Programmer? Reference

//l”’

Including Presentation Manager
Microsoft

PROGRAMMER

5

EEEEEEEEE
RRRRRRR

Microsoft
Operating System/2

rogrammer$ Reference

Version 1.1

Written, edited, and produced
by Microsoft Corporation

Distributed by Microsoft Press

Microsoft

OS2

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
purchaser’s personal use, without the written permission of Microsoft Corporation. -

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

© Copyright Microsoft Corporation, 1989. All rights reserved.

Library of Congress Catalogmg in- Publication Data

Microsoft OS/2 programmer’s reference.

Includes index.

1. Microsoft OS/2 (Computer operating system) I. Microsoft Press
QAT76.76.063078 1989 005.4'469 89-2817

ISBN 1-55615-221-3(Vol. 2)

Printed and bound in the United States of Amenca
123456789 FGFG 321009

Distributed to the book trade in the United States by Harper & Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada

by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

The character-set tables in this manual are reprinted by permission from the IBM
Operating System/2 User s Reference, © 1987 by International Business Machines
Corporation.

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of
Microsoft Corporatlon

IBM®, PC/AT®, and Personal System/2® are reglstered trademarks of International
Business Machines Corporation.

Document No. LN0702B-110-R00-0289

B B R B e e e S R S S B e e R AR S e S e

Contents

Chapter 1 Introduction
B R 0 73 o 1<) 2N 3
1.2 How to Use This Manual.....ccceuveeeiiiuieneeereeirereennrerasesencacnss 4
1.3 Naming Conventionscoeeeuuuiiuniiiuireniiairiiieiinunineinceee. 7
1.4 Notational Conventionsc.eeeieieieieierereeemeeeereeeereensnsesnanes 10

Chapter 2 Functions Directory

2% R 115 o Yo 11 115 T) s WU N 13

2.2 FUNCHONS ceviriiruieererreceiensnseeencaseaessnesesasesnsssasassesasasasasnnnns 14
Chapter 3 Messages Directory

3.1 INtroducCtioN...ceceeeieeeeeieeeeerererereeererececesnsesasnnenses eeeeereenenees 393

3.2 MESSAEES ceuiuiiuriniiiiiieiie e sa s s s s e eaa e 394
Chapter 4 Types, Macros, Structures

105 S 0115 o Yo 11 (o2 5 o)+ DAt 471

B X o TP U 472

300 TN\, € Y03 0 - 473

. S N 1 To] 113 o St 485
Chapter 5 File Formats

IR S 113 o Yo (1 135 1o) WO oS 529

5.2 Font-File FOIMAat....ccceivirieieieieieieiiireeerereneeensnsseensesnsnsnnnns 529

5.3 Font Signatlrecceoeeieuniiieniiiinenieenrieeniireetmesiensesnnes 530

I S Y0) 1 LAY (515 o (oS S 530

5.5 Font Character Definitioncceueeerenieineercencenienceneencennenninnes 336

5.6 Code-Page Font SUppOIt...ccccciiiueiiienieieneiinncieniseraerianeens 540
APPENAIXES ..o 543
Appendix A Error Values

N0 B 1115 oY 11 1ot T o W 547

AN 5 ¢ (o) ¢S 547
Appendix B Device Capabilities

Bl INtrodUCHON..euveeeiieteenenreeeerereraeerescrsescscnenssnrnsscassssssesssnses 553

B.2 About Device Capabilitieseevrreririereiiinnniienniiininennennns 553

iv
e e I e R B A B T S e A s e R e S R S S i B R

Figures

Figure 1.1 Sample Reference Page coooeiiiriirecer e 4

A bt e e R R e R L e

Tables

Table 5.1

Additional Glyphs

S RS R I S SR

..

SHEE

<

Chapter

BT e R e .%H:B?in‘ﬁh’?;ﬁlf"ﬁ%'ﬁﬁfﬁﬁ& l?v'ﬁ‘““ iR SRR Ao

Introduction

O B O)7 o 7 (< N 3
1.2 How to Use This Manual......cccecevuviieiieiiviereeneeieneennenns 4
121 CFOImMat cuviiiiiiieiiiiieiieeiieeriieeiaensnsesanssenscanns 5

1.2.2 MS OS/2Include Files cuvvveeiirerieninenereneeesennnnnnes 5

1.2.3 MS 0S/2 Calling Conventionsoeeeereneienerrenennes 5

1.2.4 Bit Masks in Function Parameters......cccccvvvuevennennns 7

1.2.5 Structures.....cccoeveiiiiiiiiiiiiiiiiiei e, 7

1.3 Naming Conventions.......cveeevierneireenreeneneienesaeneneeeenens 7
1.3.1 Parameter and Field Namesovevvieerineinnenneeneanns 8
1.3.1.1 PrefiXeS cuvureineenrenrenrnniisrssenseenncnsennnns 8

1.3.1.2 Base TYPeS.ceeueeeurenrnenensieseensaensnesacnenns 9

1.3.2 Constant NamesS ..ueevvvireeenrenreeieeisressereneecssennnees 10

1.4 Notational ConventionsS ...oeeeeveeerieereereereeereereesncensonnens 10

Chaptér 1: Introduction 3

e e e o e R S S T [e e e

1.1 Overview

This manual describes the Dev, Gpi, and Win system functions of Microsoft®
Operating System/2 (MS® OS/2). These functions, also called the Presentation
Manager furictions, let programs use the window-management and graphics
features of MS OS/2.

MS O8/2 system functions are designed to be used in C, Pascal, and other high-
level-language programs, as well as in assembly-language programs. In MS 0S/2,
all programs request operating-system services by calling system functions.

This chapter, “Introduction,” shows how to use this manual, provides a brief
description of MS OS/2 calling conventions, illustrates function calls in various
languages, and outlines MS OS/2 naming conventions.

Chapter 2, “Functions Directory,” is an alphabetical listing of MS OS/2 Presen-
tation Manager functions. This chapter defines each function’s purpose, gives
its syntax, describes the function parameters, and gives possible return values.
Many functions also show simple program examples that illustrate how the func-
tion is used to carry out simple tasks.

Chapter 3, “Messages Directory,” lists the messages sent and received by MS
OS/2 Presentation Manager functions.

Chapter 4, “Types, Macros, Structures,” describes the types, macros, and struc-
tures used by MS OS/2 Presentation Manager functions.

Chapter 5, “File Formats,” describes the format of font files. Font files contain
bitmap or vector information that MS OS/2 needs for drawing characters using
Gpi functions.

Appendix A, “Error Values,” lists error codes and their corresponding values.

Appendix B, “Device Capabilities,” lists the device capabilities that can be
determined by using the DevQueryCaps function.

This manual is intended to fully describe MS OS/2 Presentation Manager func-
tions and the structures and file formats used with these functions. It does not
show how to use these functions to carry out specific tasks. For more informa-
tion on this topic, see the Microsoft Operating System/2 Programmer’s Reference,
Volume 1. Also, this manual does not describe MS OS/2 base system functions.
MS OS/2 base system functions let programs use the operating system to carry
out tasks such as reading from and writing to disk files; allocating memory; start-
ing other programs; and using the keyboard, mouse, and video screen. For more
information on MS OS/2 base system functions, see the Microsoft Operating
System/2 Programmer’s Reference, Volume 3.

4 MSO0S/2 Programmer’s Reference, Vol. 2

- HIPHEE

S S e e R e

.%s*a%:a AT EIE Gt e P P

1.2 How to Use This Manual

Figure 1.1

This manual provides detailed information about each MS 0S/2 Presentation
Manager function, message, macro, and structure. Each description has the fol-
lowing format:

Sample Reference Page

[+

Om winAlarm
9 [BOOL WinAlarm(hwndDesktop, fsType)

HWND hwndDesktop; /< handle of the desktop =/
USHORT fsType; /= alarm style o

© The WinAlarm function generates an audible alarm that can be used to alert the
user about special conditions.

O Parameters hwndDesktop Identifies the desktop window. This parameter can be
HWND_DESKTOP or the desktop window handle.
fsType Specifies the alarm style. It can be one of the following values:

WA_WARNING
WA_NOTE
. WA_ERROR

@ Return Value The return value is TRUE if the function is successful or FALSE if an error
occurs,

@ Example This example calls an application-defined initialization function, and if the func-
tion fails it calls WinAlarm to generate an audible alarm notifying the user the
initialization failed.

if (1CenericInit()) { /* general initialization */
WinAlarm (HWND_DESKTOP, WA_ERROR):

@ See Also WinFlashWindow, WinSetSysValue

These are the elements shown:

The function, message, macro, or structure name.

The function, message, macro, or structure syntax. The syntax specnﬁes the
number of parameters (or fields) and gives the type of each. It also gives the
order (from left to right) that parameters must be pushed on the stack. Com-
ments to the right briefly describe the purpose of the parameter (or field).

A description of the function, message, macro, or structure, including its pur-
pose and details of operation.

A full description of each parameter (or field), including permitted values and
related structures.

A descripﬁon of the function return value, including possible error values.
An example showing how the function can be used to accomplish a simple task.
A list of related functions, structures, macros, and messages.

Chapter 1: Introduction 5
S e S R e e e R A R S e S R S RS R R R R

1.2.1 C Format

In this manual, the syntax for MS OS/2 functions is given in C-language format.
In your C-language sources, the function name must be spelled exactly as given
in the syntax and the parameters must be used in the order given in the syntax.

This syntax also applies to Pascal program sources.

The following example shows how to call the WinAlarm function in a C-language
program:

/* sound an alarm when an error occurs */

WinAlarm (HWND_DESKTOP, /* alarm for the desktop window *
WA_ERROR) ; /* tone for errors */

1.2.2 MS 0S/2 Include Files

This manual uses many types, structures, and constants that are not part of stan-
dard C language. These items, designed for MS OS/2, are defined in the MS
0S/2 C-language include files provided with the Microsoft OS/2 Presentation
Manager Softset and the Microsoft OS/2 Presentation Manager Toolkit.

In C-language programs, the #include directive specifying 0s2.h, the MS OS/2
C-language include file, can be placed at the beginning of the source file to
include the definitions for the special types, structures, and constants. Although
there are many MS OS/2 include files, the 0s2.# file contains the additional
#include directives needed to process the basic MS OS/2 definitions.

To speed up processing of the MS OS/2 C-language include files, many
definitions are processed only if the C-language program explicitly defines a
corresponding include constant. An include constant is simply a constant name,
with the prefix INCL_, that controls a portion of the include files. If a constant
is defined using the #define directive, the corresponding MS OS/2 definitions
are processed. For a list of the include constants and a description of the MS
0S/2 system functions they enable, see the Microsoft Operating System/2
Programmer’s Reference, Volume 1.

1.2.3 MS 0S/2 Calling Conventions

You must know MS OS/2 calling conventions to use MS OS/2 functions in other
high-level languages or in assembly language. MS OS/2 functions use the Pascal
(sometimes called the PLM) calling convention for passing parameters, and they
apply some additional rules to support dynamic-link libraries. The following
rules apply:

B You must push the parameters on the stack. In this manual, each function
description lists the parameters in the order they must be pushed. The left
parameter must be pushed first, the right parameter last. If a parameter
specifies an address, the address must be a far address; that is, it must have
the form selector:offset. The selector must be pushed first, then the offser.

B The function automatically removes the parameters from the stack as it
returns. This means the function must have a fixed number of parameters.

® You must use an intersegment call instruction to call the function. This is
required for all dynamic-link-library functions.

6

MS 0S/2 Programmer’s Reference, Vol. 2
R e e R S B e e e

et R e R P e

et e

B The function returns a value, possibly an error value, in either the ax register
or the dx:ax register pair. Only the di and si register values are guaranteed to
be preserved by the function. MS OS/2 Presentation Manager functions may
preserve other registers as well, but they do not preserve the flags register.
The contents of the flags register are undefined; specifically, the direction
flag in the register may be changed. However, if the direction flag was zero
before the function was called, it will be zero after the function returns.

The following example shows how MS OS/2 calling conventions apply to the
WinCreateStdWindow function in an assembly-language program:

EXTRN WINCREATESTDWINDOW:EAR

hwndParent dd Ol1lH

flCreateFlags dd OFH

szClientClass db "MyClass", O

szTitle db "My Window", O

hwndClient dd O1H

push word ptr [hwndParent+2] ; handle of the parent window
push word ptr [hwnParent]

push O ; frame-window style

push O

push ds ; creation flags

push offset flCreateFlags

push ds

push offset szCllientClass - ; client-window class name
push ds ; address of title-bar text
push offset szTitle

push O ; client-window style

push O H

push O ;" handle of the resource file
push 1 ; resource identifier

push ds ; address of client-window handle

push offset hwndClient
call WINCREATESTDWINDOW

The following example shows how to call the same WinCreateStdWindow func-
tion in a C-language program. In C, the WinCreateStdWindow function name,
parameter types, and constant names are defined in 0s2.k, the MS OS/2 C-
language include file.

include <os2.h>

HWND hwndParent = HWND_DESKTOP;
ULONG flCreateFlags =

FCE_TITLEBAR | FCF_SYSMENU | FCE_MENU | FCF_SIZEBORDER;
HWND hwndClient;

WinCreateStdWindow (

hwndParent, /* handle of the parent window */
OL, /* frame-window style */
&flCreateElags, /* creation flags */
"MyClass", /* client-window class name */
"My Window", /* address of title-bar text */
oL, /* client-window style */
o, /* handle of the resource file */

1, /* resource identifier *
&hwndClient) ; /* address of client-window handle */

Chapter 1: Introduction 7
T e R B B S e e B S i S S N R S R SR R s

1.2.4 Bit Masks in Function Parameters

Many MS OS/2 system functions accept or return bit masks as part of their
operation. A bit mask is a collection of two or more bit fields within a single
byte, or a short or long value. Bit masks provide a way to pack many Boolean
flags (flags whose values represent on/off or true/false values) into a single
parameter or structure field. In assembly-language programming, it is easy to
individually set, clear, or test the bits in a bit mask by using instructions that
modify or examine bits within a byte or a word. In C-language programming,
however, the programmer does not have direct access to these instructions, so
the bitwise AND and OR operators typically are used to examine and modify the
bit masks.

Since this manual presents the syntax of MS OS/2 system functions in C-
language syntax, it also defines bit masks in a way that is easiest to work with
using the C language: as a set of constant values. When a function parameter

is a bit mask, this manual provides a list of constants (named or numeric) that
represent the correct values used to set, clear, or examine each field in the bit
mask. For example, the fsSelection field of the FATTRS structure in the Gpi-
CreateLogFont function specifies several values, such as FATTR_SEL_ITALIC
and FATTR_SEL_UNDERSCORE. These represent the “set” values of the
fields in the bit mask. Typically, the description associated with the value
explains the result of the function if the given value is used; that is, when the
corresponding bit is set. Generally, the opposite result is assumed when the
value is not used. For example, using FATTR_SEL_ITALIC in the fsSelection
field enables the italic font; not using it disables the italic font.

1.2.5 Structures

Many MS OS/2 system functions use structures as input and output parameters.
This manual defines all structures and their fields using C-language syntax. In
most cases, the structure definition presented is copied directly from the C-
language include files provided with the Microsoft C Optimizing Compiler. Occa-
sionally, an MS OS/2 function may have a structure that has no corresponding
include-file definition. In such cases, this manual gives an incomplete form of
the C-language structure definition to indicate that the structure is not already
defined in an include file.

1.3 Naming Conventions

In this manual, all parameter, variable, structure, field, and constant names con-
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func-
tion parameters and structure fields. These conventions are also used in most
MS OS/2 sample program sources to make the sources more readable and infor-
mative. :

R

8 MS 0S/2 Programmer’s Reference, Vol. 2
R S e b PR e e R ek R A NI R e B A PR E RS RS C Tom ot

R IR

1.3.1 Parameter and Field Names

1.3.1.1 Prefixes

With MS OS/2 naming conventions, all parameter and field names consist of up
to three elements: a prefix, a base type, and a qualifier. A name always consists
of at least a base type or a qualifier. In most cases, the name also includes a
prefix.

The base type, always written in lowercase letters, identifies the data type of the
item. The prefix, also written in lowercase letters, specifies additional informa-
tion about the item, such as whether it is a pointer, an array, or a count of
bytes. The qualifier, a short word or phrase written with the first letter of each
word uppercase, specifies the purpose of the item.

There are several standard prefixes and base types. These are used for the data
types most frequently used with MS QS/2.

The following is a list of standard prefixes used in MS OS/2 naming conventions:

Prefix Description

j/ Pointer. This prefix identifies a far, or 32-bit, pointer to a
given item. For example, pch is a far pointer to a character.

np Near pointer. This prefix identifies a near, or 16-bit, pointer
to a given item. For example, npch is a near pointer to a
character.

a Array. This prefix identifies an array of two or more items
of a given type. For example, ach is an array of characters.

i Index. This prefix identifies an index into an array. For
example, ich is an index to one character in an array of
characters.

c Count. This prefix identifies a count of items. It is usually

combined with the base type of the items being counted
instead of the base type of the actual parameter. For exam-
ple, cch is a count of characters even though it may be
declared with the type USHORT.

h Handle. This prefix is used for values that uniquely identify
an object but that cannot be used to access the object
directly. For example, Kfile is a handle of a file.

off Offset. This prefix is used for values that represent offsets
from the beginning of a buffer or a structure. For example,
off is the offset from the beginning of the given segment to
the specified byte.

id Identifier. This prefix is used for values that identify an
object. For example, idSession is a session identifier.

Chapter 1: Introduction 9

B S S B e R P S T R e

1.3.1.2 Base Types

The following is a list of standard base types used in MS OS/2 naming conven-

tions:

Base type

Type/Description

f

uch
us
ul

$Z

fs

sel

BOOL. A 16-bit flag or Boolean value. The qualifier should
describe the condition associated with the flag when it is
TRUE. For example, fSuccess is TRUE if successful,
FALSE if not; fError is TRUE if an error occurs and
FALSE if no error occurs. For objects of type BOOL, a
zero value implies FALSE; a nonzero value implies TRUE.

CHAR. An 8bit signed value.

SHORT. A 16-bit signed value.

LONG. A 32-bit signed value.

UCHAR. An 8-bit unsigned value.

ljSHORT. A 16-bit unsigned value.

ULONG. A 32-bit unsigned value.

BYTE. An 8-bit unsigned value. Same as uch.

CHAR([]. Array of characters, terminated with a null char-
acter (the last byte is set to zero).

UCHAR. Array of flags in a byte. This base type is used
when more than one flag is packed in an 8-bit value. Values
for such an array are typically created by using the logical

- OR operator to combine two or more values.

USHORT. Array of flags in a short (16-bit unsigned value).
This base type is used when more than one flag is packed in
a 16-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

ULONG. Array of flags in a long (32-bit unsigned value).
This base type is used when more than one flag is packed in
a 32-bit value. Values for such an array are typically created
by using the logical OR operator to combine two or more
values.

SEL. A 16-bit value that is used to hold a segment selector.

10 MS 0S/2 Programmer’s Reference, Vol. 2 »
B R B e B S S R R R RS

The base type for a structure is usually derived from the structure name. An MS
0S/2 structure name, always written in uppercase letters, is a word or phrase
that describes the size, purpose, and/or intended content associated with the
type. The base type is typically an abbreviation of the structure name. The fol-
lowing list gives the base types for the structures described in this manual:

acc fcdata ptl
acct fm ptri
arcp gradl qmsq
bmi hci rcfx
bmp hpga Corcl
btned ibmd rgh
cbnd krnpr rgnrc
clsi © lbnd sbed
crst matlf sizfx
csri mbhdr sizl
ctchbf mbnd smhs
dde mi swctl
ddei mqi swent
dop oi Swp
digt pbnd ti
dlgti pib ubtn
driv proge wprm
erri progt wywin
Jat pifx

1.3.2 Constant Names

A constant name is a descriptive name for a numeric value used with an MS
0OS/2 function. All constant names are written in uppercase letters and have a
prefix derived from the name of the function, object, or idea associated with the
constant. The prefix is followed by an underscore (_) and the rest of the con-
stant name, which indicates the meaning of the constant and may specify a
value, action, color, or condition. A few common constants do not have
prefixes—for example, NULL is used for null pointers of all types, and TRUE
and FALSE are used with the BOOL data type.

1.4 Notational Conventions

The following notational conventions are used throughout this manual:

Convention Meaning

bold Bold type is used for keywords—for example, the
names of functions, data types, structures, and
macros. These names are spelled exactly as they
should appear in source programs.

italics Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

monospace Monospace type is used for example program-
code fragments.

R R B e S R S e R R R S R e SIS e

Functions Directory

2 S 6115 o Y4 1 TeT oo)+ S

2.2 Functions.............. S

Chapter 2: Functions Directory 13
T e R e e R S S B R Ty

2.1 Introduction

This chapter describes MS OS/2 Dev, Gpi, and Win functions. These functions,
also called MS OS/2 Presentation Manager functions, provide the special Presen-
tation Manager features of MS OS/2, such as windows, message queues, and
device-independent graphics. The Dev, Gpi, and Win functions represent three
distinct function groups. As described in the following list, programs use these
function groups to carry out specific tasks:

Function group Usage

Dev Use the Presentation Manager device (Dev) functions
to open and control Presentation Manager device
drivers. These functions let you create device contexts
that you can associate with a presentation space and
use with the Gpi functions to carry out device-
independent graphics for displays, printers, and
plotters.

Gpi Use the graphics programming interface (Gpi) func-
tions to create graphics output for a display, printer,
and other output devices. The Gpi functions give you
a full range of graphics primitives, from lines to com-
plex curves to bitmaps. You choose the attributes for
the primitives, such as color, line width, and pattern,
and then draw lines, text, and shapes. The retained-
graphics capability lets you save the drawing in seg-
ments and build complex pictures by drawing a chain
of segments.

Win Use the window-manager (Win) functions to create
and manage windows. Presentation Manager applica-
tions use windows as the main interface with the user.
The Win functions let you create menus, scroll bars,
and dialog windows that let the user choose commands
and supply input. Your application receives all mouse
and keyboard input as messages from the message
queue. The Win functions let you retrieve messages
from the queue and dispatch them to the window the
input is intended for.

This chapter gives complete syntax, purpose, and parameter descriptions for
each function. Types, macros, and structures used by a function are given with
the function; these are described more fully in Chapter 4, “Types, Macros,
Structures.” The numeric values for error values returned by the functions are
listed in Appendix A, “Error Values.”

Many of the function descriptions in this chapter include examples. The exam-
ples show how to use the functions to accomplish simple tasks. In nearly all
cases, the examples are code fragments, not complete programs. A code frag-
ment is intended to show the context in which a function can be used, but often
assumes that variables, structures, and constants used in the example have been
defined and/or initialized. Also, a code fragment may use comments to represent
a task instead of giving the actual statements.

Although the examples are not complete, you can still use them in your

14 MS 0S/2 Programmer’s Reference, Vol. 2
T L B S e N i S R S S e S A R R B R

programs if you take the following steps:

2.2 Functions

Include the 0s2.h file in your program.

Define the appropriate include constants for the functlons, structures, and
constants used in the example.

