

GORDOn LETWln
Chief Architect S~stems Software, microsoft®

Foreword b~ Bill Gates

PUBLISHED BY

Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright © 1988 by Microsoft Press
All rights reserved. No part of the contents of this book may
be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Letwin, Gordon.
Inside OS/2.

Includes index.
1. MS OS/2 (Computer operating system) I. Title.
II. Title: Inside OS/Two.
QA76.76.063IA8 1988 005.4'46 87-31579
ISBN 1-55615-117-9

Printed and bound in the United States of America

23456789MLML89098

Distributed to the book trade in the
United States by Harper & Row.

Distributed to the book trade in
Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the
United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

Editor: Patricia Pratt

Dedication

ToR.P.W.

Contents

Foreword by Bill Gates ix

Introduction xi

Part I: The Project 1

Chapter 1. History of the Project 3
1.1 MS-DOS version 1.0 5
1.2 MS-DOS version 2.0 6
1.3 MS-DOS version 3.0 7
1.4 MS-DOS version 4.0 7

Chapter 2. Goals and Compatibility Issues 9
2.1 Goals 9
2.2 Compatibility Issues 19

Chapter 3. The OS/2 Religion 25
3.1 Maximum Flexibility 26
3.2 A Stable Environment 29
3.3 Localization of Errors 34
3.4 Software Tools Approach 36

Part II: The Architecture 39

Chapter 4. Multitasking 41
4.1 Subtask Model 44
4.2 PIDs and Command Subtrees 56
4.3 DosExecPgm 59
4.4 DosCWait 63
4.5 Control of Child Tasks and Command Subtrees 66

Chapter 5. Threads and Scheduler/Priorities 69
5.1 Threads 69
5.2 Scheduler/Priorities 77

Chapter 6. The User Interface 85
6.1 VIO User Interface 85
6.2 The Presentation Manager User Interface 86
6.3 Presentation Manager and VIO Compatibility 87

vi Contents

Chapter 7. Dynamic Linking 89
7.1 Static Linking 89
7.2 Loadtime Dynamic Linking 91
7.3 Runtime Dynamic Linking 93
7.4 Dynlinks, Processes, and Threads 95
7.5 Data 95
7.6 Dynamic Link Packages As Subroutines 101
7.7 Subsystems 102
7.8 Dynamic Links As Interfaces to Other Processes 105
7.9 Dynamic Links As Interfaces to the Kernel 107
7.10 The Architectural Role of Dynamic Links 109
7.11 Implementation Details 110
7.12 Dynlink Names 116

Chapter 8. File System Name Space 117
8.1 Filenames 117
8.2 Network Access 119
8.3 Name Generation and Compatibility 120
8.4 Permissions 121
8.5 Other Objects in the File System Name Space 121

Chapter 9. Memory Management 123
9.1 Protection Model 123
9.2 Memory Management API 126
9.3 Segment Swapping 136
9.4 Status and Information 144

Chapter 10. Environment Strings 145

Chapter 11. Interprocess Communication 151
11.1 Shared Memory 151
11.2 Semaphores 151
11.3 Named Pipes 158
11.4 Queues 164
11.5 Dynamic Data Exchange (DDE) 166
11.6 Signaling 167
11.7 Combining IPC Forms 168

Chapter 12. Signals 169

Contents vii

Chapter 13. The Presentation Manager and VIO 175
13.1 Choosing Between PM and VIO 177
13.2 Background I/O 178
13.3 Graphics Under VIO 179

Chapter 14. Interactive Programs 185
14.1 I/O Architecture 186
14.2 Ctrl-C and Ctrl-Break Handling 191

Chapter 15. The File System 195
15.1 The OS/2 File System 197
15.2 Media Volume Management 198
15.3 I/O Efficiency 202

Chapter 16. Device Monitors, Data Integrity, and 205
Timer Services

16.1 Device Monitors 206
16.2 Data Integrity 210
16.3 Timer Services 217

Chapter 17. Device Drivers and Hard Errors 221
17.1 Device Drivers 221
17.2 Hard Errors 232

Chapter 18. I/O Privilege Mechanism and Debugging/Ptrace 237
18.1 I/O Privilege Mechanism 237
18.2 Debugging/Ptrace 240

Chapter 19. The 3x Box 245

Chapter 20. Family API 251

Part III: The Future 257

Chapter 21. The Future 259
21.1 File System 259
21.2 The 80386 265
21.3 The Next Ten Years 267

Glossary 269

Index 283

Acknowledgments

Although a book can have a single author, a work such as OS/2 neces
sarily owes its existence to the efforts of a great many people. The ar
chitecture described herein was hammered out by a joint Microsoft/
IBM design team: Ann, Anthony, Carolyn, Ed, Gordon, Jerry, Mark,
Mike, Ray, and Ross. This team accomplished a great deal of work in a
short period of time.

The bulk of the credit, and my thanks, go to the engineers who
designed and implemented the code and made it work. The size of the
teams involved throughout the project prevents me from listing all the
names here. It's hard for someone who has not been involved in a soft
ware project of this scope to imagine the problems, pressure, chaos, and
"reality shifts" that arise in a never-ending stream. These people
deserve great credit for their skill and determination in making OS/2
come to pass.

Thanks go to the OS/2 development staffers who found time, in the
heat of the furnace, to review and critique this book: Ian Birrell, Ross
Cook, Rick Dewitt, Dave Gilman, Vic Heller, Mike McLaughlin, Jeff
Parsons, Ray Pedrizetti, Robert Reichel, Rajen Shaw, Anthony Short,
Ben Slivka, Pete Stewart, Indira Subramanian, Bryan Willman, and
Mark Zbikowski.

I'd like to give special thanks to Mark Zbikowski and Aaron
Reynolds, the "gurus of DOS." Without their successes there would
never have been an opportunity for a product such as OS/2.

And finally I'd like to thank Bill Gates for creating and captaining
one hell of a company, thereby making all this possible.

Foreword

OS/2 is destined to be a very important piece of software. During the
next 10 years, millions of programmers and users will utilize this sys
tem. From time to time they will come across a feature or a limitation
and wonder why it's there. The best way for them to understand the
overall philosophy of the system will be to read this book. Gordon
Letwin is Microsoft's architect for OS/2. In his very clear and some
times humorous way, Gordon has laid out in this book why he included
what he did and why he didn't include other th'ings.

The very first generation of microcomputers were 8-bit machines,
such as the Commodore Pet, the TRS-80, the Apple II, and the CPM 80
based machines. Built into almost all of them was Microsoft's BASIC
Interpreter. I met Gordon Letwin when I went to visit Heath's personal
computer group (now part of Zenith). Gordon had written his own
BASIC as well as an operating system for the Heath system, and he
wasn't too happy that his management was considering buying some
one else's. In a group of about 15 people, he bluntly pointed out the
limitations of my BASIC versus his. After Heath licensed my BASIC, I
convinced Gordon that Microsoft was the place to be if you wanted
your great software to be popular, and so he became one of Microsoft's
first 10 programmers. His first project was to single-handedly write a
compiler for Microsoft BASIC. He put a sign on his door that read

Do not disturb, feed, poke, tease ... the animal

and in 5 months wrote a superb compiler that is still the basis for all our
BASIC compilers. Unlike the code that a lot of superstar programmers
write, Gordon's source code is a model of readability and includes pre
cise explanations of algorithms and why they were chosen.

When the Intel 80286 came along, with its protected mode com
pletely separate from its compatible real mode, we had no idea how we
were going to get at its new capabilities. In fact, we had given up until
Gordon came up with the patented idea described in this book that has
been referred to as "turning the car off and on at 60 MPH." When we
first explained the idea to Intel and many of its customers, they were
sure it wouldn't work. Even Gordon wasn't positive it would work until
he wrote some test programs that proved it did.

x Foreword

Gordon's role as an operating systems architect is to overview our
designs and approaches and make sure they are as simple and as
elegant as possible. Part of this job includes reviewing people's code.
Most programmers enjoy having Gordon look over their code and point
out how it could be improved and simplified. A lot of programs end up
about half as big after Gordon has explained a better way to write them.
Gordon doesn't mince words, however, so in at least one case a par
ticularly sensitive programmer burst into tears after reading his com
mentary. Gordon isn't content to just look over other people's code.
When a particular project looks very difficult, he dives in. Currently,
Gordon has decided to personally write most of our new file system,
which will be dramatically faster than our present one. On a recent
"vacation" he wrote more than 50 pages of source code.

This is Gordon's debut as a book author, and like any good designer
he has already imagined what bad reviews might say. I think this book
is both fun and important. I hope you enjoy it as much as I have.

BILL GATES

Introduction

Technological breakthroughs develop in patterns that are distinct from
patterns of incremental advancements. An incremental advancement
an improvement to an existing item - is straightforward and unsurpris
ing. An improvement is created; people see the improvement, know
what it will do for them, and start using it.

A major advance without closely related antecedents-a technologi
cal breakthrough-follows a different pattern. The field of communi
cation is a good example. Early in this century, a large infrastructure
existed to facilitate interpersonal communication. Mail was delivered
twice a day, and a variety of efficient services relayed messages. A
businessman dictated a message to his secretary, who gave it to a
messenger service. The service carried the message to its nearby desti
nation, where a secretary delivered it to the recipient.

Into this environment came a technological breakthrough-the
telephone. The invention of the telephone was a breakthrough, not an
incremental advance, because it provided an entirely new way to com
municate. It wasn't an improvement over an existing method. That it
was a breakthrough development impeded its acceptance. Most busi
ness people considered it a newfangled toy, of little practical use.
"What good does it do me? By the time I dictate the message, and my
secretary writes it down and gives it to the mailroom, and they phone
the addressee's mailroom, and the message is copied-perhaps incor
rectly-and delivered to the addressee's secretary, it would have been
as fast to have it delivered by messenger! All my correspondents are
close by, and, besides, with messengers I don't have to pay someone to
sit by the telephone all day in case a message comes in."

This is a classic example of the earliest stages of breakthrough
technology - potential users evaluate it by trying to fit it into present
work patterns. Our example businessman has not yet realized that he
needn't write the message down anymore and that it needn't be copied
down at the destination. He also doesn't realize that the reason his re
cipients are close by is that they have to be for decent messenger deliv
ery. The telephone relaxed this requirement, allowing more efficient
locations near factories and raw materials or where office space was

xii Introduction

cheaper. But it was necessary for the telephone to be accepted before
these advantages could be realized.

Another impedance to the acceptance of a breakthrough technology
is that the necessary new infrastructure is not in place. A telephone did
little good if your intended correspondent dido't have one. The nature
of telephones required a standard; until that standard was set, your cor
respondent might own a phone, but it could be connected to a network
unreachable by you. Furthermore, because the technology was in its
infancy, the facilities were crude.

These obstacles were not insurmountable. The communications re
quirements of some people were so critical that they were willing to in
vent new procedures and to put up with the problems of the early stages.
Some people, because of their daring or ambition, used the new system
to augment their existing system. And finally, because the new technol
ogy was so powerful, some used it to enhance the existing technology.
For example, a messenger service might establish several offices with
telephone linkage between them and use the telephones to speed deliv
ery of short messages by phoning them to the office nearest the destina
tion, where they were copied down and delivered normally. Using the
telephone in this fashion was wasteful, but where demand for the old
service was high enough, any improvement, however "wasteful," was
welcome.

After it has a foot in the door, a breakthrough technology is unstop
pable. After a time, standards are established, the bugs are worked out,
and, most important, the tool changes its users. Once the telephone
became available, business and personal practices developed in new
patterns, patterns that were not considered before because they were not
possible. Messenger services used to be fast enough, but only because,
before the telephone, the messenger service was the fastest technology
available. The telephone changed the life-style of its users.

This change in the structure of human activity explains why an in
telligent person could say, "Telephones are silly gadgets," and a few
years later say, "Telephones are indispensable." This change in the
tool user-caused by the tool itself-also makes predicting the ulti
mate effect of the new technology difficult. Extrapolating from exist
ing trends is wildly inaccurate because the new tool destroys many
practices and creates wholly unforeseen ones. It's great fun to read
early, seemingly silly predictions of life in the future and to laugh at

Introduction xiii

the predictors, but the predictors were frequently intelligent and edu
cated. Their only mistake was in treating the new development as an in
cremental advance rather than as a breakthrough technology. They saw
how the new development would improve their current practices, but
they couldn't see how it would replace those practices.

Digital computers are an obvious breakthrough technology, and
they've shared the ciassic three-stage pattern: "exotic toys," ~~limited

use, " and "indispensable." Mainframe computers have gone the full
route, in the milieu of business and scientific computing. IBM's initial
estimate of the computer market was a few dozen machines. But, as the
technology and the support infrastructure grew, and as people's ways
of working adapted to computers, the use of computers grew-from
the census bureau, to life insurance companies, to payroll systems, and
finally to wholly new functions such as MIS (Management Information
Sciences) systems and airline reservation networks.

Microcomputers are in the process of a similar development. The
"exotic toy" stage has already given way to the "limited use" stage.
We're just starting to develop standards and infrastructure and are only
a few years from the "indispensable" stage. In anticipation of this
stage, Microsoft undertook the design and the development of OS/2.

Although studying the mainframe computer revolution helps in try
ing to predict the path of the microcomputer revolution, microcom
puters are more than just "cheap mainframes." The microcomputer
revolution will follow the tradition of breakthroughs, creating new
needs and new uses that cannot be anticipated solely by studying what
happened with mainframe systems.

This book was written because of the breakthrough nature of the
microcomputer and the impact of the coming second industrial revolu
tion. The designers of OS/2 tried to anticipate, to the greatest extent
possible, the demands that would be placed on the system when the
tool-the personal computer-and the tool user reached their new
equilibrium. A knowledge of MS-DOS and a thorough reading of the
OS/2 reference manuals will not, in themselves, clarify the key issues
of the programming environment that OS/2 was written to support.
This is true not only because of the complexity of the product but
because many design elements were chosen to provide services that
from a prebreakthrough perspective-don't seem needed and solve
problems that haven't yet arisen.

xiv Introduction

Other books provide reference information and detailed how-to
instructions for writing OS/2 programs. This book describes the under
lying architectural models that make up OS/2 and discusses how those
models are expected to meet the foreseen and unforeseen requirements
of the oncoming office automation revolution. It focuses on the general
issues, problems, and solutions that all OS/2 programs encounter
regardless of the programming and interface models that a programmer
may employ.

As is often the case in a technical discussion, everything in OS/2 is
interconnected in some fashion to everything else. A discussion on the
shinbone naturally leads to a discussion of the thighbone and so on. The
author and the editor of this book have tried hard to group the material
into a logical progression without redundancy, but the very nature of
the material makes complete success at this impossible. It's often desir
able, in fact, to repeat material, perhaps from a different viewpoint or
with a different emphasis. For these reasons, the index references every
mention of an item or a topic, however peripheral. Having too many
references (including a few worthless ones) is far better than having too
few references. When you're looking for information about a particular
subject, I recommend that you first consult the contents page to locate
the major discussion and then peruse the index to pick up references
that may appear in unexpected places.

Part I

The Project

History of the
Project

1

Microsoft was founded to realize a vision of a microcomputer on every
desktop-a vision of the second industrial revolution. The first in
dustrial revolution mechanized physical work. Before the eighteenth
century, nearly all objects were created and constructed by human
hands, one at a time. With few exceptions, such as animal-powered
plowing and cartage, all power was human muscle power. The second
industrial revolution will mechanize routine mental work. Today, on
the verge of the revolution, people are still doing "thought work," one
piece at a time.

Certain tasks-those massive in scope and capable of being rigidly
described, such as payroll calculations-have been automated, but the
majority of "thought work" is still done by people, not by computers.
We have the computer equivalent of the plow horse, but we don't have
the computer equivalent of the electric drill or the washing machine.

Of course, computers cannot replace original thought and creativity
(at least, not in the near future) any more than machines have replaced
design and creativity in the physical realm. But the bulk of the work in
a white-collar office involves routine manipulation of information. The
second industrial revolution will relieve us of the "grunt work" - rou
tine data manipulation, analysis, and decisions-freeing us to deal
only with those situations that require human judgment.

4 PART I THE PROJECT

Most people do not recognize the inevitability of the second in
dustrial revolution. They can't see how a computer could do 75 percent
of their work because their work was structured in the absence of com
puters. But, true to the pattern for technological breakthroughs, the tre
mendous utility of the microcomputer will transform its users and the
way they do their work.

For example, a great deal of work is hard to computerize because the
input information arrives on paper and it would take too long to type it
all in. Ten years ago, computer proponents envisioned the "paperless
office" as a solution for this problem: All material would be generated
by computer and then transferred electronically or via disk to other
computers. Offices are certainly becoming more paperless, and the ar
rival of powerful networking systems will accelerate this, but paper
continues to be a very useful medium. As a result, in recent years
growth has occurred in another direction-incorporating paper as a
computer input and output device. Powerful laser printers, desktop
publishing systems, and optical scanners and optical character recogni
tion will make it more practical to input from and output to paper.

Although the founders of Microsoft fully appreciate the impact of
the second industrial revolution, nobody can predict in detail how the
revolution will unfold. Instead, Microsoft bases its day-to-day decisions
on dual sets of goals: short-term goals, which. are well known, and a
long-term goal-our vision of the automated office. Each decision has
to meet our short-term goals, and it must be consonant with our long
term vision, a vision that becomes more precise as the revolution
progresses.

When 16-bit microprocessors were first announced, Microsoft knew
that the "iron" was now sufficiently powerful to begin to realize this
vision. But a powerful computer environment requires both strong iron
and a sophisticated operating system. The iron was becoming avail
able, but the operating system that had been standard for 8-bit micro
processors was inadequate. This is when and why Microsoft entered the
operating system business: We knew that we needed a powerful operat
ing system to realize our vision and that the only way to guarantee its
existence and suitability was to write it ourselves.

Chapter 1 History 5

1.1 MS-DOS version 1.0
MS-DOS got its start when IBM asked Microsoft to develop a disk
operating system for a new product that IBM was developing, the IBM
Personal Computer (PC). Microsoft's only operating system product at
that time was XENIX, a licensed version of AT&T's UNIX® operating
system. XEN!X/UN!X requires a processor with memory manage
ment and protection facilities. Because the 8086/8088 processors had
neither and because XENIX/UNIX memory requirements-modest
by minicomputer standards of the day-were nonetheless large by
microcomputer standards, a different operating system had to be
developed.

CP/M-80, developed by Digital Research,®Incorporated (DRI), had
been the standard 8-bit operating system, and the majority of existing
microcomputer software had been written to run on CP/M-80. For this
reason, Microsoft decided to make MS-DOS version 1.0 as compatible
as possible with CP/M-80. The 8088 processor would not run the exist
ing CP/M-80 programs, which were written for the 8080 processor, but
because 8080 programs could be easily and semiautomatically con
verted to run on the 8088, Microsoft felt that minimizing adaptation
hassles by minimizing operating system incompatibility would hasten
the acceptance of MS-DOS on the IBM PC.

A major software product requires a great deal of development time,
and IBM was in a hurry to introduce its PC. Microsoft, therefore,
looked around for a software product to buy that could be built onto to
create MS-DOS version 1.0. Such a product was found at Seattle Com
puter Products. Tim Paterson, an engineer there, had produced a
CP/M-80 "clone," called SCP-DOS, that ran on the 8088 processor.
Microsoft purchased full rights to this product and to its source code
and used the product as a starting point in the development of MS-DOS
version 1.0.

MS-DOS version 1.0 was released in August 1981. Available only
for the IBM PC, it consisted of 4000 lines of assembly-language source
code and ran in 8 KB of memory. MS-DOS version 1.1 was released in
1982 and worked with double-sided 320 KB floppy disks.

6 PART I THE PROJECT

Microsoft's goal was that MS-DOS version 1.0 be highly CP/M
compatible, and it was. Ironically, it was considerably more compatible
than DRI's own 8088 product, CP/M-86. As we shall see later, this
CP/M compatibility, necessary at the time, eventually came to cause
Microsoft engineers a great deal of difficulty.

1.2 MS-DOS version 2.0
In early 1982, IBM disclosed to Microsoft that it was developing a hard
disk-based personal computer, the IBM XT. Microsoft began work on
MS-DOS version 2.0 to provide support for the new disk hardware.
Changes were necessary because MS-DOS, in keeping with its
CP/M-80 compatible heritage, had been designed for a floppy disk en
vironment. A disk could contain only one directory, and that directory
could contain a maximum of 64 files. This decision was reasonable
when first made because floppy disks held only about 180 KB of data.

For the hard disk, however, the 64-file limit was much too small, and
using a single directory to manage perhaps hundreds of files was

directory WORK
ADMIN
BUDGET
CALENDAR
LUNCH.DOC

PAYROLL~
PHONE.LST
SCHED.DOC

directory BUDGET directory PAYROLL
MONTH ADDRESSES
QUARTER MONTHLY
YEAR NAMES

r--- 1985 VACATION
1986, RETIREDl

I WEEKLY

directory 1985 directory 1986 directory RETIRED

I I I
Figure 1·1.
A directory tree hierarchy. Within the WORK directory are five files (ADMIN,
CALENDAR, LUNCH.DOC, PHONE.LST, SCHED.DOC) and two subdirectories
(BUDGET, PAYROLL). Each subdirectory has its own subdirectories.

Chapter 1 History 7

clumsy. Therefore, the MS-DOS version 2.0 developers-Mark
Zbikowski, Aaron Reynolds, Chris Peters, and Nancy Panners-added
a hierarchical file system. In a hierarchical file system a directory can
contain other directories and files. In turn, those directories can con
tain a mixture of files and directories and so on. A hierarchically
designed system starts with the main, or "root," directory, which itself
can contain (as seen in Figure I-Ion the preceding page) a tree-struc
tured collection of files and directories.

1.3 MS-DOS version 3.0
MS-DOS version 3.0 was introduced in August 1984, when IBM an
nounced the IBM PC/AT. The AT contains an 80286 processor, but,
when running DOS, it uses the 8086 emulation mode built into the chip
and runs as a "fast 8086." The chip's extended addressing range and
its protected mode architecture sit unused. 1

MS-DOS version 3.1 was released in November 1984 and contained
networking support. In January 1986, MS-DOS version 3.2-a minor
revision-was released. This version supported 31f2-inch floppy disks
and contained the formatting function for a device in the device driver.
In 1987, MS-DOS version 3.3 followed; the primary enhancement of
this release was support for the IBM PS/2 and compatible hardware.

1.4 MS-DOS version 4.0
Microsoft started work on a multitasking versi?n of MS-DOS in Janu
ary 1983. At the time, it was internally called MS-DOS version 3.0.
When a new version of the single-tasking MS-DOS was shipped under
the name MS-DOS version 3.0, the multitasking version was renamed,
internally, to MS-DOS version 4.0. A version of this product-a multi
tasking, real-mode only MS-DOS-was shipped as MS-DOS version
4.0. Because MS-DOS version 4.0 runs only in real mode, it can run on
8088 and 8086 machines as well as on 80286 machines. The limitations
of the real mode environment make MS-DOS version 4.0 a specialized

1. Products such as Microsoft XENIX/UNIX run on the PC/AT and compatibles, using the
processor's protected mode. This is possible because XENIX/UNIX and similar systems had
no preexisting real mode applications that needed to be supported.

8 PART I THE PROJECT

product. Although MS-DOS version 4.0 supports full preemptive mul
titasking, system memory is limited to the 640 KB available in real
mode, with no swapping.2 This means that all processes have to fit into
the single 640 KB memory area. Only one MS-DOS version 3.x com
patible real mode application can be run; the other processes must be
special MS-DOS version 4.0 processes that understand their environ
ment and cooperate with the operating system to coexist peacefully
with the single MS-DOS version 3.x real mode application.

Because of these restrictions, MS-DOS version 4.0 was not intended
for general release, but as a platform for specific OEMs to support ex
tended PC architectures. For example, a powerful telephone manage
ment system could be built into a PC by using special MS-DOS version
4.0 background processes to control the telephone equipment. The
resulting machine could then be marketed as a "compatible MS-DOS 3
PC with a built-in superphone."

Although MS-DOS version 4.0 was released as a special OEM pro
duct, the project-now called MS-DOS version 5.0-continued. The
goal was to take advantage of the protected mode of the 80286 to pro
vide full general purpose multitasking without the limitations-as seen
in MS-DOS version 4.0-of a real-mode only environment. Soon,
Microsoft and IBM signed a Joint Development Agreement that pro
vided for the design and development of MS-DOS version 5.0 (now
called CP/DOS). The agreement is complex, but it basically provides
for joint development and then subsequent joint ownership, with both
companies holding full rights to the resulting product.

As the project neared completion, the marketing staffs looked at
CP/DOS, nee DOS 5, nee DOS 4, nee DOS 3, and decided that it
needed ... you guessed it ... a name change. As a result, the remainder of
this book will discuss the design and function of an operating system
called OS/2.

2. It is not feasible to support general purpose swapping without memory management hard
ware that is unavailable in 8086 real mode.

Goals and
Compatibility
Issues

2

OS/2 is similar to traditional multitasking operating systems in many
ways: It provides multitasking, scheduling, disk management, memory
management, and so on. But it is also different in many ways, because a
personal computer is very different from a multiuser minicomputer.
The designers of OS/2 worked from two lists: a set of goals and a set of
compatibility issues. This chapter describes those goals and com
patibility issues and provides the context for a later discussion of the
design itself.

2.1 Goals
The primary goal of OS/2 is to be the ideal office automation operating
system. The designers worked toward this goal by defining the follow
ing intermediate and, seemingly, contradictory goals:

• To provide device-independent graphics drivers without introduc
ing any significant overhead.

• To allow applications direct access to high-bandwidth peripherals
but maintain the ability to virtualize or apportion the usage of
those peripherals.

10 PART I THE PROJECT

• To provide multitasking without reducing the performance and
response available from a single-tasking system.

• To provide a fully customized environment for each program and
its descendants yet also provide a standard environment that is
unaffected by other programs in the system.

• To provide a protected environment to ensure system stability yet
one that will not constrain applications from the capabilities they
have under nonprotected systems.

2.1.1 Graphical User Interface
By far the fastest and easiest way people receive information is through
the eye. We are inherently visual creatures. Our eyes receive informa
tion rapidly; they can "seek" to the desired information and "zoom"
their attention in and out with small, rapid movements of the eye mus
cles. A large part of the human brain is dedicated to processing visual
information. People abstract data and meaning from visual material
from text to graphics to motion pictures-hundreds of times faster
than from any other material.

As a result, if an office automation system is to provide quantities of
information quickly and in a form in which it can be easily absorbed, a
powerful graphics capability is essential. Such capabilities were rare in
earlier minicomputer operating systems because of the huge memory
and compute power costs of high-resolution displays. Today's micro
computers have the memory to contain the display information, they
have the CPU power to create and manipulate that information, and
they have no better use for those capabilities than to support powerful,
easy-to-use graphical applications.

Graphics can take many forms-pictures, tables, drawings,
charts-perhaps incorporating color and even animation. All are
powerful adjuncts to the presentation of alphanumeric text. Graphical
applications don't necessarily employ charts and pictures. A
WYSIWYG (What You See Is What You Get) typesetting program
may display only text, but if that text is drawn in graphics mode, the
screen can show any font, in any type size, with proportional spacing,
kerning, and so on.

Chapter 2 Goals and Compatibility Issues 11

The screen graphics components of OS/2 need to be device indepen
dent; that is, an application must display the proper graphical "pic
ture" without relying on the specific characteristics of any particular
graphical display interface board. Each year the state of the art in dis
plays gets better; it would be extremely shortsighted to tie applications
to a particular display board, for no matter how good it is, within a cou
ple of years it will be obsolete.

The idea is to encapsulate device-specific code by requiring that
each device come with a software package called a device driver. The
application program issues commands for a generic device, and the
device driver then translates those commands to fit the characteristics
of the actual device. The result is that the manufacturer of a new
graphics display board needs to write an appropriate device driver and
supply it with the board. The application program doesn't need to know
anything about the device, and the device driver doesn't need to know
anything about the application, other than the specification of the com
mon interface they share. This common interface describes a virtual
display device; the general technique of hiding a complicated actual
situation behind a simple, standard interface is called "virtualization."

Application Kernel Device driver
(ring 3) (ring 0) (ring 0)

I
I Request
I
I packet: Device I
I descriptor #1
I

Call deviceio (arg1 ... argn) I function
I
I arg1 --. I •

Ring I
I argn

transition I Device
I

.... descriptor #N
Device

I driver I
I
I
I
I

Figure 2·1.
Traditional device driver architecture. When an application wants to do device 110, it
calls the operating system, which builds a device request packet, determines the target
device, and delivers the packet. The device driver's response follows the opposite route
through the kernel back to the application.

12 PART I THE PROJECT

Figure 2-1 shows the traditional operating system device driver
architecture. Applications don't directly call device drivers because
device drivers need to execute in the processor's privilege mode to ma
nipulate their device; the calling application must run in normal mode.
In the language of the 80286/80386 family of processors, privilege
mode is called ring 0, and normal mode is called ring 3. The operating
system usually acts as a middleman: It receives the request, validates it,
deals with issues that arise when there is only one device but multiple
applications are using it, and then passes the request to the device
driver. The device driver's response or return of data takes the reverse
path, winding its way through the operating system and back to the ap
plication program.

This approach solves the device virtualization problem, but at a cost
in performance. The interface between the application and the device
driver is narrow; that is, the form messages can take is usually
restricted. Commonly, the application program is expected to build a
request block that contains all the information and data that the device
driver needs to service the request; the actual call to the operating sys
tem is simply "pass this request block to the device driver." Setting up
this block takes time, and breaking it down in the device driver again
takes time. More time is spent on the reply; the device driver builds, the
operating system copies, and the application breaks down. Further time
is spent calling down through the internal layers of the operating sys
tem, examining and copying the request block, routing to the proper
device driver, and so forth. Finally, the transition between rings (pri
vilege and normal mode) is also time-consuming, and two such transi
tions occur-to privilege mode and back again.

Such a cost in performance was acceptable in nongraphics-based
systems because, typically, completely updating a screen required only
1920 (or fewer) bytes of data. Today's graphics devices can require
256,000 bytes or more per screen update, and future devices will be
even more demanding. Furthermore, applications may expect to update
these high-resolution screens several times a second. 1

1. It's not so much the amount of data that slows the traditional device driver model, but the
number of requests and replies. Disk devices work well through the traditional model because
disk requests tend to be large (perhaps 40,000 bytes). Display devices tend to be written
piecemeal-a character, a word, or a line at a time. It is the high rate of these individual calls
that slows the device driver model, not the number of bytes written to the screen.

Chapter 2 Goals and Compatibility Issues 13

OS/2 needed powerful, device-independent graphical display sup
port that had a wide, efficient user interface-one that did not involve
ring transitions, the operating system, or other unnecessary overhead.
As we'll see later, OS/2 meets this requirement by means of a mecha
nism called dynamic linking.

2.1.2 iViuititasking
To be really useful, a personal computer must be able to do more than
one chore at a time-an ability called multitasking. We humans
multitask all the time. For example, you may be involved in three pro
jects at work, be halfway through a novel, and be taking Spanish
lessons. You pick up each task in turn, work on it for a while, and then
put it down and work on something else. This is called serial multitask
ing. Humans can also do some tasks simultaneously, such as driving a
car and talking. This is called parallel multitasking.

In a serial multitasking computer environment, a user can switch ac
tivities at will, working for a while at each. For example, a user can
leave a word-processing program without terminating it, consult a
spreadsheet, and then return to the waiting word-processing program.
Or, if someone telephones and requests an appointment, the user can
switch from a spreadsheet to a scheduling program, consult the calen
dar, and then return to the spreadsheet.

The obvious value of multitasking makes it another key requirement
for OS/2: Many programs or applications can run at the same time. But
multitasking is useful for more than just switching between applica
tions: Parallel multitasking allows an application to do work by
itself-perhaps print a large file or recalculate a large spreadsheet
while the user works with another application. Because OS/2 supports
full multitasking, it can execute programs in addition to the applica
tion(s) the user is running, providing advanced services such as net
work mail without interrupting or interfering with the user's work.2

2. Present-day machines contain only one CPU, so at any instant only one program can be
executing. At this microscopic level, OS/2 is a serial multitasking system. It is not considered
serial multitasking, however, because it performs preemptive scheduling. At any time, OS/2
can remove the CPU from the currently running program and assign it to another program.
Because these rescheduling events may occur many times a second at totally unpredictable
places within the running programs, it is accurate to view the system as if each program truly
runs simultaneously with other programs.

14 PART I THE PROJECT

2.1.3 Memory Management
Multitasking is fairly easy to achieve. All that's necessary is a source of
periodic hardware interrupts, such as a clock circuit, to enable the
operating system to effect a "context switch," or to reschedule. To be
useful, however, a multitasking system needs an effective memory
management system. For example, a user wants to run two applications
on a system. Each starts at as low a memory location as possible to
maximize the amount of memory it can use. Unfortunately, if the sys
tem supports multitasking and the user tries to run both applications si
multaneously, each attempts to use the same memory cells, and the
applications destroy each other.

A memory management system solves this problem by using special
hardware facilities built into 80286/80386 processors (for example,
IBM PC/AT machines and compatibles and 80386-based machines).3
The memory management system uses the hardware to virtualize the
memory of the machine so that each program appears to have all mem
ory to itself.

Memory management is more than keeping programs out of each
other's way. The system must track the owner or user(s) of each piece
of memory so that the memory space can be reclaimed when it is no
longer needed, even if the owner of the memory neglects to explicitly
release it. Some operating systems avoid this work by assuming that no
application will ever fail to return its memory when done or by ex
amining the contents of memory and ascertaining from those contents
whether the memory is still being used. (This is called "garbage col
lection.") Neither alternative was acceptable for OS/2. Because OS/2
will run a variety of programs written by many vendors, identifying
free memory by inspection is impossible, and assuming perfection
from the applications themselves is unwise. Tracking the ownership
and usage of memory objects can be complex, as we shall see in our
discussion on dynamic link libraries.

Finally, the memory management system must manage memory
overcommit. The multitasking capability of OS/2 allows many applica
tions to be run simultaneously; thus, RAM must hold all these pro
grams and their data. Although RAM becomes cheaper every year,

3. Earlier 8086/8088 processors used in PCs, PC/XTs, and similar machines lack this hard
ware. This is why earlier versions of MS-DOS didn't support multitasking and why OS/2
won't run on such machines.

Chapter 2 Goals and Compatibility Issues 15

buying enough to hold all of one's applications at one time is still
prohibitive. Furthermore, although RAM prices continue to drop, the
memory requirements of applications will continue to rise. Conse
quently, OS/2 must contain an effective mechanism to allocate more
memory to the running programs than in fact physically exists. This is
called memory overcommit.

OS/2 accompiishes this magic with the classic technique of swap
ping. OS/2 periodically examines each segment of memory to see if it
has been used recently. When a request is made for RAM and none is
available, the least recently used segment of memory (the piece that has
been unused for the longest time) is written to a disk file, and the RAM
it occupied is made available. Later, if a program attempts to use the
swapped-out memory, a "memory not present" fault occurs. OS/2 in
tercepts the fault and reloads the memory information from the disk
into memory, swapping out some other piece of memory, if necessary,
to make room. This whole process is invisible to the application that
uses the swapped memory area; the only impact is a small delay while
the needed memory is read back from the disk.

The fundamental concepts of memory overcommit and swapping
are simple, but a good implementation is not OS/2 must choose the
right piece of memory to swap out, and it must swap it out efficiently.
Not only must care be taken that the swap file doesn't grow too big and
consume all the free disk space but also that deadlocks don't occur. For
example, if all the disk swap space is filled, it may be impossible to
swap into RAM a piece of memory because no free RAM is available,
and OS/2 can't free up RAM because no swap space exists to write it
out to. Naturally, the greater the load on the system, the slower the sys
tem will be, but the speed degradation must be gradual and acceptable,
and the system must never deadlock.

The issues involved in memory management and the memory man
agement facilities that OS/2 provides are considerably more complex
than this overview. We'll return to the subject of memory management
in detail in Chapter 9.

2.1.4 Protection
I mentioned earlier that OS/2 cannot trust applications to behave cor
rectly. I was talking about memory management, but this concern gen
eralizes into the next key requirement: OS/2 must protect applications

16 PART I THE PROJECT

from the proper or improper actions of other applications that may be
running on the system.

Because OS/2 will run applications and programs from a variety of
vendors, every user's machine will execute a different set of applica
tions, running in different ways on different data. No software vendor
can fully test a product in all possible environments. This makes it crit
ical that an error on the part of one program does not crash the system
or some other program or, worse, corrupt data and not bring down the
system. Even if no data is damaged, system crashes are unacceptable.
Few users have the background or equipment even to diagnose which
application caused the problem.

Furthermore, malice, as well as accident, is a concern. Microsoft's
vision of the automated office cannot be realized without a system that
is secure from deliberate attack. No corporation will be willing to base
its operations on a computer network when any person in that
company-with the help of some "cracker" programs bought from the
back of a computer magazine-can see and change personnel or
payroll files, billing notices, or strategic planning memos.

Today, personal computers are being used as a kind of super
sophisticated desk calculator. As such, data is secured by traditional
means-physical locks on office doors, computers, or file cabinets that
store disks. Users don't see a need for a protected environment because
their machine is physically protected. This lack of interest in protection
is another example of the development of a breakthrough technology.
Protection is not needed because the machine is secure and operates on
data brought to it by traditional office channels. In the future, however,
networked personal computers will become universal and will act both
as the processors and as the source (via the network) of the data. Thus,
in this role, protection is a key requirement and is indeed a prerequisite
for personal computers to assume that central role.

2.1.5 Encapsulation
When a program runs in a single-tasking system such as MS-DOS ver
sion 3.x, its environment is always constant-consisting of the
machine and MS-DOS. The program can expect to get the same treat
ment from the system and to provide exactly the same interaction with
the user each time it runs. In a multitasking environment, however,
many programs can be running. Each program can be using files and

Chapter 2 Goals and Compatibility Issues 17

devices in different ways; each program can be using the mouse, each
program can have the screen display in a different mode, and so on.
OS/2 must encapsulate, or isolate, each program so that it "sees" a
unifonn environment each time it runs, even though the computer envi
ronment itself may be different each time.

2.1.6 Intaipiocass Communication (IPC)
In a single-tasking environment such as MS-DOS version 3.x, each pro
gram stands alone. If it needs a particular service not provided by the
operating system, it must provide that service itself. For example, every
application that needs a sort facility must contain its own.

Likewise, if a spreadsheet needs to access values from a database, it
must contain the code to do so. This extra code complicates the spread
sheet program, and it ties the program to a particular database product
or fonnat. A user might be unable to switch to a better product because
the spreadsheet is unable to understand the new database's file fonnats.

A direct result of such a stand-alone environment is the creation of
very large and complex "combo" packages such as Lotus Symphony.
Because every function that the user may want must be contained
within one program, vendors supply packages that attempt to contain
everything.

In practice, such chimeric programs tend to be large and cumber
some, and their individual functional components (spreadsheets, word
processors, and databases, for example) are generally more difficult to
use and less sophisticated than individual applications that specialize in
a single function.

The stand-alone environment forces the creation of larger and more
complex programs, each of which typically understands only its own
file fonnats and works poorly, if at all, with data produced by other
programs. This vision of personal computer software growing
monstrous. until collapsing from its own weight brings about another
OS/2 requirement: Applications must be able to communicate, easily
and efficiently, with other applications.

More specifically, an application must be able to find (or name) the
application that provides the infonnation or service that the client
needs, and it must be able to establish efficient communication with the
provider program without requiring that either application have
specific knowledge of the internal workings of the other. Thus, a

18 PART I THE PROJECT

spreadsheet program must be able to communicate with a database pro
gram and access the values it needs. The spreadsheet program is
therefore not tied to any particular database program but can work with
any database system that recognizes OS/2 IPC requests.

Applications running under OS/2 not only retain their full power as
individual applications but also benefit from cross-application commu
nication. Furthermore, the total system can be enhanced by upgrading
an application that provides services to others. When anew, faster, or
more fully featured database package is installed, not only is the user's
database application improved but the database functions of the spread
sheet program are improved as well.

The OS/2 philosophy is that no program should reinvent the wheel.
Programs should be written to offer their services to other programs
and to take advantage of the offered services of other programs. The
result is a maximally effective and efficient system.

2.1.7 Direct Device Access
Earlier, we discussed the need for a high-performance graphical inter
face and the limitations of the traditional device driver architecture.
OS/2 contains a built-in solution for the screen graphical interface, but
what about other, specialized devices that may require a higher band
width interface than device drivers provide? The one sure prediction
about the future of a technological breakthrough is that you can't fully
predict it. For this reason, the final key requirement for OS/2 is that it
contain an "escape hatch" in anticipation of devices that have perfor
mance needs too great for a device driver model.

OS/2 provides this expandability by allowing applications direct ac
cess to hardware devices-both the I/O ports and any device memory.
This must be done, of course, in such a way that only devices which are
intended to be used in this fashion can be so accessed. Applications
are prevented from using this access technique on devices that are
being managed by the operating system or by a device driver. This
facility gives applications the ability to take advantage of special non
standard hardware such as OCRs (Optical Character Readers), digitizer
tablets, Fax equipment, special purpose graphics cards, and the like.

Chapter 2 Goals and Compatibility Issues 19

2.2 Compatibility Issues
But OS/2 has to do more than meet the goals we've discussed: It must
be compatible with 8086/8088 and 80286 architecture, and it must be
compatible with MS-DOS. By far the easiest solution would have been
to create a new multitasking operating system that would not be com
patible with r-v1S-DOS, but such a system is unacceptable. Potential
users may be excited about the new system, but they won't buy it until
applications are available. Application writers may likewise be excited,
but they won't adapt their products for it until the system has sold
enough copies to gain significant market share. This "catch 22" means
that the only people who will buy the new operating system are the de
velopers' mothers, and they probably get it at a discount anyway.

2.2.1 Real Mode vs Protect Mode
The first real mode compatibility issue relates to the design of the
80286 microprocessor-the "brain" of an MS-DOS computer. This
chip has two incompatible modes-real (compatibility) mode and pro
tect mode. Real mode is designed to run programs in exactly the same
manner as they run on the 8086/8088 processor. In other words, when
the 80286 is in real mode, it "looks" to the operating system and pro-
grams exactly like a fast 8088.

But the designers of the 80286 wanted it to be more than a fast 8088.
They wanted to add such features as memory management, memory
protection, and the ring protection mechanism, which allows the
operating system to protect one application from another. They weren't
able to do this while remaining fully compatible with the earlier 8088
chip, so they added a second mode to the 80286-protect mode. When
the processor is running in protect mode, it provides these important
new features, but it will not run most programs written for the
8086/8088.

In effect, an 80286 is two separate microprocessors in one package.
It can act like a very fast 8088-compatible, but with no new capabili
ties-or it can act like an 80286-incompatible, but providing new
features. Unfortunately, the designers of the chip didn't appreciate the
importance of compatibility in the MS-DOS marketplace, and they

20 PART I THE PROJECT

designed the 80286 so that it can run in either mode but can't switch
back and forth at will.4 In other words, an 80286 was designed to run
only old 8086/8088 programs, or it can run only new 80286 style pro
grams, but never both at the same time.

In summary, OS/2 was required to do something that the 80286 was
not designed for-execute both 8086/8088 style (real mode) and 80286
style (protect) mode programs at the same time. The existence of this
book should lead you to believe that this problem was solved, and in
deed it was.

2.2.2 Running Applications in Real (Compatibility) Mode
Solving the real mode vs protect mode problem, however, presented
other problems. In general, the problems came about because the real
mode programs were written for MS-DOS versions 2.x or 3.x, both of
which are single-tasking environments.

Although MS-DOS is normally spoken of as an operating system, it
could just as accurately be called a "system executive. " Because it runs
in an unprotected environment, applications are free to edit inter
rupt vectors, manipulate peripherals, and in general take over from
MS-DOS wherever they wish. This flexibility is one reason for the suc
cess of MS-DOS; if MS-DOS doesn't offer the service your program
needs, you can always help yourself. Developers were free to explore
new possibilities, often with great success. Most applications view
MS-DOS as a program loader and as a set of file system subroutines,
interfacing directly with the hardware for all their other needs, such as
intercepting interrupt vectors, editing disk controller parameter tables,
and so on.

It may seem that if a popular application "pokes" the operating sys
tem and otherwise engages in unsavory practices that the authors or
users of the application will suffer because a future release, such as
OS/2, may not run the application correctly. To the contrary, the
market dynamics state that the application has now set a standard, and
it's the operating system developers who suffer because they must sup
port that standard. Usually, that "standard" operating system interface
is not even known; a great deal of experimentation is necessary to

4. The 80286 initializes itself in real mode. There is a command to switch from real mode to
protect mode, but there is no command to switch back.

Chapter 2 Goals and Compatibility Issues 21

discover exactly which undocumented side effects, system internals,
and timing relationships the application is dependent on.

Offering an MS-DOS -compatible Applications Program Interface
(API) provides what we call level 1 compatibility. Allowing applica
tions to continue to manipulate system hardware provides level 2 com
patibility. Level 3 issues deal with providing an execution environment
that supports the hidden asslliuptions that programs wriiien for a single
tasking environment may make. Three are discussed below by way of
illustration.

2.2.2.1 Memory Utilization
The existing real mode applications that OS/2 must support were writ
ten for an environment in which no other programs are running. As a
result, programs typically consume all available memory in the system
in the belief that, since no other program is around to use any leftover
memory, they might as well use it all. If a program doesn't ask for all
available memory at first, it may ask for the remainder at some later
time. Such a subsequent request could never be refused under MS-DOS
versions 2.x and 3.x, and applications were written to depend on this.
Therefore, such a request must be satisfied under OS/2 to maintain full
compatibility.

Even the manner of a memory request depends on single-tasking
assumptions. Programs typically ask for all memory in two steps. First,
they ask for the maximum amount of memory that an 8088 can
provide-l MB. The application's programmer knew that the request
would be refused because 1 MB is greater than the 640 KB maximum
supported by MS-DOS; but when MS-DOS refuses the request, it tells
the application exactly how much memory is available. Programs then
ask for that amount of memory. The programmer knew that MS-DOS
would not refuse the second memory request for insufficient memory
because when MS-DOS responded to the first request it told the appli
cation exactly how much memory was available. Consequently,
programmers rarely included a check for an "insufficient memory" er
ror from the second call.

This shortcut introduces problems in the OS/2 multitasking environ
ment. When OS/2 responded to the first too-large request, it would
return the amount of memory available at that exact moment. Other

22 PART I THE PROJECT

programs are simultaneously executing; by the time our real mode pro
gram makes its second request, some more memory may have been
given out, and the second request may also be too large. It won't do any
good for OS/2 to respond with an error code, however, because the real
mode application does not check for one (it was written in the belief
that it is impossible to get such a code on the second call). The upshot is
that even if OS/2 refused the second call the real mode application
would assume that it had been given the memory, would use it, and in
the process would destroy the other program(s) that were the true
owners of that memory.

Obviously, OS/2 must resolve this and similar issues to support the
existing base of real mode applications.

2.2.2.2 File Locking
Because multitasking systems run more than one program at the same
time, two programs may try to write or to modify the same file at the
same time. Or one may try to read a file while another is changing
that file's contents. Multitasking systems usually solve this problem
by means of a file-locking mechanism, which allows one program to
temporarily prevent other programs from reading and/or writing a
particular file.

An application may find that a file it is accessing has been locked by
some other application in the system. In such a situation, OS/2 nor
mally returns a "file locked" error code, and the application typically
gives up or waits and retries the operation later. OS/2 cannot return a
"file locked" error to an old-style real mode application, though,
because when the application was written (for MS-DOS versions 2.x or
3.x) no such error code existed because no such error was possible. Few
real mode applications even bother to check their read and write opera
tions for error codes, and those that do wouldn't "understand" the error
code and wouldn't handle it correctly.

OS/2 cannot compromise the integrity of the file-locking mecha
nism by allowing the real mode application to ignore locks, but it can
not report that the file is locked to the application either. OS/2 must
determine the proper course of action and then take that action on
behalf of the real mode application.

Chapter 2 Goals and Compatibility Issues 23

2.2.2.3 Network Piggybacking
Running under MS-DOS version 3.1, an application can use an existing
network virtual circuit to communicate with an application running on
the server machine to which the virtual circuit is connected. This is
called "piggybacking" the virtual circuit because the applications on
each end are borrowing a circuit that the network redirector established
for other purposes. The two sets of programs can use a single circuit for
two different purposes without confusion under MS-DOS version 3.1
because of its single-tasking nature. The redirector only uses the circuit
when the application calls MS-DOS to perform a network function.
Because the CPU is inside MS-DOS, it can't be executing the applica
tion software that sends private messages, which leaves the circuit free
for use by the redirector.

Conversely, if the application is sending its own private messages
piggybacking-then it can't be executing MS-DOS, and therefore the
redirector code (which is built into MS-DOS) can't be using the virtual
circuit.

This is no longer the case in OS/2. OS/2 is a multitasking system,
and one application can use the redirector at the same time that the real
mode application is piggybacking the circuit. OS/2 must somehow in
terlock access to network virtual circuits so that multiple users of a net
work virtual circuit do not conflict.

2.2.3 Popular Function Compatibility
We've discussed some issues of binary compatibility, providing appli
cations the internal software interfaces they had in MS-DOS. This is
because it is vitally important that existing applications run correctly,
unchanged, under the new operating system.5 OS/2 also needs to pro
vide functional compatibility; it has to allow the creation of protect
mode applications that provide the functions that users grew to know
and love in real mode applications.

This can be difficult because many popular applications (for exam
ple, "terminate and stay resident loadable helper" routines such as

5. An extremely high degree of compatibility is required for virtually any application to run
because a typical application uses a great many documented and undocumented interfaces and
features of the earlier system. If anyone of those interfaces is not supplied, the application
will not run correctly. Consequently, we cannot provide 90 percent compatibility and expect
to run 90 percent of existing applications; 99.9 percent compatibility is required for such a
degree of success.

24 PART I THE PROJECT

SideKick) were written for a single-tasking, unprotected environment
without regard to the ease with which their function could be provided
in a protected environment. For example, a popular application may
implement some of its features by patching (that is, editing) MS-DOS
itself. This cannot be allowed in OS/2 (the reason is discussed in Chap
ter 4), so OS/2 must provide alternative mechanisms for protect mode
applications to provide services that users have grown to expect.

2.2.4 Down'/ard Compatibility
So far, our discussion on compatibility has focused exclusively on
upward compatibility-old programs must run in the new system but
not vice versa. Downward compatibility-running new programs
under MS-DOS-is also important. Developers are reluctant to write
OS/2-only applications until OS/2 has achieved major penetration of
the market, yet this very unavailability of software slows such penetra
tion. If it's possible to write applications that take advantage of OS/2's
protect mode yet also run unchanged under MS-DOS version 3.x, ISVs
(Independent Software Vendors) can write their products for OS/2
without locking themselves out of the existing MS-DOS market.

2.2.4.1 Family API
To provide downward compatibility for applications, OS/2 designers
integrated a Family> Applications Program Interface (Family API)
into the OS/2 project. The Family API provides a standard execution
environment under MS-DOS version 3.x and OS/2. Using the Family
API, a programmer can create an application that uses a subset of OS/2
functions (but a superset of MS-DOS version 3.x functions) and that
runs in a binary compatible fashion under MS-DOS version 3.x and
OS/2. In effect, some OS/2 functions can be retrofitted into an
MS-DOS version 3.x environment by means of the Family API.

2.2.4.2 Network Server-Client Compatibility
Another important form of upward and downward compatibility is the
network system. You can expect any OS/2 system to be on a network,
communicating not only with MS-DOS 3.x systems but, one day, with a
new version of OS/2 as well. The network interface must be simulta
neously upwardly and downwardly compatible with all past and future
versions of networking MS-DOS.

6. Family refers to the MS-DOS/OS/2 family of operating systems.

The OS/2
Religion

3

Religion, in the context of software design, is a body of beliefs about
design rights and design wrongs. A particular design is praised or criti
cized on the basis of fact - it is small or large, fast or slow - and also
on the basis of religion-it is good or bad, depending on how well it
obeys the religious precepts. Purpose and consistency underlie the
design religion as a whole; its influence is felt in every individual
judgment.

The purpose of software design religion is to specify precepts that
designers can follow when selecting an approach from among the many
possibilities before them. A project of the size and scope of OS/2
needed a carefully thought out religion because OS/2 will dramatically
affect this and future generations of operating systems. It needed a
strong religion for another reason: to ensore consistency among wide
ranging features implemented by a large team of programmers. Such
consistency is very important; if one programmer optimizes design to
do A well, at the expense of doing B less well, and another program
mer-in the absence of religious guidance-does the opposite, the end
result is a product that does neither A nor B well.

This chapter discusses the major architectural dogmas of the OS/2
religion: maximum flexibility, a stable environment, localization of er
rors, and the software tools approach.

26 PART I THE PROJECT

3.1 Maximum Flexibility
The introduction to this book discusses the process of technological
breakthroughs. I have pointed out that one of the easiest predictions
about breakthroughs is that fully predicting their course is impossible.
For example, the 8088 microprocessor is designed to address 1 MB of
memory, but the IBM PC and compatible machines are designed so that
addressable memory is limited to 640 KB. When this decision was
made, 640 KB was ten times more memory than the then state-of-the
art 8080 machines could use; the initial PCs were going to ship with 16
KB in them, and it seemed to all concerned that 640 KB was overly
generous. Yet it took only a few years before 640 KB became the typi
cal memory complement of a machine, and within another year that
amount of memory was viewed as pitifully small.

OS/2' s design religion addresses the uncertain future by decreeing
that-to the extent compatible with other elements in the design
religion-OS/2 shall be as flexible as possible. The tenet of flexibility
is that each component of OS/2 should be designed as if massive
changes will occur in that area in a future release. In other words, the
current component should be designed in a way that does not restrict
new features and in a way that can be easily supported by a new version
of OS/2, one that might differ dramatically in internal design.

Several general principles result from a design goal of flexibility.
All are intended to facilitate change, which is inevitable in the general
yet unpredictable in the specific:

1. All OS/2 features should be sufficiently elemental (simple) that
they can be easily supported in any future system, including sys
tems fundamentally different in design from OS/2. Either the fea
tures themselves are this simple, or the features are built using
base features that are this simple. The adjective simple doesn't
particularly refer to externals-a small number of functions and
options-but to internals. The internal operating system infra
structure necessary to provide a function should be either very
simple or so fundamental to the nature of operating systems that it
is inevitable in future releases.

By way of analogy, as time travelers we may be able to guess
very little about the twenty-first century, but we do know that

Chapter 3 The OS/2 Religion 27

people will still need to eat. The cuisine of the twenty-first cen
tury may be ungues sable, but certainly future kitchens will con
tain facilities to cut and heat food. If we bring food that needs
only those two operations, we'll find that even if there's nothing
to our liking on the twenty-first-century standard menu the
kitchen can still meet our needs.

We've seen how important upward compatibility is for com
puter operating systems, so we can rest assured that the future
MS-DOS "kitchen" will be happy to make the necessary effort
to support old programs. All we have to do today is to ensure that
such support is possible. Producing a compatible line of operating
system releases means more than looking backward; it also means
looking forward.

2. All system interfaces need to support expansion in a future
release. For example, if a call queries the status of a disk file, then
in addition to passing the operating system a pointer to a structure
to fill in with the information, the application must also pass in
the length of that structure. Although the current release of the
operating system returns N bytes of information, a future release
may support new kinds of disk files a...~d may return ~1 bytes of in~
formation. Because the application tells the operating system, via
the buffer length parameter, which version of the information
structure that the application understands (the old short version or
the new longer version), the operating system can support both old
programs and new programs simultaneously.

In general, all system interfaces should be designed to support
the current feature set without restraining the addition of features
to the interfaces in future releases. Extra room should be left in
count and flag arguments for future expansion, and all passed and
returned structures need either to be self-sizing or to include a
size argument.

One more interface deserves special mention-the file system
interface. Expanding the capabilities of the file system, such as
allowing filenames longer than eight characters, is difficult
because many old applications don't know how to process file
names that are longer than eight characters or they regard the
longer names as illegal and reject them. OS/2 solves this and

28 PART I THE PROJECT

similar problems by specifying that all filenames supplied to or
returned from the operating system be zero-terminated strings
(ASCIIZ strings) of arbitrary length.

Programmers are specifically cautioned against parsing or
otherwise "understanding" filenames. Programs should consider
file system pathnames as "magic cookies" to be passed to and
from the operating system, but not to be parsed by the program.
The details of this interface and other expandable interfaces are
discussed in later chapters.

3. OS/2 needs to support the addition of functions at any time. The
implementation details of these functions need to be hidden from
the client applications so that those details can be changed at any
time. Indeed, OS/2 should disguise even the source of a feature.
Some APIs are serviced by kernel code, others are serviced by
subroutine libraries, and still others may be serviced by other pro
cesses running in the system. Because a client application can't
tell the difference, the system designers are free to change the im
plementation of an API as necessary. For example, an OS/2
kernel API might be considerably changed in a future release. The
old API can continue to be supported by the creation of a sub
routine library routine. This routine would take the old form of
the API, convert it to the new form, call the OS/2 kernel, and then
backconvert the result. Such a technique allows future versions of
OS/2 to support new features while continuing to provide the old
features to existing programs. These techniques are discussed in
detail in Chapter 7, Dynamic Linking.

