has an associated device
context.

hps Identifies the presentation space.

prclViewport Points to a RECTL structure defining the page viewport in
device units. The RECTL structure has the following form:

Return Value

Comments

See Also

• GpiSetPattern

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

GpiSetPattern 197

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

When a presentation space is associated with a device context, the system sets a
default page viewport. The default page viewport depends on the page units
selected for the presentation space.

GpiCreatePS, GpiQueryPage Viewport

BOOl GpiSetPattern(hps,/Symbo/)
HPS hps; 1* presentation-space handle *1
lONG ISymbo/; 1* shading pattern *1

Parameters

The GpiSetPattern function sets the current value of the pattern attribute. The
pattern attribute specifies the shading pattern used to fill areas. The pattern can
be any pattern from the default pattern set or any character from a raster font.
If the specified pattern is not valid for the device associated with the presenta­
tion space, the function sets the default pattern.

If the attribute mode is AMJ>RESER VE, the function saves the previous pat­
tern attribute on the attribute stack when it sets the new pattern. The previous
pattern attribute can be retrieved using the GpiPop function.

hps Identifies the presentation space.

ISymbol Specifies the shading pattern to set. The values depend on the partic­
ular pattern set selected by the pattern-set attribute. It can be zero to specify the
default pattern, or a number in the range 1 through 255 to specify a particular
pattern from the current pattern set. If the default pattern set is used, it can be
one of the following values:

Value

PATSY1LBLANK

PATSY1LDEFAULT

PATSY1LDENSEl

PATSY1LDENSE2

PATSY1LDENSE3

PATSY1LDENSE4

PATSY1LDENSES

PATSY1LDENSE6

PATSY1LDENSE7

PATSY~DENSE8

Meaning

Blank pattern (background only)

Default pattern (device-dependent)

Density-l pattern (mostly foreground)

Density-2 pattern

Density-3 pattern

Density-4 pattern

Density-S pattern

Density-6 pattern

Density-7 pattern

Density-8 pattern (mostly background)

198 GpiSetPattern

Return Value

Errors

Comments

See Also

Value

PATSY1LDIAGl

PA TSY1LDIAG2

PATSY1LDIAG3

PATSY1LDIAG4

PATSY1LHALFfONE

PATSY1LHORIZ

PATSY1LNOSHADE

P A TSY1LSOLID

PATSY1LVERT

Meaning

Upward-diagonal pattern (steep)

Upward-diagonal pattern (gradual)

Downward-diagonal pattern (steep)

Downward-diagonal pattern (gradual)

Alternating foreground and background pattern

Horizontal pattern

Blank pattern (background only)

Solid pattern (foreground only)

Vertical pattern

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNVYATTERN_SET-ATTR

If the current pattern set specifies a bitmap (see the GpiSetBitmapId or GpiSet­
PattemSet function), the pattern attribute is ignored.

GpiQueryPattem, GpiSetBitmapId, GpiSetPattemReiPoint, GpiSetPattemSet

• GpiSetPatternRefPoint
BOOl GpiSetPatternRefPoint(hps, pptlRef)
HPS hps; I. presentation-space handle .1
PPOINTl pptlRef; I. pointer to structure with reference point.1

Parameters

The GpiSetPatternReiPoint function sets the current pattern reference point to
the specified value. The pattern reference point is the point to which the origin
of the fill pattern maps. The pattern reference point does need not be inside the
actual area to be filled. The default pattern reference point is (0,0).

If the attribute mode is AMYRESERVE, the function saves the previous pat­
tern reference point on the attribute stack when it sets the new reference point.
The previous pattern reference point can be retrieved using the GpiPop func­
tion.

hps Identifies the presentation space.

pptlRef Points to the POINTL structure that contains the pattern reference
point in world coordinates. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

Comments

See Also

GpiSetPatternSet 199

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

The pattern reference point is subject to all transformations. This means that
moving an area by using a transformation also moves the fill pattern so that the
pattern keeps its position relative to the area boundaries. This allows part of a
picture to be moved using the GpiBitBit function, and the remainder is drawn
without discontinuity by changing the appropriate transformation.

GpiBitBlt, GpiQueryPatternRefPoint, GpiSetAttrMode, GpiSetPattern, GpiSet­
PatternSet

• GpiSetPatternSet
BOOl GpiSetPatternSet(hps, Icid)
HPS hps; I. presentation-space handle .1
lONG Icid; I. local identifier .1

Parameters

Return Value

Errors

Comments

See Also

The GpiSetPatternSet function sets the current pattern-set attribute to the
specified value. The pattern set specifies the pattern or character set from which
patterns can be chosen. The pattern set can be the default pattern set, any logi­
cal font created using the GpiCreateLogFont function, or any tagged bitmap.

If a logical font is set as the pattern set, the GpiSetPattem function can be used
to choose which character in the font as the pattern. Depending on the device
associated with the presentation space, not all of the character may be used as
the pattern. For example, some devices use only 8-by-B patterns, and therefore
use only the lower-left corner of a character.

If a tagged bitmap is set as the pattern set, the bitmap is used as the pattern. As
with characters, not all of the bitmap may be used as the pattern. Also, if the
bitmap is color and the device is monochrome, the system converts the bitmap
to monochrome.

If the attribute mode is AMYRESER VE, the function saves the previous
pattern-set attribute on the attribute stack when it sets the new pattern set. The
previous pattern-set attribute can be retrieved using the GpiPop function.

hps Identifies the presentation space.

lcid Specifies the local identifier for the pattern set. It can be any integer in
the range 1 through 254 for which a logical font or tagged bitmap has been
created. It can be LCIDJ)EFAULT to specify the default pattern set.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV-YATTERN~TTR

Certain fonts cannot be used for patterns. The function returns an error if an
application attempts to set such a font as the pattern set. Fonts that cannot be
used as patterns include device fonts which cannot be used for shading, and any
kind of raster font used for a plotter device.

GpiQueryPatternSet, GpiSetPattern, GpiSetPatternRefPoint

200 GpiSetPel

• GpiSetPel
LONG GpiSetPel(hps. pptl)
HPS hps; /. presentation-space handle ./
PPOINTL pptl; /. pOinter to structure with point position ./

Parameters

Return Value

See Also

The GpiSetPel function sets the pel at the specified position to the current fore­
ground color. The pel's position is expressed in world coordinates. If the pel is
not visible (that is, the point lies outside the clip area), the color remains
unchanged.

hps Identifies the presentation space.

pptl Points to a POINTL structure containing the position in world coordi­
nates. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

GpiQueryPel, GpiSetAttrs, GpiSetColor, GpiSetMix

• GpiSetPickAperturePosition
BOOL GpiSetPickAperturePosition (hps. pptlPick)
HPS hps; /. presentation-space handle ./
PPOINTL pptlPick; /. pOinter to structure with center of pick aperture ./

Parameters

Return Value

See Also

The GpiSetPickAperturePosition function sets the center of the pick aperture,
in presentation-page space, for subsequent non-retained correlation operations.

hps Identifies the presentation space.

pptlPick Points to the POINTL structure that contains the center· of the pick
aperture. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiQueryPickAperturePosition, GpiSetPickApertureSize

GpiSetPS 201

• GpiSetPickApertureSize
BOOl GpiSetPickApertureSize(hps. flOption. psizlPick)
HPS hps: /. presentation-space handle ./
lONG flOption: /. options ./
PSIZEl psizlPick: /. pointer to structure with pick-aperture size ./

Parameters

Return Value

Errors

See Also

• GpiSetPS

The GpiSetPickApertureSize function sets the pick-aperture size. The function
sets the pick aperture to either the default value or to the size specified by psizl­
Pick .. The default size is a rectangle in presentation-page space that produces a
square in device space that has a width and height equal to the default-character
cell height.

hps Identifies the presentation space.

flOption Specifies the pick-aperture type. It can be one of the following
values:

Value

PICKAP _DEFAULT

Meaning

Use default pick aperture. The psizlPick parameter
is ignored.

PICKAP _REC Use psi:z/Pick value.

psizlPick Points to the SIZEL structure that contains the pick-aperture size.
The SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following: .

PMERRJNVYICKAPERTURE_OPTION

GpiQueryPickApertureSize, GpiSetPickAperturePosition

BOOl GpiSetPS(hps. psizl. flOptions)
HPS hps: /. presentation-space handle ./
PSIZEl psizl; /. pointer to structure for presentation-space size ./
UlONG flOptions; /. options ./

The GpiSetPS function sets the page size and units for the presentation space.
The function is often used to change the device transformation for the presenta­
tion space.

The function does not affect the device context associated with the presentation
space. This means the device context that was already associated remains associ­
ated. Also, the function does not change the presentation space type, such as
micro-presentation space or a normal presentation space.

202 GpiSetPS

Parameters

Return Value

See Also

• G piSetRegion

When this function is called, it resets the presentation space to a state that is
equivalent to setting the value GRES~LL in the GpiResetPS function.

hps Identifies the presentation space.

psizi Points to the SIZEL structure that contains the size of the presentation
page. The SIZEL structure has the following form:

typedef struet _SIZEL {
LONG ex;
LONG ey;

} SIZEL;

For a full description, see Chapter 4, "Types, Macros, Structures."

flOptions Specifies the presentation-space options. The options define the
page unit for the presentation space. Although the flOptions parameter can
include many other options (as specified by the GpiCreatePS function), the
function ignores all but the page units. The page units can be one of the follow­
ing values:

Page unit

PU_HIENGLISH

PU_HIMETRIC

PU_LOENGLISH

PU_LOMETRIC

PU_PELS

PU_TWIPS

Meaning

Sets units initially to pels but permits the units to
be modified later using the GplSetPageVlewport
function.

Sets units to 0.001 inch.

Sets units to 0.01 millimeter.

Sets units to 0.01 inch.

Sets units to 0.1 millimeter.

Sets units to pels.

Sets units to 111440 inch (1120 point).

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiCreatePS, GpiResetPS

BOOl GpiSetReglon(hps, hrgn, erel, are/)
HPS hps; 1* presentation-space handle *1
HRGN hrgn; 1* region handle *1
lONG erel; 1* number of rectangles *1
PRECTl arel; 1* pointer to array of rectangle structures *1

Parameters

The GpiSetRegion function redefines the region specified by the hrgn parameter.
The function replaces the old region by creating a region that consists of the
union of the rectangles pointed to by the arcl parameter. This function is similar
to the GpiCreateRegion function.

The function can be used only if a device context is associated with the presenta­
tion space.

hps

hrgn
Identifies the presentation space.

Identifies the region handle.

Return Value

See Also

GpiSetSegmentAttrs 203

crcl Specifies the number of rectangles to use to create the new region. If it is
zero, the function creates an empty region and the arcl parameter is ignored.

arcl Points to the array of RECTL structures that contains the rectangles for
the replacement region. The array must have the number of elements specified
by crcl. The RECTL structures have the form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiComblneRegion, GpiCreateRegion

• GpiSetSegmentAttrs
BOOl GpiSetSegmentAttrs(hps. idSegment. f1Attribute. f1AttrFlag)
HPS hps; 1* presentation-space handle *1
lONG idSegment; 1* segment identifier *1
lONG f1Attribute; 1* attributes *1
lONG f1AttrFlag; 1* attribute onloff flag *1

Parameters

The GpiSetSegmentAttrs function sets a segment attribute for a retained seg­
ment. The segment attributes specify whether a segment is chained, visible,
detectable, dynamic, and so on. The function can turn these attributes on or off,
one attribute at a time.

hps Identifies the presentation space.

idSegment Specifies the segment to change. It must be greater than zero.

jlAttribute Specifies the segment attribute to set or clear. It can be one of the
the following values:

Value

A TIR_CHAINED

ATIR_DETECTABLE

ATIR_DYNAMIC

A TIILFASTCHAIN

A TIR_PROP _DETECTABLE

A TIR_PROP _VISIBLE

A TIR_ VISIBLE

Meaning

Chained

Detectability

Dynamic

Fast chaining

Propagate detectability

Propagate visibility

Visibility

jlAttrFlag Specifies whether to turn the attribute on or off. If it is
ATTR-ON, the function turns on the attribute; if ATTR-OFF, the function
turns off the attribute.

204 GpiSetSegmentAttrs

Return Value

Errors

Comments

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following: .

PMERRJNV -MICROPSYUNCTION
PMERRJNV _SEG~TTR
PMERRJNV _SEG_NAME

When a segment is modified from non-chained to chained, it is added to the end
of the drawing chain.

GpiQuerySegmentAttrs

• GpiSetSegmentPriority
BOOL GpiSetSegmentPriority(hps. idSegment. idRefSegment. cmdOrder)
HPS hps; I. presentation-space handle .1
LONG idSegment; I. segment Identifier .1
LONG idRefSegment; I. reference-segment Identifier .1
LONG cmdOrder; I. command options .1

Parameters

The GpiSetSegmentPriority function sets the priority for the segment specified
by idSegment. Segment priority applies only to chained segments. The segment
priority of a segment specifies the position of that segment in the picture chain.
The priority affects how the segment appears when drawn, since segments with
higher priorities (later positions in the chain) may draw over the segment.

The function changes a segment's priority by moving its position in the picture
chain relative to a given segment. The function places the segment either before
or after the segment specified by the idRefSegment parameter. The cmdOrder
parameter specifies the priority that the segment should have relative to the
idRefSegment segment, and therefore determines whether it goes before or after.
The function places the segment at either the beginning or end of the picture
chain if the idRefSegment parameter is zero.

hps Identifies the presentation space.

idSegment Specifies the identifier of the segment whose priority is to change;
it must be greater than zero.

idRefSegment Specifies the reference-segment identifier. It must be the
identifier of a segment in the picture chain, or it must be zero. If it is zero, the
function uses the beginning or end of the picture chain.

cmdOrder Specifies whether to give the segment higher or lower priority than
the segment specified by idRefSegment. It can be one of the following values:

Value Meaning

Gives the segment lower priority. The function
places the segment before the reference-segment in
the chain. If the idRefSegment is zero J the function
makes the segment the highest-priority segment.

Return Value

Errors

See Also

Value

GpiSetSegmentTransformMatrix 205

Meaning

Gives the segment higher priority. The function
places the segment after the reference-segment in
the chain. If the idRefSegment is zero, the function
makes the segment the lowest-priority segment.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV ~ICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERR-SEG~ND-REFSEG~RE_SAME

GpiDrawChain, GpiDrawFrom, GpiQuerySegmentPriority

• GpiSetSegmentTransformMatrix
BOOl GplSetSegmentTransfonnMatrix(hps, idSegment, cElements, pmatlf, flType)
HPS hps; 1* presentation-space handle *1
lONG idSegment; 1* segment Identifier *1
lONG cElements; 1* number of elements *1
PMATRIXlF pmat/f; 1* pointer to structure with transformation matrix *1
lONG flType; 1* type of transformation *1

Parameters

The GpiSetSegmentTransformMatrix function sets the segment transformation
for the specified segment. The segment transformation applies to all primitives in
the segment. The function sets the transformation by adding or replacing the
existing transformation matrix with the matrix pointed to by the pmatlf parame­
ter. The function adds, preempts, or replaces the existing transformation matrix
as specified by the jlType parameter.

The GpiSetSegmentTransformMatrix function requires a nine-element matrix to
set the segment transformation. If the specified matrix does not contain nine ele­
ments, the function uses the corresponding elements of the identity matrix for
each unspecified element. The cElements parameter specifies the number of ele­
ments in the matrix. If this parameter equals zero, the identity matrix is used. If
scaling values greater than one are given, care must be taken that the combined
effect of this and any other relevant transformations do not exceed the limit for
fixed-point numbers.

hps Identifies the presentation space.

idSegment Specifies the segment identifier; it must be greater than zero. The
segment transformation does not affect primitives outside the specified segment.

cElements Specifies the number of elements in the matrix to set. It can be
any integer in the range 0 through 9.

pmatlf Points to a MATRIXLF structure that contains the transformation
matrix. The MATRIXLF structure has the following form:

206 GpiSetSegmentTransformMatrix

Return Value

Errors

Comments

See Also

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

jlType Specifies how a specified matrix should be used to modify the segment
transformation. It can be one of the following values:

Value

TRANSFORMLADD

TRANSFORMLPREEMPT

TRANSFORMLREPLACE

Meaning

Additive. The specified transformation matrix
is combined with the existing segment
transformation, in the order of the existing
transformation first, the new transformation
second. This option is useful for incremental
updates to transformations.

Preemptive. The specified transformation
matrix is combined with the existing segment
transformation, in the order of the new
transformation first, the existing transforma­
tion second.

New/replace. The previous segment transfor­
mation is discarded and replaced by the
specified transformation matrix.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -MICROPSYUNCTION
PMERRJNV _SEG_NAME
PMERRJNV _TRANSFOR~TYPE

The system applies a segment transformation to the primitives in the given seg­
ment after applying the model transformation and any instance and segment
transformations from calling segments.

GpiQueryDefaultViewMatrix, GpiQuerySegmentTransformMatrix

• GpiSetStopDraw
BOOl GpiSetStopDraw(hps. fStopDraw)
HPS hps: 1* presentation-space handle *1
lONG fStopDraw: 1* stop-draw condition flag *1

The GpiSetStopDraw function sets or clears the stop-draw condition. The stop­
draw condition terminates specific functions that may be executing in another
thread of the process. If the stop-draw condition is set, the system stops the fol­
lowing functions and forces each to return an error:

Parameters

Return Value

Errors

Comments

See Also

• GpiSetTag

GpiDrawChain
GpiDrawDynamics
GpiDrawFrom
GpiDrawSegment
GpiPlayMetaFile
GpiPutData

hps Identifies the presentation space.

GpiSetTag 207

jStopDraw Specifies the stop-draw condition. If it is FALSE, the function
clears the stop-draw condition. If it is TRUE, the function sets the condition.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERRJNV -MICROPSYUNCTION
PMERRJNV _STOPJ)RA W_ VALUE

The GpiSetStopDraw function lets an application set up and control an asyn­
chronous thread that carries out long drawing operations. If the controlling
thread needs to stop drawing, it sets the condition. If it wants to allow drawing,
it clears the condition. The stop-draw condition only affects the listed functions.

Using the stop-draw condition to stop drawing to a metafile creates an unusable
metafile.

GpiDrawChain, GpiDrawDynamics, GpiDrawFrom, GpiDrawSegment, GpiPlay­
MetaFile, GpiPutData

BOOl GpiSetTag(hps. ITag)
HPS hps; 1* presentation-space handle *1
lONG ITag; 1* tag *1

Parameters

The GpiSetTag function sets the current primitive tag. A primitive tag is a way
of identifying a primitive stored in a segment. The function sets the primitive tag
and the system applies this tag to all subsequent primitives. The default tag is
zero.

Primitive tags are typically used when correlating segments. The GpiCorrelate­
Chain, GpiCorrelateFrom, and GpiCorrelateSegment functions return the seg­
ment identifier and the primitive tag of objects that lie in the pick aperture.

The GpiSetTag function cannot be used in an area bracket, but can be used
before an area bracket to give all primitives in the area the same tag. If the attri­
bute mode is A~RESER VE, the function saves the previous tag on the attri­
bute stack when it sets the new tag. The previous tag can be retrieved using the
GpiPop function.

hps
1 Tag

Identifies the presentation space.

Specifies a tag. It must be an integer value.

208 GpiSetTag

Return Value

Errors

Comment

See Also

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERRJNV j1ICROPSYUNCTION

Although primitives in an unnamed segment can be tagged, the correlation func­
tions cannot pick or correlate unnamed segments or any tags applied to them are
ignored.

GpiBeginArea, GpiCorrelateChain, GpiCorrelateFrom, GpiCorrelateSegment,
GpiEndArea, GpiSetAttrMode

• GpiSetViewingLimits
BOOL GpiSetViewingLimits (hps, pgroLimits)
HPS hps; I. presentation-space handle ./
PRECTL pro/Limits; I. pointer to structure with viewing limits ./

Parameters

Return Value

Comments

See Also

The GpiSetViewingLimits function sets the viewing limits. The viewing limits
specify a rectangle in model space that the system uses to clip output. The view­
ing limits include all points inside the rectangle and all points on the left and
bottom edges. It does not include points on the right and top edges. Points on
these edges are clipped.

The GpiSetViewingLimits function can be used in a segment to set the viewing
limits for subsequent primitives in the segment. The viewing limits also apply to
any called segments, unless the called segment itself sets the viewing limits.

hps Identifies the presentation space.

prclLimits Points to the RECTL structure that contains the coordinates of the
viewing limits. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Unless the segments in the picture chain have the fast-chaining attribute, the sys­
tem resets the default viewing limits when each segment in the chain is drawn.
The default viewing limits include all model space, meaning nothing is clipped.

The segment and model transformations do not affect the viewing limits, but the
current viewing and default viewing transformations do.

. GpiQueryViewingLimits, GpiSetAttrMode

GpiSetViewingTransformMatrix 209

• GpiSetViewingTransformMatrix
Baal GpiSetViewingTransfonnMatrix(hps, cElements, pmatlf, flType)
HPS hps; I. presentation-space handle .1
lONG cElements; I. number of elements .1
PMATRIXlF pmatlf; I. pOinter to structure with transformation matrix .1
lONG flType; I. tr.ansformation type .1

Parameters

Return Value

The GpiSetViewingTransformMatrix function sets the viewing transformation.
The viewing transformation applies to all primitives inside subsequently opened
(new) segments (it has no effect on primitives outside segments). All graphics
primitives in a segment have the same viewing transformation, since the function
cannot be used in an open segment. Also, once set for a segment, the viewing
transformation cannot be altered.

The GpiSetViewingTransformMatrix function sets the transformation by replac­
ing the existing transformation matrix with the matrix pointed to by the pmatlf
parameter. The function replaces the existing transformation matrix as specified
by the jiType parameter. The function requires a nine-element matrix to set the
viewing transformation. If the specified matrix does not contain nine elements,
the function uses the corresponding elements of the identity matrix for each
unspecified element. The cElements parameter specifies the number of elements
in the matrix. If this parameter equals zero, the identity matrix is used. If scaling
values greater than one are given, care must be taken that the combined effect
of this and any other relevant transformations do not exceed the limit for fixed­
point numbers.

hps Identifies the presentation space.

cElements Specifies the number of elements in the matrix to set. It can be
any integer in the range 0 through 9.

pmatlf Points to the MATRIXLF structure that contains the transformation
matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF {
FIXED fxMll;
FIXED fxM12;
LONG 1M13;
FIXED fxM21;
FIXED fxM22;
LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLF;

For a full description, see Chapter 4, "Types, Macros, Structures."

jiType Specifies the transform type. It can be TRANSFOR1LREPLACE.
The previous viewing transformation is discarded and replaced by a specified
transformation.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

210 GpiSetViewingTransformMatrix

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

See Also

• GpiStrokePath

PMERRJNV ~ICROPSYUNCTION
PMERRJNV _TRANSFOR~TYPE

GpiQueryDefaultViewMatrix, GpiQueryViewingTransformMatrix

lONG GpiStrokePath(hps. IPath. flOptions)
HPS lips; /. preSentation-space handle ./

lONG IPath; /. stroke path ./
UlONG flOptions; /. reserved ./

Parameters

Return Value

See Also

The GpiStrokePath function strokes a path and then draws it using the area
attributes. This function first converts the path to one describing the envelope
of a wide line stroked using the current geometric wide-line attribute (see the
GpiSetLine WidthGeom function).

hps Id~ntifies a presentation space.

[Path Specifies the path to stroke.

flOptions Specifies a reserved value; it must be zero.

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

GpiBeginPath, GpiEndPath, GpiModifyPath, GpiSetLine WidthGeom

• GpiUnloadFonts
BOOl GpiUnloadFonts(hab. pszModName)
HAB hab; /. anchor-block handle ./
PSZ pszModName; /. pointer to the module name ./

Parameters

Return Value

The GpiUnloadFonts function unloads font definitions that were previously
loaded from the resource file specified by the pszModName parameter. Before
unloading fonts, the application should delete any local identifiers previously
assigned to the fonts. The function unloads the fonts for the application only. If
any other applications have loaded the fonts, they remain available for those
applications.

hab Identifies the anchor block.

pszModName Points to a null-terminated string. This string must be a valid
MS OS/2 filename. If it does not specify a path and the filename extension, the
function appends the default extension (.dll) and searches for the font resource
file in the directories specified by the Iibpath command in the config.sys file.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

Errors

See Also

GpiWCBitBlt 211

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERILFONT_NOT.LOADED

GpiCreateLogFont, GpiDeleteSetId, GpiLoadFonts, GpiSetCharSet

• GpiUnrealizeColorTable
Baal GpiUnrealizeColorTable (hps)
HPS hps; 1* presentation-space handle .1

Parameters

Return Value

See Also

• GpiWCBitBlt

The GpiUnrealizeColorTable function "unrealizes" the logical color table. The
function has the opposite effect of the GpiRealizeColorTable function. It
restores the default device colors for the physical palette for the device associ­
ated with the given presentation space.

The function does not change the logical color table.

hps Identifies the presentation space.

The return value is GPLOK if the function is successful or GPLERROR if an
error occurred.

GpiRealizeColorTable

lONG GpiWCBitBlt(hps, hbm, cPoints, apt!, /Rop, flOptions)
HPS hps; . I. presentation-space handle .1
HBITMAP hbm; I. bitmap handle .1
lONG cPoints;
PPOINTl apt!;
lONG /Rop;
UlONG flOptions;

1* number of pOints
1* pointer to structure with points *1
1* mixing function

1* options

The GpiWCBitBlt function copies a bitmap to a presentation space. It can also
modify the bitmap within a rectangle in a presentation space. The exact opera­
tion carried out by GpiWCBitBlt depends on the raster operation specified by
the lRop parameter.

If lRop directs GpiWCBitBlt to copy a bitmap, the function copies the bitmap
specified by hbm to the presentation space. The presentation space must be
associated with a device context for the display, for memory, or for some other
suitable raster device. The aptl parameter points to an array of points that
specify the corners of a rectangle in the bitmap as well as the corners of the
rectangle in the presentation space to receive the bitmap. The bitmap rectangle
is specified in device coordinates; the presentation-space rectangle in world coor­
dinates. If the bitmap and presentation-space rectangles are not the same (after
converting the presentation space to device coordinates), GpiWCBitBlt stretches
or compresses the bitmap to fit the presentation-space rectangle.

212 GpiWCBitBlt

Parameters

If lRop directs GpiWCBitBIt to modify a bitmap, the function uses the raster
operation to determine how to alter the bits in a rectangle in the presentation
space. Raster operations include changes such as inverting existing bits, replac­
ing bits with pattern bits, and mixing existing and pattern bits to create new
colors. For some raster operations, the function mixes the bits of the bitmap
with the presentation space and/or pattern bits.

hps Identifies the presentation space.

hbm Identifies the bitmap.

cPoints Specifies the number of points pointed to by the aptl parameter. It
must be 4.

aptl Points to an array of POINTL structures that contains the number of
points specified in the cPoints parameter. The points must be given in the follow­
ing order:

Element index Coordinate

o Specifies the lower-left corner of the target rectangle in
world coordinates.

1

3

4

Specifies the upper-right corner of the target rectangle in
world coordinates.

Specifies the lower-left corner of the source rectangle in
device coordinates.

Specifies the upper-right corner of the source rectangle in
device coordinates.

The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

lRop Specifies the raster operation for the function. It can be any value in the
range 0 through 255 or one of the following values, which represent common ras­
ter operations:

Value

ROPJ)STINVERT

ROP _MERGECOPY

ROP _MERGEPAINT

ROP _NOTSRCCOPY

ROP ~OTSRCERASE

ROP_ONE

ROP _PATCOPY

ROP _PA TINVERT

Meaning

Inverts the target.

Combines the source and the pattern using the
bitwise AND operator.

Combines the inverse of the source and the tar­
get using the bitwise OR operator.

Copies the inverse of the source to the target.

Combines the inverse of the source and the
inverse of the target bitmaps using the bitwise
AND operator.

Sets all target pels to 1.

Copies the pattern to the target.

Combines the target and the pattern using the
bitwise exclusive XOR operator.

Return Value

Errors

Value

ROP_SRCAND

ROP _SRCCOPY

ROP _SRCERASE

GpiWCBitBlt 213

Meaning

Combines the inverse of the source, the pattern,
and target using the bitwise OR operator.

Combines the source and target bitmaps using
the bitwise AND operator.

Copies the source bitmap to the target.

Combines the source and the inverse of the tar­
get bitmaps using the bitwise AND operator.

ROP _SRCINVERT Combines the source and target bitmaps using
the bitwise exclusive OR operator.

ROP _SRCP AINT Combines the source and target bitmaps using
the bitwise OR operator.

ROP _ZERO Sets all target pels to O.

flOptions Specifies how to compress a bitmap if the target rectangle is smaller
than the source. It can be one of the following values:

Value

BBOJGNORE

Meaning

Compresses two rows or columns into one by
combining them with the bitwise AND operator.
This value is useful for compressing bitmaps that
have black images on a white background.

Compresses two rows or columns into one by
combining them with the bitwise OR operator.
This value is the default and is useful for com­
pressing bitmaps that have white images on a
black background.

Compresses two rows or columns by throwing
one out. This value is useful for compressing
color bitmaps.

All values in the range OxOlOO to OxFFOO are reserved for privately supported
modes for particular devices.

The return value is GPLOK or GPLHITS if the function is successful (it is
GPLHITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPLERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERILBASE~RROR
PMERILBITMAP _NOT_SELECTED
PMERRJNCOMPATIBLEJUTMAP
PMERRJNV ~ITBLT~IX
PMERRJNV ~ITBLT_STYLE
PMERRJNV _COORDINATE
PMERRJNV ~C_TYPE
PMERRJNV JlBITMAP
PMERRJNVJlDC
PMERRJNVJN~REA
PMERRJNV JNYATH
PMERRJNV-LENGT~OR-COUNT

214 GpiWCBitBlt

Comments

Example

See Also

The GpiWCBitBlt function can be used in an open segment. If the drawing
mode is D~RAWANDRETAIN or DMJETAIN, the function builds a
graphics order in the current open segment. The order identifies the bitmap han­
dle and uses uses long or short coordinates, as determined by the presentation­
space format.

GpiWCBitBlt does not affect the pels in the upper and right boundaries of the
presentation-space rectangle. This means the function draws up to but does not
include those pels. Also, the function ignores any rotation transformations.

If the lRop parameter includes a pattern, GpiWCBitBlt uses the current area
color, area background color, pattern set, and pattern symbol of the presenta­
tion space. Although the function may stretch or compress the bitmap, it never
stretches or compresses the pattern.

If the presentation-space and the bitmap have different color formats, GpiWC.
BitBlt converts the bitmap color format as it copies the bitmap. This applies to
bitmaps copied to a device context having a monochrome format. To convert a
monochrome bitmap to a color bitmap, GpiWCBitBlt converts 1 pels to the
presentation foreground color, and 0 pels to the current-area background color.

This example uses GpiWCBitBlt to copy and compress a bitmap in a presenta­
tion space. The function copies the bitmap that is 100 pels wide and 100 pels
high into a 50-by-50-pel rectangle at the location (300,400). Since the raster
operation is ROP_SRCCOPY, GpiWCBitBlt replaces the image previously in
the presentation-space rectangle. The function compresses the bitmap to fit
the new rectangle by discarding extra rows and columns as specified by the
BBOJGNORE option.

HPS hps;
HBITMAP hbm;
POINTL aptl[4]

300, 400,
350, 450,
0, 0,
100, 100 };

GpiWCBitBlt(hps,
hbm,
4L,
aptl,
ROP_SRCCOPY,
BBO_IGNORE) ;

{
/* lower-left corner of target
/* upper-right corner of target
/* lower-left corner of source
/* upper-right corner of source

*/
*/
*/
*/

/* presentation space * /
/* bitmap handle */
/* four points needed to compress */
/* points for source and target rectangles */
/* copy source replacing target */
/* discard extra rows and columns */

DevOpenDC, GpiBitBlt, GpiCreateBitmap, GpiLoadBitmap, GpiSetBitmap,
GpiSetBitmapDimension, GpiSetBitmapld

WinAddProgram 215

• WinAddAtom
ATOM WinAddAtom(hAtomTbl, pszAtomName)
HATOMTBL hAtomTbl; f. handle to the atom table .f
PSZ pszAtomName; f. address of the buffer for the atom name .f

Parameters

Return Value

See Also

The WinAddAtom function adds an atom to an atom table and sets its use count
to 1. If the atom name already exists in the table, this function adds 1 to its use
count.

hAtom Tbl Identifies the atom table. This handle must have been created by a
previous call to the WinCreateAtomTable or WinQuerySystemAtomTable func­
tion.

pszAtomName Points to the null-terminated character string that contains an
atom name to be added to the table. If the string begins with a "#" character,
the ASCII digits that follow are converted into a 16-bit integer. If this integer is
a valid integer atom, this function returns that atom without actually modifying
the atom table. If the string begins with an "!" character, the next two bytes are
interpreted as an atom.

If the high word of pszAtomName is OxFFFF, the low word is treated as an
atom. If it is an integer atom, that atom is returned. Otherwise the reference
count associated with that atom is increased by one and the atom is returned.

The return value is the atom associated with the passed string or NULL. The
return value is zero if an invalid atom table or atom name was specified.

WinCreateAtomTable, WinDeleteAtom, WinFindAtom, WinQueryAtomLength,
WinQueryAtomName, WinQueryAtomUsage

• WinAddProgram
HPROGRAM WinAddProgram(hab, ppib, hGroupHandle)
HAB hab; f. handle to the anchor block .f
PPIBSTRUCT ppib; I. address of structure with program information .1
HPROGRAM hGroupHandle; f. handle of the program group .f

Parameters

The WinAddProgram function adds a program title to the program list of a
group. Program titles need not be unique, although duplicate titles within the
same group are not allowed.

hab Identifies the anchor block.

ppib Points to a PIBSTRUCT structure that contains program information for
the program being added to the program list.

The PIBSTRUCT structure has the following form:

216 WinAddProgram

Return Value

See Also

typedef struct _PIBSTRUCT {
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];
CHAR szIconFileName[MAXPATHL+l];
CHAR szExecutable[MAXPATHL+l];
CHAR szStartupDir[MAXPATHL+l];
XYWINSIZE xywinlnitial;
USHORT resl;
LHANDLE res2;
USHORT cchEnvironmentVars;
PCH pchEnvironmentVars;
USHORT cchProgramParameter;
PCH pchProgramParameter;

} PIBSTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

hGroupHandle Identifies the program group to which the program is added~
The special value SGILROOT may be used, indicating the root group.

The return value is the program handle for the program added to the program
list.

WinCreateGroup, WinQueryDefinition, WinQueryProgramTitles

• WinAddSwitchEntry
HSWITCH WinAddSwitchEntry(pswctl)
PSWCNTRL pswct/; 1* address of structure with new entry information *1

Parameters

Return Value

Example

The WinAddSwitchEntry function adds an entry to the switch list (the list of run­
ning programs that is displayed by the Task Manager).

pswctl Points to the SWCNTRL structure that contains information about the
new switch-list entry. If the szSwtitle field in the SWCNTRL structure is NULL,
the system uses the name under which the application was started. This applies
only for the first call to this function for that program (since the program was
started). Otherwise, a NULL entry name is invalid.

The SWCNTRL structure has the following form:

typedef struct _SWCNTRL {
HWND hwnd;
HWND hwndlcon;
HPROGRAM hprog;
USHORT idProcess;
USHORT idSession;
UCHAR uchVisibility;
UCHAR fbJump;
CHAR szSwtitle[MAXNAMEL+l];
BYTE fReserved;

} SWCNTRL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is a handle to the new switch-list entry, or NULL if an error
occurs.

This example calls WinQueryWindowProcess to get the current processor
identifier (needed for the SWCNTRL structure). It then sets up the swetl struc­
ture and calls WinAddSwitchEntry to add the program's name to the task list.
The returned handle can be used in subsequent calls to WinChangeSwitchEntry
if the title needs to be changed. The variables swetl, hswitch, and pid should be

Comment

See Also

• WinAlarm

WinAlarm 217

global if your application will be calling the WinChangeSwitchEntry function to
avoid having to set up the structure again.

SWCNTRL swctl;
HSWlTCH hswitch;
PlO pid;

WinQueryWindowProcess(hwndFrame, &pid, NULL);

swctl.hwnd = hwndFrame;
swctl.hwndlcon = NULL;
swctl.hprog = NULL;
swctl.idProcess = pid;
swctl.idSession = NULL;
swctl.uchVisibility = SWL_VlSlBLE;
swctl.fbJump = SWL_JUMPABLE;
swctl.szSwtitle[O] = NULL;

hswitch = WinAddSwitchEntry(&swctl);

It window handle tl
It icon handle tl
It program handle tl
It process identifier tl
It session identifier tl
It visibility tl
It jump indicator tl
It program name tl

Leading and trailing blanks are removed from the title. The title is truncated to
60 characters. There is a system limit to the number of switch-list entries
(several hundred) but it is unlikely to be reached because other system limits,
such as memory size, will impinge first.

WinChangeSwitchEntry, WinQueryWindowProcess, WinRemoveSwitchEntry

BOOl WinAlann(hwndDesktop, fsType)
HWND hwndDesktop; /. handle of the desktop ./
USHORT fsType; /. alarm style ./

Parameters

Return Value

Comments

The WinAlarm function generates an audible alarm that can be used to alert the
user about special conditions.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

jsType Specifies the alarm style. It can be one of the following values:

W~WARNING
W~NOTE
W~RROR

The return value is TRUE if the function is successful or FALSE if an error
occurs.

The duration and frequency of the alarm can be changed by the WinSetSys Value
function. The alarm is not generated if the system value SV -ALARM is set to
FALSE.

The following system values control the alarm:
Value

SV_ERRORDURATION

Meaning

Specifies whether calls to WlnAlarm generate a
sound. A value of TRUE means sound is gen­
erated.

Specifies the duration in milliseconds of a
W A_ERROR sound.

218 WinAlarm

Example

See Also

• WinAllocMem

Value Meaning

SV _ERRORFREQ Specifies the frequency in cycles per second of
a W A_ERROR sound.

SV _NOTEDURATION Specifies the duration in milliseconds of a
WA-NOTE sound.

SV _NOTEFREQ Specifies the frequency in cycles per second of
a WA_NOTE sound.

SV_WARNINGDURATION Specifies the duration in milliseconds of a
W A_WARNING sound.

SV _ W ARNINGFREQ Specifies the frequency in cycles per second of
a WA_WARNINGsound.

This example calls an application-defined initialization function, and if the func­
tion fails it calls WinAlarm to generate an audible alarm notifying the user the
initialization failed.

if (IGenericInit(» {
WinAlarm (HWND_DESKTOP , WA_ERROR);

/* general initialization */

WinFlash Window, WinSetSys Value

NPBYTE WinAllocMem(hHeap. cb)
HHEAP hHeap; 1* handle of the heap *1
USHORT cb; 1* number of bytes to allocate *1

Parameters

Return Value

Comments

The WinAllocMem function allocates memory from a heap and returns the 16-bit
offset from the start of the segment that contains the heap.

hHeap Identifies the heap from which to allocate memory. This handle is
returned by a previous call to the WinCreatelleap function.

cb Specifies the number of bytes to allocate.

The return value points to the allocated memory block if the function is success­
ful or is NULL if an error occurs.

The low two bits of the returned pointer are always zero. This function returns
NULL when it cannot allocate the memory object, either because an invalid
heap handle is specified or because there is not enough room in the heap for an
object of the specified size and it is unable to grow the segment containing the
heap by an amount large enough to satisfy the request.

If the specified heap is created with the H~OVEABLE option, the value of
the cb parameter is remembered in the second reserved word of the allocated
block.

If no free block is found, WinAllocMem seeks space by calling the WinA vail­
Mem function. If this does not generate a free block large enough, WinAlloc­
Mem attempts to grow the segment by the maximum of the size of the request
and the minimum growth parameter specified on the call to the WinCreateHeap
function. If that fails, this function returns NULL.

See Also

• WinAvailMem

WinAvailMem 219

No synchronization is done for this call. Multi-threaded applications should use
semaphores if more than one thread will be making this call to prevent two or
more threads from calling this function at the same time.

If the heap was created in the default data segment, the returned value may be
used directly as a near pointer. Otherwise, it must be combined with the selector
of the heap segment to create a far pointer. The MAKEP macro can be used for
this purpose as in the following code fragment:

NPBYTE npb;
PBYTE pb;

npb = WinAllocMem(...);
pb = MAKEP(sel, /' heap segment selector '/

(USHORT) npb); /' value returned from WinAllocMem '/

WinAvailMem, WinCreateHeap, WinFreeMem, WinRealIocMem

USHORT WinAvailMem(hHeap, (Compact, cbMinFree)
HHEAP hHeap; /. handle of the heap ./
BOOL (Compact; /. memory-compaction flag ./

USHORT cbMinFree; /. amount of storage requested ./

Parameters

Return Value

Comments

See Also

The WinA vailMem function returns the size of the largest free block on the
heap.

hHeap Identifies the heap. This handle must have been created by a previous
call to the WinCreateHeap function.

/Compact Specifies the memory-compaction flag. If TRUE, the heap is reor­
ganized. If FALSE, the heap is not reorganized.

cbMinFree This parameter is currently not used, but should be set to the
amount of storage the caller is requesting. A future release may use this value to
limit the scope of the compaction.

The return value is the largest memory block available if the function is success­
ful, or OxFFFF if an error occurs.

If the passed heap was created with the H~OVEABLE option, the reorgani­
zation entails moving all movable blocks toward the beginning of the heap. The
presence of fixed objects may inhibit the amount of movement that can occur.
While the compaction is occurring, the dedicated and nondedicated free lists are
reconstructed from any free blocks that cannot be filled by the compactor.

If the passed heap was not created with the H~OVEABLE option, the reor­
ganization entails sorting all free lists into a single list in address order, scanning
the list for adjacent blocks to coalesce, and then reconstructing the dedicated
and nondedicated free lists.

No synchronization is done for this call. Multi-threaded applications should use
semaphores if more then one thread will be making this call to prevent two or
more threads from calling this function at the same time.

WinAlIocMem, WinCreateHeap, WinFreeMem, WinRealIocMem

220 WinBeginEnumWindows

• WinBeginEnumWindows
HENUM WinBeginEnumWindows(hwnd)
HWND hwnd; I. handle of the parent window.1

Parameters

Return Value

Comments

See Also

• WinBeginPaint

The WinBeginEnum Windows function begins the enumeration process for all
immediate child windows of a specified window. This function takes a snapshot
of the window hierarchy at the time the function is called and enumerates the
windows in the order they were at the time the snapshot is taken. The topmost
child window is enumerated first, guaranteeing that all child windows are
enumerated.

hwnd Identifies the parent window whose child windows are enumerated. If
this parameter is HWNDJ)ESKTOP, all main windows are enumerated.

The return value is the handle to an enumeration list and is used in subsequent
calls to WinGetNextWindow to retrieve the window handles in succession. When
the application has finished the enumeration, this handle must be destroyed by
the WinEndEnum Windows function.

The enumerated windows are not locked and can be destroyed between the time
this function is called and the time that the WinGetNextWindow function is used
to obtain the window handle. However, enumerated window handles referenced
by the enumeration handle will be removed from the enumeration list if they are
destroyed. Thus they will not be returned by WinGetNextWindow.

WinEndEnum Windows, WinGetNextWindow

HPS WinBeginPaint(hwnd, hps, pre/Paint)
HWND hwnd; I. handle of the window handle .1
HPS hps; I. handle of the presentation space */ ".
PRECTL pre/Paint; 1* address of structure for bounding rectangle .1

Parameters

The WinBeginPaint function obtains a presentation space whose visible region is
the window's update region. This sets up the presentation space so that any
drawing will only occur within the update region. The presentation space can be
an existing one supplied to this function, in which case its visible region will be
set to the update region of hwnd. Otherwise, a cached presentation space is
obtained specifically for the window.

The WinEndPaint function must ~e called when drawing is complete.

hwnd Identifies the window where drawing will occur.

hps Identifies the presentation space to use. If this parameter is NULL, a
cache presentation space is created.

prclPaint Points to a RECTL structure that will be set to the smallest rect­
angle bounding the update region. The RECTL structure has the following form:

Return Value

Comments

Example

See Also

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

WinBroadcastMsg 221

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is a handle to a presentation space, or NULL if an error
occurred.

This function hides the cursor, if it is in the window, until the WinEndPaint
function is called.

This example calls WinBeginPaint when it receives a WMY AINT message to
get a presentation-space handle to the update region, and to get the coordinates
of the update rectangle. It then fills the update rectangle and calls WinEndPaint
to release the presentation space.

case WM_PAINT:
hps = WinBeginPaint(hwnd, /* handle of the window */

NULL, /* get a cache ps */
&rcl) ; /* receives update rectangle */

WinFillRect(hps, &rcl, CLR_WHITE);
WinEndPaint(hps);

WinEndPaint

• WinBroadcastMsg
BOOL WinBroadcastMsg(hwnd. msg. mp1. mp2. fs)
HWND hwnd; I. handle of the parent window .1
USHORT msg; I. message .1
MPARAM mp1; I. message parameter .1
MPARAM mp2; I. message parameter .1
USHORT fs; I. windows to send message to *1

Parameters

The WinBroadcastMsg function broadcasts a message to multiple windows. This
function sends or posts a message to all immediate child windows of the speci­
fied window.

hwnd Identifies the window whose immediate child windows will receive the
message. If this parameter is NULL, the function sends the message to all main
windows on the screen.

msg Specifies the message.

mpJ Specifies the first message parameter.

mp2 Specifies the second message parameter.

Is Specifies which windows to send the message to, and whether the message
should be sent or posted. The value consists of a flag from each of the following
lists combined using the OR operator.

222 WinBroadcastMsg

Return Value

See Also

The following list contains the values specifying which windows to broadcast the
message to:

Destination Meaning

BMSG_DESCENDANTS Post or send the message to hwnd and all of its
descendants.

BMSG_FRAMEONL Y Post or send the message to frame windows only.

The following list contains the values specifying how to broadcast the message
(send or post):

Value Meaning

Post a message to all child windows of the window
specified by the hwnd parameter.

Post a message to all threads that have a message
queue. The message's hwnd parameter will be
NULL.

Send a message to all children of the window
specified by the hwnd parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinPostMsg, WinSendMsg

• WinCalcFrameRect
BOOl WinCalcFrameRect(hwndFrame. prel. (Client)
HWND hwndFrame; I. handle of the frame window .1
PRECTl prel; I. address of structure with window rectangle .1
BOOl (Client; I. client-indicator flag .1

Parameters

The WinCalcFrameRect function calculates a client rectangle from a frame rect­
angle or calculates a frame rectangle from a client rectangle. This function pro­
vides the size and position of the client area within the specified frame window,
or conversely, the size and position of the frame window that would contain a
client window of the specified size and position.

hwndFrame Identifies the frame window.

prcl Points to the RECTL structure that contains the coordinates of the win­
dow. If the fClient parameter is TRUE, this'structure contains the coordinates of
the frame window, and on return, it will contain the coordinates of a client win­
dow. If the fClient parameter is FALSE, this structure contains the coordinates
of the client window, and on return, it will contain the coordinates of a frame
window. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

WinCallMsgFilter 223

fClient Specifies whether the window to calculate is a client window or a
frame window. If TRUE, a client window is calculated. If FALSE, a frame win­
dow is calculated.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

• WinCallMsgFilter
BOOl WinCallMsgFilter(hab, pqmsg, msgf)
HAB hab; I. handle of the anchor block .1
PQMSG pqmsg; I. address of structure with message .1
USHORT msgf; I. message-filter code .1

Parameters

Return Value

See Also

The WinCallMsgFilter (unction calls a message-filter hook. This function allows
an application to pass a message to the message-filter hook procedure(s).

hab Identifies the anchor block.

pqmsg Points to the QMSG structure that contains the message to be passed
to the message-filter hook procedure. The QMSG structure has the following
form: .

typedef struct _QMSG {
HWND hwnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

For a full description, see Chapter 4, "Types, Macros, Structures."

msgf Specifies the message-filter code passed to the message-filter hook. This
can be one of the following values:

Message

MSGF _DIALOGBOX

MSGF _MESSAGEBOX

MSGF_TRACK

Meaning

Message originated while processing a modal dia­
log.

Message originated while processing a message box.

Message originated while tracking a control, such
as a scroll bar.

The return value is TRUE if a message-filter hook returned TRUE. Otherwise, it
is FALSE, indicating that all message-filter hooks returned FALSE or that no
message-filter hooks are defined.

WinDispatchMsg, WinGetMsg

224 WinCancelShutdown

• WinCancelShutdown
BOOl WinCancelShutdown(hmq, fCancelA/ways)
HMQ hmq; I. handle of the message queue.1
BOOl fCancelAlways; I. status of WM_QUIT message .1

Parameters

Return Value

• Win Catch

The WinCancelShutdown function allows a thread to function after receiving a
W1LQUIT message. The thread must call the WinCancelShutdown function,
passing its message-queue handle for identification. If the thread owns the active
window, that window is pushed to the bottom and deactivated. WinCancel­
Shutdown maintains a list of queues associated with the threads that called it
to avoid sending another W1LQUIT message to the same thread later.

hmq Identifies the message queue for the current thread.

JCancelAlways Specifies whether the thread receives W1LQUIT messages
during system shutdown. If this parameter is TRUE, the thread does not receive
W1LQUIT messages during system shutdown. Note that this does not prevent a
W1LQUIT message from being put into the queue for this thread by some other
mechanism. If this parameter is FALSE, the thread ignores the W1LQUIT mes­
sage. Note that a subsequent system shutdown causes a new W1LQUIT message
to be sent to this thread.

The return value is TRUE if the function is successful or FALSE if an error
occurs .

SHORT WinCatch(pcatchbuf)
PCATCHBUF pcatchbuf; I. address of structure for execution environment .1

Parameters

Return Value

Comments

Example

The WinCatch function captures the current execution environment and copies
it to a buffer. The buffer can later be used by the WinThrow function to restore
the execution environment. The execution environment includes the state of all
system registers and the instruction counter.

pcatchbuJ Points to the CATCHBUF structure that receives the execution
environment. The CATCHBUF structure has the following form:

typedef struct _CATCHBUF {
ULONG reserved[4];

} CATCHBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

The WinCatch function returns immediately with a return value of zero. It
returns again when the WinThrow function is called, this time with the return
value specified in the sErrorReturn parameter of the WinThrow function.

The routine that calls WinCatch is responsible for freeing any resources allo­
cated between the time WinCatch was called and the time WinThrow was called.

This example calls WinCatch to save the current execution environment before
calling a recursive sort function. The first return from WinCatch is zero. If the
doSort function calls WinThrow, execution will again return to the WinCatch
function. This time, Win Catch will return the STACKOVERFLOW error

See Also

WinChangeSwitchEntry 225

passed by the doSort function. The doSort function is recursive, that is, it calls
itself. It maintains a variable, usStackCheck, that is used to check to see how
much stack space has been used. If more then 3K of the stack has been used, it
calls WinThrow to drop out of all the nested function calls back into the func­
tion that called WinCatch.

USHORT usStackCheck
CATCHBUF ctchbf;

main () {
SHORT sErrorReturn;

sErrorReturn = WinCatch(&ctchbf); I' save execution environment 'I
if (sErrorReturn) {

}

. I' error processing 'I

}
usStackCheck = 0;
doSort(l, 1000);

I' initialize stack usage count 'I
I' call sort function 'I

VOID doSort(sLeft, sRight)
SHORT sLeft, sRight;
{

}

SHORT i, sLast;

I'
, check to see if more than 3K of the stack has been used, and if
, so, call WinThrow to drop back into the original calling program
'I

usStackCheck += 10;
if (usStackCheck > (3 ' 1024»

WinThrow(&ctchbf, STACKOVERFLOW);

. I' sorting algorithm 'I

doSort(sLeft, sLast - 1);
usStackCheck -= 10;

I' note recursive call 'I
I' update stack check variable 'I

WinThrow

• WinChangeSwitchEntry
USHORT WinChangeSwitchEntry(hSwitch. pswctl)
HSWITCH hSwitch; I. handle to task-switch list *1
PSWCNTRL pswctl; 1* address of structure with change information *1

Parameters

The WinChangeSwitchEntry function changes information in the switch list (the
list of running programs displayed by the Task Manager).

hSwitch Identifies the switch-list entry to change. This handle is returned by
the WinAddSwitchEntry function.

pswctl Points to the SWCNTRL structure that contains information about the
changed switch-list entry. The SWCNTRL structure has the following form:

226 WinChangeSwitchEntry

Return Value

Example

See Also

typedef struct _SWCNTRL {
HWND hwnd;
HWND hwndlcon;
HPROGRAM hprog;
USHORT idProcess;
USHORT idSession;
UCHAR uchVisibility;
UCHAR fbJump;
CHAR szSwtitle[MAXNAMEL+l];
BYTE fReserved;

} SWCNTRL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is zero if the function is successful or nonzero if an error
occurs.

This example changes a swetl structure (SWCNTRL) and then calls WinChange­
SwitchEntry to change the title of the application in the task list. For this exam­
ple to work, the swetl structure must have been a global that was initialized prior
to this call. See the example for the WinAddSwitchEntry function to see how to
set up a SWCNTRL structure.

strcpy(swctl.szSwtitle, "Generic: H);
strcat(swctl.szSwtitle, pszFileName);
WinChangeSwitc~Entry(hswitch, &swctl);

WinAddSwitchEntry, WinRemoveSwitchEntry

/* application name */
/* current filename */
/* make the change */

• WinCloseClipbrd
BOOl WinCloseClipbrd(hab)
HAB hab; I. handle of the anchor block *1

Parameters

Return Value

See Also

The WinCloseClipbrd function closes the clipboard, allowing other applications
to open it. This function sends a WMJ)RA WCLIPBOARD message, causing
the clipboard contents to be drawn in the clipboard-viewer window. The clip­
board must be open prior to this function being called.

hab Identifies the anchor block.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinEmptyClipbrd, WinOpenClipbrd

• WinCompareStrings
USHORT WinCompareStrings(hab, idep, idee, psz1, psz2, reserved)
HAB hab; 1* handle of the anchor block *1

USHORT idep; 1* code-page identifier *1
USHORT idee; 1* country-code identifier *1
PSZ psz1; I. address of first string *1

PSZ psz2; 1* address of second string *1
USHORT reserved; I. must be zero *1

The WinCompareStrings function compares two strings.

Parameters

Return Value

hab Identifies the anchor block.

idep Identifies the code page.

idee Identifies the country code.

pszl Points to the first string.

psz2 Points to the second string.

WinCopyAccelTable 227

reserved Specifies a reserved value; must be zero.

The return value is the comparison result. It can be one of the following values:
Value Meaning

WCS_EQ Strings are equal.

WCS_LT String 1 is less than string 2.

WCS_GT String 1 is greater than string 2.

WCS_ERROR Invalid country-code or code-page identifier.

• WinCopyAccelTable
USHOR,. WinCopyAcceITable(haccel, pacct, cbCopyMax)
HACCEL hacce/: 1* handle of the accelerator table *1
PACCELTABLE pacct: 1* address of structure receiving information *1
USHORT cbCopyMax; 1* maximum size of data area .1

Parameters

Return Value

The WinCopyAccelTable function copies an accelerator table. This function is
used to obtain the accelerator-table data that corresponds to an accelerator-table
handle or to determine the size of the accelerator-table data.

haeeel Identifies the accelerator table.

pace! Points to the area of memory where the accelerator-table information
will be copied (in the form of an ACCELTABLE structure). If this parameter is
NULL, the function will return with the number of bytes needed to copy the
table. The ACCELTABLE structure has the following form:

typedef struct _ACCELTABLE {
USHORT cAccel;
USHORT codepage;
ACCEL aaccel[l];

} ACCELTABLE;

For a full description, see Chapter 4, "Types, Macros, Structures."

ebCopyMax Specifies the maximum size of the data area pointed to by the
pacct parameter. This parameter is ignored if pacct is NULL.

The return value is the amount of data copied or the length required for the
complete accelerator table if the function was successful, or it is zero if an error
occurs.

228 WinCopyRect

• WinCopyRect
BOOl WinCopyRect(hab, prclDst, prc/Src)
HAB hab; /. handle of the anchor block ./
PRECTl prclDst; /. address of structure with destination rectangle ./
PRECTl prc/Src; /. address of structure with source rectangle ./

Parameters

Return Value

See Also

The WinCopyRect function copies the coordinates of one rectangle to another.

hab Identifies the anchor block.

prclDst Points to the RECTL structure that receives a copy of the rectangle
specified by the prclSrc parameter. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight:
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

prclSrc Points to the RECTL structure that specifies the source rectangle.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinSetRectEmpty

• WinCpTranslateChar
UCHAR WinCpTranslateChar(hab, cpSrc, chSrc, cpDst)
HAB hab; /. handle of the anchor block ./
USHORT cpSrc; /. code page of source string ./
UCHAR chSrc; /. character to be translated, ./
USHORT cpDst; /. code page of resultant string ./

Parameters

Return Value

See Also

The WinCpTranslateChar function translates a character from one code page to
another.

hab Identifies the anchor block.

cpSrc Specifies the code page of the source string.

chSrc Specifies the character to be translated.

cpDst Specifies the code page of the resultant string.

The return value is the translated character. If a match for this character is not
found, OxFF is returned.

WinCpTranslateString

WinCreateAccelTable 229

• WinCpTranslateString
BOOl WinCpTranslateString(hab. cpSrc. pszSrc. cpOst. cchOestMax. pszOest)
HAB hab; I. handle of the anchor block .1
USHORT cpSrc; I. code page of source string .1
PSZ pszSrc; I. address of string to be translated .1
USHORT cpOst; I. code page of resultant string .1
USHORT cchOestMax; I. maximum length of output string .1
PSZ pszOest; I. address of buffer for translated string .1

Parameters

Return Value

See Also

The WinCpTranslateString function translates a string from one code page to
another. Both source and destination strings are null terminated.

hab Identifies the anchor block.

cpSrc Specifies the code page of the source string.

pszSrc Points to the string to be translated.

cpDst Specifies the code page of the resultant string.

cchDestMax Specifies the maximum length of the output string.

pszDest Points to the buffer to receive the translated string.

The return value is TRUE if-the function is successful or FALSE if an error
occurs. A return value of TRUE indicates that most, if not all, characters were
translated successfully. All untranslated characters are converted to OxFF.

WinCpTranslateChar

• WinCreateAccelTable
HACCEl WinCreateAcceITable(hab. pacct)
HAB hab; I. handle of the anchor block .1
PACCElTABlE pacct; I. address of structure for accelerator table.1

Parameters

Return Value

Comments

See Also

The WinCreateAccelTable function allocates an accelerator table with its con­
tents initialized to that of the specified ACCELTABLE structure.

hab Identifies the anchor block.

pacc! Points to the ACCELTABLE structure that contains an accelerator
table. The ACCELTABLE structure has the following form:

typedef struct _ACCELTABLE {
USHORT cAccel;
USHORT codepage;
ACCEL aaccel[l];

} ACCELTABLE;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value identifies an accelerator table.

When an application terminates it must call WinDestroyAccelTable to destroy
every accelerator table created by the call to the WinCreateAccelTable function.

WinCopy AccelTable, WinDestroy AccelTable, WinQueryAccelTable, WinSet­
AccelTable

230 WinCreateAtomTable

• WinCreateAtomTable
HATOMTBl WinCreateAtomTable (eblnitial, eBuekets)
USHORT eblnitia/; I. number of bytes for atom table .1
USHORT eBuekets; I. size of hash table .1

Parameters

Return Value

See Also

The WinCreateAtomTable function creates an empty atom table. This function
must be called before any other atom-manager function.

eblnitial Specifies the number of initial bytes reserved for the atom table.
This is a lower bound on the amount of memory reserved. The amount of
memory actually used by an atom table depends on the actual number of atoms
stored in the table. If this parameter is zero, the size of the atom table is the
minimum size needed to store the atom hash table.

eBuekets Specifies the size of the hash table used to access atoms. If this
parameter is zero, the default value 37 is used. For best results, this parameter
should be a prime number.

The return value is a handle to an atom table, or NULL if an error occurs.

WinAddAtom, WinDeleteAtom, WinDestroyAtomTable, WinQuerySystem­
AtomTable

• WinCreateCursor
BOOl WinCreateCursor(hwnd, x, y, ex, ey, fs, pre/Clip)
HWND hwnd; I. handle of the window with the cursor .1
SHORT x; I. horizontal position of the cursor .1
SHORT y; I. vertical position of the cursor .1
SHORT ex;
SHORT ey;
USHORT fs;
PRECTl pre/Clip;

Parameters

I. cursor width .1
I. cursor height .1
I. cursor appearance .1
I. address of structure with cursor area .1

The WinCreateCursor function creates a cursor for a specified window.

hwnd Identifies the window in which the cursor is displayed. This parameter
can be the desktop window handle or HWNDJ)ESKTOP.

X Specifies the horizontal position of the cursor.

y Specifies the vertical position of the cursor.

ex Specifies the width of the cursor. If this parameter is zero, the system
border width (SV _C:XBORDER) is used.

ey Specifies the height size of cursor. If this parameter is zero, the system
border height (SV _CYBORDER) is used.

Is Specifies the appearance of the cursor. This parameter can be one of the
following values:

Value

CURSOR_FLASH

CURSOR_FRAME

CURSORJfALFfONE

Meaning

Cursor flashes.

Cursor is a rectangular frame.

Cursor is halftone.

Return Value

Comments

See Also

• WinCreateDlg

Value

WinCreateDlg 231

Meaning

Cursor is solid.

Set a new cursor position. The ex and ey
parameters are ignored. Used when a cursor
has already been created. All other appear­
ance flags are ignored.

prc1Clip Points to the RECTL structure that contains the coordinates of a
rectangle within which the cursor is visible. If the cursor goes outside this rect­
angle, it becomes invisible (it is clipped). The rectangle is specified in window
coordinates. If prclClip is NULL, the cursor is clipped to the window id.entified
by the hwnd parameter. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

The cursor is used to indicate the position of text input. It is initially hidden and
must be made visible by using the WinShowCursor function.

Only one cursor is available at a time on a given screen. If another cursor exists
when this function is called, it is destroyed. An application should create and
display a cursor when it has the input focus or is the active window. Creating a
cursor at any other time may stop the cursor from flashing in another window.
Similarly, when the application loses the input focus or becomes inactive, it
should destroy its cursor.

The cursor width is typically specified as zero (default width is used). This is
preferable to a value of 1 because such a fine width will be almost invisible on a
high-resolution device.

WinDestroyCursor, WinQueryCursorInfo, WinShowCursor

HWND WinCreateDlg(hwndParent. hwndOwner. pfnDlgProc. pdlgt. pCreateParams)
HWND hwndParent; 1* handle of the parent window *1
HWND hwndOwner; 1* handle of the owner window *1
PFNWP pfnDlgProc; 1* address of dialog procedure *1
PDLGTEMPLATE pdlgt; 1* address of structure with dialog template *1
PVOID pCreateParams;

The WinCreateDlg function creates a dialog window from a dialog template in
memory. This function works like the WinLoadDlg function, which creates a
dialog window from a dialog template in a resource.

232 WinCreateDlg

Parameters

Return Value

Example

See Also

hwndParent Identifies the parent window.

hwndOwner Identifies the owner window.

pfnDlgProc Points to the dialog procedure.

pdlgt Points to the DLGTEMPLATE structure that contains the dialog tem­
plate. The DLGTEMPLATE structure has the following form:

typedef struct _DLGTEMPLATE {
USHORT cbTemp1ate;
USHORT type;
USHORT codepage;
USHORT offad1gti;
USHORT fsTemp1ateStatus;
USHORT iItemFocus;
USHORT coffPresParams;
DLGTITEM ad1gti[l];

} DLGTEMPLATE;

For a full description, see Chapter 4, "Types, Macros, Structures."

pCreateParams Contains application-specific data that is passed to the dialog
procedure as part of the WMJNITDLG message.

The return value is the handle of the dialog window that was created, or NULL
if an error occurred.

This example loads a dialog template from the application's resources and uses
the template with the WinCreateDlg function to create a dialog window. This
example is identical to calling the WinLoadDlg function, but gives the applica­
tion the advantage of reviewing and modifying the dialog template before creat­
ing the dialog window.

SEL se1;
PDLGTEMPLATE pd1gt;

DosGetResource(NULL, RT_DIALOG, ID_DIALOG, &se1);
pd1gt = MAKEP(se1, 0); /* convert resource to structure pointer */

/* make any changes to dialog template here */

WinCreateDlg(HWND_DESKTOP,
NULL, /* owner window */
MyDlgProc, /* address of dialog procedure */
pdlgt, /* address of dialog structure */
NULL); /* application-specific data */

DosFreeSeg(sel); /* free the memory */

DosGetResource, WinDlgBox, WinLoadDlg, WinProcessDlg

• WinCreateFrameControls
BOOl WinCreateFrameControls(hwndFrame. pfcdata. pszTitle. hmod)
HWND hwndFrame; /. handle of the frame window ./
PFRAMECDATA pfcdata; /. address of structure ./
PSZ pszTitle; /. address of title-bar string ./
HMODULE hmod; /. handle of module with the frame controls ./

The WinCreateFrameControls function creates standard frame controls for a
specified window. This function is used when the standard frame controls are

Parameters

Return Value

See Also

WinCreateGroup 233

needed for a nonstandard window; for example, with a window with a class
other than WCYRAME.

hwndFrame Identifies the frame window that becomes the parent and owner
window of all the frame controls created.

pfcdata Points to the FRAMECDATA structure that contains information
about the frame controls that are to be created. The FRAMECDATA structure
has the following form:

typedef struct _FRAMECDATA {
USHORT cb;
ULONG flCreateFlags;
HMODULE hmodResources;
USHORT idResources;

} FRAMECDATA;

For a full description, see Chapter 4, "Types, Macros, Structures."

pszTitle Points to a null-terminated string displayed in a title-bar control.
hmod Identifies the module that contains the frame controls.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreate Window

• WinCreateGroup
HPROGRAM WinCreateGroup(hab, pszTitle, (Visible, hprogDest, pszHelp)
HAB hab; /. handle of the anchor block ./
PSZ pszTit/e; /. address of the group title ./
BYTE (Visible: /. visibility flag ./
HPROGRAM hprogDest; /. handle of the destination group ./
PSZ pszHelp: /. address of help text ./

Parameters

The WinCreateGro~p function creates a new program-group entry in the
installed program list. The new group is created empty. The WinAddProgram
function must be used to add program entries to the group. If the group already
exists, the existing group han9le is returned.

hab Identifies the anchor block.

pszTitle Points to the title of the new group. The maximum string size is 60
characters. Strings that exceed this limit are truncated to 60 characters. Leading
and trailing blanks are removed. The string must contain at least one nonblank
character and must not contain a backslash (\).

jVisible Specifies the visibility of the new group. If it is SHE_VISIBLE, the
group is visible (can be viewed by end-user). If it is SHEJNVISIBLE, the group
is invisible.

hprogDest Identifies the program group into which the new group is placed. If
this parameter is NULL, the new group is placed in the root group.

pszHelp Points to a null-terminated text string that is used as a short piece of
help information relating to the new program group. This parameter is optional
and can be NULL. If used, the string must contain at least one nonblank charac­
ter and be less than 60 character~ in length.

234 WinCreateGroup

Return Value

See Also

• WinCreateHeap

The return value is the group handle for the newly created group if the function
is successful. Otherwise, the return value is NULL, indicating that an error
occurred.

WinAddProgram

HHEAP WinCreateHeap(seIHeapBase, cbHeap, cbGrow, cbMinDed, cbMaxDed, fsOptions)
USHORT selHeapBase; 1* selector of the heap *1
USHORT cbHeap; 1* initial heap size *1
USHORT cbGrow; 1* number of bytes heap must grow *1
USHORT cbMinDed;, 1* minimum number of dedicated free lists *1
USHORT cbMaxDed; 1* maximum number of dedicated free lists *1
USHORT fsOptions; 1* heap options *1

Parameters

Return Value

Comments

The WinCreateHeap function creates a heap that can used for memory manage­
ment.

seZHeapBase Specifies the selector of the segment that will contain the local
heap.

cbHeap Specifies the initial heap size (in bytes).

cbGrow Specifies the minimum number of bytes by which the heap must be
increased if it is too small to satisfy a memory allocation request (see the Win­
AllocMem and WinReallocMem functions). If this parameter is zero, the default
value of 512 bytes is used.

cbMinDed Specifies the minimum number of dedicated free lists.

cbMaxDed Specifies the maximum number of dedicated free lists.

[sOptions Specifies the optional characteristics for the heap. It may be one or
more of the following values:

Value

H~MOVEABLE

H~ V ALIDSIZE

Meaning

Specifies that the created heap supports movable objects.
WlnAlIocMem then reserves an additional two words at
the beginning of each allocated object.

Specifies that the heap manager should check the size
arguments to WlnReallocMem and WlnFreeMem func­
tion calls against the two additional words stored at the
beginning of each allocated object. This option is only
valid if H~MOVEABLE is also specified.

The return value is a handle to the heap, or zero if an error occurred.

There are three types of segments that can contain a heap:

• Automatic data segment of an application
• Automatic data segment of a dynamic-link package
• Segment allocated by the DosAllocSeg function (public or shared)

See Also

WinCreateHeap 235

To accommodate these various targets for heaps, all four possible combinations
of the parameters are used to discriminate between the various options.

These combinations are shown in the following list:
selHeapBase cbHeap

Zero Zero

Selector Nonzero

Selector Zero

Zero Nonzero

Meaning

Caller is an application that places the heap
at the end of its automatic data segment.
The size of the heap was specified with the
HEAP SIZE keyword in the application's
. de! file to the linker. This function extracts
the heap-size parameter from the local
information segment and uses that many
bytes at the end of the caller's automatic
data segment. No reallocation of the data
segment occurs, as the loader already
reserved space at the end of the data seg­
ment, after the static data was loaded from
the. exe file.

Caller is a dynamic-link package that places
a heap at the end of its automatic data seg­
ment. The cbHeap parameter must be less
than or equal to the HEAP SIZE value from
the. de! file that was passed to the dynamic­
link package's initialization entry point in
the ex register. Otherwise, this function may
produ~e incorrect results.
Caller is either an application or a
dynamic-link package that has explicitly
allocated a segment using the DosAlIoeSeg
function and places a heap in that segment.
The heap is placed at the beginning of the
segment and the size of the segment (deter­
mined by using DosSlzeSeg) is the size of
the heap.
Caller is either an application or a
dynamic-link package that places a heap of
a specific size in a separate segment but
does not call DosAllocScg. For information
about accessing the segment implicitly allo­
cated by WlnCreateHeap when called with
this combination of parameters, see the
WlnLoekHeap function.

DosAlIocSeg, DosSizeSeg, WinAllocMem, WinDestroyHeap, WinFreeMem,
WinLockHeap, WinReallocMem

236 WinCreateMenu

• WinCreateMenu
HWND WinCreateMenu(hwndParent. pvmt)
HWND hwndParent; I. handle of the parent window .1
PVOID pvmt; I. address of the menu template .1

Parameters

Return Value

See Also

The WinCreateMenu function creates a menu window from a menu template.
The menu window is created with its parent and owner set to the hwndParent
parametet.

hwndParent Identifies the owner and parent window which should be a frame
window.

pvmt Points to the menu template. The format of the pvmt parameter is the
binary menu-template-resource format.

The return value is the menu-window handle, or zero if an error occurred.

Win Create Window, WinLoadMenu

• WinCreateMsgQueue
HMQ WinCreateMsgQueue(hab. cmsg)
HAB hab; I. handle of the anchor block *'
SHORT cmsg; I. size of the message queue .1

Parameters

Return Value

Comments

Example

The WinCreateMsgQueue function creates a message queue for the current
thread. This function must be called after the Winlnitialize function but before
any other Presentation Manager functions are called. It can be called only once
per thread.

hab Identifies the anchor block.

cmsg Specifies the maximum queue size. This parameter can use a value of
DEFAULT_QUEUE_SIZE to get the system default queue size.

The return value identifies a message queue, or it is NULL if the queue cannot
be created.

The default queue size is 10 messages which is sufficient for most applications.
However, if an application processes a high volume of messages, and the pro­
cessing of some of these messages is slow, the application should create a larger
queue. .

This example shows the typical startup code for a thread that will be making
Presentation Manager function calls; in this case the startup function of the
application. It calls Winlnitialize to initialize the thread for making Presentation
Manager function calls, and WinCreateMsgQueue to create a message queue
for the thread. Before the thread terminates, it calls WinDestroyMsgQueue to
destroy the message queue.

See Also

HAB hab;
HMQ hmq;

It handle to the anchor block tl
It handle to the message queue tl

VOID cdecl maine) {
hab Winlnitialize(NULL);

WinCreatePointer 237

hmq WinCreateMsgQueue(hab, DEFAULT_QUEUE_SIZE);

}

It initialization and message loop tl

WinDestroyMsgQueue(hmq);
WinTerminate(hab);
DosExit(EXIT_PROCESS, 0);

WinDestroyMsgQueue, WinInitialize

• WinCreatePointer
HPOINTER WinCreatePointer(hwndDesktop. hbmPointer. (Pointer. xHotspot. yHotspot)
HWND hwndDesktop; /. handle of the desktop ./
HBITMAP hbmPointer; /. handle of the bitmap ./
Baal (Pointer; /. full-size or icon-size pointer ./
SHORT xHotspot; /. horizontal hot spot ./
SHORT yHotspot; /. vertical hot spot ./

Parameters

Return Value

Comments

See Also

The WinCreatePointer function creates a pointer from a bitmap.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hbmPointer Identifies the bitmap from which the pointer image is created.
The bitmap must be of an even vertical size, logically divided into two sections
in the vertical direction, each half representing one of the two images used as
the successive drawing masks for the pointer. The top half is the XOR image.
The bottom half is the AND image. This allows a pointer to have four colors:
black, white, background, and inverted background.

/pointer Indicates if the pointer is pointer- or icon-sized. If this parameter is
TRUE, the bitmap will be stretched (if necessary) to the system-pointer dimen­
sions. If this parameter is FALSE, the bitmap will be stretched (if necessary) to
the system-icon dimensions.

xHotspot Specifies the horizontal offset of the pointer hot spot from the
lower-left corner (in pels).

yHotspot Specifies the vertical offset of the pointer hot spot from the lower­
left corner (in pels).

The return value is the handle of the new pointer, or it is NULL if an error
occurs.

Since the bitmap needs to include two images, one on top of the other, the
height of the bitmap must be an even number. This function will fail if the height
is not an even number.

WinDestroyPointer, WinDrawPointer, WinLoadPointer, WinQueryPointer,
WinSetPointer

238 WinCreateStdWindow

• WinCreateStdWindow
HWND WinCreateStdWindow(hwndParent. flStyle. pflCreateFlags. pszClientC/ass. pszTitle. flClientStyle.

hmod. idResources. phwndClient)
HWND hwndParent;
ULONG flStyle;

1* handle of the parent window *1
1* frame-window style *1

PULONG pflCreateFlags;
PSZ pszClientC/ass;

1* creation flags *1
1* client-window class name *1

PSZ pszTitle; 1* address of title-bar text *1
ULONG flClientStyle;
HMODULE hmod;
USHORT idResources;
PHWND phwndClient;

1* client-window style *1
1* handle of the resource module *1
1* frame-window identifier *1
1* address of client-window handle *1

Parameters

The WinCreateStdWindow function creates a standard frame window.

hwndParent Identifies the parent window. A main window is created if this
parameter is NULL, HWNDJ)ESKTOP, or a window handle returned by the
WinQueryDesktop Window function. An object window is created if this param­
eter is HWNDJ)ESKTOP or a window handle returned by the WinQuery­
ObjectWindow function.

jlStyle Specifies the frame-window style. It can be any combination of the
WS_ styles (see the description for jlClientStyle) and the following values:

Value

FS_ACCELTABLE

FS~OUSEALIGN

Meaning

Creates an accelerator table. The table is
loaded from the application's resource file. It
should have the same identifier as the menu
and the icon (if any).

Creates a window that has a border with an
inner border drawn with the active title-bar
color. It is most often used by dialog boxes.

Creates a window with a single line border
around it. The width of the border line is
SV _CXBORDER and the height is
SV _CYBORDER. For a description of these
system values, see the comments section of
WlnSetSysValue.

The created window has an icon with the
same identifier as the menu and accelerator
table (if any).

Creates a window whose position is relative
to the current position of the mouse. Nor­
mally, this is only used by dialog boxes.

Value

FS_NOBYfEALIGN

FS_NOMOVEWITHOWNER

FS_SCREEN ALIGN

FS_SHELLPOSITION

FS_SIZEBORDER

FS_SYSMODAL

WinCreateStdWindow 239

Meaning

Creates a window whereby the frame window
is not byte aligned. Setting this flag will
decrease the performance of drawing opera­
tions to the client window.

Creates a frame window that will not move if
the owner window moves.

Creates a window that is aligned with respect
to the screen. Normally. this is only used by
dialog boxes.

The Presentation Manager (shell) determines
the position of the window. typically in a cas­
caded position from the last application that
started.

Creates a sizing border.

Creates a system modal window. For a
description of a system modal window. see
the comments section of the WlnSetSys­
ModalWlndow function.

The window title is added to the Task
Manager's list.

Specifies a combination of the following flags:

FS_ICON
FS_ACCELTABLE
FS_SHELLPOSITION
FS_TASKLIST

pflCreateFlags Specifies options that control how the frame window is
created. If no options are specified, FCF _STANDARD is used. The flags may
be any combination of the following values:

Value

FCF _ACCELTABLE

FCF _DLGBORDER

FCF _HORZSCROLL

FCF_ICON

Meaning

Creates an accelerator table. The table is
loaded from the application's resource file. It
should have the same identifier as the menu
and the icon (if any).

Creates a window with a single line border
around it. The width of the border line is
SV _CXBORDER and the height is
SV _CYBORDER. For a description of these
system values. see the WlnSetSysValue func­
tion.

Creates a window that has a border with an
inner border drawn with the active title-bar
color. It is most often used by dialog boxes.

Creates a horizontal scroll bar.

The created window has an icon with the
same identifier as the menu and accelerator
table (if any).

240 WinCreateStdWindow

Value Meaning

FCF .-MAXBUITON Creates a maximize button.

FCF_MENU Creates a menu bar.

FCF.-MINBUITON Creates a minimize button.

FCF .-MINMAX Creates a minimize and a maximize button
(FCF_MINBUTION I
FCF .-MAXBUTION).

FCF _MOUSEALIGN Creates a window whose position is relative
to the current position of the mouse. Nor­
mally, this is only used by dialog boxes.

FCF ~OBYTEALIGN Creates a window whereby the client window
is not byte aligned. Setting this flag will
decrease the performance of drawing opera­
tions to the client window.

FCF ~OMOVEWITHOWNER Creates a window that will not move if the
owner window moves.

FCF _SCREEN ALIGN

FCF _SHELLPOSITION

FCF _SIZEBORDER

FCF_SYSMENU

FCF _SYSMODAL

FCF _ TITLEBAR

FCF _ VERTSCROLL

FCF _STANDARD

Creates a window that is aligned with respect
to the screen. Normally, this is only used by
dialog boxes.

The Presentation Manager (shell) determines
the position of the window, typically in a cas­
caded position from the last application that
started.

Creates a sizing border.

Creates a system menu.

Creates a system modal window. For a
description of a system modal window, see
the WlnSctSysModalWlndow function.

Adds the window to the switch list of the
Task Manager.

Creates a title bar.

Creates a vertical scroll bar.

Specifies a combination of the following flags:

FCF _ TITLEBAR
FCF _SYSMENU
FCF_MENU
FCF _SIZEBORDER
FCF_MINMAX
FCF_ICON
FCF_ACCELTABLE
FCF _SHELLPOSITION
FCF _ T ASKLIST

Return Value

WinCreateStdWindow 241

jJszClientClass Points to the client-window class name. If the pszClientClass
parameter is not a zero-length string, a client window of style jlClientStyle and
class pszClientClass is created. This parameter is an application-specified name
(defined by the WinRegisterClass function), the name of a preregistered WC
class, or a WC constant. If this parameter is NULL, no client area is created.

pszTitle Points to the title-bar text. This parameter is ignored if
FCF _TITLEBAR is not specified in the pjlCreateFlags parameter.

jlClientStyle Specifies the client-window style. It can be a combination of one
or more of the following values:

Value

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_MAXIMIZED

WS_MINIMIZED

WS_P ARENTCLIP

WS_VISIBLE

Meaning

Prevents a window from painting over its
child windows.

Prevents a window from painting over its
sibling windows.

Disables mouse and keyboard input to the
window. It is used to temporarily prevent the
user from using the window.

Enlarges the window to the maximum size.

Reduces the window to the minimum size.

Prevents a window from painting over its
parent window.

Saves the image under the window as a bit­
map. When the window is moved or hidden,
the system restores the image by copying the
bits.

Causes the window to immediately receive
W1LP AINT messages after a part of the win­
dow becomes invalid. Without this style, the
window receives W1LP AINT messages only
if no other message is waiting to be pro­
cessed.

Makes the window visible. This window will
be drawn on the screen unless overlapping
windows completely obscure it. Windows
without this style are hidden.

This parameter is ignored if the pszClientClass parameter is a zero-length string.

hmod Identifies the module that contains the resource definitions. This
parameter can be either the module handle returned by the DosLoadModule
function or NULL for the application's module. This parameter is ignored unless
FSJCON, FS~CCELTABLE, or FS.-MENU is specified in the jlStyle parame­
ter.

idResources Identifies the frame-window identifier and the identifier within
the resource definition of the required resource. The application must ensure
that all resources related to one frame window have the same identifier value.

ph wn d Client Poirits to the variable that receives the client-window handle. It
will be NULL if the function fails.

The return value is the handle of the frame window, or it is NULL if an error
occurs.

242 WinCreateStdWindow

Example

See Also

This example shows a typical initialization function for a window. The function
first registers the window class, then calls WinCreateStdWilidow to create a
standard window and returns immediately if the function fails. Otherwise, it con­
tinues on to do other initialization processing.

Note: The FCF _STANDARD constant can only be used if you have all the
resources in defines. For example, if you use this constant, and you don't have
an accelerator table, the function will fail.