Define and initialize all variables.
Replace comments that represent tasks with appropriate statements.
Check return values for errors and take appropriate actions.

The following is a complete list, in alphabetical order, of the MS OS/2 Dev,
Gpi, and Win functions.

B DevCloseDC

DevEscape 15

HMF DevCloseDC (hdc)
HDC hdc; /= device-context handle »/

Parameters

Return Value

See Also

B DevEscape

The DevCloseDC function closes the specified device context. If the device con-
text is associated with a presentation space or was created by using the Win-
OpenWindowDC function, an error occurs and the device context is not closed.
This function decrements the use count (by one) of processes that have accessed
the device context. The device context is deleted when the use count reaches
zero.

hdc Identifies the device context. An error results if this parameter identifies
a screen device context or is associated with a micro presentation space.

The return value is DEV_OK if the function is successful and the device context
is not a metafile device context. The return value is DEV_ERROR if an error
occurs. Any other return value indicates that the function closed a metafile
device context and returned its handle.

DevOpenDC, WinOpenWindowDC

LONG DevEscape (hdc, cmdCode, cbinData, pbinData, pcbQutData, pbQutData)

HDC hdc;

LONG cmdCode;
LONG cbinData;
PBYTE pbinData;
PLONG pcbOutData;
PBYTE pbOutData;

Parameters

/« device-context handle /
/« escape function to perform »/
/= size of input buffer »/
/« pointer to input buffer »/
/« pointer to buffer for number of bytes received »/
/« pointer to output buffer «/

The DevEscape function allows applications to access facilities of a device not
otherwise available through the applications programming interface (API). Calls
to escape functions are, in general, sent to the device driver and must be under-
stood by it.

hdc Identifies the device context.

cmdCode Specifies the escape function to perform. The following escape
functions are currently defined: ’

DEVESC_QUERYESCSUPPORT
DEVESC_GETSCALINGFACTOR
DEVESC_STARTDOC
DEVESC_ENDDOC
DEVESC_NEXTBAND
DEVESC_ABORTDOC
DEVESC_NEWFRAME
DEVESC_DRAFTMODE
DEVESC_FLUSHOUTPUT
DEVESC_RAWDATA

16 DevEscape

Return Value

Comments

Devices can define additional escape functions by using other cmdCode values in
the following ranges:

Range Meaning

32768-40959 Not stored in a metafile and not recorded (passed to the
device driver for PM_Q_STD).

40960-49151 Stored in a metafile only (passed to the device driver for
PM_Q_STD).

49152-57343 Stored in a metafile and recorded (not passed to the device
driver for PM_Q_STD).

57344-65535 Recorded only (not passed to the device driver for
PM_Q_STD).

cbInData Specifies the number of bytes of data in the buffer pointed to by the
pbInData parameter.

pbInData Points to the buffer that contains the input data required for the
escape function.

pcbOutData Points to the buffer that receives the number of bytes of data
in the buffer pointed by the pbOutData parameter. If data is returned in the
pbOutData parameter, pcbOutData is updated to the number of bytes of data
returned.

pbOutData Points to the buffer that receives the output from this escape. If
this parameter is NULL, no data is returned.

The return value is DEV_OK if the function is successful, DEVESC_ERROR if
an error occurs, or DEVESC_NOTIMPLEMENTED if the escape function is
not implemented for the specified code.

The standard escape functions, or escapes, are listed as follows, with the con-
tents of each DevEscape parameter:

The DEVESC_QUERYESCSUPPORT escape determines whether the device
driver has implemented a particular escape. The return value gives the result.
This escape is not stored in a metafile or recorded.

For DEVESC_QUERYESCSUPPORT, the DevEscape parameters contain the
following information:

Parameter Description

cbInData Specifies the number of bytes pointed to by the
pblnData parameter.

pbInData Specifies the escape-code value of the escape function
to be checked.

pcbOutData Not used; can be set to NULL.

pbOutData Not used; can be set to NULL.

The DEVESC_GETSCALINGFACTOR escape returns the scaling factors for
the x and y axes of a printing device. For each scaling factor, an exponent of two
is put in the pbOutData parameter. For example, the value 3 is used if the scal-
ing factor is 8. Scaling factors are used by devices that cannot support graphics
at the same resolution as the device resolution.

DevEscape 17

For DEVESC_GETSCALINGFACTOR, the DevEscape parameters contain
the following information:

Parameter Description

cbInData Not used; can be set to zero.

pbInData Not used; can be set to NULL.

pcbQOutData Points to the number of bytes of data pointed to by

the pbOutData parameter. Upon return, this parame-
ter is updated to the number of bytes returned.

pbOutData Points to the buffer that receives the output from this
escape. A structure is returned that specifies the scal-
ing factors for the x and y axes.

The DEVESC_STARTDOC escape allows an application to indicate that a new
print job is starting and that all subsequent calls to DEVESC_NEWFRAME
should be spooled under the same job, until DEVESC_ENDDOC is called. This
ensures that documents longer than one page are not interspersed with other
jobs.

For DEVESC_STARTDOC, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Specifies the number of bytes pointed to by the
pbInData parameter.

pbiInData Points to the null-terminated ASCII string that
specifies the name of the document.

pcbOutData Not used; can be set to NULL.

pbOutData Not used; can be set to NULL.

The DEVESC_ENDDOC escape ends a print job started by the
DEVESC_STARTDOC escape.

For DEVESC_ENDDOC, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Not used; can be set to zero.

pbinData » Not used; can be set to NULL. ,
pcbOutData Points to the buffer that specifies the number of char-

acters in the string pointed to by the pbOutData
parameter. This parameter should be NULL if the
number of characters is zero.

pbOutData Points to the USHORT value that specifies the job
identifier if a spooler print job was created.

The DEVESC_NEXTBAND escape allows an application to signal that it has
finished writing to a “band,” or rectangle. The coordinates of the next band are
returned. This escape is used by applications that perform handle banding
(“for-printing”) themselves.

18 DevEscape

For DEVESC_NEXTBAND, the DevEscape parameters contain the following‘

information: '

Parameter Description

cbInData Not used; can be set to zero.

pbInData Not used; can be set to NULL.)

pcbOutData Points to the number of bytes of data pointed to by
the pbOutData parameter. Upon return, the escape
updates this parameter to the number of bytes
returned.

pbOutData Points to the address of the buffer that receives the

output from this escape. A structure is returned that
specifies the device coordinates of the next band,
which is a rectangle.

The DEVESC_ABORTDOC escape stops the current job, erasing everything
written by the application to the device since the DEVESC_ENDDOC escape

was called.
For DEVESC_ABORTDOC, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Not used; can be set to zero.

pbInData Not used; can be set to NULL.

pcbOutData Not used; can be set'to NULL.

pbQutData Not used; can be set to NULL.

The DEVESC_NEWFRAME escape allows an application to signal when it has
finished writing to a page. You usually use this escape with a printer device to
advance to a new page. Calling this escape, which is similar to processing the
GpiErase function for a screen device context, resets the screen attributes.

For DEVESC_NEWFRAME, the DevEscape parameters contain the following

information:
Parameter Descriptioh
cbInData Not used; can be set to zero.
pbInData Not used; can be set to NULL.
pcbOutData Not used; can be set to NULL.
pbOutData Not used; can be set to NULL.

The DEVESC_DRAFTMODE escape turns draft mode on or off. Turning draft
mode on instructs the device driver to print faster and with lower quality. You
can change the draft mode only at page boundaries—for example, after a call to
the DEVESC_NEWFRAME escape.

See Also

DevEscape 19

For DEVESC_DRAFTMODE, the DevEscape parameters contain the following
information:

Parameter Description

cbinData Specifies the number of bytes pointed to by the
pbInData parameter.

pbInData Points to the SHORT value that specifies the draft
mode; 1 for on, O for off.

pcbOutData Not used; can be set to NULL.

pbOutData Not used; can be set to NULL.

The DEVESC_FLUSHOUTPUT escape removes any output from the device
buffer.

For DEVESC_FLUSHOUTPUT, the DevEscape parameters contain the follow-
ing information:

Parameter Description

cbinData Not used; can be set to zero.
pbInData Not used; can be set to NULL.
pcbOutData Not used; can be set to NULL.
pbOutData Not used; can be set to NULL.

The DEVESC_RAWDATA escape allows an application to send “raw,” or
binary, data directly to a device driver. For example, in the case of a prmter
device driver, the data could be a stream of printer data.

If binary data is mixed with other data—for example, Gpi data—being sent to
the same page of a device context, the results are unpredictable and depend
upon the action taken by the Presentation Manager device driver, which, might
even ignore the Gpi data completely. In general, you should send binary data
either to a separate page, using the DEVESC_NEWFRAME escape to obtain a
new page, or to a separate document, using the DEVESC_STARTDOC and
DEVESC_ENDDOC escapes to create a new document.

For DEVESC_RAWDATA, the DevEscape parameters contain the following
information:

Parameter Description

cbInData Specifies the number of bytes pointed to by the
pbInData parameter.

pbInData Points to the binary data.

pcbOutData Not used; can be set to NULL.

pbOutData Not used; can be set to NULL.

GpiErase

20 DevOpenDC

DevOpenDC

HDC DevOpenDC (hab, type, pszToken, count, pbData, hdcComp)

HAB hab;
LONG type;
PSZ pszToken;
LONG count;

/« anchor-block handle =/
/« type ot device context «f
/« pointer to device-information token «/
/« number of elements in structure »/

PDEVOPENDATA pbData; /= pointer to structure for device context »/

HDC hdcComp;

Parameters

/+ handle of compatible device context »/

The DevOpenDC function creates a device context. This function initializes the
use count (to one) of the number of processes that have access to the device
context.

hab Identifies the anchor block.
type Specifies the type of device context; it can be one of the following:

Value Meaning

OD_QUEUED A device, such as a printer or piotter, for which to
queue output.

OD_DIRECT A device, such as a printer or plotter, for which to
not queue output.

OD_INFO Same as for OD_DIRECT, but used oaly to retrieve

information (for example, font metrics). You can
draw to a presentation space associated with such a
device context, but you cannot update any output.

OD_METAFILE A device context that is used to draw a metafile. The
graphics field defines the area of interest within the
metafile picture.

OD_MEMORY A device context that is used to contain a bitmap.

pszToken Points to the null-terminated string that contains the device-
information token. This device information, which is held in the o0s2.ini file, is
the same as that which may be pointed to by the pbData parameter; any infor-
mation obtained from pbDara overrides the information obtained by using this
parameter. If you specify an asterisk (*) for pszToken, no device information is
taken from the o0s2.ini file. MS OS/2 version 1.1 acts as if “*” is specified but
allows you to specify any string.

count Specifies the number of elements in the structure pointed to by the
pbData parameter. This number may be less than the number of items in the full
list if omitted items are irrelevant or are supphed from the pszToken parameter
or elsewhere.

pbData Points to a data area that describes the output device. This area can
be either an array of pointers or a DEVOPENSTRUC structure, which has the
following form:

Return Value

DevPostDeviceModes 21

typedef struct _DEVOPENSTRUC {

PSZ pszLogAddress;

PsSz pszDriverName;
PDRIVDATA pdriv;

PsSZz pszDataType;

PsS2 pszComment ;

PSZ pszQueueProcName;
PSZ pszQueueProcParams;
PsZ pszSpoolerParams;
PSZ pszNetworkParams;

} DEVOPENSTRUC;

For a full description, see Chapter 4, “Types, Macros, Structures.”

hdcComp Identifies the compatible device context. When the fype parameter
is OD_MEMORY, this parameter identifies a device context that is compatible
with the bitmaps to be used with it. If you do not supply this parameter or if it is
NULL, the device context that MS OS/2 opens is compatible with the screen.

The return value identifies the device context if the function is successful. The
return value is DEV_ERROR if an error occurs.

DevPostDeviceModes

LONG DevPostDeviceModes (hab, pbDriverData, pszDriverName, achDeviceName, pszLogAddr)

HAB hab; /~ anchor-block handle «f

PDRIVDATA pbDriverData; /= pointer to buffer for data »/

PSZ pszDriverName; /« pointer to string for driver name «f

PSZ achDeviceName; /= pointer to device name =/

PSZ pszLogAddr; /= pointer to string for name of output device +/
The DevPostDeviceModes function causes a device driver to post a dialog box
that allows the user to set options for the device—for example, resolution, font
cartridges, and so forth.
The application can call this function first with a NULL data pointer to find out
how much storage is needed for the data buffer. Having allocated the storage,
the application can then call the function a second time in order to have the
buffer filled with data.
Once the data has been returned, you can pass it to the DevOpenDC function as
the buffer data pointed to by the pbDriverData parameter.

Parameters hab Identifies the anchor block.

pbDriverData Points to the data buffer that receives device data defined by
the driver. If this parameter is NULL, the function returns the required size of
the buffer. The format of the data is the same as for the pbData parameter of
the DevOpenDC function.

pszDriverName Points to the null-terminated string that contains the name of
the device driver.

achDeviceName Points to a null-terminated string that identifies the particular
device (model number, etc.). This string must not exceed 32 bytes. Valid names
are defined by device drivers.

pszLogAddr Points to the null-terminated string that contains the logical
address of the output device—for example, LPT1.

22 DevPostDeviceModes

Return Value The return value if the pbDriverData parameter is NULL is the size (in bytes)
required for the data buffer, DPDM_NONE if there are no options that can be
set, or DPDM_ERROR if an error occurs.

The return value if pbDriverData is not NULL is DEV_OK if the function is
successful, DPDM_NONE if there is no device mode, or DPDM_ERROR if an
€ITor OCCUurs.

See Also DevOpenDC
DevQueryCaps

BOOL DevQueryCaps (hdc, IStartitem, cltems, alltems)
HDC hdc; /= device-context handle =/
LONG /Startitem; /= first item to retrieve »f
LONG cltems; /~ number of items to retrieve «f
PLONG alitems; /« array for device characteristics »/

The DevQueryCaps function queries the characteristics of the specified device.

Parameters hdc 1dentifies the device context.
IStartitern Specifies the first item of information to retrieve.
cltems Specifies the number of items of information to retrieve.

alltems Points to an array of device characteristics, starting with the item
specified by the IStartitem parameter. For more information about device charac-
teristics, see Appendix B, “Device Capabilities.”

Return Value The return value is TRUE if the function is successful or FALSE if an error

occurs.
See Also DevOpenDC
DevQueryDeviceNames

BOOL DevQueryDeviceNames (hab, pszDriverName, pcMaxNames, achDeviceName, achDeviceDesc,
pcMaxDataTypes, achDataType)

HAB hab; /= anchor-block handle »/
PSZ pszDriverName; / pointer to string for device name f
PLONG pcMaxNames; /= maximum number of device drivers »f
PSTR32 achDeviceName; /= pointer to array of device names »/
PSTR64 achDeviceDesc; /= pointer to array of device descriptions »/
PLONG pcMaxDataTypes; /« maximum number of data types /
PSTR16 achDataType; /« pointer to array of data types . =/

The DevQueryDeviceNames function returns the device names, descriptions,
and data types supported by the specified device driver.

The application can call the function first with the pcMaxNames and
pcMaxDataTypes parameters set to zero in order to find how much storage is

Parameters

Return Value

DevQueryHardcopyCaps 23

needed for the data buffers. Having allocated the storage, the application then
calls the function a second time in order to have the buffers filled with data
for the data to be filled in.

hab Identifies the anchor block.

pszDriverName Points to the null-terminated string that contains the name of
the device driver.

pcMaxNames Points to the maximum number of device names and descrip-
tions that can be returned. If this parameter is zero, the number of device
names and descriptions supported is returned and the arrays pointed to by the
achDeviceName and achDeviceDesc parameters are not updated. If this param-
eter is nonzero, then its value is updated to the number returned in the arrays
pointed to by achDeviceName and achDeviceDesc and the arrays are updated.

achDeviceName Points to an array of null-terminated strings, each element of
which identifies a particular device (for example, model number). Valid names
are defined by device drivers. IBM4201 is an example of a device name.

achDeviceDesc Points to an array of null-terminated strings, each element of
which is a description of a particular device (for example, model name). Valid
names are defined by device drivers. IBM 4201 Proprinter is an example of a
device description.

pcMaxDataTypes Points to the maximum number of data types that can be
returned. If this parameter is zero, the number of data types supported is
returned and the array pointed to by the achDataType parameter is not updated.
If this parameter is nonzero, then its value is updated to the number returned
and the array is updated.

achDataType Points to an array of null-terminated strings, each element of
which identifies a data type. Valid data types are defined by device drivers.
PM_Q_STD is an example of a data type.

The return value is TRUE if the function is successful or FALSE if an error
occurs.

DevQueryHardcopyCaps

LONG DevQueryHardcopyCaps (hdc, iStartForm, cForms, phci)

HDC hdc;

LONG iStartForm;
LONG cForms;
PHCINFO phci;

/« device-context handle s/
/ index of form code to start from «/
/» number of forms to query /
/« pointer to structure for results «/

The DevQueryHardcopyCaps function returns information about the hardcopy
capabilities of a device.

You can use the iStartForm and cForms parameters together to enumerate all
available form codes without having to allocate a buffer large enough to hold
information on them all.

24 DevQueryHardcopyCaps

Parameters

Return Value

hdc Identifies the device context.

iStartForm Specifies the index of the form code from which to start the
query. The first form code is specified by the value 0.

cForms Specifies the number of forms to query.

phci Points to the buffer that contains the results of the query. The result con-
sists of cForms copies of the HCINFO structure. The HCINFO structure has the
following form:

typedef struct _HCINFO {
CHAR szFormname[32];
LONG cx:
LONG cy:
LONG xLeftClip:;
LONG yBottomClip;
LONG xRightClip;
LONG yTopClip;
LONG xPels:
LONG yPels;
LONG flAttributes;

} HCINEO;

For a full description, see Chapter 4, “Types, Macros, Structures.”

If there are five form codes defined and the iStartForm parameter is 2 and the
cForms parameter is 3, a query is performed for form codes 2, 3, and 4 and the
result is returned in the buffer pointed to by the phci parameter.

The return value if cForms is zero is the number of available forms, or if cForms
is nonzero, the number of forms returned. The return value is DQHC_ERROR
if an error occurs.

B GpiAssociate

GplAssociate 25

BOOL GpiAssociate (hps, hdc)
HPS hps; /= presentation-space handle »/
HDC hdc; /= device-context handle o/

Parameters

Return Value

Errors

Comments

Example

See Also

The GpiAssociate function associates a presentation space with a device context
and resets the presentation space. Once a device context is associated with a
presentation space, all subsequent drawing in the presentation space is copied to
the device.

Only one device context can be associated with a presentation space at a time.
GpiAssociate cannot associate a new device context with a presentation space
until the current device context is released. The function releases the current
device context from the presentation space if hdc is NULL.

hps Identifies a normal presentation space. Micro and cached presentatxon
spaces cannot be used. .

hdc Identifies the device context. Although any type of device context may be
used, the device context must not be already associated with a presentation
space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_DC_IS_ASSOCIATED
PMERR_INV_MICROPS_FUNCTION
PMERR_PS_IS_ASSOCIATED

When GpiAssociate resets the presentation space, it sets all attributes to their
default values, sets the model transform to unity, sets the current position to
(0,0), closes any open path, area, or element brackets, closes any open segment,
removes any clip path, viewing limits and clip region, and enables kerning if the
device supports kerning.

The GpiCreatePS function can also be used to associate a device context with a
pew presentation space.

- This example releases the current devxce context and associates a new device

context with the presentatlon space.

HPS hps;

HDC hdcPrinter;

CpiAssociate (hps, NULL):; /* release the current device context */
GpiAssociate (hps, hdcPrinter); /* associate a printer device context %/

GpiCreatePS, GpiResetPS

26 GpiBeginArea

GpiBeginArea

BOOL GpiBeginArea(hps, flOptions)

HPS hps;
ULONG flOptions;

Parameters

Return Value

Errors

Example

See Also

/« presentation-space handle «/
/« area-option flag /

" The GpiBeginArea function starts an area bracket, that is, it starts a sequence of

functions that define the shape of an area. All subsequent drawing functions, up
to the next GpiEndArea function, apply to the new area. The flOptions parame-
ter specifies whether the figures in the area have boundary lines and whlch ﬁllmg
mode to use for constructing the interior of the area.

hps Identifies the presentation space.

flOptions Specifies the area options. It can be any combination of the follow-
ing values: :

Value Meaning

BA_ALTERNATE Constructs the interior in alternate mode
(default).

BA_BOUNDARY Boﬁndary lines are drawn.

BA_NOBOUNDARY Boundary lines are not drawn (default).

BA_WINDING Constructs the interior in winding mode.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_’ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_ALREADY_IN_AREA
PMERR_INV_AREA_CONTROL
PMERR_INV_IN_PATH

This example uses the GpiBeginArea function to draw an area. The area, an
isosceles trxangle, is drawn with boundary lines and filled using the alternate
filling mode.

HPS hps;

POINTL ptlStart = { O, O }; .

POINTL ptlTriangle{] = { 100, 100, 200, O, O, O };

GpiMove (hps, &ptlStart); /* move to starting point (O, 0) */

GpiBeginArea (hps, /* start the area bracket */
BA_BOUNDARY | /* draw boundary lines %/
BA_ALTERNATE) ; /* £ill interior with alternate mode */

GpiPolyLine (hps, 3L ptlTriangle) /* draw the triangle */

GpiEndArea (hps) /* end the area bracket */

/* and fill the area */

GpiEndArea

GpiBeginPath 27

B GpiBeginElement

BOOL GpiBeginElement(hps, /Type, pszDesc)

HPS hps; /« presentation-space handle »/
LONG /Type; /= element type «/
PSZ pszDesc; /« pointer to element description »/

Parameters

Return Value

Errors

Comments

Example

See Also

BN GpiBeginPath

The GpiBeginElement function starts an element bracket, that is, a sequence of
functions that define the contents of an element. All subsequent graphics func-
tions, up to the next GpiEndElement or GpiCloseSegment function, apply to the
new element.

The GpiBeginElement may only be used while creating a segment. The element
type and element description, specified by the /Type and pszDesc parameters, are
values that the application supplies to distinguish one element from another
within a segment.

hps Identifies the presentation space.

IType Specifies the element type. It can be any integer value.

pszDesc Points to a null-terminated string. If no description is needed, it may
point to an empty string.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_ALREADY_IN_ELEMENT
PMERR_INV_MICROPS_FUNCTION

The GpiBeginElement function cannot be used within an element bracket.

This example uses the GpiBeginElement function to create an element in a seg-
ment. The element type is 1 and the element description is “Triangle”. The
application can use these later to identify the element.