4. Finally, to provide maximum flexibility, the operating system
should be extensible and expandable in a piecemeal fashion out in
the field. In other words, a user should be able to add functions to
the system-for example, a database engine-or to upgrade or
replace system components-such as a new graphics display
driver-without a new release from Microsoft. A microcomputer
design that allows third-party hardware additions and upgrades in
the field is called an open system. The IBM PC line is a classic ex
ample of an open system. A design that contains no provisions for

Chapter 3 The OS/2 Religion 29

such enhancements is called a closed system. The earliest version
of the Apple Macintosh is an example. At first glance, MS-DOS
appears to be a closed software system because it contains no pro
visions for expansion. In practice, its unprotected environment
makes MS-DOS the king of the open software systems because
every application is free to patch the system and access the hard
ware as it sees fit. Keeping a software system open is as important
as keeping a hardware system open. Because OS/2 is a protected
operating system, explicit features, such as dynamic linking, are
provided to allow system expansion by Microsoft, other software
vendors, and users themselves. The topic of open systems is dis
cussed more fully in Chapter 7.

3.2 A Stable Environment
An office automation operating system has to provide its users-the
application programs and the human operator-with a stable environ
ment. Every application should work the same way each time it's run;
and each time an application is given the same data, it should produce
the same result. The normal operation of one application should
not affect any other application. Even a program error (bug) should not
affect other programs in the system. Finally, if a program has bugs, the
operating system should detect those bugs whenever possible and report
them to the user. These certainly are obvious goals, but the nature of
present-day computers makes them surprisingly difficult to achieve.

3.2.1 Memory Protection
Modern computers are based on the Von Neumann design-named
after John Von Neumann, the pioneering Hungarian-born American
mathematician and computer scientist. A Von Neumann computer con
sists of only two parts: a memory unit and a processing unit. The mem
ory unit contains both the data to be operated on and the instructions
(or program) that command the processing unit. The processing unit
reads instructions from memory; these instructions may tell it to issue
further reads to memory to retrieve data, to operate on data retrieved
earlier, or to store data back into memory.

30 PART I THE PROJECT

A Von Neumann computer does not distinguish between instruc
tions and data; both are stored in binary code in the computer's mem
ory. Individual programs are responsible for keeping track of which
memory locations hold instructions and which hold data, and each pro
gram uses the memory in a different way. Because the computer does
not distinguish between instructions and data, a program may operate
on its own instructions exactly as it operates on data. A program can
read, modify, and write computer instructions at will. 1

This is exactly what OS/2 does when it is commanded to run a pro
gram: It reads the program into memory by treating it as data, and then
it causes the data in those locations to be executed. It is even possible
for a program to dynamically "reprogram" itself by manipulating its
own instructions.

Computer programs are extremely complex, and errors in their logic
can cause the program to unintentionally modify data or instructions in
memory. For example, a carelessly written program might contain a
command buffer 80 bytes in size because it expects no commands long
er than 80 bytes. If a user types a longer command, perhaps in error,
and the program does not contain a special check for this circumstance,
the program will overwrite the memory beyond the 80-byte command
buffer, destroying the data or instructions placed there. 2

In a single-tasking environment such as MS-DOS, only one applica
tion runs at a time. An error such as our example could damage mem
ory belonging to MS-DOS, the application, or memory that is not in
use. In practice (due to memory layout conventions) MS-DOS is rarely
damaged. An aberrant program typically damages itself or modifies
memory not in use. In any case, the error goes undetected, the program
produces an incorrect result, or the system crashes. In the last two
cases, the user loses work, but it is clear which application is in error
the one executing at the time of the crash. (For completeness, I'll point
out that it is possible for an aberrant application to damage MS-DOS
subtly enough so that the application itself completes correctly, but the

1. This is a simplification. OS/2 and the 80286 CPU contain features that do distinguish
somewhat between instructions and data and that limit the ability of programs to modify their
own instructions. See 9.1 Protection Model for more information.
2. This is a simplified example. Rarely would a present-day, well-tested application contain
such a naive error, but errors of this type-albeit in a much more complex form-exist in
nearly all software.

Chapter 3 The OS/2 Religion 31

next time an application runs, it fails. This is rare, and the new applica
tion generally fails immediately upon startup; so after a few such
episodes with different applications, the user generally identifies the
true culprit.)

As we have seen, errors in programs are relatively well contained in
a single-tasking system. MS-DOS cannot, unfortunately, correct the er
ror, nor can it very often detect the error (these tasks can be shown to be
mathematically impossible, in the general case). But at least the errors
are contained within the aberrant application; and should errors in data
or logic become apparent, the user can identify the erring application.
When we execute a second program in memory alongside the first, the
situation becomes more complicated.

The first difficulty arises because the commonest error for a pro
gram to make is to use memory that MS-DOS has not allocated to it. In
a single-tasking environment these memory locations are typically
unused, but in a multitasking environment the damaged location(s) pro
bably belong to some other program. That program will then either give
incorrect results, damage still other memory locations, crash, or some
combination of these. In summary, a memory addressing error is more
dangerous because there is more in memory to damage and that
damage wiii have a more severe effect.

The second difficulty arises, not from explicit programming errors,
but from conflicts in the normal operation of two or more co-resident
programs that are in some fashion incompatible. A simple example is
called "hooking the keyboard vector" (see Figure 3-1 on the following
page).

In this case, an application modifies certain MS-DOS memory loca
tions so that when a key is pressed the application code, instead of the
MS-DOS code, is notified by the hardware. Applications do this
because it allows them to examine certain keyboard events, such as
pressing the shift key without pressing any other key, that MS-DOS
does not pass on to applications which ask MS-DOS to read the
keyboard for them. It works fine for one application to "hook" the key
board vector; although hooking the keyboard vector modifies system
memory locations that don't belong to the application, the application
generally gets away with it successfully. In a multitasking environment,
however, a second application may want to do the same trick, and the

32 PART I THE PROJECT

BEFORE

Vector table

Device interrupt x x x x

AFTER

Vector table

Keyboard device
driver routine

-------+ x x x x :

Application
edits table

Keyboard device
driver

Device interrupt
t--------I/

yyyy

Figure 3-1.
Hooking the keyboard vector.

Application
routine
yyyy: ====

jmp x x x x

system probably won't function correctly. The result is that a stable en
vironment requires memory protection. An application must not be
allowed to modify, accidentally or deliberately, memory that isn't as
signed to that application.

3.2.2 Side-Effects Protection
A stable environment requires more than memory protection; it also re
quires that the system be designed so that the execution of one applica
tion doesn't cause side effects for any other application. Side effects
can be catastrophic or they can be unremarkable, but in all cases they
violate the tenet of a stable environment.

For example, consider the practice of hooking the keyboard interrupt
vector. If one application uses this technique to intercept keystrokes, it
will intercept all keystrokes, even those intended for some other appli
cation. The side effects in this case are catastrophic-the hooking
application sees keystrokes that aren't intended for it, and the other ap
plications don't get any keystrokes at all.

Chapter 3 The OS/2 Religion 33

Side effects can plague programs even when they are using official
system features if those features are not carefully designed. For exam
ple, a mainframe operating system called TOPS-IO contains a program
that supports command files similar to MS-DOS .BAT files, and it also
contains a program that provides delayed offline execution of com
mands. Unfortunately, both programs use the same TOPS-IO facility to
do their work. If you include a .BAT fiie in a deiayed command iist, the
two programs will conflict, and the .BAT file will not execute.

OS/2 deals with side effects by virtualizing to the greatest extent
possible each application's operating environment. This means that
OS/2 tries to make each application "see" a standard environment that
is unaffected by changes in another application's environment. The
effect is like that of a building of identical apartments. When each ten
ant moves in, he or she gets a standard environment, a duplicate of all
the apartments. Each tenant can customize his or her environment, but
doing so doesn't affect the other tenants or their environments.

Following are some examples of application environment issues that
OS/2 virtualizes.

• Working Directories. Each application has a working (or current)
directory for each disk drive. Under MS-DOS version 3.x, if a
child process changes the working directory for drive C and then
exits, the working directory for drive C remains changed when
the parent process regains control. OS/2 eliminates this side
effect by maintaining a separate list of working directories for
each process in the system. Thus, when an application changes its
working directories, the working directories of other applications
in the system remain unchanged.

• Memory Utilization. The simple act of memory consumption pro
duces side effects. If one process consumes all available RAM,
none is left for the others. The OS/2 memory management system
uses memory overcommit (swapping) so that the memory needs
of each application can be met.

• Priority. OS/2 uses a priority-based scheduler to assign the CPU
to the processes that need it. Applications can adjust their priority
and that of their child processes as they see fit. However, the very
priority of a task causes side effects. Consider a process that tells

34 PART I THE PROJECT

OS/2 that it must run at a higher priority than any other task in the
system. If a second process makes the same request, a conflict oc
curs: Both processes cannot be the highest priority in the system.
In general, the priority that a process wants for itself depends on
the priorities of the other processes in the system. The OS/2
scheduler contains a sophisticated absolute/relative mechanism to
deal with these conflicts.

• File Utilization. As discussed earlier, one application may modify
the files that another application is using, causing an unintended
side effect. The OS/2 file-locking mechanism prevents unin
tended modifications, and the OS/2 record-locking mechanism
coordinates intentional parallel updates to a single file.

• Environment Strings. OS/2 retains the MS-DOS concept of envi
ronment strings: Each process has its own set. A child process
inherits a copy of the parent's environment strings, but changing
the strings in this copy will not affect the original strings in the
parent's environment.

• Keyboard Mode. OS/2 applications can place the keyboard in one
of two modes-cooked or raw. These modes tell OS/2 whether
the application wants to handle, for example, the backspace char
acter (raw mode) or whether it wants OS/2 to handle the back
space character for it (cooked mode). The effect of these calls on
subsequent keyboard read operations would cause side effects for
other applications reading from the keyboard, so OS/2 maintains
a record of the cooked/raw status of each application and silently
switches the mode of the keyboard when an application issues a
keyboard read request.

3.3 Localization of Errors
A key element in creating a stable environment is localizing errors.
Humans always make errors, and human creations such as computer
programs always contain errors. Before the development of computers,
routine human errors were usually limited in scope. Unfortunately, as
the saying goes, a computer can make a mistake in 60 seconds that it

Chapter 3 The OS/2 Religion 35

would take a whole office force a year to make. Although OS/2 can do
little to prevent such errors, it needs to do its best to localize the errors.

Localizing errors consists of two activities: minimizing as much as
possible the impact of the error on other applications in the system, and
maximizing the opportunity for the user to understand which of the
many programs running in the computer caused the error. These two
activities are interrelated in that the more successful the operating sys
tem is in restricting the damage to the domain of a single program, the
easier it is for the user to know which program is at fault.

The most important aspect of error localization has already been dis
cussed at length-memory management and protection. Other error
localization principles include the following:

• No program can crash or hang the system. A fundamental element
of the OS/2 design religion is that no application program can, ac
cidentally or even deliberately, crash or hang the system. If a fail
ing application could crash the system, obviously the system did
not localize the error! Furthermore, the user would be unable to
identify the responsible application because the entire system
would be dead.

Ii No program can make inoperable any screen group other than its
own. As we'll see in later chapters of this book, sometimes design
goals, design religions, or both conflict. For example, the precept
of no side effects conflicts with the requirement of supporting
keyboard macro expander applications. The sole purpose of such
an application is to cause a side effect-specifically to translate
certain keystroke sequences into other sequences. OS/2 resolves
this conflict by allowing applications to examine and modify the
flow of data to and from devices (see Chapter 16) but in a con
trolled fashion. Thus, an aberrant keyboard macro application
that starts to "eat" all keys, passing none through to the applica
tion, can make its current screen group unusable, but it can't
affect the user's ability to change screen groups.

Note that keyboard monitors can intercept and consume any
character or character sequence except for the keystrokes that
OS/2 uses to switch screen groups (Ctrl-Esc and Alt-Esc). This
is to prevent aberrant keyboard monitor applications from

36 PART I THE PROJECT

accidentally locking the user into his or her screen group by con
suming and discarding the keyboard sequences that are used to
switch from screen groups.

• Applications cannot intercept general protection (GP) fault errors.
A GP fault occurs when a program accesses invalid memory loca
tions or accesses valid locations in an invalid way (such as writing
into read-only memory areas). OS/2 always terminates the opera
tion and displays a message for the user. A GP fault is evidence
that the program's logic is incorrect, and therefore it cannot be ex
pected to fix itself or trusted to notify the user of its ill health.

The OS/2 design does allow almost any other error on the part
of an application to be detected and handled by that application.
For example, "Illegal filename" is an error caused by user input,
not by the application. The application can deal with this error as
it sees fit, perhaps correcting and retrying the operation. An error
such as "Floppy disk drive not ready" is normally handled by
OS/2 but can be handled by the application. This is useful for ap
plications that are designed to operate unattended; they need to
handle errors themselves rather than waiting for action to be taken
by a nonexistent user.

3.4 Software Tools Approach
In Chapter 2 we discussed IPC and the desirability of having separate
functions contained in separate programs. We discussed the flexibility
of such an approach over the "one man band" approach of an all-in
one application. We also touched on the value of being able to upgrade
the functionality of the system incrementally by replacing individual
programs. All these issues are software tools issues.

Software tools refers to a design philosophy which says that individ
ual programs and applications should be like tools: Each should do one
job and do it very well. A person who wants to turn screws and also
drive nails should get a screwdriver and a hammer rather than a single
tool that does neither job as well.

The tools approach is used routinely in nonsoftware environments
and is taken for granted. For example, inside a standard PC the

Chapter 3 The OS/2 Religion 37

hardware and electronics are isolated into functional components that
communicate via interfaces. The power supply is in a box by itself; its
interface is the line cord and some power connectors. The disk drives
are separate from the rest of the electronics; they interface via more
connectors. Each component is the equivalent of a software application:
It does one job and does it well. When the disk drive needs power, it
doesn;t build in a power supply; it uses the standard interface to the
power supply module-the power "specialist" in the system.

Occasionally, the software tools approach is criticized for being in
efficient. People may argue that space is wasted and time is lost by
packaging key functions separately; if they are combined, the argument
goes, nothing is wasted. This argument is correct in that some RAM
and CPU time is spent on interface issues, but it ignores the gains in
volved in "sending out the work" to a specialist rather than doing it
oneself. One could argue, for example, that if I built an all-in-one PC
system I'd save money because I wouldn't have to buy connectors to
plug everything together. I might also save a little by not having to buy
buffer chips to drive signals over those connectors. But in doing so, I'd
lose the advantage of being able to buy my power supply from a very
high-volume and high-efficiency supplier-someone who can make a
better, cheaper supply, even with the cost of connectors, than my com
puter company can.

Finally, the user gains from the modular approach. If you need more
disk capability, you can buy one and plug it in. You are not limited to
one disk maker but rather can choose the one that's right for your
needs-expensive and powerful or cheap and modest. You can buy
third-party hardware, such as plug-in cards, that the manufacturer of
your computer doesn't make. All in all, the modest cost of a few con
nectors and driver chips is paid back manyfold, both in direct system
costs (due to the efficiency of specialization) and in the additional capa
bility and flexibility of the machine.

As I said earlier, the software tools approach is the software equiva
lent of an open system. It's an important part of the OS/2 religion:
Although the system doesn't require a modular tools approach from ap
plications programs, it should do everything in its power to facilitate
such systems, and it should itself be constructed in that fashion.

Part II

The Architecture

4

Multitasking
I have discussed the goals and compatibility issues that OS/2 is in
tended to meet, and I have described the design religion that was estab
lished for OS/2. The following chapters discuss individual design
elements in some detail, emphasizing not only how the elements work
and are used but the role they play in the system as a whole.

In a multitasking operating system, two or more programs can ex
ecute at the same time. Some benefits of such a feature are obvious:
You (the user) can switch between several application programs
with,out saving work and exiting one program to start another. When
the telephone rings, for example, you can switch from the word pro
cessor application you are using to write a memo and go to the applica
tion that is managing your appointment calendar or to the spreadsheet
application that contains the figures that are necessary to answer your
caller's query.

This type of multitasking is similar to what people do when they're
not working with a computer. You may leave a report half read on your
desk to address a more pressing need, such as answering the phone.
Later, perhaps after other tasks intervene, you return to the report. You
don't terminate a project and return your reference materials to the
bookshelf, the files, and the library to answer the telephone; you merely
switch your attention for a while and later pick up where you left off.

This kind of multitasking is called serial multitasking because ac
tions are performed one at a time. Although you probably haven't
thought of it this way, you've spent much of your life serially multitask
ing. Every day when you leave for work, you suspend your home life
and resume your work life. That evening, you reverse the process. You

42 PART II THE ARCHITECTURE

serially multitask a hobby-each time 'picking it up where you left off
last time and then leaving off again. Reading the comics in a daily
newspaper is a prodigious feat of human serial mUltitasking-you
switch from one to another of perhaps 20 strips, remembering for each
what has gone on before and then waiting until tomorrow for the next
installment Although serial multitasking is very useful, it is not nearly
as useful as full multitasking-the kind of multitasking built into OS/2.

Full multitasking on the computer involves doing more than one
thing-running more than one application-at the same time. Hu
mans do a little of this, but not too much. People commonly talk while
they drive cars, eat while watching television, and walk while chewing
gum. None of these activities requires one's full concentration though.
Humans generally can't fully multitask activities that require a signifi
cant amount of concentration because they have only one brain.

For that matter, a personal computer has only one "brain" -one
CPU.1 But OS/2 can switch this CPU from one activity to another very
rapidly -dozens or even hundreds of times a second. All executing
programs seem to be running at the same time, at least on the human
scale of time. For example, if five programs are running and each in
turn gets 0.01 second of CPU time (that is, 10 milliseconds), in 1 sec
ond each program receives 20 time slices. To most observers, human or
other computer software, all five programs appear to be running simul
taneously but each at one-fifth its maximum speed. We'll return to the
topic of time slicing later; for now, it's easiest-and, as we shall see,
best - to pretend that all executing programs run simultaneously.

The full multitasking capabilities of OS/2 allow the personal com
puter to act as more than a mere engine to run applications; the personal
computer can now be a system of services. The user can interact with a
spreadsheet program, for example, while a mail application is receiving
network messages that the user can read later. At the same time, other
programs may be downloading data from a mainframe computer or
spooling output to a printer or a plotter. The user may have explicitly
initiated some of these activities; a program may have initiated others.
Regardless, they all execute simultaneously, and they all do their work
without requiring the user's attention or intervention.

1. Although multiple-CPU computers are well known, personal computers with multiple
CPUs are uncommon. In any case, this discussion applies, with the obvious extensions, to
multiple-CPU systems.

Chapter 4 Multitasking 43

Full multitasking is useful to programs themselves. Earlier, we dis
cussed the advantages of a tools approach-writing programs so that
they can offer their services to other programs. The numerous advan
tages of this technique are possible only because of full multitasking.
For example, if a program is to be able to invoke another program to
sort a data file, the sort program must execute at the same time as its
client program. It wouldn't be very useful if the client program had to
terminate in order for the sort program to run.

Finally, full multitasking is useful within a program itself. A thread
is an OS/2 mechanism that allows more than one path of execution
through a particular application. (Threads are discussed in detail later;
for now it will suffice to imagine that several CPU s can be made to ex
ecute the same program simultaneously.) This allows individual appli
cations to perform more than one task at a time. For example, if the user
tells a spreadsheet program to recalculate a large budget analysis, the
program can use one thread to do the calculating and another to prompt
for, read, and obey the user's next command. In effect, multiple opera
tions overlap during execution and thereby increase the program's
responsiveness to the user.

OS/2 uses a time-sliced, priority-based preemptive scheduler to pro
vide full multitasking. In other words, the OS/2 scheduler preempts
takes away-the CPU from one application at any time the scheduler
desires and assigns the CPU another application. Programs don't sur
render the CPU when they feel like it; OS/2 preempts it. Each program
in the system (more precisely, each thread in the system) has its own
priority. When a thread of a higher priority than the one currently run
ning wants to run, the scheduler preempts the running thread in favor
of the higher priority one. If two or more runnable threads have the
same highest priority, OS/2 runs each in turn for a fraction of a
second-a time slice.

The OS/2 scheduler does not periodically look around to see if the
highest priority thread is running. Such an approach wastes CPU time
and slows response time because a higher priority thread must wait to
run until the next scheduler scan. Instead, other parts of the system call
the scheduler when they think that a thread other than the one running
should be executed.

44 PART II THE ARCHITECTURE

4.1 Subtask Model
The terms task and process are used interchangeably to describe the
direct result of executing a binary (.EXE) file. A process is the unit of
ownership under OS/2, and processes own resources such as memory,
open files, connections to dynlink libraries, and semaphores. Casual
users would call a process a "program"; and, in fact, under MS-DOS
all programs and applications consist of a single process. OS/2 uses the
terms task or process because a single application program under OS/2
may consist of more than one process. This section describes how this
is done.

First, some more terminology. When a process creates, or execs,
another process, the creator process is called the parent process, and the
created process is called the child process. The parent of the parent is
the child's grandparent and so on. As with people, each process in the
system has or had a parent. 2 Although we use genealogical terms to
describe task relationships, a child task, or process, is more like an
agent or employee of the parent task. Employees are hired to do work
for an employer. The employer provides a workplace and access to the
information employees need to do their jobs. The same is generally true
for a child task. When a child task is created, it inherits (or receives a
copy of) a great deal of the parent task's environment. For example, it
inherits, or takes on, the parent's base scheduling priority and its screen
group. The term inherit is a little inappropriate because the parent task
has not died. It is alive and well, going about its business.

The most important items a child task inherits are its parent's open
file handles. OS/2 uses a handle mechanism to perform file I/O, as do
MS-DOS versions 2.0 and later. When a file is opened, OS/2 returns a
handle-an integer value-to the process. When a program wants to
read from or write to a file, it gives OS/2 the file handle. Handles are
not identical among processes. For example, the file referred to by han
dle 6 of one process bears no relationship to the file referred to by
another process's handle 6, unless one of those processes is a child of
the other. When a parent process creates a child process, the child
process, by default, inherits each of the parent's open file handles. For
example, a parent process has the file \ WORK\TEMPFILE open on

2. Obviously, during boot-up OS/2 creates an initial parentless process by "magic," but this
is ancient history by the time any application may run, so the anomaly may be safely ignored.

Chapter 4 Multitasking 45

handle 5; when the child process starts up, handle 5 is open and refer
ences the \WORK\TEMPFILE file.

This undoubtedly seems brain damaged if you are unfamiliar with
this model. Why is it done in this crazy way? What use does the child
process have for these open files? What's to keep the child from muck
ing up the parent's files? All this becomes clearer when the other piece
of the puzzie is in place-the standardfile handles.

4.1.1 Standard File Handles
Many OS/2 functions use 16-bit integer values called handles for their
interfaces. A handle is an Qbject that programmers call a "magic
cookie"-an arbitrary value that OS/2 provides the application so that
the application can pass the value back to OS/2 on subsequent calls. Its
purpose is to simplify the OS/2 interface and speed up the particular
service. For example, when a program creates a system semaphore, it is
returned a semaph~re handle-a magic cookie-that it uses for subse
quent request and release operations. Referring to the semaphore via a
16-bit value is much faster than passing around a long filename. Fur
thermore, the magic in magic cookie is that the meaning of the 16-bit
handle value is indecipherable to the application. OS/2 created· the
value, and it has meaning only to OS/2; the applicaiion need oniy re
tain the value and regurgitate it when appropriate. An application can
never make any assumptions about the values of a magic cookie.

File handles are an exceptional form of handle because they are not
magic cookies. The handle value, in the right circumstances, is
meaningful to the application and to the system as a whole. Specifi
cally, three handle values have special meaning: handle value 0, called
STDIN (for standard input); handle value 1, called STDOUT (standard

output); and handle value 2, called STDERR (standard error). A simple
program-let's call it NUMADD-will help to explain the use of
these three handles. NUMADD will read two lines of ASCII text (each
containing a decimal number), convert the numbers to binary, add
them, and then convert the results to an ASCII string and write out the
result. Note that we're confining our attention to a simple non-screen
oriented program that might be used as a tool, either directly by a
programmer or by another program (see Figure 4-1 and Listing 4-1 on
the following page).

46 PART II THE ARCHITECTURE

STDOUT 123~STDIN ~
14 NUMADD . 137

Figure4-1.
Program NUMADD operation-interactive.

#include <stdio.h>

main ()

{

int value1, value2, sum;

/* defines stdin and stdout */

fscanf (stdin, HId", &value1);

fscanf (stdin, HId", & value2);

sum = value1 + value2;

fprintf (stdout, "%d\n", sum);

Listing 4-1.
Program NUMADD.

By convention, all OS/2 programs read input from STDIN and write
output to STDOUT. Any error messages are written to STDERR. The
program itself does not open these handles; it inherits them from the
parent process. The parent may have opened them itself or inherited
them from its own parent. As you can see, NUMADD would not con
tain DosOpen calls; instead, it would start immediately issuing fscanf
calls on handle 0 (STDIN), which in turn issues DosRead calls, and,
when ready, directly issue fprintf calls to handle 1 (STDOUT), which
in turn issues DosWrites.

Figure 4-2 and Listing 4-2 show a hypothetical application,
NUMARITH. NUMARITH reads three text lines. The first line con
tains an operation character, such as a plus (+) or a minus (-); the sec
ond and third lines contain the values to be operated upon. The author
of this program doesn't want to reinvent the wheel; so when the pro
gram NUMARITH encounters a + operation, it executes NUMADD
to do the work. As shown, the parent process NUMARITH has its
STDIN connected to the keyboard and its STDOUT connected to the
screen device drivers.3 When NUMADD executes, it reads input from
the keyboard via STDIN. After the user types the two numbers,
NUMADD displays the result on the screen via STDOUT.
NUMARITH has invoked NUMADD to do some work for it, and

3. CMD.EXE inherited these handles from its own parent. This process is discussed later.

Figure 4-2.
Program NUMARITH operation-interactive.

#include <stdio.h>

1** Numarith - Perform ASCII Arithmetic

*

*
*
*

Numarith reads line triplets:

operation

value1

value2

Chapter 4 Multitasking 47

performs the specified operation (+, - *, I) on

the two values and prints the result on stdout.

main ()
{

char operation;

fscanf (stdin, "%c", &operation);

switch (operation) {

case '+': execl ("numadd", 0);

break;

case '-': execl ("numsub", 0);

break;

case '*': execl ("numrnul", 0);

break;

case 'I': execl ("numdiv", 0);

break;

Listing 4-2.
Program NUMARITH.

48 PART II THE ARCHITECTURE

NUMADD has silently and seamlessly acted as a part of
NUMARITH. The employee metaphor fits well here. NUMADD
acted as an employee of NUMARITH, making use of NUMARITH's
I/O streams, and as a result the contribution of the NUMADD
employee to the NUMARITH company is seamless.

Figure 4-3 shows a similar situation. In this case, however,
NUMARITH's STDIN and STDOUT handles are open on two files,
which we'll call DATAIN and DATAOUT. Once again, NUMADD
does its work seamlessly. The input numbers are read from the com
mand file on STDIN, and the output is properly intermingled in the log
file on STDOUT. The key here is that this NUMADD is exactly the
same program that ran in Listing 4-2; NUMADD contains no special
code to deal with this changed situation. In both examples, NUMADD
simply reads from STDIN and writes to STDOUT; NUMADD neither
knows nor cares where those handles point. Exactly the same is true for
the parent. NUMARITH doesn't know and doesn't care that it's work
ing from files instead of from the screen; it simply uses the STDIN and
STDOUT handles that it inherited from its parent.

This is the single most important concept in the relationship and in
heritance structure between processes. The reason a process inherits so

File data in File data out

Figure 4-3.
Program NUMARITH operation-from files.

Chapter 4 Multitasking 49

much from its parent is so that the parent can set up the tool's environ
ment-make it read from the parent's STDIN or from a file or from an
anonymous pipe (see 4.1.2 Anonymous Pipes). This gives the parent
the flexibility to use a tool program as it wishes, and it frees the tool's
author from the need to be "all things to all people."

Of equal importance, the inheritance architecture provides nesting
encapsuiation of child processes. NUMARITH's parent process
doesn't know and doesn't need to know how NUMARITH does its job.
NUMARITH can do the additions itself, or it can invoke NUMADD
as a child, but the architecture encapsulates the details of
NUMARITH's operation so that NUMADD's involvement is hidden
from NUMARITH's parent. Likewise, the decision of NUMARITH's
parent to work from a file or from a device or from a pipe is encapsu
lated (that is, hidden) from NUMARITH and from any child processes
that NUMARITH may execute to help with its work. Obviously, this
architecture can be extended arbitrarily: NUMADD can itself execute
a child process to help NUMADD with its work, and this would silent
ly and invisibly work. Neither NUMARITH nor its parent would know
or need to know anything about how NUMADD was doing its work.
Other versions can replace any of these applications at any time. The
new versions can invoke more or fewer child processes or be changed
in any other way, and their client (that is, parent) processes are
unaffected. The architecture of OS/2 is tool-based; as long as the func
tion of a tool remains constant (or is supersetted), its implementation is
irrelevant and can be changed arbitrarily.

The STDIN, STDOUT, and STDERR architecture applies to all
programs, even those that only use VIO, KBD, or the presentation man
ager and that never issue operations on these handles. See Chapter 14,
Interactive Programs.

4.1.2 Anonymous Pipes
NUMADD and NUMARITH are pretty silly little programs; a mo
ment's consideration will show how the inheritance architecture ap
plies to more realistic programs. An example is the TREE program that
runs when the TREE command is given to CMD.EXE. TREE inherits

50 PART II THE ARCHITECTURE

the STDIN and STDOUT handles, but it does not use STDIN; it merely
writes output to STDOUT. As a result, when the user types TREE at a
CMD.EXE prompt, the output appears on the screen. When TREE ap
pears in a batch file, the output appears in the LOG file or on the
screen, depending on where STDOUT is pointing.

This is all very useful, but what if an application wants to further
process the output of the child program rather than having the child's
output intermingled with the application's output? OS/2 does this with
anonymous pipes. The adjective anonymous distinguishes these pipes
from a related facility, named pipes, which are not implemented in
OS/2 version 1.0.

An anonymous pipe is a data storage buffer that OS/2 maintains.
When a process opens an anonymous pipe, it receives two file
handles-one for writing and one for reading. Data can be written to
the write handle via the DosWrite call and then read back via the read
handle and the DosRead call. An anonymous pipe is similar to a file in
that it is written and read via file handle operations, but an anonymous
pipe and a file are significantly different. Pipe data is stored only in
RAM buffers, not on a disk, and is accessed only in FIFO (First In
First Out) fashion. The DosSeek operation is illegal on pipe handles.

An anonymous pipe is of little value to a single process, since it acts
as a simple FIFO (First In First Out) storage buffer of limited size and
since the data has to be copied to and from OS/2' s pipe buffers when
DosWrites and DosReads are done. What makes an anonymous pipe
valuable is that child processes inherit file handles. A parent process
can create an anonymous pipe and then create a child process, and the
child process inherits the anonymous pipe handles. The child process
can then write to the pipe's write handle, and the parent process can
read the data via the pipe's read handle. Once we add the DosDupHan
die function, which allows handles to be renumbered, and the standard
file handles (STDIN, STDOUT, and STDERR), we have the makings
of a powerful capability.

Let's go back to our NUMARITH and NUMADD programs. Sup
pose NUMARITH wants to use NUMADD's services but that
NUMARITH wants to process NUMADD's results itself rather than
having them appear in NUMARITH's output. Furthermore, assume
that NUMARITH doesn't want NUMADD to read its arguments from

Chapter 4 Multitasking 51

NUMARITH's input file; NUMARITH wants to supply NUMADD's
arguments itself. NUMARITH can do this by following these steps:

1. Create two anonymous pipes.

2. Preserve the item pointed to by the current STDIN and STDOUT
handles (the item can be a file, a device, or a pipe) by using
DosDupHandie to provide a dupiicate handle. The handle num
bers of the duplicates may be any number as long as it is not the
number of STDIN, STDOUT, or STDERR. We know that this is
the case because DosDupHandle assigns a handle number that is
not in use, and the standard handle numbers are always in use.

3. Close STDIN and STDOUT via DosClose. Whatever object is
"on the other end" of the handle is undisturbed because the appli
cation still has the object open on another handle.

4. Use DosDupHandle to make the STDIN handle a duplicate of
one of the pipe's input handles, and use DosDupHandle to make
the STDOUT handle a duplicate of the other pipe's output handle.

5. Create the child process via DosExecPgm.

6. Close the STDIN and STDOUT handles that point to the pipes,
and use DosDupHandie and DosClose to effectively rename the
objects originally described by STDIN and STDOUT back to
those handles.

The result of this operation is shown in Figure 4-4. NUMADD's
STDIN and STDOUT handles are pointing to two anonymous pipes,
and the parent process is holding the other end of those pipes. The
parent process used DosDupHandle and DosClose to effectively "re
name" the STDIN and STDOUT handles temporarily so that the

Figure 4-4.

anonymous
pipe

Invoking NUMADD via an anonymous pipe.

anonymous
pipe

52 PART II THE ARCHITECTURE

child process can inherit the pipe handles rather than its parent's
STDIN and STDOUT. At this point the parent, NUMARITH, can
write input values into the pipe connected to NUMADD's STDIN and
read NUMADD's output from the pipe connected to NUMADD's
STDOUT.

If you compare Figure 4-4 with Listing 4-2, Figure 4-2, and Figure
4-3, you see another key feature of this architecture: NUMADD has no
special code or design to allow it to communicate directly with
NUMARITH. NUMADD functions correctly whether working from
the keyboard and screen, from data files, or as a tool for another pro
gram. The architecture is fully recursive: If NUMADD invokes a child
process to help it with its work, everything still functions correctly.
Whatever mechanism NUMADD uses to interact with its child/tool
program is invisible to NUMARITH. Likewise, if another program
uses NUMARITH as a tool, that program is not affected by whatever
mechanism NUMARITH uses to do its work.

This example contains one more important point. Earlier I said that
a process uses DosRead and DosWrite to do I/O over a pipe, yet our
NUMADD program uses fscanf and fprintf, two C language library
routines. fscanf and fprintf themselves call DosRead and DosWrite,
and because a pipe handle is indistinguishable from a file handle or a
device handle for these operations, not only does NUMADD work
unchanged with pipes, but the library subroutines that it calls work as
well. This is another example of the principle of encapsulation as ex
pressed in OS/2,4 in which the differences among pipes, files, and
devices are hidden behind, or encapsulated in, a standardized handle
interface.

4.1.3 Details, Details
While presenting the "big picture" of the OS/2 tasking and tool archi
tecture, I omitted various important details. This section discusses
them, in no particular order.

STDERR (handle value 2) is an output handle on which error mes
sages are written. STDERR is necessary because STDOUT is a pro
gram's normal output stream. For example, suppose a user types:

DIR filename >Iogfile

4. And in UNIX, from which this aspect of the architecture was adapted.

Chapter 4 Multitasking 53

where the file filename does not exist. If STDERR did not exist as a
separate entity, no error message would appear, and logfile would ap
parently be created. Later, when the user attempted to examine the con
tents of the file, he or she would see the following message:

FILE NOT FOUND

For ihis reason, STDERR generaliy poinis io me display screen, and
applications rarely redirect it.

The special meanings of STDIN, STDOUT, and STDERR are not
hard coded into the OS/2 kernel; they are system conventions. All pro
grams should follow these conventions at all times to preserve the flex
ibility and utility ofOS/2's tool-based architecture. Even programs that
don't do handle I/O on the STD handles must still follow the architec
tural conventions (see Chapter 14,.lnteractive Programs). However, the
OS/2 kernel code takes no special action nor does it contain any special
cases in support of this convention. Various OS/2 system utilities, such
as CMD.EXE and the presentation manager, do contain code in support
of this convention.

I mentioned that a child process inherits all its parent's file handles
unless the parent has explicitly marked a handle "no inherit." The use
of STDIN, STDOUT, and STDERR in an inherited environment has
been discussed, but what of the other handles?

Although a child process inherits all of its parent's file handles, it is
usually interested only in STDIN, STDOUT, and STDERR. What hap
pens to the other handles? Generally, nothing. Only handle values 0
(STDIN), 1 (STDOUT), and 2 (STDERR) have explicit meaning. All
other file handles are merely magic cookies that OS/2 returns for use in
subsequent I/O calls. OS/2 doesn't guarantee any particular range or
sequence of handle values, and applications should never use or rely on
explicit handle values other than the STD ones.

Thus, for example, if a parent process has a file open on handle N
and the child process inherits that handle, little happens. The child pro
cess won't get the value N back as a result of a DosOpen because the
handle is already in use. The child will never issue operations to handle
N because it didn't open any such handle and knows nothing of its exis
tence. Two side effects can result from inheriting "garbage" handles.
One is that the object to which the handle points cannot be closed until
both the parent and the child close their handles. Because the child

54 PART II THE ARCHITECTURE

knows nothing of the handle, it won't close it. Therefore, a handle close
issued by a parent won't be effective until the child and all of that
child's descendant processes (which in turn inherited the handle) have
terminated. If another application needs the file or device, it is unavail
able because a child process is unwittingly holding it open.

The other side effect is that each garbage handle consumes an entry
in the child's handle space. Although you can easily increase the
default maximum of 20 open handles, a child process that intends to
open only 10 files wouldn't request such an increase. If a parent process
allows the child to inherit 12 open files, the child will run out of avail
able open file handles. Writing programs that always raise their file
handle limit is not good practice because the garbage handles are extra
overhead and the files-held-open problem remains. Instead, parent pro
grams should minimize the number of garbage handles they allow
child processes to inherit.

Each time a program opens a file, it should do so with the DosOpen
request with the "don't inherit" bit set if the file is of no specific in
terest to any child programs. If the bit is not set at open time, it can be
set later via DosSetFHandState. The bit is per-handle, not per-file; so
if a process has two handles open on the same file, it can allow one but
not the other to be inherited. Don't omit this step simply because you
don't plan to run any child processes; unbeknownst to you, dynlink li
brary routines may run child programs on your behalf. Likewise, in
dynlink programs the "no inherit" bit should be set when file opens
are issued because the client program may create child processes.

Finally, do not follow the standard UNIX practice of blindly closing
file handles 3 through 20 during program initialization. Dynlink sub
systems are called to initialize themselves for a new client before con
trol is passed to the application itself. If subsystems have opened files
during that initialization, a blanket close operation will close those files
and cause the dynlink package to fail. All programs use dynlink sub
systems, whether they realize it or not, because both the OS/2 interface
package and the presentation manager are such subsystems. Acciden
tally closing a subsystem's file handles can cause bizarre and inexplica
ble problems. For example, when the VIa subsystem is initialized, it
opens a handle to the screen device. A program that doesn't call VIa
may believe that closing this handle is safe, but it's not. If a handle

Chapter 4 Multitasking 55

write is done to STDOUT when STDOUT points to the screen device,
OS/2 calls VIO on behalf of the application-with potentially
disastrous effect.

I discussed how a child process, inheriting its parent's STDIN and
STDOUT, extracts its input from the parent's input stream and inter
mingles its output in the parent's output stream. What keeps the parent
process from rereading the input consumed by the child, (hid what
keeps the parent from overwriting the output data written by the child?
The answer is in the distinction between duplicated or inherited han
dles to a file and two handles to the same file that are the result of two
separate opens.

Each time a file is opened, OS/2 allocates a handle to that process
and makes an entry in the process's handle table. This entry then points
to the System File Table (SFT) inside OS/2. The SFT contains the seek
pointer to the file- the spot in the file that is currently being read from
or written to. When a handle is inherited or duplicated, the new handle
points to the same SFT entry as the original. Thus, for example, the
child's STDIN handle shares the same seek pointer as the parent's
STDIN handle. When our example child program NUMADD read two
lines from STDIN, it advanced the seek pointer of its own STDIN and
that of its parent's STDIN (and perhaps that of its grandparent's
STDIN and so forth). Likewise, when the child writes to STDOUT, the
seek pointer advances on STDOUT so that subsequent writing by the
parent appends to the child's output rather than overwriting it.

This lIlechanism has two important ramifications. First, in a situa
tion such as our NUMARITH and NUMADD example, the parent
process must refrain from I/O to the STD handles until the child
process has completed so that the input or output data doesn't inter
mingle. Second, the processes must be careful in the way they buffer
data to and from the STD handles.

Most programs that read data from STDIN do so until they encoun
ter an EOF (End Of File). These programs can buffer STDIN as they
wish. A program such as NUMARITH, in which child processes read
some but not all of its STDIN data, cannot use buffering because the
read-ahead data in the buffer might be the data that the child process
was to read. NUMARITH can't "put the data back" by backing up the
STDIN seek pointer because STDIN might be pointing to a device

56 PART II THE ARCHITECTURE

(such as the keyboard) or to a pipe that cannot be seeked. Likewise,
because NUMADD was designed to read only two lines of input, it
also must read STDIN a character at a time to be sure it doesn't
"overshoot" its two lines.

Programs must also be careful about buffering STDOUT. In general,
they can buffer STDOUT as they wish, but they must be sure to flush
out any buffered data before they execute any child processes that
might write to STDOUT.

Finally, what if a parent process doesn't want a child process to in
herit STDIN, STDOUT, or STDERR? The parent process should not
mark those handles "no inherit" because then those handles will not be
open when the child process starts. The OS/2 kernel has no built-in
recognition of the STD file handles; so if the child process does a
DosOpen and handle 1 is unopened (because the process's parent set
"no inherit" on handle 1), OS/2 might open the new file on handle 1.
As a result, output that the child process intends for STDOUT appears
in the other file that unluckily was assigned handle number 1.

If for some reason a child process should not inherit a STD handle,
the parent should use the DosDupHandle/rename technique to cause
that handle to point to the NULL device. You do this by opening a han
dle on the NULL device and then moving that handle to 0, 1, or 2 with
DosDupHandle. This technique guarantees that the child's STD han
dles will all be open.

The subject of STDIN, STDOUT, and handle inheritance comes up
again in Chapter 14, Interactive Programs.

4.2 PIDs and Command Subtrees
The PID (process identification) is a unique code that OS/2 assigns to
each process when it is created. The number is a magic cookie. Its value
has no significance to any process; it's simply a name for a process.
The PID may be any value except O. A single PID value is never as
signed to two processes at the same time. PID values are reused but not
"rapidly." You can safely remember a child's PID and then later at
tempt to affect that child by using the PID in an OS/2 call. Even if the
child process has died unexpectedly, approximately 65,000 processes
would have to be created before the PID value might be reassigned;
even a very active system takes at least a day to create, execute, and ter
minate that many processes.

Chapter 4 Multitasking 57

I've discussed at some length the utility of an architecture in which
child programs can create children and those children can create
grandchildren and so on. I've also emphasized that the parent need not
know the architecture of a child process-whether the child process
creates children and grandchildren of its own. The parent need not
know and indeed should not know because such information may make
the parent dependent on a particular implementation of a child or
grandchild program, an implementation that might change. Given that a
parent process starting up a child process can't tell if that child creates
its own descendants, how can the parent process ask the system if the
work that the child was to do has been completed? The system could
tell the parent whether the child process is still alive, but this is insuffi
cient. The child process may have farmed out all its work to one or
more grandchildren and then terminated itself before the actual work
was started. Furthermore, the parent process may want to change the
priority of the process(es) that it has created or even terminate them
because an error was detected or because the user typed Ctrl-C.

All these needs are met with a concept called the command subtree.
When a child process is created, its parent is told the child's PID. The
PID is the name of the single child process, and when taken as a com
mand subtree ID, this PID is the name of the entire tree of descendant
processes of which the child is the root. In other words, when used as a
command subtree ID, the PID refers not only to the child process but
also to any of its children and to any children that they may have and so
on. A single command subtree can conceivably contain dozens of
processes (see Figure 4-5 on the following page and Figure 4-6 on
page 59).

Some OS/2 functions, such as DosCWait and DosKillProcess, can
take either PID or command subtree values, depending on the subfunc
tion requested. When the PID form is used, only the named process is
affected. When the command subtree form is used, the named process
and all its descendants are affected. This is true even if the child process
no longer exists or if the family tree of processes contains holes as a
result of process terminations.

No statute of limitations applies to the use of the command subtree
form. That is, even if child process X died a long time ago, OS/2 still
allows references to the command subtree X. Consequently, OS/2
places one simple restriction on the use of command subtrees so that it
isn't forced to keep around a complete process history forever: Only the

58 PART II THE ARCHITECTURE

PARENT

A

Figure 4-5.
Command subtree. A is the root of (one of) the parent's command subtrees. Band Care
the root of two of A's subtrees and so on.

direct parent of process X can reference the command subtree X. In
other words, X's grandparent process can't learn X's PID from its
parent and then issue command subtree forms of commands; only X's
direct parent can. This puts an upper limit on the amount and duration
of command subtree information that OS/2 must retain; when a process
terminates, information pertaining to its command subtrees can be
discarded. The command subtree concept is recursive. OS/2 discards
information about the terminated process's own command subtrees, but
if any of its descendant processes still exist, the command subtree in
formation pertaining to their child processes is retained. And those sur
viving descendants are still part of the command subtree belonging to
the terminated process's parent process.5

5. Assuming that the parent process itself still exists. In any case, all processes are part of a
nested set of command subtrees belonging to all its surviving ancestor processes.

Chapter 4 Multitasking 59

PARENT

Figure 4-6.
Command subtree. The shaded processes have died, but the subtrees remain. PARENT
can still use subtree A to affect all remaining subprocesses. Likewise, an operation by C
on subtree G will affect process J.

4.3 DosExecPgm
To execute a child process, you use the DosExecPgm call. The form of
the call is shown in Listing 4-3.

extern unsigned far pascal DOSEXECPGM
char far *OBJNAMEBUF,
unsigned OBJNAMEBUFL,
unsigned EXECTYPE,
char far *ARGSTRING,
char far *ENVSTRING,
struct ResultCodes far *CODEPID,
char far *PGMNAME);

Listing 4-3.
DosExecPgm call.

60 PART II THE ARCHITECTURE

The obj namebuf arguments provide an area where OS/2 can return a
character string if the DosExecPgm function fails. In MS-DOS version
2.0 and later, the EXEC function was quite simple: It loaded a file into
memory. Little could go wrong: file not found, file bad format, insuffi
cient memory, to name some possibilities. A simple error code sufficed
to diagnose problems. OS/2' s dynamic linking facility is much more
complicated. The earliest prototype versions of OS/2 were missing
these obj namebuf arguments, and engineers were quickly frustrated by
the error code "dynlink library load failed." "Which library was it?
The application references seven of them! But all seven of those librar
ies are alive and well. Perhaps it was a library that one of those libraries
referenced. But which libraries do they reference? Gee, I dunno ... "
For this reason, the object name arguments were added. The buffer is a
place where OS/2 returns the name of the missing or defective library
or other load object, and the length argument tells OS/2 the maximum
size of the buffer area. Strings that will not fit in the area are truncated.

The exectype word describes the form of the DosExecPgm. The
values are as follows.

0: Execute the child program synchronously. The thread issuing the
DosExecPgm will not execute further until the child process has
finished executing. The thread returns from DosExecPgm when
the child process itself terminates, not when the command subtree
has terminated. This form of DosExecPgm is provided for ease in
converting MS-DOS version 3.x programs to OS/2. It is con
sidered obsolete and should generally be avoided. Its use may in
terfere with proper Ctrl-C and Ctrl-Break handling (see Chapter
14, Interactive Programs).

1: Execute the program asynchronously. The child process begins
executing as soon as the scheduler allows; the calling thread
returns from the DosExecPgm call immediately. You cannot
assume that the child process has received CPU time before the
parent thread returns from the DosExecPgm call; neither can you
assume that the child process has not received such CPU service.
This form instructs OS/2 not to bother remembering the child's
termination code for a future DosCWait call. It is used when the
parent process doesn't care what the result code of the child may
be or when or if it completes, and it frees the parent from the

Chapter 4 Multitasking 61

necessity of issuing DosCWait calls. Programs executing other
programs as tools would rarely use this form. This form might be
used by a system utility, for example, whose job is to fire off cer
tain programs once an hour but not to take any action or notice
should any of those programs fail. Note that, unlike the detach

form described below, the created process is still recorded as a
child of the executing parent. The parent can issue a DosCY:/ait
call to determine whether the child subtree is still executing,
although naturally there is no return code when the child process
does terminate.

2: This form is similar to form 1 in that it executes the child process
asynchronously, but it instructs OS/2 to retain the child process's
exit code for future examination by DosCWait. Thus, a program
can determine the success or failure of a child process. The parent
process should issue an appropriate DosCWait "pretty soon"
because OS/2 version 1.0 maintains about 2600 bytes of data
structures for a dead process whose parent is expected to DosC
Wait but hasn't yet done so. To have one of these structures lying
around for a few minutes is no great problem, but programs need
to issue DosCWaits in a timely fashion to keep from clogging the
system with the carcasses of processes that finished hours ago.

OS/2 takes care of all the possible timing considerations, so it's
OK to issue the DosCWait before or after the child process has
completed. Although a parent process can influence the relative
assignment of CPU time between the child and parent processes
by setting its own and its child's relative priorities, there is no
reliable way of determining which process will run when. Write
your program in such a way that it doesn't matter if the child com
pletes before or after the DosCWait, or use some form of IPC to
synchronize the execution of parent and child processes. See 4.4
DosCWait for more details.

3: This form is used by the system debugger, CodeView. The system
architecture does not allow one process to latch onto another ar
bitrary process and start examining and perhaps modifying the
target process's execution. Such a facility would result in a mas
sive side effect and is contrary to the tenet of encapsulation in the
design religion. Furthermore, such a facility would prevent OS/2

62 PART II THE ARCHITECTURE

from ever providing an environment secure against malicious
programs. OS/2 solves this problem with the DosPtrace function,
which peeks, pokes, and controls a child process. This function is
allowed to affect only processes that were executed with this spe
cial mode value of 3.

4: This form executes the child process asynchronously but also
detaches it from the process issuing the DosExecPgm call. A
detached process does not inherit the parent process's screen
group; instead, it executes in a special invalid screen group. Any
attempt to do screen, keyboard, or mouse I/O from within this
screen group returns an error code. The system does not consider
a detached process a child of the parent process; the new process
has no connection with the creating process. In other words, it's
parentless. This form of DosExecPgm is used to create daemon
programs that execute without direct interaction with the user.

The EnvString argument points to a list of ASCII text strings that
contain environment values. OS/2 supports a separate environment
block for each process. A process typically inherits its parent's environ
ment strings. In this case, the EnvPointer argument should be NULL,
which tells OS/2 to supply the child process with a copy of the parent's
environment strings (see Listing 4-4).

PATH=C:\DOS;C:\EDITORS;C:\TOOLS;C:\XTOOLS;C:\BIN;C:\UBNET

INCLUDE=\include

TERM=h19

INIT=c:\tmp

HOME=c:\tmp

USER=c:\tmp

TEMP=c:\tmp

TERM=ibmpc

LIB=c: \lib
PROMPT= ($p)

listing 4-4.
A typical environment string set.

The environment strings are normally used to customize a particular
execution environment. For example, suppose a user creates two screen
groups, each running a copy of CMD.EXE. Each CMD.EXE is a direct
child of the presentation manager, which manages and creates screen
groups, and each is also the ancestor of all processes that will run in its

Chapter 4 Multitasking 63

particular screen group. If the user is running utility programs that use
the environment string' 'TEMP=<dirname>" to specify a directory to
hold temporary files, he or she may want to specify different TEMP=
values for each copy of CMD.EXE. As a result, the utilities that use
TEMP= will access the proper directory, depending on which screen
group they are run in, because they will have inherited the proper
TEMP= environment string from their CivID.EXE ancestor. See Chap
ter 10, Environment Strings, for a complete discussion.

Because of the inheritable nature of environment strings, parent pro
cesses that edit the environment list should remove or edit only those
strings with which they are involved; any unrecognized strings should
be preserved.

4.4 DosCWait
When a process executes a child process, it usually wants to know when
that child process has completed and whether the process succeeded or
failed. DosCWait, the OS/2 companion function to Dos ExecPgm ,
returns such information. Before we discuss DosCWait in detail, two
observations are in order. First, although each DosExecPgm call starts
only a single process, it's possible-and not uncommon-for that
child process to create its own children and perhaps they their own and
so on. A program should not assume that its child process won't create
subchildren; instead, programs should use the command-subtree
forms of DosCWait. One return code from the direct child process
(that is, the root of the command subtree) is sufficient because if that
direct child process invokes other processes to do work for it the direct
child is responsible for monitoring their success via DosCWait. In
other words, if a child process farms out some of its work to a grand
child process and that grandchild process terminates in error, then the
child process should also terminate with an error return.

Second, although we discuss the process's child, in fact processes
can have multiple child processes and therefore mUltiple command
subtrees at any time. The parent process may have interconnected the
child processes via anonymous pipes, or they may be independent of
one another. Issuing separate DosCWaits for each process or subtree is
unnecessary. The form of the DosCWait call is shown in Listing 4-5 on
the following page.

64 PART II THE ARCHITECTURE

extern unsigned far pascal DOSCWAIT (
unsigned ACT IONCODE ,
unsigned WAITOPTION,
struct ResultCodes far *RESULTWORD,
unsigned far *PIDRETURN,
unsigned PID);

Listing 4-5.
DosCWait function.

Three of the arguments affect the scope of the command: Action
Code, WaitOption, and PID. It's easiest to show how these interact by
arranging their possible values into tables.

DosCWait forms: Command Subtrees

These forms of DosCWait operate on the entire command subtree, which may, of
course, consist of only one child process. We recommend these forms because they will
continue to work correctly if the child process is changed to use more or fewer child pro
cesses of its own.

ActionCode WaitOption Processld

o n

n

Action

Wait until the command subtree
has completed and then return the
direct child's termination code.

If the command subtree has com
pleted, return the direct child's
termination code. Otherwise,
return the ERROR_WAIT_
NO_CHILDREN error code.

DosCWait forms: Individual Processes

These forms of DosCWait are used to monitor individual child processes. The pro
cesses must be direct children; grandchild or unrelated processes cannot be DosC
Waited. Use these forms only when the child process is part of the same application or
software package as the parent process; the programmer needs to be certain that she or
he can safely ignore the possibility that grandchild processes might still be running after
the direct child has terminated. *

ActionCode WaltOption

o o
Processld

o
Action

DosCWait returns as soon as a
direct child process terminates. If a
child process had already termi
nated at the time of this call, it will
return immediately.

(continued)

DosCWait forms: Individual Processes (Continued)

ActionCode WaitOption Processld

o o N

o o

o N

Chapter 4 Multitasking 65

Action

DosCWait returns as soon as the
direct child process Nterminates. If
it had already terminated at the
time of the call, DosCWait returns
immediately.

DosCWait checks for a terminated
direct child process. If one is found,
its status is returned. If none is
found, an error code is returned.

DosCWait checks the status of the
direct child process N. If it is
terminated, its status is returned. If
it is still running, an error code is
returned.

* It is in itself not an error to collect a child process's termination code via DosCWait while that child
still has living descendant processes. However, such a case generally means that the child's work,
whatever that was, is not yet complete.

ActionCode

DosCWait forms: Not Recommended

WaitOption Processld

o o
Action

DosCWait waits until a direct child
has terminated and then waits until
all of that child's descendants have
terminated. It then returns the
direct child's exit code. This form
does not wait until the first
command subtree has terminated;
it selects a command subtree
based on the first direct child that
terminates, and then it waits as
long as necessary for the
remainder of that command
subtree, even if other command
subtrees meanwhile complete.

(continued)

66 PART II THE ARCHITECTURE

DosCWait forms: Not Recommended (Continued)

ActionCode WaitOption Processld

o
Action

This form returns ERROR_
CHILD_NOT _COMPLETE if any
process in any of the caller's
subtrees is still executing. If all
subtrees have terminated, this
form returns with a direct child's
exit code. If no direct child
processes have unwaited exit
codes, the code ERROR_WAIT_
NO_CHILDREN is returned.

4.5 Control of Child Tasks and Command Subtrees
A parent process has only limited control over its child processes
because the system is designed to minimize the side effects, or cross
talk, between processes. Specifically, a parent process can affect its
command subtrees in two ways: It can change their CPU priority, and it
can terminate (kill) them. Once again, the command subtree is the
recommended form for both commands because that form is insensitive
to the operational details of the child process.

4.5.1 DosKiliProcess
A parent process may initiate a child process or command subtree and
then decide to terminate that activity before the process completes nor
mally. Often this comes about because of a direct user command or
because the user typed Ctrl-Break. See Chapter 14, Interactive Pro
grams, for special techniques concerning Ctrl-Break and Ctrl-C.

DosKiIlProcess flags each process in the command subtree (or the
direct child process if that form is used) for termination. A process
flagged for termination normally terminates as soon as all its threads
leave the system (that is, as soon as all its threads return from all system
calls). The system aborts calls that might block for more than a second
or two, such as those that read a keyboard character, so that the process
can terminate quickly. A process can intercept SIGKILL to delay ter
mination longer, even indefinitely. Delaying termination inordinately
via SetSignalHandler/SIGKILL is very bad practice and is considered
a bug rather than a feature.

Chapter 4 Multitasking 67

4.5.2 DosSetPrty
A child process inherits its parent's process priority when the DosEx
ecPgm call is issued. After the DosExecPgm call, the parent can still
change the process priority of the command subtree or of only the
direct child process. The command subtree form is recommended; if
the child process's work deserves priority N, then any child processes
ihai ii executes to help in that work should also run at priority 1'/.

Threads and
Scheduler/
Priorities

5.1 Threads

5

Computers consist of a CPU (central processing unit) and RAM (ran
dom access memory). A computer program consists of a sequence of in
structions that are placed, for the most part, one after the other in RAM.
The CPU reads each instruction in sequence and executes it. The
passage of the CPU through the instruction sequence is called a thread

of execution. All versions of MS-DOS executed programs, so they nec
essarily supported a thread of execution. OS/2 is unique, however, in
that it supports multiple threads of execution within a single process. In
other words, a program can execute in two or more spots in its code at
the same time.

Obviously, a multitasking system needs to support multiple threads
in a systemwide sense. Each process necessarily must have a thread; so
if there are ten processes in the system, there must be ten threads. Such
an existence of multiple threads in the system is invisible to the
programmer because each program executes with only one thread.
OS/2 is different from this because it allows an individual program to
execute with multiple threads if it desires.

