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Foreword 

OS/2 is destined to be a very important piece of software. During the 
next 10 years, millions of programmers and users will utilize this sys
tem. From time to time they will come across a feature or a limitation 
and wonder why it's there. The best way for them to understand the 
overall philosophy of the system will be to read this book. Gordon 
Letwin is Microsoft's architect for OS/2. In his very clear and some
times humorous way, Gordon has laid out in this book why he included 
what he did and why he didn't include other th'ings. 

The very first generation of microcomputers were 8-bit machines, 
such as the Commodore Pet, the TRS-80, the Apple II, and the CPM 80 
based machines. Built into almost all of them was Microsoft's BASIC 
Interpreter. I met Gordon Letwin when I went to visit Heath's personal 
computer group (now part of Zenith). Gordon had written his own 
BASIC as well as an operating system for the Heath system, and he 
wasn't too happy that his management was considering buying some
one else's. In a group of about 15 people, he bluntly pointed out the 
limitations of my BASIC versus his. After Heath licensed my BASIC, I 
convinced Gordon that Microsoft was the place to be if you wanted 
your great software to be popular, and so he became one of Microsoft's 
first 10 programmers. His first project was to single-handedly write a 
compiler for Microsoft BASIC. He put a sign on his door that read 

Do not disturb, feed, poke, tease ... the animal 

and in 5 months wrote a superb compiler that is still the basis for all our 
BASIC compilers. Unlike the code that a lot of superstar programmers 
write, Gordon's source code is a model of readability and includes pre
cise explanations of algorithms and why they were chosen. 

When the Intel 80286 came along, with its protected mode com
pletely separate from its compatible real mode, we had no idea how we 
were going to get at its new capabilities. In fact, we had given up until 
Gordon came up with the patented idea described in this book that has 
been referred to as "turning the car off and on at 60 MPH." When we 
first explained the idea to Intel and many of its customers, they were 
sure it wouldn't work. Even Gordon wasn't positive it would work until 
he wrote some test programs that proved it did. 



x Foreword 

Gordon's role as an operating systems architect is to overview our 
designs and approaches and make sure they are as simple and as 
elegant as possible. Part of this job includes reviewing people's code. 
Most programmers enjoy having Gordon look over their code and point 
out how it could be improved and simplified. A lot of programs end up 
about half as big after Gordon has explained a better way to write them. 
Gordon doesn't mince words, however, so in at least one case a par
ticularly sensitive programmer burst into tears after reading his com
mentary. Gordon isn't content to just look over other people's code. 
When a particular project looks very difficult, he dives in. Currently, 
Gordon has decided to personally write most of our new file system, 
which will be dramatically faster than our present one. On a recent 
"vacation" he wrote more than 50 pages of source code. 

This is Gordon's debut as a book author, and like any good designer 
he has already imagined what bad reviews might say. I think this book 
is both fun and important. I hope you enjoy it as much as I have. 

BILL GATES 



Introduction 

Technological breakthroughs develop in patterns that are distinct from 
patterns of incremental advancements. An incremental advancement
an improvement to an existing item - is straightforward and unsurpris
ing. An improvement is created; people see the improvement, know 
what it will do for them, and start using it. 

A major advance without closely related antecedents-a technologi
cal breakthrough-follows a different pattern. The field of communi
cation is a good example. Early in this century, a large infrastructure 
existed to facilitate interpersonal communication. Mail was delivered 
twice a day, and a variety of efficient services relayed messages. A 
businessman dictated a message to his secretary, who gave it to a 
messenger service. The service carried the message to its nearby desti
nation, where a secretary delivered it to the recipient. 

Into this environment came a technological breakthrough-the 
telephone. The invention of the telephone was a breakthrough, not an 
incremental advance, because it provided an entirely new way to com
municate. It wasn't an improvement over an existing method. That it 
was a breakthrough development impeded its acceptance. Most busi
ness people considered it a newfangled toy, of little practical use. 
"What good does it do me? By the time I dictate the message, and my 
secretary writes it down and gives it to the mailroom, and they phone 
the addressee's mailroom, and the message is copied-perhaps incor
rectly-and delivered to the addressee's secretary, it would have been 
as fast to have it delivered by messenger! All my correspondents are 
close by, and, besides, with messengers I don't have to pay someone to 
sit by the telephone all day in case a message comes in." 

This is a classic example of the earliest stages of breakthrough 
technology - potential users evaluate it by trying to fit it into present 
work patterns. Our example businessman has not yet realized that he 
needn't write the message down anymore and that it needn't be copied 
down at the destination. He also doesn't realize that the reason his re
cipients are close by is that they have to be for decent messenger deliv
ery. The telephone relaxed this requirement, allowing more efficient 
locations near factories and raw materials or where office space was 
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cheaper. But it was necessary for the telephone to be accepted before 
these advantages could be realized. 

Another impedance to the acceptance of a breakthrough technology 
is that the necessary new infrastructure is not in place. A telephone did 
little good if your intended correspondent dido't have one. The nature 
of telephones required a standard; until that standard was set, your cor
respondent might own a phone, but it could be connected to a network 
unreachable by you. Furthermore, because the technology was in its 
infancy, the facilities were crude. 

These obstacles were not insurmountable. The communications re
quirements of some people were so critical that they were willing to in
vent new procedures and to put up with the problems of the early stages. 
Some people, because of their daring or ambition, used the new system 
to augment their existing system. And finally, because the new technol
ogy was so powerful, some used it to enhance the existing technology. 
For example, a messenger service might establish several offices with 
telephone linkage between them and use the telephones to speed deliv
ery of short messages by phoning them to the office nearest the destina
tion, where they were copied down and delivered normally. Using the 
telephone in this fashion was wasteful, but where demand for the old 
service was high enough, any improvement, however "wasteful," was 
welcome. 

After it has a foot in the door, a breakthrough technology is unstop
pable. After a time, standards are established, the bugs are worked out, 
and, most important, the tool changes its users. Once the telephone 
became available, business and personal practices developed in new 
patterns, patterns that were not considered before because they were not 
possible. Messenger services used to be fast enough, but only because, 
before the telephone, the messenger service was the fastest technology 
available. The telephone changed the life-style of its users. 

This change in the structure of human activity explains why an in
telligent person could say, "Telephones are silly gadgets," and a few 
years later say, "Telephones are indispensable." This change in the 
tool user-caused by the tool itself-also makes predicting the ulti
mate effect of the new technology difficult. Extrapolating from exist
ing trends is wildly inaccurate because the new tool destroys many 
practices and creates wholly unforeseen ones. It's great fun to read 
early, seemingly silly predictions of life in the future and to laugh at 
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the predictors, but the predictors were frequently intelligent and edu
cated. Their only mistake was in treating the new development as an in
cremental advance rather than as a breakthrough technology. They saw 
how the new development would improve their current practices, but 
they couldn't see how it would replace those practices. 

Digital computers are an obvious breakthrough technology, and 
they've shared the ciassic three-stage pattern: "exotic toys," ~~limited 

use, " and "indispensable." Mainframe computers have gone the full 
route, in the milieu of business and scientific computing. IBM's initial 
estimate of the computer market was a few dozen machines. But, as the 
technology and the support infrastructure grew, and as people's ways 
of working adapted to computers, the use of computers grew-from 
the census bureau, to life insurance companies, to payroll systems, and 
finally to wholly new functions such as MIS (Management Information 
Sciences) systems and airline reservation networks. 

Microcomputers are in the process of a similar development. The 
"exotic toy" stage has already given way to the "limited use" stage. 
We're just starting to develop standards and infrastructure and are only 
a few years from the "indispensable" stage. In anticipation of this 
stage, Microsoft undertook the design and the development of OS/2. 

Although studying the mainframe computer revolution helps in try
ing to predict the path of the microcomputer revolution, microcom
puters are more than just "cheap mainframes." The microcomputer 
revolution will follow the tradition of breakthroughs, creating new 
needs and new uses that cannot be anticipated solely by studying what 
happened with mainframe systems. 

This book was written because of the breakthrough nature of the 
microcomputer and the impact of the coming second industrial revolu
tion. The designers of OS/2 tried to anticipate, to the greatest extent 
possible, the demands that would be placed on the system when the 
tool-the personal computer-and the tool user reached their new 
equilibrium. A knowledge of MS-DOS and a thorough reading of the 
OS/2 reference manuals will not, in themselves, clarify the key issues 
of the programming environment that OS/2 was written to support. 
This is true not only because of the complexity of the product but 
because many design elements were chosen to provide services that
from a prebreakthrough perspective-don't seem needed and solve 
problems that haven't yet arisen. 
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Other books provide reference information and detailed how-to 
instructions for writing OS/2 programs. This book describes the under
lying architectural models that make up OS/2 and discusses how those 
models are expected to meet the foreseen and unforeseen requirements 
of the oncoming office automation revolution. It focuses on the general 
issues, problems, and solutions that all OS/2 programs encounter 
regardless of the programming and interface models that a programmer 
may employ. 

As is often the case in a technical discussion, everything in OS/2 is 
interconnected in some fashion to everything else. A discussion on the 
shinbone naturally leads to a discussion of the thighbone and so on. The 
author and the editor of this book have tried hard to group the material 
into a logical progression without redundancy, but the very nature of 
the material makes complete success at this impossible. It's often desir
able, in fact, to repeat material, perhaps from a different viewpoint or 
with a different emphasis. For these reasons, the index references every 
mention of an item or a topic, however peripheral. Having too many 
references (including a few worthless ones) is far better than having too 
few references. When you're looking for information about a particular 
subject, I recommend that you first consult the contents page to locate 
the major discussion and then peruse the index to pick up references 
that may appear in unexpected places. 
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The Project 





History of the 
Project 

1 

Microsoft was founded to realize a vision of a microcomputer on every 
desktop-a vision of the second industrial revolution. The first in
dustrial revolution mechanized physical work. Before the eighteenth 
century, nearly all objects were created and constructed by human 
hands, one at a time. With few exceptions, such as animal-powered 
plowing and cartage, all power was human muscle power. The second 
industrial revolution will mechanize routine mental work. Today, on 
the verge of the revolution, people are still doing "thought work," one 
piece at a time. 

Certain tasks-those massive in scope and capable of being rigidly 
described, such as payroll calculations-have been automated, but the 
majority of "thought work" is still done by people, not by computers. 
We have the computer equivalent of the plow horse, but we don't have 
the computer equivalent of the electric drill or the washing machine. 

Of course, computers cannot replace original thought and creativity 
(at least, not in the near future) any more than machines have replaced 
design and creativity in the physical realm. But the bulk of the work in 
a white-collar office involves routine manipulation of information. The 
second industrial revolution will relieve us of the "grunt work" - rou
tine data manipulation, analysis, and decisions-freeing us to deal 
only with those situations that require human judgment. 
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Most people do not recognize the inevitability of the second in
dustrial revolution. They can't see how a computer could do 75 percent 
of their work because their work was structured in the absence of com
puters. But, true to the pattern for technological breakthroughs, the tre
mendous utility of the microcomputer will transform its users and the 
way they do their work. 

For example, a great deal of work is hard to computerize because the 
input information arrives on paper and it would take too long to type it 
all in. Ten years ago, computer proponents envisioned the "paperless 
office" as a solution for this problem: All material would be generated 
by computer and then transferred electronically or via disk to other 
computers. Offices are certainly becoming more paperless, and the ar
rival of powerful networking systems will accelerate this, but paper 
continues to be a very useful medium. As a result, in recent years 
growth has occurred in another direction-incorporating paper as a 
computer input and output device. Powerful laser printers, desktop 
publishing systems, and optical scanners and optical character recogni
tion will make it more practical to input from and output to paper. 

Although the founders of Microsoft fully appreciate the impact of 
the second industrial revolution, nobody can predict in detail how the 
revolution will unfold. Instead, Microsoft bases its day-to-day decisions 
on dual sets of goals: short-term goals, which. are well known, and a 
long-term goal-our vision of the automated office. Each decision has 
to meet our short-term goals, and it must be consonant with our long
term vision, a vision that becomes more precise as the revolution 
progresses. 

When 16-bit microprocessors were first announced, Microsoft knew 
that the "iron" was now sufficiently powerful to begin to realize this 
vision. But a powerful computer environment requires both strong iron 
and a sophisticated operating system. The iron was becoming avail
able, but the operating system that had been standard for 8-bit micro
processors was inadequate. This is when and why Microsoft entered the 
operating system business: We knew that we needed a powerful operat
ing system to realize our vision and that the only way to guarantee its 
existence and suitability was to write it ourselves. 
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1.1 MS-DOS version 1.0 
MS-DOS got its start when IBM asked Microsoft to develop a disk 
operating system for a new product that IBM was developing, the IBM 
Personal Computer (PC). Microsoft's only operating system product at 
that time was XENIX, a licensed version of AT&T's UNIX® operating 
system. XEN!X/UN!X requires a processor with memory manage
ment and protection facilities. Because the 8086/8088 processors had 
neither and because XENIX/UNIX memory requirements-modest 
by minicomputer standards of the day-were nonetheless large by 
microcomputer standards, a different operating system had to be 
developed. 

CP/M-80, developed by Digital Research,®Incorporated (DRI), had 
been the standard 8-bit operating system, and the majority of existing 
microcomputer software had been written to run on CP/M-80. For this 
reason, Microsoft decided to make MS-DOS version 1.0 as compatible 
as possible with CP/M-80. The 8088 processor would not run the exist
ing CP/M-80 programs, which were written for the 8080 processor, but 
because 8080 programs could be easily and semiautomatically con
verted to run on the 8088, Microsoft felt that minimizing adaptation 
hassles by minimizing operating system incompatibility would hasten 
the acceptance of MS-DOS on the IBM PC. 

A major software product requires a great deal of development time, 
and IBM was in a hurry to introduce its PC. Microsoft, therefore, 
looked around for a software product to buy that could be built onto to 
create MS-DOS version 1.0. Such a product was found at Seattle Com
puter Products. Tim Paterson, an engineer there, had produced a 
CP/M-80 "clone," called SCP-DOS, that ran on the 8088 processor. 
Microsoft purchased full rights to this product and to its source code 
and used the product as a starting point in the development of MS-DOS 
version 1.0. 

MS-DOS version 1.0 was released in August 1981. Available only 
for the IBM PC, it consisted of 4000 lines of assembly-language source 
code and ran in 8 KB of memory. MS-DOS version 1.1 was released in 
1982 and worked with double-sided 320 KB floppy disks. 
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Microsoft's goal was that MS-DOS version 1.0 be highly CP/M 
compatible, and it was. Ironically, it was considerably more compatible 
than DRI's own 8088 product, CP/M-86. As we shall see later, this 
CP/M compatibility, necessary at the time, eventually came to cause 
Microsoft engineers a great deal of difficulty. 

1.2 MS-DOS version 2.0 
In early 1982, IBM disclosed to Microsoft that it was developing a hard 
disk-based personal computer, the IBM XT. Microsoft began work on 
MS-DOS version 2.0 to provide support for the new disk hardware. 
Changes were necessary because MS-DOS, in keeping with its 
CP/M-80 compatible heritage, had been designed for a floppy disk en
vironment. A disk could contain only one directory, and that directory 
could contain a maximum of 64 files. This decision was reasonable 
when first made because floppy disks held only about 180 KB of data. 

For the hard disk, however, the 64-file limit was much too small, and 
using a single directory to manage perhaps hundreds of files was 

directory WORK 
ADMIN 
BUDGET 
CALENDAR 
LUNCH.DOC 

PAYROLL~ 
PHONE.LST 
SCHED.DOC 

directory BUDGET directory PAYROLL 
MONTH ADDRESSES 
QUARTER MONTHLY 
YEAR NAMES 

r--- 1985 VACATION 
1986, RETIREDl 

I WEEKLY 

directory 1985 directory 1986 directory RETIRED 

I I I 
Figure 1·1. 
A directory tree hierarchy. Within the WORK directory are five files (ADMIN, 
CALENDAR, LUNCH.DOC, PHONE.LST, SCHED.DOC) and two subdirectories 
(BUDGET, PAYROLL). Each subdirectory has its own subdirectories. 
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clumsy. Therefore, the MS-DOS version 2.0 developers-Mark 
Zbikowski, Aaron Reynolds, Chris Peters, and Nancy Panners-added 
a hierarchical file system. In a hierarchical file system a directory can 
contain other directories and files. In turn, those directories can con
tain a mixture of files and directories and so on. A hierarchically 
designed system starts with the main, or "root," directory, which itself 
can contain (as seen in Figure I-Ion the preceding page) a tree-struc
tured collection of files and directories. 

1.3 MS-DOS version 3.0 
MS-DOS version 3.0 was introduced in August 1984, when IBM an
nounced the IBM PC/AT. The AT contains an 80286 processor, but, 
when running DOS, it uses the 8086 emulation mode built into the chip 
and runs as a "fast 8086." The chip's extended addressing range and 
its protected mode architecture sit unused. 1 

MS-DOS version 3.1 was released in November 1984 and contained 
networking support. In January 1986, MS-DOS version 3.2-a minor 
revision-was released. This version supported 31f2-inch floppy disks 
and contained the formatting function for a device in the device driver. 
In 1987, MS-DOS version 3.3 followed; the primary enhancement of 
this release was support for the IBM PS/2 and compatible hardware. 

1.4 MS-DOS version 4.0 
Microsoft started work on a multitasking versi?n of MS-DOS in Janu
ary 1983. At the time, it was internally called MS-DOS version 3.0. 
When a new version of the single-tasking MS-DOS was shipped under 
the name MS-DOS version 3.0, the multitasking version was renamed, 
internally, to MS-DOS version 4.0. A version of this product-a multi
tasking, real-mode only MS-DOS-was shipped as MS-DOS version 
4.0. Because MS-DOS version 4.0 runs only in real mode, it can run on 
8088 and 8086 machines as well as on 80286 machines. The limitations 
of the real mode environment make MS-DOS version 4.0 a specialized 

1. Products such as Microsoft XENIX/UNIX run on the PC/AT and compatibles, using the 
processor's protected mode. This is possible because XENIX/UNIX and similar systems had 
no preexisting real mode applications that needed to be supported. 



8 PART I THE PROJECT 

product. Although MS-DOS version 4.0 supports full preemptive mul
titasking, system memory is limited to the 640 KB available in real 
mode, with no swapping.2 This means that all processes have to fit into 
the single 640 KB memory area. Only one MS-DOS version 3.x com
patible real mode application can be run; the other processes must be 
special MS-DOS version 4.0 processes that understand their environ
ment and cooperate with the operating system to coexist peacefully 
with the single MS-DOS version 3.x real mode application. 

Because of these restrictions, MS-DOS version 4.0 was not intended 
for general release, but as a platform for specific OEMs to support ex
tended PC architectures. For example, a powerful telephone manage
ment system could be built into a PC by using special MS-DOS version 
4.0 background processes to control the telephone equipment. The 
resulting machine could then be marketed as a "compatible MS-DOS 3 
PC with a built-in superphone." 

Although MS-DOS version 4.0 was released as a special OEM pro
duct, the project-now called MS-DOS version 5.0-continued. The 
goal was to take advantage of the protected mode of the 80286 to pro
vide full general purpose multitasking without the limitations-as seen 
in MS-DOS version 4.0-of a real-mode only environment. Soon, 
Microsoft and IBM signed a Joint Development Agreement that pro
vided for the design and development of MS-DOS version 5.0 (now 
called CP/DOS). The agreement is complex, but it basically provides 
for joint development and then subsequent joint ownership, with both 
companies holding full rights to the resulting product. 

As the project neared completion, the marketing staffs looked at 
CP/DOS, nee DOS 5, nee DOS 4, nee DOS 3, and decided that it 
needed ... you guessed it ... a name change. As a result, the remainder of 
this book will discuss the design and function of an operating system 
called OS/2. 

2. It is not feasible to support general purpose swapping without memory management hard
ware that is unavailable in 8086 real mode. 



Goals and 
Compatibility 
Issues 

2 

OS/2 is similar to traditional multitasking operating systems in many 
ways: It provides multitasking, scheduling, disk management, memory 
management, and so on. But it is also different in many ways, because a 
personal computer is very different from a multiuser minicomputer. 
The designers of OS/2 worked from two lists: a set of goals and a set of 
compatibility issues. This chapter describes those goals and com
patibility issues and provides the context for a later discussion of the 
design itself. 

2.1 Goals 
The primary goal of OS/2 is to be the ideal office automation operating 
system. The designers worked toward this goal by defining the follow
ing intermediate and, seemingly, contradictory goals: 

• To provide device-independent graphics drivers without introduc
ing any significant overhead. 

• To allow applications direct access to high-bandwidth peripherals 
but maintain the ability to virtualize or apportion the usage of 
those peripherals. 
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• To provide multitasking without reducing the performance and 
response available from a single-tasking system. 

• To provide a fully customized environment for each program and 
its descendants yet also provide a standard environment that is 
unaffected by other programs in the system. 

• To provide a protected environment to ensure system stability yet 
one that will not constrain applications from the capabilities they 
have under nonprotected systems. 

2.1.1 Graphical User Interface 
By far the fastest and easiest way people receive information is through 
the eye. We are inherently visual creatures. Our eyes receive informa
tion rapidly; they can "seek" to the desired information and "zoom" 
their attention in and out with small, rapid movements of the eye mus
cles. A large part of the human brain is dedicated to processing visual 
information. People abstract data and meaning from visual material
from text to graphics to motion pictures-hundreds of times faster 
than from any other material. 

As a result, if an office automation system is to provide quantities of 
information quickly and in a form in which it can be easily absorbed, a 
powerful graphics capability is essential. Such capabilities were rare in 
earlier minicomputer operating systems because of the huge memory 
and compute power costs of high-resolution displays. Today's micro
computers have the memory to contain the display information, they 
have the CPU power to create and manipulate that information, and 
they have no better use for those capabilities than to support powerful, 
easy-to-use graphical applications. 

Graphics can take many forms-pictures, tables, drawings, 
charts-perhaps incorporating color and even animation. All are 
powerful adjuncts to the presentation of alphanumeric text. Graphical 
applications don't necessarily employ charts and pictures. A 
WYSIWYG (What You See Is What You Get) typesetting program 
may display only text, but if that text is drawn in graphics mode, the 
screen can show any font, in any type size, with proportional spacing, 
kerning, and so on. 
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The screen graphics components of OS/2 need to be device indepen
dent; that is, an application must display the proper graphical "pic
ture" without relying on the specific characteristics of any particular 
graphical display interface board. Each year the state of the art in dis
plays gets better; it would be extremely shortsighted to tie applications 
to a particular display board, for no matter how good it is, within a cou
ple of years it will be obsolete. 

The idea is to encapsulate device-specific code by requiring that 
each device come with a software package called a device driver. The 
application program issues commands for a generic device, and the 
device driver then translates those commands to fit the characteristics 
of the actual device. The result is that the manufacturer of a new 
graphics display board needs to write an appropriate device driver and 
supply it with the board. The application program doesn't need to know 
anything about the device, and the device driver doesn't need to know 
anything about the application, other than the specification of the com
mon interface they share. This common interface describes a virtual 
display device; the general technique of hiding a complicated actual 
situation behind a simple, standard interface is called "virtualization." 

Application Kernel Device driver 
(ring 3) (ring 0) (ring 0) 

I 
I Request 
I 
I packet: Device I 
I descriptor #1 
I 

Call deviceio (arg1 ... argn) I function 
I 
I arg1 --. I • 

Ring I 
I argn 

transition I Device 
I 

.... descriptor #N 
Device 

I driver I 
I 
I 
I 
I 

Figure 2·1. 
Traditional device driver architecture. When an application wants to do device 110, it 
calls the operating system, which builds a device request packet, determines the target 
device, and delivers the packet. The device driver's response follows the opposite route 
through the kernel back to the application. 
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Figure 2-1 shows the traditional operating system device driver 
architecture. Applications don't directly call device drivers because 
device drivers need to execute in the processor's privilege mode to ma
nipulate their device; the calling application must run in normal mode. 
In the language of the 80286/80386 family of processors, privilege 
mode is called ring 0, and normal mode is called ring 3. The operating 
system usually acts as a middleman: It receives the request, validates it, 
deals with issues that arise when there is only one device but multiple 
applications are using it, and then passes the request to the device 
driver. The device driver's response or return of data takes the reverse 
path, winding its way through the operating system and back to the ap
plication program. 

This approach solves the device virtualization problem, but at a cost 
in performance. The interface between the application and the device 
driver is narrow; that is, the form messages can take is usually 
restricted. Commonly, the application program is expected to build a 
request block that contains all the information and data that the device 
driver needs to service the request; the actual call to the operating sys
tem is simply "pass this request block to the device driver." Setting up 
this block takes time, and breaking it down in the device driver again 
takes time. More time is spent on the reply; the device driver builds, the 
operating system copies, and the application breaks down. Further time 
is spent calling down through the internal layers of the operating sys
tem, examining and copying the request block, routing to the proper 
device driver, and so forth. Finally, the transition between rings (pri
vilege and normal mode) is also time-consuming, and two such transi
tions occur-to privilege mode and back again. 

Such a cost in performance was acceptable in nongraphics-based 
systems because, typically, completely updating a screen required only 
1920 (or fewer) bytes of data. Today's graphics devices can require 
256,000 bytes or more per screen update, and future devices will be 
even more demanding. Furthermore, applications may expect to update 
these high-resolution screens several times a second. 1 

1. It's not so much the amount of data that slows the traditional device driver model, but the 
number of requests and replies. Disk devices work well through the traditional model because 
disk requests tend to be large (perhaps 40,000 bytes). Display devices tend to be written 
piecemeal-a character, a word, or a line at a time. It is the high rate of these individual calls 
that slows the device driver model, not the number of bytes written to the screen. 
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OS/2 needed powerful, device-independent graphical display sup
port that had a wide, efficient user interface-one that did not involve 
ring transitions, the operating system, or other unnecessary overhead. 
As we'll see later, OS/2 meets this requirement by means of a mecha
nism called dynamic linking. 

2.1.2 iViuititasking 
To be really useful, a personal computer must be able to do more than 
one chore at a time-an ability called multitasking. We humans 
multitask all the time. For example, you may be involved in three pro
jects at work, be halfway through a novel, and be taking Spanish 
lessons. You pick up each task in turn, work on it for a while, and then 
put it down and work on something else. This is called serial multitask
ing. Humans can also do some tasks simultaneously, such as driving a 
car and talking. This is called parallel multitasking. 

In a serial multitasking computer environment, a user can switch ac
tivities at will, working for a while at each. For example, a user can 
leave a word-processing program without terminating it, consult a 
spreadsheet, and then return to the waiting word-processing program. 
Or, if someone telephones and requests an appointment, the user can 
switch from a spreadsheet to a scheduling program, consult the calen
dar, and then return to the spreadsheet. 

The obvious value of multitasking makes it another key requirement 
for OS/2: Many programs or applications can run at the same time. But 
multitasking is useful for more than just switching between applica
tions: Parallel multitasking allows an application to do work by 
itself-perhaps print a large file or recalculate a large spreadsheet
while the user works with another application. Because OS/2 supports 
full multitasking, it can execute programs in addition to the applica
tion(s) the user is running, providing advanced services such as net
work mail without interrupting or interfering with the user's work.2 

2. Present-day machines contain only one CPU, so at any instant only one program can be 
executing. At this microscopic level, OS/2 is a serial multitasking system. It is not considered 
serial multitasking, however, because it performs preemptive scheduling. At any time, OS/2 
can remove the CPU from the currently running program and assign it to another program. 
Because these rescheduling events may occur many times a second at totally unpredictable 
places within the running programs, it is accurate to view the system as if each program truly 
runs simultaneously with other programs. 
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2.1.3 Memory Management 
Multitasking is fairly easy to achieve. All that's necessary is a source of 
periodic hardware interrupts, such as a clock circuit, to enable the 
operating system to effect a "context switch," or to reschedule. To be 
useful, however, a multitasking system needs an effective memory 
management system. For example, a user wants to run two applications 
on a system. Each starts at as low a memory location as possible to 
maximize the amount of memory it can use. Unfortunately, if the sys
tem supports multitasking and the user tries to run both applications si
multaneously, each attempts to use the same memory cells, and the 
applications destroy each other. 

A memory management system solves this problem by using special 
hardware facilities built into 80286/80386 processors (for example, 
IBM PC/AT machines and compatibles and 80386-based machines).3 
The memory management system uses the hardware to virtualize the 
memory of the machine so that each program appears to have all mem
ory to itself. 

Memory management is more than keeping programs out of each 
other's way. The system must track the owner or user(s) of each piece 
of memory so that the memory space can be reclaimed when it is no 
longer needed, even if the owner of the memory neglects to explicitly 
release it. Some operating systems avoid this work by assuming that no 
application will ever fail to return its memory when done or by ex
amining the contents of memory and ascertaining from those contents 
whether the memory is still being used. (This is called "garbage col
lection.") Neither alternative was acceptable for OS/2. Because OS/2 
will run a variety of programs written by many vendors, identifying 
free memory by inspection is impossible, and assuming perfection 
from the applications themselves is unwise. Tracking the ownership 
and usage of memory objects can be complex, as we shall see in our 
discussion on dynamic link libraries. 