POINTL ptlStart = { O, O };
POINTL ptlTriangle(] = { 100, 100, 200, O, O, O };

GpiBeginElement (hps, /* start element bracket */
1L, /* element type is 1 */

. "Triangle"); /* element description */
GpiMove (hps, &ptlStart); /* move to start point (0, 0) */
GpiPolyLine (hps, 3L, ptlTriangle): /* draw triangle */
GpiEndElement (hps) ; /* end element bracket */

GpiCloseSegment, GpiDeleteElement, GpiEndElement, GpiQueryElement, Gpi-
QueryElementPointer, GpiSetElementPointer

BOOL GpiBeginPath(hps, idPath)
HPS hps; /+ presentation-space handle »/
LONG idPath; /= path identifier «f

The GpiBeginPath function starts a path bracket, that is, starts a sequence of
functions that define the shape and size of a path. GpiBeginPath sets the path

28 = GpiBeginPath

Parameters

Return Value

Errors

Comments

Example

See Also

GpiBitBIt

identifier and initializes the path, clearing any path created previously with this
identifier. All subsequent drawing functions, up to the next GpiEndPath func-
tion, apply to the new path.)

hps Identifies the presentation space.
idPath Specifies the path identifier; for MS OS/2 version 1.1, it must be 1.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_ALREADY_IN_PATH
PMERR_INV_PATH_ID

Since there is a limit to the size of a path, any line or curve drawing function
within a path bracket that would exceed the limit returns the
PMERR_PATH_TOO_BIG error value.

This example uses the GpiBeginPath function to create a path. The path, an
isosceles triangle, is given path identifier 1. After the path bracket is ended using
GpiEndPath, a subsequent call to the GpiFillPath function draws and fills the
path.

HPS hps;

POINTL ptlStart = { O,

o }:
POINTL ptlTriangle[] = { 100, 100, 200, O };
CpiBeginPath(hps, 1L); * start the path bracket */

GpiMove (hps, &ptlStart); /* move to starting point */

GpiPolyLine (hps, 2L, ptlTriangle); /* draw the three sides */

CpiCloseFigure (hps) ; /* close the triangle */
*

GpiEndPath (hps) ; end the path bracket */
GpiFillPath (hps, 1L, FPATH_ALTERNATE); /* draw and fill the path */

GpiCloseFigure, GpiEndPath, GpiFillPath, GpiModifyPath, GpiSetClipPath,
GpiSetLineWidthGeom, GpiStrokePath '

LONG GpiBitBIt (hpsTarg, hpsSrc, cPoints, aptl, IRop, flOptions)

HPS hpsTarg;
HPS hpsSrc;
LONG cPoints;
PPOINTL apt/;
LONG /Rop;
ULONG fIOptions;

/= target presentation-space handle »/
/= source presentation-space handle »/

/= number of points in array /
/« pointer to array =/
/« mixing method »/
/= line/column-compression flag =/

The GpiBitBIt function copies a bitmap from one presentation space to another.
It can also modify the bitmap within a rectangle in a presentation space. The
exact operation carried out by GpiBitBIt depends on the raster operation
specified by the IRop parameter.

If IRop directs GpiBitBIt to copy a bitmap, the function copies the bitmap from
a source presentation space specified by ApsSrc to a target presentation space
specified by hpsTarg. Each presentation space must be associated with a device
context for the display, for memory, or for some other suitable raster device.
The target and source presentation spaces can be the same if desired. The aptl

Parameters

GpiBitBIt 29

parameter points to an array of points that specify the corners of a rectangle
containing the bitmap in the source presentation space as well as the corners of
the rectangle in the target presentation space to receive the bitmap. If the source
and target rectangles are not the same, GpiBitBIt stretches or compresses the
bitmap to fit the target rectangle.

If IRop directs GpiBitBlt to modify a bitmap, the function uses the raster opera-
tion to determine how to alter the bits in a rectangle in the target presentation
space. Raster operations include changes such as inverting target bits, replacing
target bits with pattern bits, and mixing target and pattern bits to create new
colors. For some raster operations, the function mixes the bits of a bitmap from
a source presentation space with the target and/or pattern bits.

hpsTarg Identifies the target presentation space.
hpsSrc Identifies the source presentation space.

cPoints Specifies the number of points pointed to by the ap#! parameter. It
may be one of the following values:

Value Meaning

2 The points specify the lower-left and upper-right corners of the
target rectangle. If 2 is given, the raster operation specified by the
IRop parameter must not include a source.

3 The points specify the lower-left and upper-right corners of the
target rectangle, and the lower-left corner of the source rectangle.
The upper-right corner of the source rectangle is computed such
that the target and source rectangles have equal width and height.
Any raster operation may be used. If the operation does not
include a source, the third point is ignored.

4 The points specify the lower-left and upper-right corners of the
target and the source rectangles. If the rectangles do not have
equal width and height, the source bitmap is stretched or
compressed to fit the target rectangle. GpiBitBlt uses the
flOptions parameter to determine how the bitmap should be
compressed. If the raster operation does not include a source,
the source coordinates are ignored.

aptl Points to an arfay of POINTL structures containing the number of points
specified in the cPoints parameter. The points must be given in the following
order:

Element index Coordinate

0 Specifies the lower-left corner of the target rect-
angle.

1 Specifies the upper-right corner of the target
rectangle.

2 Specifies the lower-left corner of the source
rectangle.

3 Specifies the upper-right corner of the source
rectangle.

All points must be in device coordinates. The POINTL structure has the follow-
ing form:

30

GpiBitBIt

typedef struct _POINTL {

LONG x;
LONG vy:
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

IRop Specifies the raster operation for the function. It can be any value in the
range O through 255 or one of the following values, which represent common ras-
ter operations:

flOptions

Value

ROP_DSTINVERT
ROP_MERGECOPY

ROP_MERGEPAINT
ROP_NOTSRCCOPY

ROP_NOTSRCERASE

ROP_ONE
ROP_PATCOPY
ROP_PATINVERT

ROP_PATPAINT
ROP_SRCAND

ROP_SRCCOPY
ROP_SRCERASE

ROP_SRCINVERT
ROP_SRCPAINT

ROP_ZERO

Inverts the target.

Combines the source and the pattern using the
bitwise AND operator.

Combines the inverse of the source and the tar-
get using the bitwise OR operator.

Copies the inverse of the source to the target.

Combines the inverse of the source and the
inverse of the target bitmaps using the bitwise
AND operator.

Sets all target pels to 1. -
Copies the pattern to the target.

Combines the target and the pattern using the
bitwise exclusive XOR operator.

Combines the inverse of the source, the pattern,
and target using the bitwise OR operator. :

Combines the source and target bitmaps using
the bitwise AND operator.

Copies the source bitmap to the target.

Combines the source and the inverse of the tar-
get bitmaps using the bitwise AND operator.

Combines the source and target bitmaps using
the bitwise exclusive OR operator. -

Combines the source and target bitmaps using
the bitwise OR operator.

Sets all target pels to 0.

Specifies how to compress a bitmap if the target rectangle is smaller
than the source. It can be one of the following values:

Value Meaning

BBO_AND Compresses two rows or columns into one by com-
bining them with the bitwise AND operator. This
value is useful for compressing bitmaps

BBO_IGNORE Compresses two rows or columns by throwing

one out. This value is useful for compressing color
bitmaps. that have black images on a white back-
ground.

Return Value

Errors

Comments

Example

GpiBitBIt 31

Value Meaning

BBO_OR Compresses two rows or columns into one by com-
bining them with the bitwise OR operator. This
value is the default and is useful for compressing
bitmaps that have white images on a black back-
ground.

All values in the range 0x0100 through 0xFFO00 are reserved for privately sup-
ported modes for particular devices.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred. '

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_BASE_ERROR
PMERR_BITMAP_NOT_SELECTED
PMERR_INCOMPATIBLE_BITMAP
PMERR_INV_BITBLT_MIX
PMERR_INV_BITBLT_STYLE
PMERR_INV_COORDINATE
PMERR_INV_DC_TYPE
PMERR_INV_HBITMAP
PMERR_INV_HDC
PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_LENGTH_OR_COUNT

The source and target presentation spaces may be associated with any device
context having raster capabilities. Some raster devices, such as banded printers,
can receive bitmaps but cannot supply them. These devices cannot be used as a
source.

GpiBitBlt does not affect the pels in the upper and right boundaries of the target
rectangle. This means the function draws up to but does not include those pels.

If IRop includes a pattern, GpiBitBIt uses the current area color, area back-
ground color, pattern set, and pattern symbol of the target presentation space.
Although the function may stretch or compress the bitmap, it never stretches or
compresses the pattern.

If the target and source presentation spaces are associated with device contexts
that have different color formats, GpiBitBIt converts the bitmap color format as
it copies the bitmap. This applies to bitmaps copied to or from a device context
having a monochrome format. To convert a monochrome bitmap to a color bit-
map, GpiBitBIt converts 1 pels to the target’s foreground color, and 0 pels to the
current area background color. To convert a color bitmap to a monochrome bit-
map, GpiBitBIt converts pels with the source’s background color to the target’s
background color, and all other pels to the target’s foreground color.

The bitmap associated with a source presentation space is always a finite size.
Although GpiBitBIt will copy a bitmap when given a source rectangle that is
larger than the source bitmap or extends past the boundaries of the source bit-
map, any pels not associated with the source bitmap are undefined.

This example uses GpiBitBlt to copy and compress a bitmap in a presentation
space. The function copies the bitmap that is 100 pels wide and 100 pels high
into a 50-by-50-pel rectangle at the location (300,400). Since the raster operation

32 GpiBitBIt

See Also

GpiBox

is ROP_SRCCOPY, GpiBitBIt replaces the image previously in the target rect-
angle. The function compresses the bitmap to fit the new rectangle by discarding
extra rows and columns as specified by the BBO_IGNORE option.

HPS hps;)

POINTL aptlf{4] = {
300, 400, /* lower-left corner of target */
350, 450, /* upper-right corner of target
o, O, /* lower-left corner of source /
100, 100 }: /* upper-right corner of source */

GpiBitBlt (hps, /* target presentation space */
hps, /* source presentation space
4L, /* four points needed to compress */
aptl, /* points to source and target */
ROP_SRCCOPY, /* copy source replacing target */
BBO_IGNORE) ; /* discard extra rows and columns */

DevOpenDC, GpiCreateBitmap, GpiLoadBitmap, GpiSetBitmap, GpiSet-
BitmapDimension, GpiSetBitmapld, GpiWCBitBIt

LONG GpiBox(hps, cmdControl, pptl, IHRound, IVRound)

HPS hps;

LONG cmdControl;

PPOINTL ppt/;
LONG /HRound;
LONG /VRound;

Parameters

/« presentation-space handle «/
/« fill and outline indicator »/
/« pointer to structure for box corners o/

/» horizontal length of rounding-ellipse axis »/
/« vertical length of rounding-ellipse axis «/

The GpiBox function draws a rectangular box or a box with rounded corners.
The function draws the box by drawing the outline of a rectangle. The current
position specifies one corner and the point given by pptl specifies the other. The
sides of the box are always parallel to the x and y axes. The function may fill the
interior with the current fill pattern. If a rounded box is requested, the function
rounds the corners of the rectangle using quarter ellipses. The IHRound and
IVRound parameters specify the lengths of the major and minor axes for the
ellipse. If either the IHRound or the IVRound parameter is zero, no rounding
occurs.

The current position is unchanged by this function.

hps Identifies the presentation space.

cmdControl Specifies whether to draw the box’s interior and/or outline. It
can be one of the following values:

Value Meaning

DRO_FILL Fills the interior.

DRO_OUTLINE Draws the outline.
DRO_OUTLINEFILL Draws the outline and fills the interior.

pptl Points to the POINTL structure that contains the coordinates of a corner
of the box. The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG y.

} POINTL;

Return Value

Errors

Comments

Example

See Also

GpiCallSegmentMatrix 33

For a full description, see Chapter 4, “Types, Macros, Structures.”

IHRound Specifies the horizontal length (in world coordinates) of the full axis
of the ellipse used for rounding at each corner.

IVRound Specifies the vertical length (in world coordinates) of the full axis of
the ellipse used for rounding at each corner.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following value:

PMERR_INV_BOX_CONTROL

GpiBox can be used in an area bracket but only if DRO_OUTLINE is used. If
the current position is (x0,y0), and pprl is set to (x1,y1), the box is drawn from
(x0,y0) to (x1,y0) to (x1,y1) to (x0,y1) to (x0,y0). This can affect the way the box
is filled when drawn in an area.

When correlating a segment, a box drawn using GpiBox will be “hit” if the box
boundary intersects in the pick aperture. If the pick aperture lies within the box,
a hit occurs only if the interior is drawn, that is, only if the DRO_FILL or
DRO_OUTLINEFILL option is used.

This example calls GpiBox to draw a series of rounded boxes, one inside
another.

POINTL ptl = { 100, 100 }:

SHORT i
for (L = 0; L < 5; i++)

GpiBox (hps, /* handle to a ps */
DRO_OUTLINE, /* £il1l the interior */
(PPOINTL) &ptl, /* address of the corner %/
i * 10L, /* horizontal length */
i * 10L); /* vertical length *

GpiBeginArea, GpiEndArea

GpiCallSegmentMatrix

LONG GpiCallSegmentMatrix(hps, idSegment, cElements, pmatif, IType)

HPS hps;

LONG idSegment;
LONG cElements;
PMATRIXLF pmatlf;
LONG /Type;

/= presentation-space handle «/
/« segment identifier o/
/= number of matrix elements to examine »/
/« pointer to structure for matrix »/
/« transformation modifier »/

The GpiCallSegmentMatrix function draws the specified segment using an
instance transformation. The function combines the instance transformation
pointed to by pmatlf with the current model transformation, then draws the seg-
ment as if calling the GpiDrawSegment function. The combined transformation
applies only while the function draws the segment. GpiCallSegmentMatrix does
not modify the current model transformation.

34 GpiCallSegmentMatrix

Parameters hps Identifies the presentation space.

idSegment Specifies the segment to draw. This value must be greater than
Zero. '

cElements Specifies the number of matrix elements pointed to by pmatlf. It
can be any value from 0 through 9.

pmatlf Points to a MATRIXLF structure that contains the matrix for the
instance transformation. Although a transformation requires nine matrix ele-
ments, the function copies from the structure only the number of matrix ele-
ments specified by cElements. If cElements is less than nine, the function sup-
plies the remaining elements by substituting corresponding elements from the
identity matrix. The MATRIXLF structure has the following form:

typedef struct _MATRIXLF <{
FIXED £fxM11l;
FIXED £xM12;
LONG 1M13;
FIXED £xM21;
EIXED fxM22;

LONG 1M23;
LONG 1M31;
LONG 1M32;
LONG 1M33;

} MATRIXLE;

For a full description, see Chapter 4, “Types,vMacros, Structures.”

IType Specifies how to combine the instance transformation with the model
transformation. It can be one of the following values:

Value Meaning

TRANSFORM_ADD Adds the model transformation to the
instance transformation (MODEL *
INSTANCE).

TRANSFORM_PREEMPT Adds the instance transformation to the
model transformation (INSTANCE *
MODEL).

TRANSFORM_REPLACE Replaces the model transform with the

instance transformation.

Return Value The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs), The return value is GPI_ERROR if an error occurs.

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_CALLED_SEG_IS_CURRENT
PMERR_CALLED_SEG_NOT_FOUND
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME
PMERR_INV_TRANSFORM_TYPE
PMERR_SEG_CALL_RECURSIVE

Example This example calls the GpiCallSegmentMatrix function to draw a segment three
times. Each time the segment is drawn, the instance transformation doubles in
size. The result is three triangles with the last triangle twice the size of the
second, and the second twice the size of the first.

GpiCharString 35

POINTL ptlStart = { O, O }:
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };
MATRIXLF matlfInstance = { 1, O, 0, 0, 1, 0, O, O, 1 };

GpiOpenSegment (hps, 1L):; /* open the segment */
GpiMove (hps, &ptlStart); /* move to start point (0, O) */
GpiPolyLine(hps, 3L, ptlTriangle); /* draw the triangle */
GpiCloseSegment (hps) ; /* close the segment */

for (L = 0; 1 < 3; i++) (

*
* Draw the segment after adding the matrix to the model
* transformation.

*

GpiCallSegmentMatrix (hps, 1L, 9, &matlfInstance, TRANSFORM_ADD) ;
matlfInstance.fxM11l *= 2;
matlfInstance, fxM22 #*= 2;

}

See Also GpiDrawSegment

GpiCharString ,

LONG GpiCharString(hps, cchString, pchString)

HPS hps; /= presentation-space handle «/

LONG cchString; /= number of characters in string »/

PCH pchString; /« pointer to string to draw o/
The GpiCharString function draws a character string positioned at the current
position. After the function draws the string, it sets the current position to the
end of the character string.

Parameters hps Identifies the presentation space.
cchString Specifies the number of characters in the string pointed to by
DpchString.

DchString Points to the character string to be drawn.

Return Value - The return value is GPI_OK or GPI_HITS if the function is successful (it is '
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Example This example uses the GpiCharString function to draw the string “Hello”. The
GpiMove function moves the current position to (100,100) so that the string
starts there.

HPS hps;
POINTL ptlStart;

ptlStart.x = 100L;
ptlStart.y = 100L;

/* Start string at (100, 100). */
GpiMove (hps, &ptlStart);
/* Draw the S-character string. */

GpiCharString(hps, 5L, "Hello");

See Also GpiCharStringAt, GpiCharStringPos

36 GpiCharStringAt

GpiCHarStringAt .

LONG GpiCharStringAt(hps, pptiStart, cchString, pchString)

HPS hps; /= presentation-space handle /

PPOINTL pptiStart; /= pointer to structure for starting position »/

LONG cchString; /= number of characters in string s/

PCH pchString; /= pointer to string to draw «/
Thé GpiCharStringAt function draws a character string starting at the specified
position. After the function draws the string, it sets the current position to the
end of the character string.

Parameters hps Identifies the presentation space.

Return Value

Example

See Also

pptiStart Points to the POINTL structure that contains the starting position in
world coordinates. The POINTL structure has the following form:

typedef struct _POINTL {

LONG x:;
LONG vy;
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”
cchString Specifies the number of characters pointed to by pchString.
DpchString Points to the character string to be drawn. _

The return value is GPI_OK or GPI_HITS if the function is successful (it is

GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

The example uses the GpiCharStringAt function to draw the string “Hello” start-
ing at the position (100,100). It then uses the GpiMove and GpiCharString func-
tions to draw the same string at exactly the same position.

HPS hps;
POINTL ptlStart;

ptlStart.x = 100L;
ptlStart.y = 100L;

/* Draw the string "Hello" at (100, 100). */

. GpiCharStringAt (hps, &ptlStart, 5, "Hello"):;

/* These two calls are identical to the one above. */

GpiMove (hps, &ptlStart):
GpiCharString(hps, 5L, "Hello");

GpiCharString, GpiMove

B GpiCharStringPos

GpiCharStringPos

37

LONG GpiCharStringPos (hps, prcl, flOptions, cchString, pchString, adx)

HPS hps;
PRECTL prcl;
ULONG fIOptions;
LONG cchString;
PCH pchString;
PLONG adx;

Parameters

/~ presentation-space handle

=/

/« pointer to structure for rectangle coordinates «/

/» formatting flags o/
/« number of characters in string »/
/» pointer to string to draw o/
/« pointer to array of increment values »/

The GpiCharStringPos function draws a character string starting at the current
position and using one or more formatting options. The options direct the func-
tion to draw a background for the string, clip the string to the given rectangle, or

position the characters in the

string using distances given in an array. After

drawing the string, the function either leaves the current position at the end of
the string or resets it to the beginning of the string.

hps Identifies the presentation space.

prcl Points to a RECTL structure that contains the lower-left and upper-right
corners of a rectangle. The function draws the rectangle if the CHS_OPAQUE
option is given. It uses the rectangle to clip the string if the CHS_CLIP option is
given. Otherwise the rectangle is ignored. The RECTL structure has the follow-

ing form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop;
} RECTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”
fiOptions Specifies the formatting options. It can be one or more of the fol-

lowing values:
Value

Meaning

CHS_CLIP

CHS_LEAVEPOS

CHS_OPAQUE

CHS_VECTOR

All other values are reserved.

Clips the string to the rectangle, omitting any por-
tion of any character outside the rectangle. The
function clips the string regardless of whether
CHS_OPAQUIE is specified.

Resets the current position back to the start of the
string. If not given, GpiCharStringPos moves the
current position to the end of string.

Draws the rectangle whose lower-left and upper-
right corners are specified by prcl, then fills the
rectangle with the current background color. The
string is drawn after filling the rectangle.

Advances the current position after each character
is drawn by using the next value in the array adx.
The current character direction defines which
direction the current position is advanced.

cchString Specifies the number of characters in the string pointed to by

pchString.

pchString Points to the character string to be drawn.

38 GpiCharStringPos

Return Value

adx Points to an array of increment values. Each value is a 4-byte, signed
integer specifying the distance in world coordinates to advance the current posi-
tion after drawing a character. There must be one value for each character in the
string. The first element specifies the distance to advance after drawing the first
character, the second element specifies the distance after the second character,
and so on.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Comments If CHS_OPAQUIE is specified and the drawing mode is DM_RETAIN, Gpi-
CharStringPos uses the color mix mode BM_OVERPAINT to fill the rectangle.
In other drawing modes, the function uses the BM_LEAVEALONE. GpiChar-
StringPos draws the rectangle using the coordinates specified in prcl. It does not
use the start of the string to compute the rectangle’s location.

See Also GpiCharString, GpiCharStringAt, GpiCharStringPosAt

GpiCharStringPosAt

LONG GpiCharStringPosAt{ hps, ppt/Start, prcl, fiOptions, cchString, pchString, adx)

HPS hps; /« presentation-space handle =/

PPOINTL pptiStart; /« pointer to structure for starting position «/

PRECTL prcl; /« pointer to structure for rectangle coordinates »/

ULONG fIOptions; /« formatting flags ' -/

LONG cchString; /« number of characters in string »/

PCH pchString; /= pointer to string to draw »/

PLONG adx; /= increment vector »/

Parameters

The GpiCharStringPosAt function draws a character string starting at the
specified position and using one or more formatting options. The options direct
the function to draw a background for the string, clip the string to the given rect-
angle, or position the characters in the string using distances given in an array.
After drawing the string, the function either leaves the current position at the
end of the string or resets it to the beginning of the string.

hps Identifies the presentation space.

pptlStart Points to a POINTL structure that contains the starting position in
world coordinates/ The POINTL structure has the following form:
typedef struct _POINTL {

LONG x;

LONG y:
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

prcl Points to a RECTL structure that contains the lower-left and upper-right
corners of a rectangle. The function draws the rectangle if the CHS_OPAQUE
option is given. It uses the rectangle to clip the string if the CHS_CLIP option is .
_give;l. Otherwise the rectangle is ignored. The RECTL structure has the follow-
ing form:

Return Value

Comments

See Also

GpiCharStringPosAt 39

typedef struct _RECTL {
LONG xLeft;
LONG yBottom:;
LONG xRight;
LONG yTop:
} RECTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

flOptions Specifies the formatting options. It can be one or more of the fol-
lowing values:

Value Meaning

CHS_CLIP Clips the string to the rectangle, omitting any por-
tion of any character outside the rectangle. The
function clips the string regardless of whether
CHS_OPAQUE is specified.

CHS_LEAVEPOS Resets the current position back to the start of the
string. If not given, GpiCharStringPos moves the
current position to the end of string.

CHS_OPAQUE Draws the rectangle whose the lower-left and
upper-right corners are specified by prcl, then fills
the rectangle with the current background color.
The string is drawn after filling the rectangle.