70 PART II THE ARCHITECTURE

Because threads are elements of processes and because the process is
the unit of resource ownership, all threads that belong to the same
process share that process's resources. Thus, if one thread opens a file
on file handle X, all threads in that process can issue DosReads or
DosWrites to that handle. If one thread allocates a memory segment,
all threads in that process can access that memory segment. Threads
are analogous to the employees of a company. A company may consist
of a single employee, or it may consist of two or more employees that
divide the work among them. Each employee has access to the com
pany's resources-its office space and equipment. The employees
themselves, however, must coordinate their work so that they cooperate
and don't conflict. As far as the outside world is concerned, each
employee speaks for the company. Employees can terminate and/or
more can be hired without affecting how the company is seen from out
side. The only requirement is that the company have at least one
employee. When the last employee (thread) dies, the company (process)
also dies.

Although the process is the unit of resource ownership, each thread
does "own" a small amount of private information. Specifically, each
thread has its own copy of the CPU's register contents. This is an ob
vious requirement if each thread is to be able to execute different in
struction sequences. Furthermore, each thread has its own copy of the
floating point registers. OS/2 creates the process's first thread when the
program begins execution. Any additional threads are created by
means of the DosCreateThread call. Any thread can create another
thread. All threads in a process are considered siblings; there are no
parent-child relationships. The initial thread, thread 1, has some spe
cial characteristics and is discussed below.

5.1.1 Thread Stacks
Each thread has its own stack area, pointed to by that thread's SS and
SP values. Thread 1 is the process's primal thread. OS/2 allocates it
stack area in response to specifications in the .EXE file. If additional
threads are created via the DosCreateThread call, the caller specifies
a stack area for the new thread. Because the memory in which each
thread's stack resides is owned by the process, any thread can modify
this memory; the programmer must make sure that this does not

Chapter 5 Threads and Scheduler/Priorities 71

happen. The size of the segment in which the stack resides is explicitly
specified; the size of a thread's stack is not. The programmer can place
a thread's stack in its own segment or in a segment with other data
values, including other thread stacks. In any case, the programmer must
ensure sufficient room for each thread's needs. Each thread's stack
must have at least 2 KB free in addition to the thread's other needs at all
timeS. This extra space is set aside for the needs of dynamic link rou
tines, some of which consume considerable stack space. All threads
must maintain this stack space reserve even if they are not used to call
dynamic link routines. Because of a bug in many 80286 processors,
stack segments must be preallocated to their full size. You cannot over
run a stack segment and then assume that OS/2 will grow the segment;
overrunning a stack segment will cause a stack fault, and the process
will be terminated.

5.1.2 Thread Uses
Threads have a great number of uses. This section describes four of
them. These examples are intended to be inspirations to the program
mer; there are many other uses for threads.

5.1.2.1 Foreground and Background Work
Threads provide a form of multitasking within a single program;
therefore, one of their most obvious uses is to provide simultaneous
foreground and background 1 processing for a program. For example, a
spreadsheet program might use one thread to display menus and to read
user input. A second thread could execute user commands, update the
spreadsheet, and so on.

This arrangement generally increases the perceived speed of the pro
gram by allowing the program to prompt for another command before
the previous command is complete. For example, if the user changes a
cell in a spreadsheet and then calls for recalculation, the "execute"
thread can recalculate while the "command" thread allows the user to
move the cursor, select new menus, and so forth. The spreadsheet
should use RAM semaphores to protect its structures so that one thread
can't change a structure while it is being manipulated by another
thread. As far as the user can tell, he or she is able to overlap commands

1. Here I mean foreground and background in the sense of directly interacting with the user,
not as in foreground and background screen groups.

72 PART II THE ARCHITECTURE

without restriction. In actuality, the previous command is usually com
plete before the user can finish entering the new command. Occa
sionally, however, the new command is delayed until the first has com
pleted execution. This happens, for example, when the user of a
spreadsheet deletes a row right after saving the spreadsheet to disk. Of
course, the performance in this worst case situation is no worse than a
standard single-thread design is for all cases.

5.1.2.2 Asynchronous Processing
Another common use of threads is to provide asynchronous elements in
a program's design. For example, as a protection against power failure,
you can design an editor so that it writes its RAM buffer to disk once
every minute. Threads make it unnecessary to scatter time checks
throughout the program or to sit in polling loops for input so that a time
event isn't missed while blocked on a read call. You can create a thread
whose sole job is periodic backup. The thread can call DosSleep to
sleep for 60 seconds, write the buffer, and then go back to sleep for
another 60 seconds.

The asynchronous event doesn't have to be time related. For exam
ple, in a program that communicates over an asynchronous serial port,
you can dedicate a thread to wait for the modem carrier to come on or
to wait for a protocol time out. The main thread can continue to interact
with the user.

Programs that provide services to other programs via IPC can use
threads to simultaneously respond to multiple requests. For example,
one thread can watch the incoming work queue while one or more addi
tional threads perform the work.

5.1.2.3 Speed Execution
You can use threads to speed the execution of single processes by over
lapping I/O and computation. A single-threaded process can perform
computations or call OS/2 for disk reads and writes, but not both at the
same time. A multithreaded process, on the other hand, can compute
one batch of data while reading the next batch from a device.

Eventually, PCs containing multiple 80386 processors will become
available. An application that uses multiple threads may execute faster
by using more than one CPU simultaneously.

Chapter 5 Threads and Scheduler/Priorities 73

5.1.2.4 Organizing Programs
Finally, you can use threads to organize and simplify the structure of a
program. For example, in a program for a turnkey security/alarm sys
tem, you can assign a separate thread for each activity. One thread can
watch the status of the intrusion switches; a second can send commands
to control the lights; a third can run the telephone dialer; and a fourth
can interface with each control panel.

This structure simplifies software design. The programmer needn't
worry that an intrusion switch is triggering unnoticed while the CPU is
executing the code that waits on the second key of a two-key command.
Likewise, the programmer doesn't have to worry about talking to two
command consoles at the same time; because each has its own thread
and local (stack) variables, multiple consoles can be used simulta
neously without conflict.

Of course, you can write such a program without multiple threads; a
rat's nest of event flags and polling loops would do the job. Much better
would be a family of co-routines. But best, and simplest of all, is a
multithreaded design.

5.1.3 Interlocking
The good news about threads is that they share a process's data, files,
and resources. The bad news is that they share a process's data, files,
and resources-and that sometimes these items must be protected
against simultaneous update by multiple threads. As we discussed
earlier, most OS/2 machines have a single CPU; the "random"
preemption of the scheduler, switching the CPU among threads, gives
the illusion of the simultaneous execution of threads. Because the
scheduler is deterministic and priority based, scheduling a process's
threads is certainly not random; but good programming practice re
quires that it be considered so. Each time a program runs, external
events will perturb the scheduling of the threads. Perhaps some other,
higher priority task needs the CPU for a while. Perhaps the disk arm is
in a different position, and a disk read by one thread takes a little longer
this time than it did the last. You cannot even asswne that only the highest
priority runnable thread is executing because a multiple-CPU system
may execute the N highest priority threads.

74 PART II THE ARCHITECTURE

The only safe assumption is that all threads are executing simulta
neously and that-in the absence of explicit interlocking or semaphore
calls-each thread is always doing the "worst possible thing" in terms
of simultaneously updating static data or structures. Writing to looser
standards and then testing the program "to see if it's OK" is unaccept
able. The very nature of such race conditions, as they are called, makes
them extremely difficult to find during testing. Murphy's law says that
such problems are rare during testing and become a plague only after
the program is released.

5.1.3.1 Local Variables
The best way to avoid a collision of threads over static data is to write
your program to minimize static data. Because each thread has its own
stack, each thread has its own stack frame in which to store local vari
ables. For example, if one thread opens and reads a file and no other
thread ever manipulates that file, the memory location where that file's
handle is stored should be in the thread's stack frame, not in static
memory. Likewise, buffers and work areas that are private to a thread
should be on that thread's stack frame. Stack variables that are local to
the current procedure are easily referenced in high-level languages and
in assembly language. Data items that are referenced by multiple pro
cedures can still be located on the stack. Pascal programs can address
such items directly via the data scope mechanism. C and assembly lan
guage programs will need to pass pointers to the items into the pro
cedures that use them.

5.1.3.2 RAM Semaphores
Although using local variables on stack frames greatly reduces
problems among threads, there will always be at least a few cases in
which more than one thread needs to access a static data item or a static
resource such as a file handle. In this situation, write the code that ma
nipulates the static item as a critical section (a body of code that manip
ulates a data resource in a nonreentrant way) and then use RAM
semaphores to reserve each critical section before it is executed. This
procedure guarantees that only one thread at a time is in a critical sec
tion. See 16.2 Data Integrity for a more detailed discussion.

Chapter 5 Threads and Scheduler/Priorities 75

5.1.3.3 DosSuspendThread
In some situations it may be possible to enumerate all threads that
might enter a critical section. In these cases, a process's thread can use
DosSuspendThread to suspend the execution of the other thread(s)
that might enter the critical section. The DosSuspendThread call can
only be used to suspend threads that belong to the process making the
can; ii cannot be used to suspend a thread that beiongs to another
process. Multiple threads can be suspended by making multiple
DosSuspendThread calls, one per thread. If a just-suspended thread is
in the middle of a system call, work on that system call mayor may not
proceed. In either case, there will be no further execution of application
(ring 3) code by a suspended thread.

It is usually better to protect critical sections with a RAM sema
phore than to use DosSuspendThread. Using a semaphore to protect a
critical section is analogous to using a traffic light to protect an inter
section (an automotive "critical section" because conflicting uses
must be prevented). Using DosSuspendThread, on the other hand, is
analogous to your stopping the other cars each time you go through an
intersection; you're interfering with the operation of the other cars just
in case they might be driving through the same intersection "as you;
presumably an infrequent situation. Furthermore, you need a way to en
sure that another vehicle isn't already in the middle of the intersection
when you stop it. Getting back to software, you need to ensure that the
thread you're suspending isn't already executing the critical section at
the time that you suspend it. We recommend that you avoid DosSus
pendThread when possible because of its adverse effects on process
performance and because of the difficulty in guaranteeing that all the
necessary threads have been suspended, especially when a program
undergoes future maintenance and modification.

A DosResumeThread call restores the normal operation of a sus
pended thread~

5.1.3.4 DosEnterCritSec/DosExitCritSec
DosSuspendThread suspends the execution of a single thread within a
process. DosEnterCritSec suspends all threads in a process except the
one making the DosEnterCritSec call. Except for the scope of their
operation, DosEnterCritSec and DosExitCritSec are similar to
DosSuspendThead and DosResumeThread, and the same caveats and
observations apply.

76 PART II THE ARCHITECTURE

DosExitCritSec will not undo a DosSuspendThread that was
already in effect. It releases only those threads that were suspended by
DosEnterCritSec.

5.1.4 Thread 1
Each thread in a process has an associated thread ID. A thread's ID is a
magic cookie. Its value has no intrinsic meaning to the application; it
has meaning only as a name for a thread in an operating system call.
The one exception to this is the process's first thread, whose thread ID
is always 1.

Thread 1 is special: It is the thread that is interrupted when a process
receives a signal. See Chapter 12, Signals, for further details.

5.1.5 Thread Death
A thread can die in two ways. First, it can terminate itself with the
Dos Exit call. Second, when any thread in a process calls DosExit with
the "exit entire process" argument, all threads belonging to that
process are terminated "as soon as possible." If they were executing
application code at the time DosExit was called, they terminate imme
diately. If they were in the middle of a system call, they terminate
"very quickly. " If the system call executes quickly enough, its function
may complete (although the CPU will not return from the system call
itself); but if the system call involves delays of more than 1 second, it
will terminate without completing. Whether a thread's last system call
completes is usually moot, but in a few cases, such as writes to some
types of devices, it may be noticed that the last write was only partially
completed.

When a process wants to terminate, it should use the "terminate en
tire process" form of Dos Exit rather than the "terminate this thread"
form. Unbeknownst to the calling process, some dynlink packages, in
cluding some OS/2 system calls, may create threads. These threads are
called captive threads because only the original calling thread returns
from the dynlink call; the created thread remains "captive" inside the
dynlink package. If a program attempts to terminate by causing all its
known threads to use the DosExit "terminate this thread" form, the
termination may not be successful because of such captive threads.

Of course, if the last remaining thread of a process calls DosExit
"terminate this thread," OS/2 terminates the process.

Chapter 5 Threads and Scheduler/Priorities 77

5.1.6 Performance Characteristics
Threads are intended to be fast and cheap. In OS/2 version 1~0, each ad
ditional thread that is created consumes about 1200 bytes of memory
inside the OS/2 kernel for its kernel mode stack. This is in addition to
the 2048 bytes of user mode stack space that we recommend you pro
vide from the process's data area. Terminating a thread does not release
the kernel stack memory, but subsequently creating another thread
reuses this memory. In other words, the system memory that a process's
threads consume is the maximum number of threads simultaneously
alive times 1200 bytes. This figure is exclusive of each thread's stack,
which is provided by the process from its own memory.

The time needed to create a new thread depends on the process's
previous thread behavior. Creating a thread that will reuse the internal
memory area created for a previous thread that has terminated takes
approximately 3 milliseconds.2 A request to create a new thread that
extends the process's "thread count high-water mark" requires an in
ternal memory allocation operation. This operation may trigger a mem
ory compaction or even a segment swapout, so its time cannot be
accurately predicted.

It takes about 1 millisecond for the system to begin running an
unblocked thread. In other words, if a lower-priority thread releases a
RAM semaphore that is being waited on by a higher-priority thread,
approximately 1 millisecond passes between the lower-priority
thread's call to release the semaphore and the return of the higher
priority thread from its DosSemRequest call.

Threads are a key feature of OS/2; they will receive strong support
in future versions of OS/2 and will play an increasingly important
architectural role. You can, therefore, expect thread costs and perfor
mance to be the same or to improve in future releases.

5.2 Scheduler/Priorities
A typical running OS/2 system contains a lot of threads. Frequently,
several threads are ready to execute at anyone time. The OS/2
scheduler decides which thread to run next and how long to run it before

2. All timings in this book refer to a 6 mHz IBM AT with one wait-state memory. This repre
sents a worst case performance level.

78 PART II THE ARCHITECTURE

assigning the CPU to another thread. OS/2' s scheduler is a priority
based scheduler, it assigns each thread a priority and then uses that
priority to decide which thread to run. The OS/2 scheduler is also a
preemptive scheduler. If a higher-priority thread is ready to execute,
OS/2 does not wait for the lower-priority thread to finish with the
CPU before reassigning the CPU; the lower-priority thread is pre
empted-the CPU is summarily yanked away. Naturally, the state of
the preempted thread is recorded so that its execution can resume later
without ill effect.

The scheduler's dispatch algorithm is very straightforward: It ex
ecutes the highest-priority runnable thread for as long as the thread
wants the CPU. When that thread gives up the CPU-perhaps by wait
ing for an I/O operation-that thread is no longer runnable, and the
scheduler executes the thread with the highest priority that is runnable.
If a blocked thread becomes runnable and it has a higher priority than
the thread currently running, the CPU is immediately preempted and
assigned to the higher-priority thread. In summary, the CPU is always
running the highest-priority runnable thread.

The scheduler's dispatcher is simplicity itself: It's blindly priority
based. Although the usual focus for OS/2 activities is the process-a
process lives, dies, opens files, and so on - the scheduler components
of OS/2 know little about processes. Because the thread is the dispatch
able entity, the scheduler is primarily thread oriented. If you're not
used to thinking in terms of threads, you can mentally substitute the
word process for the word thread in the following discussion. In prac
tice, all of a process's threads typically share the same priority, so it's
not too inaccurate to view the system as being made up of processes that
compete for CPU resources.

In OS/2 threads are classified and run in three categories: general
priority, time-critical priority, and low priority. These categories are
further divided into subcategories. Figure 5-1 shows the relationship of
the three priority categories and their subcategories.

5.2.1 General Priority Category
The majority of threads in the system run in the general priority
category and belong to one of three subcategories: background, fore
ground, or interactive. To a limited extent, OS/2 dynamically modifies
the priorities of threads in the general priority category.

Figure 5-1.
Priority categories.

High

Force
run

Normal

Idle
time

Low

5.2.1.1 Background Subcategory

Chapter 5 Threads and Scheduler/Priorities 79

Foreground
screen
group

interactive

Foreground
screen
group

noninteractive

Background
screen
group

The purpose of the OS/2 priority design is to optimize response rather
than throughput. In other words, the system is not concerned about en
suring that all runnable threads get at least some CPU time, and the sys
tem is not primarily concerned about trying to keep the disks busy
when the highest-priority thread is compute bound. Instead, OS/2 is
concerned about keeping less important work from delaying or slowing
more important work. This is the reason for the background sub
category. The word background has been used in many different ways
to describe how tasks are performed in many operating systems; we use
the word to indicate processes that are associated with a screen group
not currently being displayed.

For example, a user is working with a word-processing program but
then switches from that program to a spreadsheet program. The word
processing program becomes background, and the spreadsheet program
is promoted from background to foreground. When the user selects dif
ferent screen groups, threads change from foreground to background or
background to foreground. Background threads have the lowest priority
in the general priority category. Background applications get the CPU
(and, through it, the disks) only when all foreground threads are idle.

80 PART II THE ARCHITECTURE

As soon as a foreground thread is runnable, the CPU is preempted from
the background thread. Background threads can use leftover machine
time, but they can never compete with foreground threads.

5.2.1.2 Foreground and Interactive Subcategories
All processes associated with the currently active screen group are
made members of the foreground subcategory. The process that is cur
rently interacting with the keyboard is promoted to the interactive sub
category. This ensures that the user will get the fastest possible response
to a command. When the interactive process's threads release the CPU
(via blocking on some OS/2 call), the non interactive foreground
threads get the next crack at it because those threads are usually doing
work on behalf of the interactive process or work that is in some way
related. If no foreground thread needs the CPU, background threads
may run.

Although the scheduler concerns itself with threads rather than pro
cesses, it's processes that switch between categories - foreground,
background, and interactive. When a process changes category - for
example, when a process shows itself to be in the interactive sub
category by doing keyboard 1/0-the priorities of all its threads are
adjusted appropriately.

Because background threads are the "low men on the totem pole"
that is composed of quite a few threads, it may seem that they'll never
get to run. This isn't the case, though, over a long enough period of
time. Yes, a background thread can be totally starved for CPU time
during a 5-second interval, but it would be very rare if it received no
service during a I-minute interval. Interactive application commands
that take more than a few seconds of CPU time are rare. Commands in
volving disk transfer may take longer, but the CPU is available for
lower-priority threads while the interactive process is waiting for disk
operations. Finally, a user rarely keeps an interactive application fully
busy; the normal "type, look, and think" cycle has lots of spare time in
it for background threads to run.

But how does this apply to the presentation manager? The presenta
tion manager runs many independent interactive tasks within the same
screen group, so are they all foreground threads? How does OS/2 know
which is the interactive process? The answer is that the presentation
manager advises the scheduler. When the presentation manager screen

Chapter 5 Threads and Scheduler/Priorities 81

group is displayed, all threads within that screen group are placed in
the foreground category. When the user selects a particular window to
receive keyboard or mouse events, the presentation manager tells the
scheduler that the process using that window is now the interactive
process. As a result, the system's interactive performance is preserved
in the presentation manager's screen group.

5.2.1.3 Throughput Balancing
We mentioned that some operating systems try to optimize system
throughput by trying to run CPU-bound and I/O-bound applications at
the same time. The theory is that the I/O-bound application ties up the
disk but needs little CPU time, so the disk work can be gotten out of the
way while the CPU is running the CPU-bound task. If the disk thread
has the higher priority, the tasks run in tandem. Each time the disk
operation is completed, the I/O-bound thread regains the CPU and
issues another disk operation. Leftover CPU time goes to the CPU
bound task that, in this case, has a lower priority.

This won't work, however, if the CPU-bound thread has a higher
priority than the I/O-bound thread. The CPU-bound thread will tend to
hold the CPU, and the I/O-bound thread won't get even the small
amount of CPU time that it needs to issue another I/O request. Tradi
tionally, schedulers have been designed to deal with this problem by
boosting the priority of I/O-bound tasks and lowering the priority of
CPU-bound tasks so that, eventually, the I/O-bound thread gets enough
service to make its I/O requests.

The OS/2 scheduler incorporates this design to a limited extent.
Each time a thread issues a system call that blocks, the scheduler looks
at the period between the time the CPU was assigned to the thread and
the time the thread blocked itself with a system call.3 If that period of
time is short, the thread is considered I/O bound, and its priority
receives a small increment. If a thread is truly I/O bound, it soon
receives several such increments and, thus, a modest priority promo
tion. On the other hand, if the thread held the CPU for a longer period
of time, it is considered CPU bound, and its priority receives a small
decrement.

3. We use "blocking" ratherthan "requesting an I/O operation" as a test ofI/O boundedness
because nearly all blocking operations wait for I/O. If a thread's data were all in the buffer
cache, the thread could issue many I/O requests and still be compute bound. In other words,
when we speak ofI/O-bound threads, we really mean device bound-not I/O request bound.

82 PART II THE ARCHITECTURE

The I/O boundedness priority adjustment is small. No background
thread, no matter how I/O bound, can have its priority raised to the
point where it has a higher priority than any foreground thread, no mat
ter how CPU bound. This throughput enhancing optimization applies
only to "peer" threads-threads with similar priorities. For example,
the threads of a single process generally have the same base priority, so
this adjustment helps optimize the throughput of that process.

5.2.2 Time-Critical Priority Category
Foreground threads, particularly interactive foreground threads,
receive CPU service whenever they want it. Noninteractive foreground
threads and, particularly, background threads may not receive any CPU
time for periods of arbitrary length. This approach improves system
response, but it's not always a good thing. For example, you may be
running a network or a telecommunications application that drops its
connection if it can't respond to incoming packets in a timely fashion.
Also, you may want to make an exception to the principle of ' 'response,
not throughput" when it comes to printers. Most printers are much
slower than their users would like, and most printer spooler programs
require little in the way of CPU time; so the OS/2 print spooler (the
program that prints queued output on the printer) would like to run at a
high priority to keep the printer busy.

Time-critical applications are so called because the ability to run in a
timely fashion is critical to their well-being. Time-critical applications
mayor may not be interactive, and they may be in the foreground or in
a background screen group, but this should not affect their high
priority. The OS/2 scheduler contains a time-critical priority category
to deal with time-critical applications. A thread running in this priority
category has a higher priority than any non-time-critical thread in the
system, including interactive threads. Unlike priorities in the general
category, a time-critical priority is never adjusted; once given a time
critical priority, a thread's priority remains fixed until a system call
changes it.

Naturally, time-critical threads should consume only modest
amounts of CPU time. If an application has a time-critical thread that
consumes considerable CPU time-say, more than 20 percent-the
foreground interactive application will be noticeably slowed or even

Chapter 5 Threads and Scheduler/Priorities 83

momentarily stopped. System usability is severely affected when the
interactive application can't get service. The screen output stutters and
stumbles, characters are dropped when commands are typed, and, in
general, the computer becomes unusable.

Not all threads in a process have to be of the same priority. An ap
plication may need time-critical response for only some of its work; the
other work can run at a nonnal priority. For example, in a telecom
munications program a "receive incoming data" thread might run at a
time-critical priority but queue messages in memory for processing by
a normal-priority thread. If the time-critical thread finds that the
normal-priority thread has fallen behind, it can send a "wait for me"
message to the sending program.

We strongly recommend that processes that use monitors run the
monitor thread, and only the monitor thread, at a time-critical priority.
This prevents delayed device response because of delays in processing
the monitor data stream. See 16.1 Device Monitors for more
information.

5.2.3 Low Priority Category
If you picture the general priority category as a range of priorities, with
the force run priority category as a higher range, ihere is a ihird range,
called the low priority category, that is lower in priority than the general
priority category. As a result, threads in this category get CPU service
only when no other thread in the other categories needs it. This cate
gory is a mirror image of the time-critical priority category in that the
system call that sets the thread fixes the priority; OS/2 never changes a
low priority.

I don't expect the low priority category to be particularly popular.
It's in the system primarily because it falls out for free, as a mirror im
age of the time-critical category. Turnkey systems may want to run
some housekeeping processes at this priority. Some users enjoy com
puting PI, doing cryptographic analysis, or displaying fractal images;
these recreations are good candidates for soaking up leftover CPU time.
On a more pra<;ticallevel, you could run a program that counts seconds
of CPU time and yields a histogram of CPU utilization during the
course of a day.

84 PART II THE ARCHITECTURE

5.2.4 Setting ProcesslThread Priorities
We've discussed at some length the effect of the various priorities, but
we haven't discussed how to set these priorities. Because inheritance is
an important OS/2 concept, how does a parent's priority affect that of
the child? Finally, although we said that priority is a thread issue rather
than a process one, we kept bringing up processes anyway. How does
all this work?

Currently, whenever a thread is created, it inherits the priority of its
creator thread. In the case of DosCreateThread, the thread making the
call is the creator thread. In the case of thread 1, the thread in the parent
process that is making the DosExecPgm call is the creator thread.
When a process makes a DosSetPrty call to change the priority of one
of its own threads, the new priority always takes effect. When a process
uses DosSetPrty to change the priority of another process, only the
threads in that other process which have not had their priorities ex
plicitly set from within their own process are changed. This prevents a
parent process from inadvertently lowering the priority of, say, a time
critical thread by changing the base priority of a child process.

In a future release, we expect to improve this algorithm so that each
process has a base priority. A new thread will inherit its creator's base
priority. A process's thread priorities that are in the general priority
category will all be relative to the process's base priority so that a
change in the base priority will raise or lower the priority of all the
process's general threads while retaining their relative priority rela
tionships. Threads in the time-critical and low priority categories will
continue to be unaffected by their process's base priority.

The User
Interface

6

OS/2 contains several important subsystems: the file system, the mem
ory management subsystem, the multitasking subsystem, and the user
interface subsystem-the presentation manager. MS-DOS does not
define or support a user interface subsystem; each application must pro
vide its own. MS-DOS utilities use a primitive line-oriented interface,
essentially unchanged from the interface provided by systems designed
to interface with TTY s.

OS/2 is intended to be a graphics-oriented operating system, and as
such it needs to provide a standard graphical user interface (GUI) sub
system - for several reasons. First, because such systems are complex
to create, to expect that each application provide its own is unreason
able. Second, a major benefit of a graphical user interface is that appli
cations can be intermingled. For example, their output windows can
share the screen, and the user can transfer data between applications
using visual metaphors. If each application had its own GUI package,
such sharing would be impossible. Third, a graphical user interface is
supposed to make the machine easier to use, but this will be so only if
the user can learn one interface that will work with all applications.

6.1 VIO User Interface
The full graphical user interface subsystem will not ship with OS/2 ver
sion 1.0, so the initial release will contain the character-oriented

86 PART II THE ARCHITECTURE

VIO/KBD/MOU subsystem (see Chapter 13, The Presentation Man
ager and VIO, for more details). Although VIO doesn't provide any
graphical services, it does allow applications to sidestep VIO and con
struct their own. The VIO screen group interface is straightforward.
When the machine is booted up, the screen displays the screen group
list. The user can select an existing screen group or create a new one.
From within a screen group, the user can type a magic key sequence to
return the screen to the screen group list. Another magic key sequence
allows the user to toggle through all existing screen groups. One screen
group is identified in the screen group list as the real mode screen
group.

6.2 The Presentation Manager User Interface
The OS/2 presentation manager is a powerful and flexible graphical
user interface. It supports such features as windowing, drop-down and
pop-up menus, and scroll bars. It works best with a graphical pointing
device such as a mouse, but it can be controlled exclusively from the
keyboard.

The presentation manager employs screen windows to allow multi
ple applications to use the screen and keyboard simultaneously. Each
application uses one or more windows to display its information; the
user can size and position each window, overlapping some and perhaps
shrinking others to icons. Mouse and keyboard commands change the
input focus between windows; this allows the presentation manager to
route keystrokes and mouse events to the proper application.

Because of its windowing capability, the presentation manager
doesn't need to use the underlying OS/2 screen group mechanism to
allow the user to switch between running applications. The user starts
an application by pointing to its. name on a menu display; for most ap
plications the presentation manager creates a new window and assigns
it to the new process. Some applications may decline to use the presen
tation manager's graphical user interface and prefer to take direct con
trol of the display. When such an application is initiated, the
presentation manager creates a private screen group for it and switches
to that screen group. The user can switch away by entering a special
key sequence that brings up a menu which allows the user to select any

Chapter 6 The User Interface 87

running program. If the selected program is using the standard presen
tation manager aUI, the screen is switched to the screen group shared
by those programs. Otherwise, the screen is switched to the private
screen group that the specified application is using.

To summarize, only the real mode application and applications that
take direct control of the display hardware need to run in their own
screen groups. The presentation manager runs all other processes in a
single screen group and uses its windowing facilities to share the screen
among them. The user can switch between applications via a special
menu; if both the previous and the new application are using the stan
dard interface, the user can switch the focus directly without going
though the menu.

6.3 Presentation Manager and VIO Compatibility
In OS/2 version 1.1 and in all subsequent releases, the presentation
manager will replace and superset the VIO interface. Applications that
use the character mode VIO interface will continue to work properly as
windowable presentation manager applications, as will applications
that use the STDIN and STDOUT file handles for interactive I/O. Ap
plications that use the VIO interface to obtain direct access to the
graphical display hardware will also be supported; as described above,
the presentation manager will run such applications in their own screen
group.

7

Dynamic Linking
A central component of OS/2 is dynamic linking. Dynamic links play
several critical architectural roles. Before we can discuss them at such
an abstract level, however, we need to understand the nuts and bolts of
their workings.

7.1 Static Linking
A good preliminary to the study of dynamic links (called dynlinks, for
short) is a review of their relative, static links. Every programmer who
has gone beyond interpreter-based languages such as BASIC is familiar
with static links. You code a subroutine or a procedure call to a routine
that is not present in that compiland (or source file), which we'll call
Foo. The missing routine is declared external so that the assembler or
compiler doesn't flag it as an undefined symbol. At linktime, you pre
sent the linker with the .OBJ file that you created from your compiland,
and you also provide a .OBJ file l that contains the missing routine Foo.
The linker combines the compilands into a final executable image
the .EXE file-that contains the routine Foo as well as the routines
that call it. During the combination process, the linker adjusts the calls
to Foo, which had been undefined external references, to point to the
place in the .EXE file where the linker relocated the Foo routine. This
process is diagramed in Figure 7-1 on the following page.

In other words, with static linking you can write a program in
pieces. You can compile one piece at a time by having it refer to the
other pieces as externals. A program called a linker or a link editor

1. Or a .LIB library file that contains the .OBJ file as a part of it.

90 PART II THE ARCHITECTURE

.OBJ

Call Foo

I

Figure 7-1.
Static linking.

1 +

Linker

.LlB

Foo~
~
~
~

I
.EXE file

Call

~
~
~ ----...::,....

combines these pieces into one final .EXE image, fixing up the exter
nal references (that is, references between one piece and another) that
those pieces contain.

Writing and compiling your program piecemeal is useful, but the
primary advantage of static linking is that you can use it to reference a
standard set of subroutines-a subroutine library-without compiling
or even possessing the source code for those subroutines. Nearly all
high-level language packages come with one or more standard runtime
libraries that contain various useful subroutines that the compiler can
call implicitly and that the programmer can call explicitly. Source for
these runtime libraries is rarely provided; the language supplier pro
vides only the .OBJ object files, typically in library format.

To summarize, in traditional static linking the target code (that is,
the external subroutine) must be present at linktime and is built into the
final .EXE module. This makes the .EXE file larger, naturally, but
more important, the target code can't be changed or upgraded without
relinking to the main program's .OBJ files. Because the personal com
puter field is built on commercial software whose authors don't release
source or .OBJ files, this relinking is out of the question for the typical
end user. Finally, the target code can't be shared among several (differ
ent) applications that use the same library routines. This is true for two
reasons. First, the target code was relocated differently by the linker for
each client; so although the code remains logically the same for each

Chapter 7 Dynamic Linking 91

application, the address components of the binary instructions are dif
ferent in each .EXE file. Second, the operating system has no way of
knowing that these applications are using the same library, and it has no
way of knowing where that library is in each .EXE file. Therefore, it
can't avoid having duplicate copies of the library in memory.

7.2 Loadtime Dynamic Linking
The mechanical process of loadtime dynamic linking is the same as
that of static linking. The programmer makes an external reference to a
subroutine and at linktime specifies a library file (or a .OBJ file) that
defines the reference. The linker produces a .EXE file that OS/2 then
loads and executes. Behind the scenes, however, things are very much
different.

Step 1 is the same for both kinds of linking. The external reference is
compiled or assembled, resulting in a .OBJ file that contains an exter
nal reference fixup record. The assembler or compiler doesn't know
about dynamic links; the .OBJ file that an assembler or a compiler pro
duces may be used for static links, dynamic links, or, more frequently,
a combination of both (some externals become dynamic links, others
become static links).

In static linking, the linker finds the actual externally referenced
subroutine in the library file. In dynamic linking, the linker finds a
special record that defines a module name string and an entry point
name string. For example, in our hypothetical routine Foo, the library
file contains only these two name strings, not the code for Foo itself.
(The entry point name string doesn't have to be the name by which pro
grams called the routine.) The resultant .EXE file doesn't contain the
code for Foo; it contains a special dynamic link record that specifies
these module and entry point names for Foo. This is illustrated in
Figure 7-2 on the following page.

When this .EXE file is run, OS/2 loads the code in the .EXE file into
memory and discovers the dynamic link record(s). For each dynamic
link module that is named, OS/2 locates the code in the system's
dynamic link library directory and loads it into memory (unless the
module is already in use; see below). The system then links the external
references in the application to the addresses of the called entry points.
This process is diagramed in Figure 7-3 on the following page.

92 PART II THE ARCHITECTURE

.OBJ

Call Foo

Figure 7-2.
Dynamic linking.

.EXE

Call

dlpack: Foo

.LlB
Extern Foo:

Module dlpack
entry Foo

+

IJ Disk

.EXE

Call ????

Reference to
dlpack: Foo

.Dll
dlpack: Foo

::::=::::::::::
~
~ ..-.....::,....

J
---- -------------------, -------------_.

~

RAM
Fixup ::::=::::::::::

by OS/2 ~
Call ~ ..-.....::,....

Figure 7-3.
loadtime dynlink fixups.

To summarize, instead of linking in the target code at linktime, the
linker places a module name and an entry point name into the .EXE
file. When the program is loaded (that is, executed), OS/2 locates the
target code, loads it, and does the necessary linking. Although all we're
doing is postponing the linkage untilloadtime, this technique has sev
eral important ramifications. First, the target code is not in the .EXE
file but in a separate dynamic link library (.DLL) file. Thus, the .EXE
file is smaller because it contains only the name of the target code, not

Chapter 7 Dynamic Linking 93

the code itself. You can change or upgrade the target code at any time
simply by replacing this .DLL file. The next time a referencing applica
tion is loaded,2 it is linked to the new version of the target code. Finally,
having the target code in a .DLL file paves the way for automatic code
sharing. OS/2 can easily understand that two applications are using the
same dynlink code because it loaded and linked that code, and it can
use this knowledge to share the pure segments of that dynlink package
rather than loading duplicate copies.

A final advantage of dynamic linking is that it's totally invisible to
the user, and it can even be invisible to the programmer. You need to
understand dynamic linking to create a dynamic link module, but you
can use one without even knowing that it's not an ordinary static link.
The one disadvantage of dynamic linking is that programs sometimes
take longer to load into memory than do those linked with static link
ing. The good news about dynamic linking is that the target code(s) are
separate from the main .EXE file; this is also the bad news. Because the
target code(s) are separate from the main .EXE file, a few more disk
operations may be necessary to load them.

The actual performance ramifications depend on the kind of dynlink
module that is referenced and whether this .EXE file is the first to refer
ence the module. This is discussed in more detail in 7.11 Implementa
tion Details.

Although this discussion has concentrated on processes calling dyn
link routines, dynlink routines can in fact be called by other dynlink
routines. When OS/2 loads a dynlink routine in response to a process's
request, it examines that routine to see if it has any dynlink references
of its own. Any such referenced dynlink routines are also loaded and so
on until no unsatisfied dynlink references remain.

7.3 Runtime Dynamic Linking
The dynamic linking that we have been describing is called load
time dynamic linking because it occurs when the .EXE file is loaded.
All dynamic link names need not appear in the .EXE file at loadtime; a
process can link itself to a dynlink package at runtime as well. Runtime
dynamic linking works exactly like load time dynamic linking

2. With some restrictions. See 7.11.2 Dynlink Life, Death, and Sharing.

94 PART II THE ARCHITECTURE

except that the process creates the dynlink module and entry point
names at runtime and then passes them to OS/2 so that OS/2 can locate
and load the specified dynlink code.

Runtime linking takes place in four steps.

1. The process issues a DosLoadModule call to tell OS/2 to locate
and load the dynlink code into memory.

2. The DosGetProcAddr call is used to obtain the addresses of the
routines that the process wants to call.

3. The process calls the dynlink library entry points by means of an
indirect call through the address returned by DosGetProcAddr.

4. When the process has no more use for the dynlink code, it can call
DosFreeModule to release the dynlink code. After this call, the
process will still have the addresses returned by DosGet
ProcAddr, but they will be illegal addresses; referencing them
will cause a GP fault.

Runtime dynamic links are useful when a program knows that it will
want to call some dynlink routines but doesn't know which ones. For
example, a charting program may support four plotters, and it may
want to use dynlink plotter driver packages. It doesn't make sense for
the application to contain loadtime dynamic links to all four plotters
because only one will be used and the others will take up memory and
swap space. Instead, the charting program can wait until it learns
which plotter is installed and then use the runtime dynlink facility to
load the appropriate package. The application need not even call
DosLoadModule when it initializes; it can wait until the user issues a
plot command before it calls DosLoadModule, thereby reducing mem
ory demands on the system.

The application need not even be able to enumerate all the modules
or entry points that may be called. The application can learn the names
of the dynlink modules from another process or by looking in a config
uration file. This allows the user of our charting program, for example,
to install additional plotter drivers that didn't even exist at the time that
the application was written. Of course, in this example the calling se
quences of the dynlink plotter driver must be standardized, or the
programmer must devise a way for the application to figure out the
proper way to call these newly found routines.

Chapter 7 Dynamic Linking 95

Naturally, a process is not limited to one runtime dynlink module;
multiple calls to DosLoadModule can be used to link to several
dynlink modules simultaneously. Regardless of the number of modules
in use, DosFreeModule should be used if the dynlink module will no
longer be used and the process intends to continue executing. Issuing
DosFreeModules is unnecessary if the process is about to terminate;
OSi2 reieases ali dynlink modules at process termination tirI1e.

7.4 Dynlinks, Processes, and Threads
Simply put, OS/2 views dynlinks as a fancy subroutine package.
Dynlinks aren't processes, and they don't own any resources. A dyn
link executes only because a thread belonging to a client process called
the dynlink code. The dynlink code is executing as the client thread and
process because, in the eyes of the system, the dynlink is merely a sub
routine that process has called. Before the client process can call a
dynlink package, OS/2 ensures that the dynlink's segments are in the
address space of the client. No ring transition or context switching over
head occurs when a client calls a dynlink routine; the far call to a
dynlink entry point is just that-an ordinary far call to a subroutine in
the process's address space.

One side effect is that dynlink calls are very fast; little CPU time is
spent getting to the dynlink package. Another side effect is no separa
tion between a client's segments and a dynlink package's segments3

because segments belong to processes and only one process is running
both the client and the dynlink code. The same goes for file handles,
semaphores, and so on.

7.5 Data
The careful reader will have noticed something missing in this discus
sion of dynamic linking: We've said nothing about how to handle a
dynlink routine's data. Subroutines linked with static links have no
problem with having their own static data; when the linker binds the
external code with the main code, it sees how much static data the ex
ternal code needs and allocates the necessary space in the proper data

3. Subsystem dynlink packages may be sensitive to this. For detailed information, see 7.11.1
Dynlink Data Security.

96 PART II THE ARCHITECTURE

segment(s). References that the external code makes to its data are then
fixed up to point to the proper location. Because the linker is combining
all the .OBJ files into a .EXE file, it can easily divide the static data
segment(s) among the various compilands.

This technique doesn't work for dynamic link routines because their
code and therefore their data requirements aren't present at linktime.
It's possible to extend the special dynlink .OBJ file to describe the
amount of static data that the dynlink package will need, but it won't
work.4 Because the main code in each application uses different
amounts of static data, the data area reserved for the dynlink package
would end up at a different offset in each .EXE file that was built.
When these .EXE files were executed, the one set of shared dynlink
code segments would need to reference the data that resides at different
addresses for each different client. Relocating the static references in all
dynlink code modules at each occurrence of a context switch is clearly
out of the question.

An alternative to letting dynamic link routines have their own static
data is to require that their callers allocate the necessary data areas and
pass pointers to them upon every call. We easily rejected this scheme:
It's cumbersome; call statements must be written differently if they're
for a dynlink routine; and, finally, this hack wouldn't support sub
systems, which are discussed below.

Instead, OS/2 takes advantage of the segmented architecture of the
80286. Each dynamic link routine can use one or more data segments to
hold its static data. Each client process has a separate set of these seg
ments. Because these segments hold only the dynlink routine's data and
none of the calling process's data, the offsets of the data items within
that segment will be the same no matter which client process is calling
the dynlink code. All we need do to solve our static data addressability
problem is ensure that the segment selectors of the dynlink routine's
static data segments are the same for each client process.

OS/2 ensures that the dynlink library's segment selectors are the
same for each client process by means of a technique called the disjoint
LDT space. I won't attempt a general introduction to the segmented ar
chitecture of the 80286, but a brief summary is in order. Each process
in 80286 protect mode can have a maximum of 16,383 segments. These

4. And even if it did work, it would be a poor design because it would restrict our ability to up
grade the dynlink code in the field.

Chapter 7 Dynamic Linking 97

segments are described dn two tables: the LDT (Local Descriptor
Table) and the GDT (Global Descriptor Table). An application can't
read from or write to these tables. OS/2 manages them, and the 80286
microprocessor uses their contents when a process loads selectors into
its segment registers.

In practice, the GDT is not used for application segments, which
leaves the LDT 8192 segments-or, more precisely, 8192 segment se
lectors, which OS/2 can set up to point to memory segments. The 80286
does not support efficient position-independent code, so 80286 pro
grams contain within them, as part of the instruction stream, the par
ticular segment selector needed to access a particular memory location,
as well as an offset within that segment. This applies to both code and
data references.

When OS/2 loads a program into memory, the .EXE file describes
the number, type, and size of the program's segments. OS/2 creates
these segments and allocates a selector for each from the 8192 possible
LDT selectors. There isn't any conflict with other processes in the sys
tem, at this point, because each process has its own LDT and its own
private set of 8192 LDT selectors. After OS/2 chooses a selector for
each segment, both code and data, it uses a table of addresses provided
in the .EXE file to relocate each segment reference in the program,
changing the place holder value put there by the linker into the proper
segment selector value. OS/2 never combines or splits segments, so it
never has to relocate the offset part of addresses, only the segment
parts. Address offsets are more common than segment references.
Because the segment references are relatively few, this relocation
process is not very time-consuming.

If OS/2 discovers that the process that it's loading references a
dynlink routine-say, our old friend Foo-the situation is more com
plex. For example, suppose that the process isn't the first caller of Foo;
Foo is already in memory and already relocated to some particular
LDT slots in the LDT of the earlier client of Foo. OS/2 has to fill in those
same slots in the new process's LDT with pointers to Foo; it can't
assign different LDT slots because Foo' s code and data have already
been relocated to the earlier process's slots. If the new process is
already using Foo' s slot numbers for something else, then we are in
trouble. This is a problem with all of Foo's segments, both data seg
ments and code segments.

98 PART II THE ARCHITECTURE

This is where the disjoint WT space comes in. OS/2 reserves many
of each process's LDT slots5 for the disjoint space. The same slot num
bers are reserved in every process's LDT. When OS/2 allocates an
LDT selector for a memory segment that may be shared between pro
cesses, it allocates an entry from the disjoint LDT space. After a selec
tor is allocated, that same slot in all other LDTs in the system is
reserved. The slot either remains empty (that is, invalid) or points to
this shared segment; it can have no other use. This guarantees that a
process that has been running for hours and that has created dozens of
segments can still call DosLoadModule to get access to a dynlink rou
tine; OS/2 will find that the proper slots in this process's LDT are
ready and waiting. The disjoint LDT space is used for all shared mem
ory objects, not just dynlink routines. Shared memory data segments
are also allocated from the disjoint LDT space. A process's code seg
ments are not allocated in the disjoint LDT space, yet they can still be
shared.6 Figure 7-4 illustrates the disjoint LDT concept. Bullets in the
shaded selectors denote reserved but invalid disjoint selectors. These
are reserved in case that process later requests access to the shared
memory segments that were assigned those disjoint slots. Only process
A is using the dynlink package DLX, so its assigned disjoint LDT slots
are reserved for it in Process B' s LDT as well as in the LDT of all other
processes in the system. Both processes are using the dynlink package
DLY.

7.5.1 Instance Data
OS/2 supports two types of data segments for dynlink routines
instance and global. Instance data segments hold data specific to each
instance of the dynlink routine. In other words, a dynlink routine has a
separate set of instance data segments for each process using it. The
dynlink code has no difficulty addressing its data; the code can refer
ence the data segment selectors as immediate values. The linker and
OS/2' s loader conspire so that the proper selector value is in place when
the code executes.

5. In version 1.0, more than half the LDTslots are reserved for this disjoint area.
6. The sharing of pure segments between multiple copies of the same program is established
when the duplicate copies are loaded. OS/2 will use the same selector to do segment mapping
as it did when it loaded the first copy, so these segments can be shared even though their selec
tors are not in the disjoint space.

PROCESS A

Figure 7-4.
The disjoint LDT space.

Chapter 7 Dynamic Linking 99

PROCESS B

.....-_--, Dynlink
DLZ's
segments

.....-_---., Dynlink
DLY's
segments

The use of instance data segments is nearly invisible both to the cli
ent process and to the dynlink code. The client process simply calls
the dynlink routine, totally unaffected by the presence or absence of the
routine's instance data segment(s). A dynlink routine can even return
addresses of items in its data segments to the client process. The client
cannot distinguish between a dynlink routine and a statically linked
one. Likewise, the code that makes up the dynlink routine doesn't need
to do anything special to use its instance data segments. The dynlink
code was assembled or compiled with its static data in one or more seg
ments; the code itself references those segments normally. The linker
and OS/2 handle all details of allocating the disjoint LDT selectors,
loading the segments, fixing up the references, and so on.

100 PART II THE ARCHITECTURE

A dynlink routine that uses only instance data segments (or no data
segments at all) can be written as a single client package, as would be a
statically linked subroutine. Although such a dynlink routine may have
multiple clients, the presence of multiple clients is invisible to the rou
tine itself. Each client has a separate copy of the instance data seg
ment(s). When a new client is created, OS/2 loads virgin copies of the
instance data segments from the .DLL file. The fact that OS/2 is shar
ing the pure code segments of the routine has no effect on the operation
of the routine itself.

7.5.2 Global Data
The second form of data segment available to a dynlink routine is a
global data segment. A global data segment, as the name implies, is not
duplicated for each client process. There is only one copy of each
dynlink module's global data segment(s); each client process is given
shared access to that segment. The segment is loaded only once-when
the dynlink package is first brought into memory to be linked with its
first client process. Global data segments allow a dynlink routine to be
explicitly aware of its multiple clients because changes to a global seg
ment made by calls from one client process are visible to the dynlink
code when called from another client process. Global data segments are
provided to support subsystems, which are discussed later. Figure 7-5 il
lustrates a dynlink routine with both instance and global data segments.

Figure 7-5.
Oynlink segments.

Global
data

segment(s)

Code Segment(s)

Instance
data

segment(s)

Chapter 7 Dynamic Linking 101

7.6 Dynamic Link Packages As Subroutines
Dynamic link subroutines (or packages) generally fall into two catego
ries-subroutines and subsystems. As we discussed earlier, a dynamic
link subroutine is written and executes in much the same way as a
statically linked subroutine. The only difference is in the preparation of
the dynamic link library file, which contains the actual subroutines,
and in the preparation of the special .OBJ file, to which client programs
can link. During execution, both the dynlink routines and the client
routines can use their own static data freely, and they can pass pointers
to their data areas back and forth to each other. The only difference be
tween static linking and dynamic linking, in this model, is that the
dynlink routine cannot reference any external symbols that the client
code defines, nor can the client externally reference any dynlink pack
age symbols other than the module entry points. Figure 7-6 illustrates a
dynamic link routine being used as a subroutine. The execution envi
ronment is nearly identical to that of a traditional statically linked sub
routine; the client and the subroutine each reference their own static
data areas, all of which are contained in the process's address space.
Note that a dynlink package can reference the application's data and
the application can reference the dynlink package's data, but only if the
application or the dynlink package passes a pointer to its data to the
other.

Process address space

segment #1

Figure 7-6.
Dynamic link routines as subroutines.

102 PART II THE ARCHITECTURE

7.7 Subsystems
The term dynlink subsystems refers to the design and intended function
of a particular style of dynlink package and is somewhat artificial.
Although OS/2 provides special features to help support subsystems,
OS/2 does not actually classify dynlink modules as subroutines or sub
systems; subsystem is merely a descriptive term.

The term subsystem refers to a dynlink module that provides a set of
services built around a resource.7 For example, OS/2' s VIa dynlink
entry points are considered a dynlink subsystem because they provide a
set of services to manage the display screen. A subsystem usually has to
manage a limited resource for an effectively unlimited number of cli
ents; VIa does this, managing a single physical display controller and a
small number of screen groups for an indefinite number of clients.

Because subsystems generally manage a limited resource, they have
one or more global data segments that they use to keep information
about the state of the resource they're controlling; they also have
buffers, flags, semaphores, and so on. Per-client work areas are gener
ally kept in instance data segments; it's best to reserve the global data
segment(s) for global information. Figure 7-7 illustrates a dynamic link
routine being used as a subsystem. A dynlink subsystem differs from a
dynlink being used as a subroutine only by the addition of a static data
segment.

Process address space

APPcode

Figure 7-7.
Dynamic link routines as subsystems.

7. In the most general sense of the word. I don't mean a "presentation manager resource
object."

Chapter 7 Dynamic Linking 103

7.7.1 Special Subsystem Support
Two OS/2 features are particularly valuable to subsystems: global data
segments (which we've already discussed) and special client initializa
tion and termination support. Clearly, if a subsystem is going to
manage a resource, keeping track of its clients in a global data segment,
it needs to know when new clients arrive and when old clients termi-
nate. The simple dynlink subroutine model doesn't provide this infor
mation in a reliable fashion. A subsystem undoubtedly has initialize
and terminate entry points, but client programs may terminate without
having called a subsystem's terminate entry point. Such a failure may
be an error on the part of the client, but the system architecture decrees
that errors should be localized; it's not acceptable for a bug in a client
process to be able to hang up a subsystem and thus all its clients as well.

The two forms of subsystem initialization are global and instance. A
subsystem can specify either service but not both. If global initializa
tion is specified, the initialization entry point is called only once per
activation of the subsystem. When the subsystem dynlink package is
first referenced, OS/2 allocates the subsystem's global data segment(s),
taking their initial values from the .DLL file. OS/2 then calls the sub-
system's global initialization entry point so that the module can do its
one-time initialization. The thread that is used to call the initialization
entry point belongs to that first client process,8 so the first client's in
stance data segments are also set up and may be used by the global ini
tialization process. This means that although the dynlink subsystem is
free to open files, read and write their contents, and close them again, it
may not open a handle to a file, store the handle number in a global data
segment, and expect to use that handle in the future.

Remember, subsystems don't own resources; processes own
resources. When a dynlink package opens a file, that file is open only
for that one client process. That handle has meaning only when that
particular client is calling the subsystem code. If a dynlink package
were to store process A's handle number in a global data segment and
then attempt to do a read from that handle when running as process B,

8. The client process doesn't explicitly call a dynlink package's initialization entry points.
OS/2 uses its godlike powers to borrow a thread for the purpose. The mechanism is invisible to
the client program. It goes without saying, we hope, that it would be extremely rude to the cli
ent process, not to say damaging, were the dynlink package to refuse to return that initiali
zation thread or if it were to damage it in some way, such as lowering its priority or calling
Dos Exit with it!

104 PART II THE ARCHITECTURE

at best the read would fail with "invalid handle"; at worst some unre
lated file of B 's would be molested. And, of course, when client process
A eventually terminates, the handle becomes invalid for all clients.

The second form of initialization is instance initialization. The in
stance initialization entry point is called in the same way as the global
initialization entry point except that it is called for every new client
when that client first attaches to the dynlink package. Any instance data
segments that exist will already be allocated and will have been given
their initial values from the .DLL file. The initialization entry point for
a loadtime dynlink is called before the client's code begins executing.
The initialization entry point for a runtime dynlink is called when the
client calls the DosLoadModule function. A dynlink package may not
specify both global and instance initialization; if it desires both, it
should specify instance initialization and use a counter in one of its
global data segments to detect the first instance initialization.

Even more important than initialization control is termination con
trol. In its global data area, a subsystem may have records, buffers, or
semaphores on behalf of a client process. It may have queued-up re
quests from that client that it needs to purge when the client terminates.
The dynlink package need not release instance data segments; because
these belong to the client process, they are destroyed when the client
terminates. The global data segments themselves are released if this is
the dynlink module's last client, so the module may want to take this
last chance to update a log file, release a system semaphore, and so on.

Because a dynlink routine runs as the calling client process, it could
use DosSetSigHandler to intercept the termination signal. This should
never be done, however, because the termination signal is not activated
for all causes of process termination. For example, if the process calls
Dos Exit, the termination signal is not sent. Furthermore, there can be
only one handler per signal type per process. Because client processes
don't and shouldn't know what goes on inside a dynlink routine, the cli
ent process and a dynlink routine may conflict in the use of the signal.
Such a conflict may also occur between two dynlink packages.

Using DosExitList service prevents such a collision. DosExitList
allows a process to specify one or more subroutine addresses that will
be called when the process terminates. Addresses can be added to and
removed from the list. DosExitList is ideally suited for termination

Chapter 7 Dynamic Linking· 105

control. There can be many such addresses, and the addresses are
called under all termination conditions. Both the client process and the
subsystem dynlinks that it calls can have their own termination routine
or routines. DosExitList is discussed in more detail in 16.2 Data
Integrity.

7.8 Dynamic Links As Interfaces to Other Processes
Earlier, I mentioned that dynlink subsystems have difficulty dealing
with resources-other than global memory - because resource owner
ship and access are on a per-process basis. Life as a dynlink subsystem
can be schizophrenic. Which files are open, which semaphores are
owned and so on depends on which client is running your code at the
moment. Global memory is different; it's the one resource that all cli
ents own jointly. The memory remains as long as the client count
doesn't go to zero.

One way to deal with resource issues is for a dynlink package to act
as a front end for a server process. During module initialization, the
dynlink module can check a system semaphore to see whether the
server process is already running and, if not, start it up. It needs to do
this with the "detach" form of DosExecPgm so that the server process
doesn't appear to the system as a child of the subsystem's first client.
Such a mistake could mean that the client's parent thinks that the com
mand subtree it founded by running the client never terminates because
the server process appears to be part of the command subtree (see
Figure 7-8 on the following page).

When the server process is running, the dynlink subsystem can for
ward some or all requests to it by one of the many IPC facilities. For
example, a database subsystem might want to use a dedicated server
process to hold open the database file and do reads and writes to it. It
might keep buffers and IS AM directories in a shared memory segment
to which the dynlink subsystem requests access for each of its clients;
then requests that can be satisfied by data from these buffers won't re
quire the IPC to the server process.

The only function of some dynlink packages is to act as a procedural
interface to another process. For example, a spreadsheet program might
provide an interface through which other applications can retrieve data

106 PART II THE ARCHITECTURE

Grandparent Grandparent

Figure 7-8.
Oynlink daemon initiation.

values from a spreadsheet. The best way to do this is for the spreadsheet
package to contain a dynamic link library that provides clients a pro
cedural interface to the spreadsheet process. The library routine itself
will invoke a non interactive copy (perhaps a special subset .EXE) of
the spreadsheet to recover the information, passing it back to the client
via IPC. Alternatively, the retrieval code that understands the spread
sheet data formats could be in the dynlink package itself because that
package ships with the spreadsheet and will be upgraded when the
spreadsheet is. In this case, the spreadsheet itself could use the package
instead of duplicating the functionality in its own .EXE file. In any
case, the implementation details are hidden from the client process; the
client process simply makes a procedure call that returns the desired
data.

Viewed from the highest level, this arrangement is simple: A client
process uses IPC to get service from a server process via a subroutine
library. From the programmer's point of view, though, the entire
mechanism is encapsulated in the dynlink subsystem's interface. A fu
ture upgrade to the dynlink package may use an improved server
process and different forms of IPC to talk to it but retain full binary
compatibility with the existing client base. Figure 7-9 illustrates a

Chapter 7 Dynamic Linking 107

client process daemon. process

Far call
APP Dynlink I Daemon
code code IPC code

segment(s) segment(s)
I

segment(s)

/

APP Dynlink Shared Daemon
data data data

segment(s) segment(s)
mer;nory

segment(s)

Figure 7-9.
Dynamic link routines as daemon interfaces.

dynlink package being used as an interface to a daemon process. The
figure shows the dynlink package interfacing with the daemon process
by means of a shared memory segment and some other form of IPC,
perhaps a named pipe.

7.9 Dynamic Links As Interfaces to the Kernel
We've seen how dynlink libraries can serve as simple subroutine librar
ies, how they can serve as subsystems, and how they can serve as inter
faces to other processes. OS/2 has one more trick up its sleeve: Dynlink
libraries can also serve as interfaces to OS/2 itself.