Finally, the memory management system must manage memory 
overcommit. The multitasking capability of OS/2 allows many applica
tions to be run simultaneously; thus, RAM must hold all these pro
grams and their data. Although RAM becomes cheaper every year, 

3. Earlier 8086/8088 processors used in PCs, PC/XTs, and similar machines lack this hard
ware. This is why earlier versions of MS-DOS didn't support multitasking and why OS/2 
won't run on such machines. 
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buying enough to hold all of one's applications at one time is still 
prohibitive. Furthermore, although RAM prices continue to drop, the 
memory requirements of applications will continue to rise. Conse
quently, OS/2 must contain an effective mechanism to allocate more 
memory to the running programs than in fact physically exists. This is 
called memory overcommit. 

OS/2 accompiishes this magic with the classic technique of swap
ping. OS/2 periodically examines each segment of memory to see if it 
has been used recently. When a request is made for RAM and none is 
available, the least recently used segment of memory (the piece that has 
been unused for the longest time) is written to a disk file, and the RAM 
it occupied is made available. Later, if a program attempts to use the 
swapped-out memory, a "memory not present" fault occurs. OS/2 in
tercepts the fault and reloads the memory information from the disk 
into memory, swapping out some other piece of memory, if necessary, 
to make room. This whole process is invisible to the application that 
uses the swapped memory area; the only impact is a small delay while 
the needed memory is read back from the disk. 

The fundamental concepts of memory overcommit and swapping 
are simple, but a good implementation is not OS/2 must choose the 
right piece of memory to swap out, and it must swap it out efficiently. 
Not only must care be taken that the swap file doesn't grow too big and 
consume all the free disk space but also that deadlocks don't occur. For 
example, if all the disk swap space is filled, it may be impossible to 
swap into RAM a piece of memory because no free RAM is available, 
and OS/2 can't free up RAM because no swap space exists to write it 
out to. Naturally, the greater the load on the system, the slower the sys
tem will be, but the speed degradation must be gradual and acceptable, 
and the system must never deadlock. 

The issues involved in memory management and the memory man
agement facilities that OS/2 provides are considerably more complex 
than this overview. We'll return to the subject of memory management 
in detail in Chapter 9. 

2.1.4 Protection 
I mentioned earlier that OS/2 cannot trust applications to behave cor
rectly. I was talking about memory management, but this concern gen
eralizes into the next key requirement: OS/2 must protect applications 
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from the proper or improper actions of other applications that may be 
running on the system. 

Because OS/2 will run applications and programs from a variety of 
vendors, every user's machine will execute a different set of applica
tions, running in different ways on different data. No software vendor 
can fully test a product in all possible environments. This makes it crit
ical that an error on the part of one program does not crash the system 
or some other program or, worse, corrupt data and not bring down the 
system. Even if no data is damaged, system crashes are unacceptable. 
Few users have the background or equipment even to diagnose which 
application caused the problem. 

Furthermore, malice, as well as accident, is a concern. Microsoft's 
vision of the automated office cannot be realized without a system that 
is secure from deliberate attack. No corporation will be willing to base 
its operations on a computer network when any person in that 
company-with the help of some "cracker" programs bought from the 
back of a computer magazine-can see and change personnel or 
payroll files, billing notices, or strategic planning memos. 

Today, personal computers are being used as a kind of super
sophisticated desk calculator. As such, data is secured by traditional 
means-physical locks on office doors, computers, or file cabinets that 
store disks. Users don't see a need for a protected environment because 
their machine is physically protected. This lack of interest in protection 
is another example of the development of a breakthrough technology. 
Protection is not needed because the machine is secure and operates on 
data brought to it by traditional office channels. In the future, however, 
networked personal computers will become universal and will act both 
as the processors and as the source (via the network) of the data. Thus, 
in this role, protection is a key requirement and is indeed a prerequisite 
for personal computers to assume that central role. 

2.1.5 Encapsulation 
When a program runs in a single-tasking system such as MS-DOS ver
sion 3.x, its environment is always constant-consisting of the 
machine and MS-DOS. The program can expect to get the same treat
ment from the system and to provide exactly the same interaction with 
the user each time it runs. In a multitasking environment, however, 
many programs can be running. Each program can be using files and 
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devices in different ways; each program can be using the mouse, each 
program can have the screen display in a different mode, and so on. 
OS/2 must encapsulate, or isolate, each program so that it "sees" a 
unifonn environment each time it runs, even though the computer envi
ronment itself may be different each time. 

2.1.6 Intaipiocass Communication (IPC) 
In a single-tasking environment such as MS-DOS version 3.x, each pro
gram stands alone. If it needs a particular service not provided by the 
operating system, it must provide that service itself. For example, every 
application that needs a sort facility must contain its own. 

Likewise, if a spreadsheet needs to access values from a database, it 
must contain the code to do so. This extra code complicates the spread
sheet program, and it ties the program to a particular database product 
or fonnat. A user might be unable to switch to a better product because 
the spreadsheet is unable to understand the new database's file fonnats. 

A direct result of such a stand-alone environment is the creation of 
very large and complex "combo" packages such as Lotus Symphony. 
Because every function that the user may want must be contained 
within one program, vendors supply packages that attempt to contain 
everything. 

In practice, such chimeric programs tend to be large and cumber
some, and their individual functional components (spreadsheets, word 
processors, and databases, for example) are generally more difficult to 
use and less sophisticated than individual applications that specialize in 
a single function. 

The stand-alone environment forces the creation of larger and more 
complex programs, each of which typically understands only its own 
file fonnats and works poorly, if at all, with data produced by other 
programs. This vision of personal computer software growing 
monstrous. until collapsing from its own weight brings about another 
OS/2 requirement: Applications must be able to communicate, easily 
and efficiently, with other applications. 

More specifically, an application must be able to find (or name) the 
application that provides the infonnation or service that the client 
needs, and it must be able to establish efficient communication with the 
provider program without requiring that either application have 
specific knowledge of the internal workings of the other. Thus, a 
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spreadsheet program must be able to communicate with a database pro
gram and access the values it needs. The spreadsheet program is 
therefore not tied to any particular database program but can work with 
any database system that recognizes OS/2 IPC requests. 

Applications running under OS/2 not only retain their full power as 
individual applications but also benefit from cross-application commu
nication. Furthermore, the total system can be enhanced by upgrading 
an application that provides services to others. When anew, faster, or 
more fully featured database package is installed, not only is the user's 
database application improved but the database functions of the spread
sheet program are improved as well. 

The OS/2 philosophy is that no program should reinvent the wheel. 
Programs should be written to offer their services to other programs 
and to take advantage of the offered services of other programs. The 
result is a maximally effective and efficient system. 

2.1.7 Direct Device Access 
Earlier, we discussed the need for a high-performance graphical inter
face and the limitations of the traditional device driver architecture. 
OS/2 contains a built-in solution for the screen graphical interface, but 
what about other, specialized devices that may require a higher band
width interface than device drivers provide? The one sure prediction 
about the future of a technological breakthrough is that you can't fully 
predict it. For this reason, the final key requirement for OS/2 is that it 
contain an "escape hatch" in anticipation of devices that have perfor
mance needs too great for a device driver model. 

OS/2 provides this expandability by allowing applications direct ac
cess to hardware devices-both the I/O ports and any device memory. 
This must be done, of course, in such a way that only devices which are 
intended to be used in this fashion can be so accessed. Applications 
are prevented from using this access technique on devices that are 
being managed by the operating system or by a device driver. This 
facility gives applications the ability to take advantage of special non
standard hardware such as OCRs (Optical Character Readers), digitizer 
tablets, Fax equipment, special purpose graphics cards, and the like. 
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2.2 Compatibility Issues 
But OS/2 has to do more than meet the goals we've discussed: It must 
be compatible with 8086/8088 and 80286 architecture, and it must be 
compatible with MS-DOS. By far the easiest solution would have been 
to create a new multitasking operating system that would not be com
patible with r-v1S-DOS, but such a system is unacceptable. Potential 
users may be excited about the new system, but they won't buy it until 
applications are available. Application writers may likewise be excited, 
but they won't adapt their products for it until the system has sold 
enough copies to gain significant market share. This "catch 22" means 
that the only people who will buy the new operating system are the de
velopers' mothers, and they probably get it at a discount anyway. 

2.2.1 Real Mode vs Protect Mode 
The first real mode compatibility issue relates to the design of the 
80286 microprocessor-the "brain" of an MS-DOS computer. This 
chip has two incompatible modes-real (compatibility) mode and pro
tect mode. Real mode is designed to run programs in exactly the same 
manner as they run on the 8086/8088 processor. In other words, when 
the 80286 is in real mode, it "looks" to the operating system and pro-
grams exactly like a fast 8088. 

But the designers of the 80286 wanted it to be more than a fast 8088. 
They wanted to add such features as memory management, memory 
protection, and the ring protection mechanism, which allows the 
operating system to protect one application from another. They weren't 
able to do this while remaining fully compatible with the earlier 8088 
chip, so they added a second mode to the 80286-protect mode. When 
the processor is running in protect mode, it provides these important 
new features, but it will not run most programs written for the 
8086/8088. 

In effect, an 80286 is two separate microprocessors in one package. 
It can act like a very fast 8088-compatible, but with no new capabili
ties-or it can act like an 80286-incompatible, but providing new 
features. Unfortunately, the designers of the chip didn't appreciate the 
importance of compatibility in the MS-DOS marketplace, and they 
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designed the 80286 so that it can run in either mode but can't switch 
back and forth at will.4 In other words, an 80286 was designed to run 
only old 8086/8088 programs, or it can run only new 80286 style pro
grams, but never both at the same time. 

In summary, OS/2 was required to do something that the 80286 was 
not designed for-execute both 8086/8088 style (real mode) and 80286 
style (protect) mode programs at the same time. The existence of this 
book should lead you to believe that this problem was solved, and in
deed it was. 

2.2.2 Running Applications in Real (Compatibility) Mode 
Solving the real mode vs protect mode problem, however, presented 
other problems. In general, the problems came about because the real 
mode programs were written for MS-DOS versions 2.x or 3.x, both of 
which are single-tasking environments. 

Although MS-DOS is normally spoken of as an operating system, it 
could just as accurately be called a "system executive. " Because it runs 
in an unprotected environment, applications are free to edit inter
rupt vectors, manipulate peripherals, and in general take over from 
MS-DOS wherever they wish. This flexibility is one reason for the suc
cess of MS-DOS; if MS-DOS doesn't offer the service your program 
needs, you can always help yourself. Developers were free to explore 
new possibilities, often with great success. Most applications view 
MS-DOS as a program loader and as a set of file system subroutines, 
interfacing directly with the hardware for all their other needs, such as 
intercepting interrupt vectors, editing disk controller parameter tables, 
and so on. 

It may seem that if a popular application "pokes" the operating sys
tem and otherwise engages in unsavory practices that the authors or 
users of the application will suffer because a future release, such as 
OS/2, may not run the application correctly. To the contrary, the 
market dynamics state that the application has now set a standard, and 
it's the operating system developers who suffer because they must sup
port that standard. Usually, that "standard" operating system interface 
is not even known; a great deal of experimentation is necessary to 

4. The 80286 initializes itself in real mode. There is a command to switch from real mode to 
protect mode, but there is no command to switch back. 
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discover exactly which undocumented side effects, system internals, 
and timing relationships the application is dependent on. 

Offering an MS-DOS -compatible Applications Program Interface 
(API) provides what we call level 1 compatibility. Allowing applica
tions to continue to manipulate system hardware provides level 2 com
patibility. Level 3 issues deal with providing an execution environment 
that supports the hidden asslliuptions that programs wriiien for a single
tasking environment may make. Three are discussed below by way of 
illustration. 

2.2.2.1 Memory Utilization 
The existing real mode applications that OS/2 must support were writ
ten for an environment in which no other programs are running. As a 
result, programs typically consume all available memory in the system 
in the belief that, since no other program is around to use any leftover 
memory, they might as well use it all. If a program doesn't ask for all 
available memory at first, it may ask for the remainder at some later 
time. Such a subsequent request could never be refused under MS-DOS 
versions 2.x and 3.x, and applications were written to depend on this. 
Therefore, such a request must be satisfied under OS/2 to maintain full 
compatibility. 

Even the manner of a memory request depends on single-tasking 
assumptions. Programs typically ask for all memory in two steps. First, 
they ask for the maximum amount of memory that an 8088 can 
provide-l MB. The application's programmer knew that the request 
would be refused because 1 MB is greater than the 640 KB maximum 
supported by MS-DOS; but when MS-DOS refuses the request, it tells 
the application exactly how much memory is available. Programs then 
ask for that amount of memory. The programmer knew that MS-DOS 
would not refuse the second memory request for insufficient memory 
because when MS-DOS responded to the first request it told the appli
cation exactly how much memory was available. Consequently, 
programmers rarely included a check for an "insufficient memory" er
ror from the second call. 

This shortcut introduces problems in the OS/2 multitasking environ
ment. When OS/2 responded to the first too-large request, it would 
return the amount of memory available at that exact moment. Other 
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programs are simultaneously executing; by the time our real mode pro
gram makes its second request, some more memory may have been 
given out, and the second request may also be too large. It won't do any 
good for OS/2 to respond with an error code, however, because the real 
mode application does not check for one (it was written in the belief 
that it is impossible to get such a code on the second call). The upshot is 
that even if OS/2 refused the second call the real mode application 
would assume that it had been given the memory, would use it, and in 
the process would destroy the other program( s) that were the true 
owners of that memory. 

Obviously, OS/2 must resolve this and similar issues to support the 
existing base of real mode applications. 

2.2.2.2 File Locking 
Because multitasking systems run more than one program at the same 
time, two programs may try to write or to modify the same file at the 
same time. Or one may try to read a file while another is changing 
that file's contents. Multitasking systems usually solve this problem 
by means of a file-locking mechanism, which allows one program to 
temporarily prevent other programs from reading and/or writing a 
particular file. 

An application may find that a file it is accessing has been locked by 
some other application in the system. In such a situation, OS/2 nor
mally returns a "file locked" error code, and the application typically 
gives up or waits and retries the operation later. OS/2 cannot return a 
"file locked" error to an old-style real mode application, though, 
because when the application was written (for MS-DOS versions 2.x or 
3.x) no such error code existed because no such error was possible. Few 
real mode applications even bother to check their read and write opera
tions for error codes, and those that do wouldn't "understand" the error 
code and wouldn't handle it correctly. 

OS/2 cannot compromise the integrity of the file-locking mecha
nism by allowing the real mode application to ignore locks, but it can
not report that the file is locked to the application either. OS/2 must 
determine the proper course of action and then take that action on 
behalf of the real mode application. 
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2.2.2.3 Network Piggybacking 
Running under MS-DOS version 3.1, an application can use an existing 
network virtual circuit to communicate with an application running on 
the server machine to which the virtual circuit is connected. This is 
called "piggybacking" the virtual circuit because the applications on 
each end are borrowing a circuit that the network redirector established 
for other purposes. The two sets of programs can use a single circuit for 
two different purposes without confusion under MS-DOS version 3.1 
because of its single-tasking nature. The redirector only uses the circuit 
when the application calls MS-DOS to perform a network function. 
Because the CPU is inside MS-DOS, it can't be executing the applica
tion software that sends private messages, which leaves the circuit free 
for use by the redirector. 

Conversely, if the application is sending its own private messages
piggybacking-then it can't be executing MS-DOS, and therefore the 
redirector code (which is built into MS-DOS) can't be using the virtual 
circuit. 

This is no longer the case in OS/2. OS/2 is a multitasking system, 
and one application can use the redirector at the same time that the real 
mode application is piggybacking the circuit. OS/2 must somehow in
terlock access to network virtual circuits so that multiple users of a net
work virtual circuit do not conflict. 

2.2.3 Popular Function Compatibility 
We've discussed some issues of binary compatibility, providing appli
cations the internal software interfaces they had in MS-DOS. This is 
because it is vitally important that existing applications run correctly, 
unchanged, under the new operating system.5 OS/2 also needs to pro
vide functional compatibility; it has to allow the creation of protect 
mode applications that provide the functions that users grew to know 
and love in real mode applications. 

This can be difficult because many popular applications (for exam
ple, "terminate and stay resident loadable helper" routines such as 

5. An extremely high degree of compatibility is required for virtually any application to run 
because a typical application uses a great many documented and undocumented interfaces and 
features of the earlier system. If anyone of those interfaces is not supplied, the application 
will not run correctly. Consequently, we cannot provide 90 percent compatibility and expect 
to run 90 percent of existing applications; 99.9 percent compatibility is required for such a 
degree of success. 
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SideKick) were written for a single-tasking, unprotected environment 
without regard to the ease with which their function could be provided 
in a protected environment. For example, a popular application may 
implement some of its features by patching (that is, editing) MS-DOS 
itself. This cannot be allowed in OS/2 (the reason is discussed in Chap
ter 4), so OS/2 must provide alternative mechanisms for protect mode 
applications to provide services that users have grown to expect. 

2.2.4 Down'/ard Compatibility 
So far, our discussion on compatibility has focused exclusively on 
upward compatibility-old programs must run in the new system but 
not vice versa. Downward compatibility-running new programs 
under MS-DOS-is also important. Developers are reluctant to write 
OS/2-only applications until OS/2 has achieved major penetration of 
the market, yet this very unavailability of software slows such penetra
tion. If it's possible to write applications that take advantage of OS/2's 
protect mode yet also run unchanged under MS-DOS version 3.x, ISVs 
(Independent Software Vendors) can write their products for OS/2 
without locking themselves out of the existing MS-DOS market. 

2.2.4.1 Family API 
To provide downward compatibility for applications, OS/2 designers 
integrated a Family> Applications Program Interface (Family API) 
into the OS/2 project. The Family API provides a standard execution 
environment under MS-DOS version 3.x and OS/2. Using the Family 
API, a programmer can create an application that uses a subset of OS/2 
functions (but a superset of MS-DOS version 3.x functions) and that 
runs in a binary compatible fashion under MS-DOS version 3.x and 
OS/2. In effect, some OS/2 functions can be retrofitted into an 
MS-DOS version 3.x environment by means of the Family API. 

2.2.4.2 Network Server-Client Compatibility 
Another important form of upward and downward compatibility is the 
network system. You can expect any OS/2 system to be on a network, 
communicating not only with MS-DOS 3.x systems but, one day, with a 
new version of OS/2 as well. The network interface must be simulta
neously upwardly and downwardly compatible with all past and future 
versions of networking MS-DOS. 

6. Family refers to the MS-DOS/OS/2 family of operating systems. 
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Religion 
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Religion, in the context of software design, is a body of beliefs about 
design rights and design wrongs. A particular design is praised or criti
cized on the basis of fact - it is small or large, fast or slow - and also 
on the basis of religion-it is good or bad, depending on how well it 
obeys the religious precepts. Purpose and consistency underlie the 
design religion as a whole; its influence is felt in every individual 
judgment. 

The purpose of software design religion is to specify precepts that 
designers can follow when selecting an approach from among the many 
possibilities before them. A project of the size and scope of OS/2 
needed a carefully thought out religion because OS/2 will dramatically 
affect this and future generations of operating systems. It needed a 
strong religion for another reason: to ensore consistency among wide
ranging features implemented by a large team of programmers. Such 
consistency is very important; if one programmer optimizes design to 
do A well, at the expense of doing B less well, and another program
mer-in the absence of religious guidance-does the opposite, the end 
result is a product that does neither A nor B well. 

This chapter discusses the major architectural dogmas of the OS/2 
religion: maximum flexibility, a stable environment, localization of er
rors, and the software tools approach. 
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3.1 Maximum Flexibility 
The introduction to this book discusses the process of technological 
breakthroughs. I have pointed out that one of the easiest predictions 
about breakthroughs is that fully predicting their course is impossible. 
For example, the 8088 microprocessor is designed to address 1 MB of 
memory, but the IBM PC and compatible machines are designed so that 
addressable memory is limited to 640 KB. When this decision was 
made, 640 KB was ten times more memory than the then state-of-the
art 8080 machines could use; the initial PCs were going to ship with 16 
KB in them, and it seemed to all concerned that 640 KB was overly 
generous. Yet it took only a few years before 640 KB became the typi
cal memory complement of a machine, and within another year that 
amount of memory was viewed as pitifully small. 

OS/2' s design religion addresses the uncertain future by decreeing 
that-to the extent compatible with other elements in the design 
religion-OS/2 shall be as flexible as possible. The tenet of flexibility 
is that each component of OS/2 should be designed as if massive 
changes will occur in that area in a future release. In other words, the 
current component should be designed in a way that does not restrict 
new features and in a way that can be easily supported by a new version 
of OS/2, one that might differ dramatically in internal design. 

Several general principles result from a design goal of flexibility. 
All are intended to facilitate change, which is inevitable in the general 
yet unpredictable in the specific: 

1. All OS/2 features should be sufficiently elemental (simple) that 
they can be easily supported in any future system, including sys
tems fundamentally different in design from OS/2. Either the fea
tures themselves are this simple, or the features are built using 
base features that are this simple. The adjective simple doesn't 
particularly refer to externals-a small number of functions and 
options-but to internals. The internal operating system infra
structure necessary to provide a function should be either very 
simple or so fundamental to the nature of operating systems that it 
is inevitable in future releases. 

By way of analogy, as time travelers we may be able to guess 
very little about the twenty-first century, but we do know that 
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people will still need to eat. The cuisine of the twenty-first cen
tury may be ungues sable, but certainly future kitchens will con
tain facilities to cut and heat food. If we bring food that needs 
only those two operations, we'll find that even if there's nothing 
to our liking on the twenty-first-century standard menu the 
kitchen can still meet our needs. 

We've seen how important upward compatibility is for com
puter operating systems, so we can rest assured that the future 
MS-DOS "kitchen" will be happy to make the necessary effort 
to support old programs. All we have to do today is to ensure that 
such support is possible. Producing a compatible line of operating 
system releases means more than looking backward; it also means 
looking forward. 

2. All system interfaces need to support expansion in a future 
release. For example, if a call queries the status of a disk file, then 
in addition to passing the operating system a pointer to a structure 
to fill in with the information, the application must also pass in 
the length of that structure. Although the current release of the 
operating system returns N bytes of information, a future release 
may support new kinds of disk files a...~d may return ~1 bytes of in~ 
formation. Because the application tells the operating system, via 
the buffer length parameter, which version of the information 
structure that the application understands (the old short version or 
the new longer version), the operating system can support both old 
programs and new programs simultaneously. 

In general, all system interfaces should be designed to support 
the current feature set without restraining the addition of features 
to the interfaces in future releases. Extra room should be left in 
count and flag arguments for future expansion, and all passed and 
returned structures need either to be self-sizing or to include a 
size argument. 

One more interface deserves special mention-the file system 
interface. Expanding the capabilities of the file system, such as 
allowing filenames longer than eight characters, is difficult 
because many old applications don't know how to process file
names that are longer than eight characters or they regard the 
longer names as illegal and reject them. OS/2 solves this and 
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similar problems by specifying that all filenames supplied to or 
returned from the operating system be zero-terminated strings 
(ASCIIZ strings) of arbitrary length. 

Programmers are specifically cautioned against parsing or 
otherwise "understanding" filenames. Programs should consider 
file system pathnames as "magic cookies" to be passed to and 
from the operating system, but not to be parsed by the program. 
The details of this interface and other expandable interfaces are 
discussed in later chapters. 

3. OS/2 needs to support the addition of functions at any time. The 
implementation details of these functions need to be hidden from 
the client applications so that those details can be changed at any 
time. Indeed, OS/2 should disguise even the source of a feature. 
Some APIs are serviced by kernel code, others are serviced by 
subroutine libraries, and still others may be serviced by other pro
cesses running in the system. Because a client application can't 
tell the difference, the system designers are free to change the im
plementation of an API as necessary. For example, an OS/2 
kernel API might be considerably changed in a future release. The 
old API can continue to be supported by the creation of a sub
routine library routine. This routine would take the old form of 
the API, convert it to the new form, call the OS/2 kernel, and then 
backconvert the result. Such a technique allows future versions of 
OS/2 to support new features while continuing to provide the old 
features to existing programs. These techniques are discussed in 
detail in Chapter 7, Dynamic Linking. 

4. Finally, to provide maximum flexibility, the operating system 
should be extensible and expandable in a piecemeal fashion out in 
the field. In other words, a user should be able to add functions to 
the system-for example, a database engine-or to upgrade or 
replace system components-such as a new graphics display 
driver-without a new release from Microsoft. A microcomputer 
design that allows third-party hardware additions and upgrades in 
the field is called an open system. The IBM PC line is a classic ex
ample of an open system. A design that contains no provisions for 
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such enhancements is called a closed system. The earliest version 
of the Apple Macintosh is an example. At first glance, MS-DOS 
appears to be a closed software system because it contains no pro
visions for expansion. In practice, its unprotected environment 
makes MS-DOS the king of the open software systems because 
every application is free to patch the system and access the hard
ware as it sees fit. Keeping a software system open is as important 
as keeping a hardware system open. Because OS/2 is a protected 
operating system, explicit features, such as dynamic linking, are 
provided to allow system expansion by Microsoft, other software 
vendors, and users themselves. The topic of open systems is dis
cussed more fully in Chapter 7. 

3.2 A Stable Environment 
An office automation operating system has to provide its users-the 
application programs and the human operator-with a stable environ
ment. Every application should work the same way each time it's run; 
and each time an application is given the same data, it should produce 
the same result. The normal operation of one application should 
not affect any other application. Even a program error (bug) should not 
affect other programs in the system. Finally, if a program has bugs, the 
operating system should detect those bugs whenever possible and report 
them to the user. These certainly are obvious goals, but the nature of 
present-day computers makes them surprisingly difficult to achieve. 

3.2.1 Memory Protection 
Modern computers are based on the Von Neumann design-named 
after John Von Neumann, the pioneering Hungarian-born American 
mathematician and computer scientist. A Von Neumann computer con
sists of only two parts: a memory unit and a processing unit. The mem
ory unit contains both the data to be operated on and the instructions 
(or program) that command the processing unit. The processing unit 
reads instructions from memory; these instructions may tell it to issue 
further reads to memory to retrieve data, to operate on data retrieved 
earlier, or to store data back into memory. 



30 PART I THE PROJECT 

A Von Neumann computer does not distinguish between instruc
tions and data; both are stored in binary code in the computer's mem
ory. Individual programs are responsible for keeping track of which 
memory locations hold instructions and which hold data, and each pro
gram uses the memory in a different way. Because the computer does 
not distinguish between instructions and data, a program may operate 
on its own instructions exactly as it operates on data. A program can 
read, modify, and write computer instructions at will. 1 

This is exactly what OS/2 does when it is commanded to run a pro
gram: It reads the program into memory by treating it as data, and then 
it causes the data in those locations to be executed. It is even possible 
for a program to dynamically "reprogram" itself by manipulating its 
own instructions. 

Computer programs are extremely complex, and errors in their logic 
can cause the program to unintentionally modify data or instructions in 
memory. For example, a carelessly written program might contain a 
command buffer 80 bytes in size because it expects no commands long
er than 80 bytes. If a user types a longer command, perhaps in error, 
and the program does not contain a special check for this circumstance, 
the program will overwrite the memory beyond the 80-byte command 
buffer, destroying the data or instructions placed there. 2 

In a single-tasking environment such as MS-DOS, only one applica
tion runs at a time. An error such as our example could damage mem
ory belonging to MS-DOS, the application, or memory that is not in 
use. In practice (due to memory layout conventions) MS-DOS is rarely 
damaged. An aberrant program typically damages itself or modifies 
memory not in use. In any case, the error goes undetected, the program 
produces an incorrect result, or the system crashes. In the last two 
cases, the user loses work, but it is clear which application is in error
the one executing at the time of the crash. (For completeness, I'll point 
out that it is possible for an aberrant application to damage MS-DOS 
subtly enough so that the application itself completes correctly, but the 

1. This is a simplification. OS/2 and the 80286 CPU contain features that do distinguish 
somewhat between instructions and data and that limit the ability of programs to modify their 
own instructions. See 9.1 Protection Model for more information. 
2. This is a simplified example. Rarely would a present-day, well-tested application contain 
such a naive error, but errors of this type-albeit in a much more complex form-exist in 
nearly all software. 
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next time an application runs, it fails. This is rare, and the new applica
tion generally fails immediately upon startup; so after a few such 
episodes with different applications, the user generally identifies the 
true culprit.) 

As we have seen, errors in programs are relatively well contained in 
a single-tasking system. MS-DOS cannot, unfortunately, correct the er
ror, nor can it very often detect the error (these tasks can be shown to be 
mathematically impossible, in the general case). But at least the errors 
are contained within the aberrant application; and should errors in data 
or logic become apparent, the user can identify the erring application. 
When we execute a second program in memory alongside the first, the 
situation becomes more complicated. 

The first difficulty arises because the commonest error for a pro
gram to make is to use memory that MS-DOS has not allocated to it. In 
a single-tasking environment these memory locations are typically 
unused, but in a multitasking environment the damaged location( s) pro
bably belong to some other program. That program will then either give 
incorrect results, damage still other memory locations, crash, or some 
combination of these. In summary, a memory addressing error is more 
dangerous because there is more in memory to damage and that 
damage wiii have a more severe effect. 