CHS_VECTOR Advances the current position after each character
is drawn by using the next value in the array adx.
The current character direction defines which
direction the current position is advanced.

All other values are reserved.

cchString Specifies the number of characters in the string pointed to by
pchString.

pchString Points to the character string to be drawn.

adx Points to an array of increment values. Each value is a 4-byte, signed
integer specifying the distance in world coordinates to advance the current posi-
tion after drawing a character. There must be one value for each character in the
string. The first element specifies the distance to advance after drawing the first
character, the second element specifies the distance after the second character,
and so on.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

If CHS_OPAQUE is specified and the drawing mode is DM_RETAIN, Gpi-
CharStringPosAt uses the color mix mode BM_OVERPAINT to fill the rect-
angle. In other drawing modes, the function uses the BM_LEAVEALONE.
GpiCharStringPos draws the rectangle using the coordinates specified in prcl.
It does not use the start of the string to compute the rectangle’s location.

GpiCharStringPos

40 GpiCloseFigure

GpiCloseFigure

BOOL GpiCloseFigure (hps) v
HPS hps; /« presentation-space handie »/

Parameters
- Return Value

The GpiCloseFigure function closes an open figure in a path bracket. A figure is
open unless it is explicitly closed by using the GpiCloseFigure function. A figure
can be open even if the current point and the starting point of the figure are
equal. :

hps Identifies the presentation space.

The return value is GPL_OK if the function is successful or GPI_ERROR if an
error occurred.

Example This example uses the GpiCloseFigure function to close a triangle drawn in a
path bracket. The triangle starts at (0,0). Since the current position just before
the GpiCloseFigure is (200,0), the function closes the triangle by drawing a line
from (200,0) to (0,0).

HPS hps;
POINTL ptlStart = { O, O };
POINTL ptlPoints{] = { 100, 100, 200, O };
GpiBeginPath (hps, 1L): /* start the path bracket */
GpiMove (hps, &ptlStart); * move to starting point */
GpiPolyLine (hps, 2L, ptlPoints); /* draw the three sides */
GpiCloseFigure (hps); /* close the triangle */
GpiEndPath (hps) ; /* end the path bracket */
See Also GpiBeginPath, GpiEndPath
GpiCloseSegment

BOOL GpiCloseSegment(hps)
HPS hps; /« presentation-space handie »/

Parameters
Return Value

Errors

Comments

The GpiCloseSegment function closes the current segment. Closing a segment
does not delete the segment or affect output on the current device. If any ele-
ment bracket is open, GpiCloseSegment automatically closes it.

hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_MODE_FOR_REOPEN_SEG
PMERR_PATH_INCOMPLETE

You must explicitly end any area or path bracket before cloéing the segment.
Failing to end an area or path may invalidate the segment.

GpiCloseSegment resets the current viewing transformation to identity.

GpiCombineRegion 41
Example This example uses the GpiCloseSegment function to close a segment. The
GpiOpenSegment opens the segment; GpiMove and GpiPolyLine draw a tri-
angle.
POINTL ptlStart = { O, O }:
POINTL ptlTriangle[] = { 100,100, 200,0, 0,0 }:
GpiOpenSegment (hps, 1L); . /* open the segment *
GpiMove (hps, &ptlStart); /* move to start point (0,0) */
GpiPolyLine (hps, 3L, ptlTriangle); /* draw trilangle */
GpiCloseSegment (hps) ; * close the segment */
See Also GpiOpenSegment
GpiCombineRegion
LONG GpiCombineRegion(hps, hrgnDest, hrgnSrc1, hrgnSrc2, cmdMode)
HPS hps; /= presentation-space handle »/

HRGN hrgnDest;
HRGN hrgnSrc1;
HRGN hrgnSrc2;
LONG cmdMode;

Parameters

/« handle of destination region o/
/» handle of first source region /
/« handle of second source region »/
/« combination method /

The GpiCombineRegion function combines two source regions identified by
hrgnSrcl and hrgnSrc2. The new region replaces the destination region identified
by hrgnDest. If one of the source regions is also given as the destination region,
the function replaces that source region with the new region, but does not affect
the other source region.

hps Identifies the presentation space. The presentation space must be associ-
ated with a device context.

hrgnDest Identifies the destination region.

hrgnSrcl Identifies the first source region.

hrgnSrc2 Identifies the second source region.

cmdMode Specifies how to combine the source regions. It can be one of the

following values:
Value

CRGN_AND
CRGN_COPY
CRGN_DIFF
CRGN_OR

CRGN_XOR

Creates the intersection of the source regions (hrgnSrcl
INTERSECT hrgnSrc2). The new region contains only the
parts of the source regions that are common.

Copies the first source region to the destination. The function
does not use the hrgnSrc2 parameter.

Creates the difference of the source region (hrgnSrcl
INTERSECT NOT hrgnSrc2). The new region contains the
parts of the first source region that are not also in the second
region.

Creates the union of the two source regions (hrgnSrcl UNION
hrgnSrc2). The new region contains all parts of both source
regions.

Creates the “symmetric” difference of the source regions
(hrgnSrcl - hrgnSrc2). The new region contains only the parts
of the source regions that are not common.

42 GpiCombineRegion

Return Value The return value is RGN_NULL, RGN_RECT, or REGN_COMPLEX if the
function is successful. The return value is RGN_ERROR if an error occurred.

Errors Use the WinGetLastError function to retrieve the error value, which may be the
following:
PMERR_INV_REGION_MIX
Comments The source and destination regions must belong to the same presentation space

or to presentation spaces associated with a similar device context.

Example This example uses the GpiCombineRegion function to create a complex region
consisting of everything in two rectangles except where they overlap.
HRGN hrgnl, hrgn2, hrgn3;
RECTL rclRectl = { O, O, 100, 100 }:
RECTL rclRect2 = { 50, 50, 200, 200 };
hrgnl = GpiCreateRegioh(hps, 1L, &rclRectl); /* create first region */
hrgn2 = GpiCreateRegion(hps, 1L, &rclRect2); /* create second region */
hrgn3 = GpiCreateRegion(hps, OL, NULL): /* create empty region */
/* Combine first and second reglons, replacing the empty region. */

. GpiCombineReglion (hrgn3, hrgnl, hrgn2, CRGN_XOR):

See Also GpiCreateRegion

GpiComment

BOOL GpiComment (hps, cbData, pbData)

HPS hps; /« presentation-space handle »/
LONG cbData; /« length of comment string /
PBYTE pbData; /» pointer to the comment string »/

The GpiComment function adds a comment string to a segment.

Parameters hps Identifies the presentation space.
c¢bData Specifies the length in bytes of the comment string pointed to by
pbData.

pbData Points to the comment string. The string must not be longer than 255
bytes.

Return Value The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Example This example uses the GpiComment function to comment the contents of a seg-
ment.

POINTL ptlStart = { O

, 0}
POINTL ptlTriangle(] = { 1

00, 100, 200, O, O, O }:

GpiOpenSegment (hps, OL); /* open the segment */
GpiComment (hps, 18L, "Start point (0, O)"):

GpiMove (hps, &ptlStart);

GpiComment (hps, 13L, "Draw triangle");

GpiPolyLine (hps, 3L, ptlTriangle): ;

GpiCloseSegment (hps) ; ’ /* close the segment */

See Also GpiCloseSegment, GpiMove, GpiOpenSegment, GpiPolyLine

GpiConvert 43

B GpiConvert
BOOL GpiConvert(hps, ISrc, ITarg, cPoints, aptl)

HPS hps; /= presentation-space handle /
LONG /Src; /= source coordinate space /
LONG /Targ; /= target coordinate space «f

LONG cPoints; /= number of coordinate pairs in structure »/
PPOINTL aptl; /= pointer to structure for coordinate pairs »/

The GpiConvert function converts one or more points from one coordinate
space to another. For each POINTL structure in the array pointed to by aptl, the
function replaces the original x- and y-coordinate values with the converted
values.

Parameters hps Identifies the presentation space.

ISrc Specifies the source coordinate space. It can be one of the following
values:

Value . Méaning

CVTC_DEFAULTPAGE Page space prior to default viewing transform

CVTC_DEVICE Device space
CVTC_MODEL Model space
CVTC_PAGE Page space after default viewing transform
CVTC_WORLD World coordinates
ITarg Specifies the target coordinate space. It can be one of the following
values:
Value Meaning

CVTC_DEFAULTPAGE Page space prior to default viewing transform

CVTC_DEVICE Device space

CVTC_MODEL Model space

CVTC_PAGE) Page space after default viewing transform
CVTC_WORLD World coordinates

cPoints Specifies the number of coordinate pairs pointed to by aptl.

aptl Points to an array of POINTL structures containing the coordinate pairs.
The POINTL structure has the following form:

typedef struct _POINTL {

LONG x;
LONG vy:
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

See Also GpiSetModelTransformMatrix, GpiSetPageViewport, GpiSetSegment-
TransformMatrix, GpiSetViewingTransformMatrix

44 GpiCopyMetaFile

GpiCopyMetaFile

HMF GpiCopyMetaFile (hmfSrc)
HMF hmfSrc; /= handle of source metafile »/

Parameters

Return Vaiue

The GpiCopyMetaFile function creates a copy of the metafile identified by
hmfSrc and returns a handle for the new metafile. The new metafile can be
edited or deleted without affecting the original metafile.

hmfSrc Identifies the source metafile. The source metafile must have been
loaded previously using the GpiLoadMetaFile function or created previously
using the DevOpenDC and DevCloseDC functions.

The return value is the handle of the new metafile if the function is successful,

or it is GPI_ERROR if an error occurred.

*/
*/

Example This example uses the GpiCopyMetaFile function to copy make a copy of the
metafile loaded using the GpiLoadMetaFile function.
HMF hmfl, hmf2;
GpiloadMetaFile (hmfl, "sample.met"); /* load the metafile from disk
hmf2 = GpiCopyMetaFile (hmfl); /* copy the metafile

See Also DevCloseDC, DevOpenDC, GpiLoadMetaFile

GpiCorrelateChain

LONG GpiCorrelateChain(hps, /Type, pptl, IMaxHits, IMaxDepth, alSegTag)

HPS hps; /« presentation-space handle »/

LONG /Type; /« segment type »/

PPOINTL pptl; /= pointer to structure for aperture center »f

LONG /MaxHits; /=~ maximum number of hits »/

LONG /MaxDepth;
PLONG alSegTag;

Parameters

/=« maximum number of segment/tag pairs to return »/
/« pointer to array of segment and tag identifiers «/

The GpiCorrelateChain function correlates the segment chain, identifying each
tagged primitive that intersects the current aperture, as set by the GpiSetPick-

ApertureSize function.

The GpiCorrelateChain function correlates a segment chain by searching for

each tagged primitive in each segment that lies completely or partially within the

aperture. Each instance of a tagged primitive in the aperture is called a “hit.”
The function records a hit by copying the identifier of the segment containing
the primitive (along with the identifier for its tag) to the array pointed to by

alSegTag. After searching all segments in the chain, GpiCorrelateChain returns

the number of hits it located.

hps Identifies the presentation space.

IType Specifies the type of segment to.correlate. It can be one of the following

values:

Return Value

Errors

Comments

See Also

GpiCorrelateChain 45

Value Meaning

PICKSEL_ALL Correlate all segments with nonzero identifiers
regardless of the detectability and visibility attri-
butes of the segments.

PICKSEL_VISIBLE Correlate visible and detectable segments with
nonzero identifiers.

pptl Points to the POINTL structure that contains the position (in presentation
page units) of the center of the aperture. The POINTL structure has the follow-
ing form:
typedef struct _POINTL {

LONG x;

LONG
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”
IMaxHits Specifies the maximum number of hits to record.

IMaxDepth Specifies the maximum number of segment/tag pairs to record for
each hit.

alSegTag Points to the array to receive the segment/tag pairs. The array must
be large enough to receive 8 X IMaxHits X IMaxDepth bytes.

The return value is the number of hits that occurred if the function is successful
or GPI_ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following;:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV_CORRELATE_DEPTH
PMERR_INV_CORRELATE_TYPE
PMERR_INV_MAX_HITS
PMERR_INV_MICROPS_FUNCTION
PMERR_PATH_INCOMPLETE

GpiCorrelateChain may record more than one segment for each hit. It first
records the segment containing the hit, then the segment that called the first seg-
ment, and so on until the function either records the original segment in this
chain or has recorded IMaxDepth segments. If the function finds less than /Max-
Depth segments for the hit, the function records zeros so that exactly IMaxDepth
records are copied for each hit. The function records all hits up to IMaxHits,
then continues to count the hits even though it no longer records them. The
return value specifies the complete number of hits, not just those recorded.

The function searches only segments that have nonzero identifiers. If the func-
tion encounters a segment with a zero identifier, it stops the search even if sub-
sequent segments in the chain have nonzero identifiers. During the search, the
function ignores primitives that do not have nonzero identifiers. The function
never records more than one hit for a tag in a segment even if that tag is used
with many primitives.

GpiCorrelateFrom, GpiCorrelateSegment, GpiSetPickApertureSize

46 GpiCorrelateFrom

GpiCorrelateFrom

LONG GpiCorrelateFrom{hps, idFirstSegment, idLastSegment, IType, pptl, IMaxHits, IMaxDepth, alSegTag)
HPS hps; /= presentation-space handle »/

LONG idFirstSegment; /= first segment to correlate /

LONG idLastSegment; /= last segment to correlate »/

LONG /Type; /= segment type »/

PPOINTL pptl; /= pointer to structure for aperture center »/

LONG /MaxHits; /= maximum number of hits /

LONG /MaxDepth;
PLONG alSegTag;

Parameters

/» maximum number of segment/tag pairs to return »/
/« pointer to array of segment and tag identifiers »/

The GpiCorrelateFrom function correlates a portion of the segment chain, iden-
tifying each tagged primitive that intersects the current aperture, as set by the
GpiSetPickApertureSize function.

The GpiCorrelateFrom function correlates a portion of the segment chain by
searching for each tagged primitive that lies completely or partially within the
aperture. Each instance of a tagged primitive in the aperture is called a “hit.”
The function records a hit by copying the identifier of the segment containing
the primitive (along with the identifier for its tag) to the array pointed to by
alSegTag. The function starts the search with the segment identified by idFirst-
Segment and includes chained and called segments up to, and including, the seg-
ment identified by idLastSegment. After searching these segments, Gpi-
CorrelateFrom returns the number of hits it located.

hps Identifies the presentation space.

idFirstSegment Specifies the first segment to correlate. This value must be
greater than zero.

idLastSegment Specifies the last segment to correlate. This value must be
greater than zero.

IType Specifies the type of segment to correlate. It can be one of the following
values:

Value Meaning

PICKSEL_ALL ‘ Correlate all segments with nonzero identifiers
regardless of the detectability and visibility attri-
butes of the segments.

PICKSEL_VISIBLE Correlate visible and detectable segments with
nonzero identifiers.

pptl Points to the POINTL structure that contains the position (in presentation
page units) of the center of the aperture. The POINTL structure has the follow-
ing form:
typedef struct _POINTL {

LONG x;

LONG y:
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”
IMaxHits Specifies the maximum number of hits to record.
IMaxDepth Specifies the maximum number of segment/tag pairs to record.

Return Value

Errors

Comments

See Also

GpiCorrelateSegment = 47

alSegTag Points to the array to receive the segment/tag pairs. The array must
be large enough to receive 8 X IMaxHits X [MaxDepth bytes.

The return value is the number of hits that occurred if the function is successful
or GPI_ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE _
PMERR_INV_CORRELATE_DEPTH
PMERR_INV_CORRELATE_TYPE
PMERR_INV_MAX_HITS
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME
PMERR_PATH_INCOMPLETE

GpiCorrelateFrom may record more than one segment for each hit. It first
records the segment containing the hit, then the segment that called the first seg-
ment, and so on until the function either records the original segment in this
chain or has recorded IMaxDepth segments. If the function finds less than IMax-
Depth segments for the hit, the function records zeros so that exactly IMaxDepth
records are copied for each hit. The function records all hits up to IMaxHits,
then continues to count the hits even though it no longer records them. The
return value specifies the complete number of hits, not just those recorded.

The function searches only segments that have nonzero identifiers. If the func-
tion encounters a segment with a zero identifier, it stops the search even if sub-
sequently called segments have nonzero identifiers. During the search, the func-
tion ignores primitives that do not have nonzero identifiers. The function never
records more than one hit for a tag in a segment even if that tag is used with
many primitives.

If the idFirstSegment parameter does not exist, or is not in the segment chain,
the function returns an error. If the segment specified by idLastSegment does not
exist, is not in the chain, or is chained before idFirstSegment, no error results
and the function continues to the end of the chain.

GpiCorrelateChain, GpiCorrelateSegment

GpiCorrelateSegment

HPS hps;

LONG idSegment;
LONG /Type;
PPOINTL pptl;

LONG GpiCorrelateSegment(hps, idSegment, IType, pptl, IMaxHits, IMaxDepth, alSegTag)
"/« presentation-space handle «/
/« segment to correlate »/
/» segment type »/
/« pointer to structure for aperture center N
/« maximum number of hits »f

LONG /MaxHits;
LONG /MaxDepth;
PLONG alSegTag;

/« maximum number of segment/tag pairs to return »/
/= pointer to array of segment and tag identifiers »/

The GpiCorrelateSegment function correlates the specified segment, identifying
each tagged primitive that intersects the current aperture, as set by the GpiSet-
PickApertureSize function.

48 GpiCorrelateSegment

Parameters

Return Value

Errors

The GpiCorrelateSegment function correlates a segment by searching for each
tagged primitive in the segment that lies completely or partially within the aper-
ture. Each instance of a tagged primitive in the aperture is called a “hit.” The
function records a hit by copying the identifier of the segment containing the -
primitive (along with the identifier for its tag) to the array pointed to by
alSegTag. The function also searches segments that are called by the specified
segment. After searching all segments, GpiCorrelateSegment returns the number
of hits it located.

hps Identifies the presentation space.

idSegment Specifies the segment to correlate. This value must be greater than
zero.

IType Specifies the type of segment to correlate. It can be one of the following
values:

Value Meaning

PICKSEL_ALL Correlate all segments with nonzero identifiers
regardless of the detectability and visibility attri-
butes of the segments.

PICKSEL_VISIBLE Correlate visible and detectable segments with
nonzero identifiers.

pptl Points to the POINTL structure that contains the position (in presentation
page units) of the center of the aperture. The POINTL structure has the follow-
ing form:
typedef struct _POINTL {

LONG x;

LONG
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”
IMaxHits Specifies the maximum number of hits to record.
IMaxDepth Specifies the maximum number of segment/tag pairs to record.

alSegTag Points to the array to receive the segment/tag pairs. The array must
be large enough to receive 8 X IMaxHits X IMaxDepth bytes.

The return value is the number of hits that occurred if the function is successful
or GPI_ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV_CORRELATE_DEPTH
PMERR_INV_CORRELATE_TYPE
PMERR_INV_MAX_HITS
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME
PMERR_PATH_INCOMPLETE

Comments

See Also

GpiCreateBitmap 49

GpiCorrelateSegment may record more than one segment for each hit. It first
records the segment containing the hit, then the segment that called the first seg-
ment, and so on until the function either records the original segment in this
chain or records IMaxDepth segments. If the function finds less than IMaxDepth
segments for the hit, the function records zeros so that exactly IMaxDepth
records are copied for each hit. The function records all hits up to IMaxHits,
then continues to count the hits even though it no longer records them. The
return value specifies the complete number of hits, not just those recorded.

The function searches only segments that have nonzero identifiers. If the func-
tion encounters a segment with a zero identifier, it stops the search even if sub-
sequently called segments have nonzero identifiers. During the search, the func-
tion ignores primitives that do not have nonzero identifiers. The function never
records more than one hit for a tag in a segment even if that tag is used with
many primitives.

GpiCorrelateChain, GpiCorrelateFrom

GpiCreateBitmap

HBITMAP GpiCreateBitmap (hps, pbmpFormat, flQptions, pbData, pbmiData)

HPS hps;

/+ presentation-space handle »/

PBITMAPINFOHEADER pbmpFormat; /= pointer to structure for format data «/

ULONG fIOptions;
PBYTE pbData;

/« options »/
/« pointer to buffer of image data »/

PBITMAPINFO pbmiData; /=« pointer to structure for color and format »/

Parameters

The GpiCreateBitmap function creates a bitmap and returns a bitmap handle
identifying the bitmap. The new bitmap has the width, height, and format
specified by fields of the structure pointed to by ppmpFormat. The flOptions
parameter specifies whether to initialize the bitmap color and image. If the
parameter is CBM_INIT, the function uses the bitmap image data pointed to by
pbData and the bitmap color data pointed to by pbmiData to initialize the bit-
map.ﬁIf CBML_INIT is not given, the bitmap’s initial image and color are
undefined. -

The bitmap handle can be used in subsequent functions that accept bitmap han-
dles. In most cases, the bitmap is set to a memory presentation space using the
GpiSetBitmap function, then copied to the screen or a printer using the Gpi-
BitBIt function.

hps Identifies the presentation space.

pbmpForfnat Points to the BITMAPINFOHEADER structure that contains
the bitmap format data. The BITMAPINFOHEADER structure has the following
form:

typedef struct _BITMAPINFOHEADER {
ULONG cbFix;
USHORT cx:;
USHORT cy:
USHORT cPlanes;
USHORT cBitCount;
} BITMAPINFOHEADER:

For a full description, see Chapter 4, “Types, Macros, Structures.”

50 GpiCreateBitmap

Return Value

Errors

Comments

flOptions Specifies whether to initialize the bitmap. It can one of the following
values:

Value Meaning

CBM_INIT Initializes the bitmap, using the bitmap image and
color data specified by the pbData and pbmiData
parameters.

0x0000 Does not initialize the bitmap.

pbData Points to the buffer that contains bitmap image data. The image data
defines the color of each pel in the bitmap. This parameter is ignored if
CBM_INIT is not given.

‘pbmiData Points to a BITMAPINFO structure that contains the bitmap for-
mat and color data. The format data is identical to the data pointed to by the
pbmpFormat parameter. The color data follows immediately after the format
data, and consists of two or more RGB color values. The exact number depends
on the bitmap format. This parameter is ignored if CBM_INIT is not given. The
BITMAPINFO structure has the following form:
typedef struct _BITMAPINFO {

ULONG cbFix;

USHORT cx;

USHORT cy;

USHORT cPlanes;

USHORT cBitCount;

RGB argbColor[1];
} BITMAPINFO;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value identifies the new bitmap if the function is successful, or is
GPL_ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_USAGE

The full number of bitmap formats depends on what the associated device sup-
ports. However, most devices support the following standard bitmap formats:

Format Description

Monochrome 1 bit per pel and 1 color plane
16-color 4 bits per pel and 1 color plane
256-color 8 bits per pel and 1 color plane
Full-color 24'bits per pel and 1 color plane

When initializing the bitmap, the bitmap color data must consist of an appropri-
ate number of RGB-color values. For monochrome format, it must have 2
values; for 16-color format, 16 values; and for 256-color format, 256 values. No
color values are required for the full-color format, since the image data for each
pel fully specifies the pel color.