Some OS/2 calls are actually implemented as simple library rou
tines. For example, DosErrClass is implemented in OS/2 version 1.0
as a simple library routine. It takes an error code and locates, in a table,
an explanatory text string, an error classification, and a recommended
action. Services such as these were traditionally part of the kernel of
operating systems, not because they needed to use privileged instruc
tions, but because their error tables needed to be changed each time an
upgrade to the operating system was released. If the service has been
provided as a statically linked subroutine, older applications running
on newer releases would receive new error codes that would not be in
the library code's tables.

108 PART II THE ARCHITECTURE

Although OS/2 implements DosErrClass as a library routine, it's a
dynlink library routine, and the .DLL file is bundled with the operating
system itself. Any later release of the system will contain an upgraded
version of the DosErrClass routine, one that knows about new error
codes. Consequently, the dynlink facility provides OS/2 with a great
deal of flexibility in packaging its functionality.

Some functions, such as "open file" or "allocate memory," can't
be implemented as ordinary subroutines. They need access to key inter
nal data structures, and these structures are of course protected so that
they can't be changed by unprivileged code. To get these services, the
processor must make a system call, entering the kernel code in a very
controlled fashion and there running with sufficient privilege to do its
work. This privilege transition is via a call gate-a feature of the
80286/80386 hardware. A program calls a call gate exactly as it per
forms an ordinary far call; special flags in the GDT and LDT tell the
processor that this is a call gate rather than a regular call.

In OS/2, system calls are indistinguishable from ordinary dynlink
calls. All OS/2 system calls are defined in a dynlink module called
DosCalls. When OS/2 fixes up dynlink references to this module, it
consults a special table, built into OS/2, of resident functions. If the
function is not listed in this table, then an ordinary dynlink is set up. If
the function is in the table, OS/2 sets up a call gate call in place of the
ordinary dynlink call. The transparency between library and call gate
functions explains why passing an invalid address to an OS/2 system
call causes the calling process to GP fault. Because the OS/2 kernel
code controls and manages the GP fault mechanism, OS/2 calls that are
call gates could easily return an error code if an invalid address causes
a GP fault. If this were done, however, the behavior of OS/2 calls would
differ depending on their implementation: Dynlink entry points would
GP fault for invalid addresses;9 call gate entries would return an error
code. OS/2 prevents this dichotomy and preserves its freedom to, in fu
ture releases, move function between dynlink and call gate entries by
providing a uniform reaction to invalid addresses. Because non-call
gate dynlink routines must generate GP faults, call gate routines pro
duce them as well.

9. The LAR and LSL instructions are not sufficient to prevent this because another thread in
that process may free a segment after the LAR but before the reference.

Chapter 7 Dynamic Linking 109

7.10 The Architectural Role of Dynamic Links
Dynamic links play three major roles in OS/2: They provide the system
interface; they provide a high-bandwidth device interface; and they
support open architecture nonkernel service packages.

The role of dynamic links as the system interface is clear. They pro-
vide a uniform, high-efficiency interface to the system kernel as well as
a variety of nonkernel services. The interface is directly compatible
with high-level languages, and it takes advantage of special
speed-enhancing features of the 80286 and 80386 microprocessors. lO It
provides a wide and convenient name space, and it allows the distribu
tion of function between library code and kernel code. Finally, it pro
vides an essentially unlimited expansion capability.

But dynamic links do much more than act as system calls. You'll
recall that in the opening chapters I expressed a need for a device inter
face that was as device independent as device drivers but without their
attendant overhead. Dynamic links provide this interface because they
allow applications to make a high-speed call to a subroutine package
that can directly ma!lipulate the device (see Chapter 18, I/O Privilege
Mechanism and Debugging/Ptrace). The call itself is fast, and the
package can sPecify an arbitrarily wide set of parameters. No privilege
or ring transition is needed, and the dynlink package can directly ac
cess its client's data areas. Finally, the dynlink package can use sub
system support features to virtualize the device or to referee its use
among mUltiple clients. Device independence is provided because a
new version of the dynlink interface can be installed whenever new
hardware is installed. VIO and the presentation manager are examples
of this kind of dynlink use. Dynlink packages have an important-draw
back when they are being used as device driver replacements: They
cannot receive hardware interrupts. Some devices, such as video dis
plays, do not generate interrupts. Interrupt-driven devices, though, re
quire a true device driver. That driver can contain all of the device
interface function, or the work can be split between a device driver and
a dynlink package that acts as a front end for that device driver. See
Chapters 17 and 18 for further discussion of this.

Dynlink routines can also act as nonkernel service packages - as an
open system architecture for software. Most operating systems are like

10. Specifically, automatic argument passing on calls to the ring 0 kernel code.

110 PART" THE ARCHITECTURE

the early versions of the Apple Macintosh computer: They are closed
systems; only their creators can add features to them. Because of OS/2' s
open system architecture, third parties and end users can add system
services simply by plugging in dynlink modules, just as hardware cards
plug into an open hardware system. The analogy extends further: Some
hardware cards become so popular that their interface defines a stan
dard. Examples are the Hayes modem and the Hercules Graphics Card.
Third-party dynlink packages will, over time, establish similar stan
dards. Vendors will offer, for example, improved database dynlink rou
tines that are advertised as plug compatible with the standard database
dynlink interface, but better, cheaper, and faster.

Dynlinks allow third parties to add interfaces to OS/2; they also
allow OS/2' s developers to add future interfaces. The dynlink interface
model allows additional functionality to be implemented as subroutines
or processes or even to be distributed across a network environment.

7.11 Implementation Details
Although dynlink routines often act very much like traditional static
subroutines, a programmer must be aware of some special considera
tions involved. This section discusses some issues that must be dealt
with to produce a good dynlink package.

7.11.1 Dynlink Data Security
We have discussed how a dynlink package runs as a subroutine of the
client process and that the client process has access to the dynlink pack
age's instance and global data segments. I I This use of the dynlink in
terface is efficient and thus advantageous, but it's also disadvantageous
because aberrant client processes can damage the dynlink package's
global data segments.

In most circumstances, accidental damage to a dynlink package's
data segments is rare. Unless the dynlink package returns pointers into
its data segments to the client process, the client doesn't "know" the
dynlink package's data segment selectors. The only way such a process
could access the dynlink's segments would be to accidentally create a
random selector value that matched one belonging to a dynlink

11. A client process has memory access (addressability) to all of the package's global seg
ments but only to those instance data segments associated with that process.

Chapter 7 Dynamic Linking 111

package. Because the majority of selector values are illegal, a process
would have to be very "lucky" to generate a valid dynlink package
data selector before it generated an unused or code segment selector.12

Naturally, dynlink packages shouldn't use global data segments to hold
sensitive data because a malicious application can figure out the proper
selector values.

The measures a programmer takes to deal with the security issue de
pend on the nature and sensitivity of the dynlink package. Dynlink
packages that don't have global data segments are at no risk; an aber
rant program can damage its instance data segments and thereby fail to
run correctly, but that's the expected outcome of a program bug. A
dynlink package with global data segments can minimize the risk by
never giving its callers pointers into its (the dynlink package's) global
data segment. If the amount of global data is small and merely detect
ing damage is sufficient, the global data segments could be
checksummed.

Finally, if accidental damage would be grave, a dynlink package can
work in conjunction with a special dedicated process, as described
above. The dedicated process can keep the sensitive data and provide it
on a per-client basis to the dynlink package in response to an IPC re
quest. Because the dedicated process is a separate process, its segments
are fully protected from the client process as well as from all others.

7.11.2 Dynlink Life, Death, and Sharing
Throughout this discussion, I have referred to sharing pure segments.
The ability to share pure segments is an optimization that OS/2 makes
for all memory segments whether they are dynlink segments or an ap
plication's .EXE file segments. A pure segment is one that is never
modified during its lifetime. All code segments (except for those
created by DosCreateCSAlias) are pure; read-only data segments are
also pure. When OS/2 notices that it's going to load two copies of the
same· pure segment, it performs a behind-the-scenes optimization and
gives the second client access to the earlier copy of the segment instead
of wasting memory with a duplicate version.

For example, if two copies of a program are run, all code segments
are pure; at most, only one copy of each code segment will be in

12. Because if a process generates and writes with a selector that is invalid or points to a code
segment, the process will be terminated immediately with a GP fault.

112 PART II THE ARCHITECTURE

memory. OS/2 flags these segments as "internally shared" and doesn't
release them until the last user has finished with the segment. This is
not the same as "shared memory" as it is generally defined in OS/2.
Because pure segments can only be read, never written, no process can
tell that pure segments are being shared or be affected by that sharing.
Although threads from two or more processes may execute the same
shared code segment at the same time, this is not the same as a
multithreaded process. Each copy of a program has its own data areas,
its own stack, its own file handles, and so on. They are totally indepen
dent of one another even if OS/2 is quietly sharing their pure code seg
ments among them. Unlike multiple threads within a single process,
threads from different processes cannot affect one another; the
programmer can safely ignore their possible existence in shared code
segments.

Because the pure segments of a dynlink package are shared, the sec
ond and subsequent clients of a dynlink package can load much more
quickly (because these pure segments don't have to be loaded from
the .DLL disk file). This doesn't mean that OS/2 doesn't have to "hit
the disk" at all: Many dynlink packages use instance data segments,
and OS/2 loads a fresh copy of the initial values for these segments
from the .DLL file.

A dynlink package's second client is its second simultaneous client.
Under OS/2, only processes have a life of their own. Objects such as
dynlink packages and shared memory segments exist only as posses
sions of processes. When the last client process of such an object dies or
otherwise releases the object, OS/2 destroys it and frees up the mem
ory. For example, when the first client (since bootup) of a dynlink
package references it, OS/2 loads the package's code and data seg
ments. Then OS/2 calls the package's initialization routine-if the
package has one. OS/2 records in an internal data structure that this
dynlink package has one client. If additional clients come along while
the first is still using the dynlink package, OS/2 increments the pack
age's user count appropriately. Each time a client disconnects or dies,
the user count is decremented. As long as the user count remains
nonzero, the package remains in existence, each client sharing the
original global data segments. When the client count goes to zero, OS/2
discards the dynlink package's code and global data segments and in

Chapter 7 Dynamic Linking 113

effect forgets all about the package. When another client comes along,
OS/2 reloads the package and reloads its global data segment as if the
earlier use had never occurred.

This mechanism affects a dynlink package only in the management
of the package's global data' segment. The package's code segments are
pure, so it doesn't matter if they are reloaded from the .DLL file. The
instance data segments are always reinitialized for each new client, but
the data in a package's global data segment remains in existence only as
long as the package has at least one client process. When the last client
releases the package, the global data segment is discarded. If this is a
problem for a dynlink package, an associated "dummy" process
(which the dynlink package could start during its loadtime initializa
tion) can reference the dynlink package. As long as this process stays
alive, the dynlink package and its global data segments stay alive. 13

An alternative is for the dynlink package to keep track of the count
of its clients and save the contents of its global data segments to a disk
file when the last client terminates, but this is tricky. Because a process
may fail to call a dynlink package's "I'm finished" entry point
(presumably part of the dynlink package's interface) before it termi
nates, the dynlink package must get control to write its segment via
DosExitList. If the client process is connected to the dynlink package
via DosLoadModule (that is, via runtime dynamic linking), it cannot
disconnect from the package via DosFreeModule as long as a DosEx
itList address points into the dynlink package. An attempt to do so
returns an error code. Typically, one would expect the application to
ignore this error code; but because the dynlink package is still attached
to the client process, it will receive DosExitList service when the client
eventually terminates. It's important that dynlink packages which
maintain client state information and therefore need DosExitList
also offer an "I'm finished" function. When a client calls this func
tion, the package should close it out and then remove its processing ad
dress from DosExitList so that DosFreeModule can take effect 'if the
client wishes.

Note that OS/2's habit of sharing in-use dynlink libraries has im
plications for the replacement of dynlink packages. Specifically, OS/2
holds the dynlink .DLL file open for as long as that library has any

13. If you use this technique, be sure to use the detached form of DosExec; see the warning in
7.8 Dynamic Links As Interfaces to Other Processes.

,
114 PART II THE ARCHITECTURE

clients. To replace a dynlink library with an upgraded version, you
must first ensure that all clients of the old package have been
terminated.

While we're on the subject, I'll point out that dynlink segments, like
.EXE file segments, can be marked (by the linker) as "preload" or
"load on demand." When a dynlink module or a .EXE file is loaded,
OS/2 immediately loads all segments marked "preload" but usually14
does not load any segments marked "load on demand." These seg
ments are loaded only when (and if) they are referenced. This mecha
nism speeds process and library loading and reduces swapping by
leaving infrequently used segments out of memory until they are
needed. Once a segment is loaded, its "preload" or "load on demand"
status has no further bearing; the segment will be swapped or discarded
without consideration for these bits.

Finally, special OS/2 code keeps track of dynamic link "circular
references. " Because dynlink packages can call other dynlink pack
ages, package A can call package B, and package B can call package A.
Even if the client process C terminates, packages A and B might appear
to be in use by each other, and they would both stay in memory. OS/2
keeps a graph of dynlink clients, both processes and other dynlink
packages. When a process can no longer reach a dynlink package over
this graph-in other words, when a package doesn't have a process for
a client and when none of its client packages have processes for clients
and so on-the dynlink package is released. Figure 7-10 illustrates a
dynamic link circular reference. PA and PB are two processes, and LA
through LG are dynlink library routines.

7.11.3 Dynlink Side Effects
A well-written dynlink library needs to adhere to the OS/2 religious
tenet of zero side effects. A dynlink library should export to the client
process only its functional interface and not accidentally export side
effects that may interfere with the consistent execution of the client.

Some possible side effects are obvious: A dynlink routine shouldn't
close any file handles that it didn't itself open. The same applies to
other system resources that the client process may be accessing, and it
applies in the inverse, as well: A dynlink routine that obtains resources

14. Segments that are loaded from removable media will be fully loaded, regardless of the
"load on demand" bit.

Chapter 7 Dynamic Linking 115

Figure 7-10.
Dynamic link circular references.

for itself, in the guise of the client process, should do so in a way that
doesn't affect the client code. For example, consuming many of the
available file handles would be a side effect because the client would
then unexpectedly be short of available file handles. A dynlink package
with a healthy file handle appetite should be sure to call OS/2 to raise
the maximum number of file handles so that the client process isn't
constrained. Finally, the amount of available stack space is a resource
that a dynlink package must not exhaust. A dynlink routine should try
to minimize its stack needs, and an upgrade to an existing dynlink
package must not consume much more stack space than did the earlier
version, lest the upgrade cause existing clients to fail in the field.

Dynlink routines can also cause side effects by issuing some kinds
of system calls. Because a dynlink routine runs as a subroutine of the
client process, it must be sure that calls that it makes to OS/2 on behalf
of the client process don't affect the client application. For example,
each signal event can have only one handler address; if a dynlink rou
tine establishes a signal handler, then that signal handler preempts any
handler set up by the client application. Likewise, if a dynlink routine
changes the priority of the thread with which it was called, the dynlink
routine must be sure to restore that priority before it returns to its caller.
Several other system functions such as DosError and DosSetVerify
also cause side effects that can affect the client process.

116 PART II THE ARCHITECTURE

Enumerating all forms of side effects is not possible; it's up to the
programmer to take the care. needed to ensure that a dynlink module is
properly house-trained. A dynlink module should avoid the side effects
mentioned as well as similar ones, and, most important, it should
behave consistently so that if a client application passes its acceptance
tests in the lab it won't mysteriously fail in the field. This applies dou
bly to upgrades for existing dynlink routines. Upgrades must be written
so that if a client application works with the earlier release of the
dynlink package it will work with the new release; obviously the author
of the application will not have an opportunity to retest existing copies
of the application against the new release of the dynlink module.

7.12 Dynlink Names
Each dynlink entry point has three names associated with it: an exter
nal name, a module name, and an entry point name. The name the cli
ent program calls as an external reference is the exterfUll fUlme. The
programmer works with this name, and its syntax and form must be
compatible with the assembler or compiler being used. The name
should be simple and explanatory yet unlikely to collide with another
external name in the client code or in another library. A name such as
READ or RESET is a poor choice because of the collision possibilities;
a name such as XR23Pll is obviously hard to work with.

The linker replaces the external name with a module fUlme and an en

try point fUlme, which are embedded in the resultant .EXE file. OS/2
uses the module name to locate the dynlink .DLL file; the code for
module modname is in file MODNAME.DLL. The entry point name
specifies the entry point in the module; the entry point name need not
be the same as the external name. For modules with a lot of entry
points, the client .EXE file size can be minimized and the loading
speed maximized by using entry ordifUlls in place of entry point names.
See the OS/2 technical reference literature for details.

Runtime dynamic links are established by using the module name
and the entry point name; the external name is not used.

File System
Name Space

8

File system name space is a fancy term for how names of objects are de
fined in OS/2. The words file system are a hint that OS/2 uses one nam
ing scheme both for files and for everything else with a name in ASCII
format-system semaphores, named shared memory, and so forth.
First, we'll discuss the syntax of names and how to manipulate them;
we'll wind up with a discussion of how and why we use one naming
scheme for all named objects.

8.1 Filenames
Before we discuss OS/2 filenames, let's review the format of filenames
under MS-DOS. In MS-DOS, filenames are required to fit the 8.3 for
mat: a name field (which can contain a maximum of 8 characters) and
an extension field (which can contain a maximum of 3 characters).1
The period character (.) between the name and the extension is not part
of the filename; it's a separator character. The filename can consist of
uppercase characters only. If a user or an application creates a filename
that contains lowercase characters or a mixture of uppercase and

1. As an aside, these sizes date from a tradition established many years ago by Digital Equip
ment Corporation. Digital's very early computers used a technique called RAD50 to store 3
uppercase letters in one 16-bit word, so their file systems allowed a 6-character filename and a
3-character extension. CP/M later picked up this filename structure. CP/M didn't use RAD50,
so, in a moment of generosity, it allowed 8-character filenames; but the 3-character extension
was kept.

118 PART II THE ARCHITECTURE

lowercase, MS-DOS converts the filename to all uppercase. If an appli
cation presents a filename whose name or extension field exceeds the
allotted length, MS-DOS silently truncates the name to the 8.3 format
before using it. MS-DOS establishes and enforces these rules and main
tains the file system structure on the disks. The file system that
MS-DOS version 3.x supports is called the FAT (File Allocation Table)
file system. The following are typical MS-DOS and OS/2 filenames:

\FOOTBALL\SRC\KERNEL\SCHED.ASM

Football is a development project, so this name describes the source for
the kernel scheduler for the football project.

\M EMOS\286\MODESW IT. DOC

is a memo discussing 80286 mode switching.

\\HAGAR\SCRATCH\GORDONL\FOR_MARK

is a file in my scratch directory on the network server HAGAR, placed
there for use by Mark.

The OS/2 architecture views file systems quite differently. As
microcomputers become more powerful and are used in more and more
ways, file system characteristics will be needed that might not be met
by a built-in OS/2 file system. Exotic peripherals, such as WORM2
drives, definitely require special file systems to meet their special char
acteristics. For this reason, the file system is not built into OS/2 but is a
closely allied component-an installable file system (lFS). An IFS is
similar to a device driver; it's a body of code that OS/2 loads at boot
time. The code talks to OS/2 via a standard interface and provides the
software to manage a file system on a storage device, including the
ability to create and maintain directories, to allocate disk space, and
soon.

If you are familiar with OS/2 version 1.0, this information may be
surprising because you have seen no mention of an IFS in the reference
manuals. That's because the implementation hasn't yet caught up with
the architecture. We designed OS/2, from the beginning, to support in
stall able file systems, one of which would of course be the familiar
FAT file system. We designed the file system calls, such as DosOpen

2. Write Once, Read Many disks. These are generally laser disks of very high capacity, but
once a track is written, it cannot be erased. These disks can appear to be erasable by writing
new copies ofmes and directories each time a change is made, abandoning the old ones,

Chapter 8 File System Name Space 119

and DosClose, with this in mind. Although scheduling pressures forced
us to ship OS/2 version 1.0 with only the FAT file system-still built
in-a future release will include the full IFS package. Although at this
writing the IFS release of OS/2 has not been announced, this informa
tion is included here so that you can understand the basis for the system
name architecture. Also, this information will help you write programs
that work well under the new releases of OS/2 that contain the IFS.

Because the IFS will interpret filenames and pathnames and because
install able file systems can vary considerably, OS/23 doesn't contain
much specific information about the format and meaning of filenames
and pathnames. In general, the form and meaning of filenames and
pathnames are private matters between the user and the IFS; both the
application and OS/2 are simply go-betweens. Neither should attempt
to parse or understand filenames and pathnames. Applications
shouldn't parse names because some IFSs will support names in for
mats other than the 8.3 format. Applications shouldn't even assume a
specific length for a filename or a pathname. All OS/2 filename and
pathname interfaces, such as DosOpen, DosFindNext, and so on, are
designed to take name strings of arbitrary length. Applications should
use name buffers of at least 256 characters to ensure that a long name is
not truncated.

8.2 Network Access
Two hundred and fifty-six characters may seem a bit extreme for the
length of a filename, and perhaps it is. But OS/2 filenames are often
pathnames, and pathnames can be quite lengthy. To provide transparent
access to files on a LAN (local area network), OS/2 makes the network
part of the file system name space. In other words, a file's pathname
can specify a machine name as well as a directory path. An application
can issue an open to a name string such as \WORK\BOOK.DAT or
\\VOOON\TEMP\RECALC.ASM. The first name specifies the file
BOOK.DAT in the directory WORK on the current drive of the local
machine; the second name specifies the file RECALC.ASM in the
directory TEMP on the machine VOOON.4 Future releases of the

3. Excluding the IFS part.
4. Network naming is a bit more complex than this; the name TEMP on the machine VOGON
actually refers to an offered network resource and might appear in any actual disk directory.

120 PART II THE ARCHITECTURE

Microsoft LAN Manager will make further use of the file system name
space, so filenames, especially program-generated filenames, can
easily become very long.

8.3 Name Generation and Compatibility
Earlier, I said that applications should pass on filenames entered by the
user, ignoring their form. This is, of course, a bit unrealistic. Programs
often need to generate filenames-to hold scratch files, to hold deriva
tive filenames (for example, FOO.OB] derived from FOO.ASM), and
so forth. How can an application generate or permute such filenames
and yet ensure compatibility with all installable file systems? The
answer is, of course: Use the least common denominator approach. In
other words, you can safely assume that a new IFS must accept the FAT
file system's names (the 8.3 format) because otherwise it would be in
compatible with too many programs. So if an application sticks to the
8.3 rules when it creates names, it can be sure that it is compatible with
future file systems. Unlike MS-DOS, OS/25 will not truncate name or
extension fields that are too long; instead, an error will be returned. The
case of a filename will continue to be insignificant. Some operating
systems, such as UNIX, are case sensitive; for example, in UNIX the
names "foo" and "Foo" refer to different files. This works fine for a
system used primarily by programmers, who know that a lowercase f is
ASCII 6616 and that an uppercase F is ASCII 4616. Nonprogrammers,
on the other hand, tend to see f and F as the same character. Because
most OS/2 users are nonprogrammers, OS/2 install able file systems
will continue to be case insensitive.

I said that it was safe if program-generated names adhered to the 8.3
rule. Program-permuted names are likewise safe if they only substitute
alphanumeric characters for other alphanumeric characters, for exam
ple, FOO.OB] for FOO.ASM. Lengthening filenames is also safe (for
example, changing FOO.C to FOO.OB]) if your program checks for
"invalid name" error codes for the new name and has some way to
deal with that possibility. In any case, write your program so that it isn't
confused by enhanced pathnames; in the above substitution cases, the
algorithm should work from the end of the path string and ignore what
comes before.

5. More properly. the FAT install able file system installed in OS/2.

Chapter 8 File System Name Space 121

8.4 Permissions
Future releases of OS/2 will use the file system name space for more
than locating a file; it will also contain the permissions for the file. A
uniform mechanism will associate an access list with every entry in the
file system name space. This list will prevent unauthorized access
accidental or deHberate-to the named file.

8.5 Other Objects in the File System Name Space
As we've seen, the file system name space is a valuable device in sev
eral aspects. First, it allows the generation of a variety of names. You
can group names together (by putting them in the same directory), and
you can generate entire families of unique names (by creating a new
subdirectory). Second, the name space can encompass all files and
devices on the local machine as well as files and devices on remote
machines. Finally, file system names will eventually support a flexible
access and protection mechanism.

Thus, it comes as no surprise that when the designers of OS/2 needed
a naming mechanism to deal with nonfile objects, such as shared mem
ory, system semaphores, and named pipes, we chose to use the fHe sys
tem name space. One small disadvantage to this decision is that a
shared memory object cannot have a name identical to that of a system
semaphore, a named pipe, or a disk file. This drawback is trivial,
however, compared with the benefits of sharing the file system name
space. And, of course, you can use separate subdirectory names for
each type of object, thus preventing name collision.

Does this mean that system semaphores, shared memory, and pipes
have actual file system entries on a disk somewhere? Not yet. The FAT
file system does not support special object names in its directories.
Although changing it to do so would be easy, the file system would no
longer be downward compatible with MS-DOS. (MS-DOS 3.x could
not read such disks written under OS/2.) Because only the FAT file sys
tem is available with OS/2 version 1.0, that release keeps special RAM
resident pseudo directories to hold the special object names. These
names must start with \SEM\, \SHAREMEM\, \QUEUES\, and
\DEV\ to minimize the chance of name collision with a real file when
they do become special pseudo files in a future release of OS/2.

122 PART II THE ARCHITECTURE

Although all file system name space features-networking and (in
the future) permissions-apply to all file system name space objects
from an architectural standpoint, not all permutations may be sup
ported. Specifically, supporting named shared memory across the net
work is very costly6 and won't be implemented.

6. The entire shared memory segment must be transferred across the network each time any
byte within it is changed. Some clever optimizations can reduce this cost, but none works well
enough to be feasible.

(

Memory
Management

9

A primary function of any multitasking operating system is to allocate
system resources to each process according to its need. The scheduler
allocates CPU time among processes (actually, among threads); the
memory manager allocates both physical memory and virtual memory.

9.1 Protection Model
Although MS-DOS provided a simple form of memory management,
OS/2 provides memory protection. Under MS-DOS 3.x, for example, a
program should ask the operating system to allocate a memory area
before the program uses it. Under OS/2, a program must ask the operat
ing system to allocate a memory area before the program uses it. As we
discussed earlier, the 80286 microprocessor contains special memory
protection hardware. Each memory reference that a program makes ex
plicitly or implicitly references a segment selector. The segment selec
tor, in turn, references an entry in the GDT or the LDT, depending on
the form of the selector. Before any program, including OS/2 itself, can
reference a memory location, that memory location must be described
in an LDT or a GDT entry, and the selector for that entry must be
loaded into one of the four segment registers.

This hardware design places some restrictions on how programs can
use addresses.

124 PART II THE ARCHITECTURE

• A program cannot address memory not set up for it in the LDT or
GDT. The only way to address memory is via the LDT and GDT.

• Each segment descriptor in the LDT and GDT contains the physi
cal address and the length of that segment. A program cannot ref
erence an offset into a segment beyond that segment's length.

• A program can't put garbage (arbitrary values) into a segment
register. Each time a segment register is loaded, the hardware ex
amines the corresponding LDT and GDT to see if the entry is
valid. If a program puts an arbitrary value-for example, the
lower half of a floating point number-into a segment register,
the arbitrary value will probably point to an invalid LDT or GDT
entry, causing a GP fault.

• A program can't execute instructions from within a data segment.
Attempting to load a data segment selector into the CS register
(usually via a far call or a far jump) causes a GP fault.

• A program can't write into a code segment. Attempting to do so
causes a GP fault.

• A program can't perform segment arithmetic. Segment arithmetic
refers to activities made possible by the addressing mechanism of
the 8086 and 8088 microprocessors. Although they are described
as having a segment architecture, they are actually linear address
space machines that use offset registers-the so-called segment
registers. An 8086 can address 1 MB of memory, which requires
a 20-bit address. The processor creates this address by multiply
ing the 16-bit segment value by 16 and adding it to the 16-bit off
set value. The result is an address between 0 and 1,048,575 (that
is, 1 MB).1 The reason these are not true segments is that they
don't have any associated length and their names (that is, their se
lectors) aren't names at all but physical addresses divided by 16.
These segment values are actually scaled offsets. An address that
has a segment value of 100 and an offset value of 100 (shown as
10010:10010), and the address (9910:11610) both refer to the same
memory location.

1. Actually, it's possible to produce addresses beyond 1 MB (211.20) by this method if a large
enough segment and offset value are chosen. The 8086 ignores the carry into the nonexistent
21st address bit, effectively wrapping around such large addresses into the first 65 KB-16
bytes of physical memory.

Chapter 9 Memory Management 125

Many real mode programs take advantage of this situation.
Some programs that keep a great many pointers store them as
20-bit values, decomposing those values into the segment:offset
form only when they need to de-reference the pointer. To ensure
that certain objects have a specific offset value, other programs
choose a matching segment value so that the resultant 20-bit ad
dress is correct. Neither technique works in OS/2 protect mode.
Each segment selector describes its own segment, a segment with
a length and an address that are independent of the numeric value
of the segment selector. The memory described by segment N has
nothing in common with the memory described by segment N+4
or by any other segment unless OS/2 explicitly sets it up that way.

The segmentation and protection hardware allows OS/2 to impose
, further restrictions on processes.

• Processes cannot edit or examine the contents of the LDT or the
GDT. OS/2 simply declines to build an LDT or GDT selector that
a process can use to access the contents of those tables. Certain
LDT and GDT selectors describe the contents of those tables
themselves, but OS/2 sets them up so that they can only be used
by ring 0 (that is, privileged) code.

• Processes cannot hook interrupt vectors. MS-DOS version 3.x
programs commonly hook interrupt vectors by replacing the ad
dress of the interrupt handler with an address from their own
code. Thus, these programs can monitor or intercept system calls
made via INT 2Ih, BIOS calls also made via interrupts, and hard
ware interrupts such as the keyboard and the system clock. OS/2
programs cannot do this. OS/2 declines to set up a segment selec
tor that processes can use to address the interrupt vector table.

• Processes cannot call the ROM BIOS code because no selector
addresses the ROM BIOS code. Even if such a selector were avail
able, it would be of little use. The ROM BIOS is coded for real
mode execution and performs segment arithmetic operations that
are no longer legal. If OS/2 provided a ROM BIOS selector, calls
to the ROM BIOS would usually generate GP faults.

126 PART II THE ARCHITECTURE

• Finally, processes cannot run in ring 0, that is, in privileged
mode. Both OS/2 and the 80286 hardware are designed to prevent
an application program from ever executing in ring O. Code run
ning in ring 0 can manipulate the LDT and GDT tables as well as
other hardware protection features. If OS/2 allowed processes to
run in ring 0, the system could never be stable or secure. OS/2 ob
tains its privileged (literally) state by being the first code loaded
at boot time. The boot process takes place in ring 0 and grants
ring 0 permission to OS/2 by transferring control to OS/2 while
remaining in ring O. OS/2 does not, naturally, extend this favor to
the application programs it loads; it ensures that applications can
only run in ring 3 user mode.2

9.2 Memory Management API
OS/2 provides an extensive memory management API. This book is not
a reference manual, so I won't cover all the calls. Instead, I'll focus on
areas that may not be completely self-explanatory.

9.2.1 Shared Memory
OS/2 supports two kinds of shared memory - named shared memory
and giveaway shared memory. In both, the memory object shared is a
segment. Only an entire segment can be shared; sharing part of a seg
ment is not possible. Named shared memory is volatile because neither
the name of the named shared memory nor the memory itself can exist
on the FAT file system. When the number of processes using a shared
memory segment goes to zero, the memory is released. Shared memory
can't stay around in the absence of client processes; it must be reinitial
ized via DosAllocShrSeg after a period of nonuse.

Giveaway shared memory allows processes to share access to the
same segment. Giveaway shared memory segments don't have names
because processes can't ask to have access to them; a current user of the
segment has to give access to the segment to a new client process. The
term giveaway is a bit of a misnomer because the giving process retains
access to the memory - the access is "given" but not especially
"away." Giveaway shared memory is not as convenient as named
shared memory. The owner3 has to know the PID of the recipient and

2. Applications can also run in ring 2 (see 18.1 I/O Privilege Mechanism).
3. One of the owners. Anyone with access to a giveaway shared segment can give it away
itself.

Chapter 9 Memory Management 127

then communicate the recipient's segment selector (returned by
DosGiveSeg) to that recipient process via some form of IPC.

Despite its limitations, giveaway shared memory has important vir
tues. It's a fast and efficient way for one process to transfer data to
another; and because access is passed "hand to hand," the wrong
process cannot accidentally or deliberately gain access to the segment.
~1ost clients of giveaway shared memory don't retain access to the seg-
ment once they've passed it off; they typically call DosFreeSeg on their
handle after they've called DosGiveSeg. For example, consider the
design of a database dynlink subsystem that acts as a front end for a
database serving process. As part of the dynlink initialization process,
the package arranged for its client process to share a small named
shared memory segment with the database process. It might be best to
use a named pipe or named shared memory-created by the database
process-to establish initial communication and then use this interface
only to set up a private piece of giveaway shared memory for all further
transactions between the client process (via the dynlink subsystem) and
the database process. Doing it this way, rather than having one named
shared segment hold service requests from all clients, provides greater
security. Because each client has its own separate shared memory com
munications area, an amok client can't damage the communications of
other clients.

When a client process asks the database process to read it a record,
the database process must use a form of IPC to transfer the data to the
client. Pipes are too slow for the volume of data that our example antici
pates; shared memory is the best technique. If we were to use named
shared memory, the database package would have to create a unique
shared memory name for each record, allocate the memory, and then
communicate the name to the client (actually, to the dynlink subsystem
called by the client) so that it can request access. This process has some
drawbacks:

• A new unique shared memory name must be created for each re
quest. We could reuse a single shared memory segment, but this
would force the client to copy the data out of the segment before it
could make another request-too costly a process for an applica
tion that must handle a high volume of data.

128 PART II THE ARCHITECTURE

• Creating named shared memory segments is generally slower
than creating giveaway shared memory segments, especially if a
large number of named shared memory objects exist, as would be
the case in this scenario. The client spends more time when it then
requests access to the segment. Creating named shared memory
segments is plenty fast enough when it's done once in a while, but
in a high-frequency application such as our example, it could
become a bottleneck.

Instead, the database process can create a giveaway shared memory
segment, load the data into it, and then give it to the client process. The
database process can easily learn the client's PID; the dynlink inter
face, which runs as the client process, can include it as part of the data
request. Likewise, the database process can easily return the new client
selector to the client. This pr~ess is fast and efficient and doesn't bog
down the system by forcing it to deal with a great many name strings.

Note that you must specify, at the time of the DosAllocSeg, that the
segment might be "given away." Doing so allows OS/2 to allocate
the selector in the disjoint space, as we discussed earlier.

9.2.2 Huge Memory
The design of the 80286 microprocessor specifies the maximum size of
a memory segment as 64 KB. For many programs, this number is far
too small. For example, the internal representation of a large spread
sheet commonly takes up 256 KB or more. OS/2 can do nothing to set
up a segment that is truly larger than 64 KB, but the OS/2 facility called
huge segments provides a reasonable emulation of segments larger than
64 KB. The trick is that a huge segment of, for example, 200 KB is not a
single segment but a group of four segments, three of which are 64 KB
and a fourth of 8 KB. With minimal programming burden, OS/2
allows an application to treat the group of four segments as a single
huge segment. .

When a process calls DosAllocHuge to allocate a huge segment,
OS/2 allocates several physical segments, the sum of whose size equals
the size of the virtual huge segment. All component segments are 64
KB, except possibly the last one. Unlike an arbitrary collection of seg
ment selectors, DosAllocHuge guarantees that the segment selectors it
returns are spaced uniformly from each other. The selector of the

Chapter 9 Memory Management 129

N+ 1 th component segment is that of the Nth segment plus i, where i is a
power of two. The value of i is constant for any given execution of
OS/2, but it may vary between releases of OS/2 or as a result of internal
configuration during bootup. In other words, a program must learn the
factor i every time it executes; it must not hard code the value. There
are three ways to learn this value. First, a program can call
DosGetHugeShift; second, it can read this value from the global in
foseg; and third, it can reference this value as the undefined absolute
externals DOSHUGESHIFT (log2(i)) or DOSHUGEINCR (i). OS/2
will insert the proper value for these externals at loadtime. This last
method is the most efficient and is recommended, but it is not compat
ible with the Family API mechanism. Family API programs should
call DosGetHugeShift. Figure 9-1 illustrates the layout of a 200 KB

n+Oi

n+1 i

n+2i

n+3i

n+4i •
n+5i •

Figure 9-1.
Huge memory objects.

130 PART II THE ARCHITECTURE

huge memory object. Selectors n + 4i and n + 5i are currently invalid
but are reserved for future growth of the huge object.

Once an application has the first segment selector of the huge seg
ment group, called the base segment, and the value logii), computing
the address of the Nth byte in the huge segment is easy. Take the high
order word of the value of N (that is, N/64 KB), shift it left by log2(i)
(that is, by the DosGetHugeShift value), and add the base segment se
lector returned by DosAllocHuge. The resultant value is the segment
selector for the proper component segment; the low-order 16 bits of i
are the offset into that segment. This computation is reasonably quick to
perform since it involves only a shift and an addition.

Huge segments can be shrunk or grown via DosReallocHuge. If the
huge segment is to be grown, creating more component physical seg
ments may be necessary. Because the address generation rules dictate
which selector this new segment may have, growing the huge segment
may not be possible if that selector has already been allocated for
another purpose. DosAllocHuge takes a maximum growth parameter;
it uses this value to reserve sufficient selectors to allow the huge seg
ment to grow that big. Applications should not provide an unrealis
tically large number for this argument because doing so will waste
LDT selectors.

The astute reader will notice that the segment arithmetic of the 8086
environment is not dead; in a sense, it's been resurrected by the huge
segment mechanism. Applications written for the 8086 frequently use
this technique to address memory regions greater than 64 KB, using a
shift value of 12. In other words, if you add 2A12 to an 8086 segment
register value, the segment register will point to an address 2Al2* 16, or
64 KB, further in physical memory. The offset value between the com
ponent segment values was always 4096 because of the way the 8086
generated addresses. Although the steps involved in computing the seg
ment value are the same in protect mode, what's actually happening is
considerably different. When you do this computation in protect mode,
the segment selector value has no inherent relationship to the other se
lectors that make up the huge object. The trick only works because
OS/2 has arranged for equally spaced-out selectors to exist and for each
to point to an area of physical memory of the appropriate size. Figure
9-2 illustrates the similarities and differences between huge model

Chapter 9 Memory Management 131

Figure 9-2.

REAL MODE

Physical
Memory

u
i = 4096

PROTECT MODE

Segment
Selector

Table

~_ n
n+Oi ----+1

n+1i ----+

i is set by OS/2

Huge model addressing in real mode and in protect mode.

Physical
Memory

/n
L---....I

addressing in real and protect modes. The application code sequence is
identical: A segment selector is computed by adding N * i to the base se
lector. In real mode i is always 4096; in protect mode OS/2 provides i.

Although the similarity between 8086 segment arithmetic and OS/2
huge segments is only apparent, it does make it easy to write a program
as a dual mode application. By using the shift value of 12 in real mode
and using the OS/2 supplied value in protect mode, the same code func
tions correctly in either mode.

9.2.3 Executing fron, Data Segments
We saw that OS/2 provides the huge segment mechanism to get around
the segment size restriction imposed by the hardware. OS/2 likewise

132 PART II THE ARCHITECTURE

circumvents another hardware restriction-the inability to execute
code from data segments. Although the demand loading, the discarding,
and the swapping of code segments make one use of running code
from data segments-code overlays-obsolete, the capability is still
needed. Some high-performance programs-the presentation manager,
for example-compile "on the fly" special code to perform time-criti
cal tasks, such as flipping bits in EGA display memory. The optimal
sequence may differ depending on several factors, so a program may
need to compile such code and execute it, gaining a significant increase
in efficiency over some other approach. OS/2 supports this need by
means of the DosCreateCSAlias call.

When DosCreateCSAlias is called with a selector for a data seg
ment, it creates a totally different code segment selector (in the eyes of
80286 hardware) that by some strange coincidence points to exactly the
same memory locations as does the data segment selector. As a result,
code is not actually executing from a data segment but from a code seg
ment. Because the code segment exactly overlaps that other data seg
ment, the desired effect is achieved. The programmer need only be
careful to use the data selector when writing the segment and to use the
code selector when executing it.

9.2.4 Memory Suballocation
All memory objects discussed so far have been segments. OS/2 pro
vides a facility called memory suballocation that allocates pieces of
memory from within an application's segment. Pieces of memory can
be suballocated from within a segment, grown, shrunk, and released.
OS/2 uses a classic heap algorithm to do this. The DosSubAlloc call
uses space made available from earlier DosSubFrees when possible,
growing the segment as necessary when the free heap space is insuffi
cient. We will call the pieces of memory returned by DosSubAlloc
heap objects.

The memory suballocation package works within the domain of a
process. The suballocation package doesn't allocate the memory from
some "system pool" outside the process's address space, as does the
segment allocator. The suballocation package doesn't even allocate
segments; it manages only segments supplied by and owned by (or at
least accessible to) the caller. This is a feature because memory protec
tion is on a per-segment basis. If the suballocation package were to get

Chapter 9 Memory Management 133

its space from some system global segment, a process that overwrote its
heap object could damage one belonging to another process. Figure 9-3
illustrates memory suballocation. It shows a segment j being suballo
cated. H is the suballocation header; the shaded areas are free space.

We said that the memory suballocator subdivides segments that are
accessible to the client process. This means that you can use it to sub
divide space in a shared memory segment. Such a technique can be
handy when two or more processes are using a shared memory segment
for intercommunication, but there is risk because an error in one
process can easily corrupt the heap objects of another.

Earlier, in the discussion of dynamic link subsystems, we described
facilities and techniques for writing a reliable subsystem. The OS/2
memory suballocation package is a good example of such a subsystem,
so let's look at its workings more closely. The first try at the suballoca
tion package produced a straightforward heap allocator, much like the
one in a C or Pascal runtime library. It maintained a free chain of heap
objects and allocated them at its client's request. If the closest -size free
heap object was still bigger than the request, it was split into an allo
cated part and a free part. Freed heap objects were coalesced with any
adjacent free objects. The suballocation package took a segment pointer
and some other arguments and returned some vaiues-an offset and
the changed data in the segment itself where the heap headers were
stored. If we stretch things a little and consider the changed state of the
supplied data segment as a returned value, then the suballocation pack
age at this stage is much like a function: It has no state of its own; it

I seg~ent I J Seg~em l I Seg~ent I
""

Figure 9-3.
Memory suballocation.

134 PART II THE ARCHITECTURE

merely returns values computed only from the input arguments. This
simple suballocation dynlink routine uses no global data segments and
doesn't even need an instance data segment.

This simple implementation has an important drawback: More than
one process can't safely use it to manage a shared memory segment;
likewise, multiple threads within one process can't use it. The heap free
list is a critical section; if multiple threads call the suballocator on the
same segment, the heap free list can become corrupted. This problem
necessitated upgrading the suballocation package to use a semaphore to
protect the critical section. If we didn't want to support suballocation of
shared memory and were only worried about multiple threads within a
task, we could use RAM semaphores located in the managed segment
itself to protect the critical section. The semaphore might be left set if
the process died unexpectedly, but the managed segment isn't shared.
It's going to be destroyed in any case, so we don't care.

But, even in this simple situation of managing only privately owned
segments, we must concern ourselves with some special situations. One
problem is signals: What if the suballocator is called with thread 1, and
a signal (such as SIGINT, meaning that the user pressed Ctrl-C) comes
in? Thread 1 is interrupted from the suballocation critical section to ex
ecute the signal handler. Often signal handlers return to the interrupted
code, and all is well. But what if the signal handler does not return
but jumps to the application's command loop? Or what if it does return,
but before it does so calls the memory suballocator? In these two cases,
we'd have a deadlock on the critical section. We can solve these prob
lems by using the DosHoldSignal function. DosHoldSignal does for
signals what the CLI instruction does for hardware interrupts: It holds
them off for a short time. Actually, it holds them off forever unless the
application releases them, but holding signals for more than a second or
two is poor practice. If you precede the critical section's semaphore
claim call with a signal hold and follow the critical section's sema
phore release call with a signal release, you're protected from
deadlocks caused by signal handling.

Note that unlike the CLI instruction, DosHoldSignal calls nest.
OS/2 counts the number of DosHoldSignal "hold" calls made and
holds signals off until an equal number of "release" calls are issued.
This means that a routine can safely execute a hold/release pair without
affecting the state of its calling code. If the caller had signals held at

Chapter 9 Memory Management 135

the time of the call, they will remain held. If signals were free at the
time of the call, the callee's "release" call restores them to that state.

Whenever dynlink packages make any call that changes the state of
the process or the thread, they must be sure to restore that state before
they return to their caller. Functions that nest, such as DosHoldSignal,
accomplish this automatically. For other functions, the dynlink package
should explicitly discover and remember the previous state so that it can
be restored.

Our problems aren't over though. A second problem is brought about
by the DosExitList facility. If a client process's thread is in the sub
allocation package's critical section and the client terminates sud
denly - it could be killed externally or have a GP fault-the process
might not die immediately. If any DosExitList handlers are registered,
they will be called. They might call the memory suballocator, and once
again we face deadlock. We could solve this situation with the classic
approach of making a bug into a feature: Document that the suballoca
tor can't be called at exitlist time. This may make sense for some dyn
link subsystems, but it's too restrictive for an important OS/2 facility.
We've got to deal with this problem too.

The DosHoldSignal trick won't help us here. It would indeed pre
vent external kills, but it would not prevent GP faults and the like. We
could say, "A program that GP faults is very sick, so all bets are off."
This position is valid, except that if the program or one of its dynlink
subsystems uses DosExitList and the DosExitList handler tries to allo
cate or release a heap object, the process will hang and never terminate
correctly. This is unacceptable because the user would be forced to
reboot to get rid of the moribund application. The answer is to use a
system semaphore rather than a RAM semaphore to protect the mem
ory segment. System semaphores are a bit slower than RAM sema
phores, but they have some extra features. One is that they can be made
exclusive; only the thread that owns the semaphore can release it.
Coupled with this is an "owner death" notification facility that allows
a process's DosExitList handler an opportunity to determine that one
of its threads has orphaned a semaphore (see 16.2 Data Integrity for
details). Our suballocation package can now protect itself by using ex
clusive system semaphores to protect its critical section and by register
ing a DosExitList handler to release that semaphore. The exitlist code
can discover if a thread in its process has orphaned the semaphore and,

136 PART II THE ARCHITECTURE

if so, can release it. Of course, releasing the semaphore won't help if the
heap headers are in an inconsistent state. You can write the suballoca
tion package so that the heap is never in an inconsistent state, or you
can write it to keep track of the modified state so that the exitlist han
dler can repair the heap structure.

In this later case, be sure the DosExitList handler you establish to
clean up the heap is called first (see DosExitList documentation).

Finally, even if we decide that the client application won't be
allowed to issue suballocation requests during its own exitlist process
ing, we want the memory suballocator to support allocating a shared
segment among many different processes. Because of this, the actual
OS/2 suballocation package makes use of DosExitList so that the
suballocation structure and semaphores can be cleaned up should a cli
ent thread terminate while in the suballocation critical section.

The suballocation dynlink package does more than illustrate sub
system design; it also illustrates the value of a system architecture that
uses dynlinks as a standard system interface, regardless of the type of
code that provides the service. As you have seen, the memory sub
allocation package released with OS/2 version 1.0 doesn't reside in the
kernel; it's effectively a subroutine package. OS/2 in an 80286 environ
ment will undoubtedly preserve this approach in future releases, but a
forthcoming 80386 version of OS/2 may not. The 80386 architecture
supports paged virtual memory, so memory swapping (actually, pag
ing) can take place on part of a segment. This future paging environ
ment may precipitate some changes in the memory suballocator.
Perhaps we'll want to rearrange the heap for better efficiency with pag
ing, or perhaps the OS/2 kernel will want to become involved so that it
can better anticipate paging demands. In any case, any future release of
OS/2 has complete flexibility to upgrade the memory suballocation
package in any externally compatible fashion, thanks to the standard
interface provided by dynamic links.

9.3 Segment Swapping
One of the most important features of the 80286 memory management
hardware is swapping support. Swapping is a technique by which some
code or data segments in memory are written to a disk file, thus allow
ing the memory they were using to be reclaimed for another purpose.

Chapter 9 Memory Management 137

Later, the swapped-out code or data is reloaded into memory. This
technique lets you run more programs than can simultaneously fit in
memory; all you need is enough memory to hold the programs that are
running at that particular moment. Quiescent programs can be
swapped to disk to make room for active ones. Later, when the swapped
programs become active, OS/2 reads them in and resumes them. If nec-
essary OS/2 first makes memory available by s\vapping out another
quiescent program.

Although I used the word program above, swapping is actually done
on a segment basis. Segments are swapped out individually and com
pletely; the OS/2 swapping code doesn't pay attention to relationships
between segments (they aren't swapped in groups), and the 80286
hardware does not allow only part of a segment to be swapped. I sim
plified the concept a bit in the above paragraph. You need not swap out
an entire process; you can swap out some segments and leave others in
memory. OS/2 can and commonly does run a process when some of its
segments are swapped out. As long as a process does not try to use
the swapped-out segments, it runs unhindered. If a process references a
swapped-out segment, the 80286 hardware generates a special trap that
OS/2 intercepts. The segment fault trap handler swaps in the missing
segment, first swapping out some other if need be, and then the process
resumes where it left off. Segment faulting is invisible to a process; the
process executes normally, except that a segment load instruction takes
on the order of 30 milliseconds instead of the usual 3 microseconds.

When memory is depleted and a segment must be swapped, OS/2
has to choose one to swap out. Making the right choice is important; for
example, consider a process that alternates references between segment
A and segment B. If A is swapped out, a poorly designed system might
choose B to swap out to make room for A. After a few instructions are
executed, B has to be swapped in. If A is in turn swapped out to make
room for B, the system would soon spend all its time swapping A and B
to and from the disk. This is called thrashing, and thrashing can destroy
system performance. In other words, the effect of swapping is to make
some segment loads take 10,000 times longer than they would if the
segment were in memory. Although the number 10,000 seems very
large, the actual time of about 30 milliseconds is not, as long as we don't
have to pay those 30 milliseconds very often.

138 PART" THE ARCHITECTURE

A lot hinges on choosing segments to swap out that won't be refer
enced in the near future. OS/2 uses the LRU (Least Recently Used)
scheme to determine which segment it will swap out. The ideal choice
is the segment-among those currently in memory-that will be ref
erenced last because this postpones the swap-in of that segment as long
as possible. Unfortunately, it's mathematically provable that no operat
ing system can predict the behavior of arbitrary processes. Instead,
operating systems try to make an educated guess as to which segment
in memory is least likely to be referenced in the immediate future. The
LRU scheme is precisely that-a good guess. OS/2 figures that if a seg
ment hasn't been used in a long time then it probably won't be used for
a long time yet, so it swaps out the segment that was last used the lon
gest time ago-in other words, the least recently used segment.

Of course, it's easy to construct an example where the LRU decision
is the wrong one or even the worst one. The classic example is a pro
gram that references, round robin, N segments when there is room in
memory for only N-1. When you attempt to make room for segment I,
the least recently used segment will be 1+ 1, which in fact is the segment
that will next be used. A discussion of reference locality and working set
problems, as these are called, is beyond the scope of this book. Authors
of programs that will make repetitious accesses to large bodies of data
or code should study the available literature on virtual memory sys
tems. Remember, on an 80286, OS/2 swaps only on a segment basis. A
future 80386 release of OS/2 will swap, or page, on a 4 KB page basis.

The swapping algorithm is strictly LRU among all swap-eligible
segments in the system. Thread/process priority is not considered; sys
tem segments that are marked swappable get no special treatment.
Some system segments are marked nonswappable, however. For exam
ple, swapping out the OS/2 code that performs swap-ins would be em
barrassing. Likewise, the disk driver code for the swapping disk must
not be swapped out. Some kernel and device driver code is called at in
terrupt time; this is never swapped because of the swap-in delay and
because of potential interference between the swapped-out interrupt
handling code and the interrupt handling code of the disk driver that
will do the swap-in. Finally, some kernel code is called in real mode in
response to requests from the 3x box. No real mode code can be
swapped because the processor does not support segment faults when
running in real mode.

Chapter 9 Memory Management .139

The technique of running more programs then there is RAM to hold
them is called memory overcommit. OS/2 has to keep careful track of the
degree of overcommit so that it doesn't find itself with too much of a
good thing.,,-not enough free RAM, even with swapping, to swap in a
swapped-out process. Such a situation is doubly painful: Not only can
the user not access or save the data that he or she has spent the last four
hours working on, but OS/2 can;t even tell the program whafs wrong
because it can't get the program into memory to run it. To prevent this,
OS/2 keeps track of its commitments and overcommitments in two
ways. First, before it starts a process, OS/2 ensures that there is enough
swap space to run it. Second, it ensures that there is always enough
available RAM to execute a swapped-out process.

At first glance, knowing if RAM is sufficient to run a process seems
simple-either the process fits into memory or it doesn't. Life is a bit
more complicated than that under OS/2 because the segments of a pro
gram or a dynlink library may be marked for demand loading. This
means that they won't come in when the program starts executing but
may be called in later. Obviously, once a program starts executing, it
can make nearly- unlimited demands for memory. When a program re-
quests a memory allocation, however, OS/2 can return an error code if
available memory is insufficient. The program can then deal with the
problem: make do with less, refuse the user's command, and so forth.

OS/2 isn't concerned about a program's explicit memory requests
because they can always be refused; the implicit memory requests are
the problem-faulting in a demand load segment, for example. Not
only is there no interface to give the program an error code,4 but the
program may be unable to proceed without the segment. As a result,
when a program is first loaded (via a DosExecPgm call), OS/2 sums
the size of all its impure segments even if they are marked for "load on
demand." The same computation is done for all the loadtime dynlink
libraries it references and for all the libraries they reference and so on.
This final number, plus the internal system per-process overhead, is the
maximum implicit memory demand of the program. If that much free
swap space is available, the program can start execution.

You have undoubtedly noticed that I said we could run the program
if there was enough swap space. But a program must be in RAM to

4. A demand load segment is faulted in via a "load segment register" instruction. These CPU
instructions don't return error codes!

140 PART II THE ARCHITECTURE

execute, so why don't we care about the amount of available RAM
space? We do care. Not about the actual amount of free RAM when we
start a program, but about the amount of RAM that can be made free
by swapping-if needed. If some RAM contains a swappable seg
ment, then we can swap it because we set aside enough swap space for
the task. Pure segments, by the way, are not normally swapped. In lieu
of a swap-out, OS/2 simply discards them. When it's time to swap them
in, OS/2 reloads them from their original .EXE or .DLL files.5

Because not all segments of a process need to be in memory for the
process to execute, we don't have to ensure enough free RAM for the
entire process, just enough so that we can simultaneously load six 64
KB segments-the maximum amount of memory needed to run any
process. The numbers 6 and 64 KB are derived from the design of the
80286. To execute even a single instruction of a process, all the seg
ments selected by the four segment registers must be in memory. The
other two necessary segments come from the worst case scenario of a
program trying to execute a far return instruction from a ring 2 seg
ment (see 18.1 I/O Privilege Mechanism). The four segments named in
the registers must be present for the instruction to start, and the two
new segments-CS and SS-that the far return instruction will refer
ence must be present for the instruction to complete. That makes six;
the 64 KB comes from the maximum size a segment can reach. As a
result, as long as OS/2 can free up those six 64 KB memory regions, by
swapping and discarding if necessary, any swapped-out program can
execute.

Naturally, if that were the only available memory and it had to be
shared by all running processes, system response would be very poor.
Normally, much more RAM space is available. The memory overcom
mit code is concerned only that all processes can run; it won't refuse to
start a process because it might execute slowly. It could be that the ap
plications that a particular user runs and their usage pattern are such
that the user finds the performance acceptable and thus hasn't bought
more memory. Or perhaps the slowness is a rare occurrence, and the
user is willing to accept it just this once. In general, if the system

5. An exception to this is programs that were executed from removable media. OS/2 preloads
all pure segments from such .EXE and .DLL files and swaps them as necessary. This prevents
certain deadlock problems involving the hard error daemon and the volume management
code.

Chapter 9 Memory Management 141

thrashes-spends too much time swapping-it's a soft failure: The
user knows what's wrong, the user knows what to do to make it get bet
ter (run fewer programs or buy more memory), and the user can mean
while continue to work.

Clearly, because all segments of the applications are swappable and
because we've ensured that the swap space is sufficient for all of them,
initiating a new process doesn't consume any of our free or free able
RAM. It's the device drivers and their ability to allocate nonswappable
segments that can drain the RAM pool. For this reason, OS/2 may
refuse to load a device driver or to honor a device driver's memory allo
cation request if to do so would leave less than six 64 KB areas of RAM
available.

9.3.1 Swapping Miscellany
The system swap space consists of a special file, called SWAP
PER.DAT, created at boot time. The location of the file is described in
the CONFIG.SYS file. OS/2 may not allocate the entire maximum size
of the swap file initially; instead, it may allocate a smaller size and
grow the swap file to its maximum size if needed. The swap file may
grow, but in OS/2 version 1.0 it never shrinks.

The available swap space in the system is more than the maximum
size of the swap file; it also includes extra RAM. Clearly, a system with
8 MB of RAM and a 200 KB swap file should be able to run programs
that consume more than 200 KB. After setting aside the memory con
sumed by nonswappable segments and our six 64 KB reserved areas,
the remaining RAM is considered part of the swap file for memory
overcommit accounting purposes.