The second difficulty arises, not from explicit programming errors, 
but from conflicts in the normal operation of two or more co-resident 
programs that are in some fashion incompatible. A simple example is 
called "hooking the keyboard vector" (see Figure 3-1 on the following 
page). 

In this case, an application modifies certain MS-DOS memory loca
tions so that when a key is pressed the application code, instead of the 
MS-DOS code, is notified by the hardware. Applications do this 
because it allows them to examine certain keyboard events, such as 
pressing the shift key without pressing any other key, that MS-DOS 
does not pass on to applications which ask MS-DOS to read the 
keyboard for them. It works fine for one application to "hook" the key
board vector; although hooking the keyboard vector modifies system 
memory locations that don't belong to the application, the application 
generally gets away with it successfully. In a multitasking environment, 
however, a second application may want to do the same trick, and the 
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Hooking the keyboard vector. 
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system probably won't function correctly. The result is that a stable en
vironment requires memory protection. An application must not be 
allowed to modify, accidentally or deliberately, memory that isn't as
signed to that application. 

3.2.2 Side-Effects Protection 
A stable environment requires more than memory protection; it also re
quires that the system be designed so that the execution of one applica
tion doesn't cause side effects for any other application. Side effects 
can be catastrophic or they can be unremarkable, but in all cases they 
violate the tenet of a stable environment. 

For example, consider the practice of hooking the keyboard interrupt 
vector. If one application uses this technique to intercept keystrokes, it 
will intercept all keystrokes, even those intended for some other appli
cation. The side effects in this case are catastrophic-the hooking 
application sees keystrokes that aren't intended for it, and the other ap
plications don't get any keystrokes at all. 
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Side effects can plague programs even when they are using official 
system features if those features are not carefully designed. For exam
ple, a mainframe operating system called TOPS-IO contains a program 
that supports command files similar to MS-DOS .BAT files, and it also 
contains a program that provides delayed offline execution of com
mands. Unfortunately, both programs use the same TOPS-IO facility to 
do their work. If you include a .BAT fiie in a deiayed command iist, the 
two programs will conflict, and the .BAT file will not execute. 

OS/2 deals with side effects by virtualizing to the greatest extent 
possible each application's operating environment. This means that 
OS/2 tries to make each application "see" a standard environment that 
is unaffected by changes in another application's environment. The 
effect is like that of a building of identical apartments. When each ten
ant moves in, he or she gets a standard environment, a duplicate of all 
the apartments. Each tenant can customize his or her environment, but 
doing so doesn't affect the other tenants or their environments. 

Following are some examples of application environment issues that 
OS/2 virtualizes. 

• Working Directories. Each application has a working (or current) 
directory for each disk drive. Under MS-DOS version 3.x, if a 
child process changes the working directory for drive C and then 
exits, the working directory for drive C remains changed when 
the parent process regains control. OS/2 eliminates this side 
effect by maintaining a separate list of working directories for 
each process in the system. Thus, when an application changes its 
working directories, the working directories of other applications 
in the system remain unchanged. 

• Memory Utilization. The simple act of memory consumption pro
duces side effects. If one process consumes all available RAM, 
none is left for the others. The OS/2 memory management system 
uses memory overcommit (swapping) so that the memory needs 
of each application can be met. 

• Priority. OS/2 uses a priority-based scheduler to assign the CPU 
to the processes that need it. Applications can adjust their priority 
and that of their child processes as they see fit. However, the very 
priority of a task causes side effects. Consider a process that tells 
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OS/2 that it must run at a higher priority than any other task in the 
system. If a second process makes the same request, a conflict oc
curs: Both processes cannot be the highest priority in the system. 
In general, the priority that a process wants for itself depends on 
the priorities of the other processes in the system. The OS/2 
scheduler contains a sophisticated absolute/relative mechanism to 
deal with these conflicts. 

• File Utilization. As discussed earlier, one application may modify 
the files that another application is using, causing an unintended 
side effect. The OS/2 file-locking mechanism prevents unin
tended modifications, and the OS/2 record-locking mechanism 
coordinates intentional parallel updates to a single file. 

• Environment Strings. OS/2 retains the MS-DOS concept of envi
ronment strings: Each process has its own set. A child process 
inherits a copy of the parent's environment strings, but changing 
the strings in this copy will not affect the original strings in the 
parent's environment. 

• Keyboard Mode. OS/2 applications can place the keyboard in one 
of two modes-cooked or raw. These modes tell OS/2 whether 
the application wants to handle, for example, the backspace char
acter (raw mode) or whether it wants OS/2 to handle the back
space character for it (cooked mode). The effect of these calls on 
subsequent keyboard read operations would cause side effects for 
other applications reading from the keyboard, so OS/2 maintains 
a record of the cooked/raw status of each application and silently 
switches the mode of the keyboard when an application issues a 
keyboard read request. 

3.3 Localization of Errors 
A key element in creating a stable environment is localizing errors. 
Humans always make errors, and human creations such as computer 
programs always contain errors. Before the development of computers, 
routine human errors were usually limited in scope. Unfortunately, as 
the saying goes, a computer can make a mistake in 60 seconds that it 
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would take a whole office force a year to make. Although OS/2 can do 
little to prevent such errors, it needs to do its best to localize the errors. 

Localizing errors consists of two activities: minimizing as much as 
possible the impact of the error on other applications in the system, and 
maximizing the opportunity for the user to understand which of the 
many programs running in the computer caused the error. These two 
activities are interrelated in that the more successful the operating sys
tem is in restricting the damage to the domain of a single program, the 
easier it is for the user to know which program is at fault. 

The most important aspect of error localization has already been dis
cussed at length-memory management and protection. Other error 
localization principles include the following: 

• No program can crash or hang the system. A fundamental element 
of the OS/2 design religion is that no application program can, ac
cidentally or even deliberately, crash or hang the system. If a fail
ing application could crash the system, obviously the system did 
not localize the error! Furthermore, the user would be unable to 
identify the responsible application because the entire system 
would be dead. 

Ii No program can make inoperable any screen group other than its 
own. As we'll see in later chapters of this book, sometimes design 
goals, design religions, or both conflict. For example, the precept 
of no side effects conflicts with the requirement of supporting 
keyboard macro expander applications. The sole purpose of such 
an application is to cause a side effect-specifically to translate 
certain keystroke sequences into other sequences. OS/2 resolves 
this conflict by allowing applications to examine and modify the 
flow of data to and from devices (see Chapter 16) but in a con
trolled fashion. Thus, an aberrant keyboard macro application 
that starts to "eat" all keys, passing none through to the applica
tion, can make its current screen group unusable, but it can't 
affect the user's ability to change screen groups. 

Note that keyboard monitors can intercept and consume any 
character or character sequence except for the keystrokes that 
OS/2 uses to switch screen groups (Ctrl-Esc and Alt-Esc). This 
is to prevent aberrant keyboard monitor applications from 
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accidentally locking the user into his or her screen group by con
suming and discarding the keyboard sequences that are used to 
switch from screen groups. 

• Applications cannot intercept general protection (GP) fault errors. 
A GP fault occurs when a program accesses invalid memory loca
tions or accesses valid locations in an invalid way (such as writing 
into read-only memory areas). OS/2 always terminates the opera
tion and displays a message for the user. A GP fault is evidence 
that the program's logic is incorrect, and therefore it cannot be ex
pected to fix itself or trusted to notify the user of its ill health. 

The OS/2 design does allow almost any other error on the part 
of an application to be detected and handled by that application. 
For example, "Illegal filename" is an error caused by user input, 
not by the application. The application can deal with this error as 
it sees fit, perhaps correcting and retrying the operation. An error 
such as "Floppy disk drive not ready" is normally handled by 
OS/2 but can be handled by the application. This is useful for ap
plications that are designed to operate unattended; they need to 
handle errors themselves rather than waiting for action to be taken 
by a nonexistent user. 

3.4 Software Tools Approach 
In Chapter 2 we discussed IPC and the desirability of having separate 
functions contained in separate programs. We discussed the flexibility 
of such an approach over the "one man band" approach of an all-in
one application. We also touched on the value of being able to upgrade 
the functionality of the system incrementally by replacing individual 
programs. All these issues are software tools issues. 

Software tools refers to a design philosophy which says that individ
ual programs and applications should be like tools: Each should do one 
job and do it very well. A person who wants to turn screws and also 
drive nails should get a screwdriver and a hammer rather than a single 
tool that does neither job as well. 

The tools approach is used routinely in nonsoftware environments 
and is taken for granted. For example, inside a standard PC the 
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hardware and electronics are isolated into functional components that 
communicate via interfaces. The power supply is in a box by itself; its 
interface is the line cord and some power connectors. The disk drives 
are separate from the rest of the electronics; they interface via more 
connectors. Each component is the equivalent of a software application: 
It does one job and does it well. When the disk drive needs power, it 
doesn;t build in a power supply; it uses the standard interface to the 
power supply module-the power "specialist" in the system. 

Occasionally, the software tools approach is criticized for being in
efficient. People may argue that space is wasted and time is lost by 
packaging key functions separately; if they are combined, the argument 
goes, nothing is wasted. This argument is correct in that some RAM 
and CPU time is spent on interface issues, but it ignores the gains in
volved in "sending out the work" to a specialist rather than doing it 
oneself. One could argue, for example, that if I built an all-in-one PC 
system I'd save money because I wouldn't have to buy connectors to 
plug everything together. I might also save a little by not having to buy 
buffer chips to drive signals over those connectors. But in doing so, I'd 
lose the advantage of being able to buy my power supply from a very 
high-volume and high-efficiency supplier-someone who can make a 
better, cheaper supply, even with the cost of connectors, than my com
puter company can. 

Finally, the user gains from the modular approach. If you need more 
disk capability, you can buy one and plug it in. You are not limited to 
one disk maker but rather can choose the one that's right for your 
needs-expensive and powerful or cheap and modest. You can buy 
third-party hardware, such as plug-in cards, that the manufacturer of 
your computer doesn't make. All in all, the modest cost of a few con
nectors and driver chips is paid back manyfold, both in direct system 
costs (due to the efficiency of specialization) and in the additional capa
bility and flexibility of the machine. 

As I said earlier, the software tools approach is the software equiva
lent of an open system. It's an important part of the OS/2 religion: 
Although the system doesn't require a modular tools approach from ap
plications programs, it should do everything in its power to facilitate 
such systems, and it should itself be constructed in that fashion. 
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Multitasking 
I have discussed the goals and compatibility issues that OS/2 is in
tended to meet, and I have described the design religion that was estab
lished for OS/2. The following chapters discuss individual design 
elements in some detail, emphasizing not only how the elements work 
and are used but the role they play in the system as a whole. 

In a multitasking operating system, two or more programs can ex
ecute at the same time. Some benefits of such a feature are obvious: 
You (the user) can switch between several application programs 
with,out saving work and exiting one program to start another. When 
the telephone rings, for example, you can switch from the word pro
cessor application you are using to write a memo and go to the applica
tion that is managing your appointment calendar or to the spreadsheet 
application that contains the figures that are necessary to answer your 
caller's query. 

This type of multitasking is similar to what people do when they're 
not working with a computer. You may leave a report half read on your 
desk to address a more pressing need, such as answering the phone. 
Later, perhaps after other tasks intervene, you return to the report. You 
don't terminate a project and return your reference materials to the 
bookshelf, the files, and the library to answer the telephone; you merely 
switch your attention for a while and later pick up where you left off. 

This kind of multitasking is called serial multitasking because ac
tions are performed one at a time. Although you probably haven't 
thought of it this way, you've spent much of your life serially multitask
ing. Every day when you leave for work, you suspend your home life 
and resume your work life. That evening, you reverse the process. You 
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serially multitask a hobby-each time 'picking it up where you left off 
last time and then leaving off again. Reading the comics in a daily 
newspaper is a prodigious feat of human serial mUltitasking-you 
switch from one to another of perhaps 20 strips, remembering for each 
what has gone on before and then waiting until tomorrow for the next 
installment Although serial multitasking is very useful, it is not nearly 
as useful as full multitasking-the kind of multitasking built into OS/2. 

Full multitasking on the computer involves doing more than one 
thing-running more than one application-at the same time. Hu
mans do a little of this, but not too much. People commonly talk while 
they drive cars, eat while watching television, and walk while chewing 
gum. None of these activities requires one's full concentration though. 
Humans generally can't fully multitask activities that require a signifi
cant amount of concentration because they have only one brain. 

For that matter, a personal computer has only one "brain" -one 
CPU.1 But OS/2 can switch this CPU from one activity to another very 
rapidly -dozens or even hundreds of times a second. All executing 
programs seem to be running at the same time, at least on the human 
scale of time. For example, if five programs are running and each in 
turn gets 0.01 second of CPU time (that is, 10 milliseconds), in 1 sec
ond each program receives 20 time slices. To most observers, human or 
other computer software, all five programs appear to be running simul
taneously but each at one-fifth its maximum speed. We'll return to the 
topic of time slicing later; for now, it's easiest-and, as we shall see, 
best - to pretend that all executing programs run simultaneously. 

The full multitasking capabilities of OS/2 allow the personal com
puter to act as more than a mere engine to run applications; the personal 
computer can now be a system of services. The user can interact with a 
spreadsheet program, for example, while a mail application is receiving 
network messages that the user can read later. At the same time, other 
programs may be downloading data from a mainframe computer or 
spooling output to a printer or a plotter. The user may have explicitly 
initiated some of these activities; a program may have initiated others. 
Regardless, they all execute simultaneously, and they all do their work 
without requiring the user's attention or intervention. 

1. Although multiple-CPU computers are well known, personal computers with multiple 
CPUs are uncommon. In any case, this discussion applies, with the obvious extensions, to 
multiple-CPU systems. 
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Full multitasking is useful to programs themselves. Earlier, we dis
cussed the advantages of a tools approach-writing programs so that 
they can offer their services to other programs. The numerous advan
tages of this technique are possible only because of full multitasking. 
For example, if a program is to be able to invoke another program to 
sort a data file, the sort program must execute at the same time as its 
client program. It wouldn't be very useful if the client program had to 
terminate in order for the sort program to run. 

Finally, full multitasking is useful within a program itself. A thread 
is an OS/2 mechanism that allows more than one path of execution 
through a particular application. (Threads are discussed in detail later; 
for now it will suffice to imagine that several CPU s can be made to ex
ecute the same program simultaneously.) This allows individual appli
cations to perform more than one task at a time. For example, if the user 
tells a spreadsheet program to recalculate a large budget analysis, the 
program can use one thread to do the calculating and another to prompt 
for, read, and obey the user's next command. In effect, multiple opera
tions overlap during execution and thereby increase the program's 
responsiveness to the user. 

OS/2 uses a time-sliced, priority-based preemptive scheduler to pro
vide full multitasking. In other words, the OS/2 scheduler preempts
takes away-the CPU from one application at any time the scheduler 
desires and assigns the CPU another application. Programs don't sur
render the CPU when they feel like it; OS/2 preempts it. Each program 
in the system (more precisely, each thread in the system) has its own 
priority. When a thread of a higher priority than the one currently run
ning wants to run, the scheduler preempts the running thread in favor 
of the higher priority one. If two or more runnable threads have the 
same highest priority, OS/2 runs each in turn for a fraction of a 
second-a time slice. 

The OS/2 scheduler does not periodically look around to see if the 
highest priority thread is running. Such an approach wastes CPU time 
and slows response time because a higher priority thread must wait to 
run until the next scheduler scan. Instead, other parts of the system call 
the scheduler when they think that a thread other than the one running 
should be executed. 
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4.1 Subtask Model 
The terms task and process are used interchangeably to describe the 
direct result of executing a binary (.EXE) file. A process is the unit of 
ownership under OS/2, and processes own resources such as memory, 
open files, connections to dynlink libraries, and semaphores. Casual 
users would call a process a "program"; and, in fact, under MS-DOS 
all programs and applications consist of a single process. OS/2 uses the 
terms task or process because a single application program under OS/2 
may consist of more than one process. This section describes how this 
is done. 

First, some more terminology. When a process creates, or execs, 
another process, the creator process is called the parent process, and the 
created process is called the child process. The parent of the parent is 
the child's grandparent and so on. As with people, each process in the 
system has or had a parent. 2 Although we use genealogical terms to 
describe task relationships, a child task, or process, is more like an 
agent or employee of the parent task. Employees are hired to do work 
for an employer. The employer provides a workplace and access to the 
information employees need to do their jobs. The same is generally true 
for a child task. When a child task is created, it inherits (or receives a 
copy of) a great deal of the parent task's environment. For example, it 
inherits, or takes on, the parent's base scheduling priority and its screen 
group. The term inherit is a little inappropriate because the parent task 
has not died. It is alive and well, going about its business. 

The most important items a child task inherits are its parent's open 
file handles. OS/2 uses a handle mechanism to perform file I/O, as do 
MS-DOS versions 2.0 and later. When a file is opened, OS/2 returns a 
handle-an integer value-to the process. When a program wants to 
read from or write to a file, it gives OS/2 the file handle. Handles are 
not identical among processes. For example, the file referred to by han
dle 6 of one process bears no relationship to the file referred to by 
another process's handle 6, unless one of those processes is a child of 
the other. When a parent process creates a child process, the child 
process, by default, inherits each of the parent's open file handles. For 
example, a parent process has the file \ WORK\TEMPFILE open on 

2. Obviously, during boot-up OS/2 creates an initial parentless process by "magic," but this 
is ancient history by the time any application may run, so the anomaly may be safely ignored. 
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handle 5; when the child process starts up, handle 5 is open and refer
ences the \WORK\TEMPFILE file. 

This undoubtedly seems brain damaged if you are unfamiliar with 
this model. Why is it done in this crazy way? What use does the child 
process have for these open files? What's to keep the child from muck
ing up the parent's files? All this becomes clearer when the other piece 
of the puzzie is in place-the standardfile handles. 

4.1.1 Standard File Handles 
Many OS/2 functions use 16-bit integer values called handles for their 
interfaces. A handle is an Qbject that programmers call a "magic 
cookie"-an arbitrary value that OS/2 provides the application so that 
the application can pass the value back to OS/2 on subsequent calls. Its 
purpose is to simplify the OS/2 interface and speed up the particular 
service. For example, when a program creates a system semaphore, it is 
returned a semaph~re handle-a magic cookie-that it uses for subse
quent request and release operations. Referring to the semaphore via a 
16-bit value is much faster than passing around a long filename. Fur
thermore, the magic in magic cookie is that the meaning of the 16-bit 
handle value is indecipherable to the application. OS/2 created· the 
value, and it has meaning only to OS/2; the applicaiion need oniy re
tain the value and regurgitate it when appropriate. An application can 
never make any assumptions about the values of a magic cookie. 

File handles are an exceptional form of handle because they are not 
magic cookies. The handle value, in the right circumstances, is 
meaningful to the application and to the system as a whole. Specifi
cally, three handle values have special meaning: handle value 0, called 
STDIN (for standard input); handle value 1, called STDOUT (standard 

output); and handle value 2, called STDERR (standard error). A simple 
program-let's call it NUMADD-will help to explain the use of 
these three handles. NUMADD will read two lines of ASCII text (each 
containing a decimal number), convert the numbers to binary, add 
them, and then convert the results to an ASCII string and write out the 
result. Note that we're confining our attention to a simple non-screen
oriented program that might be used as a tool, either directly by a 
programmer or by another program (see Figure 4-1 and Listing 4-1 on 
the following page). 
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STDOUT 123~STDIN ~ 
14 NUMADD . 137 

Figure4-1. 
Program NUMADD operation-interactive. 

#include <stdio.h> 

main () 

{ 

int value1, value2, sum; 

/* defines stdin and stdout */ 

fscanf (stdin, HId", &value1); 

fscanf (stdin, HId", & value2); 

sum = value1 + value2; 

fprintf (stdout, "%d\n", sum); 

Listing 4-1. 
Program NUMADD. 

By convention, all OS/2 programs read input from STDIN and write 
output to STDOUT. Any error messages are written to STDERR. The 
program itself does not open these handles; it inherits them from the 
parent process. The parent may have opened them itself or inherited 
them from its own parent. As you can see, NUMADD would not con
tain DosOpen calls; instead, it would start immediately issuing fscanf 
calls on handle 0 (STDIN), which in turn issues DosRead calls, and, 
when ready, directly issue fprintf calls to handle 1 (STDOUT), which 
in turn issues DosWrites. 

Figure 4-2 and Listing 4-2 show a hypothetical application, 
NUMARITH. NUMARITH reads three text lines. The first line con
tains an operation character, such as a plus (+) or a minus (-); the sec
ond and third lines contain the values to be operated upon. The author 
of this program doesn't want to reinvent the wheel; so when the pro
gram NUMARITH encounters a + operation, it executes NUMADD 
to do the work. As shown, the parent process NUMARITH has its 
STDIN connected to the keyboard and its STDOUT connected to the 
screen device drivers.3 When NUMADD executes, it reads input from 
the keyboard via STDIN. After the user types the two numbers, 
NUMADD displays the result on the screen via STDOUT. 
NUMARITH has invoked NUMADD to do some work for it, and 

3. CMD.EXE inherited these handles from its own parent. This process is discussed later. 



Figure 4-2. 
Program NUMARITH operation-interactive. 

#include <stdio.h> 

1** Numarith - Perform ASCII Arithmetic 

* 

* 
* 
* 

Numarith reads line triplets: 

operation 

value1 

value2 
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performs the specified operation (+, - *, I) on 

the two values and prints the result on stdout. 

main () 
{ 

char operation; 

fscanf (stdin, "%c", &operation); 

switch (operation) { 

case '+': execl ("numadd", 0); 

break; 

case '-': execl ("numsub", 0); 

break; 

case '*': execl ("numrnul", 0); 

break; 

case 'I': execl ("numdiv", 0); 

break; 

Listing 4-2. 
Program NUMARITH. 
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NUMADD has silently and seamlessly acted as a part of 
NUMARITH. The employee metaphor fits well here. NUMADD 
acted as an employee of NUMARITH, making use of NUMARITH's 
I/O streams, and as a result the contribution of the NUMADD 
employee to the NUMARITH company is seamless. 

Figure 4-3 shows a similar situation. In this case, however, 
NUMARITH's STDIN and STDOUT handles are open on two files, 
which we'll call DATAIN and DATAOUT. Once again, NUMADD 
does its work seamlessly. The input numbers are read from the com
mand file on STDIN, and the output is properly intermingled in the log 
file on STDOUT. The key here is that this NUMADD is exactly the 
same program that ran in Listing 4-2; NUMADD contains no special 
code to deal with this changed situation. In both examples, NUMADD 
simply reads from STDIN and writes to STDOUT; NUMADD neither 
knows nor cares where those handles point. Exactly the same is true for 
the parent. NUMARITH doesn't know and doesn't care that it's work
ing from files instead of from the screen; it simply uses the STDIN and 
STDOUT handles that it inherited from its parent. 

This is the single most important concept in the relationship and in
heritance structure between processes. The reason a process inherits so 

File data in File data out 

Figure 4-3. 
Program NUMARITH operation-from files. 
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much from its parent is so that the parent can set up the tool's environ
ment-make it read from the parent's STDIN or from a file or from an 
anonymous pipe (see 4.1.2 Anonymous Pipes). This gives the parent 
the flexibility to use a tool program as it wishes, and it frees the tool's 
author from the need to be "all things to all people." 

Of equal importance, the inheritance architecture provides nesting 
encapsuiation of child processes. NUMARITH's parent process 
doesn't know and doesn't need to know how NUMARITH does its job. 
NUMARITH can do the additions itself, or it can invoke NUMADD 
as a child, but the architecture encapsulates the details of 
NUMARITH's operation so that NUMADD's involvement is hidden 
from NUMARITH's parent. Likewise, the decision of NUMARITH's 
parent to work from a file or from a device or from a pipe is encapsu
lated (that is, hidden) from NUMARITH and from any child processes 
that NUMARITH may execute to help with its work. Obviously, this 
architecture can be extended arbitrarily: NUMADD can itself execute 
a child process to help NUMADD with its work, and this would silent
ly and invisibly work. Neither NUMARITH nor its parent would know 
or need to know anything about how NUMADD was doing its work. 
Other versions can replace any of these applications at any time. The 
new versions can invoke more or fewer child processes or be changed 
in any other way, and their client (that is, parent) processes are 
unaffected. The architecture of OS/2 is tool-based; as long as the func
tion of a tool remains constant (or is supersetted), its implementation is 
irrelevant and can be changed arbitrarily. 

The STDIN, STDOUT, and STDERR architecture applies to all 
programs, even those that only use VIO, KBD, or the presentation man
ager and that never issue operations on these handles. See Chapter 14, 
Interactive Programs. 

4.1.2 Anonymous Pipes 
NUMADD and NUMARITH are pretty silly little programs; a mo
ment's consideration will show how the inheritance architecture ap
plies to more realistic programs. An example is the TREE program that 
runs when the TREE command is given to CMD.EXE. TREE inherits 
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the STDIN and STDOUT handles, but it does not use STDIN; it merely 
writes output to STDOUT. As a result, when the user types TREE at a 
CMD.EXE prompt, the output appears on the screen. When TREE ap
pears in a batch file, the output appears in the LOG file or on the 
screen, depending on where STDOUT is pointing. 

This is all very useful, but what if an application wants to further 
process the output of the child program rather than having the child's 
output intermingled with the application's output? OS/2 does this with 
anonymous pipes. The adjective anonymous distinguishes these pipes 
from a related facility, named pipes, which are not implemented in 
OS/2 version 1.0. 

An anonymous pipe is a data storage buffer that OS/2 maintains. 
When a process opens an anonymous pipe, it receives two file 
handles-one for writing and one for reading. Data can be written to 
the write handle via the DosWrite call and then read back via the read 
handle and the DosRead call. An anonymous pipe is similar to a file in 
that it is written and read via file handle operations, but an anonymous 
pipe and a file are significantly different. Pipe data is stored only in 
RAM buffers, not on a disk, and is accessed only in FIFO (First In 
First Out) fashion. The DosSeek operation is illegal on pipe handles. 

An anonymous pipe is of little value to a single process, since it acts 
as a simple FIFO (First In First Out) storage buffer of limited size and 
since the data has to be copied to and from OS/2' s pipe buffers when 
DosWrites and DosReads are done. What makes an anonymous pipe 
valuable is that child processes inherit file handles. A parent process 
can create an anonymous pipe and then create a child process, and the 
child process inherits the anonymous pipe handles. The child process 
can then write to the pipe's write handle, and the parent process can 
read the data via the pipe's read handle. Once we add the DosDupHan
die function, which allows handles to be renumbered, and the standard 
file handles (STDIN, STDOUT, and STDERR), we have the makings 
of a powerful capability. 

Let's go back to our NUMARITH and NUMADD programs. Sup
pose NUMARITH wants to use NUMADD's services but that 
NUMARITH wants to process NUMADD's results itself rather than 
having them appear in NUMARITH's output. Furthermore, assume 
that NUMARITH doesn't want NUMADD to read its arguments from 
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NUMARITH's input file; NUMARITH wants to supply NUMADD's 
arguments itself. NUMARITH can do this by following these steps: 

1. Create two anonymous pipes. 

2. Preserve the item pointed to by the current STDIN and STDOUT 
handles (the item can be a file, a device, or a pipe) by using 
DosDupHandie to provide a dupiicate handle. The handle num
bers of the duplicates may be any number as long as it is not the 
number of STDIN, STDOUT, or STDERR. We know that this is 
the case because DosDupHandle assigns a handle number that is 
not in use, and the standard handle numbers are always in use. 

3. Close STDIN and STDOUT via DosClose. Whatever object is 
"on the other end" of the handle is undisturbed because the appli
cation still has the object open on another handle. 

4. Use DosDupHandle to make the STDIN handle a duplicate of 
one of the pipe's input handles, and use DosDupHandle to make 
the STDOUT handle a duplicate of the other pipe's output handle. 

5. Create the child process via DosExecPgm. 

6. Close the STDIN and STDOUT handles that point to the pipes, 
and use DosDupHandie and DosClose to effectively rename the 
objects originally described by STDIN and STDOUT back to 
those handles. 

The result of this operation is shown in Figure 4-4. NUMADD's 
STDIN and STDOUT handles are pointing to two anonymous pipes, 
and the parent process is holding the other end of those pipes. The 
parent process used DosDupHandle and DosClose to effectively "re
name" the STDIN and STDOUT handles temporarily so that the 

Figure 4-4. 

anonymous 
pipe 

Invoking NUMADD via an anonymous pipe. 

anonymous 
pipe 
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child process can inherit the pipe handles rather than its parent's 
STDIN and STDOUT. At this point the parent, NUMARITH, can 
write input values into the pipe connected to NUMADD's STDIN and 
read NUMADD's output from the pipe connected to NUMADD's 
STDOUT. 

If you compare Figure 4-4 with Listing 4-2, Figure 4-2, and Figure 
4-3, you see another key feature of this architecture: NUMADD has no 
special code or design to allow it to communicate directly with 
NUMARITH. NUMADD functions correctly whether working from 
the keyboard and screen, from data files, or as a tool for another pro
gram. The architecture is fully recursive: If NUMADD invokes a child 
process to help it with its work, everything still functions correctly. 
Whatever mechanism NUMADD uses to interact with its child/tool 
program is invisible to NUMARITH. Likewise, if another program 
uses NUMARITH as a tool, that program is not affected by whatever 
mechanism NUMARITH uses to do its work. 