When CBM_INIT is given, the function continues to copy data from the buffer
until the entire bitmap is initialized. The function expects each row of image
data to contain a multiple of 32 bits (4 bytes). Although the bitmap width does
not have to be a multiple of 32, the image data must be. Any extra bits at the
end of a row are ignored.

Example

See Also

GpiCreateLogColorTable 51

The new bitmap belongs to the device context associated with the given presen-
tation space. It can be set to any presentation space having the same device con-
text or having a compatible device context.

The following example loads a bitmap resource from memory and uses the Gpi-
CreateBitmap function to create the bitmap. This is similar to using the Gpi-
LoadBitmap function, except it gives the application the chance to modify the
bitmap image data before creating the bitmap.

SEL sel; /* selector for segment containing bitmap resource *
PBITMAPFILEHEADER pbfh; /* bitmap resource header information *
PBYTE pb; /* pointer to bitmap image data in resource *
HBITMAP hbm; /* bitmap handle *
DosCetResource (NULL, RT_BITMAP, 1, &sel); /* load bitmap resource #1 *
pbfh = MAKEP (sel, 0):; /* bitmap file header in resource *
pb = MAKEP (sel, pbfh- >offBits) /* image data starts at offBits *

/* make any changes to bitmap image data here */

hbm = GpiCreateBitmap (hps, /* presentation space */
& (pbfh->bmp) , /* bitmap information in file */
CBM_INIT, /* initialize the bitmap *
pdb, /* bitmap data */
& (pbfh->bmp)) ; /* bitmap information in file */

DosFreeSeg(sel) ; /* free bitmap resource */

DosFreeSeg, DosGetResource, GpiDeleteBitmap, GpiLoadBitmap, Gpi-
QueryDeviceBitmapFormats

GpiCreateLogColorTable

BOOL GpiCreateLogColorTable (hps, flOptions, IFormat, iStart, clTable, alTable)

HPS hps;

ULONG fIOptions;
LONG /Format;
LONG iStart;
LONG ciTable;
PLONG al/Table;

Parameters

/« presentation-space handle »/

/« options »/
/« format of entries »/
/= starting index »/

/=~ number of entries in table »/
/« pointer to array for table «/

The GpiCreateLogColorTable function creates a logical color table. The logical
color table has the format specified by /[Format, with the initial value of each
entry specified by the array alTable.

hps Identifies the presentation space.

flOptions Specifies whether the logical color table uses pure, realizable, or
default color values. It can be one of the following values:

Value Meaning

0x0000 Creates a logical color table having the entries
specified by alTable. The logical color table entries
map to existing-device colors in the physical palette
or to dithered colors if no matching device color is
in the palette. This means the table is not realized
and does not require pure colors.

’

52 GpiCreateLogColorTable

Value Meaning

LCOL_PURECOLOR Creates a logical color table whose entries map to
pure (nondithered) colors only. If not given, the
function creates a color table whose entries map to
dithered colors if the physical palette does not con-
tain matching device colors.

LCOL_REALIZABLE Creates a logical color table that can be realized by
using the GpiRealizeColorTable function. Until the
logical color table is realized, colors in the table
map to the existing device colors in the physical
palette. This option is useful only for devices that
permit realization of logical color tables.

LCOL_RESET Resets all entries in the logical color table to
default values before initializing the entries
specified by the alTable parameter. This option is
useful for quickly initializing all entries without
supplying initial values for every element in

alTable.
lFormat Specifies the logical color table format. It can be one of the following
values:
Value Meaning

LCOLF_CONSECRGB Creates a color table having consecutive entries.
The first entry has the index specified by iStarr.

LCOLF_INDRGB Creates a color table. The entries are not required
to be consecutive. The alTable array specifies both
the index and RGB color value for each entry.

LCOLF_RGB Enables direct RGB color mapping. Applications
use RGB values instead of color indexes to specify
the colors in subsequent drawing functions. .

iStart Specifies the color index of the first entry for a color table having
LCOLF_CONSECRGSB format. If LCOLF_CONSECRGSB is not given, this
parameter is ignored.

clTable Specifies the number of elements in the array alTable. If the format
LCOLF_INDRGSRB is given, this parameter must be an even number (that is,
two elements for each entry). If LCOL_RESET or LCOLF_RGB is given, this
parameter can be zero.

alTable Specifies the start address of the array that contains the color table
entries. The format depends on the value of IFormat, as follows:

Value Format

LCOLF_CONSECRGB Each element is a 4-byte RGB color value.

LCOLF_INDRGB) Each pair of elements contains a 4-byte color
index and a 4-byte RGB color value, in that
order.

LCOLF_RGB No elements required.

Return Value The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

GpiCreateLogFont 53

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:
PMERR_INV_COLOR_DATA
PMERR_INV_COLOR_FORMAT
PMERR_INV_COLOR_OPTIONS
Comments Although GpiCreateLogColorTable can create a realizable color table, it does
not realize the colors. Until the color table is realized by using the GpiRealize-
ColorTable function, the logical color table entries are mapped to the existing
colors in the physical palette. Realizing the logical color table causes the physical
palette colors to be replaced with the realized colors for the logical color table
entries.
The default physical palette contains at least the standard 16 PC colors (unless
this is not physically possible). If a device supports more than 16 colors, the
physical palette may have additional colors, but there is no guarantee that these
additional colors are the same on every device.
Example This example uses the GpiCreateLogColorTable function to create a logical
color table, using data from the previous logical color table:
ULONG alTable[16]; /* assume 16 entries */
/* retrieve the current table */
GpiQueryLogColorTable (hps, OL, OL, 16L, alTable):;
alTable[1l] = Ox000080; /* change the second entry to light blue */
GpiCreateLogColorTable (hps, /* presentation space */
OL, /* no speclal options */
LCOLE_CONSECRGB, /* consecutive RGB values */
OL, /* start with color index O */
16, /* 16 entries *
‘alTable) ; /* RGB color values */
See Also DevQueryCaps, GpiErase, GpiQueryColorData, GpiQueryLogColorTable,
GpiRealizeColorTable, GpiSetBitmapBits, WinSetSysColors
GpiCreateLogFont
LONG GpiCreateLogFont(hps, pchName, Icid, pfat)
HPS hps; /~ presentation-space handle o/
PSTR8 pchName; /= pointer to logical-font name /
LONG /cid; /= local identifier »/
PFATTRS pfat; /= pointer to structure for font attributes »/

The GpiCreateLogFont function creates a logical font. A logical font is a list of
font attributes, such as face name, average width, and maximum height, that an
application uses to request a physical font. A physical font is the bitmap or vec-
tor information the system uses to draw characters on a device. Applications
create logical fonts to specify the fonts they need, and the system maps the logi-
cal fonts to matching physical fonts.

GpiCreateLogFont creates a logical font using the font attributes specified in the
structure pointed to by the pfar parameter. Each logical font has a local identi-
fier and logical font name, specified by the Icid and pchName parameters, to
uniquely identify it. The local identifier can then be used in subsequent graphics
functions to identify the font.

54 GpiCreateLogFont

Parameters

Return Value

Errors

Comments

Example

Since a physical font that exactly matches the logical font may not be available,
the system usually maps the logical font to the closest matching physical font.
The system uses rules to map the font—for example, it chooses a font with a

_greater height if a font of the exact height is not available. An application can

force the system to choose a particular font by setting the value of the IMatch
field in the FATTRS structure to be that returned for the desired font by the
GpiQueryFonts function. After GpiCreateLogFont chooses the physical font,
this choice does not change for a particular logical font.

hps Identifies the presentation space.

pchName Points to an 8-character logical-font name. It can be NULL, if no
logical font name is desired.

lcid Specifies the local identifier that the application uses to refer to this font.
It must be in the range 1 through 254. It is an error if this parameter is already
in use to refer to a font or bitmap.

pfat Points to a FATTRS structure that will contain the attributes of the logical
font that is created. The FATTRS structure has the following form:

typedef struct _FATTRS {
USHORT wusRecordLength;
USHORT fsSelection;
LONG 1Match;
CHAR szFaceName [FACESIZE] ;
USHORT idRegistry:
USHORT usCodePage;
LONG 1MaxBaselineExt;
LONG l1AveCharWidth;
USHORT f£sType;
SHORT sQuality;
USHORT fsFontUse;

} FATIRS;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is 2 if a matching font is found, 1 if a matching font could not
be found, or zero if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_FONT_NOT_LOADED
PMERR_INV_FONT_ATTRS

To choose the system default font, set the face name to NULL and all other
attributes in the FATTR structure, except the code page, to zero.

To use a font, the application sets the font for the presentation space by specify-
ing the local identifier for the corresponding logical font with the GpiSetCharSet
function. Once a font is set, the system uses the font for subsequent text output.

This example uses the GpiCreateLogFont function to create a logical font with
the local identifier 1. The logical font has the face name “Courier” and requested
width and height of 12 pels. Once the font is created, the example sets the font
using the local identifier and displays a string in the font at the point (100,100).

See Also

GpiCreatePS

GpiCreatePS 55

USHORT 1i;

POINTL ptl = { 100, 100 };

FATTRS fat;

fat.usRecordLength = sizeof (FATTRS); /* set size of structure */
fat.fsSelection = 0; * use default selection */
fat.1lMatch = OL; /* do not force match */
fat.idRegistry = O; /* use default registry */
fat.usCodePage = 850; /* code page 850 */
fat.lMaxBaselineExt = 12L; /* requested font height is 12 pels */
fat.lAveCharWidth = 12L; /* requested font width is 12 pels */
fat.fsType = FATTR_TYPE_FIXED; /* fixed-spacing font */
fat.fsFontUse = FATTR_FONTUSE_NOMIX; /* do not mix with graphics *

)
/* copy Courier to szFacename field */

for (i1=0; fat.szFacename[i] = "Courier"[i]; i++);

GpiCreateLogFont (hps, /* presentation space *
NULL, /* do not use logical font name *
1L, /* local identifier */
&fat) ; /* structure with font attributes */

GpiSetCharSet (hps, 1L); /* set font for presentation space */

GpiCharStringAt (hps, &ptl, 5L, "Hello"); /* display a string *

GpiCharStringAt, GpiCreateLogFont, GpiQueryFonts, GpiSetCharSet

HPS GpiCreatePS (hab, hdc, psizl, flOptions)

HAB hab;
HDC hdc;
PSIZEL psiz/;
ULONG fIOptions;

Parameters

/= anchor-block handle »/
/« device-context handle «/
/~ pointer to structure for page size »/
/« presentation-space options »/

The GpiCreatePS function creates a presentation space. The presentation space
has the presentation type, page size, page unit, and storage format specified by
psizl and flOptions. The function also associates the device context specified by
hdc with the presentation space if a device context is given. The presentation
space, identified by the handle returned by GpiCreatePS, can be used in subse-
quent Gpi functions to draw to the associated device.

hab Identifies the anchor block.

hdc Identifies a device context. It is required only if the GPIA_ASSOC
option is given in flOptions. It must be a handle to a device context if the
GPIT_MICRO option is given. Otherwise, it can be NULL.

psizl Points to a SIZEL structure that contains the width and height of the
presentation page. The width and height can be zero if the GPIA_ASSOC
option is given. The width and height must be non-zero if the PU_ARBITRARY
option is given. The SIZEL structure has the following form:
typedef struct _SIZEL {

LONG cx;

LONG cy:;
} SIZEL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

flOptions Specifies the presentation-space options. The options define the
page unit, storage format, and presentation type for the presentation space, as

56 GpiCreatePS

well as specifying whether to associate a device context with the new presenta-
tion space. The flOptions parameter must include exactly one of the following
page unit options combined with no more than one each of the following storage
format, presentation type, and association options:

Page unit Meaning

PU_ARBITRARY Sets units initially to pels but permits the units to
be modified later using the GpiSetPageViewport
function.

PU_HIENGLISH ~ Sets units to 0.001 inch.

PU_HIMETRIC Sets units to 0.01 millimeter.

PU_LOENGLISH Sets units to 0.01 inch.

PU_LOMETRIC Sets units to 0.1 millimeter.

PU_PELS Sets units to pels.

PU_TWIPS Sets units to 1/1440 inch (1/20 point).

Storage format Meaning

GPIF_DEFAULT Stores coordinates as 2-byte integers.

GPIF_DEFAULT is the default if no storage for-
mat is given.

GPIF_LONG Stores coordinates as 4-byte integers.
GPIF_SHORT Stores coordinates as 2-byte integers.

Presentation type Meaning

GPIT_MICRO Creates a micro presentation space. The presenta-

tion space must be associated with a screen device
context. The GPIA_ASSOC option and a device
context must also be given.

GPIT_NORMAL Creates a normal presentation space. The presenta-
tion space can be associated with any device con-
text and used with retained graphics. If a
presentation-space type is not given, the default is
GPIT_NORMAL.

Association Meaning

GPIA_ASSOC Associates the device context specified by hdc with
the new presentation space. If hdc identifies a
memory device context, GPIT_MICRO must be set
or the system will issue a warning.

GPIA_NOASSOC Creates presentation space without associating a
device context. GPIA_NOASSOC is the default if
an association option is not given.

Return Value The return value is the handle of the presentation space if the function is suc-
; cessful or GPI_ERROR if an error occurred.

Errors }Jie the WinGetLastError function to retrieve the error value, which may be the
ollowing:

PMERR_INV_OR_INCOMPAT_OPTIONS

GpiCreateRegion 57

Comments The presentation type can be normal or micro. Normal presentation spaces can
be associated with any device context and can be used for retained graphics.
Micro presentation spaces can be associated with any device, but only when
they are created. They can never be reassociated. The GPIA_ASSOC and
GPIA_NOASSOC options specify whether the new presentation space is to be
associated with the device context identified by hdc. If not associated, the
GpiAssociate function must be used to associate a device context. A presenta-
tion space can not be used without an associated device.

The page unit specifies the unit of measure used to draw to the device. For
example, if the page unit is pels, a line 100 units long in world space coordinates
is 100 pels long on the device.

The presentation page size specifies the width and height of the presentation
page. The presentation page and page viewport define how points in the presen-
tation page space are mapped to the pels in the device space. This is important
for programs that need to change the page unit without recreating the presenta-
tion space.

The storage format specifies the internal format for coordinate values stored in
the segments. This is important for applications that edit segments.

Example This example uses the GpiCreateP$S function to create a micro presentation
space for a memory device context. The function associates the presentation
space with the device context and sets the page units to pels. By default, the
presentation space is a normal presentation space that uses local storage format.

HDC hdc;

HPS hps;

SIZEL sizl = { O, O };- /* use same page size as device */
DEVOPENSTRUC dop;

dop .pszLogAddress
dop.pszDriverName
dop.pdriv = NULL;
dop.pszDataType = NULL;

NULL;
(PS2) "DISPLAY";

/* Create the memory device context. */
hdc = DevOpenDC (hab, OD_MEMORY, "#*", 4L, &dop, NULL);
/* Create the presentation and associate the memory device context. */

hps = GpiCreatePS (hab, hdc, &sizl, PU_PELS | GPIT_MICRO | GPIA_ASSOC):;

See Also GpiDestroyPS, GpiSetPageViewport
GpiCreateRegion

HRGN GpiCreateRegion(hps, crcl, prcl)

HPS hps; /= presentation-space handle »f

LONG crcl; /~ number of rectangles «/

PRECTL prcl; /= pointer to structure for rectangles »/

The GpiCreateRegion function creates a region for the device associated with
the specified presentation space. The region is the union of the rectangles
specified by the prcl parameter.

Parameters hps Identifies the presentation space.

crcl Specifies the number of rectangles specified in the prcl parameter. If the
crcl parameter is equal to zero, an empty region is created, and prcl is ignored.

58 GpiCreateRegion

prcl Points to an array of RECTL structures. The RECTL structure has the
following form:
typedef sfruct ~RECTL {
LONG xLeft:
LONG yBottom;
LONG xRight;
LONG yTop;
} RECTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value The return value is a handle to the region if the function is successful or zero if
an error occurred. It is an error if this function is issued when there is no device
context associated with the presentation space.

Example This example uses the GpiCreateRegion function to create a region con51stmg of
the union of three rectangles:
HRGN hrgn; /* handle for region */
RECTL arc1[3] = { 100, 100, 200, 200, /* 1st rectangle
150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle C k)
hrgn = GpiCreateRegion (hps, /* presentation space */
, /* three rectangles */
arcl); /* pointer to array of rectangles */
See Also GpiCombineRegion, GpiDestroyRegion
GpiDeleteBitmap

BOOL GpiDeleteBitmap(hbm)
HBITMAP hbm; /= bitmap handle »/

The GpiDeleteBitmap function deletes the bitmap specified by kbm.
Parameters hbm Xdentifies the bitmap to delete.

Return Value The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Errors Use the WinGetLastError function to retrieve the error value, which may be the
‘ ‘ following:

PMERR_BITMAP_IS_SELECTED

Example This example uses the GplDeleteBltmap function to delete a bltmap The
GpiSetBitmap function releases the bitmap from the presentation space before
deleting it. This is needed only if the bitmap is set in the presentation space.

HBITMAP hbm, hbmPrevious;

hbm = GpiLoadBitmap (hps, NULL, 1, OL, OL); /* load the bitmap */
hbmPrevious = GpiSetBitmap (hps, hbm); /* set bitmap for PS */

/* use GpiBitBlt to display bitmap */

GpiSetBitmap (hps, hbmPrevious); /* release bitmap from PS */
GpiDeleteBitmap (hbm) ; /* delete the bitmap *
See Also GpiCreateBitmap, GpiLoadBitmap, GpiQueryDeviceBitmapFormats, GpiSet-

Bitmap

GpiDeleteElementRange 59

B GpiDeleteElement

BOOL GpiDeleteElement(hps)
HPS hps; /» presentation-space handle »/

Parameters
Return Value

Errors

Example

See Also

The GpiDeleteElement function deletes an element from the currently open seg-
ment. The function deletes the element pointed to by the element pointer, then
moves the element pointer to the preceding element (if any). The segment con-
taining the element must be open and the drawing mode must be DM_RETAIN.

GpiDeleteElement cannot be used in an element bracket.
hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MICROPS_FUNCTION

This example uses the GpiDeleteElement function to delete the third element
from the previously created segment 2:

GpiOpenSegment (hps, 2L):; /* open segment #2 */
GpiSetElementPointer (hps, 3L): /* move to third element */
GpiDeleteElement (hps) ; /* delete element *x/
GpiCloseSegment (hps) ; /* close the segment */

GpiBeginElement, GpiEndElement, GpiQueryElement, GpiQueryElement-
Pointer, GpiSetElementPointer

B GpiDeleteElementRange

BOOL GpiDeleteElementRange (hps, idFirstElement, idLastElement)

HPS hps;
LONG idFirstElement;
LONG idLastElement;

Parameters

/« presentation-space handle »/
/« first element o/
/= last element »/

The GpiDeleteElementRange function deletes one or more elements from the
currently open segment. The function deletes all elements between and including
the elements specified by idFirstElement and idLastElement, then moves the ele-
ment pointer to the preceding element (if any). The function rounds idFirst-
Element or idLastElement to a valid element-pointer position if the given posi-
tion does not point to an element. The segment containing the element must be
open and the drawing mode must be DM_RETAIN.

GpiDeleteElementRange cannot be used in an element bracket.

hps Identifies the presentation space.

idFirstElement Specifies the element-pointer position of the first element to
delete.

idLastElement Specifies the element-pointer position of the last element to
delete.

60 GpiDeleteElementRange

Return Value

Errors

Example

See Also

The return value is GPI_OK if the function .is successful or GPI_ERROR if an
error occurred. -

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MICROPS_FUNCTION

This example uses the GpiDeleteElementRange function to delete the second
through fifth elements in the previously created segment 2:

GpiOpenSegment (hps, 2L); /* open segment # 2 *
GpiDeleteElementRange(hps, 2L, 5L); /* delete elements 2 through 5 */
GpiCloseSegment (hps) ; /* close the segment

GpiOffsetElementPointer, GpiQueryElementPointer, GpiSetElementPointer

GpiDeleteElementsBetweenLabels

BOOL GpiDeleteElementsBetweenLabels(hps, idFirstLabel, idLastLabel)

HPS hps;

LONG idFirstLabel;
LONG idLastLabel;

Parameters

Return Value

Errors

Example

See Also

/« presentation-space handle »/
/« label of first element »/
/« label of last element =/

The GpiDeleteElementsBetweenLabels function deletes one or more elements
from the currently open segment. The function deletes all elements between but
not including the elements having the labels specified by the idFirstLabel and
idLastLabel parameters, then moves the element pointer to the element preced-
ing the deleted elements (if any). If either label cannot be found between the
current element-pointer position and the end of the segment, the function
deletes no elements and returns an error value. The segment containing the ele-
ment must be open and the drawing mode must be DM_RETAIN.

GpiDeleteElementBetweenLabels cannot be used in an element bracket.

hps Identifies the presentation space.
idFirstLabel Specifies the label that marks the start of the elements to delete.
idLastLabel Specifies the label that marks the end of the -elements to delete.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_MICROPS_FUNCTION
PMERR_LABEL_NOT_FOUND

This example uses the GpiDeleteElementsBetweenLabels function to delete the
elements between but not including the elements having the labels 1 and 2:
GpiOpenSegment (hps, 2L); /* open segment #2 */

/* delete elements between 1 and 2 */

GpiDeleteElementsBetweenLabels (hps, 1L, 2L);
GpiCloseSegment (hps) ; /* close the segment */

GpiLabel, GpiSetElementPointerAtLabel

GpiDeleteSegment 61

M GpiDeleteMetaFile

BOOL GpiDeleteMetaFile (hmf)
HMF hmf; /= metafile handle »/

Parameters
Return Value

See Also

The GpiDeleteMetaFile function deletes the metafile specified by ~mf.
hmf Identifies the metafile.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

DevCloseDC, DevOpenDC, GpiLoadMetaFile

B GpiDeleteSegment

BOOL GpiDeleteSegment(hps, idSegment)

HPS hps;
LONG idSegment;

Parameters

Return Value

Errors

Example

See Also

/« presentation-space handle «/
/» identifier of segment to delete »/

The GpiDeleteSegment function deletes the segment specified by idSegment. If
the segment is open, the function automatically closes the segment before delet-
ing it. If the segment is in the picture chain, the function removes it from the
chain.

This function deletes only segments created using the GpiOpenSegment func-
tion.

hps Identifies the presentation space.

idSegment Specifies the segment to delete; it must be greater than zero.