We mentioned in passing that memory used in real mode can't be
swapped. This means that the entire 3x box memory area is nonswap
pable. In fact, th~ casual attitude of MS-DOS applications toward mem
ory allocation forces OS/2 to keep a strict boundary between real mode
and protect mode memory. Memory below the RMSIZE value speci
fied in CONFIG.SYS belongs exclusively to the real mode program,
minus that consumed by the device drivers and the parts of the OS/2
kernel that run in real mode.

Early in the development of OS/2, attempts were made to put protect
mode segments into any unused real mode memory, but we abandoned

142 PART II THE ARCHITECTURE

this approach. First, because the risk was great that the real mode pro
gram might overwrite part of the segment. Although this is technically
a bug on the part of the real mode application, such bugs generally do
not affect program execution in an MS-DOS environment because that
memory is unused at the time. Thus, such bugs undoubtedly exist un
noticed in today's MS-DOS applications, waiting to wreak havoc in the
OS/2 environment.

A second reason concerns existing real mode applications having
been written for a single-tasking environment. Such an application
commonly asks for 1 MB of memory, a request that must be refused.
The refusal, however, also specifies the amount of memory available at
the time of the call. Real mode applications then turn around and ask
for that amount, but they don't check to see if an "insufficient mem
ory" error code was returned from the second call. After all, how could
such a code be returned? The operating system has just said that the
memory was available. This coding sequence can cause disaster in a
multitasking environment where the memory might have been allo
cated elsewhere between the first and second call from the application.
This is another reason OS/2 sets aside a fixed region of memory for the
3x box and never uses it for other purposes, even if it appears to be idle.

We mentioned that OS/2's primary concern is that programs be able
to execute at all; whether they execute well is the user's problem. This
approach is acceptable because OS/2 is a single-user system. Multiuser
systems need to deal with thrashing situations because the users that
suffer from thrashing may not be the ones who created it and may be
powerless to alleviate it. In a single-user environment, however, the
user is responsible for the load that caused the thrashing, the user is the
one who is suffering from it, and the user is the one who can fix the
situation by buying more RAM or terminating a few applications.
Nevertheless, applications with considerable memory needs should be
written so as to minimize their impact on the system swapper.

Fundamentally, all swapping optimization techniques boil down to
one issue: locality of reference. This means keeping the memory loca
tions that are referenced near one another in time and in space. If your
program supports five functions, put the code of each function in a
separate segment, with another segment holding common code. The
user can then work with one function, and the other segments can be

Chapter 9 Memory Management 143

swapped. If each function had some code in each of five segments, all
segments would have to be in memory at all times.

A large body of literature deals with these issues because of the prev
alence of virtual memory systems in the mainframe environment. Most
of this work was done when RAM was very expensive. To precisely de
termine which segments or pages should be resident and which should
be swapped was worth a great deal of effort. Memory was costly, and
swapping devices were fast, so algorithms were designed to "crank the
screws down tight" and free up as much memory as possible. After all,
if they misjudged and swapped something that was needed soon, it
could be brought back in quickly. The OS/2 environment is inverted:
RAM is comparatively cheap, and the swapping disk, being the regular
system hard disk, is comparatively slow. Consequently, OS/2's swap
ping strategy is to identify segments that are clearly idle and swap them
(because cheap RAM doesn't meanfree RAM) but not to judge things
so closely that segments are frequently swapped when they should
not be.

A key concept derived from this classic virtual memory work is that
of the working set. A thread's working set is the set of segments it will
reference ' 'soon" - in the next several seconds or fe\"'l minutes.
Programmers should analyze their code to determine its working sets;
obviously the set of segments in the working set will vary with the
work the application is doing. Code and data should be arranged be
tween segments so that the size of each common working set consists of
a minimum amount of memory. For example, if a program contains ex
tensive code and data to deal with uncommon error situations, these
items should reside in separate segments so that they aren't resident ex
cept when needed. You don't want to burden the system with too many
segments; two functions that are frequently used together should oc
cupy the same segment, but large unrelated bodies of code and data
should have their ~wn segments or be grouped with other items that are
in their working set. Consider segment size when packing items into
segments. Too many small segments increase system overhead; large
segments decrease the efficiency of the swap mechanism. Splitting a
segment in two doesn't make sense if all code in the segment belongs to
the same working set, but it does make sense to split large bodies of
unrelated code and data.

144 PART II THE ARCHITECTURE

As we said before, an exhaustive discussion of these issues is beyond
the scope of this book. Programmers writing memory-intensive appli
cations should study the literature and their programs to optimize their
performance in an OS/2 environment. Minimizing an application's
memory requirements is more than being a "good citizen"; the smaller
a program's working set, the better it will run when the system load
picks up.

9.4 Status and Information
OS/2 takes advantage of the 80286 LDT and GDT architecture in pro
viding two special segments, called infosegs, that contain system infor
mation. OS/2 updates these segments when changes take place, so their
information is always current. One infoseg is global, and the other is lo
cal. The global infoseg contains information about the system as a
whole; the local infoseg contains process specific data. Naturally, the
global infoseg is read only and is shared among all processes. Local in
fosegs are also read only, but each process has its own.

The global infoseg contains time and date information. The "sec
onds elapsed since 1970" field is particularly useful for time-stamping
events because calculating the interval between two times is easy. Sim
ply subtract and then divide by the number of seconds in the unit of
time in which you're interested. It's important that you remember that
the date/time fields are 32-bit fields but the 80286 reads data 16 bits at a
time. Thus, if an application reads the two time-stamp words at the
same time as they are being updated, it may read a bad value-not a
value off by 1, but a value that is off by 63335. The easiest way to deal
with this is to read the value and then compare the just read value with
the infoseg contents. If they are the same, your read value is correct. If
they differ, continue reading and comparing until the read and infoseg
values agree. The RAS6 information is used for field system diagnosis
and is not of general interest to programmers.

The local infoseg segment contains process and thread information.
The information is accurate for the currently executing thread. The
subscreen group value is used by the presentation manager subsystem
and is not of value to applications. For more information on global and
local infosegs, see the OS/2 reference manual.

6. Reliability, Availability, and Serviceability. A buzzword that refers to components in
tended to aid field diagnosis of system malfunctions.

Environment
Strings

10

A major requirement of OS/2 is the ability to support logical device and
directory names. For example, a program needs to write a temporary
scratch file to the user's fastest disk. Which disk is that? Is it drive C,

. the hard disk? Some machines don't have a hard disk. Is it drive B, the
floppy drive? Some machines don't have a drive B. And even if a hard
disk on drive C exists, maybe drive D also exists and has more free
space. Or perhaps drive E is preferred because it's a RAM disk.
Perhaps it's not, though, because the user wants the scratch file
preserved when the machine is powered down. This program needs the
ability to specify a logical directory - the scratch file directory
rather than a physical drive and directory such as A:\ or C:\TEMP. The
user could then specify the physical location (drive and directory) that
corresponds to the logical directory.

Another example is a spell-checker program that stores two diction
aries on a disk. Presumably, the dictionary files were copied to a hard
disk when the program was installed, but on which drive and directory?
The checker's author could certainly hard code a directory such as
C:\SPELLCHK\DICTI. But what if the user doesn't have a C drive, or
what if drive C is full and the user wants to use drive D instead? How
can this program offer the user the flexibility of putting the dictionary
files where they best fit and yet still find them when it needs them?

146 PART II THE ARCHITECTURE

The answer to these problems is a logical device and directory name
facility. Such a facility should have three characteristics:

• It should allow the user to map the logical directories onto the ac
tual (physical) devices and directories at will. It should be poss
ible to change these mappings without changing the programs that
use them.

• The set of possible logical devices and directories should be very
large and arbitrarily expandable. Some new program, such as our
spelling checker, will always need a new logical directory.

• The name set should be large and collision free. Many programs
will want to use logical directory names. If all names must come
from a small set of possibilities, such as Xl, X2, X3, and so on,
two applications, written independently, may each choose the
same name for conflicting uses.

The original version of MS-DOS did not provide for logical devices
and directories. In those days a maximum PC configuration consisted
of two floppy disks. Operating the machine entailed playing a lot of
"disk jockey" as the user moved system, program, and data disks in
and out of the drives. The user was the only one who could judge which
drive should contain which floppy and its associated data, and data
files moved from drive to drive dynamically. A logical device mecha
nism would have been of little use. Logical directories were not needed
because MS-DOS version 1.0 didn't support directories. MS-DOS ver
sions 2.x and 3.x propagated the "physical names only" architecture
because of memory limitations and because of the catch-22 of new
operating system features: Applications won't take advantage of the
new feature because many machines are running older versions of
MS-DOS without that new feature.

None of these reasons holds true for OS/2. All OS/2 protect mode
applications will be rewritten. OS/2 has access to plenty of memory.
Finally, OS/2 needs a logical drive/directory mechanism: All OS/2
machines have hard disks or similar facilities, and all OS/2 machines
will run a variety of sophisticated applications that need access to pri
vate files and work areas. As a result, the environment string mecha
nism in MS-DOS has been expanded to serve as the logical name in
OS/2.

Chapter 10 Environment Strings 147

Because of the memory allocation techniques employed by
MS-DOS programs and because of the lack of segment motion and
swapping in real mode, the MS-DOS environment list was very limited
in size. The size of the environment segment was easily exceeded. OS/2
allows environment segments to be grown arbitrarily, at any time, sub
ject only to the hardware's 64 KB length limitation. In keeping with the
OS/2 architecture, each process has its own environment segment. By
default, the child inherits a copy of the parent's segment, but the parent
can substitute other environment values at DosExecPgm time.

Using the environment string facility to provide logical names is
straightforward. If a convention for the logical name that you need
doesn't already exist, you must choose a meaningful name. Your instal
lation instructions or software should document how to use the environ
ment string; the application should display an error message or use an
appropriate default if the logical names do not appear in the environ
ment string. Because each process has its own environment segment
that it inherited from its parent, batch files, startup scripts, and initiator
programs that load applications can conveniently set up the necessary
strings. This also allows several applications or multiple copies of the
same application to define the same logical name differently.

The existing conventions are:

PATH=
PATH defines a list of directories that CMD.EXE searches when it
has been instructed to execute a program. The directories are
searched from left to right and are separated by semicolons. For
example,

PATH=C:\BIN;D:\TOOLS;.

means search C:\BIN first, D:\TOOLS second, and the current
working directory third.

DPATH=
DPATH defines a list of directories that programs may search to
locate a data file. The directories are searched from left to right and
are separated by semicolons. For example:

DPATH=C:\DBM;D:\ TEMP;.

148 PART II THE ARCHITECTURE

Applications use DPATH as a convenience to the user: A user can
work from one directory and reference data files in another direc
tory, named in the DPATH string, without specifying the full path
names of the data files. Obviously, applications and users must use
this technique with care. Searching too widely for a filename is ex
tremely dangerous; the wrong file may be found because filenames
themselves are often duplicated in different directories. To use the
DPATH string, an application must first use DosScanEnv to locate
the DPATH string, and then it must use DosSearchPath to locate the
data file.

INCLUDE=
The INCLUDE name defines the drive and directory where com
piler and assembler standard include files are located.

INIT=
The INIT name defines the drive and directory that contains initial
ization and configuration information for the application. For exam
ple, some applications define files that contain the user's preferred
defaults. These files might be stored in this directory.

LIB=
The LIB name defines the drive and directory where the standard
language library modules are kept.

PROMPT =
The PROMPT name defines the CMD.EXE prompt string. Special
character sequences are defined so that the CMD.EXE prompt can
contain the working directory, the date and time, and so on. See
CMD.EXE documentation for details.

TEMP=
The TEMP name defines the drive and directory for temporary
files. This directory is on a device that is relatively fast and has suffi
cient room for scratch files. The TEMP directory should be con
sidered volatile; its contents can be lost during a reboot operation.

Chapter 10 Environment Strings 149

The environment segment is a very flexible tool that you can use to
customize the environment of an application or a group of applications.
For example, you can use environment strings to specify default op
tions for applications. Users can use the same systemwide default or
change that value for a particular screen group or activation of the
application.

I nterprocess
Communication

11

Interprocess Communication (IPC) is central to OS/2. As we discussed
earlier, effective IPC is needed to support both the tool-based architec
ture and the dynlink interface for interprocess services. Because IPC is
so important, OS/2 provides several forms to fulfill a variety of needs.

11.1 Shared Memory
Shared memory has already been discussed in some detail. To summar
ize, the two forms are named shared memory (access is requested by
the client by name) and giveaway shared memory (a current owner
gives access to another process). Shared memory is the most efficient
form of IPC because no data copying or calls to the operating system
kernel are involved once the shared memory has been set up. Shared
memory does require more effort on the part of the client processes; a
protocol must be established, semaphores and flags are usually needed,
and exposure to amok programs and premature termination must be
considered. Applications that expect to deal with a low volume of data
may want to consider using named pipes.

11.2 Semaphores
A semaphore is a flag or a signal. In its basic form a semaphore has
only two states-on and off or stop and go. A railroad semaphore, for
example, is either red or green -stop or go. In computer software, a
semaphore is a flag or a signal used by one thread of execution to flag

152 PART II THE ARCHITECTURE

or signal another. Often it's for purposes of mutual exclusion: "I'm in
here, stay out." But sometimes it can be used to indicate other events:
"Your data is ready."

OS/2 supports two kinds of semaphores, each of which can be used
in two different ways. The two kinds of semaphores-RAM sema
phores and system semaphores-have a lot in common, and the same
system API is used to manipulate both. A RAM semaphore, as its name
implies, uses a 4-byte data structure kept in a RAM location that must
be accessible to all threads that use it. The system API that manipulates
RAM semaphores is located in a dynlink subsystem. This code claims
semaphores with an atomic test-and-set operation,! so it need not enter
the kernel (ring 0) to protect itself against preemption. As a result, the
most common tasks-claiming a free semaphore and freeing a sema
phore that has no waiters-are very fast, on the order of 100 micro
seconds on a 6-MHz l-wait-state IBM PC/AT.2 If the semaphore is
already claimed and the caller must block or if another thread is wait
ing on the semaphore, the semaphore dynlink package must enter
kernel mode.

System semaphores, on the other hand, use a data structure that is
kept in system memory outside the address space of any process.
Therefore, system semaphore operations are slower than RAM sema
phore operations, on the order of 350 microseconds for an uncontested
semaphore claim. Some important advantages offset this operating
speed however. System semaphores support mechanisms that prevent
deadlock by crashing programs, and system semaphores support ex
clusivity and counting features. As a general rule, you should use RAM
semaphores when the requirement is wholly contained within one
process. When multiple processes may be involved, use system
semaphores.

The first step, regardless of the type or use of the semaphore, is to
create it. An application creates RAM semaphores simply by allocat
ing a 4-byte area of memory initialized to zero. The far address of this
area is the RAM semaphore handle. The DosCreateSem call creates
system semaphores. (The DosCreateSem call takes an exclusivity
argument, which we'll discuss later.) Although semaphores control
thread execution, semaphore handles are owned by the process. Once a

1. An atomic operation is one that is indivisible and therefore cannot be interrupted in the
middle.
2. This is the standard environment when quoting speeds; it's both the common case and the
worst case. Machines that don't run at this speed run faster.

Chapter 11 Interprocess Communication 153

semaphore is created and its handle obtained, all threads in that process
can use that handle. Other processes must open the semaphore via
DosOpenSem. There is no explicit open for a RAM semaphore. To be
useful for IPC, the RAM semaphore must be in a shared memory seg
ment so that another process can access it; the other process simply
learns the far address of the RAM semaphore. A RAM semaphore is
initialized by zeroing out its 4-byte memory area.

Except for opening and closing, RAM and system semaphores use
exactly the same OS/2 semaphore calls. Each semaphore call takes a
semaphore handle as an argument. A RAM semaphore's handle is its
address; a system semaphore's handle was returned by the create or
open call. The OS/2 semaphore routines can distinguish between RAM
and system semaphores by examining the handle they are passed.
Because system semaphores and their names are kept in an internal
OS/2 data area, they are a finite resource; the number of RAM sema
phores is limited only by the amount of available RAM to hold them.

The most common use of semaphores is to protect critical sections.
To reiterate, a critical section is a body of code that manipulates a data
resource in a nonreentrant way. In other words, a critical section will
screw up if two threads call it at the same time on the same data
resource. A critical section can cover more than one section of code; if
one subroutine adds entries to a table and another subroutine removes
entries, both subroutines are in the table's critical section. A critical
section is much like an airplane washroom, and the semaphore is like
the sign that says "Occupied." The first user sets the semaphore and
starts manipulating the resource; meanwhile others arrive, see that the
semaphore is set, and block (that is, wait) outside. When the critical
section becomes available and the semaphore is cleared, only one of
the waiting threads gets to claim it; the others keep on waiting.

Using semaphores to protect critical sections is straightforward. At
the top of a section of code that will manipulate the critical resource,
insert a call to DosSemRequest. When this call returns, the semaphore
is claimed, and the code can proceed. When the code is finished and
the critical section is "clean," call DosSemClear. DosSemClear
releases the semaphore and reactivates any thread waiting on it.

System semaphores are different from RAM semaphores in this ap
plication in one critical respect. If a system semaphore is created for
exclusive use, it can be used as a counting semaphore. Exclusive use

154 PART II THE ARCHITECTURE

means that only the thread that set the semaphore can clear it;3 this is
expected when protecting critical sections. A counting semaphore can
be set many times but must be released an equal number of times
before it becomes free. For example, an application contains function
A and function B, each of which manipulates the same critical section.
Each claims the semaphore at its beginning and releases it at its end.
However, under some circumstances, function A may need to call func
tion B. Function A can't release the semaphore before it calls B
because it's still in the critical section and the data is in an inconsistent
state. But when B issues DosSemRequest on the semaphore, it blocks
because the semaphore was already set by A.

A counting semaphore solves this problem. When function B makes
the second, redundant DosSemRequest call, OS/2 recognizes it as the
same thread that already owns the semaphore, and instead of blocking
the thread, it increments a counter to show that the semaphore has been
claimed twice. Later, when function B releases the semaphore, OS/2
decrements the counter. Because the counter is not at zero, the sema
phore is not really clear and thus not released. The semaphore is truly
released only after function B returns to function A, and A, finishing
its work, releases the semaphore a second time.

A second major use of semaphores is signaling (unrelated to the sig
nal facility of OS/2). Signaling is using semaphores to notify threads
that certain events or activities have taken place. For example, consider
a multithreaded application that uses one thread to communicate over a
serial port and another thread to compute with the results of that com
munication. The computing thread tells the communication thread to
send a message and get a reply, and then it goes about its own business.
Later, the computing thread wants to block until the reply is received
but only if the reply hasn't already been received-it may have already
arrived, in which case the computing thread doesn't want to block.

You can handle this by using a semaphore as a flag. The computing
thread sets the semaphore via DosSemSet before it gives the order to
the communications thread. When the computing thread is ready to
wait for the reply, it does a DosSem Wait on the semaphore it set
earlier. When the communications thread receives the reply, it clears
the semaphore. When the computing thread calls DosSemWait, it will

3. This is a departure from the principle of resource ownership by process, not by thread. The
thread, not the process, owns the privilege to clear a set "exclusive use" semaphore.

Chapter 11 Interprocess Communication 155

continue without delay if the semaphore is already clear. Otherwise, the
computing thread blocks until the semaphore is cleared. In this exam
ple, we aren't protecting a critical section; we're using the semaphore
transition from set to clear to flag an event between multiple threads.
Our needs are the opposite of a critical section semaphore: We don't
want the semaphore to be exclusively owned; if it were, the communi
cations th.read couldn't release it. \Ve also don't want the semaphore to
be counting. If it counts, the computing thread won't block when it does
the DosSem Wait; OS/2 would recognize that it did the DosSemSet
earlier and would increment the semaphore counter.

OS/2 itself uses semaphore signaling in this fashion when asynchro
nous communication is needed. For example, asynchronous I/O uses
semaphores in the signaling mode to indicate that an I/O operation has
completed. The system timer services use semaphores in the signaling
mode to indicate that the specified time has elapsed. OS/2 supports a
special form of semaphore waiting, called DosMuxSem Wait, which
allows a thread to wait on more than one semaphore at one time. As
soon as any specified semaphore becomes clear, DosMuxSem Wait
returns. DosMuxSem Wait, like DosSem Wait, only waits for a sema
phore to become clear; it doesn't set or claim the semaphore as does
DosSemRequest. DosMuxSem Wait allows a thread to wait on a
variety of events and to wake up whenever one of those events occurs.

11.2.1 Semaphore Recovery
We discussed earlier some difficulties that can arise if a semaphore is
left set "orphaned" when its owner terminates unexpectedly. We'll
review the topic because it's critical that applications handle the situa
tion correctly and because that correctness generally has to be
demonstrable by inspection. It's very difficult to demonstrate and fix
timing-related bugs by just testing a program.

Semaphores can become orphaned in at least four ways:

1. An incoming signal can divert the CPU, and the signal h~ndler
can fail to return to the point of interruption.

2. A process can kill another process without warning.

3. A process can incur a GP fault, which is fatal.

4. A process can malfunction because of a coding error and fail to
release a semaphore.

156 PART II THE ARCHITECTURE

The action to take in such events depends on how semaphores are
being used. In some situations, no action is needed. Our example of the
computing and communications threads is such a situation. If the
process dies, the semaphore and all its users die. Special treatment is
necessary only if the application uses DosExitList to run code that
needs to use the semaphore. This should rarely be necessary because
semaphores are used within a process to coordinate multiple threads
and only one thread remains when the exitlist is activated. Likewise, a
process can receive signals only if it has asked for them, so an applica
tion that does not use signals need not worry about their interrupting its
critical sections. An application that does use signals can use
DosHoldSignal, always return from a signal handler, or prevent thread
1 (the signal-handling thread) from entering critical sections.

In other situations, the semaphore can protect a recoverable resource.
For example, you can use a system semaphore to protect access to a
printer that for some reason is being dealt with directly by applications
rather than by the system spooler. If the owner of the "I'm using the
printer" system semaphore dies unexpectedly, the next thread that tries
to claim the semaphore will be able to do so but will receive a special
error code that says, "The owner of this semaphore died while holding
it. " In such a case, the application can simply write a form feed or two
to the printer and continue. Other possible actions are to clean up the
protected resource or to execute a process that will do so. Finally, an
application can display a message to the user saying, "Gee, this data
base is corrupt! You better do something," and then terminate. In this
case, the application should deliberately terminate while holding the
semaphore so that any other threads waiting on it will receive the
"owner died" message. Once the "owner died" code is received, that
state is cleared; so if the recipient of the code releases the semaphore
without fixing the inconsistencies in the critical section, problems will
result.

Additional matters must be considered if a process intends to clean
up its own semaphores by means of a DosExitList handler. First, ex
clusive (that is, counting) semaphores must be used. Although an exit
list routine can tell that a RAM or nonexclusive system semaphore is
reserved, it cannot tell whether it is the process that reserved it. You
may be tempted simply to keep a flag byte that is set each time the
semaphore is claimed and cleared each time the semaphore is released,

Chapter 11 Interprocess Communication 157

but that solution contains a potentially deadly window of failure. If
the thread sets the "I own it" flag before it calls DosSemRequest, the
thread could terminate between setting the flag and receiving the
semaphore. In that case, the exitlist routine would believe, wrongly,
that it owns the semaphore and would therefore release it-a very un
pleasant surprise for the true owner of the semaphore. Conversely, if
the thread claims the semaphore and then sets the flag, a window exists
in which the semaphore is claimed but the flag does not say so. This is
also disastrous.

Using exclusive system semaphores solves these problems. As I
mentioned earlier, when the thread that has set a system semaphore dies
with the semaphore set, the semaphore is placed into a special "owner
died" state so that the next thread to attempt to claim the semaphore is
informed of its orphan status. There is an extra twist to this for exclu
sive-use system semaphores. Should the process die due to an external
cause or due to a DosExit call and that process has a DosExitList han
dler, all orphaned system semaphores are placed in a special "owner
died" state so that only that process's remaining thread-the one ex
ecuting the DosExitList handlers-can claim the semaphore. When it
does so, it still receives the special "owner died" code. The exitlist
handler can use DosSemWait with a timeout value of 0 to see if the
semaphore is set. If the "owner died" code is returned, then the
DosExitList handler cleans up the resource and then issues
DosSemClear to clear the semaphore. If a thread terminates by ex
plicitly calling DosExit with the "terminate this thread" subcode, any
exclusive-use system semaphores that it has set will not enter this spe
cial "owner died" state but will instead assume the general "owner
died" state that allows any thread in the system to claim the semaphore
and· receive the "owner died" code. Likewise, any semaphores in the
special "owner died" state that are not cleared by the DosExitList
handlers become normal "owner died" semaphores when the process
completely terminates.

11.2.2 Semaphore Scheduling
Although multiple threads can wait for a semaphore, only one thread
gets the semaphore when it becomes available. OS/2 schedules sema
phore grants based on CPU priority: The highest-priority waiting
thread claims the semaphore. If several waiting threads are at the high
est priority, OS/2 distributes the grants among them evenly.

158 PART II THE ARCHITECTURE

11.3 Named Pipes
We've already discussed anonymous pipes-stream oriented IPC
mechanisms that work via the DosRead and DosWrite calls. Two pro
cesses can communicate via anonymous pipes only if one is a de
scendant of the other and if the descendant has inherited the parent's
handle to the pipe. Anonymous pipes are used almost exclusively to
transfer input and output data to and from a child process or to and from
a subtree of child processes.

OS/2 supports another form of pipes called named pipes. Named
pipes are not available in OS/2 version 1.0; they will be available in a
later release. I discuss them here because of their importance in the sys
tem architecture. Also, because of the extensible nature of OS/2, it's
possible that named pipe functionality will be added to the system by
including the function in some other Microsoft system software pack
age that, when it runs under OS/2, installs the capability. In such a case,
application programs will be unable to distinguish the "add-on"
named pipe facility from the "built-in" version that will eventually be
included in OS/2.

Named pipes are much like anonymous pipes in that they're a serial
communications channel between two processes and they use the
DosRead and DosWrite interface. They are different, however, in sev
eral important ways.

• Named pipes have names in the file system name space. Users of
a named pipe need not be related; they need only know the name
of a pipe to access it.

• Because named pipes use the file system name space and because
that name space can describe machines on a network, named
pipes work both locally (within a single machine) and remotely
(across a network).

• An anonymous pipe is a byte-stream mechanism. The system
considers the data sent through an anonymous pipe as an undiffer
entiated stream of bytes. The writer can write a l00-byte block of
data, and the reader can read the data with two 3D-byte reads and
one 4O-byte read. If the byte stream contains individual messages,
the recipient must determine where they start and stop. Named
pipes can be used in this byte-stream mode, but named pipes also

Chapter 11 Interprocess Communication 159

support message mode, in which processes read and write streams
of messages. When the named pipe is in message mode, OS/2
(figuratively!) separates the messages from each other with pieces
of waxed paper so that the reader can ask for "the next message"
rather than for' 'the next 100 bytes."

• Named pipes are full duplex, whereas anonymous pipes are ac
tuany a pair of pipes, each half duplex. \Vhen an anonymous pipe
is created, two handles are returned -a read handle and a write
handle. An open of a named pipe returns a single handle, which
may (depending on the mode of the DosOpen) be both read and
written. Although a full duplex named pipe is accessed via a
single handle, the data moving in each direction is kept totally
separate. A named pipe should be viewed as two separate pipes
between the reader and the writer-one holds data going in, the
other holds data coming back. For example, if a thread writes to a
named pipe handle and then reads from that handle, the thread
will not read back the data it just wrote. The data the thread just
wrote in is in the outgoing side; the read reads from the incoming
side.

Ii Named pipes are frequently used to communicate with processes
that provide a service to one or more clients, usually simulta
neously. The named pipe API contains special functions to facili
tate such use: pipe reusability, multiple pipes with identical
names, and so on. These are discussed below.

• Named pipes support transaction I/O calls that provide an effi
cient way to implement local and remote procedure call dialogs
between processes.

• Programs running on MS-DOS version 3.x workstations can ac
cess named pipes on an OS/2 server to conduct dialogs with
server applications because, to a client, a named pipe looks ex
actly like a file.

You'll recall that the creator of an anonymous pipe uses a special in
terface (DosMakePipe) to create the pipe but that the client process can
use the DosRead and DosWrite functions, remaining ignorant of the
nature of the handle. The same holds true for named pipes when they
are used in stream mode. The creator of a named pipe uses a special

160 PART II THE ARCHITECTURE

API to set it up, but its clients can use the pipe while remaining ig
norant of its nature as long as that use is serial.4 Named pipes are cre
ated by the DosMakeNmPipe call. Once the pipe is created, one of the
serving process's threads must wait via the DosConnectNmPipe call
for the client to open the pipe. The client cannot successfully open the
pipe until a DosConnectNmPipe has been issued to it by the server
process.

Although the serving process understands that it's using a named
pipe and can therefore call a special named pipe API, the client process
need not be aware that it's using a named pipe because the normal
DosOpen call is used to open the pipe. Because named pipes appear in
the file system name space, the client can, for example, open a file
called \PIPE\STATUS, unaware that it's a named pipe being managed
by another process. The DosMakeNmPipe call returns a handle to the
serving end of the pipe; the DosOpen call returns a handle to the client
end. As soon as the client opens a pipe, the DosConnectNmPipe call
returns to the serving process.

Communication over a named pipe is similar to that over an anony
mous pipe: The client and server each issue reads and writes to the han
dle, as appropriate for the mode of the open. When a process at one end
of the pipe closes it, the process at the other end gets an error code in
response to write operations and an EOF indication in response to read
operations.

The scenario just described is simple enough, but that's the problem:
It's too simple. In real life, a serving process probably stays around so
that it can serve the next client. This is the purpose behind the DosCon
nectN mPipe call. After the first client closes its end of the named pipe
and the server end sees the EOF on the pipe, the server end issues a
DosDisconnectNmPipe call to acknowledge that the client has closed
the pipe (either explicitly or via termination). It can then issue another
DosConnectNmPipe call to reenable that pipe for reopening by
another client or by the same client. In other words, the connect and
disconnect operations allow a server to let clients, one by one, connect
to it via a single named pipe. The DosDisconnectNmPipe call can be
used to forcibly disconnect a client. This action is appropriate if a client
makes an invalid request or otherwise shows signs of ill health.

4. Random access, using DosSeek, is not supported for pipes and will cause an error code to
be returned.

Chapter 11 Interprocess Communication 161

We can serve multiple clients, one at a time, but what about serving
them in parallel? As we've described it so far, our serving process han
dles only one client. A client's DosOpen call fails if the named pipe
already has a client user or if the server process hasn't issued the
DosConnectNmPipe call. This is where the instancing parameter, sup
plied to DosMakeNmPipe, comes in.

When a named pipe is first opened,5 the instance count parameter is
specified in the pipe flag's word. If this count is greater than 1, the pipe
can be opened by a server process more than once. Additional opens
are done via DosMakeNmPipe, which returns another handle to access
the new instance of the pipe. Obviously the pipe isn't being "made" for
the second and subsequent calls to DosMakeNmPipe, but the
DosOpen call can't be used instead because it opens the client end of
the named pipe, not the server end. The instance count argument is ig
nored for the second and subsequent DosMakeNmPipe calls. Extra in
stances of a named pipe can be created by the same process that created
the first instance, or they can be created by other processes. Figure 11-1
on the following page illustrates multiple instances of a named pipe.

When a client process does a DosOpen on a named pipe that has
multiple instances, OS/2 connects it to any server instance of the pipe
that has issued a DosConnectNmPipe call. If no instances are avail
able and enabled, the client receives an error code. OS/2 makes no
guarantees about distributing the incoming work evenly across all
server instances; it assumes that all server threads that issued a
DosConnectNmPipe call are equal.

The multiple instance capability allows a single server process or
perhaps multiple server processes to handle many clients simulta
neously. One process using four threads can serve four clients as
rapidly as four processes, each with one thread, can do the job. As long
as threads don't interfere with one another by blocking on critical sec
tions, a multiprocess server has no inherent efficiency advantage over a
multithread server.

The OS/2 named pipe package includes some composite operations
for client processes: DosTransactNmPipe and DosCallNmPipe.
DosTransactNmPipe is much like a DosWrite followed by a

5. Like other non-file-system resident named objects, a named pipe remains known to the
system only as long as a process has it open. When all handles to a named pipe are closed,
OS/2 forgets all information concerning the named pipe. The next DosMakeNmPipe call
recreates the named pipe from ground zero.

162 PART II THE ARCHITECTURE

Client
A

Client
B

Client
C

Client
o

Figure 11·1.
Multiple instances of a named pipe.

Server
Process

DosRead: It sends a message to the server end of the named pipe and
then reads a reply. DosCallNmPipe does the same on an unopened
named pipe: It has the combined effect of a DosOpen, a DosTrans
actNmPipe, and a DosClose. These calls are of little value if the client
and server processes are on the same machine; the client could easily
build such subroutines itself by appropriately combining DosOpen,
DosClose, DosRead, and DosWrite. These calls are in the named pipe
package because they provide significant performance savings in a net
worked environment. If the server process is on a different machine
from the client process, OS/2 and the network transport can use a
datagramlike mechanism to implement these calls in a network
efficient fashion. Because named pipes work invisibly across the net
work, any client process that performs these types of operations should
use these composite calls, even if the author of the program didn't an
ticipate the program being used in a networked environment. Using the
composite calls will ensure the performance gains if a user decides to
use a server process located across the network. Readers familiar with
network architecture will recognize the DosCallNmPipe function as a
form of remote procedure call. In effect, it allows a process to make a
procedure call to another process, even a process on another machine.

Chapter 11 Interprocess Communication 163

The OS/2 named pipe facility contains a great many features, as
befits its importance in realizing the OS/2 tool-based architecture. This
book is nofintended to provide an exhaustive coverage of features, but a
few other miscellaneous items merit mention.

Our above discussion concentrated on stream-based communica
tions, which can be convenient because they allow a client process to
use a named pipe whiie ignorant of its nature. For exampie, you can
write a spooler package for a device not supported by the system
spoolers-say, for a plotter device. Input to the spooler can be via a
named pipe, perhaps \PIPE\PLOTOUT. An application could then be
told to write its plotter output to a file named \PIPE\PLOTOUT or
even \\PLOTMACH\PIPE\PLOTOUT (across a network). The appli
cation will then use the spooler at the other end of the named pipe.

Sometimes, though, the client process does understand that it's talk
ing to a named pipe, and the information exchanged is a series of mes
sages rather than a long stream of plotter data. In this case, the named
pipe can be configured as a message stream in which each message is
indivisible and atomic at the interface. In other words, when a process
reads from a named pipe, it gets only one message per read, and it gets
the entire message. Messages can queue up in the pipe, but OS/2
remembers the message boundaries so that it can split them apart as
they are read. Message streams can be used effectively in a networking
environment because the network transport can better judge how to as
semble packets.

Although our examples have shown the client and server processes
issuing calls and blocking until they are done, named pipes can be con
figured to operate in a nonblocking fashion. This allows a server or a
client to test a pipe to see if it's ready for a particular operation, thereby
guaranteeing that the process won't be held up for some period waiting
for a request to complete. Processes can also use DosPeekNmPipe, a
related facility that returns a peek at any data (without consuming the
data) currently waiting to be read in the pipe interface. Servers can use
this to scan a client's request to see if they're interested in handling it at
that time.

Finally, we mentioned that a process that attempts a DosOpen to a
named pipe without any available instances is returned an error code.
Typically, a client in this situation wants to wait for service to become
available, and it doesn't want to sit in a polling loop periodically

164 PART" THE ARCHITECTURE

testing for server availability. The DosWaitNmPipe call is provided
for this situation; it allows a client to block until an instance of the
named pipe becomes available. When DosWaitNmPipe returns, the
client must still do a DosOpen. The DosOpen can fail, however, if
another process has taken the pipe instance in the time between the
"wait" and the "open" calls. But because multiple waiters for a
named pipe are serviced in priority order, such a "race" condition is
uncommon.

11.4 Queues
Queues are another form of IPC. In many ways they are similar to
named pipes, but they are also significantly different. Like named
pipes, they use the file system name space, and they pass messages
rather than byte streams. Unlike named pipes, queues allow multiple
writes to a single queue because the messages bring with them informa
tion about their sending process that enables the queue reader to distin
guish between messages from different senders. Named pipes are
strictly FIFO, whereas queue messages can be read in a variety of
orders. Finally, queues use shared memory as a transfer mechanism; so
although they're faster than named pipes for higher volume data trans
fers on a single machine, they don't work across the network.

The interface to the queue package is similar but not identical to that
of the named pipe interface. Like named pipes, each queue has a single
owner that creates it. Clients open and close the queue while the owner,
typically, lives on. Unlike named pipes, the client process must use a
special queue API (DosReadQueue, DosWriteQueue, and so on) and
thus must be written especially to use the queue package. Although
each queue has a single owner, each queue can have multiple clients; so
the queue mechanism doesn't need a facility to have multiple queues of
the same name, nor does it need a DosWaitNmPipe equivalent.

Queue messages are somewhat different from named pipe messages.
In addition to carrying the body of the message, each queue message
carries two additional pieces of information. One is the PID of the
sender; OS/2 provides this information, and the sender cannot affect it.
The other is a word value that the sender supplied and that OS/2 and the

Chapter 11 Interprocess Communication 165

queue package do not interpret. Queue servers and clients can use this
information as they wish to facilitate communication.

The queue package also contains a peek facility, similar to that of
named pipes but with an interesting t~ist. If a process peeks the named
pipe and then later reads from it, it can be sure that the message it reads
is the same one that it peeked because named pipes are always FIFO.
Queues, however, allow records to be read in different orders of prior
ity. If a queue is being read in priority order, a process might well peek
a message, but by the time the process issues the queue read, some other
message of higher priority may have arrived and thus be at the front of
the list. To get around this problem, when the queue package peeks a
message, it returns a magic cookie to the caller along with the message.
The caller can supply this cookie to a subsequent DosReadQueue call
to ensure that the peeked message is the one read, overriding the nor
mal message-ranking process. This magic cookie can also be supplied
to the DosPeekQueue call to peek the second and subsequent records
in the queue.

Finally, one extremely important difference between queues and
named pipes is that named pipes transfer (that is, copy) the data from
the client to the server process. Queues transfer only the address of the
data; the queue package does not touch the data itself. Thus, the data
body of the queue message must be addressable to both the client and
the serving process. This is straightforward if both the client and serv
ing threads belong to the same process. If the client and serving threads
are from different processes, however, the data body of the queue mes
sage must be in a shared memory segment that is addressable to both
the client and the server.

A related issue is buffer reusability. An application can reuse a mem
ory area immediately after its thread returns from the named pipe call
that wrote the data from that area; but when using a queue, the sender
must not overwrite the message area until it's sure the reading process
is finished with the message.

One way to kill both these birds-the shared memory and the mem
ory reuse problems-with one stone is to use the memory suballoca
tion package. Both the client and the queue server need to have shared

166 PART II THE ARCHITECTURE

access to a memory segment that is then managed by the memory sub
allocation package. The client allocates a memory object to hold the
queue message and write it to the queue. The queue server can address
that queue message because it's in the shared memory segment. When
the queue manager is finished with the message, it calls the memory
suballocator to release the memory object. The client need not worry
about when the server is finished with the message because the client
allocates a new message buffer for each new message, relying on the
server to return the messages fast enough so that the memory suballoca
tor doesn't run out of available space.

A similar technique on a segment level is to use giveaway shared
memory. The client allocates a giveaway segment for each message
content, creates the message, gives away a shared addressability to the
segment to the server process, and then writes the message (actually,
the message's address) to the queue. Note that the sender uses the recipi
ent's selector as the data address in this case, not its own selector. When
the thread returns from that DosWriteQueue call, the client releases its
access to the segment via DosFreeSeg. When the server process is fin
ished with the message, it also releases the memory segment. Because
the queue server is the last process with access to that segment, the seg
ment is then returned to the free pool.

Software designers need to consider carefully the tradeoffs between
queues, named pipes, and other forms of IPC. Queues are potentially
very fast because only addresses are copied, not the data itself; but the
work involved in managing and reusing the shared memory may con
sume the time savings if the messages are small. In general, small mes
sages that are always read FIFO should go by named pipes, as should
applications that communicate with clients and servers across a net
work. Very large or high data rate messages may be better suited to
queues.

11.5 Dynamic Data Exchange (DOE)
DDE is a form of IPC available to processes that use the presentation
manager API. The presentation manager's interface is message
oriented; that is, the primary means of communication between a
process and the presentation manager is the passing of messages. The
presentation manager message interface allows applications to define

Chapter 11 Interprocess Communication 167

private messages that have a unique meaning throughout the PC.
DDE is, strictly speaking, a protocol that defines new messages for
communication between applications that use it.

DDE messages can be directed at a particular recipient or broadcast
to all presentation manager applications on a particular PC. Typically,
a client process broadcasts a message that says, "Does anyone out there
have this information?" or "Does aIlyone out there provide this ser-
vice?" If no response is received, the answer is taken to be no. If a
response is received, it contains an identifying code6 that allows the
two processes to communicate privately.

DDE's broadcast mechanism and message orientation gives it a lot of
flexibility in a multiprocessing environment. For example, a special
ized application might be scanning stock quotes that are arriving via a
special link. A spreadsheet program could use DDE to tell this scanner
application to notify it whenever the quotes change for certain stocks
that are mentioned in its spreadsheet. Another application, perhaps
called Market Alert, might ask the scanner to notify it of trades in a dif
ferent set of stocks so that the alert program can flash a banner if those
stocks trade outside a prescribed range. DDEs can be used only by pre
sentation manager applications to communicate with the same.

11.6 Signaling
Signals are asynchronous notification mechanisms that operate in a
fashion analogous to hardware interrupts. Like hardware interrupts,
when a signal arrives at a process, that process's thread 1 stops after the
instruction it is executing and begins executing at a specified handler
address. The many special considerations to take into account when
using signals are discussed in Chapter 12. This section discusses their
use as a form of IPC.

Processes typically receive signals in response to external events that
must be serviced immediately. Examples of such events are the user
pressing Ctrl-C or a process being killed. Three signals (flag A, flag B,
and flag C), however, are caused by another process7 issuing an explicit
DosFlagProcess API. DosFlagProcess is a unique form of IPC

6. A window handle.
7. This is the typical case; but like all other system calls that affect processes, a thread can
make such a call to affect its own process.

168 PART II THE ARCHITECTURE

because it's asynchronous. The recipient doesn't have to block or poll
waiting for the event; it finds out about it (by discovering itself to be ex
ecuting the signal handler) as soon as the scheduler gives it CPU time.

DosFlagProcess, however, has some unique drawbacks. First, a sig
nal carries little information with it: only the number of the signal and
a single argument word. Second, signals can interrupt and interfere
with some system calls. Third, OS/2 views signals more as events than
as messages; so if signals are sent faster than the recipient can process
them, OS/2 discards some of the overrun. These disadvantages (dis
cussed in Chapter 12) restrict signals to a rather specialized role as an
IPC mechanism.

11.7 Combining IPC Forms
We've discussed each form of IPC, listing its strengths and weaknesses.
If you use forms in conjunction, however, you benefit from their com
bined strengths. For example, a process can use named pipes or DDE to
establish contact with another process and then agree with it to send a
high volume of data via shared memory. An application that provides
an IPC interface should also provide a dynlink package to hide the
details of the IPC. This gives designers the flexibility to improve the
IPC component of their package in future releases while still maintain
ing interface compatibility with their clients.

12

Signals
The OS/2 signal mechanism is similar, but not identical, to the UNIX
signal mechanism. A signal is much like a hardware interrupt except
that it is initiated and implemented in software. Just as a hardware in
terrupt causes the CS, IP, and Flags registers to be saved on the stack
and execution to begin at a handler address, a signal causes the applica
tion's CS, IP, and Flags registers to be saved on the stack and execution
to begin at a signal-handler address. An IRET instruction returns con
trol to the interrupted address in both cases. Signals are different from
hardware interrupts in that they are a software construct and don't in-
volve privilege transitions, stack switches, or ring 0 code.

OS/2 supports six signals-three common signals (Ctrl-C, Ctrl
Break, and program termination) and three general-purpose signals.
The Ctrl-C and Ctrl-Break signals occur in response to keyboard ac
tivity; the program termination signal occurs when a process is killed
via the DosKiIl call. l The three general-purpose signals are generated
by an explicit call from a thread, typically a thread from another
process. A signal handler is in the form of a far subroutine, that is, a
subroutine that returns with a far return instruction. When a signal ar
rives, the process's thread 1 is interrupted from its current location and
made to call the signal-handler procedure with an argument provided
by the signal generator. The signal-handler code can return,2 in which

1. The process termination signal handler is not called under all conditions of process ter
mination, only in response to DosKiIl. Normal exits, GP faults, and so on do not activate the
process termination signal handler.
2. OS/2 interposes a code thunk, so the signal handler need not concern itself with executing
an IRET instruction, which language compilers usually won't generate. When the signal han
dler is entered, its return address points to a piece of OS/2 code that contains the IRET
instruction.

170 PART II THE ARCHITECTURE

case the CPU returns from where it was interrupted, or the signal
handler can clean its stack and jump into the process's code at some
other spot, as in the C language's longjmp facility.

The analogy between signals and hardware interrupts holds still fur
ther. As it does in a hardware interrupt, the system blocks further inter
rupts from the same source so that the signal handler won't be
arbitrarily reentered. The signal handler must issue a special form of
DosSetSigHandler to dismiss the signal and allow further signals to
occur. Typically this is done at the end of the signal-handling routine
unless the signal handler is reentrant. Also, like hardware interrupts,
the equivalent of the CLI instruction-the DosHoldSignal call-is
used to protect critical sections from being interrupted via a signal.

Unlike hardware interrupts, signals have no interrupt priority. As
each enabled signal occurs, the signal handler is entered, even if
another signal handler must be interrupted. New signal events that
come in while that signal is still being processed from an earlier
event-before the signal has been dismissed by the handler-are held
until the previous signal event has been dismissed. Like hardware inter
rupts, this is a pending-signal flag, not a counter. If three signals of the
same kind are held off, only one signal event occurs when that signal
becomes reenabled.

A signal event occurs in the context of a process whose thread of ex
ecution is interrupted for the signal handler; a signal doesn't cause the
CPU to stop executing another process in order to execute the first
process's signal handler. When OS/2 "posts" a signal to a process, it
simply makes a mark that says, "The next time we run this guy, store
his CS, IP, and Flags values on the stack and start executing here in
stead. " The system uses its regular priority rules to assign the CPU to
threads; when the scheduler next, runs the signaled thread, the dis
patcher code that sends the CPU into the application's code reads the
"posted signal" mark and does the required work.

Because a signal "pseudo interrupt" is merely a trick of the dis
patcher, signal handlers don't run in ring 0 as do hardware interrupt
handlers; they run in ring 3 as do all application threads. In general, as
far as OS/2 is concerned, the process isn't in any sort of special state
when it's executing a signal handler, and no special rules govern what a
thread can and cannot do in a signal handler.

Chapter 12 Signals 171

Receiving a signal when thread 1 is executing an application ordyn
link code is straightforward: The system saves CS, IP, and Flags, and
the signal handler saves the rest. The full register complement can be
restored after the signal has been processed, and thread l' s nonnal ex
ecution resumes without incident. If thread 1 is executing a system call
that takes the CPU inside the kernel, the situation is more complex.
OS/2 can't emulate an interrupt from the system ring 0 code to the ap-
plication's ring 3 code, nor can OS/2 take the chance that the signal
handler never returns from the· signal3 and therefore leaves OS/2's in
ternals in an intennediate state. Instead, when a signal is posted and
thread 1 is executing ring 0 OS/2 code, the system either completes its
operations before recognizing the signal or aborts the operation and
then recognizes the signal. If the operation is expected to take place
"quickly," the system completes the operation, and the signal is recog
nized at the point where the CPU resumes executing the application's
ring 3 code.

All non-I/O operations are deemed to complete "quickly," with the
exception of the explicit blocking operations such as DosSleep,
DosSem Wait, and so on. I/O operations depend on the specific device.
Disk I/O completes quickly, but keyboard and serial I/O generally do
not. Clearly, if we wait for the user to finish typing a line before we
recognize a signal, we might never recognize it-especially if the sig
nal is Ctrl-C! In the case of "slow devices," OS/2 or the device driver
tenninates the operation and returns to the application with an error
code. The signal is recognized when the CPU is about to resume ex
ecuting the ring 3 application code that follows the system call that was
interrupted.

Although the application is given an error code to explain that the
system call was interrupted, the application may be unable to reissue
the system call to complete the work. In the case of device I/O, the ap
plication typically can't tell how much, if any, of the requested output
or input took place before the signal interrupted the operation. If an
output operation is not reissued, some data at the end of the write may
be missing. If an output operation is restarted, then some data at the

3. It's acceptable for a signal handler to clean up. thread 1 's stack, dismiss the signal,jump to
another part of the application, and never return from the signal. For example, an application
can jump into its "prompt and command loop" in response to the press of Ctrl-C.

172 PART II THE ARCHITECTURE

beginning of the write may be written twice. In the case of DosSleep,
the application cannot tell how much of the requested sleep has elapsed.
These issues are not usually a problem; it's typically keyboard input
that is interrupted. In the case of the common signals (Ctrl-C, Ctrl
Break, and process killed) the application typically flushes partial key
board input anyway. Applications that use other "slow" devices or the
IPC flag signals need to deal with this, however.

Although a process can have multiple threads, only thread 1 is used
to execute the signal handler.4 This leads to an obvious solution to the
interrupted system call problem: Applications that will be inconve
nienced by interrupted system calls due to signals should dedicate
thread 1 to work that doesn't make interruptible system calls and use
other thread(s) for that work. In the worst case, thread 1 can be totally
dedicated to waiting for signals: It can block on a RAM semaphore that
is never released, or it can execute a DosSleep loop.

A couple of practical details about signals are worth noting. First,
the user of a high-level language such as C need not worry about saving
the registers inside the signal-handler routine. The language runtimes
typically provide code to handle all these details; as far as the applica
tion program is concerned, the signal handler is asynchronously far
called, and it can return from the signal by the return() statement.
Also, no application can receive a signal without first requesting it, so
you need not worry about setting up signal handlers if your application
doesn't explicitly ask to use them. A process can have only one signal
handling address for each signal, so general-purpose dynlink routines
(ones that might be called by applications that aren't bundled with the
dynlink package) should never set a signal handler, doing so might
override a handler established by the client program code.

Signals interact with critical sections in much the same way as inter
rupts do. If a signal arrives while thread 1 is executing a critical section
that is protected by a semaphore and if that signal handler never returns
to the interrupted location, the critical section's semaphore will be left
jammed on. Even if the signal handler eventually returns, deadlock oc
curs if it attempts to enter the critical section during processing of the
signal (perhaps it called a dynlink package, unaware that the package

4. For this reason, a process should not terminate thread 1 and continue executing with
others; then it cannot receive signals.

Chapter 12 Signals 173

contained a critical section). Dynlink packages must deal with this
problem by means of the DosHoldSignal call, which is analogous to
the CLI/STI instructions for hardware interrupts: The DosHoldSignal
holds off arriving signals until they are released. Held-off signals
should be released within a second or two so that the user won't be
pounding Ctrl-C and thinking that the application has crashed. Appli-
cations can use DosHoldSignal, or they can simply ensure that thread 1
never enters critical sections, perhaps by reserving it for signal han
dling, as discussed above.

Ctrl-C and Ctrl-Break are special, device-specific operations. Set
ting a signal handler for these signals is a form of I/O to the keyboard
device; applications must never do this until they have verified that
they have been assigned the keyboard device. See Chapter 14, Inter
active Programs.

13

The Presentation
Manager and
VIO
In the early chapters of this book, I emphasized the importance of a
high-powered, high-bandwidth graphical user interface. It's a lot of
work for an application to manage graphical rendition, windowing,
menus, and so on, and it's hard for the user to learn a completely differ
ent interface for each application. Therefore, OS/2 contains a sub
system called the presentation manager (PM) that provides these
services and more. The presentation manager is implemented as a
dynlink subsystem and daemon process combination, and it provides:

• High-performance graphical windowing.

• A powerful user interface model, including drop-down menus,
scroll bars, icons, and mouse and keyboard interfaces. Most of
these facilities are optional to the application; it can choose the
standard services or "roll its own."

• Device independence. The presentation manager contains a so
phisticated multilevel device interface so that as much work as
possible is pushed down to "smart" graphics cards to optimize
performance.

176 PART II THE ARCHITECTURE

Interfacing an application with the presentation manager involves a
degree of effort that not all programmers may want to put forth. The in
terface to the application may be so simple that the presentation man
ager's features are of little value, or the programmer may want to port
an MS-DOS application to OS/2 with the minimum degree of change.
For these reasons, OS/2 provides a second interface package called
VIO, l which is primarily character oriented and looks much like the
MS-DOS ROM BIOS video interface. The initial release of OS/2 con
tains only VIa, implemented as a separate package. The next release
will contain the presentation manager, and vIa will then become an
alternate interface to the presentation manager.

Fundamentally, the presentation manager and vIa are the equiva
lent of device drivers. They are implemented as dynlink packages
because they are device dependent and need to be replaced if different
devices are used. Dynlinks are used instead of true device drivers
because they can provide high throughput for the screen device: A sim
ple call is made directly to the code that paints the pixels on the screen.
Also, the dynlink interface allows the presentation manager to be im
plemented partially as a dynlink subsystem and partially as a daemon
process accessed by that subsystem.

These packages are complex; explaining them in detail is beyond the
scope of this book. Instead, I will discuss from a general perspective
the special issues for users of this package.

vIa is essentially character oriented. It supports graphics-based ap
plications, but only to the extent of allowing them to manipulate the
display controller directly so that they can "go around" vIa and pro
vide special interfaces related to screen switching of graphics applica
tions (see below). The base vIa package plays a role similar to that of
the ROM BIOS INT 10/INT 16 interface used in MS-DOS. It contains
some useful enhancements but in general is a superset of the ROM
BIOS functions, so INT 10-based real mode applications can be
quickly adjusted to use vIa instead. vIa is replaceable, in whole or in
part, to allow applications being run with vIa to be managed later by
the presentation manager package.

The presentation manager is entirely different from vIa. It offers an
extremely rich and powerful set of functions that support windowing,

1. VIO is a convenience term that encompasses three dynlink subsystems: KBD (keyboard),
VIO (Video I/O; the display adapter), and MOU (mouse).

Chapter 13 The Presentation Manager and VIO 177

and it offers a full, device-independent graphics facility. Its message
oriented architecture is well suited to interactive applications. Once the
presentation manager programming model is learned and the key ele
ments of its complex interface are understood, a programmer can take
advantage of a very sexy user interface with comparatively little effort.
The presentation manager also replaces the existing VIO/KBD/MOU
calls in order to support older programs that use these interfaces,

13.1 Choosing Between PM and VIO
The roles of VIO and the presentation manager sometimes cause confu
sion: Which should you use for your application? The default interface
for a new application should be the presentation manager. It's not in
OS/2 version 1.0 because of scheduling restrictions; owners of version
1.0 will receive the presentation manager as soon as it is available, and
all future releases will be bundled with the presentation manager. The
presentation manager will be present on essentially all personal com
puter OS/2 installations, so you are not restricting the potential market
for an application if you write it for the presentation manager.

The presentation manager interface allows an application to utilize a
powerfui, graphicai user interface. In generai form it;s standardized for
ease of use, but it can be customized in a specific implementation so
that an application can provide important value-added features. On the
other hand, if you are porting an application from the real mode envi
ronment, you will find it easier to use the VIO interface. Naturally,
such programs run well under the presentation manager, but they forgo
the ability to use graphics and to interact with the presentation man
ager. The user can still "window" the VIO application's screen image,
but without the application's knowledge or cooperation. To summarize,
you have three choices when writing an application:

1. Only use the VIO interface in character mode. This works well in
a presentation manager environment and is a good choice for
ported real mode applications. The VIO interface is also sup
ported by the Family API mechanism. This mode is compatible
with the Family API facility.

2. Use the special VIO interface facilities to sidestep VIO and
directly manipulate the display screen in either character or

178 PART" THE ARCHITECTURE

graphics mode. This also works in a presentation manager envi
ronment, but the application will not be able to run in a window.
This approach can be compatible with the Family API if it is
carefully implemented.

3. Use the presentation manager interface-the most sophisticated
interface for the least effort. The presentation manager interface
provides a way to ' 'operate" applications that will become a
widely known user standard because of the capabilities of the in
terface, because of the support it receives from key software ven
dors, and because it's bundled with OS/2. The user is obviously at
an advantage if he or she does not have to spend time learning a
new interface and operational metaphors to use your application.
Finally, Microsoft is a strong believer in the power of a graphical
user interface; future releases of OS/2 will contain "more-faster
better" presentation manager features. Many of these improve
ments will apply to existing presentation manager applications;
others will expand the interface API. The standard of perfor
mance for application interfaces, as well as for application perfor
mance, continues to evolve. The rudimentary interfaces and
function of the first -generation PC software are no longer con
sidered competitive. Although OS/2 can do nothing to alleviate
the developer's burden of keeping an application's function com
petitive, the presentation manager is a great help in keeping the
application's interface state of the art.

Clearly, using the presentation manager interface is the best strategy
for new or extensively reworked applications. The presentation man
ager API will be expanded and improved; the INT lO-like VIa func
tions and the VIa direct screen access capabilities will be supported
for the foreseeable future, but they're an evolutionary dead end. Given
that, you may want to use the VIa mechanism or the Family API facili
ties to quickly port an application from a real mode version and then
use the presentation manager in a product upgrade release.

13.2 Background I/O
A process is in the background when it is no longer interacting directly
with the user. In a presentation manager environment, this means that

Chapter 13 The Presentation Manager and VIO 179

none of the process's windows are the keyboard focus. The windows
themselves may still be visible, or they may be obscured or iconic. In a
VIO environment, a process is in the background when the user has
selected another screen group. In this case, the application's screen dis
play is not visible.