This example contains one more important point. Earlier I said that 
a process uses DosRead and DosWrite to do I/O over a pipe, yet our 
NUMADD program uses fscanf and fprintf, two C language library 
routines. fscanf and fprintf themselves call DosRead and DosWrite, 
and because a pipe handle is indistinguishable from a file handle or a 
device handle for these operations, not only does NUMADD work 
unchanged with pipes, but the library subroutines that it calls work as 
well. This is another example of the principle of encapsulation as ex
pressed in OS/2,4 in which the differences among pipes, files, and 
devices are hidden behind, or encapsulated in, a standardized handle 
interface. 

4.1.3 Details, Details 
While presenting the "big picture" of the OS/2 tasking and tool archi
tecture, I omitted various important details. This section discusses 
them, in no particular order. 

STDERR (handle value 2) is an output handle on which error mes
sages are written. STDERR is necessary because STDOUT is a pro
gram's normal output stream. For example, suppose a user types: 

DIR filename >Iogfile 

4. And in UNIX, from which this aspect of the architecture was adapted. 
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where the file filename does not exist. If STDERR did not exist as a 
separate entity, no error message would appear, and logfile would ap
parently be created. Later, when the user attempted to examine the con
tents of the file, he or she would see the following message: 

FILE NOT FOUND 

For ihis reason, STDERR generaliy poinis io me display screen, and 
applications rarely redirect it. 

The special meanings of STDIN, STDOUT, and STDERR are not 
hard coded into the OS/2 kernel; they are system conventions. All pro
grams should follow these conventions at all times to preserve the flex
ibility and utility ofOS/2's tool-based architecture. Even programs that 
don't do handle I/O on the STD handles must still follow the architec
tural conventions (see Chapter 14,.lnteractive Programs). However, the 
OS/2 kernel code takes no special action nor does it contain any special 
cases in support of this convention. Various OS/2 system utilities, such 
as CMD.EXE and the presentation manager, do contain code in support 
of this convention. 

I mentioned that a child process inherits all its parent's file handles 
unless the parent has explicitly marked a handle "no inherit." The use 
of STDIN, STDOUT, and STDERR in an inherited environment has 
been discussed, but what of the other handles? 

Although a child process inherits all of its parent's file handles, it is 
usually interested only in STDIN, STDOUT, and STDERR. What hap
pens to the other handles? Generally, nothing. Only handle values 0 
(STDIN), 1 (STDOUT), and 2 (STDERR) have explicit meaning. All 
other file handles are merely magic cookies that OS/2 returns for use in 
subsequent I/O calls. OS/2 doesn't guarantee any particular range or 
sequence of handle values, and applications should never use or rely on 
explicit handle values other than the STD ones. 

Thus, for example, if a parent process has a file open on handle N 
and the child process inherits that handle, little happens. The child pro
cess won't get the value N back as a result of a DosOpen because the 
handle is already in use. The child will never issue operations to handle 
N because it didn't open any such handle and knows nothing of its exis
tence. Two side effects can result from inheriting "garbage" handles. 
One is that the object to which the handle points cannot be closed until 
both the parent and the child close their handles. Because the child 



54 PART II THE ARCHITECTURE 

knows nothing of the handle, it won't close it. Therefore, a handle close 
issued by a parent won't be effective until the child and all of that 
child's descendant processes (which in turn inherited the handle) have 
terminated. If another application needs the file or device, it is unavail
able because a child process is unwittingly holding it open. 

The other side effect is that each garbage handle consumes an entry 
in the child's handle space. Although you can easily increase the 
default maximum of 20 open handles, a child process that intends to 
open only 10 files wouldn't request such an increase. If a parent process 
allows the child to inherit 12 open files, the child will run out of avail
able open file handles. Writing programs that always raise their file 
handle limit is not good practice because the garbage handles are extra 
overhead and the files-held-open problem remains. Instead, parent pro
grams should minimize the number of garbage handles they allow 
child processes to inherit. 

Each time a program opens a file, it should do so with the DosOpen 
request with the "don't inherit" bit set if the file is of no specific in
terest to any child programs. If the bit is not set at open time, it can be 
set later via DosSetFHandState. The bit is per-handle, not per-file; so 
if a process has two handles open on the same file, it can allow one but 
not the other to be inherited. Don't omit this step simply because you 
don't plan to run any child processes; unbeknownst to you, dynlink li
brary routines may run child programs on your behalf. Likewise, in 
dynlink programs the "no inherit" bit should be set when file opens 
are issued because the client program may create child processes. 

Finally, do not follow the standard UNIX practice of blindly closing 
file handles 3 through 20 during program initialization. Dynlink sub
systems are called to initialize themselves for a new client before con
trol is passed to the application itself. If subsystems have opened files 
during that initialization, a blanket close operation will close those files 
and cause the dynlink package to fail. All programs use dynlink sub
systems, whether they realize it or not, because both the OS/2 interface 
package and the presentation manager are such subsystems. Acciden
tally closing a subsystem's file handles can cause bizarre and inexplica
ble problems. For example, when the VIa subsystem is initialized, it 
opens a handle to the screen device. A program that doesn't call VIa 
may believe that closing this handle is safe, but it's not. If a handle 
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write is done to STDOUT when STDOUT points to the screen device, 
OS/2 calls VIO on behalf of the application-with potentially 
disastrous effect. 

I discussed how a child process, inheriting its parent's STDIN and 
STDOUT, extracts its input from the parent's input stream and inter
mingles its output in the parent's output stream. What keeps the parent 
process from rereading the input consumed by the child, (hid what 
keeps the parent from overwriting the output data written by the child? 
The answer is in the distinction between duplicated or inherited han
dles to a file and two handles to the same file that are the result of two 
separate opens. 

Each time a file is opened, OS/2 allocates a handle to that process 
and makes an entry in the process's handle table. This entry then points 
to the System File Table (SFT) inside OS/2. The SFT contains the seek 
pointer to the file- the spot in the file that is currently being read from 
or written to. When a handle is inherited or duplicated, the new handle 
points to the same SFT entry as the original. Thus, for example, the 
child's STDIN handle shares the same seek pointer as the parent's 
STDIN handle. When our example child program NUMADD read two 
lines from STDIN, it advanced the seek pointer of its own STDIN and 
that of its parent's STDIN (and perhaps that of its grandparent's 
STDIN and so forth). Likewise, when the child writes to STDOUT, the 
seek pointer advances on STDOUT so that subsequent writing by the 
parent appends to the child's output rather than overwriting it. 

This lIlechanism has two important ramifications. First, in a situa
tion such as our NUMARITH and NUMADD example, the parent 
process must refrain from I/O to the STD handles until the child 
process has completed so that the input or output data doesn't inter
mingle. Second, the processes must be careful in the way they buffer 
data to and from the STD handles. 

Most programs that read data from STDIN do so until they encoun
ter an EOF (End Of File). These programs can buffer STDIN as they 
wish. A program such as NUMARITH, in which child processes read 
some but not all of its STDIN data, cannot use buffering because the 
read-ahead data in the buffer might be the data that the child process 
was to read. NUMARITH can't "put the data back" by backing up the 
STDIN seek pointer because STDIN might be pointing to a device 



56 PART II THE ARCHITECTURE 

(such as the keyboard) or to a pipe that cannot be seeked. Likewise, 
because NUMADD was designed to read only two lines of input, it 
also must read STDIN a character at a time to be sure it doesn't 
"overshoot" its two lines. 

Programs must also be careful about buffering STDOUT. In general, 
they can buffer STDOUT as they wish, but they must be sure to flush 
out any buffered data before they execute any child processes that 
might write to STDOUT. 

Finally, what if a parent process doesn't want a child process to in
herit STDIN, STDOUT, or STDERR? The parent process should not 
mark those handles "no inherit" because then those handles will not be 
open when the child process starts. The OS/2 kernel has no built-in 
recognition of the STD file handles; so if the child process does a 
DosOpen and handle 1 is unopened (because the process's parent set 
"no inherit" on handle 1), OS/2 might open the new file on handle 1. 
As a result, output that the child process intends for STDOUT appears 
in the other file that unluckily was assigned handle number 1. 

If for some reason a child process should not inherit a STD handle, 
the parent should use the DosDupHandle/rename technique to cause 
that handle to point to the NULL device. You do this by opening a han
dle on the NULL device and then moving that handle to 0, 1, or 2 with 
DosDupHandle. This technique guarantees that the child's STD han
dles will all be open. 

The subject of STDIN, STDOUT, and handle inheritance comes up 
again in Chapter 14, Interactive Programs. 

4.2 PIDs and Command Subtrees 
The PID (process identification) is a unique code that OS/2 assigns to 
each process when it is created. The number is a magic cookie. Its value 
has no significance to any process; it's simply a name for a process. 
The PID may be any value except O. A single PID value is never as
signed to two processes at the same time. PID values are reused but not 
"rapidly." You can safely remember a child's PID and then later at
tempt to affect that child by using the PID in an OS/2 call. Even if the 
child process has died unexpectedly, approximately 65,000 processes 
would have to be created before the PID value might be reassigned; 
even a very active system takes at least a day to create, execute, and ter
minate that many processes. 
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I've discussed at some length the utility of an architecture in which 
child programs can create children and those children can create 
grandchildren and so on. I've also emphasized that the parent need not 
know the architecture of a child process-whether the child process 
creates children and grandchildren of its own. The parent need not 
know and indeed should not know because such information may make 
the parent dependent on a particular implementation of a child or 
grandchild program, an implementation that might change. Given that a 
parent process starting up a child process can't tell if that child creates 
its own descendants, how can the parent process ask the system if the 
work that the child was to do has been completed? The system could 
tell the parent whether the child process is still alive, but this is insuffi
cient. The child process may have farmed out all its work to one or 
more grandchildren and then terminated itself before the actual work 
was started. Furthermore, the parent process may want to change the 
priority of the process( es) that it has created or even terminate them 
because an error was detected or because the user typed Ctrl-C. 

All these needs are met with a concept called the command subtree. 
When a child process is created, its parent is told the child's PID. The 
PID is the name of the single child process, and when taken as a com
mand subtree ID, this PID is the name of the entire tree of descendant 
processes of which the child is the root. In other words, when used as a 
command subtree ID, the PID refers not only to the child process but 
also to any of its children and to any children that they may have and so 
on. A single command subtree can conceivably contain dozens of 
processes (see Figure 4-5 on the following page and Figure 4-6 on 
page 59). 

Some OS/2 functions, such as DosCWait and DosKillProcess, can 
take either PID or command subtree values, depending on the subfunc
tion requested. When the PID form is used, only the named process is 
affected. When the command subtree form is used, the named process 
and all its descendants are affected. This is true even if the child process 
no longer exists or if the family tree of processes contains holes as a 
result of process terminations. 

No statute of limitations applies to the use of the command subtree 
form. That is, even if child process X died a long time ago, OS/2 still 
allows references to the command subtree X. Consequently, OS/2 
places one simple restriction on the use of command subtrees so that it 
isn't forced to keep around a complete process history forever: Only the 
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PARENT 

A 

Figure 4-5. 
Command subtree. A is the root of (one of) the parent's command subtrees. Band Care 
the root of two of A's subtrees and so on. 

direct parent of process X can reference the command subtree X. In 
other words, X's grandparent process can't learn X's PID from its 
parent and then issue command subtree forms of commands; only X's 
direct parent can. This puts an upper limit on the amount and duration 
of command subtree information that OS/2 must retain; when a process 
terminates, information pertaining to its command subtrees can be 
discarded. The command subtree concept is recursive. OS/2 discards 
information about the terminated process's own command subtrees, but 
if any of its descendant processes still exist, the command subtree in
formation pertaining to their child processes is retained. And those sur
viving descendants are still part of the command subtree belonging to 
the terminated process's parent process.5 

5. Assuming that the parent process itself still exists. In any case, all processes are part of a 
nested set of command subtrees belonging to all its surviving ancestor processes. 



Chapter 4 Multitasking 59 

PARENT 

Figure 4-6. 
Command subtree. The shaded processes have died, but the subtrees remain. PARENT 
can still use subtree A to affect all remaining subprocesses. Likewise, an operation by C 
on subtree G will affect process J. 

4.3 DosExecPgm 
To execute a child process, you use the DosExecPgm call. The form of 
the call is shown in Listing 4-3. 

extern unsigned far pascal DOSEXECPGM 
char far *OBJNAMEBUF, 
unsigned OBJNAMEBUFL, 
unsigned EXECTYPE, 
char far *ARGSTRING, 
char far *ENVSTRING, 
struct ResultCodes far *CODEPID, 
char far *PGMNAME); 

Listing 4-3. 
DosExecPgm call. 
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The obj namebuf arguments provide an area where OS/2 can return a 
character string if the DosExecPgm function fails. In MS-DOS version 
2.0 and later, the EXEC function was quite simple: It loaded a file into 
memory. Little could go wrong: file not found, file bad format, insuffi
cient memory, to name some possibilities. A simple error code sufficed 
to diagnose problems. OS/2' s dynamic linking facility is much more 
complicated. The earliest prototype versions of OS/2 were missing 
these obj namebuf arguments, and engineers were quickly frustrated by 
the error code "dynlink library load failed." "Which library was it? 
The application references seven of them! But all seven of those librar
ies are alive and well. Perhaps it was a library that one of those libraries 
referenced. But which libraries do they reference? Gee, I dunno ... " 
For this reason, the object name arguments were added. The buffer is a 
place where OS/2 returns the name of the missing or defective library 
or other load object, and the length argument tells OS/2 the maximum 
size of the buffer area. Strings that will not fit in the area are truncated. 

The exectype word describes the form of the DosExecPgm. The 
values are as follows. 

0: Execute the child program synchronously. The thread issuing the 
DosExecPgm will not execute further until the child process has 
finished executing. The thread returns from DosExecPgm when 
the child process itself terminates, not when the command subtree 
has terminated. This form of DosExecPgm is provided for ease in 
converting MS-DOS version 3.x programs to OS/2. It is con
sidered obsolete and should generally be avoided. Its use may in
terfere with proper Ctrl-C and Ctrl-Break handling (see Chapter 
14, Interactive Programs). 

1: Execute the program asynchronously. The child process begins 
executing as soon as the scheduler allows; the calling thread 
returns from the DosExecPgm call immediately. You cannot 
assume that the child process has received CPU time before the 
parent thread returns from the DosExecPgm call; neither can you 
assume that the child process has not received such CPU service. 
This form instructs OS/2 not to bother remembering the child's 
termination code for a future DosCWait call. It is used when the 
parent process doesn't care what the result code of the child may 
be or when or if it completes, and it frees the parent from the 
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necessity of issuing DosCWait calls. Programs executing other 
programs as tools would rarely use this form. This form might be 
used by a system utility, for example, whose job is to fire off cer
tain programs once an hour but not to take any action or notice 
should any of those programs fail. Note that, unlike the detach 

form described below, the created process is still recorded as a 
child of the executing parent. The parent can issue a DosCY:/ait 
call to determine whether the child subtree is still executing, 
although naturally there is no return code when the child process 
does terminate. 

2: This form is similar to form 1 in that it executes the child process 
asynchronously, but it instructs OS/2 to retain the child process's 
exit code for future examination by DosCWait. Thus, a program 
can determine the success or failure of a child process. The parent 
process should issue an appropriate DosCWait "pretty soon" 
because OS/2 version 1.0 maintains about 2600 bytes of data 
structures for a dead process whose parent is expected to DosC
Wait but hasn't yet done so. To have one of these structures lying 
around for a few minutes is no great problem, but programs need 
to issue DosCWaits in a timely fashion to keep from clogging the 
system with the carcasses of processes that finished hours ago. 

OS/2 takes care of all the possible timing considerations, so it's 
OK to issue the DosCWait before or after the child process has 
completed. Although a parent process can influence the relative 
assignment of CPU time between the child and parent processes 
by setting its own and its child's relative priorities, there is no 
reliable way of determining which process will run when. Write 
your program in such a way that it doesn't matter if the child com
pletes before or after the DosCWait, or use some form of IPC to 
synchronize the execution of parent and child processes. See 4.4 
DosCWait for more details. 

3: This form is used by the system debugger, CodeView. The system 
architecture does not allow one process to latch onto another ar
bitrary process and start examining and perhaps modifying the 
target process's execution. Such a facility would result in a mas
sive side effect and is contrary to the tenet of encapsulation in the 
design religion. Furthermore, such a facility would prevent OS/2 
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from ever providing an environment secure against malicious 
programs. OS/2 solves this problem with the DosPtrace function, 
which peeks, pokes, and controls a child process. This function is 
allowed to affect only processes that were executed with this spe
cial mode value of 3. 

4: This form executes the child process asynchronously but also 
detaches it from the process issuing the DosExecPgm call. A 
detached process does not inherit the parent process's screen 
group; instead, it executes in a special invalid screen group. Any 
attempt to do screen, keyboard, or mouse I/O from within this 
screen group returns an error code. The system does not consider 
a detached process a child of the parent process; the new process 
has no connection with the creating process. In other words, it's 
parentless. This form of DosExecPgm is used to create daemon 
programs that execute without direct interaction with the user. 

The EnvString argument points to a list of ASCII text strings that 
contain environment values. OS/2 supports a separate environment 
block for each process. A process typically inherits its parent's environ
ment strings. In this case, the EnvPointer argument should be NULL, 
which tells OS/2 to supply the child process with a copy of the parent's 
environment strings (see Listing 4-4). 

PATH=C:\DOS;C:\EDITORS;C:\TOOLS;C:\XTOOLS;C:\BIN;C:\UBNET 

INCLUDE=\include 

TERM=h19 

INIT=c:\tmp 

HOME=c:\tmp 

USER=c:\tmp 

TEMP=c:\tmp 

TERM=ibmpc 

LIB=c: \lib 
PROMPT= ($p) 

listing 4-4. 
A typical environment string set. 

The environment strings are normally used to customize a particular 
execution environment. For example, suppose a user creates two screen 
groups, each running a copy of CMD.EXE. Each CMD.EXE is a direct 
child of the presentation manager, which manages and creates screen 
groups, and each is also the ancestor of all processes that will run in its 
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particular screen group. If the user is running utility programs that use 
the environment string' 'TEMP=<dirname>" to specify a directory to 
hold temporary files, he or she may want to specify different TEMP= 
values for each copy of CMD.EXE. As a result, the utilities that use 
TEMP= will access the proper directory, depending on which screen 
group they are run in, because they will have inherited the proper 
TEMP= environment string from their CivID.EXE ancestor. See Chap
ter 10, Environment Strings, for a complete discussion. 

Because of the inheritable nature of environment strings, parent pro
cesses that edit the environment list should remove or edit only those 
strings with which they are involved; any unrecognized strings should 
be preserved. 

4.4 DosCWait 
When a process executes a child process, it usually wants to know when 
that child process has completed and whether the process succeeded or 
failed. DosCWait, the OS/2 companion function to Dos ExecPgm , 
returns such information. Before we discuss DosCWait in detail, two 
observations are in order. First, although each DosExecPgm call starts 
only a single process, it's possible-and not uncommon-for that 
child process to create its own children and perhaps they their own and 
so on. A program should not assume that its child process won't create 
subchildren; instead, programs should use the command-subtree 
forms of DosCWait. One return code from the direct child process 
(that is, the root of the command subtree) is sufficient because if that 
direct child process invokes other processes to do work for it the direct 
child is responsible for monitoring their success via DosCWait. In 
other words, if a child process farms out some of its work to a grand
child process and that grandchild process terminates in error, then the 
child process should also terminate with an error return. 

Second, although we discuss the process's child, in fact processes 
can have multiple child processes and therefore mUltiple command 
subtrees at any time. The parent process may have interconnected the 
child processes via anonymous pipes, or they may be independent of 
one another. Issuing separate DosCWaits for each process or subtree is 
unnecessary. The form of the DosCWait call is shown in Listing 4-5 on 
the following page. 
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extern unsigned far pascal DOSCWAIT ( 
unsigned ACT IONCODE , 
unsigned WAITOPTION, 
struct ResultCodes far *RESULTWORD, 
unsigned far *PIDRETURN, 
unsigned PID); 

Listing 4-5. 
DosCWait function. 

Three of the arguments affect the scope of the command: Action
Code, WaitOption, and PID. It's easiest to show how these interact by 
arranging their possible values into tables. 

DosCWait forms: Command Subtrees 

These forms of DosCWait operate on the entire command subtree, which may, of 
course, consist of only one child process. We recommend these forms because they will 
continue to work correctly if the child process is changed to use more or fewer child pro
cesses of its own. 

ActionCode WaitOption Processld 

o n 

n 

Action 

Wait until the command subtree 
has completed and then return the 
direct child's termination code. 

If the command subtree has com
pleted, return the direct child's 
termination code. Otherwise, 
return the ERROR_WAIT_ 
NO_CHILDREN error code. 

DosCWait forms: Individual Processes 

These forms of DosCWait are used to monitor individual child processes. The pro
cesses must be direct children; grandchild or unrelated processes cannot be DosC
Waited. Use these forms only when the child process is part of the same application or 
software package as the parent process; the programmer needs to be certain that she or 
he can safely ignore the possibility that grandchild processes might still be running after 
the direct child has terminated. * 

ActionCode WaltOption 

o o 
Processld 

o 
Action 

DosCWait returns as soon as a 
direct child process terminates. If a 
child process had already termi
nated at the time of this call, it will 
return immediately. 

(continued) 
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ActionCode WaitOption Processld 

o o N 

o o 

o N 
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Action 

DosCWait returns as soon as the 
direct child process Nterminates. If 
it had already terminated at the 
time of the call, DosCWait returns 
immediately. 

DosCWait checks for a terminated 
direct child process. If one is found, 
its status is returned. If none is 
found, an error code is returned. 

DosCWait checks the status of the 
direct child process N. If it is 
terminated, its status is returned. If 
it is still running, an error code is 
returned. 

* It is in itself not an error to collect a child process's termination code via DosCWait while that child 
still has living descendant processes. However, such a case generally means that the child's work, 
whatever that was, is not yet complete. 

ActionCode 

DosCWait forms: Not Recommended 

WaitOption Processld 

o o 
Action 

DosCWait waits until a direct child 
has terminated and then waits until 
all of that child's descendants have 
terminated. It then returns the 
direct child's exit code. This form 
does not wait until the first 
command subtree has terminated; 
it selects a command subtree 
based on the first direct child that 
terminates, and then it waits as 
long as necessary for the 
remainder of that command 
subtree, even if other command 
subtrees meanwhile complete. 

(continued) 
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DosCWait forms: Not Recommended (Continued) 

ActionCode WaitOption Processld 

o 
Action 

This form returns ERROR_ 
CHILD_NOT _COMPLETE if any 
process in any of the caller's 
subtrees is still executing. If all 
subtrees have terminated, this 
form returns with a direct child's 
exit code. If no direct child 
processes have unwaited exit 
codes, the code ERROR_WAIT_ 
NO_CHILDREN is returned. 

4.5 Control of Child Tasks and Command Subtrees 
A parent process has only limited control over its child processes 
because the system is designed to minimize the side effects, or cross 
talk, between processes. Specifically, a parent process can affect its 
command subtrees in two ways: It can change their CPU priority, and it 
can terminate (kill) them. Once again, the command subtree is the 
recommended form for both commands because that form is insensitive 
to the operational details of the child process. 

4.5.1 DosKiliProcess 
A parent process may initiate a child process or command subtree and 
then decide to terminate that activity before the process completes nor
mally. Often this comes about because of a direct user command or 
because the user typed Ctrl-Break. See Chapter 14, Interactive Pro
grams, for special techniques concerning Ctrl-Break and Ctrl-C. 

DosKiIlProcess flags each process in the command subtree (or the 
direct child process if that form is used) for termination. A process 
flagged for termination normally terminates as soon as all its threads 
leave the system (that is, as soon as all its threads return from all system 
calls). The system aborts calls that might block for more than a second 
or two, such as those that read a keyboard character, so that the process 
can terminate quickly. A process can intercept SIGKILL to delay ter
mination longer, even indefinitely. Delaying termination inordinately 
via SetSignalHandler/SIGKILL is very bad practice and is considered 
a bug rather than a feature. 
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4.5.2 DosSetPrty 
A child process inherits its parent's process priority when the DosEx
ecPgm call is issued. After the DosExecPgm call, the parent can still 
change the process priority of the command subtree or of only the 
direct child process. The command subtree form is recommended; if 
the child process's work deserves priority N, then any child processes 
ihai ii executes to help in that work should also run at priority 1'/. 





Threads and 
Scheduler/ 
Priorities 

5.1 Threads 

5 

Computers consist of a CPU (central processing unit) and RAM (ran
dom access memory). A computer program consists of a sequence of in
structions that are placed, for the most part, one after the other in RAM. 
The CPU reads each instruction in sequence and executes it. The 
passage of the CPU through the instruction sequence is called a thread 

of execution. All versions of MS-DOS executed programs, so they nec
essarily supported a thread of execution. OS/2 is unique, however, in 
that it supports multiple threads of execution within a single process. In 
other words, a program can execute in two or more spots in its code at 
the same time. 

Obviously, a multitasking system needs to support multiple threads 
in a systemwide sense. Each process necessarily must have a thread; so 
if there are ten processes in the system, there must be ten threads. Such 
an existence of multiple threads in the system is invisible to the 
programmer because each program executes with only one thread. 
OS/2 is different from this because it allows an individual program to 
execute with multiple threads if it desires. 
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Because threads are elements of processes and because the process is 
the unit of resource ownership, all threads that belong to the same 
process share that process's resources. Thus, if one thread opens a file 
on file handle X, all threads in that process can issue DosReads or 
DosWrites to that handle. If one thread allocates a memory segment, 
all threads in that process can access that memory segment. Threads 
are analogous to the employees of a company. A company may consist 
of a single employee, or it may consist of two or more employees that 
divide the work among them. Each employee has access to the com
pany's resources-its office space and equipment. The employees 
themselves, however, must coordinate their work so that they cooperate 
and don't conflict. As far as the outside world is concerned, each 
employee speaks for the company. Employees can terminate and/or 
more can be hired without affecting how the company is seen from out
side. The only requirement is that the company have at least one 
employee. When the last employee (thread) dies, the company (process) 
also dies. 

Although the process is the unit of resource ownership, each thread 
does "own" a small amount of private information. Specifically, each 
thread has its own copy of the CPU's register contents. This is an ob
vious requirement if each thread is to be able to execute different in
struction sequences. Furthermore, each thread has its own copy of the 
floating point registers. OS/2 creates the process's first thread when the 
program begins execution. Any additional threads are created by 
means of the DosCreateThread call. Any thread can create another 
thread. All threads in a process are considered siblings; there are no 
parent-child relationships. The initial thread, thread 1, has some spe
cial characteristics and is discussed below. 

5.1.1 Thread Stacks 
Each thread has its own stack area, pointed to by that thread's SS and 
SP values. Thread 1 is the process's primal thread. OS/2 allocates it 
stack area in response to specifications in the .EXE file. If additional 
threads are created via the DosCreateThread call, the caller specifies 
a stack area for the new thread. Because the memory in which each 
thread's stack resides is owned by the process, any thread can modify 
this memory; the programmer must make sure that this does not 
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happen. The size of the segment in which the stack resides is explicitly 
specified; the size of a thread's stack is not. The programmer can place 
a thread's stack in its own segment or in a segment with other data 
values, including other thread stacks. In any case, the programmer must 
ensure sufficient room for each thread's needs. Each thread's stack 
must have at least 2 KB free in addition to the thread's other needs at all 
timeS. This extra space is set aside for the needs of dynamic link rou
tines, some of which consume considerable stack space. All threads 
must maintain this stack space reserve even if they are not used to call 
dynamic link routines. Because of a bug in many 80286 processors, 
stack segments must be preallocated to their full size. You cannot over
run a stack segment and then assume that OS/2 will grow the segment; 
overrunning a stack segment will cause a stack fault, and the process 
will be terminated. 

5.1.2 Thread Uses 
Threads have a great number of uses. This section describes four of 
them. These examples are intended to be inspirations to the program
mer; there are many other uses for threads. 

5.1.2.1 Foreground and Background Work 
Threads provide a form of multitasking within a single program; 
therefore, one of their most obvious uses is to provide simultaneous 
foreground and background 1 processing for a program. For example, a 
spreadsheet program might use one thread to display menus and to read 
user input. A second thread could execute user commands, update the 
spreadsheet, and so on. 

This arrangement generally increases the perceived speed of the pro
gram by allowing the program to prompt for another command before 
the previous command is complete. For example, if the user changes a 
cell in a spreadsheet and then calls for recalculation, the "execute" 
thread can recalculate while the "command" thread allows the user to 
move the cursor, select new menus, and so forth. The spreadsheet 
should use RAM semaphores to protect its structures so that one thread 
can't change a structure while it is being manipulated by another 
thread. As far as the user can tell, he or she is able to overlap commands 

1. Here I mean foreground and background in the sense of directly interacting with the user, 
not as in foreground and background screen groups. 
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without restriction. In actuality, the previous command is usually com
plete before the user can finish entering the new command. Occa
sionally, however, the new command is delayed until the first has com
pleted execution. This happens, for example, when the user of a 
spreadsheet deletes a row right after saving the spreadsheet to disk. Of 
course, the performance in this worst case situation is no worse than a 
standard single-thread design is for all cases. 