CHAR szClassName[] = "Generic";
HWND hwndClient;

1* window class name *1
1* handle to the client *1
1* handle to the client *1 HWND hwndClient;

BOOL Generic1nit()
{

ULONG flStyle;

flStyle = FCF_STANDARD;
if (IWinRegisterClass(hab, szClassName, GenericWndProc, OL, 0»

return (FALSE);

hwndFrame = WinCreateStdWindow(HWND_DESKTOP,
OL, 1* frame-window style
&flStyle, 1* window style
szClassName, 1* class name
"Generic Application", 1* window title
OL, 1* default client style
NULL, 1* resource in executable
10M_RESOURCE, 1* resource id
&hwndClient); 1* receives client window

if (I hwndFrame)
return (FALSE);

else {

. 1* other initialization code *1

*1
*1
*1
*1
*1

file *1
*1

handle *1

DosLoadModule, WinCreateWindow, WinQueryDesktopWindow, Win­
QueryObjectWindow, WinSetSysModalWindow, WinSetSys Value, WinSet­
WindowPos, WinSetWindowUShort

• WinCreateWindow
HWND WinCreateWindow(hwndParent, pszClass, pszName, flStyle, x, y, ex, ey, hwndOwner,

HWND hwndParent;
PSZ pszClass;
PSZ pszName;
ULONG flStyle;
SHORT x;
SHORT y;
SHORT ex;
SHORT ey;
HWND hwndOwner,
HWND hwndlnsertBehind;
USHORT id;
PVOID pCt/Data;
PVOID pPresParams;

hwndlnsertBehind, id, pCt/Data, pPresParams)
f. desktop-window handle .f
f. address of registered class name .f
f. address of window text .f
f. window style .f
f. horizontal position of window .f
f. vertical position of window .f
f. window width .f
f. window depth *' f. owner-window handle .f
f. handle to sibling window .f
f. window identifier .f
f. address of buffer .f
f. reserved .f

The WinCreate Window function creates a new window.

Parameters

WinCreateWindow 243

hwndParent Specifies the parent window for the new window. Any valid win­
dow handle can be used.

pszClass Points to the registered class name. This parameter is either an
application-specified name (defined by the WinRegisterClass function), the
name of a preregistered we class, or a we constant.

pszName Points to window text or other class-specific data. The actual struc­
ture of the data is class-specific. This data is usually a zero-terminated string,
which is often displayed in the window.

jlStyle Specifies the window style. It can be a combination of one or more of
the following values:

Value

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS.;..MAXIMIZED

WS_MINIMIZED

WS_P ARENTCLIP

WS_VISIBLE

Meaning

Prevents a window from painting over its child
windows.

Prevents a window from painting over its sibling
windows.

Disables mouse and keyboard input to the win­
dow. It is used to temporarily prevent the user
from using the window.

Enlarges the window to the maximum size.

Reduces the window to the minimum size.

Prevents a window from painting over its parent
window.

Saves the image under the window as a bitmap.
When the window is moved or hidden, the sys­
tem restores the image by copying the bits.

Causes the window to immediately receive
W1LP AINT messages after a part of the win­
dow becomes invalid. Without this style, the
window receives W1LP AINT messages only if
no other message is waiting to be processed.

Makes the window visible. This window will be
drawn on the screen unless overlapping windows
completely obscure it. Windows without this
style are hidden.

X Specifies the horizontal position of the window relative to the origin of the
parent window.

y Specifies the vertical position of the window relative to the origin of the
parent window.

ex Specifies the window width in pels.

ey Specifies the window depth in pels.

hwndOwner Identifies the owner window.

hwndlnsertBehind Identifies the sibling window behind which the specified
window is placed. If this parameter is HWND_TOP, the specified window is
placed on top of all its sibling windows. If this parameter is HWNDJ30TTOM,

244 WinCreateWindow

Return Value

Comments

See Also

• WinDdelnitiate

the specified window is placed behind all its sibling windows. If this parameter is
not HWND_TOP or HWNDJ30TTOM, or it is a child window of the desktop
window identified by hwndParent, then NULL is returned.

id Specifies the window identifier, a value given by the application that allows
a specific child window to be identified. For example, the controls of a dialog
box have unique identifiers so that an owner window can distinguish which con­
trol has notified it. Window identifiers are also used for frame windows.

pCtlData Points to the buffer that contains class-specific information. This
data is passed to the window procedure by the ~CREATE message.

pPresParams Points to the presentation parameters. This is a reserved field
and must be zero.

The return value is the handle of the window, or NULL if an error occurs.

WinCreateWindow sends a ~CREATE message to the window procedure of
the window being created, and then sends the \V1LADJUSTWINDOWPOS
message before the window is displayed. The values passed are those given to
the Win Create Window function.

The ~SIZE message is not sent by WinCreate Window while the window is
being created. Any required size processing is performed during the processing
of the ~CREATE message.

WinCreateStdWindow, WinQueryObjectWindow, WinRegisterClass

BOOl WinDdelnitiate(hwndClient, pszAppName, pszTopicName)
HWND hwndClient; I. handle of the client window .1
PSZ pszAppName; I. address of application name .1
PSZ pszTopicName; I. address of topic name *1

Parameters

Return Value

The WinDdelnitiate function initiates a DDE conversation by sending a
WMJ)DEJNITIATE message. All server applications matching the supplied
application name will reply with a WMJ)DEJNITIA TEACK message if they
support the specified topic.

hwndClient Identifies the client window. Since the window handle serves as
the recipient of DDE messages for its conversation, it need not be visible. All
applications must rely only on their own window handles to identify conversa­
tions.

pszAppName Points to a NULL terminated string containing the server's
application name. If the string has zero length,any server application may
respond.

pszTopicName Points to a NULL terminated string containing the topic
name. If the string has zero length, the server will respond once for each topic
that it supports.

The ret'urn value is TRUE if the function is successful or FALSE if an error
occurs.

Comments

See Also

WinDdePostMsg 245

The WMJ)DEJNITIATE is sent to all top-level frame windows in the system.
Any prospective server must subclass a top-level frame window in order to
retrieve this message.

WinDdePostMsg, WinDdeRespond

• WinDdePostMsg
Baal WinDdePostMsg(hwndTo. hwndFrom. wm. pddes. (Retry)
HWND hwndTo; I. handle of the window to post to .1
HWND hwndFrom; I. handle of the window that Is postlng.1
USHaRT wm; I. message number .1
PDDESTRUCT pddes; I. address of the structure to pass .1
Baal (Retry; I. retry flag .1

Parameters

Return Value

See Also

The WinDdePostMsg function posts a DDE message to the specified window's
message queue.

hwndTo Identifies the window the message is to be posted to.

hwndFrom Identifies the window that is posting the message.

wm Specifies the message being sent. The following messages may be sent:

WMJ)DE.-ACK
WMJ)DE.-ADVISE
WMJ)DE.J)ATA
WMJ)DE~XECUTE
WMJ)DEJNITIATE
WMJ)DEJNITIATEACK
WMJ)DEYOKE
WMJ)DE-REQUEST
WMJ)DE_TERMINATE
WMJ)DE_UNADVISE

pddes Points to a DDESTRUCT structure. The structure has the following
form:

typedef struct _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszltemName;
USHORT offabData;

} DDESTRUCT;

For more information, see Chapter 4, "Types, Macros, Structures."

JRetry Specifies whether or not to try to send the message again if it fails the
first time because the destination queue was full. If TRUE, the message is sent
repeatedly at one second intervals until it could be successfully posted.

The return value is TRUE if the function is successful, or FALSE if an error
occurred. If the fRetry parameter is TRUE, this function will still return FALSE
if the message cannot be sent for any reason other then the destination queue
being full.

WinDdeInitiate, WinDdeRespond

246 WinDdeRespond

• WinDdeRespond
MRESULT WinDdeRespond(hwndClient, hwndServer, pszAppName, pszTopicName)
HWND hwndClient; /. handle of the client window ./
HWND hwndServer; /. handle of the server window ./
PSZ pszAppName; /. address of name of application ./
PSZ pszTopicName; /. address of name of topic ./

Parameters

Return Value

See Also

The WinDdeRespond function sends an acknowledgement message
(WMJ)DEJNITIATEACK) back to the application that sent a
WMJ)DEJNITIATE message.

hwndClient Identifies the client window.

hwndServer Identifies the server window.

pszAppName Points to the name of the application that is acknowledging the
W~DEJNITIATE message.

pszTopicName Points to the topic name that the acknowledging application
will accept.

The return value is the result of sending the WMJ)DEJNITIATEACK mes­
sage to the client window.

WinDdeInitiate

• WinDefAVioWindowProc
MRESULT WinDefAVioWindowProc(hwnd, msg, mp1, mp2)
HWND hwnd; /. handle of the window./
USHORT msg; /. message ./
MPARAM mp1; /. message parameter ./
MPARAM mp2; /. message parameter ./

Parameters

Return Value

See Also

The WinDefA Vio WindowProc function calls the default window procedure for
an advanced video-input-and-output (A VIO) window. An A VIO application
must use this function instead of the WinDefWindowProc function that is used
with Presentation Manager applications.

The default wind<;:>w procedure provides default processing for any window mes­
sages that an application does not process. This function is used to ensure that
every message is processed. It should be called with the same parameters as
those received by the window procedure.

hwnd

msg

mpJ

mp2

Identifies the window that received the message.

Specifies the message.

Specifies message parameter 1.

Specifies message parameter 2.

The return value is dependent on the message that was passed to this function.

WinDefWindowProc

WinDefWindowProc 247

• WinDefDlgProc
MRESULT WinDefDlgProc(hwndDlg, msg, mp1, mp2)
HWND hwndDlg; I. handle of the dialog .1
USHORT msg: I. message .1
MPARAM mp1; I. message parameter *1
MPARAM mp2: I. message parameter .1

Parameters

Return Value

Example

See Also

The WinDeIDlgProc function calls the default dialog procedure. The default dia­
log procedure provides default processing for any dialog window messages that
an application does not process. This function is used to ensure that every mes­
sage is processed. It should be called with the same parameters as those received
by the dialog procedure.

hwndDlg Identifies the dialog window that received the message.

msg Specifies the message.

mpJ Specifies message parameter 1.

mp2 Specifies message parameter 2.

The return value is dependent on the message that was passe~ to this function.

This example shows a typical dialog box procedure. A switch statement is used
to process individual messages. All messages not processed are passed on to the
WinDeIDlgProc function.

MRESULT CALLBACK AboutDlg(hwnd, usMessage, mpl, mp2)
HWND hwnd;
USHORT usMessage;
MPARAM mpl;
MPARAM mp2;
{

}

switch (usMessage) {

}

/*
* process whatever messages you want here and send the rest
* to WinDefWindowProc
*/

default:
return (WinDefDlgProc(hwnd, usMessage, mpl, mp2»;

WinDetwindowProc

• WinDefWindowProc
MRESULT WinDefWindowProc(hwnd, msg, mp1, mp2)
HWND hwnd; I. handle of the window.1
USHORT msg: I. message .1
MPARAM mp1: I. message parameter .1
MPARAM mp2: I. message parameter *1

The WinDetwindowProc function calls the default window procedure. The
default window procedure provides default processing for any window messages
that an application does not process. This function is used to ensure that every
message is processed. It should be called with the same parameters as those
received by the window procedure.

248 WinDefWindowProc

Parameters

Return Value

Example

See Also

• WinDeleteAtom

hwnd Identifies the window that received the message.

msg Specifies the message.

mpJ Specifies message parameter 1.

mp2 Specifies message parameter 2.

The return value is dependent on the message that was passed to this function.

This example shows a typical window procedure. A switch statement is used to
process individual messages. All messages not processed are passed on to the
WinDetwindowProc function.

MRESULT CALLBACK GenericWndProc(hwnd, usMessage, mpl, mp2)
HWND hwnd;
USHORT usMessage;
MPARAM mpl;
MPARAM mp2;
{

switch (usMessage) {

1* * process whatever messages you want here and send the rest
* to WinDefWindowProc
*1

default:
return (WinDefWindowProc(hwnd, usMessage, mpl, mp2»;

}
}

WinDefAVioWindowProc, WinDeIDlgProc

ATOM WinDeleteAtom(hAtomTbl, atom)
HATOMTBL hAtomTbl; 1* handle of the atom table *1
ATOM atom;

Parameters

Return Value

See Also

1* atom

The WinDeleteAtom function deletes an atom from the atom table.

hAtom Tbl Identifies the atom table. This handle must have been created by a
previous call to the WinCreateAtomTable function.

atom Specifies the atom to be deleted.

The return value is NULL if the function is successful. Otherwise, it is equal to
the value of the atom parameter if the function failed and the atom has not been
deleted.

If the passed atom is an integer atom, NULL is returned. If it is not an integer
atom and it is a valid atom for the given atom table (it has an atom name and
use count associated with it), the use count is decreased by one and NULL is
returned. If the use count has been decreased to zero, the atom name and use
count are removed from the atom table.

WinAddAtom, WinCreateAtomTable

WinDestroyCursor 249

• WinDestroyAccelTable
BOOl WinDestroyAccelTable (hacce/)
HACCEL haccel; /* handle of the accelerator table */

Parameters

Return Value

See Also

The WinDestroy AccelTable function destroys an accelerator table. Before an
application terminates, it should call this function for each accelerator table
cr~ated with a call to the WinCreateAccelTable function.

haccel Identifies the accelerator table to be destroyed. This handle must have
been created by a previous call to the WinCreateAccelTable function.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreateAccelTable

• WinDestroyAtomTable
HATOMTBl WinDestroyAtomTable (hAtomTbl)
HATOMTBl hAtomTbl; /* handle of the atom table */

Parameters

Return Value

See Also

The WinDestroyAtomTable function destroys an atom table created by the
WinCreateAtomTable function.

hAtomTbl Identifies the atom table to be destroyed. This handle must have
been created by a previous call to the Wi~CreateAtomTable function.

The return value is NULL if the function is successful. Otherwise, the return
value is the hAtom Tbl parameter.

This method of returning failure allows for updating the status of an atom table
and destroying it at the same time with a call similar to the following:

hAtomTbl = WlnDestroyAtomTable(hAtomTbl);

WinCreateAtomTable

• WinDestroyCursor
BOOl WinDestroyCursor(hwnd)
HWND hwnd; /* handle of the window */

Parameters

Return Value

The WinDestroyCursor function erases and destroys the current cursor, if it
belongs to the specified window.

This function has no effect if the current cursor does not belong to the specified
window.

hwnd Identifies the window to which the cursor belongs.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

250 WinDestroyCursor

Comments

See Also

It is not necessary to call the WinDestroyCursor function before calling the
WinCreateCursor function, as the WinCreateCursor function will automatically
destroy any existing cursor.

Win Create Cursor, WinQueryCursorInfo, WinShowCursor

• WinDestroyHeap
HHEAP WinDestroyHeap (hHeap)
HHEAP hHeap; /. handle of the heap ./

Parameters

Return Value

See Also

The WinDestroyHeap function destroys 'a heap created by the WinCreate­
Heap function. If the WinCreateHeap function allocated a segment, the Win­
DestroyHeap will free that segment.

hHeap Identifies the heap to be destroyed. This handle must have been
created by a previous call to the WinCreateHeap function.

The return value is zero if the function is successful. Otherwise, it is nonzero,
indicating that an error occurred.

WinCreateHeap

• WinDestroyMsgQueue
BOOL WinDestroyMsgQueue (hmq)
HMQ hmq; /. handle of the message queue */

Parameters

Return Value

Example

See Also

The WinDestroyMsgQueue function destroys a message queue. Any thread or
application that creates a message queue should call WinDestroyMsgQueue to
destroy that message queue before terminating.

hmq Identifies the message queue to be destroyed. This handle must have
been created by a previous call to the WinCreateMsgQueue function in the same
thread that is calling the WinDestroyMsgQueue function.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example calls Winlnitialize to initialize the thread for making Presentation
Manager function calls, and calls WinCreateMsgQueue to create a message
queue for the thread. Before the thread terminates, it calls WinDestroyMsg­
Queue to destroy the message queue.

hab Winlnitialize(NULL);
hmq WinCreateMsgQueue(hab, DEFAULT_QUEUE_SIZE);

/* initialization and message loop */

WinDestroyMsgQueue(hmq);

WinCreateMsgQueue, Winlnitialize

WinDestroyWindow 251

• WinDestroyPointer
BOOl WinDestroyPointer(hptr)
HPOINTER hptr; /* handle of the pointer or icon ./

Parameters

Return Value

See Also

The WinDestroyPointer function destroys a pointer or an icon. A pointer can be
destroyed only by the process that created it. The system pointers and icons can­
not be destroyed.

hptr Identifies the pointer or icon to destroy.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreatePointer

• WinDestroyWindow
BOOl WinDestroyWindow(hwnd)
HWND hwnd; /* handle of the window to destory./

Parameters

Return Value

Comments

The WinDestroyWindow function destroys a window and any child windows of
that window. If the window is locked, this function will not return until the win­
dow has been unlocked (and destroyed).

hwnd Identifies the window to be destroyed.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

The window to be destroyed must have been created by the thread that issues
this call. Before the window identified by the hwnd parameter is itself destroyed,
all child windows it owns are also destroyed.

Note that any presentation spaces created with the WinGetPS function must be
released by calling the WinReleasePS function. This must be done before calling
WinDestroyWindow.

The following messages are sent by this function:
Value Meaning

W~ACTIV A TE Sent with the first message parameter
equal to FALSE if the window being
destroyed is the active window.

W~DESTROY Always sent to the window being
destroyed after the window has been
hidden on the device, but before its
child windows have been destroyed.

W~OTHERWINDOWDESTROYED Sent to all main windows if the win­
dow being destroyed, or any of its
descendants, has been registered
with the ·WinRegisterWlndowDestroy
function.

W~RENDERALLFMTS Sent if the clipboard owner is being
destroyed and there are unrendered
formats in the clipboard.

252 WinDestroyWindow

See Also

• WinDismissDlg

If the window being destroyed is the active window, then both the active window
and the input-focus window are transferred to another window when the window
is destroyed.

WinCreateStdWindow, WinCreateWindow, WinGetPS, WinLockWindow,
WinRegisterWindowDestroy, WinReleasePS

BOOl WinDismissDlg(hwndDlg, usResult)
HWND hwndDlg; I. handle of the dialog .1
USHORT usResult; I. result code to return .1

Parameters

Return Value

Comments

Example

See Also

The WinDismissDlg function hides the dialog window and causes the Win­
ProcessDlg or WinDIgBox function to return.

hwndDlg Identifies the dialog window to be hidden.

usResult Specifies the value that is returned to the caller of WinProcessDlg or
WinDlgBox.

The return value is TRUE if the function is successful or FALSE if an error
occurs'.

This function is required to complete the processing of a modal dialog window
and is called from its dialog procedure.

The WinDismissDlg function is automatically called by the WinDeIDlgProc func­
tion upon receiving a W1LCOMMAND message. The WinDeIDlgProc function
will set usResult to the identifier of the control that generated the
W1LCOMMANP message.

Note that this function can be called from a modeless dialog box, although this
is not necessary since there is no internal message processing loop. If the func­
tion is called, the dialog box window is hidden. The application must destroy the
dialog box win~ow, if required.

This example shows a typical dialog procedure that has both an OK and a Can­
cel button. ~f the user selects the OK button, WinDismissDlg is called with a
result value of TRUE. If the user selects the Cancel button, WinDismissDlg is
called with it result·value of TRUE.

case WM_COMMAND:
switch (SHORT1FROMMP(mpl» {

case ID_ENTER: /* OK button selected */
WinDismissDlg(hwnd, TRUE);
return (OL);

case ID_CANCEL: /* Cancel button selected */
WinDismissDlg(hwnd, FALSE);
return (OL);

WinDIg~ox, WinProcessDlg

WinDIg80x 253

• WinDispatchMsg
ULONG WinDispatchMsg(hab. pqmsg)
HAB hab: /. handle of the anchor block ./
PQMSG pqmsg: /. address of structure for message queue ./

Parameters

Return Value

Example

See Also

• WinDlgBox

The WinDispntchMsg dispatches a message to a window. It is typically used to
dispatch a message retrieved with the WinGetMsg function. Unlike the Win­
SendMsg function, the WinDispatchMsg function does not call any hooks
installed with the WinSetHook function.

hab Identifies an anchor block.

pqmsg Points to a QMSG structure that contains the message. The QMSG
structure has the following form:

typedef struct _QMSG {
HWND hwnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is the value· returned by the window procedure that was called.

This example calls WinGetMsg to retrieve a message and WinDispatchMsg to
send the message.

HAB hab;
QMSG qmsg;

while (WinGetMsg(hab,
&qmsg,
NULL,
0,
0»

WinDispatchMsg(hab,

/* handle to the anchor block */
/* address of the message queue structure */
/* accept messages for any window */
/* first message to accept */
/* accept all messages */
&qmsg);

WinGetMsg, WinProcessDlg, WinSendMsg, WinSetHook

USHORT WinDlgBox(hwndParent. hwndOwner. pfnDlgProc. hmod. idDlg. pCreateParams)
HWND hwndParent: /. handle of the parent window ./
HWND hwndOwner: /. handle of the owner window ./
PFNWP pfnDlgProc: /. dialog procedure address ./
HMODULE hmod: /. handle of resource module ./
USHORT idDlg: /. identifies the dialog ./
PVOID pCreateParams: /. address of application-specific data ./

The WinDlgBox function loads and processes a modal dialog box and returns
the usResult value passed to the WinDismissDlg function. It is equivalent to call­
ing WinLoadDlg, WinProcessDlg, and WinDestroyWindow.

This function does not return until the dialog procedure calls the WinDismissDlg
function.

254 WinDlgBox

Parameters

Return Value

Example

See Also

hwndParent Identifies the parent window.

hwndOwner Identifies the owner window.

pfnDlgProc Points to the dialog procedure.

hmod Identifies the module that contains the dialog template. This parameter
can be either the module handle returned by the DosLoadModule function or
NULL for the application's module.

idDlg Identifies the dialog window.

pCreateParams Points to application-specific data that is passed to the dialog
procedure as part of the WMJNITDLG message.

The return value is the value specified in the usResult parameter of the Win­
DismissDlg function, or DID~RROR if an error occurred while trying to load
the dialog box.

This example processes an application-defined message (ID~OPEN) and calls
WinDlgBox to load a dialog box.

case IDM_OPEN:
if (WinDlgBox(HWND_DESKTOP,

hwndFrame, /* handle of the owner */
OpenDlg, /* dialog procedure address */
NULL, /* location of dialog resource */
IDD_OPEN, /* resource identifier */
NULL)) { /* application-specific data */

/* code executed if dialog box returns TRUE */

}

DosLoadModule, WinDismissDlg, WinLoadDlg, WinProcessDlg

• WinDrawBitmap
BOOl WinDrawBitmap(hpsDst, hbm, prc/Src, pptlDst, clrFore, clrBack, fs)
HPS hpsDst; I. handle of the destination presentation space .1
HBITMAP hbm; I. handle of the bitmap .1
PRECTl prc/Src; I. address of structure with rectangle coordinates .1
PPOINTl pptlDst; I. address of structure with bitmap position .1
lONG clrFore; I. color of the foreground *1
lONG clrBack; 1* color of the background *1
USHORT fs; 1* bitmap-drawing flags *1

Parameters

The WinDrawBitmap function draws a bitmap using the current image colors
and mixes.

hpsDst Identifies the presentation space in which the bitmap is drawn.

hbm Identifies the bitmap.

prclSrc Points to the RECTL data structure that contains the coordinates of
the rectangle to be drawn. If this parameter is NULL, the entire bitmap is
drawn. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

Return Value

See Also

WinDrawBorder 255

For a full description, see Chapter 4, "Types, Macros, Structures."

pptlDst Points to the position of the lower left of the bitmap in the presenta­
tion space (in presentation space coordinates).

clrFore Specifies the color of the foreground.

clrBack Specifies the color of the background.

fs Specifies the flags that determine how the bitmap is drawn. It can be one of
the following values:

Value Meaning

DB~HALFTONE Use the OR operator to combine the bitmap with an
alternating pattern of ones and zeros before drawing
it. This flag can be used in conjunction with either
DB~NORMAL or DB~INVERT.

DB~IMAGEATTRS The clrFore and clrBack parameters are ignored and
the image attribute colors already selected in hpsDst
are used instead.

DB~INVER T Draw the bitmap inverted, using
ROP ~OTSRCCOPY.

DB~NORMAL Draw the bitmap normally, using ROP _SRCCOPY.

DB~STRETCH The pptlDst parameter points to a RECTL data struc­
ture, representing a rectangle in the destination
presentation space to which the bitmap should be
stretched.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

GpiCreateBitmap, GpiLoadBitmap, WinGetSysBitmap

• WinDrawBorder
BOOl WinDrawBorder(hps. pref. ex. ey. efrFore. efrBaek. (sCmd)
HPS hps; 1* handle of the presentation space *1

PRECTl pref; 1* address of structure with bounding rectangle *1

SHORT ex; 1* width of the border *1

SHORT ey; 1* height of the border *1
lONG efrFore;
lONG elrBack;
USHORT (sCmd;

Parameters

1* color of the foreground
1* color of the background
1* border-drawing flags

*1

*1
*1

The WinDrawBorder function draws a border (a rectangular frame, normally
used around the edge of a window).

hps Identifies the presentation space in which the border is drawn.

prcl Points to· a RECTL structure that contains the bounding rectangle for the
border. The border is drawn within this rectangle. The RECTL structure has the
following form:

256 WinDrawBorder

Return Value

See Also

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

ex Specifies the width of the left and right sides of the border rectangle.

ey Specifies the height of the top and bottom sides of the border rectangle.

clrFore Specifies the color of the foreground.

clrBaek Specifies the color of the background.

fsCmd Specifies the flags that determine how the border is drawn. It can be
one of the following values:

Value Meaning

DB_AREAMIXMODE Draws the border with the current area attributes,
using the current-area foreground mix mode mapped
to a GplBltBIt raster operation. Note that the back­
ground mix mode is ignored by WlnDrawBorder in
this release because GplBltBlt ignores it.

DBJ)ESTINVERT Inverts the border.

DB_DLGBORDER A standard dialog border is drawn. If DB_P A TCOPY
is specified, then an active dialog border is drawn. If
DB_PATINVERT is specified, then an inactive dialog
border is drawn. If this option is specified, the ex and
ey parameters are ignored.

DB_INTERIOR The interior of the border is drawn with the current
pattern background color. The border is drawn in the
current pattern foreground color.

DB_PATCOPY Draws the border with the current area attributes,
forcing a mix mode of ROP _SRCCOPY.

DB_PATINVERT Draws the border with the current area attributes,
forcing a mix mode of ROP_PATINVERT.

DB_ROP Used as a mask to isolate the raster operation related
flags of the fsCmd parameter.

DB_STANDARD The ex and cy parameters are multiplied by the system
SV _CXBORDER and SV _CYBORDER constants to
produce the width and height of the border sides.

The current area attributes pattern is used. For instance, if the caller selects a
diagonal-crosshatch symbol, the borders will be drawn with diagonal cross­
hatches, no matter what colors are selected. The only raster operation which
does not use the pattern is DBJ)ESTINVERT.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

GpiBitBlt

WinDrawText 257

• WinDrawPointer
BOOL WinDrawPointer(hps, x, y, hptr, fs)
HPS hpsj f. handle of the presentation space .f
SHORT x; f. horizontal position .f
SHORT y; f. vertical position .f
HPOINTER hptr, f. handle to the mouse pointer .f
USHORT fs; f. pOinter-drawing flags .f

Parameters

Return Value

See Also

• WinDrawText

The WinDrawPointer function draws a pointer.

hps Identifies the presentation space in which the pointer is drawn.

X Specifies the x-coordinate at which to draw the pointer.

y Specifies the y-coordinate at which to draw the pointer.

hptr Identifies the pointer.

Is Specifies the flags that determine how the pointer is drawn. It can be one of
the following values:

Value

DP_INVERTED

Meaning

Draw the pointer with a halftone pattern where black
normally appears.

Draw the pointer inverted-black for white and white
for black.

Draw the pointer as it normally appears.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreatePointer, WinLoadPointer

SHORT WinDrawText(hps, eehText, pszText, perl, elrFore, elrBaek, fsCmd)
HPS hps; f. handle of the presentation space .f
SHORT eehTextj f. number of characters in the string .;
PSZ pszText; f. address of the text .f
PRECTL prel; f. address of structure with formatting dimensions .f
LONG elrFore; f. color of the foreground .f
LONG elrBaek; f. color of the background .;
USHORT fsCmd; f. text-drawing flags .f

Parameters

The WinDrawText function draws a single line of formatted text into a specified
rectangle.

hps Identifies the presentation space in which to draw the text.

cch Text Specifies the number of characters in the string to draw. If this is set
to OxFFFF, the string is assumed to be null-terminated and its length is calcu­
lated by the function itself.

pszText Points to the character string to draw. A carriage-return or linefeed
character terminates the line, even if the line is shorter than specified by the
cchText parameter.

258 WinDrawText

prcl Points to a RECTL data structure that contains the rectangle in which the
text is formatted. If DT_QUERYEXTENT is specified in the fsCmd parameter,
the RECTL structure is set to the string's bounding rectangle upon return from
WinDrawText. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

clrFore Specifies the color of the foreground. This parameter is ignored if
DT_TEXTATTRS is set in the fsCmd parameter.

clrBack Specifies the color of the background. This parameter is ignored if
DT_TEXTATTRS is set in the fsCmd parameter.

fsCmd Specifies an array of flags that determine how the text is drawn. It can
be any of the following values:

Value

DT_LEFT

DT_RIGHT

DT_TOP

DT_BOTTOM

DT_CENTER

DT_VCENTER

DT_ERASERECT

DT_EXTERN ALLEADING

DT_HALFTONE

DT_MNEMONIC

DT_QUERYEXTENT

Meaning

Left justify the text.

Right justify the text.

Top justify the text.

Bottom justify the text.

Center the text.

Center the text vertically.

This flag causes the RECTL structure specified
in prcl to be filled with the window color
before printing the text, but only if the
DT_QUERYEXTENT flag is not specified.

This flag causes the external leading value from
the passed font to be added to the bottom of
the bounding rectangle before returning. It
only has an effect when both DT_TOP and
DT_QUERYEXTENT are also specified.

Make the text display halfton~.

If a mnempnic prefix character is encountered,
draw the next character with mnemonic
emphasis.

No drawing is performed. The prcl parameter
is changed to a rectangle that bounds the string
if it was drawn with the WlnDrawText func­
tion.

This flag causes the colors specified in clrFore
and clrBack to be ignored. The colors already
selected in the presentation space are used
instead.

Return Value

Example

See Also

Value

DT_WORDBREAK

WinDrawText 259

Meaning

Only words that fit completely within the sup­
plied rectangle are drawn. A word is defined as
any number of leading spaces followed by one
or more visible characters and terminated by a
space, carriage-return, or linefeed character.
When calculating whether a particular word
will fit withiri the given rectangle, Wln­
DrawText does not consider the trailing
blanks. It tests only the length of the visible
part of the word against the right edge of the
rectangle. Note that WlnDrawText will always
try to draw at least one word, even if that word
does not fit in the passed rectangle. This is so
that progress is always made when drawing
multi-line text.

Some of the DT flags are mutually exclusive. Only one flag from each of the fol­
lowing groups is significant:

• DTJ..EFT, DT_CENTER, DTJUGHT
• DT_TOP, DT_VCENTER, DTJ30TTOM

The return value is the number of characters, drawn by the function, that fit
completely within the structure pointed to by prc1.

This example shows how the WinDrawText function can be used to wrap text
within a window by using the DT_ WORD BREAK flag. The cchDrawn variable
receives the number of characters actually drawn by the WinDrawText function.
If this value is zero, no text was drawn and the for loop is exited. This can occur
if the vertical height of the window is too short for the entire text. Otherwise,
cchDrawn is added to the cchTotalDrawn variable to provide an offset into the
string for the next call to WinDrawText.

hps = WinGetPS(hwnd); 1* get a ps for the entire window *1
WinQueryWindowRect(hwnd, &rcl);
WinFillRect(hps, &rcl, CLR_WHITE);
cchText = strlen(pszText);
cyCharHeight = 15L;
for (cchTotalDrawn = 0;

cchTotalDrawn 1= cchText;
rcl.yTop -= cyCharHeight) {

1* draw the text *1

cchDrawn = WinDrawText(hps,
cch - cchTotalDrawn,
pszText + cchTotalDrawn,
&rcl,
OL,

1* get window dimensions *1
1* clear entire window *1
1* get length of string *1
1* set character height *1

1* until all chars drawn *1

1* presentation-space handle *1
1* length of text to draw *1
1* address of the text *1
1* rectangle to draw in *1
1* foreground color *1
1* background color *1 OL,

DT_WORDBREAK I DT_TOP I DT~LEFT I DT_TEXTATTRS);
if (6chDrawn)

cchTotalDrawn += cchDrawn;
else

break;
}
WinReleasePS(hps) ;

WinSetDlgItemText

1* text could not be drawn

1* release the ps

*1

*1

260 WinEmptyClipbrd

I WinEmptyClipbrd
BOOl WinEmptyClipbrd(hab)
HAB hab; I. handle of the anchor block.1

Parameters

Return Value

Comment

See Also

The WinEmptyClipbrd function empties the clipboard, removing and freeing all
handles to data that were on the clipboard.

hab Identifies an anchor block.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This function will send a WMJ)ESTROYCLIPBOARD message to the clip­
board owner.

WinCloseClipbrd, WinOpenClipbrd

• WinEnablePhyslnput
BOOl WinEnablePhyslnput(hwndDesktop, fEnable)
HWND hwndDesktop; I. handle of the desktop .1
BOOl fEnable; I. input status *1

Parameters

Return Value

See Also

The WinEnablePhyslnput function enables or disables queuing of keyboard and
mouse input.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

tEnable Specifies whether the input is queued or disabled. If TRUE, key­
board and mouse input are queued. If FALSE, keyboard and mouse input are
disabled.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinIsPhyslnputEnabled

• WinEnableWindow
BOOl WinEnableWindow(hwnd, fEnable)
HWND hwnd; 1* handle of the window *1
BOOl fEnable; 1* enable-state flag *1

Parameters

Return Value

The WinEnableWindow function sets the window's enabled state.

hwnd Identifies the window whose enabled state is to be set.

tEnable Specifies the new enabled state. If TRUE, the window state is set to
enabled. If FALSE, the window state is set to disabled.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Comments

See Also

WinEndEnumWindows 261

If the enable state of the window is changing, a W1LENABLE message is sent
before this function returns.

If a window is disabled, all its child windows are implicitly disabled, although
they are not sent a W1LENABLE message.

WinIs WindowEnabled

• WinEnableWindawUpdate
BaOl WinEnableWindowUpdate (hwnd. (Enable)
HWND hwnd; 1* handle of the window to be enabled or disabled *1
BOOl (Enable; 1* enabled-state flag *1

Parameters

Return Value

Comments

See Also

The WinEnable WindowUpdate function enables or disables the window visibility
state for subsequent drawing to a window. This function can be used to prevent
unnecessary redrawing when making changes to a window. The window can then
be redrawn by calling this function with the fEnable parameter set to TRUE.

hwnd Identifies the window whose enable state will be changed.

tEnable Specifies whether drawing to the window is enabled. If TRUE, any
subsequent drawing into the window will be visible. If FALSE, any subsequent
drawing into the window will be invisible.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

When the WinEnable WindowUpdate function is called with the fEnable param­
eter TRUE, the entire window is invalidated, however WS_SYNCPAINT win­
dows are not redrawn. If you need to redraw a WS_SYNCP AINT window, you
must call the WinShowWindow function.

WinShowWindow

• WinEndEnumWindows
BaOl WinEndEnumWindows(henum)
HENUM henum; 1* handle of the enumeration list *1

Parameters

Return Value

See Also

The WinEndEnumWindows function ends an enumeration process. This func­
tion destroys the snapshot of the window hierarchy captured by the Win­
BeginEnum Windows function.

henum Identifies the enumeration list. This handle must have been created by
a previous call to the WinBeginEnum Windows function.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinBeginEnum Windows

262 Win End Paint

• WinEndPaint
BOOL WinEndPaint(hps)
HPS hps; /* handle of the presentation space */

Parameters

Return Value

Example

See Also

The WinEndPaint function restores the presentation space to its state prior to
the WinBeginPaint call. If a cache presentation space was created by the Win­
BeginPaint function, it is released. If the text cursor was hidden by the Win­
BeginPaint function, it is displayed.

hps Identifies the presentation space. This must be the handle of the presenta­
tion space returned by a previous call to the WinBeginPaint function.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example calls WinBeginPaint when it receives a WMJ> AINT message to
get a presentation-space handle to the update region and to get the coordinates
of the update rectangle. It then fills the update rectangle and calls WinEndPaint
to release the presentation space.

case WM_PAINT:
hps = WinBeginPaint(hwnd, /* handle of the window */

NULL, /* get a cache ps */
&rcl) ; /* receives update rectangle */

WinFillRect(hps, &rcl, CLR_WHITE);
WinEndPaint(hps);

WinBeginPaint

• WinEnumClipbrdFmts
USHORT WinEnumClipbrdFmts(hab. fmt)
HAB hab; /* handle of the anchor block */

USHORT fmt; /* index of last format enumerated */

Parameters

Return Value

See Also

The WinEnumClipbrdFmts function enumerates the list of clipboard data for­
mats available in the clipboard. The clipboard must have been previously opened
by calling the WinOpenClipbrd function.

hab Identifies the anchor block.

fmt Specifies the index of the last clipboard data format enumerated using this
function. This should start at zero, in which case the first available format is
obtained. Subsequently, it should be set to the last format index value returned
by this function.

The return value is the index of the next available clipboard data format in the
clipboard. When zero is returned, enumeration is complete (there are no further
formats available).

WinOpenClipbrd

WinEnumDlgltem 263

• WinEnumDlgltem
HWND WinEnumDlgltem(hwndDlg, hwnd, code, fLock)
HWND hwndDlg; f. handle of the dialog window .f

HWND hwnd; f. handle of the child window .f
USHORT code; f. returned dialog item *f
BOOl fLock; f* lock/unlock flag .f

Parameters

Return Value

Comments

The WinEnumDlgItem function returns the handle of a dialog item within a dia­
log window.

hwndDlg Identifies the dialog window that contains the dialog item.

hwnd Identifies the child window of the dialog window. This may be an
immediate child window or a window lower in the hierarchy; such as a child of a
child window.

code Specifies which dialog item to return. This parameter is one of the fol­
lowing values:

Value

EDLFIRSTGROUPITEM

EDLFIRSTT ABITEM

EDLLASTGROUPITEM

EDLLASTT ABITEM

EDLNEXTGROUPITEM

EDLNEXTT ABITEM

EDLPREVGROUPITEM

EDLPREVTABITEM

Meaning

First item in same group.

First item in dialog window with style
WS_TABSTOP. The hwnd window is
ignored.

Last item in same group.

Last item in dialog box with style
WS_ T ABSTOP. The hwnd window is
ignored.

Next item in same group. Wraps to beginning of
group when end of group is reached.

Next item with style WS_TABSTOP. Wraps
around to beginning of dialog-item list when end
is reached.

Previous item in same group. Wraps to end of
group when start of group is reached.

Previous item with style WS_TABSTOP. Wraps
to end of dialog-item list when beginning is
reached.

fLock Specifies whether the dialog item is to be locked or unlocked. If
TRUE, the item is locked. If FALSE, it is not.

The return value is the item handle obtained by this function, specified by the
code parameter. The window is always an immediate child window of the win­
dow identified by the hwndDlg parameter.

If the dialog item is locked by this function, then you must at some point call the
WinLockWindow function to unlock the dialog item. The reason for locking the
dialog item is so that it cannot be destroyed until you are done using it.

264 WinEqualRect

• WinEqualRect
BOOl WinEquaIRect(hab. prcl1. prcl2)
HAB hab; I. handle of the anchor block *1
PRECTl prcl1; I. address of structure for first rectangle *1
PRECTl prcl2; I. address of structure for second rectangle *1

Parameters

Return Value

The WinEqualRect function compares two rectangles for equality. Equal rect­
angles have identical coordinates (all sides are the same).

hab Identifies the anchor block.

prell Points to the RECTL structure that contains the first rectangle. The
RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

prel2 Points to the RECTL structure that contains the second rectangle.

The return value is TRUE if the rectangles are equal, or FALSE if they are not.

• WinExcludeUpdateRegion
SHORT WinE~cludeUpdateRegion(hps. hwnd)
HPS hps; 1* handle of the presentation space *1
HWND hwnd; 1* handle of the window *1

Parameters

Return Value

See Also

The WinExcludeUpdateRegion function subtracts the update region of a window
from the clipping region of a presentation space. If the presentation space does
not have a clipping region, one is created. The result of this function is that
drawing into the update region of a window will be clipped (will not be drawn).
This function is typically used to prevent drawing into parts of a window known
to be invalid.

hps Identifies the presentation space whose clipping region is updated.

hwnd Identifies the window whose update region is subtracted from the clip­
ping region of the presentation space.

The return value is EXRGN_NULL, EXRGN~ECT, or
EXREGN_COMPLEX if the function is successful. The return value is
EXRGN-ERROR if an error occurs.

GpiCombineRegion, Win ValidateRect

WinFiIIRect 265

• WinFiliRect
BOOl WinFiliRect (hps. perl. elr)
HPS hps: I. handle of the presentation space .1
PRECTl perl: I. address of the structure with the rectangle .1
COLOR elr, I. color of the rectangle .1

Parameters

Return Value

Example

See Also

The WinFillRect function fills a rectangular area. It does not change any
presentation-space state.

hps Identifies the presentation space where the rectangle is drawn.

perl Points to the RECTL structure that contains the coordinates of the rect­
angle to fill. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

elr Specifies the rectangle color. This parameter is either a color index or an
RGB color value, depending on how a logical color table has been loaded. (For
more information on color tables, see GpiCreateLogColorTable.)

Typically, this parameter will be a color index taken from one of the following
values:

CLR_WHITE
CLR_BLACK
CLR_BACKGROUND
CLR_BLUE
CLR_RED
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW

SYSCLR_WINDOWSTATICTEXT
SYSCLR_SCROLLBAR
SYSCLR_BACKGROUND
SYSCLR_ACTIVETITLE
SYSCLR_INACTIVETITLE
SYSCLR_MENU
SYSCLR_WINDOW
SYSCLR_WINDOWFRAME
SYSCLR_MENUTEXT

CLR_DARKGRAY
CLR_DARKBLUE
CLR_DARKRED
CLR_DARKPINK
CLR_DARKGREEN
CLR_DARKCYAN
CLR_BROWN
CLR_PALEGRAY
CLR_NEUTRAL

SYSCLR_WINDOWTEXT
SYSCLR_TITLETEXT
SYSCLR_ACTIVEBORDER
SYSCLR_INACTIVEBORDER
SYSCLR_APPWORKSPACE
SYSCLR_HELPBACKGROUND
SYSCLR_HELPTEXT
SYSCLR_HELPHILITE
SYSCLR_CSYSCOLORS

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example calls WinBeginPaint to get a presentation-space handle and the
coordinates of the update rectangle. It then calls WinFillRect to fill the update
rectangle.

case WM_PAINT:
hps = WinBeginPaint(hwnd, NULL, &rcl);
WinFillRect(hps, 1* presentation-space

&rcl, 1* coordinates of the
CLR_WHITE); 1* color to use

WinEndPaint(hps) ;

GpiCreateLogColorTable

handle *1
rectangle *1

*1

266 WinFindAtom

.. WinFindAtom
ATOM WinFindAtom(hAtomTbl, pszAtomName)
HATOMTBL hAtomTbl; I. handle of the atom table .1
PSZ pszAtomName; I. address of the atom name .1

Parameters

Return Value

See Also

The WinFindAtom function finds an atom in the atom table. This function is
identical to the WinAddAtom function, with !\yo exceptions: If the atom name is
not found in the table, it is not added to the table and NULL is returned as the
value of this function; if the atom name is found in the table, the use count is
not increased.

Because integer atoms do not have a. use count and do not actually occupy
memory in the atom table, this function is identical to WinAddAtom with
respect to integer atoms.

hAtomTbl Identifies the atom table. This handle must have been created by a
previous call to the WinCreateAtomTable function.

pszAtomName Points to the null-terminated character string containing the
atom name. If the string begins with a "#" character, the ASCII digits that fol­
low are converted into an integer atom. If the string begins with an "!" charac­
ter, the next two bytes are interpreted as an atom. If the high word of this
parameter is -1, the low word is an atom and that atom is returned.

The return value is the atom associated with the passed string, or it is NULL if
the string is not in the atom table.

WinAddAtom, WinCreateAtomTable

• WinFlashWindow
BaaL WinFlashWindow(hwndFrame, (Flash)
HWND hwndFrame; I. handle of the window to flash .1
BaaL (Flash; I. start/stop flashing flag .1

Parameters

Return Value

Comments

The WinFlash Window function starts or stops flashing a window. Flashing is
achieved by inverting the title bar continuously. A beep is emitted for the first
five flashes. If the window has been minimized, the icon text will flash when this
function is called.

hwndFrame Identifies the window to flash.

[Flash Specifies whether the window flashes. If TRUE, the window starts
flashing. If FALSE, the window stops flashing.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If an application needs to display a message box, but it does not have the focus,
then it should call the WinFlash Window function to flash its frame window and
emit a beep to get the user's attention. Once it receives the focus, it can call
WinFlashWindow again to stop the flashing, and then display its message box.

See Also

WinFocusChange 267

By using this method, a message box from your application will not be displayed
while the user is working with another application.

WinAlarm

• WinFocusChange
BOOl WinFocusChange(hwndDesktop, hwndSetFocus, (sFocusChange)
HWND hwndDesktop; I. handle of the desktop .1
HWND hwndSetFocus; I. handle of the focus window .1
USHORT (sFocusChange; I. focus-changing flags .1

Parameters

Return Value

See Also

The WinFocusChange function sets the focus to the specified window.

A window may temporarily set the focus to itself without changing the active
window or the selection. Examples of this are menu and scroll bar windows.
When complete, the wiridow sets the focus back to the previous focus window.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hwndSetFocus Identifies the new focus window.

fsFocusChange Specifies the flags that control the focus-changing process.
This parameter can be a combination of the following values:

Value Meaning

FC_NOLOSEACTIVE Do not send the W~ACTIVATE message to
the window being deactivated.

FC_NOLOSEFOCUS Do not send the W~SETFOCUS message to
the window losing the focus.

FC_NOLOSESELECTION Do not send the W~SETSELECTION mes­
sage to the window losing the selection.

FC_NOSET ACTIVE Do not send the W~ACTIV ATE message to
the window becoming active.

FC_NOSETFOCUS Do not send the W~SETFOCUS message to
the window receiving the focus.

FC_N0 SETSELECTION Do not send the W~SETSELECTION mes-
sage to the window receiving the selection.

By using various combinations of these flags, an application can control activa­
tion, selection, focus changes, and other default activities, such as bringing
frame windows to the top of their sibling windows. If fsFocusChange is zero, the
system takes the default action (this is the same as calling the WinSetFocus
function).

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryFocus, WinSetFocus

268 WinFormatFrame

• WinFormatFrame
SHORT WinFonnatFrame(hwndFrame. pre/Frame. pswp. eswpMax. pre/Client)
HWND hwndFrame; I. handle of window with frame controls to be formatted .1
PRECTL pre/Frame; I. address of structure with rectangle .1
PSWP pswp; I. address of array of structures .1
USHORT eswpMax: I. number of SWP structures .1
PRECTL pre/Client; I. address of client window rectangle .1

Parameters

Return Value

The WinFormatFrame function calculates the size and position of all standard
frame controls within a frame window. The data is calculated and returned in an
array with one entry for each control window. This function allows an applica­
tion which has subclassed its frame window, to more easily modify the appear­
ance of a frame window and its controls.

hwndFrame Identifies the window whose frame controls are to be formatted.

prclFrame Points to the RECTL structure that contains the rectangle where
the frame controls are formatted. This typically is the window rectangle
identified by the hwndFrame parameter, but where the window has a wide
border, (for example, as specified by FSJ)LGBORDER), the rectangle is inset
by the size of the border. The RECTL structure has the following form:

typedef struet _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

pswp Points to an array of SWP structures. There must be one SWP structure
for each frame control. Typically, the count of frame wiIidows is calculated as
follows:

(FID_CLIENT - FID_SYSMENU + 1)

This can change, however, if the frame window is subclassed. The SWP struc­
ture has the following form:

typedef struet _SWP {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x;
HWND hwndlnsertBehlnd;
HWND hwnd;

} SWP;

For a full description, See Chapter 4, "Types, Macros, Structures."

cswpMax Specifies the number of SWP structures.

prclClient Points to the window rectangle of the FID_CLIENT window after
formatting. If this parameter is NULL, no client window rectangle is returned.

The return value is the number of SWP structures returned in the array pointed
to by pswp.

Comments

See Also

WinFreeErrorlnfo 269

An SWP structure will be filled in for the following frame controls:
Value

FID_CLIENT

FID_HORZSCROLL

FID_MENU

FID_MINMAX

FID_SYSMENU

FID_ TITLEBAR

FID_ VERTSCROLL

Meaning

Identifies the client window.

Identifies the horizontal scroll bar.

Identifies the system menu.

Identifies the minimum/maximum box.

Identifies the system menu.

Identifies the title bar.

Identifies the vertical scroll bar.

The returned array of SWP structures can be used in the WinSetMuIt­
WindowPos function to set the position and size of the frame windows.

The WinFormatFrame function typically is used by applications that require a
nonstandard frame-window layout. This function is called while the
W1LUPDATEFRAME message is being processed. The application should
alter the calculated positions and sizes as required, after returning from this
function. Any additional windows added to the standard set can be handled by
adding SWP structures to the array, with positions and sizes set as necessary.

WinSetMuItWindowPos

• WinFreeErrorlnfo
BOOL WinFree Errorlnfo (perrinfo)
PERRINFO perrinfo; / .. address of structure with error-info block .. /

Parameters

Return Value

See Also

The WinFreeErrorInfo function frees memory allocated for an error information
block.

perrinfo Points to the ERRINFO structure that contains the error-information
block whose memory is to be freed. The ERRINFO structure has the following
form:

typedef struct _ERRINEO {
USHORT cbElxedErrInfo;
ERRORID IdError;
USHORT cDetailLevel;
USHORT offaoffszMsg;
USHORT offBinaryData;

} ERRINEO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinGetErrorInfo, WinGetLastError

270 WinFreeMem

• WinFreeMem
NPBYTE WinFreeMem(hHeap. npMem. cbMem)
HHEAP hHeap; I. handle of the heap .1
NPBYTE npMem; I. address of memory block to free .1
USHORT cbMem; I. size of the memory to free .1

Parameters

Return Value

Comments

See Also

• WinGetClipPS

The WinFreeMem function frees memory allocated by the WinAlIocMem func­
tion.

hHeap Identifies the heap. This handle must have been created by a previous
call to the WinCreateHeap function.

npMem Points to the memory block to free. This parameter must have been
returned by a previous call to the WinAlIocMem or WinReallocMem function.

cbMem Specifies the size of the memory to free; it must match the allocated
size of the block.

The return value is NULL if the function is successful. Otherwise, it returns the
npMem parameter. This method of returning failure allows for updating the
memory pointer and freeing the memory at the same time with a call similar to
the following:

npMem = WinFreeMem(hHeap, npMem, cbMem);

This function does not attempt to coalesce the block being freed with other free
blocks. Use the WinAvailMem function to coalesce free blocks.

If the heap was created with the H1LMOVEABLE option, the value of the
cbMem parameter is ignored and the value of the size word in the allocated
memory block is used instead.

If the heap was created with the H1LMOVEABLE and H1L V ALIDSIZE
options, the value of the cbMem parameter is checked against the value of the
size word and an error is generated if the two values are not the same.

WinAllocMem, WinAvailMem, WinCreateHeap, WinReallocMem

HPS WinGetClipPS(hwnd. hwndClip. fs)
HWND hwnd; I. address of the parent window.1
HWND hwndClip; I. handle of clipping type .1
USHORT fs; I. clipping flags .1

Parameters

The WinGetClipPS function returns a specially clipped presentation space for a
specified window.

hwnd Identifies the parent window.

hwndClip Identifies the type of clipping to perform. This parameter can be
one of the following values:

Value

HWND~OTTOM

Meaning

Clip the last window in the sibling chain and con­
tinue clipping until the next window is hwnd or
NULL.

Return Value

See Also

Value

NULL

WinGetCurrentTime 271

Meaning

Clip the first window in the sibling chain and con­
tinue clipping until the next window is hwnd or
NULL.

Clip all siblings to the window identified by the
hwnd parameter.

Is Specifies one or more clipping flags. This parameter can be one of the fol­
lowing values:

Value

PSF _CLIPCHILDREN

PSF_CLIPDOWNWARDS

PSF _CLIPSIBLINGS

PSF _CLIPUPW ARDS

PSF _LOCKWINDOWUPDATE

PSF _P ARENTCLIP

Meaning

Clip out all child windows of hwnd. Same
as PSF _CLIPWINDOWLIST and the
hwndClip parameter equal to the first child
window of hwnd.

Clip out all windows from hwndClip to the
bottom-most sibling window of hwndClip.

Clip out all sibling windows of hwnd.
Same as PSF _CLIPWINDOWLIST and
hwndClip equal to NULL.

Clip out all windows from the sibling win­
dows directly in front of hwndClip to the
front-most sibling window of hwndClip.

The presentation space returned is not
locked from updating hwnd because of
calls to WinLockWindowUpdate.

Obtain presentation 'space with a visible
region for the parent window, but with
window origin set to the origin of hwnd.

The return value identifies a pre~entation space if the function is successful, or it
is NULL if an error occurs.

WinGetPS, WinLockWindowUpdate

• WinGetCurrentTime
ULONG WinGetCurrentTime (hab)
HAB hab; I. handle of the anchor block .1

Parameters

Return Value

See Also

The WinGetCurrentTime function returns the current time.

hab Identifies the anchor block.

The return value is the system timer count (in milliseconds) from the time the
system is restarted.

WinQueryMsgTime

272 WinGetErrorlnfo

• WinGetErrorlnfo
PERRINFO WinGetErrorlnfo (hab)
HAB hab; /. handle of the anchor block ./

Parameters

Return Value

Comments

See Also

The WinGetErrorInfo function returns detailed error information.

hab Identifies the anchor block.

The return value points to an ERRINFO structure that contains information
about the previous error code for the current thread, or it is NULL if no error
information is available.

This function allocates a single private segment to contain the ERRINFO struc­
ture. All pointers to string fields within ERRINFO are offsets to memory within
that segment. The ERRINFO structure has the following form:

typedef struct _ERRINFO { /* erri */
USHORT cbFixedErrlnfo;
ERRORID idError;
USHORT cDetailLevel;
USHORT offaoffszMsg;
USHORT offBinaryData;

} ERRINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The memory allocated by this function is not freed until the returned pointer is
passed to the WinFreeErrorInfo function.

Like the WinGetLastError function, the WinGetErrorInfo function releases any
saved error information after formatting the error message. If two calls are made
to WinGetErrorInfo without any intervening calls, the second call will return
NULL because the saved error information was released by the first call.

WinFreeErrorInfo, WinGetLastError

• WinGetKeyState
SHORT WinGetKeyState (hwndDesktop, vkey)
HWNDhwndDesktop; /. handle of the desktop *'
SHORT vkey; / .. virtual key .. /

Parameters

Return Value

See Also

The WinGetKeyState function returns the key state at the time the last message
from the queue was posted. This function is used to determine whether a virtual
key is up, down, or toggled.

This function can be used to obtain the state of the mouse buttons with the
VILBUTTON1, VILBUTTON2, and VILBUTTON3 virtual-key codes.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

vkey Specifies the virtual-key value in the low byte and zero in the high byte.

If the key is down, the Ox8000 bit is set (less than 0); if the key is up, this bit is
not set. If the key is toggled, the OxOOOl bit is set (a key is toggled if it has been
pressed an odd number of times since the system was started).

WinGetPhysKeyState

WinGetMaxPosition 273

• WinGetLastError
ERRO RID WinGetlastError(hab)
HAB hab: f* handle of the anchor block *f

Parameters

Return Value

Comments

See Also

The WinGetLastError function returns the error state set by the failure of a
Presentation Manager function. This function returns the last nonzero error code
and sets the error code to zero.

hab Identifies the anchor block.

The return value is the last error code.

In multiple-thread applications where there are multiple anchor blocks, errors
are stored in the anchor block created by the Winlnitialize function of the
thread. The application must specify the correct anchor-block value for the
thread calling WinGetLastError.

WinGetErrorInfo, WinInitialize

• WinGetMaxPosition
BOOl WinGetMaxPosition(hwnd, pswp)
HWND hwnd: f* handle of the window .f
PSWP pswp: f* ad~ress of structure for maximum window size and position *f

Parameters

Return Value

See Also

The WinGetMaxPosition function fills an SWP structure with the maximized­
window size and position. On return, the SWP _SIZE and SWP ~OVE flags will
have been combined using the OR operator into the fs field of the SWP struc­
ture.

hwnd Identifies the window whose maximum size will be retrieved.

pswp Points to the SWP structure that retrieves the size and position of a max­
imized window. The SWP structure has the following form:

typedef struet _sWP {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x·
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinGetMinPosition

274 WinGetMinPosition

• WinGetMinPosition
BOOl WinGetMinPosition(hwnd, pswp, ppt/)
HWND hwnd; 1* handle of the window *1
PSWP pswp; 1* address of structure with icon information *1
PPOINTl ppt/; 1* address of structure with minimum window position *1

Parameters

Return Value

See Also

• WinGetMsg

The WinGetMinPosition function fills an SWP structure with the minimized­
window size and position. On return, the SWP _SIZE and SWP .-MOVE flags will
have been combined using the OR operator into the fs field of the SWP struc­
ture.

hwnd Identifies the window whose minimum size will be retrieved.

pswp Points to the SWP structure that will receive the size and position of a
minimized-window icon. The SWP structure has the following form:

typedef struet _swp {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

For a full description, see Chapter 4, "Types, Macros, Structures."

pptl Points to the POINTL structure that specifies the position (in screen coor­
dinates) to place the minimized window. If NULL, the system will determine the
position. Otherwise, an icon location as near as possible to the specified position
is chosen.

The POINTL structure has the following form:

typedef struet _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinGetMaxPosition

BOOl WinGetMsg(hab, pqmsg, hwndFilter, msgFilterFirst, msgFilterLast)
HAB hab; 1* handle of the anchor block *1
PQMSG pqmsg; 1* address of structure with message *1
HWND hwndFilter; 1* window-filter handle *1
USHORT msgFilterFirst; 1* first message *1
USHORT msgFilterLast; 1* last message *1

The WinGetMsg function retrieves a message from the thread's message queue,
waits if necessary, and returns when a message conforming to the filtering cri­
teria is available.

Parameters

Return Value

Comments

WinGetMsg 275

hab Identifies the anchor block.

pqmsg Points to the QMSG structure that contains a message. The QMSG
structure has the following form:

typedef struct _QMSG {
HWND hvnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

For a full description, see Chapter 4, "Types, Macros, Structures."

hwndFilter Identifies the window filter.

msgFilterFirst Specifies the first message.

msgFilterLast Specifies the last message.

The return value is TRUE if the returned message is not "WM.-QUIT. The return
value is FALSE if the returned message is ~QUIT.

Filtering allows an application to process messages in a different order than the
one in the queue. Filtering is used so the application can receive messages of a
particular type only, rather than receiving other types of messages at an incon­
venient point in the logic of the application. For example, when a "mouse button
down" message is received, the application can use filtering to ,wait for the
"mouse button up" message without having to process other messages.

When using filtering, you must ensure that a message satisfying the specification
of the filtering parameters can occur; otherwise, the WinGetMsg function cannot
completely execute. For example, calling the WinGetMsg function with the
msgFilterFirst and msgFilterLast parameters equal to ~CHAR ~nd with the
hwndFilter parameter set to a window handle that does not have the input focus
prevents WinGetMsg from returning.

Keystrokes are passed to the WinTranslateAccel function. This means that
accelerator keys are translated into ~COMMAND or "WM.-SYSCOMMAND
messages and are not seen as ~CHAR messages by the application.

The hwndFilter parameter limits the returned message to a specific window or its
child windows. When hwndFilter is NULL, the returned message can be for any
window. The message identity is restricted to the range specified by the msg­
FilterFirst and msgFilterLast parameters. When msgFilterFirst and msgFilterLast
are both zero, any message satisfies the range constraint. When msgFilterFirst is
greater than msgFilterLast, messages except those whose identities lie between
msgFilterFirst and msgFilterLast can be returned. Messages that do not conform
to the filtering criteria remain in the queue.

When msgFilterFirst and msgFilterLast are both zero, all messages are returned.

The constants W1LMOUSEFIRST and WM~OUSELAST can be used for
msgFilterFirst and msgFilterLast to filter all but mouse messages.

The constants WMJ3UTTONCLICKFIRST and WMJ3UTTONCLICKLAST
can be used for msgFilterFirst and msgFilterLast to filter all but mouse button
messages.

The constants WM.J)DE_FIRST and WM.J)DEJ-AST can be used for msg­
FilterFirst and msgFilterLast to filter all but dynamic data exchange messages.

276 WinGetMsg

Example

See Also

This example calls WinGetMsg to retrieve a message and WinDispatchMsg to
send the message. .

HAB hab;
QMSG qmsg;

while (WinGetMsg(hab,
&qmsg,
NULL,
0,
0»

WinDispatchMsg(hab,

I' handle to the anchor block 'I
I' address of the message queue structure 'I
I' accept messages for any window *1
I' first message to accept *1
I' accept all messages * I

&qmsg) ;

WinDispatchMsg, WinPeekMsg, WinPostMsg, WinTranslateAcceI,
WinWaitMsg

• WinGetNextWindow
HWN 0 WinGetNextWindow (henum)
HENUM henum; I. handle of the enumeration list .1

Parameters

Return Value

See Also

The WinGetNextWindow function obtains the handle of the next window in a
specified enumeration list.

The enumeration list details the window hierarchy at the time WinBegin-
Enum Windows was called. Enumeration starts with the top-most child window
(listed first) and proceeds through the list each time the function is called, until
all windows have been enumerated. Once all windows have been enumerated,
the function returns NULL. The enumeration then returns to the top of the list
and the handle of the top-most child window is returned on the next call.

When a valid window handle is returned, the window is locked by this function.
The window must then be unlocked by using the WinLockWindow function
before WinGetNextWindow is called again.. .

henum Identifies the enumeration list. This parameter is created by the Win­
BeginEnum Windows function.

The return value is the handle of the next window in the enumeration list, or it is
NULL if an error occurs.

WinBeginEnum Windows, WinLockWindow

• WinGetPhysKeyState
SHO RT WinGetPhysKeyState (hwndDesktop, sc)
HWND hwndDesktop; I. handle of the desktop .1
SHORT sc; I. scan code of the key .1

Parameters

The WinGetPhysKeyState function returns the physical-key state of the key
represented by the scan-code parameter. This function is not synchronized to the
processing of input.

hwndDesktop Identifies the desktop window. This parameter can be
HWND~ESKTOP or the desktop window handle.

sc Specifies the scan code of the key.

Return Value

See Also

• WinGetPS

WinGetPS 277

The return value is a flag indicating if the key is currently up or down, and
whether the key has gone down since the last time WinGetPhysKeyState was
called. If the high bit is set (Ox8000), the key is currently down, otherwise the
key is currently up. If the low bit is set (OxOOOl), the key has gone down since
the last time WinGetPhysKeyState was called.

WinGetKeyState

HPS WinGetPS (hwnd)
HWND hwnd; I. handle of the window.1

Parameters

Return Value

Comments

Example

See Also

The WinGetPS function retrieves a cache presentation space that is a cache
micro presentation space present in the system. This space can be used for sim­
ple drawing operations that do not depend on long-term data being stored in the
presentation space.

hwnd Identifies the window to retrieve a presentation space for.

The return value identifies presentation space that can be used for drawing in the
window.

The initial state of the presentation space is the same as that of a presentation
space created using the GpiCreatePS function. The color table is in default
color-index mode. The visible region associated with the presentation space
depends on the window and class styles of the window identified by the hwnd
parameter. The visible region can have one of the following values:

Value

WS_CLIPCHILDREN

WS_CLIPSIBLINGS

WS_P ARENTCLIP

Meaning

All the window's child windows are excluded.

All the window's sibling windows are excluded.

The visible region is the same as that of the
window's parent window.

Note that any presentation spaces created with the WinGetPS function must be
released by calling the WinReleasePS function. This must be done before the
application terminates.

This example processes an application-defined message (IDMYILL). It calls
WinGetPS to get a presentation space to the entire window. It gets the dimen­
sions of the current window, fills the window, and calls WinReleasePS to release
the presentation space.

case IDM_FILL:
hps = WinGetPS(hwnd);/* get ps for the entire window */
WinQueryWindowRect(hwnd, &rcl); /* get window dimensions */
WinFillRect(hps, &rcl, CLR_WHITE); /* clear entire window */
WinReleasePS(hps); /* release the ps */
return OL;

GpiCreatePS, WinGetClipPS, WinGetScreenPS, WinReleasePS

278 WinGetScreenPS

• WinGetScreenPS
HPS WinGetScreenPS(hwndDesktop)
HWND hwndDesktop; I. handle of the desktop .1

Parameters

Return Value

Comments

See Also

The WinGetScreenPS function returns a presentation space that can be used for
drawing anywhere on the screen.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

The return value is a presentation space, or NULL if an error occurs.

When your application finishes using the presentation space, the space should be
released by calling the WinReleasePS function.

The WinLockWindowUpdate function should be used to avoid updating the
same part of the screen at the same time.

WinGetPS, WinLockWindowUpdate, WinReleasePS

• WinGetSysBitmap
HBITMAP WinGetSysBitmap(hwndDesktop, ibm)
HWND hwndDesktop; I. handle of the desktop .1
USHORT ibm; I. index of the system bitmap .1

Parameters

The WinGetSysBitmap function returns a handle to one of the standard bitmaps
provided by the system. This bitmap can be used for any of the normal bitmap
operations. When your application is done with the bitmap, it should free it by
calling GpiDeleteBitmap.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

ibm Specifies the system-bitmap index value. It can be one of the following
values:

Value

SBMP _BTNCORNERS

SBMP _CHECKBOXES

SBMP _CHILDSYSMENU

SBMP_FILE

SBMP _FOLDER

SBMP _MAXBUTfON

SBMP_MENUATfACHED

Meaning

Push button corners.

Check box/radio button check mark.

Smaller version of the system menu bitmap to
use in child windows.

A symbol used by the file system to indicate a
disk drive.

A symbol used by the file system to indicate a
file.

A symbol used by the file system to show
subdirectories.

Maximize button.

A symbol used to indicate that a menu item
has an attached hierarchical menu.

Return Value

See Also

• WinlnflateRect

Value

SBMP _MENUCHECK

SBMP jiINBUTION

SBMP _PROGRAM

SBMP _RESTOREBUTION

SBMP_SBDNARROW

SBMP _SBLFARROW

SBMP _SBRGARROW

SBMP _SBUPARROW

SBMP _SIZEBOX

SBMP _SYSMENU

SBMP _ TREEMINUS

SBMP _ TREEPLUS

Meaning

Menu check mark.

Minimize button.

WinlnfiateRect 279

A symbol used by the file system to indicate
that a file is an executable program.

Restore button.

Scroll-bar down arrow.

Scroll-bar left arrow.

Scroll-bar right arrow.

Scroll-bar up arrow.

A symbol used to indicate an area of a win­
dow that a user can click to resize the win­
dow.

System menu.

A symbol used by the file system to show that
an entry in the directory tree contains no
more files.

A symbol used by the file system to show that
an entry in the directory tree contains more
files.

The return value is a handle to a bitmap, or NULL if an error occurs.

GpiDeleteBitmap, WinDrawBitmap

BOOl WinlnflateRect(hab, prel, ex, ey)
HAB hab; I. handle of the anchor block .1
PRECTl prel; I. address of structure with expanded rectangle .1
SHORT ex; I. amount to expand width .1
SHORT ey; I. amount to expand height .1

Parameters

The WinlnflateRed function expands the coordinates of a rectangle. If the
specified expansion values are positive, the rectangle is expanded on all sides. If
the specified expansion values are negative, the horizontal expansion value is
subtracted from the left and added to the right, and the vertical expansion value
is subtracted from the bottom and added to the top.

hab Identifies the anchor block.

prcl Points to the RECTL structure that contains the rectangle to be
expanded. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

280 WinlnfiateRect

Return Value

See Also

• Winlnitialize

ex Specifies the amount of horizontal expansion.

ey Specifies the amount of vertical expansion.

The return value is always TRUE.

WinOffsetRect

HAB WinlnitiaJize (fsOptions)
USHORT fsOptions; /. initialization options ./

Parameters

Return Value

Example

See Also

• WinlnSendMsg

The Winlnitialize function initializes a thread for making Presentation Manager
function calls. This must be the first Presentation Manager function called by any
thread that will be calling Presentation Manager functions.

/sOptions Specifies the initialization options. Currently this parameter must be
zero.

The return value is the handle of an anchor block, or NULL if an error
occurred.

This example calls Winlnitialize so that the thread can use Presentation Manager
functions, processes the message loop, and calls WinTerminate when it is
finished calling Presentation Manager functions.

HAB hab; /* handle to the anchor block */

VOID cdecl main() { .
hab = Winlnitialize(NULL);

. /* any other initialization */

while (WinGetMsg(hab, &qmsg, NULL, 0, 0»
WinDispatchMsg(hab, &qmsg);

WinTerminate(hab);

WinCreateMsgQueue, WinTerminate

BOOl WinlnSendMsg(hab)
HAB hab; /. handle of the anchor block ./

Parameters

Return Value

Comments

See Also

The WinlnSendMsg function determines whether the current thread is process­
ing a message sent by another thread.

hab Identifies the anchor block.

The return value is TRUE if the current thread is processing a message sent by
another thread, or FALSE if it is not processing a message.

The WinlnSendMsg function can be used to tell if a function is being called
recursively.

WinIsThreadActive, WinSendMsg

WinlnvalidateRect 281

• WinlntersectRect
BOOl WinlntersectRect(hab, prelDst, pre/Sre1, pre/Sre2)
HAB hab; /. handle of the anchor block ./
PRECTl prelDst; /. address of structure for intersection of rectangles ./
PRECTl pre/Sre1; /. address of structure with first rectangle ./
PRECTl pre/Sre2; /. address of structure with second rectangle ./

Parameters

Return Value

See Also

The WinlntersectRect function calculates the intersection of two source rect­
angles and places the coordinates of the intersection rectangle into the destina­
tion rectangle. If the rectangles do not intersect, an empty rectangle (0, 0, 0, 0)
is placed into the destination rectangle.

hab Identifies the anchor block.

prclDst Points to the RECTL structure that receives the intersection of the
rectangles designated by the prclSrcl and prclSrc2 parameters. The RECTL
structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

prclSrcl Points to the RECTL structure that contains the first source rect­
angle.

prclSrc2 Points to the RECTL structure that contains the second source rect­
angle.

The return value is TRUE if the source rectangles intersect, or FALSE if they
do not.

WinUnionRect

• WinlnvalidateRect
BOOl WinlnvalidateRect(hwnd, prel, flneludeChildren)
HWND hwnd; /. handle of window with changed update region */
PRECTl prel; /. address of structure with rectangle */
BOOl flneludeChildren; /. Invalidation-scope flag ~/

Parameters

The WinlnvalidateRect function adds a rectangle to a window's update region.
The update region represents the area of the window that must be redrawn.

hwnd Identifies the window whose update region has changed. If this parame­
ter is HWND.J)ESKTOP, this function updates the entire screen.

prcl Points to the RECTL structure that contains the coordinates of the rect­
angle to add to the window's update region. If this parameter is NULL, the
entire window is put into the update region. The RECTL structure has the fol­
lowing form:

282 WinlnvalidateRect

Return Value

Comments

Example

See Also

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

flncludeChildren Specifies whether child windows of hwnd are included in
the invalid region. If TRUE, child windows are included. If FALSE, they are
not. .

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If the window style is WS_SYNCP AINT, the window is redrawn before return­
ing from the WinInvalidateRect function.

If the window style is WS_CLIPCHILDREN and part of the window's update
region overlaps child windows that have the style WS_SYNCP AINT, those child
windows are updated before WinInvalidateRect returns.

This example gets the dimensions of the window and calls WinInvalidateRect to
invalidate the window. The application will be sent a WMYAINT message with
the entire window ~s the update rectangle.

WinQueryWindowRect(hwnd, &rcl);
WinlnvalidateRect(hwnd, 1* window to invalidate *1

&rcl, 1* invalid rectangle * I
FALSE); 1* do not include children *1

WinInvalidateRegion

• WinlnvalidateRegion
BOOl WinlnvalidateRegion(hwnd, hrgn, flncludeChildren)
HWND hwnd; /. handle of window with changed update region ./

HRGN hrgn; /. handle of the region to add ./
BOOl flncludeChildren; /. invalidation-scope flag */

Parameters

Return Value

The WinInvalidateRegion function adds a region to a window's update region.
The update region represents the area of the window that needs to be redrawn.

hwnd Identifies the window whose update region has changed. If this parame­
ter is HWND~ESKTOP, this function updates the entire screen.

hrgn Identifies the region to be added to the window's update region. If this
parameter is NULL, the entire window is put into th~ update region.

flncludeChildren Specifies whether child windows of hwnd are included in
the invalid region. If TRUE, child windows are included. If FALSE, they are
not.' .

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Comments

See Also

• WinlnvertRect

WinlsChiid 283

If the window style is WS_SYNCPAINT, the window is redrawn before return­
ing from the WinInvalidateRegion function.

If the window style is WS_CLIPCHILDREN and part of the window's update
region overlaps child windows that have the style WS_SYNCP AINT, those child
windows are updated before WinlnvalidateRegion returns.

WinlnvalidateRect

BOOl WinlnvertRect(hps, pre/)
HPS hps; I. handle of the presentation space .1
PRECTL prel; I. address of structure with rectangle to invert .1

Parameters

Return Value

See Also

• WinlsChiid

The WinInvertRect function inverts a rectangular area. Inversion is a logical
NOT operation and"flips the bits of each pel.

hps Identifies the presentation space.

prcl Points to the RECTL structure that contains the coordinates of the rect­
angle to invert. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRlght;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

GpiBitBlt

BOOl WinlsChild(hwnd, hwndParent)
HWND hwnd; I. handle of the child window .1
HWND hwndParent; I. handle of the parent window .1

Parameters

Return Value

See Also

The WinIsChild function tests whether a specified window is a child of a
specified parent window.

hwnd Identifies the child window.

hwndParent Identifies the parent window.

The return value is TRUE if the child window is a descendant of the parent win­
dow. The return value is FALSE if the child window is not a descendant of the
parent or if an error occurs. "

WinSetParent

284 WinlsPhyslnputEnabled

• WinlsPhyslnputEnabled
BOOl WinlsPhyslnputEnabled(hwndDesktop)
HWND hwndDesktop; 1* handle of the desktop *1

Parameters

Return Value

See Also

The WinIsPhyslnputEnabled function returns the status of hardware input (on
or off).

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

The return value is TRUE if input is enabled or FALSE if input is disabled.

WinEnablePhyslnput

• WinlsRectEmpty
BOOl WinlsRectEmpty(hab. pre/)
HAB hab; 1* handle of the anchor block *'
PRECTl prel; 1* address of structure with rectangle to check *1

Parameters

Return Value

See Also

The WinIsRectErnpty function tests whether a rectangle is empty. (An empty
rectangle is one with no area. The right side is less than or equal to the left and
the bottom side is less than or equal to the top.)

hab Identifies the anchor block.

prcl Points to the RECTL structure that contains the rectangle to be tested.
The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the rectangle is empty or FALSE if the rectangle is
not empty.

WinSetRectErnpty

• WinlsThreadActive
BOOl WinlsThreadActive (hab)
HAB hab; 1* handle of the anchor block *1

Parameters

The WinIsThreadActive function determines whether the active window belongs
to the calling thread.

hab Identifies the anchor block of the calling thread.

Return Value

See Also

• WinlsWindow

WinlsWindowVisible 285

The return value is TRUE if the active window belongs to the calling thread, or
it is FALSE if the active window does not belong to the thread.

WinInSendMsg

BOOL WinlsWindow(hab. hwnd)
HAB hab; / .. handle of the anchor block .. /
HWND hwnd; / .. handle of window to test .. /

Parameters

Return Value

Comments

See Also

The WinIs Window function determines whether a specified window is valid.

hab Identifies the anchor block.

hwnd Identifies the window whose validity is to be checked.

The return value is TRUE if the window is valid or FALSE if it is not.

An invalid window is one which has been destroyed. If hwnd contains the handle
of an invalid window, or it contains the handle of something other than a win­
dow, this function will return FALSE.

WinIs WindowEnabled, WinIs Window Visible

• WinlsWindowEnabled
BOOL WinlsWindowEnabled (hwnd)
HWND hwnd; / .. handle of window to check .. /

The WinIsWindowEnabled function determines whether a specified window is
enabled or disabled.

hwnd Identifies the window to check. Parameters

Return Value

See Also

The return value is TRUE if the window is enabled, or FALSE if it is disabled.

WinEnable Window, WinIs WindowVisible

• WinlsWindowVisible
BOOL WinlsWindowVisible (hwnd)
HWND hwnd; / .. handle of the window to test .. /

The WinIsWindowVisible function determines the visibility state of a \Y'

Parameters

Return Value

hwnd Identifies the window to test.

The return value is TRUE if the specified window and all its
have the WS_ VISIBLE style bit set. The return value is F '
not visible. Because the return value reflects only the vr '
WS_ VISIBLE flag, it may be TRUE even if the windo
other windows.

/

286 WinlsWindowVisible

Comments

See Also

A window possesses a visibility state indicated by the WS_ VISIBLE style bit.
When the WS_ VISIBLE style bit is set, the window is shown and subsequent
drawing into the window is displayed as long as the window or any of the win­
dows in the parent chain have the WS_ VISIBLE style.

When the WS_ VISIBLE style bit is not set, the window is not shown (hidden)
and subsequent drawing into the window is not displayed.

If the value of the WS_ VISIBLE style bit has been changed, the message
W1L WINDOWPOSCHANGED is sent to the window of the hwnd parameter
before the function returns.

Drawing to a window with a WS_ VISIBLE style will not be displayed if the win­
dow is covered by other windows, or clipped by its parent.

WinIs WindowEnabled, WinShowWindow

• WinLoadAccelTable
HACCEL WinLoadAccelTable(hab, hmod, idAccelTable)
HAB hab; I. handle of the anchor block .1
HMODULE hmod; I. handle of the module .1
USHORT idAccelTable; I. accelerator table identifier .1

Parameters

Return Value

See Also

• WinLoadDlg

The WinLoadAccelTable function loads an accelerator table.

hab Identifies the anchor block.

hmod Identifies the module that contains the accelerator table. This parame­
ter can be either the module handle returned by the DosLoadModule function or
NULL for the application's module.

idAccelTable Identifies the accelerator table.

The return value is the handle of the accelerator table.

DosLoadModule, WinCreateAccelTable, WinDestroy AccelTable, Win Set­
AccelTable

HWND WinLoadDlg(hwndParent, hwndOwner, pfnDlgProc, hmod, idDlg, pCreateParams)
HWND hwndParent; I. handle of the parent window .1
HWND hwndOwner, I. handle of the owner window .1
PFNWP pfnDlgProc; I. pOinter to the dialog procedure .1
HMODULE hmod; I. handle of resource with dialog template .1
USHORT idDlg; I. dialog window and template .1
PVOID pCreateParams; I. address of dialog-procedure data .1

lmeters

The WinLoadDlg function creates a dialog window from a dialog template and
returns the handle of the dialog window created.

hwndParent Identifies the parent window of the dialog window.

hwndOwner Identifies the owner window for the dialog window.

Return Value

See Also

• WinLoadMenu

WinLoadMenu 287

pfnDlgProc Points to the dialog procedure.

hmod Identifies the module that contains the dialog template. This parameter
can be either the module handle returned by the DosLoadModule function or
NULL for the application's module.

idDlg Identifies the dialog window and the dialog-resource file.

pCreateParams Points to dialog-procedure data (application-specific data
passed to the dialog procedure with the WMJNITDLG message).

The return value is the handle of the dialog window created, or it is NULL if an
error occurs.

DosLoadModule, WinCreateDlg, WinDestroyWindow, WinDlgBox, Win­
ProcessDlg, WinSubstituteStrings

HWND WinLoadMenu(hwndFrame. hmod. idMenu)
HWND hwndFrame; /. handle of the frame window ./
HMODULE hmod; /. handle of the module with resource ./
USHORT idMenu; /. menu template identifier ./

Parameters

Return Value

Comments

See Also

The WinLoadMenu function creates a menu window from the menu template.

hwndFrame Identifies the frame window for the menu.

hmod Identifies the module that contains the menu template. This parameter
can be either the module handle returned by the DosLoadModule function or
NULL for the application's module.

idMenu Identifies the menu template in the resource identified by the hmod
parameter.

The return value is the handle of the menu window.

Menus are created as child windows of the frame window and are initially visi­
ble. If the menu contains submenus, these submenus are initially created as
object windows that are owned by the menu window. If the submenus contain
other submenus, these new submenus are also object windows whose owner is
the submenu that contains it. The menu hierarchy is defined by the owner­
window chain.

DosLoadModule, WinCreateMenu, WinQueryObjectWindow

288 Win Load Message

• WinLoadMessage
SHORT WinLoadMessage(hab, hmod, id, cchMax, pszBuffer)
HAB hab; /. handle of the anchor block ./
HMODULE hmod; /. module handle ./
USHORT id; /. message Identifier ./
SHORT cchMax; /. buffer size ./
PSZ pszBuffer, /. address of buffer for message ./

Parameters

The WinLoadMessage function loads a message from a resource, copies the
message to the specified buffer, and appends a terminating null character.

hab Identifies the anchor block.

hmod Identifies the module that contains the message. This parameter can be
either the module handle returned by the DosLoadModule function or NULL
for the application's module.

id Identifies the message.

cchMax Specifies the size of the buffer.

pszBuffer Points to the buffer that receives the message.

Return Value

Comments

See Also

• WinLoadPointer

The return value is the length of the returned message (excluding the terminating
null character). The return value can have a maximum value of (cchMax -1).
The return value is zero if an error occurs.

Message resources contain up to 16 messages each. The resource identifier is cal­
culated from the id parameter value passed to WinLoadMessage as follows:

resource identifier = (id / 16) + 1

To save storage on disk and in memory, applications should group their message
resources sequentially, starting at a multiple of 16.

DosLoadModule, WinLoadString

HPOINTER WinLoadPointer(hwndDesktop, hmod, idPtr)
HWND hwndDesktop; /. handle of the desktop ./
HMODULE hmod; /. handle of the module with the resource ./
USHORT idPtr, /. resource Identifier ./

Parameters

The WinLoadPointer function loads a pointer. The pointer can then be used as
the mouse pointer by calling the WinSetPointer function.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hmod Identifies the module that contains the pointer. This parameter can be
either the module handle returned by the DosLoadModule function or NULL
for the application's module.

idPtr Identifies the pointer.

Return Value

Example

See Also

• WinLoadString

WinLoadString 289

The return value is a handle to the pointer if the function is successful, or
NULL if an error occurs.