A presentation manager application can easily continue to update its
window dispiays when it is in the background; the appiication can con
tinue to call the presentation manager to change its window contents in
any way it wishes. A presentation manager application can arrange to
be informed when it enters and leaves the background (actually,
receives and loses the keyboard focus), or it can simply carryon with
its work, oblivious to the issue. Background I/O can continue regardless
of whether I/O form is character or graphics based.

VIO applications can continue to do I/O in background mode as
well. The VIO package maintains a logical video buffer for each screen
group; when VIO calls are made to update the display of a screen group
that is in the background, VIO makes the requested changes to the logi
cal video buffer. When the screen group is restored to the foreground,
the updated contents of the logical video buffer are copied to the dis
play's physical video buffer.

13.3 Graphics Under VIO
VIO is a character-oriented package and provides character mode ap
plications with a variety of services. As we have just seen, when a
screen switch takes place, VIO automatically handles saving the old
screen image and restoring the new. VIO does provide a mechanism to
allow an application to sidestep VIO and directly manipulate the physi
cal video buffer, where it is then free to use any graphical capability of
the hardware. There are two major disadvantages to sidestepping VIO
for graphics rather than using the presentation manager services:

1. The application is device dependent because it must manipulate
the video display hardware directly.

2. VIO can no longer save or restore the state of the physical video
buffer during screen switch operations. The application must use
a special VIO interface to provide these functions itself.

180 PART II THE ARCHITECTURE

The following discussion applies only to applications that want to
sidestep the presentation manager and VIO interfaces and interact
directly with the display hardware.

Gaining access to the video hardware is easy; the VIO call
VioGetBuf provides a selector to the video buffer and also gives the ap
plication's ring 2 code segments, if any, permission to program the
video controller's registers. The complication arises from the screen
switching capabilities of OS/2. When the user switches the application
into a background screen group, the contents of the video memory
belong to someone else; the application's video memory is stored some
where in RAM. It is disastrous when an application doesn't pay atten
tion to this process and accidentally updates the video RAM or the
video controller while they are assigned to another screen group.

Two important issues are connected with screen switching: (1) How
does an application find out that it's in background mode? (2) Who
saves and restores its screen image and where? The VioScrLock call
handles screen access. Before every access to the display memory or the
display controller, an application must first issue the VioScrLock call.
While the call is in effect, OS/2 cannot perform any screen switches.
Naturally, the application must do its work and quickly release the
screen switch lockout. Failure to release the lock in a timely fashion has
the effect of hanging the system, not only for a user's explicit screen
switch commands, but also for other facilities that use the screen switch
mechanism, such as the hard error handler. Hard errors can't be pre
sented to the user while the screen lock is in effect. If OS/2 needs to
switch screens, and an aberrant application has the screen lock set,
OS/2 will cancel the lock and perform the screen switch after a period
(currently 30 seconds). This is still a disaster scenario, although a
mollified one, because the application that was summaJily "delocked"
will probably end up with a trashed screen image. The screen lock and
unlock calls execute relatively rapidly, so they can be called frequently
to protect only the actual write-to-screen operation, leaving the screen
unlocked during computation. Basically, an application should use
VioScrLock to protect a block of I/O that can be written, in its entirety,
without significant recomputation. Examples of such blocks are a
screen scroll, a screen erase, and a write to a cell in a spreadsheet
program.

Chapter 13 The Presentation Manager and VIO 181

VioScrLock must be used to protect code sequences that program
the display hardware as well as code sequences that write to video
memory. Some peripheral programming sequences are noninterrupt
ible. For example, a two-step programming sequence in which the first
I/O write selects a multiplexed register and the second write modifies
that register is uninterruptible because the first write placed the
peripheral device into a special state. Such sequences must be protected
within one lock/unlock pair.

Sometimes when an application calls VioScrLock, it receives a spe
cial error code that says, "The screen is unavailable." This means that
the screen has been switched into the background and that the applica
tion may not-and must not-manipulate the display hardware. Typi
cally, the program issues a blocking form of VioScrLock that suspends
the thread until the screen is again in the foreground and the video dis
play buffers contain that process's image.

An application that directly manipulates the video hardware must do
more than simply lay low when it is in the background. It must also save
and restore the entire video state-the contents of the display buffer
and the modes, palates, cursors, and so on of the display controller.
VIa does not provide this service to direct-screen manipulation pro
cesses for two reasons. First, the process is very likely using the display
in a graphics mode. Some display cards contain a vast amount of video
memory, and VIa would be forced to save it all just in case the applica
tion was using it all. Second, many popular display controllers such as
the EGA and compatibles contain many write-only control registers.
This means that VIa cannot read the controller state back from the card
in order to save it for a later restoration. The only entity that under
stands the state of the card, and therefore the only entity that can restore
that state, is the code that programmed it-the application itself.

But how does the system notify the process when it's time to save or
restore? Processes can call the system in many ways, but the system
can't call processes. OS/2 deals with this situation by inverting the
usual meaning of call and return. When a process first decides to
refresh its own screen, it creates an extra thread and uses that thread to
call the VioSavRedrawWait function. The thread doesn't return from
this call right away; instead, VIa holds the thread "captive" until it's
time for a screen switch. To notify the process that it must now save its

182 PART II THE ARCHITECTURE

screen image, VIO allows the captive thread to return from the
VioSavRedrawWait call. The process then saves the display state and
screen contents, typically using the returned thread. When the save
operation is complete, VioSavRedrawWait is called again. This noti
fies VIO that the save is complete and that the screen can now be
switched; it also resets the cycle so that the process can again be noti
fied when it's time to restore its saved screen image. In effect, this
mechanism makes the return from VioSavRedrawWait analogous to a
system-to-process call, and it makes the later call to VioSavRedraw
Wait analogous to a return from process to system.

The design of OS/2 generally avoids features in which the system
calls a process to help a system activity such as screen switching. This
is because a tenet of the OS/2 design religion is that an aberrant process
should not be able to crash the system. Clearly, we're vulnerable to that
in this case. VIO postpones the screen switch until the process saves its
screen image, but what if the process somehow hangs up and doesn't
complete the save? The screen is in an indeterminate state, and no
process can use the screen and keyboard. As far as the user is con
cerned, the system has crashed. True, other processes in the system are
alive and well, but if the user can't get to them, even to save his or her
work, their continued health is of little comfort.

The designers of OS/2 were stuck here, between a rock and a hard
place: Applications had to be able to save their screen image if they
were to have direct video access, but such a facility violated the "no
crashing" tenet of the design religion. Because the video access had to
be supported and the system had to be crash resistant, we found a two
part workaround.

The first part concerns the most common cause of a process hanging
up in its screen-save operation: hard errors. When a hard error occurs,
the hard error daemon uses the screen switch mechanism to take control
of the screen and the keyboard. The hard error daemon saves the ex
isting screen image and keeps the application that was in the fore
ground at the time of the hard error from fighting with the daemon over
control of the screen and the keyboard. However, if the hard error
daemon uses the screen-switching mechanism and if the screen-switch
ing mechanism allows the foreground process to save its own screen
image, that process might, while saving its screen image, try to use the
device that has the hard error and thus deadlock the system. The device

Chapter 13 The Presentation Manager and VIO 183

in error won't service more requests until the hard error is cleared, but
the hard error can't be cleared until the daemon takes control. The
daemon can't take control until the foreground process is through sav
ing, and the foreground process can't complete saving until the device
services its request. Note that this deadlock doesn't require an explicit
I/O operation on the part of the foreground process; simply allocating
memory or referencing a segment might cause swapping or loading ac
tivity on the device that is experiencing the hard error.

A two-part approach is used to solve this problem. First, _deadlocks
involving the hard error daemon are managed by having the hard error
screen switch do a partial screen save. When I said earlier that VIa
would not save the video memory of direct access screen groups, I was
lying a bit. When the system is doing a hard error screen switch, VIa
will save the first part (typically 4 KB) of the video memory-enough
to display a page of text. We don't have to worry about how much video
RAM the application was using because the video display will be
switched to character mode and the hard error daemon will overwrite
only a small part of video memory. Naturally, this means that the hard
error daemon must always restore the original screen group; it can't
switch to a third screen group because the first one's video memory
wasn't fully saved.

VIa and the hard error daemon keep enough free RAM around to
save this piece of the video memory so that a hard error screen switch
can always take place without the need for memory swapping. When
the hard error daemon is finished with the screen, the overwritten video
memory is restored from the buffer. As we discussed above, however,
VIa can't restore the state of the video controller itself; only the appli
cation can do that. The VioModeWait function is used to notify the ap
plication that it must restore the screen state.

In summary, any application that directly accesses the video hard
ware must provide captive threads to VioSavRedrawWait and to
VioModeWait. VioSavRedrawWait will return when the application
is to save or to restore the video memory. VioModeWait will return
when the application is to restore the state of the video controller from
the application's own record of the controller's state.

The second part of the "application hangs while saving screen and
hangs system" solution is unfortunately ad hoc: If the application does

184 PART II THE ARCHITECTURE

not complete its screen save operation within approximately 30 sec
onds, the system considers it hung and switches the screen anyway. The
hung process is suspended while it's in background so that it won't sud
denly "come alive" and manipulate the screen. When the process is
again in the foreground, the system unsuspends it and hopes that it will
straighten itself out. In such a case, the application's screen image may
be trashed. At best, the user can enter a "repaint screen" command to
the application and all will be well; at worst, the application is hung up,
but the system itself is alive and well. Building a system that can detect
and correct errors on the part of an application is impossible; the best
that we can hope to do is to keep an aberrant application from
damaging the rest of the system.

I hope that this long and involved discussion of rules, regulations,
doom, and disaster has not frightened you into contemplating programs
that communicate by Morse code. You need be concerned with these
issues only if you write applications that manipulate the display device
directly, circumventing either VIO or the presentation manager inter
faces. These concerns are not an issue when you are writing ordinary
text applications that use VIO or the presentation manager or graphics
applications that use the presentation manager. VIO and the presenta
tion manager handle screen saving and support background display
writing. Finally, I'll point out, as a curiosity, that even processes that
use handle operations only to write to STDOUT use VIO or the presen
tation manager. When STDOUT points to the screen device, the operat
ing system routes STDOUT writes to the VIO/presentation manager
packages. This is, of course, invisible to the application; it need not con
cern itself with foreground/background, EGA screen modes, hard error
screen restorations, and the like.

Interactive
Programs

14

A great many applications interact with the user via the screen and the
keyboard. Because the primary function of most desktop computers is
to run interactive applications, OS/2 contains a variety of services that
make interaction powerful and efficient.

As we've seen in earlier chapters, interactive programs can use the
piesentation mar.ager to manage their interface, or they can do it them-
selves, using VIO or direct video access for their I/O. The presentation
manager provides a great deal of function and automatically solves a
great many problems. For example, a presentation manager application
doesn't have to concern itself with the sharing of the single keyboard
among all processes in its screen group. The presentation manager
takes care of that by handling the keyboard and by simply sending key
board events to each process, as appropriate.

If you're writing an application that uses the presentation manager,
then you can skip this chapter. If you're writing an application that
does not use the presentation manager but that may be used in an in
teractive fashion, it's very important that you understand the issues dis
cussed in this chapter. They apply to all programs that use VIO or the
STDIN/STDOUT handles to do interactive I/O, even if such programs
are being run via the presentation manager.

186 PART II THE ARCHITECTURE

14.1 1/0 Architecture
Simply put, the system I/O architecture says that all programs read
their main input from the STDIN handle and write their main output to
the STDOUT handle. This applies to all non-presentation manager ap
plications, but especially to interactive applications. The reason is that
OS/2 and program-execution utilities such as CMD.EXE (shell pro
grams) cooperate to use the STDIN/STDOUT mechanism to control
access to the screen and keyboard. For example, if two processes read
from the keyboard at the same time, some keys go to one process, and
the rest go to the other in an unpredictable fashion. Likewise, it is a bad
idea for more than one process to write to the screen at the same time. 1

Clearly, you don't want too many processes doing keyboard/screen I/O
within a single screen group, but you also don't want too few. It would
be embarrassing if a user terminated one interactive application in a
screen group, such as a program run from CMD.EXE, and CMD.EXE
failed to resume use of the keyboard/screen to print a prompt.

So how will we handle this? We might be running a great many pro
cesses in a screen group. For example, you could use CMD.EXE to ex
ecute a spreadsheet program, which was told to execute a subshell
another copy of CMD.EXE. The user could then execute a program to
interpret a special batch script, which in turn executes an editor. And
this editor was told to run a copy of a C compiler to scan the source
being edited for errors. Oh, yes, and we forgot to mention that the top
level CMD.EXE was told to run a copy of the assembler in parallel with
all these other operations (similar to the UNIX "&" operation).

Many processes are running in this screen group; some of them are
interactive, and some are not, and at any time only one is using the key
board and the screen. Although it would be handy to declare that the
most recently executed process will use the keyboard and the screen,
you can't: The most recently executed program was the C compiler,
and it's not even interactive. OS/2 cannot decide which process should
be using the screen and keyboard because OS/2 lacks any knowledge of
the function of each process. OS/2 knows only their child-parent rela
tionships, and the situation can be far too complex for that information
to be sufficient.

1. Within the same screen group and/or window, of course. Applications that use different
virtual screens can each write to their own screen without regard for other virtual screens.

Chapter 14 Interactive Programs 187

Because OS/2 can't determine which process should be using the
screen and the keyboard, it doesn't try. The processes themselves make
the determination. The rule is simple: The process that is currently
using the screen and the keyboard can grant access to a child process,
or it can keep access for itself. If a process grants access to a child
process, then it must keep off the screen and the keyboard until that
child terminates. Once the child process is granted use of the screen
and the keyboard, the child process is free to do as it wishes, perhaps
granting access to its own children. Until that child process terminates,
the parent must avoid device conflict by staying quiet.

Let's look at how this works in real life. For example, CMD.EXE,
the first process in the screen group, starts up with STDIN open on the
keyboard and STDOUT open on the screen. (The system did this by
magic.) When this copy ofCMD.EXE is told to execute the spreadsheet
program, CMD.EXE doesn't know if the spreadsheet program is in
teractive or not, so it lets the child process - the spreadsheet
program-inherit its STDIN and STDOUT handles, which point to the
keyboard and to the screen. Because CMD.EXE granted access to
the screen and the keyboard to the child, CMD.EXE can't use STDIN
or STDOUT until that child process terminates. Typically, at this point
CMD.EXE would DosCWait on its child process.

Now the spreadsheet program comes alive. It writes to STDOUT,
which is the screen, and it reads from STDIN, which is the keyboard.
When the spreadsheet program is instructed to run CMD.EXE, it does
so, presuming, as did its parent, that CMD.EXE is interactive and
therefore letting CMD.EXE inherit its STDIN and STDOUT handles.
Now the spreadsheet must avoid any STDIN/STDOUT I/O until its
child-CMD.EXE-terminates. As long as these processes continue
to run interactive children, things are going to work out OK. When the
children start to die and execution starts popping back up the tree, ap
plications restart, using the screen and the keyboard in the proper order.

But what about the detached assembly that CMD.EXE started before
it ran the spreadsheet? In this case, the user has explicitly told
CMD.EXE that it wants the application run "detached" from the key
board. If the user specified a STDIN for the assembler-perhaps a
file-then CMD.EXE sets that up for the child's STDIN. If the user
didn't specify an alternate STDIN, CMD.EXE opens STDIN on the

188 PART II THE ARCHITECTURE

NULL device so that an application that reads it will receive EOF. In
this way, CMD.EXE (which knew that the application wasn't to use
the keyboard because the user gave explicit instructions) did not let the
child process inherit STDIN, so CMD.EXE continues to use it, printing
a new prompt and reading a new command. Figure 14-1 shows a typi
cal process tree. The shaded processes have inherited a STDIN, which
points to the keyboard, and a STDOUT, which points to the screen. All
such processes must lie on a single path if the rules are followed
because each process has the option of allowing a maximum of one
child to inherit its STDIN and STDOUT handles unchanged.

You are undoubtedly becoming a bit concerned at this point: "Does
this mean I'm forced to use the limited, serial STDIN/STDOUT inter
face for my high-resolution graphics output?" I'm glad you asked.
What we've been discussing is the architectural model that must be
followed because it's used systemwide to avoid screen and keyboard
conflicts. However, applications can and should use special services to
optimize their interactive I/O as long as they do so according to the

= Processes using the keyboard

Figure 14-1.
Processes using the keyboard.

Chapter 14 Interactive Programs 189

architectural model. Specifically, OS/2 provides the KBD, VIO, and
MOU dynlink packages. These high-performance programs interface
directly with the hardware, avoiding the STDIN/STDOUT limited in
terfaces. The key is "directly with the hardware": A process is welcome
to use hardware-specific interfaces to optimize performance, but only af
ter it has ensured that the architectural model grants it access to that
device.

In practice, this is straightforward. Any interactive program that
wants to use KBD first ensures (via DosQHandType) that its STDIN
handle is open on the keyboard. If STDIN is not open on the keyboard,
the keyboard belongs to another program, and the interactive program
must not burst in on the rightful owner by using KBD. All dynlink
device interfaces are trusting souls and won't check your bona fides
before they do their stuff, so the application must look before it leaps.
The same applies to STDOUT, to the keyboard device, and to the VIO
package. All applications must verify that STDIN and STDOUT point
to the keyboard and the screen before they use any device-direct inter
face, which includes VIO, KBD, MOU, and direct device access.

What's an interactive program to do if it finds that STDIN or
STDOUT doesn't point to the keyboard and screen devices? I don't
know, but the author of the application does. Some applications might
not be truly interactive and therefore would work fine. For example,
Microsoft Macro Assembler (MASM) can prompt the user for the
names of source, object, and listing files. Although MASM is
technically interacting with the user, MASM is not an interactive appli
cation because it doesn't depend on the ability to interact to do its work.
If STDIN points to a file, MASM is perfectly happy reading the file
names from that file. MASM doesn't need to see if STDIN points to the
keyboard because MASM doesn't need to use the KBD package. In
stead, MASM reads its names from STDIN and takes what it gets.

Other programs may not require an interactive interface, but when
they are interacting, they may want to use KBD or VIO to improve per
formance. Such applications should test STDIN and STDOUT to see if
they point to the appropriate devices. If they do, applications can cir
cumvent the STDIN/STDOUT limitations and use KBD and VIO. If
they don't, the applications are stuck with STDIN and STDOUT.
Finally, many interactive applications make no sense at all in a nonin
teractive environment. These applications need to check STDIN and

190 PART II THE ARCHITECTURE

STDOUT, and, if they don't point to the devices, the applications
should write an error message to STDERR and terminate. Admittedly,
the user is in error if he or she attempts to run an interactive applica
tion, such as a WYSIWYG editor, detached, but printing an error mes
sage is far better than trashing the display screen and fighting with
CMD.EXE over the keyboard. The screen group would then be totally
unusable, and the user might not even be able to terminate the editor if
he or she can't get the terminate command through the keyboard
contention.

It's technically possible, although highly unusual, for an application
to inherit access to the keyboard yet not have access to the screen. More
commonly, an application has access to the screen but not to the key
board. Although most users would find it confusing, power users can
detach programs such as compilers so that any output summary or error
messages they produce appear on the screen. Although the user may
end up with intermingled output, he or she may like the instant notifica
tion. Each application that wants to use VIO, KBD, or the environment
manager needs to check STDIN and STDOUT individually for access
to the appropriate device.

Earlier in this section, we talked about how applications work when
they create children that inherit the screen and the keyboard, and it pro
bably sounded complicated. In practice, it can be simple. For example,
the technique used to DosExecPgm a child that will inherit the key
board can be used when the parent itself doesn't have the keyboard and
thus can't bequeath it. Therefore, the parent doesn't need to check its
STDIN status during the DosExecPgm. To summarize, here are the
rules:

Executing Programs

• If the child process is to inherit the STDIN handle, the parent
process must not access that handle any further until the child
process terminates .

• If the child process is not to inherit the STDIN handle (so that
your program can continue to interact), then the child process
STDIN must be opened on a file or on the NULL device. Don't
rely on the child not to use the handle; the child might DosEx
ecPgm a grandchild that is not so well mannered.

Chapter 14 Interactive Programs 191

• A process can let only one child at a time inherit its STDIN. If a
process is going to run multiple child processes in parallel, only
one can inherit STDIN; the others must use alternative STDIN
sources.

• All these rules apply to STDINs open on pipes and files as well as
to KBD, so your application needn't check the source of STDIN.

AU Processes

• Verify that the STDIN handle points to the keyboard before using
KBD, SIGBRK, or SIGCTLC (see below). You must not uSe these
direct device facilities if STDIN is not open on the keyboard.

• Verify that the STDOUT handle points to the screen before using
VIO. You must not use direct device facilities if STDOUT is not
open on the screen.

• If the process executes any child that inherits its STDIN, it must
not terminate itself until that child process terminates. This is
because the parent will assume that the termination of the direct
child means that the STDIN handle is now available.

14.2 Ctrl-C and Ctrl-Break Handling
Just when you think that it's safe to go back into the operating system,
one more device and process tree issue needs to be discussed: the han
dling of Ctrl-C and Ctrl-Break. (Once again, this discussion applies
only to programs that don't explicitly use the presentation manager
facility. Those applications that do use the presentation manager have
all these issues handled for them automatically.) These two events are
tied to the keyboard hardware, so their routing has a great deal in com
mon with the above discussion. The fundamental problem is simple:
When the user presses Ctrl-C or Ctrl-Break, what's the operating sys
tem to do? Clearly, a process or processes or perhaps an entire subtree
of processes must be killed or signaled. But do we kill or signal? And
which one(s)?

OS/2 defines a convention that allows the processes themselves to
decide. Consider a type of application-a "command application"
that runs in command mode. In command mode, a command applica
tion reads a command, executes the command, and then typically

192 PART II THE ARCHITECTURE

returns to command mode. Furthermore, when the user presses Ctrl
Break, the command application doesn't want to terminate but to stop
what it's doing and return to command mode. This is the style of most
interactive applications but not that of most non interactive applications.
For example, if the user types MASM to CMD.EXE, the CMD.EXE
program runs MASM as a child process. CMD.EXE is a command ap
plication, but MASM is not. The distinction between "command appli
cation" and "noncommand application" is not made by OS/2 but is
merely descriptive terminology that is useful in this discussion.

The system convention is that Ctrl-C and Ctrl-Break mean "Stop
what you're doing." OS/2 generates signals in response to Ctrl-C and
Ctrl-Break; it never directly kills a process. OS/2 can easily decide
which process to signal when Ctrl-C or Ctrl-Break is pressed: It signals
the lowest command process in the process tree in that screen group. At
first glance, this may not seem easy. How can OS/2 distinguish com
mand processes, and how can it determine the "lowest"? The total
process tree in a screen group may be very complex; some processes in
it may have died, creating multiple now-independent "treelets."

The process tree may be complex, but the tree of processes using the
keyboard is simpler because a process can't let multiple children simul
taneously inherit its STDIN. A process can only inherit the keyboard,2
not open it explicitly; so a single path down the tree must intersect (or
contain) all command processes. This single path can't be fragmented
because of missing processes due to child death because a process that
has let a child inherit its STDIN must not terminate until the child does.
So, all OS/2 needs is to find any command process in the command
subtree and then look at its descendants for another command process
and so on. The bottommost process receives the signal. 3

Figure 14-2 illustrates a possible process tree. The shaded processes
have inherited handles to the keyboard and screen; those marked with
C are command processes.

This now begs the final question: How can OS/2 tell if an applica
tion is a command process or not? It can tell because all command

2. Actually, a process should only inherit the keyboard. The keyboard device can be opened
explicitly, but doing so when a process's inherited STDIN doesn't point to the keyboard
device would be a serious error.
3. Actually, OS/2 uses a more efficient algorithm than this; fm merely illustrating that find
ing the lowest command process is not difficult.

Chapter 14 Interactive Programs 193

= Processes using the keyboard

Figure 14·2.
Ctrl-C routing in a process tree.

processes/command applications do something that other processes
never do. By definition, a command process doesn't want to be sum
marily killed when the user presses Ctrl-C or Ctrl-Break, so all com
mand processes establish signal handlers for Ctrl-C and Ctrl-Break.
Because all command processes intercept Ctrl-C and Ctrl-Break, all we
need now is to establish the convention that only command processes
intercept Ctrl-C and Ctrl-Break. This hearkens back to our earlier
discussion of checking STDIN before directly using the keyboard
device. Telling the keyboard device that you want the Ctrl-C or Ctrl
Break signals routed to your process is a form of I/O with the keyboard
device, and it must only be done if your program has verified that
STDIN points to the keyboard device. Furthermore, intercepting Ctrl-C
or Ctrl-Break just so that your program can clean up during unexpected
termination is unnecessary and insufficient. The SIGTERM signal or,
better, the exitlist mechanism provides this capability and covers
causes of death other than the keyboard. So all processes that intercept

194 PART /I THE ARCHITECTURE

Ctrl-C and Ctrl-Break have access to the keyboard, and they want to do
something other than die when the user presses Ctrl-C or Ctrl-Break.
They fit the command process definition.

Now that we've exhaustively shown how OS/2 finds which process
to send a Ctrl-C signal, what should the process do when it gets the sig
nal? Obey the system convention and stop what it's doing as quickly as
is wise. If the application isn't working on a command, the application
typically flushes the keyboard type-ahead buffer and reprompts. If the
application is working on a command that is implemented in code
within the application, the application jumps from the signal handler to
its command loop or, more commonly, sets a flag to terminate the cur
rent command prematurely.4

Finally, if the application is running a child process, it typically
stops what it's doing by issuing a DosKiII on that child command sub
tree. This, then, is how Ctrl-C can kill a program such as MASM.
Ctrl-C is sent to MASM's closest ancestor that is a command process,5
which in turn issues a DosKilI on MASM's subtree. MASM does any
exitlist cleanup that it wishes (probably deleting scratch files) and then
terminates. When the command process that ran MASM, typically
CMD.EXE, sees that MASM has terminated, it prints AC on the screen,
followed by a new prompt.

4. Occasionally, terminating a command halfway through could leave the user's work
trashed. In such a case, finishing the command is prudent.
5. Often, CMD.EXE is MASM's direct ancestor, but other programs, such as a build utility,
could have come between CMD.EXE and MASM.

15

The Fi Ie System
The file system in OS/2 version 1.0 is little changed from that of
MS-DOS, partially in an effort to preserve compatibility with
MS-DOS programs and partially due to limitations imposed by the
project's schedule. When the schedule for an "all singing, all dancing"
OS/2 was shown to be too long, planned file system improvements
were moved to a future release. To explain the rationale for postponing
something so useful, I'll digress a little.

The microcomputer industry developed around the dual concepts of
mass market software and standards. Because software is mass mar
keted, you can buy some very sophisticated and useful programs for a
modest sum of money -at least modest in comparison to the develop
ment cost, which is often measured in millions of dollars. Mass market
ing encourages standards because users don't want to buy machines,
peripherals, and systems that don't run these programs. Likewise, the
acceptance of the standards encourages the development of mass mar
ket software because standards make it possible for a single binary pro
gram to execute correctly on a great many machines and thus provide a
market big enough to repay the development costs of a major
application.

This synergy, or positive feedback, between standards and mass
market software affected the process of developing operating systems.
At first glance, adding new features to an operating system seems
straightforward. The developers create new features in a new release,
and then applications are written to use those new features. However,
with mass market software, it doesn't work that way. Microsoft could
indeed release a new version of OS/2 with new features (and, in fact,

196 PART II THE ARCHITECTURE

we certainly will do so), but initially few new applications will use said
new features. This is because of the initial limited market penetration
of the new release. For example, let's assume that at a certain time after
the availability of a new release, 10 percent of OS/2 users have up
graded. An ISV (Independent Software Vendor) is planning its next
new product-one it hopes will be a bestseller. The ISV must decide
whether to use the new feature and automatically lock itself out of 90
percent of the potential market or to us~ the common subset of features
contained in the earlier OS/2 release and be able to run on all
machines, including the 10 percent running the OS/2 upgrade. In gen
eral, ISVs won't use a nonvital feature until the great majority of exist
ing systems support that feature.

The key to introducing new features in an operating system isn't that
they be available and useful; it's that the release which contains those
new features sees widespread use as quickly as possible. If this doesn't
happen, then the new feature pretty much dies stillborn. This is why
each MS-DOS release that contained major new functionality coin
cided with a release that was required to use new hardware. MS-DOS
version 2.0 was required for the IBM XT product line; MS-DOS ver
sion 3.0 was required for the IBM AT product line. And OS/2 is no ex
ception: It wasn't required for a new "box," but it was required to
bring out the protect mode machine lying fallow inside 80286-based
machines. If a new release of a system doesn't provide a new feature
that makes people want it or need it badly, then market penetration will
be slow. People will pay the cost and endure the hassle of upgrading
only if their applications require it, and those applications dare require
it only if most people have alre~dy upgraded.

Because of this, the initial release of OS/2 is "magical" in the eyes
of its developers. It provides a window of opportunity in which to in
troduce new features into the PC operating system standard, a window
that won't be open quite as wide again for a long time. And this post
poned major file system enhancements: The file system can be en
hanced in a later release and benefit existing applications without any
change on their part, whereas many other OS/2 features needed to be in
the first release or they might never be available.

Chapter 15 The File System 197

15.1 The OS/2 File System
Although OS/2 version 1.0 contains little in the way of file system
improvements, it does contain two that are significant. The first is asyn
chronous I/O. Asynchronous I/O consists ·of two functions, DosReadA
sync and DosWriteAsync. These functions are identical to DosRead
and DosWrite except that they return to the caller immediately, usually
before the I/O operation has completed. Each takes the handle of a
semaphore that is cleared when the I/O operation completes. The
threads of the calling process can use this semaphore to poll for opera
tion complete, or they can wait for the operation to complete. The
DosMuxSem Wait call is particularly useful in this regard because it
allows a process to wait for several semaphore events, which can be
asynchronous I/O events, IPC events, and timer events, intermingled as
the programmer wishes.

The second file system feature is extended partitioning; it supports
dividing large physical disks into multiple sections, several of which
may contain FAT file systems. In effect, it causes OS/2 to treat a large
hard disk as two or more smaller ones, each of which meets the file sys
tern's size limits. It's widely believed that MS-DOS is limited to disks
less than 32 ~.1B in size. This isn't strictly true. The limitation is that a
disk can have no more than 65,535 sectors; the standard sector size is
512 bytes, which gives the 32 MB value. Furthermore, each disk is
limited to 32,768 clusters. A sector is the unit of disk storage; disks can
read and write only integral sectors. A sector's size is established when
the disk is formatted. A cluster is the unit of disk space allocation for
files and directories. It may be as small as one sector, or it may be four
sectors, eight sectors, or some other size. Because the MS-DOS file sys
tem supports a maximum of 65 KB sectors but only 32 KB clusters, a
32 MB disk must be allocated in two-sector (or bigger) clusters. It's
possible to write a device driver that uses a sector size that is a multiple
of 512 bytes, which gets around the 65 KB sector restriction and allows
the use of a disk greater than 32 MB. This trick works for MS-DOS and
for OS/2, but it's not optimal because it doesn't do anything to increase
the maximum number of allocation clusters from the existing 32 KB

198 PART II THE ARCHITECTURE

value, l which means that because many disk files are small a lot of
space is wasted due to internal fragmentation.

The OS/2 version 1.0 extended partitioning feature provides an in
terim solution that is not quite as convenient as large sectors but that
reduces the wastage from internal fragmentation: It allows more than
one disk partition to contain a FAT file system. Multipartitioned disks
are possible under MS-DOS, but only one partition can be an MS-DOS
(that is, FAT) file system. This restriction has been relaxed in OS/2 so
that, for example, a 60 MB disk can be partitioned into two separate
logical disks (for example, C and D), each 30 MB.

15.2 Media Volume Management
The multitasking capability of OS/2 necessitated major file system en
hancements in the area of volume management. A disk volume is the
name given to the file system and files on a particular disk medium. A
disk drive that contains a fixed medium always contains the same vol
ume, but a disk drive from which the media (such as floppy disks) can
be removed will contain whatever disk-whatever volume-the user
has in it at the time. That volumes can change becomes a problem in a
multitasking environment. For example, suppose a user is using a word
processor to edit a file on a floppy disk in drive A. The editor has
opened the file and is keeping it open for the duration of the edit.
Without closing the file or terminating the editor, the user can switch to
a screen group in which a spreadsheet program is running. The user
might then need to insert a different disk into drive A -one that con
tains data needed by the spreadsheet. If the user then switches back to
the word processor without remembering to change the floppy disk,
disaster will strike. Pressing the Page Down key will cause the editor to
try to read another sector from its already open disk file. The operating
system knows-because of FAT information stored in RAM buffers
that the next sector in the text file is sector N, and it will issue a read to
sector N on the wrong medium-the spreadsheet floppy disk-and
return that to the word processor program as the next sector of the text

1. The FAT file system can deal with a maximum of 32 KB allocation units, or clusters. No
matter what the size of the disk, all files must consume disk space in increments of no smaller
than 1/32Kth ofthe total disk size. This means that a 60 MB disk, using 1024 byte sectors, allo
cates space in 2048-byte increments.

Chapter 15 The File System 199

file. And, at that, the user is getting off lightly; he or she might just as
easily have given the word processor a command that caused it to write
a sector to the disk, which would do double damage. A file on the
spreadsheet floppy would be destroyed by the "random" write, and the
text file would be corrupted as well because it's missing a sector write
that it should have received.

We can't solve this problem by admonishing the user to be careful;
many programs read from and write to disk without direct user inter
vention. For example, the word processor might save work in progress
to disk every two minutes. If this time interval elapses while the user is
still working with the spreadsheet program on the spreadsheet floppy
disk, our hypothetical "flawless" user is still S.O.L.2

OS/2 resolves these problems by recognizing that when an applica
tion does I/O to an open file the I/O is not really aimed at drive A; it's
aimed at a particular floppy disk volume-the one containing the open
file. Each disk volume, removable or not, has a volume name stored in
its root directory and a unique 32-bit volume identifier stored in its boot
sector. Figure 15-1 illustrates the two volume names-one for com
puter use and one for human use. Each file handle is associated with a
particular 32-bit volume ID. When an I/O request is made for a file
handle, OS/2 checks to see if the proper volume is in the drive by com
paring the 32-bit value of the request with that of the medium currently
spinning. If they match, the operation completes. If the mounted vol
ume is different from the requested volume, OS/2 uses the hard error
daemon mechanism to prompt the user to insert the correct volume in
the drive.

Sector
o

VOLUME LABELS

IJ I
32-bit volume 10 t~ ___ volume name in
in boot sector home directory

Figure 15·1.
Volume 10 and volume name location.

2. Severely out of luck.

Sector
N

200 PART II THE ARCHITECTURE

Three problems must be overcome to make this scheme practical.
First, checking the volume ID of the medium must be fast. You can't
afford to read the boot sector each time you do an I/O operation if
doing so halves the speed of disk I/O. Second, you need assurance that
volume IDs are unique. Third, you need a plan to deal with a volume
that doesn't have a volume ID.

Keeping down the cost of volume verification is easy if you know
when a volume is changed; obviously, the ID is read from the boot sec
tor only when a medium has been changed. But how can OS/2 tell that a
media change has occurred? It can't; that's a device driver issue.

For starters, if the device contains a nonremovable medium, recheck
ing its volume ID is never necessary. The device driver understands
this, and when it is asked the status of the medium, it responds,
"Unchanged." Some removable media drives have a flag bit that warns
the driver that the door has been opened. In this case, when asked, the
device driver tells OS/2 that the medium is "uncertain." The driver
doesn't know for sure that it was really changed, but it may have been;
so OS/2 rechecks the volume ID. Rechecking the volume ID is more
difficult when a removable media device has no such indicator.

In this case, the author of the device driver uses device-specific
knowledge to decide on a minimum possible time to effect a media
change. If the device is ready, yet less than the minimum possible time
has elapsed since the last operation, the driver knows that the same
medium must be in the drive. If more than the minimum possible time
has elapsed, the driver returns ' 'medium uncertain, " and OS/2
rechecks the volume label. This time interval is typically 2 seconds for
floppy disk drives, so effectively an extra disk read is done after every
idle period; for any given episode of disk I/O, however, no extra reads
are needed.

Ensuring that a volume ID is unique is another problem. Simply lec
turing the user on the wisdom of unique IDs is inadequate; the user will
still label three disks "temp" or number them all as "10." And even
the hypothetical perfect user might borrow from a neighbor a disk
whose name is the same as one the user already owns. OS/2 deals with
this problem by using a 32-bit randomized value for disk volume IDs.
When a disk is formatted, the user enters a supposedly unique name.
This name is checksummed, and the result, combined with the number
of seconds between the present and 1980, is used to seed a random

Chapter 15 The File System 201

number generator. This generator returns a 32-bit volume ID. Although
accidentally duplicating a volume ID is obviously possible, the four
billion possible codes make it quite unlikely.

The name the user enters is used only to prompt the user to insert the
volume when necessary, so it need not be truly unique for the volume
management system to work. If the user names several disks WORK,
OS/2 still sees them as independent volumes because their volume IDs
are different. If the user inserts the wrong WORK disk in response to a
prompt, OS/2 recognizes it as the wrong disk and reissues the "Insert
disk WORK" prompt. After trying each WORK volume in turn, the
user will probably decide to relabel the disks!

The thorniest problem arises from unlabeled disks-disks formatted
with MS-DOS. Forcing the user to label these disks is unacceptable, as
is having OS/2 automatically label them with volume IDs: The disk
may be read-only, perhaps permanently so. Even if the disk is not read
only, the problem of low density and high density raises its ugly head.
Low-density disks can be read in a high-density drive, but writes made
to a low-density disk from a high-density drive can only be read on
high-density drives. If a low-density disk is placed in a high-density
drive and then labeled by OS/2, its boot sector is no longer readable
when the disk is placed in a low-density drive.

For volumes without a proper volume ID, OS/2 attempts to create a
unique substitute volume ID by checksumming parts of the volume's
root directory and its FAT table. OS/2 uses the existing volume name if
one exists; if there is no volume name, OS/2 attempts to describe the
disk. None of these techniques is foolproof, and they require extra disk
operations every time the medium is identified. Therefore, software
distributors and users should make every effort to label disks that OS/2
systems are to use. OS/2 labels are backward compatible with MS-DOS
version 3.x labels.

The OS/2 DISKCOPY command makes a byte-by-byte verbatim
copy of a floppy disk, except that the duplicate disk has a different vol
ume ID value in the boot sector (the volume label name is not changed).
OS/2 users can't tell this, however, because the DISKCOMP utility
lies, and if two disks are identical in every byte except for the volume
ID, it reports that the disks are identical. However, if the user uses
DISKCOPY to duplicate the disk under OS/2 and then compares the
two with DISKCOMP under MS-DOS 3.x, a difference is reported.

202 PART II THE ARCHITECTURE

Our discussion so far has centered on file reads and writes to an open
handle. Reads and writes are volume-oriented operations because
they're aimed at the volume on which the file resides. DosOpens, on
the other hand, are drive oriented because they search the default or
specified drive for the file in question (or create it) regardless of the
volume in the drive. All handle operations are volume oriented, and all
name-based calls are drive oriented. Currently, you cannot specify that
a given file is to be opened on or created on a specific volume. To en
sure that a scratch or output file is created on a certain volume, arrange
to have a file open on that volume and issue a write to that file immedi
ately before doing the file open. The write operation followed by a
DosBufReset will ensure that the particular medium is in the drive at
that time.

15.3 1/0 Efficiency
OS/2 provides full blocking and deblocking services for all disk I/O re
quests. A program can read or write any number of bytes, and OS/2
will read the proper sectors into internal buffers so that only the speci
fied bytes are affected. Naturally, every DosRead or DosWrite call
takes time to execute, so if your program makes few I/O calls, each for
large amounts of data, it will execute faster.

I/O performance can be further improved by making sector aligned
calls, that is, by requesting a transfer of an integral multiple of 512
bytes to or from a file seek position that is itself a multiple of 512. OS/2
reads and writes entire disk sectors directly from and to the device
hardware without an intermediate copy step through system buffers.
Because the file system keeps logically adjacent sectors physically ad
jacent on the disk, disk seek times and rotational latency are such that
one can read or write four sectors of data (2048 bytes) in essentially the
same time needed to read or write one sector (512 bytes).

Even if the length or the file position of the request isn't a multiple of
512, OS/2 performs the initial fraction of the request via its buffers,
directly transfers any whole sectors out of the ~iddle of the request,
and uses the buffers for the fractional remainder. Even if your requests
aren't sector aligned, making them as large as feasible is beneficial.

Chapter 15 The File System 203

To summarize, I/O is most efficient when requests are large and sec
tor aligned. Even misaligned requests can be almost optimally serviced
if they are large. Programs that cannot naturally make aligned requests
and that are not I/O intensive should take advantage of the blocking and
deblocking services that OS/2 provides. Likewise, programs that need
to make large, unaligned requests should use OS/2' s blocking manage-
ment. Programs that need to make frequent, small, nonaligned requests
will perform best if they read blocks of sectors into internal buffers and
deblock the data themselves, avoiding the overhead of frequent
DosRead or DosWrite calls.

16

Device Mon itors,
Data Integrity,
and Timer
Services
In discussing the design goals of OS/2, I mentioned continuing to sup
port the kinds of functionality found in MS-DOS, even when that func
tionality was obtained by going around the operating system. A good
example of such functionality is device data manipulation, a technique
that usually involves hooking interrupt vectors and that is used by
many application programs. For example, pop-up programs such as
SideKick have become very popular. These programs get into memory
via the terminate and stay resident mechanism and then edit the key
board interrupt vector to point to their code. These programs examine
each keystroke to see if it is their special activate key. If not, they trans
fer control to the original interrupt handler. If the keystroke is their spe
cial activate key, they retain control of the CPU and display, or "pop
up," a message or a menu on the screen. Other programs hook the
keyboard vector to provide spell checking or keyboard macro expan
sion. Some programs also hook the BIOS entry vector that commands
the printer, either to substitute alternate printer driver code or to manip
ulate the data sent to the printer. Programs that turn a spreadsheet's out
put sideways are an example of this.

206 PART II THE ARCHITECTURE

In general, these programs edit, or hook, the interrupt vectors that
receive device interrupts and communicate with device driver routines
in the ROM BIOS. The functions provided by such programs and their
evident popularity among users demonstrate a need for programs to be
able to monitor and/or modify device data streams. The OS/2 mecha
nism that does this is called a device monitor.

16.1 Device Monitors
The design of device monitors had to meet the general requirements
and religion of OS/2. Specifically, the MS-DOS technique of letting
applications receive interrupts by editing the interrupt vectors could
not be allowed because doing so would destroy the system's ability to
provide a stable environment. Furthermore, unlike MS-DOS, OS/2
doesn't use the ROM BIOS as a form of device driver, so hooking the
BIOS communication vectors would not provide access to the device
data stream. In addition, allowing an application to arbitrarily interfere
with a device driver's operation is contrary to OS/2 design principles;
the device driver is the architectural embodiment of knowledge about
the device, and it must be involved in and "aware" of any external ma
nipulation of the data stream. The result is an OS/2 device monitor
mechanism that allows processes, running in their normal ring 3 state,
to monitor and edit device data streams with the prior permission and
knowledge of the appropriate device driver.

Specifically, a process registers itself as a device monitor by calling
the appropriate device driver via a DosMonReq call. I The process also
provides two data buffers, one for incoming monitor data and another
for outgoing monitor data. Processes can easily call OS/2, but OS/2 has
no way to call processes.2 OS/2 gets around this by inverting the nor
mal sense of a call and return sequence. When OS/2 needs to "call" a
process, it requires that process to call OS/2 beforehand with one of its
threads. OS/2 holds this thread captive until the callback event takes
place. OS/2 then accomplishes a call to the process by releasing the
thread so that it returns from the holding system call and resumes ex
ecution within the process. When the process is ready to "return" to
OS/2, it recalls the holding entry point (see Figure 16-1).

1. Which is a dynlink package that eventually calls the device driver via a DosDevIOCtl call.
2. Signals are a partial exception to this, but signals have limitations, as discussed earlier.

Chapter 16 Device Monitors, Data Integrity, and Timer Services 207

Process calls OS/2 OS/2 "calls" Process

Process call Process call FCN call

lil n
I I I I I

OS/2 OS/2

FCN

Return Return

Figure 16-1.
"Calling" a process from OS/2.

OS/2 uses this technique for monitors as well. A monitoring process
is required to call the OS/2 entry point directly after registering itself
as a device monitor. OS/2 notifies the monitor process of the presence
of data in the incoming buffer by allowing this thread to return to the
process. Figure 16-2 on the following page illustrates a device with two
monitoring processes, X and Y.

But we need to discuss a few additional details. First, because OS/2
strives to make processes see a consistent environment regardless of the
presence of other processes, each device can have as many monitors as
the device driver allows. OS/2 connects multiple device monitors into a
chain so that the device data stream is passed through the first monitor
in the chain, then through the second monitor, and so on. When a
process registers itself as a monitor, it specifies whether it wants to be
first in the chain or last in the chain; some applications are sensitive to
this. The first monitor to register itself as first is truly first; the next
monitor to ask for first actually becomes second, and so forth. The
same algorithm applies to monitors that want to be last: The first to so
request becomes the last, the second to request last becomes next to last,
and so forth.

208 PART II THE ARCHITECTURE

Monitor Monitor
Process X Process Y

DosMonRead DosMonWrite Dos,nRead DosMonWrite
t "- I
I

~ /
1 ". / i

Buffer Buffer Buffer
1 2 3

T OS/2

Data in Data out \

/ Device driver ~

Figure 16-2.
Device monitors.

The actual format of the monitor data stream is device specific; the
device driver decrees the format. Some device drivers have special
rules and requirements. For example, the keyboard device driver allows
monitoring processes to insert the "screen switch" key sequence into
the data stream, whereupon it is recognized as if the user had typed it at
the physical keyboard. But the device driver will not pass such se
quences that really were typed through the monitor chain; they are
directly obeyed instead.

This approach prevents an amok keyboard monitor from effectively
crashing the system by intercepting and consuming all attempts by the
user to switch screen groups. The screen device driver does not allow
device monitors, not because the performance impact would be too big
(as it, in fact, would be) but because the VIO and presentation manager
dynlink packages totally circumvent the screen device driver so that it
never sees any screen data being written.

The DosMonRead call holds the device's thread until incoming data
is available. The DosMon Write call returns the CPU to the process as
soon as it is able. The same thread that calls DosMonRead need not be
the one to call DosMonWrite (see below).

Chapter 16 Device Monitors, Data Integrity, and Timer Services 209

Because monitors are an important component of OS/2, an applica
tion must be very careful to use them properly; therefore, some caveats
are in order. First, monitors are inserted into the device data chain, with
obvious effects on the data throughput rate of the device. Each time the
user presses a key, for example, a packet must pass through every moni
tor in the keyboard chain before the application can read the key and
obey or echo it. Clearly, any sluggishness on the part of a monitor or
the presence of too many monitors in a chain will adversely affect sys
tem response. The thread involved in reading, processing, and writing
monitor data should be set at a high priority. We recommend the lowest
of the force run priority categories. Furthermore, the monitor compo
nent of a monitoring application must contain no critical sections or
other events that could slow or suspend its operation. In addition, if a
monitor data stream will be extensively processed, a normal-priority
thread must be used to handle that processing so that the high-priority
thread can continue to transfer monitor data in and out without impedi
ment. For example, an auxiliary thread and buffer must be used if a
keyboard monitor is to write all keystrokes to a disk buffer.

Finally, if a monitor process terminates abnormally although OS/2
properly unlinks it from -the monitor chain, the data in the process's
monitor buffers is lost. Clearly, losing an unspecified amount of data
without warning from the keyboard data stream or perhaps from print
er output will upset the user no little amount. Monitoring processes
must be written carefully so that they minimize this risk.

The device monitor feature threatens OS/2' s fundamental architec
tural principles more than any other. Thus, its presence in the system
testifies to its importance. Specifically, device monitors violate the
design principle of minimizing interference between processes, a.k.a.
encapsulation. Clearly, a process that is monitoring a device's data
stream can affect the output of or input to a great many processes other
than itself. This is sometimes called a feature, not a bug. For example,
the printer spooler uses monitors to intercept output aimed at the print
er' storing it on disk, and to feed data from those disk files to the actual
printer device. Clearly, spooling printer output interferes with another
process, but the interference is valuable. Designers of monitoring appli
cations must ensure that their applications damage neither the system's
performance nor its stability.

210 PART II THE ARCHITECTURE

16.2 Data Integrity
I've discussed data integrity in a multitasking environment several
times. This section does not review that material in detail but brings
together all the elements and introduces a few related system facilities.

The first problem in a multitasking system is that multiple processes,
or mUltiple threads within a process, may try to simultaneously manip
ulate the same resource-a file, a device, a data structure in memory,
or even a single byte of memory. When the manipulation of a resource
must be serialized to work correctly, that manipulation is called a criti
cal section. This term refers to the act of manipulating the resource, but
not particularly to the code that does so. Clearly, if any of four sub
routines can manipulate a particular resource, entering any of the four
is entering the critical section.

The problem is more pervasive than a programmer unfamiliar with
the issue might assume. For example, even the simple act of testing a
word to see if it holds the value 4 and incrementing it if it doesn't is a
critical section. If only one thread in one process can access this word,
then the critical section is serialized. But if more than one thread can
access the word, then more than one thread could be in the critical sec
tion at the same time, with disastrous results. Specifically, consider the
assembly language sequence shown in Listing 16-1. It looks simple
enough: Test to see if COUNT holds 4; if it doesn't, increment it; if it
does, jump to the label COMPLETE. Listing 16-2 shows what might
go wrong in a multithreaded environment: Thread A checks the value
to see if it's 4, but it's 3. Right after the compare instruction, a context
switch takes place, and thread B is executed. Thread B also performs
the compare, sees the value as 3, and increments it. Later, thread A
resumes execution, after the compare instruction, at a. location where it
believes the COUNT value to be 3; so it also increments the value of
COUNT. The value is now 5 and will continue to be incremented way
past the value of 4 that was supposed to be its upper limit. The label
COMPLETE may never be reached.

I apologize for again lecturing on this topic, but such problems are
very nonobvious, rarely turn up in testing, are nearly impossible to find
in the field, and the very possibility of their existence is new with OS/2.
Thus, "too much is not enough," caveat-wise. Now that we've re
viewed the problems, let's look at the solutions.

COUNT

CMP
JE
INC

DW

Chapter 16 Device Monitors, Data Integrity, and Timer Services 211

o

COUNT, 4
COMPLETE
COUNT

Event counter

is this the 4th?
yes, we're done
count event

Listing 16-1.

Thread A Thread B

CMP COUNT, 4 [count is now 3J
-------------------context switch--->

CMP COUNT,4 [count is 3J
JE COMPLETE
INC COUNT [count is 4J

<-----------context switch--------

JE COMPLETE [jmp not takenJ
INC COUNT [count is now 5J

Listing 16-2.

A programmer inexperienced with a multitasking environment
might protest that this scenario is unlikely, and indeed it is. Maybe the
chances are only 1 in 1 million that it would happen. But because a mi
croprocessor executes 1 million instructions a second, it might not be
all that long before the l-in-l-million unlucky chance comes true. Fur
thennore, an incorrect program nonnally has multiple unprotected crit
ical sections, many of which are larger than the 2-instruction window
in our simple example.

The program must identify and protect all critical sections; a pro
gram that fails to do so will randomly fail. You can't take solace in
there being only one CPU and assuming that OS/2 probably won't con
text switch in the critical section. OS/2 can context switch at any time,
and because context switching can be triggered by unpredictable exter
nal events, such as serial port I/O and rotational latency on a disk, no
amount of testing can prove that an unprotected critical section is safe.
In reality, a test environment is often relatively simple; context switch
ing tends to occur at consistent intervals, which means that such

212 PART II THE ARCHITECTURE

problems tend not to turn up during program test. Instead, they turn up
in the real world, and give your program a reputation for instability.

Naturally, testing has its place, but the only sure way to deal with
critical sections is to examine your code carefully while assuming that
all threads in the system are executing simultaneously. 3 Furthermore,
when examining a code sequence, always assume that the CPU will
reschedule in the worst way. If there is any possible window, reality
will find it.

16.2.1 Semaphores
The traditional solution for protecting critical sections is the sema
phore. The two OS/2 semaphores-RAM and system-each have ad
vantages, and the operation of each is guaranteed to be completely
immune to critical section problems. In the jargon, their operation is
guaranteed atomic. Whenever a thread is going to manipulate a critical
resource, it first claims the semaphore that protects the resource. Only
after it controls the semaphore does it look at the resource because the
resource's values may have changed between the time the semaphore
was requested and the time it was granted. After the thread completes
its manipulation of the resource, it releases the semaphore.

The semaphore mechanism protects well against all cooperating4
threads, whether they belong to the same process or to different pro
cesses. Another OS/2 mechanism, called DosEnterCritSec, can be
used to protect a critical section that is accessed only by threads belong
ing to a single process. When a thread issues the DosEnterCritSec call,
OS/2 suspends execution of all other threads in that process until a sub
sequent DosEnterCritSec call is issued. Naturally, only threads ex
ecuting in application mode are suspended; threads executing inside
the OS/2 kernel are not suspended until they attempt to return to appli
cation mode.5 The use of DosEnterCritSec is dangerous because the
process's other threads may be suspended while they are holding a crit
ical section. If the thread that issued the DosEnterCritSec then also
tries to enter that critical section, the process will deadlock. If a dynlink

3. This is more than a Gedankenexperiment. Multiple processor machines will be built, and
when they are, OS/2 will execute multiple threads, even within one process, truly
simultaneously.
4. Obviously, if some thread refuses to claim the semaphore, nothing can be done.
5. I leave as an exercise to the reader to explain why the DosEnterCritSec call is not safe un
less all other threads in the process make use of it for that critical section as well.

COUNT

CMP
JE

INC

DW

Chapter 16 Device Monitors, Data Integrity, and Timer Services 211

o

COUNT, 4

COMPLETE

COUNT

Event counter

is this the 4th?

yes, we're done

count event

Listing 16-1.

Thread A Thread B

CMP COUNT, 4 [count is now 3]

-------------------context switch--->

CMP COUNT,4 [count is 3]

JE COMPLETE

INC COUNT [count is 4]

<-----------context switch--------

JE COMPLETE [jmp not taken]

INC COUNT [count is now 5]

Listing 16-2.

A programmer inexperienced with a multitasking environment
might protest that this scenario is unlikely, and indeed it is. Maybe the
chances are only 1 in 1 million that it would happen. But because a mi
croprocessor executes 1 million instructions a second, it might not be
all that long before the l-in-l-million unlucky chance comes true. Fur
thennore, an incorrect program nonnally has multiple unprotected crit
ical sections, many of which are larger than the 2-instruction window
in our simple example.

The program must identify and protect all critical sections; a pro
gram that fails to do so will randomly fail. You can't take solace in
there being only one CPU and assuming that OS/2 probably won't con
text switch in the critical section. OS/2 can context switch at any time,
and because context switching can be triggered by unpredictable exter
nal events, such as serial port I/O and rotational latency on a disk, no
amount of testing can prove that an unprotected critical section is safe.
In reality, a test environment is often relatively simple; context switch
ing tends to occur at consistent intervals, which means that such

212 PART II THE ARCHITECTURE

problems tend not to turn up during program test. Instead, they turn up
in the real world, and give your program a reputation for instability.

Naturally, testing has its place, but the only sure way to deal with
critical sections is to examine your code carefully while assuming that
all threads in the system are executing simultaneously.3 Furthermore,
when examining a code sequence, always assume that the CPU will
reschedule in the worst way. If there is any possible window, reality
will find it.

16.2.1 Semaphores
The traditional solution for protecting critical sections is the sema
phore. The two OS/2 semaphores-RAM and system-each have ad
vantages, and the operation of each is guaranteed to be completely
immune to critical section problems. In the jargon, their operation is
guaranteed atomic. Whenever a thread is going to manipulate a critical
resource, it first claims the semaphore that protects the resource. Only
after it controls the semaphore does it look at the resource because the
resource's values may have changed between the time the semaphore
was requested and the time it was granted. After the thread completes
its manipulation of the resource, it releases the semaphore.

The semaphore mechanism protects well against all cooperating4
threads, whether they belong to the same process or to different pro
cesses. Another OS/2 mechanism, called DosEnterCritSec, can be
used to protect a critical section that is accessed only by threads belong
ing to a single process. When a thread issues the DosEnterCritSec call,
OS/2 suspends execution of all other threads in that process until a sub
sequent DosEnterCritSec call is issued. Naturally, only threads ex
ecuting in application mode are suspended; threads executing inside
the OS/2 kernel are not suspended until they attempt to return to appli
cation mode.5 The use of DosEnterCritSec is dangerous because the
process's other threads may be suspended while they are holding a crit
ical section. If the thread that issued the DosEnterCritSec then also
tries to enter that critical section, the process will deadlock. If a dynlink

3. This is more than a Gedankenexperiment. Multiple processor machines will be built, and
when they are, OS/2 will execute multiple threads, even within one process, truly
simultaneously.
4. Obviously, if some thread refuses to claim the semaphore, nothing can be done.
5. I leave as an exercise to the reader to explain why the DosEnterCritSec call is not safe un
less all other threads in the process make use of it for that critical section as well.

Chapter 16 Device Monitors, Data Integrity, and Timer Services 213

package is involved, it may have created extra threads unbeknownst to
the client process so that the client may not even be aware that such a
critical section exists and might be in use. For this reason, Dos En
terCritSec is safe only when used to protect short sections of code that
can't block or deadlock and that don't call any dynlink modules.

Still another OS/2 critical section facility is file sharing and record
locking, which can be used to protect critical sections when they con
sist of files or parts of files. For example, a database program certainly
considers its master database file a critical section, and it doesn't want
anyone messing with it while the database application has it open. It can
open the file with the file-sharing mode set to "allow no (other) read
ers, allow no writers." As long as the database application keeps the
file open, OS/2 prevents any other process from opening (or deleting!)
that file.