5.1.2.2 Asynchronous Processing 
Another common use of threads is to provide asynchronous elements in 
a program's design. For example, as a protection against power failure, 
you can design an editor so that it writes its RAM buffer to disk once 
every minute. Threads make it unnecessary to scatter time checks 
throughout the program or to sit in polling loops for input so that a time 
event isn't missed while blocked on a read call. You can create a thread 
whose sole job is periodic backup. The thread can call DosSleep to 
sleep for 60 seconds, write the buffer, and then go back to sleep for 
another 60 seconds. 

The asynchronous event doesn't have to be time related. For exam
ple, in a program that communicates over an asynchronous serial port, 
you can dedicate a thread to wait for the modem carrier to come on or 
to wait for a protocol time out. The main thread can continue to interact 
with the user. 

Programs that provide services to other programs via IPC can use 
threads to simultaneously respond to multiple requests. For example, 
one thread can watch the incoming work queue while one or more addi
tional threads perform the work. 

5.1.2.3 Speed Execution 
You can use threads to speed the execution of single processes by over
lapping I/O and computation. A single-threaded process can perform 
computations or call OS/2 for disk reads and writes, but not both at the 
same time. A multithreaded process, on the other hand, can compute 
one batch of data while reading the next batch from a device. 

Eventually, PCs containing multiple 80386 processors will become 
available. An application that uses multiple threads may execute faster 
by using more than one CPU simultaneously. 
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5.1.2.4 Organizing Programs 
Finally, you can use threads to organize and simplify the structure of a 
program. For example, in a program for a turnkey security/alarm sys
tem, you can assign a separate thread for each activity. One thread can 
watch the status of the intrusion switches; a second can send commands 
to control the lights; a third can run the telephone dialer; and a fourth 
can interface with each control panel. 

This structure simplifies software design. The programmer needn't 
worry that an intrusion switch is triggering unnoticed while the CPU is 
executing the code that waits on the second key of a two-key command. 
Likewise, the programmer doesn't have to worry about talking to two 
command consoles at the same time; because each has its own thread 
and local (stack) variables, multiple consoles can be used simulta
neously without conflict. 

Of course, you can write such a program without multiple threads; a 
rat's nest of event flags and polling loops would do the job. Much better 
would be a family of co-routines. But best, and simplest of all, is a 
multithreaded design. 

5.1.3 Interlocking 
The good news about threads is that they share a process's data, files, 
and resources. The bad news is that they share a process's data, files, 
and resources-and that sometimes these items must be protected 
against simultaneous update by multiple threads. As we discussed 
earlier, most OS/2 machines have a single CPU; the "random" 
preemption of the scheduler, switching the CPU among threads, gives 
the illusion of the simultaneous execution of threads. Because the 
scheduler is deterministic and priority based, scheduling a process's 
threads is certainly not random; but good programming practice re
quires that it be considered so. Each time a program runs, external 
events will perturb the scheduling of the threads. Perhaps some other, 
higher priority task needs the CPU for a while. Perhaps the disk arm is 
in a different position, and a disk read by one thread takes a little longer 
this time than it did the last. You cannot even asswne that only the highest 
priority runnable thread is executing because a multiple-CPU system 
may execute the N highest priority threads. 
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The only safe assumption is that all threads are executing simulta
neously and that-in the absence of explicit interlocking or semaphore 
calls-each thread is always doing the "worst possible thing" in terms 
of simultaneously updating static data or structures. Writing to looser 
standards and then testing the program "to see if it's OK" is unaccept
able. The very nature of such race conditions, as they are called, makes 
them extremely difficult to find during testing. Murphy's law says that 
such problems are rare during testing and become a plague only after 
the program is released. 

5.1.3.1 Local Variables 
The best way to avoid a collision of threads over static data is to write 
your program to minimize static data. Because each thread has its own 
stack, each thread has its own stack frame in which to store local vari
ables. For example, if one thread opens and reads a file and no other 
thread ever manipulates that file, the memory location where that file's 
handle is stored should be in the thread's stack frame, not in static 
memory. Likewise, buffers and work areas that are private to a thread 
should be on that thread's stack frame. Stack variables that are local to 
the current procedure are easily referenced in high-level languages and 
in assembly language. Data items that are referenced by multiple pro
cedures can still be located on the stack. Pascal programs can address 
such items directly via the data scope mechanism. C and assembly lan
guage programs will need to pass pointers to the items into the pro
cedures that use them. 

5.1.3.2 RAM Semaphores 
Although using local variables on stack frames greatly reduces 
problems among threads, there will always be at least a few cases in 
which more than one thread needs to access a static data item or a static 
resource such as a file handle. In this situation, write the code that ma
nipulates the static item as a critical section (a body of code that manip
ulates a data resource in a nonreentrant way) and then use RAM 
semaphores to reserve each critical section before it is executed. This 
procedure guarantees that only one thread at a time is in a critical sec
tion. See 16.2 Data Integrity for a more detailed discussion. 
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5.1.3.3 DosSuspendThread 
In some situations it may be possible to enumerate all threads that 
might enter a critical section. In these cases, a process's thread can use 
DosSuspendThread to suspend the execution of the other thread(s) 
that might enter the critical section. The DosSuspendThread call can 
only be used to suspend threads that belong to the process making the 
can; ii cannot be used to suspend a thread that beiongs to another 
process. Multiple threads can be suspended by making multiple 
DosSuspendThread calls, one per thread. If a just-suspended thread is 
in the middle of a system call, work on that system call mayor may not 
proceed. In either case, there will be no further execution of application 
(ring 3) code by a suspended thread. 

It is usually better to protect critical sections with a RAM sema
phore than to use DosSuspendThread. Using a semaphore to protect a 
critical section is analogous to using a traffic light to protect an inter
section (an automotive "critical section" because conflicting uses 
must be prevented). Using DosSuspendThread, on the other hand, is 
analogous to your stopping the other cars each time you go through an 
intersection; you're interfering with the operation of the other cars just 
in case they might be driving through the same intersection "as you; 
presumably an infrequent situation. Furthermore, you need a way to en
sure that another vehicle isn't already in the middle of the intersection 
when you stop it. Getting back to software, you need to ensure that the 
thread you're suspending isn't already executing the critical section at 
the time that you suspend it. We recommend that you avoid DosSus
pendThread when possible because of its adverse effects on process 
performance and because of the difficulty in guaranteeing that all the 
necessary threads have been suspended, especially when a program 
undergoes future maintenance and modification. 

A DosResumeThread call restores the normal operation of a sus
pended thread~ 

5.1.3.4 DosEnterCritSec/DosExitCritSec 
DosSuspendThread suspends the execution of a single thread within a 
process. DosEnterCritSec suspends all threads in a process except the 
one making the DosEnterCritSec call. Except for the scope of their 
operation, DosEnterCritSec and DosExitCritSec are similar to 
DosSuspendThead and DosResumeThread, and the same caveats and 
observations apply. 
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DosExitCritSec will not undo a DosSuspendThread that was 
already in effect. It releases only those threads that were suspended by 
DosEnterCritSec. 

5.1.4 Thread 1 
Each thread in a process has an associated thread ID. A thread's ID is a 
magic cookie. Its value has no intrinsic meaning to the application; it 
has meaning only as a name for a thread in an operating system call. 
The one exception to this is the process's first thread, whose thread ID 
is always 1. 

Thread 1 is special: It is the thread that is interrupted when a process 
receives a signal. See Chapter 12, Signals, for further details. 

5.1.5 Thread Death 
A thread can die in two ways. First, it can terminate itself with the 
Dos Exit call. Second, when any thread in a process calls DosExit with 
the "exit entire process" argument, all threads belonging to that 
process are terminated "as soon as possible." If they were executing 
application code at the time DosExit was called, they terminate imme
diately. If they were in the middle of a system call, they terminate 
"very quickly. " If the system call executes quickly enough, its function 
may complete (although the CPU will not return from the system call 
itself); but if the system call involves delays of more than 1 second, it 
will terminate without completing. Whether a thread's last system call 
completes is usually moot, but in a few cases, such as writes to some 
types of devices, it may be noticed that the last write was only partially 
completed. 

When a process wants to terminate, it should use the "terminate en
tire process" form of Dos Exit rather than the "terminate this thread" 
form. Unbeknownst to the calling process, some dynlink packages, in
cluding some OS/2 system calls, may create threads. These threads are 
called captive threads because only the original calling thread returns 
from the dynlink call; the created thread remains "captive" inside the 
dynlink package. If a program attempts to terminate by causing all its 
known threads to use the DosExit "terminate this thread" form, the 
termination may not be successful because of such captive threads. 

Of course, if the last remaining thread of a process calls DosExit 
"terminate this thread," OS/2 terminates the process. 
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5.1.6 Performance Characteristics 
Threads are intended to be fast and cheap. In OS/2 version 1~0, each ad
ditional thread that is created consumes about 1200 bytes of memory 
inside the OS/2 kernel for its kernel mode stack. This is in addition to 
the 2048 bytes of user mode stack space that we recommend you pro
vide from the process's data area. Terminating a thread does not release 
the kernel stack memory, but subsequently creating another thread 
reuses this memory. In other words, the system memory that a process's 
threads consume is the maximum number of threads simultaneously 
alive times 1200 bytes. This figure is exclusive of each thread's stack, 
which is provided by the process from its own memory. 

The time needed to create a new thread depends on the process's 
previous thread behavior. Creating a thread that will reuse the internal 
memory area created for a previous thread that has terminated takes 
approximately 3 milliseconds.2 A request to create a new thread that 
extends the process's "thread count high-water mark" requires an in
ternal memory allocation operation. This operation may trigger a mem
ory compaction or even a segment swapout, so its time cannot be 
accurately predicted. 

It takes about 1 millisecond for the system to begin running an 
unblocked thread. In other words, if a lower-priority thread releases a 
RAM semaphore that is being waited on by a higher-priority thread, 
approximately 1 millisecond passes between the lower-priority 
thread's call to release the semaphore and the return of the higher
priority thread from its DosSemRequest call. 

Threads are a key feature of OS/2; they will receive strong support 
in future versions of OS/2 and will play an increasingly important 
architectural role. You can, therefore, expect thread costs and perfor
mance to be the same or to improve in future releases. 

5.2 Scheduler/Priorities 
A typical running OS/2 system contains a lot of threads. Frequently, 
several threads are ready to execute at anyone time. The OS/2 
scheduler decides which thread to run next and how long to run it before 

2. All timings in this book refer to a 6 mHz IBM AT with one wait-state memory. This repre
sents a worst case performance level. 
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assigning the CPU to another thread. OS/2' s scheduler is a priority
based scheduler, it assigns each thread a priority and then uses that 
priority to decide which thread to run. The OS/2 scheduler is also a 
preemptive scheduler. If a higher-priority thread is ready to execute, 
OS/2 does not wait for the lower-priority thread to finish with the 
CPU before reassigning the CPU; the lower-priority thread is pre
empted-the CPU is summarily yanked away. Naturally, the state of 
the preempted thread is recorded so that its execution can resume later 
without ill effect. 

The scheduler's dispatch algorithm is very straightforward: It ex
ecutes the highest-priority runnable thread for as long as the thread 
wants the CPU. When that thread gives up the CPU-perhaps by wait
ing for an I/O operation-that thread is no longer runnable, and the 
scheduler executes the thread with the highest priority that is runnable. 
If a blocked thread becomes runnable and it has a higher priority than 
the thread currently running, the CPU is immediately preempted and 
assigned to the higher-priority thread. In summary, the CPU is always 
running the highest-priority runnable thread. 

The scheduler's dispatcher is simplicity itself: It's blindly priority 
based. Although the usual focus for OS/2 activities is the process-a 
process lives, dies, opens files, and so on - the scheduler components 
of OS/2 know little about processes. Because the thread is the dispatch
able entity, the scheduler is primarily thread oriented. If you're not 
used to thinking in terms of threads, you can mentally substitute the 
word process for the word thread in the following discussion. In prac
tice, all of a process's threads typically share the same priority, so it's 
not too inaccurate to view the system as being made up of processes that 
compete for CPU resources. 

In OS/2 threads are classified and run in three categories: general 
priority, time-critical priority, and low priority. These categories are 
further divided into subcategories. Figure 5-1 shows the relationship of 
the three priority categories and their subcategories. 

5.2.1 General Priority Category 
The majority of threads in the system run in the general priority 
category and belong to one of three subcategories: background, fore
ground, or interactive. To a limited extent, OS/2 dynamically modifies 
the priorities of threads in the general priority category. 
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The purpose of the OS/2 priority design is to optimize response rather 
than throughput. In other words, the system is not concerned about en
suring that all runnable threads get at least some CPU time, and the sys
tem is not primarily concerned about trying to keep the disks busy 
when the highest-priority thread is compute bound. Instead, OS/2 is 
concerned about keeping less important work from delaying or slowing 
more important work. This is the reason for the background sub
category. The word background has been used in many different ways 
to describe how tasks are performed in many operating systems; we use 
the word to indicate processes that are associated with a screen group 
not currently being displayed. 

For example, a user is working with a word-processing program but 
then switches from that program to a spreadsheet program. The word
processing program becomes background, and the spreadsheet program 
is promoted from background to foreground. When the user selects dif
ferent screen groups, threads change from foreground to background or 
background to foreground. Background threads have the lowest priority 
in the general priority category. Background applications get the CPU 
(and, through it, the disks) only when all foreground threads are idle. 
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As soon as a foreground thread is runnable, the CPU is preempted from 
the background thread. Background threads can use leftover machine 
time, but they can never compete with foreground threads. 

5.2.1.2 Foreground and Interactive Subcategories 
All processes associated with the currently active screen group are 
made members of the foreground subcategory. The process that is cur
rently interacting with the keyboard is promoted to the interactive sub
category. This ensures that the user will get the fastest possible response 
to a command. When the interactive process's threads release the CPU 
(via blocking on some OS/2 call), the non interactive foreground 
threads get the next crack at it because those threads are usually doing 
work on behalf of the interactive process or work that is in some way 
related. If no foreground thread needs the CPU, background threads 
may run. 

Although the scheduler concerns itself with threads rather than pro
cesses, it's processes that switch between categories - foreground, 
background, and interactive. When a process changes category - for 
example, when a process shows itself to be in the interactive sub
category by doing keyboard 1/0-the priorities of all its threads are 
adjusted appropriately. 

Because background threads are the "low men on the totem pole" 
that is composed of quite a few threads, it may seem that they'll never 
get to run. This isn't the case, though, over a long enough period of 
time. Yes, a background thread can be totally starved for CPU time 
during a 5-second interval, but it would be very rare if it received no 
service during a I-minute interval. Interactive application commands 
that take more than a few seconds of CPU time are rare. Commands in
volving disk transfer may take longer, but the CPU is available for 
lower-priority threads while the interactive process is waiting for disk 
operations. Finally, a user rarely keeps an interactive application fully 
busy; the normal "type, look, and think" cycle has lots of spare time in 
it for background threads to run. 

But how does this apply to the presentation manager? The presenta
tion manager runs many independent interactive tasks within the same 
screen group, so are they all foreground threads? How does OS/2 know 
which is the interactive process? The answer is that the presentation 
manager advises the scheduler. When the presentation manager screen 
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group is displayed, all threads within that screen group are placed in 
the foreground category. When the user selects a particular window to 
receive keyboard or mouse events, the presentation manager tells the 
scheduler that the process using that window is now the interactive 
process. As a result, the system's interactive performance is preserved 
in the presentation manager's screen group. 

5.2.1.3 Throughput Balancing 
We mentioned that some operating systems try to optimize system 
throughput by trying to run CPU-bound and I/O-bound applications at 
the same time. The theory is that the I/O-bound application ties up the 
disk but needs little CPU time, so the disk work can be gotten out of the 
way while the CPU is running the CPU-bound task. If the disk thread 
has the higher priority, the tasks run in tandem. Each time the disk 
operation is completed, the I/O-bound thread regains the CPU and 
issues another disk operation. Leftover CPU time goes to the CPU
bound task that, in this case, has a lower priority. 

This won't work, however, if the CPU-bound thread has a higher 
priority than the I/O-bound thread. The CPU-bound thread will tend to 
hold the CPU, and the I/O-bound thread won't get even the small 
amount of CPU time that it needs to issue another I/O request. Tradi
tionally, schedulers have been designed to deal with this problem by 
boosting the priority of I/O-bound tasks and lowering the priority of 
CPU-bound tasks so that, eventually, the I/O-bound thread gets enough 
service to make its I/O requests. 

The OS/2 scheduler incorporates this design to a limited extent. 
Each time a thread issues a system call that blocks, the scheduler looks 
at the period between the time the CPU was assigned to the thread and 
the time the thread blocked itself with a system call.3 If that period of 
time is short, the thread is considered I/O bound, and its priority 
receives a small increment. If a thread is truly I/O bound, it soon 
receives several such increments and, thus, a modest priority promo
tion. On the other hand, if the thread held the CPU for a longer period 
of time, it is considered CPU bound, and its priority receives a small 
decrement. 

3. We use "blocking" ratherthan "requesting an I/O operation" as a test ofI/O boundedness 
because nearly all blocking operations wait for I/O. If a thread's data were all in the buffer 
cache, the thread could issue many I/O requests and still be compute bound. In other words, 
when we speak ofI/O-bound threads, we really mean device bound-not I/O request bound. 
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The I/O boundedness priority adjustment is small. No background 
thread, no matter how I/O bound, can have its priority raised to the 
point where it has a higher priority than any foreground thread, no mat
ter how CPU bound. This throughput enhancing optimization applies 
only to "peer" threads-threads with similar priorities. For example, 
the threads of a single process generally have the same base priority, so 
this adjustment helps optimize the throughput of that process. 

5.2.2 Time-Critical Priority Category 
Foreground threads, particularly interactive foreground threads, 
receive CPU service whenever they want it. Noninteractive foreground 
threads and, particularly, background threads may not receive any CPU 
time for periods of arbitrary length. This approach improves system 
response, but it's not always a good thing. For example, you may be 
running a network or a telecommunications application that drops its 
connection if it can't respond to incoming packets in a timely fashion. 
Also, you may want to make an exception to the principle of ' 'response, 
not throughput" when it comes to printers. Most printers are much 
slower than their users would like, and most printer spooler programs 
require little in the way of CPU time; so the OS/2 print spooler (the 
program that prints queued output on the printer) would like to run at a 
high priority to keep the printer busy. 

Time-critical applications are so called because the ability to run in a 
timely fashion is critical to their well-being. Time-critical applications 
mayor may not be interactive, and they may be in the foreground or in 
a background screen group, but this should not affect their high 
priority. The OS/2 scheduler contains a time-critical priority category 
to deal with time-critical applications. A thread running in this priority 
category has a higher priority than any non-time-critical thread in the 
system, including interactive threads. Unlike priorities in the general 
category, a time-critical priority is never adjusted; once given a time
critical priority, a thread's priority remains fixed until a system call 
changes it. 

Naturally, time-critical threads should consume only modest 
amounts of CPU time. If an application has a time-critical thread that 
consumes considerable CPU time-say, more than 20 percent-the 
foreground interactive application will be noticeably slowed or even 
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momentarily stopped. System usability is severely affected when the 
interactive application can't get service. The screen output stutters and 
stumbles, characters are dropped when commands are typed, and, in 
general, the computer becomes unusable. 

Not all threads in a process have to be of the same priority. An ap
plication may need time-critical response for only some of its work; the 
other work can run at a nonnal priority. For example, in a telecom
munications program a "receive incoming data" thread might run at a 
time-critical priority but queue messages in memory for processing by 
a normal-priority thread. If the time-critical thread finds that the 
normal-priority thread has fallen behind, it can send a "wait for me" 
message to the sending program. 

We strongly recommend that processes that use monitors run the 
monitor thread, and only the monitor thread, at a time-critical priority. 
This prevents delayed device response because of delays in processing 
the monitor data stream. See 16.1 Device Monitors for more 
information. 

5.2.3 Low Priority Category 
If you picture the general priority category as a range of priorities, with 
the force run priority category as a higher range, ihere is a ihird range, 
called the low priority category, that is lower in priority than the general 
priority category. As a result, threads in this category get CPU service 
only when no other thread in the other categories needs it. This cate
gory is a mirror image of the time-critical priority category in that the 
system call that sets the thread fixes the priority; OS/2 never changes a 
low priority. 

I don't expect the low priority category to be particularly popular. 
It's in the system primarily because it falls out for free, as a mirror im
age of the time-critical category. Turnkey systems may want to run 
some housekeeping processes at this priority. Some users enjoy com
puting PI, doing cryptographic analysis, or displaying fractal images; 
these recreations are good candidates for soaking up leftover CPU time. 
On a more pra<;ticallevel, you could run a program that counts seconds 
of CPU time and yields a histogram of CPU utilization during the 
course of a day. 
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5.2.4 Setting ProcesslThread Priorities 
We've discussed at some length the effect of the various priorities, but 
we haven't discussed how to set these priorities. Because inheritance is 
an important OS/2 concept, how does a parent's priority affect that of 
the child? Finally, although we said that priority is a thread issue rather 
than a process one, we kept bringing up processes anyway. How does 
all this work? 

Currently, whenever a thread is created, it inherits the priority of its 
creator thread. In the case of DosCreateThread, the thread making the 
call is the creator thread. In the case of thread 1, the thread in the parent 
process that is making the DosExecPgm call is the creator thread. 
When a process makes a DosSetPrty call to change the priority of one 
of its own threads, the new priority always takes effect. When a process 
uses DosSetPrty to change the priority of another process, only the 
threads in that other process which have not had their priorities ex
plicitly set from within their own process are changed. This prevents a 
parent process from inadvertently lowering the priority of, say, a time
critical thread by changing the base priority of a child process. 

In a future release, we expect to improve this algorithm so that each 
process has a base priority. A new thread will inherit its creator's base 
priority. A process's thread priorities that are in the general priority 
category will all be relative to the process's base priority so that a 
change in the base priority will raise or lower the priority of all the 
process's general threads while retaining their relative priority rela
tionships. Threads in the time-critical and low priority categories will 
continue to be unaffected by their process's base priority. 
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OS/2 contains several important subsystems: the file system, the mem
ory management subsystem, the multitasking subsystem, and the user 
interface subsystem-the presentation manager. MS-DOS does not 
define or support a user interface subsystem; each application must pro
vide its own. MS-DOS utilities use a primitive line-oriented interface, 
essentially unchanged from the interface provided by systems designed 
to interface with TTY s. 

OS/2 is intended to be a graphics-oriented operating system, and as 
such it needs to provide a standard graphical user interface (GUI) sub
system - for several reasons. First, because such systems are complex 
to create, to expect that each application provide its own is unreason
able. Second, a major benefit of a graphical user interface is that appli
cations can be intermingled. For example, their output windows can 
share the screen, and the user can transfer data between applications 
using visual metaphors. If each application had its own GUI package, 
such sharing would be impossible. Third, a graphical user interface is 
supposed to make the machine easier to use, but this will be so only if 
the user can learn one interface that will work with all applications. 

6.1 VIO User Interface 
The full graphical user interface subsystem will not ship with OS/2 ver
sion 1.0, so the initial release will contain the character-oriented 
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VIO/KBD/MOU subsystem (see Chapter 13, The Presentation Man
ager and VIO, for more details). Although VIO doesn't provide any 
graphical services, it does allow applications to sidestep VIO and con
struct their own. The VIO screen group interface is straightforward. 
When the machine is booted up, the screen displays the screen group 
list. The user can select an existing screen group or create a new one. 
From within a screen group, the user can type a magic key sequence to 
return the screen to the screen group list. Another magic key sequence 
allows the user to toggle through all existing screen groups. One screen 
group is identified in the screen group list as the real mode screen 
group. 

6.2 The Presentation Manager User Interface 
The OS/2 presentation manager is a powerful and flexible graphical 
user interface. It supports such features as windowing, drop-down and 
pop-up menus, and scroll bars. It works best with a graphical pointing 
device such as a mouse, but it can be controlled exclusively from the 
keyboard. 

The presentation manager employs screen windows to allow multi
ple applications to use the screen and keyboard simultaneously. Each 
application uses one or more windows to display its information; the 
user can size and position each window, overlapping some and perhaps 
shrinking others to icons. Mouse and keyboard commands change the 
input focus between windows; this allows the presentation manager to 
route keystrokes and mouse events to the proper application. 

Because of its windowing capability, the presentation manager 
doesn't need to use the underlying OS/2 screen group mechanism to 
allow the user to switch between running applications. The user starts 
an application by pointing to its. name on a menu display; for most ap
plications the presentation manager creates a new window and assigns 
it to the new process. Some applications may decline to use the presen
tation manager's graphical user interface and prefer to take direct con
trol of the display. When such an application is initiated, the 
presentation manager creates a private screen group for it and switches 
to that screen group. The user can switch away by entering a special 
key sequence that brings up a menu which allows the user to select any 
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running program. If the selected program is using the standard presen
tation manager aUI, the screen is switched to the screen group shared 
by those programs. Otherwise, the screen is switched to the private 
screen group that the specified application is using. 

To summarize, only the real mode application and applications that 
take direct control of the display hardware need to run in their own 
screen groups. The presentation manager runs all other processes in a 
single screen group and uses its windowing facilities to share the screen 
among them. The user can switch between applications via a special 
menu; if both the previous and the new application are using the stan
dard interface, the user can switch the focus directly without going 
though the menu. 

6.3 Presentation Manager and VIO Compatibility 
In OS/2 version 1.1 and in all subsequent releases, the presentation 
manager will replace and superset the VIO interface. Applications that 
use the character mode VIO interface will continue to work properly as 
windowable presentation manager applications, as will applications 
that use the STDIN and STDOUT file handles for interactive I/O. Ap
plications that use the VIO interface to obtain direct access to the 
graphical display hardware will also be supported; as described above, 
the presentation manager will run such applications in their own screen 
group. 
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Dynamic Linking 
A central component of OS/2 is dynamic linking. Dynamic links play 
several critical architectural roles. Before we can discuss them at such 
an abstract level, however, we need to understand the nuts and bolts of 
their workings. 

7.1 Static Linking 
A good preliminary to the study of dynamic links (called dynlinks, for 
short) is a review of their relative, static links. Every programmer who 
has gone beyond interpreter-based languages such as BASIC is familiar 
with static links. You code a subroutine or a procedure call to a routine 
that is not present in that compiland (or source file), which we'll call 
Foo. The missing routine is declared external so that the assembler or 
compiler doesn't flag it as an undefined symbol. At linktime, you pre
sent the linker with the .OBJ file that you created from your compiland, 
and you also provide a .OBJ file l that contains the missing routine Foo. 
The linker combines the compilands into a final executable image
the .EXE file-that contains the routine Foo as well as the routines 
that call it. During the combination process, the linker adjusts the calls 
to Foo, which had been undefined external references, to point to the 
place in the .EXE file where the linker relocated the Foo routine. This 
process is diagramed in Figure 7-1 on the following page. 

In other words, with static linking you can write a program in 
pieces. You can compile one piece at a time by having it refer to the 
other pieces as externals. A program called a linker or a link editor 

1. Or a .LIB library file that contains the .OBJ file as a part of it. 
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combines these pieces into one final .EXE image, fixing up the exter
nal references (that is, references between one piece and another) that 
those pieces contain. 

Writing and compiling your program piecemeal is useful, but the 
primary advantage of static linking is that you can use it to reference a 
standard set of subroutines-a subroutine library-without compiling 
or even possessing the source code for those subroutines. Nearly all 
high-level language packages come with one or more standard runtime 
libraries that contain various useful subroutines that the compiler can 
call implicitly and that the programmer can call explicitly. Source for 
these runtime libraries is rarely provided; the language supplier pro
vides only the .OBJ object files, typically in library format. 

To summarize, in traditional static linking the target code (that is, 
the external subroutine) must be present at linktime and is built into the 
final .EXE module. This makes the .EXE file larger, naturally, but 
more important, the target code can't be changed or upgraded without 
relinking to the main program's .OBJ files. Because the personal com
puter field is built on commercial software whose authors don't release 
source or .OBJ files, this relinking is out of the question for the typical 
end user. Finally, the target code can't be shared among several (differ
ent) applications that use the same library routines. This is true for two 
reasons. First, the target code was relocated differently by the linker for 
each client; so although the code remains logically the same for each 
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application, the address components of the binary instructions are dif
ferent in each .EXE file. Second, the operating system has no way of 
knowing that these applications are using the same library, and it has no 
way of knowing where that library is in each .EXE file. Therefore, it 
can't avoid having duplicate copies of the library in memory. 

7.2 Loadtime Dynamic Linking 
The mechanical process of loadtime dynamic linking is the same as 
that of static linking. The programmer makes an external reference to a 
subroutine and at linktime specifies a library file (or a .OBJ file) that 
defines the reference. The linker produces a .EXE file that OS/2 then 
loads and executes. Behind the scenes, however, things are very much 
different. 

Step 1 is the same for both kinds of linking. The external reference is 
compiled or assembled, resulting in a .OBJ file that contains an exter
nal reference fixup record. The assembler or compiler doesn't know 
about dynamic links; the .OBJ file that an assembler or a compiler pro
duces may be used for static links, dynamic links, or, more frequently, 
a combination of both (some externals become dynamic links, others 
become static links). 