This example calls WinLoadPointer to load an application-defined pointer.
When processing the W1LMOUSEMOVE message, the loaded pointer is
displayed by calling WinSetPointer,

case WM_CREATE:
hptrCrossHair = WinLoadPointer(HWND_DESKTOP,
. NULL, /* load from ,exe file */

IDP_CROSSHAIR); /* identifies the pOinter */

case WM_MOUSEMOVE:
WinSetPointer(HWND_DESKTOP, hptrCrossHair);

DosLoadModule, WinCreatePointer, WinDestroyPointer, WinDrawPointer,
WinQuerySysPointer, WinSetPointer

SHORT WinLoadString(hab, hmod, id, cchMax, pszBuffer)
HAB hab; 1* handle of the anchor block *1
HMODULE hmod; 1* handle of the module with the string *1
USHORT id; 1* string identifier *1
SHORT cchMax; 1* size of the buffer *1
PSZ pszBuffer; I. address of the buffer for the string *1

Parameters

Return Value

Comments

See Also

The WinLoadString function loads a string from a resource, copies the string to
the specified buffer, and appends a terminating null character.

hab Identifies the anchor block,

hmod Identifies the module that contains the string. This parameter can be
either the module handle returned by the DosLoadModule function or NULL
for the application's module.

id Identifies the string identifier.

cchMax Specifies the size of the supplied buffer.

pszBufj'er Points to t~e buffer that receives the string.

The return value is the length of the returned string (excluding the terminating
null character). The return value can have a maximum value of (cchMax -1).
The return value is zero if an error occurs.

String resources contain up to 16 strings each, The resource identifier is calcu­
lated from the id value passed to WinLoadString as follows:

resource identifier = (id / 16) + 1

To save storage on disk and in memory, applications should group their string
resources sequentially, starting at a multiple of 16.

DosLoadModule, WinLoadMessage

290 WinLockHeap

• WinLockHeap
PVOID WinlockHeap(hHeap)
HHEAP hHeap; /. handle of the heap ./

Parameters

Return Value

See Also

The WinLockHeap function returns afar address to the beginning of the heap.

hHeap Identifies the heap. This parameter is returned by the WinCreateHeap
function.

The return value is a far pointer to the beginning of the segment that contains
the passed heap.

WinAlIocMem, WinCreateHeap

• WinLockVisRegions
BOOl WinlockVisRegions(hwndDesktop. fLock)
HWND hwndDesktop; /. handle of the desktop ./

BOOl fLock; /. lock/unlock flag ./

Parameters

Comments

Return Value

See Also

The WinLockVisRegions function locks or unlocks the visible regions of all win­
dows on the screen, preventing any of the visible regions from changing.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

fLock Specifies whether to lock or unlock the visible regions. If TRUE, the
visible regions are locked. If FALSE, the visible regions are unlocked.

This function is used to prevent a window's visible regions from changing while a
thread performs a screen operation. For example, WinLockVisRegions should
be used if the application is moving bits from one part of a window to another.
Calling WinLockVisRegions during this operation ensures that no other window
will appear on top of the window that bits are being copied from and therefore
no physical change in the bits will take place. Using WinLockWindowUpclate for
this bit copying will not work, because although no bits will changed in the
locked area, it is still possible that the visible region of the presentation space
being used for the bit copying might change.

While the visible regions are locked, no messages should be sent and no func­
tions called that could send messages.

Only one thread can lock the visible regions at anyone time. The same thread
can call WinLockVisRegions multiple times. A lock count is maintained by the
system and is incremented each time a locking call is made and decremented
each time an unlocking call is made. The visible regions are unlocked when the
count is zero.

If WinLockVisRegions is called while another thread has locked the visible
regions, the function will not return until the thread locking the visible regions
has unlocked them.

The return value is TRUE if the function is succes~ful or FALSE if an error
occurs.

WinLockWindowUpdate

WinLockWindowUpdate 291

• WinLockWindow
HWND WinlockWindow(hwnd, fLock)
HWND hwnd; I. handle of the window.1
BOOl fLock; I. lock/unlock flag .1

Parameters

Return Value

Comments

See Also

The WinLockWindow function locks or unlocks a specified window. A window
cannot be destroyed while it is locked.

hwnd Identifies the window to be locked or unlocked.

fLock Specifies whether the window is to be locked or unlocked. If TRUE,
the window is locked. If FALSE, the window is unlocked.

The return value is the handle of the window that was locked or unlocked if the
function is successful. It is NULL if an error occurred.

If the WinDestroyWindow function is called with a locked window handle, the
window is not destroyed until the window is unlocked.

A count is maintained of the number of times a window has been locked without
a corresponding call to unlock the window. The window cannot be destroyed
until the count is zero. The WinQueryWindowLockCount function can be called
to get the current lock count.

WinDestroyWindow, WinLockWindowUpdate, WinQueryWindowLockCount

• WinLockWindowUpdate
BOOl WinlockWindowUpdate (hwndDesktop, hwndLockUpda te)
HWND hwndDesktop; I. handle of the desktop .1
HWND hwndLockUpdate; I. handle of the window to 10ck/unlock.1

Parameters

Return Value

See Also

The WinLockWindowUpdate function prevents or allows the updating of a win­
dow and its child windows. While updating is locked, no drawing will take place
on the screen. When updating is unlocked, portions of the screen are invalidated
and repainted.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hwndLockUpdate Identifies the window to be locked. If this parameter is
NULL, all windows are unlocked.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinLock VisRegions

292 WinMapDlgPoints

• WinMapDlgPoints
BOOl WinMapDlgPoints(hwndDlg, pptl, cwpt, fCalcWindowCoords)
HWND hwndDlg; 1* handle of the dialog window .1
PPOINTl pptl; 1* address of array of structures with points to map *1
USHORT cwpt; 1* number of POINTL structures .1
BOOl fCalcWindowCoords; 1* type of pOints *1

Parameters

Return Value

See Also

The WinMapDlgPoints function converts points of a dialog window from dialog
coordinates to window coordinates or from window coordinates to dialog coordi­
nates.

hwndDlg Identifies the dialog window.

pptl Points to the array of POINTL structures that contain the points to be
converted. The converted points are substituted in the array. The POINTL struc­
ture has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

for a full description, see Chapter 4, "Types, Macros, Structures."

cwpt Specifies the number of POINTL structures in the pptl array.

fCalcWindowCoords Specifies the type of points to convert. If TRUE, the
points are dialog coordinates and are converted to window coordinates relative
to the dialog window. If FALSE, the points are window coordinates relative to
the dialog window and are converted to dialog coordinates.

The return value is TR VE if the function is successful or FALSE if an error
occurs.

WinMap WindowPoints

• WinMapWindowPoints
BOOl WinMapWindowPoints(hwndFrom, hwndTo, ppt/, cwpt)
HWND hwndFrom; 1* handle of the window to be mapped from *1
HWND hwndTo; 1* handle of the window to be mapped to *1
PPOINTl ppt/; 1* address of array of structures with points to map .1
SHORT cwpt; I. number of POINTL structures *1

The WinMap WindowPoints function converts a set of points from a coordinate
space relative to one window to a coordinate space relative to another window.

Parameters

Return Value

See Also

WinMessageBox 293

hwndFrom Identifies the window from which points are converted. If this
parameter is NULL or HWND--'DESKTOP, the points are assumed to be in
screen coordinates.

hwndTo Identifies the window to which points are converted. If this parame­
ter is NULL or HWND--'DESKTOP, the points are converted to screen coordi­
nates.

pptl Points to an array of POINTL structures that contain the set of points.
This parameter can also point to a RECTL structure, in which case the cwpt
parameter should be set to 2. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

/* rcI */

For a full description, see Chapter 4, "Types, Macros, Structures."

cwpl Specifies the number of POINTL structures in the pptl array.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinMapDlgPoints

• WinMessageBox
USHORT WinMessageBox(hwndParent, hwndOwner, pszText, pszCaption, idWindow, fiSty/e)
HWND hwndParent; /. handle of the parent window ./
HWND hwndOwner; /. handle of the owner window ./
PSZ pszText; /. address of text In message box ./
PSZ pszCaption; /. address of title of message box ./
USHORT idWindow; /. message-box identifier ./
USHORT flSty/e; /. type of message box ./

Parameters

The WinMessageBox function creates, displays, and operates a message-box
window. The message-box window consists of a message and a simple dialog
with the user.

hwndParent Identifies the parent window of the newly created message-box
window. This parameter is the desktop-window handle, HWND--'DESKTOP, or
NULL if the message box is a main window.

hwndOwner Identifies the· owner window of the message-box window. The
owner window is activated when WinMessageBox returns.

294 WinMessageBox

pszText Points to the text displayed as the message within the message-box
window. The text will be automatically wrapped as necessary to fit within the
message box. The "\n" characters can be used to force a line break, however
this is not recommended except between paragraphs, as different fonts could
change the appearance of the text.

pszCaption Points to the title of the message-box window. If this parameter is
NULL, "Error" (the default title) is displayed. The maximum length of the text
is device-dependent. If the text is too long, it will be clipped.

idWindow Identifies the identifier of the message-box window. This value is
passed to the HKJIELP hook if the WMJIELP message is received by the
message-box window.

jlStyle Specifies the type of message-box window created. This parameter con­
sists of a button flag, an icon flag, a default button flag, and any number of spe­
cial flags. The following four lists describe the available flags which can be com­
bined using the OR operator together for this parameter:

Buttons

MB_ABORTRETRYIGNORE

MB_ENTERCANCEL

MB_OKCANCEL

MB_RETRYCANCEL

MB_YESNO

MB_ YESNOCANCEL

Icon

MB_ICON ASTERISK

MB_ICONEXCLAMA TION

MB_ICONHAND

MB_ICONQUESTION

Meaning

Message box contains Abort, Retry, and
Ignore push buttons.

Message box contains an Enter push but­
ton.

Message box contains Enter and Cancel
push buttons.

Message box contains an OK push but­
ton.

Message box contains OK and Cancel
push buttons.

Message box contains Retry and Cancel
push buttons.

Message box contains Yes and No push
buttons.

Message box contains Yes, No, and Can­
cel push buttons.

Meaning

Message box contains asterisk icon.

Message box contains exclamation-point
icon.

Message box contains hand icon.

Message box contains question-mark
icon.

Message box does not contain an icon.

Return Value

Comments

Default button

MB_DEFBUTTONl

MB_DEFBUTTON2

MB_DEFBUTTON3

Special flags

MB_APPLMODAL

MB_SYSTEMMODAL

MB_HELP

MB_MOVEABLE

WinMessageBox 295

Meaning

First button is the default (first
button is always the default
unless MB_DEFBUTTON2 or
MB_DEFBUTTON3 is specified).

Second button is the default.

Third button is the default.

Meaning

Message box is application modal.

Message box is system modal.

Message box contains Help push button.

Message box is movable.

The return value indicates the user's response to the message. It can be one of
the following vlaues:

Value

MBID_ABORT

MBID_CANCEL

MBID_ENTER

MBID_IGNORE

MBID~O

MBID_OK

MBID_RETRY

MBID_YES

MDID_ERROR

Meaning

Abort button was selected.

Cancel button was selected.

Enter button was selected.

Ignore button was selected.

No button was selected.

OK button was selected.

Retry button was selected.

Yes button was selected.

The WinMessageBox function failed-an
error occurred.

If a message box has a Cancel button, MBID_CANCEL is returned if the
ESCAPE key is pressed or if the Cancel button is selected. If the message box has
no Cancel button, pressing the ESCAPE key has no effect.

If a message-box window is created as part of the processing of a dialog window,
the dialog window should be made the owner of the message-box window.

If a system modal message-box window is created to tell the user that the system
is running out of memory, the strings passed into this function should not be
taken from a resource file because an attempt to load the resource file may fail
due to lack of memory. Such a message-box window can safely use the hand
icon (MBJCONHAND), however, because this icon is always memory-resident.

296 WinMessageBox

Example

See Also

This example shows a typical use of the WinMessageBox function when debug­
ging an application. The C run-time function sprintf is used to format the body
of the message. In this case, it converts the coordinates of the mouse pointer
(retrieved with the WinQueryPointerPos function) into a string. The string is
then displayed by calling WinMessageBox.

CHAR szMsg[lOO];
POINTL ptl;

WinQueryPointerPos(HWND_DESKTOP, &ptl);
sprintf(szMsg, "x = %ld Y = %ld", ptl.x, ptl.y);
WinMessageBox(HWND_DESKTOP,

hwndClient,
szMsg,
"Debugging information",
0,
MB_NOICON 1MB_OK);

WinFlash Window

I' client-window handle 'I
I' body of the message 'I
I' title of the message 'I
I' message box id 'I
I' icon and button flags 'I

• WinMsgMuxSemWait
USHORT WinMsgMuxSemWait(pisemC/eared. pmxsl. ITimeOut)
PUSHORT pisemC/eared; 1* address of variable that receives Index number *1
PVOID pmxs/; 1* address of structure with semaphore list *1
LONG ITimeOut; 1* length of time to wait *1

Parameters

The WinMsgMuxSem Wait function waits for one or more of the specified sema­
phores to clear. This function checks the specified list. If any of the semaphores
are clear, the function returns. Otherwise, the function waits until the specified
time elapses or until one of the semaphores in the list clears.

pisem Clea red Points to the variable that receives the index number of the
most recently cleared semaphore.

pmxsl Points to the MUXSEMLIST structure containing a semaphore list that
defines the semaphores to be cleared. The semaphore list consists of one or
more semaphore handles. The MUXSEMLIST structure has the following form:

typedef struct _MUXSEMLIST {
USHORT cmxs;
MUXSEM amxs[16];

} MUXSEMLIST;

The structure may contain up to 16 semaphores.

For a full description, see Chapter 4, "Types, Macros, Structures."

lTimeOut Specifies how long to wait for the semaphores to become available.
If the value is greater then zero, this parameter specifies the number of milli­
seconds to wait before returning. If the value is SEMJMMEDIATE~ETURN,
the function returns immediately. If the value is SEMJNDEFINITE_ WAIT, the
function waits indefinitely.

Return Value

Comments

See Also

WinMsgSemWait 297

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~XCL_SE~LREADY_OWNED
ERRORJNTERRUPT
ERRORJNVALID~VENT_COUNT
ERRORJNVALIDJIANDLE
ERRORJNVALID~ISTYORMAT
ERRO~SE~TIMEOUT
ERRO~TOO~ANY~UXWAITERS

This function is identical to the DosMuxSem Wait function with the following
exceptions: Window messages sent via the WinSendMsg function by another
thread may be received; the function can wait for 15 semaphores simultaneously
(DosMaxSemWait can wait for 16).

This function should be used to wait for a semaphore when the semaphore
owner may need to issue a WinSendMsg function (or another Win function that
implicitly issues a WinSendMsg function) before clearing the semaphore.

DosMuxSem Wait, WinMsgSem Wait, WinSendMsg

• WinMsgSemWait
USHORT WinMsgSemWait(hsem, ITimeOut)
HSEM hsem; /. handle of the semaphore ./
LONG ITimeOut; /. time-out value ./

Parameters

Return Value

The WinMsgSemWait function waits for a specified semaphore to be cleared.
WinMsgSemWait waits until a thread uses the DosSemClear function to clear
the semaphore or until a time-out occurs. If no previous thread has set the sema­
phore, WinMsgSemWait returns immediately.

hsem Identifies the semaphore to set. This value can be the handle of a sys­
tem semaphore that has been previously created or opened by using the Dos­
CreateS em or DosOpenSem function, or it can be the address of a RAM sema­
phore.

1 Time Out Specifies how long to wait for the semaphore to clear. If the value
is greater then zero, this parameter specifies the number. of milliseconds to wait
before returning. If the value is SEMJMMEDIATE~ETURN, the function
returns immediately. If the value is SEMJNDEFINITE_ WAIT, the function
waits indefinitely.

The return value is zero if the function is successful. Otherwise, it is an error
value, which may be one of the following:

ERRO~XCL_SE~LREADY_OWNED
ERRORJNTERRUPT
ERRORJNVALIDJIANDLE
ERRO~SE~TIMEOUT

298 WlnMsgSemVlait

Comments

See Also

This function is identical to DosSem Wait except that in addition to waiting on
the specified semaphore, window messages sent via the WinSendMsg function by
another thread may be received.

DosCreateSem, DosOpenSem, DosSemClear, DosSemWait, WinMsgMux­
Sem Wait, WinSendMsg

• WinMultWindowFromlDs
SHORT WinMultWindowFromIDs(hwndParent, phwnd, idFirst, idLast)
HWND hwndParent; 1* handle of the parent window *1
PHWND phwnd; 1* address of array of window handles *1
USHORT idFirst; 1* first window identifier in range *1
USHORT idLast; 1* last window identifier in range *1

Parameters

Return Value

See Also

• WinNextChar

~ The WinMultWindowFromIDs function finds the handles of specified child win­
dows that have window-identifier values within a specified range. This function
may be used to enumerate all the items in a dialog group, for example, or to
enumerate all the frame controls of a standard window. This function is faster
than making individual calls to the WinWindowFromID function.

hwndParent Identifies the parent window.

phwnd Points to the array that contains the window handles. This array must
contain (idLast - idFirst + 1) elements; the zero-based index of a window in the
array is (idWindow - idFirst), where idWindow is the window identifier· of the
specified window. If there is no window for a window identifier within the range,
the corresponding element in the array is NULL.

idFirst Identifies the first window-identifier value in the range (inclusive).

idLast Identifies the last window-identifier value in the range (inclusive).

The return value is the number of window handles returned in the array. The
return value is zero if no window handles are returned.

Win WindowFromID

PSZ WinNextChar(hab, idep, idee, psz)
HAB hab; 1* handle of the anchor block *1
USHORT idep; 1* code page *1
USHORT idee; 1* country code *1
PSZ psz; 1* address of character in string *1

Parameters

The WinNextChar function moves to the next character in a string.

hab Identifies the anchor block.

idep Identifies the code page.

idee Identifies the country code.

psz Points to a character in a null-terminated string.

Return Value

See Also

• WinOffsetRect

WinOpenClipbrd 299

The return value points to the next character in the string or the NULL ter­
minating character.

WinPrevChar

1300L WinOffsetRect{hab. prel. ex. ey)
HAB hab; 1* handle of the anchor block *1
PRECTL prel; 1* address of the structure with rectangle *1
SHORT ex; 1* horizontal offset *1
SHORT ey; 1* vertical offset *1

Parameters

Return Value

See Also

The WinOffsetRect function offsets a rectangle by adding a specified value to
both the left and right coordinates and adding a specified value to both the top
and bottom coordinates.

hab Identifies an anchor block.

prcl Points to the RECTL structure that contains the rectangle to be offset.
The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

ex Specifies the value of the horizontal offset. This value is added to the left
and right sides of the rectangle.

ey Specifies the value of the vertical offset. This value is added to the top and
bottom sides of the rectangle.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinInflateRect

• WinOpenClipbrd
BOOL WinOpenClipbrd{hab)
HAB hab; 1* handle of the anchor block *1

Parameters

The WinOpenClipbrd function opens the clipboard and prevents other threads
and processes from examining or changing the clipboard contents. Ifanother
thread or process already has the clipboard open, this function does not return
until the clipboard is closed.

Messages can be received from other threads and processes during the process­
ing of this function.

hab Identifies the anchor block.

300 WinOpenClipbrd

Return Value

See Also

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCloseClipbrd, WinEnumClipbrdFmts

• WinOpenWindowDC
HOC WinOpenWindowOC (hwnd)
HWNO hwnd; I. handle of the window.1

Parameters

Return Value

Comments

See Also

• WinPeekMsg

The WinOpen WindowDC function opens a device context for a window.

hwnd Identifies the window with the device context.

The return value is the handle of the device context.

Only one device context can be opened for each window.

A handle to a device context is used to associate a presentation space with the
window.

The window device context is automatically closed when its associated window is
destroyed. It must not be closed with the DevCloseDC function.

This function is used by applications that typically have a lot of state information
associated with a presentation space, such as coordinate mapping transforms,
attributes, fonts, etc. This interface provides a "global" presentation space for a
given window. This global can be kept in the application until the window is
destroyed.

WinQueryWindowDC

BOOL WinPeekMsg(hab, pqmsg, hwndFilter, msgFilterFirst, msgFilterLast, fs)
HAS hab; I. handle of the anchor block .1
PQMSG pqmsg; I. address of structure .1
HWNO hwndFilter, I. handle of the filter window .1
USHORT msgFilterFirst; I. first message .1
USHORT msgFilterLast; I. last message .1
USHORT fs; I. status of message in queue .1

Parameters

The WinPeekMsg function inspects the thread's message queue.

hab Identifies the anchor block.

pqmsg Points to the QMSG structure. The QMSG structure has the following
form:

typedef struct _QMSG {
HWND hwnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

Return Value

Comments

See Also

• WinPostMsg

WinPostMsg 301

For a full description, see Chapter 4, "Types, Macros, Structures."

hwndFilter Identifies the window filter.

msgFilterFirst Specifies the first message.

msgFilterLast Specifies the last message.

fs Specifies whether to remove the message from the queue. If this parameter
is PMJEMOVE, the message is removed from the queue. If this parameter is
P~NOREMOVE, the message remains in the queue. An application should
specify only one of these flags. If neither flag is specified, the message is not
removed. If both are specified, the message is removed.

The return value is TRUE if a message is available, or it is FALSE if no mes­
sage is available.

This function is identical to the WinGetMsg function, except that it does not
wait for the arrival of a message and allows for leaving the message in the queue.

The constants W1LMOUSEFIRST and W1LMOUSELAST can be used for
msgFilterFirst and msgFilterLast to filter all but mouse messages.

The constants \VMJ3UTTONCLICKFIRST and \VMJ3UTTONCLICKLAST
can be used for msgFilterFirst and msgFilterLast to filter all but mouse button
messages.

The constants WMJ)DEYIRST and WMJ)DEJ-AST can be used for msg­
FilterFirst and msgFilterLast to filter all but dynamic data exchange messages.

WinGetMsg

BOOl WinPostMsg(hwnd. msg. mp1. mp2)
HWND hwnd; 1* handle of the window to post message to .1
USHORT msg; 1* message *1
MPARAM mp1; 1* first message parameter .1
MPARAM mp2; I. second message parameter *1

Parameters

Return Value

Comments

The WinPostMsg function posts a message to the message queue for the
specified window.

hwnd Identifies the window to post the message to. If this parameter is
NULL, the message is posted to the queue associated with the current thread.

msg Specifies the message.

mpJ Specifies the first message parameter.

mp2 Specifies second message parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

The following are some of the differences between WinPostMsg and Win­
SendMsg:

302 WinPostMsg

See Also

• WinPostMsg returns immediately. WinSendMsg waits for the receiver to
return.

• A thread that does not have a message queue can still call WinPostMsg.
It cannot call WinSendMsg.

• Calling WinSendMsg to send a message to another thread is costly in
terms of CPU time. This is not true of the WinPostMsg.

WinBroadcastMsg, WinGetMsg, WinPeekMsg, WinSendMsg

• WinPostQueueMsg
BOOl WinPostOueueMsg(hmq. msg. mp1. mp2)
HMO hmq; /. handle of the message queue ./
USHORT msg; /. message ./
MPARAM mp1; /. first message parameter ./
MPARAM mp2; /. second message parameter ./

Parameters

Return Value

Comments

See Also

• WinPrevChar

The WinPostQueueMsg function posts a message to a message queue. This func­
tion can be used to post messages to any queue in the system.

hmq
msg

mpJ

mp2

Identifies the message queue.

Specifies the message.

Specifies the first message parameter.

Specifies the second message parameter.

The return value is TRUE if the function is successful or FALSE if an error
occurs or if the queue was full.

The last three parameters are placed into the queue as part of a QMSG struc­
ture. The QMSG hwnd field is set to NULL, and the QMSG time and pt fields
are derived from the system time and mouse position at the time WinPost­
QueueMsg was called.

WinPostMsg, WinSendMsg

PSZ WinPrevChar(hab. idep. idee. pszStart. psz)
HAB hab; /. handle of the anchor block ./
USHORT idep; /. code page ./
USHORT idee; /. country code ./
PSZ pszStart; /. address of string with character ./
PSZ psz; /. address of character in string ./

Parameters

The WinPrevChar function moves to the previous character in a string.

hab Identifies the anchor block.

idep Identifies the code page.

idee Identifies the country code.

Return Value

See Also

• WinProcessDlg

WinPtlnRect 303

pszStart Points to the character string that contains the character pointed to
by the psz parameter.

psz Points to a character in the string pointed to by the pszStart parameter.

The return value points to the previous character in a string, or to the first char­
acter if the psz parameter equals the pszStart parameter.

WinNextChar

USHORT WinProcessDlg(hwndDlg)
HWND hwndDlg; I. handle of the dialog queue.1

Parameters

Return Value

See Also

• WinPtlnRect

The WinProcessDlg function processes messages intended for a dialog window.
This function does not return until the WinDismissDlg function is called by the
dialog procedure.

hwndDlg Identifies a dialog window.

The return value is set to the value returned by the WinDismissDlg function.

WinDismissDlg, WinDlgBox, WinLoadDlg

BOOl WinPtlnRect(hab, pre/, pptl)
HAB hab; I. handle of the anchor block .1
PRECTl prel; I. address of structure with rectangle coordinates .1
PPOINTl pptl; I. address of structure with point coordinates .1

Parameters

The WinPtInRect function determines whether a point lies within a rectangle.

hab Identifies an anchor block.

prcl Points to a RECTL structure containing the rectangle to be checked. The
RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

pptl Points to a PO~NTL structure containing the point to be checked. The
POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

304 WinPtlnRect

Return Value

Example

See Also

The return value is TRUE if the point lies within the rectangle, or FALSE if the
point is outside the rectangle.

This example processes a WMJ3UTTONIUP message, converts the mouse
pointer coordinates into a POINTL structure, and calls WinPtInRect to deter­
mine if the mouse was clicked in the predefined global rectangle.

RECTL rclGlobal;
POINTL ptl;
HPS hps;

case WM_BUTTON1UP:

I' global set to some predefined rectangle 'I

ptl.x = (LONG) SHORT1FROMMP(mpl);
ptl.y = (LONG) SHORT2FROMMP(mpl);
if (WinPtlnRect(hab, I' anchor-block handle 'I

&rclGlobal, I' address of the rectangle 'I
&ptl» { I' address of the point 'I

GpiPtInRegion

• WinQueryAccelTable
HACCEl WinQueryAccelTable(hab. hwndFrame)
HAB hab; I. handle of the anchor block .1
HWND hwndFrame; I. handle of the frame wlndow.1

Parameters

Return Value

Comments

See Also

The WinQueryAccelTable function queries the window or queue accelerator
table.

hab Identifies an anchor block.

hwndFrame Identifies the frame window. This parameter can be NULL.

The return value is an accelerator-table handle if the function is successful, or
NULL if an error occurred.

If the hwndFrame parameter is NULL, then the handle of the queue accelerator
is returned. Otherwise, the handle of the window accelerator table is returned by
sending the W1LQUERYACCELTABLE message to the frame window speci­
fied by hwndFrame.

WinCreateAccelTable

• WinQueryActiveWindow
HWND WinQueryActiveWindow(hwndDesktop. fLock)
HWND hwndDesktop; I. handle of the desktop .1
BOOl fLock; I. lock/unlock flag .1

Parameters

The WinQueryActiveWindow functiOIi retrieves the active frame window.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

fLock Specifies whether the active window should be locked. If TRUE, the
window is locked. If FALSE, it is not.

Return Value

Comments

See Also

WinQueryAtomName 305

The return value is the active window handle or NULL if no window was active
at the time of the call or the hwndDesktop handle is invalid .

. If this function is called while the active window is changing, then it may return
NULL, indicating that no window was active at the time of the call. Since a
NULL value can also be returned if the hwn(iDesktop handle is invalid, you must
call WinGetLastError to determine if a NULL return value is caused by an
invalid hwndDesktop handle or because the active window was changing when
you made the call.

If the active window is locked by this function, then you must at some point call
the WinLockWindow function to unlock the window. The reason for locking the
window is so that the window cannot be destroyed until you are done using it.

. WinLockWindow, WinQueryFocus

• WinQueryAtomLength
USHORT WinQueryAtomLength(hAtomTbl, atom)
HATOMTBL hAtomTbl; /. handle of the atom table ./
ATOM atom;

Parameters

Return Value

See Also

/. atom

The WinQueryAtomLength function queries the length of a string associated
with the passed atom. The purpose of this function is to allow an application to
determine the size of the buffer to pass to the WinQueryAtomName function.

hAtomTbl Identifies an atom table. This handle must have been created by a
previous call to the WinCreateAtomTable function.

atom Specifies the atom whose length is to be returned.

The return value is the length of the string associated with the atom, not includ­
ing the null terminating byte. If the specified atom or atom table is invalid, the
return value is zero. Integer atoms always return a length of 6.

WinCreateAtomTable, WinQueryAtomName

• WinQueryAtomName
USHORT WinQueryAtomName(hAtomTbl, atom, pszBuffer, cchBufferMax)
HATOMTBL hAtomTbl; /. handle of the atom table./
ATOM atom; /. atom ./
PSZ pszBuffer;
USHORT cchBufferMax;

/. address of the buffer
/. length of the buffer

Parameters

The WinQueryAtomName function retrieves an atom name associated with an
atom.

hAtom Tbl Identifies an atom table. This handle must have been created by a
previous call to the WinCreateAtomTable function.

atom Specifies an atom identifying the character string to retrieve. For integer
atoms, the format of the string is #ddddd, where ddddd are decimal digits in
the system code page (which will be an ASCII code page). No leading zeros are
generated, and the length can be from three to seven characters.

306 WinQueryAtomName

Return Value

See Also

pszBuffer Points to the buffer to receive the character string.

cchBufferMax Specifies the maximum size (in bytes) of the buffer pointed to
by pszBuffer.

The return value is the actual number of bytes copied to the buffer, excluding
the null terminating byte. If the specified atom or the atom table is invalid, the
return value is zero.

WinCreateAtomTable, WinFindAtom, WinQuery AtomLength

• WinQueryAtomUsage
USHORT WinQueryAtomUsage(hAtomTbl, atom)
HATOMTBL hAtomTbl; 1* handle of the atom table .1
ATOM atom; 1* atom .1

Parameters

Return Value

See Also

The WinQueryAtomUsage function returns the number of times an atom has
been used.

hAtom Tbl Identifies an atom table. This handle must have been created by a
previous call to the WinCreateAtomTable function.

atom Specifies the atom whose use count is to be returned.

The return value is the use count of the atom. It is OxFFFF for integer atoms. If
the atom table or atom is invalid, then the return value is zero.

WinAddAtom, WinCreateAtomTable

• WinQueryCapture
HWN 0 WinQueryCapture (hwndDesktop, fLock)
HWND hwndDesktop; 1* handle of the desktop *1
Bool fLock; I. lock/unlock flag .1

Parameters

Return Value

Comments

See Also

The WinQueryCaptilre function returns the window handle of the window that
has the mouse capture.

hwndDesktop . Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

fLock Specifies whether the window that has the mouse capture should be .
locked. If TRUE, the window is locked. If FALSE, it is not.

The return value is the window handle with the mouse capture, or NULL if no
window has the capture or an error occurred.

If the window that has the mouse capture is locked by this function, then you
must at some point call the WinLockWindow function to unlock the window.
The reason for locking the window is so that the window cannot be destroyed
until you are done using it.

WinLockWindow, WinSetCapture

WinQueryClassName 307

• WinQueryClasslnfo
BOOl WinQueryClasslnfo (hab, pszClassName, pelsi)
HAB hab; /. handle of the anchor block ./

PSZ pszClassName; /. address of the class name ./
PCLASSINFO pelsi; /. address of structure for class information ./

Parameters

Return Value

See Also

The WinQueryClasslnfo function retrieves window class information. This func­
tion is used in creating subclasses of a given class.

hab Identifies an anchor block.

pszClassName Points to a null-terminated string containing the class name.
The class name is either an application-specified name as defined by the Win­
RegisterClass function or the name of a preregistered WC class.

pclsi Points to a CLASSINFO structure that will contain the retrieved informa­
tion about the class. The CLASSINFO structure has the following form:

typedef struct _CLASSINFO {
ULONG flClassStyle;
PFNWP pfnWindowProc;
USHORT cbWindowData;

} CLASSINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful. Otherwise, it is FALSE,
indicating that the class does not exist.

WinRegisterClass

• WinQueryClassName
SHORT WinQueryClassName(hwnd, eehMax, psz)
HWND hwnd; /. handle of the window./

SHORT eehMax; /. length of the buffer ./

PSZ psz; /. address of the buffer ./

Parameters

Return Value

See Also

The WinQueryClassName function copies the window class name, as a null­
terminated string, into a buffer.

If the class name is longer than (cchMax - 1), only the first (cchMax - 1) char­
acters of the class name are copied.

If the specified window is of any of the preregistered WC classes, the class name
returned is in the form #nnnnn, where nnnnn is up to five digits that correspond
to the low word of the WC class-name constant.

hwnd Identifies a window.

cchMax Specifies the length of the buffer pointed to by the psz parameter.

psz Points to a buffer for the class name.

The return value is the length of the returned class name, not including the null
termination character.

WinQueryClasslnfo, WinRegisterClass

308 WinQueryClipbrdData

• WinQueryClipbrdData
UlONG WinQueryClipbrdData(hab, fmt)
HAB hab; I. handle of the anchor block .1
USHORT fmt; I. specifies the format of the data .1

Parameters

Return Value

Comments

See Also

The WinQueryClipbrdData function obtains a handle to the current clipboard
data having a specified format.

The returned data handle cannot be used after the WinCIoseClipbrd function is
called. For this reason, the application must either copy the data, if required for
long-term use, or process the data before WinCIoseClipbrd is called.

The application should not free the data handle itself nor ~eave it locked in any
way.

hab
fm!

Identifies an anchor block.

Specifies the format of the data that is accessed by this function.

The return value is a handle to the data in the clipboard in the format specified
by the 1m! parameter. If the format does not exist or if an error occurred, the
return value is NULL.

For a description of the possible formats and data handles, see the Win­
SetCIipbrdData function.

WinCIoseCIipbrd, WinOpenCIipbrd, WinSetCIipbrdData

• WinQueryClipbrdFmtlnfo
BOOl WinQueryClipbrdFmtlnfo (hab, fmt, pfsFmtlnfo)
HAB hab; I. handle of the anchor block .1
USHORT fmt; I. specifies data format .1
PUSHORT pfsFmtlnfo; I. receives memory model and usage flags .1

Parameters

The WinQueryCIipbrdFmtInfo function determines whether a particular format
of data is present in the clipboard and, if so, provides information about that
format.

hab Identifies an anchor block.

fmt Specifies the format of the data that this function queries. The following
list describes the standard clipboard formats:

Value Meaning

The data is a bitmap. The CFLHANDLE
memory-model flag must be set in the pfsFmtlnfo
parameter.

The data is a bitmap representation of a private
data format. The clipboard viewer can use this
format to display a private format. The memory­
model flag CFLHANDLE must be set in the
pfsFmtlnfo parameter.

Return Value

Comments

See Also

Value

CF _DSPMET AFILE

WinQueryClipbrdFmtlnfo 309

Meaning

The data is a metafile. The CFLHANDLE
memory-model flag must be set in the pfsFmtlnfo
parameter.

The data is a metafile representation of a private
data format. The clipboard viewer can use this
format to display a private format. The memory­
model flag CFLHANDLE must be set in the
pfsFmtlnfo parameter.

The data is an array of text characters~ which may
include newline characters to mark line breaks.
The null character indicates the end of the text
data. The CFLSELECTOR memory-model flag
must be set in the pfsFmtlnfo parameter.

The data is a textual representation of a private
data format. The clipboard viewer can use this
format to display a private format. The memory­
model flag CFLSELECTOR must be set in the
pfsFmtlnfo parameter.

pfsFmtlnfo Points to a variable that receives the memory-model and usage
(CFI) flags. It consists of a memory-model flag and a usage flag from the follow­
ing lists:

Memory-model flag

CFLSELECTOR

CFLHANDLE

Usage flag

CFLOWNERFREE

CFI_OWNERDISPLA Y

Meaning

Handle is a selector plus zero offset to a segment
in storage.

Handle is the handle to a metafile or bitmap.

Meaning

Handle is not freed by the WlnEmptyCllpbrd
function. The application must free the data if
necessary.

Format will be drawn by the clipboard owner in
the clipboard-viewer window by means of the
W~P AINTCLIPBOARD message. The ulData
parameter should be NULL.

The return value is TRUE if the format exists. Otherwise, it is FALSE, indicat­
ing that the format does not exist.

For a description of the possible formats and data handles, see the Win­
SetClipbrdData function.

WinOpenClipbrd, WinSetClipbrdData

310 WinQueryClipbrdOwner

• WinQueryClipbrdOwner
HWND WinQueryClipbrdOwner(hab, fLock)
HAB hab; I. handle of the anchor block.1
BOOl fLock; I. lock/unlock viewer flag .1

Parameters

Return Value

Comments

See Also

The WinQueryCIipbrdOwner function obtains the handle of the window that
currently owns the clipboard (if any).

hab Identifies an anchor block.

fLock Specifies whether the clipboard owner window should be locked. If
TRUE, the window is locked. If FALSE, it is not.

The return value is the window handle of the current clipboard owner. If the
clipboard is not owned by any window or if an error occurred, the return value
is NULL.

If the clipboard owner window is locked by this function, then you must at some
point call the WinLockWindow function to unlock the window. The reason for
locking the window is so that the window cannot be destroyed until you are done
using it.

WinLockWindow, WinQueryCIipbrdViewer, WinSetClipbrdOwner

• WinQueryClipbrdViewer
HWND WinQueryClipbrdViewer(hab, fLock)
HAB hab; I. handle of the anchor block .1
BOOl fLock; I. lock/unlock viewer flag .1

Parameters

Return Value

Comments

See Also

The WinQueryCIipbrdViewer function obtains the handle of the current clip­
board viewer window (if any).

hab Identifies an anchor block.

fLock Specifies whether the clipboard owner window should be locked. If
TRUE, the window is locked. If FALSE, it is not.

The return value is the handle of the current clipboard viewer window. If the
clipboard does not have a current viewer window or if an error occurred, the
return value is NULL.

If the clipboard owner window is locked by this function, then you must at some
point call the WinLockWindow function to unlock the window. The reason for
locking the window is so that the window cannot be destroyed until you are done
using it.

WinLockWindow, WinQueryCIipbrdOwner, WinSetClipbrdViewer

WinQueryCursorlnfo 311

• WinQueryCp
USHORT WinQueryCp(hmq)
HMQ hmq; I. handle of the message queue .1

Parameters

Return Value

See Also

The WinQueryCp function retrieves the code page for the specified message
queue.

hmq Identifies a message queue.

The return value is the code page for the specified message queue if the function
is successful. Otherwise, it is zero, indicating that an error occurred.

DosGetCp, GpiQueryCp, VioGetCp

• WinQueryCpList
USHORT WinQueryCpList(hab, ccpMax, pacp)
HAB hab; I. handle of the anchor block .1
USHORT ccpMax; I. maximum number of code pages to retrieve .1
PUSHORT pacp; I. address of array to receive code pages .1

Parameters

Return Value

See Also

The WinQueryCpList function obtains available code pages.

hab Identifies an anchor block.

eepMax Specifies the maximum number of code pages that will be returned.

paep Points to an array that will receive the available code pages. It will
include all code pages available to the Gpi and Vio functions, including any
EBCDIC ones. This list is a superset of those code pages available to the Win­
SetCp function and the Dos functions.

The return value is the the total number of code pages in the system.

GpiSetCp, VioGetCp, WinQueryCp, WinSetCp

• WinQueryCursorlnfo
BOOL WinQueryCursorlnfo(hwndDesktop, pcsri)
HWND hwndDesktop; I. handle of the desktop .1
PCURSORINFO pcsri; I. address of structure for cursor information .1

Parameters

The WinQueryCursorlnfo function retrieves information about the current cur­
sor.

hwndDesktop Identifies the desktop window. This parameter can be
HWND.J)ESKTOP or the desktop window handle.

pesri Points to a CURSORINFO structure that receives information about the
current cursor. The values are equivalent to the parameters to the WinCreate­
Cursor function, except that the fs field never includes the CURSO~SETPOS
flag. The size and position of the cursor are returned in window coordinates rela­
tive to the window identified by the hwnd field of the structure. The CURSOR­
INFO structure has the following form:

312 WinQueryCursorlnfo

Return Value

See Also

typedef struct _CURSORINFO {
HWND hwnd;
SHORT x;
SHORT y;
SHORT cx;
SHORT cy;
USHORT fs;
RECTL rclClip;

} CURSORINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the cursor exists, or FALSE if it does not.

WinCreateCursor, WinDestroyCursor, WinShowCursor

• WinQueryOefinition
USHORT WinQueryOefinition(hab, hProgHandle, ppib, cbMax)
HAB hab; I. handle of the anchor block *1
HPROGRAM hProgHandle; I. handle of the program .1
PPIBSTRUCT ppib; I. address of structure for program information .1
USHORT cbMax; I. length of ppib buffer .1

Parameters

Return Value

See Also

The WinQueryDefinition function retrieves information al;>out a program or pro­
gram group.

hab Identifies the anchor block.

hProgHa n dIe Identifies the program or group.

ppib Points to a PIBSTRUCT structure that receives the program information
data. If the hProgHandle parameter is a group handle, only the program type
and program title fields are significant. The structure has the following form:

typedef struct _PIBSTRUCT {
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];
CHAR szIconFileName[MAXPATHL+l];
CHAR szExecutable[MAXPATHL+l];
CHAR szStartupDir[MAXPATHL+l];
XYWINSIZE xywinlnitial;
USHORT resl;
LHANDLE res2;
USHORT cchEnvironmentVars;
PCH pchEnvironmentVars;
USHORT cchProgramParameter;
PCH pchProgramParameter;

} PIBSTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbMax Specifies the maximum length of data (in bytes) that can be returned
in the data structure pointed to by ppib. If cbMax is zero, this function returns
the number of bytes in the program information block.

The return value is the length of the data actually returned in the data structure,
or zero if an error occurred.

If the target is a program rather than a program group, the data returned in ppib
is in a format usable by the WinAddProgram function.

WinAddProgram

WinQueryDlgltemShort 313

• WinQueryDesktopWindow
HWN D WinQueryDesktopWindow (hab. hdc)
HAB hab; 1* handle of the anchor block *1
HDC hdc; 1* handle of the device context *1

Parameters

Return Value

Comments

See Also

The WinQueryDesktop Window function retrieves the desktop window handle.

hab Identifies an anchor block.

hdc Identifies a device context. For MS OS/2, version 1.1, this parameter
must be NULL.

The return value is the desktop window handle or NULL if the device does not
support windowing. .

For most Win calls the constant HWNDJ)ESKTOP can be used for the desk­
top window handle.

Win Create Window, WinQueryObjectWindow

• WinQueryDlgltemShort
BOOl WinQueryDlgltemShort(hwndDlg. idltem. pResult. (Signed)
HWND hwndDlg; 1* handle of the dialog box *1
USHORT idltem; 1* dialog-item Identifier *1
PSHORT pResultj 1* address of variable for result *1
BOOl (Signed; 1* signed/unsigned flag *1

Parameters

Return Value

Comments

See Also

The WinQueryDlgltemShort function translates the text of a dialog item into an
. integer value. This function is useful in translating a numerical input field into a
numeric value for further processing.

hwndDlg Identifies a dialog-box window.

idltem Identifies the dialog item whose text is translated. The dialog-item text
is assumed to be an ASCII string.

pResult Points to the integer value resulting from the translation.

fSigned Specifies whether the item text is treated as signed or unsigned. If this
parameter is TRUE, the item text is treated as signed, in which case the transla­
tion checks for a minus sign in the text. If it is FALSE, the item text is treated
as unsigned.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If the text string does not contain a valid representation of a number, as in
"size," or "-3" whenfSigned is FALSE, then the return value will be FALSE.

WinSetDlgItemShort

314 WinQueryDlgltemText

• WinQueryDlgltemText
USHORT WinQueryDlgltemText(hwndDlg, idltem, cchBufferMax, pszBuf)
HWND hwndDlg; /. handle of the dialog box./
USHORT idltem; /. identifies the dialog item ./
SHORT cchBufferMax; /. size of the buffer ./
PSZ pszBuf; /. address of the buffer ./

Parameters

Return Value

See Also

The WinQueryDlgItemText function retrieves the text associated with the
specified dialog item.

hwndDlg Identifies the dialog box.

idltem Identifies the dialog item.

cchBufferMax Specifies the maximum number of characters to place in the
buffer· pointed to by the pszBuj parameter.

pszBuJ Points to a buffer that receives the dialog item text.

The return value is the length of the dialog item text, or zero if an error
occurred.

WinQueryDlgItemTextLength

• WinQueryDlgltemTextLength
SHORT WinQueryDlgltemTextlength(hwndDlg, idltem)
HWND hwndDlg; /. handle of the dialog box./
USHORT idltem; /. dialog-item Identifier ./

Parameters

Return Value

See Also

• WinQueryFocus

The WinQueryDlgItemTextLength function retrieves the length of the dialog
item text, not including any null termination character.

This function sends a W1LQUERYFRAMEINFO message to the window
identified by the hwndDlg parameter.

hwndDlg Identifies the dialog box.

idltem Identifies the dialog item.

The return value is the length of the dialog item text, or zero if an error
occurred.

WinQueryDlgItemText

!

HWND WinQueryFocus(hwndDesktop, fLock)
HWND hwndDesktop; /. handle of the desktop ./
Baal fLock; /. lock/unlock flag ./

The WinQueryFocus function returns the handle of the window that currently
has the focus. .

Parameters

Return Value

Comments

See Also

WinQueryMsgTime 315

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

fLock Specifies whether the focus window should be locked. If TRUE, the
window is locked. If FALSE, it is not.

The return value is a handle to the focus window or NULL if there is no focus
window or an error occurs.

If the focus window is locked by this function, then you must at some point call
the WinLockWindow function to unlock the window. The reason for locking the
window is so that the window cannot be destroyed until you are done using it.

WinFocusChange, WinLockWindow, WinQueryActiveWindow, WinSetFocus

• WinQueryMsgPos
BOOl WinQueryMsgPos(hab, pptl}
HAB hab; 1* handle of the anchor block *1
PPOINTl pptl; 1* address of structure for pointer position *1

Parameters

Return Value

See Also

The WinQueryMsgPos function retrieves the pointer position, in screen coordi­
nates, when the last message obtained from the current message queue was
posted. To obtain the current position of the pointer, use the WinQueryPointer­
Pos function.

hab Identifies an anchor block.

pptl Points to a POINTL structure that receives the pointer position in screen
coordinates. The pointer position is the same as that in the ptI field of the
QMSG structure. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryPointerPos

• WinQueryMsgTime
UlONG WinQueryMsgTime (hab)
HAB hab; 1* handle of the anchor block *1

The WinQueryMsgTime function retrieves the message time for the last message
retrieved by the WinGetMsg or WinPeekMsg function from the current message
queue.

The message time is the time, in milliseconds, when the message was posted.
The time value is the same as that in the time field of the QMSG structure.

You cannot assume that time values are always increasing. Since the time value

316 WinQueryMsgTime

Parameters

Return Value

See Also

is the number of milliseconds since the system was booted, it is possible that the
value may wrap to zero. To accurately calculate time delays between messages,
subtract the time of the first message from the time of the second.

hab Identifies an anchor block.

The return value is the time, in milliseconds, when the message was posted.

WinGetCurrentTime, WinGetMsg, WinPeekMsg

• WinQueryObjectWindow
HWN D WinQueryObjectWindow(hwndDesktop)
HWND hwndDesktop; 1* handle of the desktop *1

Parameters

Return Value

Comments

See Also

The WinQueryObjectWindow function returns the desktop object-window
handle.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

The return value is the desktop object-window handle, or NULL if an error
occurs.

For most API calls the constant HWND_OBJECT can be used for the desktop
object-window handle.

WinQueryDesktop Window

• WinQueryPointer
HPOINTER WinQueryPointer(hwndDesktop)
HWND hwndDesktop; 1* handle of the desktop *1

Parameters

Return Value

See Also

The WinQueryPointer function retrieves the handle to the desktop pointer.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

The return value is a handle to the desktop pointer or NULL if an error
occurred. .

WinQuerySysPointer, WinSetPointer

• WinQueryPointerlnfo
BOOL WinQueryPointerlnfo (hptr. pptri)
HPOINTER hptr; 1* handle of the pOinter .1
PPOINTERINFO pptri; 1* address of structure for pointer information .1

The WinQueryPointerInfo function retrieves information about the mouse
pointer such as the pointer's bitmap handle and hotspot coordinates.

Parameters

Return Value

See Also

WinQueryPointerPos 317

hptr Identifies a pointer.

pptri Points to a POINTERINFO structure that receives information about the
mouse pointer. The POINTERINFO structure has the following form:

typedef struct _POINTERINFO {
BOOL fPointer;
SHORT xHotspot;
SHORT yHotspot;
HBITMAP hbmPointer;

} POINTERINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryPointerPos

• WinQueryPointerPos
BOOl WinQueryPointerPos(hwndDesktop, pptl)
HWND hwndDesktop; f. handle of desktop window .f
PPOINTl ppt/; f. address of structure for pointer position *f

Parameters

Return Value

Comments

See Also

The WinQueryPointerPos function retrieves the mouse pointer position. The
position returned is the position of the pointer at the time WinQueryPointerPos
is called and is not synchronized with the WinGetMsg and WinPeekMsg func­
tions. Use the WinQueryMsgPos function to get the pointer position of the last
message obtained via WinGetMsg or WinPeekMsg.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

pptl Points to a POINTL structure that receives the pointer position in screen
coordinates. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

The position retrieved is in screen coordinates, not window coordinates. You
can convert screen coordinates to window coordinates with the WinMap­
WindowPoints function.

WinGetMsg, WinPeekMsg, WinQueryMsgPos, WinQueryPointerInfo

318' WinQueryProfileData

• WinQueryProfileData
BOOL WinQueryProfileData(hab, pszAppName, pszKeyName, pvBuf, cbBuf)
HAB hab; 1* handle of the anchor block *1
PSZ pszAppName; 1* address of the application name *1
PSZ pszKeyName; 1* address of the keyname *1
PVOID pvBuf; 1* address of the buffer *1
PUSHORT cbBuf; 1* length of the buffer *1

Parameters

Return Value

Comments

See Also

The WinQueryProfileData function retrieves binary data from the os2.ini file.
Where the data is located is determined by an application name and a keyname
which are passed to the function.

hab Identifies an anchor block.

pszAppName Points to a null-terminated text string that contains the name of
the application. Its length must be less than 1024 bytes, including the null termi­
nation character. The application name is always case-dependent.

pszKeyName Points to a null-terminated text string that contains the key­
name. Its length must be less than 1024 bytes, including the null termination
character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is always case-dependent.

pvBuf Points to a buffer that receives the data.

cbBuf Points to a variable that contains the size of the buffer pointed to by
pvBuf. When the function returns, this variable will contain the actual number of
bytes placed into the buffer.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

You can find out the size of the data prior to calling this function by calling
WinQueryProfileSize.

WinQueryProfileSize, Win WriteProfileData

• WinQueryProfilelnt
SHORT WinQueryProfilelnt(hab, pszAppName, pszKeyName, sErrOf)
HAB hab; 1* handle of the anchor block *1
PSZ pszAppName; 1* address of the application name *1
PSZ pszKeyName; 1* address of the keyname *1
SHORT sError, 1* value returned if keyname not found *1

Parameters

The WinQueryProfilelnt function retrieves an integer from the" os2.ini file.
Where the integer is located is determined by an application name and a key­
name which are passed to this function. The integer must have been previously
stored as a text string using the WinWriteProfileString function. For example, a
text string stored as "123" would be returned as the integer 123. The text string
may contain a leading minus sign if the number is negative.

hab Identifies the anchor block.

pszAppName Points to a null-terminated text string that contains the name of
the application. Its length must be less than 1024 bytes, including the null termi­
nation character. The application name is always case-dependent.

Return Value

See Also

WinQueryProfileSize 319

pszKeyName Points to a null-terminated text string that contains the key­
name. Its length must be less than 1024 bytes, including the null termination
character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is always case-dependent.

sError Specifies the error value returned if the keyname (pszKeyName) cannot
be found.

The return value is the integer representation of the text string. If the keyname
cannot be found, the error value specified by sError is returned.

WinQueryProfileData, Win WriteProfileString

• WinQueryProfileSize
USHORT WinQueryProfileSize(hab, pszAppName, pszKeyName, pcb)
HAB hab; f* handle of the anchor block *f
PSZ pszAppName; f* points to the application name *f
PSZ pszKeyName; f* points to the keyname af
PUSHORT pcb; f* points to variable with length of the data .f

Parameters

Return Value

See Also

The WinQueryProfileSize function retrieves the size of the data stored at a
specified location in the os2.ini file. Where the data is located is determined by
an application name and a keyname which are passed to this function. This func­
tion is typically called prior to calling WinQueryProfileData in order to deter­
mine how much memory to allocate for the data.

hab Identifies an anchor block.

pszAppName Points to a null-terminated text string that contains the name of
the application. Its length must be less than 1024 bytes, including the null termi­
nation character. The application name is always case-dependent.

pszKeyName Points to a null-terminated text string that contains the key­
name. Its length must be less than 1024 bytes, including the null termination
character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is always case-dependent.

pcb Points to a variable that will receive the length of the data. If an error
occurs, the length will not be returned.

The return value is zero if the function is successful. Otherwise, it is an error
value.

WinQueryProfileData, WinQueryProfileString

320 WinQueryProfileString

• WinQueryProfileString
USHORT WinQueryProfileString(hab, pszAppName, pszKeyName, pszError, pszBuf, cchBuf)
HAB hab: /. handle of the anchor block ./
PSZ pszAppName: /. points to the application name ./
PSZ pszKeyName: /. points to the keyname ./
PSZ pszError; /. pOints to a default string ./
PSZ pszBuf; /. address of the buffer for the string ./
USHORT cchBuf: /. size of buffer ./

Parameters

Return Value

See Also

The WinQueryProfileString function retrieves a string from the os2.ini file.
Where the string is located is determined by an application name and a keyname
which are passed to this function.

hab Identifies an anchor block.

pszAppName Points to a null-terminated text string that contains the name of
the application. Its length must be less than 1024 bytes, including the null termi­
nation character. The application name is always case-dependent.

pszKeyName Points to a null-terminated text string that contains the key­
name. Its length must be less than 1024 bytes, including the null termination
character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is always case-dependent.

pszError Points to a null-terminated string that is placed in pszBuj if the key
is not found.

pszBuf Points to a buffer that will receive the null-terminated string.

cchBuf Specifies the length of the buffer (pszBuf). If the retrieved string is
longer than this value, it will be truncated.

The return value is the number of characters in the buffer pointed to by pszBuj.

Win WriteProfiIeString

• WinQueryProgramTitles
USHORT WinQueryProgramTitles(hab, hGroup, paproge, cbBuf, pcTitles)
HAB hab: /. handle of the anchor block ./
HPROGRAM hGroup: /. handle of the group ./
PPROGRAMENTRY paproge: /. array of PROGRAM ENTRY structures./
USHORT cbBuf: /. length of paproge buffer ./
PUSHORT pcTitles; /. receives number of titles ./

The WinQueryProgramTitles function obtains information about programs
within a specified program group.

This function can be used to find out the number of entries within a group by
passing a buffer of zero bytes. The function will return the total number of
entries within the group.

The list of returned program entries may contain group handles. This allows the
tree structure to be built by the caller. Note, though, that information from only
one level of the tree structure is returned by this call.

Parameters

Return Value

See Also

WinQueryQueuelnfo 321

The handle specified can also be a program handle, in which case the buffer will
contain only the entry for one program. Thus, this call can be used to get the
program title.

hab Identifies the anchor block.

h Gro up Identifies the group for which information is returned. This handle is
either the handle of a program group or SGlLROOT for the root group.

paproge Points to a storage area where the program information is returned.
This is an array of PRO'GRAMENTRY structures. The PROGRAMENTRY struc­
ture has the followi~g form:

typedef struct _PROGRAMENTRY {
HPROGRAM hprog; ,
PROGTYPE progt;
CHAR szTitle[MAXNAMEL+l];

} PROGRAMENTRY;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbBuf Specifies t.he total length (in bytes) of the area pointed to by the
paproge parameter. Values of cbBuf less than the size of a PROGRAMENTRY
structure are invalid.

pc Titles Points to a variable that receives the count of the available titles. If
the hGroup parameter is SGlLROOT or SGILMASTER and the buffer length
specified in the cbBuf parameter is too small to hold all the titles, the return
value is zero, none of the titles are copied to the buffer, and pcTitles contains
the number of titles available. If hGroup is a program handle, both the return
value and pcTitles are the number of handles available.

The return value is the count of available titles. If an error occurred, the return
value is zero.

WinAddProgram

• WinQueryQueuelnfo
BOOl WinQueryQueuelnfo(hmq, pmqi, cbCopy)
HMQ hmq; I. handle of the message queue *1
PMQINFO pmqi; I. address of structure for queue information *1
USHORT cbCopy; I. number of bytes of information to copy *1

Parameters

The WinQueryQueueInfo function is used to obtain information about a
specified queue, such as the process and thread identifier associated with the
queue, the maximum number of messages the queue can hold, and the queue
procedure address.

hmq Identifies the message queue. This handle must either have been created
by a previous call to WinCreateMsgQueue, or it must be HMO_CURRENT to
specify the message queue of the thread that is 'calling this function.

pmqi Points to an MQINFO structure that will receive information about the
message queue. This MQINFO structure has the following form:

322 WinQueryQueuelnfo

Return Value

Comments

See Also

typedef struct _MQINFO {
USHORT cb;
PID pid;
TID tid;
USHORT cmsgs;
PYOID pReserved;

} MQINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

cbCopy Specifies the number of bytes of data that will be copied into the
MQINFO structure. Normally, it should be set to the length of the structure.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

An important side effect of this function is that a DLL procedure or hook can
use this function to find out if the current thread has a message queue associated
with it.

WinCreateMsgQueue

• WinQueryQueueStatus
ULONG WinQueryQueueStatus(hwndDesktop)
HWND hwndDesktop; I. handle of the desktop *1

Parameters

Return Value

The WinQueryQueueStatus function returns a code that indicates the status of
the message queue associated with the current queue.

This function is very fast and is typically used inside loops to determine whether
the WinGetMsg or WinPeekMsg function should be called to process input.

hwndDesktop Identifies the desktop window. This parameter can be
HWND.J)ESKTOP or the desktop window handle.

The high word of the return value indicates the types of messages currently in
the queue. The low word of the return value shows the types of messages added
to the queue since the last call to WinQueryQueueStatus that are still in the
queue.

The following list describes the types of messages that may be in the queue:
Value

QS_MOUSEBUTION

QS_MOUSEMOVE

QS_PAINT

QS_POSTMSG

QS_SEMl

QS_SEM2

QS_SEM3

Meaning

A W~CHAR message is in the queue.

A W~MOUSEMOVE or W~BUTION message
is in the queue.

A W~BUTION message is in the queue.

A W~MOUSEMOVE message is in the queue.

A W~P AINT message is in the queue.

A posted message other than those listed above is
in the queue.

A W~SEMl message is in the queue.

A W~SEM2 message is in the queue.

A W~SEM3 message is in the queue.

See Also

Value

QS_SEM4

QS_SENDMSG

WinGetMsg, WinPeekMsg

WinQuerySysModalWindow 323

Meaning

A W~SEM4 message is in the queue.

A message sent by another application is in the
queue.

A W~ TIMER message is in the queue.

• WinQuerySysColor
COLOR WinQuerySysColor(hwndDesktop, elr, IReserved)
HWND hwndDesktop; I. handle of the desktop .1
COLOR elr, I. color index of color to retrieve .1
LONG IReserved; I. reserved .1

Parameters

Return Value

See Also

The WinQuerySysColor function retrieves a specified system color.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

elr Specifies the system color-index value to be returned. This parameter must
be one of the SYSCLR index values. For a description of the possible color
indexes, see the WinSetSysColors function.

lReserved Reserved; must be zero.

The return value is the RGB value corresponding to the index value specified by
the elr parameter.

WinSetSysColors

• WinQuerySysModalWindow
HWND WinQuerySysModalWindow(hwndDesktop, fLock)
HWND hwndDesktop; I. handle of the desktop .1
BOOL fLock; I. lock/unlock flag .1

Parameters

Return Value

The WinQuerySysModalWindow function returns the current system modal
window.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

fLock Specifies whether the system modal window should be locked during
processing. If this parameter is TRUE, the window is locked. If FALSE, it is
not.

The return value is the handle of the current· system modal window. If there is
none, the return value is NULL.

324 WinQuerySysModalWindow

Comments

See Also

If the system modal window is locked by this function, then you must at some
point call the WinLockWindow function to unlock the window. The reason for
locking the window is so that the window cannot be destroyed until you are done
using it.

WinLockWindow, WinSetSysModalWindow

• WinQuerySysPointer
HPOINTER WinQuerySysPointer(hwndDesktop, iptr, (Load)
HWND hwndDesktop; /. handle of the desktop ./
SHORT iptr, /. system-pointer identifier ./
BOOl (Load; /. load/unload flag .1

Parameters

Return Value

The WinQuerySysPoin,ter function returns the system pointer handle.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

iptr Specifies the system pointer from the following list. The appearance of
system pointers is implementation dependent.

Value

SPTR_APPICON

SPTR_ARROW

SPTR_ICONERROR

SPTR_ICONINFORMATION

SPTRJCONQUESTION

SPTR_ICONW ARNING

SPTR_MOVE

SPTR_SIZENESW

SPTR_SIZENS .
SPTR_SIZENWSE

SPTR_SIZEWE

SPTR_TEXT

SPTR_WAIT

Meaning

Standard application icon

Normal arrow pointer

Exclamation-mark icon

Hand icon

Question-mark icon

Note icon

Move pointer

Upward sloping double-headed arrow

Vertical double-headed arrow

Downward sloping double-headed arrow

Horizontal double-headed arrow

Text I-beam pointer

Hourglass pointer

fLoad Specifies whether to copy the system pointer. If this parameter is
TRUE, the system pointer is copied and the handle to the new pointer is
returned. If it is FALSE, then the system pointer handle is returned. You should
specify TRUE if you intend to modify an existing pointer.

The return value is a pointer handle.

Example

See Also

WinQuerySysValue 325

This example calls WinQuerySysPointer to get a handle to the system pointer,
and then loads an application-defined pointer. After it is done using the
application-defined pointer, it restores it to the system pointer.

/* get the system pointer */

hptrDefault = WinQuerySysPointer(HWND_DESKTOP, SPTR_ARROW, FALSE);

/* load an application-defined pointer */

hptrCrossHair = WinLoadPointer(HWND_DESKTOP, NULL, IDP_CROSSHAIR);

/* change the pointer to the application pointer */

WinSetPointer(HWND_DESKTOP, hptrCrossHair);

/* restore the system pointer */

WinSetPointer(HWND_DESKTOP, hptrDefault);

WinQueryPointer, WinQueryPointerInfo

• WinQuerySystemAtomTable
HATOMTBL WinQuerySystemAtomTable (VOID)

Parameters

Return Value

See Also

The WinQuerySystemAtomTable function returns the handle of the system atom
table. This allows two different applications to share an atom table.

This function has no parameters.

The return value is the handle of the system atom table.

WinCreateAtomTable

• WinQuerySysValue
LONG WinQuerySysValue(hwndDesktop. iSysValue)
HWND hwndDesktop; I. handle of the desktop .1
SHORT iSysValue; I. system value to retrieve .1

Parameters

Return Value

The WinQuerySysValue function retrieves a specified system value.

hwndDesktop Identifies the desktop window. This. parameter can be
HWNDJ)ESKTOP or the desktop window handle.

iSysVa[ue Specifies the system value.

The return value is the system value if the function was successful, or zero if an
error occurred.

326 WinQuerySysValue

Comments The following list describes the system values:
Value

SV _CMOUSEBUTTONS

SV _MOUSEPRESENT

SV _DB LCLKTIME

SV _CXSIZEBORDER

SV _CYSIZEBORDER

SV _FIRSTSCROLLRATE

SV _NUMBEREDLISTS

Meaning

Specifies the number of mouse buttons: 1, 2,
or 3.

Specifies whether the mouse is present. A value
of TRUE means the mouse is present.

Specifies if the mouse buttons are swapped.
TRUE if mouse buttons are swapped.

Specifies the mouse double click horizontal
spacing. The horizontal spatial requirement for
considering two mouse clicks a double click is
met if the horizontal distance between two
mouse clicks is less than this value.

Specifies the mouse double click vertical spac­
ing. The vertical spatial requirement for consid­
ering two mouse clicks a double click is met if
the vertical distance between two mouse clicks is
less than this value.

Specifies the mouse double click time in milli­
seconds. The temporal requirement for consid­
ering two mouse clicks a double click is met if
the time between two mouse clicks is less than
this value.

Specifies the count of pels along the x-axis in
the left and right parts of a window sizing
border.

Specifies the count of pels along the y-axis in
the top and bottom sections of a window sizing
border.

Specifies whether calls to WlnAlarm generate a
sound. A value of TRUE means sound is gen­
erated.

Specifies the cursor blinking rate in milli­
seconds. The blinking rate is the time that the
cursor remains visible or invisible. Twice this
value is the length of a complete cursor
visible/invisible cycle.

Specifies the delay (in milliseconds) until scroll
bar autorepeat activity begins when the mouse is
held down on a scroll bar arrow or within a
scroll bar.

Specifies the delay (in milliseconds) between
scroll bar autorepeat events.

Reserved.

Value

SV _ W ARNINGFREQ

SV _ERRORDURA TION

SV _NOTEDURA nON

WinQuerySysValue 327

Meaning

Specifies the frequency (in cycles per second) of
a WinAlarm WA_ERROR sound.

Specifies the frequency (in cycles per second) of
a WinAlarm WA_NOTE sound.

Specifies the frequency (in cycles per second) of
a WinAlarm WA_WARNING sound.

Specifies the duration (in milliseconds) of a
WlnAlarm W A_ERROR sound.

Specifies the duration (in milliseconds) of a
WinAlarm W A_NOTE sound.

SV _ W ARNINGDURATION Specifies the duration (in milliseconds) of a
WlnAlarm W A_WARNING sound.

Specifies the count of pels along the screen's
x-axis.

SV _CYSCREEN Specifies the count of pels along the screen's
y-axis.

SV _CXVSCROLL Specifies the count of pels along the x-axis of a
vertical scroll bar.

SV _CYHSCROLL Specifies the count of pels along the y-axis of a
horizontal scroll bar.

SV _CXHSCROLLARROW Specifies the count of pels along the x-axis of a
horizontal scroll bar arrow.

SV _CYVSCROLLARROW Specifies the count of pels along the y-axis of a
vertical scroll bar arrow.

SV _CXBORDER Specifies the count of pels along the x-axis of a
window border.

SV _CYBORDER Specifies the count of pels along the y-axis of a
window border.

SV _CXDLGFRAME Specifies the count of pels along the x-axis of a
dialog frame.

SV _CYDLGFRAME Specifies the count of pels along the y-axis of a
dialog frame.

SV _CYTITLEBAR Specifies the count of pels along the y-axis of a
title-bar window.

SV _CXHSLIDER Specifies the count of pels along the x-axis of a
horizontal scroll bar slider.

SV _CYVSLIDER Specifies the count of pels along the y-axis of a
vertical scroll bar slider.

SV _CXMINMAXBUTTON Specifies the width (in pels) of a minimize/
maximize button.

SV _CYMINMAXBUTTON Specifies the height (in pels) of a minimizel
maximize button.

328 WinQuerySysValue

Value

SV _CXFULLSCREEN

SV_CYFULLSCREEN

SV_DEBUG

SV _CURSORLEVEL

SV _POINTERLEVEL

SV_TRACKRECTLEVEL

SV_CTIMERS

SV _CXBYTEALIGN

SV _CSYSV ALUES

See Also WinSetSys Value

• WinQueryTaskTitle

Meaning

Specifies the height (in pels) of an action-bar
menu.

Specifies the count of pels along the x-axis of a
maximized frame window's client window.

Specifies the count of pels along the y-axis of a
maximized frame window's client window.

Specifies the count of pels along an icon's x­
axis.

Specifies the count of pels along an icon's y­
axis.

Specifies the count of pels along the mouse
pointer's x-axis.

Specifies the count of pels along the mouse
pointer's y-axis.

Reserved.

Specifies the cursor display count. The cursor is
visible only when the display count is zero.

Specifies the mouse pointer display count. The
mouse is visible only when the display count is
zero.

Specifies the tracking rectangle display count.
The tracking rectangle is visible only when the
display count is zero.

Specifies the number of available timers.

Set by a device driver at initialization time to
indicate any horizontal alignment that is more
efficient for the driver.

Set by a device driver at initialization time to
indicate any vertical alignment that is more
efficient for the driver.

Specifies the number of system values.

USHORT WinQueryTaskTitle (idProcess. pszTitle. cbTitle)
USHORT idProcess; 1* identifies the process *1
PSZ pszTitle; 1* address of the buffer *'
USHORT cbTitle; 1* length of the buffer *1

The WinQueryTaskTitle function obtains the title under which a specified appli­
cation was started or added to the switch list. If this function is used after a
switch-list entry is created for the application, the title in the switch-list entry is
obtained.

Parameters

Return Value

Comments

See Also

WinQueryUpdateRect 329

This function is useful when an application should use the same name in its win­
dow title and its entry in the switch list as the end-user invokes to start the appli­
cation. This provides a visual link for the user.

idProcess Identifies the application whose title is requested.

pszTitle Points to the buffer to receive the title. The received string will be
null-terminated.

cbTitle Specifies the length, in bytes, of the pszTitle buffer. If the retrieved
title is longer then this length, it will be truncated.

The return value is zero if the function is successful. Otherwise, it is an error
value.

The length of the title is guaranteed not to exceed MAXNAMEL bytes, plus one
for the null-terminating character.

WinAddSwitchEntry

• WinQueryUpdateRect
,BOOl WinQueryUpdateRect(hwnd. pre/)
HWND hwnd; I. handle of the window *1
PRECTl prel; I. address of structure for update rectangle *1

Parameters

Return Value

See Also

The WinQueryUpdateRect function retrieves the rectangle that bounds the
update region of a specified window. This function, in conjunction with the Win­
ValidateRect function, is useful for implementing an incremental update scheme
as an alternative to the WinBeginPaint and WinEndPaint functions. You can use
the returned update rectangle as the clip region for a presentation space so that
drawing output can be clipped to the window's update region.

hwnd Identifies the window whose update rectangle is retrieved.

prcl Points to a RECTL structure that receives the coordinates of the rect­
angle bounding the window's update region. The RECTL structure has the fol­
lowing form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinBeginPaint, WinEndPaint, WinQueryUpdateRegion, Win ValidateRect

330 WinQueryUpdateRegion

• WinQueryUpdateRegion
SHORT WinQueryUpdateRegion(hwnd, hrgn)
HWND hwnd; I. handle of the window.1
HRGN hrgn; I. handle of the region *1

Parameters

Return Value

See Also

The WinQueryUpdateRegion function obtains the update region of a window.
This function, in conjunction with the WinValidateRegion function, is useful for
implementing an alternative update scheme to the use of the WinBeginPaint and
WinEndPaint functions. You can use the returned update region as the clip
region for a presentation space so that drawing output can be clipped to the
window's update region.

hwnd Identifies the window whose update region is to be retrieved.

hrgn Identifies the region that will receive the window's update region.

The return value is the type of the region identified by the hrgn parameter, as
defined by the GpiCombineRegion function.

GpiCombineRegion, WinBeginPaint, WinEndPaint, WinValidateRegion

• WinQueryVersion
ULONG WinQueryVersion(hab)
HAB hab; 1* handle of the anchor block *1

Parameters

Return Value

See Also

The WinQueryVersion function returns the version and revision level of MS
OS/2.

hab Identifies an anchor block.

The return value is the version number, consisting of the major and minor ver-:­
sion number and the revision character. The low word contains the minor ver­
sion in the low byte and the major version in the high byte. The high word con­
tains the revision character in the low byte. You can use the following macros to
extract this information:

Macro

LOBYTE(LOUSHORT(retum»

HIBYTE(LOUSHORT(retum»

LOUCHAR(HIUSHORT(retum»

DosGetVersion

Result

Retrieves the major version number.

Retrieves the minor version number.

Retrieves the revision character.

WinQueryWindow 331

• WinQueryWindow
HWND WinQueryWindow(hwnd, cmd, fLock)
HWND hwnd; /* handle of the window */
SHORT cmd; /* which window to retrieve */

BOOl fLock; /* lock/unlock flag */

Parameters

Return Value

Comments

See Also

The WinQueryWindow function retrieves the handle of a window that has a
specified relationship to a specified window.

If WinQueryWindow is used to enumerate windows of other threads, it is not
guaranteed that all the windows are enumerated, because the z ordering of the
windows may change during the enumeration. The WinGetNextWindow function
must be used for this purpose.

hwnd Identifies a window. The window handle retrieved is relative to this win­
dow, based on the value in the cmd parameter.

cmd Specifies which window to retrieve. The following are the possible
values:

Value

OW_BOTIOM

QW _FRAMEOWNER

OW_NEXT

OW_NEXTIOP

OW_OWNER

OW_PARENT

QW_PREV

QW_PREVTOP

Meaning

Bottommost child window.

Returns the owner of hwnd, normalized so that it
shares the same parent as hwnd.

Next window in z order (window below).

Next main window in the enumeration order
defined for the ALT +ESCAPE function of the user
interface.

Owner of window.

Parent of window; HWND_OBJECT if object
window.

Previous window in z order (window above).

Previous main window, in the enumeration order
defined by OW_NEXTIOP.

Topmost child window.

fLock Specifies whether the retrieved window is to be locked or unlocked. If
TRUE, the window is locked. If FALSE, it is not.

The return value is the handle of the window related to the window identified by
the hwnd parameter.

If the retrieved window is locked by this function, then you must at some point
call the WinLockWindow function to unlock the window. The reason for locking
the window is so that the window cannot be destroyed until you have finished
using it.

WinGetNextWindow, WinLockWindow

332 WinQueryWindowDC

• WinQueryWindowDC
HDC WinQueryWindowDC(hwnd)
HWND hwnd; / .. handle of the window";

Parameters

Return Value

See Also

The WinQueryWindowDC function retrieves the device context created by a call
to the WinOpen WindowDC function for the specified window.

hwnd Identifies the window that has the device context.

The return value is the handle of the device context or NULL if an error
occurred.

WinOpen WindowDC

• WinQueryWindowLockCount
SHORT WinQueryWindowlockCount(hwnd)
HWND hwnd; / .. handle of the window .. /

Parameters

Return Value

See Also

The WinQueryWindowLockCount function returns a window's lock count. Since
a window may be locked by another thread or process at any time, the value
returned by this function may also change at any time.

hwnd Identifies the window whose lock count is being retrieved.

The return value is the window lock count if the window is locked. Otherwise, it
is zero, indicating that the window is not locked or that an error occurred.

WinLockWindow

• WinQueryWindowPos
BOOl WinQueryWindowPos(hwnd, pswp)
HWND hwnd; / .. handle of the window */

PSWP pswp; /* address of the structure for window information */

Parameters

The WinQueryWindowPos function retrieves a window's size and position.

hwnd Identifies the window to get the size and position of.

pswp Points to an SWP structure that receives the window's size and position.
The SWP structure has the following form:

typedef struet _swp {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

For a full description, see Chapter 4, "Types, Macros, Structures."

Return Value

See Also

WinQueryWindowPtr 333

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinSetWindowPos

• WinQueryWindowProcess
BOOl WinQueryWindowProcess(hwnd. ppid. ptid)
HWND hwndj 1* handle of the window *1
PPID ppidj 1* address of variable for process identifier *1
PTID ptidj 1* address of variable for thread identifier *1

Parameters

Return Value

See Also

The WinQueryWindowProcess function obtains the process identifier and thread
identifier of the thread that created a window.

hwnd Identifies the window.

ppid Specifies the process identifier of the thread that created the window. It
can be NULL if you aren't interested in this value.

ptid Specifies the thread identifier of the thread that created the window. It
can be NULL if you aren't interested in this value.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

DosGetPID

• WinQueryWindowPtr
PVOID WinQueryWindowPtr(hwnd. index)
HWND hwndj 1* handle of the window *1
SHORT indexj 1* index to the pointer *1

Parameters

Return Value

Comments

See Also

The WinQueryWindowPtr fUnction retrieves a pointer value from a specified
window's reserved memory.

The window handle that is passed to this function can be the handle of a window
with the same or a different message queue from the caller; that is, this function
allows the caller to obtain data from windows belonging to other threads.

hwnd Identifies the window that contains the pointer to retrieve.

index Specifies the zero-based index of the pointer to retrieve. Valid values
are in the range zero through the number of bytes of window data (for example,
a value of 8 would be an index to the third pointer), or QWPYFNWP to address
the index of the window procedure.

The return value is the specified ULONG value in the window's reserved
memory.

The specified index is valid only if all the bytes referenced are within the
reserved memory. For example, this function would fail if an index value of zero
was specified and only two bytes had been reserved.

WinQueryWindowULong, WinSetWindowPtr

334 WinQueryWindowRect

• WinQueryWindowRect
BOOl WinQueryWindowRect(hwnd. pre/)
HWND hwnd; I. handle of the window .1
PRECTl prel; I. address of structure for window coordinates .1

Parameters

Return Value

Example

See Also

The WinQueryWindowRect function retrieves the coordinates of a window.

hwnd Identifies the window whose coordinates are retrieved.

prcl Points to a RECTL structure that receives the window's coordinates. The
xLeft and yBottom fields will be zero. The xRight and yTop fields will contain
the width and height of the window. The RECTL structure has the following
form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example calls WinQueryWindowRect to get the dimensions of the window,
and then calls WinFillRect to fill the window.

HPS hps;
RECTL rcl;

WinQueryWindowRect(hwnd, &rcl);
WinFillRect(hps, &rcl, CLR_WHITE);

WinQueryWindowPos

/* get window dimensions */
/* clear entire window */

• WinQueryWindowText
SHORT WinQueryWindowText(hwnd. ebBuf. pszBuf)
HWND hwnd; I. handle of the window *'
SHORT ebBuf; I. length of the buffer .1
PSZ pszBuf; I. address of the buffer .1

Parameters

The WinQueryWindowText function copies window text into a buffer. If the win­
dow is a frame window, the title-bar window text is copied.

If the window text is longer than (cbBuf - 1), only the first (cbBuf - 1) charac­
ters of window text are copied.

This function sends a W1LQUERYWINDOWP ARAMS message to the window
identified· by the hwnd parameter.

hwnd Identifies the window containing the text.

cbBuf Specifies the lepgth of the buffer pointed to by the pszBuf parameter. If
the text is larger then this value, it will be truncated.

pszBuf Points to a buffer the receives the window text.

Return Value

Comments

See Also

WinQueryWindowULong 335

The return value is the length of the returned text.

You can determine the size of the window text ahead of time by calling the Win­
QueryWindowTextLength function.

WinQueryWindowTextLength

• WinQueryWindowTextLength
SHORT WinQueryWindowTextLength (hwnd)
HWND hwnd; I. handle of the window.1

Parameters

Return Value

See Also

The WinQueryWindowTextLength function retrieves the length of the window
text, not including any null termination character.

This function sends a W1LQUERYFRAMEINFO message to the window
identified by the hwnd parameter.

hwnd Identifies the window containing the text.

The return value is the length of the window text.

WinQueryWindowText

• WinQueryWindowULong
ULONG WinQueryWindowULong(hwnd, index)
HWND hwnd; I. handle of the window .1
SHORT index; I. index of value to retrieve .1

Parameters

The WinQueryWindowULong function retrieves an unsigned long integer value
at a specified offset into the reserved memory of a given window.

The window handle that is passed to this function can be the handle of a window
with the same or a different message queue from the caller; that is, this function
allows the caller to obtain data from windows belonging to other threads.

hwnd Identifies the window to query.

index Specifies the zero-based index of the ULONG value to retrieve. Valid
values are in the range zero through the number of bytes of window data (for
example, a value of 8 would be an index to the third long integer), or any of the
following QWL values:

Value

QWL_HHEAP

QWL_HMQ

QWL_HWNDFOCUSSA VE

QWL_STYLE

Meaning

Handle of the heap.

Handle of the message queue of the window.

Handle of the window that last had the focus.

Window style.

336 WinQueryWindowULong

Return Value

Comments

See Also

Value Meaning

ULONG value present in windows of the fol­
lowing preregistered window classes:

WC_DIALOG
WCJRAME
WC_LISTBOX
We_BUTTON
WC_STATIC
WC_ENTRYFIELD
WC_SCROLLBAR
WC_MENU

This value can be used to retrieve
application-specific data in controls.

The return value is the specified ULONG value in the window's reserved
memory.

The specified index is valid only if all the bytes referenced are within the
reserved memory. For example, this function would fail if an index value of zero
was specified and only two bytes had been reserved.

WinQueryWindowUShort, WinRegisterClass, WinSetWindowULong

• WinQueryWindowUShort
USHORT WinQueryWindowUShort(hwnd, index)
HWND hwnd; I. handle of the window *1
SHORT index; I. index of value to retrieve *1

Parameters

The WinQueryWindowUShort function retrieves an unsigned short integer value
at a specified offset into the reserved memory of a given window.

The window handle that is passed to this function can be the handle of a window
with the same or a different message queue from the caller; that is, this function
allows the caller to obtain data from windows belonging to other threads.

hwnd Identifies the window to query.

index Specifies the zero-based index of the USHORT value to retrieve. Valid
values are in the range zero through the number of bytes of window data (for
example, a value of 8 would be an index to the fifth integer), or any of the fol­
lowing QWS values:

Value Meaning

Window identifier (as passed by the WlnCreateWlndow func­
tion).

USHORT value present in windows of the following pre­
registered window classes:

WC_DIALOG
WC_FRAME
WC_LISTBOX

Return Value

See Also

• WinReallocMem

Value Meaning

WC_BUTTON
WC_STATIC
WC_ENTRYFIELD
WC_SCROLLBAR
WC_MENU

WinReallocMem 337

This value can be used to retrieve application-specific data in
controls.

The return value is the USHORT value in the window's reserved memory.

WinCreateWindow, WinQueryWindowULong, WinRegisterClass, WinSet­
WindowUShort

NPBYTE WinReallocMem(hHeap, npMem, cbOld, cbNew)
HHEAP hHeap; I. handle of the heap .1
NPBYTE npMem; I. address of memory block to reallocate .1
USHORT cbOld; I. old memory block length .1
USHORT cbNew; I. new memory block length .1

Parameters

The WinReallocMem function reallocates the size of a memory block on the
heap.

The calling routine must specify both the old size of the memory object and the
new size. If the new size is larger than the old size, then this function calls the
WinAllocMem function to allocate the new, larger object, copies the number of
bytes specified by the cbOld parameter from the old object to the new, frees the
old object, and returns a pointer to the new object. (It never causes an object to
grow in place.)