The record-locking mechanism can be used to provide a smaller
granularity of protection. A process can lock a range of bytes within a
file, and while that lock is in effect, OS/2 prevents any other process
from reading or writing those bytes. These two specialized forms of
critical section protection are unique in that they protect a process
against all other processes, even "uncooperating" ones that don't pro
tect their own access to the critical section. Unfortunately, the file-shar
ing and record-locking mechanisms don't contain any provision for
blocking until the conflict is released. Applications that want to wait
for the conflict to clear must use a polling loop. Use DosSleep to block
for at least a half second between each poll.

Unfortunately, although semaphores protect critical sections well,
sometimes they bring problems of their own. Specifically, what hap
pens if an asynchronous event, such as program termination or a signal,
pulls the CPU away from inside a critical section and the CPU never
returns to release the semaphore? The answers range from "moot" to
"disaster," depending on the circumstances. The possibilities are so
manifold that I'll group some of them.

What can you do if the CPU is pulled away inside a critical section?

• Ignore it. This is fine if the critical section is wholly accessed by a
single process and that process doesn't use signals to modify the
normal path of execution and if neither the process nor its dynlink
routines attempt to enter the critical section during DosExitList
processing.

214 PART II THE ARCHITECTURE

• Clear the semaphore. This is an option if you know that the
resource protected by the semaphore has no state, such as a sema
phore that protects the right to be writing to the screen. The trick
is to ensure that the interrupted thread set the semaphore and that
you don't accidentally clear the semaphore when you don't set it.
For example, if the semaphore is wholly used within a single
process but that process's DosExitList handlers may use it, they
can force the semaphore clear when they are entered.

• Detect the situation and repair the critical section. This detection
can be made for RAM semaphores only during process termina
tion and only if the semaphore is solely used by that process. In
such a case, you know that a thread in the process set the sema
phore, and you know that the thread is no longer executing the
critical section because all threads are terminated. You can test
the semaphore by using a nonblocking DosSemSet; if it's set,
"recover" the resource.

System semaphores are generally better suited for this. When
the owning thread of a system semaphore dies, the semaphore is
given a special mark. The next attempt to set the semaphore
returns with a code that tells the new owner that the previous
owner died within the critical section. The new owner has the op
tion of cleaning up the resource.

Another possibility is to try to prevent the CPU from being yanked
out of a critical section. Signals can be momentarily delayed with the
DosHoldSignal mechanism. Process termination that results from an
external kill can be postponed by setting up a signal handler for the
KILL signal and then using DosHoldSignal. This last technique
doesn't protect you against termination due to GP fault and the like
however.

16.2.2 DosBufReset
One remaining data integrity issue-disk data synchronization-is not
related to critical sections. Often, when a DosWrite call is made, OS/2
holds the data in a buffer rather than writing it immediately to disk.
Naturally, any subsequent calls made to read this data are satisfied cor
rectly, so an application cannot see that the data has not yet been writ
ten unless the reading application uses direct physical access to the

Chapter 16 Device Monitors, Data Integrity, and Timer Services 215

volume (that is, raw media reads). This case explains why CHKDSK
may erroneously report errors that run on a volume that has open files.

OS/2 eventually writes the data to the disk, so this buffering is of
concern only when the system crashes with unwritten buffered data.
Naturally, such crashes are expected to be rare, but some applications
may find the possibility so threatening that they want to take protective
steps. The two OS/2 functions for t..lJ.is purpose are flushing (hId write
throughs. The flush operation-DosBufReset-writes all dirty
buffers-those with changed but unwritten data in them-to the disk.
When the call returns, the data is on the disk. Use this call sparingly;
although its specification promises only that it will flush buffers associ
ated with the specified file handle(s), for most file systems it writes all
dirty buffers in the system to disk. Moreover, if file handles are open to
a server machine on the network, most or all of that server's buffers get
flushed, even those that were used by other client machines on the net
work. Because of these costs, applications should use this operation
judiciously.

Note that it's not true that a flush operation simply causes a write to
be done sooner rather than later. A flush operation may also cause extra
disk writes. For example, consider an application that is writing data 10
bytes at a time. In this case, OS/2 buffers the data until it has a full sec
tor's worth. A series of buffer flush operations arriving at this time
would cause the assembly buffer to be written to the disk many extra
and unnecessary times.

16.2.3 Writethroughs
Buffer flushes are expensive, and unless they are used frequently, they
don't guarantee a particular write ordering. Some applications, such as
database managers, may want to guarantee that data be written to the
disk in exactly the same order in which it was given to OS/2 via
DosWrite. For example, an application may want to guarantee that the
data is in place in a database before the allocation chain is written and
that the chain be written before the database directory is updated. Such
an ordering may make it easy for the package to recover the database in
case of a crash.

The OS/2 mechanism for doing this is called writethrough-a status
bit that can be set for individual file handles. If a writethrough is in
effect for a handle to which the write is issued, OS/2 guarantees that the

216 PART /I THE ARCHITECTURE

data will be written to the disk before the DosWrite operation returns.
Obviously, applications using writethrough should write their data in
large chunks; writing many small chunks of data to a file marked for
writethrough is very inefficient.

Three caveats are associated with writethroughs:

• If writethrough is set on a file after it is open, all subsequent writes
are written through, but data from previous writes may still be in
dirty buffers.

• If a writethrough file is being shared by multiple processes or is
open on multiple handles, all instances of that file should be
marked writethrough. Data written to a handle not marked write
through may go into the buffers.

• The operation of data writethroughs has some non intuitive
surprises when used with the current FAT file system. Specifi
cally, although this feature works as advertised to place the file's
data sectors on the disk, it does not update the directory entry that
specifies the size of the file. Thus, if you extend a file by 10 sec
tors and the system crashes before you close the file, the data in
those 10 sectors is lost. If you had writethrough set, then those 10
sectors of data were indeed written to the disk; but because the
directory entry wasn't updated, CHKDSK will return those sec
tors to the free list.

The writethrough operation protects the file's data but not the
directory or allocation information. This is not a concern as long
as you write over a portion of the file that has been already ex
tended, but any writes that extend the file are not protected. The
good news is that the data will be on the disk, as guaranteed, but
the bad news is that the directory entry won't be updated; if the
system crashes, file extensions cannot be recovered. The recom
mended solution is to use DosNewSize to extend the file as
needed, followed by DosBufReset to update the directory infor
mation on the disk, and then to writethrough the data as needed.
Overextending the file size is better than doing too many
NewSize/BufReset combinations; if you overextend, you can al
ways shrink the file before closing it with a final DosNewSize.

Chapter 16 Device Monitors, Data Integrity, and Timer Services 217

16.3 Timer Services
Frequently, applications want to keep track of the passage of real time.
A game program may want events to occur asynchronously with the
user's input; a telecommunications program may want to track how
long a response takes and perhaps declare a link timed-out after some
inteival. Othei programs may need to pace the display of a demonstra
tion or assume a default action if the user doesn't respond in a reason
able amount of time. OS/2 provides several facilities to track the
passage of real time; applications should use these facilities and shun
polling and timing loops because the timing of such loops depends on
the system's workload and the CPU's speed and because they totally
lock out from execution any thread of a lower priority.

Time intervals in OS/2 are discussed in terms of milliseconds to iso
late the concept of a time interval from the physical mechanism
(periodic clock interrupts) that measures time intervals. Although you
can specify a time interval down to the millisecond, the system does
not guarantee any such accuracy.

On most hardware, OS/2 version 1.0 uses a periodic system clock in
terrupt of 32 Hz (32 times a second). This means that OS/2 measures
time intervals with a quantum size of 31.25 miHiseconds. As a result,
any timeout value is subject to quantization error of this order. For ex
ample, if a process asks to sleep for 25 milliseconds, OS/2 knows that
the request was made at some time after the most recent clock tick, but
it cannot tell how long after, other than that less than 31.25 millisec
onds had elapsed between the previous clock tick and the sleep request.
After the sleep request is made, another clock tick occurs. Once again,
OS/2 can't tell how much time has elapsed since the sleep request and
the new clock tick, other than that it was less than 31.25 milliseconds.
Lacking this knowledge, OS/2 uses a simple algorithm: At each clock
tick, OS/2 decrements each timeout value in the system by the clock
tick interval (generally 31.25 milliseconds). Thus, our 25-millisecond
sleep request may come back in 1 millisecond or less or in 31.25 milli
seconds. A request to block for 33 milliseconds could come back in 32
milliseconds or in 62.5 milliseconds.

Clearly, the OS/2 timer functions are intended for human-scale tim
ing, in which the lJ.n-second quantization error is not noticeable, and not
for high-precision timing of fast events. Regardless of the resolution of

218 PART II THE ARCHITECTURE

the timer, the system's preemptive scheduler prevents the implementa
tion of high-accuracy short-interval timing. Even if a timer system call
were to time out after a precise interval, the calling thread might not
resume execution immediately because a higher-priority thread might
be executing elsewhere.

One form of OS/2 timer services is built into some system calls. For
example, all semaphore blocking calls support an argument that allows
the caller to specify a timeout value. When the specified time has
elapsed, the call returns with a "call timed out" error code. Some
threads use this facility to guard against being indefinitely locked out;
if the semaphore call times out, the thread can give up, display an error
message, or try another tactic. Other threads may use the facility ex
pecting to be timed out: They use the timeout facility to perform peri
odic tasks and use the semaphore just as an emergency flag. Another
thread in the system can provide an emergency wakeup for the timer
thread simply by clearing the semaphore.

Blocking on a semaphore merely to delay for a specific interval is
unnecessary; the DosSleep call allows a thread to block uncondi
tionally for an arbitrary length of time, subject, of course, to the timer's
quantization error.6 DosSleep measures time intervals in a synchro
nous fashion: The thread is held inside the operating system until the
time interval has elapsed. OS/2 provides an asynchronous timer service
that allows timing to take place in parallel with a thread's normal ex
ecution. Specifically, the DosTimer ASYDe call is made with a timeout
interval, such as DosSleep, and also with the handle of a system sema
phore.? The DosTimer AsYDe call returns immediately; later, when the
time interval has elapsed, the system semaphore is cleared. The process
can poll the semaphore to see if the time is up, and/or it can block on
the semaphore to wait for the time to elapse. Of course, if a process
contains mUltiple threads, some can poll and others can block.

The DosTimerStart call is identical to the DosTimer ASYDe call ex
cept that the semaphore is repeatedly cleared at the specified interval
until a corresponding DosTimerStop call is made. DosTimerStart
clears the semaphore; the process must set it again after it's been
cleared.

6. And subject to the fact that if thread 1 is doing the DosSleeping the sleep will be inter
rupted if a signal is taken.
7. Unlike most semaphore applications, the timer functions work only with system sema
phores. RAM semaphores may not be used because of the difficulty in posting a RAM
semaphore at interrupt time; the RAM that contains the semaphore may be swapped out.

Chapter 16 Device Monitors, Data Integrity, and Timer Services 219

None of the above-mentioned facilities is completely accurate for
tracking the time of day or the amount of elapsed time. As we men
tioned, if a higher-priority thread is consuming enough CPU time,
unpredictable delays occur. Even DosTimerStart is susceptible to los
ing ticks because if the CPU is unavailable for a long enough period the
process won't be able to reset the semaphore soon enough to prevent
missing its next clearing. Applications that want a precise measurement
of elapsed time should use the time values stored in the global infoseg.
We also recommend that applications with a critical need to manage
timeouts, even if they are executing in the lower-priority background,
dedicate a thread to managing the time-critical work and elevate that
thread to a higher priority. This will ensure that time-critical events
aren't missed because a high-priority foreground thread is going
through a period of intensive CPU usage. Of course, such an applica
tion must be designed so that the high-priority timer event thread does
not itself consume significant CPU time; it should simply log the timer
events and rely on its fellow normal-priority threads to handle the ma
jor work involved.

17

Device Dr ivers
and Hard Errors
The multitasking nature of OS/2 makes OS/2 device drivers considera
bly more complex than MS-DOS device drivers. Furthermore, when
ever you have devices, you must deal with device failures-the
infamous hard errors. The handling of hard errors in a multitasking en
vironment is likewise considerably more complex than it was under
MS-DOS.

17.1 Device Drivers
This section gives an overview of device drivers, paying special atten
tion to their key architectural elements. Writing a device driver is a
complex task that must be undertaken with considerable care; a great
many caveats and "gotchas" lie in wait for the unsuspecting program
mer. Many of these "gotchas" are of that most favorite breed: ones that
never show up in testing, only in the field. This section is by no means
an exhaustive discussion of device drivers, nor is it a how-to guide.
Study the OS/2 device driver reference documentation carefully before
setting out to write your own.

In Chapter 2 I briefly discussed device independence and the role
that device drivers play in bringing it about. I said that a device driver is
a package of code that transforms I/O requests made in standard,
device-independent fashion into the operations necessary to make a
specific piece of hardware fulfill that request. A device driver takes

222 PART II THE ARCHITECTURE

data and status information from the hardware, in the hardware
specific format, and massages that information into the form that the
operating system expects to receive.

The device driver architecture has two key elements. First, each
hardware device has its own device driver to hide the specific details of
the device from the operating system. Second, device drivers are not
hard-wired into the operating system when it is manufactured; they are
dynamically installed at boot time. This second point is the interesting
one. If all device drivers were hard-wired into OS/2, the technique of
encapsulating device-dependent code into specific packages would be
good engineering practice but of little interest to the user. OS/2 would
run only on a system configured with a certain magic set of peripheral
devices. But because device drivers are dynamically installable at boot
time, OS/2 can work with a variety of devices, even ones that didn't ex
ist when OS/2 was written, as long as a proper device driver for that
device is installed at boot time. Note that device drivers can be in
stalled only at boot time; they cannot be installed after the system has
completed booting up. This is because in a future secure environment
the ability to dynamically install a device driver would give any appli
cation the ability to violate system security.

Saying that device drivers merely translate between the operating
system and the device is a bit of oversimplification; in reality, they are
responsible for encapsulating, or owning, nearly all device-specific
knowledge about the device. Device drivers service the interrupts that
their devices generate, and they work at task time (that is, at noninter
rupt time). If a device monitor is necessary for a device, the device
driver writer decides that and provides the necessary support. If an ap
plication needs direct access to a device's I/O ports or to its special
mapped memory, 1 the driver offers those services to processes. The
device driver also knows whether multiple processes should simulta
neously use the device and either allows or disallows this.

17.1.1 Device Drivers and OS/2 Communication
Because device drivers need to call and be called by OS/2 efficiently
and because device drivers must handle hardware interrupts efficiently,
they must run at ring O. This means that device drivers must be trusted
and must be trustworthy. A flaky device driver-or worse, a malicious

1. For example, the display memory of a eGA or an EGA card.

Chapter 17 Device Drivers and Hard Errors 223

one-can do unlimited and nearly untraceable damage to any applica
tion or data file in the system.

OS/2 can easily call a device driver. Because OS/2 loaded the device
driver into memory, it knows the address of its entry point and can call
it directly. For the device driver to call OS/2 is trickier because the
driver doesn't know the memory locations that OS/2 occupies nor does
it have any control over the memory descriptor tables (LDT and GDT).
When the device driver is initialized, OS/2 supplies the device driver
with the address of the OS/2 DevHlp entry point. Device drivers call
this address to access a variety of OS/2 services, called DevHlp ser
vices. The OS/2 DevHlp address references a GDT selector so that the
DevHlp address is valid at all times-in protected mode, in real
mode,2 at interrupt time, and during device driver initialization. Some
DevHlp functions are only valid in certain modes, but the DevHlp
facility is always available.

Why don't device drivers simply use dynamic links to access OS/2
services, the way that applications do? The OS/2 kernel dynlink inter
face is designed for processes running in user mode, at ring 3, to call
the ring 0 kernel. In other words, it's designed for outsiders to call in,
but device drivers are already inside. They run at ring 0, in kernel
mode, and at interrupt time. One, of course, could kludge things so that
device drivers make dynlink calls, and then special code at those OS/2
entry points would recognize a device driver request and do all the spe
cial handling. But every system call from a normal application would
be slowed by this extra code, and every service call from a device
driver would likewise be slowed. As a result, device drivers have their
own private, high-efficiency "backdoor" entry into OS/2. Figure 17-1
on the following page illustrates the call linkages between OS/2 and a
device driver. OS/2 calls only one entry point in the device driver, pro
viding a function code that the device driver uses to address a dispatch
table. OS/2 learns the address of this entry point when it loads the
device driver. The device driver in turn calls only one OS/2 address,
the DevHlp entry point. It also supplies a function code that is used to
address a dispatch table. The device driver is told this address when it
receives its initialize call from OS/2. Not shown is the device driver's
interrupt entry point.

2. A GDT selector cannot literally be valid in real mode because the GDT is not in use. OS/2
uses a technique called tiling so that the selector, when used as a segment address in real
mode, addresses the same physical memory as does the protect mode segment.

224 PART II THE ARCHITECTURE

OS/2

DevHlp

~DFunction Table

~
~

~
~

Figure 17-1.
Device driver call linkages.

Far call(DevHlp FCN)

17.1.2 Device Driver Programming Model

Device driver

The programming model for device drivers under MS-DOS is simple.
Device drivers are called to perform a function, and they return when
that function is complete or they encounter an unrecoverable error. If
the device is interrupt driven, the CPU hangs in a loop inside the device
driver while waiting for the driver's interrupt handler to be entered;
when the operation is complete, the interrupt handler sets a private flag
to break the task-time CPU out of its wait loop.

The OS/2 device driver model is considerably more complicated
because OS/2 is a multitasking system. Even if the thread that calls the
device driver with a request has nothing better to do than wait for the
operation to complete, other threads in the system could make good use
of the time. Another effect-of the OS/2 multitasking architecture is that
two or more threads can simultaneously call a device driver. To explore
this last issue fully, we'll digress for a moment and discuss the OS/2 in
ternal execution model.

By design, OS/2 acts more like a subroutine library than like a
process. The only dispatchable entities in the system are threads, and
all threads belong to processes. When a process's thread calls OS/2,
that thread executes OS/2' s code.3 It's like walking up to the counter at
a fast-food restaurant and placing your order. You then slip on an apron,
run around behind the counter, and prepare your own order. When the
food is ready, you take off the apron, run back around to the front of the
counter, and pick up the food. The counter represents the boundary

3. The few exceptions to this don't affect the issues discussed here.

Chapter 17 Device Drivers and Hard Errors 225

between ring 0 (kernel mode) and ring 3 (application mode), and the
apron represents the privileged state necessary to work behind the
counter.

Naturally, OS/2 is reentrant; at anyone time many threads are ex
ecuting inside OS/2, but each is doing work for only one process-the
process to whom that thread belongs. Behind the counter are several
folks wearing aprons, but each is working only on his or her own order.
This approach simplifies the internals of OS/2: Each instance of a sec
tion of code is doing only one thing for one client. If a section of code
must wait for something, it simply blocks (analogous to a semaphore
wait) as long as it has to and resumes when it can. Threads within the
kernel that are competing for a single resource do so by internal sema
phores, and they are given access to these semaphores on a priority
basis, just as they are when executing in application mode.

OS/2 makes little distinction between a thread running inside the
kernel and one running outside, in the application's code itself: The
process's LDT remains valid, and the thread, while inside the kernel,
can access any memory location that was accessible to the process in
application mode, in addition to being able to access restricted ring 0
memory. The only distinction the scheduler makes between threads in
side and those outside the kernel is that the scheduler never preempts a
thread running inside the kernel. This greatly relaxes the rigor with
which kernel code needs to protect its critical sections: When the CPU
is executing kernel code, the scheduler performs a context switch only
when the CPU voluntarily blocks itself. As long as kernel code doesn't
block itself, wait on a semaphore, or call a subroutine that waits on a
semaphore, it needn't worry about any other thread entering its critical
section.4

When OS/2 calls a device driver at task time, it does so with the
thread that was exe.cuting OS/2-the thread that belongs to the client
process and that made the original service call. Thus, the task-time part
of a device driver is running, at ring 0, in the client's context. The cli
ent's LDT is active, all the client's addresses are active, and the device
driver is immune from being preempted by other task -time threads (but
not by interrupt service) until it blocks via a DevHlp function or
returns to OS/2.

4. Although hardware interrupts still occur; any critical section modified at interrupt time is
still vulnerable.

226 PART II THE ARCHITECTURE

OS/2 device drivers are divided into two general categories: those
for character mode devices and those for block mode devices. This ter
minology is traditional, but don't take it too literally because character
mode operations can be done to block mode devices. The actual distinc
tion is that character mode device drivers do I/O synchronously; that is,
they do operations in first in, first out order. Block mode device drivers
can be asynchronous; they can perform I/O requests in an order differ
ent from the one in which they received them. A traditional serial char
acter device, such as a printer, must not change the order of its requests;
doing so scrambles the output. A block device, such as a disk, can
reverse the order of two sector reads without problems.

Figure 17-2 shows an algorithm for character mode device drivers.5

OS/2 calls the device driver with a request, as shown at the top of the
figure. If the device driver is busy with another request, the new

OS/2 code

Issue request to device
driver. •

Request is now complete.
Continue.

Figure 17·2.

Device driver

Block until device is
available.

Perform request. Block
until interrupts complete
if necessary.

Complete request and
return to OS/2.

Simplified character mode device driver model.

5. See the device driver reference manual for more details.

Device interrupt

Device interrupt
(if any)

Perform next step in
110 operation.

When done, use DevHlp
ProcRun to unblock task
time thread.

End of interrupt

Chapter 17 Device Drivers and Hard Errors 227

requesting thread should block on a RAM semaphore until the device is
available. When the device is free, the task-time thread does the re
quested operation. Sometimes the work can be done at task time (such
as an IOCTL call asking about the number of characters in an input
buffer), but more frequently the task-time thread initiates the operation,
and the work is completed at interrupt time. If the task -time thread
needs to wait for interrupt service, it should block on a RAM sema
phore6 that the interrupt-time code will clear. When the last associated
device interrupt takes place and the operation is complete, the interrupt
code releases the RAM semaphore. The task-time thread awakens and
returns to OS/2 with the status bits properly set in the request block.

Figure 17-3 on the following page shows an algorithm for block
devices. The general outline is the same as that for character devices but
more complicated because of the asynchronous nature of random
access devices. Because requests can be processed in any order, most
block device drivers maintain an internal work queue to which they
add each new request. They usually use a special DevHlp function to
sort the work queue in sector number order so that disk head motion is
minimized.

The easiest way to understand this figure is to think of a block mode
device driver as being made up of N threads: one interrupt-time thread
does the actual work, and all the others are task -time threads that queue
the work. As each request comes into the driver via a task-time thread,
that thread simply puts the request on the queue and returns to OS/2.
Later, the device driver's interrupt service routine calls the DevHlp
DevDone function to tell OS/2 that the operation is complete. Return
ing to OS/2 with the operation incomplete is permissible because the
request block status bits show that the operation is incomplete.

Sometimes, OS/2 needs to wait for the operation (such as a read
from a directory); so when the device driver returns with the operation
incomplete, OS/2 simply waits for it to finish. In other circumstances,
such as flushing the cache buffers, OS/2 may not wait around for the
operation to complete. It may go on about its business or even issue a
new request to the driver, using, of course, a new request block because
the old one is still in use. This design gives the system a great deal of
parallelism and thereby improves throughput.

6. Located in the device driver data area.

228 PART II THE ARCHITECTURE

OS/2 code

Issue request to device
driver. ------+

1
OS/2 thread(s) block on
incomplete request when
they can proceed no further
without the data.

Any threads blocked
on this request are
awakened.

Request is now complete.
Continue.

Figure 17·3.

Device driver

Add request to device
request list. Fire up
device if not active.

Return to OS/2 with
DONE clear. J

Block mode device driver model.

Device interrupt

Device interrupt

Perform next step in
110 operation.

If the request is done
Pull request from
list.

Use DevHlp DevDone
to tell OS/2 that
the 110 is done.

If further work on
queue, start work
on next item.

End of interrupt

I said that a block mode device driver consists of several task-time
threads and one interrupt-time thread. The term interrupt-time thread is
a bit misleading, however, because it's not a true thread managed by the
scheduler but a pseudo thread created by the hardware interrupt mecha
nism. For example, a disk device driver has four requests queued up,
and the READ operation for the first request is in progress. When it
completes, the driver's interrupt service routine is entered by the hard
ware interrupt generated by the disk controller. That interrupt-time
thread, executing the driver's interrupt service routine, checks the
status, verifies that all is OK, and calls various DevHlp routines to post
the request as complete and to remove it from the queue. It then notes

Chapter 17 Device Drivers and Hard Errors 229

that requests remain on the queue and starts work on the next one,
which involves a seek operation. The driver's interrupt-time code
issues the seek command to the hardware and then returns from the in
terrupt. When the disk stops seeking, another interrupt is generated; the
interrupt-time code notes the successful seek, issues the read or write
operation to the controller, and exits.

As you can see, the repeated activation of the device driver's inter
rupt service routine is much like a thread, but with two major differ
ences. First, every time an interrupt service routine is entered, it has a
fresh stack. A task-time thread has register contents and a stack that are
preserved by the system; neither is preserved for an interrupt service
routine between interrupts. A task-time thread keeps track of what it
was doing by its CS:IP address, its register contents, and its stack con
tents. An interrupt service routine must keep track of its work by means
of static values stored in the device driver's data segment. Typically,
interrupt service routines implement a state machine and maintain the
current state in the driver's data segment. Second, a true thread remains
in existence until explicitly terminated; an interrupt service thread is
an illusion of a thread that is maintained by repeated interrupts. If any
one execution of the interrupt service routine fails to give the hardware
a command that will generate another interrupt, the interrupt pseudo
thread will no longer exist after the interrupt service routine returns.

The block mode driver algorithm descdption left out a detail. If the
disk is idle when a new request comes in, the request is put on the queue,
but there is no interrupt-time pseudo thread to service the request.
Thus, both the task-time and interrupt-time parts of a device driver
must be able to initiate an operation. The recommended approach is to
use a software state machine to control the hardware and to ensure that
the state machine, at least the start operation part of it, is callable at
both task and interrupt time. The algorithm above is then modified so
that after the task -time part of a block device driver puts its request on
the driver's internal queue it verifies that the device (or state machine
or interrupt pseudo thread) is active. If the device has been idle, the
task-time thread in the device driver initiates the operation by calling
the initial state of the state machine; it then returns to OS/2. This

230 PART" THE ARCHITECTURE

"0" ...--"'----------,

Figure 17·4.

Instance "A"
device driver
task-time code

Device driver code structure,

Device driver
interrupt service

primes the pump; the interrupt pseudo thread now continues to run un
til the request queue is empty.

Figure 17-4 shows an overview of the OS/2 device driver architec
ture. Each device driver consists of a task-time part, an interrupt-time
part (if the device generates interrupts), and the start-operation code
that is executed in either mode. The driver's data area typically con
tains state information, flags, and semaphores to handle communica
tion between the task-time part and the interrupt. Figure 17-4 also
shows that the task-time part of a device driver can have multiple in
stances. It can be called by several threads at the same time, just as a
shared dynlink library routine might be. Unlike a dynlink library, a
device driver has no instance data segment; the device driver's data seg
ment is a global data segment, 'accessible to all execution instances of
the device driver's task-time component. Just as a dynlink package uses
semaphores to protect critical data areas in its global data segment, a
device driver uses semaphores to protect the critical data values in its
data segment. Unlike dynlink routines, the device driver has an addi
tional special thread - the interrupt service thread. A device driver
can't protect critical sections that are accessed at interrupt time by
using semaphores because an interrupt service thread cannot block. It
must complete the interrupt service and exit -quickly, at that. When
you write device drivers, you must minimize the critical sections that
are entered by the interrupt service thread and protect them via the
CLI/STI instruction sequence.

Chapter 17 Device Drivers and Hard Errors 231

17.1.3 Device Management
Device drivers do more than talk to the device; they also manage it for
the system. Device drivers are called each time a process opens or
closes a device; device drivers determine whether a device can be used
by more than one process simultaneously. Likewise, device drivers
receive device monitor requests from applications via the IOCTL inter-
face and, when appropriate, call OS/2 via the DevHlp interface to per-
form the bulk of the monitor work. Finally, device drivers can grant
processes access to the device's I/O ports, to the device's mapped
memory, and/or to special control areas in the device driver's data area
itself. Once again, processes ask for these features via IOCTL; the
device driver grants the requests via a DevHlp dialog with OS/2. Some
device drivers are degenerate; they don't actually transfer data but exist
solely to manage these other tasks. The screen device driver is an exam
ple. Screen data is always written directly to the display buffer by VIO,
the application, or the presentation manager. The screen device driver
exists to grant direct access, manage screen groups, and so on.

17.1.4 Dual Mode
The last key architectural feature of device drivers is that they are writ
ten in dual mode: The driver code, both task time and interrupt time,
must be able to execute in protected mode and real mode. The process
of mode switching between protected mode and real mode is quite
slow-about 800 microseconds. If we decreed that all device drivers
run only in protected mode and that service interrupts run only in pro
tected mode, a disk request from a real mode program might require six
or more mode switches-one for the request, and five for the inter
rupts-for a penalty of almost 5 milliseconds. Consequently, device
drivers must run in whatever mode the CPU is in when the request
comes along or the interrupt arrives.

At first glance, this seems easy enough: As long as the device driver
refrains from computing its own segment selectors, it can execute in
either mode. The catch is that OS/2 may switch between modes at every
call and/or interrupt, and the addresses of code and data items are dif
ferent in each mode. A device driver might be called in protected mode
with an address in the client process's address space. When the "data
ready" interrupt arrives, however, the CPU may be running in real
mode, and that client's address is no longer valid-for two reasons.

232 PART II THE ARCHITECTURE

One, the segment selector part of a memory address has a different
meaning in real mode than it does in protected mode; and, two, the cli
ent's selector was in the LDT, and the LDT is invalid at interrupt time.7

OS/2 helps device drivers deal with addressing in a dual mode environ
ment in three ways:

1. Some addresses are the same in both modes and in either pro
tected mode or real mode. The DevHlp entry point, the global in
foseg address, the request packet address, and any addresses
returned via the DevHlp GetDosVar function are valid at all
times and in both modes.

2. Although the segment selector value for the device driver's code
and data segments is different in each mode, OS/2 loads the
proper values into CS and DS before it calls the device driver's
task -time or interrupt-time entry points. As long as a device
driver is careful not to "remember" and reuse these values, it
won't notice that they (possibly) change at every call.

3. OS/2 provides a variety of DevHlp functions that allow a device
driver to convert a selector:offset pair into a physical address and
then later convert this physical address back into a selector:offset
pair that is valid at that particular time. This allows device drivers
to convert addresses that are outside their own segments into
physical addresses and then, upon each task-time or interrupt
time call to the driver, convert that physical address back into one
that is usable in the current mode. This avoids the problem of
recording a selector:offset pair in protect mode and then trying to
use it as a segment:offset pair in real mode.

17.2 Hard Errors
Sometimes the system encounters an error that it can neither ignore nor
correct but which the user can correct. A classic example is the user
leaving ajar the door to the floppy drive; the system can do nothing to
access that floppy disk until someone closes the door. Such an error is
called a hard error. The term originated to describe an error that won't
go away when the operation is retried, but it also aptly describes the
effort involved in the design of OS/2 to deal with such errors.

7. See the device driver reference manual for more details.

Chapter 17 Device Drivers and Hard Errors 233

The manner in which MS-DOS handles hard errors is straightfor
ward. In our drive door example, MS-DOS discovers the problem when
it is deep inside the bowels of the system, communicating with the· disk
driver. The driver reports the problem, and MS-DOS displays some text
on the screen-the infamous "Abort, Retry, Ignore?" message. Typi
cally, the user fixes the problem and replies; MS-DOS then takes the
action specified by the user, finishes its work, and returns to the appli-
cation. Often, applications didn't want the system to handle hard errors
automatically. Perhaps they were concerned about data integrity and
wanted to be aware of a disk-writing problem, or they wanted to pre
vent the user from specifying "lgnore,"8 or they didn't want
MS-DOS to write over their screen display without their knowing. To
handle these situations, MS-DOS lets applications store the address of a
hard error handler in the INT 24 vector; if a handler is present, MS
DOS calls it instead of its own handler.

The system is in an unusual state while processing an MS-DOS hard
error. The application originally calls MS-DOS via the INT 21 vector.
MS-DOS then calls several levels deep within itself, whereupon an in
ternal MS-DOS routine calls the hard error handler back in the applica
tion. Because MS-DOS is not generally reentrant, the application
cannot recall MS-DOS via INT 21 at this point; doing so would mean
that it has called MS-DOS twice at the same time. The application pro
bably needs to do screen and keyboard I/O when handling the hard er
ror, so MS-DOS was made partially reentrant. The original call
involves disk I/O, so MS-DOS can be reentered via a screen/keyboard
I/O call without problem.

Several problems prevented us from adopting a similar scheme for
OS/2. First, unlike the single-tasking MS-DOS, OS/2 cannot suspend
operations while the operating system calls an application -a call that
might not return for a long time. Second, major technical and security
problems are involved with calling from ring 0 (the privileged kernel
mode) to ring 3 (the application mode). Also, in the MS-DOS environ
ment, deciding which process was responsible for the operation that
triggered the hard error is easy: Only one application is running. OS/2
may have a hard time detennining which process to alert because more

8. This response is classic. Sophisticated users understand the likely consequences of such a
reply, but most users would interpret "Ignore" as "Make the problem go away" -an ap
parently ideal solution!

234 PART II THE ARCHITECTURE

than one process may have caused a disk FAT sector or a disk directory
to be edited. The improved buffering techniques employed by OS/2
may cause a hard error to occur at a time when no process is doing any
I/O. Finally, even if we solve all these problems, the application that
triggers the hard error may be running in a background screen group
and be unable to display a message or use the keyboard. Even if the ap
plication is in the foreground screen group, it can't use the screen and
keyboard if it's not the process currently controlling them.

17.2.1 The Hard Error Daemon
This last problem yields a clue to the solution. OS/2 supports multiple
screen groups, and its screen group mechanism manages multiple si
multaneous use of the screen and the keyboard, keeping the current
users-one in each screen group-isolated from one another. Clearly,
we need to use screen groups to allow a hard error dialog to be com
pleted with the user without interfering with the current foreground ap
plication. Doing so solves the problem of writing on another
application's screen image and therefore removes most of the need for
notifying an application that a hard error has occurred.

Specifically, OS/2 always has running a process called the hard er
ror daemon. When a hard error occurs, OS/2 doesn't attempt to figure
out which process caused it; instead, it notifies the hard error daemon.
The hard error daemon performs a special form of screen group switch
to the reserved hard error screen group and then displays its message
and reads its input. Because the hard error daemon is the only process
in this screen group, screen and keyboard usage do not conflict. The
previous foreground process is now temporarily in the background; the
screen group mechanism keeps it at bay.

Meanwhile, the process thread that encountered the hard error in the
kernel is blocked there, waiting for the hard error daemon to get a
response from the user. The thread that handles the hard error is never
the thread that caused the hard error, and the kernel is already fully
reentrant for different threads; so the hard error daemon thread is free
to call OS/2 at will. When the user corrects the problem and responds
to the hard error daemon, the hard error daemon sends the response
back to the kernel, which allows the thread that encountered the error to
take the specified action. That thread either retries the operation or pro
duces an error code; the hard error daemon returns the system to the

Chapter 17 Device Drivers and Hard Errors 235

DosCall
Process

Hard error daemon

Time---+

Figure 17-5.
Hard error handling.

original screen group. The screen group code then does its usual trick
of restoring the screen image to its previous state. Figure 17-5 illus
trates the hard error handling sequence. A process thread encounters a
hard error while in the OS/2 kernel. The thread blocks at that point
while the hard error daemon's previousiy captured thread is reieased.
The hard error daemon performs a special modified screen switch at
(1), displays its message, gets the user's response, restores the applica
tion screen group at (2), and reenters the OS/2 kernel. The response
code is then passed to the blocked application thread, which then
resumes execution.

Although the most common cause of hard errors is a disk problem
for example, an open drive door or a medium error-other events that
require user intervention or user notification use the hard error mecha
nism. For example, the volume management package (see 15.2 Media
Volume Management) uses the hard error mechanism to display its
"Insert volume <name>" messages. As I mentioned earlier, MS-DOS
applications running in the compatibility box can encounter problems,
such as locked files, that they can't understand. Rather than have these
applications fail mysteriously, OS/2 uses the hard error daemon mecha
nism to inform the user of the cause of the real mode application's
difficulties. Although the application running in the compatibility box
sees an operating system that acts like MS-DOS, the operating system

236 PART II THE ARCHITECTURE

is actually OS/2. Because of this, hard errors encountered by a real
mode process are handled by an amalgam of the MS-DOS INT 24
mechanism and the OS/2 hard error daemon. See Chapter 19, The 3X
Box.

17.2.2 Application Hard Error Handling
In some cases an application doesn't want the system to handle its hard
errors. For example, an application designed for unattended or remote
operation, such as a network server, may want to pass notification of
hard errors to a remote correspondent rather than hanging up forever
with a message on a screen that might not be read for hours. Another
example is ~ database program concerned about the integrity of its mas
ter file; it may want to know about hard errors so that it can take some
special action or perhaps use an alternative master file on another
device. OS/2 allows a process to disable automatic hard error handling
on a per file basis. Our network example will want to disable hard error
pop-ups for anything the process does; our database example may want
to disable hard error pop-ups only for its master file, keeping their con
venience for any other files that it might access. When a hard error oc
curs on behalf of a process or a handle that has hard error pop-ups
disabled, OS/2 assumes that a FAIL response was entered to a
hypothetical hard error pop-up and returns to the application with a
special error code. The application must analyze the code and take the
necessary actions.

18

I/O Pr ivi lege
Meehan ism and
Debugging/
Ptraee
The earlier chapters of this book focused on the "captains and kings"
of the operating system world, the major architectural features. But like
any real world operating system, OS/2 contains a variety of miscella
neous facilities that have to be there to get the work done. Although
these facilities may not be major elements in some architectural grand
scheme, they still have to obey the principles of the design religion.
Two of them are the I/O privilege mechanism and the debugging
facility.

18.1 1/0 Privilege Mechanism
Earlier I discussed the need for a mechanism that allows applications
high-speed direct access to devices. But the mechanism must control
access in such a way that the system's stability isn't jeopardized and in
such a way that applications don't fight over device control. OS/2 meets
this requirement with its I/O privilege mechanism. This facility allows
a process to ask a device driver for direct access to the device's I/O

238 PART II THE ARCHITECTURE

ports and any dedicated or mapped memory locations it has. The I/O
privilege mechanism can be used directly by an application, which
necessarily makes it device dependent, or indirectly by a dynlink pack
age. The dynlink package can act as a kind of device driver; a new ver
sion can be shipped with new hardware to maintain application
compatibility. This pseudo device driver is normally much faster than a
true device driver because of the customized procedural interface; not
entering ring 0 and the OS/2 kernel code saves much time.

Unfortunately, this isn't a free lunch. Dynlink pseudo device drivers
can do everything that true device drivers can except handle interrupts.
Because hardware interrupts must be handled at ring 0, the handler
must be part of a true device driver. Frequently, a compromise is in
order: Both a dynlink package and a true device driver are provided.
The true device driver handles the interrupts, and the dynlink package
does the rest of the work. The two typically communicate via shared
memory and/or private IOCTLs. An example of such a compromise is
the system KBD dynlink package. The system VIO package doesn't
need a device driver to handle interrupts because the display device
doesn't generate any.

The two components in the OS/2 I/O access model are access to the
device's memory and access to its I/O ports. Granting and controlling
access to a device's mapped memory is easy because the 80286 pro
tect mode supports powerful memory management facilities. First, a
process asks the device driver for access to the device's memory, for ex
ample, to the memory buffer of a eGA board. Typically, a dynlink
package, rather than an application, does this via the DosDevIOCtl
call. If the device driver approves the request, it asks OS/2 via the
DevHlp interface to set up an LDT memory descriptor to the proper
physical memory locations. OS/2 returns the resultant selector to the
device driver, which returns it to the calling process. This technique
isn't limited to memory-mapped device memory; device drivers can
use it to allow their companion dynlink packages direct access to a
piece of the device driver's data segment. In this way, a combination
dynlink/device driver device interface can optimize communication
between the dynlink package and the device driver.

Providing I/O port access to a process is more difficult because it is
supported more modestly by the 80286 processor. The 80286 uses its

Chapter 18 1/0 Privilege Mechanism and Debugging/Ptrace 239

ring protection mechanism to control I/O access; the system can grant
code running at a certain ring privilege access to all I/O ports, but it
can't grant access to only some I/O ports. It's too dangerous to grant an
application access to all I/O ports simply because it uses VIO and VIO
needs direct port access for the display adapter. This solution would
mean that OS/2's I/O space is effectively unprotected because almost
all prograrns use VIa or the presentation manager directiy or
indirectl y.

Instead, OS/2 was designed to allow, upon request from the device
driver, any code segments marked! to execute at ring 2 to have I/O ac
cess. The bad news is that access to all I/O ports must be granted in
discriminately, but the good news is that the system is vulnerable to
program bugs only when those ring 2 segments are being executed. The
capabilities of ring 2 code, as it's called, are restricted: Ring 2 code
cannot issue dynlink calls to the system. This is partly a result of ring
architecture (supporting ring 2 system calls would require significant
additional overhead) and partly to discourage lazy programmers from
flagging their entire process as ring 2 to avoid sequestering their I/O
routines.

As I said, in OS/2 version 1.0 the ring mechanism can restrict I/O
access oniy to a limited degree. Any malicious program and some
buggy programs can still damage system stability by manipulating the
system's peripherals. Furthermore, a real mode application can issue
any I/O instruction at any time. A future release of OS/2 that runs only
on the 80386 processor will solve these problems. The 80386 hardware
is specifically designed to allow processes access to some I/O ports but
not to others through a bit map the system maintains. This map, which
of course the application cannot directly change, tells the 80386 which
port addresses may be accessed and which must be refused. This map
applies equally to protect mode and real mode applications.2 OS/2 will
use the port addresses supplied by the device driver to allow access
only to the I/O ports associated with the device(s) to which the process
has been granted access. This release will not support application code
segments running at ring 2; any segments so marked will be loaded
and run at ring 3. The change will be invisible to all applications that

1. This is done via a special command to the linker.
2. Actually, to "virtual real mode" applications. This is functionally the same as real mode
on earlier processors.

240 PART II THE ARCHITECTURE

use only the proper I/O ports. Applications that request access to one
device and then use their I/O permissions to program another device
will fail.

18.2 Oebugging/Ptrace
Because OS/2 goes to a great deal of effort to keep one application
from interfering with another, special facilities were built to allow
debugging programs to manipulate and examine a debuggee (the
process being debugged). Because a debugger is available for OS/2 and
writing your own is laborious, we expect few programmers to write
debuggers. This discussion is included, nevertheless, because it further
illuminates the OS/2 architectural approach.

The first concern of a debugger is that it be able to read and write the
debuggee's code and data segments as well as intercept traps, signals,
breakpoints, and the like. All these capabilities are strictly in the do
main of OS/2, so OS/2 must "export" them to the debugger program.
A second concern is system security: Obviously, the debug interface
provides a golden opportunity for "cracker" programs to manipulate
any other program, thereby circumventing passwords, encryption, or
any other protection scheme. OS/2 prevents this by requiring that the
debuggee process be flagged as a debug target when it is initially exe
cuted; a debugger can't latch onto an already-running process. Further
more, when secure versions of OS/2 are available, processes executed
under control of a debugger will be shorn of any permissions they
might have that are in excess of those owned by the debugger.

Before we examine the debugging interface, we should digress for a
moment and discuss the OS/2 approach to forcing actions upon threads
and processes. Earlier I described the process of kernel execution. I
mentioned that when a process thread makes a kernel request that
thread itself enters kernel mode and services its own request. This ar
rangement simplified the design of the kernel because a function is
coded to perform one action for one client in a serial, synchronous
fashion. Furthermore, nothing is ever forced on a thread that is in
kernel mode; any action taken on a thread in kernel mode is taken by
that thread itself. For example, if a process is to be killed and one of its
threads is in kernel mode, OS/2 doesn't terminate that thread; it sets a
flag that says, "Please kill yourself at your earliest convenience."

Chapter 18 1/0 Privilege Mechanism and Debugging/Ptrace 241

Consequently, OS/2 doesn't need special code to enumerate and release
any internal flags or resources that a killed kernel-mode thread might
leave orphaned, and in general no thread need "understand" the state
of any other. The thread to be killed cleans itself up, releasing
resources, flags, and whatever before it obligingly commits suicide.

But when is the thread's "earliest convenience"? Thread termina
tion is a jorced event, and all threads check for any pending forced
events immediately before they leave kernel mode and reenter applica
tion mode. This transition takes place frequently: not only when a sys
tem call returns to the calling application, but also each time a context
switch takes place.

Although it may appear that forced events might languish unpro
cessed, they are serviced rapidly. For example, when a process issues a
DosKiIl function on its child process, each thread in the child process
is marked "kill yourself." Because the parent process had the CPU, ob
viously, when it issued the DosKiIl, each of the child's threads is in
kernel mode, either because the thread is working on a system call or
because it was artificially placed in kernel mode when the scheduler
preempted it. Before any of those now-marked threads can execute
even a single instruction of the child application's code, they must go
through OS/2' s dispatch routine. The "kill yourself" flag is noted, and
the thread terminates itself instead of returning to application mode. As
you can see, the final effect of this approach is far from slow: The
DosKill takes effect immediately - not one more instruction of the
child process is executed.3 The only significant delay in recognizing a
forced event occurs when a system call takes a long time to process.
OS/2 is not very CPU bound, so any call that takes a "long time" (1

second or more) must be blocked for most of that time.
When a kernel thread issues a block call for an event that might take

a long time-such as waiting for a keystroke or waiting for a sema
phore to clear-it uses a special form of block called an interruptible
block. When OS/2 posts a force flag against a thread, it checks to see if
that thread is blocking interruptibly. If it is, that thread is released from
its block with a special code that says, "You were awakened not
because the event has come to pass but because a forced event was

3. Excepting any SIGKILL handlers and DosExitList handlers, of course.

242 PART II THE ARCHITECTURE

posted." That thread must then finish the system call quickly (gener
ally by declaring an error) so that the thread can go through the dis
patch routine and recognize the force flag. I described this mechanism
in Chapter 12 when I talked about another kind of forced event-the
OS/2 signal mechanism. An incoming signal is a forced event for a
process's thread 1; it therefore receives the same timely response and
has the same effect of aborting a slow system call.

I've gone through this long discussion of forced events and how
they're processed because the internal debugging facility is based on
one giant special forced event. When a process is placed in debug state,
a trace force flag is permanently set for the initial thread of that process
and for any other threads it creates. When any of those threads are in
kernel mode-and they enter kernel mode whenever anything of in
terest takes place-they execute the debuggee half of the OS/2 trace
code. The debugger half is executed by a debugger thread that issues
special DosPtrace calls; the two halves of the package communicate
through a shared memory area built into OS/2.

When the debuggee encounters a special event (for example, a Ctrl
C signal or a GP fault), the trace force event takes precedence over any
other, and the debuggee's thread executes the debuggee half of the
DosPtrace code. This code writes a record describing the event into a
communications buffer, wakes up the debugger thread, which is typi
cally blocked in the debugger's part of the DosPtrace code, and blocks,
awaiting a reply. The debugger's thread wakes up and returns to the
debugger with the event information. When the debugger recalls
DosPtrace with a command, the command is written into the commu
nications area, and the debuggee is awakened to read and obey. The
command might be "Resume normal execution," "Process the event
as you normally would," or "Give me the contents of these locations in
your address space," whereupon the debuggee thread replies and re
mains in the DosPtrace handler.

This approach is simple to implement, does the job well, and takes
advantage of existing OS/2 features. For example, no special code is
needed to allow the debugger access to the debuggee' s address space
because the debuggee itself, unwittingly in the DosPtrace code, reads
and writes its own address space. Credit goes to the UNIX ptrace
facility, upon which this facility was closely modeled.

Chapter 18 1/0 Privilege Mechanism and Oebugging/Ptrace 243

Finally, here are a few incidental facts that the readers of this book,
being likely users of debugging facilities, should know. OS/2 maintains
a linkage between the debugger process and the debuggee process.
When the debugger process terminates, the debuggee process also ter
minates if it has not already done so. The debuggee program need not
be a direct child of the debugger, when the debugger process makes its
initial DosPtrace call, OS/2 connects it to the last process that was exe
cuted with the special tracing option. If a process is executed with the
tracing option but no debugger process subsequently issues a
DosPtrace function, the jilted debuggee process is terminated in about
two minutes.

19

The 3x Box
It's of critical importance that OS/2 do a good job of running existing
MS-DOS applications, but as we've discussed, this is a difficult task.
To offer the official MS-DOS interfaces under OS/2 and therefore
claim upward compatibility would be easy; unfortunately, few popular
applications would run successfully in such an environment. Most so
phisticated applications take direct control of the machine environment
and use MS-DOS for tasks the application doesn't want to bother with,
such as file I/O, keyboard buffering, and so forth. If we're to run exist
ing applications successfully, we must provide a close facsimile to a
real mode PC running MS-DOS in all respects, not just the INT 21 pro
gram interface.

OS/2 provides such a highly compatible environment, called the real
mode screen group, the compatibility box, or simply the 3x box. The 3x
box is an environment that emulates an 8086-based PC running
MS-DOS version 3.3.1 MS-DOS programs execute in real mode, and
because emulating real mode from within protected mode is prohibi
tively slow, OS/2 physically switches into real mode to execute
MS-DOS applications. Because MS-DOS programs are well aware of
the MS-DOS memory layout, this layout is replicated for the OS/2 3x
box. The first N bytes (typically 640 KB) are reserved for the exclusive
use of the low-memory parts of OS/2 and the 3x box; protected mode
applications never use any of this memory. Thus, programs that are
careless about memory allocation or that make single-tasking assump
tions about the availability of memory can run in a multitasking envi
ronment. Figure 19-1 on the following page illustrates the OS/2

1. For OS/2 version 1.0, the 3x box is compatible with MS-DOS version 3.3.

246 PART II THE ARCHITECTURE

memory layout. The low bytes of memory are reserved for the device
drivers and portions of OS/2 that must run in real mode. The remainder
of the space, up to the RMSIZE value, is dedicated to the 3x box. Mem
ory from 640 KB to 1 MB is reserved for ROMs and video display
buffers. Memory above 1 MB holds the remainder of OS/2 and all pro
tect mode applications. Nonswappable, fixed segments are kept at one
end of this memory to reduce fragmentation.

OS/2 uses the screen group mechanism to provide a user interface to
the 3x box. One screen group is designated the real mode screen group;
automatically, OS/2 executes COMMAND.COM in that screen group

Figure 19·1.
System memory layout.

N r-------,
Protect
mode

applications
(movable)

Fixed

OS/2
1 MBL...-___I

640KB
Real
mode

application

Additional
device drivers

-100k

Low OS/2

90:0

Bios ROM
o

Chapter 19 The 3x Box 247

when it is first selected. The user accesses the real mode environment
by selecting that screen group and returns to the protected mode envi
ronment by selecting another screen group. OS/2 version 1.0 supports a
single real mode screen group because the real mode compatibility is
provided by actually running the application in real mode. Thus, only
one 640 KB area is reserved for all real mode applications, and ad-
judicating between the conflicting hardware manipulations of multiple
real mode applications without any assistance from the 80286 micro
processor hardware would be prohibitively difficult. The 80386 micro
processor, however, provides a special hardware facility called virtual
8086 mode that will allow a future release of OS/2 to support multiple
real mode screen groups, but only on an 80386-based machine.

The operating system that services the 3x application's INT 21 re
quests is not an exact copy of MS-DOS; it's actually a low-memory ex
tension of OS/2 itself. Because OS/2 is derived from MS-DOS, OS/2
executes MS-DOS functions in a manner identical to that of the real
MS-DOS. OS/2 supports the non-MS-DOS functions mentioned
above by staying out of the way as much as possible and letting the 3x
application "party hearty" with the hardware. For example, hooking
most interrupt vectors is supported, as is hooking INT 21 and the ROM
BIOS INT vectors. The ROM BIOS calls themselves are fully sup
ported. Frequently, staying out of the way is not as easy as it may
sound. For example, OS/2 must intercept and monitor real mode calls
made to the disk driver part of the ROM BIOS so that it can prevent
conflict with ongoing, asynchronous protect-mode disk I/O. OS/2 may
find it necessary to momentarily block a real mode application's BIOS
call until the protect mode device driver can release the hardware. Once
the real mode application is in the BIOS, the same interlock mecha
nism prevents the protect mode device driver from entering the disk I/O
critical section.

Hard errors encountered by the real mode application are handled by
a hybrid of the OS/2 hard error daemon and the 3x box INT 24 mecha
nism in a three-step process, as follows:

1: Hard error codes caused by events unique to the OS/2 environ
ment-such as a volume manager media change request-acti
vate the hard error daemon so that the user can get an accurate

248 PART II THE ARCHITECTURE

explanation of the problem. The user's response to the hard error
is saved but is not yet acted upon. Hard error codes, which are
also present in MS-DOS version 3.3, skip this step and start at
step 2.

2: If the real mode application has installed its own hard error han
dler via the INT 24 vector, it is called. If step 1 was skipped, the
code should be known to the application, and it is presented
unchanged. If step 1 was taken, the error code is transformed to
ERROR_I24_GEN_FAILURE for this step. The response
returned by the program, if valid for this class of hard error, is
acted upon. This means that hard errors new to OS/2 can actually
generate two pop-ups-one from the hard error daemon with an
accurate message and one from the application itself with a Gen
eral Failure message. This allows the user to understand the true
cause of the hard error and yet notifies the application that a hard
error has occurred. In such a case, the action specified by the ap
plication when it returned from its own hard error handler is the
one taken, not the action specified by the user to the initial hard
error daemon pop-up.

3: If the real mode application has not registered its hard error han
dler via the INT 24 mechanism, OS/2 provides a default handler
that uses the hard error daemon. If step 1 was taken and the hard
error daemon has already run, it is not run again; OS/2 takes the
action specified in response to the hard error pop-up that was
displayed. If step 1 was not taken because the hard error code is
MS-DOS 3.x compatible and if step 2 was not taken because the
application did not provide its own handler, then OS/2 activates
the hard error daemon in step 3 to present the message and receive
a reply.

The 3x box supports only MS-DOS functionality; no new OS/2 fea
tures are available to 3x box applications-no new API, no multiple
threads, no IPC, no semaphores, and so on.2 This decision was made
for two reasons. First, although any real mode application can damage
the system's stability, allowing real mode applications to access some

2. There are two exceptions. The OPEN function was extended, and an INT 2F multiplex
function was added to notify real mode applications of screen switches.

Chapter 19 The 3x Box 249

protect mode features may aggravate the problem. For example, termi
nate and stay resident programs may manipulate the CPU in such a way
as to make it impossible for a real mode application to protect a critical
section with semaphores and yet guarantee that it won't leave the sema
phore orphaned. Second, because OS/2 has only one real mode box and
it labors under a 640 KB memory ceiling, it doesn't make sense to de
velop new real mode applications that use new OS/2 functions and thus
require OS/2.

The 3x box emulation extends to interrupts. OS/2 continues to con
text switch the CPU when the 3x box is active; that is, the 3x box appli
cation is the foreground application. Because the foreground process
receives a favorable priority, its CPU is preempted only when a time
critical protect mode application needs to run or when the real mode
application blocks. If the CPU is running a protect mode application
when a device interrupt comes in, OS/2 switches to real mode so that a
real mode application that is hooking the interrupt vectors can receive
the interrupt in real mode. When the interrupt is complete, OS/2
switches back to protected mode and resumes the protected application.

Although protected mode applications can continue to run when the
3x box is in the foreground, the reverse is not true. When the 3x box
screen group is in the background, all 3x box execution is suspended,
including interrupts. Unlike protected mode applications, real mode
applications cannot be trusted to refrain from manipulating the screen
hardware when they are in a background screen group. Normally, a
real mode application doesn't notice its suspension when it's in back
ground mode; the only thing it might notice is that the system time-of
day has apparently "jumped forward." Because mode switching is a
slow process and leaves interrupts disabled for almost 1 millisecond,
mode switching can cause interrupt overruns on fast devices such as
serial ports. The best way to deal with this is to switch the real mode
application into a background screen group; with no more real mode
programs to execute, OS/2 does no further mode switching.

Some OS/2 utility programs such as FIND are packaged as Family
API applications. A single binary can run in both protected mode and
real mode, and the user is saved the inconvenience of switching from
real mode to protected mode to do simple utility functions. This works
well for simple utility programs without full screen or graphical

250 PART II THE ARCHITECTURE

interfaces and for programs that have modest memory demands and
that in other ways have little need of OS/2' s extended capabilities. Ob
viously, if an application can make good use of OS/2' s protect mode
features, it should be written to be protect mode only so that it can take
advantage of those features.

20

Family API
When a new release of a PC operating system is announced, application
writers face a decision: Should they write a new application to use some
of the new features or should they use only the features in earlier
releases? If they go for the sexy new features, their product might do
more, be easier to write, or be more efficient; but when the program hits
the market, only 10 percent of existing pes may be running the new
release. Not all of the existing machines have the proper processor to be
'able to run the new system, and, of those, many of their users haven't
seen the need to Q"O to the exoense and endure the hassle of uD2:rading o J: - - - ... _ -

their operating system. If it's viable to write the new application so that
it requires only the old operating system (and therefore runs in com
patibility mode under the new operating system), then it's tempting to
do so. Even though the product is not as good as it might be, it can sell
to 100 percent of the installed base of machines-l0 times as many as
it would if it required the new operating system.