In static linking, the linker finds the actual externally referenced 
subroutine in the library file. In dynamic linking, the linker finds a 
special record that defines a module name string and an entry point 
name string. For example, in our hypothetical routine Foo, the library 
file contains only these two name strings, not the code for Foo itself. 
(The entry point name string doesn't have to be the name by which pro
grams called the routine.) The resultant .EXE file doesn't contain the 
code for Foo; it contains a special dynamic link record that specifies 
these module and entry point names for Foo. This is illustrated in 
Figure 7-2 on the following page. 

When this .EXE file is run, OS/2 loads the code in the .EXE file into 
memory and discovers the dynamic link record(s). For each dynamic 
link module that is named, OS/2 locates the code in the system's 
dynamic link library directory and loads it into memory (unless the 
module is already in use; see below). The system then links the external 
references in the application to the addresses of the called entry points. 
This process is diagramed in Figure 7-3 on the following page. 
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To summarize, instead of linking in the target code at linktime, the 
linker places a module name and an entry point name into the .EXE 
file. When the program is loaded (that is, executed), OS/2 locates the 
target code, loads it, and does the necessary linking. Although all we're 
doing is postponing the linkage untilloadtime, this technique has sev
eral important ramifications. First, the target code is not in the .EXE 
file but in a separate dynamic link library (.DLL) file. Thus, the .EXE 
file is smaller because it contains only the name of the target code, not 
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the code itself. You can change or upgrade the target code at any time 
simply by replacing this .DLL file. The next time a referencing applica
tion is loaded,2 it is linked to the new version of the target code. Finally, 
having the target code in a .DLL file paves the way for automatic code 
sharing. OS/2 can easily understand that two applications are using the 
same dynlink code because it loaded and linked that code, and it can 
use this knowledge to share the pure segments of that dynlink package 
rather than loading duplicate copies. 

A final advantage of dynamic linking is that it's totally invisible to 
the user, and it can even be invisible to the programmer. You need to 
understand dynamic linking to create a dynamic link module, but you 
can use one without even knowing that it's not an ordinary static link. 
The one disadvantage of dynamic linking is that programs sometimes 
take longer to load into memory than do those linked with static link
ing. The good news about dynamic linking is that the target code( s) are 
separate from the main .EXE file; this is also the bad news. Because the 
target code(s) are separate from the main .EXE file, a few more disk 
operations may be necessary to load them. 

The actual performance ramifications depend on the kind of dynlink 
module that is referenced and whether this .EXE file is the first to refer
ence the module. This is discussed in more detail in 7.11 Implementa
tion Details. 

Although this discussion has concentrated on processes calling dyn
link routines, dynlink routines can in fact be called by other dynlink 
routines. When OS/2 loads a dynlink routine in response to a process's 
request, it examines that routine to see if it has any dynlink references 
of its own. Any such referenced dynlink routines are also loaded and so 
on until no unsatisfied dynlink references remain. 

7.3 Runtime Dynamic Linking 
The dynamic linking that we have been describing is called load
time dynamic linking because it occurs when the .EXE file is loaded. 
All dynamic link names need not appear in the .EXE file at loadtime; a 
process can link itself to a dynlink package at runtime as well. Runtime 
dynamic linking works exactly like load time dynamic linking 

2. With some restrictions. See 7.11.2 Dynlink Life, Death, and Sharing. 
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except that the process creates the dynlink module and entry point 
names at runtime and then passes them to OS/2 so that OS/2 can locate 
and load the specified dynlink code. 

Runtime linking takes place in four steps. 

1. The process issues a DosLoadModule call to tell OS/2 to locate 
and load the dynlink code into memory. 

2. The DosGetProcAddr call is used to obtain the addresses of the 
routines that the process wants to call. 

3. The process calls the dynlink library entry points by means of an 
indirect call through the address returned by DosGetProcAddr. 

4. When the process has no more use for the dynlink code, it can call 
DosFreeModule to release the dynlink code. After this call, the 
process will still have the addresses returned by DosGet
ProcAddr, but they will be illegal addresses; referencing them 
will cause a GP fault. 

Runtime dynamic links are useful when a program knows that it will 
want to call some dynlink routines but doesn't know which ones. For 
example, a charting program may support four plotters, and it may 
want to use dynlink plotter driver packages. It doesn't make sense for 
the application to contain loadtime dynamic links to all four plotters 
because only one will be used and the others will take up memory and 
swap space. Instead, the charting program can wait until it learns 
which plotter is installed and then use the runtime dynlink facility to 
load the appropriate package. The application need not even call 
DosLoadModule when it initializes; it can wait until the user issues a 
plot command before it calls DosLoadModule, thereby reducing mem
ory demands on the system. 

The application need not even be able to enumerate all the modules 
or entry points that may be called. The application can learn the names 
of the dynlink modules from another process or by looking in a config
uration file. This allows the user of our charting program, for example, 
to install additional plotter drivers that didn't even exist at the time that 
the application was written. Of course, in this example the calling se
quences of the dynlink plotter driver must be standardized, or the 
programmer must devise a way for the application to figure out the 
proper way to call these newly found routines. 
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Naturally, a process is not limited to one runtime dynlink module; 
multiple calls to DosLoadModule can be used to link to several 
dynlink modules simultaneously. Regardless of the number of modules 
in use, DosFreeModule should be used if the dynlink module will no 
longer be used and the process intends to continue executing. Issuing 
DosFreeModules is unnecessary if the process is about to terminate; 
OSi2 reieases ali dynlink modules at process termination tirI1e. 

7.4 Dynlinks, Processes, and Threads 
Simply put, OS/2 views dynlinks as a fancy subroutine package. 
Dynlinks aren't processes, and they don't own any resources. A dyn
link executes only because a thread belonging to a client process called 
the dynlink code. The dynlink code is executing as the client thread and 
process because, in the eyes of the system, the dynlink is merely a sub
routine that process has called. Before the client process can call a 
dynlink package, OS/2 ensures that the dynlink's segments are in the 
address space of the client. No ring transition or context switching over
head occurs when a client calls a dynlink routine; the far call to a 
dynlink entry point is just that-an ordinary far call to a subroutine in 
the process's address space. 

One side effect is that dynlink calls are very fast; little CPU time is 
spent getting to the dynlink package. Another side effect is no separa
tion between a client's segments and a dynlink package's segments3 

because segments belong to processes and only one process is running 
both the client and the dynlink code. The same goes for file handles, 
semaphores, and so on. 

7.5 Data 
The careful reader will have noticed something missing in this discus
sion of dynamic linking: We've said nothing about how to handle a 
dynlink routine's data. Subroutines linked with static links have no 
problem with having their own static data; when the linker binds the 
external code with the main code, it sees how much static data the ex
ternal code needs and allocates the necessary space in the proper data 

3. Subsystem dynlink packages may be sensitive to this. For detailed information, see 7.11.1 
Dynlink Data Security. 
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segment(s). References that the external code makes to its data are then 
fixed up to point to the proper location. Because the linker is combining 
all the .OBJ files into a .EXE file, it can easily divide the static data 
segment( s) among the various compilands. 

This technique doesn't work for dynamic link routines because their 
code and therefore their data requirements aren't present at linktime. 
It's possible to extend the special dynlink .OBJ file to describe the 
amount of static data that the dynlink package will need, but it won't 
work.4 Because the main code in each application uses different 
amounts of static data, the data area reserved for the dynlink package 
would end up at a different offset in each .EXE file that was built. 
When these .EXE files were executed, the one set of shared dynlink 
code segments would need to reference the data that resides at different 
addresses for each different client. Relocating the static references in all 
dynlink code modules at each occurrence of a context switch is clearly 
out of the question. 

An alternative to letting dynamic link routines have their own static 
data is to require that their callers allocate the necessary data areas and 
pass pointers to them upon every call. We easily rejected this scheme: 
It's cumbersome; call statements must be written differently if they're 
for a dynlink routine; and, finally, this hack wouldn't support sub
systems, which are discussed below. 

Instead, OS/2 takes advantage of the segmented architecture of the 
80286. Each dynamic link routine can use one or more data segments to 
hold its static data. Each client process has a separate set of these seg
ments. Because these segments hold only the dynlink routine's data and 
none of the calling process's data, the offsets of the data items within 
that segment will be the same no matter which client process is calling 
the dynlink code. All we need do to solve our static data addressability 
problem is ensure that the segment selectors of the dynlink routine's 
static data segments are the same for each client process. 

OS/2 ensures that the dynlink library's segment selectors are the 
same for each client process by means of a technique called the disjoint 
LDT space. I won't attempt a general introduction to the segmented ar
chitecture of the 80286, but a brief summary is in order. Each process 
in 80286 protect mode can have a maximum of 16,383 segments. These 

4. And even if it did work, it would be a poor design because it would restrict our ability to up
grade the dynlink code in the field. 
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segments are described dn two tables: the LDT (Local Descriptor 
Table) and the GDT (Global Descriptor Table). An application can't 
read from or write to these tables. OS/2 manages them, and the 80286 
microprocessor uses their contents when a process loads selectors into 
its segment registers. 

In practice, the GDT is not used for application segments, which 
leaves the LDT 8192 segments-or, more precisely, 8192 segment se
lectors, which OS/2 can set up to point to memory segments. The 80286 
does not support efficient position-independent code, so 80286 pro
grams contain within them, as part of the instruction stream, the par
ticular segment selector needed to access a particular memory location, 
as well as an offset within that segment. This applies to both code and 
data references. 

When OS/2 loads a program into memory, the .EXE file describes 
the number, type, and size of the program's segments. OS/2 creates 
these segments and allocates a selector for each from the 8192 possible 
LDT selectors. There isn't any conflict with other processes in the sys
tem, at this point, because each process has its own LDT and its own 
private set of 8192 LDT selectors. After OS/2 chooses a selector for 
each segment, both code and data, it uses a table of addresses provided 
in the .EXE file to relocate each segment reference in the program, 
changing the place holder value put there by the linker into the proper 
segment selector value. OS/2 never combines or splits segments, so it 
never has to relocate the offset part of addresses, only the segment 
parts. Address offsets are more common than segment references. 
Because the segment references are relatively few, this relocation 
process is not very time-consuming. 

If OS/2 discovers that the process that it's loading references a 
dynlink routine-say, our old friend Foo-the situation is more com
plex. For example, suppose that the process isn't the first caller of Foo; 
Foo is already in memory and already relocated to some particular 
LDT slots in the LDT of the earlier client of Foo. OS/2 has to fill in those 
same slots in the new process's LDT with pointers to Foo; it can't 
assign different LDT slots because Foo' s code and data have already 
been relocated to the earlier process's slots. If the new process is 
already using Foo' s slot numbers for something else, then we are in 
trouble. This is a problem with all of Foo's segments, both data seg
ments and code segments. 
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This is where the disjoint WT space comes in. OS/2 reserves many 
of each process's LDT slots5 for the disjoint space. The same slot num
bers are reserved in every process's LDT. When OS/2 allocates an 
LDT selector for a memory segment that may be shared between pro
cesses, it allocates an entry from the disjoint LDT space. After a selec
tor is allocated, that same slot in all other LDTs in the system is 
reserved. The slot either remains empty (that is, invalid) or points to 
this shared segment; it can have no other use. This guarantees that a 
process that has been running for hours and that has created dozens of 
segments can still call DosLoadModule to get access to a dynlink rou
tine; OS/2 will find that the proper slots in this process's LDT are 
ready and waiting. The disjoint LDT space is used for all shared mem
ory objects, not just dynlink routines. Shared memory data segments 
are also allocated from the disjoint LDT space. A process's code seg
ments are not allocated in the disjoint LDT space, yet they can still be 
shared.6 Figure 7-4 illustrates the disjoint LDT concept. Bullets in the 
shaded selectors denote reserved but invalid disjoint selectors. These 
are reserved in case that process later requests access to the shared 
memory segments that were assigned those disjoint slots. Only process 
A is using the dynlink package DLX, so its assigned disjoint LDT slots 
are reserved for it in Process B' s LDT as well as in the LDT of all other 
processes in the system. Both processes are using the dynlink package 
DLY. 

7.5.1 Instance Data 
OS/2 supports two types of data segments for dynlink routines
instance and global. Instance data segments hold data specific to each 
instance of the dynlink routine. In other words, a dynlink routine has a 
separate set of instance data segments for each process using it. The 
dynlink code has no difficulty addressing its data; the code can refer
ence the data segment selectors as immediate values. The linker and 
OS/2' s loader conspire so that the proper selector value is in place when 
the code executes. 

5. In version 1.0, more than half the LDTslots are reserved for this disjoint area. 
6. The sharing of pure segments between multiple copies of the same program is established 
when the duplicate copies are loaded. OS/2 will use the same selector to do segment mapping 
as it did when it loaded the first copy, so these segments can be shared even though their selec
tors are not in the disjoint space. 
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The use of instance data segments is nearly invisible both to the cli
ent process and to the dynlink code. The client process simply calls 
the dynlink routine, totally unaffected by the presence or absence of the 
routine's instance data segment(s). A dynlink routine can even return 
addresses of items in its data segments to the client process. The client 
cannot distinguish between a dynlink routine and a statically linked 
one. Likewise, the code that makes up the dynlink routine doesn't need 
to do anything special to use its instance data segments. The dynlink 
code was assembled or compiled with its static data in one or more seg
ments; the code itself references those segments normally. The linker 
and OS/2 handle all details of allocating the disjoint LDT selectors, 
loading the segments, fixing up the references, and so on. 
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A dynlink routine that uses only instance data segments (or no data 
segments at all) can be written as a single client package, as would be a 
statically linked subroutine. Although such a dynlink routine may have 
multiple clients, the presence of multiple clients is invisible to the rou
tine itself. Each client has a separate copy of the instance data seg
ment(s). When a new client is created, OS/2 loads virgin copies of the 
instance data segments from the .DLL file. The fact that OS/2 is shar
ing the pure code segments of the routine has no effect on the operation 
of the routine itself. 

7.5.2 Global Data 
The second form of data segment available to a dynlink routine is a 
global data segment. A global data segment, as the name implies, is not 
duplicated for each client process. There is only one copy of each 
dynlink module's global data segment(s); each client process is given 
shared access to that segment. The segment is loaded only once-when 
the dynlink package is first brought into memory to be linked with its 
first client process. Global data segments allow a dynlink routine to be 
explicitly aware of its multiple clients because changes to a global seg
ment made by calls from one client process are visible to the dynlink 
code when called from another client process. Global data segments are 
provided to support subsystems, which are discussed later. Figure 7-5 il
lustrates a dynlink routine with both instance and global data segments. 

Figure 7-5. 
Oynlink segments. 
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7.6 Dynamic Link Packages As Subroutines 
Dynamic link subroutines (or packages) generally fall into two catego
ries-subroutines and subsystems. As we discussed earlier, a dynamic 
link subroutine is written and executes in much the same way as a 
statically linked subroutine. The only difference is in the preparation of 
the dynamic link library file, which contains the actual subroutines, 
and in the preparation of the special .OBJ file, to which client programs 
can link. During execution, both the dynlink routines and the client 
routines can use their own static data freely, and they can pass pointers 
to their data areas back and forth to each other. The only difference be
tween static linking and dynamic linking, in this model, is that the 
dynlink routine cannot reference any external symbols that the client 
code defines, nor can the client externally reference any dynlink pack
age symbols other than the module entry points. Figure 7-6 illustrates a 
dynamic link routine being used as a subroutine. The execution envi
ronment is nearly identical to that of a traditional statically linked sub
routine; the client and the subroutine each reference their own static 
data areas, all of which are contained in the process's address space. 
Note that a dynlink package can reference the application's data and 
the application can reference the dynlink package's data, but only if the 
application or the dynlink package passes a pointer to its data to the 
other. 

Process address space 

segment #1 

Figure 7-6. 
Dynamic link routines as subroutines. 
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7.7 Subsystems 
The term dynlink subsystems refers to the design and intended function 
of a particular style of dynlink package and is somewhat artificial. 
Although OS/2 provides special features to help support subsystems, 
OS/2 does not actually classify dynlink modules as subroutines or sub
systems; subsystem is merely a descriptive term. 

The term subsystem refers to a dynlink module that provides a set of 
services built around a resource.7 For example, OS/2' s VIa dynlink 
entry points are considered a dynlink subsystem because they provide a 
set of services to manage the display screen. A subsystem usually has to 
manage a limited resource for an effectively unlimited number of cli
ents; VIa does this, managing a single physical display controller and a 
small number of screen groups for an indefinite number of clients. 

Because subsystems generally manage a limited resource, they have 
one or more global data segments that they use to keep information 
about the state of the resource they're controlling; they also have 
buffers, flags, semaphores, and so on. Per-client work areas are gener
ally kept in instance data segments; it's best to reserve the global data 
segment(s) for global information. Figure 7-7 illustrates a dynamic link 
routine being used as a subsystem. A dynlink subsystem differs from a 
dynlink being used as a subroutine only by the addition of a static data 
segment. 

Process address space 

APPcode 

Figure 7-7. 
Dynamic link routines as subsystems. 

7. In the most general sense of the word. I don't mean a "presentation manager resource 
object." 
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7.7.1 Special Subsystem Support 
Two OS/2 features are particularly valuable to subsystems: global data 
segments (which we've already discussed) and special client initializa
tion and termination support. Clearly, if a subsystem is going to 
manage a resource, keeping track of its clients in a global data segment, 
it needs to know when new clients arrive and when old clients termi-
nate. The simple dynlink subroutine model doesn't provide this infor
mation in a reliable fashion. A subsystem undoubtedly has initialize 
and terminate entry points, but client programs may terminate without 
having called a subsystem's terminate entry point. Such a failure may 
be an error on the part of the client, but the system architecture decrees 
that errors should be localized; it's not acceptable for a bug in a client 
process to be able to hang up a subsystem and thus all its clients as well. 

The two forms of subsystem initialization are global and instance. A 
subsystem can specify either service but not both. If global initializa
tion is specified, the initialization entry point is called only once per 
activation of the subsystem. When the subsystem dynlink package is 
first referenced, OS/2 allocates the subsystem's global data segment(s), 
taking their initial values from the .DLL file. OS/2 then calls the sub-
system's global initialization entry point so that the module can do its 
one-time initialization. The thread that is used to call the initialization 
entry point belongs to that first client process,8 so the first client's in
stance data segments are also set up and may be used by the global ini
tialization process. This means that although the dynlink subsystem is 
free to open files, read and write their contents, and close them again, it 
may not open a handle to a file, store the handle number in a global data 
segment, and expect to use that handle in the future. 

Remember, subsystems don't own resources; processes own 
resources. When a dynlink package opens a file, that file is open only 
for that one client process. That handle has meaning only when that 
particular client is calling the subsystem code. If a dynlink package 
were to store process A's handle number in a global data segment and 
then attempt to do a read from that handle when running as process B, 

8. The client process doesn't explicitly call a dynlink package's initialization entry points. 
OS/2 uses its godlike powers to borrow a thread for the purpose. The mechanism is invisible to 
the client program. It goes without saying, we hope, that it would be extremely rude to the cli
ent process, not to say damaging, were the dynlink package to refuse to return that initiali
zation thread or if it were to damage it in some way, such as lowering its priority or calling 
Dos Exit with it! 
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at best the read would fail with "invalid handle"; at worst some unre
lated file of B 's would be molested. And, of course, when client process 
A eventually terminates, the handle becomes invalid for all clients. 

The second form of initialization is instance initialization. The in
stance initialization entry point is called in the same way as the global 
initialization entry point except that it is called for every new client 
when that client first attaches to the dynlink package. Any instance data 
segments that exist will already be allocated and will have been given 
their initial values from the .DLL file. The initialization entry point for 
a loadtime dynlink is called before the client's code begins executing. 
The initialization entry point for a runtime dynlink is called when the 
client calls the DosLoadModule function. A dynlink package may not 
specify both global and instance initialization; if it desires both, it 
should specify instance initialization and use a counter in one of its 
global data segments to detect the first instance initialization. 

Even more important than initialization control is termination con
trol. In its global data area, a subsystem may have records, buffers, or 
semaphores on behalf of a client process. It may have queued-up re
quests from that client that it needs to purge when the client terminates. 
The dynlink package need not release instance data segments; because 
these belong to the client process, they are destroyed when the client 
terminates. The global data segments themselves are released if this is 
the dynlink module's last client, so the module may want to take this 
last chance to update a log file, release a system semaphore, and so on. 

Because a dynlink routine runs as the calling client process, it could 
use DosSetSigHandler to intercept the termination signal. This should 
never be done, however, because the termination signal is not activated 
for all causes of process termination. For example, if the process calls 
Dos Exit, the termination signal is not sent. Furthermore, there can be 
only one handler per signal type per process. Because client processes 
don't and shouldn't know what goes on inside a dynlink routine, the cli
ent process and a dynlink routine may conflict in the use of the signal. 
Such a conflict may also occur between two dynlink packages. 

Using DosExitList service prevents such a collision. DosExitList 
allows a process to specify one or more subroutine addresses that will 
be called when the process terminates. Addresses can be added to and 
removed from the list. DosExitList is ideally suited for termination 
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control. There can be many such addresses, and the addresses are 
called under all termination conditions. Both the client process and the 
subsystem dynlinks that it calls can have their own termination routine 
or routines. DosExitList is discussed in more detail in 16.2 Data 
Integrity. 

7.8 Dynamic Links As Interfaces to Other Processes 
Earlier, I mentioned that dynlink subsystems have difficulty dealing 
with resources-other than global memory - because resource owner
ship and access are on a per-process basis. Life as a dynlink subsystem 
can be schizophrenic. Which files are open, which semaphores are 
owned and so on depends on which client is running your code at the 
moment. Global memory is different; it's the one resource that all cli
ents own jointly. The memory remains as long as the client count 
doesn't go to zero. 

One way to deal with resource issues is for a dynlink package to act 
as a front end for a server process. During module initialization, the 
dynlink module can check a system semaphore to see whether the 
server process is already running and, if not, start it up. It needs to do 
this with the "detach" form of DosExecPgm so that the server process 
doesn't appear to the system as a child of the subsystem's first client. 
Such a mistake could mean that the client's parent thinks that the com
mand subtree it founded by running the client never terminates because 
the server process appears to be part of the command subtree (see 
Figure 7-8 on the following page). 

When the server process is running, the dynlink subsystem can for
ward some or all requests to it by one of the many IPC facilities. For 
example, a database subsystem might want to use a dedicated server 
process to hold open the database file and do reads and writes to it. It 
might keep buffers and IS AM directories in a shared memory segment 
to which the dynlink subsystem requests access for each of its clients; 
then requests that can be satisfied by data from these buffers won't re
quire the IPC to the server process. 

The only function of some dynlink packages is to act as a procedural 
interface to another process. For example, a spreadsheet program might 
provide an interface through which other applications can retrieve data 
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Figure 7-8. 
Oynlink daemon initiation. 

values from a spreadsheet. The best way to do this is for the spreadsheet 
package to contain a dynamic link library that provides clients a pro
cedural interface to the spreadsheet process. The library routine itself 
will invoke a non interactive copy (perhaps a special subset .EXE) of 
the spreadsheet to recover the information, passing it back to the client 
via IPC. Alternatively, the retrieval code that understands the spread
sheet data formats could be in the dynlink package itself because that 
package ships with the spreadsheet and will be upgraded when the 
spreadsheet is. In this case, the spreadsheet itself could use the package 
instead of duplicating the functionality in its own .EXE file. In any 
case, the implementation details are hidden from the client process; the 
client process simply makes a procedure call that returns the desired 
data. 

Viewed from the highest level, this arrangement is simple: A client 
process uses IPC to get service from a server process via a subroutine 
library. From the programmer's point of view, though, the entire 
mechanism is encapsulated in the dynlink subsystem's interface. A fu
ture upgrade to the dynlink package may use an improved server 
process and different forms of IPC to talk to it but retain full binary 
compatibility with the existing client base. Figure 7-9 illustrates a 



Chapter 7 Dynamic Linking 107 

client process daemon. process 

Far call 
APP Dynlink I Daemon 
code code IPC code 

segment(s) segment(s) 
I 

segment(s) 

/ 

APP Dynlink Shared Daemon 
data data data 

segment(s) segment(s) 
mer;nory 

segment(s) 

Figure 7-9. 
Dynamic link routines as daemon interfaces. 

dynlink package being used as an interface to a daemon process. The 
figure shows the dynlink package interfacing with the daemon process 
by means of a shared memory segment and some other form of IPC, 
perhaps a named pipe. 

7.9 Dynamic Links As Interfaces to the Kernel 
We've seen how dynlink libraries can serve as simple subroutine librar
ies, how they can serve as subsystems, and how they can serve as inter
faces to other processes. OS/2 has one more trick up its sleeve: Dynlink 
libraries can also serve as interfaces to OS/2 itself. 

Some OS/2 calls are actually implemented as simple library rou
tines. For example, DosErrClass is implemented in OS/2 version 1.0 
as a simple library routine. It takes an error code and locates, in a table, 
an explanatory text string, an error classification, and a recommended 
action. Services such as these were traditionally part of the kernel of 
operating systems, not because they needed to use privileged instruc
tions, but because their error tables needed to be changed each time an 
upgrade to the operating system was released. If the service has been 
provided as a statically linked subroutine, older applications running 
on newer releases would receive new error codes that would not be in 
the library code's tables. 
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Although OS/2 implements DosErrClass as a library routine, it's a 
dynlink library routine, and the .DLL file is bundled with the operating 
system itself. Any later release of the system will contain an upgraded 
version of the DosErrClass routine, one that knows about new error 
codes. Consequently, the dynlink facility provides OS/2 with a great 
deal of flexibility in packaging its functionality. 

Some functions, such as "open file" or "allocate memory," can't 
be implemented as ordinary subroutines. They need access to key inter
nal data structures, and these structures are of course protected so that 
they can't be changed by unprivileged code. To get these services, the 
processor must make a system call, entering the kernel code in a very 
controlled fashion and there running with sufficient privilege to do its 
work. This privilege transition is via a call gate-a feature of the 
80286/80386 hardware. A program calls a call gate exactly as it per
forms an ordinary far call; special flags in the GDT and LDT tell the 
processor that this is a call gate rather than a regular call. 

In OS/2, system calls are indistinguishable from ordinary dynlink 
calls. All OS/2 system calls are defined in a dynlink module called 
DosCalls. When OS/2 fixes up dynlink references to this module, it 
consults a special table, built into OS/2, of resident functions. If the 
function is not listed in this table, then an ordinary dynlink is set up. If 
the function is in the table, OS/2 sets up a call gate call in place of the 
ordinary dynlink call. The transparency between library and call gate 
functions explains why passing an invalid address to an OS/2 system 
call causes the calling process to GP fault. Because the OS/2 kernel 
code controls and manages the GP fault mechanism, OS/2 calls that are 
call gates could easily return an error code if an invalid address causes 
a GP fault. If this were done, however, the behavior of OS/2 calls would 
differ depending on their implementation: Dynlink entry points would 
GP fault for invalid addresses;9 call gate entries would return an error 
code. OS/2 prevents this dichotomy and preserves its freedom to, in fu
ture releases, move function between dynlink and call gate entries by 
providing a uniform reaction to invalid addresses. Because non-call
gate dynlink routines must generate GP faults, call gate routines pro
duce them as well. 

9. The LAR and LSL instructions are not sufficient to prevent this because another thread in 
that process may free a segment after the LAR but before the reference. 
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7.10 The Architectural Role of Dynamic Links 
Dynamic links play three major roles in OS/2: They provide the system 
interface; they provide a high-bandwidth device interface; and they 
support open architecture nonkernel service packages. 

The role of dynamic links as the system interface is clear. They pro-
vide a uniform, high-efficiency interface to the system kernel as well as 
a variety of nonkernel services. The interface is directly compatible 
with high-level languages, and it takes advantage of special 
speed-enhancing features of the 80286 and 80386 microprocessors. lO It 
provides a wide and convenient name space, and it allows the distribu
tion of function between library code and kernel code. Finally, it pro
vides an essentially unlimited expansion capability. 

But dynamic links do much more than act as system calls. You'll 
recall that in the opening chapters I expressed a need for a device inter
face that was as device independent as device drivers but without their 
attendant overhead. Dynamic links provide this interface because they 
allow applications to make a high-speed call to a subroutine package 
that can directly ma!lipulate the device (see Chapter 18, I/O Privilege 
Mechanism and Debugging/Ptrace). The call itself is fast, and the 
package can sPecify an arbitrarily wide set of parameters. No privilege 
or ring transition is needed, and the dynlink package can directly ac
cess its client's data areas. Finally, the dynlink package can use sub
system support features to virtualize the device or to referee its use 
among mUltiple clients. Device independence is provided because a 
new version of the dynlink interface can be installed whenever new 
hardware is installed. VIO and the presentation manager are examples 
of this kind of dynlink use. Dynlink packages have an important-draw
back when they are being used as device driver replacements: They 
cannot receive hardware interrupts. Some devices, such as video dis
plays, do not generate interrupts. Interrupt-driven devices, though, re
quire a true device driver. That driver can contain all of the device 
interface function, or the work can be split between a device driver and 
a dynlink package that acts as a front end for that device driver. See 
Chapters 17 and 18 for further discussion of this. 