If the passed heap is created with the H~OVEABLE option, then the value
of the cbOld parameter is ignored and the value in the size word of the allocated
object is used. On completion, the size word contains the value of the cbNew
parameter. If this function has to move the object in order to satisfy the request,
then the handle value word is updated by adding to it the distance of the move,
in bytes. The returned address is then the address of the first reserved word.

hHeap Identifies the heap. This parameter must have been returned from a
previous call to the WinCreateHeap function.

npMem Points to the memory block to be reallocated. The low two bits of
npMem are ignored, although they are preserved in the return value of this func­
tion, even if the memory object is moved as a result of growing. Except for the
two low bits, the value of the npMem parameter must have been returned by
either t~e WinAllocMem function or a previous call to WinReallocMem.

cbOld Specifies the old size of the memory block, in bytes.

cbNew Specifies the new size of the memory block, in bytes.

338 WinReallocMem

Return Value

See Also

The return value is a pointer to the reallocated memory block if the function was
successful. Otherwise, it is NULL, indicating that the memory could not be
reallocated to the requested size.

The return pointer is a 16-bit offset from the start of the segment containing the
heap of the reallocated memory object. The function returns NULL when the
memory object cannot be reallocated because an invalid heap handle is speci­
fied, there is not enough room in the heap to increase the object to the specified
size, or the npMem parameter points to memory outside the bounds of the
passed heap.

WinAlIocMem, WinCreateHeap, WinFreeMem

• WinRegisterClass
BOOL WinRegisterClass(hab, pszClassName, pfnWndProc, flSty/e, cbWindowData)
HAB hab; 1* handle of the anchor block *1
PSZ pszC/assName; 1* points to the class name .1
PFNWP pfnWndProc; I. address of the window procedure *1
ULONG flSty/e; 1* window-style flags .1
USHORT cbWindowData; 1* amount of reserved data *1

Parameters

The WinRegisterClass function registers a window class.

When an application registers a private class with the window procedure in a
dynamic-link library, it is the application's responsibility to resolve the window
procedure address before issuing WinRegisterClass.

Private classes are deleted when the process that registers them terminates.

hab Identifies the anchor block.

pszClassName Points to the window classname. It can either be an
application-specified name or the name of one of the following preregistered
classes:

Class

WC_ENTR YFIELD

WC_FRAME

WC_LISTBOX

WC.-MENU

WC_ TITLEBAR

Description

A button control, including push buttons, radio
buttons, check boxes, and user buttons.

An entry-field control that allows single line-text
editing.

A standard frame window.

A list box that displays a scrolling list of items.

A menu, including the action bar and pull-down
menus.

A scroll bar that allows a user to scroll the con­
tents of a window.

A static control that displays text, icon, or bitmap
data.

A title-bar control that displays the title of a win­
dow across the top of the frame and also allows the
user to drag the frame window to a new location.

Return Value

Example

WinRegisterClass 339

pin WndProc Points to the window procedure, which can be NULL if the
application does not provide its own window procedure.

jlStyle Specifies the default window style, which can be any of the standard
CS class styles, in addition to any class-specific styles that may be defined. These
styles can be augmented when a window of this class is created. A public win­
dow class is created if the CSYUBLIC style is specified; otherwise, a private
class is created. Public classes are available for window creation from any pro­
cess. Private classes are only available to the registering process.

The following list describes the standard classes:
Style

CS_CLIPCHILDREN

CS_CLIPSIBLINGS

CS_MOVENOTIFY

CS_P ARENTCLIP

Meaning

Sets the WS_CLIPCHILDREN style for win­
dows created using this class.

Sets the WS_CLIPSIBLINGS style for windows
created using this class.

Identifies windows created using this class as
frame windows. Frame windows receive the spe­
cial W1LFRAMEDESTROY message when
they are being destroyed.

Directs the system to send W1LHITIEST mes­
sages to windows of this class whenever the
mouse moves in the window.

Directs the system to send W1LMOVE mes­
sages to the window whenever the window
moves.

Sets the WS_P ARENTCLIP style for windows
created using this class.

Creates a public window class.

Sets the WS_SA VEBITS style for windows
created using this class.

Directs the system to invalidate the entire win­
dow whenever the size of the window changes.

Sets the WS_SYNCPAINT style for windows
created using this class.

cb WindowData Specifies the number of bytes of storage reserved per window
created of this class for application use.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This example calls WinRegisterClass to register a class, return FALSE if an
error occurs.

340 WinRegisterClass

See Also

HAB hab;
CHAR szClassName [] = "Generic"; /* window class name */

if (IWinRegisterClass(hab,
szClassName,
GenericWndProc,
OL,
0»

return (FALSE);

/* anchor-block handle */
/* class name */
/* window procedure */
/* window style */
/* amount of reserved memory */

WinQueryClassInfo, WinQueryClassName, WinQueryWindowPtr, Win­
QueryWindowULong, WinQueryWindowUShort

• WinRegisterWindowDestroy
BOOl WinRegisterWindowDestroy(hwnd. fRegister)
HWND hwnd; 1* handle of the window *1
BOOl fRegister; 1* register flag *1

Parameters

Return Value

See Also

The WinRegisterWindowDestroy function notifies other applications when the
specified window is destroyed.

hwnd Identifies the window being destroyed.

fRegister Specifies whether the window is to be registered. If fRegister is
TRUE, this function registers the window so that when it is destroyed, a
W1LOTHER WINDOWDESTROYED message is broadcast to all main win­
dows of other tasks. Registering the window is accomplished by incrementing a
register count. Iff Register is FALSE, this routine unregisters the window by
decreasing the register count by one, although the window is not fully unreg­
istered until the count reaches zero.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinDestroyWindow

• WinReleaseHook
BOOl WinReleaseHook(hab. hmq. iHook. pfnHook. hmod)
HAB hab; 1* handle of the anchor block *1
HMQ hmq; 1* handle of the message queue . *1
SHORT iHook; 1* hook identifier *1
PFN pfnHook; 1* address of the hook procedure *1
HMODUlE hmod; 1* handle of the module with hook procedure *1

Parameters

The WinReleaseHook function releases an application hook from a hook chain.

hab Identifies the anchor block.

hmq Specifies the message queue from which the hook is to be released. If
hmq is NULL, the hook is released from the system hook chain. If hmq is
HMQ_CURRENT, the hook is released from the message queue associated with
the current thread (calling thread).

Return Value

Comments

See Also

• WinReleasePS

WinReleasePS 341

iHook Specifies the type of hook chain. This parameter can be one of the fol­
lowing values:

Hook type

HK_HELP

HK_INPUT

HK_JOURN ALPLA YBACK

HK_JOURNALRECORD

Description

Monitors the W1LHELP message.

Monitors messages in a message queue.

Allows applications to insert events into the
system input queue.

Allows applications to record system input
queue events.

Monitors input events during system modal
loops.

Monitors messages sent with WlnSendMsg.

pfnHook Points to the hook routine.

hmod Identifies the" module that contains the hook procedure. This parameter
can be either the module handle returned by the DosLoadModule function or
NULL for the application's module.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If a system hook is called by a process other than the process that set the hook,
the DLL containing the hook will not be unloaded until every process is exited
that referenced it. For most system hooks, this applies until the machine is
rebooted. For the most part, this is not a problem; as with swapping, the unused
DLL will end up somewhere in your swap space, never to be used again. The
only complication is that when you are developing the hook the DLL containing
the hook is still in use, and you cannot copy over it or link into it.

DosLoadModule, WinSendMsg, WinSetHook

BOOl WinReleasePS(hps)
HPS hps; I. handle of the presentation space ./

Parameters

Return Value

Comments

The WinReleasePS function releases a cache presentation space obtained using
the WinGetPS function.

Only a cache presentation space should be released using this function. The
presentation space is returned to the cache for reuse. The presentation space
handle should not be used following this function.

hps Identifies the cache presentation space to release.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Before an application terminates, it must call WinReleasePS to release any
cache presentation spaces obtained by using the WinGetPS function.

342 WinReleasePS

Example

See Also

This example processes an application-defined message (IDMJILL). It calls
WinGetPS to get a presentation space to the entire window. It gets the dimen­
sions of the current window, fills the window, and calls WinReleasePS to release
the presentation space.

case 10M_FILL:
hps = WinGetPS(hwnd); /* get ps for the entire window */
WinQueryWindowRect(hwnd, &rcl); /* get window dimensions */
WinFillRect(hps, &rcl, CLR_WHITE); /* clear entire window */
WinReleasePS(hps); /* release the ps */

WinGetPS

• WinRemoveSwitchEntry
USHORT WinRemoveSwitchEntry (hSwiteh)
HSWITCH hSwitehj 1* handle of the switch list *1

Parameters

Return Value

See Also

The WinRemoveSwitchEntry function removes a specified entry from the switch
list.

Switch-list entries for full-screen applications cannot be removed using this func­
tion. These entries are removed automatically by the system when the applica­
tion terminates.

hSwitch Identifies the switch-list entry for the application to remove.

The return value is zero if the function is successful. Otherwise, it is nonzero,
indicating that an error occurred.

WinAddSwitchEntry, WinChangeSwitchEntry

• WinScroliWindow
SHORT WinScroliWindow(hwnd, dx, dy, pre/Scroll, pre/Clip, hrgnUpdate, pre/Update, fs)
HWND hwndj 1* handle of the window to scroll *1
SHORT dXj 1* amount of horizontal scrolling *1
SHORT dyj 1* amount of vertical scrolling *1
PRECTL pre/Serollj 1* address of structure with scroll rectangle *1
PRECTL pre/C/ipj 1* address of structure with clip rectangle *1
HRGN hrgnUpdatej 1* handle of the update region *1
PRECTL pre/Updatej 1* address of the structure for the update rectangle *1
USHORT fSj 1* scrolling flags *1

The WinScrollWindow function scrolls the contents of a window rectangle.

No application should move bits in its own window by any other method than by
using WinScrollWindow.

The cursor and the track rectangle are also scrolled when they intersect with the
scrolled region.

Parameters

Return Value

, Comments

WinScrollWindow 343

hwnd Identifies the window to scroll.

dx Specifies the amount of horizontal scrolling (in device units).

dy Specifies the amount of vertical scrolling (in device units).

prclScroll Points to a RECTL structure that specifies the scroll rectangle. If
prclScroll is NULL, the entire window will be scrolled. The RECTL structure
has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

prclClip Points to a RECTL structure that specifies the clip rectangle. This
structure takes precedence over the prclScroll rectangle. Bits outside of the
prclClip rectangle are not affected even if they are in prclScroll.

hrgnUpdate Identifies the region that is modified to hold the region invali­
dated by scrolling. This parameter may be NULL.

prclUpdate Points to a RECTL structure that receives the boundaries of the
rectangle invalidated by scrolling. This parameter may be NULL.

fs Specifies flags controlling the scrolling. It can be a combination of the fol­
lowing values:

Value Meaning

SW_SCROLLCHILDREN All child windows are scrolled.

SW_INVALIDATERGN The invalid region created as a result of scrolling
will be added to update regions of those windows
affected. This may result in the sending of
W1LP AINT messages to WS_SYNCP AINT win­
dows before the WinScrollWindow function
returns.

The return value is a code indicating the type of invalid region created by scrol­
ling:

Value

ERROR

NULLREGION

SIMPLEREGION

COMPLEXREGION

Meaning

Error in the passed region.

Scrolling produced no invalidation.

Scrolling produced rectangular invalidation.

Scrolling produced a nonrectangular invalidation.

To quickly repeat scrolling, omit the SWJNVALIDATERGN flag from the is
parameter and accumulate the update area by specifying a region for the hrgn­
Update parameter or a rectangle for the prcl Update parameter. When scrolling is
completed, you can repaint the window by calling WinlnvalidateRegion or
WinlnvalidateRect, depending on whether you specified the hrgn Update or
prclUpdate parameter.

344 WinScroliWindow

See Also

Typically, an application will set the SWJNVALIDATERGN flag infs and let
the system handle the update regions of the affected windows. In this case, the
hrgnUpdate and prclUpdate parameters can both be set to NULL.

If the hwnd parameter does not have the WS_CLIPCHILDREN style, the bits
of any child window falling inside the scrolled area will also be scrolled. If this is
the case, WinScrollWindow should be called with SW _SCROLLCHILDREN.

The cursor and tracking rectangle are always hidden if they are in the window
being scrolled or a child of that window, and the cursor is always offset by the
distance scrolled. The tracking rectangle's position is left alone. Both are then
shown once scrolling is done.

GpiCombineRegion

• WinSendDlgltemMsg
MRESULT WinSendDlgltemMsg(hwndDlg, idltem, msg, mp1, mp2)
HWND hwndDlg; /. handle of the dialog box ./
USHORT idltem; /. dialog-item identifier ./
USHORT msg; /. message ./
MPARAM mp1; /. first message parameter ./
MPARAM mp2; /. second message parameter./

Parameters

Return Value

See Also·

The WinSendDlgItemMsg function sends a message to the specified dialog item
in the dialog window. The function does not return until the message has been
processed by the dialog item.

This function is equivalent to the following:

WinSendMsg(WinWindowFromID(hwndDlg, idItem), msg, mpl, mp2);

hwrzdDlg Identifies the dialog window.

idltem Identifies the dialog item that receives the message.

msg Specifies the message.

mpJ Specifies message parameter 1.

mp2 Specifies message parameter 2.

The return value is the result returned by the dialog item to which the message
was sent.

WinSendMsg, Win WindowFromID

WinSendMsg 345

• WinSendMsg
MRESULT WinSendMsg(hwnd. msg. mp1. mp2)
HWND hwnd; I. handle of the receiving window .1
USHORT msg; I. message .1
MPARAM mp1; I. first message parameter .1
MPARAM mp2; I. second message parameter .1

Parameters

Return Value

Comments

Example

See Also

The WinSendMsg function sends a message to the specified window.

This function does not return until the message has been processed by the win­
dow procedure. If the window receiving the message belongs to the same thread,
the window function is called immediately as a subroutine. If the window is of
another thread or process, Presentation Manager switches to the appropriate
thread and calls the appropriate window function, passing the message to the
window function. The message is not placed in the destination thread's queue.

hwnd Identifies the window to send the message to.

msg Specifies the message.

mpJ Specifies message parameter 1.

mp2 Specifies message parameter 2.

The return value is the result returned by the invoked window procedure.

The ~USER constant marks the beginning of values you can use for your
own messages. For example, you might have a section of a header file that looks
like this:

#define WM_USERMSGOO
#define WM_USERMSG01
#define WM_USERMSG02
#define WM_USERMSG03

(WM_USER + 0)
(WM_USER + 1)
(WM_USER + 2)
(WM_USER + 3)

The following lists some of the differences between WinPostMsg and Win­
SendMsg:

• WinPostMsg returns immediately. WinSendMsg waits for the receiver to
return.

• A thread that does not have a message queue can still call WinPostMsg.
It cannot call WinSendMsg.

• Calling WinSendMsg to send a message to another thread is costly in
terms of CPU time. This is not true of WinPostMsg.

This example gets the window handle of the system menu and calls WinSendMsg
t'o send a message to disable the Close menu item.

HWND hwndSysMenu;

hwndSysMenu = WinWindowFromID(hwndDlg, FID_SYSMENU);
WinSendMsg(hwndSysMenu, MM~SETITEMATTR,
, MPFROM2SHORT(SC_CLOSE, TRUE),

MPFROM2SHORT(MIA_DISABLED, MIA_DISABLED»;

WinBroadcastMsg, WinPostMsg

346 WinSetAccelTable

• WinSetAccelTable
BOOf.. WinSetAccelTable(hab, hacce/, hwndFrame)
HAB hab; I. handle of the anchor block .1
HACCEL haccel; I. handle of the accelerator table .1
HWND hwndFrame;

Parameters

Return Value

See Also

I. handle of the frame window .1

The WinSetAccelTable function sets the window or queue accelerator table.

hab Identifies the anchor block.

haccel Identifies the accelerator table. If haccel is NULL, the effect of this
function is to remove any accelerator table in effect for the window or queue.

hwndFrame Identifies the frame window. If hwndFrame is NULL, the queue
accelerator table is set. Otherwise, the window accelerator table is set, by send­
ing the ~SETACCELTABLE message to hwndFrame.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreateAccelTable, WinLoadAccelTable

• WinSetActiveWindow
BOOL WinSetActiveWindow(hwndDesktop, hwnd)
HWND hwndDesktop; I. handle of the desktop .1
HWND hwnd; I. handle of the window to make active .1

The WinSetActive Window function makes the frame window of hwnd the active
window. It does this by finding the first frame window parent of hwnd, using
hwnd if it is a frame window. It then finds the last window associated with this
frame window that had the focus. Then the focus is set to this window that pre­
viously had the focus, using the function WinSetFocus. This sets the focus to
this window and activates all frame windows that are parents of this window.

The window handle of the window that receives the focus is stored in the frame
window's reserved memory. This memory can be queried by using a
QWLJIWNDFOCUSSA VE index with the WinQueryWindowULong function.

If the active window is changing, the following events occur:

• If the action of setting the active window results in a different window
receiving the focus, the window that currently has the focus will receive
a ~SETFOCUS message indicating the loss of focus.

• If the action of setting the active window results in a different window
becoming active, a W~CTIVATE message is sent to the current
active window, indicating a loss of the active status.

• The new active window is established.
• A WMJ\CTIV ATE message indicating the acquisition of active status

is sent to the new window.

Parameters

Return Value

See Also

• \VinSetCapture

WinSetClipbrdData 347

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hwnd Identifies either a frame window or the child of a frame window. If it is
a child, the parent frame window will become the active window.

The return value is TRUE if the function is successful. Otherwise, it is FALSE,
indicating that an error occurred.

WinQueryActiveWindow, WinQueryFocus, WinQueryWindowULong, WinSet­
Focus

BOOl WinSetCapture(hwndDesktop, hwnd)
HWND hwndDesktop; /* handle of the desktop */

HWND hwnd; /* handle of the window to receive all mouse messages */

Parameters

Return Value

See Also

The WinSetCapture function sets the mouse capture to the specified window.
With the mouse capture set to a window, all mouse input is directed to that win­
dow, regardless of whether the mouse is over that window. Only one window can
have the mouse captured at a time.

When the WinSetCapture function is called to release the mouse capture, a
WM-.MOUSEMOVE message is posted, regardless of whether the mouse
pointer has actually moved.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hwnd Identifies the window that is to receive all mouse messages. This param­
eter can take the special value HWND_THREADCAPTURE to capture the
mouse to the current thread rather than to a particular window. If hwnd is
NULL, mouse capture is released.

The return value is TRUE if the function is successful or FALSE if an error
occurs. If an application calls this function while the mouse is currently captured
by a different window, the function will fail and return FALSE.

WinQueryCapture

• WinSetClipbrdData
BO.Ol WinSetClipbrdData(hab, ulData, fmt, fsFmtlnfo)
HAB hab; /* handle of the anchor block */
ULONG ulData; /* data object */

USHORT fmt; /* specifies the format */
USHORT fsFmtlnfo; /* specifies the data type */

The WinSetClipbrdData function puts data into the clipboard. Data of the
specified format already in the clipboard is freed by this function.

348 WinSetClipbrdData

Parameters hab Identifies an anchor block.

ulData Specifies the data object being put into the clipboard. If this parame­
ter is NULL, a W1LRENDERFMT message is sent to the clipboard owner win­
dow, to render the format when the WinQueryClipbrdData function is called
with the specified format. Once the data object has been put into the clipboard,
the object it refers to (if given by a reference such as a selector or handle) is no
longer accessible by the application. To access the data after it has been placed
into the clipboard, use the WinQueryClipbrdData function.

fmt Specifies the format of the data object specified by the ulData parameter.
The following list describes the standard clipboard formats:

Value

CF _DSPMET AFILE

Meaning

The data is a bitmap. The CFLHANDLE
memory-model flag must be set in the fsFmtlnfo
parameter.

The data is a bitmap representation of a private
data format. The clipboard viewer can use this for­
mat to display a private format. The memory-model
flag CFLHANDLE must be set in the fsFmtlnfo
parameter.

The data is a metafile. The CFLHANDLE
memory-model flag must be set in the fsFmtlnfo
parameter.

The data is a metafile representation of a private
data format. The clipboard viewer can use this for­
mat to display a private format. The memory-model
flag CFLHANDLEmust be set in thefsFmtlnfo
parameter.

The data is an array of text characters, which may
include newline characters to mark line breaks.
The null character indicates the end of the text
data. The CFLSELECTOR memory-model flag
must be set in the fsFmtlnfo parameter.

The data is a textual representation of a private
data format. The clipboard viewer can use this for­
mat to display a private format. The memory-model
flag CFLSELECTOR must be set in the fsFmtlnfo
parameter.

fsFmtInfo Specifies the type of data specified by the ulData parameter. This
consists of memory-model and usage flags, as follows:

Memory-model flag

CFLHANDLE

CFLSELECTOR

Meaning

Handle is the handle to a metafile or bitmap.

Handle is a selector plus zero offset to a segment
in storage.

Return Value

See Also

Usage flag

CFLOWNERDISPLA Y

CFLOWNERFREE

WinSetClipbrdOwner 349

Meaning

Format will be drawn by the clipboard owner in
the clipboard-viewer window by means of the
W1LPAINTCLIPBOARD message. The ulData
parameter should be NULL.

Handle is not freed by the WlnEmptyCllpbonrd
function. The application must free the data, if
necessary.

Any number of the usage flags may be specified, but only one of the memory
models may be specified. When using WinSetClipbrdData for user-defined for­
mats, an application puts a user-defined format into the clipboard. It may then
specify the CFLSELECTOR memory model. The system then saves the selector
so that if the calling application terminates, normally or abnormally, the data is
still available. The system frees the selector from the calling process; therefore,
the calling process may no longer use the selector.

The return value is TRUE if data is placed in the clipboard, or FALSE if an
error occurred.

WinEmptyClipbrd, WinQueryClipbrdData

• WinSetClipbrdOwner
BOOl WinSetClipbrdOwner(hab. hwnd)
HAB hab; 1* handle of the anchor block *1
HWND hwnd; 1* handle of the clipboard owner *1

Parameters

Return Value

See Also

The WinSetClipbrdOwner function sets the current clipboard owner window.
The clipboard owner window receives the following clipboard-related messages
at appropriate times:

WM...RENDERFMT
WMJ)ESTROYCLIPBOARD
~SIZECLIPBOARD
~ VSCROLLCLIPBOARD
WMJ-ISCROLLCLIPBOARD
WMYAINTCLIPBOARD

hab Identifies an anchor block.

hwnd Identifies a new clipboard owner window. If this parameter is NULL,
the clipboard owner is released and no new owner is established.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryClipbrdOwner, WinSetClipbrdViewer

350 WinSetClipbrdViewer

• WinSetClipbrdViewer
BOOl WinSetClipbrdViewer(hab, hwnd)
HAB hab; 1* handle of the anchor block *1
HWND hwnd; 1* handle of the clipboard viewer *1

Parameters

Return Value

See Also

• WinSetCp

The WinSetClipbrdViewer function sets the current clipboard-viewer window to
a specified window.

The clipboard-viewer window receives the WMJ)RA WCLIPBOARD message
when the contents of the clipboard change. This allows the viewer window to
display an up-to-date version of the clipboard contents.

hab Identifies an anchor block.

hwnd Identifies a new clipboard viewer window. If this parameter is NULL,
the clipboard viewer is released and no new viewer is established.

The return value is TRUE if there is a clipboard-viewer window on completion
of the function. Otherwise, it is FALSE, indicating that there is no clipboard­
viewer window.

WinQueryClipbrdViewer, WinSetClipbrdOwner

BOOl WinSetCp(hmq, idcp)
HMQ hmq; /* handle of the message queue */

USHORT idcp; 1* code page *1

Parameters

Return Value

See Also

The WinSetCp function sets the queue code page for the message queue.

hmq Identifies a message queue.

idcp Specifies a code page. It must be one of the ASCII code pages defined in
the config.sys file.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

DosSetCp, GpiSetCp, VioSetCp, WinQueryCp, WinQueryCpList

WinSetDlgltemText 351

• WinSetDlgltemShort
BOOl WinSetDlgltemShort(hwndDlg. idltem. usValue. (Signed)
HWND hwndDlg; 1* handle of the dialog box.1
USHORT idltem; I. dialog-item Identifier *1
USHaRT uSValue; 1* value to set *1
BaOl (Signed; 1* signedlunsigned flag *1

Parameters

Return Value

See Also

The WinSetDlgItemShort function sets the text of a dialog-box item to the string
representation of a specified integer value. The item is identified by its identifier.
The text produced is always an ASCII string.

hwndDlg Identifies the dialog-box window.

idltem Identifies the dialog item that is changed.

usValue Specifies the integer value used to generate the item text.

[Signed Specifies whether the usValue parameter is signed or unsigned. If this
parameter is TRUE, usValue is signed. If it is FALSE, usValue is unsigned.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryDlgItemShort

• WinSetDlgltemText
BaOl WinSetDlgltemText(hwndDlg. idltem. pszText)
HWND hwndDlg; 1* handle of the dialog box *1
USHORT idltem; 1* dialog-item identifier *1
PSZ pszText;

Parameters

Return Value

See Also

I. text to set

The WinSetDlgItemText function sets the text in a dialog item. It is equivalent to
the following:

WinSetWindowText (WinWindowFromID (hwndDlg, idltem), pszText);

hwndDlg Identifies a dialog window.

idltem Identifies the identifier of the dialog item.

pszText Points to a null-terminated string that contains the text to be set for
the dialog item.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinSetWindowText, Win WindowFromID

352 WinSetFocus

• WinSetFocus
BOOl WinSetFocus (hwndDesktop, hwndSetFocus)
HWND hwndDesktop; 1* handle of the desktop *1
HWND hwndSetFocus; 1* handle of the window receiving the focus *1

Parameters

Return Value

Comments

The WinSetFocus function sets the focus window.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hwndSetFocus Identifies the window that receives the focus. This parameter
must be equal to or be a descendant of the window identified by the hwnd­
Desktop parameter. If hwndSetFocus identifies a desktop window or is NULL,
no window on the device associated with hwndDesktop receives the focus.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If hwndSetFocus does not have the focus when this function is called, the follow-
ing events occur: .

• If a window currently has the focus, it receives a W1LSETFOCUS mes­
sage, indicating the loss of the focus.

• If a window currently is selected, it receives a W1LSETSELECTION
message, indicating the window is deselected.

• If changing the focus causes a change in the active window, a
W1LACTIV ATE message is sent to the active window, indicating
the loss of active status.

• If a new application is being made the active application, a
W1LACTIV ATE message is sent to the active application, indicating
the loss of active status.

• The new active and focus windows and the active application are
established.

• If a new application is being made the active application, a
W1LACTIVATE message is sent to the new application, indicating
the acquisition of active status.

• If the active window is changing, a W1LACTIVATE message is sent to
the new main window, indicating the acquisition of active status.

• If a new window is selected, it receives a W1LSETSELECTION mes­
sage, indicating the window has been selected.

• The new focus window is sent a W1LSETFOCUS message, indicating
the acquisition of focus.

Using the WinQueryActiveWindow or the WinQueryFocus function during pro­
cessing of the WinSetFocus function results in the previous active and focus win­
dows being returned until the new active and focus windows are established. In
other words, even though a W1LSETFOCUS message with the fFocus parame­
ter set to FALSE or a W1LACTIV ATE message with the fActive parameter set
to FALSE may have been sent to the previous windows, those windows are con­
sidered to be active and have the focus until the system establishes the new
active and focus windows.

If WinSetFocus is called during W1LACTIVATE message processing, a
W1LSETFOCUS message with the fFocus parameter set to FALSE is not sent,
since no window has the focus.

Example

See Also

• WinSetHook

WinSetHook 353

If no window has the input focus, then WM_CHAR messages are posted to the
active window's queue.

This example retrieves an integer from a dialog entry field. It then checks for a
valid number. If not found, it displays a message box indicating that an error
occurred, and then calls WinSetFocus to set the focus back to the entry field
that caused the error.

fError = WinQueryDlgltemShort(hwndDlg, idEntryField, &ivalue, TRUE);
if (fError I I (ivalue < iLoRange) I I (ivalue > iHiRange» {

WinMessageBox(HWND_DESKTOP, hwndFrame, (PSZ) szErrMsg,
NULL, idMessageBox, MB_OK);

WinSetFocus(HWND_DESKTOP, WinWindowFromID(hwndDlg, idEntryField»;
}
else {

WinFocusChange, WinQueryActiveWindow, WinQueryFocus, WinSet­
Active Window

BOOl WinSetHook(hab. hmq. iHook. pfnHook. hmod)
HAB habj /. handle of the anchor block . ./

HMQ hmqj /. handle of the message queue ./
SHORT iHookj /. type of hook chain ./
PFN pfnHookj /. address of the hook procedure ./
HMODUlE hmodj /. handle of the module with the hook procedure ./

Parameters

The WinSetHook function installs an application procedure into a specified hook
chain. In this function, queue hooks are called before system hooks.

A call to WinSetHook installs the hook at the head of either the system or
queue chain. The most recently installed hook is called first.

hab Identifies an anchor block.

hmq Identifies the queue to which the hook chain belongs. If this param­
eter is NULL, the hook is installed in the system hook chain. If it is
HMQ_CURRENT, the hook is installed in the message queue associated with
the current thread (calling thread) ~

iHook Specifies the type of hook chain. This parameter can be one of the fol-
lowing values: .

Hook type Description

Monitors the W1LHELP message. Returns
BOOL. If FALSE, next hook in chain is
called. If TR VE, the next hook in the chain
is not called.

Monitors messages in specified message
queue. Returns BOOL. If FALSE, next hook
in the chain is called. If TR VE, the message
is not passed on to the next hook in the
chain.

354 WinSetHook

Return Value

Comments

See Also

Hook type

HK_JOURNALPLA YBACK

HK_JOURNALRECORD

HK-MSGFILTER

Description

Allows applications to insert events into the
system input queue. Returns LONG time-out
value. This value is the time to wait (in mil­
liseconds) before processing the current mes­
sage. Never calls the next hook in the chain.

Allows applications to record system input
queue events. Returns VOID. Next hook in
chain is always called.

Monitors input events during system modal
loops. Returns BOOL. If FALSE, next hook
in the chain is called. If TRUE, the message
is not passed on to the next hook in the
chain.

Monitors messages sent with WinSendMsg.
Returns VOID. Next hook in chain is always
called.

pfnHook Points to an application hook procedure.

hmod Identifies the module that contains the hook procedure. This parameter
can be either the module handle returned by the DosLoadModule function or
NULL for the application's module.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

You should use the handle returned from WinCreateMsgQueue for the hmq
parameter. If this is not available, you can use the WinQueryWindowULong
function with the index QWLJIMQ to obtain the queue handle associated with
a window handle.

Note: If a system hook is installed, the procedure must be contained in a DLL;
the procedure may be called from different applications, which do not have
access to code segments that are contained in a .exe file.

DosLoadModule, WinCreateMsgQueue, WinQueryWindowULong, Win­
ReleaseHook, WinSendMsg

• WinSetKeyboardStateTable
BOO l WinSetKeyboardStateTable (hwndDesktop, pKeySta te Table, (Set)
HWND hwndDesktop; 1* handle of the desktop *1
PBYTE pKeyStateTable; I. address of the key table .1
BOOl (Set; I. set/copy flag *1

The WinSetKeyboardStateTable function gets or sets the keyboard state. This
function does not change the physical state of the keyboard; it changes the value
returned by the WinGetKeyState function, not the value returned by the
WinGetPhysKeyState function.

Parameters

Return Value

See Also

WinSetMultWindowPos 355

To set the state of a single key you must get the entire table, modify the indivi­
dual key, and then set the table from the modified value.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

pKeyStateTable Points to a 25~byte table indexed by virtual-key value. For
any virtual key, the Ox80 bit is set if the key is down and cleared if it is up. The
OxOl bit is set if the key is toggled (pressed an odd number of times) and cleared
otherwise.

fSet Specifies whether the keyboard state is set or copied. If this parameter is
TRUE, the keyboard state is set from pKeyStateTable. If this parameter is
FALSE, the keyboard state is copied to pKeyStateTable.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinGetKeyState, WinGetPhysKeyState

• WinSetMultWindowPos
BOOL WinSetMuitWindowPos(hab, pswp, cswp)
HAB hab; /* handle of the anchor block */

PSWP pswp; /* address of array of SWP structures */

USHORT cswp; /* number of SWP structures */

Parameters

The WinSetMultWindowPos function performs the WinSetWindowPos function
for specified windows using the pswp parameter, an array of structures whose
elements correspond to the input parameters of WinSetWindowPos. All win­
dows being positioned must have the same parent window.

It is more efficient to use this function than to issue multiple WinSetWindowPos
calls, as it causes less screen updating.

hab Identifies an anchor block.

pswp Points to an array of SWP data structures whose elements correspond to
the input parameters of WinSetWindowPos. The SWP structure has the follow­
ing form:

356 WinSetMultWindowPos

Return Value

Comments

See Also

• WinSetOwner

typedef struet _sWP {
USHORT fs;
SHORT ey;
SHORT ex;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

For a full description, see Chapter 4, "Types, Macros, Structures.'"

cswp Specifies the number of SWP structures.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

This function sends the following messages. If you process these messages, you
must be careful to. not cause an infinite loop by calling the WinSetWindowPos or
WinSetMuItWindowPos functions.

WKACTIVATE
WKADJUSTWINDOWPOS
W1LCALCVALIDRECTS
~OVE
W1LSHOW
'W1LSIZE

WinSetWindowPos

BOOL WinSetOwner(hwnd. hwndNewOwner)
HWND hwnd; I. handle of the window whose owner is changed .1
HWND hwndNewOwner, I. handle of the new owner window

Parameters

Return Value

See Also

The WinSetOwner function changes the owner of a specified window. The owner
window and the owned window must have been created by the same thread.

The WinQueryWindow function can be used to obtain the handle of the owner
window.

hwnd Identifies the window whose owner is changed.

hwndNewOwner Identifies the new owner window. If this parameter is
NULL, the window's owner is set to NULL.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryWindow, WinSetParent

WinSetPointer 357

• WinSetParent
BOOl WinSetParent(hwnd, hwndNewParent, (Redraw)
HWND hwnd; 1* handle of the window whose parent Is changed *1
HWND hwndNewParent; 1* handle of the new parent window *1
BOOl (Redraw; 1* redraw flag .1

Parameters

Return Value

See Also

• WinSetPointer

The WinSetParent function sets the parent window for the window identified by
the hwnd parameter to the window identified by the hwndNewParent parameter.

hwnd Identifies the window whose parent will be changed.

hwndNewParent Identifies the new parent window. If this parameter is a
desktop-window handle or HWNDJ)ESKTOP, the hwnd window becomes a
main window. The pew parent window cannot be a descendant of the hwnd win­
dow. If hwndNewParent is not equal to HWND_OBJECT, the windows iden­
tified by the hwndNewParent and hwnd parameters must both be descendants of
the same desktop window.

[Redraw Specifies a redraw indicator. If this parameter is TRUE, any neces­
sary redrawing of both the old parent and the new parent windows is performed
(if the hwnd window is visible). If this parameter is FALSE, no redrawing of the
old and new parent windows is performed. This avoids an extra device update
when subsequent calls cause the windows to be redrawn.

The return value is TRUE if the parent window is successfully changed. Other­
wise, it is FALSE, indicating that the parent window was not successfully
changed.

WinIsChiId, WinSetOwner

BOOl WinSetPointer(hwndDesktop, hptrNew)
HWND hwndDesktop; I. handle of the desktop .1
HPOINTER hptrNew; I. handle of the pointer .1

Parameters

Return Value

Comments

The WinSetPointer function changes the mouse pointer.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hptrNew Identifies the new pointer. If the hptrNew parameter is NULL, the
pointer is removed from the screen.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If you process the W1LMOUSEMOVE message, and you don't call the Win­
DefWindowProc function as part of that processing, then you should call this
function to set the mouse pointer. This function is quite fast if the mouse
pointer is not changed.

358 WinSetPointer

Example

See Also

The following functions can be used to obtain a handle to a pointer that can be
used as the mouse pointer:

Function

WlnCreatePolnter

WlnQueryPolnter

WlnLoadPolnter

WlnQuerySysPolnter

Description

Creates a pointer from a bitmap.

Retrieves a handle for the desktop pointer.

Loads a pointer from a resource file or
dynamic-link module.

Retrieves a handle for one of the system
pointers.

This example calls WinLoadPointer to load an application-defined pointer.
When processing the W1LMOUSEMOVE message, the loaded pointer is
displayed by calling WinSetPointer.

case WM_CREATE:
hptrCrossHair = WinLoadPointer(HWND_DESKTOP,

NULL, I' load from .exe file 'I
IDP_CROSSHAIR) ; I' identifies the pointer 'I

case WM_MOUSEMOVE:
WinSetPointer(HWND_DESKTOP, hptrCrossHair);

WinCreatePointer, WinDelWindowProc, WinLoadPointer, WinQueryPointer,
WinQuerySysPointer

• WinSetPointerPos
Baal WinSetPointerPos(hwndDesktop, x, y)
HWND hwndDesktop; I. handle of the desktop .1
SHORT x; I. horizontal position .1
SHORT y; I. vertical position .1

Parameters

Return Value

See Also

The WinSetPointerPos function sets the mouse pointer position.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

x Specifies the x position of the pointer (in screen coordinates).

y Specifies the y position of the pointer (in screen coordinates).

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryPointerPos

WinSetRectEmpty 359

• WinSetRect
BOOl WinSetRect(hab, prel, xLeft, yBottom, xRight, yTop)
HAB hab; 1* handle of the anchor block *1
PRECTl prel; 1* address of structure with rectangle to set *1
SHORT xLeft; 1* left side *1
SHORT yBottom; 1* bottom side *1
SHORT xRight; 1* right side .1
SHORT yTop; 1* top side .1

Parameters

Return Value

See Also

The WinSetRect function sets rectangle coordinates. This function is equivalent
to assigning the left, top, right, and bottom arguments to the appropriate fields
of the RECTL structure. The coordinates of the rectangle are sign-extended
before being placed into the RECTL structure.

hab Identifies an anchor block.

prcl Points to a RECTL structure that contains the rectangle to be set. The
RECTL structure has the following form:,

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

xLeft Specifies the left edge of the rectangle.

yBottom Specifies the bottom edge of the rectangle.

xRight Specifies the right edge of the rectangle.

yTop Specifies the top edge of the rectangle.

The return value is always TRUE.

WinSetRectEmpty

• WinSetRectEmpty
BOOl WinSetRectEmpty(hab, pre/)
HAB hab; 1* handle of the anchor block *1
PRECTl prel; I. address of structure with rectangle to set to empty .1

Parameters

The WinSetRectEmpty function sets a rectangle to empty. This function is
equivalent to WinSetRect(hab, prcl, 0, 0, 0, 0).

hab Identifies an anchor block.

prcl Points to a RECTL structure that contains the rectangle to be set to
empty. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

360 WinSetRectEmpty

Return Value

See Also

The return value is always TRUE.

WinCopyRect, WinSetRect

• WinSetSysColors
BOOl WinSetSysColors(hwndDesktop, f10ptions, f1Format, elrFirst, eelr, pelr)
HWND hwndDesktop; /. handle of the desktop ./
UlONG f10ptions; /. color options ./
UlONG f1Format; /. format options ./
COLOR elrFirst; /. first color to set ./

UlONG eelr; /. number of colors to set ./

PCOlOR pelr; /. address of color definitions ./

Parameters

The WinSetSysColors function sets system color values. This function sends a
W1LSYSCOLORCHANGE message to all main windows in the system to indi­
cate that the colors have changed. When this message is received, applications
that depend on the system colors can query the new color values by using the
WinQuerySysColor function.

After the W1LSYSCOLORCHANGE messages are sent, all windows in the
system are invalidated so that they will be redrawn with the new system colors.

WinSetSysColors does not write any system color changes to the os2.ini file.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

flOptions Specifies the following options:
Value

LCOL_PURECOLOR

Meaning

Indicates that color dithering should not be used to
create colors not available in the physical palette.
If this option is set, only pure colors will be used
and no dithering will be done.

Indicates that the system colors are all to be reset
to default before processing the remainder of the
data in this function.

flFormat Specifies the format of entries in the table, as follows:
Value Meaning

LCOLF _CONSECRGB Array of RGB values that correspond to color
indexes. Each entry is 4 bytes.

Array of (index, RGB) values. Each pair of entries
is 8 bytes-4 bytes index and 4 bytes color value.

clrFirst Specifies the starting system color index (this parameter is only
relevant for the LCOLF _CONSECRGB format). The following system color
indexes are defined (each successive index is one larger than its predecessor):

Value

SYSCLR_ACTIVEBORDER

SYSCLR_ACTIVETITLE

SYSCLR_APPWORKSPACE

SYSCLR_BACKGROUND

Meaning

Border fill of active window

Title bar of active window

Background of certain main windows

Screen background

Return Value

See Also

Value

SYSCLR_HELPBACKGROUND

SYSCLR_HELPHILITE

SYSCLR_HELPTEXT

SYSCLR_IN ACTIVEBORDER

SYSCLR_IN ACTIVETITLE

SYSCLR_MENU

SYSCLR_MENUTEXT

SYSCLR_SCROLLBAR

SYSCLR_ TITLETEXT

SYSCLR_ WINDOW

SYSCLR_ WINDOWFRAME

SYSCLR_ WINDOWSTATICTEXT

SYSCLR_ WINDOWTEXT

WinSetSysModalWindow 361

Meaning

Background of help panels

Highlight of help text

Help text

Border fill of inactive window

Title bar of inactive window

Menu background

Menu text

Scroll bar

Title text

Window background

Window border line

Static text

Window text

cdr Specifies the number of elements supplied in pelr. This parameter may be
zero if, for example, the color table is merely to be reset to the default. For
LCOLFJNDRGB, this parameter must be an even number. The constant
SYSCLR-CSYSCOLORS is set to the total number of system colors.

pdr Specifies the start address of the application data area containing the
color-table definition data. The format depends on the value of the flFormat
parameter. Each color value is a 4-byte integer. The low byte is the blue intensity
value (OxOOOOOOFF), the second byte is the green intensity value (OxOOOOFFOO),
and the third byte is the red intensity value (OxOOFFOOOO). The intensity for each
color may range between 0 and 255.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQuerySysColor

• WinSetSysModalWindow
BOOl WinSetSysModalWindow (hwndDesktop, hwnd)
HWND hwndDesktop; /. handle of the desktop ./

HWND hwnd; /. handle of the window that becomes system modal ./

Parameters

Return Value

The WinSetSysModalWindow function makes a window the system modal win­
dow or ends the system modal state.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

hwnd Identifies the window that is to become the system modal window. If
this parameter is NULL, the system modal state terminates and input processing
returns to its normal state.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

362 WinSetSysModalWindow

Comments

See Also

Input processing can enter a system modal state. In this state, all mouse and
keyboard input is directed to a special main window, called the system modal
window, or to one of its child windows. All other main windows act as if they
are disabled and no interaction is possible with them.

The disabled windows are not actually disabled but rather made noninteractive.
No messages are sent to these windows when the system modal state is entered
or left, and their WSJ)ISABLE style bits are not changed.

Where a system modal window exists and another window is explicitly made the
active window, the newly activated window becomes the system modal window,
replacing the previous system modal window, which then becomes a noninterac­
tive window. When the system modal window is destroyed, the window activated
as a result becomes the system modal window.

This function should be called only while processing keyboard or mouse input.

The new system modal window is not locked during the processing of this func­
tion.

WinQuerySysModalWindow

I WinSetSysValue
BOOl WinSetSysValue(hwndDesktop, iSysValue, IValue)
HWND hwndDesktop; I. handle of the desktop .1
SHORT iSysValue; I. system value to change .1
lONG IValue; I. new system value .1

Parameters

Return Value

Comments

The WinSetSysValue function sets the system value.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

iSysValue Specifies the system value. This parameter must be a valid SV
value. For a complete list of possible system values, see the following "Com­
ments" section.

lValue Specifies the system value. Durations are in milliseconds. Frequencies
are in hertz, with values between 25H and 7FFFH being valid.

The return value is TRUE if the system value is successfully set. Otherwise, it is
FALSE, indicating that an error occurred.

The following list describes the system values:
Value

SV _CMOUSEBUTfONS

SV _MOUSEPRESENT

Meaning

Specifies the number of mouse buttons: 1, 2,
or 3.

Specifies whether the mouse is present. A
value of TRUE means the mouse is present.

Specifies if the mouse buttons are swapped.
TRUE if mouse buttons are swapped.

Value

SV _DBLCLKTIME

SV _CXSIZEBORDER

SV _CYSIZEBORDER

SV _FIRSTSCROLLRATE

SV _NUMBEREDLISTS

SV _ERRORFREQ

SV _ W ARNINGFREQ

SV _ERRORDURATION

SV _NOTEDURATION

WinSetSysValue 363

Meaning

Specifies the mouse double click horizontal
spacing. The horizontal spatial requirement
for considering two mouse clicks a double
click is met if the horizontal distance between
two mouse clicks is less than this value.

Specifies the mouse double click vertical
spacing. The vertical spatial requirement for
considering two mouse clicks a double click
is met if the vertical distance between two
mouse clicks is less than this value.

Specifies the mouse double click time in mil­
liseconds. The temporal requirement for con­
sidering two mouse clicks a double click is
met if the time between two mouse clicks is
less than this value.

Specifies the count of pels along the x-axis in
the left and right parts of a window sizing
border.

Specifies the count of pels along the y-axis in
the top and bottom sections of a window siz­
ing border.

Specifies whether calls to WlnAlarm generate
a sound. A value of TRUE means sound is
generated.

Specifies the cursor blinking rate in mil­
liseconds. The blinking rate is the time that
the cursor remains visible or invisible. Twice
this value is the length of a complete cursor
visible/invisible cycle.

Specifies the delay (in milliseconds) until
scroll bar autorepeat activity begins when the
mouse is held down on a scroll bar arrow or
within a scroll bar.

Specifies the delay (in milliseconds) between
scroll bar autorepeat events.

Reserved.

Specifies the frequency (in cycles per second)
of a WinAlarm W A_ERROR sound.

Specifies the frequency (in cycles per second)
of a WinAlarm WA_NOTE sound.

Specifies the frequency (in cycles per second)
of a WinAlarm W A_WARNING sound.

Specifies the duration (in milliseconds) of a
WlnAlarm W A_ERROR sound.

Specifies the duration (in milliseconds) of a
WinAlarm W A_NOTE sound.

364 WinSetSysValue

Value

SV _ W ARNINGDURATION

SV _CXHSCROLLARROW

SV _CYVSCROLLARROW

SV _CXMINMAXBUTTON

SV _CYMINMAXBUTTON

SV_CYMENU

SV_CXFULLSCREEN

Meaning

Specifies the duration (in milliseconds) of a
WlnAlarm W A_WARNING sound.

Specifies the count of pels along the screen's
x-axis.

Specifies the count of pels along the screen's
y-axis.

Specifies the count of pels along the x-axis of
a vertical scroll bar.

Specifies the count of pels along the y-axis of
a horizontal scroll bar.

Specifies the count of pels along the x-axis of
a horizontal scroll bar arrow.

Specifies the count of pels along the y-axis of
a vertical scroll bar arrow.

Specifies the count of pels along the x-axis of
a window border.

Specifies the count of pels along the y-axis of
a window border.

Specifies the count of pels along the x-axis of
a dialog frame.

Specifies the count of pels along the y-axis of
a dialog frame.

Specifies the count of pels along the y-axis of
a title bar window.

Specifies the count of pels along the x-axis of
a horizontal scroll bar slider.

Specifies the count of pels along the y-axis of
a vertical scroll bar slider.

Specifies the width (in pels) of a minimize!
maximize button.

Specifies the height (in pels) of a minimize!
maximize button.

Specifies the height (in pels) of a menu.

Specifies the count of pels along the x-axis of
a maximized frame window's client window.

Specifies the count of pels along the y-axis of
a maximized frame window's client window.

Specifies the count of pels along an icon's x­
axis.

Specifies the count of pels along an icon's y­
axis.

Specifies the count of pels along the mouse
pointer's x-axis.

Specifies the count of pels along the mouse
pointer's y-axis.

Value

SV_DEBUG

SV _CURSORLEVEL

SV _POINTERLEVEL

SV_TRACKRECTLEVEL

SV_CTIMERS

SV _CXBYTEALIGN

See Also WinQuerySys Value

WinSetWindowBits 365

Meaning

Reserved.

Specifies the cursor display count. The cursor
is visible only when the display count is zero.

Specifies the mouse pointer display count.
The mouse is visible only when the display
count is zero.

Specifies the tracking rectangle display count.
The tracking rectangle is visible only when
the display count is zero.

Specifies the number of available timers.

-Set by a device driver at initialization time to
indicate any horizontal alignment that is more
efficient for the driver.

Set by a device driver at initialization time to
indicate any vertical alignment that is more
efficient for the driver.

Specifies the number of system values.

• WinSetWindowBits
BOOl WinSetWindowBits(hwnd. index. flData. flMask)
HWND hwnd; /. handle of the window./
SHORT index; /. index of the bits ./

UlONG (!Data; /. data to set ./
UlONG flMask; /. mask of bits to set ./

Parameters

Return Value

See Also

The WinSetWindowBits function sets particular bits in the reserved memory of a
window.

hwnd Identifies the window whose reserved memory is to be changed.

index Specifies the zero-based index of the ULONG value to set. Valid values
are in the range zero through the number of bytes of window data (for example,
a value of 8 would be an index to the third long integer), or any of the QWL
values described in the WinSetWindowULong function.

jlData Specifies the data to be written into the window's reserved memory.

jlMask Specifies a mask value. The mask contains 1 where data is to be writ­
ten and 0 where the data is to be unchanged.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinSetWindowULong

366 WinSetWindowPos

• WinSetWindowPos
BOOl WinSetWindowPos(hwnd, hwndlnsertBehind, x, y, ex, ey, fs)
HWND hwnd; /. handle of the window being set ./
HWND hwndlnsertBehind; /. placement":order handle ./
SHORT x; /. horizontal position ./
SHORT y; /. vertical position ./

SHORT ex; /. width */

SHORT ey; /* height */
USHORT fs; /. window-positioning flags ./

Parameters

The WinSetWindowPos function sets the position of a window.

hwnd Identifies the window whose position is being set.

hwndlnsertBehind Identifies relative window-placement order. This parame­
ter is ignored if the is parameter's SWP .20RDER option is not selected. Values
that can be specified are as follows:

Value Meaning

HWND_BOTTOM Places the hwnd window behind all sibling windows.

HWND_TOP Places the hwnd window on top of all sibling windows.

Other Identifies the sibling window behind which the hwnd win-
dow is to be placed.

X Specifies the x position of the hwnd window in window coordinates relative
to the lower-left corner of its parent window. This parameter is ignored if the is
parameter's SWP ~OVE option is not selected.

y Specifies the y position of the hwnd window in window coordinates relative
to the lower-left corner of its parent window. This parameter is ignored if the is
parameter's SWP ~OVE option is not selected.

ex Specifies the horizontal window size (in device units). This parameter is
ignored if the is parameter's SWP _SIZE option is not selected.

ey Specifies the vertical window size (in device units). This parameter is
ignored if the is parameter's SWP _SIZE option is not selected.

Is Identifies the window-positioning options. One or more of the following
options can be specified:

Value

SWP _ACTIVATE

SWP _DEACTIVATE

SWP _EXTSTATECHANGE

Meaning

Causes the window to be activated and the
focus to be set to the window that lost the
focus the last time the frame window was
deactivated. The activated window may
not become the top window if it owns
other frame windows.

Deactivate the window, if it is the active
window.

This flag is for application use. It is used
to pass an additional flag to the portion of
code that is handling messages.

Return Value

Comments

Value

SWP _FOCUSACTIV A TE

SWP _FOCUSDEACTIV ATE

SWP_HIDE

SWP _MAXIMIZE

SWP _MINIMIZE

SWP_MOVE

SWP _NOADJUST

SWP_NOREDRAW

SWP _RESTORE

SWP_SIZE

SWP_ZORDER

WinSetWindowPos 367

Meaning

Specifies that a frame window is receiving
the focus. This flag is set so that an
application that is processing the
W1LADJUSTWINDOWPOS message can
tell if the message was sent as the result of
a focus change.

Specifies that a frame window is losing the
focus.

Specifies that the window is to be hidden
when created.

With SWP _MINIMIZE, causes a window
to be minimized, maximized, or restored.
SWP _MAXIMIZE and SWP _MINIMIZE
are mutually exclusive. If either
SWP _MINIMIZE or SWP _MAXIMIZE is
specified, then both SWP _MOVE and
SWP _SIZE must also be specified. Wln­
SctWlndowPos and WlnSctMultWlndow­
Pos depend on the previous state of the
window; these flags cause the appropriate
state to be toggled, as follows: the x, y,
ex, and ey parameters specify the size and
position to which the window will be
restored if it is subsequently restored. This
should be the normal size of the window.

See SWP _MAXIMIZE.

Change the window x,y position.

Do not send a
W1LADJUSTWINDOWPOS message to
the window while processing (in other
words, don't give the window a chance to
readjust itself).

Do not redraw changes.

Restore a minimized or maximized
window.

Specifies that the window is to be shown
when created.

Change the window size.

Change the relative window placement.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If a window created with the CS_SA VEBITS style is moved, reduced in size, or
hidden, the saved screen image is used to redraw the area uncovered when the
window size changes, if those bits are still valid.

If the CS_SIZEREDRA W style is present, the entire window area is assumed
invalid if sized. Otherwise, a W1LCALCV ALIDRECTS message is sent to the
window to inform the window manager which bits it may be possible to preserve.

368 WinSetWindowPos

Example

Messages sent from WinSetWindowPos and WinSetMuItWindowPos have
specific orders within the window positioning process. The process begins with
redundancy checks and precalculations on every window for each requested
operation. For example, if SWP _SHOW is present but the window is already
visible, then SWP _SHOW is turned off. If SWP _SIZE is present and the new
size is equal to the previous size, SWP _SIZE is turned off. If the operations will
create new results, the information is calculated and stored. For example, if
being sized or moved, the new window rectangle is stored for later use. It
is at this point that the W1L,ADJUSTWINDOWPOS message is sent to any
window that is being sized or moved. It is also at this point that the
~CALCV ALIDRECTS message is sent to any window that is being sized
and does not have the CS_SIZEREDRA W window style.

When the new window state is calculated, the window-management process
begins. Window areas that can be preserved are moved from the old to the new
positions, window areas that are invalidated by these operations are calculated
and distributed as update regions, and so forth. When this is finished, and
before any synchronous-paint windows are repainted, the ~SIZE message is
sent to any windows that have changed size. Next, all the synchronous-paint win­
dows that can be repainted are repainted and the entire process is complete.

If a synchronous-paint parent window has a size-sensitive area displayed that
includes synchronous-paint child windows, the parent window will reposition
those windows when it receives the W~SIZE message. Their invalid regions
will be added to the parent window's invalid region, resulting in one update after
the parent window's ~SIZE message, rather than many independent and sub­
sequently duplicated updates.

The following messages are sent by this function:
Value

W~CALCV ALIDRECTS

W~SIZE

W~MOVE

W~ACTIVATE

W~ADJUSTWINDOWPOS

Meaning

Sent to determine the area of a window that
it may be possible to preserve as the win­
dow is sized.

Sent if the size of the window has changed,
after the change has been effected.

Sent when a window with
CS_MOVENOTIFY class style moves its
absolute position.

Sent if a different window becomes the
active window. For more information, see
the WlnSetActlve Window function.

Sent if SWP _NOADJUST is not specified.
The message's mpJ parameter points to an
SWP structure that has been filled in by the
WlnSetWlndowPos function with the pro­
posed move/size data. The window can
adjust this new position by changing the
contents of the SWP structure.

This example gets the dimensions of the desktop window, and calls WinSet­
WindowPos to place the application's frame window in the upper left corner. By
positioning the window relative to the desktop window, the window position is

See Also

WinSetWindowText 369

device-independent; it will work on any display adapter no matter what the
vertical and horizontal resolution is.

RECTL rel;

WinQueryWindowReet(HWND_DESKTOP, &rel);
WinSetWindowPos(hwndFrame, HWND_TOP,

rel.xLeft,
rel.yTop - 60,
140,

/* x pos */
/* y pos */
/* x size */
/* y size */ 60,

SWP_ACTIVATE I SWP_MOVE I SWP_SIZE I SWP_SHOW); /* flags */

Win S etA ctive Window, WinSetMultWindowPos

• WinSetWindawPtr
Baal WinSetWindowptr(hwnd. index. p)
HWND hwnd; /. handle of the window ./

SHORT index; /. index of the reserved memory ./
pvalD p; /. pointer to place into reserved memory ./

Parameters

Return Value

See Also

The WinSetWindowPtr function places a pointer value into the reserved memory
of a window.

hwnd Identifies the window whose reserved memory will be changed.

index Specifies the zero-based index of the pointer value to set. Valid values
are in the range zero through the number of bytes of window data (for example,
a value of 8 would be an index to the third pointer). The value QWPJ>FNWP
can be used as the index for the address of the window procedure for the
window.

p Specifies the pointer to store in the window's reserved memory.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryWindowPtr, WinSetWindowULong

• WinSetWindowText
Baal WinSetWindowText(hwnd. pszText)
HWND hwnd; /. handle of the window ./
PSZ pszText; /. points to the text to set ./

Parameters

The WinSetWindowText function sets the window text for a window to the
specified text. This function sends a ~SETWINDOWP ARAMS message to
the hwnd window.

If this function.is called with a frame-window handle, the text of the title-bar­
frame control is changed.

hwnd Identifies the window to set the text for.

pszText Points to the window text.

370 WinSetWindowText

Return Value

See Also

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryWindowText

• WinSetWindowULong
BOOl WinSetWindowUlong(hwnd, index, uJ)
HWND hwnd; 1* handle of the window *1
SHORT index; 1* index into reserved memory *1
UlONG uJ; 1* value to place in reserved memory *1

Parameters

Return Value

Comments

See Also

The WinSetWindowULong function places an unsigned long integer value into
the reserved memory of a window. •

hwnd Identifies the window whose reserved memory is to be changed.

index Specifies the zero-based index of the ULONG value to set. Valid values
are in the range zero through the number of bytes of window data (for example,
a value of 8 would be an index to the third long integer), or any of the following
QWL values:

Value

QWL_HHEAP

QWL_HMQ

QWL_HWNDFOCUSSA VE

QWL_STYLE

QWL_USER

Meaning

Handle of the heap.

Handle of the message queue of the window.

Handle of the window that last had the focus.

Window style.

ULONG value present in windows of the fol­
lowing preregistered window classes:

WC_BUTTON
WC_DIALOG
WC_ENTR YFIELD
WC_FRAME
WC_LISTBOX
WC_MENU
WC_SCROLLBAR
WC_STATIC

This value can be used to retrieve
application-specific data in controls.

ul Specifies the unsigned long integer to place in the window's reserved
memory.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

The specified index is valid only if all the bytes referenced are within the
reserved memory. For example, this function would fail if an index value of zero
was specified and only 2 bytes had been reserved.

WinQueryWindowULong, WinRegisterClass, WinSetWindowBits, WinSet­
WindowUShort

WinShowCursor 371

• WinSetWindowUShort
BOOl WinSetWindowUShort(hwnd, index, us)
HWND hwnd; I. handle of the window .1
SHORT index; I. index into reserved memory *1
USHORT us; I. value to place in reserved memory *1

Parameters

Return Value

See Also

• WinShowCursor

The WinSetWindowUShort function places an unsigned short integer into the
reserved memory of a window.

hwnd Identifies the window whose reserved memory is to be changed.

index Specifies the zero-based index of the USHORT value to set. Valid
values are in the range zero through the number of bytes of window data (for
example, a value of 8 would be an index to the fifth short integer), or any of the
following QWS values:

Value Meaning

Index of the window identifier (as passed by the WinCreate­
Window function).

Index of an unsigned short value present in windows of the fol­
lowing preregistered window classes:

WC_BUTTON
WC_DIALOG
WC_ENTRYFIELD
WC_FRAME
WC_LISTBOX
WC_MENU
WC_SCROLLBAR
WC_STATIC

This value can be used to set application-specific data in con­
trols.

us Specifies the unsigned short integer to place in the window's reserved
memory.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreateWindow, WinQueryWindowUShort, WinRegisterClass, WinSet­
WindowULong

BOOl WinShowCursor(hwnd, (Show)
HWND hwnd; I. handle of the window .1
BOOl (Show; I. show/hide flag .1

The WinShowCursor function displays or hides the cursor associated with a
specified window. A cursor show level count is kept internally. (You can retrieve
this value using the WinQuerySysValue function with SV _CURSORLEVEL as
the system value.) It is incremented by a hide operation and decremented by a
show operation. The cursor is visible only if the count is zero.

372 WinShowCursor

Parameters

Return Value

See Also

hwnd Identifies the window to which the cursor belongs.

fShow Specifies whether the cursor is shown or hidden. If TRUE,· the cursor
is made visible. If FALSE, the cursor is made invisible.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinCreateCursor, WinDestroyCursor, WinQueryCursorInfo, WinQuerySys­
Value

• WinShowPointer
BOOl WinShowPointer(hwndDesktop, (Show)
HWND hwndDesktopi /. handle of the desktop ./
BOOl (Show; /. show/hide flag */

Parameters

Return Value

See Also

The WinShowPointer function shows or hides the mouse pointer. A pointer
show level count is kept internally . (You can retrieve this value using the Win­
QuerySysValue function with SV YOINTERLEVEL as the system value.) It is
incremented by a hide operation and decremented by a show operation. The
pointer is visible only if the count is zero. If a mouse exists, the initial setting of
the pointer display level is O. Otherwise, it is 1.

hwndDesktop Identifies the desktop window. This parameter can be
HWNDJ)ESKTOP or the desktop window handle.

fShow Specifies whether the pointer is shown or hidden. If TRUE, the pointer
is made visible. If FALSE, the pointer is made invisible.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQuerySys Value

• WinShowTrackRect
BOOl WinShowTrackRect(hwnd, (Show)
HWND hwnd; /* handle of the window */
BOOl (Show; 1* show/hide flag */

Parameters

Return Value

The WinShowTrackRect function hides or shows the tracking rectangle. A track
rectangle show level count is kept internally. (You can retrieve this value using
the WinQuerySysValue function with SV _TRACTRECTLEVEL as the system
value.) It is incremented by a hide operation and decremented by a show opera­
tion. The track rectangle is visible only if the count is zero.

hwnd Identifies the window passed to the WinTrackRect function.

fShow Specifies whether the rectangle is shown or hidden. If/Show is TRUE,
the function shows the tracking rectangle. If /Show is FALSE, the function hides
the tracking rectangle.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Comments

See Also

WinShowWindow 373

An application must call this function to hide a rectangle it is tracking if there is
a possibility of corrupting the track rectangle while drawing (showing it after­
ward). Since rclTrack in the TRACKINFO structure is updating continuously,
the application can examine the current tracking rectangle coordinates to deter­
mine whether temporary hiding is necessary.

An application needs to call WinShowTrackRect only during asynchronous
drawing. If an application is drawing on one thread and issuing the WinTrack­
Rect function on another, pieces of a tracking rectangle may be left behind. The
drawing thread should call WinShowTrackRect when tracking may be in prog­
ress. The application should provide for communication between the two threads
to ensure that if one thread is tracking, the drawing thread will issue Win­
ShowTrackRect. This can be achieved with a semaphore.

WinQuerySysValue, WinTrackRect

• WinShowWindow
BOOl WinShowWindow(hwnd. (Show)
HWND hwnd; 1* handle of the window *1
BOOl (Show; /* show/hide flag *1

Parameters

Return Value

Comments

See Also

The WinShowWindow function sets the window visibility state.

hwnd Identifies the window whose visibility state is being set.

[Show Identifies the new visibility state. If jShow is TRUE, the function sets
the window state to visible. If jShow is FALSE, the function sets the window
state to invisible.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

A window possesses a visibility state indicated by the WS_ VISIBLE style bit.
When the WS_ VISIBLE style bit is set, the window is shown and subsequent
drawing into the window is displayed, as long as the window or any of the win­
dows in the parent chain have the WS_ VISIBLE style.

When the WS_ VISIBLE style bit is not set, the window is not shown (hidden)
and subsequent drawing into the window is not displayed.

If the value of the WS_ VISIBLE style bit has been changed, the
~ WINDOWPOSCHANGED message is sent to the window of the hwnd
parameter before the function returns.

Drawing to a window with a WS_ VISIBLE style will not be displayed if the win­
dow is covered by other windows or clipped by its parent.

WinIs Window Visible

374 WinStartTimer

• WinStartTimer
USHORT WinStartTimer(hab, hwnd, idTimer,ITimeOut)
HAB hab; I. handle of the anchor block .1
HWND hwnd; I. handle of the window .1
USHORT idTimer; I. timer identifier .1
USHORT ITimeOut; I. time-out value .1

Parameters

Return Value

Comments

See Also

• WinStopTimer

The WinStartTimer function starts a timer. A time-out value is specified, and
every time a time-out occurs, a W1LTIMER message is posted to the specified
window.

A second call to WinStartTimer for a timer that already exists will reset that
timer.

hab Identifies the anchor block.

hwnd Identifies the window that is part of the timer identification. If the hwnd
parameter is NULL, then the idTimer parameter is ignored and WinStartTimer
returns a unique nonzero identification value that identifies the timer. The timer
message is posted in the queue associated with the current thread, with the hwnd
parameter equal to NULL.

idTimer Identifies the timer. If hwnd is NULL, this parameter is ignored.

lTimeOut Specifies the timer delay, in milliseconds. An lTimeOut value of
zero will cause the timer to time out as fast as possible; generally, this is about
1/18 of a second.

The return value is TRUE if the function is successful and if hwnd is not NULL.
Otherwise, it is FALSE, indicating that an error occurred. If hwnd is NULL,
the return value is a unique nonzero value, or zero if an error occurs.

If the hwnd parameter is NULL, then the return value from this function must
be used as the idTimer parameter in any subsequent call to WinStopTimer.

WinStopTimer

BOOl WinStopTimer(hab, hwnd, idTimer)
HAB hab; I. handle of the anchor block .1
HWND hwnd; I. handle of the window .1
USHORT idTimer; I. timer identifier .1

Parameters

Return Value

See Also

The WinStopTimer function stops a timer. When this function is called, no
further messages are received from the stopped timer, even if it has timed out
since the last call to the WinGetMsg function.

hab Identifies the anchor block.

hwnd Identifies the window containing the timer.

idTimer Identifies the timer.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinGetMsg, WinStartTimer

WinSubstituteStrings 375

• WinSubclassWindow
PFNWP WinSubclassWindow(hwnd. pfnwp)
HWND hwnd; I. handle of the window to subclass .1
PFNWP pfnwp; I. address of new window procedure .1

Parameters

Return Value

Comments

See Also

The WinSubcIassWindow function subclasses a window by replacing its window
procedure with another window procedure specified by the pfllWp parameter.

hwnd Identifies the window to subclass.

pfnwp Points to the address of the procedure used to subclass the window.

The return value, if the function is successful, is the address of the previous win­
dow procedure that belongs to the window specified by the hwnd parameter.
Otherwise, the return value is OLe

To subclass a window effectively, the new window procedure should call the old
window procedure, rather than the WinDetWindowProc function, for those mes­
sages it does not process itself.

To reverse the effect of subclassing, call WinSubcIass Window again using the
old window procedure address.

It is not possible to subclass a window created by another process.

WinDetWindowProc

• WinSubstituteStrings
SHORT WinSubstituteStrings(hwnd. pszSrc. cchDstMax. pszDst)
HWND hwnd; I. handle of the window .1
PSZ pszSrc; I. address of the source string .1
SHORT cchDstMax; I. size of destination string buffer .1
PSZ pszDst; I. address of buffer for destination string .1

Parameters

The Win Substitute Strings function performs a substitution process on a text
string, replacing certain marker characters with text supplied by the application.
The WinSubstituteStrings function is particularly useful for displaying variable
information in dialog boxes, menus, and other user-interface functions. Variable
information can include things such as filenames, which cannot be statically
declared within resource files.

This function is called by the system while creating the child windows in a dialog
box. It allows the child windows to perform substitutions in their window text.

hwnd Identifies the window that processes the function.

pszSrc Points to the null-terminated text string to perform the substitution.

cchDstMax Specifies the maximum number of characters that can be returned
in the pszDst parameter.

pszDst Points to the null-terminated text string produced by the substitution
process. The string is truncated if it would otherwise contain more than the
number of characters specified by the cchDstMax parameter. When truncation
occurs, the last character of the truncated string is always the NULL termination
character.

376 WinSubstituteStrings

Return Value

Comments

The return value is the number of characters returned in pszDst, not including
the terminating NULL character. The maximum value is (cchDstMax - 1). It is
zero if an error occurred.

When a string of the form %n is encountered in the source string, where n is a
digit from 0 through 9, a ~SUBSTITUTESTRING message is sent to the
specified window. This message returns a text string to use as a substitution for
the %n in the destination string, which is otherwise an exact copy of the source
string.

If % is encountered in the source, % is copied to the destination, 'but no other
substitution occurs. If %x occurs in the source, where x is neither a digit nor %,
then the source is copied to the destination unchanged.

The source and destination strings must not overlap in memory.

To use this function, your application must process
~SUBSTITUTESTRING messages and perform the requested string substi­
tution.

• WinSubtractRect
BOOl WinSubtractRect(hab, prclDst, prc/Src1, prc/Src2)
HAB hab; I. handle of the anchor block .1
PRECTl prclDst; I. address of the destination rectangle structure .1
PRECTl prc/Src1; I. address of the first rectangle structure .1
PRECTl prc/Src2; I. address of the second rectangle structure .1

Parameters

The WinSubtractRect function subtracts one rectangle from another by subtract­
ing the prclSrc2 parameter from the prclSrcl parameter. Subtracting one rect­
angle from another does not always result in a rectangular area; in this case,
WinSubtractRect returns prclSrcl in the prclDst parameter. For this reason,
WinSubtractRect provides only an approximation of subtraction. However, the
area described by prclDst is always greater than or equal to the "true" result of
the subtraction. You can use the GpiCombineRegion function to calculate the
true result of the subtraction of two rectangular areas, although WinSubtract­
Rect does it much faster.

hab Identifies an anchor block.

prclDst Points to a RECTL structure that contains the result of the subtrac­
tion of the prclSrc2 parameter from the prclSrcl parameter. The RECTL struc­
ture has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

prclSrcl Points to a RECTL structure that 'contains the first source rectangle.

prclSrc2 Points to a RECTL structure that contains the second source rect­
angle.

Return Value

See Also

• WinTerminate

WinThrow 377

The return value is TRUE if the prclDst parameter points to a nonempty rect­
angle. Otherwise, it is FALSE, indicating that prclDst is an empty rectangle.

GpiCombineRegion, WinUnionRect

Baal WinTenninate(hab)
HAB hab; 1* handle of the anchor block *1

Parameters

Return Value

See Also

• WinThrow

The WinTerminate function terminates an application thread's use of Presenta­
tion Manager and releases all its associated resources. It is recommended that
you call this function prior to termination of your application. However, if it is
not issued, all Presentation Manager resources allocated to the thread are deallo­
cated when the program terminates-whether normally or abnormally-by
Presentation Manager code executed as part of the exit-list processing.

hab Identifies the anchor block.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Winlnitialize

VOID WinThrow(pctchbf, sErrorReturn)
PCATCHBUF pctchbf; 1* address of structure with execution environment .1
SHORT sErrorReturn; 1* error code to return .1

Parameters

Return Value

Comments

Example

The Win Throw function restores the execution environment to the values saved
in the buffer pointed to by the pctchbf parameter. Execution then transfers to the
WinCatch function that copied the environment to pctchbf.

pctchbj Points to a CATCHBUF structure that contains the execution envi­
ronment. It must have been set by a previous WinCatch function call. The
CATCHBUF structure has the following form:

typedef struct _CATCHBUF {
, ULONG reserved[4];

} CATCHBUF;

For a full description, see Chapter 4, "Types, Macros, Structures."

sErrorReturn Specifies the value to be returned to the Win Catch function.
The meaning of the value is determined by the application.

This function does not return a value.

The routine that calls WinCatch is responsible for freeing any resources allo­
cated between the time WinCatch was called and the time WinThrow was called.

This example calls WinCatch to save the current execution environment before
calling a recursive sort function. The first return from WinCatch is zero. If the
doSort function calls WinThrow, execution will again return to the WinCatch
~unction. This time, Win Catch will return the STACK OVERFLOW error

378 WinThrow

See Also

• WinTrackRect

passed by the doSort function. The do Sort function is recursive, that is, it calls
itself. It maintains a variable, usStackCheck, that is used to check to see how
much stack space has been use4. If more then 3K of the stack has been used, it
calls WinThrow to drop out of all the nested function calls back into the func­
tion that called WinCatch.

USHORT usStackCheck
CATCHBUF ctchbf;

main () {
SHORT sErrorReturn;

sErrorReturn = WinCatch(&ctchbf); /* save execution environment */
if (sErrorReturn) { ,

}

. /* error processing */

}
usStackCheck = 0;
doSort(l, 1000);

/* initialize stack usage count */
/* call sort function */

VOID doSort(sLeft, sRight)
SHORT sLeft, sRight;
{

}

SHORT i, sLast;

/*
* check to see if more then 3K of the stack has been used, and if
* so, call WinThrow to drop back into the original calling program
*/

usStackCheck += 10;
if (usStackCheck > (3 * 1024)

WinThrow(&ctchbf, STACKOVERFLOW);

. /* sorting algorithm */

doSort(sLeft, sLast - 1);
usStackCheck -= 10;

/* note recursive call */
/* update stack check variable */

WinCatch

BOOL WinTrackRect(hwnd, hps, pti)
HWND hwnd; 1* handle of the window *1
HPS hps; 1* presentation-space handle *1
PTRACKINFO pti; 1* address of structure for tracking information *1

Parameters

The WinTrackRect function draws a tracking rectangle.

hwnd Identifies the window in which tracking is to take place. If hwnd
identifies the desktop window or HWNDJ)ESKTOP, tracking will take place
over the entire screen. It is assumed that the style of this window is not
WS_CLIPCHILDREN.

hps Identifies the presentation space to be used for drawing the clipping rect­
angle. If hps is NULL, the hwnd parameter is used to calculate a presentation
space for tracking. (It is assumed that tracking takes place within the window
identified by hwnd and that the style of this window is not set to
WS_CLIPCHILDREN.) When the drag rectangle appears, it is not clipped by

Return Value

Comments

WinTrackRect 379

any children within the window. If the window style is WS_CLIPCHILDREN
and the application wants the drag rectangle to be clipped, it must explicitly pass
an appropriate presentation space.

pti Points to a TRACKINFO structure. The TRACKINFO structure has the
following form:

typedef struct _TRACKINFO {
SHORT cxBorder;
SHORT cyBorder;
SHORT cxGrid;
SHORT cyGrid;
SHORT cxKeyboard;
SHORT cyKeyboard;
RECTL rclTrack;
RECTL rclBoundary;
POINTL ptlMinTrackSize;
POINTL ptlMaxTrackSize;
USHORT fs;

} TRACKINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful. Otherwise, it is FALSE,
indicating that an error occurred or that the mouse was already captured when
WinTrackRect was called. Only one tracking rectangle may be in use at a time.

This function provides general-purpose mouse tracking. WinTrackRect draws a
rectangle and allows the user to position the entire rectangle or make a specific
side or corner smaller or larger. The resulting rectangle is then returned to the
application, which can use this new information for size and position data. For
example, to move and size windows by using the wide sizing borders, the window
manager interface simply calls WinTrackRect.

WinTrackRect allows the caller to control such limiting values as the following:

• A maximum and minimum tracking size
• The widths of the tracking rectangle's sides

If the TF _SETPOINTERPOS flag is included, the mouse pointer is positioned at
the center of the tracking rectangle. Otherwise, the mouse pointer is not moved
from its current position. At this point, there is an established distance between
the mouse position and the part of the tracking rectangle that it moves, the value
of which is kept constant.

While moving or sizing with the keyboard interface, the mouse pointer is reposi­
tioned along with the tracking rectangle's new size or position.

During tracking, the following keys are active:
Value

ENTER

LEFT

UP

RIGHT

DOWN

ESC

Meaning

Accepts the new position or size.

Moves the mouse pointer and tracking rectangle left.

Moves the mouse pointer and tracking rectangle up.

Moves the mouse pointer and tracking rectangle right.

Moves the mouse pointer and tracking rectangle down.

Cancels the current tracking operation. In this case, the value
of the tracking rectangle is undefined on exit.

380 WinTrackRect

See Also

The mouse and the keyboard interface can be intermixed. The caller need not
include the TF _SETPOINTERPOS flag to be able to use the keyboard interface;
this simply initializes the position of the mouse pointer.

Tracking movements using the keyboard arrow keys are in increments of the
cxGrid and cyGrid fields, regardless of whether TF _GRID is specified. If
TF _GRID is specified, the interior of the tracking rectangle is allowed only on
multiples of cxGrid and cyGrid. The default value for cxGrid is the system-font
character width, and the default value for cyGrid is half the height of the system
font.

The tracking rectangle is usually logically "on top" of objects it tracks, so that
the user can see the old size and position while tracking the new. Thus, it is pos­
sible for a window below the tracking rectangle to update while part of the track­
ing rectangle is above it.

Since the tracking rectangle is drawn in exclusive-OR mode, no window can
draw below the tracking rectangle (and thereby obliterate it) without first notify­
ing the tracking code, because fragments of the tracking rectangle can be left
behind. If the window doing the drawing is clipped from the window the tracking
is occurring in, there is no problem.

To prevent a window that is currently processing a WMJ> AINT message from
drawing over the tracking rectangle, MS OS/2 treats the tracking rectangle as a
system-wide resource, only one of which can be in use at anyone time. If there
is a risk of the currently updating window drawing on the tracking rectangle, MS
OS/2 removes the tracking rectangle while that window and its child windows
update, and then replaces it. This is done specifically by the WinBeginPaint and
WinEndPaint functions. If the tracking rectangle overlaps, it is removed by Win­
BeginPaint. With the WinEndPaint function, all child windows are updated by
using the WinUpdateWindow function before the tracking rectangle is redrawn.

WinTrackRect has a modal loop within its function. The modal loop has a
HICMSGFILTER hook and hook code MSGF _TRACK. For an explanation of
this hook type, see the WinSetHook function. .

The rectangle tracked by WinTrackRect is guaranteed to be within the specified
tracking bounds and dimensions. If the rectangle passed is out of these bounds,
or is too large or too small, it is modified to a rectangle that meets those limits.

WinBeginPaint, WinEndPaint, WinSetHook, WinUpdate Window

• WinTranslateAccel
BOOl WinTranslateAccel(hab, hwnd, hacce/, pqmsg)
HAB hab; I. handle of the anchor block .1
HWND hwnd; I. handle of the window .1
HACCEl hacce/; I. handle of the accelerator table .1
PQMSG pqmsg; I. address of structure with message.1

Parameters

The WinTranslateAccel function translates a ~CHAR message. If it is a
~CHAR message in the specified accelerator table, WinTranslateAccel
translates the message pointed to by the pqmsg parameter. The message is
translated into a W~COMMAND, W~SYSCOMMAND, or WMJIELP
message.

hab Identifies the anchor block.

Return Value

Comments

See Also

• WinUnionRect

WinUnionRect 381

hwnd Identifies the destination window. Normally, this parameter identifies a
frame window.

haccel Identifies the accelerator table.

pqmsg Points to a QMSG structure that contains the message to be translated.
The QMSG structure has the following form:

typedef struct _QMSG {
HWND hwnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the function is successful-that is, if the message
matches an accelerator in the table. Otherwise, it is FALSE, indicating that an
error occurred.

It is possible to have accelerators that do not correspond to items in a menu. If
the command value does not match any items in the menu, the message is still
translated.

Generally, applications do not have to call this function. It is normally called
automatically by WinGetMsg and WinPeekMsg when a W1LCHAR message is
received, with the window handle of the active window as the first parameter.
The standard frame window procedure always passes W1LCOMMAND mes­
sages to the FID_CLIENT window. Since the message is physically changed by
WinTranslateAccel, applications will not receive the W1LCHAR messages that
resulted in W1LCOMMAND, W1LSYSCOMMAND, or WMJIELP messages.

WinGetMsg, WinPeekMsg

BOOl WinUnionRect(hab, pre/Dst, pre/Sre1, pre/Sre2)
HAB hab; /" handle of the anchor block "/
PRECTl pre/Dst; /. address of the destination rectangle structure "/
PRECTl pre/Sre1; /. address of the first rectangle structure "/
PRECTl pre/Sre2; /. address of the second rectangle structure "/

Parameters

The WinUnionRect function calculates a rectangle that bounds the two source
rectangles.

hab Identifies an anchor block.

prclDst Points to a RECTL structure that will receive a rectangle bounding the
rectangles pointed to by the prc1Srcl and prc1Src2 parameters. The RECTL struc­
ture has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

382 WinUnionRect

Return Value

See Also

For a full description, see Chapter 4, "Types, Macros, Structures."

prclSrel Points to a RECTL structure that contains the first source rectangle.

prclSre2 Points to a RECTL structure that contains the second source rect­
angle.

The return value is TRUE if prclDst is a nonempty rectangle. Otherwise, it is
FALSE, indicating that an error occurred or that the prclDst rectangle is empty.
If one of the source rectangles is NULL, the other is returned.

WinlntersectRect, WinSubtractRect

• WinUpdateWindow
BOOl WinUpdateWindow(hwnd)
HWND hwnd; 1* handle of the window *1

Parameters

Return Value

Comments

See Also

• WinUpper

The WinUpdateWindow function forces a window and its associated child win­
dows to be updated.

hwnd Identifies the window to be updated.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

If hwnd is a child window of a parent window that was created without the
WS_CLIPCHILDREN style, the update region of hwnd is removed from the
update region of the parent window. This is so that after the hwnd window is
redrawn, the parent window will not draw over what was just drawn for hwnd.

WinlnvalidateRect

USHORT WinUpper(hab. idcp, idcc, psz)
HAB hab; 1* handle of the anchor block *1
USHORT idcp; 1* code-page Identifier *1
USHORT idcc; I. country-code identifier *1
PSZ psz; I. address of the string to convert *1

Parameters

Return Value

See Also

The WinUpper function converts ~ string to uppercase in place.

hab Identifies the anchor block.

idep Identifies the code page. If idep is NULL, the current process's code
page is used.

idee Identifies the country code. If idee is NULL, the default country
specified in the eonfig.sys file is used.

psz Points to the string to be converted.

The return value is the length of the converted string.