The return value is TRUE if the function is successful or FALSE if an error
occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME
This example uses the GpiDeleteSegment function to delete segment 4:

POINTL ptlStart = { O, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };

GpiOpenSegment (hps, 4L); /* open the segment *

GpiMove (hps, &ptlStart); /* move to start point (O, 0) */
GpiPolyLine (hps, 3L, ptlTriangle); /* draw triangle x/
GpiCloseSegment (hps) ; /* close the segment */
GpiDéleteSegment (hps, 4L); /* delete segment #4 */

GpiCloseSegment, GpiDeleteSegments, GpiOpenSegment, GpiQuerySegment-
Names

62 GpiDeleteSegments

GpiDeleteSegments

BOOL GpiDeleteSegments (hps, idFirstSegment, idLastSegment)

HPS hps;

/= presentation-space handle »/

LONG idFirstSegment; /= identifier of first segment «/
LONG idLastSegment; /« identifier of last segment «/

Parameters

Return Value

Errors

Example

See Also

GpiDeleteSetld

The GpiDeleteSegments function deletes the segments between and including
the segments specified by the idFirstSegment and idLastSegment parameters. If
idFirstSegment and idLastSegment are equal, the function deletes only that seg-
ment. If idFirstSegment is greater than idLastSegment, the function deletes only
the segment specified by idFirstSegment. If any of the segments is open, the
function closes the segment before deleting it. If any of the segments is in the
picture chain, the function removes the segment from the chain.

This function deletes only segments created using the GpiOpenSegment func-
tion.
hps Identifies the presentation space.

idFirstSegment Specifies the identifier of the first segment to delete. This
parameter must be greater than zero.

idLastSegment Specifies the identifier of the last segment to delete. This
parameter must be greater than zero.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME

This example uses the GpiDeleteSegments function to delete segments 4
through 6:

GpiDeleteSegments (hps, 4L, 6L): /* delete segments 4 through 6 */

GpiCloseSegment, GpiDeleteSegment, GpiOpenSegment, GpiQuerySegment-
Names

BOOL GpiDeleteSetld(hps, Icid)
HPS hps; /« presentation-space handle =/
LONG /cid; /= local identifier for font or bitmap »/

The GpiDeleteSetId function deletes a logical font or removes the tag from a
tagged bitmap, depending on the object identified by local identifier Icid. If the
object is a logical font, the function deletes it, making it no longer available for
use. If the object is a bitmap, the function removes the tag, but the bitmap han-
dle remains valid. In either case, the function frees the local identifier for use
with another object.

Parameters

Return Value

Example

See Also

GpiDestroyPS

GpiDestroyPS 63

hps Identifies the presentation space.

Icid Specifies the local identifier for the object. If this parameter is set to
LCID_ALL, the function deletes all logical fonts and removes the tags from all
tagged bitmaps.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

This example uses the GpiDeleteSetld function to delete a logical font. The
GpiSetCharSet function is required only if the logical font is the current font for
the presentation space.

FATTRS fat;
/* create and set the font */

GpiCreateLogFont (hps, NULL, 1L, &fat):
GpiSetCharSet (hps, 1L);

GpiSétCharSet(hps, OoL) ; /* release the font before deleting */
GpiDeleteSetlId (hps, 1L); /* delete the logical font-

GpiSetBitmapld, GpiSetCharSet

BOOL GpiDestroyPS(hps)
HPS hps; /» presentation-space handle «/

Parameters

Return Value

Example

See Also

The GpiDestroyPS function destroys the presentation space and releases all
resources owned by the presentation space. This function should only be used to
destroy presentation spaces created by the GpiCreatePS function.

hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

This example uses the GpiDestroyPS function to destroy the presentation space
associated with a memory device context:

HDC hdc;

HPS hps;

SIZEL page = { O, O };

/* create the memory device context and presentation space */

hdc = DevOpenDC (hab, OD_MEMORY, "#*", OL, NULL, NULL):
hps = GpiCreatePS (hab, hdc, &page, PU_PELS | GPIT_MICRO | GPIA_ASSOC);

GpiDestroyPS (hps) ; /* destroy the presentation space */
DevCloseDC (hdc) ; /* close the device context */

GpiCreatePS

64 GpiDestroyRegion

GpiDestroyRegion

BOOL GpiDestroyRegion(hps, hrgn)
HPS hps; /= presentation-space handle »/
HRGN hrgn; /~ handle of region to destroy »/

Parameters

Return Value

Example

See Also

GpiDrawChain

The GpiDestroyRegion function destroys the region specified by hrgn. The func-
tion destroys the region only if the device context containing the region is associ-
ated with the given presentation space.
hps Identifies the presentation space.
hrgn 1dentifies the region to destroy.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

This example uses the GpiDestroyRegion function to destroy a region after
drawing a complex figure:

HRGN hrgn;
RECTL arcl[3] = { 10, 110, 20, 20, 15, 15, 25, 25, 20, 20, 30, 30 };

hrgn = GpiCreateRegion(hps, 3L, arcl); /* use 3 rectangles */

GpiPaintRegion (hps, hrgn): /* paint the region */
GpiDestroyRegion (hps, hrgn):; /* destroy the region */

GpiCreateRegion

BOOL GpiDrawChain(hps)
HPS hps; /« presentation-space handle »/

Parameters
Return Value

Errors

See Also

The GpiDrawChain function draws the picture chain. The function draws all seg-
ments in the picture chain, including called segments. GpiDrawChain draws the
segments using the current draw controls (except correlation control), as set by
the GpiSetDrawControl function. The function does not affect drawing modes or
open segments.

The function cannot be used in an area, path, or element bracket.
hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMFPLETE
PMERR_INV_MICROPS_FUNCTION
PMERR_PATH_INCOMPLETE
PMERR_STOP_DRAW_OCCURRED

GpiCloseSegment, GpiDrawDynamics, GpiDrawFrom, GpiDrawSegment, Gpi-
QuerySegmentNames, GpiSetDrawControl

GpiDrawFrom 65

M GpiDrawDynamics

BOOL GpiDrawDynamics (hps)
HPS hps; /« presentation-space handle »/

The GpiDrawDynamics function draws the dynamic segments in the picture
chain. The function draws all dynamic segments unless a previous call to the
GpiRemoveDynamics function restricts the drawing to a selected range. The
function draws the segments using the current draw controls (except correlation
control), as set by the GpiSetDrawControl function.

Parameters hps Identifies the presentation space.

Return Value The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_INV_MICROPS_FUNCTION
PMERR_PATH_INCOMPLETE
PMERR_STOP_DRAW_OCCURRED

See Also GpiCloseSegment, GpiDrawChain, GpiDrawFrom, GpiDrawSegment, Gpi-
QuerySegmentNames, GpiRemoveDynamics, GpiSetDrawControl

u GpiDrawFArom

BOOL GpiDrawFrom(hps, idFirstSegment, idLastSegment)
HPS hps; /» presentation-space handle »/
LONG idFirstSegment; /« first chain segment to draw »/
LONG idLastSegment; /= last chain segment to draw »/

The GpiDrawFrom function draws one or more segments in the picture chain.
The function draws all chained and called segments between and including the
segments identified by the idFirstSegment and idLastSegment parameters.
Although idFirstSegment must identify an existing segment, idLastSegment need
not. If idLastSegment does not specify an existing segment, the function draws to
the end of the picture chain.

GpiDrawFrom draws the segments using the current draw controls (except corre-
lation control), as set by the GpiSetDrawControl function. The function does
not affect drawing modes or open segments. Also, GpiDrawFrom cannot be
used in an area, path, or element bracket.

Parameters hps Identifies the presentation space.

idFirstSegment Specifies the identifier of the first segment to draw. This
parameter must be greater than zero.

idLastSegment Specifies the identifier of the last segment to draw. This
parameter must be greater than zero. .

66 GpiDrawFrom

Return Value

Errors

Example

See Also

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME
PMERR_PATH_INCOMPLETE
PMERR_STOP_DRAW_OCCURRED

This example uses the GpiDrawFrom function to draw all segments in the pic-
ture chain between and including the segments 1 and 4:
GpiDrawEFrom(hps, 1L, 4L);

GpiCloseSegment, GpiDrawChain, GpiDrawDynamics, GpiDrawSegment,
GpiQuerySegmentNames, GpiSetDrawControl

GpiDrawSegment

BOOL GpiDrawSegment (hps, idSegment).

HPS hps;
LONG idSegment;

Parameters

Return Value

Errors

/« presentation-space handle /
/« identifier of segment to draw »/

The GpiDrawSegment function draws the specified segment. The function draws
the segments using the current draw controls (except correlation control), as set
by the GpiSetDrawControl function. The function does not affect drawing
modes or open segments.

GpiDrawSegment cannot be used in an area, path, or element bracket.

hps . Identifies the presentation space.

idSegment Identifies the segment to draw. This parameter must be greater
than zero.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred. o

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_NAME
PMERR_PATH_INCOMPLETE
PMERR_STOP_DRAW_OCCURRED

Example

See Also

GpiElement

GpiElement 67

This example uses the GpiDrawSegment function to draw segment 4:

POINTL ptlStart = { O, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O }:

GpiOpenSegment (hps, 4L); /* open the segment */
GpiMove (hps, &ptlStart); /* move to start point (0, 0) */
GpiPolyLine (hps, 3L, ptlTriangle): /* draw triangle */
GpiCloseSegment (hps) ; /* close the segment */

GpiDrawSegment (hps, 4L): /* draw segment #4 */

GpiCloseSegment, GpiDrawChain, GpiDrawDynamics, GpiDrawFrom, Gpi-
QuerySegmentNames, GpiSetDrawControl

LONG GpiElement(hps, IType, psz, cb, pb)

HPS hps;
LONG /Type;
PSZ psz;
LONG cb;
PBYTE pb;

Parameters

Return Value

Errors

/« presentation-space handle »/
/« element type o
/~ pointer to element descriptor =/
/« length in bytes of buffer for graphics orders «/
/« pointer to buffer for graphics orders o

The GpiElement function draws an element. The element consists of one or
more graphics orders in the buffer pointed to by pb. The function executes each
order as if it were the corresponding Gpi function.

The function adds the element to the current open segment if the drawing mode
is DM_RETAIN or DM_DRAWANDRETAIN. Otherwise, it just draws the
element. The element must not contain graphics orders for an element bracket.
Similarly, the function cannot be used in an element bracket.

The function sets the type and descriptor for the element to the values given by
{Type and psz. The type and descriptor are a useful way of uniquely identifying
the element when it is added to a segment. The type and descriptor can be
retrieved at any time by using the GpiQueryElementType function.

hps Identifies the presentation space.

IType Specifies the integer value to use for the element type.

psz Points to the null-terminated string to use for the element descriptor.
cb Specifies the length of graphics order data for the element.

pb Points to the buffer that contains the graphics orders for the element. The
buffer must not exceed 63K.

The return value is GPI_OK or GPI_HITS if the function is successful. (It is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs.) The return value is GPI_ERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_DATA_TOO_LONG
PMERR_INV_LENGTH ‘
PMERR_INV_MICROPS_FUNCTION

68 GpiElement

Comments

See Also

GpiEndArea

GpiElement does not convert coordinates. This may affect drawing the element

if the format for the coordinates in the graphics orders is not the correct format

for the presentation space.

GpiBeginElement, GpiDeleteElement, GpiEndElement, GpiQueryElement, Gpi-
QueryElementPointer, GpiQueryElementType, GpiSetElementPointer

LONG GpiEndArea(hps)
HPS hps; /« presentation-space handlg «/

Parameters

Return Value

Example

See Also

GpiEndElement

The GpiEndArea function ends an area bracket—that is, it ends the sequence of
functions (starting with the GpiBeginArea function) that define the outline of an
area. The function automatically closes any open figure in the area, if necessary,
by drawing a line from the current position to the starting point of the figure,
then draws the area using the filling mode specified by the GpiBeginArea func-
tion that started the area bracket.

The GpiEndArea function does not change the current position unless it must
draw a line to close a figure in the area. In this case the new position is the last

point in the line.

hps Identifies the presentation space.

The return value is GPI_OK or GPI_HITS if the function is successful. (It is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs.) The return value is GPI_ERROR if an error occurs.

This example uses the GpiEndArea function to end an area bracket. The func-
tion draws the area (a triangle) by filling the outline with the current fill pattern.

POINTL ptlStart = { O, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };

GpiBeginArea (hps, BA_NOBOUNDARY | BA_ALTERNATE) ;
GpiMove (hps, &ptlStart);

GpiPolyLine (hps, 3L, ptlTriangle); ’
GpiEndArea (hps) ;

GpiBeginArea

BOOL GpiEndElement(hps)
HPS hps; /= presentation-space handle «/

The GpiEndElement function ends an element bracket—that is, it ends the

- sequence of functions (starting with the GpiBeginElement function) that define

the contents of an element. The GpiEndElement function may only be used
while creating a segment.

Parameters
Return Value

Errors

Example

See Also

GpiEndPath

GpiEndPath 69

hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MICROPS_FUNCTION

This example uses the GpiEndElement function to end an element bracket:

POINTL ptlStart = { 0, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };

GpiBeginElement (hps, 1L, "Triangle"); /* begin the element bracket *
GpiMove (hps, &ptlStart):; * move to start point (O, O) *
GpiPolyLine (hps, 3L, ptlTriangle); /* draw triangle *
GpiEndElement (hps) ; /* end element bracket *

GpiBeginElement, GpiDeleteElement, GpiQueryElement, GpiQueryElement-
Pointer, GpiSetElementPointer

BOOL GpiEndPath(hps)
HPS hps; /~ presentation-space handle »/

Parameters
Return Value

Example

See Also

The GpiEndPath function ends a path bracket—that is, it ends the sequence of
functions (starting with the GpiBeginPath function) that define the outline of a
path.

hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

This example uses the GpiEndPath function to end a path bracket. When the
path bracket is ended, a subsequent call to the GpiFillPath function draws and
fills the path.

POINTL ptlStart = { O, O }:
POINTL ptlTriangle(] = { 100, 100, 200, O };

GpiBeginPath (hps, 1L); /* start the path bracket */
GpiMove (hps, &ptlStart); /* move to starting point */
GpiPolyLine (hps, 2L, ptlTriangle); /* draw the three sides */
GpiCloseFigure (hps); /* close the triangle */
GpiEndPath (hps); /* end the path bracket */

GpiFillPath (hps, 1L, FPATH_ALTERNATE); /* draw and £fill the path */

GpiBeginPath

70 GpiEqualRegion

GpiEqualRegion

LONG GpiEqualRegion(hps, hrgn1, hrgn2)

HPS hps;
HRGN hrgnt;
HRGN hrgn2;

Parameters

Return Value

See Also

GpiErase

/= presentation-space handie »/
/« handle of the first region »/
/« handle of the second region »/

The GpiEqualRegion function checks two regions for equality. Regions are
equal if the difference between the two regions is an empty region. The function
compares the regions only if the device context containing the regions is associ-
ated with the given presentation space.

hps Identifies the presentation space.

hrgnl Identifies the first region.

hrgn2 Identifies the second region.

The return value is EQRGN_NOTEQUAL or EQRGN_EQUAL if the function
is successful, or EQRGN_ERROR if an error occurred.

WinEqualRect

BOOL GpiErase (hps)
HPS hps; /« presentation-space handle »/

Parameters
Return Value

Example

See Also

The GpiErase function clears the display associated with the specified presenta-
tion space. The function clears the display by filling it with the color specified by
the CLR_LBACKGROUND color index for the presentation space. The function
clips the output to the current clipping region, graphics field, and visual region
(if any), but does not clip to the current viewing limits and clipping path. Also,
the function ignores the the current draw controls (as set by the GpiSetDraw-
Control function).

hps Identifies the presentation space.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

This example uses the GpiErase function to clear the display before drawing:
GpiErase (hps) ; /* clear the display */

GpiMove (hps, &ptlStart); /* draw a triangle */
GpiPolyLine (hps, 3L, ptlTriangle);

GpiCloseSegment, GpiSetColor, GpiSetDrawControl

GpiErrorSegmentData 71

M GpiErrorSegmentData

LONG GpiErrorSegmentData(hps, pidSegment, p/Context)

HPS hps;
PLONG pidSegment;
PLONG p/Context;

Parameters

Return Value

Errors

See Also

/« presentation-space handle »/
/= pointer to segment identifier /
/= pointer to variable for error type »/

The GpiErrorSegmentData function returns information about the last error that
occurred while drawing a segment. The function copies the segment identifier
and error type to the variables pointed to by pidSegment and plContext, then
returns either a byte offset or an element pointer position, depending on the type
of error.

hps Identifies the presentation space.

pidSegment Points to a variable to receive the identifier of the segment caus-
ing the error.

plContext Points to a variable to receive the error type. It can be one of the
following values:

Value Meaning

GPIE_DATA A graphics order in the buffer for the GpiPutData
function caused an error. The return value is the
byte offset from the beginning of the buffer to this
graphics order.

GPIE_ELEMENT A graphics order in the buffer for the GpiElement
function caused an error. The return value is the
byte offset from the beginning of the buffer to this
graphics order.

GPIE_SEGMENT An element in the given segment caused an error.
The return value is the position of the element
pointer for this element.

The return value is either a byte offset or an element pointer position if the func-
tion is successful. Otherwise, it is GPL_ALTERROR.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MICROPS_FUNCTION
GpiCloseSegment, GpiElement, GpiOpenSegment, GpiPutData

72 GpiExcludeClipRectangle

GpiExcludeClipRectangle

LONG GpiExcludeClipRectangle (hps, prcl)
HPS hps; /« presentation-space handle =/
PRECTL prcl; /= pointer to structure for rectangle coordinates »/

The GpiExcludeClipRectangle function excludes a rectangle from the clip
region. The function excludes all points in the rectangle except points on the top
and right boundary.

Parameters hps Identifies the presentation space.

prcl Points to a RECTL structure containing the rectangle. The RECTL struc-
ture has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop:
} RECTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value The return value is RGN_COMPLEX, RGN_NULL, or RGN_RECT if the
function is successful or RGN_ERROR if an error occurred.

See Also GpilntersectClipRectangle, WinExcludeUpdateRegion
GpiFillPath

LONG GpiFillPath(hps, idPath, fIFill)

HPS hps; : /= presentation-space handle »/ -

LONG idPath; /« identifier of path . /.

LONG fiIFill; /= fill mode «f

The GpiFillPath function draws the interior of the path specified by idPath by
filling it with the current fill pattern. The function first closes any open figures in
the path, then fills the closed figures using the filling mode specified by fIFill.
Finally, the function deletes the path.
Parameters hps Identifies the presentation space.

idPath Specifies the path whose interior is to be drawn; it must equal 1.
fIFill Specifies the fill option. It can be one of the following values:

Value Meaning

FPATH_ALTERNATE Fills the path using the alternate (even/odd) rule.
FPATH_WINDING Fills the path using the winding rule.

The default is FPATH_ALTERNATE.

GpiFullArc 73

Return Value The return value is GPI_OK or GPI_HITS if the function is successful. (It is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs.) The return value is GPI_ERROR if an error occurs.

Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:
PMERR_INV_PATH_ID
PMERR_PATH_UNKNOWN
Example This example uses the GpiFillPath function to draw the interior of the given

path. The path, an isosceles triangle, is not closed when it is created, so the
GpiFillPath function closes it before filling.

POINTL ptlStart = { O, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O }:

GpiBeginPath (hps, 1L): /* create a path */
GpiMove (hps, &ptlStart);

GpiPolyLine (hps, 3L, ptlTriangle);

GpiEndPath (hps) ;

GpiFillPath(hps, 1L, FPATH_ALTERNATE); /* fill the path */

See Also GpiBeginPath, GpiEndPath
GpiFullArc

LONG GpiFullAre(hps, fIFlags, fxMultiplier)

HPS hps; /= presentation-space handle +/
LONG fIFlags; /« fill and outline indicator «/
FIXED fxMultiplier; /= arc-size multiplier o/

The GpiFullArc function creates a full arc. A full arc is a complete circle or
ellipse, drawn by using the current arc parameters. The function first scales the
width and height of the arc by using the multipier specified by the fxMultiplier
parameter, then draws either the outline of the arc, the interior of the arc, or
both, depending on the flags specified by the fiFlags parameter.

The function uses the current position as the center of the arc but does not
change the current position. The function uses the arc parameters to determine
whether to draw the full arc clockwise or counterclockwise. When an-arc is used
as part of an area or path, the direction in which the arc is drawn can affect how
it is filled.

Parameters hps Identifies the presentation space.

flFlags Specifies whether to fill and/or outline the arc. It can be one of the
following values:

Value Meaning

DRO_FILL Fills the interior of the arc with the current fill pat-
tern. ‘

DRO_OUTLINE Draws the outline of the arc by using the current

line style and color.
DRO_OUTLINEFILL Draws the outline and fills the arc interior.

Do not use DRO_FILL or DRO_OUTLINEFILL when using GpiFullArc in an
area bracket.

74 GpiFullArc

Return Value

Errors

Comments

Example

See Also

GpiGetData

fxMultiplier ~ Specifies how much to scale the width and height of the arc. It
must be a fixed-point value in the range 1 through 255 (or in the range 0x10000
through OxFF0000 if expressed as 32-bit values). This means the function can
scale the arc from 1 to 255 times the current arc-parameter dimensions.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_ARC_CONTROL
PMERR_INV_MULTIPLIER

When correlating an arc, the system generates a hit if the arc boundary inter-
sects the pick aperture. If the pick aperture is inside the arc, the system gener-
ates a hit only if the interior of the arc has been filled.

This example uses GpiFullArc to draw five concentric circles. The arc parame-
ters are set before drawing the arc. Only the outline is drawn for the arc..

SHORT 4&;
ARCPARAMS arcp = { 1, 1, O, O };

GpiSetArcParams (hps, &arcp):
for (L =5; 1 > 0; 1 --)

GpiFullArc (hps, /* presentation-space handle */
DRO_OUTLINE, /* outline *
MAKEFIXED (i, 0)); /* converts integer to fixed point */

GpiMove, GpiPointArc, GpiQueryArcParams, GpiSetArcParams, GpiSetAttrs,
GpiSetColor, GpiSetCurrentPosition, GpiSetLineType

LONG GpiGetData(hps, idSegment, off, pcmdFormat, cb, pb)

HPS hps;

LONG idSegment;
PLONG off;

LONG pcmdFormat;
LONG cb;

PBYTE pb;

/= presentation-space handle »/
/» segment identifier «/
/« polnter to variable for segment offset »/
/~ conversion type »/
/« length in bytes of the data buffer =/
/« pointer to buffer for data «/

The GpiGetData function copies graphics orders from the specified segment to
the specified buffer. The function continues to copy the graphics orders from the
segment to the buffer until all orders in the segment have been copied or the
number of bytes specified by the cb parameter have been copied. If the function
fills the buffer, the last order in the buffer may not be complete since the func-
tion does not stop on an order boundary when copying to the buffer. In any
case, the function returns the number of bytes copied to the buffer.

The function starts copying graphics-order data from the location specified by
the off parameter. If this parameter is zero, the function copies from the begin-
ning of the segment. After copying the data, the function replaces the value in
off with the offset to the next byte of data to copy from the segment (if any).
This value can be used to specify the next location to copy.

Parameters

Return Value

Errors

Example

GpiGetData 75

The GpiGetData function cannot be used to copy data from an open segment,
but it can be used to copy data while some other segment is open.

hps Identifies the presentation space.

idSegment Specifies the segment identifier.

off Specifies the offset from the beginning of the segment to the next byte of
graphics order data to copy. If this parameter is zero, the function copies from
the beginning of the segment.

pcmdFormat Points to the variable that contains the coordinate conversion
type. The variable can be one of the following values:

Value Meaning

DFORM_NOCONV Copies coordinates without converting. The coordi-
nates are in the format used by the presentation
space.