Dynlink routines can also act as nonkernel service packages - as an 
open system architecture for software. Most operating systems are like 

10. Specifically, automatic argument passing on calls to the ring 0 kernel code. 
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the early versions of the Apple Macintosh computer: They are closed 
systems; only their creators can add features to them. Because of OS/2' s 
open system architecture, third parties and end users can add system 
services simply by plugging in dynlink modules, just as hardware cards 
plug into an open hardware system. The analogy extends further: Some 
hardware cards become so popular that their interface defines a stan
dard. Examples are the Hayes modem and the Hercules Graphics Card. 
Third-party dynlink packages will, over time, establish similar stan
dards. Vendors will offer, for example, improved database dynlink rou
tines that are advertised as plug compatible with the standard database 
dynlink interface, but better, cheaper, and faster. 

Dynlinks allow third parties to add interfaces to OS/2; they also 
allow OS/2' s developers to add future interfaces. The dynlink interface 
model allows additional functionality to be implemented as subroutines 
or processes or even to be distributed across a network environment. 

7.11 Implementation Details 
Although dynlink routines often act very much like traditional static 
subroutines, a programmer must be aware of some special considera
tions involved. This section discusses some issues that must be dealt 
with to produce a good dynlink package. 

7.11.1 Dynlink Data Security 
We have discussed how a dynlink package runs as a subroutine of the 
client process and that the client process has access to the dynlink pack
age's instance and global data segments. I I This use of the dynlink in
terface is efficient and thus advantageous, but it's also disadvantageous 
because aberrant client processes can damage the dynlink package's 
global data segments. 

In most circumstances, accidental damage to a dynlink package's 
data segments is rare. Unless the dynlink package returns pointers into 
its data segments to the client process, the client doesn't "know" the 
dynlink package's data segment selectors. The only way such a process 
could access the dynlink's segments would be to accidentally create a 
random selector value that matched one belonging to a dynlink 

11. A client process has memory access (addressability) to all of the package's global seg
ments but only to those instance data segments associated with that process. 
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package. Because the majority of selector values are illegal, a process 
would have to be very "lucky" to generate a valid dynlink package 
data selector before it generated an unused or code segment selector.12 

Naturally, dynlink packages shouldn't use global data segments to hold 
sensitive data because a malicious application can figure out the proper 
selector values. 

The measures a programmer takes to deal with the security issue de
pend on the nature and sensitivity of the dynlink package. Dynlink 
packages that don't have global data segments are at no risk; an aber
rant program can damage its instance data segments and thereby fail to 
run correctly, but that's the expected outcome of a program bug. A 
dynlink package with global data segments can minimize the risk by 
never giving its callers pointers into its (the dynlink package's) global 
data segment. If the amount of global data is small and merely detect
ing damage is sufficient, the global data segments could be 
checksummed. 

Finally, if accidental damage would be grave, a dynlink package can 
work in conjunction with a special dedicated process, as described 
above. The dedicated process can keep the sensitive data and provide it 
on a per-client basis to the dynlink package in response to an IPC re
quest. Because the dedicated process is a separate process, its segments 
are fully protected from the client process as well as from all others. 

7.11.2 Dynlink Life, Death, and Sharing 
Throughout this discussion, I have referred to sharing pure segments. 
The ability to share pure segments is an optimization that OS/2 makes 
for all memory segments whether they are dynlink segments or an ap
plication's .EXE file segments. A pure segment is one that is never 
modified during its lifetime. All code segments (except for those 
created by DosCreateCSAlias) are pure; read-only data segments are 
also pure. When OS/2 notices that it's going to load two copies of the 
same· pure segment, it performs a behind-the-scenes optimization and 
gives the second client access to the earlier copy of the segment instead 
of wasting memory with a duplicate version. 

For example, if two copies of a program are run, all code segments 
are pure; at most, only one copy of each code segment will be in 

12. Because if a process generates and writes with a selector that is invalid or points to a code 
segment, the process will be terminated immediately with a GP fault. 
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memory. OS/2 flags these segments as "internally shared" and doesn't 
release them until the last user has finished with the segment. This is 
not the same as "shared memory" as it is generally defined in OS/2. 
Because pure segments can only be read, never written, no process can 
tell that pure segments are being shared or be affected by that sharing. 
Although threads from two or more processes may execute the same 
shared code segment at the same time, this is not the same as a 
multithreaded process. Each copy of a program has its own data areas, 
its own stack, its own file handles, and so on. They are totally indepen
dent of one another even if OS/2 is quietly sharing their pure code seg
ments among them. Unlike multiple threads within a single process, 
threads from different processes cannot affect one another; the 
programmer can safely ignore their possible existence in shared code 
segments. 

Because the pure segments of a dynlink package are shared, the sec
ond and subsequent clients of a dynlink package can load much more 
quickly (because these pure segments don't have to be loaded from 
the .DLL disk file). This doesn't mean that OS/2 doesn't have to "hit 
the disk" at all: Many dynlink packages use instance data segments, 
and OS/2 loads a fresh copy of the initial values for these segments 
from the .DLL file. 

A dynlink package's second client is its second simultaneous client. 
Under OS/2, only processes have a life of their own. Objects such as 
dynlink packages and shared memory segments exist only as posses
sions of processes. When the last client process of such an object dies or 
otherwise releases the object, OS/2 destroys it and frees up the mem
ory. For example, when the first client (since bootup) of a dynlink 
package references it, OS/2 loads the package's code and data seg
ments. Then OS/2 calls the package's initialization routine-if the 
package has one. OS/2 records in an internal data structure that this 
dynlink package has one client. If additional clients come along while 
the first is still using the dynlink package, OS/2 increments the pack
age's user count appropriately. Each time a client disconnects or dies, 
the user count is decremented. As long as the user count remains 
nonzero, the package remains in existence, each client sharing the 
original global data segments. When the client count goes to zero, OS/2 
discards the dynlink package's code and global data segments and in 
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effect forgets all about the package. When another client comes along, 
OS/2 reloads the package and reloads its global data segment as if the 
earlier use had never occurred. 

This mechanism affects a dynlink package only in the management 
of the package's global data' segment. The package's code segments are 
pure, so it doesn't matter if they are reloaded from the .DLL file. The 
instance data segments are always reinitialized for each new client, but 
the data in a package's global data segment remains in existence only as 
long as the package has at least one client process. When the last client 
releases the package, the global data segment is discarded. If this is a 
problem for a dynlink package, an associated "dummy" process 
(which the dynlink package could start during its loadtime initializa
tion) can reference the dynlink package. As long as this process stays 
alive, the dynlink package and its global data segments stay alive. 13 

An alternative is for the dynlink package to keep track of the count 
of its clients and save the contents of its global data segments to a disk 
file when the last client terminates, but this is tricky. Because a process 
may fail to call a dynlink package's "I'm finished" entry point 
(presumably part of the dynlink package's interface) before it termi
nates, the dynlink package must get control to write its segment via 
DosExitList. If the client process is connected to the dynlink package 
via DosLoadModule (that is, via runtime dynamic linking), it cannot 
disconnect from the package via DosFreeModule as long as a DosEx
itList address points into the dynlink package. An attempt to do so 
returns an error code. Typically, one would expect the application to 
ignore this error code; but because the dynlink package is still attached 
to the client process, it will receive DosExitList service when the client 
eventually terminates. It's important that dynlink packages which 
maintain client state information and therefore need DosExitList 
also offer an "I'm finished" function. When a client calls this func
tion, the package should close it out and then remove its processing ad
dress from DosExitList so that DosFreeModule can take effect 'if the 
client wishes. 

Note that OS/2's habit of sharing in-use dynlink libraries has im
plications for the replacement of dynlink packages. Specifically, OS/2 
holds the dynlink .DLL file open for as long as that library has any 

13. If you use this technique, be sure to use the detached form of DosExec; see the warning in 
7.8 Dynamic Links As Interfaces to Other Processes. 
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clients. To replace a dynlink library with an upgraded version, you 
must first ensure that all clients of the old package have been 
terminated. 

While we're on the subject, I'll point out that dynlink segments, like 
.EXE file segments, can be marked (by the linker) as "preload" or 
"load on demand." When a dynlink module or a .EXE file is loaded, 
OS/2 immediately loads all segments marked "preload" but usually14 
does not load any segments marked "load on demand." These seg
ments are loaded only when (and if) they are referenced. This mecha
nism speeds process and library loading and reduces swapping by 
leaving infrequently used segments out of memory until they are 
needed. Once a segment is loaded, its "preload" or "load on demand" 
status has no further bearing; the segment will be swapped or discarded 
without consideration for these bits. 

Finally, special OS/2 code keeps track of dynamic link "circular 
references. " Because dynlink packages can call other dynlink pack
ages, package A can call package B, and package B can call package A. 
Even if the client process C terminates, packages A and B might appear 
to be in use by each other, and they would both stay in memory. OS/2 
keeps a graph of dynlink clients, both processes and other dynlink 
packages. When a process can no longer reach a dynlink package over 
this graph-in other words, when a package doesn't have a process for 
a client and when none of its client packages have processes for clients 
and so on-the dynlink package is released. Figure 7-10 illustrates a 
dynamic link circular reference. PA and PB are two processes, and LA 
through LG are dynlink library routines. 

7.11.3 Dynlink Side Effects 
A well-written dynlink library needs to adhere to the OS/2 religious 
tenet of zero side effects. A dynlink library should export to the client 
process only its functional interface and not accidentally export side 
effects that may interfere with the consistent execution of the client. 

Some possible side effects are obvious: A dynlink routine shouldn't 
close any file handles that it didn't itself open. The same applies to 
other system resources that the client process may be accessing, and it 
applies in the inverse, as well: A dynlink routine that obtains resources 

14. Segments that are loaded from removable media will be fully loaded, regardless of the 
"load on demand" bit. 
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Figure 7-10. 
Dynamic link circular references. 

for itself, in the guise of the client process, should do so in a way that 
doesn't affect the client code. For example, consuming many of the 
available file handles would be a side effect because the client would 
then unexpectedly be short of available file handles. A dynlink package 
with a healthy file handle appetite should be sure to call OS/2 to raise 
the maximum number of file handles so that the client process isn't 
constrained. Finally, the amount of available stack space is a resource 
that a dynlink package must not exhaust. A dynlink routine should try 
to minimize its stack needs, and an upgrade to an existing dynlink 
package must not consume much more stack space than did the earlier 
version, lest the upgrade cause existing clients to fail in the field. 

Dynlink routines can also cause side effects by issuing some kinds 
of system calls. Because a dynlink routine runs as a subroutine of the 
client process, it must be sure that calls that it makes to OS/2 on behalf 
of the client process don't affect the client application. For example, 
each signal event can have only one handler address; if a dynlink rou
tine establishes a signal handler, then that signal handler preempts any 
handler set up by the client application. Likewise, if a dynlink routine 
changes the priority of the thread with which it was called, the dynlink 
routine must be sure to restore that priority before it returns to its caller. 
Several other system functions such as DosError and DosSetVerify 
also cause side effects that can affect the client process. 
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Enumerating all forms of side effects is not possible; it's up to the 
programmer to take the care. needed to ensure that a dynlink module is 
properly house-trained. A dynlink module should avoid the side effects 
mentioned as well as similar ones, and, most important, it should 
behave consistently so that if a client application passes its acceptance 
tests in the lab it won't mysteriously fail in the field. This applies dou
bly to upgrades for existing dynlink routines. Upgrades must be written 
so that if a client application works with the earlier release of the 
dynlink package it will work with the new release; obviously the author 
of the application will not have an opportunity to retest existing copies 
of the application against the new release of the dynlink module. 

7.12 Dynlink Names 
Each dynlink entry point has three names associated with it: an exter
nal name, a module name, and an entry point name. The name the cli
ent program calls as an external reference is the exterfUll fUlme. The 
programmer works with this name, and its syntax and form must be 
compatible with the assembler or compiler being used. The name 
should be simple and explanatory yet unlikely to collide with another 
external name in the client code or in another library. A name such as 
READ or RESET is a poor choice because of the collision possibilities; 
a name such as XR23Pll is obviously hard to work with. 

The linker replaces the external name with a module fUlme and an en

try point fUlme, which are embedded in the resultant .EXE file. OS/2 
uses the module name to locate the dynlink .DLL file; the code for 
module modname is in file MODNAME.DLL. The entry point name 
specifies the entry point in the module; the entry point name need not 
be the same as the external name. For modules with a lot of entry 
points, the client .EXE file size can be minimized and the loading 
speed maximized by using entry ordifUlls in place of entry point names. 
See the OS/2 technical reference literature for details. 

Runtime dynamic links are established by using the module name 
and the entry point name; the external name is not used. 
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File system name space is a fancy term for how names of objects are de
fined in OS/2. The words file system are a hint that OS/2 uses one nam
ing scheme both for files and for everything else with a name in ASCII 
format-system semaphores, named shared memory, and so forth. 
First, we'll discuss the syntax of names and how to manipulate them; 
we'll wind up with a discussion of how and why we use one naming 
scheme for all named objects. 

8.1 Filenames 
Before we discuss OS/2 filenames, let's review the format of filenames 
under MS-DOS. In MS-DOS, filenames are required to fit the 8.3 for
mat: a name field (which can contain a maximum of 8 characters) and 
an extension field (which can contain a maximum of 3 characters).1 
The period character (.) between the name and the extension is not part 
of the filename; it's a separator character. The filename can consist of 
uppercase characters only. If a user or an application creates a filename 
that contains lowercase characters or a mixture of uppercase and 

1. As an aside, these sizes date from a tradition established many years ago by Digital Equip
ment Corporation. Digital's very early computers used a technique called RAD50 to store 3 
uppercase letters in one 16-bit word, so their file systems allowed a 6-character filename and a 
3-character extension. CP/M later picked up this filename structure. CP/M didn't use RAD50, 
so, in a moment of generosity, it allowed 8-character filenames; but the 3-character extension 
was kept. 
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lowercase, MS-DOS converts the filename to all uppercase. If an appli
cation presents a filename whose name or extension field exceeds the 
allotted length, MS-DOS silently truncates the name to the 8.3 format 
before using it. MS-DOS establishes and enforces these rules and main
tains the file system structure on the disks. The file system that 
MS-DOS version 3.x supports is called the FAT (File Allocation Table) 
file system. The following are typical MS-DOS and OS/2 filenames: 

\FOOTBALL\SRC\KERNEL\SCHED.ASM 

Football is a development project, so this name describes the source for 
the kernel scheduler for the football project. 

\M EMOS\286\MODESW IT. DOC 

is a memo discussing 80286 mode switching. 

\\HAGAR\SCRATCH\GORDONL\FOR_MARK 

is a file in my scratch directory on the network server HAGAR, placed 
there for use by Mark. 

The OS/2 architecture views file systems quite differently. As 
microcomputers become more powerful and are used in more and more 
ways, file system characteristics will be needed that might not be met 
by a built-in OS/2 file system. Exotic peripherals, such as WORM2 
drives, definitely require special file systems to meet their special char
acteristics. For this reason, the file system is not built into OS/2 but is a 
closely allied component-an installable file system (lFS). An IFS is 
similar to a device driver; it's a body of code that OS/2 loads at boot 
time. The code talks to OS/2 via a standard interface and provides the 
software to manage a file system on a storage device, including the 
ability to create and maintain directories, to allocate disk space, and 
soon. 

If you are familiar with OS/2 version 1.0, this information may be 
surprising because you have seen no mention of an IFS in the reference 
manuals. That's because the implementation hasn't yet caught up with 
the architecture. We designed OS/2, from the beginning, to support in
stall able file systems, one of which would of course be the familiar 
FAT file system. We designed the file system calls, such as DosOpen 

2. Write Once, Read Many disks. These are generally laser disks of very high capacity, but 
once a track is written, it cannot be erased. These disks can appear to be erasable by writing 
new copies ofmes and directories each time a change is made, abandoning the old ones, 
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and DosClose, with this in mind. Although scheduling pressures forced 
us to ship OS/2 version 1.0 with only the FAT file system-still built 
in-a future release will include the full IFS package. Although at this 
writing the IFS release of OS/2 has not been announced, this informa
tion is included here so that you can understand the basis for the system 
name architecture. Also, this information will help you write programs 
that work well under the new releases of OS/2 that contain the IFS. 

Because the IFS will interpret filenames and pathnames and because 
install able file systems can vary considerably, OS/23 doesn't contain 
much specific information about the format and meaning of filenames 
and pathnames. In general, the form and meaning of filenames and 
pathnames are private matters between the user and the IFS; both the 
application and OS/2 are simply go-betweens. Neither should attempt 
to parse or understand filenames and pathnames. Applications 
shouldn't parse names because some IFSs will support names in for
mats other than the 8.3 format. Applications shouldn't even assume a 
specific length for a filename or a pathname. All OS/2 filename and 
pathname interfaces, such as DosOpen, DosFindNext, and so on, are 
designed to take name strings of arbitrary length. Applications should 
use name buffers of at least 256 characters to ensure that a long name is 
not truncated. 

8.2 Network Access 
Two hundred and fifty-six characters may seem a bit extreme for the 
length of a filename, and perhaps it is. But OS/2 filenames are often 
pathnames, and pathnames can be quite lengthy. To provide transparent 
access to files on a LAN (local area network), OS/2 makes the network 
part of the file system name space. In other words, a file's pathname 
can specify a machine name as well as a directory path. An application 
can issue an open to a name string such as \WORK\BOOK.DAT or 
\\VOOON\TEMP\RECALC.ASM. The first name specifies the file 
BOOK.DAT in the directory WORK on the current drive of the local 
machine; the second name specifies the file RECALC.ASM in the 
directory TEMP on the machine VOOON.4 Future releases of the 

3. Excluding the IFS part. 
4. Network naming is a bit more complex than this; the name TEMP on the machine VOGON 
actually refers to an offered network resource and might appear in any actual disk directory. 
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Microsoft LAN Manager will make further use of the file system name 
space, so filenames, especially program-generated filenames, can 
easily become very long. 

8.3 Name Generation and Compatibility 
Earlier, I said that applications should pass on filenames entered by the 
user, ignoring their form. This is, of course, a bit unrealistic. Programs 
often need to generate filenames-to hold scratch files, to hold deriva
tive filenames (for example, FOO.OB] derived from FOO.ASM), and 
so forth. How can an application generate or permute such filenames 
and yet ensure compatibility with all installable file systems? The 
answer is, of course: Use the least common denominator approach. In 
other words, you can safely assume that a new IFS must accept the FAT 
file system's names (the 8.3 format) because otherwise it would be in
compatible with too many programs. So if an application sticks to the 
8.3 rules when it creates names, it can be sure that it is compatible with 
future file systems. Unlike MS-DOS, OS/25 will not truncate name or 
extension fields that are too long; instead, an error will be returned. The 
case of a filename will continue to be insignificant. Some operating 
systems, such as UNIX, are case sensitive; for example, in UNIX the 
names "foo" and "Foo" refer to different files. This works fine for a 
system used primarily by programmers, who know that a lowercase f is 
ASCII 6616 and that an uppercase F is ASCII 4616. Nonprogrammers, 
on the other hand, tend to see f and F as the same character. Because 
most OS/2 users are nonprogrammers, OS/2 install able file systems 
will continue to be case insensitive. 

I said that it was safe if program-generated names adhered to the 8.3 
rule. Program-permuted names are likewise safe if they only substitute 
alphanumeric characters for other alphanumeric characters, for exam
ple, FOO.OB] for FOO.ASM. Lengthening filenames is also safe (for 
example, changing FOO.C to FOO.OB]) if your program checks for 
"invalid name" error codes for the new name and has some way to 
deal with that possibility. In any case, write your program so that it isn't 
confused by enhanced pathnames; in the above substitution cases, the 
algorithm should work from the end of the path string and ignore what 
comes before. 

5. More properly. the FAT install able file system installed in OS/2. 
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8.4 Permissions 
Future releases of OS/2 will use the file system name space for more 
than locating a file; it will also contain the permissions for the file. A 
uniform mechanism will associate an access list with every entry in the 
file system name space. This list will prevent unauthorized access
accidental or deHberate-to the named file. 

8.5 Other Objects in the File System Name Space 
As we've seen, the file system name space is a valuable device in sev
eral aspects. First, it allows the generation of a variety of names. You 
can group names together (by putting them in the same directory), and 
you can generate entire families of unique names (by creating a new 
subdirectory). Second, the name space can encompass all files and 
devices on the local machine as well as files and devices on remote 
machines. Finally, file system names will eventually support a flexible 
access and protection mechanism. 

Thus, it comes as no surprise that when the designers of OS/2 needed 
a naming mechanism to deal with nonfile objects, such as shared mem
ory, system semaphores, and named pipes, we chose to use the fHe sys
tem name space. One small disadvantage to this decision is that a 
shared memory object cannot have a name identical to that of a system 
semaphore, a named pipe, or a disk file. This drawback is trivial, 
however, compared with the benefits of sharing the file system name 
space. And, of course, you can use separate subdirectory names for 
each type of object, thus preventing name collision. 

Does this mean that system semaphores, shared memory, and pipes 
have actual file system entries on a disk somewhere? Not yet. The FAT 
file system does not support special object names in its directories. 
Although changing it to do so would be easy, the file system would no 
longer be downward compatible with MS-DOS. (MS-DOS 3.x could 
not read such disks written under OS/2.) Because only the FAT file sys
tem is available with OS/2 version 1.0, that release keeps special RAM
resident pseudo directories to hold the special object names. These 
names must start with \SEM\, \SHAREMEM\, \QUEUES\, and 
\DEV\ to minimize the chance of name collision with a real file when 
they do become special pseudo files in a future release of OS/2. 
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Although all file system name space features-networking and (in 
the future) permissions-apply to all file system name space objects 
from an architectural standpoint, not all permutations may be sup
ported. Specifically, supporting named shared memory across the net
work is very costly6 and won't be implemented. 

6. The entire shared memory segment must be transferred across the network each time any 
byte within it is changed. Some clever optimizations can reduce this cost, but none works well 
enough to be feasible. 
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A primary function of any multitasking operating system is to allocate 
system resources to each process according to its need. The scheduler 
allocates CPU time among processes (actually, among threads); the 
memory manager allocates both physical memory and virtual memory. 

9.1 Protection Model 
Although MS-DOS provided a simple form of memory management, 
OS/2 provides memory protection. Under MS-DOS 3.x, for example, a 
program should ask the operating system to allocate a memory area 
before the program uses it. Under OS/2, a program must ask the operat
ing system to allocate a memory area before the program uses it. As we 
discussed earlier, the 80286 microprocessor contains special memory 
protection hardware. Each memory reference that a program makes ex
plicitly or implicitly references a segment selector. The segment selec
tor, in turn, references an entry in the GDT or the LDT, depending on 
the form of the selector. Before any program, including OS/2 itself, can 
reference a memory location, that memory location must be described 
in an LDT or a GDT entry, and the selector for that entry must be 
loaded into one of the four segment registers. 

This hardware design places some restrictions on how programs can 
use addresses. 
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• A program cannot address memory not set up for it in the LDT or 
GDT. The only way to address memory is via the LDT and GDT. 

• Each segment descriptor in the LDT and GDT contains the physi
cal address and the length of that segment. A program cannot ref
erence an offset into a segment beyond that segment's length. 

• A program can't put garbage (arbitrary values) into a segment 
register. Each time a segment register is loaded, the hardware ex
amines the corresponding LDT and GDT to see if the entry is 
valid. If a program puts an arbitrary value-for example, the 
lower half of a floating point number-into a segment register, 
the arbitrary value will probably point to an invalid LDT or GDT 
entry, causing a GP fault. 

• A program can't execute instructions from within a data segment. 
Attempting to load a data segment selector into the CS register 
(usually via a far call or a far jump) causes a GP fault. 

• A program can't write into a code segment. Attempting to do so 
causes a GP fault. 

• A program can't perform segment arithmetic. Segment arithmetic 
refers to activities made possible by the addressing mechanism of 
the 8086 and 8088 microprocessors. Although they are described 
as having a segment architecture, they are actually linear address 
space machines that use offset registers-the so-called segment 
registers. An 8086 can address 1 MB of memory, which requires 
a 20-bit address. The processor creates this address by multiply
ing the 16-bit segment value by 16 and adding it to the 16-bit off
set value. The result is an address between 0 and 1,048,575 (that 
is, 1 MB ).1 The reason these are not true segments is that they 
don't have any associated length and their names (that is, their se
lectors) aren't names at all but physical addresses divided by 16. 
These segment values are actually scaled offsets. An address that 
has a segment value of 100 and an offset value of 100 (shown as 
10010:10010), and the address (9910:11610) both refer to the same 
memory location. 

1. Actually, it's possible to produce addresses beyond 1 MB (211.20) by this method if a large 
enough segment and offset value are chosen. The 8086 ignores the carry into the nonexistent 
21st address bit, effectively wrapping around such large addresses into the first 65 KB-16 
bytes of physical memory. 
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Many real mode programs take advantage of this situation. 
Some programs that keep a great many pointers store them as 
20-bit values, decomposing those values into the segment:offset 
form only when they need to de-reference the pointer. To ensure 
that certain objects have a specific offset value, other programs 
choose a matching segment value so that the resultant 20-bit ad
dress is correct. Neither technique works in OS/2 protect mode. 
Each segment selector describes its own segment, a segment with 
a length and an address that are independent of the numeric value 
of the segment selector. The memory described by segment N has 
nothing in common with the memory described by segment N+4 
or by any other segment unless OS/2 explicitly sets it up that way. 

The segmentation and protection hardware allows OS/2 to impose 
, further restrictions on processes. 

• Processes cannot edit or examine the contents of the LDT or the 
GDT. OS/2 simply declines to build an LDT or GDT selector that 
a process can use to access the contents of those tables. Certain 
LDT and GDT selectors describe the contents of those tables 
themselves, but OS/2 sets them up so that they can only be used 
by ring 0 (that is, privileged) code. 

• Processes cannot hook interrupt vectors. MS-DOS version 3.x 
programs commonly hook interrupt vectors by replacing the ad
dress of the interrupt handler with an address from their own 
code. Thus, these programs can monitor or intercept system calls 
made via INT 2Ih, BIOS calls also made via interrupts, and hard
ware interrupts such as the keyboard and the system clock. OS/2 
programs cannot do this. OS/2 declines to set up a segment selec
tor that processes can use to address the interrupt vector table. 

• Processes cannot call the ROM BIOS code because no selector 
addresses the ROM BIOS code. Even if such a selector were avail
able, it would be of little use. The ROM BIOS is coded for real 
mode execution and performs segment arithmetic operations that 
are no longer legal. If OS/2 provided a ROM BIOS selector, calls 
to the ROM BIOS would usually generate GP faults. 
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• Finally, processes cannot run in ring 0, that is, in privileged 
mode. Both OS/2 and the 80286 hardware are designed to prevent 
an application program from ever executing in ring O. Code run
ning in ring 0 can manipulate the LDT and GDT tables as well as 
other hardware protection features. If OS/2 allowed processes to 
run in ring 0, the system could never be stable or secure. OS/2 ob
tains its privileged (literally) state by being the first code loaded 
at boot time. The boot process takes place in ring 0 and grants 
ring 0 permission to OS/2 by transferring control to OS/2 while 
remaining in ring O. OS/2 does not, naturally, extend this favor to 
the application programs it loads; it ensures that applications can 
only run in ring 3 user mode.2 

9.2 Memory Management API 
OS/2 provides an extensive memory management API. This book is not 
a reference manual, so I won't cover all the calls. Instead, I'll focus on 
areas that may not be completely self-explanatory. 

9.2.1 Shared Memory 
OS/2 supports two kinds of shared memory - named shared memory 
and giveaway shared memory. In both, the memory object shared is a 
segment. Only an entire segment can be shared; sharing part of a seg
ment is not possible. Named shared memory is volatile because neither 
the name of the named shared memory nor the memory itself can exist 
on the FAT file system. When the number of processes using a shared 
memory segment goes to zero, the memory is released. Shared memory 
can't stay around in the absence of client processes; it must be reinitial
ized via DosAllocShrSeg after a period of nonuse. 

Giveaway shared memory allows processes to share access to the 
same segment. Giveaway shared memory segments don't have names 
because processes can't ask to have access to them; a current user of the 
segment has to give access to the segment to a new client process. The 
term giveaway is a bit of a misnomer because the giving process retains 
access to the memory - the access is "given" but not especially 
"away." Giveaway shared memory is not as convenient as named 
shared memory. The owner3 has to know the PID of the recipient and 

2. Applications can also run in ring 2 (see 18.1 I/O Privilege Mechanism). 
3. One of the owners. Anyone with access to a giveaway shared segment can give it away 
itself. 
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then communicate the recipient's segment selector (returned by 
DosGiveSeg) to that recipient process via some form of IPC. 