WinUpperChar

WinValidateRect 383

• WinUpperChar
USHORT WinUpperChar(hab, idep, idee, e)
HAB hab; 1* handle of the anchor block *1
USHORT idep; 1* code-page identifier *1
USHORT idee; 1* country-code identifier *1
USHORT e; 1* character to translate *1

Parameters

Return Value

See Also

The WinUpperChar function translates a character to uppercase.

hab Identifies the anchor block.

idep Identifies the code page. If idep is NULL, the current process's code
page is used.

idee Identifies the country code. If idee is NULL, the default country
specified in the eonfig.sys file is used.

e Specifies the character to be translated to uppercase.

The return value is the converted character if the function is successful. Other­
wise, it is zero, indicating that an error occurred.

WinUpper

• WinValidateRect
BOOL WinValidateRect(hwnd, prel, flneludeChildren)
HWND hwnd; 1* handle of the window *1
PRECTL prel; 1* address of structure with validation rectangle *1
BOOL fln'cludeChildren; 1* inclusion flag *1

Parameters

The Win ValidateRect function subtracts a rectangle from the update region of
an asynchronous paint window, marking that part of the window as visually
valid. This function has no effect on the window if any part of the window has
been made invalid since the last call to a WinBeginPaint, WinQueryUpdate­
Rect, or WinQueryUpdateRegion function. This function is not used for
CS_SYNCPAINT windows.

hwnd Identifies the window whose update region is changed. If hwnd is
HWND.J)ESKTOP, this function applies to the whole screen (or desktop).

prcl Points to a RECTL structure that contains the valid rectangle. This rect­
angle is subtracted from the window's update region. The RECTL structure has
the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

fIn clu de Ch ildren Specifies the validation scope. If flncludeChildren is TRUE,
the function includes the descendants of hwnd in the valid rectangle. If the
flncludeChildren parameter is FALSE, the function does not include the descen­
dants of hwnd in the valid rectangle.

384 WinValidateRect

Return Value

See Also

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinBeginPaint, WinQueryUpdateRect, WinQueryUpdateRegion,
Win ValidateRegion

• WinValidateRegion
BOOl WinValidateRegion(hwnd, hrgn, flncludeChildren)
HWND hwnd; 1* handle of the window *1
HRGN hrgn; 1* handle of the valid region *1
BOOl flncludeChildren; 1* inclusion flag *1

Parameters

Return Value

See Also

• WinWaitMsg

The WinValidateRegion function subtracts a region from the update region of an
asynchronous paint window, marking that part of the window as visually valid.
This function has no effect on the window if any part of the window has been
made invalid since the last call to a WinBeginPaint, WinQueryUpdateRect, or
WinQueryUpdateRegion function. This function is not used for
CS_SYNCPAINT windows.

hwnd Identifies the window whose update region is changed. If hwnd is
HWNDJ)ESKTOP, the function applies to the whole screen (or desktop).

hrgn Identifies the region that is subtracted from the window's update region.

flncludeChildren Specifies the validation scope. If the flncludeChildren
parameter is TRUE, the function includes the descendants of hwnd in the valid
region. If flncludeChildren is FALSE, the function does not include the descen­
dants of hwnd in the valid region.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinBeginPaint, WinQueryUpdateRect, WinQueryUpdateRegion,
Win ValidateRect

BOOl WinWaitMsg(hab, msgFirst, msgLast)
HAB hab; 1* handle of the anchor block *1
USHORT msgFirst; 1* first message *1
USHORT msgLast; 1* last message *1

Parameters

The WinWaitMsg function waits for a filtered message. This function waits for
the first message that conforms to the filtering criteria to arrive on the message
queue since the queue was last inspected by either the WinGetMsg or Win­
PeekMsg function. The filtering criteria are specified by the msgFirst and
msgLast parameters.

hab Identifies the anchor block.

msgFirst Specifies the first message.

msgLast Specifies the last message.

Return Value

Comments

See Also

WinWindowFromDC 385

The return value is TRUE if the function is successful or FALSE if an error
occurs.

Filtering allows an application to process messages in a different order than the
one in the queue. Filtering is used so the application can receive messages of a
particular type only, rather than receiving other types of messages at an incon­
venient point in the logic of the application. For example, when a "mouse button
down" message is received, the application can use filtering to wait for the
"mouse button up" message without having to process other messages.

When using filtering, you must ensure that a message satisfying the specification
of the filtering parameters can occur; otherwise, the WinGetMsg function cannot
completely execute. For example, calling the WinGetMsg function with the
msgFilterFirst and msgFilterLast parameters equal to W1LCHAR and with the
hwndFilter parameter set to a window handle that does not have the input focus
prevents WinGetMsg from returning.

Keystrokes are passed to the WinTranslateAccel function. This means that
accelerator keys· are translated into W1LCOMMAND or W1LSYSCOMMAND
messages and are not received as W1LCHAR messages by the application.

If both msgFirst and msgLast are zero, then WinWaitMsg will return when any
message is placed in the queue. This can be used in conjunction with the Win­
PeekMsg function to create a WinGetMsg type loop that does not remove mes­
sages from the queue.

The constants W1LMOUSEFIRST and \V1LMOUSELAST can be used for
msgFirst and msgLast to filter all but mouse messages.

The constants WMJ3UTTONCLICKFIRST and \VMJ3UTTONCLICKLAST
can be used for msgFirst and msgLast to filter all but mouse button messages.

The constants WMJ)DE_FIRST and W1LDDE~AST can be used for
msgFirst and msgLast to filter all but dynamic data exchange messages.

WinGetMsg, WinPeekMsg, WinTranslateAccel

• WinWindowFromDC
HWN D WinWindowFromDC (hdc)
HDC hdc; 1* handle of the device context *1

Parameters

Return Value

See Also

The Win WindowFromDC function is used to determine the window associated
with a window device context, given a device context handle returned by the
WinOpen WindowDC function. If the device context handle is not a window
device context, this fun~tion returns NULL.

hdc Identifies the window device context.

The return value is a window handle if the function is successful. Otherwise, it is
NULL, indicating that an error occurred.

WinOpen WindowDC

386 WinWindowFromlD

• WinWindowFromlD
HWND WinWindowFromlD(hwndParent, id)
HWND hwndParent; I. handle of the parent window .1
USHORT id; I. window identifier .1

Parameters

Return Value

Comments

Example

See Also

The Win WindowFromID function returns the first child window of hwndParent
that has the specified identifier.

hwndParent Identifies the parent window.

id Identifies the window.

The return value is a window handle. If no child window exists with identifier id
the return value is NULL.

To obtain the window handle for an item within a dialog box, the hwndParent
parameter is set to the dialog-box window's handle and the id parameter is set to
the identifier of the item in the dialog template.

To obtain the window handle for a frame control, the hwndParent parameter is
set to the frame window's handle and the id parameter is set to one of the FID
constants, indicating which frame control you want a handle of. The following
list contains the frame control identifiers:

Value

FID_CLIENT

FID_HORZSCROLL

FID_MENU

FID_MINMAX

FID_SYSMENU

FID_ TITLEBAR

FID_ VERTSCROLL

Meaning

Identifies the client window.

Identifies the horizontal scroll bar.

Identifies the system menu.

Identifies the minimize/maximize box.

Identifies the system menu.

Identifies the title bar.

Identifies the vertical scroll bar.

This example calls Win WindowFromID to get the window handle of the system
menu and calls WinSendMsg to send a message to disable the Close menu item.

HWND hwndSysMenu;

hwndSysMenu = WinWindowFromID(hwndDlg, FID_SYSMENU);
WinSendMsg(hwndSysMenu, MM_SETITEMATTR,

MPFROM2SHORT(SC_CLOSE, TRUE),
MPFROM2SHORT(MIA_DISABLED, MIA_DISABLED»;

WinMultWindowFromIDs, Win WindowFromPoint

WinWriteProfileOata 387

• WinWindowFromPoint
HWND WinWindowFromPoint(hwnd, pptl, fChildren, fLock)
HWND hwnd; I. handle of the window .1
PPOINTl ppt/; I. address of structure with the point .1
BOOl fChildren; I. scope flag .1
BOOl fLock; I. lock/unlock flag .1

Parameters

Return Value

Comments

See Also

The Win WindowFromPoint function finds the window that is below a specified
point and that is a descendant of a specified window. This function checks only
the descendants of the specified window.

hwnd Identifies the window whose child windows are tested.

pptl Points to a POINTL structure that contains the point to test, specified in
window coordinates relative to the hwnd parameter. The POINTL structure has
the following form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

fChildren Specifies which child windows to test. If fChildren is TRUE, the
function tests all the descendants of hwnd, including child windows of child win­
dows. If fChildren is FALSE, the function tests only the immediate child win­
dows of hwnd.

fLock Specifies whether the window is to be locked or unlocked. If TRUE,
the window is locked. If FALSE, it is not.

Iff Children is FALSE, the return value is hwnd, a child of hwnd, or NULL. If
fChildren is TRUE, the return value is the topmost window if that window is
hwnd or a child of hwnd-unless another window of CSJIITIEST type is
found, in which case the window returned may not be the topmost window.

If the retrieved window is locked by this function, you must at some point call
the WinLockWindow function to unlock the window. The reason for locking the
window is so that the window cannot be destroyed until you are done using it.

Win WindowFromID

• WinWriteProfileData
BOOl WinWrite Profile Data (hab, pszAppName, pszKeyName, pchBinaryData, cchData)
HAB hab; I. handle of the anchor block .1
PSZ pszAppName; I. address of the application name .1
PSZ pszKeyName; I. address of the keyname .1
PVOID.pchBinaryData; I. address of the data .1
USHORT cchData; I. length of the data .1

The Win WriteProfileData function places binary data into the os2.ini file. Where
the data is placed is determined by an application name and a keyname that are
passed to the function. The data can then be retrieved at a later time with the

388 WinWriteProfileData

Parameters

Return Value

Comments

See Also

WinQueryProfileData function, using the same application name (pszAppName)
and keyname (pszKeyName).

hab Identifies the anchor block.

pszAppName Points to a null-terminated text string that contains the name of
the application. Its length must be less than 1024 bytes, including the null termi­
nation character. The application name is always case-dependent. If there is no
application field in the os2.ini file that matches pszAppName, a new application
field is created before the keyname entry is made for it.

pszKeyName Points to a null-terminated text string that contains the key­
name. Its length must be less than 1024 bytes, including the null termination
character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is always case-dependent. If there is no keyname that matches
pszKeyName, a new keyname field is created. If the keyname already exists, the
existing value is overwritten.

pchBinaryData Points to the binary data that is placed into the os2.ini file.
There is no explicit termination character. If pchBinaryData is NULL, the previ­
ous value associated with pszKeyName is deleted; otherwise, the data string
becomes the value even if it has a zero length. The data should not exceed 64K.

cchData Specifies the size of the pchBinaryData parameter, in bytes.

The return value is TRUE if the function is successful. Otherwise, it is FALSE,
indicating that an error occurred. If the os2.ini file exists but is in corrupted
form, this function returns an error.

The application must know the size of the stored data when it calls Win Query­
ProfileData to retrieve the data.

WinQueryProfileData

• WinWritePrafileString
Baal WinWriteProfileString(hab, pszAppName, pszKeyName, pszString)
HAB hab; I. handle of the anchor block .1
PSZ pszAppName; I. address of the application name .1
PSZ pszKeyName; I. address of the keyname .1
PSZ pszString; I. address of the string to write .1

Parameters

The WinWriteProfileString function places an ASCII string into the os2.ini file.
Where the data is placed is determined by an application name and a keyname
that are passed to the function. The data can then be retrieved at a later time
with the WinQueryProfileString function, using the same application name
(pszAppName) and keyname (pszKeyName).

hab Identifies the anchor block.

pszAppName Points to a null-terminated text string that contains the name of
the application. Its length must be less than 1024 bytes, including the null termi­
nation character. The application name is always case-dependent. If there is no
application field in the os2.ini file that matches pszAppName, a new application
field is created before the keyname entry is made for it.

Return Value

See Also

WinWriteProfileString 389

pszKeyName Points to a null-terminated text string that contains the key­
name. Its length must be less than 1024 bytes, including the null termination
character. If pszKeyName is NULL, all keynames and their data are deleted.
The keyname is always case-dependent. If there is no keyname that matches
pszKeyName, a new keyname field is created. If the keyname already exists, the
existing value is overwritten.

pszString Points to a null-terminated ASCII string that is placed into the
os2.ini file. If pszString is NULL, the previous value associated with pszKeyName
is deleted; otherwise, the ASCII string becomes the value even if it has a zero
length. The string should not exceed 64K.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

WinQueryProfileString

Chapter

3

Messages Directory
3.1 Introduction.. 393

3.2 Messages .. 394

Chapter 3: Messages Directory 393
gruiiW~:Ei~~~!§i!~I~H~!;;!s1~~f!l:ijf4:1lliUi~i!i3!i:~#.9i$~lUi:l~g1il3iffil§,4jS.!~imi§]l~~!l~Hr.sUW.k~ie:j~ilI$!W.lm~~~ia!~~g~:!H~~jiffij

3.1 Introduction
This chapter describes MS OS/2 window messages used for windows and
predefined control windows. MS OS/2 window messages let you control the
operation of the windows you create for your Presentation Manager applications.
Most messages apply to windows belonging to any window class, including win­
dow classes you register privately. Some messages, however, apply to windows
created with the MS OS/2 preregistered, control-window classes.

MS OS/2 window messages represent seven distinct message groups. As
described in the following list, programs use these message groups to carry out
specific tasks:

Message group

Buttons

Entry fields

List boxes

Menus

Scroll bars

Title bar

General

Usage

Use the button messages (B~) to set and query
the state of button controls. Button controls
represent push buttons, radio buttons, check
boxes, and user buttons.

Use the entry-field'messages (E~) to set and
retrieve text in entry-field controls. These mes­
sages also let you cut, copy, and paste text
between the entry-field controls and the clip­
board.

Use the list-box messages (L~) to set and
retrieve lists in list-box controls. These messages
also let you select or delete items in the list,
query for the currently selected item or items,
and search for items.

Use the menu messages (M~) to set and
retrieve items in menu controls. These messages
let you add or delete items in a menu, retrieve
information about menu items, and query for the
currently selected item.

Use the scroll-bar messages (SB~) to set and
retrieve the current position of the scroll-bar
slider.

Use the title-bar messages (TB~) to set and
retrieve the current text in a title-bar control.

Use the general window messages (W1L) to con­
trol the operation of windows of any window
class. For most general window messages, the
system sends the message to the window pro­
cedure of the given window. These messages can
represent input from the keyboard, mouse, or
timer. Some messages are requests from the sys­
tem to the window procedure for information or
they are actions to be taken. Other messages
contain information that the window procedure
can use or save to process later.

394 MS 05/2 Programmer's Reference, Vol. 2
lI;:lOO7s~i~l:ml~~I~l~i~ffiimj'jllm!@~~~ffil~fi~~!r~i~~fi~~J!fib1.~tim:!§jrmOOi~iSi1El~F.!ln!iUmIDw.gmi§i!mm;i:ff.:flli§@~~!~l~:mnmi

Message group Usage

The system uses general window messages when
creating, destroying, moving, sizing, and activat­
ing windows. It also uses these messages for all
input to the window, whether the input is from
devices like the keyboard and mouse or through
other windows, such as dialogs and menus.

This chapter gives complete syntax, purpose, and parameter descriptions for
each message. Types, macros, and structures used by a message are given with
the message; these are described more fully in Chapter 4, "Types, Macros,
Structures." The numeric values for error values returned by the messages are
listed in Appendix A, "Error Values."

Some of the message descriptions in this chapter include examples. The exam­
ples show how to use the messages to accomplish simple tasks. In nearly all
cases, the examples are code fragments, not complete programs. A code frag­
ment is intended to show the context in which a message can be used, but often
assumes that variables, structures, and constants used in the example have been
defined and/or initialized. Also, a code fragment may use comments to represent
a task instead of giving the actual statements.

Although the examples are not complete, you can still use them in your pro­
grams if you take the following steps:

• Include the os2.h file in your program.

• Define the appropriate include constants for the functions, structures, and
constants used in the example.

• Define and initialize all variables.

• Replace comments that represent tasks with appropriate statements.

• Check return values for errors and take appropriate action.

3.2 Messages
The following is a complete list, in alphabetical order, of the MS OS/2 window
messages.

Parameters

Return Value

See Also

BM_QUERYCHECKINDEX 395

BM_CLICK
mpl = OL;
mp2 = OL;

I' not used, must be zero 'I
I' not used, must be zero 'I

An application sends a B~CLICK message to simulate the effect of the user
clicking a mouse button. The button window responds to this message by taking
the same action that would occur if the button was clicked by the user.

This message does not use any parameters.

This message does not return a value.

~UTTONIDOWN,~UTTONIUP,WNLQUERYDLGCODE

• BM_QUERYCHECK

Parameters

Return Value

See Also

BM_QUERYCHECK
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends a B~QUERYCHECK message to determine the checked
state of a button control.

This message does not use any parameters.

The return value from a button control created with the BS_CHECKBOX,
BS~UTOCHECKBOX, BS~ADIOBUTTON, BS~UTORADIOBUTTON,
BS_3STATE, or BS~UT03STATE style is one of the following values:

Value Meaning

o Button state is unchecked.

1 Button state is checked.

2 Button state is indeterminate.

If the button style is any other value; the return value is zero.

BM_QUERYHILITE, B~SETCHECK

• BM_QUERYCHECKINDEX

Parameters

BM_QUERYCHECKINDEX
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends the B~QUERYCHECKINDEX message to determine
the zero-based index of a checked radio button. It can be sent to any radio but­
ton or auto-radio button within a group. The button window responds to this
message by returning the zero-based index of the checked radio button.

This message does not use any parameters.

396 BM_QUERYCHECKINDEX

Return Value

See Also

The return value is the radio-button index if the operation is successful or - 1 if
no radio button in the group is checked or if the button control does not have
the style BS-RADIOBUITON or BS~UTORADIOBU1TON.

B1LQUERYCHECK

• BM_QUERYHILITE

Parameters

Return Value

See Also

Parameters

Return Value

See Also

BM_QUERYHILITE
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends a B1LQUERYHILITE message to determine the high­
lighting state of a button control.

This message does not use any parameters.

The return value is TRUE if the button is highlighted, or FALSE if the button is
not highlighted or if the button was not created with the BSYUSHBUTION
style.

B1LQUERYCHECK, B1LSETHILITE

BM_SETCHECK
mpl = MPFROMSHORT((USHORT) fCheck);
mp2 = OL;

/* check state */
/* not used, must be zero */

An application sends a B1LSETCHECK message to set the checked state of a
button control.

fCheck Low word of mpl. Specifies the check state. This parameter can be
one of the following values:

Value Meaning

o Set the button state to unchecked.

1 Set the button state to checked.

2 Set the button state to indeterminate. This value can be used only
if the button has the BS_3STATE or BS_AUT03STATE style.

The return value is the previous check state.

B1LQUERYCHECK, B1LSETDEFAULT, B1LSETHILITE

I BM_SETDEFAUL T

BM_SETDEFAULT
mpl = MPFROMSHORT((USHORT) fDefault);
mp2 = OL;

/* default state */
/* not used, must be zero */

An application sends a B1LSETDEFAULT message to set the default state of a

Parameters

Return Value

See Also

• BM_SETHILITE

Parameters

Return Value

See Also

Parameters

Return Value

See Also

button control that has the BSYUSHBUTION or BS_USERBUTION style. If
the button does not have one of these styles, then the message has no effect.

fDefauit Low word of mpl. Specifies the default state. A value of TRUE sets
the default state; a value of FALSE removes the default state.

The return value is TRUE whether or not the default state is changed.

B~SETCHECK, B~SETHILITE

BM_SETHILITE
mpl = MPFROMSHORT((BOOL) fHighlight);
mp2 = OL;

It highlight state tl
It not used, must be zero tl

An application sends a B~SETHILlTE message to set the highlight state of a
button control.

fHighlight Low word of mpl. Specifies the highlight state. A value of TRUE
sets the highlighted state; a value of FALSE removes the highlighted state.

The return value is TRUE if the previous state was highlighted or FALSE if the
previous state was not highlighted.

B~QUERYHILITE, B~SETCHECK, B~SETDEFAULT

EM_CLEAR
mpl = OL;
mp2 = OL;

It not used, must be zero *1
It not used, must be zero tl

An application sends an E~CLEAR message to delete the current selection in
an entry-field control.

This message does not use any parameters.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

E~CUT

EM_COPY
mpl = OL;
mp2 = OL;

It not used, must be zero tl
1* not used, must be zero *1

An application sends an E~COPY message to paste the current selection in an
entry-field control to the clipboard in CF _TEXT format. The current selection in
the control is not changed.

Parameters

Return Value

See Also

Parameters

Return Value

See Also

Parameters

Return Value

See Also

This message does not use any parameters.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

E1LCUT, EMYASTE

EM_CUT
mpl = OL;
mp2 = OL;

/* not used, must be zero */
/* not used, must be zero */

An application sends an E1LCUT message to delete the current selection in
an entry-field control and place the selection into the clipboard in CF _TEXT
format.

This message does not use any parameters.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

E1LCOPY,EMYASTE

EM_PASTE
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an EMY ASTE message to replace the current selection in
an entry-field control with the contents of the clipboard if the clipboard data is
in CF_TEXT format.

This message does not use any parameters.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

E1LCOPY,E1LCUT

• EM_QUERYCHANGED
EM_QUERYCHANGED
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an E1LQUERYCHANGED message to determine
if the contents of the entry-field control have changed since the last
W1LQUERYWINDOWPARAMS or E1LQUERYCHANGED message.

Parameters

Return Value

See Also

EM_SETFIRSTCHAR 399

This message does not use any parameters.

The return value is TRUE if the contents have changed since the last query or
FALSE if the contents have not changed or if an error occurred.

~QUER~NDO~ARAMS

• EM_QUERYFIRSTCHAR

Parameters

Return Value

See Also

Parameters

Return Value

Comments

See Also

EM_QUERYFIRSTCHAR
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an E~QUERYFIRSTCHAR message to determine the
index of the character displayed in the first position of the edit control.

This message does not use any parameters.

The return value is the zero-based offset to the first character visible at the left
edge of an entry-field control.

E~SETFIRSTCHAR

EM_QUERYSEL
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an E~QUERYSEL message to determine the offsets of
the current selection in an entry-field control.

This message does not use any parameters.

The low word of the return value is the byte offset to the first character of the
selection. The high word of the return value is the byte offset of the last charac­
ter of the selection.

To determine the text for the current selection, an application would first call
the WinQueryWindowText function to get the entire contents, then send a
E~QUERYSEL message to get the offsets to the first and last characters of the
selection within the text, and then use these offsets to retrieve the selection text
from the entire text.

WinQueryWindowText, E~SETSEL

• EM_SETFIRSTCHAR

EM_SETFIRSTCHAR
mpl = MPFROMSHORT((SHORT) ichOffset);
mp2 = OL;

1* offset to first character *1
1* not used, must be zero *1

An application sends an E~SETFIRSTCHAR message to set the character to

400 EM_SETFIRSTCHAR

Parameters

Return Value

See Also

Parameters

Return Value

See Also

be displayed as the first character in an entry-field, scrolling the contents as
necessary.

ichOffset Low word of mpl. Specifies the offset to the character to place at
the left edge of the control.

The return value is TRUE if the operation is successful or FALSE if an error
occurs. This message returns FALSE if the edit control does not have the
ES~UTOSCROLL style or if it is centered or right justified.

EM-QUERYFIRSTCHAR

EM_SETSEL
mpl = MPFROM2SHORT«USHORT) usFirst, (USHORT) usLast); /* range */
mp2 = OL; /* not used, must be zero */

An application sends an EM-SETSEL message to set the range of a selection in
an entry field. If the first character position is zero and the last character posi­
tion is greater than or equal to the number of characters in the entry field, the
entire text is selected.

usFirst Low word of mpl. Specifies the offset to the first position of the selec­
tion.

usLast High word of mpl. Specifies the offset to the last position of the selec­
tion.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

EM-QUERYSEL,~QUERYDLGCODE

• EM_SETTEXTLIMIT

Parameters

Return Value

Comments

See Also

EM_SETTEXTLIMIT
mpl = MPFROMSHORT«SHORT) cchMax);
mp2 = OL;

/* max. number of characters */
/* not used, must be zero */

An application sends an EM-SETTEXTLIMIT message to set the maximum
number of characters an entry-field control can hold.

cchMax Low word of mpl. Specifies the maximum number of characters an
entry field can hold.

The return value is TRUE if the operation is successful or FALSE if there is not
enough memory to hold the requested number of characters.

Sending an EM-SETTEXTLIMIT message causes memory to be allocated from
the control heap for the specified maximum number of characters. Failure to
allocate suficient memory results in a WM-CONTROL message with the
E~EMERROR notification code being sent to the owner window.

WM-CONTROL

LM_INSERTITEM 401

• LM_DELETEALL

Parameters

Return Value

See Also

LM_DELETEALL
mpl = OL; /' not used, must be zero '/
mp2 = OL; /' not used, must be zero '/

An application sends an LMJ)ELETEALL message to delete all items in a list­
box control.

This message does not use any parameters.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

LMJ)ELETEITEM

• LM_DELETEITEM

Parameters

Return Value

See Also

LM_DELETEITEM
mpl = MPFROMSHORT«SHORT) iItem);
mp2 = OL;

/' item to be deleted '/
/' not used, must be zero '/

An application sends an LMJ)ELETEITEM message to delete an item from a
list-box control.

iItem Low word of mpl. Specifies the index of the item.

The return value is the number of items remaining in the list.

LMJ)ELETEALL, LMJNSERTITEM

• LM_INSERTITEM

Parameters

LM_I NSER TI TEM
mpl = MPFROMSHORT«SHORT) iItem);
mp2 = MPFROMP«PSZ) pszText);

/' item index '/
/' pointer to text to insert '/

An application sends an LMJNSERTITEM message to insert an item into a
list-box control. The actual placement of the item is determined by the iItem
parameter.

iItem Low word of mpl. Specifies the index of the item. This parameter can
be a zero-based index or one of the following values:

Value

LIT_SORT ASCENDING

LIT_SORTDESCENDING

Meaning

The item is to be added to the end of the
list.

The item is to be added to the list sorted
in ascending order.

The item is to be added to the list sorted
in descending order.

402 LM_INSERTITEM

Return Value

See Also

pszText Low and high word of mp2. Points to the text to insert.

The return value is the actual position of the item if it was successfully inserted.
The return value is LIT~EMERROR if the list-box control cannot allocate
space to insert the item in the specified position. Otherwise, the return value is
LIT-ERROR, indicating an error occurred.

LMJ)ELETEITEM

• LM_QUERYITEMCOUNT

Parameters

Return Value

LM_QUERYITEMCOUNT
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an LM-QUERYITEMCOUNT message to determine the
number of items in a list-box control.

This message does not use any parameters.

The return value is the item count.

• LM_QUERYITEMHANDLE

Parameters

Return Value

See Also

L~_QUERYITEMHANDLE
mpl = MPFROMSHORT((SHORT) iItem);
mp2 = OL;

/* item index */
/* not used, must be zero */

An application sends an LM-QUERYITEMHANDLE message to get the han­
dle of the specified item in a list box.

iItem Low word of mpl. Specifies the index of the item.

The return value is the item handle if the operation is successful, or zero if the
item does not exist or an error occurred.

LM-SETITEMHANDLE

• LM_QUERYITEMTEXT

LM_QUERYITEMTEXT
mpl = MPFROM2SHORT((SHORT) iItem, (SHORT) cch); /* item-buffer size */
mp2 = MPFROMP((FAR *) pszText); /* buffer for text */

An application sends an LM_QUERYITEMTEXT message to copy the text for
a specified list-box item into a buffer provided by the caller. The size of the
buffer can be determined by sending an LM-QUERYITEMTEXTLENGTH
message for the item.

Parameters

Return Value

See Also

LM_QUERYSELECTION 403

iItem Low word of mpl. Specifies the index of the item.

cch High word of mpl. Specifies the maximum number of characters to get.

pszText Low and high word of mp2. Points to the buffer to receive the item's
text.

The return value is the length of the text string copied, not including the null ter­
mination character.

LM-QUERYITEMTEXTLENGTH, LM-SETITEMTEXT, ~RAWITEM

• LM_QUERYITEMTEXTLENGTH

Parameters

Return Value

See Also

LM_QUERYITEMTEXTLENGTH
mpl = MPFROMSHORT((SHORT) iItem);
mp2 = OL;

1* item index *1
1* not used, must be zero *1

An application sends an LM-QUERYITEMTEXTLENGTH message to deter­
mine the length of the text in the specified list-box item.

iItem Low word of mpl. Specifies the index of the item.

The return value is the length (in characters) of the text of the item specified by
iltem if the operation is successful, or zero if the specified item does not exist or
an error occurred.

LM-QUERYITEMTEXT

• LM_QUERYSELECTION

Parameters

Return Value

See Also

LM_QUERYSELECTION
mpl = MPFROMSHORT((SHORT) iItemPrev);
mp2 = OL;

1* previous item *1
It not used, must be zero *1

An application sends an LM-QUERYSELECTION message to enumerate the
selected item or items in a list box.

iItemPrev Low word of mpl. Specifies the index of the previous item. A value
of LITYIRST, when used with a multiple-selection list-box control, results in
the first selected item being returned.

The return value from a single-selection list-box control is the index of the
selected item, or LIT_NONE if no item is selected.

The return value from a multiple-selection list-box control is the index of the
next selected item (starting from the item specified by the iltemPrev parameter)
or LIT_NONE if there are no more selected items. The return value is the index
of the first selected item if iItemPrev is LITYIRST.

LM-SELECTITEM

404 LM_QUERYTOPINDEX

• LM_QUERYTOPINDEX

Parameters

Return Value

See Also

LM_QUERYTOPINDEX
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an LM-QUERYTOPINDEX to determine the index of the
item currently at the top of the list box.

This message does not use any parameters.

The return value is the index of the item currently displayed at the top of the
list-box window, or LIT_NONE if the list is empty.

LM-SETTOPINDEX

• LM_SEARCHSTRING

Parameters

Return Value

LM_SEARCHSTRING
mpl = MPFROM2SHORT«USHORT) usCmd, (SHORT) iItem); /* cmd and item */
mp2 = MPFROMP«PSZ) pszSearch); /* search string */

An application sends an LM-SEARCHSTRING message to search the list for a
match to the specified string, returning the first matching item. Match criteria
can be set with flags for case-sensitivity and substring matching. All items are
searched until a match is found. Searching wraps around at the end of the list,
starting again at the first item.

usCmd Low word of mpl. Specifies one of the following values that deter­
mines how to find a match (these values can be combined by using the OR
operator):

Value

LSS_CASESENSITIVE

Meaning

Matching occurs if the item contains the string
exactly, as specified by the string in the message.

Matching occurs if the leading characters of the
item match the string specified in the message. If
this value is specified, LSS_SUBSTRING should
not be specified.

Matching occurs if the item contains a substring
that matches the string specified in the message. If
this value is specified, LSS_PREFIX should not be
specified. .

iItem High word of mpl. Indicates the index of the item to begin searching. A
value of LITYIRST causes searching to begin with the first item.

psz Sea rch Low and high word of mp2. Points to the search string.

The return value is the item index of the next item whose text string matches the
string specified by the pszSearch parameter, LIT_NONE if no item is found, or
LIT~RROR if an error occurs.

LM_SETITEMHEIGHT 405

• LM_SELECTITEM

Parameters

Return Value

See Also

LM_SELECTITEM
mpl = MPFROMSHORT«SHORT) iItem);
mp2 = MPFROMSHORT«BOOL) fSelect);

/* item index */
/* selection flag */

An application sends an L1LSELECTITEM message to set the selection state
of an item in a list-box control. If the control is a single-selection list box, the
previous selected item is deselected.

iItem Low word o! mpl. Specifies the index of the item to select or deselect.

fSelect Low word of mp2. Indicates if the item should be selected or dese­
lected. A value of TRUE selects the item; a value of FALSE deselects the item.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

L1LQUERYSELECTION

• LM_SETITEMHANDLE

Parameters

Return Value

See Also

LM_SETITEMHANDLE
mpl = MPFROMSHORT«SHORT) iItem);
mp2 = MPFROMLONG«ULONG) ulHandle);

/* item index */
/* item handle */

An application sends an L~SETITEMHANDLE message to set the handle of
an item in a list-box control.

iItem Low word of mpl. Specifies the index of the item.

ulHandle Low and high word of mp2. Specifies the handle of the item.

The return value is TRUE if the specified item exists; otherwise, it is FALSE.

L1LQUERYITEMHANDLE

• LM_SETITEMHEIGHT

Parameters

Return Value

See Also

LM_SETITEMHEIGHT
mpl = MPFROMSHORT«SHORT) sHeight);
mp2 = OL;

/* item height */
/* not used, must be zero */

The list-box control responds to an L1LSETITEMHEIGHT message from an
application by setting the height of the items in a list box to the height specified
by the sHeight parameter.

sHeight Low word of mpl. Specifies the height of each item in the list box.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

W1LMEASUREITEM

406 LM_SETITEMTEXT

• LM_SETITEMTEXT

Parameters

Return Value

See Also

LM_SETITEMTEXT
mpl = MPFROMSHORT«SHORT) iItem);
mp2 = MPFROMP«PSZ) pszText);

/' item index '/
/' pointer to text to copy '/

An application sends an L~SETITEMTEXT message to copy text from a
specified buffer to an item in a list box.

iItem Low word of mpl. Specifies the index of the item.

pszText Low and high word of mp2. Points to the buffer that contains the text
to copy to the item specified by the iItem parameter.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

L~QUERYTTEMTEXT

• LM_SETTOPINDEX

Parameters

Return Value

See Also

LM_SETTOPINDEX
mpl = MPFROMSHORT«SHORT) iItem);
mp2 = OL;

/' item index '/
/' not used, must be zero '/

An application sends an L~SETTOPINDEX message to scroll an item to the
top of a list box.

iItem Low word of mpl. Specifies the index of the item to place at the top of
the list box.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

L~QUERITOPINDEX

• MM_DELETEITEM

Parameters

Return Value

See Also

MM_DELETEITEM
mpl = MPFROM2SHORT«USHORT) idItem, (BOOL) fIncludeSubMenus);
mp2 = OL; /' not used, must be zero '/

An application sends an M~ELETEITEM message to delete a menu item.

idItem Low word of mpl. Identifies the item to delete.

fIncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item matching the idItem parameter. If TRUE, the search
includes all child menus. If FALSE, no child menus are searched.

The return value is the count of remaining menu items.

MMJNSERTITEM, M~EMOVEITEM

MM_INSERTITEM 407

• MM_ENDMENUMODE

Parameters

Return Value

See Also

MM_ENDMENUMODE
mpl = MPFROMSHORT((BOOL) fDismiss);
mp2 = OL;

1* dismiss flag *1
1* not used, must be zero *1

An application sends an M1LENDMENUMODE message to terminate menu
selection. If the jDismiss parameter is TRUE and a submenu is visible, that win­
dow is dismissed (hidden).

fDismiss Low word of mpl. Specifies whether a submenu window is to be
dismissed. A value of TRUE dismisses the submenu window.

This message does not return a value.

M~STARTMENUMODE

• MM_INSERTITEM

Parameters

Return Value

See Also

MM_INSERTITEM
mpl = (MPARAM) pmi;
mp2 = MPFROMP((PSZ) pszText);

1* pointer to MENUITEM structure *1
1* pointer to text *1

An application sends an MMJNSERTITEM message to insert a menu item.
The item pointed to by the pmi parameter is inserted into the menu list at the
position specified by the item index (contained within the MENUITEM struc­
ture). If the item index is MIT~ND, the item is added to the end of the list. If
the style of the item includes MIS_TEXT, the text of the item is pointed to by
the pszText parameter.

pmi Low and high word of mpl. Points to a MENUITEM structure. The
MENUITEM structure has the following form:

typedef struct _MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hltem;

} MENUITEM;

For a full description, see Chapter 4, "Types, Macros, Structures."

pszText Low and high word of mp2. Points to the text for the menu item.

The return value is the actual position of the item if the item was inserted suc~
cessfully. The return value is MIT~EMERROR if the control cannot allocate
space to insert the item in the menu. The return value is MIT~RROR if the
iPosition field of the MENUITEM structure is invalid.

MENUITEM, M~ELETEITEM

408 MM_ISITEMVALID

• MM_ISITEMVALID

Parameters

Return Value

See Also

MM_ISITEMVALID
mpl = MPFROM2SHORT((USHORT) idItem, (BOOL) fIncludeSubMenus);
mp2 = MPFROMSHORT((BOOL) fValidIfNotFound;

An application sends an MMJSITEMV ALID message to determine if a menu
item can be selected. The menu control sends a WMJNITMENU message
before checking the state of the menu item and a W1LMENUEND message
after checking the state.

idItem Low word of mpl. Identifies the menu item.

fIncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the idItem parameter.

jValidIfNotFound Low word of mp2. Specifies the value to return if the item
is not found.

The return value is TRUE if the specified menu item can be selected or chosen,
or FALSE if the item cannot be selected or does not exist.

WMJNITMENU, W1LMENUEND

• MM_ITEMIDFROMPOSITION

Parameters

Return Value

See Also

MM_ITEMIDFROMPOSITION
mpl = MPFROMSHORT((SHORT) iItem);
mp2 = OL;

/* item index */
/* not used, must be zero */

The menu control responds to an MMJTEMIDFROMPOSITION message by
returning the identity of the item whose position is specified by the iItem parame­
ter, or MIT~RROR if iItem is invalid.

iItem Low word of mpl. Specifies the index of the item in the menu list.

The return value is the identity of the item whose position is specified by iItem,
or it is MID~RROR if iItem is invalid.

MMJTEMPOSITIONFROMID

• MM_ITEMPOSITIONFROMID

Parameters

MM_ITEMPOSITIONFROMID
mpl = MPFROM2SHORT((USHORT) idItem, (BOOL) flncludeSubMenus);
mp2 = OL; /* not used, must be zero */

An application sends an MMJTEMPOSITIONFROMID message to determine
the position of a menu item in the menu list.

idItem Low word of mpl. Identifies the menu item.

fIncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the idItem parameter.

Return Value

See Also

MM_QUERVITEMATTR 409

The return value is the zero-based index of the item specified in idltem, or it is
MIT_NONE if the item does not exist.

MMJTEMIDFROMPOSITION

• MM_QUERYITEM

Parameters

Return Value

See Also

MM_QUERYITEM
mpl = MPFROM2SHORT((USHORT) idltem, (BOOL) flncludeSubMenus);
mp2 = (MPARAM) pmi; /. pointer to MENUITEM structure ./

An application sends an M~QUERYITEM message to copy information
about the item to a MENUITEM structure. This message does not retrieve the
text for items that have the style MIS_TEXT. The application must use the
M~QUERYITEMTEXT message to retrieve these items.

idltem Low word of mpl. Identifies the menu item.

flncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the idltem parameter.

pmi Low and high word of mp2. Points to a MENUITEM structure. The
MENUITEM structure has the following form:

typedef struct _MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hltem;

} MENUITEM;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

MENUITEM, M~QUERYITEMTEXT, M~SETITEM

• MM_QUERYITEMATTR

Parameters

MM_QUERYITEMATTR
mpl = MPFROM2SHORT((USHORT) idltem, (BOOL) flncludeSubMenus);
mp2 = MPFROMSHORT((USHORT) rgfAttributeMask);

An application sends an M~QUERYITEMATIR message to determine the
state of the specified attributes of a menu item.

idltem Low word of mpl. Identifies the menu item.

flncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the idltem parameter.

rgfAttributeMask Low word of mp2. Specifies the attributes to get the state
of. This parameter can be any combination of the following values:

410 MM_QUERYITEMATTR

Return Value

Example

See Also

Value

MIA_DISABLED

MIA_FRAMED

MIA_HILITED

MIA_NODISMISS

Meaning

A check mark appears to the left of the menu
item.

The menu item is disabled.

The menu item is framed by vertical lines to the
left and right.

The menu item is selected (highlighted).

Indicates whether the menu is self dismissing.

The return value is the state of the attributes specified in the rgJAttributeMask
parameter for the menu item specified by the idltem parameter.

This example sends an M~QUERYITEMATTR message to find the state
of the idCase menu item. It then toggles the state of the item and sends an
M~SETITEMA TTR message to set the new state.

sState = (SHORT) WinSendMsg(hwndMenu, MM_QUERYITEMATTR,
MPFROM2SHORT(idCase, TRUE), MPFROMSHORT(MIA_CHECKED»;

sState ft= MIA_CHECKED;
WinSendMsg(hwndMenu, MM_SETITEMATTR, MPFROM2SHORT(idCase, TRUE),

MPFROM2SHORT(MIA_CHECKED, sState»;

M~SETITEMATTR

• MM_QUERYITEMCOUNT

Parameters

Return Value

MM_QUERYITEMCOUNT
mpl = OL; /* not used, must be zero */
mp2 = OL; /* not used, must be zero */

An application sends an M~QUERYITEMCOUNT message to determine the
number of items in a menu. Submenus count as a single item if the message is
sent to the action-bar menu window. To count the items in a submenu, the mes­
sage must be sent to the submenu window.

This message does not use any parameters.

The return value is the number of items in the menu .

• MM_QUERYITEMTEXT

Parameters

MM_QUERYITEMTEXT
mpl = MPFROM2SHORT ((USHORT) idItem, (SHORT) cchMax);
mp2 = MPFROMP((PSZ) pszText);

An application sends an M~QUERYITEMTEXT message to retrieve the text
of a menu item. The menu item must have the style MIS_TEXT.

idltem Low word of mpl. Identifies the menu item with the text.

cchMax High word of mpl. Specifies the maximum number of characters to
copy from the menu item to the supplied buffer.

pszText Low and high word of mp2. Points to the buffer that receives the text
from the menu item.

Return Value

Comments

See Also

MM_REMOVEITEM 411

The return value is the length of the string copied. If no text is copied, the
return value is zero (this can result from errors such as an invalid item identifier
or an item with no text).

An application can determine the size of the text ahead of time by sending an
M1LQUERYITEMTEXTLENGTH message.

M1LQUERYITEMTEXTLENGTH, M1LSETITEMTEXT

• MM_QUERYITEMTEXTLENGTH

Parameters

Return Value

See Also

MM_QUERYITEMTEXTLENGTH
mpl = MPFROMSHORT«USHORT) idltem);
mp2 = OL;

1* item identifier *1
1* not used, must be zero *1

An application sends an M1LQUERYITEMTEXTLENGTH message to deter­
mine the length of a menu item that has the style MIS_TEXT.

idltem Low word of mpl. Identifies the item.

The return value is the length (in characters) of the text of the item specified by
the idltem parameter, or zero if an error occurs.

M1LQUERYITEMTEXT

• MM_QUERYSELITEMID

Parameters

Return Value

See Also

MM_QUERYSELITEMID
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends an M1LQUERYSELITEMID message to determine the
identifier of the selected menu item.

This message does not use any parameters.

The return value is the selected item identifier, MIT_NONE if no item is
selected, or MID~RROR if an error occurs.

M~SELECTITEM

• MM_REMOVEITEM

Parameters

MM_REMOVEITEM
mpl = MPFROM2SHORT«USHORT) idltem, (BOOL) flncludeSubMenus);
mp2 = OL; 1* not used, must be zero *1

An application sends an M~EMOVEITEM message to remove a menu item.

idltem Low word of mpl. Identifies the item to remove.

flncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the idltem parameter.

412 MM_REMOVEITEM

Return Value

Comments

See Also

The return value is the count of remaining menu items.

Unlike the MMJ)ELETEITEM message, the MMJEMOVEITEM message
removes but does not destroy the menu item. For example, after the
MMJEMOVEITEM message is sent, the menu item could be inserted into
another menu.

MMJ)ELETEITEM

• MM_SELECTITEM

Parameters

Return Value

See Also

Parameters

MM_SELECTITEM
mpl = MPFROM2SHORT((USHORT) idltem, (BOOL) flncludeSubMenus);
mp2 = MPFROMSHORT ((BOOL) fDismiss);

An application sends an M~SELECTmEM message to select or dismiss a
menu item. If an item is selected and the fDismiss parameter is TRUE, a
W1LCOMMAND, W1LSYSCOMMAND, or WMJIELP message is posted to
the owner and the menu is dismissed.

idltem Low word of mpl. Identifies the item. If a MID_NONE value is used,
the selection is set to none.

Jlnc1udeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an ~tem that matches the idltem parameter.

JDismiss Low word of mp2. Specifies whether the menu is to be dismissed
(hidden). A value of TRUE posts a W1LCOMMAND, W1LSYSCOMMAND,
or WMJIELP message before dismissing the item.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

M~QUERYSELITEMID, W1LCOMMAND, WMJIELP,
W1LSYSCOMMAND

MM_SETITEM
mpl = MPFROM2SHORT(O, (BOOL) flncludeSubMenus);
mp2 = (MPARAM) pmi; /* pointer to MENUITEM structure */

An application sends an M~SETITEM message to set a menu item. The menu
control responds to this message by copying the item definition in the structure
pointed to by the pmi parameter to the menu item with the same identifier.

If the flncludeSubMenus parameter is TRUE and the menu does not have an
item with the specified identifier, the submenus of this menu are searched for an
item with a matching identifier. If one is found, the definition is copied to it.

Jlnc1udeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the id field of the MENUITEM structure.

pmi Low and high word of mpl. Points to a MENUITEM structure. The
MENUITEM structure has the following form:

Return Value

Comments

See Also

typedef struct _MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hItem;

} MENUITEM;

MM_SETITEMATTR 413

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

The iPosition field of the MENUITEM structure is ignored. The low word of
mpl is not used and must be set to zero.

M~QUERYITEM, M~SETITEMATTR, M~SETITEMHANDLE,
M~SETITEMTEXT

• MM_SETITEMATTR

Parameters

Comments

Example

MM_SETITEMATTR
mpl = MPEROM2SHORT((USHORT) idItem, (BOOL) fIncludeSubMenus);
mp2 = MPEROM2SHORT ((USHORT) rgfMask, (USHORT) rgfData);

An application sends an M~SETITEMA TTR message to change the state of a
menu item's attributes.

idltem Low word of mpl. Identifies the item.

flncludeSubMenus High word of mpl. Specifies whether to include submenus
in the search for an item that matches the idltem parameter.

rgfMask Low word of mp2. Specifies a mask of the attributes to set. This
parameter can be any combination of the following values:

Value

MIA_DISABLED

MIA_FRAMED

Meaning

A check mark appears to the left of the menu
item.

The menu item is disabled.

The menu item is framed by vertical lines to the
left and right.

The menu item is selected (highlighted).

rgfData High word of mp2. Specifies the new state of the menu item's attri­
butes.

More than one attribute can be set with a single message by combining the attri­
butes to set in the rgfMask parameter and their new values in rgfData.

The following example sends an M~SETITEMA TTR message to set the
ID~ARGE menu item's state to checked, and then sends another
M~SETITEMATTR message to set the IDMj1EDIUM menu item's state to .
unchecked.

WinSendMsg(hwndActionBar, MM_SETITEMATTR,
MPEROM2SHORT(IDM_LARGE, TRUE),
MPEROM2SHORT(MIA_CHECKED, MIA_CHECKED));

414 MM_SETITEMATTR

Return Value

See Also

WinSendMsg(hwndActionBar, MM_SETITEMATTR,
MPFROM2SHORT(IDM_MEDIUM, TRUE),
MPFROM2SHORT(MIA_CHECKED, FALSE));

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

M~QUERYITEMATTR, M~SETITEM

• MM_SETITEMHANDLE

Parameters

Return Value

MM_SETITEMHANDLE
mpl = MPFROMSHORT((SHORT) idltem);
mp2 = MPFROMLONG((ULONG) ulHandle);

/* item index */
/* item handle */

An application sends an M~SETITEMHANDLE message to set the handle of
a menu item. It is used to set the display object, such as a bitmap, for menu
items that do not have the style MIS_TEXT.

idltem Low word of mpl. Specifies the index of the item.

ulHandle Low and high word of mp2. Specifies the handle of the item.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

• MM_SETITEMTEXT

Parameters

Return Value

MM_SETITEMTEXT
mpl = MPFROMSHORT((SHORT) idltem);
mp2 = MPFROMP((PSZ) pszText);

/* item index */
/* pointer to the text to copy */

An application sends an M~SETITEMTEXT ·message to copy text from a
specified buffer to a menu item that has the style MIS_TEXT.

idltem Low word of mpl. Specifies the menu item.

pszText Low and high word of mp2. Points to the buffer that contains the text
to copy to the menu item specified by the idltem parameter.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

• MM_STARTMENUMODE

Parameters

MM_STARTMENUMODE
mpl = MPFROM2SHORT((BOOL) fShowSubmenu, (BOOL) fResumeMenu);
mp2 = OL; /* not used, must be zero */

An application posts an M~STARTMENUMODE message to begin menu
selection.

fShowSubmenu Low word of mpl. Specifies whether to show the submenu of
the selected menu. A value of TRUE shows the submenu. This parameter is
ignored if the selected menu does not have a submenu.

Return Value

Comments

See Also

S8M_SETPOS 415

fResumeMenu High word of mpl. Specifies whether the menu is resumed. A
value of TRUE causes the menu interaction to resume.

The return value is TRUE if the operation is successful or FALSE if an error
occurs.

The M~STARTMENUMODE message must be posted, not sent.

MM-ENDMENUMODE

• SBM_QUERYPOS

Parameters

Return Value

See Also

SBM_QUERYPOS
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an SB~QUERYPOS message to get the current position
of the slider in a scroll-bar window.

This message does not use any parameters.

The return value is the current position of the slider.

SB~SETPOS,SB~SETSCROLLBAR

• SBM_QUERYRANGE

Parameters

Return Value

See Also

Parameters

SBM_QUERYRANGE
mpl = OL; I' not used, must be zero 'I
mp2 = OL; I' not used, must be zero 'I

An application sends an SB~QUERYRANGE message to get the minimum
and maximum values of a scroll bar.

This message does not use any parameters.

The return value is the scroll-bar range. The low word contains the minimum
value; high word contains the maximum value.

SB~SETPOS,SB~SETSCROLLBAR

SBM_SETPOS
mpl = MPFROMSHORT«USHORT) uSPos);
mp2 = OL;

I' slider position 'I
It not used, must be zero 'I

An application sends an SB~SETPOS message to set the slider position in a
scroll-bar window. If the position specified is outside the valid range of slider
positions, the slider is moved to the nearest valid position.

usPos Low word of mpl. Specifies the slider position.

416 SBM_SETPOS

Return Value

See Also

The return value is always TRUE.

SBMLQUERYPOS,SBMLSETSCROLLBAR

• SBM_SETSCROLLBAR

Parameters

Return Value

See Also

SBM_SETSCROLLBAR
mpl = MPFROMSHORT«USHORT) usPos); I' position 'I
mp2 = MPFROM2SHORT«USHORT) usFirst, (USHORT) uSLast); I' range 'I

An application sends an SBMLSETSCROLLBAR message to set the range of a
scroll-bar window and the position of the slider within that scroll bar.

usPos
usFirst

Low word of mpl. Specifies the slider position~

Low word of mp2. Specifies the first possible position of the slider.

usLast High word of mp2. Specifies the last possible position of the slider.

The return value is always TRUE.

SBMLQUERYPOS,SBMLQUERYRANGE,SBMLSETPOS

• SM_QUERYHANDLE

Parameters

Return Value

See Also

SM':"QUERYHANDLE
mpl = OL; I' not used, must be zero 'I
mp2 = OL; It not used, must be zero 'I

An application sends an SMLQUERYHANDLE message to get the handle to
the icon or the bitmap handle of a static control.

This message does not use any parameters.

The return value is the handle to the display object of the static control.

SMLSETHANDLE

• SM_SETHANDLE

Parameters

Return Value

See Also

SM_SETHANDLE
mpl = MPFROMLONG«ULONG) hObj);
mp2 = OL;

I' handle of object 'I
It not used, must be zero 'I

An application sends an SMLSETHANDLE message to set the icon or the bit­
map handle for a static control.

hObj Low and high word of mpl. Identifies the object handle.

The return value is the handle passed in the hObj parameter.

SMLQUERYHANDLE

WM.-ACTIVATE 417

• TBM_QUERYHILITE

Parameters

Return Value

See Also

TBM_QUERYHILITE
mpl = OL; 1* not used, must be zero *1
mp2 = OL; 1* not used, must be zero *1

An application sends a TB~QUERYHILITE message to get the highlight state
of a title-bar control.

This message does not use any parameters.

The return value is TRUE if the title bar is highlighted or FALSE if it is not.

TB~SETHILITE

• TBM_SETHILITE

Parameters

Return Value

See Also

• WM-ACTIVATE

Parameters

Return Value

Comments

TBM_SETHILITE
mpl = MPFROMSHORT«BOOL) fHilight);
mp2 = OL;

1* highlight flag *1
1* not used *1

An application sends a TB~SETHILITE message to set the highlight state of
the title-bar control.

fHilight Low word of mpl. Specifies whether to highlight or remove highlight­
ing from the title bar. A value of T~UE highlights the title bar; a value of
FALSE removes the highlighting.

The return value is always TRUE.

TB~QUERYHILITE

WM_ACTIVATE
fActive = (BOOL) SHORT1FROMMP(mpl);
hwnd = (HWND) HWNDFROMMP(mp2);

1* activation/~eactiv. flag *1
1* window handle *1

A ~CTIV ATE message is sent when a window is being activated or deac­
tivated. This message is sent first to the window procedure of the main window
being deactivated and then to the window procedure of the main window being
activated.

fActive Low word of mpl. Indicates whether the window is being activated or
deactivated. A value of TRUE means the window is being activated. A value of
FALSE indicates the window is being deactivated.

hwnd Low and high word of mp2. Identifies the window being activated or
deactivated. '

An application should return zero if it processes this message.

When a window gains the focus, it receives a ~CTIVATE message, a
'WM-SETSELECTION message, and a W~SETFOCUS message (in that

418 WM~CTIVATE

See Also

order). When the window loses the focus, it receives a ~SETFOCUS mes­
sage, a ~SETSELECTION message, and a ~CTIVATE message (in
that order).

~OCUSCHANGE, ~SETFOCUS, ~SETSELECTION

• WM-ADJUSTWINDOWPOS

Parameters

Return Value

See Also

WM_ADJUSTWINDOWPOS
pswp = (PsWP) PVOIDFROMMP(mpl); 1* pointer to sWP structure *1

The ~DJUSTWINDOWPOS message is sent when a window is about to be
moved or sized. It gives the window an opportunity to adjust the new size and
position before the window is actually moved and sized.

pswp Low and high word of mpl. Points to an SWP structure that contains the
new window size and position information. The SWP structure has the following
form:

typedef struct _SWP {
USHORT fs;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

. } SWP;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE if it changes the SWP structure or FALSE
if it does not.

~CALCVALIDRECTS

• WM_BUTTON1DBLCLK

Parameters

Return Value

See Also

WM_BUTTON1DBLCLK
x = (SHORT) SHORT1FROMMP(mpl);
y = (SHORT) SHORT2FROMMP(mpl);

1* horizontal position *1
1* vertical position *1

TheWMJ3UTTONIDBLCLK message is sent when the user double-clicks the
left mou~e button.

X Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

WMJ3UTTONIDOWN, WMJ3UTTONIUP, WMJIITTEST

WM_BUTTON1 DOWN 419

• WM_BUTTON2DBLCLK

Parameters

Return Value

See Also

WM_BUTTON2DBLCLK
x = (SHORT) SHORTIFROMMP(mpl);
y = (SHORT) SHORT2FROMMP(mpl);

1* horizontal position *1
1* vertical position *1

The W1LBUTTON2DBLCLK message is sent when the user double-clicks the
second mouse button. On a two-button mouse, the second button is the right
button.

x Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

~UTTON2DOWN, W1LBUTTON2UP, WMJIITTEST

• WM_BUTTON3DBLCLK

Parameters

Return Value

See Also

WM_BUTTON3DBLCLK
x = (SHORT) SHORTIFROMMP(mpl);
y = (SHORT) SHORT2FROMMP(mpl);

1* horizontal position *1
1* vertical position 'I

The W1LBUTTON3DBLCLK message is sent when the user double-clicks the
right mouse button of a three-button mouse.

X Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

W1LBUTTON3DOWN, W1LBUTTON3UP, WMJIITTEST

• WM_BUTTON1DOWN

Parameters

Return Value

See Also

WM_BUTTONIDOWN
x = (SHORT) SHORTIFROMMP(mpl);
y = (SHORT) SHORT2FROMMP(mpl);

1* horizontal position 'I
1* vertical position *1

The W1LBUTTONIDOWN message is sent when the user clicks the left mouse
button.

x . Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

~UTTONIDBLCLK, W1LBUTTONIUP, WMJIITTEST

420 WM_BUTTON1 UP

• WM_BUTTON1UP

Parameters

Return Value

See Also

WM_BUTTON1UP·
x = (SHORT) SHORT1FROMMP(mpl):
y = (SHORT) SHORT2FROMMP(mpl):

It horizontal position tl
It vertical position tl

The WMJlUTTONIUP message is sent when the user releases the left mouse
button.

X Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

WMJlUTTONIDBLCLK, WMJlUTTONIDOWN, WMJIITTEST

• WM_BUTTON2DOWN

Parameters

Return Value

See Also

WM_BUTTON2DOWN
x = (SHORT) SHORT1FROMMP(mpl):

.y = (SHORT) SHORT2FROMMP(mpl):
It horizontal position tl
It vertical position tl

The WMJlUTTON2DOWN message is sent when the user clicks the second
mouse button. On a two-button mouse, the second button is the right button.

X Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

WMJlUTTON2DBLCLK, WMJlUTTON2UP, WMJIITTEST

• WM_BUTTON2UP

Parameters

WM_BUTTON2UP
x = (SHORT) SHORT1FROMMP(mpl):
y = (SHORT) SHORT2FROMMP(mpl):

It horizontal position tl
It vertical position tl

The WMJlUTTON2UP message is sent when the user releases the second
mouse button. On a two-button mouse, the second button is the right button.

X Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

Return Value

See Also

WM_CALCVALIDRECTS 421

An application should return TRUE if it processes this message.

WMJ3UTION2DBLCLK, WMJ3UTION2DOWN, WMJIITIEST

• WM_BUTTON3DOWN

Parameters

Return Value

See Also

WM_BUTTON3DOWN
x = (SHORT) SHORT1FROMMP(mpl);
y = (SHORT) SHORT2FROMMP(mpl);

/* horizontal position */
/* vertical position */

The WMJ3UTION3DOWN message is sent when the user clicks the right
mouse button of a three-button mouse.

x Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

WMJ3UTION3DBLCLK, WMJ3UTION3UP, WMJIITIEST

• WM_BUTTON3UP

Parameters

Return Value

See Also

WM_BUTTON3UP
x = (SHORT) SHORT1FROMMP(mpl);
y = (SHORT) SHORT2FROMMP(mpl);

/* horizontal position */
/* vertical position */

The WMJ3UTION3UP message is sent when the user releases the right mouse
button of a three-button mouse.

X Low word of mpl. Indicates the horizontal position of the mouse pointer (in
window coordinates).

y High word of mpl. Indicates the vertical position of the mouse pointer (in
window coordinates).

An application should return TRUE if it processes this message.

WMJ3UTION3DBLCLK, WMJ3UTION3DOWN, WMJIITIEST

• WM_CALCVALIDRECTS
WM_CALCVALIDRECTS
prclSrc = (PRECTL) PVOIDFROMMP(mpl);
prclDest = (PRECTL) PVOIDFROMMP(mpl);

/* source rectangle */
/* destination rectangle */

The W1LCALCV ALIDRECTS message is sent when a window is about to be
resized. This allows the application to specify the coordinates of a rectangle to
be preserved and to designate where this rectangle will be in the resized window.
Areas outside this rectangle will be redrawn.

422 WM_CALCVALIDRECTS

Parameters

Return Value

Comments

See Also

Parameters

prclSrc Low and high word of mpl. Points to the rectangle that contains the
dimensions of the window prior to resizing. The rectangle's coordinates are rela­
tive to the window's parent window.

prclDest Low and high word of mp2. Points to the rectangle that contains the
dimensions of the window after resizing. The rectangle's coordinates are relative
to the window's parent window.

If an application processes this message, it can return zero to indicate it has
changed the rectangles itself, CV ~EDRA W if the entire window is to be
redrawn, or a combination of the following values:

Value

CVR_ALIGNBOTTOM

CVR_ALIGNLEFf

CVR_ALIGNRIGHT

CVR_ALIGNTOP

Meaning

Align with the bottom edge of the window.

Align with the left edge of the window.

Align with the right edge of the window.

Align with the top edge of the window.

The W1LCALCV ALIDRECTS message is not sent if a window has the style
CS_SIZEREDRA W because such windows are always completely redrawn when
resized.

W1LADJUSTWINDOWPOS

WM_CHAR
fsKeyFlags = (USHORT) SHORT1FROMMP(mpl);
uchRepeat = (UCHAR) CHAR3FROMMP(mpl);
uchScanCode = (UCHAR) CHAR4FROMMP(mpl);
usChr = (USHORT) SHORT1FROMMP(mp2);
usVKey = (USHORT) SHORT2FROMMP(mp2);

/* key flags */
/* repeat count */
/* scan code */
/* character */
/* virtual key */

The W1LCHAR message is sent whenever the user presses a key. This message
is placed in the queue associated with the window that has the focus.

[sKeyFlags Low word of mpl. Specifies the keyboard control codes. It can be
one ormore of the following values:

Value

KC_ VIRTUALKEY

Meaning

The usChr parameter value is valid; otherwise, mp2
contains zero.

The uchScanCode parameter value is valid; otherwise,
uchScanCode contains zero.

The usVKey parameter value is valid; otherwise,
usVKey contains zero.

The event was a key-up transition; otherwise, it was a
key-down transition.

The key was previously down; otherwise, it was previ­
ously up.

The character code is a dead key. The application
must display the glyph for the dead key without
advancing the cursor.

Comments

Example

Value

KC_INV ALIDCOMP

Meaning

The character code was formed by combining the
current key with the previous dead key.

The character code was not a valid combination with
the preceding dead key. The application must advance
the cursor past the dead-key glyph and then, if the
current character is not a space, it must beep the
speaker and display the new character code.

This bit is set if the key was pressed and released
without any other keys being pressed or released
between the time the key was pressed and released.

The shift state was active when the key is pressed or
released.

The ALT state was active when the key was pressed or
released.

The CONTROL state was active when the key was
pressed or released.

uchRepeat Low byte of high word of mpl. Specifies the repeat count of the
key.

uchScanCode High byte of high word of mpl. Specifies the character scan
code of the character.

usChr Low word of mp2. Specifies the ASCII character.

usVKey High word of mp2. Specifies the virtual-key code.

Generally, all W1LCHAR messages generated from actual user input have the
KC_SCANCODE code set. However, if the message has been generated by an
application that has issued the WinSetHook function to filter keystrokes, or if it
was posted to the application queue, this code may not be set.

The CHARMSG macro can be used to access the W1LCHAR message parame­
ters. This macro defines a CHARMSG structure pointer that has the following
form:

struct _CHARMSG {
USHORT chr;
USHORT vkey;
USHORT fs;

};

UCHAR cRepeat;
UCHAR scancode;

/' mp2 '/

/' mpl '/

This example uses the CHARMSG macro to process a W1LCHAR message. It
first uses the macro to determine if a key was released. It then uses the macro to
generate a switch statement based on the character received.

MRESULT CALLBACK GenericWndProc(hwnd, usMessage, mpl, mp2)
HWND hwnd;
USHORT usMessage;
MPARAM mpl;
MPARAM mp2;
{

switch (usMessage) {
case WM_CHAR:

if (CHARMSG(&usMessage)->fs & KC_KEYUP) {
switch (CHARMSG(&usMessage)->chr) {

Return Value

See Also

Parameters

Return Value

Example

See Also

Parameters

An application should return TRUE if it processes the message; otherwise it
should return FALSE.

WinSetHook, W1LNULL, W1LTRANSLATEACCEL, W1L VIOCHAR

The W1LCLOSE message is sent as a signal that the window or its application
should terminate itself. It allows the window to control the termination process.
If this message is passed to the WinDeiWindowProc function, the function posts
a W1LQUIT message.

This message does not use any parameters

An application should return zero if it processes this message.

In the following example, the fChanges variable is checked. If it is TRUE, the
user is asked if he or she wants to exit without saving any changes made. If the
user responds by choosing the No button, then zero is returned and the applica­
tion does not exit. If the user responds by choosing the Yes button, then a
W1LQUIT message is posted so that the application will terminate.

case WM_CLOSE:
if (fChanges) {

if (WinMessageBox(HWND_DESKTOP, hwndClient,
"Do you want to exit without saving your changes?",
"", 0, MB_NOICON I MB_YESNO) == MBID_NO)

return (OL);
}
WinPostMsg(hwnd, WM_QUIT, OL, OL);
return (OL);

WinDeiWindowProc, WinMessageBox, WinPostMsg, W1LQUIT

WM_COMMAND
usCmd = (USHORT) SHORT1FROMMP(mpl);
fsSource = (USHORT) SHORT1FROMMP(mp2);
fPointer = (BOOL) SHORT2FROMMP(mp2);

/* command value. */
/* source type */
/* pointer flag */

The W1LCOMMAND message is sent to a window when it has a command to
report or when a keystroke has been translated by an accelerator table into a
W1LCOMMAND message.

usCmd Low word of mpl. Specifies the command value.

fsSource Low word of mp2. Specifies the source type. This parameter can be
one of the following values:

Value

CMDSRC_ACCELERATOR

Meaning

Posted as the result of an accelerator. The
usCmd parameter is the accelerator com-
mand value. .

Return Value

See Also'

Parameters

Return Value

See Also

Value

CMDSRC_PUSHBUTTON

CMDSRC_OTHER

WM_CONTROLHEAP 425

Meaning

Posted by a menu control. The usCmd
parameter is the identifier of the menu
item.

Posted by a push-button control. The
usCnid parameter is the window identifier
of the push button.

Other source. The usCmd parameter gives
further control-specific information
defined for each control type.

/pointer High word of mp2. Indicates if the message was posted as a result of
a pointing-device (mouse) operation. A value of TRUE indicates a pointing
device was used; a value of FALSE indicates a keyboard operation.

An application should return zero if it processes this message.

W1LCONTROL, WMJIELP, W1LMENUSELECT,
W1LTRANSLATEACCEL

WM_CONTROL
id = (USHORT) SHORT1FROMMP(mpl);
usNotifyCode = (USHORT) SHORT2FROMMP(mpl);
usData = (ULONG) LONGFROMMP(mp2);

/* window identifier */
/* notification code */
/* control data */

The W1LCONTROL message is sent when a control window has an event to
report to its owner.

id Low word of mpl. Identifies the control window.

usNotify Co de High word of mpl. The meaning of this parameter depends on
the control sending the message.

usData Low and high word of mp2. Contains control-specific information.
The meaning of the notification code and the control-specific information
depends on the type of control.

An application should return zero if it processes this message.

W1LCOMMAND

• WM_CONTROLHEAP

The W1LCONTROLHEAP message is sent to a control's owner when the con­
trol must get a handle to a heap from which to allocate memory. (For example,
entry-field controls allocate memory to hold the text associated with the control.)

426 WM_CONTROLHEAP

Parameters

Return Value

See Also

Usually, an application can ignore this message, passing it on to the default win­
dow procedure, which then returns a handle to a heap maintained by the system
for each message queue for this purpose.

This message does not use any parameters.

An application should return a heap handle if it processes this message.

WinCreateHeap

• WM_CONTROLPOINTER

Parameters

Return Value

See Also

Parameters

WM_CONTROLPOINTER
id = (USHORT) SHORT1FROMMP(mpl);
hptr = (HPOINTER) LONGFROMMP(mp2);

/* sender ID */
/* handle to mouse pointer */

The W1LCONTROLPOINTER message is sent to a control's owner when the
mouse pointer moves over the control window, allowing the owner to set the
mouse pointer to a different shape. The control passes an HPOINTER handle to
a mouse pointer as part of this message. An application can alter the default
pointer shape by passing back a different HPOINTER handle as the result of this
message.

id Low word of mpl. Identifies the control window sending the message.

hptr Low and high word of mp2. Identifies the mouse pointer that the control
is to use.

An application that processes this message should return the handle of the
mouse pointer to be used while the mouse is positioned over the control win­
dow.

WinCreatePointer

WM_CREATE
pCtlData = (PVOID) PVOIDFROMMP(mpl); /* pointer to class data */
pcrst = (PCREATESTRUCT) PVOIDFROMMP(mp2); /* pointer to structure */

The W1LCREATE message is sent when an application requests that a window
be created. The window procedure for the new window receives this message
after the window is created but before the window becomes visible.

petlData Low and high word of mpl. Points to the buffer that has c1ass­
specific information. This data is passed to the WinCreate Window function as a
parameter.

pcrst Low and high word of mp2. Points to a CREATESTRUCT structure.
The CREATESTRUCT structure has the following form:

Return Value

See Also

Parameters

See Also

typedef struct _CREATESTRUCT {
PYOID pPresParams;
PYOID pCtlData;
USHORT id;
HWND hwndInsertBehind;
HWND hwndOwner;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x;
ULONG flStyle;
PSZ pszText;
PSZ pszClass;
HWND hwndParent;

} CREATESTRUCT;

1* crst *1

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return FALSE if the system should continue creating the
window or TRUE if it should not.

WinCreateWindow, WMJNITDLG, ~SIZE

WM_DDE_ACK
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

1* sender's window *1
1* pointer to DDESTRUCT structure *1

The WMJ)DE-ACK message notifies an application of the receipt and process­
ing of a WMJ)DE~XECUTE, WMJ)DEJ)ATA, WMJ)DE-ADVISE,
WMJ)DE_UNADVISE, or W~DEYOKE message, and, in some cases, of
a WMJ)DE~EQUEST message. The acknowledging application modifies the
fsStatus field of the DDESTRUCT structure to return information about the
status of the message received.

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:

typedef struct _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszItemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WMJ)DE-ADVISE, W1LDDEJ)ATA, W1LDDE~XECUTE,
WMJ)DEYOKE, WMJ)DE~EQUEST, W~DE_UNADVISE

428 WM_DDE..ADVISE

Parameters

See Also

Parameters

See Also

WM_DDE_ADVISE
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

/* sender's window */
/* pointer to DDESTRUCT structure */

The WMJ)DE~DVISE message is sent from a client application to a server
application requesting that the server supply an update for a data item when­
ever it changes. The server application is expected to reply with a positive
WMJ)DE~CK message if it can provide the requested data, or with a negative
message if it cannot.

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:
typedef struct _DDESTRUCT {

ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszltemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WMJ)DE~CK, WMJ)DE_UNADVISE

WM_DDE_DATA
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

/* sender's window */
/* pointer to DDESTRUCT structure */

The WMJ)DE-DATA message is sent from a server application to a client
application to notify the client application that the data it requested is available.

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:

typedef struct· _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszltemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WMJ)DE~CK, 'WMJ)DE.-REQUEST

Parameters

See Also

Parameters

See Also

WM_DDE_EXECUTE
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

/* sender's window */
/* pointer to DDESTRUCT structure */

The WMJ)DE~XECUTE message is sent from a client application to a server
application. It passes a text string that the server should execute as a series of
commands.

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:

typedef struct _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszltemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WMJ)DE.-ACK

WM_DDE_INITIATE
mpl = (MPARAM) «HWND) hwnd);
mp2 = MPFROMP(pddei);

/* sender's window */
/* pointer to DDEINIT structure */

The WMJ)DEJNITIATE message is sent by a client application to exchange
data with one or more server applications. This message is often sent to all
current applications by calling WinBroadcastMsg.

hwnd Low and high word of mpl. Identifies the sender application's window.

pddei Low and high word of mp2. Points to a DDEINIT structure that con­
tains an application name and a topic name. All applications with matching
names that support the topic are expected to acknowledge by calling the
WinDdeRespond function. The DDEINIT structure has the following form:

typedef struct _DDEINIT {
USHORT cb;
psz pszAppName;
psz pszTopic;

} DDEINIT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WinBroadcastMsg, WinDdeRespond, WMJ)DEJNITIATEACK,
WMJ)DE_TERMINATE

Parameters

See Also

Parameters

See Also

WM_DDE_INITIATEACK
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pddei);

1* sender's window *1
1* pointer to DDEINIT structure *1

The WMJ)DEJNITIATEACK message is sent as a positive response to a
WMJ)DEJNITIATE message for each topic an application supports. An
application should use the WinDdeRespond function to send this message.

hwnd Low and high word of mpl. Identifies the sender application's window.

pddei Low and high word of mp2. Points to a DDEINIT structure. The
DDEINIT structure has the following form:

typedef struct _DDEINIT {
USHORT cb;
psz pszAppName;
psz pszTopic;

} DDEINIT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WinDdeRespond, WMJ)DEJNITIATE

WM_DDE_POKE
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

1* sender's window *1
1* pointer to DDESTRUCT structure *1

The WMJ)DEYOKE message sends an unsolicited data message to the receiv­
ing application, which should then reply with a WMJ)DE.-ACK message indi­
cating whether it accepted the data.

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:

typedef struct _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszltemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WMJ)DE.-ACK

Parameters

See Also

Parameters

See Also

WM_DDE_REQUEST
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

/* sender's window */
/* pointer to DDESTRUCT structure */

The WMJ)DE~EQUEST message is posted from a client application to a
server application to request that the server provide a data item to the client.
The receiving application is expected to respond with a WMJ)DEJ)ATA
message that contains the requested data, if possible, or with a negative
WMJ)DE~CK message.

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:

typedef struct _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszItemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WM_DDE_TERMINATE
mpl = (MPARAM) «HWND) hwnd);
mp2 = OL;

/* sender's window */

The WMJ)DE_TERMINATE message is sent by a client application or a server
application to terminate the exchange. An application is expected to send a
WMJ)DE_TERMINATE message in response to this message.

hwnd Low and high word of mpl. Identifies the sender application's window.

WMJ)DEJNITIATE

WM_DDE_UNADVISE
mpl = MPFROMHWND(hwnd);
mp2 = MPFROMP(pdde);

/* sender's window */
/* pointer to DDESTRUCT structure */

The WMJ)DE_UNADVISE message is sent from a client application to a
server application. It indicates that the specified item no longer should be
updated and that the server application should remove the link to the data item
set up by the WMJ)DE~DVISE message. The receiving application is
expected to reply with a positive WMJ)DE~CK message if it can process the
request or a negative message if it cannot.

Parameters

See Also

Parameters

Return Value

See Also

hwnd Low and high word of mpl. Identifies the sender application's window.

pdde Low and high word of mp2. Points to a DDESTRUCT structure. The
DDESTRUCT structure has the following form:

typedef struct _DDESTRUCT {
ULONG cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszltemName;
USHORT offabData;

} DDESTRUCT;

For a full description, see Chapter 4, "Types, Macros, Structures."

WM_DESTROY

The WMJ)ESTROY message is sent when a window is being destroyed. It is
sent to the window procedure of the window being destroyed after the window is
hidden.

This message is sent first to the window being destroyed, then to the child win­
dows as they are destroyed. During the processing of the WMJ)ESTROY mes­
sage, it can be assumed that all child windows still exist.

The message does not have any parameters.

An application should return zero if it processes this message.

WinDestroyWindow, W1LCLOSE

• WM_DESTROYCLIPBOARD

Parameters

Return Value

See Also

WM_DESTROYCLIPBOARD

The WMJ)ESTROYCLIPBOARD message is sent when the clipboard is emp­
tied as the result of a call to the WinEmptyClipbrd function.

This message does not use any parameters.

An application should return zero if it processes this message.

WinEmptyClipbrd

WM_DRAWITEM 433

• WM_DRAWCLIPBOARD

Parameters

Return Value

See Also

WM_DRAWCLIPBOARD

The WMJ)RA WCLIPBOARD message is sent as a result of a call to the Win­
CloseClipbrd function if the contents of the clipboard have changed.

This message does not use any parameters.

An application should return zero if it processes this message.

WinCloseClipbrd, WMJ> AINTCLIPBOARD

• WM_DRAWITEM

Parameters

Return Value

Comments

WM_DRAWITEM
id = (USHORT) SHORT1FROMMP(mpl);
poi = (POWNERITEM) PVOIDFROMMP(mp2);

/* window ID */
/* pointer to OWNERITEM */

The WMJ)RA WITEM message is sent to the owner of a list box when an item
in an owner-drawn list needs to be drawn or highlighted. The list box must have
the LS_OWNERDRA W style.

id Low word of mpl. Identifies the window of the list-box control sending this
message.

poi Low and high word of mp2. Points to an OWNERITEM structure. The
OWN,ERITEM structure has the following form:

typedef struct_OWNERITEM {
HWND hwnd;
HPS . hps;
USHORT fsState;
US~ORT fsAttribute;
USHORT fsStateOld;
USHORT fsAttributeOld;
RECTL rclItem;
SHORT idItem;
ULONG hItem;

} OWNERITEM;

For a full description, see Chapter 4, "Types, Macros, Structures."

The return value is ignored.

When an item is to be drawn, the fsState field and the fsStateOld field of the
OWNERITEM structure will be equal. The application should draw the item and
return TRUE, or it should return FALSE to let the list box draw the item. The
list box can draw only text items, so the application must handle the drawing of
other types of objects.

When an item is to be highlighted, the fsState field is TRUE and the fsStateOld
field is FALSE. In this case, the application should carry out the highlighting
and set fsState and fsStateOld equal to FALSE before returning TRUE, or it
should return FALSE so the list box can perform default highlighting of the
item.

434 WM_DRAWITEM

See Also

• WM ENABLE

Parameters

Return Value

See Also

When highlighting is to be removed from an item, the fsState field is FALSE
and the fsStateOld field is TRUE. An application can remove the highlighting,
set the fsState and fsStateOld equal to FALSE and return TRUE, or it can
return FALSE to let the list box remove the highlighting.

The WMJ)RA WITEM message is also sent by menu items that have the
MIS_OWNERDRA W style.

LMLQUERYITEMTEXT

WM_ENABLE
fEnable = SHORTIFROMMP(mpl); 1* enable flag *1

The W1LENABLE message is sent when an application changes the enabled
state of a window. It is sent to the window whose enabled state is changing. This
message is always sent before the WinEnableWindow function returns, but after
the window enabled state (WS~ISABLE style bit) has changed.

fEnable Low word of mpl. Specifies whether the window is being enabled or
disabled. A value of TRUE means the window is being enabled; FALSE means
the window is being disabled.

An application should return zero if it processes this message.

WinEnable Window

• WM_ERASEBACKGROUND

Parameters

WM_ERASEBACKGROUND
hps = (HPS) LONGFROMMP(mpl);
prcl = (PRECTL) PVIODFROMMP(mpl);

1* presentation-space handle *1
1* pointer to RECTL structure *1

The W1LERASEBACKGROUND message is sent by the frame window to a
client window when the background is to be redrawn. Usually, an application
ignores this message and erases and redraws the window when the WMY AINT
message is received. However, the WMLERASEBACKGROUND message can
be valuable in improving the speed of window rearrangement operations by mak­
ing the window images consistent on the screen as soon as the rearrangement
takes place.

hps Low and high word of mpl. Identifies a presentation space for the frame
window (not the client window).

Return Value

Comments

See Also

WM_FLASHWINDOW 435

prcZ Low and high word of mp2. Points to a RECTL structure that contains
the rectangle to be painted. The RECTL structure has the following form:
typedef struct _RECTL {

LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

If an application returns TRUE, the frame-window procedure erases the rect­
angle of the frame window covered by the client window by filling it with the
system color SYSCL~WINDOW. An application should return FALSE to
prevent the frame window from erasing the background.

The client window may use the presentation-space handle to selectively erase
portions of its window, and then return FALSE so that the frame window pro­
cedure does not erase the background.

Note that the presentation-space handle is to the frame window, not to the client
window. The rectangle to be erased may include areas outside the client window.

An application should not rely on the ~RASEBACKGROUND message
for notification as to when to repaint an invalidated client window. The
~RASEBACKGROUND message is sent by the frame-window procedure
as part of processing the ~ AINT message. However, if only the client win­
dow has been invalidated, the client window does not receive a
WM-ERASEBACKGROUND message and the frame window does not receive
the ~ AI NT message. An application can monitor successive
~RASEBACKGROUND and ~AINT messages by using a flag, and
then only erase the background when processing ~ AI NT messages if there
is not an immediately preceding WILERASEBACKGROUND message.

~AINT

• WM_FLASHWINDOW

Parameters

Return Value

See Also

WM_FLASHWINDOW
fFlash = (BOOL) SHORT1FROMMP(mpl); /* flash flag */

The ~LASHWINDOW message is sent to the frame window as a result of
a call to the WinFlash Window function.

fFlash Low word of mpl. Specifies whether the window is to start or stop
flashing. A value of TRUE starts the flashing; FALSE stops the flashing.

The frame-window procedure returns TRUE if the start/stop command is suc­
cessful or FALSE if an error occurs.

WinFlash Window

436 WM_FOCUSCHANGE

• WM_FOCUSCHANGE

Parameters

Return Value

See Also

WM_FOCUSCHANGE
hwnd = (HWND) HWNDFROMMP(mpl):
fGetFocus = (BOOL) SHORT1FROMMP(mp2):
fsFocusC~ange = (USHORT) SHORT2FROMMP(mp2):

/* window handle */
/* focus flag */
/* focus-change flags */

The WMYOCUSCHANGE message is sent when the focus-window changes. It
is sent to both the window gaining the focus and the window losing the focus.

hwnd Low and high word of mpl. Identifies the window gaining or losing the
focus.

fGetFocus Low word of mp2. Specifies whether the window is gaining or los­
ing the focus. A value of TRUE means the window is gaining the focus; FALSE
means the window is losing the focus.

fsFocusChange High word of mp2. Specifies flags that modify the focus­
change process. This parameter can be any combination of the following values:

Value Meaning

FC_NOSETFOCUS Do not send a WM-SETFOCUS message to the
window receiving the focus.

FC_NOLOSEFOCUS Do not send a WM-SETFOCUS message to the
window losing the focus.

FC_NOSETACTIVE Do not send a WM-ACTIVATE message to the
window becoming active.

FC_NOLOSEACTIVE Do not send a WM-ACTIV ATE message to the
window being deactivated.

FC~OSETSELECTION Do not send a WM-SETSELECTION message
to the window receiving the selection.

FC~OLOSESELECTION Do not send a WM-SETSELECTION message
to the window losing the selection.

An application should return zero if it processes this message.

WinFocusChange, WinSetFocus, ~CTIVATE,
\V1LQUERYFOCUSCHAIN, \V1LSETFOCUS,
\V1LSETSELECTION

• WM_FORMATFRAME

WM_FORMATFRAME
prcl = (PRECTL) PVOIDFROMMP(mpl):
pswp = (PSWP) PVOIDFROMMP(mp2):

/* pointer to RECTL structure */
/* pointer to SWP array */

The WMYORMATFRAME message is sent to a frame window to calculate the
sizes and positions of all the frame controls and the client window. The frame­
window procedure sends the message to its client window, and if the client win­
dow returns TRUE (indicating that it processed the message) no further action is
taken. Otherwise, the frame window calls the WinFormatFrame function.