DFORM_PCLONG Converts coordinates to PC-format long (4-byte)
integers.

DFORM_PCSHORT Converts coordinates to PC-format short (2-byte)
integers.

DFORML_S370SHORT Converts coordinates to S/370-format short (2-byte)
integers.

cb Specifies the length in bytes of the buffer to receive the graphics orders.
pb Points to the buffer that receives the graphics-order data.

The return value is the number of graphics-order bytes copied if the function is
successful or GPI_ALTERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following;:

PMERR_DATA_TOO_LONG
PMERR_INV_GETDATA_CONTROL
PMERR_INV_LENGTH
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_SEG_OFFSET
PMERR_SEG_NOT_FOUND

This example uses the GpiGetData function to copy data from one segment to
another:

LONG fFormat = DFORM_NOCONV; /* do not convert coordinates */
LONG offSegment = OL; /* offset in segment */
LONG offNextElement = OL; /* offset in segment to next element */
LONG cb = OL; /* bytes retrieved *
BYTE abBuffer[512];

Gpi%penSegment(hps, 3L); /* open segment to receive the data */
do

offSegment += cb;
offNextElement = offSegment;
cb = GpiGetData(hps, 2L, &offNextElement, fFormat, 512L, abBuffer) ;

76 GpiGetData

See Also

Gpilmage

* put data in other segment */
P g

if (cb > OL) GpiPutData(hps, /* presentation-space handle */
fFormat, * format of coordinates *x/
&cb, /* number of bytes in buffer */
abBuffer) ; /* buffer with graphics-order data */
} while (cb > 0);
GpiCloseSegment (hps); /* close segment that received the data */
GpiPutData

LONG Gpilmage (hps, IFormat, psizl, cbData, prata)

HPS hps;
LONG /Format;
PSIZEL psizl;
LONG cbData;
PBYTE pbData;

Parameters

Return Value

/« presentation-space handle »/
/» image data format «/
/= pointer to structure for image width and height »/
/« length in bytes of the image data »/
/= pointer to Image data =/

The Gpilmage function draws an image. An image is a rectangular array of pels,
each pel having either the current foreground or background color. Each image
has a width and height specified by the psizl parameter. The width and height
determines how many pels there are in the horizontal and vertical directions.

Gpilmage draws the image by using the image data pointed to by the pbData
parameter to set the color of each pel in the image. Each pel is represented by
one bit in the image data. If the bit is 1, the pel has the foreground color; if the
bit is 0, the pel has the background color. The function combines each pel with
the color already on the display by using the foreground mix mode for fore-
ground pels and the background mix mode for background pels. The function
places the upper-left corner of the image at the current position but does not
change the current position.

hps Identifies the presentation space.

IFormat Specifies the format of the image data. This is a reserved field; it
must be set to zero.

psizl Points to a SIZEL structure contalmng the width and height of the image
in pels. The maximum width allowed is 2040 pixels. The SIZEL structure has the
following form:
typedef structb_SIZEL {

LONG cx;

LONG cy:
} SIZEL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

cbData Specifies the length in bytes of the image data.

pbData Points to the image data. The pels must be given, row by row, starting
at the top and running from left to right within each row.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPL_ERROR if an error occurs.

GpilntersectClipRectangle 77

_Errors Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_IMAGE_DATA_LENGTH
PMERR_INV_IMAGE_DIMENSION
PMERR_INV_IMAGE_FORMAT

Comments The image data is an array of bytes. Each byte in the array represents eight pels,
with the high bit representing the leftmost pel. The function draws the image
from left to right and top to bottom. For each row of the image, the function
continues to read bytes from the array until all pels in the row are set. If the
image width is not a multiple of 8, any remaining bits in the last byte for the row
are ignored. The function continues until all rows are set. This means the
number of bytes in the image data (and the length specified for the data) must be
equal to the height in pels multiplied by the width in bytes.

Example This example uses Gpilmage to draw an 8-by-8 image. The image data is speci-
fied as an array of bytes.

SIZEL sizl = { 8, 8 /* image is 8 pels wide by 8 pels high */

, .
}:
BYTE.abImage[] = { OxOO, Ox18, Ox3c, Ox7e, Oxff,
Oxff, Ox7e, Ox3c, Ox18, Ox00 }; :

Gpilmage (hps, OL, &sizl, 8L, ablmage): /* draws the image */

See Also GpiSetAttrs

GpilntersectClipRectangle

LONG GpilntersectClipRectangle (hps, prcl)
HPS hps; /« presentation-space handle «/
PRECTL prcl; /=« pointer to structure for rectangle coordinates »/

The GpilntersectClipRectangle function sets the new clip region (in device coor-
dinates) to the intersection of the current clip region and the specified rectangle.

Parameters hps Identifies the presentation space.
prcl Points to a RECTL structure. The RECTL structure has the following
form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG 1yTop:;
} RECTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value The return value is RGN_NULL, RGN_RECT, or RGN_COMPLEX if the
function is successful, or RGN_ERROR if an error occurred.

See Also GpiExcludeClipRectangle

78 GpilLabel

GpiLabel

BOOL GpilLabel(hps, idLabel)

HPS hps;
LONG idLabel;

Parameters

Return Value

Errors

Comments

Example

See Also

GpiLine

/« presentation-space handle «/
/« label «/

The GpiLabel function creates a label element. A label element is an element in
a segment that contains nothing more than a 32-bit value. The function creates a
label for an element in the current open segment. If no segment is open, no
label is created.

The GpiLabel function cannot be used in an element bracket.

hps 1dentifies the presentation space.

idLabel Specifies the label. It can be any value in the range 0x00000000
through OxFFFFFFFF.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MICROPS_FUNCTION

The GpiLabel function is intended to be used to uniquely identify elements in a
segment that may be edited. Label elements are typically placed near elements to
be edited. The label can be used with the GpiSetElementPointerAtLabel func-
tion to move the element pointer to the given element.

This example uses the GpiLabel function to create label elements in a segment.
If the segment is subsequently edited, the label elements can still be used to
locate the elements near it.

POINTL ptlStart = { O, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };

GpiOpenSegment (hps, 4L); /* creates a segment */
GpiLabel (hps, SL); /* creates label 5 */
GpiLabel (hps, 10L); /* creates label 10 */
GpiMove (hps, &ptlStart);

GpiCloseSegment (hps) ;

GpiPolyLine (hps, 3L, ptlTriangle):

GpiSetElementPointerAtLabel

LONG GpilLine (hps, ppt/)

HPS hps;
PPOINTL ppt/;

/+ presentation-space handle =/
/« pointer to structure for the end point »/

The GpiLine function draws a straight line from the current position to the
specified end point. The function then moves the current position to the end
point.

The function draws the line by using the current values of the line-color, line-
mix, line-width, and line-type attributes. These values are set by using the
GpiSetAttrs functlon

Parameters

Return Value

Example

See Also

GpiLoadBitmap

GpiLoadBitmap 79

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the end point of the line. The
POINTL structure has the following form:
typedef struct _POINTL {

LONG x;

LONG vy:
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

This example uses GpiLine to draw an X.

POINTL ptl[4] = { O, O, 100, 100, O, 100, 100, O };
GpiMove (hps, &ptl[O
GpilLine (hps, &ptl[1l

GpiMove (hps, &ptl[2
GpiLine (hps, &ptl[3

— e
S Nt

GpiMove, GpiPolyLine, GpiSetAttrs, GpiSetColor, GpiSetCurrentPosition,
GpiSetLineType

HBITMAP GpiLoadBitmap(hps, hmod, idBitmap, IWidth, IHeight)

HPS hps;
HMODULE Amod;
USHORT idBitmap;
LONG /Width;
LONG /Height;

Parameters

/« presentation-space handle «/
/« module handle /
/= bitmap identifier s/
/« width in pels of the bitmap »/
/+ height in pels of the bitmap «/

The GpiLoadBitmap function loads a bitmap resource from the specified
module and uses it to create a bitmap having the specified width and height. The
function uses the image data in the bitmap resource to initialize the bitmap
image. If the IWidth or IHeight parameter is zero, the function creates a bitmap
having the width or height given in the bitmap resource. If IWidth or IHeight is
not zero, the function stretches or compresses the bitmap image to the specified
width or height.

The bitmap handle can be used in subsequent functions that accept bitmap han-
dles. In most cases, the bitmap is set to a memory presentation space by using
the GpiSetBitmap function then copied to the screen or a printer by using the
GpiBitBlt function.

hps Identifies the presentation space.

hmod Specifies the module handle of the dynamic-link library containing the
bitmap resource. If this parameter is NULL, the function loads the bitmap from
the application’s executable file.

idBitmap Specifies the identifier of the bitmap within the resource file.
IWidth Specifies the width in pels of the bitmap.
IHeight Specifies the height in pels of the bitmap.

80 GpiloadBitmap

Return Value

Errors

Example

See Also

GpiLoadFonts

The return value is a handle to the bitmap if the function is successful or
GPI_ERROR if an error occurred.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_BITMAP_DIMENSION

This example uses the GpiLoadBitmap function to create a bitmap by using the
bitmap resource in the application’s executable file. The bitmap must have been
added to the executable file by using Resource Compiler.

HBITMAP hbm; /* handle of the bitmap t/
hbm = GpiLoadBitmap (hps, /* presentation-space handle */
LL, /* loads from application's file */

1, /* bitmap resource #1 */
64L, /* sets width to 64 pels */
64L) ; /* sets height to 64 pels */

GpiCreateBitmap, GpiDeleteBitmap, GpiSetBitmap, GpiSetBitmapBits,
GpiSetBitmapDimension, GpiSetBitmapld, WinGetSysBitmap

BOOL GpiLoadFonts(hab, pszModName)

HAB hab;
PSZ pszModName;

Parameters

Return Value

Example

See Also

/« anchor-block handle »/
/« pointer to module name »/

The GpiLoadFonts function loads fonts from the specified resource file. Once
loaded, the fonts are private fonts and can be used by any thread in the process.
Any other process can use the fonts but only if it also loads the font by using the
GpiLoadFonts. The function loads a copy of the fonts once only. Any subse-
quent call to the function by another process for the same fonts simply incre-
ments the use count for the resource and gives that process access.

hab Identifies the anchor block.

psz2ModName ~ Points to a null-terminated string. This string must be a valid
MS 0S/2 filename. If it does not spemfy a path and the filename extension, the
function appends the default extension (.dll) and searches for the font resource
file in the directories specified by the libpath command in the config.sys file.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

This example uses the GpiLoadFonts function to load all fonts from the font

resource file helv .fon. The GpiQueryFonts function retrieves the number of fonts
loaded.

LONG cFonts = OL;

GpiLoadFonts (hab, "helv");
cFonts = GpiQueryFonts (hps, QF_PRIVATE, NULL, &cFonts, OL, NULL):

GpiCreateLogFont, GpiDeleteSetId, GpiQueryFonts, GpiUnloadFonts

GpiMarker 81

M GpiLoadMetaFile

HMF GpiloadMetaFile (hab, pszFilename)

HAB hab;
PSZ pszFilename;

Parameters

Return Value

Example

See Also

B GpiMarker

/« anchor-block handle «/
/= pointer to filename of metafile »/

The GpiLoadMetaFile function loads data from a file into a metafile. The func-

tion first creates the metafile, then copies the data and returns the metafile han-

dle. The metafile handle can be used in subsequent calls to the GpiPlayMetaFile
or GpiDeleteMetaFile function.

hab Identiﬁes the anchor block.

pszFilename Points to a null-terminated string. This string must be a valid MS
0S/2 filename that specifies the path and filename of the file to load into a
metafile.

The return value is a handle to the metafile if the function is successful or
GPI_ERROR if an error occurred.

This example uses the GpiLoadMetaFile function to load a metafile with data
from the file sample.met. Later, the metafile is deleted by using the Gpi-
DeleteMetaFile function.

HMF hmf;

GpiloadMetaFile (hmf, "sample.met"); /* loads metafile from disk */

GpiDeleteMetaFile (hmf) ; /* deletes metafile x/

GpiCopyMetaFile, GpiDeleteMetaFile, GpiPlayMetaFile, GpiSaveMetaFile,
GpiSetMetaFileBits

LONG GpiMarker(hps, pptl)

HPS hps;
PPOINTL pptl;

Parameters

/« presentation-space handle «/
/= pointer to structure for marker position »/

The GpiMarker function draws a marker, placing the center of the marker at the
point specified by the pptl parameter. The current marker set and marker symbol
attributes specify the marker to draw.

The function moves the current position to the specified point.

hps 1Identifies the presentation space.

pptl Points to a POINTL structure that contains the position of the marker.
The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG

} POINTL;

For a full description, see Chapter 4, “Types, Macros, and Structures.”

82 GpiMarker

Return Value The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Example This example uses the GpiMarker function to draw a marker at the point
(10,10).

POINTL ptl = { 10, 10 }:
GpiMarker (hps, &ptl):

See Also GpiMove, GpiPolyMarker, GpiSetAttrs, GpiSetCurrentPosition, GpiSetMarker-
Box, GpiSetMarkerSet

GpiModifyPath

BOOL GpiModifyPath(hps, idPath, cmdMode)
HPS hps; /= presentation-space handle »/
LONG idPath; /= path identifier »/
LONG cmdMode; /~ modification options »/

The GpiModifyPath function modifies a path. Modifying a path affects the way
the GpiFillPath function draws the path. For example, a modified path can be
used to draw a wide line; that is, a line having a width specified by the current
geometric-line width. The function modifies the path as specified by the cmd-
Mode parameter.

The GpiModifyPath can modify the path for drawing as a wide line. In this case,
the GpiFillPath function draws a line that follows the path. The line has the
current geometric-line width and is filled with the current fill pattern. Further-
more, the current line-join attribute defines how to draw the intersection of two
lines at their end points and the current line-end attribute defines how to draw
the end of a line, respectively. GpiModifyPath prevents GpiFillPath from closing
open figures in the path. The line-end attribute applies to the start and end
points of open figures. If a figure is closed by using the GpiCloseFigure func-
tion, the line-join attribute applies to the start and end points. If a line is joined
to an arc, the line-join attribute applies to the intersection at the end points. If
two lines intersect at any place other than their end points, the GpiFillPath func-
tion draws the wide line so that the intersection is filled despite the fill mode.

Parameters hps Identifies the presentation space.

idPath Specifies the identifier of the path to modify; it must be 1.

cmdMode Specifies how to modify the path. It can be the following value:
Value Meaning

MPATH_STROKE Converts the path to a wide line. The line width is

the current geometric-line width set by using the
GpiSetLineWidthGeom function.

Return Value The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Errors

Example

See Also

GpiMove

GpiMove 83

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INV_PATH_ID
PMERR_PATH_UNKNOWN

This example uses the GpiModifyPath function to modify the given path. The
GpiFillPath function then draws the path.

POINTL ptlStart = { O, O }:
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };

GpiBeginPath (hps, 1L); /* creates path */
GpiMove (hps, &ptlStart);

GpiPolyLine (hps, 3L, ptlTriangle):

GpiEndPath (hps) ;

GpiModifyPath (hps,

1L, .
MPATH_STROKE) ; /* modifies path for wide line */
GpiFillPath (hps, 1L, FPATH_ALTERNATE) ; /* draws the wide line */

GpiBeginPath, GpiCloseFigure, GpiEndPath, GpiSetLineEnd, GpiSetLineJoin,
GpiSetLineWidthGeom

BOOL GpiMove (hps, pptl)

HPS hps;
PPOINTL pptl;

Parameters

Return Value

Example

See Also

/« presentation-space handle »/
/= pointer to structure for new position »/

The GpiMove function moves the current position to the specified point. When
used in an area bracket, the function closes the current open figure (if any) and
marks the start of a new figure.

hps Identifies the presentation space.

pptl Points to a POINTL structure containing the position to move to. The
POINTL structure has the following form:

typedef struct _POINTL ({

LONG x;
LONG vy
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

This example uses the GpiMove function to draw an X. The function moves the
current position to the starting point of each leg of the character.

POINTL ptl[4] = { O, O, 100, 100, O, 100, 100, O };

GpiMove (hps, &ptl[0]): /* move to (0,0) */
GpiLine (hps, &ptl[1]):
GpiMove (hps, &ptl[2]): /* move to (0,100) */

GpiLine (hps, &ptl1[3]):

GpiSetCurrentPosition

84 GpiOffsetClipRegion

GpiOffsetClipRegion

LONG GpiOffsetClipRegion(hps, pptl)

HPS hps;
PPOINTL pptl;

Parameters

Return Value

See Also

/= presentation-space handle »/
/= pointer to structure for offset increments «/

The GpiOffsetClipRegion function moves the clip region. The function moves
the clip region by adding the x- and y-coordinates in the point specified by the
pptl parameter to the region’s current position. The x- and y-coordinates may be
either positive or negative, so the region can move in any direction.

hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the offset increments in world
coordinates. The POINTL structure has the following form:
typedef struct _POINTL .{

LONG x;

LONG vy
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is RGN_NULL, RGN_RECT, or RGN_COMPLEX if the
function is successful, or RGN_ERROR if an error occurred.

GpiSetClipRegion

GpiOffsetElementPointer

BOOL GpiOffsetElementPointer(hps, off)
HPS hps; /« presentation-space handle =/
LONG off; /= offset to add to element pointer »/

Parameters

Return Value

The GpiOffsetElementPointer function moves the element pointer by the
number of elements specified by the off parameter. The function starts the move
at the current element-pointer position, and moves the element pointer either
toward the beginning or end of the segment, depending on whether off is nega-
tive or positive. If off specifies more elements than actually exist between the
current position and the beginning or end, the function sets the element pointer
to zero or to the last element in the segment, depending on the direction of the
move.

The GpiOffsetElementPointer function affects the current open segment. If no
segment is open, the function is ignored. Also, the function cannot be used in
an element bracket.

hps Identifies the presentation space.
off Specifies the offset to be added to the element pointer.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Errors

Example

See Also

GpiOffsetRegion 85

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MICROPS_FUNCTION

This example uses the GpiOffsetElementPointer function to move to the element
associated with a label element. Combining the GpiSetElementPointerAtLabel
and GpiOffsetElementPointer functions is a convenient way to locate elements
in segments that have been edited.

POINTL ptlStart = { O, O };
POINTL ptlTriangle(] = { 100, 100, 200, O, O, O };

GpiOpenSegment (hps, 4L); /* creates a segment with labels */
GpiLabel (hps, 5L); GpiMove (hps, &ptlStart);

GpiLabel (hps, 1OL):; GpiPolyLine(hps, 3L, ptlTriangle);
GpiCloseSegment (hps) ;

GpiOéenSegment(hps, 4L) ;
GpiSetElementPointerAtLabel (hps, 10L) /* move to label 10 *
GpiOffsetElementPointer (hps, 1L); /* move to polyline element */

GpiSetEditMode, GpiSetElementPointer, GpiSetElementPointerAtLabel

GpiOffsetRegion

BOOL GpiOffsetRegion(hps, hrgn, pptl)

HPS hps;
HRGN hrgn;
PPOINTL ppt/;

Parameters

Return Value

See Also

/~ presentation-space handle «/
/« region handle «/
/~ pointer-to structure for offset increments »/

The GpiOffsetRegion function moves a region. The function moves the region
by adding the x- and y-coordinates in the point specified by the pprl parameter
to the region’s current position. The x- and y-coordinates may be either positive
or negative, so the region can move in any direction.

hps Identifies the presentation space.

hrgn Identifies the region to move. The region must belong to the device con-
text associated with the presentation space.

pptl Points to a POINTL structure that contains the offset increments for the
move. The POINTL structure has the following form:
typedef struct _POINTL - {

LONG x:

LONG
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

" GpiCreateRegion, GpiDestroyRegion

86 GpiOpenSegment

GpiOpenSegment

BOOL GpiOpenSegment(hps, idSegment)

HPS hps;
LONG idSegment;

Parameters

Return Value

Errors

Comments

/= presentation-space handle »/
/« segment identifier =/

The GpiOpenSegment function opens the segment specified by the idSegment
parameter. The function creates a new segment if a segment having the specified
identifier does not already exist. Otherwise, it opens the segment. Once a seg-
ment is opened or created, the system stores an element in the segment for each
subsequent primitive and attribute function, up to the next call to the Gpi-
CloseSegment function. If the segment previously existed, the system either
replaces the old elements with the new or inserts the new elements, depending
on the segment editing mode.

The function can create a segment when the drawing mode is set to either
DM_RETAIN or DM_DRAWANDRETAIN but can open an existing segment
only when the drawing mode is DM_RETAIN. (The GpiOpenSegment function
can also create a segment when the drawing mode is DM_DRAW, but subse-
quent elements are not stored.)

hps Identifies the presentation space.

idSegment Specifies the segment identifier. The segment identifier must be a
positive integer. If the identifier is unique—that is, has not been used before
with the presentation space—the function creates a new segment. Zero is
reserved for unnamed segments.

The return value is GPI_OK if the function is successful or GPI_ERROR if an
error occurred.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_AREA_INCOMPLETE
PMERR_DYNAMIC_SEG_ZERO_INV
PMERR_IMAGE_INCOMPLETE
PMERR_INV_MICROPS_FUNCTION
PMERR_INV_MODE_FOR_OPEN_DYN
PMERR_INV_MODE_FOR_REOPEN_SEG
PMERR_PATH_INCOMPLETE

If the segment identifier is zero, the function creates an unnamed segment. An
unnamed segment is like any other segment except it cannot be referenced by
identifiers in subsequent segment functions. For example, an unnamed segment
cannot be drawn directly since the GpiDrawSegment function requires a segment
identifier, but the unnamed segment can be drawn if it is added to the picture
chain. GpiOpenSegment creates a new unnamed segment for each call specifying
the zero identifier. Any number of unnamed segments can be created, and the
unnamed segments continue to exist until all segments are deleted.

The GpiOpenSegment function assigns segment attributes to each new segment.
The initial segment attributes are set by the GpiSetInitialSegmentAttrs function.
If the initial attributes specify a dynamic segment, the segment can be created
only in DM_RETAIN drawing mode.

Only one segment per presentation space can be open at a time..

GpiPaintRegion 87

Example This example uses the GpiOpenSegment to create a new segment. The segment
is subsequently drawn by using the GpiDrawSegment function.

POINTL ptlStart = { O, O };
POINTL ptlTriangle[] = { 100, 100, 200, O, O, O };

GpiOpenSegment (hps, 1L); /* opens the segment */
GpiMove (hps, &ptlStart); /* moves to starting point (0,0) */
GpiPolyLine (hps, 3L, ptlTriangle); /* draws triangle *
GpiCloseSegment (hps) ; /* closes the segment

GpiDrawSegment (hps, 1L)}

See Also GpiCloseSegment, GpiErrorSegmentData, GpiSetInitialSegmentAttrs, GpiSet-
SegmentAttrs, GpiSetViewingTransformMatrix

GpiPaintRegion

LONG GpiPaintRegion{hps, hrgn)

HPS hps; /« presentation-space handle »/
HRGN hrgn; /~ region handle »/

The GpiPaintRegion function paints the region specified by the hrgn parameter.
The function paints a region by filling it with the current fill pattern, applying the
current area colors and mix modes as it fills the region.