And here you have the classic "catch-22" of software standards: If
users don't see a need, they won't use the new system. If they don't use
the new system, applications will not be written explicitly for it; so the
users never see a need. Without some way to prime the pump, it will be
a long time before a comprehensive set of applications are available
that use the new system's features.

OS/2 tackles this problem in several ways. The software bundled
with OS/2 runs in protected mode, and OS/2 attempts to include as
much additional user function as possible to increase its value to a user
who initially owns no protected mode applications. The most impor
tant user acceptance feature of OS/2, however, is called Family API.

252 PART II THE ARCHITECTURE

Family API is a special subset of the OS/2 protected mode API. Using
special tools included in the OS/2 developer's kit, you can build appli
cations that use only the Family API. The resultant .EXE file(s) run
unchanged in OS/2 protect mode or on an 8086 running MS-DOS 2.x
or 3.x.1 Thus, developers don't have to choose between writing applica
tions that are OS/2 protect mode and writing applications that are
MS-DOS compatible; they can use the Family API mechanism and do
both. Your applications will run as protected mode applications under
OS/2 and as MS-DOS applications under a true MS-DOS system.

Clearly, the Family API is a noteworthy feature. It offers some OS/2
functions, together with the dynamic link system interface, to programs
that run under MS-DOS without a copy of OS/2 anywhere in sight. It
does this by providing an OS/2 compatibility library that accepts the
OS/2 system interface calls and implements them itself, calling the un
derlying MS-DOS system via INT 21 as necessary. This information
should give you a big head start in figuring out which OS/2 functions
are included in the Family API: Clearly all functions that have similar
INT 21 functions-such as DosOpen, DosRead, and DosAllocSeg
are supported. Also present are functions, such as DosSubAlloc, that
can be supported directly by the special Family API library. Features
that are extremely difficult to support in a true MS-DOS environment,
such as multiple threads and asynchronous I/O, are not present in the
Family API.

Where does this library come from? And how does it get loaded by
MS-DOS to satisfy the OS/2 executable's dynlink requests? It's all
done with mirrors, as the expression goes, and the "mirrors" must be
built into the application's .EXE file b~cause that file is all that's pres
ent when a Family API application is executed under MS-DOS. Figure
20-1 shows the layout of a Family API .EXE file.

OS/2 needed to define a new .EXE file because the existing
MS-DOS .EXE file format contained too little information for the
OS/2 protect mode segmented environment. Because, as we've dis
cussed, the 8086 memory architecture is-despite the terminology
normally used-a linear memory architecture, the MS-DOS .EXE for
mat described only a single hunk of memory that was to be loaded

1. Of course, they also run in the MS-DOS 3.x compatible screen group under OS/2; but ex
cept for convenience utilities, it's generally a waste to dedicate the one real mode screen group
to running an application that could run in any of the many protect mode screen groups.

Figu re 20-1.

Family API
.EXE

OS/2
.EXE header

OS/2
application
segments

Dynlink
names

Family API executable (.EXE) format.

Chapter 20 Family API 253

Shaded area is
read by MS-DOS as
a real mode
application

contiguously. OS/2 needs each segment described separately, with in
formation on its status: read only, code or data, demand load or preload,
and so on. Naturally, OS/2 also needs a .EXE format with special
records to describe loadtime dynamic links. This new .EXE format
was defined so that its initial bytes look exactly like those of the old
MS-DOS .EXE file header. A special flag bit is set in this fake .EXE

254 PART II THE ARCHITECTURE

header that is ignored by all releases of MS-DOS but that OS/2 recog
nizes to mean "It's not true. I'm really an OS/2 .EXE file. Seek to this
location to find the true, new-style .EXE header."

When an MS-DOS system is told to load this .EXE file, it sees and
believes the old .EXE file header. This header does not describe the ap
plication itself but a body of special code built into the .EXE file before
the actual application's code: the Family API loader and library. In
other words, to MS-DOS this .EXE file looks like a valid, executable
program, and that program is the Family API loader and library. The
Family API loader and library are loaded into memory, and execution
begins. MS-DOS doesn't load in the body of the application itself
because it wasn't described as part of the load image in the special
MS-DOS .EXE file header. As soon as it starts to execute, the Family
API loader begins reading in the application's segments, performs a
loader's general relocation chores, and fixes up dynlink references to
the proper entry points in the Family API library package. When the
application is loaded, the Family API loader block moves the applica
tion to its final execution address, which overlays most of the Family
API loader to reclaim that space, and execution begins.

All OS/2 .EXE files have this fake MS-DOS .EXE format header. In
non - Family API executables, the Family API loader and library are
missing, and by default the header describes an impossibly big
MS-DOS executable. Should the application be accidentally run under
a non -OS/2 system or in the OS/2 compatibility screen group,
MS-DOS will refuse to load the program. Optionally, the programmer
can link in a small stub program that goes where the Family API loader
would and that prints a more meaningful error message. As we said
earlier, the old-style .EXE headers on the front of the file contain a flag
bit to alert OS/2 to the presence of a new-style .EXE header further into
the file. Because this header doesn't describe the Family API loader
and library parts of the file, OS/2 ignores their presence when it loads a
Family API application in protected mode; the application's dynlink
references are fixed up to the normal dynlink libraries, and the Family
API versions of those libraries are ignored.

There Ain't No Such Thing As A Free Lunch, and the same unfortu
nately applies to the Family API mechanism. First, although the

Chapter 20 Family API 255

Family API allows dynlink calls to be used in an MS-DOS environ
ment, this is not true dynlinking; it's quasi dynlinking. Obviously, run
time dynlinking is not supported, but even loadtime dynlinking is
special because the dynlink target library is bound into the .EXE file.
One of the advantages of dynlinks is that the target code is not part of
the .EXE file and can therefore be changed and upgraded without
changing the .EXE file. This is not true of the dynlink emulation li
brary used by the Family API because it is built into the .EXE file. For
tunately, this disadvantage isn't normally a problem. Dynlink libraries
are updated either to improve their implementation or to add new fea
tures. The Family API library can't be improved very much because its
environment-MS-DOS-is limited and unchanging. If new Family
API features were added, loading that new library with preexisting
Family API .EXE files would make no sense; those programs wouldn't
be calling the new features.

A more significant drawback is the size and speed hit that the
Family API introduces. Clearly, the size of a Family API .EXE file is
extended by the size of the Family API loader and the support library.
The tools used to build Family API executables include only those li
brary routines used by the program, but even so the library and the
loader add up to a nontrivial amount of memory - typically 10 KB to
14 KB in the .EXE file and perhaps 9 KB (the loader is not included) in
RAM. Finally, loading a Family API application under MS-DOS is
slower than loading a true MS-DOS .EXE file. Comparing loadtime
against the loadtime of MS-DOS is tough for any operating system
because loading faster than MS-DOS is difficult. The .EXE file con
sists of a single lump of contiguous data that can be read into memory
in a single disk read operation. A relocation table must also be read, but
it's typically very small. It's hard for any system to be faster than this.
Clearly, loading a Family API application is slower because the loader
and library must be loaded, and then they must, a segment at a time,
bring in the body of the application.

Although the Family API makes dual environment applications pos
sible, it can't totally hide from an application the difference between
the MS-DOS 3.x and the OS/2 execution .environment. For example,
the Family API supports only the DosFindFirst function for a single

256 PART II THE ARCHITECTURE

search handle at a time. An application that wants to perform multiple
directory searches simultaneously should use DosGetMachineMode
to determine its environment and then use the unrestricted
DosFindFirst function if running in protect mode or use the INT 21
functions if running in real mode. Likewise, an application that wants
to manipulate printer data needs to contain version-specific code to
hook INT 17 or to use device monitors, depending on the environment.

Part Ill

The Future

21

The Future
This chapter is difficult to write because describing the second version
of OS/2 becomes uninteresting when that version is released. Further
more, preannouncing products is bad practice; the trade-offs between
schedule and customer demand can accelerate the inclusion of some
features and postpone others, often late in the development cycle. If we
talk explicitly about future features, developers may plan their work
around the availability of those features, and be left high and dry if said
features are postponed. As a result, this chapter is necessarily vague
about both the functional details and the release schedule, discussing
future goals for features rather than the features themselves. Design
your application, not so that it depends on the features described here,
but so that it is compatible with them.

OS/2 version 1.0 is the first standard MS-DOS-compatible operat
ing system that unlocks the memory-addressing potential of the
80286-a "train" that will "pull" a great many APIs into the stan
dard. On the other hand, foreseeable future releases cannot expect such
penetration, so the designers of OS/2 version 1.0 focused primarily on
including a full set of APIs. Major performance improvements were
postponed for future releases simply because such improvements can
be easily added later, whereas new APIs cannot. Most of the planned
work is to take further advantage of existing interfaces, not to create
new ones.

21.1 File System
Clearly, the heart of the office automation environment is data -lots of
data-searching for it, reading it, and, less frequently, writing it. A

260 PART III THE FUTURE

machine's raw number-crunching capacity is relatively uninteresting
in this milieu; the important issue is how fast the machine can get the
data and manipulate it. Certainly, raw CPU power is advantageous; it
allows the use of a relatively compute bound graphical user interface,
for example. But I/O performance is becoming the limiting factor,
especially in a multitasking environment. Where does this data come
from? If it's from the keyboard, no problem; human typing speeds are
glacially slow to a computer. If the data is from a non-mass-storage
device, OS/2' s direct device access facilities should provide sufficient
throughput. That leaves the file system for local disks and the network
for remote data. The file system is a natural for a future release up
grade. Its interface is generic so that applications written for the first
release will work compatibly with new file systems in subsequent
releases.

Talking about pending file system improvements is relatively easy
because the weaknesses in the current FAT file system are obvious.

• Large Disk Support
Clearly, a new file system will support arbitrarily large disks
without introducing prohibitive aUocation fragmentation. Alloca
tion fragmentation refers to the minimum amount of disk space
that a file system can allocate to a small file- the allocation unit.
If the allocation unit is size N, the average file on the disk is ex
pected to waste N/2 bytes of disk space because each file has a
last allocation unit and on the average that unit will be only half
filled. Actually, if the allocation unit is large, say more than 2
KB, the average fragmentation loss is greater than this estimate
because a disproportionate number of files are small.

The existing MS-DOS FAT file system can handle large disks,
but at the cost of using very large allocation units. Depending on
the number and the size of the files, a 100 MB disk might be as
much as 50 percent wasted by this fragmentation. The new
Microsoft file system will support a very small allocation unit
probably 512 bytes-to reduce this fragmentation, and this small
allocation unit size will not adversely affect the performance of
the file system.

Chapter 21 The Future 261

• File Protection
A new file system also must support file access protection as part
of the move toward a fully secure environment. File protection is
typically a feature of multiuser operating systems; the MS-DOS
FAT file system was designed for a single-user environment and
contains no protection facilities. So why do we need them now?
One reason is that a networked PC is physically a single-user
machine, but logically it's a multiuser machine because multiple
users can access the same files over the network. Also, as we shall
see, it is sometimes useful to be able to protect your own files
from access by yourself.

Today, most network installations consist of server machines
and client machines, with client machines able to access only files
on server machines. MSNET and PCNET servers have a rudi
mentary form of file protection, but it needs improvement (see
below). In the future, as machines become bigger and as products
improve, files on client machines will also be available across the
network. Clearly, a strong protection mechanism is needed to
eliminate risks to a client machine's files. Finally, a file protec
tion mechanism can be useful even on a single-user machine that
is not accessible from a network. Today a variety of "Trojan"
programs claim to be one thing but actually are another. In a non
networked environment, these programs are generally examples
of mindless vandalism; typically, they purge the contents of the
victim's hard disk. In a future office environment, they might edit
payroll files or send sensitive data to someone waiting across the
network. If you, as a user, can put sensitive files under password
protection, they are safe even from yourself when you unwittingly
run a Trojan program. That program doesn't know the password,
and you certainly will decline to supply it. Self-protection also
prevents someone from sitting down at your PC while you are at
lunch or on vacation and wreaking havoc with your files.

Protection mechanisms take two general forms: capability
tokens and access lists. A capability token gives access to an object
if the requestor can supply the proper token, which itself can take
a variety of forms. A per-file or per-directory password, such as is
available on existing MSNET and PCNET products, is a kind of

262 PART III THE FUTURE

capability token: If you can present the pas,sword, you can access
the file. Note that the password is associated with the item, not the
user. The front door key to your house. is a good example of a ca
pability token, and it shows the features and limitations of the
approach very well. Access to your house depends on owning the
capability token-the key-and not on who you are. If you don't
have your key, you can't get in, even if it's your own house. Any
body that does have the key can get in, no matter who they are. A
key can sometimes be handy: You can loan it to someone for a day
and then get it back. You can give it to the plumber's office, for
example, and the office can give it to the plumber, who can in
turn give it to an assistant. Capability tokens are flexible because
you can pass them around without notifying the owner of the pro
tected object.

This benefit is also the major drawback of capability token sys
tems: The capabilities can be passed around willy-nilly and, like a
key, can be duplicated. Once you give your key out, you never
know if you've gotten "them" back again. You can't enumerate
who has access to your house, and if they refuse to return a key or
if they've duplicated it, you can't withdraw access to your house.
The only way to regain control over your house is to change the
lock, which means that you have to reissue keys to everybody who
should get access. In the world of houses and keys, this isn't much
of a problem because keys aren't given out that much and it's easy
to contact the few people who should have them. Changing the ca
pability "lock" on a computer file is much more difficult, how
ever, because it may mean updating a great many programs that
are allowed access, and they all have to be updated simulta
neously so that none is accidentally locked out. And, of course, the
distribution of the new capability token must be carried out
securely; you must ensure that no "bad guy" gets a chance to see
and copy the token.

And, finally, because a separate capability token, or password,
needs to be kept for each file or directory, you can't possibly
memorize them all. Instead, they get built into programs, stored in
files, entered into batch scripts, and so on. All these passwords-

Chapter 21 The Future 263

the ones that are difficult to change because of the hassle of updat
ing everybody-are being kept around in "plain text" in stan
dardized locations, an invitation for pilferage. And just as the lock
on your door won't tell you how many keys exist, a capability
token system won't be able to warn you that someone has stolen a
copy of the capability token.

An alternative approach is t..he access list mechanism. It is
equivalent to the guard at the movie studio gate who has a list of
people on his clipboard. Each protected object is associated with a
list of who is allowed what kind of access. It's easy to see who has
access-simply look at the list. It's easy to give or take away ac
cess-simply edit the list. Maintaining the list is easy because no
change is made unless someone is to be added or removed, and the
list can contain group names, such as "anyone from the produc
tion department" or "all vice presidents. "

The fly in this particular ointment-and the reason that
MSNET didn't use this approach-is in authenticating the iden
tification of the person who wants access. In our movie studio, a
picture badge is probably sufficient.1 With the computer, we use a
personal password. This password doesn't show that you have ac
cess to a particular file; it shows that you are who you claim to be.
Also, because you have only one password, you can memorize it;
it needn't be written on any list. Finally, you can change the pass
word frequently because only one person-the one changing it,
you - needs to be notified. Once the computer system knows that
you're truly Hiram G. Hornswoggle, it grants or refuses access
based on whether you're on an access list or belong to a group that
is on an access list. MS-DOS can't use this approach because it's
an unprotected system; whatever flag it sets in memory to say that
you have properly authenticated yourself can be set by a cheater
program. OS/2 is a protect mode operating system and is secure
from such manipulation provided that no untrusted real mode
applications are executed.2 A networking environment provides
an extra challenge because you can write a program-perhaps

1. Note that the photo on the badge, together with a hard-to-duplicate design, keeps the badge
from being just another capability token.
2. A future OS/2 release will take advantage of the 80386 processor's virtual real mode
facility to make it safe to run untrusted real mode programs on an 80386.

264 PART III THE FUTURE

running on an MS-DOS machine to avoid protection mecha
nisms-that "sniffs" the network, examining every communica
tion. A client machine can't send a plain-text password over the
network to authenticate its user because a sniffer could see it. And
it certainly can't send a message saying, "I'm satisfied that this is
really Hiram." The client machine may be running bogus soft
ware that will lie and say that when it isn't true. In other words, a
network authentication protocol must assume that "bad guys"
can read all net transmissions and can generate any transmission
they wish.

As should be clear by now, a future OS/2 file system will sup
port per-object permission lists. OS/2 will be enhanced to support
users' identifying themselves by means of personal passwords.
Future network software will support a secure network authen
tication protocol.

A new file system will do more than support access lists; it will also
support filenames longer than the FAT 8.3 convention, and it will sup
port extended file attributes. The FAT file system supports a very
limited set of attributes, each of which are binary flags - system, hid
den, read-only, and so on. Extended attributes allow an arbitrary set of
attributes, represented as text strings, to be associated with each file.
Individual applications will be able to define specific attributes, set
them on files, and later query their values. Extended attributes can be
used, for example, to name the application that created the file. This
would allow a user to click the mouse over the filename on a directory
display and have the presentation manager bring up the proper applica
tion on that file.

Finally, although this file system wish list looks pretty good, how do
we know that we've covered all the bases? And will our new file sys
tem work well with CD-ROM3 disks and WORM drives? The answers
are "We don't" and "It doesn't," so a future OS/2 release will support
installable file systems. An installable file system is similar to an install
able device driver. When the system is initialized, not only device
drivers but new file system management packages can be installed into
OS/2. This will allow specialized file systems to handle specialized

3. Special versions of compact discs that contain digital data instead of digitized music. When
accessed via a modified CD player, they provide approximately 600 MB of read-only storage.

Chapter 21 The Future 265

devices such as CD-ROMs and WORM, as well as providing an easy
interface to media written on foreign file systems that are on non
MS-DOS or non-OS/2 systems.

21.2 The 80386
Throughout this book, the name 80386 keeps cropping up, almost as a
kind of magical incantation. To a system designer, it is a magical
device. It provides the protection facilities of the 80286, but it also pro
vides three other key features.

21.2.1 Large Segments
The 80386 has a segmented architecture very much like that of the
80286, but 80286 segments are limited to 64 KB. On the 80386, seg
ments can be as large as 4 million KB; segments can be so large that an
entire program can run in 2 segments (one code and one data) and es
sentially ignore the segmentation facilities of the processor. This is
called flat model. Writing programs that deal with large structures is
easier using flat model, and because compilers have a hard time gener
ating optimal segmented code, converting 8086/80286 large model
programs to 80386 flat model can produce dramatic increases in execu
tion speed.

Although a future release of OS/2 will certainly support large seg
ments and applications that use· flat model internally, OS/2 will not
necessarily provide a flat model API. The system API for 32-bit appli
cations may continue to use segmented (that is, 48-bit) addresses.

21.2.2 Multiple Real Mode Boxes
The 80386 provides a mode of execution called virtual real mode. Pro
cesses that run in this mode execute instructions exactly as they would
in real mode, but they are not truly in real mode; they are in a special
8086-compatible protected mode. The additional memory management
and protection facilities that this mode provides allow a future version
of OS/2 to support more than one real mode box at the same time;
multiple real mode applications will be able to execute simultaneously
and to continue executing while in background mode. The virtual real
mode eliminates the need for mode switching; thus, the user can ex
ecute real mode applications while running communications applica
tions that have a high interrupt rate.

266 PART III THE FUTURE

21.2.3 Full Protection Capability
The virtual real mode capability, coupled with the 80386's ability to
allow/disallow I/O access on a port-by-port basis, provides the hard
ware foundation for a future OS/2 that is fully secure. In a fully secure
OS/2, the modules loaded in during bootup-the operating system it
self, device drivers, install able file systems, and so on-must be
trusted, but no other program can accidentally or deliberately damage
others, read protected files, or otherwise access or damage restricted
data. The only damage an aberrant or malicious program will be able to
do is to slow down the machine by hogging the resources, such as con
suming most of the RAM or CPU time. This is relatively harmless; the
user can simply kill the offending program and not run it anymore.

21.2.4 Other Features
The 80386 contains other significant features besides speed, such as
paged virtual memory, that don't appear in an API or in a specific user
benefit. For this reason, we won't discuss them here other than to state
the obvious: An 80386 machine is generally considerably faster than an
80286-based one.

So what do these 80386 features mean for the 80286? What role will
it play in the near and far future? Should a developer write for the
80286 or the 80386? First, OS/2 for the 803864 is the same operating
system, essentially, as OS/2 for the 80286. The only new API in 80386
OS/2 will be the 32-bit wide one for 32-bit mode 80386-only binaries.
The other features-such as virtual memory, I/O permission mapping,
and multiple real mode boxes-are of value to the user but don't pre
sent any new APIs and therefore are compatible with all applications.
Certainly, taking advantage of the 80386' s new instruction order codes
and 2A32-byte-Iength segments will require a new API; in fact, a pro
gram must be specially written and compiled for that environment.
Only applications that can't function at all using the smaller 80286-
compatible segments need to become 80386 dependent; 80286 protect
mode programs will run without change and without any disadvantage
on the 80386, taking advantage of its improved speed.

To summarize, there is only one operating system, OS/2. OS/2 sup
ports 16-bit protected mode applications that run on all machines, and

4. A product still under development at the time of this writing. All releases of OS/2 will run
on the 80386, but the initial OS/2 release treats the 80386 as a "fast 80286. " The only 80386
feature it uses is the faster mode-switching capability.

Chapter 21 The Future 267

OS/2 will support 32-bit protected mode applications that will run only
on 80386 machines. A developer should consider writing an application
for the 32-bit model5 only if the application performs so poorly in the
16-bit model that a 16-bit version is worthless. Otherwise, one should
develop applications for the 16-bit model; such applications will run
well on all existing OS/2-compatible machines and on all OS/2
releases. Later, when the 80386 and OS/2-386 have sufficient market
penetration, you may want to release higher-performance upgrades to
products that require the 80386.

21.3 The Next Ten Years
Microsoft believes that OS/2 will be a major influence in the personal
computer industry for roughly the next ten years. The standardization
of computing environments that mass market software brings about
gives such standards abnormal longevity, while the incredible rate of
hardware improvements brings on great pressure to change. As a result,
we expect OS/2 to live long and prosper, where long is a relative term
in an industry in which nothing can survive more than a decade. What
might OS/2's successor system look like? If we could answer that to
day, a successor system would be unnecessary. Clearly, the increases in
CPU performance will continue. Personal computers will undoubtedly
follow in the footsteps of their supercomputer brethren and become
used for more than calculation, but also for simulation, modeling, and
expert systems, not only in the workplace but also in the home. The fu
ture will become clearer, over time, as this most wonderful of tools
continues to change its users.

The development of OS/2 is, to date, the largest project that
Microsoft has ever taken on. From an initially very small group of
Microsoft engineers, to a still small joint Microsoft-IBM design team,
to finally a great many developers, builders, testers, and documenters
from both Microsoft and IBM, the project became known affec
tionately as the "Black Hole."

As I write this, OS/2 is just weeks away from retail sale. It's been a
great pleasure for me and for the people who worked with me to see our
black hole begin to give back to our customers the fruits of the labors
that were poured into it.

5. When it is announced and documented.

Glossary

anonymous pipe
a data storage buffer that OS/2 maintains in RAM; used for inter
process communications.

Applications Program Interface (API)
the set of calls a program uses to obtain services from the operating
system. The term API denotes a service interface, whatever its form.

background category
a classification of processes that consists of those associated with a
screen group not currently being displayed.

call gate
a special LDT or GDT entry that describes a subroutine entry point
rather than a memory segment. A far call to a call gate selector will
cause a transfer to the entry point specified in the call gate. This is a
feature of the 80286i80386 hardware and is normaily used to provide a
transition from a lower privilege state to a higher one.

captive thread
a thread that has been created by a dynlink package and that stays
within the dynlink code, never transferring back to the client process's
code; also a thread that is used to call a service entry point and that will
never return or that will return only if some specific event occurs.

child process
a process created by another process (its parent process).

closed system
hardware or software design that cannot be enhanced in the field by
third-party suppliers.

command subtree
a process and all its descendants.

270 Glossary

context switch
the act of switching the CPU from the execution of one thread to
another, which may belong to the same process or to a different one.

cooked mode
a mode established by programs for keyboard input. In cooked mode,
OS/2 handles the line-editing characters such as the back space.

critical section
a body of code that manipulates a data resource in a non-reentrant way.

daemon program
a process that performs a utility function without interaction with the
user. For example, the swapper process is a daemon program.

debuggee
the program being debugged.

debugger
a program that helps the programmer locate the source of problems
found during runtime testing of a program.

device driver
a program that transforms I/O requests made in a standard, device
independent fashion into the operations necessary to make a specific
piece of hardware fulfill that request.

device monitor
a mechanism that allows processes to track and/or modify device data
streams.

disjoint LDT space
the LDT selectors reserved for memory objects that are shared or that
may be shared among processes.

Glossary 271

dynamic link
a method of postponing the resolution of external references until load
time or runtime. A dynamic link allows the called subroutines to be
packaged, distributed, and maintained independently of their callers.
OS/2 extends the dynamic link (or dynlink) mechanism to serve as the
primary method by which all system and nonsystem services are
obtained.

dynlink
see dynamic link.

dynlink library
a file, in a special format, that contains the binary code for a group of
dynamically linked subroutines.

dynlink routine
see dynamic link.

dynlink subsystem
a dynlink module that provides a set of services built around a resource.

encapsulation
the principle of hiding the internal implementation of a program, func
tion, or service so that its clients can tell what it does but not how it does
it.

environment strings
a series of user-definable and program-definable strings that are associ
ated with each process. The initial values of environment strings are es
tablished by a process's parent.

exitlist
a list of subroutines that OS/2 calls when a process has terminated. The
exitlist is executed after process termination but before the process is
actually destroyed.

272 Glossary

Family Applications Program Interface (Family API)
a standard execution environment under MS-DOS versions 2.x and 3.x
and OS/2. The programmer can use the Family API to create an appli
cation that uses a subset of OS/2 functions (but a superset of MS-DOS
3.x functions) and that runs in a binary-compatible fashion under
MS-DOS versions 2.x and 3.x and OS/2.

file handle
a binary value that represents an open file; used in all file I/O calls.

file locking
an OS/2 facility that allows one program to temporarily prevent other
programs from reading and/or writing a particular file.

file system name space
names that have the format of filenames. All such names will even
tually represent disk "files" -data or special. Initially, some of these
names are kept in internal OS/2 RAM tables and are not present on any
disk volume.

forced event
an event or action that is forced upon a thread or a process from an ex
ternal source; for example, a Ctrl-C or a DosKill command.

foreground category
a classification of processes that consists of those associated with the
currently active screen group.

GDT
see global descriptor table.

general priority category
the OS/2 classification of threads that consists of three subcategories:
background, foreground, and interactive.

general protection (GP) fault
an error that occurs when a program accesses invalid memory locations
or accesses valid locations in an invalid way (such as writing into read
only memory areas).

Glossary 273

giveaway shared memory
a shared memory mechanism in which a process that already has access
to the segment can grant access to another process. Processes cannot
obtain access for themselves; access must be granted by another
process that already has access.

global data segment
a data segment that is shared among all instances of a dynlink routine;
in other words, a single segment that is accessible to all processes that
call a particular dynlink routine.

global descriptor table (GDT)
an element of the 80286/80386 memory management hardware. The
GDT holds the descriptions of as many as 4095 global segments. A
global segment i& accessible to all processes.

global subsystem initialization
a f~cility that allows a dynlink routine to specify that its initialize entry
point should be called when the dynlink package is loaded on behalf of
its first client.

grandparent process
the parent process of a process that created a process.

handle
an arbitrary integer value that OS/2 returns to a process so that the
process can return it to OS/2 on subsequent calls; known to program
mers as a magic cookie.

hard error
an error that the system detects but which it cannot correct without user
intervention.

hard error daemon
a daemon process that services hard errors. The hard error daemon may
be an independent process, or it may be a thread that belongs to the ses
sion manager or to the presentation manager.

274 Glossary

huge segments
a software technique that allows the creation and use of pseudo seg
ments larger than 65 KB.

install able file system (IFS)
a body of code that OS/2 loads at boot time and that provides the soft
ware to manage a file system on a storage device, including the ability
to create and maintain directories, allocate disk space, and so on.

instance data segment
a memory segment that holds data specific to each instance of the
dynlink routine.

instance subsystem initialization
a service that dynlink routines can request. A dynlink routine's initial
ize entry point is called each time a new client is linked to the routine.

interactive category
a classification of processes that consists of the process currently in
teracting with the keyboard.

interactive program
a program whose function is to obey commands from a user, such as an
editor or a spreadsheet program. Programs such as compilers may
literally interact by asking for filenames and compilation options, but
they are considered non interactive because their function is to compile
a source program, not to provide answers to user-entered commands.

interprocess communications (IPC)
the ability of processes and threads to transfer data and messages
among themselves; used to offer services to and receive services from
other programs.

interruptible block
a special form of a blocking operation used inside the OS/2 kernel so
that events such as process kill and Ctrl-C can interrupt a thread that is
waiting, inside OS/2, for an event.

Glossary 275

1/0 privilege mechanism
a facility that allows a process to ask a device driver for direct access to
the device's I/O ports and any dedicated or mapped memory locations
it has. The I/O privilege mechanism can be used directly by an applica
tion or indirectly by a dynlink package.

IPC
see interprocess communications.

KBD
an abbreviated name for the dynlink package that manages the key
board device. All its entry points start with Kbd.

kernel
the central part of OS/2. It resides permanently in fixed memory loca
tions and executes in the privileged ring 0 state.

LDT
see local descriptor table.

ioadiime dynamic Hnking
the act of connecting a client process to dynamic link libraries when the
process is first loaded into memory.

local descriptor table (LDT)
an element of the 80286/80386 memory management hardware. The
LDT holds the descriptions of as many as 4095 local segments. Each
process has its own LDT and cannot access the LDTs of other
processes.

logical device
a symbolic name for a device that the user can cause to be mapped to
any physical (actual) device.

logical directory
a symbolic name for a directory that the user can cause to be mapped to
any actual drive and directory.

276 Glossary

low priority category
a classification of processes that consists of processes that get CPU time
only when no other thread in the other categories needs it; this category
is lower in priority than the general priority category.

magic cookie
see handle.

memory manager
the section of OS/2 that allocates both physical memory and virtual
memory.

memory overcommit
allocating more memory to the running program than physically exists.

memory suballocation
the OS/2 facility that allocates pieces of memory from within an appli
cation's segment.

MOU
an abbreviated name for the dynlink package that manages the mouse
device. All its entry points start with Mou.

multitasking operating system
an operating system in which two or more programs/threads can exe
cute simultaneously.

named pipe
a data storage buffer that OS/2 maintains in RAM; used for inter
process communication.

named shared memory
a memory segment that can be accessed simultaneously by more than
one process. Its name allows processes to request access to it.

open system
hardware or software design that allows third-party additions and up
grades in the field.

Glossary 277

object name buffer
the area in which OS/2 returns a character string if the DosExecPgm
function fails.

parallel multitasking
the process whereby programs execute simultaneously.

parent process
a process that creates another process, which is called the child process.

pbysical memory
the RAM (Random Access Memory) physically present inside the
machine.

PID (Process Identification Number)
a unique code that OS/2 assigns to a process when the process is
created. The PID may be any value except O.

pipe
see anonymous pipe; named pipe.

presentation manager
the graphical user interface for OS/2.

priority
(also known as CPU priority) the numeric value assigned to each run
nable thread in the system. Threads with a higher priority are assigned
the CPU in preference to those with a lower priority.

privilege mode
a special execution mode (also known as ring 0) supported by the
80286/80386 hardware. Code executing in this mode can execute
restricted instructions that are used to manipulate key system struc
tures and tables. Only the OS/2 kernel and device drivers run in this
mode.

278 Glossary

process
the executing instance of a binary file. In OS/2, the terms task and
process are used interchangeably. A process is the unit of ownership,
and processes own resources such as memory, open files, dynlink
libraries, and semaphores.

protect mode
the operating mode of the 80286 microprocessor that allows the operat
ing system to use features that protect one application from another;
also called protected mode.

queue
an orderly list of elements waiting for processing.

RAM semaphore
a kind of semaphore that is based in memory accessible to a thread;
fast, but with limited functionality. See system semaphore.

raw mode
a mode established by programs for keyboard input. In raw mode OS/2
passes to the caller each character typed immediately as it is typed. The
caller is responsible for handling line-editing characters such as the
back space.

real mode
the operating mode of the 80286 microprocessor that runs programs
designed for the 8086/8088 microprocessor.

record locking
the mechanism that allows a process to lock a range of bytes within a
file. While the lock is in effect, no other process can read or write those
bytes.

ring 3
the privilege level that is used to run applications. Code executing at
this level cannot modify critical system structures.

Glossary 279

runtime dynamic linking
the act of establishing a dynamic link after a process has begun execu
tion. This is done by providing OS/2 with the module and entry point
names; OS/2 returns the address of the routine.

scheduler
the part of OS/2 that decides which thread to run and how long to run it
before assigning the CPU to another thread; also, the part of OS/2 that
determines the priority value for each thread.

screen group
a group of one or more processes that share (generally in a serial
fashion) a single logical screen and keyboard.

semaphore
a software flag or signal used to coordinate the activities of two or
more threads; commonly used to protect a critical section.

serial multitasking
the process whereby multiple programs execute, but only one at a time.

session manager
a system utility that manages screen group switching. The session man
ager is used only in the absence of the presentation manager; the pre
sentation manager replaces the session manager.

shared memory
a memory segment that can be accessed simultaneously by more than
one process.

signaling
using semaphores to notify threads that certain events or activities have
taken place.

signals
notification mechanisms implemented in software that operate in a
fashion analogous to hardware interrupts.

280 Glossary

software tools approach
a design philosophy in which each program and application in a pack
age is dedicated to performing a specific task and doing that task very
well. See also encapsulation.

stack frame
a portion of a thread's stack that contains a procedure's local variables
and parameters.

static linking
the combining of multiple compilands into a single executable file,
thereby resolving undefined external references.

single-tasking
a computer environment in which only one program runs at a time.

swapping
the technique by which some code or data in memory is written to a
disk file, thus allowing the memory it was using to be reused for
another purpose.

system semaphore
a semaphore that is implemented in OS/2's internal memory area;
somewhat slower than RAM semaphores, but providing more features.

System File Table (SFT)
an internal OS/2 table that contains an entry for every file currently
open.

task
see process.

thread
the OS/2 mechanism that allows more than one path of execution
through the same instance of an application program.

thread ID
the handle of a particular thread within a process.

Glossary 281

thread of execution
the passage of the CPU through the instruction sequence.

time-critical priority
a classification of processes that may be interactive or noninteractive,
in the foreground or background screen group, which have a higher
priority than any non-time-critical thread in the system.

time slice
the amount of execution time that the scheduler will give a thread
before reassigning the CPU to another thread of equal priority.

VIO
an abbreviated name of the dynlink package that manages the display
device. All its entry points start with Vio.

virtual memory
the memory space allocated to and used by a process. At the time it is
being referenced, the virtual memory must be present in physical mem
ory, but otherwise it may be swapped to a disk file.

virtualization
the general technique of hiding a complicated actual situation behind a
simple, standard interface.

writethrough
an option available when a file write operation is performed which
specifies that the normal caching mechanism is to be sidestepped and
the data is to be written through to the disk surface immediately.

3xbox
the OS/2 environment that emulates an 8086-based PC running MS
DOS versions 2.x or 3.x.

3x box 245-50, 281
80286 processor 7,14,19

bugs in 71
I/O access control in 239
segmented architecture of 96
size of segments 128

80386 processor 14
I/O access control in 239
key features of 265-67

8080 processor 5
8086/8088 processor 5

memory limitations of 26
real mode 19-20

A
Abort, Retry, Ignore message

(MS-DOS) 233
access lists 261-64
addresses

invalid 108
subroutine 104

addressing, huge model 131
address offsets 97
address space, linear 124
allocation. See also memory

file 260
memory 123-44

anonymous pipes 49-52,158,269
API

80386 processor 266
Family 251-56, 272
memory management 126-36

Apple Macintosh 29
application environment. See

environment
application mode 225
applications

"combo" 17
command 191
communicating between 17
compatibility with MS-DOS

19-24
designing for both OS/2 and

MS-DOS 251-56
device monitors and 209
dual mode 131
I/O-bound 81
protecting 15-16
real mode 142
running MS-DOS 245-50
time-critical 82-83

Applications Program Interface.
See API

Family 24
architecture

80386 processor 265
design concepts of OS/2 25-37
device driver 11-12

INDEX

architecture (continued)
I/O 186-91
segmented 96, 124

arguments
DosCWait64
DosExecPgm 60

ASCII text strings 62
ASCIIZ strings 28
asynchronous I/O 197, 226
asynchronous processing 72
atomic operation 152, 212

B
background

category 79-80, 269
I/O 178-79
processing 71-72
threads and applications 79-80

base segment 130
BAT files, MS-DOS 33
BIOS entry vector, hooking the

205
blocking services 81, 202
block mode

device drivers 226
driver algorithm 229

blocks, interruptible 274
boot process 126
boot time, installing device

drivers at 222
breakthroughs, technological 26
buffer reusability 165
buffers

flushing 215
monitor 209

bugs
80286 processor 71
program 29

byte-stream mechanism 158

C
call gate 108, 269
call and return sequence, OS/2

181,206
call statements, writing for

dynamic link routines 96
call timed out error 218
capability tokens 261-62
captive threads 76, 269
categories, priority 74-82
Central Processing Unit. See CPU
character mode 177

device driver model for 226
child processes 34, 44-67,

186-87,269
controlling 66-67

CHKDSK 215-16

circular references 115
CLI instruction 134
client processes 95, 110, 127
closed system 28, 110, 269
clusters 197
CMD.EXE 48-49, 62

I/O architecture and 186-91
iogicai device and directory

names 148-49
code, swapping 138
CodeView61
command application 191
COMMAND.COM 247
command mode 191
command processes 193
command subtrees 56-58, 269

controlling 66-67
command threads 71
communication, interprocess

17-18, 151-68,274
compatibility

downward 24
functional 23
levels of21
MS-DOS 245-50
name generation and 120
VIO and presentation manager

86-87
compatibility box 245-50
compatibility issues, OS/2 19-24
compatibility mode 20
computers

mental work and 3
mUltiple CPU 42
networked (see also networks)

16
Von Neumann 29-30

CONFIG.SYS file 141
consistency, design 25
context switching 95, 270
conventions, system 53
cooked mode 270
CP/M, compatibility with 6
CP/M-80 5
CPU 42,69. See also 8086/8088

processor, 80286 processor,
80386 processor

priority 277
crashes, system 16, 35
critical sections 74, 210, 225, 270

protecting 212-16
signals and 172

CS register 169
Ctrl-Break and Ctrl-C 66,

169-73, 191-94
customized environment 10

284 Index

D
daemon, hard error 182-84, 234,

273
daemon interfaces, dynamic links

as 107
daemon program 270
data

global 100
handling in dynamic linking

95-100
instance 98-100
instructions and 30
swapped-out 137

data integrity 210-16
data segments, executing from

131-32
data streams, monitoring 209
debuggee 270
debugger 270

system 61
debugging 240-43
demand loading 132
demand load segment 139
densities, disk 201
design, concepts of OS/2 25-37
design goals 25-37
DevHlp 223, 231
device data streams 206
device drivers 221-32, 270

architecture of 11-12
block mode 226
character mode 226
code structure 230
definition of 11
dynamic link pseudo 238
OS/2 communication and

222-23
programming model for 224-30

device independence 9,176
definition of 11

device management 231
device monitors 206-9, 270
device names 145-49
devices

direct access of 18
logical 275

device-specific code, encapsu-
lating 11

Digital Research 5-6
direct device access 18
directories

ISAM 105
logical 275
working 33

directory names 145-49
directory tree hierarchy 6
disjoint LDT space 96, 99, 270
disk data synchronization 214-16
disk I/O requests 202
disk seek times 202
disk space, allocation of 197
DISKCOMP 201

DISKCOPY 201
disks

,laser 118
unlabeled 201

dispatcher 170
display device, manipulating the

179-84
display memory 180, 222
.DLL files 100
DosAllocHuge 128
DosAllocSeg 128, 252
DosAllocShrSeg 126
DosBufReset 214-16
DosCallNmPipe 163
DosCalls 108
DosClose 51
DosConnectNmPipe 160-61
DosCreateCSAlias 111, 132
DosCreateSem 152
DosCreateThread 70, 84
DosCWait 57-65, 187
DosDevIOCti 238
DosDupHandle 50-52, 56
DosEnterCritSec 75-76, 212
DosErrClass 107
DosError 115
DosExecPgm 51, 59-63, 84, 105,

147,190
DosExit 76
DosExitCritSec 75-76
DosExitList 104, 113, 135, 156,

213
DosFindFirst 255
DosFindNext 119
DosFlagProcess 167
DosFreeModule 94, 113
DosFreeSeg 127, 166
DosGetHugeShift 129
DosGetMachineMode 256
DosGetProcAddr 94
DosGiveSeg 127
DosHoldSignal 134-36, 156, 170
Dos Kill 169, 194,241
DosKiliProcess 57, 66
DosLoadModule 94, 98, 104, 113
DosMakeNmPipe 160-61
DosMakePipe 159
DosMonRead 208
DosMonReq 206
DosMon Write 208
DosMuxSem Wait 155
DosNewSize 216
DosOpen 46, 53-54, 56, 119, 252

named pipes and 159
DosPeekNmPipe 163
DosPtrace 62, 242-43
DosRead 46, 50-52, 70, 202-3,

252
named pipes and 158-64

DosReadQueue 164
DosReallocHuge 130
DosResumeThread 75

DosScanEnv 148
DosSearchPath 148
DosSeek 50-52
DosSemClear 153
DosSemRequest 153
DosSemSet 154
DosSemWait 154-57, 171
DosSetFHandState 54
DosSetPrty 67, 84
DosSetSigHandler 104, 170
DosSetVerify 115
DosSleep 72,171,213,218
DosSubAlloc 132
DosSubFrees 132
DosSuspendThread 75
DosTimerAsync 218
DosTimerStart 218
DosTimerStop 218
DosTransactNmPipe 161
DosWrite 50-52, 70, 202-3, 214

named pipes and 158-64
DosWriteQueue 164, 166
downward compatibility 24
DPATH 147
drive-oriented operations 202
drives, high- and low-density 201
dual mode 131, 231-32
Dynamic Data Exchange (DDE)

166-67
dynamic linking 13, 60

Family API use of 255
loadtime 91-93, 275
runtime 93-95,116,279

dynamic link libraries 14
dynamic link routines, calling 71
dynamic links 89-116, 270

architectural role of 109-10
circular references in 115
details on implementing 110-16
device drivers and 223
interfaces to other processes

105-7
naming 116
side effects of 114-16
using for pseudo device drivers

238
dynlink 271. See also dynamic

links
routines 93

E
encapsulation 16-17, 271

device driver 222
entry ordinals 116
entry point name 116
environment

customized 10
dual mode 232
protected 10
single-tasking 30

environment (continued)
single-tasking versus

multitasking 16
stable 29-34
stand-alone 17
virtualizing the 33

environment block 62
environment strings 34, 62,

145-49,271
EnvPr;inter 62
EnvStcifig 62
error codes, compatibility mode

22
errors

general protection fault 36
hard 182-84,232-36,273
localization of 34-36
program 30-31
timed out 218

.EXE files 89-92, 114
executing 44
Family API 252-53

EXEC function (MS-DOS) 60
execute threads 71
executing programs 190
execution speed 72
exitlist 271
expandability 27-28
extended file attributes 264
extended partitioning 197
extension, filename 117
external name, dynamic link 116

F
Family API 24, 177, 251-56

drawbacks of 255
Family Applications Program

Interface (Family API) 272
far return instruction 140
fault, memory not present 15
fault errors, general protection 36
faults, GP 108
features

additional 27
introducing new operating

system 196
file

allocation, improving 260
attributes, extended 264
handles 45-49, 272
1/044
limits, floppy disk 6
locking 22, 272
protection 261-65
seek position 202
sharing 213
system 195-203

File Allocation Table 118, 198,
260

filenames, OS/2 and MS-DOS
117-18

files
.DLL 100
.EXE 44, 89-92, 114
linking 89-92
naming 117-22
.OBI89-92

file system
future of 259-65
hierarchical 6
insta!lable 118, 264, 274

file system name space 117-22,
272

named pipes and 158
file utilization 34
FIND utility program 249
flags register 169
flat model, 80386 processor 265
flexibility, maximum 26-29
flush operation, buffer 215
forced events 241, 272
foreground

category 272
processing 71-72
threads and applications 80-81

fprintf 46
fragmentation

disk 260
internal 198

functions
addition of 28
resident 108

future versions of OS/2 259-69

G
garbage collection 14
garbage handles 54
general failure error 248
general priority category 78-82,

272
general protection fault (GP fault)

272
errors 36

GetDosVar 232
giveaway shared memory 126,

166,273
global data 100
global data segments 110-11, 230,

273
Global Descriptor Table (GDT)

97-98,123-26,272,273
global subsystem initialization

273
glossary 269-81
goals

design 25-37
OS/2 9-18

GP faults 36, 108, 272
grandparent processes 273
graphical user interface 10-13,

178
standard 85

graphics, VIO and 179-84

Index 285

graphics devices 11-l3
graphics drivers, device

independent 9

H
handles 44-49,273

closing 53-54
closing with dynamic links 114
duplicated and inherited 55
garbage 54
;emaphore 153

hard error daemon 273
hard errors 182-84, 232-36, 273

handling in real mode 247
hardware, nonstandard 18
hardware devices. See devices
hardware interrupts 14

device drivers and 222
hardware-specific interfaces 189
Hayes modems 110
heap algorithm l32
heap objects l32
Hercules Graphics Card 110
hierarchical file system 6
hooking the keyboard vector

31-32
huge memory 128-31
huge model addressing 131
huge segments 128-31,274

IBM PC/AT 7
INCLUDE 148
Independent Software Vendors

(ISVs) 24, 196
industrial revolution, second 3
infosegs 144
inheritance 55-56
INIT 148
initialization

device driver 223
global subsystem 273
instance subsystem 273

initialization entry points,
dynamic link 103-5

input/output. See I/O
installable file system (IFS)

118-19,264,274
instance data 98-100

segment 274
instance subsystem initialization

274
instructions 30

sequence of 69
insufficient memory 21
INT 21 233, 248, 252
INT 2F multiplex function 248
integrated applications 17
integrity, data 210-16
Intel. See also 8086/8088

processor, 80286 processor,
80386 processor

286 Index

Intel (continued)
80286 processor 7,14,19
80386 processor 14, 265-67
8080 processor 5
8086/8088 processor 5,19-20,

26
interactive

category 274
processes 80-81
programs 185-94, 274

interface, user 85-87
interlocking 73-74
internal fragmentation 198
interprocess communication

(lPC) 17-18, 151-68, 274
interrupt handling code 138
interruptible block 241, 274
interrupts

3x box emulation 249
hardware 14
signals and 169

interrupt service routine, device
driver 229

interrupt-time thread 228
interrupt vectors 247

hooking 125
I/O

architecture 186-91
asynchronousl9~226

background 178-79
disk requests 202
efficiency 202-3
file 44,199
port access 238
privilege mechanism 237-40,

275
requesting an operation 81
signals and 171
video 176-84

I/O-bound applications 81
IOCTL call 227, 238
IP register 169
IPC 61. See also interprocess

communication
combining forms of 168
using with dynamic links 106

IRET instruction 169

K
KBD 176, 275
kernel 275

interfacing with dynamic links
107-8

mode 225, 241
keyboard, processes using the 188
keyboard mode, cooked and raw

34
keyboard vector, hooking the

31-32

L
label names, volume 201
large disk support 260
LAR instruction 108
latency, rotational 202
Least Recently Used (LRU)

scheme
levels, compatibility 21
LIB 148
libraries

dynamic link 14
sharing dynamic link 113
subroutine and runtime 90

linear address space 124
linking

dynamic 89-116
static 89-91

loadtime dynamic linking 91-93,
275

local area networks. See networks
Local Descriptor Table (LDT)

97-98,124-26,275
locality of reference 142
localization of errors 34-36
local variables 74
locking, file. See file and record

locking
logical

device and directory name
facility 146

devices 275
directories 275
disks, partitioning 197-98

low priority category 83-84, 276
LSL instruction 108

M
magic cookie 276
mass marketing, software and 195
media volume management

198-202
memory

display 222
huge 128-31
insufficient 21
layout of system 246
limitations of in 8088 processor

26
named shared 276
physical 277
protection 29-32
shared 98, 126-28, 151, 279
shared giveaway 273
swapping 280
swapping segments in 136-44
swapped-out 15
utilization 21-22, 33
video 181
virtual 14, 281

memory management 14-15,
123-44

API 126-36
hardware 8

memory manager 276
definition of 123

memory not present fault 15
memory objects, tracking 14
memory overcommit 14,139,276
memory segments, allocating 70
memory suballocation 132-36,

276
memory unit 29
mental work, mechanizing 3
message mode 159
Microsoft, vision of 3-4
Microsoft Macro Assembler

(MASM) 189-91
model, architectural 188
modes

incompatible 19
keyboard 34

modular tools 36-37
module name 116
monitors, device 206-9
MOU 176, 276
MS-DOS

compatibility with 19-24
environment list 147
expandability of 29
filenames in 117-18
history of 5-8
memory allocation in 125
running applications in OS/2

245-50
version 1.0 5-6
version 2.0 6-7
version 3.0 7
version 4.0 7-8
version 5.0 8
versions of 5-8

multitasking 10,41-67, 276
data integrity and 210-16
definition of 13
device drivers and 224
full 42-43
MS-DOS version 7
parallel 13, 277
serial 13, 41, 279

multiuser systems, thrashing and
142

N
named pipes 158-64, 276

multiple instances of 162
named shared memory 126, 276
name generation, compatibility

and 120
names, dynamic link 116
name set 146
network piggybacking 23

networks
access to 119-20
compatibility on 24
file protection on 261-65
importance of security on 16

network virtual circuit 23
NUMADD program 45-49
NUMARITH application 46-49

o
.OBI files 89-92
obj namebuf 60
object name buffer 277
objects

defining 117-22
file system name space and 121

office automation
objective of 10
operating system for 9

offset registers 124
OPEN function 248
open system 28, 109, 276
operating systems

multitasking 41, 276
other 5

ordinals, entry 116
orphaned semaphores 155-57
overlays, code 132

p
packet, request 11
paged virtual memory 266
paperless office 4
pa~allel multitasking 13,277
parent processes 34, 44-67,

186-87,277
partitioning, extended 197
passwords, file 262
Paterson, Tim 5
PATH 147
pathnames 119
peripherals, high-bandwidth 9
permissions 121-22
physical memory 277
PID 56-58, 277
piggybacking 23
pipes

anonymous 49-52, 158, 269
named 158-64, 276

pointer, seek 55
preemptive scheduler 13, 43, 78
presentation manager 86-87,

176-84,277
choosing between VIO and

177-78
DDE and 166-67

priority 33, 277
categories of 78-84
time-critical 281

priority scheduler 73, 77-84
semaphore 157

privilege mechanism, I/O
237-40,275

privilege mode 12, 277
privilege transition 108
process termination signal

handler 169
processes 44-67, 278

calling from OS/2 207
child 34, 44-67, 269
client 110, 127
command 193
daemon 106
dynamic linking and 95
foreground and background

80-81
grandparent 273
interactive 80-81
interfacing with dynamic links

105-7
parent 34, 44-67, 186-87, 277
problems with multiple 210
threads and 69

processing
asynchronous 72
foreground and background

71-72
processing unit 29
process tree 191-92
programming model, device

drivers 224-30
programs

debugger 240
executing 190
interactive 185-94, 274
running on OS/2 30

program termination signal
169-73

PROMPT 148
protected environment 10
protection 15-16

file 261-65
memory 29-32
model 123-26
side-effects 32-34

protect mode 278
huge model addressing in 131
real mode versus 19-20, 125,

249
protocol, DDE 167
pseudo interrupts 170
Ptrace 240-43
pure segment 111

Q,R
queues 164-66,278
RAM 14-15, 69. See also memory

available 140
semaphores 74, 152, 278

Random Access Memory. See
RAM

random selector values 110
RAS information 144
raw mode 278

Index 287

real mode 278
80386 processor 265
8086 processor 8
applications 142
compatibility box 245-50
device drivers in 231
hard errors in 235
huge model addressing in 131
protect mode versus 19-20, 125,

249
screen group 245-50
swapping in 138

real time, tracking passage of
217-19

record locking 213, 278
redirector code (MS-DOS) 23
reference locality 138
registers

offset 124
segment 124
signals and 169

Reliability, Availability, and
Serviceability (RAS) 144

religion, OS/2 25-37
remote procedure call 163
request packet 11
resident functions 108
resources, manipulating 210
returnO 172
ring 3 278
ring transition 95
ROM BIOS 125, 206, 247
root directory 7
rotational latency 202
runtime dynamic linking 93-95,

116,279
runtime library 90

S
scheduler 279

preemptive 13, 43, 78
priority 33, 73, 77-84
semaphore 157

SCP-DOS 5
screen device, handle for 54
screen groups 79-81, 279

multiple 234
using in 3x box 246

screen images, manipulating
179-84

screen-save operation 182-84
screen switch 180, 208
screen updates, requirements for

12
Seattle Computer Products 5
sector aligned calls 202
sectors 197

blocks of 202-3
security, dynamic link 110
seek pointer 55
segment arithmetic 124
segment fault 137

288 Index

segments
80286 architecture 96
80386 architecture 265
data 98
dynamic link 95
executing from data 131-32
global data 100
huge 128-31, 274
internally shared 112
nonswappable 138
pure 111
sharing 111-14
stack 71
status and information 144

segment selectors 97, 123
segment swapping 136-44
semaphore handles 153
semaphores 152-57,279

data integrity and 212-16
file system name space and 121
orphaned 155-57
RAM 71, 74, 134, 226, 278
recovering 155-57
scheduling 157
system 280

serial multitasking 13,41,279
session manager 279
SetSignalHandler 66
shared memory 98, 122, 126-28,

151,279
giveaway 273
named 276

sharing segments 111-14
side effects

controlling 35
dynamic link 114-16
protection 32-34

signal handler address 169
signal handlers 115
signaling 167-73, 279
signals 169-73, 279

holding 134
SIGTERM signal 193
single-tasking 16, 280
single-tasking environment,

containing errors in 30
software design, OS/2 concepts of

25-37
software tools approach 36-37,

280
speed execution 72
stable environment 29-34
stack frames 74, 280
stacks, thread 70-71
stack segments 71
standard error. See STDERR
standard file handles 45-49
standard input. See STDIN
standard output. See STDOUT

standards, software 195
static data segments, adding 102
static links 89-91, 280
status and information, segment

144
STDERR 45-56, 190
STDIN 45-56

compatibility with presentation
manager 87

STDIN/STDOUT mechanism,
I/O 186-91

STDOUT 45-56, 184
compatibility with presentation

manager 87
strings, environment 34, 62,

145-49,271
suballocation, memory 132-36
subroutine library 90
subroutines, dynamic link

packages as 101
subsystems 100

dynamic link 102, 133
special support 103-5

subtask model 44-56
subtrees, command 56-58, 269

controlling 66-67
swapped-out memory 15
SWAPPER.DAT 141
swapping 8, 280

segment 136-44
system

conventions 53
crashes 16, 35
diagnosis 144
File Table (SFT) 55, 280
memory layout 246
security, debuggers and 240
semaphores 152, 280

system, hanging the 183
systems

closed and open 28
file 117-22

T
task 44. See also processes
task-time thread 229
technological breakthroughs 26
TEMP 148
terminate and stay resident

mechanism 23, 205, 249
thrashing 137, 142
thread 1 76, 134, 171
thread death 76-77
thread of execution 69, 281
thread ID 76, 280
threads 43, 69-77, 224, 280

background 79-80
captive 76, 269
collisions of 74
dynamic linking and 95
foreground and background

processing with 71-72

threads (continued)
foreground and interactive

80-81
from different processes 112
I/O-bound 81
interrupt-time 229
low priority 83-84
multiple 73-74
organizing programs using 73
performance characteristics of

77
priority categories of 78
problems with multiple 210
switching the CPU among

73-74
task-time 229
working sets and 143

thread stacks 70-71
throughput balancing 81-82
time-critical priority category

82-83,281
time intervals 217-19
timer services 217-19
time slice 42-43, 281
timing, thread 77
tools, software 36-37
TOPS-1O 33
TREE 49
tree, process 191-92
tree-structured file system 6
Trojan programs 261

U
UNIX 5

naming conventions in 120
ptrace facility 242

upper- and lowercase 120
upward compatibility 24
user interface 85-87

graphical 10-13, 85, 178
presentation manager 86-87
VIO 85-86

utilization
file 34
memory 33

V
variables, local 74
versions, future OS/2 259-69
video hardware, accessing 180
VIO, 176-84, 281

choosing between presentation
manager and 177-78

dynamic link entry points 102
graphics under 179-84
subsystem 54
user interface 85-86

VioGetBuf 180
VioModeWait 183
VioSavRedrawWait 181-83
VioScrLock 180-81
virtual circuit, network 23

virtual display device 11
virtualization 281

device 11-12
virtualizing the environment 33
virtual memory 14, 281

concepts of 143
paged 266

virtual real mode (80386) 265
volume, disk 198-202
volume !D 199-202
volume-oriented operations 202
Von Neumann, John 29-30

W
windowing interface 86-87,

176-84
working directories 33
working set 138, 143
WORM drives 118
writethrough 215-16, 281
WYSIWYG 10

X
XENIX5

Z
zero-terminated strings 28

Index 289

The manuscript for this book was prepared and submitted to Microsoft
Press in electronic form. Text files were processed and formatted
using Microsoft Word.

Cover design by Greg Hickman
Interior text design by the staff of Microsoft Press
Illustrations by Rick Bourgoin
Principal typographer: Carol Luke
Principal production artist: Peggy Herman

Text composition by Microsoft Press in Times Roman with display
in Helvetica Bold, using the Magna composition system and the
Linotronic 300 laser imagesetter.