Parameters

Return Value

Comments

See Also

Parameters

prcl Low and high word of mp2. Points to a RECTL structure that contains
the rectangle within which the frame controls are formatted. The RECTL struc­
ture has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

pswp Low and high word of mpl. Points to an array of SWP structures. The
array elements are filled in the order of the FID values of the frame controls,
with the FID_CLIENT window always the last element in the array. The SWP
structure has the following form:

typedef struct _SWP {
USHORT fs;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE if it processes this message.

Note that the pswp parameter points to memory allocated according to the value
returned by the W1LQUERYFRAMECTLCOUNT message. The application
must not write beyond this area.

WinFormatFrame

WM_HELP
usCmd = (USHORT) SHORT1FROMMP(mpl);
fsSource = (USHORT) SHORT1FROMMP(mp2);
fPointer = (BOOL) SHORT2FROMMP(mp2);

/' command value '/
/' source type '/
/' pointer flag '/

The WMJIELP message is sent when a keystroke is translated by an accelerator
table into a WMJIELP message. A WMJIELP message can also be posted by
menu controls and buttons, if they have the appropriate style.

The WMJIELP message is identical to the W1LCOMMAND message, but
WMJIELP implies that the application should respond by displaying help infor­
mation.

usCmd Low word of mpl. Specifies the command value.

fsSource Low word of mp2. Specifies the source type. This parameter can be
one of the following values:

Value

CMDSRC_ACCELERATOR

Meaning

Posted as the result of an accelerator. The
usCmd parameter is the accelerator com­
mand value.

Return Value

See Also

Parameters

Return Value

Value

CMDSRC_PUSHBUTTON

CMDSRC_OTHER

Meaning

Posted by a menu control. The usCmd
parameter is the identifier of the menu
item.

Posted by a push-button control. The
usCmd parameter is the window identifier
of the push button.

Other source. The usCmd parameter gives
further control-specific information
defined· for each control type.

[pointer High word of mp2. Indicates whether the message was posted as a
result of a pointing-device (mouse) operation. A value of TRUE indicates a
pointing device was used; FALSE indicates a keyboard operation.

An application should return zero if it processes this message.

WNLCOMMAND,WMLMENUSELECT,WNLTRANSLATEACCEL

WM_HITTEST
xPos = SHORT1FROMMP(mpl):
yPos = SHORT2FROMMP(mpl):

1* x position *1
1* y position 'I

The WM.JIITTEST message is sent when an application requests a message by
issuing a WinGetMsg or WinPeekMsg function. If the message that would be
retrieved represents a pointer-related event, the WM.JIITTEST message is sent
to a window to determine whether the message is destined for that window.

xPos Low word of mpl. Specifies the horizontal position of the mouse (in win­
dow coordinates), relative to the left side of the window.

yPos High word of mpl. Specifies the vertical position of the mouse (in win­
dow coordinates), relative to the bottom of the window.

An application that processes this message should return one of the following
values:

Value

HT_ TRANSPARENT

Meaning

The message (obtained from WlnPeekMsg or
WlnGetMsg) should be processed as normal.

The part of the window under the pointer is
transparent; hit testing should continue on win­
dows beneath this window, as if the window did
not exist.

The message should be discarded; no message
should be posted to the application.

Processed like HT_DISCARD. The message
should be discarded; no message should be
posted to the application except if the message
is a button-down message, an alarm sounds.

Comments

See Also

Parameters

Return Value

See Also

WM_HSCROLLCLIPBOARD 439

The handling of this message determines whether a disabled window can process
mouse clicks. The default window procedure returns HT-ERROR if the window
is disabled; otherwise, it returns HT_NORMAL.

WinGetMsg, WinPeekMsg, \V1LMOUSEMOVE

WM_HSCROLL
id = SHORT1FROMMP(mpl);
sPos = SHORT1FROMMP(mp2);
usCmd = SHORT2FROMMP(mp2);

I' control-window identifier 'I
1* slider position 'I
I' command *1

The WMJISCROLL message is posted to the owner of a horizontal scroll-bar
window when an event occurs.

id Low word of mpl. Identifies the scroll-bar window.

sPos Low word of mp2. Specifies the slider position.

usCmd High word of mp2. Specifies the type of command. This parameter
can be one of the following values:

Value

SB_LINERIGHT

SB_SLIDERPOSITION

SB_SLIDERTRACK

SB_ENDSCROLL

Meaning

The user clicked the left scroll-bar arrow or
pressed the VK_LEFr key.

The user clicked the right scroll-bar arrow or
pressed the VK_RIGHT key.

The user clicked the area to the left of the slider
or pressed the VK_PAGELEFr key.

The user clicked the area to the right of the
slider or pressed the VK_PAGERIGHT key.

The sPos parameter contains the final position
of the slider.

The user is dragging the slider. This value is sent
whenever the slider position changes.

The user has finished scrolling. This value is set
only if the user was not doing an absolute slider
movement.

An application should return zero if it processes this message.

WMJISCROLLCLIPBOARD, ~ VSCROLL

• WM_HSCROLLCLIPBOARD

WM_HSCROLLCLIPBOARD
hwndClip = HWNDFROMMP(mpl);
sPos = SHORT1FROMMP(mp2);
usCmd = SHORT2FROMMP(mp2);

I' handle of clipboard
I' slider position
I' command

owner 'I
'I
'I

The WMJISCROLLCLIPBOARD message is sent by the clipboard viewer to
the clipboard owner when the clipboard data has the CFLOWNERDRA W

440 WM_HSCROLLCLIPBOARD

Parameters

Return Value

See Also

Parameters

Return Value

See Also

attribute and there is an event in the clipboard viewer's horizontal scroll bar.
The owner should scroll the clipboard image, invalidate the appropriate sections,
and update the scroll-bar values.

hwndClip Low and high word of mpl. Identifies the clipboard viewer.

sPos Low word of mp2. Specifies the slider position.

usCmd High word of mp2. Specifies the type of command. This parameter
can be one of the following values:

Value

SB_SLIDERPOSITION

SB_SLIDERTRACK

Meaning

The user clicked the left scroll-bar arrow or
pressed the VK_LEFf key.

The user clicked the right scroll-bar arrow or
pressed the VK_RIGHT key.

The user clicked the area to the left of the slider
or pressed the VK_P AGELEFf key.

The user clicked the area to the right of the
slider or pressed the VK_PAGERIGHT key.

The sPos parameter contains the final position of
the slider.

The user is dragging the slider. This value is sent
every time the slider position changes.

The user has finished scrolling. This value is set
only if the user was not doing an absolute slider
movement.

An application should return zero if it processes this message.

WMJISCROLL, ~ VSCROLLCLIPBOARD

WM_INITDLG
hwnd = (HWND) HWNDFROMMP(mpl):
pCreateParams = PVOIDFROMMP(mp2):

/* window handle */
/* application-specific data */

The WMJNITDLG message is sent when a dialog box is being created. This
message is sent to the dialog procedure, before the dialog box is displayed.

hwnd Low and high word of mpl. Identifies the window that receives the
focus when FALSE is returned. This value is set to the first tab-stop child win­
dow in the dialog window.

p CreatePa rams Low and high word of mp2. Points to application-specific data
passed by calls to the WinCreateDlg, WinDlgBox, and WinLoadDlg functions.

An application should return TRUE if the dialog procedure alters the window
that is to receive the focus by issuing a WinSetFocus function with the handle of
another control within the dialog box. Otherwise, it should return FALSE.

WinCreateDlg, WinDlgBox, WinLoadDlg, WinSetFocus

Parameters

Return Value

See Also

WM_INITMENU
id = SHORT1FROMMP(mpl);
hwnd = (HWND) HWNDFROMMP(mp2);

WM_JOURNALNOTIFY 441

/* menu identifier */
/* menu-window handle */

The WMJNITMENU message is sent when a menu is about to become active.
This allows the application to modify the menu before it is displayed.

id Low word of mpl. Specifies the menu identifier.

hwnd Low and high word of mp2. Identifies the menu.

An application should return zero if it processes this message.

MMJSITEMVALID, W1LMENUEND

• WM_JOURNALNOTIFY

Parameters

Return Value

Form 1 (Journaling WinQueryQueueStatus)

WM_JOURNALNOTIFY
ulCmd = LONGFROMMP(mpl);
ulQueStatus = LONGFROMMP(mp2);

/* calling function */
/* queue status */

Form 2 (Journaling WinGetPhysKeyState)

WM_JOURNALNOTIFY
ulCmd = LONGFROMMP(mpl);
sc = SHORT1FROMMP(mp2);
fsPhysKeyState = SHORT2FROMMP(mp2);

/* calling function */
/* virtual key */
/* physical-key state */

A WMJOURNALNOTIFY message allows the WinQueryQueueStatus and
WinGetPhysKeyState functions to work properly in journaling situations.

ulCmd Low and high word of mpl. Specifies the function that was called.
This value is JRN_QUEUESTATUS for the WinQueryQueueStatus function
and JRNJlHYSKEYSTATE for the WinGetPhysKeyState function.

ulQueStatus Low and high word of mp2. This parameter is used when the
ulCmd parameter is JRN_QUEUESTATUS. This parameter contains the queue
status returned by the WinQueryQueueStatus function.

sc Low word of mp2. This parameter is used when the ulCmd parameter is
JRNJlHYSKEYST ATE. This parameter specifies the virtual-key value in the
low byte and contains zero in the high byte.

!sPhysKeyState High word of mp2. This parameter is used when the ulCmd
parameter is JRNJlHYSKEYSTATE. This parameter specifies the physical-key
state, returned by a call to WinGetPhysKeyState. The Ox8000 bit is set (less than
zero) if the key is down; it is clear if the key is up. The OxOOOl bit is set if the
key has been pressed since the last time WinGetPhysKeyState was called; it is
clear if the key has not been pressed. This OxOOOl bit is cleared by a call to
WinGetPhysKeyState.

An application should return zero if it processes this message.

442 WM_JOURNALNOTIFY

Comments

See Also

Both of these functions depend on scanning a complete message queue, but jour­
nal playback effectively uses a queue that is just one message long.

To fix these journal-related problems, calls to WinQueryQueueStatus and
WinGetPhysKeyState must be recorded along with appropriate state informa­
tion. This is done using WMJOURNALNOTIFY messages. If the functions
have new information to return since the last time they were called, and there is
a journal-record hook installed, the system sends a WMJOURNALNOTIFY
message, carrying a function indicator and the new state information. During
journal playback, the system interprets the WMJOU~NALNOTIFY message
and changes the appropriate physical-key state entry or queue status to reflect
the state of the system at the time the message was recorded.

Because the WinQueryQueueStatus and WinGetPhysKeyState functions can be
called by applications other than the one currently processing input, it is possible
that the journal-record hook will be called by two threads simultaneously. For
this reason, it is important that the journal library use semaphores when access­
ing global variables.

WinGetPhysKeyState, WinQueryQueueStatus

• WM_MATCHMNEMONIC

Parameters

Return Value

WM_MATCHMNEMONIC
usChar = SHORTIFROMMP(mpl); /* character to match */

The ~ATCHMNEMONIC message is sent by a dialog box to a control
window to determine if a typed character matches a mnemonic in the control
window's text.

usChar Low word of mpl. Specifies the character.

An application that processes this message should return TRUE if the
mnemonic is found or FALSE if it is not found.

• WM_MEASUREITEM

Parameters

WM_MEASUREITEM
id = SHORTIFROMMP(mpl);
poi = (POWNERITEM) PVOIDFROMMP(mp2);

/* list-box identifier */
/* pointer to OWNERITEM */

The ~EASUREITEM message is sent to calculate the height of each item
in a window. It is normally sent to list boxes and menus. All items are the same
height in a list box or menu.

id Low word of mpl. Specifies the window.

poi Low and high word of mp2. When this message is sent to a menu window,
this parameter points to an OWNERITEM structure. Otherwise, this parameter
is not used. The OWNERITEM structure has the following form:

Return Value

See Also

Parameters

Return Value

See Also

typedef struct _OWNERITEM {
HWND hwnd;
HPS hps;
USHORT fsState;
USHORT fsAttribute;
USHORT fsStateOld;
USHORT fsAttributeOld;
RECTL rclltem;
SHORT idltem;
ULONG hltem;

} OWNERITEM;

WM_MENUSELECT 443

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return the height of a window item.

LM_SETITEMHEIGHT

WM_MENUEND
idMenu = SHORT1FROMMP(mpl);
hwndMenu = LONGFROMMP(mp2);

1* menu identifier *1
1* menu window *1

The W1LMENUEND message is sent when a menu is about to terminate. This
allows the application to free any resources that were allocated to process the
message.

idMenu Low word of mpl. Specifies the menu that is terminating.

hwndMenu Low and high word of mp2. Identifies the menu window.

An application should return zero if it processes this message.

M~NDMENUMODE, WMJNITMENU

• WM_MENUSELECT

Parameters

WM_MENUSELECT
idltem = SHORT1FROMMP(mpl):
fPost = (BOOL) SHORT2FROMMP(mpl);
hwndMenu = LONGFROMMP(mp2);

1* item identifier *1
1* post flag *1
1* menu window *1

The W1LMENUSELECT message is sent to the owner of a menu window when
a menu item is selected.

idltem Low word of mpl. Specifies the selected menu item.

[post High word of mpl. Indicates whether a W1LCOMMAND, WMJIELP,
or W1LSYSCOMMAND message is to be posted. A value of TRUE means
that a message will be posted; FALSE means that it will not. An application can
prevent the posting of a message by returning FALSE after processing this mes­
sage.

hwndMenu Low and high word of mp2. Identifies the menu window.

444 WM_MENUSELECT

Return Value

See Also

If the fPost parameter is FALSE, the return value is ignored. If fPost is TRUE,
an application should return TRUE to post a W1LCOMMAND, WMJfELP,
or W~SYSCOMMAND message and dismiss the menu. An application should
return FALSE to prevent posting a message and to prevent the menu from being
dismissed.

W1LCOMMAND, WMJfELP, ~SYSCOMMAND

• WM_MINMAXFRAME

Parameters

Return Value

WM_MINMAXFRAME
pswp = PVOIDFROMMP(mpl); I' pointer to SWP structure 'I

The W1LMINMAXFRAME message is sent to a frame window when it is about
to be minimized, maximized, or restored.

pswp Low and high word of mpl. Points to an SWP structure. The fs field
specifies the type of action that is to take place (minimize, maximize, or
restore). The SWP structure has the following form:

typedef struct _swp {
USHORT fs;
SHORT cy;
SHORT cx;
SHORT y;
SHORT x;
HWND hwndlnsertBehind;
HWND hwnd;

} SWP;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE if no further processing should occur. Oth­
erwise, it should return FALSE.

• WM_MOUSEMOVE

Parameters

Return Value

WM_MOUSEMOVE
x = SHORT1FROMMP(mpl);
y = SHORT2FROMMP(mpl);
usHit = SHORT1FROMMP(mp2);

I' horizontal position 'I
I' vertical position 'I
I' hit-test result 'I

The W1LMOUSEMOVE message is sent to a window when the mouse pointer
moves. If the mouse is not captured, the message goes to the window beneath
the mouse pointer. Otherwise, the message goes to the mouse-capture window.

X Low word of mpl. Specifies the horizontal mouse coordinate, relative to the
window's lower-left corner.

y High word of mpl. Specifies the vertical mouse coordinate, relative to the
window's lower-left corner.

usHit Low word of mp2. Specifies the result of a WMJfTITEST message or
is zero if a mouse-capture operation is in process.

An application should return TRUE if it processes this message or FALSE if it
does not.

Comments

See Also

Parameters

Return Value

See Also

WM_NEXTMENU 445

An application that processes the W1LMOUSEMOVE message and does not
call the WinDefWindowProc function as part of that processing should call the
WinSetPointer function to set the mouse pointer.

Note that windows not registered with the style CSJIITfEST do not receive
this message.

WinDefWindowProc, WinSetPointer, WMJIITIEST

The W1LMOVE message is sent when a window with CS.-MOVENOTIFY style
changes its absolute position or when a parent window of that window is moved.
The window's new position can be obtained by calling the WinQueryWindow­
Rect function.

This message does not use any parameters.

An application should return zero if it processes this message.

WinQueryWindowRect

• WM_NEXTMENU

Parameters

Return Value

WM_NEXTMENU
hwnd = HWNDFROMMP(mpl):
fPrev = (BOOL) SHORT1FROMMP(mp2):

1* window handle *1
1* previous flag *1

The W1LNEXTMENU message is sent to the owner of a menu window to
obtain the next or previous menu window. For example, this message is sent
when either the beginning or the end of a menu has been reached when
enumerating menus with the direction keys.

The W1LNEXTMENU message is processed by frame windows by toggling
between the frame's main action-bar menu and the system menu. To implement
a multiple-document interface, change this frame-window action to include the
active child window's system menu in the menu enumeration set.

hwnd Low and high word of mpl. Identifies the current menu.

[prev Low word of mp2. Specifies whether to go to the next or previous menu.
When this parameter is TRUE, go to the previous menu. When it is FALSE, go
to the next menu.

An application should return a handle to the next or previous menu. It should
return NULL if a valid handle cannot be obtained.

Parameters

Return Value

See Also

The W1LNULL message is sent to activate message queues or modal loops.
This message should be ignored.

This message does not use any parameters.

An application should return zero if it processes this message.

WinTranslateAccel, W1LCHAR, W1LTRANSLATEACCEL

• WM_OTHERWINDOWDESTROYED

Parameters

Return Value

See Also

Parameters

Return Value

Example

See Also

WM_OTHERWINDOWDESTROYED
hwnd = HWNDFROMMP(mpl); /* destroyed window handle */

The W1LOTHERWINDOWDESTROYED message is sent to all child windows
of the desktop when a window registered by the WinRegisterWindowDestroy
function is being destroyed.

hwnd Low and high word of mpl. Identifies the window being destroyed.

An application should return zero if it processes this message.

WinRegisterWindowDestroy, WMJ)ESTROY

The WMJ> AINT message is sent when a window is to be repainted. An applica­
tion can get a presentation space for drawing by calling WinBeginPaint. The
presentation space will be clipped to the area of the window that is to be
painted.

This message does not use any parameters.

An application should return zero if it processes this message.

This example shows how an application gets a presentation space for drawing by
calling the WinBeginPaint function. When drawing is complete, the
WinEndPaint function is called to release the presentation space.
case WM_PAINT:

hps WinBeginPaint(hwnd, NULL, &rcl);

. /* drawing routines would go here */

WinEndPaint(hps) ;
return (OL);

WinBeginPaint, WinEndPaint, W1LERASEBACKGROUND

Parameters

Return Value

See Also

WM_QUERYBORDERSIZE 447

WM_PAINTCLIPBOARD
hwndClip = HWNDFROMMP(mpl); I' handle of clipboard viewer 'I

The WMJ> AINTCLIPBOARD message is sent by an application to the current
clipboard viewer when the clipboard's client area is to be repainted.

hwndClip Low and high word of mpl. Identifies the clipboard-viewer window.

An application should return zero if it processes this message.

WMJ)RA WCLIPBOARD

• WM_QUERYACCELTABLE

Parameters

Return Value

See Also

WM_QUERYACCELTABLE

The ~QUERYACCELTABLE message is sent to a frame window to get the
handle of the accelerator table.

This message does not use any parameters.

An application should return the accelerator-table handle associated with the
window. If no handle is available, the application should return NULL.

~SETACCELTABLE

• WM_QUERYBORDERSIZE

Parameters

Return Value

See Also

WM_QUERYBORDERSIZE
pptl = PVOIDFROMMP(mpl); I' pointer to WPOINT structure 'I

The ~QUERYBORDERSIZE message is sent to a window to determine the
size of its border. Typically, this message is sent to the frame window.

pptl Low and high word of mpl. Points to a POINTL structure that will con­
tain the window border's width and height. The POINTL structure has the fol­
lowing form:

typedef struct _POINTL {
LONG x;
LONG y;

} POINTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should place the size of the window borders into the POINTL
structure pointed to by pptl and return TRUE for success or FALSE for failure.

~SETBORDERSIZE

448 WM_QUERYCONVERTPOS

• WM_QUERYCONVERTPOS

Parameters

Return Value

WM_QUERYCONVERTPOS
prclCurPos = (PRECTL) PVOIDFROMMP(mpl); 1* pointer to RECTL *1

The W1LQUERYCONVERTPOS message is sent by the Kanji conversion win­
dow in order to determine whether to begin conversion and where to position
the conversion window.

prclCurPos Low and high word of mpl. Points to a RECTL structure in which
to place the cursor position. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return a conversion code. This code can be one of the
following values:

Value

QCP _NOCONVERT

Meaning

Conversion may be performed for the window with
the input focus. The RECTL structure pointed to
by the prclCurPos parameter has been filled with a
rectangle that describes where the text cursor is
located and that will be used as a guide for posi­
tioning the conversion window. The rectangle must
be given in screen coordinates.

No conversion should be performed. The window
with the input focus cannot deal with DBCS char­
acters. The RECTL structure pointed to by the
prclCurPos parameter has not changed.

• WM_QUERYDLGCODE

Parameters

Return Value

WM_QUERYDLGCODE

The W1LQUERYDLGCODE message is sent to a control window in a dialog
box to determine the capabilities of the control.

This message does not use any parameters.

An application should return one or more of the following values combined into
a single result by using the OR operator:

Value

DLGCJ3UTTON

DLGC_CHECKBOX

DLGC_DEFAULT

Meaning

Button item; processes the BM.-CLICK mes­
sage.

Check-box button control.

Default push button.

)

See Also

Value

DLGC_ENTRYFIELD

DLGC_MENU

DLGC_PUSHBUTTON

DLGC_RADIOBUTTON

DLGC_SCROLLBAR

DLGC_STATIC

DLGC_TABONCLICK

B~CLICK, E~SETSEL

WM_QUERYFOCUSCHAIN 449

Meaning

Entry-field item; processes the EM.-SETSEL
message.

Menu.

Normal (non-default) push button.

Radio button.

Scroll bar.

Static item.

The window should not get the focus. Instead,
the focus should be passed on to the next-on-tab
control.

• WM_QUERYFOCUSCHAIN

Parameters

WM_QUERYFOCUSCHAIN
fCmd = (BOOL) SHORT1FROMMP(mpl):
hwndFocus = HWNOFROMMP(mp2):

/* command flag */
/* focus-window IO */

The ~QUERYFOCUSCHAIN message is sent to query the next window in
the focus chain, to query the active window if the supplied window was given
focus, or to query which window should be activated if the supplied window was
selected (from Task Manager, or by pressing ALT+ESC).

fCmd Low word of mpl. Specifies the action to be performed. This parameter
can be one of the following values:

Value

QFC_NEXTINCHAIN

QFC_SELECT ACTIVE

Meaning

Return the frame window that would be activated if
that window were to be given the input focus (or
conversely, the window that would be deactivated
if the focus were taken away).

Return the first frame window associated with the
window.

Return the next window in the focus chain.

Return the window that should be activated if the
window receiving the message were selec~ed from
Task Manager or by ALT+ESC processing. For exam­
ple, a disabled frame window that has an owned
dialog box would return the window handle of the
dialog box: This option is used by Task Manager
and in similar situations to activate an application
or owner gro~p rather than a specific window.

By default, the top-most enabled and visible win­
dow within the owner group should be returned.

hwndFocus Low and high word of mp2. Identifies the focus window.

450 WM_QUERYFOCUSCHAIN

Return Value

See Also

An application should return a window handle passed on the type of action
requested by the fCmd parameter.

WMYOCUSCHAIN

• WM_QUERYFRAMECTLCOUNT

Parameters

Return Value

Comments

See Also

WM_QUERYFRAMECTLCOUNT

The ~QUERYFRAMECTLCOUNT message is sent to determine the max­
imum number of frame controls that can exist in the frame window.

This message does not use any parameters.

An application should return the number of frame controls a frame window can
have. This is usually (FID_CLIENT - FID_SYSMENU + 1).

There is no limit to the number of controls that can be supported. Because it is
used for memory allocation, it is critical that this message return a number that
is no less than the actual number of controls in a frame.

WMYORMATFRAME

• WM_QUERYFRAMEINFO

Parameters

Return Value

See Also

WM_QUERYFRAMEINFO

The ~QUERYFRAMEINFO message is sent to a window to determine the
following things about the window:

• Whether the window is a frame window.
• Whether the window should be hidden or shown as a result of its owner

window being hidden, shown, minimized, or maximized.
• Whether the window can be activated (used by ALT+ESC enumeration

code).
• Whether the window should move as a result of its owner being moved.

This message does not use any parameters.

An application should return a long word that contains frame-information flag
bits that can be one or more of the following values:

Value

FLACTIV A TEOK

FLFRAME

Meaning

The window may be activated if it isn't disabled.

The window is a frame window.

FLNOMOVEWITHOWNER The window should not move as a result of its
owner being moved.

FLOWNERHIDE The window should be hidden or shown as a
result of its owner window being hidden, shown,
minimized, or maximized.

~QUERYWINDOWTARAMS

WM_QUERYTRACKINFO 451

• WM QUERYICON

Parameters

Return Value

See Also

WM_QUERYICON

The ~QUERYICON message is sent to a frame window to get a handle to
the icon it uses to represent itself when minimized.

This message does not use any parameters.

An application should return an icon handle, or NULL if a handle is not avail­
able.

~SETICON

• WM_QUERYTRACKINFO

Parameters

WM_QUERYTRACKINFO
fTrack = (BOOL) SHORT1FROMMP(mpl); /* tracking flags */
pti = (PTRACKINFO) PVOIDFROMMP(mp2); /* pointer to TRACKINFO */

The ~QUERYTRACKINFO message is sent to the window procedure of
the owner of a title-bar control window at the start of track-move processing.

fI'rack Low word of mpl. Specifies tracking flags. This parameter can be one
or more of the following flags:

Value

TF_LEFf

TF_TOP

TF_RIGHT

TF_BOTTOM

TF_MOVE

TF _SETPOINTERPOS

TF_FIXTOP

TF_ALLINBOUNDARY

Meaning

Track the left side of the rectangle.

Track the top side of the rectangle.

Track the right side of the rectangle.

Track the bottom side of the rectangle.

Track all sides of the rectangle.

Reposition the pointer according to the
other options specified.

Vertically center the pointer at the left of
the tracking rectangle.

Horizontally center the pointer at the top
of the tracking rectangle.

Vertically center the pointer at the right
of the tracking rectangle.

Perform tracking so that no part of the
tracking rectangle ever falls outside the
bounding rectangle.

Horizontally center the pointer at the
bottom of the tracking rectangle.

Restrict tracking to the grid defined by
the cxGrid and cyGrid fields.

452 WM_QUERYTRACKINFO

Return Value

See Also

Value

TF _PARTINBOUNDARY

TF _ V ALIDATETRACKRECT

Meaning

Track so that the tracking rectangle
never falls outside the bounding rect­
angle.

The width t height t grid width and grid
height are all multiples of border width
and border height.

Check the tracking rectangle against size
and boundary limits and modify it to fit if
necessary. No actual tracking takes

'place; return after validating.

pli Low and.high word of mp2. Points to a TRACKINFO structure. The
TRACKINFO structure has the following form:

typedef struct _TRACKINFO {
SHORT cxBorder;
SHORT cyBorder;
SHORT cxGrid;
SHORT cyGrid;
SHORT cxKeyboard;
SHORT cyKeyboard;'
RECTL rclTrack;
RECTL rclBoundary;
POINTL ptlMinTrackSize;
POINTL ptlMaxTrackSize;
USHORT fs;
USHORT cxLeft;
USHORT cyBottom;
USHORT cxRight;
USHORT cyTop;

} TRACKINFO;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE to continue sizing or moving. It should
return FALSE to terminate sizing or moving.

~QUERYTRACKINFO

• WM_QUERYWINDOWPARAMS

Parameters

WM_QUERYWINDOWPARAMS
pwprm = (PWNDPARAMS) PVOIDFROMMP(mpl); /* pointer to WNDPARAMS */

The ~QUERYWINDOWP ARAMS message is sent to get various window
parameters.

pwprm Low and high word of mpl. Points to a WNDPARAMS structure that
defines the data to be returned. The window text, window-text length, control
data, and control-data length are selectively returned according to the status flags
set in WNDPARAMS. The WNDPARAMS structure has the following form:

typedef struct _WNDPARAMS {
USHORT fsStatus;
USHORT cchText;
psz pszText;
USHORT cbPresParams;
PYOID pPresParams;
USHORT cbCtlData;
PYOID pCtlData;

} WNDPARAMS;

Return Value

See Also

Parameters

Return Value

Example

See Also

WM_RENDERALLFMTS 453

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE if the operation is successful. Otherwise, it
should return FALSE.

\V1LQUERYFRAMEINFO, \V1LSETWINDOWP ARAMS

The \V1LQUIT message is posted to terminate an application. The WinGetMsg
function returns FALSE when it receives this message. A message-processing
loop should terminate when WinGetMsg returns FALSE. For more information,
see the description of the WinGetMsg function.

This message does not have any para~eters.

This message does not have a return value because it causes the message loop to
terminate before the message is sent to the application's window procedure.

In this example, a \V1LCLOSE message is received. If the jChanges flag is set,
the application calls a function to determine if the user wants to save the
changes before exiting. This function (called QuerySaveFile in this example)
would ask the user if he or she wants to save the changes. If the user selects
OK, it would save the changes. If the user selects Cancel, the function returns
this value and the application continues normal execution. Otherwise, it posts a
\V1LQUIT message to terminate the application.

case WM_CLOSE:
if (fChanges) {

}

if (QuerySaveFile(hwnd)
return (OL);

}

I' changes have not' been saved 'I
MB_CANCEL) {

I' do not exit after all 'I

WinPostMsg(hwnd, WM_QUIT, OL, OL);
return (OL);

WinGetMsg, WinPostMsg

• WM_RENDERALLFMTS

Parameters

WM_RENDERALLFMTS

The W1LRENDERALLFMTS message is sent to the clipboard owner when the
owner application is being destroyed. The owner should render all formats that it
is capable of generating and pass a handle or selector for each format to the
clipboard by calling the WinSetClipbrdData function. This ensures that the clip­
board contains valid data even though the application that rendered the data is
destroyed.

This message does not have any parameters.

454 WM_RENDERALLFMTS

Return Value

See Also

An application should return zero if it processes this message.

WinSetClipbrdData, ~ENDERFMT

• WM_RENDERFMT

Parameters

Return Value

See Also

Parameters

WM_RENDERFMT
usFormat = SHORT1FROMMP(mpl); /* format of data */

The ~ENDERFMT message is sent to the clipboard owner when a particu­
lar format with delayed rendering needs to be rendered. The receiver should
render the data in that format and pass it to the clipboard by calling the Win­
SetClipbrdData function.

usFormat Low word of mpl. Specifies the format of the data to be rendered.
It can be an application-specific format, or one of the following standard for­
mats:

Value

CFJUTMAP

CF _DSPBITMAP

CF _DSPMETAFILE

CFJ)SPTEXT

CF _METAFILE

CF_TEXT

Meaning

Specifies a bitmap.

Specifies a bitmap representation of a private data
format.

Specifies a metafile representation of a private data
format.

Specifies a textual representation of a private data
format.

Specifies a metafile.

Specifies an array of text characters.

An application should return zero if it processes this message.

WinSetClipbrdData, ~ENDERALLFMTS

WM_SEMl
flFlags = LONGFROMMP(mpl); /* application-defined flags */

The W1LSEMI message is one of four WM_SEM messages that an application
can use to send signals within and between threads. W1LSEM messages can be
used much like an MS OS/2 semaphore. Unlike an MS OS/2 semaphore, how­
ever, a thread waiting for a W1LSEM message can continue to process other
messages instead of blocking until the W1LSEM message is received.

A W1LSEMI message should be posted, not sent, by using the WinPostMsg
function.

flFlags Specifies a 32-bit field that is combined with any previous W1LSEMI
messages that have not been retrieved from the message queue by using the OR
operator. The application determines how this parameter is to be used.

Return Value

Comments

Example

See Also

An application should return zero if it proce~ses this message.

A ~SEMI message is quite fast, having a higher priority than other mes­
sages. The following list shows the message priority of the ~SEMI message
in relation to other messages (from highest to lowest):

~SEMI
'Any message posted using the WinPostMsg function or any input message
not listed here.
~SEM2
~TIMER
~SEM3
WMJ>AINT
~SEM4

~SEMI messages are handled differently by the system than other messages.
They can be used even if a message queue is full. When a ~SEMI message is
posted, the system combines each message queue's ~SEMI messages into
one message by combining the flFlags parameter with the message queue's previ­
ous ~SEMI flFlags parameter. The flFlags parameter is cleared whenever
the ~SEMI message is retrieved.

The application must determine how the flFlags field is to be used. An applica­
tion might set flag bits to indicate certain actions to be taken by the receiver of
the ~SEMI message, or it might set a bit to indicate who is actually posting
the ~SEMI message.

In this example, a thread notifies the client window that the thread is about to
terminate. It sends the constant THREAD3 as the flFlags parameter so that
when the client window receives the message, it can tell which thread termi­
nated.

#define THREAD1 1
#define THREAD2 2
#define THREAD3 4
VOID FAR Thread3() {

I' bit #1 'I
I' bit #2 'I
I' bit #3 'I

WinPostMsg(hwndClient, WM_SEM1, (MPARAM) THREAD3, 0);
DosExit(EXIT_THREAD, 0);

}

WinPostMsg

WM_SEM2
flFlags = LONGFROMMP(mp1); I' application-defined flags 'I

The ~SEM2 message is one of four ~SEM messages. It is identical to
the ~SEMI message except in priority. For more information, see the
description of the ~SEMI message.

• WM SEM3

• WM~SEM4

WM_SEM3
flFlags = LONGFROMMP(mpl); /* application-defined flags */

The ~SEM3 message is one of four ~SEM messages. It is identical to
the ~SEMI message except in priority. For more information, see the
description of the W1LSEMl message.

WM_SEM4
flFlags = LONGFROMMP(mpl); /* application-defined flags */

The ~SEM4 message is one of four ~SEM messages. It is identical to
the ~SEMI message except in priority. For more information, seethe
description of the W1LSEMl message.

• WM_SETACCEL TABLE

Parameters

Return Value

See Also

WM_SETACCELTABLE
haccel = (HACCEL) HWNDFROMMP(mpl); /* handle of accelerator table */

The ~SETACCELTABLE message is sent to a frame window to set the
handle of the accelerator table.

haeeel Low and high word of mpl. Identifies the accelerator table.

An application should return zero if it processes this message.

W1LQUERYACCELTABLE

• WM_SETBORDERSIZE

Parameters

Return Value

See Also

WM_SETBORDERSIZE
cx = SHORT1FROMMP(mpl);
cy = SHORT1FROMMP(mp2);

/* width */
/* height */

The ~SETBORDERSIZE message is sent to a frame window to change its
size-control's border width and height.

ex Low word of mpl. Specifies the width of the size control.

ey Low word of mp2. Specifies the height of the size control.

An application should return TRUE if the size control is set. Otherwise, it
should return FALSE.

~QUERYBORDERSIZE

Parameters

Return Value

See Also

Parameters

Return Value

See Also

WM_SETFOCUS
hwnd = HWNDFROMMP(lIlpl);
fFocus = (BOOL) SHORT1FROMMP(mp2);

WM_SETSELECTION 457

/* window ID */
/* focus flag */

The W1LSETFOCUS message is sent when a window is to receive or lose the
input focus.

An application processing a W1LSETFOCUS message should not change the
focus window or the active window. If it does, the focus window and active
window must be restored before the application returns from processing the
message. For this reason, any dialog boxes or windows brought up during
W1LSETFOCUS or W1LACTIV ATE processing should be system modal.

The default window procedure takes no action on this message.

hwnd Low and high word of mpl. Identifies the window gaining or losing the
focus. This parameter is NULL if no window previously had the focus.

fFocus Low word of mp2. Specifies whether the window is receiving or losing
the focus. If this parameter is TRUE, the window is receiving the focus. If it is
FALSE, the window is losing the focus.

An application should return zero if it processes this message.

W1LACTIV ATE, W1LFOCUSCHANGE

WM_SETICON
hptrIcon = (HPOINTER) LONGFROMMP(mpl); /* handle to icon */

The W1LSETICON message is sent to a frame window to set the icon it uses to
represent itself when minimized.

hptrlcon Low and high word of mpl. Identifies an icon.

An application should return TRUE if the associated icon is set or FALSE if it
is not.

W1LQUERYICON

• WM_SETSELECTION

Parameters

WM_SETSELECTION
fSelect = (BOOL) SHORT1FROMMP(mpl); /* TRUE for selection */

The W1LSETSELECTION message is sent to a window when it is selected or
deselected.

fSelect Low word of mpl. Specifies whether the window is being selected or
deselected. If this parameter is TRUE, the window is being selected. If it is
FALSE, the window is being deselected.

458 WM_SETSELECTION

Return Value

See Also

An application should return zero if it processes this message.

W1LACTIVATE, WMJOCUSCHANGE, W1LSETFOCUS

• WM_SETWINDOWPARAMS

Parameters

Return Value

See Also

Parameters

Return Value

See Also

WM_SETWINDOWPARAMS
pwprm = (PWNDPARAMS) PVOIDEROMMP(mpl); /* pointer to WNDPARAMS */

The W1LSETWINDOWP ARAMS message is sent when an application sets or
changes the window parameters.

If this message is sent to a window of another process, theWNDPARAMS struc­
ture pointed to by pwprm must be in memory shared by both processes.

pwprm Low and high word of mpl. Points to a WNDPARAMS structure that
defines the data to be set. The window text and control data are selectively set
according to the status flags set in WNDPARAMS. The WNDPARAMS struc­
ture has the following form:

typedef struct _WNDPARAMS {
USHORT fsStatus;
USHORT cchText;
psz pszText;
USHORT cbPresParams;
PVOID pPresParams;
USHORT cbCtlData;
PVOID pCtlData;

} WNDPARAMS;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE if the operation is successful. Otherwise, it
should return FALSE.

W1LQUER~NDOWPARAMS

WM_SHOW
fShow = (BOOL) SHORT1EROMMP(mpl); /* show flag */

The W1LSHOW message is sent when the visible state of a window changes
(controlled by the WS_ VISIBLE style bit).

The visible state of a window can be changed by calling the WinShowWindow
function. This state is not affected by the movement of other windows which
may change the visible region of a window. .

fShow Low word of mpl. Specifies whether the visible state of the window is
shown or hidden. If this parameter is TRUE, the window is being shown. If it is
FALSE, the window is being hidden.

An application should return zero if it processes this message.

WinShowWindow

Parameters

Return Value

See Also

WM_SIZ
cxOld
cyOld
cxNew
cyNew

SHORT1FROMMP(mpl)
SHORT2FROMMP(mpl)
SHORT1FROMMP(mp2)
SHORT2FROMMP(mp2)

WM_SIZECLIPBOARD 459

/* old width */
/* old height */
/* new width */
/* new height */

The ~SIZE message is sent when a window changes its size. It is sent after
the window has been sized, but before any repainting has been performed. Any
resizing or repositioning of child windows that may be necessary as a result of
the size change is usually performed during the processing of this message. The
application should not send any output to the window during the processing of
the ~SIZE message because the area drawn into may be drawn a second
time after the ~SIZE processing is complete.

This message is not sent when the window is created.

The processing of this message for a window displaying an advanced video­
input-and-output (A VIO) presentation space must be carried out by the default
A VIO window procedure.

ex Old Low word of mpl. Specifies the old width.

eyOld High word of mpl. Specifies the old height.

exNew Low word of mp2. Specifies the new width.

exNew High word of mp2. Specifies the new width.

An application should return zero if it processes this message.

WinCreate Window, WinSetWindowPos, ~CREATE

• WM_SIZECLIPBOARD

Parameters

WM_SIZECLIPBOARD
hwnd = HWNDFROMMP(mpl);
prcl = (PRECTL) PVOIDFROMMP(mp2);

/* clipboard-viewer handle */
/* pointer to RECTL structure */

The ~SIZECLIPBOARD message is sent by the clipb'oard viewer to the
clipboard owner when the clipboard contains data with the attribute
CFLOWNERDISPLA Y attribute and the clipboard-viewer window has changed
size. When the clipboard viewer is being destroyed or made iconic, this message
is sent with the rectangle size equal to (0,0,0,0), which permits the owner to free
its display resources.

hwnd Low and high word of mpl. Identifies the clipboard viewer.

pre! Low and high word of mp2. Points to a RECTL structure that contains
the rectangle of the area that is to be repainted. The RECTL structure has the
following form:

460 WM_SIZECLIPBOARD

Return Value

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;

} RECTL;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return zero if it processes this message.

• WM_SUBSTITUTESTRING

Parameters

Return Value

See Also

WM_SUBSTITUTESTRING
index = SHORT1FROMMP(mpl); I' index of substitution string 'I

The W1LSUBSTITUTESTRING message is sent as part of the processing of
the WinSubstituteStrings function. It allows an application to substitute phrases
within a string.

index Low word of mpl. Specifies a value that is equal to the numeric value in
the substitution string. It can be any value between 0 and 9.

An application should return a far pointer to a substitution string or NULL to
indicate no string.

WinSubstituteStrings

• WM_SYSCOLORCHANGE

Parameters

Return Value

See Also

WM_SYSCOLORCHANGE

The W1LSYSCOLORCHANGE message is sent to all child windows of the
desktop when a change is made to the system colors by the WinSetSysColors
function. When the W1LSYSCOLORCHANGE message is received, applica­
tions that depend on the system colors can query the new color values using the
WinQuerySysColors function.

After the W1LSYSCOLORCHANGE messages are sent, all windows in the
system are invalidated so that they will be redrawn with the new system colors.

The default window procedure takes no action on this message.

mpJ Specifies a reserved value. It must be NULL.

mp2 Specifies a reserved value. It must be NULL.

The return value is NULL.

WinQuerySysColors, WinSetSysColors, W1LSYSV ALUECHANGED

WM_SYSVALUECHANGED 461

• WM_SYSCOMMAND

Parameters

Return Value

See Also

WM_SYSCOMMAND
usCmd = (USHORT) SHORT1FROMMP(mpl);
fsSource = (USHORT) SHORT1FROMMP(mp2);
fPointer = (BOOL) SHORT2FROMMP(mp2);

1* command value *1
1* source type *1
1* pointer flag *1

The W1LSYSCOMMAND message is sent when a control window has
a command to report to its owner or when a keystroke has been translated
by an accelerator table into a W1LSYSCOMMAND message. Typically, a
W1LSYSCOMMAND message is sent when the user selects an item from the
system menu.

usCmd Low word of mpl. Specifies the command value.

fsSource Low word of mp2. Specifies the source type. This parameter can be
one of the following values:

Value

CMDSRC_ACCELERATOR

CMDSRC_PUSHBUTTON

CMDSRC_OTHER

Meaning

Posted as the result of an accelerator. The
usCmd parameter is the accelerator com­
mand value.

Posted by a menu control. The usCmd
parameter is the identifier of the menu
item.

Posted by a push-button control. The
usCmd parameter is the window identifier
of the push button.

Other source. The usCmd parameter gives
further control-specific information
defined for each control type.

/pointer High word of mp2. Specifies whether the message was posted as a
result of a pointing-device (mouse) operation. A value of TRUE indicates a
pointing device was used; FALSE indicates a keyboard operation.

An application should return zero if it processes this message.

WNLCOMMAND,WMLMENUSELECT,W1LTRANSLATEACCEL

• WM_SYSVALUECHANGED

Parameters

WM_SYSVALUECHANGED
iFirst = SHORT1FROMMP(mpl);
iLast = SHORT1FROMMP(mp2);

1* first value that changed *1
1* last value that changed *1

The ~SYSVALUECHANGED message is sent to all child windows' of the
desktop when a change is made to a system value. The application should post
this message whenever it changes the system values to notify other windows of
the change.

iFirst Low word of mpl. Specifies the first of a contiguous set of changed sys­
tem values.

iLast Low word of mp2. Specifies the last of a contiguous set of changed sys­
tem values.

462 WM_SYSVALUECHANGED

Return Value

See Also

Parameters

Return Value

See Also

An application should return zero if it processes this message.

~SYSCOLORCHANGE

WM_TIMER
idTimer = SHORT1FROMMP(mpl); /* timer ID */

The ~TIMER message is sent after each interval specified in the WinS tart­
Timer function that was used to start a timer.

idTimer Low word of mpl. Specifies the timer.

An application should return zero if it processes this message.

WinStartTimer

• WM_TRACKFRAME

Parameters

WM_TRACKFRAME
fsTrackFlags = SHORT1FROMMP(mpl); /* tracking flags */

The ~TRACKFRAME message is sent to start the tracking operation for a
. frame window.

fsTrackFlags Low word of mpl. Specifies tracking flags. This parameter can
be one or more of the following flags:

Value

TF_LEFT

TF_TOP

TF_RIGHT

TF_BOTTOM

TF_MOVE

TF_SETPOINTERPOS

TF _ALLINBOUNDARY

Meaning

Track the left side of the rectangle.

Track the top side of the rectangle.

Track the right side of the rectangle.

Track the bottom side of the rectangle.

Track all sides of the rectangle.

Reposition the pointer according to the
other options specified.

Vertically center the pointer at the left of
the tracking rectangle.

Horizontally center the pointer at the top
of the tracking rectangle.

Vertically center the pointer at the right
of the tracking rectangle.

Perform tracking so that no part of the
tracking rectangle ever falls outside the
bounding rectangle.

Horizontally center the pointer at the
bottom of the tracking rectangle.

Return Value

See Also

Value

TF _PARTINBOUNDARY

TF _V ALIDATETRACKRECT

WM_ TRANSLATEACCEL 463

Meaning

Restrict tracking to the grid defined by
the cxGrldand cyGrld fields.

Perform tracking so that all the tracking
rectangle never falls outside the bounding
rectangle.

The width, height, grid width and grid
height are all multiples of border width
and border height.

Check the tracking rectangle against size
and boundary limits and modify it to fit
if necessary. No actual tracking takes
place; return after validating.

An application should return TRUE if the tracking operation was succesful, or
FALSE if it was not.

W1LQUERYfRACKINFO

• WM_TRANSLATEACCEL

Parameters

Return Value

See Also

WM_TRANSLATEACCEL
pqmsg = (PQMSG) PVOIDFROMMP(mpl); 1* pointer to QMSG structure *1

The W1LTRANSLATEACCEL message is sent to the focus window whenever
a W1LCHAR message is obtained, to allow for any accelerator translation of
the W1LCHAR message. The default window procedure handles this message
by calling the WinTranslateAccel function.

pqmsg Low and high word of mpl. Points to a QMSG structure that contains
a queue message. The QMSG structure has the following form:

typedef struct _QMSG {
HWND hwnd;
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl;

} QMSG;

For a full description, see Chapter 4, "Types, Macros, Structures."

An application should return TRUE if the queue message has been translated.
Otherwise, is should return FALSE.

WinTranslateAccel, W1LCHAR, W1LCOMMAND, WMJIELP,
W1LNULL, W1LSYSCOMMAND

464 WM_UPDATEFRAME

• WM UPDATEFRAME

Parameters

Return Value

Comments

See Also

Parameters

WM_UPDATEFRAME
fsStyle = SHORT1FROMMP(mpl); 1* style bits *1

The W1LUPDATEFRAME message is sent after frame controls have been
added or removed from the window frame. It tells the frame window to reformat
and update the appearance of the window. An application should send this mes­
sage to its frame window whenever it adds or removes frame controls.

[sStyle Low word of mpl. Specifies frame-style bits that indicate which frame
controls were added or removed. This parameter can be anyone of the following
values:

Value

FCF _ TITLEBAR

FCF _SYSMENU

FCF_MENU

FCF _SIZEBORDER

FCF~INBUTTON

FCF _MAXBUTTON

FCF~INMAX

FCF _ VERTSCROLL

FCF _HORZSCROLL

Meaning

Title bar added or removed.

System menu added· or removed.

Menu added or removed.

Sizing border added or removed.

Minimize button added or removed.

Maximize button added or removed.

Minimize/maximize button added or removed.

Vertical scroll bar added or removed.

Horizontal scroll bar added or removed.

An application should return TRUE if it processes this message.

Because this message causes any redrawing that is necessary, the application
should ensure that no drawing takes place when adding or removing a frame con­
trol, to prevent unnecessary redrawing. If using the WinSetParent function, this
is done by setting the fRedraw parameter to FALSE.

WinSetParent, W1LFORMATFRAME

WM_VIOCHAR
fsKeyFlags = (USHORT) SHORT1FROMMP(mpl);
uchRepeat = (UCHAR) CHAR3FROMMP(mpl);
uchScanCode = (UCHAR) CHAR4FROMMP(mpl);
uchChr = (UCHAR) CHAR1FROMMP(mp2);
uchKbdScan = (UCHAR) CHAR2FROMMP(mp2);

1* key flags *1
1* repeat count *1
It scan code *1
1* character *1
1* virtual key *1

The W~ VIOCHAR message is sent whenever the user presses a key. This
message is placed in the queue associated with the window that has the focus.

[sKeyFlags Low word of mpl. Specifies the keyboard control codes. This
parameter may be one or more of the following values:

Value

KC_CHAR

KC_ VIRTUALKEY

KC_INV ALIDCOMP

Meaning

Indicates that the uchChr parameter contains a valid
character. This bit will be set only on a down stroke.
KC_CHAR is not set if either the KC_ALT or the
KC_CONTROL flag is set, even if uchChr contains a
valid character.

Indicates the uchScanCode value is valid; other-
wise, uchScanCode contains zero. Generally, all
W1LCHAR messages generated from actual user
input have the KC_SCANCODE flag set. However, if
the message has been generated by an application that
has issued the WlnSetHook function to filter key­
strokes, or been posted to the application queue, this
code may not be set.

Indicates the usVKey value is valid; otherwise, usVKey
contains zero.

The event was a key-up transition; otherwise, it was a
key-down transition.

The key was previously down; otherwise, it was previ­
ously up.

The character code is a dead key. The application
displays the glyph for the dead key without advancing
the cursor.

The character code was formed by combining the
current key with the previous dead key.

The character code was not a valid combination with
the preceding dead key. The application advances the
cursor past the dead-key glyph and then, if the current
character is not a space, it beeps the speaker and
displays the new character code.

This bit is set if the key was pressed and released
without any other keys being pressed or released
between the time the key went down and went up.

The SHIFf state was active when the key was pressed
or released.

The ALT state was active when the key was pressed or
released.

The CONTROL state was active when the key was
pressed or released.

uchRepeat Low byte of the high word of mpl. Specifies the repeat count of
t~e key.

uchScanCode High byte of the high word of mpl. Specifies the scan code of
the character.

uchChr Low word of mp2. Specifies the ASCII character.

uchKbdScan High byte of low word of mp2. Specifies the keyboard scan
code.

Return Value

See Also

Parameters

Return Value

See Also

The application should return TRUE if it processes the message. Otherwise, it
should return FALSE.

WinSetHook, CHARMSG, W1LCHAR

WM_VSCROLL
id = SHORT1FROMMP(mpl);
sPos = SHORT1FROMMP(mp2);
usCmd = SHORT2FROMMP(mp2);

/* control-window ID */
/* slider position */
/* command */

The W1L VSCROLL message is posted to the owner of a vertical scroll-bar win­
dow when an event occurs.

id Low word of mpl. Identifies the scroll-bar window.

sPos Low word of mp2. When usCmd is SB_SLIDERPOSITION or
SB_SLIDERTRACK, it specifies the slider position. If usCmd is
SB~NDSCROLL, sPos is TRUE if the pointer was inside the scroll bar or
FALSE if the pointer was outside. The sPos parameter is zero for all other
usCmd values.

usCmd High word of mp2. Specifies the type of command. This parameter
can be one of the following values:

Value

SB_SLIDERPOSITION

Meaning

The user clicked the scroll-bar up arrow or
pressed the VICUP key.

The user clicked the scroll-bar down arrow or
pressed the VK_DOWN key.

The user clicked the area above the slider or
pressed the VK_P AGEUP key.

The user clicked the area below the slider or
pressed the VK_PAGEDOWN key.

The sPos parameter contains the final position of
the slider.

The user is dragging the slider. This value is sent
whenever the slider position changes.

The user has finished scrolling. This value is set
only if the user was not doing an absolute slider
movement.

An 'application should return zero if it processes this message.

WMJISCROLL, W1L VSCROLLCLIPBOARD

WM_VSCROLLCLIPBOARD 467

• WM_VSCROLLCLIPBOARD

Parameters

Return Value

See Also

WM_VSCROLLCLIPBOARD
hwndClip = HWNDFROMMP(mpl);
sPos = SHORT1FROMMP(mp2);
usCmd = SHORT2FROMMP(mp2);

/* handle of clipboard
/* slider position
/* command

owner */
*/
*/

The W1L VSCROLLCLIPBOARD message is sent by the clipboard viewer to
the clipboard owner when the clipboard data has the CFLOWNERDRA W attri­
bute and there is an event in the clipboard viewer's vertical scroll bar. The
owner should scroll the clipboard image, invalidate the appropriate sections, and
update the scroll bar values. .

hwndClip Low and high word of mpl. Identifies the clipboard viewer.

sPas Low word of mp2. Specifies the slider position.

usCmd High word of mp2. Specifies the type of command. This parameter
can be one of the following values:

Value

SB_SLIDERPOSITION

SB_SLIDERTRACK

Meaning

The user clicked the scroll-bar up arrow or
pressed the VK_UP key.

The user clicked the scroll-bar down arrow or
pressed the VK_DOWN key.

The user clicked the area above the slider or
pressed the VK_PAGEUP key.

The user clicked the area below the slider or
pressed the VK_PAGEDOWN key.

The sPos parameter contains the final position of
the slider.

The user is dragging the slider. This value is sent
whenever the slider position changes.

The user has finished scrolling. This value is set
only if the user was not doing an absolute slider
movement.

An application should return zero if it processes this message.

WMJISCROLLCLIPBOARD, W1L VSCROLL

Chapter

4

Types, Macros, Structures
4.1 Introduction.. 471
4.2 Types... 472
4.3 Macros ... 473
4.4 Structures.. 485

Chapter 4: Types, Macros, Structures 471
lUr:ila~iS1i~!§;~l:!:~~~im!~;:~iG1i\§.rm~iffi!~ilijimirn!9imlif~a:mii~~~~~ilS~m~Elgn~l~li:!l~llffiM!I~~~iiir:~I~~ll1'lim~r§f

4.1 Introduction
This chapter describes the types, macros, and structures used with MS OS/2
Dev, Gpi, and Win functions. MS OS/2 functions use many types, macros, and
structures that are not part of the standard C language. These types, macros,
and structures have been defined to make the task of creating MS OS/2 pro­
grams easier and to make program sources clearer and easier to understand.

All types, macros, and structures in this manual are defined in the MS OS/2 C­
language include files. Programmers may also wish to use these when developing
MS OS/2 programs in other computer languages, such as Pascal or assembly
language. If include files for a given language are not available, a programmer
can translate the definitions given in this chapter by following these guidelines:

• Numbers must be integers or fixed-point real numbers. MS OS/2 functions
do not support floating-point numbers. An MS OS/2 program can use
floating-point numbers if an appropriate run-time library or coprocessor is
supplied and if floating-point numbers are not used as parameters to the MS
OS/2 functions.

• Structures must be packed. Some compilers align each new field in a struc­
ture on word or double-word boundaries. This may leave unused bytes in a
structure if a given field is smaller than the width between boundaries. MS
OS/2 functions require that unused bytes be removed from structures.

• Reserved fields in structures should be set to zero. Unless otherwise speci­
fied, MS OS/2 functions require that reserved fields be set to zero to avoid
compatibility problems with future releases of MS OS/2.

• Variable-length structures must be supported. Several MS OS/2 functions
use variable-length structures to receive and/or return information. In a
variable-length structure, the number of fields varies depending on when the
structure is used. In the C language, programs typically support variable­
length structures by allocating enough memory for the current number of
fields and accessing those fields by using a pointer to the structure. Programs
in other languages may use this method or devise their own method for sup­
porting variable-length structures.

• All 16-bit pointers must be relative to an explicitly defined segment register.
Some compilers assume that the ds and ss registers contain the same value
and implicitly use one segment for both. MS OS/2 does not guarantee that
the ds and ss registers will be equal. This is especially true in dynamic-link
libraries and programs that use callback functions (for example, window pro­
cedures).

• All 32-bit pointers must consist of a selector:offset pair. A physical address,
that is, an address that represents a 32-bit offset from the beginning of physi­
cal memory, cannot be used by MS OS/2 functions.

472 MS OS/2 Programmer's Reference, Vol. 2
~~I!li~2limf~t~5i~j~?~!r.r..ffiSJ§lf;!ffiilifii!ijgm.jf:f~l~f~lr;l~!~!im\j~.iliJ~~~mlm~§f~I~I~~!iU!L:;mID!BffifEr.!~~~~ll~iim~~im$

4.2 Types
The following is a complete list, in alphabetical order, of the types that have
been defined for the functions described in this manual. Many of these types
begin with a letter that identifies what the type is used for-for example, H
identifies a handle, P identifies a far pointer.

Type

ATOM

COLOR

FFDESCS

FIXED

HAB

HACCEL

HATOMTBL

HBITMAP

HDC

HENUM

HHEAP

HMF

HMQ

HPOINTER

HPROGRAM

HPS

HRGN

HSWITCH

HVPS

HWND

MPARAM

MRESULT

PCOLOR

PFFDESCS

PFIXED

PHAB

PHBITMAP

PHDC

Meaning

16-bit value used as an atom handle.

32-bit signed value used as a color value.

Two-dimensional array used for font information.

32-bit fixed-point real number.

32-bit value used as an anchor-block handle.

32-bit value used as an accelerator-table handle.

32-bit value used as an atom-table handle.

32-bit value used as a bitmap handle.

32-bit value used as a device-context handle.

32-bit value used as enumeration-list handle.

32-bit value used as a heap handle.

32-bit value used as a metafile handle.

32-bit value used as a message-queue handle.

32-bit value used as a pointer handle.

32-bit value used as a program or group handle.

32-bit value used as a presentation-space handle.

32-bit value used as a region handle.

32-bit value used as a switch-entry handle.

16-bit value used as an advanced video-in put­
and-output (A VIO) presentation-space handle.

32-bit value used as a window handle.

32-bit pointer to an unspecified data type.

32-bit pointer to an unspecified data type.

32-bit pointer to a color value.

32-bit pointer to an array of font information.

32-bit pointer to a fixed-point real number.

32-bit pointer to an anchor-block handle.

32-bit pointer to a bitmap handle.

32-bit pointer to a device-context handle.

Chapter 4: Types, Macros, Structures 473
~Hilli~E~!i!!roSi!;ffi!i~~i~t~~i~~!lIiiii:'ffi1iUnml~!a!~~§!~ii~l!amjJi§!l~[~ii~ni1~~limail~;§:~:ms!Eim~~I~fni!~imf;g~~itiier.

4.3 Macros

Type

PHMF

PHPROGRAM

PHPS

PHRGN

PHSWITCH

PHVPS

PMPARAM

PMRESULT

PRO GCATEGORY

PSTR16

PSTR32

PSTR64

STR16

STR32

STR64

Meaning

32-bit pointer to a metafile handle.

32-bit pointer to a program or group handle.

32-bit pointer to a presentation-space handle.

32-bit pointer to a region handle.

32-bit pointer to a switch-entry handle.

32-bit pointer to an advanced video-input-and­
output (A VIO) presentation-space handle.

32-bit pointer to a message-result pointer.

32-bit pointer to a message-result pointer.

8-bit value used as a program category.

32-bit pointer to a 16-character array.

32-bit pointer to a 32-character array.

32-bit pointer to a 64-character array.

16-character array.

32-character array.

64-character array.

The following is a complete list, in alphabetical order, of the macros that can be
used with the functions described in this manual.

474 CHAR1FROMMP

• CHAR1FROMMP
CHAR1FROMMP(mp)

Parameters

See Also

The CHARIFROMMP macro retrieves the character in the low byte of a mes­
sage parameter.

mp Specifies the message parameter.

CHAR2FROMMP, CHAR3FROMMP, CHAR4FROMMP, CHARMSG

• CHAR2FROMMP
CHAR2FROMMP(mp)

Parameters

See Also

The CHAR2FROMMP macro retrieves the character in the high byte of the low
word of a message parameter.

mp Specifies the message parameter.

CHARIFROMMP, CHAR3FROMMP, CHAR4FROMMP, CHARMSG

• CHAR3FROMMP
CHAR3FROMMP(mp)

Parameters

See Also

The CHAR3FROMMP macro retrieves the character in the low byte of the high
word of a message parameter.

mp Specifies the message parameter.

CHARIFROMMP, CHAR2FROMMP, CHAR4FROMMP, CHARMSG

• CHAR4FROMMP
CHAR4FROMMP(mp)

Parameters

See Also

The CHAR4FROMMP macro retrieves the character in the high byte of the high
word of a message parameter.

mp Specifies the message parameter.

CHARIFROMMP, CHAR2FROMMP, CHAR3FROMMP, CHARMSG

• CHARMSG
CHARMSG(pmsg)

Parameters

Example

See Also

COMMANDMSG 475

The CHARMSG macro is usedto access the ~CHAR message parameters.
This macro defines a CHARMSG structure pointer, which has the following
form: .

struct _CHARMSG {
USHORT chr;
USHORT vkey;
USHORT fs;

};

UCHAR cRepeat;
UCHAR scancode;

I' mp2 'I

I' mpl 'I

pmsg Points to the message received by the application's window procedure.

This example uses the CHARMSG macro to process a ~CHAR message.
First, it uses the macro to determine whether a key was released, then it uses the
macro to generate a switch statement based on the character received.

MRESULT CALLBACK GenericWndProc(hwnd, usMessage, mpl, mp2)
HWND hwnd;
USHORT usMessage;
MPARAM mpl;
MPARAM mp2;
{

switch (usMessage) {
case WM_CHAR:

if (CHARMSG(&usMessage)->fs & KC_KEYUP) {
switch (CHARMSG(&usMessage)->chr) {

CHARIFROMMP, CHAR2FROMMP, CHAR3FROMMP, CHAR4FROMMP

• COMMANDMSG
COMMANDMSG (pmsg)

Parameters

See Also

The COMMANDMSG macro retrieves information that is passed in the parame­
ters of the ~COMMAND, WMJIELP, and ~SYSCOMMAND mes­
sages. This macro defines a COMMANDMSG structure pointer, which has the
following form: .

struct _COMMANDMSG {
USHORT source;
BOOL fMouse;
USHORT cmd;
USHORT unused;

};

I' mp2 'I

I' mpl 'I

pmsg Points to the message received by the application's window procedure.

~COMMAND, WMJIELP, ~SYSCOMMAND

• DDES_PABDATA
DDES_PABDATA(pdde)

Parameters

See Also

The DDESYABDATA macro retrieves a far (32-bit) pointer to the data area that
follows a DDESTRUCT structure. The following messages pass a DDESTRUCT
structure as the second parameter:

WMJ)DE~EQUEST
WMJ)DE-ACK
WMJ)DEJ)ATA
WMJ)DE-ADVISE
WMJ)DE_UNADVISE
WMJ)DEYOKE
WMJ)DE-EXECUTE

pdde Points to th~ DDESTRUCT structure that precedes the data area.

DDESYSZITEMNAME

• DDES_PSZITEMNAME
DDES_PSZITEMNAM E (pdde)

Parameters

See Also

The DDESYSZITEMNAME macro retrieves a far (32-bit) pointer to the item
name contained within a DDESTRUCT structure. The following messages pass a
DDESTRUCT structure as the second parameter:

WMJ)DE~EQUEST
WMJ)DE-ACK
WMJ)DEJ)ATA
WMJ)DE.ADVISE
WMJ)DE_UNADVISE
WMJ)DEYOKE
WMJ)DE~XECUTE

pdde Points to the DDESTRUCT structure that contains the item name.

DDESYABDATA

• ERRORIDERROR
ERRORIDERROR (errid)

Parameters

See Also

The ERRORIDERROR macro retrieves the error number from an ERRORID
value. An ERRORID value is returned by the WinGetLastError function.

errid Specifies the error identifier.

ERRORIDSEV, MAKEERRORID

• ERRORIDSEV
ERRORIDSEV(errid)

Parameters

See Also

• FIXEDFRAC
FIXEDFRAC «(x)

Parameters

See Also

• FIXEDINT
FIXEDINT «(x)

Parameters

See Also

HWNDFROMMP 477

The ERRORIDSEV macro retrieves the severity value from an ERRORID value.
An ERRORID value is returned by the WinGetLastError function. The severity
value may be one of the following:

SEVERITY_NOERROR
SEVERITY_WARNING
SEVERITY~RROR
SEVERITY_SEVERE
SEVERITY_UNRECOVERABLE

errid Specifies the error identifier.

ERRORIDERROR, MAKEERRORID

The FIXEDFRAC macro. retrieves the fractional part of a FIXED value.

Ix Specifies the FIXED value.

FIXEDINT, MAKEFIXED

The FIXEDINT macro retrieves the integer part of a FIXED value.

Ix Specifies the FIXED value.

FIXEDFRAC, MAKEFIXED

• HWNDFROMMP
HWNDFROMMP(mp)

Parameter

See Also

The HWNDFROMMP macros casts a message parameter to an HWND type.

mp Specifies the message parameter.

MPFROMBWND

478 LONGFROMMP

• LONGFROMMP
LONGFROMMP(mp)

Parameter

See Also

• LONGFROMMR
LONGFROMMR(mr)

Parameter

See Also

The LONGFROMMP macro casts a message parameter to a LONG type.

mp Specifies the message parameter.

MPFROMLONG

The LONGFROMMR macro casts a message result to a LONG type.

mp Specifies the message result. The following functions return this param­
eter:

WinDdeRespond
WinDefA Vio WindowProc
WinDelWindowProc
WinSendMsg
WinSendDlgItemMsg

MRFROMLONG

• MAKEERRORID
MAKEERRORID(sev, error)

Parameters

See Also

The MAKEERRORID macro creates an error identifier that consists of a sever­
ity level and an error number.

sev Specifies a severity level, which can be any value in the range 0 through
65,535. You may use the following constants:

SEVERITY_NOERROR
SEVERITY_WARNING
SEVERITY-.ERROR
SEVERITY_SEVERE
SEVERITY_UNRECOVERABLE

error Specifies an error value, which can be any value in the range 0 through
65,535.

ERRORIDERROR, ERRORIDSEV

MPFROM2SHORT 479

• MAKEFIXED
MAKEFIXED (intpart, fractpart)

Parameters

See Also

• MAKEINTATOM
MAKEINTATOM(a)

Parameters

• MOUSEMSG
MOUSEMSG (pmsg)

Parameters

See Also

The MAKEFIXED macro creates a FIXED value from an integer and a fraction.

in/part Specifies the integer part.

!raetpart Specifies the fractional part.

FIXEDINT, FIXEDFRAC

The MAKEINTATOM macro creates an integer atom from an atom.

a Specifies the atom.

The MOUSEMSG macro is used to access the W1LMOUSEMOVE and
~UTTON message parameters. This macro defines a MOUSEMSG
structure pointer, which has the following form:

struct _MOUSEMSG {
USHORT codeHitTest;
USHORT unused;
SHORT x;
SHORT y;

};

I' mp2 'I

I' mpl 'I

pmsg Points to the message received by the application's window procedure.

~UTTON,W1LMOUSEMOVE

• MPFROM2SHORT
MPFROM2SHORT(s1, s2)

Parameters

See Also

The MPFROM2SHORT macro creates a message parameter from two SHORT
values.

sl Specifies the first SHORT value.

s2 Specifies the second SHORT value.

MRFROM2SHORT, SHORTIFROMMP, SHORT2FROMMP

480 MPFROMCHAR

• MPFROMCHAR
MPFROMCHAR(ch)

. The MPFROMCHAR macro creates a message parameter from a character.

Parameters

See Also

ch Specifies the character.

CHARIFROMMP

• MPFROMHWND
MPFROMHWND(hwnd)

Parameters

See Also

• MPFROMLONG
MPFROMLONG(/)

Parameters

See Also

• MPFROMP
MPFROMP(p)

Parameters

See Also

The MPFROMHWND macro creates a message parameter from a window han­
dle (HWND).

hwnd Specifies the window. handle.

HWNDFROMMP

The MPFROMLONG macro creates a message parameter from a LONG value.

1 Specifies the LONG value.

LONGFROMMP, MRFROMLONG

The MPFROMP macro creates a message parameter from a pointer.

p Specifies the pointer.

MRFROMP, PVOIDFROMMP

• MPFROMSH2CH
MPFROMSH2CH(s, uch1, uch2)

The MPFROMSH2CH macro creates a message parameter from a SHORT value
and two unsigned characters.

Parameters

See Also

s Specifies the SHORT value.

uch1 Specifies the first unsigned character.

uch2 Specifies the second unsigned character.

CHAR3FROMMP, CHAR4FROMMP, SHORTIFROMMP

MRFROMP 481

• MPFROMSHORT
MPFROMSHORT(s)

Parameters

See Also

The MPFROMSHORT macro creates a message parameter from a SHORT
value.

s Specifies the SHORT value.

MRFROMSHORT, SHORTIFROMMP

• MRFROM2SHORT
MRFROM2SHORT(s1, s2)

Parameters

See Also

• MRFROMLONG
MRFROMLONG (/)

Parameters

See Also

• MRFROMP
MRFROMP(p)

Parameters

See Also

The MRFROM2SHORT macro creates a message result from two SHORT
values.

sl Specifies the first SHORT value.

s2 Specifies the second SHORT value.

MPFROM2SHORT, SHORTIFROMMR, SHORT2FROMMR

The MRFROMLONG macro creates a message result from a LONG value.

I Specifies the LONG value.

LONGFROMMR, MPFROMLONG

The MRFROMP macro creates a message result from a pointer.

p Specifies the pointer.

MPFROMP, PVOIDFROMMR

482 MRFROMSHORT

• MRFROMSHORT
MRFROMSHORT(s)

Parameters

See Also

• PDDEITOSEL
PDDEITOSEL (pddei)

Parameter

See Also

• PDDESTOSEL
PDDESTOSEL(pdde)

Parameter

See Also

The MRFROMSHORT macro creates a message result from a SHORT value.

s Specifies the SHORT value.

MPFROMSHORT, SHORTIFROMMR

The PDDEITOSEL macro creates a selector from a pointer to a DDEINIT struc­
ture. This is necessary in order to use th~ DosFreeSeg function to free the
memory that the DDEINIT structure uses.

pddei Points to a DDEINIT structure.

PDDESTOSEL

The PDDESTOSEL macro creates a selector from a pointer toa DDESTRUCT
structure. This is necessary in order to use the DosFreeSeg function to free the
memory that the DDESTRUCT s'tructure uses.

pdde Points to a DDESTRUCT structure.

PDDEITOSEL, SELTOPDDES

• PVOIDFROMMP
PVOIDFROMMP(mp)

Parameters

See Also

The PVOIDFROMMP macro creates a pointer from a message parameter.

mp Specifies the message parameter.

MPFROMP, PVOIDFROMMR

SHORT1 FROMMP 483

• PVOIDFROMMR
PVOIDFROMMR(mr)

Parameters

See Aiso

• SEL TOPDDES
SELTOPDDES (se/)

Parameters

See Also

The PVOIDFROMMR macro creates a pointer from a message result.

mr Specifies the message result.

MRFROMP, PVOIDFROMMP

The SELTOPDDES macro creates a pointer from a selector; this pointer is to a
DDESTRUCT structure.

sel Specifies the selector.

PDDESTOSEL

• SETMEMBACKPTR
SETM EM BAC KPTR (npb)

Parameters

See Also

. .

The SETMEMBACKPTR macro creates a back pointer from the near pointer
returned by the WinAllocMeni and WinReallocMem functions.

npb Specifies the near pointer.

WinAlIocMem, WinReallocMem

• SHORT1FROMMP
SHORT1FROMMP(mp)

Parameters

See Also

The SHORTIFROMMP macro creates a SHORT value from the low word of a
message parameter.

inp Specifies the message parameter.

MPFROMSHORT, SHORTIFROMMR

484 SHORT1 FROMMR

• SHORT1FROMMR
SHORT1FROMMR(mr)

Parameters

See Also

The SHORTIFROMMR macro creates a SHORT value from the low word of a
message result.

mr Specifies the message result.

MRFROMSHORT, SHORTIFROMMP

• SHORT2FROMMP
SHORT2FROMMP(mp)

Parameters

See Also

The SHORT2FROMMP macro creates a SHORT value from the high word of a
message parameter.

mp Specifies the mess~ge parameter.

MPFROM2SHORT, SHORT2FROMMR

• SHORT2FROMMR
SHORT2FROMMR(mr)

Parameters

See Also

The SHORT2FROMMR macro creates a SHORT value from the high word of a
message result. .

mr Specifies the message result.