Parameters hps Identifies the presentation space.
hrgn Identifies the region. ,
Return Value The return value is GPI_OK or GPI_HITS if the function is successful (it is

GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Example This example uses the GpiPaintRegion function to fill a complex region consist-
ing of three, intersecting rectangles. The region is filled with a red, diagonal
pattern.

HRGN hrgn; /* handle for region */
RECTL arcl[3] = { 100, 100, 200, 200, /* lst rectangle */
150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle ./

hrgn = GpiCreateRegion (hps, 3L, arcl);
GpiSetColor (hps, CLR_RED) ;
GpiSetPattern (hps, PATSYM_DIAG1);
GpiPaintRegion (hps, hrgn);

See Also GpiCreateRegion, GpiSetAttrs, GpiSetColor, GpiSetPattern, GpiSetPatternRef-
Point, GpiSetPatternSet

88 GpiPartialArc

GpiPartialArc

LONG GpiPartialArc (hps, pptl, IxMultiplier, xStartAngle, ixSweepAngle)

HPS hps;

PPOINTL ppt/;

FIXED fxMultiplier;
FIXED fxStartAngle;
FIXED fxSweepAngle;

Parameters

Return Value

Errors

Comments

/= presentation-space handle o/
/= pointer to structure for center point «/
/« arc-size multiplier =/
/« start angle of arc o/
/« sweep angle of arc »/

The GpiPartialArc function draws a partial arc. The function actually draws two
figures: a straight line, from the current position to the start point of an arc; and
the arc itself, with its center at the specified point. The function determines the
start and end points of the arc by using the start and sweep angles specified by
the fxStartAngle and fxSweepAngle functions.

The GpiPartialArc function moves the current position to the end point on the
partial arc.

"hps Identifies the presentation space.

pptl Points to a POINTL structure that contains the center point. The
POINTL structure has the following form:
typedef struct _POINTL {

LONG x;

LONG vy
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

fxMultiplier Specifies the amount to scale the width and height of the arc. It
must be a fixed-point value in the range 1 through 255 (or in the range 0x10000 to
0xFF0000 if expressed as a 32-bit value). This means the function can scale the
arc from 1 to 255 times the current arc-parameter dimensions.

fxStartAngle Specifies the start angle in degrees. It must be a positive, fixed-
point value.

fxSweepAngle Specifies the sweep angle in degrees. It must be a positive,
fixed-point value.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be the
following:

PMERR_INV_MULTIPLIER

To draw the arc, the GpiPartialArc function first constructs an imaginary unit
circle at the specified center point. The function locates the start point of the arc
by measuring counterclockwise from the x-axis of the circle by the number of
degrees in the start angle. It then locates the end point of the arc by measuring
counterclockwise from the start point by the number of degrees in the sweep
angle. Finally, the function draws the arc by applying the current arc parameters
and the arc-size multiplier. The direction in which the function draws the arc
depends on the arc parameters. The direction may affect the way a closed figure
containing an arc is filled.

GpiPlayMetaFile 89

If the sweep angle is greater than 360 degrees, the function draws one or more
complete circles or ellipses (depending on the original sweep-angle value) fol-
lowed by an arc. The sweep angle of the final arc is the remainder after dividing
the original sweep angle by 360.

Example This example uses the GpiPartialArc function to draw a chord. A chord is an
arc whose end points are connected by a straight line.
POINTL ptl = { 100, 100 }; /* center point for arc */
GpiSetLineType (hps, LINETYPE_INVISIBLE) ;
GpiPartialArc(hps, &ptl, MAKEFIXED(50, O), MAKEEIXED(O o),

MAKEFIXED (180, 0));
GpiSetLineType (hps, LINETYPE_SOLID) ;
GpiPartialArc(hps, &ptl, MAKEFIXED(50, O), MAKEFIXED(O, O),
MAKEFIXED (180, 0));

See Also GpiFullArc, GpiLine, GpiMove, GpiPointArc, GpiQueryArcParams, GpiSet-
ArcParams, GpiSetAttrs, GpiSetColor, GplSetCurrentPosmon GpiSetLine-
Type

GpiPlayMetaFile

LONG GpiPlayMetaFile (hps, hmf, cOptions, alOptions, pcSegments, cchDesc, pszDesc)

HPS hps; /» presentation-space handle ~/

HMF hmf; /« metafile handle »/

LONG cOptions; /« number of elements in array «/

PLONG al/Options; /« pointer to array of load options »/

PLONG pcSegments; /= pointer to count of renumbered segments »/

LONG cchDesc; /= number of bytes in record »/

PSZ pszDesc;

Parameters

/= pointer to buffer for descriptive record =/

The GpiPlayMetaFile function plays the metafile specified by the hmf parameter.
The function plays the metafile file by converting the graphics data in the file to
graphics operations for the given presentation space. The function uses the load
options specified by the alOptions parameter to determine how to prepare the
presentation space for playing the metafile. This may include resetting the
presentation space, replacing tagged bitmaps and logical fonts, and replacing the
logical color table.

Since the metafile may create segments, the application must close any open seg-
ment before calling GpiPlayMetaFile. If the metafile creates segments, the func-
tion retains the segments only if the current drawing mode is DM_RETAIN or
DM_DRAWANDRETALIN. If chained segments are retained, the function adds
them to the end of the existing segment chain.

The GpiPlayMetaFile function can play a metafile any number of times.

hps Identifies a presentation space.

hmf Identifies the metafile to play. It must have been created or loaded previ-
ously by using the DevOpenDC or GpiLoadMetaFile function.

cOptions Specifies the number of elements in the array pointed to by the
alOptions parameter.

alOptions Points to the array specifying the load options. For a full descrip-
tion, see the following “Comments” section.

90 GpiPlayMetaFile

Return Value

Errors

Comments

pcSegments Points to a variable for the count of renumbered segments. This
parameter is reserved and is set to zero.

cchDesc Specifies the number of bytes in the buffer pointed to by the pszDesc
parameter.

pszDesc Points to the buffer that receives the null-terminated string describing
the metafile. This descriptive record is the record set by the DevOpenDC func-
tion for the metafile, If the buffer is smaller than the record, the function trun-
cates the record.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Use the WinGetLastError function to retrieve the error value, which may be one
of the following:

PMERR_INCOMPATIBLE_METAFILE
PMERR_INV_LENGTH
PMERR_INV_PLAY_METAFILE_OPTION
PMERR_STOP_DRAW_OCCURRED

The GpiPlayMetaFile function uses several options to control how a metafile is
played. The options are specified in an array passed to the function by using the
alOptions parameter. The array has at most ten elements, and there are eight
predeﬁned array indexes that can be used to access these elements. The follow-
ing list describes the purpose and possible values for each element:

Index Meaning

PMF_SEGBASE Specifies a reserved element. It must be zero.

PMF_LOADTYPE Specifies the transformation to use when playing the
metafile. It can be one of the following:

~ Value ' Meaning
LT_DEFAULT Default; same as
LT_NOMODIFY.
LT_NOMODIFY Use the current viewing

transformation as set by the
application by using the
GpiSetViewingTransform-
Matrix function. This is the
default action.

LT_ORIGINALVIEW Use the viewing transforma-
tions defined in the metafile.

PMF_RESOLVE Specifies a reserved element. It must be RS DEFAULT
or RS_NODISCARD.

PMF_LCIDS Specifies whether to use tagged bitmaps and logical fonts
from the metafile or from the application. It can be one
of the following:

Value Meaning

LC_DEFAULT Default; same as
LC_NOLOAD.

LC_NOLOAD Use the tagged bitmaps and

logical fonts defined by the

PMF_RESET

PMF_SUPPRESS

Value

GpiPlayMetaFile

o1

Meaning

LC_LOADDISC

application. The application
must define the appropriate
objects and local identifiers
before playing the metafile.

This is the default.

Use the tagged bitmaps and
logical fonts defined in the
metafile. The function loads
the object from the metafile
and assigns a local identi-
fier. If the local identifier is
already defined by the appli-
cation, the function deletes
the identifier before creating
the new object.

Specifies whether the presentation space should be reset
before playing the metafile, with the page units and size
being set as defined in the metafile. It can be one of the

following:
Value

Meaning

RES_DEFAULT

RES_NORESET

RES_RESET

Default; same as

RES_NORESET.

Does not reset the presenta-
tion space.

Resets the presentation
space. The function resets
the page units and page size
to the values specified by
the metafile. It then sets up
default transformations,
based on page units and
size, as if the presentation
space had just been created
with these values, and
modifies the device transfor-
mation (if necessary) to
ensure that the physical size
of the metafile picture is
preserved. Finally, it resets
the presentation space as if
calling the GpiResetPS
function with the
GRES_ALL option.

Specifies whether to continue playing the metafile after
resetting the presentation space. It can be one of the fol-

lowing values:
Value

Meaning

SUP_DEFAULT

Default; same as
SUP_NOSUPPRESS.

92 GpiPlayMetaFile

Value Meaning

SUP_NOSUPPRESS Does not suppress the
metafile.

SUP_SUPPRESS Suppresses the metafile after

the presentation space is
reset as specified by the
PMF_RESET option. All
other options are ignored.

PMF_COLORTABLES
Specifies whether to use logical color tables from the
metafile or from the application. It can be one of the fol-

lowing:

Value Meaning

CTAB_DEFAULT Default; same as
CTAB_NOMODIFY.

CTAB_NOMODIFY Uses the logical color table

defined by the application.
This is the default.

CTAB_REPLACE Uses the logical color tables
implied by or given in the
metafile. The application’s
existing logical color table is
overwritten. '

" PMF_COLORREALIZABLE
Specifies whether the logical color tables defined by the
metafile should be realizable. It can be one of the follow-

ing values:

Value Meaning

CREA_DEFAULT Default; same as
CREA_REALIZE.

CREA_REALIZE Creates realizable color
tables. This is the default.

CREA_NOREALIZE Does not create realizable

color tables.

PMF_PATHBASE . Specifies a reserved element. It must be zero.

PMF_RESOLVEPATH
Specifies a reserved element. It must be RSP_DEFAULT
or RSP_NODISCARD.

Example This example uses the GpiPlayMetaFile function to play the given metafile. The
function uses all the default actions for playing the metafile.
HMF hmf;

LONG cSegments;
CHAR szBuffer [80];

hmf = GpiLoadMetafile(hab, "sample.met"):;
GpiPlayMetafile (hps, hmf, OL, NULL, &cSegments, 80L, szBuffer):

See Also DevCloseDC, DevOpenDC, GpiCreateLogColorTable, GpiCreateLogFont,
GplLoadMetaFlle, GleesetPS GpiSetDrawingMode, GpiSetViewing- -
TransformMatrix

GpiPolyFillet 93

M GpiPointArc

LONG GpiPointArc(hps, pptl)
HPS hps; /~ presentation-space handle »/
PPOINTL pptl; /« pointer to structure for points «/

The GpiPointArc function draws an arc through three points. The function uses
the current arc parameters to determine the shape of the arc, then starts the arc
at the current position, draws it through the first point specified by pprl, and
ends the arc at the second point specified by pptl.

The GpiPointArc function moves the current position to the end point of the
point arc.
Parameters hps 1dentifies the presentation space.

pptl Points to a POINTL structure that contains intermediate and end points.
The POINTL structure has the following form:
typedef struct _POINTL {
LONG x;

LONG vy
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

Return Value The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Example This example uses the GpiPointArc function to draw an arc through the three
points of a triangle. The GpiPolyLine function then draws the triangle:

POINTL ptlTriangle[] = { O, O, 100, 100, 200, O };

GpiMove (hps, &ptlTriangle[0]); /* moves to start point (O, 0) */

GpiPointArc (hps, &ptlTriangle[l]); /* draws the arc */

GpiMove (hps, &ptlTriangle[0]): /* moves to start point (O, O) */
*

GpiPolyLine (hps, &ptlTriangle[l]):; /* draws the triangle

See Also GpiFullArc, GpiMove, GpiQueryArcParams, GpiSetArcParams, GpiSetAttrs,
GpiSetColor, GpiSetCurrentPosition, GpiSetLineType

B GpiPolyFillet

LONG GpiPolyFillet(hps, cptl, aptl))

HPS hps; /= presentation-space handle o/
LONG cpti; /« number of points in array =/
PPOINTL apil; /~ pointer to array of structures for points »/

The GpiPolyFillet function draws one or more fillets. The function draws the
fillets by using the points specified by the aptl parameter. The function needs at
least two points to draw a fillet. If exactly two points are specified, the function
.draws the fillet from the current position to the second point, using the first
point as a control point. If more than two points are given, the function uses
each point (except the last) as a control point, computing the end point of each
fillet as needed. The function draws each fillet by using the current line-color,
line-mix, line-width, and line-type attributes.

94 GpiPolyFillet

Parameters

Return Value

Comments

Example

See Also

The GpiPolyFillet function moves the current position to the end point of the
last fillet.

hps Identifies the presentation space.
cptl Specifies the number of points.

aptl Points to an array of POINTL structures that contain the points. The
POINTL structure has the following form:
typedef struct _POINTL {

LONG x:

LONG vy
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

A fillet is a smooth curve whose path is controlled by three points: a start pomt
an end point, and a control point.

When given two points, the GpiPolyFillet function draws a fillet by first con-
structing two imaginary straight lines, one from the current position to the con-
trol point (the first point) and another from the control point to the end point
(the second point). The function then draws the curve from the current position
to the end point. The curve is drawn so that the first imaginary line is tangent to
the curve at the current position and the second imaginary line is tangent to the
curve at the second point. Only the curve is drawn, never the imaginary lines.

When given more than two points, the function constructs a series of imaginary
straight lines, then draws a series of curves. The function draws the first curve
from the current position to the midpoint of the second imaginary line, the
second curve from the midpoint of the second line to the midpoint of the
third, and so on until it draws the last curve from a midpoint to the last point
specxﬁed

The maximum number of fillets allowed in the polyfillet depends on the length of
coordinates, but is at least 4000.

This example uses the GpiPolyFillet function to draw a curve with a loop. The
four points are the four points of a rectangle. The curve is drawn from the
lower-left corner, through the midpoint of the top edge, and back to the lower-
right corner.

POINTL ptlStart = { 0, O }:
POINTL aptl[3] = { 200, 100, O, 100, 200, O }:

GpiMove (hps, &ptlStart): /* move to the lower-left corner */
GpiPolyFillet (hps, 3L, aptl}:; /* draw the curve

GpiMove, GpiPolyFilletSharp, GpiPolyLine, GpiSetAttrs, GpiSetColor,
GpiSetCurrentPosition, GpiSetLineType

GpiPolyFilletSharp 95

B GpiPolyFilletSharp

LONG GpiPolyFilletSharp(hps, cptl, aptl, afxSharpness)

HPS hps;
LONG cptl;
PPOINTL apt/;

/= presentation-space handle »/
/= number of points »/
/= pointer to array of structures for points »/

PFIXED afxSharpness; /« pointer of array of structures for sharpness values «/

Parameters

Return Value

Comments

The GpiPolyFilletSharp function creates one or more fillets. The function draws
the fillets by using the control and end points specified by the aptl parameter and
the fillet sharpness values specified by the afxSharpness parameter. The function
draws the first fillet from the current position to the first end point, by using the
first control point and first sharpness value to construct the path of the fillet.
The second fillet is drawn from the first end point to the second end point using
the second control point and sharpness values. The function continues with each
successive point, using the last end point as the starting point for the next fillet,
until the function draws one fillet for each control and end-point pair.

For each fillet, the array pointed to by apt/ contains a control and end-point

pair. The first pair of points is the control and end points for the first fillet, with

the control point given first. The array pointed to by afxSharpness contains the

Isiharpness values for each fillet, with the sharpness value for the first fillet given
rst.

The GpiPolyFilletSharp function moves the current position to the end point of
the last fillet.

hps Identifies the presentation space.

cptl Specifies the number of points in the array pointed to by aptl. This must
be twice the number of fillets since each fillet requires a control and end-point
pair.

aptl Points to an array of POINTL structures that contain the points. The
POINTL structure has the following form:
typedef struct _POINTL {

LONG x;

LONG
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

afxSharpness Points to an array of sharpness values giving the sharpness of
successive fillets. Each value must be a fixed-point value. Each value controls the
type of curve drawn for the fillet. If this value is greater than 1.0, the curve is a
hyperbola. If the value is 1.0, the curve is a parabola. If the value is less than
1.0, the curve is an ellipse.

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

" A fillet is a smooth curve whose path is controlled by three points: a start point,

an end point, and a control point. The smoothness of the fillet is controlled by a
sharpness value.

96 GpiPolyFilletSharp

Example

See Also

GpiPolyLine

The GpiPolyFilletSharp function draws a fillet by first constructing two imag-
inary straight lines, one from the start point to the control point and another
from the control point to the end point. The function then draws the fillet from
the start to end point, such that the first imaginary line is tangent to the fillet at
the current position and the second imaginary line is tangent to the fillet at the
end point.

GpiPolyFilletSharp uses the control point and the sharpness value to determine
the path of the curve. The function always draws the curve through a fourth
point. It locates the point by constructing two more imaginary straight lines, one
from the start to end point, and another from the control point to the midpoint
of this first line. The fourth point lies on the imaginary line drawn from the con-
trol point to the midpoint. It is placed such that the ratio of the lengths of the
bottom and top pieces of this line is equal to the sharpness value.

The maximum number of fillets allowed depends upon the length of coordinates
and is not less than 2000.

This exémple uses the GpiPolyFilletSharp function to draw a curve with a loop.
The curve is drawn within a rectangle. The sharpness values are chosen to draw
the curve close to the control points.

POINTL ptlStart = { O, O }

POINTL aptl[4] = { 100, 100, 200, 100, O, 100, 200, O };
FIXED afx[2] = { MAKEFIXED(4, O), MAKEFIXED(4, O) };

CGpiMove (hps, &ptlStart); /* move to first starting point 2/
CpiPolyFilletSharp (hps, /* presentation-space handle */
4L, /* 4 points in the array */
aptl, /* pointer to array of points */
afx); /* pointer to array of sharpness values */

GpiMove, GpiPolyFillet, GpiPolyLine, GpiSetAttrs, GpiSetColor, GpiSet-
CurrentPosition, GpiSetLineType

LONG GpiPolyLine{ hps, cptl, aptl)

HPS hps;
LONG cptl;
PPOINTL aptl;

Parameters

/= presentation-space handle »/
/= number of points in array »/
/= pointer to array of structures for points »/

The GpiPolyLine function draws one or more straight lines. The function draws
the lines by using the points specified by the apt/ parameter. The function needs
at least one point to draw a line. If a point is specified, the function draws the
line from the current position to the point. For each additional line, the function
needs exactly one more point, and uses the end point of the last line as the start-
ing point for the next. The function draws the lines by using the current values
of the line-color, line-mix, line-width, and line-type attributes.

The GpiPolyLine function moves the current position to the end point of the last
line.
hps I1dentifies a presentation space.

cptl Specifies the number of points. This parameter must be greater than or
equal to zero.

Return Value

GpiPolyMarker 97

aptl Points to an array of POINTL structures that contains the points. The
POINTL structure has the following form:
typedef st;uct ~POINTL {

LONG x:

LONG vy
} POINTL;

For a full description, see Chapter 4; “Types, Macros, Structures.”

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

Example This example uses the GpiPolyLine function to draw a triangle:
POINTL ptlTriangle[] = { O, O, 100, 100, 200, O };
GpiMove (hps, &ptlTriangle[O]); /* moves to start point (0, O) */
GpiPolyLine (hps, &ptlTriangle([1l]): /* draws the triangle */

See Also GpiLine, GpiMove, GpiSetAttrs, GpiSetCoior, GpiSetCurrentPosition, GpiSet-
LineType

GpiPolyMarker

LONG GpiPolyMarker(hps, cptl, aptl)

HPS hps; /« presentation-space handle /

LONG cptl; /« number of points »/

PPOINTL apt/; /« pointer to array of structures for point »/
The GpiPeolyMarker function draws a marker at each point specified by the aptl
parameter. The function places the center of each marker at the given point.
The current marker set and marker-symbol attributes specify the marker to
draw.
The function moves the current position to the point of the last marker.

Parameters hps Identifies a presentation space.

Return Value

cptl Specifies the number of points.

aptl Points to an array of POINTL structures that contain the points. The
POINTL structure has the following form:

typedef struct _POINTL {

LONG x;
LONG vy:
} POINTL:;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is GPI_OK or GPI_HITS if the function is successful (it is
GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPI_ERROR if an error occurs.

98 GpiPolyMarker

Example This example uses the GpiPolyMarker function to draw a series of markers. It
then uses the GpiPolyLine function to connect to markers with lines.
POINTL ptlStart = { O, O }:
POINTL aptl{5] = { 10, 8, 20, 17, 30, 28, 40, 51, 50, 46 };
GpiPolyMarker (hps, 51, aptl):
GpiMove (hps, &ptlStart);
GpiPolyLine (hps, SL, aptl);

See Also GpiMarker, GpiMove, GpiSetAttrs, GpiSetCurrentPosition, GpiSetMarkerBox,
GpiSetMarkerSet

GpiPolySpline

LONG GpiPolySpline (hps, cptl, aptl)

HPS hps; /« presentation-space handle »/

LONG cptl; /« number of points in array «f

PPOINTL apt/;

Parameters

Return Value

Comments

/= pointer to array of structures for points «/

The GpiPolySpline function creates one or more Bezier splines. The function
draws the Bezier splines by using the points specified by the aptl parameter. The
function needs at least three points to draw a spline. If exactly three points are
specified, the function draws the spline from the current position to the third
point, by using the first and second points as control points. For each additional
spline, the function needs exactly three more points, and uses the end point of
the last spline as the next starting point. The function draws each fillet by using
the current line-color, line-mix, line-width, and line-type attributes.

For each Bezier spline, the array pointed to by apfl contains two control points
and an end point. The first triplet of points are the control and end points for
the first spline, with the control points given first.

The GpiPolySpline function moves the current position to the last specified
point. ' ‘
hps Identifies a presentation space.

cptl Specifies the number of points in the array pointed to by aptl. This must
be three times the number of splines since each spline requires two control
points and an end point.

aptl Points to an array of POINTL structures that contains the points. The
POINTL structure has the following form:

typedef struct _POINTL {

LONG x;
LONG vy
} POINTL;

For a full description, see Chapter 4, “Types, Macros, Structures.”

The return value is GPI_OK or GPI_HITS if the function is successful (it is

GPI_HITS if the detectable attribute is set for the presentation space and a
correlation hit occurs). The return value is GPL_ERROR if an error occurs.

A Bezier spline is a smooth curve whose path is controlled by four points: a
start point, an end point, and two control points.

Example

See Also

GpiPop

GpiPop 99

As the GpiPolySpline function draws a spline, all points contribute to the direc-
tion of the path, with one point having the greatest amount of control. The point
with the greatest control tends to pull the path toward it. Greatest control moves
from the start point, to the first control point, to the second control point, and
finally to the end point as the path progresses.

If the function draws more than one spline, it does not