MRFROM2SHORT, SHORT2FROMMP

Chapter 4: Types, Macros, Structures 485
~~~~§1mi!ml~i;\limm\!~~mimllr;I~i!llSlw.ru~~~!ii§i1U§~ffi\~liiiili5~;~\llS~~iU~!iii!l~1~\lt?]~lim~1~1!-!\t!mEmr:ID~lrui~ii~~@l~iii1J'~m 

4.4 Structures 
The following is a complete list, in alphabetical order, of the structures used by 
the functions described in this manual. 



486 ACCEL 

• ACCEL 

Fields 

See Also 

• ACCEL TABLE 

typedef struct _ACCEL { 
USHORT cmd; 
USHORT fs; 
USHORT key; 

} ACCEL; 

/* acc */ 

The ACCEL structure contains an accelerator key used in the ACCELTABLE 
structure. 

cmd Specifies the value to be placed in the usCmd parameter of the 
WMJIELP, \V1LCOMMAND, or \V1LSYSCOMMAND message. 

fs Specifies the style of the accelerator. This field can be one of the following 
values: 

Value 

AF _SYSCOMMAND 

Meaning 

The ALT key must be held down when the accelera­
tor key is pressed. 

The keystroke is a translated character, using the 
code page for the accelerator table. This is the 
default style. 

The CONTROL key must be held down when the 
accelerator key is pressed. 

The accelerator key generates a W~HELP mes­
sage instead of a W~COMMAND message. 

No other key was pressed while the accelerator key 
was down. This style typically is used with the ALT 

key to specify that simply pressing and releasing the 
AL T key triggers the accelerator. 

The keystroke is an untranslated scan code from 
. the keyboard. 

The SHIFT key must be held down when the 
accelerator key is pressed. 

When pressed, the accelerator key generates a 
W~SYSCOMMAND message instead of a 
W~COMMAND message. 

AF_VIRTUALKEY The keystroke is a virtual key-for example, PI. 

key Specifies the accelerator key. 

ACCELTABLE, \V1LCOMMAND, WMJIELP, \V1LSYSCOMMAND 

typedef struct _ACCELTABLE { 
USHORT cAccel; 
USHORT codepage; 
ACCEL aaccel[l]; 

} ACCELTABLE; 

/* acct */ 

The ACCELTABLE structure contains an accelerator table. 



Fields 

See Also 

• ARCPARAMS 

Fields 

Comments 

See Also 

• AREABUNDLE 

Fields 

AREABUNDLE 487 

cAccel Specifies the number of accelerator entries. The default is 28. 
codepage Specifies the code page for the accelerator entries in the accelera­
tor table of the default queue. 

aaccel [1] Specifies the accelerator entries. The actual dimension of this array 
of ACCEL structures is dependent on the number of accelerator entries. 

WinCreateAccelTable, WinCopyAccelTable, ACCEL 

typedef struct _ARCPARAMS { 
LONG 1P; 
LONG 1Q; 
LONG 1R; 
LONG lS; 

} ARCPARAMS; 

It arcp *1 

The ARCP ARAMS structure contains arc parameters that define the shape and 
orientation of an ellipse that is used for subsequent GpiFullArc, GpiPartialArc 
and GpiPointArc functions. 

IP Specifies the length of the horizontal-scaling vec'tor. 

IQ Specifies the length of the vertical-scaling vector. 

IR Specifies the position of the horizontal-shear vector. 

IS Specifies the position of the vertical-shear vector. 

Most arcs and ellipses are drawn without shear. This means that the IR and IS 
fields are usually set to zero. 

GpiFullArc, GpiPartialArc, GpiPointArc, GpiQuery ArcParams, 
GpiSetArcParams 

typedef struct _AREABUNDLE { 
LONG 1Co1or; 
LONG 1BackCo1or; 
USHORT usMixMode; 
USHORT usBackMixMode; 
USHORT usSet; 
USHORT usSymbo1; 
POINTL pt1RefPoint; 

} AREABUNDLE; 

It pbnd tl 

The AREABUNDLE structure contains fields that describe the current fill pat­
tern of the presentation space. MS OS/2 uses this fill pattern when the applica­
tion constructs areas or paths. 

IColor Specifies the foreground color of the area fill pattern. 

IBackColor Specifies the background color of the area fill pattern. 



488 AREABUNDLE 

See Also 

• BITMAPINFO 

Fields 

See Also 

usMixMode Specifies the foreground mix mode the system uses when it com­
bines the foreground fill-pattern color with the current drawing-surface color. 

usBaekMixMode Specifies the background mix mode the system uses when it 
combines the background fill-pattern color with the current drawing surface 
color. 

usSet Specifies the local identifier value for the fill-pattern bitmap or font. 

usSymbol Specifies the character or symbol code-point. This field is useful 
only if the fill pattern is generated from a character or symbol in an image font. 

ptlReCPoint Points to the POINTL structure that contains the coordinates of 
the pattern reference point. 

GpiQueryAttrs, GpiQueryPattem, GpiQueryPattemRefPoint, GpiQuery­
PatternSet, GpiSetAttrs, GpiSetPattern, GpiSetPattemRefPoint, GpiSet­
PatternSet, POINTL 

typedef struet _BITMAPINFO { 
ULONG ebFix; 
USHORT ex; 
USHORT ey; 
USHORT ePlanes; 
USHORT eBitCount; 
RGB argbColor[l]; 

} BITMAPINFO; 

I' bmi 'I 

The BITMAPINFO structure contains a bitmap information table. 

cbFix Specifies the length of the fixed portion of the structure. This value 
must be 12. 

ex Specifies the width of the bitmap (in pels). 

ey Specifies the height of the bitmap (in pels). 

ePlanes Specifies the number of bit planes. 

eBitCount Specifies the number of bits per pel within a plane. 

argbColor[1] Specifies a packed array of 24-bit RGB colors. If there are 
n bits per pel, the array contains 2n RGB colors, unless n equals 24. The 
standard-format bitmap, with 24 bits per pel, is assumed to contain RGB colors 
and does not use the colors array. 

GpiQueryBitmapBits, GpiSetBitmapBits 



CATCHBUF 489 

• BITMAPINFOHEADER 

Fields 

See Also 

• BTNCDATA 

Fields 

• CATCHBUF 

Fields 

See Also 

typedef struet _BITMAPINFOHEADER { 
ULONG ebFix; 
USHORT ex; 
USHORT ey; 
USHORT ePlanes; 
USHORT eBitCount; 

} ,BITMAPINFOHEADER; 

It bmp tl 

The BITMAPINFOHEADER structure contains a bitmap header that defines the 
structure of a bitmap. 

cbFix Specifies the size of the structure. For MS OS/2 version 1.1, this value 
inust be 12. 

cx Specifies the bitmap width (in pels). 

cy Specifies the bitmap height (in pels). 

cPlanes Specifies the number of bit planes. 

cBitConnt Specifies the number of bits per pel within a plane. 

GpiCreateBitMap, GpiQueryBitmapParameters 

typedef struet _BTNCDATA { 
USHORT eb; 
USHORT fsCheekState; 
USHORT fsHiliteState; 

} BTNCDATA; 

It btned tl 

The BTNCDATA structure contains information about a button control. 

cb Specifies the length of the BTNCDATA structure. For MS OS/2 version 
1.1, the length is 6. 

fsCheckState Specifies the check state of the button. 

fsHiliteState Specifies whether the button is highlighted. 

typedef struet _CATCHBUF { 
ULONG reserved[4]; 

} CATCHBUF; 

It etehbf t I 

The CATCHBUF structure is used by the WinCatch and WinThrow functions to 
save and restore the execution environment. 

reserved[ 4] The contents of this field are reserved for use by MS OS/2. 

WinCatch, WinThrow 



490 CHARBUNDLE 

• CHARBUNDLE 

Fields 

See Also 

typedef struct _CHARBUNDLE { 
LONG lColor; 
LONG lBackColor; 
USHORT usMixMode; 
USHORT usBackMixMode; 
USHORT usSet; 
USHORT usPrecision; 
SIZEF sizfxCell; 
POINTL ptlAngle; 
POINTL ptlShear; 
USHORT usDirection; 

} CHARBUNDLE; 

1* cbnd *1 

The CHARBUNDLE structure contains fields that describe the current character 
attributes in the application's presentation space. MS OS/2 uses these attributes 
whenever the application draws text using one of the Gpi functions. 

lColor Specifies the character foreground color. 

IBackColor Specifies the character background color. 

usMixMode Specifies the foreground mix mode. MS OS/2 uses this mix 
mode when it combines the character foreground color and the current drawing­
surface color. 

usBackMixMode Specifies the background mix mode. MS OS/2 uses this 
mix mode when it combines the character background color and the current 
drawing-surface color. 

usSet Specifies the character set. This value is the local identifier for the 
current logical font. It can be any value from 1 through 254. 

usPrecision Specifies the current character mode. There are three possible 
modes: triode 1, mode 2, and mode 3. If mode 1 is set and the current font is an 
image font, MS OS/2 ignores the current shear, angle, and box attributes. If 
mode 2 is set and the current font is an image font, MS OS/2 uses the current 
shear, angle, and box attributes. If mode 3 is set and the current font is an 
image font, MS OS/2 issues an error message. If the current font is a vector 
font, MS OS/2 always uses the current shear, angle, and box attributes (regard­
less of the mode). 

sizfxCell Specifies the character-cell size (in world units). This SIZEF struc­
ture contains two fixed values. 

ptlAngle Points to the POINTL structure that contains the coordinates of the 
endpoint of the character-angle vector. The baseline of vector characters is 
drawn parallel to the character-angle vector. 

ptlShear Points to the POINTL structure that contains the coordinates of the 
endpoint of the .character-shear vector. The vertical strokes in vector characters 
are drawn parallel to the character-shear vector. 

usDirection Specifies the character direction. For MS OS/2 version 1.1, this 
field must be set to 1. 

GpiQueryAttrs, GpiQueryCharAngle, GpiQueryCharBox, GpiQueryCharSet, 
GpiQueryCp, GpiSetAttrs, GpiSetCharAngle, GpiSetCharBox, GpiSetCharSet, 
GpiSetCp, POINTL, SIZEF 



• CHARMSG 

Fields 

See Also 

struct _CHARMSG { 
USHORT chr; 
USHORT vkey; 
USHORT fs; 

}; 

UCHAR cRepeat; 
UCHAR scancode; 

I' mp2 'I 

I' mpl 'I 

CHARMSG 491 

The CHARMSG structure is used by the CHARMSG macro to access key infor­
mation that is passed in the parameters of the ~CHAR message. Unlike 
other MS OS/2 structures, this structure is not defined as a type. 

chr Specifies the ASCII character. 

vkey Specifies the virtual-key code. 

fs Specifies the keyboard-control codes. This field can be one or more of the 
following values: 

Value 

KC_INV ALIDCOMP 

Meaning 

The usChr value is valid; otherwise, mp2 is zero. 

The uchScanCode value is valid; otherwise, uchScan-
Code contains zero. 

The usVKey value is valid; otherwise, usVKey is zero. 

The event was a key-up transition; otherwise, it was a 
key-down transition. 

The key was previously down; otherwise, it was previ­
ously up. 

The character key is a dead key. The application must 
display the glyph for the dead key without advancing 
the cursor. 

The character code is formed by combining the 
current key with the previous dead key. 

The character code is not valid with the preceding 
dead key. The application advances the cursor past 
the dead-key glyph and, if the character is not a 
space, beeps and displays the new character code. 

This bit is set if the key was pressed and released with 
no other keys being pressed or released between the 
time the key was pressed and the time it was released. 

The shift state was active when the key was pressed or 
released. 

The ALT state was active when the key was pressed or 
released. 

The CONTROL state was active when the key was 
pressed or released. 

cRepeat Specifies the key-repeat count. 

scancode Specifies the character scan code. 

~CHAR 



492 CLASSINFO 

• CLASSINFO 

Fields 

See Also 

typedef struct _CLASSINFO { 
ULONG flClassStyle; 
PFNWP pfnWindowProc; 
USHORT cbWindowData; 

} CLASSINFO; 

/* clsi */ 

The CLASSINFO structure contains information about a window class. 

ftClassStyle Specifies the class-style flags. 

pfnWindowProc Points to the window procedure of the class. 

cb WindowData Specifies the number of words stored as part of the class. 

WinQueryClasslnfo 

• COMMANDMSG 

Fields 

See Also 

struct _COMMANDMSG { 
USHORT source; 
BOOL fMouse; 
USHORT cmd; 
USHORT unused; 

}; 

/* mp2 */ 

/* mpl */ 

The COMMANDMSG structure is used by the COMMANDMSG macro to 
access information passed in the parameters of the ~COMMAND, 
WMJIELP, and ~SYSCOMMAND messages. Unlike other MS OS/2 
structures, this structure is not defined as a type. 

source Specifies the source type. It can be one of the following values: 
Value 

CMDSRCJUSHBUTTON 

CMDSRC_ACCELERATOR 

Meaning 

Posted by a push-button control. The 
usCmd parameter is the window identifier 
of the push button. 

Posted by a menu control. The usCmd 
parameter is the identifier of the menu 
item. 

Posted as the result of an accelerator. The 
usCmd parameter is the accelerator com­
mand value. 

Other source. The usCmd parameter gives 
control-specific information defined for 
each control type. 

fMouse Specifies whether the message was posted as a result of a pointing­
device operation. A value of TRUE indicates a pointing device (mouse) was 
used. A value of FALSE indicates a keyboard operation. 

cmd Specifies the command. 

unused This field is not used. 

COMMANDMSG, ~COMMAND, WMJIELP, ~SYSCOMMAND 



CREATESTRUCT 493 

• CREATESTRUCT 

Fields 

typedef struet _CREATESTRUCT { 
PVOID pPresParams; 
PVOIDpCtlData; 

1* erst *1 

USHORT id; 
HWND hwndInsertBehind; 
HWND hwndOwner; 
SHORT ey; 
SHORT ex; 
SHORT y; 
SHORT x; 
ULONG flStyle; 
PSZ pszText; 
PSZ pszClass; 
HWND hwndParent; 

} CREATESTRUCT; 

The CREATESTRUCT structure contains information about a created window. 
It is passed as the second parameter of the ~CREATE message. Note that 
the fields are identical to the parameters in the WinCreate Window function. 

pPresParams Points to the presentation parameters. This field is currently 
reserved. 

pCtlData Points to the buffer that contains class-specific information. 

id Specifies the window identifier, the value given by the application allowing a 
specific child window to be identified. For example, the controls of a dialog box 
have unique identifiers so that an owner window can distinguish which control 
has notified it. Window identifiers are also used for frame windows. 

hwndlnsertBehind Identifies the sibling window behind which the specified 
window is placed. If this value is HWND_TOP, the specified window is placed 
on top of all its sibling windows. If this value is HWNDJ30TTOM, the 
specified window is placed behind all its sibling windows. If this value is not 
HWND_TOP or HWNDJ30TfOM, or if it is a child window of the desktop 
window identified by the of Rom field, then NULL is returned. 

hwndOwner Identifies the owner window. 

ey Specifies the window depth (in pels). 

ex Specifies the window width (in pels). 

y Specifies the vertical position of the window relative to the origin of the 
parent window. 

x Specifies the horizontal position of the window relative to the origin of the 
parent window. 

ftStyle Specifies the window style. This field can be a combination of one or 
more of the following values: 

Value 

WS_CLIPCHILDREN 

WS_CLIPSIBLINGS 

Meaning 

Prevents a window from painting over its child 
windows. 

Prevents a window from painting over its sibling 
windows. 

Disables mouse and keyboard input to the win­
dow. This style is used to temporarily prevent 
the user from using the window. 



494 CREATESTRUCT 

See Also 

• CURSORINFO 

Fields 

Value 

WS_MINIMIZED 

WS_PARENTCLIP 

WS_VISIBLE 

Meaning 

Enlarges the window to the maximum size. 

Reduces the window to the minimum size. 

Prevents a window from painting over its parent 
window. 

Saves the image under the window as a bitmap. 
When the window is moved or hidden, the sys-
tem restores the image by copying the bits. 

Causes the window to receive W~P AINT mes­
sages immediately after a part of the window 
becomes invalid. Without this style, the window 
receives W~P AINT messages only if no other 
messages are waiting to be processed. 

Makes the window visible. This window will be 
drawn on the screen unless overlapping windows 
completely obscure it. Windows without this 
style are hidden. 

p szText Points to window text or other class-specific data. The actual struc­
ture of the data is class-specific. This data is usually a zero-terminated string and 
is often displayed in the window. 

pszClass Points to the registered class name. This field is an application­
specified name (defined by the WinRegisterClass function), the name of a prere­
gistered window-control class, or a window-control (WC) constant. 

hwndParent Identifies the parent window of the new window. This field can 
be any valid window handle. 

WinCreateWindow, ~CREATE 

typedef struet _CURSORINFO { 
HWND hwnd; 
SHORT x; 
SHORT y; 
SHORT ex; 
SHORT ey; 
USHORT fs; 
RECTL relClip; 

} CURSORINFO; 

/' esri '/ 

The CURSORINFO structure contains information about the cursor. 

hwnd Identifies the window in which the cursor is displayed. 

x Specifies the horizontal position of the cursor. 

y Specifies the vertical position of the cursor. 

ex Specifies the horizontal size of the cursor. If this field is zero, the system 
nominal border width (SV _CXBORDER) is used. 

ey Specifies the vertical size of cursor. If this field is zero, the system nominal 
border height (SV _CYBORDER) is used. 



Comments 

See Also 

• DDEINIT 

Fields 

See Also 

• DDESTRUCT 

Fields 

DDESTRUCT 495 

fs Specifies the appearance of the cursor. This field can be one of the follow­
ing values: 

Value 

CURSOR_FLASH 

CURSOR_FRAME 

CURSOR_HALFfONE 

Meaning 

The cursor is flashing. 

The cursor is a frame. 

The cursor is halftone. 

CURSOR_SOLID The cursor is solid. 

rclClip Contains the RECTL structure that contains the rectangle within 
which the cursor is visible. If the cursor moves outside this rectangle, it is 
clipped and becomes invisible. The rectangle is specified in window coordinates. 
If this field is NULL, the cursor is clipped to the window rectangle identified by 
the hwnd field. 

The fields of the CURSORINFO structure are identical to the parameters of the 
WinCreateCursor function. 

Win Create Cursor, WinQueryCursorInfo, RECTL 

typedef struct _DDEINIT { 
USHORT cb; 
psz pszAppName; 
psz pszToplc; 

} DDEINIT; 

/* ddel */ 

The DDEINIT structure is passed by the WMJ)DEJNITIATEACK and 
WMJ)DEJNITIATE messages. The fields are normally set by the system. 

cb Specifies the length of the object. 

pszAppName Points to the application name. 

pszTopic Points to the topic name. 

DDESTRUCT, WMJ)DEJNITIATE, WMJ)DEJNITIATEACK 

typedef struct _DDESTRUCT { 
ULONG cbData; 
USHORT fsStatus; 
USHORT usFormat; 
USHORT offszltemName; 
USHORT offabData; 

} DDESTRUCT; 

/* dde */ 

The DDESTRUCT structure is passed as the second parameter of all DDE mes­
sages except WMJ)DEJNITIATE and WMJ)DEJNITIATEACK. 

cbData Specifies the length of the data (in bytes). 



496 DDESTRUCT 

See Also 

fsStatus Specifies various status flags. This field can be one or more of the 
following values: 

Value 

DDEJACK 

DDEJBUSY 

DDEJNODATA 

DDEJRESPONSE 

DDE~OTPROCESSED 

DDE_PRESERVED 

DDE_FAPPSTATUS 

Meaning 

Set for a positive acknowledge message. 

Set if the application is busy. 

Set if there is no data transfer for an advise 
message. 

Set for acknowledgment of DDE messages. 

Set if there is a response to a request message. 

Set if the message is not supported. 

Reserved; must be zero. 

Upper eight bits of the status word are reserved 
for application-specific data. 

usFormat Specifies the format of the data. 

offszltemName Specifies the offset of the item name. 

offabData Specifies the offset of the data. 

DDEINIT 

• DEVOPENSTRUC 

Fields 

typedef struct _DEVOPENSTRUC { It dop tl 
psz pszLogAddress; 
psz pszDriverName; 
PDRIVDATA pdriv; 
psz pszDataType; 
psz pszComment; 
psz pszQueueProcName; 
psz pszQueueProcParams; 
psz pszSpoolerParams; 
psz pszNetworkParams; 

} DEVOPENSTRUC; 

The DEVOPENSTRUC structure describes an output device. A copy of this 
structure is passed to the DevOpenDC function when a device context is 
opened. 

pszLogAddress Points to the logical-device address (for example, lptl). 

pszDriverName Points to the device-driver name (for example, PSCRIPT). 

pdriv Points to the DRIVDATA structure that contains device-driver informa­
tion. This structure identifies the device-driver version number and the device 
name. It can also contain additional device-driver data. 

pszDataType Points to the device-driver type (for example, P~Q_STD). 

pszComment Points to additional information used by queued devices. 

pszQueueProcName Points to additional information used by queued 
devices. 



See Also 

• DLGTEMPLATE 

Fields 

See Also 

DLGTEMPLATE 497 

pszQueueProcParams Points to additional information used by queued 
devices. 

pszSpoolerParams 

pszNetworkParams 

Points to additional information used by queued devices. 

Points to additional information used by queued devices. 

DevOpenDC 

typedef struct 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
USHORT 
DLGTITEM 

} DLGTEMPLATE; 

_DLGTEMPLATE { /* dlgt */ 
cbTemplate; 
type; 
codepage; 
offadlgti; 
fsTemplateStatus; 
iltemFocus; 
coffPresParams; 
adlgti[l]; 

The DLGTEMPLATE structure contains header information and an array of dia­
log items. It is used by the WinCreateDlg function to create a dialog window 
instead of loading it from the resource file. 

cbTemplate Specifies the length of the structure (in bytes). 

type Specifies the type of the dialog window. This field is currently unused. 

codepage Specifies the code page for the dialog window. This field can be 
one of the following values: 

Number Code page 

437 United States 

850 Multilingual 

860 Portuguese 

863 French-Canadian 

865 Nordic 

offadlgti Specifies the offset from the beginning of the dialog to the array of 
dialog-item structures. For MS OS/2 version 1.1, this value is 14. 

fsTemplateStatus This field is currently unused. It must be set to 1. 

iItemFocus Specifies the index of the item that has the focus. 

coffFresParams This field is currently unused. It must be set to zero. 

adlgti [1] Specifies an array of DLGTITEM structures that contain information 
about each dialog item. 

WinCreateDlg, DLGTITEM 



498 DLGTITEM 

• DLGTITEM 

Fields 

See Also 

• DRIVDATA 

typedef struet _DLGTITEM { /* dlgti */ 
USHORT fsltemStatus; 
USHORT eChildren; 
USHORT eehClassName; 
USHORT offClassName; 
USHORT eehText; 
USHORT off Text; 
ULONG flStyle; 
SHORT x; 
SHORT y; 
SHORT ex; 
SHORT ey; 
USHORT id; 
USHORT offPresParams; 
USHORT offCtlData; 

} DLGTITEM; 

The DLGTITEM structure contains information about a dialog item. 

fsltemStatus This field is currently unused. It must be set to zero. 

eChildren Specifies the number of child windows of the dialog window. 

eehClassName Specifies the length of the class nanie. 

offClassName Specifies the offset to the class name. 

eehText Specifies the length of the dialog-item text. 

offfext Specifies the offset to the dialog-item text. 

flStyle Specifies the dialog-item window style. The high word contains the 
standard window-style bits. The low word is available for class-specific use. The 
high word is WS_GROUP if the dialog item begins a group. It is WS_TABSTOP 
if the dialog item can receive the focus when the user presses the TAB key. 

x Specifies the left origin of the dialog-item window. 

y Specifies the bottom origin of the dialog-item window. 

ex Specifies the width of the dialog item. 

ey Specifies the height of the dialog item. 

id Identifies the dialog item. 

offPresParams Specifies the offset to presentation parameters. This field is 
currently reserved. 

offCtlData Specifies the offset to any control data. 

DLGTEMPLATE 

typedef struet _DRIVDATA { /* driv */ 
LONG eb; 
LONG IVers!on; 
CHAR szDevieeName[32]; 
CHAR abGeneralData[l]; 

} DRIVDATA; 

The DRIVDATA structure contains information about a device driver returned 
by the DevPostDeviceModes function. 



Fields 

See Also 

• ERRINFO 

Fields 

See Also 

• FATTRS 

FATTRS 499 

cb Specifies the length of the structure (in bytes). 

IVersion Specifies the version number of the data. Version numbers are 
defined by particular MS OS/2 device drivers. 

szDeviceName[32] Specifies a 32-byte character string that identifies the par­
ticular device (for example, model number). Valid values are defined by MS 
OS/2 device drivers. . 

abGeneraIData[1] Specifies an array of bytes containing general data as 
defined by the MS OS/2 device driver. The number of bytes is defined by the 
particular device driver. This array should not contain pointers, because these 
are not necessarily valid when passed to the device driver. 

DevPostDeviceModes 

typedef struct _ERRINFO { I' erri 'I 
USHORT cbFixedErrlnfo; 
ERRORID idError; 
USHORT cDetailLevel; 
USHORT offaoffszMsg; 
USHORT offBinaryData; 

} ERRINFO; 

The ERRINFO structure contains the previous error for the current thread. 

cbFixedErrlnfo Specifies the length of the structure. 

idError Identifies the error. This field is identical to the value returned by the 
WinGetLastError function. 

cDetailLevel 
offaoffszMsg 
offfiinaryData 

Specifies the number of levels of detail. 

Specifies an offset to an array of offsets to messages. 

Specifies an offset to the binary data. 

WinFreeErrorInfo, WinGetErrorlnfo, WinGetLastError 

typedef struct _FATTRS { I' fat 'I 
USHORT usRecordLength; 
USHORT fsSelection; 
LONG IMatch; 
CHAR szFacename[FACESIZE]; 
USHORT idRegistry; 
USHORT usCodePage; 
LONG IMaxBaselineExt; 
LONG lAveCharWidth; 
USHORT fsType; 
USHORT fsFontUse; 

} FATTRS; 

The FA TTRS structure specifies the attributes of the logical font to be created by 
the VioCreateLogFont or GpiCreateLogFont funCtion. 



500 FATTRS 

Fields 

See Also 

usRecordLength Specifies the length of the structure (in bytes). 

CsSelection 'Specifies one or more character attributes. This field can be any 
combination of the following values: 

Value 

FA TTR_SEL_HOLLOW 

FA TTR_SEL_ITALIC 

FA TTR_SEL_NEGATIVE 

FA TTR_SEL_STRIKEOUT 

FA TTR_SEL_UNDERSCORE 

Meaning 

Requests hollow characters. 

Requests italic characters. 

Requests negative-appearance characters. 

Requests strikeout characters. 

Requests underscored characters. 

IMatch Specifies the match number for a specUic font. The VioQueryFonts 
and GpiQueryFonts functions return a unique match number for each font. 
When this number is specified in the IMatch field, the specified font is used. If 
the IMatch field is zero, the system determines which font gives the best map­
ping to the required attributes. 

szFaceName[FACESIZE] Specifies the typeface name of the font. 

idRegistry Specifies the registry number of the font. 

usCodePage Specifies the code-page identifier of the font. 

IMaxBaselineExt Specifies the sum of the maximum ascender and descender 
values for a font. 

IAveCharWidth Specifies the average width of a character in a font. This 
value is obtained by mUltiplying the width of each lowercase letter by a weighted 
factor, adding the results for all of the letters in the alphabet, and dividing by 
1000. The factor corresponds to the frequency of use for a particular letter. For 
example, the letter e appears frequently in text while the letter q does not; there­
fore, the factor assigned to e would be greater than the factor assigned to q. 

CsType Specifies whether the font uses kerning or proportional spacing. This 
field can be one of the following values: 

Value 

FA TTR_ TYPE_FIXED 

FA TTR_TYPE_KERNING 

Meaning 

Reserved; must be zero. 

If this flag is set, MS OS/2 attempts to 
return a kerned font when the Gpl-
CreateLogFont function is called. 

CsFontUse Specifies how the font is related to the character attributes. This 
field can be any combination of the following values: 

Value 

FA TTR_FONTUSE_OUTLINE 

FA TTR_FONTUSE_TRANSFORMABLE 

Meaning 

The application will not mix 
text and graphics. 

Requests an outline font. 

Requests a transformable 
font. 

GpiCreateLogFont, GpiQueryFonts, VioCreateLogFont, VioQueryFonts 



• FONTMETRICS 

Fields 

typedef struct _FONTMETRICS { I' fm 'I 
CHAR szFamilyname[FACESIZE]; 
CHAR szFacename[FACESIZE]; 
USHORT idRegistry; 
USHORT usCodePage; 
LONG lEmHeight; 
LONG lXHeight; 
LONG IMaxAscender; 
LONG IMaxDescender; 
LONG lLowerCaseAscent; 
LONG lLowerCaseDescent; 
LONG lInternalLeading; 
LONG lExternalLeading; 
LONG lAveCharWidth; 
LONG IMaxCharlnc; 
LONG lEmlnc; 
LONG IMaxBaselineExt; 
SHORT sCharSlope; 
SHORT sInlineDir; 
SHORT sCharRot; 
USHORT usWeightClass; 
USHORT usWidthClass; 
SHORT sXDeviceRes; 
SHORT sYDeviceRes; 
SHORT sFirstChar; 
SHORT ·sLastChar; 
SHORT sDefaultChar; 
SHORT sBreakChar; 
SHORT sNominalPointSize; 
SHORT sMinimumPointSize; 
SHORT sMaximumPointSize; 
USHORT fsType; 
USHORT fsDefn; 
USHORT fsSelection; 
USHORT fsCapabilities; 
LONG lSubscriptXSize; 
LONG lSubscriptYSize; 
LONG lSubscriptXOffset; 
LONG lSubscriptYOffset; 
LONG lSuperscriptXSize; 
LONG lSuperscriptYSize; 
LONG lSuperscriptXOffset; 
LONG lSuperscriptYOffset; 
LONG lUnderscoreSize; 
LONG lUnderscorePosition; 
LONG lStrikeoutSize; 
LONG lStrikeoutPosition; 
SHORT sKerningPairs; 
SHORT sReserved; 
LONG IMatch; 

} FONTMETRICS; 

FONTMETRICS 501 

The FONTMETRICS structure contains information about fonts. 

szFamilyname[FACESIZE] Specifies the family name of the font. Examples 
of common family names in MS OS/2 version 1.1 are Courier and Helvetica. 

szFacename[FACESIZE] Specifies the typeface name of the font. Examples 
of common typeface names in MS OS/2 version 1.1 are Courier and Helvetica. 

idRegistry Specifies the registry number of the font. For MS OS/2 version 
1.1, this value must be O. 

usCodePage Identifies the code page that an application should use with the 
particular font. For MS OS/2 version 1.1, this value must be 850. 

IEmHeight Specifies the average height of uppercase characters. The height is 
measured in world coordinates from the baseline to the top of the character. 



502 FONTMETRICS 

lXHeight Specifies the average height of lowercase characters. The height is 
measured in world coordinates from the baseline to the top of the character. 

IMaxAscender Specifies the maximum height of any character in the font. 
The height is measured in world coordinates from the baseline to the top of the 
character. 

IMaxDescender Specifies the maximum depth of any character in the font. 
The depth is measured in world coordinates from the baseline to the bottom of 
the lowest character. 

lLowerCaseAscent Specifies the maximum height of any lowercase character 
in the font. The height is measured in world coordinates from the baseline to the 
top of the ascender of the tallest lowercase character. 

lLowerCaseDescent Specifies the maximum depth of any lowercase charac­
ter in the font. The depth is measured in world coordinates from the baseline to 
the bottom of the descender of the lowest lowercase character. 

lInternalLeading Specifies the amount of space reserved in the top of each 
character cell for accent marks. This metric is always given in world coordinates. 

lExternalLeading Specifies the amount of space that should appear between 
adjacent rows of text. This metric is always given in world coordinates. 

lAveCharWidth Specifies the average character width for characters in the 
font. The average character width is determined by multiplying the width of each 
lowercase character by a predetermined constant, adding the results, and then 
dividing by 1000. Letters and their predetermined constants are listed as follows: 

a 64 j 3 s 56 
b 14 k 6 t 71 
c 27 I 35 u 31 
d 35 m 20 v 10 
e 100 n 56 w 18 
f 20 0 56 x 3 
g 14 P 17 Y 18 
h 42 q 4 z 2 

63 r 49 space 166 

IMaxCharlnc Specifies the maximum increment between characters in the 
font. 

lEmlnc Specifies the width of an uppercase M in the font. 

IMaxBaselineExt Specifies the sum of the maximum ascender and maximum 
descender values. 

sCharSlope Specifies the angle (in degrees and minutes) between a vertical 
line and the upright strokes in characters in the font. The first nine bits of this 
value contain the degrees, the next six bits contain the minutes, and the last bit 
is reserved. The slope of characters in a normal font is zero; the slope of italic 
characters is nonzero. 

sInlineDir Specifies an angle (in degrees and minutes, increasing clockwise) 
from the x-axis that the system. uses when it draws a text string. The system 
draws each consecutive character from the text string in the inline direction. The 
inline-direction angle for a Swiss font is zero; the inline direction for a Hebrew 
font is 180. 



FONTMETRICS 503 

sCharRot Specifies the angle (in degrees and minutes) between the baseline 
of characters in the font and the x-axis. This is the angle assigned by the font 
designer. 

usWeightClass Specifies the thickness of the strokes that form the characters 
in the font. This field can be one of the following values: 

Value Meaning 

1 Ultra-light 

2 Extra-light 

3 Light 

4 Semi-light 

5 Medium (normal) 

6 Semi-bold 

7 Bold 

8 Extra-bold 

9 Ultra-bold 

usWidthClass Specifies the relative-aspect ratio of characters in the font in 
relation to the normal-aspect ratio for a font of this type. The possible values are 
listed here: 

Value Description Normal-aspect ratio 

1 Ultra-condensed 50% 
2 Extra-condensed 62.5% 
3 Condensed 75% 
4 Semi-condensed 87.5% 
5 Normal 100% 
6 Semi-expanded 112.5% 
7 Expanded 125% 
8 Extra-expanded 150% 
9 Ultra-expanded 200% 

sXDeviceRes Specifies the horizontal resolution of the target device for 
which the font was originally designed. This value is given in pels per inch. 

sYDeviceRes Specifies the vertical resolution of the target device for which 
the font was originally designed. This .value is given in pels per inch. 

sFirstChar Specifies the code point for the first character in the font. 

sLastChar Specifies the code point for the last character in the font. This 
code point is an offset from the sFirstChar value. 

sDefaultChar Specifies the code point for the default character in the font. 
This code point is an offset from the sFirstChar value. The default character is 
the character the system uses when an application specifies a code point that is 
out of the range of a font's code page. 

sBreakChar Specifies the code point for the space character in the font. This 
code point is an offset from the sFirstChar value. 

sNominalPointSize Specifies the height of the font in decipoints (11720 
inch). The nominal point size is the point size for which the font was designed. 



504 FONTMETRICS 

sMinimumPointSize Specifies the minimum height of the font (in deci­
points). A font should not be reduced to a size smaller than this value. 

sMaximumPointSize Specifies the maximum height of the font (in deci­
points). A font should not be increased to a size larger than this value. 

fsType Specifies whether the font is proportional or fixed, whether it is 
licensed or not licensed, and whether it consumes more or less than 64K of 
memory. The following list shows the significance of the bits in this field: 

Bit 

o 
1 

2-14 

15 

Description 

Font is fixed if this bit is set; otherwise it is proportional. 

Font is licensed if this bit is set; otherwise it is not licensed. 

These bits are reserved and must be set to zero. 

Font requires more than 64K of memory if this bit is set; oth­
erwise, the font requires 64K or less. 

fsDefn Specifies whether the font is an image or vector font. If bit zero is set, 
the font is a vector font; otherwise it is an image font. 

fsSelection Specifies whether the font is normal or italic, whether it is under­
scored, whether it uses positive or negative image characters, whether it uses 
solid or outlined characters, and whether it uses overstruck characters. The fol­
lowing list indicates the purpose of each bit in the fsSelection field: 

Bit 

o 

1 

2 

3 

4 

5-15 

Description 

Characters are italic if this bit is set; otherwise, they are 
normal. 

Characters are underscored if this bit is set; otherwise, they 
are not underscored. 

Characters are drawn using negative images if this bit is set; 
otherwise they are drawn using positive images. 

Characters are outlined if this bit is set; otherwise, they are 
solid. 

Characters are overstruck if this bit is set; otherwise, they are 
not overstruck. 

These bits are reserved and must be set to zero. 

fsCapabilities Specifies whether the characters in this font can be mixed with 
graphics. If bit 0 of this field is set, the characters cannot be mixed with graph­
ics; otherwise, they can be mixed with graphics. Bits 1-15 of this field are 
reserved and must be set to zero. 

ISubscriptXSize Specifies the horizontal size (in world coordinates) for sub­
scripts in the font. 

ISubscriptYSize Specifies the vertical size (in world coordinates) for sub­
scripts in the font. 

ISubscriptXOffset Specifies the horizontal offset from the left edge of the 
character cell. 

ISubscriptYOffset Specifies the vertical offset from the character-cell base­
line. 



See Also 

• FRAMECDATA 

Fields 

See Also 

FRAMECDATA 505 

ISuperscriptXSize Specifies the horizontal size (in world coordinates) for 
superscripts in the font. 

ISuperscriptYSize Specifies the vertical size (in world coordinates) for super­
scripts in the font. 

ISuperscriptXOffset Specifies the horizontal offset from the left edge of the 
character cell. 

ISuperscriptYOffset Specifies the vertical offset from the character-cell base­
line. 

lUnderscoreSize Specifies the width of the underscore (in world coordi­
nates). 

lUnderscorePosition Specifies the distance from the baseline to the under­
score line (in world coordinates). 

IStrikeoutSize Specifies the width of the overstrike (in world coordinates). 

IStrikeoutPosition Specifies the position of the overstrike in relation to the 
baseline. 

sKerningPairs Specifies the number of kerning pairs in the kerning-pair table 
for the font. 

sReserved This field is reserved. 

IMatch Specifies a long integer value that should be copied to the FATIRS 
structure when calling the GpiCreateLogFont function. (When this value is 
passed, the system must select a font that contains the metrics associated with 
the IMatch field.) 

GpiCreateLogFont, GpiQueryFontMetrics, GpiQueryFonts, VioQueryFonts, 
FATIRS 

typedef struct _FRAMECDATA { 
USHORT cb; 
ULONG flCreateFlags; 
HMODULE hmodResources; 
USHORT idResources; 

} FRAMECDATA; 

/. fcdata • / 

The FRAMECDATA structure contains information about the frame controls 
that are created by using the WinCreateFrameControls function. 

cb Specifies the size of the structure (in bytes). 

ftCreateFlags Specifies the frame controls to be created. 

hmodResources Identifies the resource file loaded if the FCF ~ENU option 
is specified in the ftCreateFlags field. 

idResources Identifies the menu loaded from the resource file identified by 
hmodResources if the FCF ~ENU option is specified in the ftCreateFlags 
field. 

WinCreateFrameControls 



506 GRADIENTL 

• GRADIENTL 

Fields 

Comments 

See Also 

• HCINFO 

Fields 

See Also 

typedef struet _GRADIENTL { 
. LONG x; 

LONG y; 
} GRADIENTL; 

I" gradl "I 

The GRADIENTL structure specifies the endpoint of a special angle vector. The 
baseline of a character drawn with a Gpi text-output function is aligned with this 
vector. 

x Specifies the x-coordinate of the endpoint of the angle vector. 

y Specifies the y-coordinate of the endpoint of the angle vector. 

The angle vector is drawn from the origin of a Cartesian coordinate system to 
the endpoint specified by the x and y fields. 

GpiQueryCharAngle, GpiSetCharAngle 

typedef struet _HCINEO { I" hel "I 
CHAR szEormname[32]; 
LONG ex; 
LONG ey; 
LONG xLeftCllp; 
LONG yBottomCllp; 
LONG xRlghtCllp; 
LONG yTopCllp; 
LONG xPels; 
LONG yPels; 
LONG flAttrlbutes; 

} HCINEO; 

The HCINFO structure contains information about the hard copy capabilities of 
a device. 

szFormname[32] Specifies the form name. 

ex Specifies the form width (in millimeters). 

ey Specifies the form height (in millimeters). 

xLeftClip Specifies the left clip limit (in millimeters). 

yBottomClip Specifies the bottom clip limit (in millimeters). 

xRightClip Specifies the right clip limit (in millimeters). 

yTopClip Specifies the top clip limit (in millimeters). 

xPels Specifies the number of pels between the left and right clip limits. 

yPels Specifies the number of pels between the top and bottom clip limits. 

flAttributes Specifies the attributes of the form identifier. 

DevQueryHardcopyCaps 



• HPROGARRAY 

Fields 

See Also 

• IMAGEBUNDLE 

Fields 

See Also 

• KERNINGPAIRS 

Fields 

See Also 

typedef struct _HPROCARRAY { 
HPROCRAM ahprog[l]; 

} HPROCARRAY; 

KERNINGPAIRS 507 

/* hpga */ 

The HPROGARRA Y structure contains an array of program handles returned by 
the WinQueryProgramHandle function. 

ahprog[l] Identifies the program. 

WinQueryProgramHandle 

typedef struct _IMACEBUNDLE { 
LONG lColor; 
LONG lBackColor; 
USHORT usMixMode; 
USHORT usBackMixMode; 

} IMACEBUNDLE; 

/* ibmd */ 

The IMAGEBUNDLE structure contains the current image colors and mix 
modes in the application's presentation space. MS OS/2 uses these fields when 
an application draws an image using the Gpilmage function. The system com­
bines the image foreground and background colors with the current drawing­
surface colors by using the foreground- and background-image mix modes. 

lColor Specifies the foreground-image color. 

IBackColor Specifies the background-image color. 

usMixMode Specifies the foreground mix mode. 

usBackMixMode Specifies the background mix mode. 

Gpilmage, GpiQueryAttrs, GpiSetAttrs 

typedef struct _KERNINCPAIRS { 
SHORT sFirstChar; 
SHORT sSecondChar; 
SHORT sKerningAmount; 

} KERNINCPAIRS; 

/* krnpr */ 

The KERNINGPAIRS structure contains kerning-pair information for a logical 
font. 

sFirstChar Specifies the code point for the first character in the kerning pair. 

sSecondChar Specifies the code point for the second character in the kern­
ing pair. 

sKerningAmount Specifies the amount of kerning between the pair of char-
acters.· This amount is always specified in world coordinates. ' 

GpiQueryKerningPairs 



508 LlNEBUNDLE 

• LINEBUNDLE 

Fields 

See Also 

typedef struct _LINE BUNDLE { 
LONG lColor; 
LONG lReserved; 
USHORT usMixMode; 
USHORT usReserved; 
FIXED fxWidth; 
LONG lGeomWidth; 
USHORT usType; 
USHORT usEnd; 
USHORT usJ'oin; 

} LINEBUNDLE; 

I' lbnd 'I 

The LINEBUNDLE structure contains the current line attributes in the appli­
cation's presentation space. When the application draws a line or an arc primi­
tive, MS OS/2 uses· these attributes to achieve the correct line color, width, and 
style. 

IColor Specifies the line color. 

IReserved This field is reserved. It must be set to zero. 

usMixMode Specifies the mix mode that MS OS/2 uses when it combines the 
line color with the drawing-surface color. 

usReserved This field is reserved. It must be set to zero. 

fxWidth Specifies the width of cosmetic lines. For MS OS/2 version 1.1, this 
field· must be set to 1. 

IGeomWidth Specifies the width of a geometric line (in pels). 

usType 
usEnd 
usJoin 

Specifies the cosmetic line type. 

Specifies the end-style for geometric lines. 

Specifies the join-style for geometric lines. 

GpiQueryAttrs, GpiQueryLineType, GpiQueryLineWidth GpiSetAttrs, GpiSet­
LineType, GpiSetLine Width 

• MARKERBUNDLE 

Fields 

typedef struct _MARKER BUNDLE { 
LONG lColor; 
LONG lBackColor; 
USHORT usMixMode; 
USHORT usBackMixMode; 
USHORT usSet; 
USHORT usSymbol; 
SIZEF sizfxCell; 

} MARKERBUNDLE; 

I' mbnd 'I 

The MARKERBUNDLE structure contains information on the current marker in 
the application's presentation space. When the application draws a marker using 
with the GpiMarker or GpiPolyMarker function, MS OS/2 uses the color, mix 
mode, character set, character symbol, and cell values found in this structure. 

IColor Speci~es the foreground-marker color. 

IBackColor Specifies the background-marke~ color. 



See Also 

• MATRIXLF 

MATRIXLF 509 

usMixMode Specifies the foreground mix mode. 

usBackMixMode Specifies the background mix mode. 

usSet Specifies the local identifier for the font. This field should be set only if 
the application requires a custom marker using a symbol or character from the 
specified font. 

usSymbol Specifies the code-point for a character or symbol in the font. This 
field should be set only if the application requires a custom marker using the 
specified character or symbol from the specified font. 

sizfxCell Specifies the marker-box dimensions (in world coordinates). 

GpiMarker, GpiPolyMarker, GpiQueryAttrs, GpiQueryMarker, GpiQuery­
MarkerBox, GpiQueryMarkerSet, GpiSetAttrs, GpiSetMarker, GpiSetMarker­
Box, GpiSetMarkerSet, SIZEF 

typedef struct _MATRIXLF { 
FIXED fxMll; 

IA mat1f AI 
FIXED fxM12; 
LONG 1M13; 
FIXED fxM21; 
FIXED fxM22; 
LONG 1M23; 
LONG 1M31; 
LONG 1M32; 
LONG 1M33; 

} MATRIXLF; 

The MATRIXLF structure contains the scaling, translation, rotation, shear, and 
reflection transformation values that MS OS/2 uses when the application calls 
one of the transformation functions. 

If the matrix contains scaling transformation values, the following fields are set: 
Field 

fxMll 

fxM12 

Description 

Specifies the horizontal scaling value. 

Specifies the vertical scaling value. 

If the matrix contains translation transformation values, the following fields are 
set: 

Field 

IM31 

IM32 

Description 

Specifies the horizontal translation value. 

Specifies the vertical translation value. 

If the matrix contains rotation transformation values, the following fields are set: 
Field 

fxMll 

fxM12 

txM21 

fxM22 

Description 

Specifies the cosine of the angle of rotation. 

Specifies the negative sine of the angle of rotation. 

Specifies the sine of the angle of rotation. 

Specifies the cosine of the angle of rotation. 



510 MATRIXLF 

See Also 

• MENUITEM 

Fields 

See Also 

If the matrix contains vertical-shear transformation values, the following fields 
are set: 

Field 

rxM21 

rxM22 

Description 

Specifies the horizontal-shear value. 

Specifies the vertical-shear value. 

If the matrix contains horizontal-shear transformation values, the following fields 
are set: 

Field Description 

rxMll 

rxM12 

Specifies the horizontal-shear value. 

Specifies the vertical-shear value. 

If the matrix contains reflection values, the following fields are set: 
Field Description 

fxMll Specifies the vertical-reflection value. (This value is always 
negative. It causes reflection about the x-axis.) 

rxM22 Specifies the horizontal-reflection value. (This value is 
always negative. It causes reflection about the y-axis.) 

GpiQueryDefaultViewMatrix, GpiQueryModelTransformMatrix, GpiQuery­
SegmentTransformMatrix, GpiQueryViewingTransformMatrix, GpiSet­
DefaultViewMatrix, GpiSetModelTransformMatrix, GpiSetSegment­
TransformMatrix, GpiSetViewingTransformMatrix 

typedef struct _MENUITEM { 
SHORT iPosition; 
USHORT afStyle; 
USHORT afAttribute; 
USHORT id; 
HWND hwndSubMenu; 
ULONG hltem; 

} MENUITEM; 

/* mi */ 

The MENUITEM structure contains information about a menu item. 

iPosition Specifies the ordinal position of the item within its menu window. If 
the menu item is part of a submenu, iPosition gives its relative top-to-bottom 
and left-to-right position, with zero being the upper-left item. 

afStyle Specifies the style bits of the item. 

afAttribute Specifies the attribute bits of the item. 

id Specifies the menu identifier. 

hwndSubMenu Identifies the window of the menu window if the item is a 
submenu item. Command items contain NULL in this field. 

hltem Identifies the display object for the item. If the item has the 
MIS_TEXT style bit set, this field is NULL. 

WinLoadMenu, MMJNSERTITEM, M~QUERYITEM, M~SETITEM 



• MOUSEMSG 

Fields 

See Also 

struct _MOUSEMSG { 
USHORT codeHitTest; 
USHORT unused; 
SHORT x; 
SHORT y; 

}; 

It mp2 t I 

It mpl t I 

MQINFO 511 

The MOUSEMSG structure contains the message parameters passed with the 
~OUSEMOVE and WMJ3UTION messages. Unlike other MS OS/2 
structures, this structure is not defined as a type. 

codeHitTest Specifies the result of a WMJIITIEST message, or zero if a 
mouse capture is in progress. 

unused This field is not used. 

x Specifies the horizontal mouse coordinate relative to the window's lower-left 
corner. 

y Specifies the vertical mouse coordinate relative to the window's lower-left 
corner. 

MOUSEMSG, WMJ3UTION, ~OUSEMOVE 

• MOVBLOCKHDR 

Fields 

See Also 

• MQINFO 

typedef struct _MOVBLOCKHDR { 
NPBYTE tppmem; 
USHORT cb; 

} MOVBLOCKHDR; 

It mbhdr tl 

The MOVBLOCKHDR structure is used at the head of an allocated memory 
block from a moveable heap. 

ppmem Specifies the address of the pointer in global memory to be changed 
when the heap moves. 

cb Specifies the size of the memory block. 

WinAllocMem, WinCreateHeap 

typedef struct _MQINFO { 
USHORT cb; 
PID pid; 
TID tid; 
USHORT cmsgs; 
PYOID pReserved; 

} MQINFO; 

It mqi tl 

The MQINFO structure contains information about a message queue. 



512 MQINFO 

Fields cb Specifies the length of the structure (in bytes). 

See Also 

• OWNERITEM 

Fields 

See Also 

pid Specifies the process identifier of the process that created the message 
queue. 

tid Specifies the thread identifier of the thread that created the message 
queue. 

cmsgs Specifies the maximum number of messages that can be held in the 
queue. 

pReserved Specifies a reserved value. 

WinQueryQueueInfo 

typedef struct _OWNERITEM { 
HWND hwnd; 
HPS hps; 
USHORT fsState; 
USHORT fsAttr1bute; 
USHORT fsStateOld; 
USHORT fsAttr1buteOld; 
RECTL rclItem; 
SHORT 1dltem; 
ULONG hltem; 

} OWNERITEM; 

/* 01 */ 

The OWNERITEM structure contains information about an item, usually a list­
box or a menu item. 

bwnd Identifies the handle of the item. 

bps Identifies the presentation space. 

fsState Specifies highlighting flags. 

fsAttribute Specifies attribute flags. 

fsStateOld Specifies previous highlighting flags. 

fsAttributeOld Specifies previous attribute flags. 

rclItem Specifies the RECTL structure that contains the coordinates of the 
rectangle that bounds the item. 

idltem Identifies the item. 

bltem Specifies an application-defined item handle. 

WMJ)RA WITEM, WMj1EASUREITEM 



• PIBSTRUCT 

Fields 

See Also 

• POINTERINFO 

Fields 

POINTERINFO 513 

typedef struct _PIBSTRUCT { /* pib */ 
PROGTYPE progt; 
CHAR szTitle[MAXNAMEL+l]; 
CHAR szIconFileName[MAXPATHL+l]; 
CHAR szExecutable[MAXPATHL+l]; 
CHAR szStartupDir[MA~PATHL+l]; 
XYWINSIZE xywinlnitial; 
USHORT resl; 
LHANDLE res2; 
USHORT cchEnvironmentVars; 
PCH pchEnvironmentVars; 
USHORT cchProgramParameter; 
PCH pchProgramParameter; 

} PIBSTRUCT; " 

The PIBSTRUCT structure contains information about a program within a 
group. This list is displayed by the Presentation Manager Start Programs 
window. . 

progt Specifies the program type. 

szTitle [MAXNAMEL+ 1] Specifies the program title. 

szIconFileName[MAXPATHL+ 1] Specifies the title to use when the pro­
gram is minimized. 

szExecutable[MAXPATHL+ 1] Specifies the path of the executable file. 

szStartupDir[M~XPATHL+ 1] Specifies the default drive and directory. 

xywinlnitial Specifies the initial window position. 

resl This field is reserved. 

res2 This field is reserved. 

cchEnvironmentVars Specifies the length of the environment variables. 

pchEnvironmentVars Points to the environment variables. 

cchProgramParameter Specifies the length of the program parameters. 

pchProgramParameter Points to the program parameters. 

WinAddProgram, WinChangeProgram, WinQueryDefinition 

typedefstruct _POINTERINFO { 
BOOL fPointer; 
SHORT xHotspot; 
SHORT yHotspot; 
HBITMAP hbmPointer; 

} POINTERINFO; 

/* ptri */ 

The POINTERINFO structure contains information about the mouse pointer. 

fPointer Specifies whether the pointer is an icon-sized or pointer-sized bit­
map. If this value is TRUE, the pointer is a pointer-sized bitmap. If FALSE, the 
pointer is an icon-sized bitmap. 



514 POINTERINFO 

Comments 

See Also 

• POINTFX 

Fields 

See Also 

• POINTL 

Fields 

See Also 

xHotspot Specifies the horizontal position of the hot spot. 

yHotspot Specifies the vertical position of the hot spot. 

hbmPointer Identifies the bitmap used to draw the pointer. 

The xHotspot and yHotspot values are in units relative to the size of the system 
pointer or the system icon, depending on the iPointer field. 

WinQueryPointerInfo 

typedef struct _POINTFX { 
FIXED x; 
FIXED y; 

} POINTFX; 

/* ptfx */ 

The POINTFX structure con~ains the coordinates of a point using FIXED coor­
dinates instead of LONG coordinates used in the POINTL structure. 

x Specifies the horizontal coordinate of the point. 

y Specifies the vertical coordinate of the point. 

POINTL 

typedef struct _POI~TL { 
LONG x; 
LONG y; 

} POINTL; 

/* ptl */ 

The POINTL struc~ure contains the coordinates of a point. 

x Specifies the horizontal coordinate of the point. 

y Specifies the vertical coordinate of the point. 

GpiSetCurrentPosition, Gp~Move, POINTFX, RECTL 

• PROGRAMENTRY 
typedef struct _PROGRAMENTRY { /* proge */ 

HPROGRAM hprog; 
PROGTYPE progt; 
CHAR . szTltle[MAXNAMEL+l]; 

} PROGRAMENTRY; 

The PROGRAMENTRY structure contains information about the programs in a 
specified group, as r('!turned by the WinQueryProgramTitles function. 



Fields 

See Also 

• PROGTYPE 

Fields 

See Also 

• QMSG 

Fields 

hprog Identifies the program. 

progt Specifies the type of program. 

szTitle [MAXNAMEL+ 1] Specifies the title of the program. 

WinQueryProgramTitIes 

typedef struct _PROGTYPE { 
PROGCATEGORY progc; 
BYTE fbVisible; 

} PROGTYPE; 

1* progt *1 

QMSG 515 

The PROGTYPE structure is used in the PIBSTRUCT structure to specify a pro­
gram type. 

progc Specifies the program category. This field can be one of the following 
values: 

Value 

PROG_DEFAULT 

PROG_FULLSCREEN 

PROG_ WINDOW ABLEVIO 

PROG_PM 

PROG_GROUP 

PROG_REAL 

Meaning 

Default category. 

Full-screen program. 

Program runs in a window. 

Program is a Presentation Manager application. 

Handle is to a group. 

Program is a real-mode application (DOS). 

fb Visible Specifies the visibility attribute of the program. It is SHE_VISIBLE 
if the program is visible or SHEJNVISIBLE if the program is invisible. 

PIBSTRUCT 

typedef struct _QMSG { 
HWND hwnd; 
USHORT msg; 
MPARAM mpl; 
MPARAM mp2; 
ULONG time; 
POINTL ptl; 

} QMSG; 

It qmsg *1 

The QMSG structure contains information about a message. 

hwnd Identifies the window handle. 

msg Specifies the message. 



516 QMSG 

See Also 

• RECTFX 

Fields 

See Also 

• RECTL 

Fields 

Comments 

See Also 

mpl Specifies the first message parameter. 

mp2 Specifies ·the second message parameter~ 

time Specifies the time the message was generated. 

ptl Specifies the pointer position when the message was generated. 

WinCallMsgFilter, WinDispatchMsg, WinGetMsg, WinPeekMsg 

typedef struet _RECTFX { 
POINTFX ptfxl; 
POINTFX ptfx2; 

} RECTFX; 

I' refx 'I 

The RECTFX structure specifies .the coordinates of a rectangle using FIXED 
coordinates instead of LONG coordinates used in the RECTL structure. 

ptrxl Specifies the lower-left corner. 

ptrx2 Specifies the upper-right corner. 

RECTL 

typedef struet _RECTL { 
LONG xLeft; 
LONG yBottom; 
LONG xRight; 
LONG yTop; 

} RECTL; 

I' rei 'I 

The RECTL structure contains the coordinates of a rectangle. 

xLeft Specifies the left side of the rectangle. 

. yBottom Specifies the bottom of the rectangle. 

xRight Specifies the right side of the rectangle. 

yTop Specifies the top of the rectangle. 

If the rectangle is drawn in world space, model space, or page space, MS OS/2 
includes the bottom and far-right edges. However, if the rectangle is drawn in 
device space (that is, the application passes the rectangle to the GpiCreate­
Region, GpiCombineRegion, or GpiOffsetRegion function) MS OS/2 excludes 

. the bottom and far-right edges of the rectangle. 

POINTL, RECTFX 



• RGB 

Fields 

See Also 

• RGNRECT 

Fields 

See Also 

RGNRECT 517 

typedef struet _RCB { 
BYTE bBlue; 

I' rgb 'I 
BYTE bGreen; 
BYTE bRed; 

} RCB; 

The RGB structure contains a color definition. This structure is used by the 
BITMAPINFO structure. 

bBlue Specifies the blue component of the color definition. 

bGreen 

bRed 

Specifies the green component of the color definition. 

Specifies the red component of the color definition. 

BITMAPINFO 

typedef struet _RGNRECT { 
USHORT lreStart; 
USHORT ere; 
USHORT ereReturned; 
USHORT usDlreetlon; 

} RGNRECT; 

I' rgnre 'I 

The RGNRECT structure contains information that controls the processing of 
the GpiQueryRegionRects function. 

ireS tart Specifies the rectangle from which to start enumeration. 

ere Specifies the number of rectangles that can be returned in the parel 
parameter of GpiQueryRegionRects. This field must be at least 1. 

crcReturned Specifies the number of rectangles actually written into the parel 
parameter of GpiQueryRegionReets. A value below that specified by the ireStart 
field indicates that there are no more rectangles to enumerate. 

usDireetion Specifies the direction in which the (leading edge of the) rect­
angles are to be returned. This field can be one of the following values: 

Value 

RECTDIR_LFRT_TOPBOT 

RECTDIR_RTLF _TOPBOT 

RECTDIR_LFRT_BOTTOP 

RECTDIR_RTLF_BOTTOP 

GpiQueryRegionRects 

Meaning· 

Left to right, top to bottom. 

Right to left, top to bottom. 

Left to right, bottom to top. 

Right to left, bottom to top. 



518 SBCDATA 

• SBCDATA 

Fields 

• SIZEF 

Fields 

Comments 

See Also 

• SIZEL 

typedef struet _SBCDATA { 
USHORT eb; 
USHORT sHilite; 
SHORT posFirst; 
SHORT posLast; 
SHORT posThumb; 

} SBCDATA; 

I' sbed 'I 

The SBCDDATA structure contains information about a scroll-bar window. 

eb Specifies the length of the structure. For MS OS/2 version 1.1, this field 
must be 10. 

sHilite This field is reserved. It must be set to zero. 

po sFirst Specifies the first possible position of the slider in the scroll bar. 

posLast Specifies the last possible position of the slider in the scroll bar. 

posThumb Specifies the current position of the slider in the scroll bar . 

typedef struet _SIZEF { 
FIXED ex; 
FIXED ey; 

} SIZEF; 

I' sizfx 'I 

The SIZEF structure specifies the width and height of a rectangle. This structure 
is used to define the dimensions of a character and marker box. 

ex Specifies the rectangle width (in world coordinates). This is a fixed value. 

ey Specifies the rectangle height (in world coordinates). This is a fixed value. 

A fixed value is a binary representation of a floating-point number. A fixed value 
has two parts: the high-order 16 bits and the low-order 16 bits. The high-order 16 
bits contain a signed integer in the range - 32,768 through 32,767; the low-order 
16 bits contain the numerator of a fraction, in the range 0 through 65,536 (the 
denominator of this fraction is always 65,536). 

GpiQueryAttrs, GpiQueryCharBox, GpiQueryMarkerBox, GpiSetAttrs, 
GpiSetCharBox, GpiSetMarkerBox, CHARBUNDLE, MARKERBUNDLE, 
SIZEL 

typedef struet _SIZEL { 
LONG ex; 
LONG ey; 

} SIZEL; 

I' sizl 'I 

The SIZEL structure specifies the width and the height of a rectangle. 



Fields 

See Also 

• SMHSTRUCT 

Fields 

• SWCNTRL 

Fields 

ex Specifies the rectangle width. 

ey Specifies the rectangle height. 

SWCNTRL 519 

GpiCreatePS, Gpilmage, GpiQueryBitmapDimensions, GpiQueryDefCharBox, 
GpiQueryPickApertureSize, GpiQueryPS, GpiSetBitmapDimensions, GpiSet­
DefCharBox, GpiSetPickApertureSize, GpiSetPS, SIZEF 

typedef struct _SMHSTRUCT { 
MPARAM mp2; 
MPARAM mpl; 
USHORT msg; 
HWND hwnd; 

} SMHSTRUCT; 

I' smhs 'I 

The SMHSTRUCT structure contains information about a message that is used 
in a send-message hook. 

mp2 
mpl 

Specifies the second message parameter. 

Specifies the first message parameter. 

msg Specifies the message. 

bwnd Identifies the window sending the message . 

typedef struct _SWCNTRL { I' swctl 'I 
HWND hwnd; 
HWND hwndlcon; 
HPROGRAM hprog; 
USHORT idProcess; 
USHORT idSession; 
UCHAR uchVisibility; 
UCHAR fbJump; 
CHAR szSwtitle[MAXNAMEL+l]; 
BYTE fReserved; 

} SWCNTRL; 

The SWCNTRL structure is used when adding or changing a title to the Task 
Manager switch list. 

bwnd Identifies the window handle. 

bwndIeon Identifies the icon handle. 

bprog Identifies the program handle. 

idProeess Specifies the identifier of the process. 

idSession Specifies the identifier of the session. 



520 SWCNTRL 

See Also 

• SWENTRY 

Fields 

See Also 

• SWP 

uchVisibility Specifies the visibility. This field can be one of the following 
values: 

Value Meaning 

SWL_GRAYED 

SWL_INVISIBLE 

SWL_ VISIBLE 

Program cannot be switched to. 

Title is invisible in the switch list. 

Title is visible in the switch list. 

fbJump Specifies a jump flag. If this field is SWLJUMPABLE, the title par­
ticipates in the jump sequence. If this field is SWL_NOTJUMP ABLE, the title 
does not participate in the jump sequence. 

szSwtitle [MAXNAMEL+ 1] Specifies the title of the program for the switch 
list. If the first character is zero, the program name will be used for the title. 

fReserved This field is reserved. 

WinAddSwitchEntry, WinChangeSwitchEntry 

typedef struet _SWENTRY { 
HSWITCH hswiteh; 
SWCNTRL swetl; 

} SWENTRY; 

/" swent "/ 

The SWENTRY structure contains information about a Task Manager switch 
entry. 

hswitch Identifies the entry. 

swctl Specifies the SWCNTRL structure that contains information about the 
switch-entry program. 

WinQuerySwitchList, SWCNTRL 

typedef struet _sWP { /" swp "/ 
USHORT fs; 
SHORT ey; 
SHORT ex; 
SHORT y; 
SHORT x; 
HWND hwndlnsertBehind; 
HWND hwnd; 

} SWP; 

The SWP structure contains information about a window. 



Fields 

SWP 521 

fs Specifies window-positioning options. This field can be one or more of the 
following values: 

Value 

SWP _DEACTIVATE 

SWP _EXTSTATECHANGE 

SWP _FOCUSACTIV ATE 

SWP _FOCUSDEACTIV ATE 

SWP -.MAXIMIZE 

SWP _MINIMIZE 

SWP_MOVE 

SWP_NOADJUST 

SWP_NOREDRAW 

SWP~ESTORE 

SWP_SHOW 

SWP_SIZE 

SWP_ZORDER 

ey Specifies the window height. 

ex Specifies the window width. 

Meaning 

The window is activated and the focus is 
set to the window that lost the focus the 
last time the frame window was deac­
tivated. The activated window cannot 
become the top window if it owns other 
frame windows. 

Deactivates the window (if it is the active 
window). 

Used. by the application to pass an addi­
tional flag to the portion of the code that 
is handling messages. 

Specifies that a frame window is receiving 
the focus. 

Specifies that a frame window is losing the 
focus. 

Specifies that the window is to be hidden 
when created. 

With SWP _MINIMIZE, causes a window 
to be minimized, maximized, or restored. 
SWP _MAXIMIZE and SWP _MINIMIZE 
are mutually exclusive. If either of these 
values is specified, then both SWP _MOVE 
and SWP _SIZE also must be specified. 
The WlnSetWlndowPos and WlnSetMult­
WlndowPos functions depend on the pre­
vious state of the window. 

(See SWP _MAXIMIZE, above.) 

Changes the window position. 

Prevents the window from readjusting 
its position by not sending a 
W~ADJUSTWINDOWPOS message 
while processing. 

Does not redraw changes. 

Restores a minimized or maximized win­
dow. 

Specifies that the window is to be shown 
when created. 

Changes the window size. 

Changes the relative window placement. 

y Specifies the position of the lower edge of the window. 



522 SWP 

See Also 

• TRACKINFO 

Fields 

x Specifies the position of the left edge of the window. 

hwndInsertBehind Identifies the window behind which this window is placed. 

hwnd Identifies the window. 

WinFormatFrame, WinGetMaxPosition, WinQueryTaskSizePos, WinQuery­
WindowPos, WinSetMultWindowPos, WinSetWindowPos 

typedef struct _TRACKINFO { 
SHORT cxBorder; 
SHORT cyBorder; 
SHORT cxGrid; 
SHORT cyGrid; 
SHORT cxKeyboard; 
SHORT cyKeyboard; 
RECTL rclTrack; 
RECTL rclBoundary; 
POINTL ptlMinTrackSize; 
POINTL ptlMaxTrackSize; 
USHORT fs; 
USHORT cxLeft; 
USHORT cyBottom; 
USHORT cxRi9ht; 

.USHORT cyTop; 
} TRACKINFO; 

I' ti 'I 

The TRACKINFO structure contains information about a tracking rectangle used 
by the WinTrackRect function. 

cxBorder Specifies the border width. 

cyBorder Specifies the border height. 

cxGrid Specifies the horizontal bounds of the tracking movements. 

cyGrid Specifies the vertical bounds of the tracking movements. 

cxKeyboard Specifies the amount of horizontal movement that occurs when 
the user presses the left arrow key. 

cyKeyboard Specifies the amount of vertical movement that occurs when the 
user presses the left arrow key. 

rclTrack Specifies the starting tracking rectangle. This is modified as the rect­
angle is tracked and holds the new tracking position when tracking is complete. 

rclBoundary Specifies an absolute boundary for the tracking rectangle. 

ptlMinTrackSize Specifies the minimum tracking size. 

ptlMaxTrackSize Specifies the maximum tracking size. 

fs Specifies tracking options. This field can be a combination of the following 
values: 

Option 

TF_LEFf 

TF_TOP 

TF_RIGHT 

Meaning 

Tracks the left side of the rectangle. 

Tracks the top side of the rectangle. 

Tracks the right side of the rectangle. 



See Also 

• USERBUTTON 

Fields 

Option 

TF _ALINBOUNDARY 

USERBUTTON 523 

Meaning 

Tracks the bottom side of the rectangle. 

Tracks all sides of the rectangle. 

Repositions the pointer according to the other 
options specified. 

Vertically centers the pointer at the left of the 
tracking rectangle. 

Horizontally centers the pointer at the top of the 
tracking rectangle. 

Vertically centers the pointer at the right of the 
tracking rectangle. 

Horizontally centers the pointer at the bottom of 
the tracking rectangle. 

Centers the pointer in the tracking rectangle. 

Restricts tracking to the grid defined by cxGrld and 
cyGrld. 

The width, height, grid-width, and grid-height are 
all multiples of border-width and border-height. 

Performs tracking so that no part of the tracking 
rectangle ever falls outside the bounding rectangle. 

exLen This field is reserved. 

eyBottom This field is reserved. 

exRight This field is reserved. 

eyTop This field is reserved. 

WinTrackRect 

typedef struct _USERBUTTON { 
HWND hwnd; 
HPS hps; 
USHORT fsState; 
USHORT fsStateOld; 

} USERBUTTON; 

/. ubtn ./ 

The USERBUTTON structure is used by applications creating custom buttons. 
When a custom button is to be drawn, the owner receives a W1LCONTROL 
message with the low word of the first parameter equal to BNY AINT. The 
second parameter is a pointer to the USERBUTTON structure that contains the 
information necessary for drawing the button. 

hwnd Identifies the window. 

hps Identifies the presentation space. 



524 USERBUTTON 

See Also 

• WNDPARAMS 

Fields 

See Also 

• XYWINSIZE 

Fields 

fsState Specifies the new state of the user button. 

fsStateOld Specifies the previous state of the user button. 

~CONTROL 

typedef struet _WNDPARAMS { 
USHORT fsStatus; 
USHORT eehText; 
psz pszText; 
USHORT ebPresParams; 
PYOID pPresParams; 
USHORT ebCtlData; 
PYOID pCtlData; 

} WNDPARAMS; 

/* wprm */ 

The WNDPARAMS structure contains information about a window. 

fsStatus Specifies the window parameters which are to be set or queried. 

cehText Specifies the length of the window text. 

pszText Points to the window text. 

ebPresParams Specifies the length of the presentation parameters. 

pPresParams Points to the presentation parameters. This field is currently 
not used. 

ebCtlData Specifies the length of the class-specific data. 

pCtlData Points to the class-specific data. 

~QUER~NDO~ARAMS,~SE~NDOWTARAMS 

typedef struet _XYWINSIZE { 
SHORT x; 
SHORT y; 
SHORT ex; 
SHORT ey; 
SHORT fsWindow; 

} XYWINSIZE; 

/* xywin */ 

The XYWINSIZE structure contains information about how a program is started. 

x Specifies the position of the left side of the window. 

y Specifies the position of the lower side of the window. 

ex Specifies the width of the window. 

ey Specifies the height of the window. 



See Also 

XYWINSIZE 525 

fsWindow Specifies various status flags. This field can be one or more of the 
following values: 

Value 

XYF _INVISIBLE 

XYF ~AXIMIZED 

XYF ~INIMIZED 

XYF _NOAUTOCLOSE 

XYF~ORMAL 

PIBSTRUCT 

Meaning 

The window is invisible. 

The window is maximized on start up. 

The window is minimized on start up. 

The window does not automatically close on exit. 
This field is ignored unless used by an advanced 
video-input-and-output (A VIO) application. 

The window is visible. 





Chapter 

5 

File Formats 
5.1 Introduction ............................................................ 529 

5.2 Font-File Format...................................................... 529 

5.3 Font Signature......................................................... 530 

5.4 Font Metrics ........................................................... 530 

5.5 Font Character Definition .......................................... 536 
5.5.1 Font-Definition Header...................................... 536 
5.5.2 Definition Data ............................................... 538 

5.5.2.1 Image Format...................................... 538 
5.5.2.2 Outline Format .................................... 539 

5.5.3 Kerning-Pair Table........................................... 539 

5.6 Code-Page Font Support ............................................ 540 





Chapter 5: File Formats 529 
!im~~X1~Umi!5§f~l!!Ei1f:i§i~gi~i!:ir.!I~l!;ii!m!!li~!mIllmf$iii~mifi!riID~!MF..iflit$i~Jilfi'illiiEj~n!i:iw.flt#!l;1~J~iMliiffii1E~:mll~g:g;n!ln~ml~iffi!! 

5.1 Introduction 
An MS OS/2 Presentation Manager font file is a set of structures containing the 
~ata for the characters in a font. Each font includes structures defining the font 
metrics and the character definitions data. MS OS/2 supports both image and 
vector fonts. Image fonts define their character glyphs using pel images. Vector 
fonts define their character glyphs using vector data that traces the outline of the 
character. 

Although many types of fonts are possible, MS OS/2 Presentation Manager 
recognizes three standard font types. A type 1 font is a fixed-pitch font (that is, 
the widths of all characters in the font are the same). A type 2 font is a propor­
tionally spaced font (each character has a unique width which is explicitly given 
in the font). A type 3 font is also a proportionally spaced font, but three values 
are used to specify the width of each character. These values, called the a-, b-, 
and c-space values, define the amount of space to move before drawing the char­
acter, the width of the character, and the amount of space to move after the 
character is drawn. Although the b-space is always positive, the a- and c-space , 
values can be any integers. For all Presentation Manager font types, the height of 
all characters in the font is the same. 

The MS OS/2 Presentation Manager font file is described in detail in the follow­
ing sections. 

5.2 Font-File Format 
The MS OS/2 Presentation Manager font file consists of two parts. The first part 
contains the general attributes of the font, describing font features such as 
typeface style and point size. The second part contains the actual definitions of 
the font characters. The font file has the following general form: 

start signature 
font metrics 
font character-definition header 
definition data 
kerning-pair table 
end signature 

The first part of a font file has the following form: 

typedef struct _FOCAFONT { 1* ff *1 
FONTSIGNATURE fsSignature; 
FOCAMETRICS fmMetrics; 
FONTDEFINITIONHEADER fdDefinitions; 

} FOCAFONT; 

The following are the fields for the FOCAFONT structure: 

fsSignature Specifies the font-file signature. This field contains the font­
description string that identifies the operating system or context in which the 
font is used. 

fmMetrics Specifies the names, dimensions, and attributes of the font. 

fdDefinitions Specifies data defining the characters in the font. 



530 MS OS/2 Programmer's Reference, .vol. 2 
~mif15l!lS~!i:~lmF:~:Iffl~Hta!iji~W.~~~iEl!!~~iw.:.k.~"#~t~l_l~rnli~m~~{f;~~iSf:1!~m~'rnlIDi~~.miIDJgr:sl1ffif!i~lli.Wlmii~~!iii~i!m~$~ 

5.3 Font Signature 
The FONTSIGNATURE structure specifies the beginning and end of the font 
file. The FONTSIGNATURE structure has the following form: 

typedef struet _FONTSIGNATURE { I' fs 'I 
ULONG ulIdentity; 
ULONG ulSize; 
CHAR aehSignature[12]; 

} FONTSIGNATURE; 

The following are the fields for the FONTSIGNATURE structure: 

ulldentity Specifies the signature type. It can be one of the following values: 

Value Meaning 

OxFFFFFFFE Signature starts a font file. The uISize field must be 20, 
arid the achSignature field is required. 

OxFFFFFFFF Signature ends a font file. The uISize field must be 8, 
and the achSigriature field should not be given. 

uISize Specifies the length of the FONTSIGNATURE structure (in bytes). 

achSignature[12] Specifies an array that contairis the font-type description 
string. The string is the null-terminated string "OS/2 FONT". 

5.4 Font Metrics 
The font-metrics information defines the names, dimensions, and attributes of 
the font. The font-metrics structure, FOCAMETRICS, has the following form: 

typedef .struet _FOCAMETRICS { I' foea 'I 
ULONG ulIdentity; 
ULONG ulSize; 
CHAR szFamilyname[32]; 
CHAR szFaeename[32]; 
SHORT usRegistryId; 
SHORT usCodePage; 
SHORT yEmHeight; 
SHORT yXHeight; 
SHORT yMaxAscender; 
SHORT yMaxDeseender; 
SHORT yLowerCaseAscent; 
SHORT yLowerCaseDescent; 
SHORT yInternalLeading; 
SHORT yExternalLeading; 
SHORT xAveCharWidth; 
SHORT xMaxCharInc; 
SHORT xEmInc; 
SHORT yMaxBaselineExt; 
SHORT sCharSlope; 
SHORT sInlineDir; 
SHORT sCharRot; 
USHORT usWeightClass; 
USHORT usWidthClass; 
SHORT xDeviceRes; 
SHORT yDeviceRes; 
SHORT usFirstChar; 
SHORT usLastChar; 
SHORT usDefaultChar; 
SHORT usBreakChar; 
SHORT usNominalPointSize; 
SHORT usMinimumPointSize; 



Chapter 5: File Formats p31 
ii:S~C:imr'rllli"J~J~lmIsIsli!!ifIDi~~!lmMffij~~ilflmilb1r:£jhiii1.il~iID~'d:liffiiW!§mi?J~1IDim!ffi!]~!§mmi.m~~:;nr,I!lp'ijijmi~l~:ellli!mil!~i~I~~~~lm:;~mm 

SHORT usMaximumPointSize; 
SHORT fsTypeFlags; 
SHORT fsDefn; 
SHORT fsSelectionFlags; 
SHORT fsCapabilities; 
SHORT ySubscriptXSize; 
SHORT ySubscriptYSize; 
SHORT ySubscriptXOffset; 
SHORT ySubscriptYOffset; 
SHORT ySuperscriptXSize; 
SHORT ySuperscriptYSize; 
SHORT ySuperscriptXOffset; 
SHORT ySuperscriptYOffset; 
SHORT yUnderscoreSize; 
SHORT yUnderscorePosition; 
SHORT yStrikeoutSize; 
SHORT yStrikeoutPosition; 
SHORT usKerningPairs; 
SHORT usKerningTracks; 
PSZ pszDeviceNameOffset; 

} FOCAMETRICS; 

The following are the fields for the FOCAMETRICS structure: 

ulldentity Specifies the identity of the font. 

ulSize Specifies the size of the font. 

szFamilyName[32] Specifies the family name of the font. Examples of common 
family names in MS OS/2 version 1.1 are Courier, Helvetica, and Times. 

szFaceName[32] Specifies the typeface name of the font. Examples of common 
typeface names in MS OS/2 version 1.1 are Courier, Helvetica, and Times. 

usRegistryID Specifies the registry number of the font. 

usCodePage Identifies the code page that an application should use with the 
partic~lar font. 

yEmHeight Specifies the average height of uppercase characters. The height is 
measured in world coordinates from the baseline to the top of the character. 

yX~eight Specifies the average height of lowercase characters. The height is 
measured in world coordinates from the baseline to the top of the character. 

yMaxAscender Specifies the maximum height of any character in the font. The 
~eight is measured in world coordinates from the baseline to the top of the tall­
est character. 

yMaxDescender Specifies the maximum depth of any character in the font. The 
depth is measured in world coordinates from the baseline to the bottom of the 
lowest character. 

yLowerCaseAscent Specifies the maximum height of any lowercase character in 
the font. The height is measured in world coordinates from the baseline to the 
top of the ascender of the tallest lowercase character. 

yLowerCaseDescentSpecifies the maximum depth of any lowercase character 
in tpe font. The depth is measured in world coordinates from the baseline to the 
bottom of the descender of the lowest lowercase character. 



532 MS OS/2 Programmer's Reference, Vol. 2 
!§!~H~fit;;l!~Ir:ll~mllmllin~fifiUfJ~i~I@T.~i:gll~rml~lI:iHiim~~l§~!~i~mm~§:~~~:~~'U~~~i~!~i!~~!iWr@l!f!~!~iimPJ!i~!~l~n~j~~ 

ylntemalLeading Specifies the amount of space reserved in the top of each 
character cell for accent marks. This metric is always given in world coordinates. 

yExtemaILeading Specifies the amount of space that should appear between 
adjacent rows of text. This metric is always given in world coordinates. 

xA veCharWidth Specifies the average character width for characters in the 
font. The average character width is determined by mUltiplying the width of each 
lowercase character by a predetermined constant, adding the results, and then 
dividing by 1000. Letters and their predetermined constants are listed as follows: 

a 64 j 3 s 56 
b 14 k 6 t 71 
c 27 I 35 u 31 
d 35 m 20 v 10 
e 100 n 56 w 18 
f 20 0 56 x 3 
g 14 P 17 Y 18 
h 42 q 4 z 2 

63 r 49 space 166 

xMaxCharInc Specifies the maximum increment between characters in the 
font. 

xEmInc Specifies the width of an uppercase M in the font. 

yMaxBaselineExtent Specifies the sum of the maximum ascender and max­
imum descender values. 

sCharSlope Specifies the angle (in degrees and minutes) between a vertical line 
and the upright strokes in characters in the font. The first 9 bits of this value 
contain the degrees, the next 6 bits contain the minutes, and the last bit is 
reserved. The slope of characters in a normal font is zero; the slope of italic 
characters is nonzero. . 

sInlineDir Specifies an angle (in degrees and minutes, increasing clockwise) 
from the x-axis that the system uses when it draws a text string. The system 
draws each consecutive character from the text string in the inline direction. The 
inline-direction angle for a Swiss font is zero; the inline direction for a Hebrew 
font is 180. . 

Inline direction, like other rotations, is represented by a two-part unsigned 
discontinuous value. The first 9 bits are iIi the range 0 through 359, representing 
the number of degrees in the rotation. The next 6 bits are in the range 0 through 
59, representing the number of minutes in the rotation. The final bit is reserved 
O. Values outside the specified ranges are invalid. 

sCharRot Specifies the angle (in deg~ees and minutes) between the baseline of 
characters in the font and the x-axis. This is the angle assigned by the font 
designer. 



Chapter 5: File Formats 533 
~js;ff,i~~lffiffils!~EtmfSll§$.m!!m~~i~~'~§i~~I~~$1~lmfiimmiEimii:'~~J;i~!!~nm!ffi§Ifm!F.jlliifSl~!lf~IIUSi':n!WtBfmim!~~~!!fah~~tm~ 

us WeightClass Specifies the thickness of the strokes that form the characters 
in the font. This field can be one of the following values: 

Value Description 

1 Ultra-light 

2 Extra-light 

3 Light 

4 Semi-light 

5 Medium (normal) 

6 Semi-bold 

7 Bold 

8 Extra-bold 

9 Ultra-bold 

us WidthClass Specifies the relative-aspect ratio of characters in the font in 
relation to the normal-aspect ratio for a font of this type. The possible values are 
listed here: 

Value Description %of Normal 

1 Ultra-condensed 50 
2 Extra-condensed 62.5 
3 Condensed 75 
4 Semi-condensed 87.5 
5 Medium (normal) 100 
6 Semi-expanded 112.5 
7 Expanded 125 
8 Extra-expanded 150 
9 Ultra-expanded 200 

xDeviceRes Specifies the horizontal resolution of the target device for which 
the font was originally designed. This value is given in pels per inch. 

yDeviceRes Specifies the vertical resolution of the target device for which the 
font was originally designed. This value is given in pels per inch. 

usFirstChar Specifies the code point for the first character in the font. 

usLastChar Specifies the code point for the last character in the font. This 
code point is an offset from the usFirstChar value. All code points between the 
first and last character specified must be supported by the font. 

usDefaultChar Specifies the code point for the default character in the font. 
This code point is an offset from the usFirstChar value. The default character is 
the character the system uses when an application specifies a code point that is 
out of the range of a font's code page. 

usBreakChar Specifies the code point for the space character in the font. This 
code point is an offset from the usFirstChar value. 



534 MS OS/2 Programmer's Reference, Vol. 2 
5ffl111u1i;~!WJj[l3fi~Si!rn~~!l~~im~lIit~rmfif:~tGl~!~f~i~lIllf~~lfll!:~l:rlEf~!a!imi~~~fffi~li$i!:"Smi~llm~H~l!~~t;!ln:~mI~!if;l.oo! 

usNominalPointSize Specifies the height of the font in decipoints (11720 inch). 
The nominal point size is the point size in which the font was designed to be 
drawn. 

usMinimumPointSize Specifies the minimum height of the font (in decipoints). 
A font should not be reduced to a size smaller than this value. 

usMaximumPointSize Specifies the maximum height of the font (in decipoints). 
A font should not be increased to a size larger than this value. 

fsTypeFlags Specifies whether the font is proportional or fixed, whether it is 
licensed or not licensed, and whether it consumes more or less than 64K of 
memory. This field can be a combination of the following values: 

Value 

OxOOO1 

OxOOO2 

Ox8000 

Meaning 

Specifies a fixed-pitch font. If not given, the font is 
proportionally spaced. 

Specifies a licensed font. If not given, the font is not 
licensed. 

Specifies a font that requires more than 64K of 
memory. If not given, the font requires 64K or less. 

All other values are reserved. The remaining bits in the field must be set to zero. 

fsDefn Specifies whether the font is an image or a vector font. This field can be 
a combination of the following values: 

Value 

OxOOO1 

Ox8000 

Meaning 

Specifies a vector font. If not given, the font is an 
image font. 

Specifies an engine font. If not given, the font is a 
device font. 

All other values are reserved. The remaining bits in the field must be set to zero. 

fsSelectionFlags Specifies whether the font is normal or italic, whether it is 
underscored, whether it uses positive- or negative-image characters, whether it 
uses solid or outlined characters, and whether it uses overstruck characters. This 
field can be a combination of the following values: 

Value 

OxOOO1 

OxOOO2 

OxOOO4 

Meaning 

Characters are italic if this bit is set; otherwise, they are 
normal. 

Characters are underscored if this bit is set; otherwise, 
they are not underscored. 

Characters are drawn using negative images if this bit is 
set; otherwise, they are drawn using positive images. 



Chapter 5: File Formats 535 
iif~ltj~!IIDlm~:~!li1liiilm~i~Jmm~I~!EJ!:gii~!fY@il~ffiif,~i$i~~!~!m!f.~iWHIimi!Y~Nii!ru~lirujffiifsiiill!~1~!Eiimlm!slimmi!r:1iffiiHBf~i~Ji~li 

Value 

OxOOO8 

OxOOlO 

Meaning 

Characters are outlined if this bit is set; otherwise, they 
are solid. 

Characters are overstruck if this bit is set; otherwise, 
they are not overstruck. 

All other values are reserved. Remaining bits in the field must be set to zero. 

fsCapabilities Specifies whether the characters in this font can be mixed with 
graphics. If bit 0 of this field is set, the characters cannot be mixed with graph­
ics; otherwise, they can be mixed with graphics. All other bits of this field are 
reserved and must be set to zero. 

ySubscriptXSize Specifies the horizontal size (in world coordinates) for sub­
scripts in the font. 

ySubscriptYSize Specifies the vertical size (in world coordinates) for subscripts 
in the font. 

ySubscriptXOffset Specifies the horizontal offset from the left edge of the char­
acter cell for subscripts in the font. 

ySubscriptYOffset Specifies the vertical offset from the character-cell baseline 
for subscripts in the font. 

ySuperscriptXSize Specifies the horizontal size (in world coordinates) for 
superscripts in the font. 

ySuperscriptYSize Specifies the vertical size (in world coordinates) for super­
scripts in the font. 

ySuperscriptXOffset Specifies the horizontal offset from the left edge of the 
character cell for superscripts in the font. 

ySuperscriptYOffset Specifies the vertical offset from the character-cell base­
line for superscripts in the font. 

yUnderscoreSize Specifies the width of the underscore (in world coordinates). 

yUnderscorePosition Specifies the distance from the baseline to the underscore 
line (in world coordinates). 

yStrikeoutSize Specifies the width of the overstrike (in world coordinates). 

yStrikeoutPosition Specifies the position of the overstrike in relation to the 
baseline. 

usKerningPairs Specifies the number of kerning pairs in the kerning-pair table 
for the font. 

usKerningTracks Reserved; must be zero. 

pszDeviceNameOffset Points to the offset from the beginning of the resource to 
a null-terminated string that specifies the name of the device. 



536 MS OS/2 Programmer's Reference, Vol. 2 
~~ifi~J!!m=;is~~w.:l!f!fEm~f!!Eiif.i~~gil!Rrui~iif.mimlilfii~~l!!~jj1iili11iili!i§iiia~!iL~m!mi:~Pffs~~~n~imil~i~Hlliij~~j§tEisii~~lli 

5.5 Font Character Definition 
The font character definition consists of the character-definition data and infor­
mation specifying the format of the character-definition data. It consists of a 
font-definition header, followed by the character-definition data and a kerning­
pair table (if necessary). The following sections describe each part of the font 
character definition. 

5.5.1 'Font-Definition Header 
The font-definition header specifies the dimensions and attributes of the 
character-definition data. The header has the following form: 

typedef struet _FONTDEFINITIONHEADER { 
ULONG ulldentity; 
ULONG ulSize; 
SHORT fsFontdef; 
SHORT fsChardef; 
SHORT usCellSize; 
SHORT xCellWidth; 
SHORT yCellHeight; 
SHORT xCelllnerement; 
SHORT xCellA; 
SHORT xCellB; 
SHORT xCellC; 
SHORT pCellBaseOffset; 

} FONTDEFINITIONHEADER; 

The following are the fields for the FONTDEFINITIONHEADER structure: 

ulldentity Specifies the font-definition header identifier. This field must be 2. 

ulSize Specifies the length of the header plus all width and offsets (in bytes). 

fsFontdef Specifies the attributes of the font definition. This field is an array of 
bit flags specifying which information in the font-definition header applies to all 
characters. This field can be a combination of the following flags: 

Flag 

OxOOOl 

OxOOO2 

OxOOO4 

OxOOO8 

Description 

Specifies that the width for all characters is in the font­
definition header. If not given, the individual character widths 
are in the definition data. 

Specifies that height for all characters is in the font-definition 
header. If not given, the individual character heights are in the 
definition data. 

Specifies that the character increment is the same as the char­
acter width. If not given, the character increment for all char­
acters is in the font-definition header. 

Specifies that the a-space is the same as the a-space in the 
font-definition header. If not given, no a-space is defined. 



Chapter 5: File Formats 537 
~imi~1ii~mliro~m!iilm;IWmiE§~!§illi!i§i:rni§~l!liil~[ffifiHI!2ji!i~mJjliia!jn~lm;;I;w[:!l!~!!;rumi~i~l?i~~m!sl~!~~llit:aj~!ffii[i.~!f~!ffii:jiiffiimilii!f~ 

Flag 

OxOO10 

OxOO20 

OxOO40 

Description 

Specifies that the b-space is the same as the b-space in the 
font-definition header. If not given, no b-space is defined. 

Specifies that the c-space is the same as the c-space in the 
font-definition header. If not given, no c-space is defined. 

Specifies that the baseline offset for all characters is in the 
font-definition header. 

fsChardef Specifies the attributes of the character definition. This field is an 
array of bit flags specifying which information in the font-definition header 
applies to all characters. This field can be a combination of the following flags: 

Flag 

OxOOO1 

OxOOO2 

OxOOO4 

OxOOO8 

OxOO10 

OxOO20 

Ox0040 

OxOO80 

Description 

Specifies that the width for each character is in the definition 
data. If not given, the width for all characters is in the font­
definition header. 

Specifies the height for each character is in the definition 
data. If not given, the height for all characters is in the font­
definition header. 

Specifies the character increment for each character is in the 
definition data. If not given, the character increment for all 
characters is in the font-definition header. 

Specifies the a-space for each character is in the definition 
data. If not given, the a-space for all characters is in the font­
definition header. 

Specifies the b-space for each character is in the definition 
data. If not given, the b-space for all characters is in the font­
definition header. 

Specifies the c-space for each character is in the definition· 
data. If not given, the c-space for all characters is in the font­
definition header. 

Specifies that the baseline offset for each character is in the 
definition data. If not given, the baseline offset for all charac­
ters is in the forit-definition header. 

Specifies the offset to the glyph data is in the definition data. 
If not given, no glyph offsets are defined. 

usCellSize Specifies the length of each cell (in bytes). This value is 6 for type 1 
and 2 fonts. It is 10 for type 3 fonts. 

xCellWidth Specifies the width of the cell for each character. This applies to 
type 1 fonts only. This field is zero for type 2 and 3 fonts. 



538 MS OS/2 Programmer's Reference, Vol. 2 
!i411!iffmU~I~gfugimm;!i1;iallm~iM;!~mlm~ii;;""f~i~i§iiMiJSmf3i~!ml~Uie!!islIl~!!m!;~imii.1ii§i;iiiiSi35;§gm~m~mlI31mm.!liJJiaiim!m;;tr.fE§Ht 

yCellHeight Specifies the height of the cell for each character. This applies to 
all font types. . 

xCelllncrement Specifies the width of the cell for each character. This applies 
to type 1 fonts only. This field is zero for type 2 and 3 fonts. 

xCellA Specifies the a-space value for the font. This applies to type 3 fonts 
only. This field is zero for type 2 and 3 fonts. . 

xCellB Specifies the b-space value for the font. This applies to type 3 fonts 
only. This field is zero for type 2 and 3 fonts. 

xCellC Specifies the c-space value for the font. This applies to type 3 fonts 
only. This field is zero for type 2 and 3 fonts. ' 

pCellBaseOffset Specifies the baseline offset for the characters in the font. 
This applies to all font types. 

5.5.2 Definition Data 
The definition data defines the image of the characters in the font. The definition 
data has the following form: 

struct _DEFINITIONDATA { 
ULONG ulldentity; 
ULONG ulSize; 
BYTES abData [] ; 

} DEFINITIONDATA; 

The following are the fields for the DEFINITIONDATA structure: 

uUdentity Specifies the definition-data signature. It must be 2. 

ulSize Specifies the length of the definition data (in bytes). 

abData[] Specifies the data defining the characters. The content depends on 
the file format. 

5.5.2.1 Image Format 

For image fonts, characters are stored as individual bitmaps. Each bitmap starts 
on a byte boundary. 

The number of bytes in each bitmap is the product of the character height and 
the character width expressed in bytes. If the character width is not a multiple of 
8, the width must be rounded to the next highest byte value before multiplying. 

The order of bytes in each bitmap defines one or more 8-bit-wide vertical col­
umn. The bitmap represents one or more consecutive 8-bit-wide columns; the 
left column is stored first. For each column, there are the same number of bytes 
as rows in the bitmap (as defined by the character height). The byte for the top 



Chapter 5: File Formats 539 
rs;1~mn~na1;5lrulim~~iHm~!tioor.i;;m~liffi~1iilim~ltw!w~~]ftir:i!g~l@J~l&~~ffi~rn1imi~tlis!J;1itmiru\~l~l~1~sH~n~"r~li~\~5ii3.m~F:lli~IY 

row is stored first. For example, the lS-bit-wide letter H shown below is stored 
in this order: Al, Bl, Cl, ... , Ml, A2, B2, ... , M2. 

A 
B 
C 
D 
E 

1 2 

F ****** ***** 
G * 
H 
I * 
oJ 
K * 
L * 
M 

Image fonts contain a null character. The character-definition record 
for the null character occurs after the last non-null character. The format has 
(usLastChar + 2) total characters, ~lthough tbe null character is not counted in 
the range returned. The null character is composed of zeros and is always 8 pels 
wide. 

5.5.2.2 Outline Format 
For outline fonts, characters are stored as a set of graphics orders. The follow­
ing is a list of the graphics orders permitted within a character definitions. 

Graphics orders Description 

GLINE, GCLINE Line. 

GRLINE, GCRLINE Relative line. 

GBAR Begin area. 

GEAR End area. 

GFLT,GCFLT Fillet. 

GSCOL,GSECOL Set color. 

GSLT Set line type. 

GSLW Set line width. 

GESD End symb91 definition. 

5.5.3 Kerning-Pair Table 
The kerning-pair table is present in the font character definition if the 
usKerningPairs field in the FOCAMETRICS structure is 1. If it is present, the 
code points are words, not bytes. This table should be sorted by usFirstCh~r 
and usSecondChar order to allow binary searches. The kerning-pair table has 
the following form: 

struct _KERNINGPAIRTABLE { 
ULONG ulldentlty; 
ULONG ulSlze; 
KERNINGPAIRS akrnpr[]; 

} KERNINGPAIRTABLE; 



540 MS OS/2 Programmer's Reference, Vol. 2 
!ir.~iii;!!!i5lffif5Uiiillia!!5~l~Eir!liiif;:~.r~i~!lmi~ii!m~rn!!i!Uffifmiij~j~~lili~tiE~t!;!~J~~§ji§~iif:finifl~rnim~~:rufii!§15ili!!iijijj!iSiiSlii 

The following are the fields for the KERNINGPAIRTABLE structure: 

ulldentity Specifies the kerning-pair-table signature. This value must be 3. 

ulSize Specifies the length of the kerning-pair table (in bytes). 

akrnpr[] Specifies an array of KERNINGPAIRS structures that contain the 
kerning data for each kerning pair. The KERNINGPAIRS structure has the fol­
lowing form: 

typedef struct _KERNINGPAIRS { 
SHORT sFirstChar; 
SHORT sSecondChar; 
SHORT sKerningAmount; 

} KERNINGPAIRS; 

For a full description, see Chapter 4, "Types, Macros, Structures." 

5.6 Code-Page Font Support 
MS OS/2 Presentation Manager supports mUltiple code pages for text input and 
output. For text output using fonts, a single font resource is used to support all 
code pages. The following section describes how code-page font support is pro­
vided and gives details about the font-resource format. 

MS OS/2 Presentation Manager supports the following code pages for text 
output: . 

Number 

500 

437 

850 

860 

863 

865 

Code page 

EBCDIC CECP international version 

Original PC ASCII code page 

New PC ASCII code page supporting U.S. English and 
many European languages 

PC ASCII for Portuguese 

PC ASCII for French-Canadian 

PC ASCII for Nordic languages 

Most of the characters required by each code page are common-for example, 
the first 128 characters of all ASCII code pages are identical. This makes it pos­
sible for a single font definition to support all the code pages. Such a font con­
tains an ordered list of all the character definitions (glyphs) used by the collec­
tion of code pages listed above. 

To use such a font, all that is required is a mapping from the code points of the 
current code page to the glyphs of the font. Such mapping is provided for each 
code page. To make the translation of text strings from code page to code page 
easier, m~pping from the universal set of characters to each code page is also 
provided. 



Chapter 5: File Formats 541 
~~~J_m;i~:rnli§~i~~!ffi~im!w.fi!ml!~ll!I!laF.]5§~Ji~i~Usi5Jffii1i§ill!~m&."f;is~!~iffii~\~Mrn~§tIfl!So1m~~Eill$rnll~~!rnl~~iWja:m~ 

The ordering of the characters is the same in all fonts containing multiple code
pages. This means only one set of translation tables is necessary. The ordering
of characters in these fonts is based on code page 850, with additional characters
added beyond character 256. This makes mapping code page 850 to the fonts
simple. It also provides simple mappings for the first 128 characters of all the
ASCII code pages.

Table 5.1 shows the glyphs added to code page 850. The glyphs are listed in the
order they occur in the font, starting at character 256.

Table 5.1 Additional Glyphs

Index
number Glyph 10

256 SCQ4()()()()
257 SC05()()()()
258 SC06()()()()
259 SM68()()()()
260 SFl90000
261 SF2()()()()()
262 SF21 ()()()()
263 SF220000
264 SF27()()()()
265 SF28()()()()
266 SF36()()()()
267 SF37()()()()
268 SF 45()()()()
269 SF46()()()()
270 SF 47()()()()
271 SF48()()()()
272 SF490000
273 SF5()()()()()
274 SF51 ()()()()
275 SF52()()()()
276 SF53()()()()
277 SF54()()()()
278 SF58()()()()
279 SF590000
280 GAOl ()()()()
281 GG02()()()()
282 G POl ()()()()
283 G S02()()()()
284 G SOl ()()()()

Symbol

Cent sign

Yen sign

Pesetas sign

Left-hand not sign

Double line join single vertical

Single line join double vertical

Single line, upper-right corner double

Double line, upper-right corner single

Single line, lower-right corner double

Double line, lower-right corner single

Single vertical join double line

Double vertical join single line

Double horizontal join single line above

Single horizontal join double line above

Double horizontal join single line below

Single horizontal join double line below

Double line, lower-left corner single

Single line, lower-left corner double

Single line, upper-left corner double

Double line, upper-left corner single

Double vertical cross single

Single vertical cross double

Left hand half-block

Right hand half-block

Greek alpha lowercase

Greek gamma uppercase

Greek pi lowercase

Greek sigma uppercase

Greek sigma lowercase

542 MS OS/2 Programmer's Reference, Vol. 2
!illl!:Hi!Sl.!miil2m5iiml§iif~[:gs@.!rui~jlm;;mtf§w.!llimUmfffii~1~i!mrtii~~~!~Ii!i!ffJ1"m~~f~f:illiii~m~~f~~~~ml!I!milii~~i~l~~~31fmm!j!

Table 5.1 (Continued) Index
number Glyph 10 Symbol

285 GTOlOOOO Greek tau lowercase

286 GF020000 Greek phi uppercase

287 GT620000 Greek theta uppercase

288 G0320000 Greek omega uppercase

289 GD 01 0000 Greek delta lowercase

290 SA450000 Infinity sign

291 GFOlOOOI Greek phi lowercase

292 GEOl0000 Greek epsilon lowercase

293 SA 380000 Mathematical intersection sign

294 SA480000 Mathematical equivalence sign

295 SA530000 Mathematical greater than or equal sign

296 SA 520000 Mathematical less than or equal sign

297 SS260000 Mathematical integral sign. upper-half

298 SS270000 Mathematical integral sign. lower-half

299 SA700000 Mathematical approximately equal sign

300 SA790000 Mathematical product dot

301 SA800000 Mathematical square-root sign

302 LNOllOOO Superscript small n
512 SDllOOOO Dead acute accent

513 SD130000 Dead grave accent

514 SDI50000 Dead circumflex accent

515 SDI70000 Dead umlaut accent

516 SDI90000 Dead tilde accent

517 SD410000 Dead cedilla accent

518 LEI20000 Swiss E acute with CAPSLOCK

519 LEI40000 Swiss E grave with CAPSLOCK

520 LA 140000 Swiss A grave with CAPSLOCK

521 LUI80000 Swiss U umlaut with CAPSLOCK

522 LOI80000 Swiss 0 umlaut with CAPSLOCK

523 LA 180000 Swiss A umlaut with CAPSLOCK

Glyphs with indexes 512 through 517 are used for dead accents. Glyphs with
indexes 518 through 522 are required to support the Swiss keyboard and its three
combination keys with code pages 437 and 850. Glyphs with indexes 768 through
1023 are reserved for DBCS.

The fonts have 300 characters in all (including the null character). This number
of characters is supported by the font definition for both image and vector fonts.

543
~1~ff!ilmf~lf:i§lilJ!!~~l;Ul!ji~lfiif:fiils!/llimt;!JE!illiiil~~m*fijffi;'~;UiflmIDmlM§m:.:ru~1ilfi'un~lffi&:~ft~imiiUlia~Ii~i!Hm~&mr&ii§'f;iiJil~iimimjjJ

Appendixes
A ppendix A Error Values... 545

Appendix B Device Capabilities ... 551

Appendix

A

Error Values
A.l Introduction .. 547

A.2 Errors .. 547

Appendix A: Error Values 547
;§It:ID.j~mi~~trej~nI~';iiffi~~fu1f:i:§iffl~~~~rmi@ls~~~!milID!S:!~T~mJ~!!~mi;lm1m~6~imf:!~ililloo;~;ffiim~m~i~Hw§iliSJID~m~l!~i!~tl!

A.1 Introduction

A.2 Errors

This chapter contains the possible error values that can be returned by the MS
OSI2 Presentation Manager functions. Before you can use these errors in your
application, you must define the INCL_ WINERRORS, INCL_GPIERRORS, or
SHL~RRORS constant before including the os2.h file. For example, to include
errors for the Gpi functions, you must define the INCL_GPIERRORS constant,
as shown in the following code:

#define INCL_GPIERRORS

#include <os2.h>

The following list gives the error values .that may be returned by the Dev, Gpi,
and Win functions. The error values are listed in numerical order, and the
corresponding error constant is given for each value.

548 MS OS/2 Programmer's Reference, Vol. 2
gJ;;U~~~!~ffilfiii~(m~~~s!!i~U~i~~.ir:;iii~~!ft~h1imt§.ii'i;Silr.;~itf:~ ... =si;e-~~Jj~I~jgJim~~~ffBi~!fmli§'is;l~ili!i!:m:ili~ii

0000 PM ERR-OK 1206 PMERRJNVALID_ WINDOW
1001 PMERRJNV ALIDJlWND 1207 PMERR-INVALIDJ'OST JdSG
1002 PMERRJNVALID_HMQ 1208 PMERR-INVALIDJ' ARAMETERS
1003 PMERRJ' ARAMETER-OUT _OF ..RANGE 1209 PMERR-INVALIDJ'ROGRAM_TYPE
1004 PMERR-WINDOW-LOCK..UNDERFLOW 120A PMERR-NOT~NDED-FOCUS

1005 PM ERR-WINDOW-LOCK..OVERFLOW 120B PMERR.JNVALID_SESSION_ID
1006 PMERR-BAD_ WINDOW-LOCK..COUNT l20C PMERR..SMG_INVALID_ICON-FILE
1007 PM ERR.. WINDOW-NOT -LOCKED 120D PMERR-SMG_ICON-NOT _CREATED
1008 PMERR-INVALID_SELECfOR 120E PMERR-SHLJ)EBUG
1009 PMERR-CALL-FROMLWRONG_THREAD 1301 PMERR..OPENING_INI-FILE
l00A PMERR..RESOURC~OT-FOUND 1302 PMERRJNI-FILE..CORRUPT
l00B PMERR..INVALlD_STRINGJ' ARM 1303 PMERR..INV ALID..P ARM
l00C PMERR..INVALlD_HHEAP 1304 PMERR-NOT_IN_IDX
l00D PMERR-INVALlD_HEAP J'OINTER 1306 PMERR-INI_WRITE-FAIL
l00E PMERR-INVALIDJlEAP _SIZE..P ARM 1307 PMERR-IDX-FULL
l00F PMERR..INVALID_HEAP _SIZE 1308 PMERR-INIJ'ROTEcrED
1010 PMERR-INVALID_HEAP _SIZE.. WORD 1309 PMERRJ.{EMORY-ALLOC
1011 PMERR-HEAP _OUT _OFJdEMORY 130A PMERR-INI_INIT-ALREADY -PONE
1012 PMERR-HEAP JdAx..SIZE..REACHED 130B PMERR..INV ALID_INTEGER
1013 PMERR-INVALID_HATOMTBL 130C PMERR-INV ALID-ASCIIZ
1014 PMERR-INVALID-ATOM 130D PMERR-CAN-NOT _CALL-SPOOLER
1015 PMERR-INV ALID-A TOM-NAME 1401 PMERR-WARNING_WINDOW-NOTJ<ILLED
1016 PMERR-INVALID_INTEGER-A TOM 1402 PMERR..ERROR..INV ALID_ WINDOW
1017 PMERR-ATOM-NAM~OT-FOUND 1403 PMERR-ALREADY _INITIALIZED
1018 PMERR-QUEUE..TOO-LARGE 1405 PMERRJ.{SGJ'ROG-NOJdOU
1019 PMERRJNVALID-FLAG 1406 PMERRJ.{SGJ'ROG-NON..RECOV
lOlA PMERR..INV ALID_HACCEL 1407 PMERR.. WINCONV _INVALID..P ATH
101B PMERR..INVALlD_HPTR 1408 PMERRJ'I-NOT_INmALISED
101C PMERR-INVALID_HENUM 1409 PMERRJ'~OT_INmALISED

10lD PMERR-INVALID_SRC_CODEPAGE 140A PMERR-NO_TASK..MANAGER
101E PMERR..INVALID-PST_CODEPAGE 140B PMERR-SAV~OT_INJ'ROGRESS

101£ PMERR..UNKNOWN_COMPONENT _10 140C PMERR-NO_STACK..SPACE
1020 PMERR-UNKNOWN-ERROR-CODE l40d PMERR..INVALID_COLR-FIELD
1021 PM ERR-SEVERITY -LEVELS 140e PMERRJNVALID_COLR.. VALUE
1034 PMERRJNVALID..RESOURCE..FORMAT 140£ PMERR-COLR-WRITE
1036 PMERR-NOJdSG_QUEUE 1501 PMERR-TARGET-FILE..EXISTS
1037 PMERR-WIN-PEBUGMSG 1502 PMERR-SOURCE..SAME-AS_TARGET
1038 PMERR..QUEUE..FULL 1503 PMERR..SOURCE..FIL~OT-FOUND

1101 PMERR..INV ALIDJ'IB 1504 PMERR..INV ALID-NEWJ' ATH
1102 PMERR..INSUFF _SPACE..TO-ADD 1505 PMERR-TARGET-FIL~OT-FOUND

1103 PMERRJNVALID_GROUP _HANDLE 1506 PMERR-INVALID-PRIV~UMBER

1104 PMERRJ)UPLICATE..TITLE 1507 PMERR-NAME..TOO-LONG
1105 PMERRJNVALlD_TITLE 1508 PMERR-NOT-ENOUGH..ROOM_ON-PISK
1106 PMERR..INVALlD_TARGET_HANDLE 1509 PMERR-NOT-ENOUGHJ.fEM
1107 PMERR..HANDL~OTJN_GROUP 150B PMERRJ.OG-PRV-POES-NOT-EXIST
1108 PMERRJNVALIDJ'ATH_STATEMENT 150C PMERR-INVALID-PRIVE
1109 PMERR-NOJ'ROGRAM-FOUND 150D PMERR-ACCESS-PENIED
110A PMERR..INVALID..BUFFER-SIZE 150E PMERR-NO-FIRST _SLASH
110B PMERR-BUFFER..TOO_SMALL 150F PMERR..READ_ONLY -FILE
110C PMERRJ'k-INmALISATION-FAIL 2001 PMERR-ALREADY _IN-AREA
110D PM ERR-CANT -PESTROY ~YS_GROUP 2002 PMERR-ALREADY _IN-ELEMENT
110E PMERR-INVALlD_TYPE..CHANGE 2003 PMERR-ALREADY _INJ'A TH
110F PMERR-INV ALlDJ'ROGRAM_HANDLE 2004 PMERR-ALREADY _IN_SEG
1110 . PMERR-NOT_CURRENTJ'k-VERSION 2005 PMERR-AREA_INCOMPLETE
1111 PMERR..INVALID_CIRCULAR..REF 2006 PMERR-BASE-ERROR
1112 PMERRJ.{EMORY -ALLOCATION-ERR 2007 PMERRJlITBLT-LENGTH-EXCEEDED
1113 PMERRJ.{EMORY -PEALLOCA TION-ERR 2008 PMERR..BITMAP IN_USE
1114 PMERR-TASK..HEADER-TOO_BIG 2009 PMERR..BITMAP _IS_SELECTED
1200 PMERRJ)OS-ERROR 200A PMERR-BITMAP -NOT -FOUND
1201 PMERR-NO_SPACE 200B PMERR-BITMAP -NOT_SELECTED
1202 PMERR-INVALID_SWITCH_HANDLE 200C PMERR..BOUNDS_OVERFLOW
1203 PMERR-NO_HANDLE 200D PMERR..CALLED_SEG_IS_CHAINED
1204 PMERR-INV ALlD..PROCESS_1D 200E PMERR..CALLED_SEG_IS_CURRENT
1205 PMERR-NOLSHELL 200F PMERR..CALLED_SEG-NOT-FOUND

Appendix A: Error Values 549
~~~l~~!~iiimiS~llir~I;~li!m~~1!@:~L~!fifSt;mJw!@iimifE~!iii!Ei5i~am~li~~il~i§jl!i~lisiiIfilmili!5~~Gia:ll!~Ii~Jj!l!rn;~p.lifiU~ 

2010 PMERR-CANNOTjOELETE-ALLJDATA 2050 PMERR-INV _CHAR-SHEAR..A lTR 
2011 PMERR-CANNOT ..REPLACE..ELEMENT_O 2OS1 PMERR-INV_CLIPJ>ATH_OPTIONS 
2012 PMERR-COL.-TABLE..NOT..REALIZABLE 2OS2 PMERR-INV _CODEPAGE 
2013 PMERR-COL.-TABLE..NOT..REALIZED 2053 PMERR-INV _COLOR..A lTR 
2014 PMERR-COORDINA1"E-,OVERFLOW 2054 PM ERR-INV _COLORjDATA 
201S PMERR-CORR-FORMAT-MISMATCH 2055 PMERR-INV _COLOR-FORMAT 
2016 PMERRjDATA_TOO..LONG 2OS6 PMERR-INV _COLOR-INDEX 
2017 PMERRjDC_IS-ASSOCIA TED 20S1 PMERR-INV _COLOR-OPTIONS 
2018 PMERRjDESC_STRING_TRUNCATED 2058 PMERR.JNV_COLOR-START_INDEX 
2019 PMERRjDEVICEjDRIVER..ERROR-1 2OS9 PMERR-INV _COORD_OFFSET 
201A PMERRjDEVICEjDRIVER..ERRORJ 20SA PMERR-INV _COORD_SPACE 
201B PMERRjDEVICEjDRIVER..ERROR-J 20SB PMERR-INV _COORDINATE 
201C PMERRjDEVICEjDRIVER..ERROR-4 20SC PMERR-INV _CORRELA TEjDEPTH 
20ID PMERRjDEVICEjDRIVER..ERROR-5 20SD PMERR-INV _CORRELA 1"E-,TYPE 
201E PMERRjDEVICEjDRIVER..ERROR..6 20SE PMERR-INV _CURSOR-BITMAP 
201F PMERRjDEVICEjDRIVER..ERROR-7 20SF PMERR-INVjOCjOATA 
2020 PMERRjDEVICEjDRIVER..ERROR-8 2060 PMERR-INV JOC_TYPE 
2021 PMERRjDEVICEjDRIVER..ERROR-9 2061 PMERR-INV jOEVICE..NAME 
2022 PMERRjDEVICEjDRIVER-ERROR-I0 2062 PMERR..INV jOEV -MODES_OPTIONS 
2023 PMERRjDEV -FUNC..,NOT _INSTALLED 2063 PMERR-INV jORA W_CONTROL 
2024 PMERRjDOSOPEN-FAILURE 2064 PMERR-INV jORA W_ VALUE 
202S PMERRjDOSREAD-FAILURE 206S PMERR-INVjORAWING-MODE 
2026 PMERRjDRIVER..,NOT-FOUND 2066 PMERR-INV jORIVERjDATA 
2027 PMERRjDUP _SEG 2067 PMERR-INV jORIVER..,NAME 
2028 PMERRjDYNAMIC_SEO_SECLERROR 2068 PMERR-INV jORA W_BORDER-OPTION 
2029 PMERRjDYNAMIC_SEG-ZERO_INV 2069 PMERR..INV..EDIT-MODE 
202A PMERR..ELEMENT_INCOMPLETE 206A PMERR-INV..ELEMENT_OFFSET 
202B PMERR..ESC_CODE..NOT_SUPPORTED 206B PMERR-INV..ELEMENTJ>OINTER 
202C PMERR-EXCEEDS-MAX-SEG..LENGTH 206C PMERR-INV ..ENDJ> ATH_OPTIONS 
20m PMERR-FONT -AND-MODE-MISMATCH 206D PMERR-INV..ESC_CODE 
202E PMERR-FONT-FILE..NOT..LOADED 206E PMERR-INV..ESCAPEjDATA 
20ZP PMERR-FONT..,NOT..LOADED 206F PMERR-INV..EXTENDED..LCID 
2030 PMERR-FONTSOO_BIG 2070 PMERR-INV-FILLJ>ATH_OPTIONS 
2031 PMERR..HARDWAREJNIT-FAILURE 2071 PMERR..INV YIRSLCHAR 
2032 PMERR-HBITMAP _BUSY 2072 PMERR-INV -FONT -A lTRS 
2033 PMERR-HDC-BUSY 2073 PMERR-INV -FONT -FILEjDATA 
2034 PMERR-HRGN_BUSY 2074 PMERR-1NV -FOR..THISjOC_TYPE 
2035 PMERR-HUGE-FONTS..,NOT _SUPPORTED 2075 PMERR-1NV -FORMAT_CONTROL 
2036 PMERR-1D_HAS..,NO_BITMAP 2076 PMERR-INV -FORMS_CODE 
2037 PMERR-IMAGE..INCOMPLETE 2077 PMERR-INV -FONTDEF 
2038 PMERR-INCOMPAT _COLOR-FORMAT 2078 PMERR-INV _GEOM..LINE.. WIDTH-A lTR 
2039 PMERR-INCOMPAT _COLOR-OPTIONS 2079 PMERR-1NV_GETDATA_CONTROL 
203A PMERR-INCOMPATIBLE..BITMAP 207A PMERR-INV _GRAPHlCS-FIELD 
203B PMERR-INCOMPATIBLE-MET AFILE 207B PMERR-INV _HBITMAP 
203C PMERR-INCORRECTjOC_TYPE 207C PMERR-INV _HOC 
2030 PMERR-INSUFFICIENT JOISK..SPACE 2070 PMERR-INV _HJOURNAL 
203E PMERR-INSUFFICIENT-MEMORY 207E PMERR-INV _HMF 
203F PMERR-INV -ANGLEY ARM 207F PMERR-INV _HPS 
2040 PMERR..INV..ARC_CONTROL 2080 PMERR..INV _HRGN 
2041 PMERR-INV -AREA_CONTROL 2081 PMERR-INV_ID 
2042 PMERR-INV -ARCJ>OINTS 2082 PMERR-INV_IMAGEjDATA..LENGTH 
2043 PMERR-INV -A lTR-MODE 2083 PMERR-INV _IMAGEjDIMENSION 
2044 PMERR-1NV_BACKGROUND_COL-AlTR 2084 PMERR-INV _IMAGE-FORMAT 
2045 PMERR-INV _BACKGROUND-MIX-A lTR 2085 PMERR-1NV _IN-AREA 
2046 PMERR-INV _BITBLT -MIX 2086 PMERR-INV _IN_CALLED_SEG 
2047 PMERR-1NV _BITBLT _STYLE 2087 PMERR-INV_IN_CURRENT..EDIT-MODE 
2048 PMERR-INV _BITMAP jOlMENSION 2088 PMERR-INV_INjORAW-MODE 
2049 PMERR-INV _BOX-CONTROL 2089 PMERR-INV _IN..ELEMENT 
204A PMERR-INV _BOX..ROUNDINGJ> ARM 208A PMERR-INV _IN_IMAGE 
204B PMERR-INV _CHAR..ANGLE-A lTR 208B PMERR-INV _INJ> A TH 
204C PMERR-INV _CHARjDIRECTION-A lTR 208C PMERR-INV _IN..RET AIN-MODE 
2040 PMERR-INV _CHAR-MODE-AlTR 2080 PMERR-INV _IN_SEG 
204E PMERR-INV _CHARJ>OS_OPTIONS 208E PMERR-INV IN_ VECTOR-SYMBOL 
204F PMERR-INV _CHAR..SET..A lTR 208F PMERR-INV _INFOS ABLE 



550 MS OS/2 Programmer's Reference, Vol. 2 
';;:;~f~m~!miliU~!~i!!il~i!fl~iIrJ~~l~~lil;fi!~~~i!I~nUf:iii~i~ii!1~llfsh~;;:!m!Sl~i~~f!I!§W~if~~~in~m~~iiIDffiiifin§iimlliE;~l.iSI~~i~!!$f 

2090 PMERR.JNV JOURNAL..OPTION 20DO PMERR-INV _TRANSFORM_TYPE 
2091 PMERR-INV..KERNINGYLAGS 20Dl PMERR-INV _USAGEJ' ARM 
2092 PMERR-INV J..ENGTH_OR-COUNT 20D2 PMERR-INV _ VIEWINGJ..IMITS 
2093 PMER~INV J..INE..END~TTR 20D3 PMERRJFILILBUSY 
2094 PMERR-INV J..INEJOIN~TTR 20D4 PMERRJNLYUNC..oATA_TOOJ..ONG 
209S PMERR-INV J..INILTYP~TTR 20DS PMERR..KERNING~OT_SUPPORTED 

2096 PMERR-INV J..INIL WIDTH~ TTR 20D6 PMERRJ.,ABE~OTYOUND 

2097 PMERR-INV J..OGICAL~DDRESS 20D7 PMERR-MATRDLOVERFLOW 
2098 PMERR-INV ~ARKER-BO)LATTR 2OD8 PMERR-MET AFILE_INTERNAL..ERROR 
2099 PMERR-INV ~ARKER-SET~TTR 2OD9 PMERR-MET AFILELIN_USE 
209A PMERR-INV ~ARKER-SYMBO~TTR 20DA PMERR-METAFILEJ..IMIT-E}CCEEDED 
209B PMERR-INV ~ATRIx..ELEMENT 20DB PMER~AMELSTACKYULL 

209C PMERR-INV ~Ax..HITS 20DC PMER~OT_CREATED_BY..oEVOPENDC 

209D PMERRJNV ~ETAFILE 20DD PMER~OT_IN~REA 

209E PMERR-INV ~ETAFILEJ..ENGTH 20DE PMER~OLIN..oRAW~ODE 

209F PMERR-INV ~ET AFILELOFFSET 20DF PMER~OT_IN-ELEMENT 

20AO PMERR-INV ~ICROPS..oRA W_CONTROL 2OEO PMER~OT_IN_IMAGE 

20Al PMERR-INV ~ICROPSYUNCTION 20El PMER~OT_INJ'ATH 

2OA2 PMER~INV~ICROPS_ORDER 20E2 PMER~OT_IN..RETAIN~ODE 

2OA3 PMERR-INV ~I)LATTR 20EJ PMER~OT _IN_SEG 
2OA4 PMERR-INV ~ODEYOR-OPEN..oYN 2OE4 PMER~O_BITMAP _SELECTED 
20AS PMERR-INV ~ODEYOR..REOPEN_SEG 20ES PMER~O_CURRENT-ELEMENT 

20A6 PMERR-INV~ODlFYJ'ATH~ODE 2OE6 PMER~O_CURRENT_SEG 

20A7 PMERR-INV ~ULTIPLIER 2OE7 PMER~O~ETAFILE..RECORD_HANDLE 

20A8 PMERR-INV ~ESTEDYIGURES 20ES PMERR-ORDER-TOO_BIG 
20A9 PMERR-INV _O~INCOMPAT _OPTIONS 2OE9 PMERR-OTHER-SET JD..REFS 
20AA PMERR-INV _ORDERJ.,ENGTH 20EA PMERR-OVERRAN_SEG 
20AB PMERR-INV _ORDERINGJ' ARM 20EB PMERR-OWN_SET _ID..REFS 
20AC PMERR-INV _OUTSIDE..oRA W~ODE 20EC PMERRJ>ATH_INCOMPLETE 
20AD PMERR-INV J' AGEL VIEWPORT 20ED PMERRJ> ATHJ..IMIT -EXCEEDED 
20AE PMERR-INV J' ATH_ID 20EE PMERRJ>ATH_UNKNOWN 
20AF PMERR-INVJ'ATH~ODE 20EF PMERRJ'EL_IS_CLIPPED 
2OBO PMERR-INV J'ATrERN~TTR 20FO PMERRJ'EL~OT~ VAILABLE 
20Bl PMERR-INV J' A TrERN..REF J'T ~ TTR 20Fl PMERRJ>RIMITIVELSTACK-EMPTY 
2OB2 PMERR-INV J' A TrERN_SET ~ TTR 2OF2 PMERRJ'ROLOG-ERROR 
2OB3 PMERR-INV J' A TrERN_SET YONT 2OF3 PMERRJ'ROLOG_SEG~~OT_SET 

20B4 PMERR-INV J'IC~PERTURELOPTION 2OF4 PMERRJ>S_BUSY 
20BS PMERR-INV J'IC~PERTUREJ'OSN 20FS PMERRJ>S_IS~SSOCIA TED 
2OB6 PMER~INVJ'IC~PERTURELSIZE 2OF6 PMERR..RAMJNLYILILTOO_SMALL 
2OB7 PMERR-INVJ'IC~UMBER 2OF1 PMERR..REALI~OT_SUPPORTED 

2OB8 PMERR-INV J'LA Y ~ET AFILELOPTION 2OF8 PMERR..REGION_IS_CLIP ..REGION 
2OB9 PMERR-INV J'RIMITIVELTYPE 2OF9 PMERR..RESOURCEJ)EPLETION 
20BA PMERR-INV J'S_SIZE 20FA PMERR-SEG~ND..REFSEG~RELSAME 

20BB PMERR-INVJ'UTDATAYORMAT 20FB PMERR-SEG_CALL..RECURSIVE 
20BC PMERR-INV _QUERY -ELEMENT~O 20FC PMERR-SEG_CALL_STACK-EMPTY 
20BD PMERR-INV..RECT 20FD PMERR-SEG_CALL..STACKYULL 
20BE PMERR-INV..REGION_CONTROL 20FE PMERR-SEG_IS_CURRENT 
20BF PMERR-INV ..REGION~I~ODE 20FF PMERR-SEG~OT _CHAINED 
2OCO PMERR-INV..REPLACILMODEYUNC 2100 PMERR-SEG~OTYOUND 

20Cl PMERR-INV..RESERVEDYIELD 2101 PMERR-SEG_STOREJ.,IMIT-E}CCEEDED 
2OC2 PMERR-INV ..RESET_OPTIONS 2102 PMERR-SETID_IN_USE 
2OC3 PMERR-INV..RGBCOLOR 2103 PMERR-SETID~OTYOUND 
2OC4 PMERR-INV _SCAN_START 2104 PMERR-STARTDOC~OT_ISSUED 

20CS PMERR-INV~SEG~TTR 2105 PM ERR-STOP ..oRA W_OCCURRED 
2OC6 PMERRJNV _SEG~TTR-VALUE 2106 PMERR-TOO~ANY ~ETAFILESJN_USE 
2OC7 PMERR-INV _SEG_CHJ..ENGTH 2107 PMERR-TRUNCATED_ORDER 
20CS PMERR-INV ~EG~AME 2108 PMERR-UNCHAINED_SEG-ZERO_INV 
2OC9 PMERR-INV _SEG_OFFSET 2109 PMERR-UNSUPPORTED~TTR 

20CA PMERR-INV _SETID 210A PMERR-UNSUPPORTED~TTR-VALUE 

20CB PMERR-INV _SETID_TYPE 
20CC PMERR-INV _SET_VIEWPORT_OPTION 
20CD PMERR-INV _SHARPNESSJ'ARM 
20CE PMERR-INV _SOURCELOFFSET 
20CF PMERR-INV _STOP ..oRA W_ VALUE 



Appendix 

B 

Device Capabilities 
B.l Introduction ............................................................ 553 

B.2 About Device Capabilities......................................... 553 





Appendix B: Device Capabilities 553 
imfJ~$mn;;irnj=IiS:,*~~;~~~i1a;;:!m~ii!!;~1li~lEl~1:.l~I~I~i\¥.ilt~l!!ia~~~!Sli~!~.mr~~~~r:mw.I§!ii!~i~l~f;ijl;WS:~~!~1m 

B.1 Introduction 
This appendix describes the MS OS/2 constants that you can use to determine 
the capabilities of a device. These constants, used in the DevQueryCaps func­
tion, determine the type of device, its vertical and horizontal resolution, its color 
and font support, and several other characteristics. 

B.2 About Device Capabilities 
To determine a capability of a device, you use the appropriate constant (or range 
of constants) in the IStartitem and alltems parameters of DevQueryCaps. The 
following is a list, in numerical order, describing each of the constants: 

CAPSYAMIL Y Specifies one of five device types. It can be one of the follow­
ing values: 

Value 

ODJ)IRECT 

ODJNFO 

OD~ETAFILE 

OD~EMORY 

Meaning 

A device, such as a printer or plotter, for which 
to queue output. 

A device, such asa printer or plotter, for which 
to not queue output. 

Same as for ODJ)IRECT, but used only to 
retrieve information (for example, font metrics). 
You can draw to a presentation space associated 
with such a device context, but you cannot 
update any output. 

A device context that is used to draw a metafile. 
The graphics field defines the area of interest 
within the metafile picture. 

A device context that is used to contain a 
bitmap. 

CAPSJO_CAPS Specifies the device input/output capability. The possible 
values are as follows: 

Value Meaning 

1 Dummy device 

2 Output 

3 Input 

4 Output and input 



554 MS OS/2 Programmer's Reference, Vol. 2 
!iii~1f5l00!~~iiIi~m~~ili;.iUriiU~iiWl~3ID.jI~h'ffiii§~I~~l!~jg¥.mF.2l~imieiffij!~rnE:~~mJS1;m;!iil!!~ll~.ii;lli'm~i~m~f:ru~dl~~Il~~i~liru~mlf~ 

CAPS_TECHNOLOGY Specifies the technology. The possible values are as 
follows: 

Value Meaning 

o Unknown (for example, metafile) 

1 Vector plotter 

2 Raster display 

3 Raster printer 

4 Raster camera 

CAPSJ)RI~~ VERSION Specifies the device-driver version number. 

CAPS_WIDTH Specifies the media width (for a full-screen maximized window 
on a display) in pels. 

CAPSJIEIGHT Specifies the media depth (for a full-screen maximized win- . 
dow on a display) in pels. (For a plotter, a pel is defined as the smallest possible 
displacement of the pen and can be smaller than a pen width.) 

. , 

CAPS_ wibTHJN_CHARS Specifies the media width (for a full-screen max­
imized window on a display) in character columns. 

CAPSJIEIGHTJN_CHARS Specifies the media depth (for a full-screen 
maximized window on a display) in character rows. 

CAPSJIORIZONTAL~ESOLUTION Specifies the horizontal resolution (in 
pels per meter) of the device. 

CAPS_ VERTICAL~ESOLUTION Specifies the vertical resolution (in pels 
per meter) of the device. 

, , 

CAPS_CHA~ WIDTH Specifies the default width (in pels) of the character 
b~. . 

CAPS_CHARJIEIGHT Specifies the defauit height (in pels) of the character 
box. 

CAPS_SMALL_CHA~ WIDTH Specifies the default width (in pels) of the 
small character box. This value is zero if there is only one size of character box. 

CAPS_SMALL_CHARJIEIGHT Specifies the default height (in.pels) of the 
small character box. This value is zero if there is. only one size of character box. 

CAPS_COLORS Specifies the number of distinct colors supported at the same 
time, including reset (gray-scales count as distinct colors). If loadable color 
tables are supported, this is the number of entries in the device color table. For 
plotters, the value returned is the number of pens phis one (for the background). 

CAPS.;..COLOR-PLANES Specifies the preferred number of color planes for 
bitmaps used by the device. 

CAPS_COLOlLBITCOUNT Specifies the preferred number of bits per pel 
(bitcount) for bitmaps used by the device. 



Appendix B: Device Capabilities 555 
im~mil~lill'i!~lmiilli!i§mlf3!jgi§!1!ij~iU~~~~Ii~~~~:mE!iw.!ffiH~~!~~!~i~~i!rem!fmfffliillf;~~iiiE;l@l1f:~i§i:Jffi~lllir.E!R:;u.fb"fiw.fffilm!El! 

CAPS_COLOILTABLE_SUPPORT Specifies the color tables supported by 
the device. The bits are set as follows: 

Bit Setting 

o Set to 1 if an RGB color table can be loaded, with a 
minimum support of 8 bits each for red, green, and blue. 

1 Set to 1 if a color table with other than 8 bits for each pri­
mary color can be loaded. 

2 Set to 1 if true mixing occurs when the logical color table has 
been realized, provided that the size of the logical color table 
is not greater than the number of distinct colors supported. 

3 Set to 1 if a loaded color table can be realized. 

CAPS~OUSE~UTTONS Specifies the number of available mouse or 
drawing-tablet buttons. 

CAPSYOREGROUND~DCSUPPORT Specifies the foreground mix-mode 
support. The possible values are as follows: 

Value Meaning 

1 OR 

2 Overpaint 

8 XOR 

16 Leave-alone 

32 AND 

64 Mixes 7 through 17 

The value returned is the sum of the values appropriate to the mix modes that 
are supported. A device capable of supporting the OR mix mode must, as a 
minimum, return 19 (1 + 2 + 16), signifying support for the mandatory mix 
modes OR, "overpaint," and "leave-alone." Note that these numbers correspond 
to the decimal representation of a bit string that is 7 bits long, with each bit set 
to 1 if the appropriate mode is supported. 

CAPS~ACKGROUND~DCSUPPORT Specifies the background mix-mode 
support. The possible values are as follows: 

Value Meaning 

1 OR 

2 Overpaint 

8 XOR 

16 Leave-alone 



556 MS OS/2 Programmer's Reference, Vol. 2 
~;fijjiiiI~§~~!m~~~ffiim~IHi!fllmr:!m~i!l:ffilr:j!m~~mil!tf:ffiii2iruli€l~mi!E'lI~i!S!~mW.il~$!\i~~~~~m;gmlIDl~i~im!~i!~!!!n! 

The value returned is the sum of the values appropriate to the mix modes that 
are supported. A device must, as a minimum, return 18 (2 + 16), signifying sup­
port for the mandatory background mix modes "overpaint" and "leave-alone." 
Note that these numbers correspond to the decimal representation of a bit string 
that is 5 bits long, with each bit set to 1 if the appropriate mode is supported. 

CAPS_ VIO.LOADABLEYONTS Specifies the number of fonts that may be 
loaded for Vio functions. 

CAPS_WINDOWJ3YTE~LIGNMENT Specifies whether the client area of 
video-input-and-output windows should be byte-aligned. The possible values are 
as follows: 

Value Meaning 

o Must be byte-aligned. 

1 More efficient if byte-aligned, but not required. 

2 Does not matter whether byte-aligned. 

CAPSJ3ITMAP YORMATS Specifies the number of bitmap formats sup­
ported by the device. 

CAPS-RASTE~CAPS Specifies the raster capabilities of the device. 

CAPS~ARKEILHEIGHT Specifies the default depth (in pels) of the marker 
box. 

CAPS~ARKE~ WIDTH Specifies the default width (in pels) of the marker 
box. 

CAPS-DEVICEYONTS Specifies the number of device-specific fonts. 

CAPS_GRAPHICS_SUBSET Specifies the graphics-drawing subset supported. 

CAPS_GRAPffiCS_ VERSION Specifies the graphics-architecture version sup­
ported. 

CAPS_GRAPffiCS_ VECTO~SUBSET Specifies the graphics-vector-drawing 
subset supported. 

CAPS-DEVICE_ WINDOWING Specifies whether the device supports win­
dows. Bit 0 is 1 if the device supports windows. Other bits are reserved and must 
be zero. 

CAPS~DDITIONAL_GRAPHICS Specifies additional graphics support. Bit 
o is 1 if the device supports geometric-line types. Bit 1 is 1 if the device supports 
kerning. Other bits are reserved and must ~e zero. 

CAPSJHYS_COLORS Specifies the maximum number of distinct colors that 
can be specified for the device. 

CAPS_COLORJNDEX Specifies the maximum logical-color-table index sup­
ported by the device. This value must be at least 7. For EGA and VGA device 
drivers, the value is 63. 

CAPS_GRAPHICS_CHA~ WIDTH Specifies the graphics-character width. 

CAPS_GRAPHICS_CHAILHEIGHT Specifies the graphics-character height. 



Appendix B: Device Capabilities 557 
~!BimY"i~!¥'i[g;miF.§!1rm~tall~jffiu.1~~illl"sr:!r~~i~i~![sim!ffiji3fi~lm~~fgliGi!~ill!h~!t5f;f::!~m!:H-;E~P'gaiaillill;Eijl§~m!im;~~M§miei~i 

CAPSJIORIZONTALYONT.-RES Specifies the optimal horizontal resolu­
tion of the font used by the device. 

CAPS_ VERTICALYONT.-RES Specifies the optimal vertical resolution for 
the font used by the device. 





A-G 559 
!!~Ju.iir:f:l§m5!i!i9!~l!~lrui~m.~~m~i~~\im!$fim~~~f§hcm~~~~§l*~~lijlj1!Jir!!~!m~i[~~r.mrfii!ill~lflf:im~!HiN~!!iiiw.l!~Hilm:i§l~L~mr.!E?~!~!s 

Index 
A 
ACCEL, 486 
ACCELTABLE, 486 
ARCP ARAMS, 487 
AREABUNDLE, 487 

B 
BITMAPINFO, 488 
BITMAPINFOHEADER, 489 
Bit masks, 7 
B~CLICK, 395 
B~QUERYCHECK, 395 
B~QUERYCHECKINDEX, 395 
B~QUERYHILITE, 396 
B~SETCHECK, 396 
B~SETDEFAULT, 396 
B~SETHILITE, 397 
BTNCDATA, 489 

C 
Calling conventions, 5 
CA TCHBUF, 489 
CHAR1FROMMP, 474 
CHAR2FROMMP, 474 
CHAR3FROMMP, 474 
CHAR4FROMMP, 474 
CHARBUNDLE, 490 
CHARMSG, 475 
C-Ianguage format, 5 
CLASSINFO, 492 
Code-page font support, 540-542 
COMMANDMSG, 475 
Constant names, 10 
CREATESTRUCT, 493 
CURSORINFO, 494 

D 
DDEINIT, 495 
DDESTRUCT, 495 
DDES_PABDATA, 476 
DDES_PSZITEMNAME, 476 
DevCloseDC, 15 
DevEscape, 15 
Device capabilities, 553-557 
DevOpenDC, 20 
DEVOPENSTRUC, 496 
DevPostDeviceModes, 21 
DevQueryCaps, 22 

DevQueryDeviceNames, 22 
DevQueryHardcopyCaps, 23 
DLGTEMPLA TE, 497 
DLGTITEM, 498 
DRIVDA TA, 498 

E 
E~CLEAR, 397 
E~COPY, 397 
E~CUT, 398 
E~PASTE, 398 
E~QUERYCHANGED, 398 
E~QUERYFIRSTCHAR, 399 
E~QUERYSEL, 399 
E~SETFIRSTCHAR, 399 
E~SETSEL, 400 
E~SETTEXTLIMIT, 400 
ERRINFO, 499 
Errors, 547-550 
ERRORIDERROR, 476 
ERRORIDSEV, 477 

F 
FATTRS, 499 
Field names, 8 
File formats, 529-542 
FIXEDFRAC, 477 
FIXEDINT, 477 
Font 

character definition, 536 
code-page support, 540-542 
file format, 529 
metrics, 530-535 
signature, 530 

FONTMETRICS, 501 
FRAMECDATA, 505 
Functions directory, 13-389 

G 
GpiAssociate, 25 
GpiBeginArea, 26 
GpiBeginElement, 27 
GpiBeginPath, 27 
GpiBitBlt, 28 
GpiBox, 32 
GpiCallSegmentMatrix, 33 
GpiCharString, 35 
GpiCharStringAt, 36 

GpiCharStringPos, 37 
GpiCharStringPosAt, 38 
GpiCloseFigure, 40 
GpiCloseSegment, 40 
GpiCombineRegion, 41 
GpiComment, 42 
GpiConvert, 43 
GpiCopyMetaFile, 44 
GpiCorrelateChain, 44 
GpiCorrelateFrom, 46 
GpiCorrelateSegment, 47 
GpiCreateBitmap, 49 
GpiCreateLogColorTable, 51 
GpiCreateLogFont, 53 
GpiCreatePS, 55 
GpiCreateRegion, 57 
GpiDeleteBitmap, 58 
GpiDeleteElement, 59 
GpiDeleteElementRange, 59 
GpiDeleteElemen tsBetweenLab els, 

60 
GpiDeleteMetaFile, 61 
GpiDeleteSegment, 61 
GpiDeleteSegments, 62 
GpiDeleteSetld, 62 
GpiDestroyPS, 63 
GpiDestroyRegion, 64 
GpiDrawChain, 64 
GpiDrawDynamics, 65 
GpiDrawFrom, 65 
GpiDrawSegment, 66 
GpiElement, 67 
GpiEndArea, 68 
GpiEndElement, 68 
GpiEndPath, 69 
GpiEqualRegion, 70 
GpiErase, 70 
GpiErrorSegmentData, 71 
GpiExc1udeClipRectangle, 72 
GpiFillPath, 72 
GpiFullArc, 73 
GpiGetData, 74 
Gpilmage, 76 
GpiIntersectClipRectangle, 77 
GpiLabel, 78 . 
GpiLine, 78 
GpiLoadBitmap, 79 
GpiLoadFonts, 80 
GpiLoadMetaFile, 81 
GpiMarker, 81 
GpiModifyPath, 82 



560 G 
if~~iEil!m{gitiI~1Iiim!ii15!li!6!;H~imiii1!1§{ml~!~Hrn!r~!~i~fmlJ!!~ii!!ii!1!iijjjimiiai!5i~~lim~if5iimi.1iii~Wl!~J;1i~m~!!!gr~llilim1i!l~iffil$Uc~m~~m~,;; 

GpiMove, 83 
GpiOffsetClipRegion, 84 
GpiOffsetElementPointer, 84 
GpiOffsetRegion, 85 
GpiOpenSegment, 86 
GpiPaintRegion, 87 
GpiPartialArc, 88 
GpiPlayMetaFile, 89 
GpiPointArc, 93 
GpiPolyFillet, 93 
GpiPolyFilletSharp, 95 
GpiPolyLine, 96 
GpiPolyMarker, 97 
GpiPolySpline, 98 
GpiPop, 99 
GpiPtInRegion, 100 
GpiPtVisible, 100 
GpiPutData, 101 
GpiQueryArcParams, 103 
GpiQueryAttrMode, 103 
GpiQueryAttrs, 104 
GpiQueryBackColor, 105 
GpiQueryBackMix, 106 
GpiQueryBitmapBits, 106 
GpiQueryBitmapDimension, 108 
GpiQueryBitmapHandle, 108 
GpiQueryBitmapParameters, 109 
GpiQueryBoundaryData, 109 
GpiQueryCharAngle, 110 
GpiQueryCharBox, 111 
GpiQueryCharDirection, 111 
GpiQueryCharMode, 112 
GpiQueryCharSet, 112 
GpiQueryCharShear, 112 
GpiQueryCharStringPos, 113 
GpiQueryCharStringPosAt, 114 
GpiQueryClipBox, 115 
GpiQueryClipRegion, 116 
GpiQueryColor, 116 
GpiQueryColorData, 117 
GpiQueryColorIndex, 118 
GpiQueryCp, 118 
GpiQueryCurrentPosition, 119 
GpiQueryDefaultViewMatrix, 119 
GpiQueryDefCharBox, 120 
GpiQueryDevice, 120 
GpiQueryDeviceBitmapFormats, 

121 
GpiQueryDrawControl, 122 
GpiQueryDrawingMode, 122 
GpiQueryEditMode, 123 
GpiQueryElement, 123 
GpiQueryElementPointer, 124 
GpiQueryElementType, 125 
GpiQueryFontFileDescriptions, 126 

GpiQueryFontMetrics, 127 
GpiQueryFonts, 128 
GpiQueryGraphicsField, 130 
GpiQueryInitialSegmentAttrs, 131 
GpiQueryKerningPairs, 131 
GpiQueryLineEnd, 132 
GpiQueryLineJoin, 132 
GpiQueryLineType, 133 
GpiQueryLineWidth, 133 
GpiQueryLineWidthGeom, 133 
GpiQueryLogColorTable, 134 
GpiQueryMarker, 135 
GpiQueryMarkerBox, 135 
GpiQueryMarkerSet, 136 
GpiQueryMetaFileBits, 136 
GpiQueryMetaFileLength, 137 
GpiQueryMix, 137 
GpiQueryModelTransformMatrix, 

138 
GpiQueryN earestColor, 138 
GpiQueryNumberSetIds, 139 
GpiQueryPage Viewport, 139 
GpiQueryPattern, 140 
GpiQueryPatternRefPoint, 140 
GpiQueryPatternSet, 141 
GpiQueryPel, 141 
GpiQueryPickAperturePosition, 142 
GpiQueryPickApertureSize, 142 
GpiQueryPS, 143 
GpiQueryRealColors, 143 
GpiQueryRegionBox, 145 
GpiQueryRegionRects, 145 
GpiQueryRGBColor, 146 
GpiQuerySegmentAttrs, 147 
GpiQuerySegmen tN ames, 148 
GpiQuerySegmentPriority, 149 
GpiQuerySegmentTransformMatrix, 

150 
GpiQuerySetIds, 150 
GpiQueryStopDraw, 152 
GpiQueryTag, 152 
GpiQueryTextBox, 153 
GpiQueryViewingLimits, 154 
GpiQueryViewingTransformMatrix, 

155 
GpiQueryWidthTable, 155 
GpiRealizeColorTable, 156 
GpiRectInRegion, 157 
GpiRectVisible, 157 
GpiRemoveDynamics, 158 
GpiResetBoundaryData, 159 
GpiResetPS, 159 
GpiRestorePS, 160 
GpiSaveMetaFile, 161 
GpiSavePS, 162 

GpiSetArcParams, 162 
GpiSetAttrMode, 163 
GpiSetAttrs, 164 
GpiSetBackColor, 166 
GpiSetBackMix, 167 
GpiSetBitmap, 168 
GpiSetBitmapBits, 169 
GpiSetBitmapDimension, 170 
GpiSetBitmapId, 170 
GpiSetChar Angle, 171 
GpiSetCharBox, 172 
GpiSetCharDirection, 172 
GpiSetCharMode, 173 
GpiSetCharSet, 174 
GpiSetCharShear, 174 
GpiSetClipPath, 175 
GpiSetClipRegion, 176 
GpiSetColor, 177 
GpiSetCp, 178 
GpiSetCurrentPosition, 179 
GpiSetDefaultViewMatrix, 179 
GpiSetDrawControl, 180 
GpiSetDrawingMode, 182 
GpiSetEditMode, 183 
GpiSetElementPointer, 184 
GpiSetElementPointerAtLabel, 184 
GpiSetGraphicsField, 185 
GpiSetInitialSegmentAttrs, 185 
GpiSetLineEnd, 187 
GpiSetLineJoin, 188 
GpiSetLineType, 188 
GpiSetLineWidth, 189 
GpiSetLineWidthGeom, 190 
GpiSetMarker, 191 
GpiSetMarkerBox, 192 
GpiSetMarkerSet, 192 
GpiSetMetaFileBits, 193 
GpiSetMix, 194 
GpiSetModelTransformMatrix, 195 
GpiSetPageViewport, 196 
GpiSetPattern, 197 
GpiSetPatternRefPoint, 198 
GpiSetPatternSet, 199 
GpiSetPel, 200 
GpiSetPickA perturePosition, 200 
GpiSetPickApertureSize, 201 
GpiSetPS, 201 
GpiSetRegion, 202 
GpiSetSegmentAttrs, 203 
GpiSetSegmentPriority, 204 
GpiSetSegmentTransformMatrix, 

205 
GpiSetStopDraw, 206 
GpiSetTag, 207 
GpiSetViewingLimits, 208 



G-W 561 
~~mn[~ftjF:il~~:Eili~eliiffiUlU.:;Itl!I~~~:51\!ill!~i~!iP.~J§ll§iliimf!lMi~GlIi§lffil~iim~~!!:Iir.i:5iitffi1ru~I~mtlE;~m.~~i~~iIal§1i~;rufmf.M 

GpiSet ViewingTransformMatrix, 
209 

GpiStrokePath, 210 
GpiUnloadFonts, 210 
GpiUnrealizeColorTable, 211 
GpiWCBitBlt, 211 
GRADIENTL, 506 

H 
HCINFO, 506 
HPROGARRA Y, 507 
HWNDFROMMP, 477 
IMAGEBUNDLE, 507 

K 
KERNINGP AIRS, 507 

L 
LINEBUNDLE, 508 
L~DELETEALL, 401 
L~DELETElTEM, 401 
LK-INSERTITEM, 401 
L~QUER YITEMCOUNT, 402 
L~QUER YITEMHANDLE, 402 
L~QUER YITEMTEXT, 402 
L~QUER YiTEMTEXTLENGTH, 

403 
L~QUER.YSELECTION, 403 
L~QUERYTOPINDEX, 404 
L~SEARCHSTRING, 404 
L~SELECTITEM, 405 
L~SETITEMHANDLE, 405 
L~SETITEMHEIGHT, 405 
L~SETITEMTEXT, 406 
L~SETIOPINDEX, 406 
LONGFROMMP, 478 
LONGFROMMR, 478 

M 
Macros, 474-484 
MAKEERRORID, 478 
MAKEFIXED, 479 
MAKEINTATOM, 479 
MARKERBUNDLE, 508 
MA TRIXLF, 509 
MENUITEM, 510 
Messages directory, 393-467 
MMJ)ELETEITEM, 406 
M~ENDMENUMODE, 407 
M~INSERTITEM, 407 
M~ISITEMV ALID, 408 

M~ITEMIDFROMPOSITION , 
408 

M~ITEMPOSITIONFROMID, 

408, 
M~QUER YITEM, 409 
M~QUERYIT~MA TIR, 409 
M~QUERYITEMCOUNT, 410 
M~QUER YITEMTEXT, 410 
M~QUER YITEMTEXTLENGTH, 

411 
M~QUERYSELITEMID, 411 
M~REMOVEITEM, 411 
M~SELECTITEM, 412 
M~SETITEM, 412 
M~SETITEMA TIR, 413 
M~SETITI;MHANDLE, 414 
M~SETITEMTEXT, 414 
M~STA~TMENUMODE, 414 
MOUSEMSG, 479 
MOVBLOCKHDR, 511 
MPFROM2SHORT, 479 
MPFROMCHAR, 480 
MPFROMHWND, 480 
MPFROMLONG, 480 
Mp'FROMP, 480 
MPFROMSH2CH, 480 
MPFROMSHORT, 481 
MQINFO, 511 
MRFROM2SHORT, 481 
MRFROMLONG, 481 
MRFROMP, 481 
MRFROMSHORT, 482 

N 
Naming conventions, 7 
Notational conventions, 10 

o 
OWNERITEM, 512 

p 
Parameter names, 8 
PDDEITOSEL, 482 
PDDESTOSEL, 482 
PIBSTRUCT, 513 
POINTERINFO, 513 
POINTFX, 514 
POINTL, 514 
Prefixes, 8 
PROGRAMENTRY, 514 
PROGTYPE, 515 
PVOIDFROMMP, 482 

PVOIDFROMMR, 483 

Q 
QMSG, 515 

R 
RECTFX, 516 
RECTL, 516 
RGB, 517 
RGNRECT, 517 

S 
SBCDATA, 518 
SB~QUERYPOS, 415 
SB~QUERYRANGE, 415 
SB~SETPOS, 415 
SB~SETSCROLLBAR, 416 
SELTOPDDES, 483 
SETMEMBACKPTR, 483 
SHORT1FROMMP,483 
SHORT1FROMMR, 484 
SHORT2FROMMP, 484 
SHORT2FROMMR, 484 
SIZEF, 518 
SIZEL, 518 
SMHSTRUCT, 519 
S~QUER YHANDLE, 416 
S~SETHANDLE, 416 
Structures, 7, 485-525 
SWCNTRL, 519 
SWENTR Y, 520 
SWP, 520 

T 
tB~QUERYHILlTE, 417 
TB~SETHILITE, 417 
TRACKINFO, 522 
TRACKINFO, 523 
Types, 9-10, 472-473 

U 
USERBUTION, 523 

W 
WinAddAtom, 215 
WinAddProgram, 215 
WinAddSwitchEntry, 216 
WinAlarm, 217 
WinAllocMem, 218 



562 W 

WinAvailMem, 219 
WinBeginEnum Windows, 220 
WinBeginPaint, 220 
WinBroadcastMsg, 221 
WinCalcFrameRect, 222 
WinCallMsgFilter, 223 
WinCancelShutdown, 224 
WinCatch, 224 
WinChangeSwitchEntry, 225 
WinCloseClipbrd, 226 
WinCompareStrings, 226 
WinCopyAccelTable, 227 
WinCopyRect, 228 
WinCpTranslateChar, 228 
WinCpTranslateString, 229 
WinCreateAccelTable, 229 
WinCreateAtomTable, 230 
WinCreateCursor, 230 
WinCreateDIg, 231 
WinCreateFrameControls, 232 
WinCreateGroup, 233 
WinCreateHeap, 234 
WinCreateMenu, 236 
WinCreateMsgQueue, 236 
WinCreatePointer, 237 
WinCreateStdWindow, 238 
WinCreateWindow, 242 
WinDdelnitiate, 244 
WinDdePostMsg, 245 
WinDdeResporid, 246 
WinDefA Vio WindowProc, 246 
WinDefDIgProc, 247 
WinDefWindowProc, 247 
WinDeleteAtom, 248 
WinDestroy AccelTable, 249 
WinDestroyAtomTable, 249 
WinDestroyCursor, 249 
WinDestroyHeap, 250 
WinDestroyMsgQueue, 250 
WinDestroyPointer, 251 
WinDestroyWindow, 251 
WinDismissDIg, 252 
WinDispatchMsg, 253 
WinDIgBox, 253 
WinDrawBitmap, 254 
WinDrawBorder, 255 
WinDrawPointer, 257 
WinDrawText, 257 
WinEmptyClipbrd, 260 
WinEnablePhyslnput, 260 
WinEnableWindow, 260 
WinEnableWindowUpdate, 261 
WinEndEnum Windows, 261 
WinEndPaint, 262 
WinEnumClipbrdFmts, 262 

WinEnuniDlgItem, 263 
WinEqualRect, 264 
WinExcludeUpdateRegion, 264 
WinFillRect, 265 
WinFindAtom, 266 
Win Flash Window, 266 
WinFocusChange, 267 
WinFormatFrame, 268 
WinFreeErrorInfo, 269 
WinFreeMeni, 270 
WinGetClipPS, 270 
WinG etCurrentTime , 271 
WinGetErrorInfo, 272 
WinGetKeyState, 272 
WinGetLastError, 273 
WinGetMaxPosition, 273 
WinGetMinPosition, 274 
WinGetMsg, 274 
WinGetNextWindow, 276 
WinGetPhysKeyState, 276 
WinGetPS, 277 
WinGetScreenPS, 278 
WinGetSysBitmap, 278 
WinlnflateRect, 279 
Winlnitialize, 280 
WinlnSendMsg, 280 
WinlntersectRect, 281 
WinlnvalidateRect, 281 
WinlnvalidateRegion, 282 
WinlnvertRect, 283 
WinIsChild, 283 
WinIsPhyslnputEnabled, 284 
WinIsRectEmpty, 284 
WinIsThreadActive, 284 
WinIsWindow, 285 
WinIsWindowEnabled, 285 
WinIsWindowVisible, 285 
WinLoadAccelTable, 286 
WinLoadDlg, 286 
WinLoadMenu, 287 
WinLoadMessage, 288 
WinLoadPointer, 288 
WinLoadString, 289 
WinLockHeap, 290 
WinLockVisRegions, 290 
WinLock Window, 291 
WinLockWindowUpdate, 291 
WinMapDIgPoints, 292 
WinMapWindowPoints, 292 
WinMessageBox, 293 
WinMsgMuxSemWait, 296 
WinMsgSemWait, 297 
WinMultWindowFromIDs, 298 
WinN extChar, 298 
WinOfIsetRect, 299 

WinOpenClipbrd, 299 
WinOpenWindowDC, 300 
WinPeekMsg, 300 
WinPostMsg, 301 
WinPostQueueMsg, 302 
WinPrevChar, 302 
WinProcessDlg, 303 
WinPtInRect, 303 
WinQueryAccelTable, 304 
WinQueryAetiveWindow, 304 
WinQueryAtomLength, 305 
WinQueryAtomName, 305 
WinQueryAtomUsage, 306 
WinQueryCapture, 306 
WinQueryClasslnfo, 307 
WinQueryClassN ame, 307 
WinQueryClipbrdData, 308 
WinQueryClipbrdFmtInfo, 308 
WinQueryClipbrdOwner, 310 
WinQueryClipbrdViewer, 310 
WinQueryCp, 311 
WinQueryCpList, 311 
WinQueryCursorInfo, 311 
WinQueryDefinition, 312 
WinQueryDesktop Window, 313 
WinQueryDlgItemShort, 313 
WinQueryDlgItemText, 314 
WinQueryDIgltemTextLength, 314 
WinQueryFocus, 314 
WinQueryMsgPos, 315 
WinQueryMsgTime, 315 
WinQueryObjectWindow, 316 
WinQueryPointer, 316 
WinQueryPointerInfo, 316 
WinQueryPointerPos, 317 
WinQueryProfileData, 318 
WinQueryProfilelnt, 318 
WinQueryProfileSize, 319 
WinQueryProfileString, 320 
WinQueryProgramTitles, 320 
WinQueryQueuelnfo, 321 
WinQueryQueueStatus, 322 
WinQuerySysColor, 323 
WinQuerySysModalWindow, 323 
WinQuerySysPointer, 324 
WinQuerySystemAtomTable, 325 
WinQuerySysValue, 325 
WinQueryTaskTitle, 328 
WinQueryUpdateRect, 329 
WinQueryUpdateRegion, 330 
WinQueryVersion, 330 
WinQueryWindow, 331 
WinQueryWindowDC, 332 
WinQueryWindowLockCount, 332 
WinQueryWindowPos, 332 



WinQueryWindowProcess, 333 
WinQueryWindowPtr, 333 
WinQueryWindowRect, 334 
WinQueryWindowText, 334 
WinQueryWindowTextLength, 335 
WinQueryWindowULong, 335 
WinQueryWindowUShort, 336 
WinReallocMem, 337 
WinRegisterClass, 338 
WinRegisterWindowDestroy, 340 
WinReleaseHook, 340 
WinReleasePS, 341 
WinRemoveSwitchEntry, 342 
WinScrollWindow, 342 
WinSendDlgItemMsg, 344 
WinSendMsg, 345 
WinSetAccelTable, 346 
WinSetActiveWindow, 346 
WinSetCapture, 347 
WinSetClipbrdData, 347 
WinSetClipbrdOwner, 349 
WinSetClipbrdViewer, 350 
WinSetCp, 350 
WinSetDIgltemShort, 351 
WinSetDIgltemText, 351 
WinSetFocus, 352 
WinSetHook, 353 
WinSetKeyboardStateTable, 354 
WinSetMultWindowPos, 355 
Win Set Owner , 356 
WinSetParent, 357 
WinSetPointer, 357 
WinSetPointerPos, 358 
WinSetRect, 359 
WinSetRectEmpty, 359 
WinSetSysColors, 360 
WinSetSysModalWindow, 361 
WinSetSysValue, 362 
Win Set Window Bits, 365 
WinSetWindowPos, 366 
WinSetWindowPtr, 369 
WinSetWindowText, 369 
WinSetWindowULong, 370 
WinSetWindowUShort, 371 
WinShowCursor, 371 
WinShowPointer, 372 
WinShowTrackRect, 372 
WinShowWindow, 373 
WinStartTimer, 374 
WinStopTimer, 374 
WinSubc1assWindow, 375 
Win Sub stituteStrings , 375 
WinSubtractRect, 376 
WinTerminate, 377 
WinThrow, 377 

WinTrackRect, 378 
WinTranslateAccel, 380 
WinUnionRect, 381 
WinUpdateWindow, 382 
WinUpper, 382 
WinUpperChar, 383 
WinValidateRect, 383 
Win ValidateRegion, 384 
WinWaitMsg, 384 
WinWindowFromDC, 385 
WinWindowFromID, 386 
Win Window FromPoin t, 387 
Win WriteProfileData, 387 
Win WriteProfileString, 388 
W~ACTIVATE, 417 
W~ADJUSTWINDOWPOS, 418 
W~BUTTON1DBLCLK, 418 
W~BUTTON1DOWN, 419 
W~BUTTON1UP, 420 
W~BUTTON2DBLCLK, 419 
W~BUTTON2DOWN, 420 
WM_BUTTON2UP, 420 
W~BUTTON3DBLCLK, 419 
W~BUTTON3DOWN, 421 
W~BUTTON3UP, 421 
W~CALCV ALIDRECTS, 421 
W~CHAR, 422 
W~CLOSE, 424 
W~COMMAND, 424 
W~CONTROL, 425 
W~CONTROLHEAP, 425 
W~CONTROLPOINTER, 426 
W~CREA TE, 426 
W~DDE_ACK, 427 
W~DDE_ADVISE, 428 
W~DDE_DATA, 428 
W~DDE_EXECUTE, 429 
W~DDE_INITIA TE, 429 
W~DDE_INITIATEACK, 430 
W~DDE_POKE, 430 
W~DDE_REQUEST, 431 
W~DDE_TERMINATE, 431 
W~DDE_UNADVISE, 431 
W~DESTROY, 432 
W~DESTROYCLIPBOARD, 432 
W~DRAWCLIPBOARD, 433 
W~DRA WITEM, 433 
W~ENABLE, 434 
W~ERASEBACKGROUND, 434 
W~FLASHWINDOW, 435 
W~FOCUSCHANGE, 436 
W~FORMATFRAME, 436 
W~HELP, 437 
W~HITTEST, 438 
W~HSCROLL, 439 

W 563 

W~HSCROLLCLIPDOARD, 439 
W~INITDLG, 440 
W~INITMENU, 441 
W~JOURNALNOTIFY, 441 
W~MATCHMNEMONIC, 442 
W~MEASUREITEM, 442 
W~MENUEND, 443 
W~MENUSELECT, 443 
W~MINMAXFRAME, 444 
W~MOUSEMOVE, 444 
W~MOVE, 445 
W~NEXTMENU, 445 
W~NULL, 446 
W~OTHERWINDOWDESTROYED, 

446 
W~PAINT, 446 
W~PAINTCLIPBOARD, 447 
W~QUERYACCELTABLE, 447 
W~QUER YBORDERSIZE, 447 
W~QUERYCONVERTPOS, 448 
W~QUERYDLGCODE, 448 
W~QUER YFOCUSCHAIN, 449 
W~QUER YFRAMECTLCOUNT, 

450 
W~QUERYFRAMEINFO, 450 
W~QUERYICON, 451 
W~QUERYTRACKINFO, 451 
W~QUERYWINDOWPARAMS, 

452 
W~QUIT, 453 
W~RENDERALLFMTS, 453 
W~RENDERFMT, 454 
W~SEM1, 454 
W~SEM2, 455 
W~SEM3, 456 
W~SEM4, 456 
W~SETACCELTABLE, 456 
W~SETBORDERSIZE, 456 
W~SETFOCUS, 457 
W~SETICON, 457 
W~SETSELECTION, 457 
W~SETWINDOWPARAMS, 458 
W~SHOW, 458 
W~SIZE, 459 
W~SIZECLIPBOARD, 459 
W~SUBSTITUTESTRING, 460 
W~SYSCOLORCHANGE, 460 
W~SYSCOMMAND, 461 
W~SYSVALUECHANGED, 461 
W~ TIMER, 462 
W~TRACKFRAME, 462 
W~TRANSLATEACCEL, 463 
W~UPDATEFRAME, 464 
W~ VIOCHAR, 464 
W~ VSCROLL, 466 



564 W 

W~ VSCROLLCLIPBOARD, 467 
WNDPARAMS, 524 

X 
XYWINSIZE, 524 



Step up to 
Presentation Manager with 

the Microsoft OS/2 
Presentation Manager 

Softset. 
Congratulations on your purchase of the Microsoft® OS/2 Programmer's Reference Library, 
a complete guide to the features of the Microsoft OS/2 Presentation Manager. Now that 
you have the documentation, the next step is to purchase Microsoft OS/2 Presentation 
Manager Softset version 1.1, which Microsoft designed to help software developers create 
the new generation of graphically based, intuitive, easy-to-use software applications. 
Softset provides a complete, fully documented set of visual software tools to help you 
create popular applications for the graphical environment of Presentation Manager. 

Softset Features 

• Dialog Editor helps you design on-screen dialog boxes. 
• Icon Editor helps you customize icons, cursors, and bitmap images for graphical 

applications. 

• Font Editor helps you create your own fonts. 
• Resource Compiler helps you bind resource-definition files created with the Dialog, 

Icon, and Font Editors to .EXE files. 
• Other Softset tools help you create and maintain libraries, create message files and 

dual-mode (DOS-OS/2) programs, and perform many other tasks. 

Combine the Softset with the Microsoft OS/2 Programmer's Reference Library and a 
programming language such as Microsoft C Optimizing Compiler or Microsoft Macro 
Assembler with OS/2 support for a complete Presentation Manager software development 
kit. The applications you create in Presentation Manager are fully compatible with IBM® 
SAA (Systems Application Architecture). Trust the software tools from Microsoft-the 
company that developed MS® OS/2. 

Contact your nearest local software dealer for more information. 



Also Available From Microsoft Press 
Authoritative Informationfor OS/2 Programmers 
INSIDE OS/2 
Gordon Letwin 
, 'The best way to understand the overall philosophy of OS/2 will be to read this book. " 

-Bill Gates 

Here - from Microsoft's Chief Architect of Systems Software - is an exciting 
technical examination of the philosophy, key development issues, programming 
implications, and role of OS/2 in the office of the future. And Letwin provides 
the first in-depth look at each of OS/2 's design elements. This is a valuable and 
revealing programmer-to-programmer discussion of the graphical user interface, 
multitasking, memory management, protection, encapsulation, interprocess 
communication, and direct device access. You can't get a more inside view. 

304 pages, 73/8 x 91f4, softcover, $19.95. 
[Order Code 86-96288] 

ADVANCED OS/2 PROGRAMMING 
Ray Duncan 
Authoritative information, expert advice, and great assembly-language code 
make this comprehensive overview of the features and structure of OS/2 in­
dispensable to any serious OS/2 programmer. Duncan addresses a range of 
significant OS/2 issues: programming the user interface; mass storage; memory 
management; multitasking; interprocess communications; customizing filters, 
device drivers, and monitors; and using OS/2 dynamic link libraries. A valuable 
reference section includes detailed information on each of the more than 250 
system service calls in version 1.1 of the OS/2 kernel. 
800 pages, 73/8 x 91f4, softcover, $24.95 
[Book Code 86-96106] 

PROGRAMMING THE OS/2 PRESENTATION MANAGER 
Charles Petzold 
New! Here is the first full discussion of the features and operation of the OS/2 1.1 
Presentation Manager. If you're developing OS/2 applications, this book will 
guide you through Presentation Manager's system of windows, messages, and 
function calls. Petzold includes scores of valuable C programs and utilities. 
Endorsed by the Microsoft Systems Software group, this book is unparalleled for 
its clarity, detail, and comprehensiveness. Petzold covers: managing windows_ 
handling input and output _ controlling child windows _ using bitmaps, icons, 



pointers, and strings _ accessing the menu and keyboard accelerators _ working 
with dialog boxes _ understanding dynamic linking _ and more. 

864 pages, 73/s x 91/4, softeover, $29.95 
[Order Code 86-96791] 

ESSENTIAL OS/2 FUNCTIONS: Programmer's Quick Reference 
Ray Duncan. 
Concise information on the essential OS/2 function calls within the application 
program interface (API). Entries are included for all kernel API functions for 
OS/2 version 1.0: Dos, Kbd, Mou, and Vio. Brief descriptions of each function 
are included, as well as a list of the required parameters, returned results, pro­
gramming notes and warnings, family API call identification, and error codes. 
Conveniently arranged to provide quick access to the information you need. 

172 pages, 43/4 x 8, softeover, $9.95 
[Order Code 86-96866] 

For the Windows Programmer 
PROGRAMMING WINDOWS 
Charles Petzold 
Your fastest route to successful application programming with Windows. 
Full of indispensable reference data, tested programming advice, and page after 
page of creative sample programs and utilities. Topics include getting the most 
out of the keyboard, mouse, and timer; working with icons, cursors, bitmaps, and 
strings; exploiting Windows' memory management; creating menus; taking 
advantage of child window controls; incorporating keyboard accelerators; using 
dynamically linkable libraries; and mastering the Graphics Device Interface 
(GDI). A thorough, up-to-date, and authoritative look at Windows' rich graphical 
environment. 
864 pages, 73/s x 91/4 
$24.95 (se) [Order Code 86-96049] 
$34.95 (be) [Order Code 86-96130] 

Unbeatable Programmer's References 
PROGRAMMER'S GUIDE TO PC & PS/2~ VIDEO SYSTEMS 
Richard Wilton 
No matter what your hardware configuration, here is all the information you 
need to create fast, professional, even stunning video graphics on IBM PCs, 
compatibles, and PS/2s. No other book offers such detailed, specialized pro­
gramming data, techniques, and advice to help you tackle the exacting 



challenges of programming directly to the video hardware. And no other book 
offers the scores of invaluable source code examples included here. Whatever 
graphic output you want-text, circles, region fill, alphanumeric character sets, 
bit blocks, animatio~-you'l1 do it cleaner, faster, and more effectively with 
Wilton's book. 
544 pages, 73/s x 91/4, softcover, $24.95 
[Order Code 86-96163] 

THE 80386 BOOK 
Ross P. Nelson 
A clear, comprehensive, and authoritative introduction for every serious pro­
grammer. Included are scores of superb assembly-language examples along with 
a detailed analysis of the 80386 chip. Topics covered include: the CPU, the 
memory architecture, the instructions sets of the 80386 microprocessor and the 
80387 math coprocessor, the protection scheme, the implementation of a virtual 
memory system through paging, and compatibility with earlier Intel micropro­
cessors. Of special note is the comprehensive, clearly organized instruction set 
reference- guaranteed to be a valuable resource. 
464 pages, 73/s x 91/4, softcover, $24.95 
[Order Code 86-96494] 

THE PROGRAMMER'S PC SOURCEBOOK 
ThomHogan 
At last! A reference to save you the time required to find key pieces of technical 
data. Here is important factual information- previously published in scores of 
other sources - organized into one convenient reference. Focusing on IBM PCs 
and compatibles, PS/2s and MS-DOS, the hundreds of charts and tables cover: 
_ numeric conversions and character sets _ DOS commands and utilities _ 
DOS function calls and support tables _ DOS BIOS calls and support tables _ 
other interrupts, mouse, and EMS support _ Microsoft Windows _ keyboards, 
video adapters, and peripherals _ chips, jumpers, switches, and registers _ hard­
ware descriptions _ and more. 
560 pages, 81f2 x 11, softcover, $24.95 
[Order Code 86-96296] 



The Microsoft Press CD-ROM Library 
THE MICROSOFr CD·ROM YEARBOOK: 1989/1990 
Microsoft Press 
Foreword by Bill Gates 
A dynamic, fact-filled portrait and analysis of the wide-ranging, fast-paced CD­
ROM industry. Indispensable for anyone involved in the industry as well as an 
information-packed compendium for those curious about CD-ROM. Readers can 
use the book as a valuable sourcebook of facts, statistics, and forecasts, or dip 
into it for fascinating articles, reviews, and analyses of the industry. Articles 
include: 
• an absorbing history-in text and pictures -of the CD-ROM industry 
• reviews of products-hardware and software-considered outstanding or 

standard-setting 
• profiles of the leading companies and people in the industry 
• an overview of the process of developing a CD-ROM product 
• a review of the legal issues of protection, rights and permissions, contracts and 

royalties surrounding CD-ROM publishing 
• the strategies and pitfalls involved in getting a CD-ROM product to market 
The breadth of accurate, up-to-date information in THE MICROSOFT 
CD-ROM YEARBOOK is impressive including: 

• comprehensive reference listings of the people, equipment, available titles, 
sources, and resources in the CD ROM industry 

• a glossary of industry terms 
• a calendar of industry events and conferences 
• specialized bibliographies 
This is the reference of fact and opinion on the industry. 

960 pages, 13/8 x 91/4, softcover, $79.95 
[Order Code 86-97203] 



CD ROM: THE NEW PAPYRUS 
Edited by Steve Lambert and Suzanne Ropiequet 
"This 6J9-page compendium, with contributions from more than 30 optical­
memory specialists, promises to become the bible of CD ROM. " David Bunnell, 

Mac world 

This special compendium of 45 articles by leading authorities examines every 
facet of compact disc read only memory technology: hardware, software, 
applications, publishing systems, marketing, and the user interface. Includes 
introductory as well as technical information. 
608 pages, 73/s x 9'14, soft cover , $21.95 
[Order Code 86-95454] 

CD ROM 2: OPTICAL PUBLISHING 
Edited by Suzanne Ropiequet with John Einberger and Bill Zoellick 
"Recommended reading for any information professional. " Online Today 

This is a comprehensive overview of the entire optical publishing process. 
Topics include: evaluating and defining storage and retrieval methods; collect­
ing, preparing, and indexing data; updating strategies; data protection and 
copyrighting; and more. Plus information on the High Sierra Logical Format. In 
addition, the editors trace the development of two CD ROM projects from initial 
concept to final product. For publishers, technical managers, and entrepreneurs. 
384 pages, 73/s x 9'14, softcover, $22.95 
[Order Code 86-95686] 

INTERACTIVE MULTIMEDIA 
Foreword by John Sculley 
Edited by Sueanne Ambron and Kristina Hooper 
Apple Computer Corp. brought together leading researchers and developers to 
produce this informative collection of21 articles. The result is a sourcebook of 
ideas and inspiration for softwar~ and hardware developers, educators, pub­
lishers, and information providers. The contributors, including Doug Englebart, 
Sam Gibbon, and Peter Cook, represent the industries - computers, television, 
and publishing - whose products will provide the content and media for educa­
tion in the future. Filled with examples and pilot projects that define the new 
meaning of multimedia. Published with Apple Computer, Inc. 

352 pages, 73/s x 9'14, softcover, $24.95 
[Order Code 86-96379] 

Microsoft Press books are available wherever books and software are sold. 
Or you can place a credit card order by calling 1-800-638-3030 (8 AM to 4:30 PM 'EST). 

In Maryland, call collect: 824-7300. 



U.S.A. 
U.K. 
Austral. 

M I C R 0 S 0 F T· Pf9gTIlII1mers 
Reference 

Including Presentation Manager 

The Microsoft· Operating System/2 Programmer's Reference Library should 
be the cornerstone of every OS/2 developer's programming library. These vol­
umes are required references for professional developers creating applications 
for the retail market; for corporate programmers creating in-house software pro­
grams; for hardware manufacturers creating software to support their products; 
and for all other experienced programmers working in the OS/2 environment. 

Each volume in the series is written by a team of OS/2 specialists - many 
involved in the development and ongoing enhancement of OS/2 at Microsoft. 
These books provide in-depth, accurate, and up-to-date information from the 
Microsoft OS/2 Presentation Manager Toolkit-the software development kit 
essential for creating OS/2 applications. 

Volume 1--------------
Volume 1 details the conceptual framework of the MS· OS/2 Application Pro­
gramming Interface (API). Included are thorough descriptions of MS· OS/2 
programming models, overviews of basic programming considerations, and 
explanations of the interaction between the API and the rest of the MS· OS/2 
system. Sections include Introducing Ms" OS/2 , Window Manager, Graphics 
Programming Interface, and System Services. 

Volume 2 -------------
Volume 2 is a comprehensive, alphabetic listing of MS· OS/2 Presentation 
Manager functions as well as the structures and file formats used with these 
functions. Each function entry includes information on syntax; descriptions of 
the function's actions and purpose; parameters and field definitions; return 
values, error values, and restrictions; source-code examples; and programming 
notes. Appendix included. 

Volume 3 -------------
Similar in format to Volume 2, Volume 3 is a comprehensive alphabetic listing 
of MS· OS/2 base functions, including their structures and file formats. 
Appendixes included. 

$29.95 
£24.95 
$44.95 

ISBN 1-55615-221-3 

(recommended) 9 7 