Despite its limitations, giveaway shared memory has important vir
tues. It's a fast and efficient way for one process to transfer data to 
another; and because access is passed "hand to hand," the wrong 
process cannot accidentally or deliberately gain access to the segment. 
~1ost clients of giveaway shared memory don't retain access to the seg-
ment once they've passed it off; they typically call DosFreeSeg on their 
handle after they've called DosGiveSeg. For example, consider the 
design of a database dynlink subsystem that acts as a front end for a 
database serving process. As part of the dynlink initialization process, 
the package arranged for its client process to share a small named 
shared memory segment with the database process. It might be best to 
use a named pipe or named shared memory-created by the database 
process-to establish initial communication and then use this interface 
only to set up a private piece of giveaway shared memory for all further 
transactions between the client process (via the dynlink subsystem) and 
the database process. Doing it this way, rather than having one named 
shared segment hold service requests from all clients, provides greater 
security. Because each client has its own separate shared memory com
munications area, an amok client can't damage the communications of 
other clients. 

When a client process asks the database process to read it a record, 
the database process must use a form of IPC to transfer the data to the 
client. Pipes are too slow for the volume of data that our example antici
pates; shared memory is the best technique. If we were to use named 
shared memory, the database package would have to create a unique 
shared memory name for each record, allocate the memory, and then 
communicate the name to the client (actually, to the dynlink subsystem 
called by the client) so that it can request access. This process has some 
drawbacks: 

• A new unique shared memory name must be created for each re
quest. We could reuse a single shared memory segment, but this 
would force the client to copy the data out of the segment before it 
could make another request-too costly a process for an applica
tion that must handle a high volume of data. 
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• Creating named shared memory segments is generally slower 
than creating giveaway shared memory segments, especially if a 
large number of named shared memory objects exist, as would be 
the case in this scenario. The client spends more time when it then 
requests access to the segment. Creating named shared memory 
segments is plenty fast enough when it's done once in a while, but 
in a high-frequency application such as our example, it could 
become a bottleneck. 

Instead, the database process can create a giveaway shared memory 
segment, load the data into it, and then give it to the client process. The 
database process can easily learn the client's PID; the dynlink inter
face, which runs as the client process, can include it as part of the data 
request. Likewise, the database process can easily return the new client 
selector to the client. This pr~ess is fast and efficient and doesn't bog 
down the system by forcing it to deal with a great many name strings. 

Note that you must specify, at the time of the DosAllocSeg, that the 
segment might be "given away." Doing so allows OS/2 to allocate 
the selector in the disjoint space, as we discussed earlier. 

9.2.2 Huge Memory 
The design of the 80286 microprocessor specifies the maximum size of 
a memory segment as 64 KB. For many programs, this number is far 
too small. For example, the internal representation of a large spread
sheet commonly takes up 256 KB or more. OS/2 can do nothing to set 
up a segment that is truly larger than 64 KB, but the OS/2 facility called 
huge segments provides a reasonable emulation of segments larger than 
64 KB. The trick is that a huge segment of, for example, 200 KB is not a 
single segment but a group of four segments, three of which are 64 KB 
and a fourth of 8 KB. With minimal programming burden, OS/2 
allows an application to treat the group of four segments as a single 
huge segment. . 

When a process calls DosAllocHuge to allocate a huge segment, 
OS/2 allocates several physical segments, the sum of whose size equals 
the size of the virtual huge segment. All component segments are 64 
KB, except possibly the last one. Unlike an arbitrary collection of seg
ment selectors, DosAllocHuge guarantees that the segment selectors it 
returns are spaced uniformly from each other. The selector of the 
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N+ 1 th component segment is that of the Nth segment plus i, where i is a 
power of two. The value of i is constant for any given execution of 
OS/2, but it may vary between releases of OS/2 or as a result of internal 
configuration during bootup. In other words, a program must learn the 
factor i every time it executes; it must not hard code the value. There 
are three ways to learn this value. First, a program can call 
DosGetHugeShift; second, it can read this value from the global in
foseg; and third, it can reference this value as the undefined absolute 
externals DOSHUGESHIFT (log2(i)) or DOSHUGEINCR (i). OS/2 
will insert the proper value for these externals at loadtime. This last 
method is the most efficient and is recommended, but it is not compat
ible with the Family API mechanism. Family API programs should 
call DosGetHugeShift. Figure 9-1 illustrates the layout of a 200 KB 
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Figure 9-1. 
Huge memory objects. 
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huge memory object. Selectors n + 4i and n + 5i are currently invalid 
but are reserved for future growth of the huge object. 

Once an application has the first segment selector of the huge seg
ment group, called the base segment, and the value logii), computing 
the address of the Nth byte in the huge segment is easy. Take the high
order word of the value of N (that is, N/64 KB), shift it left by log2(i) 
(that is, by the DosGetHugeShift value), and add the base segment se
lector returned by DosAllocHuge. The resultant value is the segment 
selector for the proper component segment; the low-order 16 bits of i 
are the offset into that segment. This computation is reasonably quick to 
perform since it involves only a shift and an addition. 

Huge segments can be shrunk or grown via DosReallocHuge. If the 
huge segment is to be grown, creating more component physical seg
ments may be necessary. Because the address generation rules dictate 
which selector this new segment may have, growing the huge segment 
may not be possible if that selector has already been allocated for 
another purpose. DosAllocHuge takes a maximum growth parameter; 
it uses this value to reserve sufficient selectors to allow the huge seg
ment to grow that big. Applications should not provide an unrealis
tically large number for this argument because doing so will waste 
LDT selectors. 

The astute reader will notice that the segment arithmetic of the 8086 
environment is not dead; in a sense, it's been resurrected by the huge 
segment mechanism. Applications written for the 8086 frequently use 
this technique to address memory regions greater than 64 KB, using a 
shift value of 12. In other words, if you add 2A12 to an 8086 segment 
register value, the segment register will point to an address 2Al2* 16, or 
64 KB, further in physical memory. The offset value between the com
ponent segment values was always 4096 because of the way the 8086 
generated addresses. Although the steps involved in computing the seg
ment value are the same in protect mode, what's actually happening is 
considerably different. When you do this computation in protect mode, 
the segment selector value has no inherent relationship to the other se
lectors that make up the huge object. The trick only works because 
OS/2 has arranged for equally spaced-out selectors to exist and for each 
to point to an area of physical memory of the appropriate size. Figure 
9-2 illustrates the similarities and differences between huge model 
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Figure 9-2. 
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addressing in real and protect modes. The application code sequence is 
identical: A segment selector is computed by adding N * i to the base se
lector. In real mode i is always 4096; in protect mode OS/2 provides i. 

Although the similarity between 8086 segment arithmetic and OS/2 
huge segments is only apparent, it does make it easy to write a program 
as a dual mode application. By using the shift value of 12 in real mode 
and using the OS/2 supplied value in protect mode, the same code func
tions correctly in either mode. 

9.2.3 Executing fron, Data Segments 
We saw that OS/2 provides the huge segment mechanism to get around 
the segment size restriction imposed by the hardware. OS/2 likewise 
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circumvents another hardware restriction-the inability to execute 
code from data segments. Although the demand loading, the discarding, 
and the swapping of code segments make one use of running code 
from data segments-code overlays-obsolete, the capability is still 
needed. Some high-performance programs-the presentation manager, 
for example-compile "on the fly" special code to perform time-criti
cal tasks, such as flipping bits in EGA display memory. The optimal 
sequence may differ depending on several factors, so a program may 
need to compile such code and execute it, gaining a significant increase 
in efficiency over some other approach. OS/2 supports this need by 
means of the DosCreateCSAlias call. 

When DosCreateCSAlias is called with a selector for a data seg
ment, it creates a totally different code segment selector (in the eyes of 
80286 hardware) that by some strange coincidence points to exactly the 
same memory locations as does the data segment selector. As a result, 
code is not actually executing from a data segment but from a code seg
ment. Because the code segment exactly overlaps that other data seg
ment, the desired effect is achieved. The programmer need only be 
careful to use the data selector when writing the segment and to use the 
code selector when executing it. 

9.2.4 Memory Suballocation 
All memory objects discussed so far have been segments. OS/2 pro
vides a facility called memory suballocation that allocates pieces of 
memory from within an application's segment. Pieces of memory can 
be suballocated from within a segment, grown, shrunk, and released. 
OS/2 uses a classic heap algorithm to do this. The DosSubAlloc call 
uses space made available from earlier DosSubFrees when possible, 
growing the segment as necessary when the free heap space is insuffi
cient. We will call the pieces of memory returned by DosSubAlloc 
heap objects. 

The memory suballocation package works within the domain of a 
process. The suballocation package doesn't allocate the memory from 
some "system pool" outside the process's address space, as does the 
segment allocator. The suballocation package doesn't even allocate 
segments; it manages only segments supplied by and owned by (or at 
least accessible to) the caller. This is a feature because memory protec
tion is on a per-segment basis. If the suballocation package were to get 
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its space from some system global segment, a process that overwrote its 
heap object could damage one belonging to another process. Figure 9-3 
illustrates memory suballocation. It shows a segment j being suballo
cated. H is the suballocation header; the shaded areas are free space. 

We said that the memory suballocator subdivides segments that are 
accessible to the client process. This means that you can use it to sub
divide space in a shared memory segment. Such a technique can be 
handy when two or more processes are using a shared memory segment 
for intercommunication, but there is risk because an error in one 
process can easily corrupt the heap objects of another. 

Earlier, in the discussion of dynamic link subsystems, we described 
facilities and techniques for writing a reliable subsystem. The OS/2 
memory suballocation package is a good example of such a subsystem, 
so let's look at its workings more closely. The first try at the suballoca
tion package produced a straightforward heap allocator, much like the 
one in a C or Pascal runtime library. It maintained a free chain of heap 
objects and allocated them at its client's request. If the closest -size free 
heap object was still bigger than the request, it was split into an allo
cated part and a free part. Freed heap objects were coalesced with any 
adjacent free objects. The suballocation package took a segment pointer 
and some other arguments and returned some vaiues-an offset and 
the changed data in the segment itself where the heap headers were 
stored. If we stretch things a little and consider the changed state of the 
supplied data segment as a returned value, then the suballocation pack
age at this stage is much like a function: It has no state of its own; it 
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Figure 9-3. 
Memory suballocation. 
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merely returns values computed only from the input arguments. This 
simple suballocation dynlink routine uses no global data segments and 
doesn't even need an instance data segment. 

This simple implementation has an important drawback: More than 
one process can't safely use it to manage a shared memory segment; 
likewise, multiple threads within one process can't use it. The heap free 
list is a critical section; if multiple threads call the suballocator on the 
same segment, the heap free list can become corrupted. This problem 
necessitated upgrading the suballocation package to use a semaphore to 
protect the critical section. If we didn't want to support suballocation of 
shared memory and were only worried about multiple threads within a 
task, we could use RAM semaphores located in the managed segment 
itself to protect the critical section. The semaphore might be left set if 
the process died unexpectedly, but the managed segment isn't shared. 
It's going to be destroyed in any case, so we don't care. 

But, even in this simple situation of managing only privately owned 
segments, we must concern ourselves with some special situations. One 
problem is signals: What if the suballocator is called with thread 1, and 
a signal (such as SIGINT, meaning that the user pressed Ctrl-C) comes 
in? Thread 1 is interrupted from the suballocation critical section to ex
ecute the signal handler. Often signal handlers return to the interrupted 
code, and all is well. But what if the signal handler does not return 
but jumps to the application's command loop? Or what if it does return, 
but before it does so calls the memory suballocator? In these two cases, 
we'd have a deadlock on the critical section. We can solve these prob
lems by using the DosHoldSignal function. DosHoldSignal does for 
signals what the CLI instruction does for hardware interrupts: It holds 
them off for a short time. Actually, it holds them off forever unless the 
application releases them, but holding signals for more than a second or 
two is poor practice. If you precede the critical section's semaphore 
claim call with a signal hold and follow the critical section's sema
phore release call with a signal release, you're protected from 
deadlocks caused by signal handling. 

Note that unlike the CLI instruction, DosHoldSignal calls nest. 
OS/2 counts the number of DosHoldSignal "hold" calls made and 
holds signals off until an equal number of "release" calls are issued. 
This means that a routine can safely execute a hold/release pair without 
affecting the state of its calling code. If the caller had signals held at 
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the time of the call, they will remain held. If signals were free at the 
time of the call, the callee's "release" call restores them to that state. 

Whenever dynlink packages make any call that changes the state of 
the process or the thread, they must be sure to restore that state before 
they return to their caller. Functions that nest, such as DosHoldSignal, 
accomplish this automatically. For other functions, the dynlink package 
should explicitly discover and remember the previous state so that it can 
be restored. 

Our problems aren't over though. A second problem is brought about 
by the DosExitList facility. If a client process's thread is in the sub
allocation package's critical section and the client terminates sud
denly - it could be killed externally or have a GP fault-the process 
might not die immediately. If any DosExitList handlers are registered, 
they will be called. They might call the memory suballocator, and once 
again we face deadlock. We could solve this situation with the classic 
approach of making a bug into a feature: Document that the suballoca
tor can't be called at exitlist time. This may make sense for some dyn
link subsystems, but it's too restrictive for an important OS/2 facility. 
We've got to deal with this problem too. 

The DosHoldSignal trick won't help us here. It would indeed pre
vent external kills, but it would not prevent GP faults and the like. We 
could say, "A program that GP faults is very sick, so all bets are off." 
This position is valid, except that if the program or one of its dynlink 
subsystems uses DosExitList and the DosExitList handler tries to allo
cate or release a heap object, the process will hang and never terminate 
correctly. This is unacceptable because the user would be forced to 
reboot to get rid of the moribund application. The answer is to use a 
system semaphore rather than a RAM semaphore to protect the mem
ory segment. System semaphores are a bit slower than RAM sema
phores, but they have some extra features. One is that they can be made 
exclusive; only the thread that owns the semaphore can release it. 
Coupled with this is an "owner death" notification facility that allows 
a process's DosExitList handler an opportunity to determine that one 
of its threads has orphaned a semaphore (see 16.2 Data Integrity for 
details). Our suballocation package can now protect itself by using ex
clusive system semaphores to protect its critical section and by register
ing a DosExitList handler to release that semaphore. The exitlist code 
can discover if a thread in its process has orphaned the semaphore and, 
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if so, can release it. Of course, releasing the semaphore won't help if the 
heap headers are in an inconsistent state. You can write the suballoca
tion package so that the heap is never in an inconsistent state, or you 
can write it to keep track of the modified state so that the exitlist han
dler can repair the heap structure. 

In this later case, be sure the DosExitList handler you establish to 
clean up the heap is called first (see DosExitList documentation). 

Finally, even if we decide that the client application won't be 
allowed to issue suballocation requests during its own exitlist process
ing, we want the memory suballocator to support allocating a shared 
segment among many different processes. Because of this, the actual 
OS/2 suballocation package makes use of DosExitList so that the 
suballocation structure and semaphores can be cleaned up should a cli
ent thread terminate while in the suballocation critical section. 

The suballocation dynlink package does more than illustrate sub
system design; it also illustrates the value of a system architecture that 
uses dynlinks as a standard system interface, regardless of the type of 
code that provides the service. As you have seen, the memory sub
allocation package released with OS/2 version 1.0 doesn't reside in the 
kernel; it's effectively a subroutine package. OS/2 in an 80286 environ
ment will undoubtedly preserve this approach in future releases, but a 
forthcoming 80386 version of OS/2 may not. The 80386 architecture 
supports paged virtual memory, so memory swapping (actually, pag
ing) can take place on part of a segment. This future paging environ
ment may precipitate some changes in the memory suballocator. 
Perhaps we'll want to rearrange the heap for better efficiency with pag
ing, or perhaps the OS/2 kernel will want to become involved so that it 
can better anticipate paging demands. In any case, any future release of 
OS/2 has complete flexibility to upgrade the memory suballocation 
package in any externally compatible fashion, thanks to the standard 
interface provided by dynamic links. 

9.3 Segment Swapping 
One of the most important features of the 80286 memory management 
hardware is swapping support. Swapping is a technique by which some 
code or data segments in memory are written to a disk file, thus allow
ing the memory they were using to be reclaimed for another purpose. 
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Later, the swapped-out code or data is reloaded into memory. This 
technique lets you run more programs than can simultaneously fit in 
memory; all you need is enough memory to hold the programs that are 
running at that particular moment. Quiescent programs can be 
swapped to disk to make room for active ones. Later, when the swapped 
programs become active, OS/2 reads them in and resumes them. If nec-
essary OS/2 first makes memory available by s\vapping out another 
quiescent program. 

Although I used the word program above, swapping is actually done 
on a segment basis. Segments are swapped out individually and com
pletely; the OS/2 swapping code doesn't pay attention to relationships 
between segments (they aren't swapped in groups), and the 80286 
hardware does not allow only part of a segment to be swapped. I sim
plified the concept a bit in the above paragraph. You need not swap out 
an entire process; you can swap out some segments and leave others in 
memory. OS/2 can and commonly does run a process when some of its 
segments are swapped out. As long as a process does not try to use 
the swapped-out segments, it runs unhindered. If a process references a 
swapped-out segment, the 80286 hardware generates a special trap that 
OS/2 intercepts. The segment fault trap handler swaps in the missing 
segment, first swapping out some other if need be, and then the process 
resumes where it left off. Segment faulting is invisible to a process; the 
process executes normally, except that a segment load instruction takes 
on the order of 30 milliseconds instead of the usual 3 microseconds. 

When memory is depleted and a segment must be swapped, OS/2 
has to choose one to swap out. Making the right choice is important; for 
example, consider a process that alternates references between segment 
A and segment B. If A is swapped out, a poorly designed system might 
choose B to swap out to make room for A. After a few instructions are 
executed, B has to be swapped in. If A is in turn swapped out to make 
room for B, the system would soon spend all its time swapping A and B 
to and from the disk. This is called thrashing, and thrashing can destroy 
system performance. In other words, the effect of swapping is to make 
some segment loads take 10,000 times longer than they would if the 
segment were in memory. Although the number 10,000 seems very 
large, the actual time of about 30 milliseconds is not, as long as we don't 
have to pay those 30 milliseconds very often. 



138 PART" THE ARCHITECTURE 

A lot hinges on choosing segments to swap out that won't be refer
enced in the near future. OS/2 uses the LRU (Least Recently Used) 
scheme to determine which segment it will swap out. The ideal choice 
is the segment-among those currently in memory-that will be ref
erenced last because this postpones the swap-in of that segment as long 
as possible. Unfortunately, it's mathematically provable that no operat
ing system can predict the behavior of arbitrary processes. Instead, 
operating systems try to make an educated guess as to which segment 
in memory is least likely to be referenced in the immediate future. The 
LRU scheme is precisely that-a good guess. OS/2 figures that if a seg
ment hasn't been used in a long time then it probably won't be used for 
a long time yet, so it swaps out the segment that was last used the lon
gest time ago-in other words, the least recently used segment. 

Of course, it's easy to construct an example where the LRU decision 
is the wrong one or even the worst one. The classic example is a pro
gram that references, round robin, N segments when there is room in 
memory for only N-1. When you attempt to make room for segment I, 
the least recently used segment will be 1+ 1, which in fact is the segment 
that will next be used. A discussion of reference locality and working set 
problems, as these are called, is beyond the scope of this book. Authors 
of programs that will make repetitious accesses to large bodies of data 
or code should study the available literature on virtual memory sys
tems. Remember, on an 80286, OS/2 swaps only on a segment basis. A 
future 80386 release of OS/2 will swap, or page, on a 4 KB page basis. 

The swapping algorithm is strictly LRU among all swap-eligible 
segments in the system. Thread/process priority is not considered; sys
tem segments that are marked swappable get no special treatment. 
Some system segments are marked nonswappable, however. For exam
ple, swapping out the OS/2 code that performs swap-ins would be em
barrassing. Likewise, the disk driver code for the swapping disk must 
not be swapped out. Some kernel and device driver code is called at in
terrupt time; this is never swapped because of the swap-in delay and 
because of potential interference between the swapped-out interrupt 
handling code and the interrupt handling code of the disk driver that 
will do the swap-in. Finally, some kernel code is called in real mode in 
response to requests from the 3x box. No real mode code can be 
swapped because the processor does not support segment faults when 
running in real mode. 
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The technique of running more programs then there is RAM to hold 
them is called memory overcommit. OS/2 has to keep careful track of the 
degree of overcommit so that it doesn't find itself with too much of a 
good thing.,,-not enough free RAM, even with swapping, to swap in a 
swapped-out process. Such a situation is doubly painful: Not only can 
the user not access or save the data that he or she has spent the last four 
hours working on, but OS/2 can;t even tell the program whafs wrong 
because it can't get the program into memory to run it. To prevent this, 
OS/2 keeps track of its commitments and overcommitments in two 
ways. First, before it starts a process, OS/2 ensures that there is enough 
swap space to run it. Second, it ensures that there is always enough 
available RAM to execute a swapped-out process. 

At first glance, knowing if RAM is sufficient to run a process seems 
simple-either the process fits into memory or it doesn't. Life is a bit 
more complicated than that under OS/2 because the segments of a pro
gram or a dynlink library may be marked for demand loading. This 
means that they won't come in when the program starts executing but 
may be called in later. Obviously, once a program starts executing, it 
can make nearly- unlimited demands for memory. When a program re-
quests a memory allocation, however, OS/2 can return an error code if 
available memory is insufficient. The program can then deal with the 
problem: make do with less, refuse the user's command, and so forth. 

OS/2 isn't concerned about a program's explicit memory requests 
because they can always be refused; the implicit memory requests are 
the problem-faulting in a demand load segment, for example. Not 
only is there no interface to give the program an error code,4 but the 
program may be unable to proceed without the segment. As a result, 
when a program is first loaded (via a DosExecPgm call), OS/2 sums 
the size of all its impure segments even if they are marked for "load on 
demand." The same computation is done for all the loadtime dynlink 
libraries it references and for all the libraries they reference and so on. 
This final number, plus the internal system per-process overhead, is the 
maximum implicit memory demand of the program. If that much free 
swap space is available, the program can start execution. 

You have undoubtedly noticed that I said we could run the program 
if there was enough swap space. But a program must be in RAM to 

4. A demand load segment is faulted in via a "load segment register" instruction. These CPU 
instructions don't return error codes! 
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execute, so why don't we care about the amount of available RAM 
space? We do care. Not about the actual amount of free RAM when we 
start a program, but about the amount of RAM that can be made free
by swapping-if needed. If some RAM contains a swappable seg
ment, then we can swap it because we set aside enough swap space for 
the task. Pure segments, by the way, are not normally swapped. In lieu 
of a swap-out, OS/2 simply discards them. When it's time to swap them 
in, OS/2 reloads them from their original .EXE or .DLL files.5 

Because not all segments of a process need to be in memory for the 
process to execute, we don't have to ensure enough free RAM for the 
entire process, just enough so that we can simultaneously load six 64 
KB segments-the maximum amount of memory needed to run any 
process. The numbers 6 and 64 KB are derived from the design of the 
80286. To execute even a single instruction of a process, all the seg
ments selected by the four segment registers must be in memory. The 
other two necessary segments come from the worst case scenario of a 
program trying to execute a far return instruction from a ring 2 seg
ment (see 18.1 I/O Privilege Mechanism). The four segments named in 
the registers must be present for the instruction to start, and the two 
new segments-CS and SS-that the far return instruction will refer
ence must be present for the instruction to complete. That makes six; 
the 64 KB comes from the maximum size a segment can reach. As a 
result, as long as OS/2 can free up those six 64 KB memory regions, by 
swapping and discarding if necessary, any swapped-out program can 
execute. 

Naturally, if that were the only available memory and it had to be 
shared by all running processes, system response would be very poor. 
Normally, much more RAM space is available. The memory overcom
mit code is concerned only that all processes can run; it won't refuse to 
start a process because it might execute slowly. It could be that the ap
plications that a particular user runs and their usage pattern are such 
that the user finds the performance acceptable and thus hasn't bought 
more memory. Or perhaps the slowness is a rare occurrence, and the 
user is willing to accept it just this once. In general, if the system 

5. An exception to this is programs that were executed from removable media. OS/2 preloads 
all pure segments from such .EXE and .DLL files and swaps them as necessary. This prevents 
certain deadlock problems involving the hard error daemon and the volume management 
code. 
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thrashes-spends too much time swapping-it's a soft failure: The 
user knows what's wrong, the user knows what to do to make it get bet
ter (run fewer programs or buy more memory), and the user can mean
while continue to work. 

Clearly, because all segments of the applications are swappable and 
because we've ensured that the swap space is sufficient for all of them, 
initiating a new process doesn't consume any of our free or free able 
RAM. It's the device drivers and their ability to allocate nonswappable 
segments that can drain the RAM pool. For this reason, OS/2 may 
refuse to load a device driver or to honor a device driver's memory allo
cation request if to do so would leave less than six 64 KB areas of RAM 
available. 

9.3.1 Swapping Miscellany 
The system swap space consists of a special file, called SWAP
PER.DAT, created at boot time. The location of the file is described in 
the CONFIG.SYS file. OS/2 may not allocate the entire maximum size 
of the swap file initially; instead, it may allocate a smaller size and 
grow the swap file to its maximum size if needed. The swap file may 
grow, but in OS/2 version 1.0 it never shrinks. 

The available swap space in the system is more than the maximum 
size of the swap file; it also includes extra RAM. Clearly, a system with 
8 MB of RAM and a 200 KB swap file should be able to run programs 
that consume more than 200 KB. After setting aside the memory con
sumed by nonswappable segments and our six 64 KB reserved areas, 
the remaining RAM is considered part of the swap file for memory 
overcommit accounting purposes. 

We mentioned in passing that memory used in real mode can't be 
swapped. This means that the entire 3x box memory area is nonswap
pable. In fact, th~ casual attitude of MS-DOS applications toward mem
ory allocation forces OS/2 to keep a strict boundary between real mode 
and protect mode memory. Memory below the RMSIZE value speci
fied in CONFIG.SYS belongs exclusively to the real mode program, 
minus that consumed by the device drivers and the parts of the OS/2 
kernel that run in real mode. 

Early in the development of OS/2, attempts were made to put protect 
mode segments into any unused real mode memory, but we abandoned 
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this approach. First, because the risk was great that the real mode pro
gram might overwrite part of the segment. Although this is technically 
a bug on the part of the real mode application, such bugs generally do 
not affect program execution in an MS-DOS environment because that 
memory is unused at the time. Thus, such bugs undoubtedly exist un
noticed in today's MS-DOS applications, waiting to wreak havoc in the 
OS/2 environment. 

A second reason concerns existing real mode applications having 
been written for a single-tasking environment. Such an application 
commonly asks for 1 MB of memory, a request that must be refused. 
The refusal, however, also specifies the amount of memory available at 
the time of the call. Real mode applications then turn around and ask 
for that amount, but they don't check to see if an "insufficient mem
ory" error code was returned from the second call. After all, how could 
such a code be returned? The operating system has just said that the 
memory was available. This coding sequence can cause disaster in a 
multitasking environment where the memory might have been allo
cated elsewhere between the first and second call from the application. 
This is another reason OS/2 sets aside a fixed region of memory for the 
3x box and never uses it for other purposes, even if it appears to be idle. 

We mentioned that OS/2's primary concern is that programs be able 
to execute at all; whether they execute well is the user's problem. This 
approach is acceptable because OS/2 is a single-user system. Multiuser 
systems need to deal with thrashing situations because the users that 
suffer from thrashing may not be the ones who created it and may be 
powerless to alleviate it. In a single-user environment, however, the 
user is responsible for the load that caused the thrashing, the user is the 
one who is suffering from it, and the user is the one who can fix the 
situation by buying more RAM or terminating a few applications. 
Nevertheless, applications with considerable memory needs should be 
written so as to minimize their impact on the system swapper. 

Fundamentally, all swapping optimization techniques boil down to 
one issue: locality of reference. This means keeping the memory loca
tions that are referenced near one another in time and in space. If your 
program supports five functions, put the code of each function in a 
separate segment, with another segment holding common code. The 
user can then work with one function, and the other segments can be 
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swapped. If each function had some code in each of five segments, all 
segments would have to be in memory at all times. 

A large body of literature deals with these issues because of the prev
alence of virtual memory systems in the mainframe environment. Most 
of this work was done when RAM was very expensive. To precisely de
termine which segments or pages should be resident and which should 
be swapped was worth a great deal of effort. Memory was costly, and 
swapping devices were fast, so algorithms were designed to "crank the 
screws down tight" and free up as much memory as possible. After all, 
if they misjudged and swapped something that was needed soon, it 
could be brought back in quickly. The OS/2 environment is inverted: 
RAM is comparatively cheap, and the swapping disk, being the regular 
system hard disk, is comparatively slow. Consequently, OS/2's swap
ping strategy is to identify segments that are clearly idle and swap them 
(because cheap RAM doesn't meanfree RAM) but not to judge things 
so closely that segments are frequently swapped when they should 
not be. 

A key concept derived from this classic virtual memory work is that 
of the working set. A thread's working set is the set of segments it will 
reference ' 'soon" - in the next several seconds or fe\"'l minutes. 
Programmers should analyze their code to determine its working sets; 
obviously the set of segments in the working set will vary with the 
work the application is doing. Code and data should be arranged be
tween segments so that the size of each common working set consists of 
a minimum amount of memory. For example, if a program contains ex
tensive code and data to deal with uncommon error situations, these 
items should reside in separate segments so that they aren't resident ex
cept when needed. You don't want to burden the system with too many 
segments; two functions that are frequently used together should oc
cupy the same segment, but large unrelated bodies of code and data 
should have their ~wn segments or be grouped with other items that are 
in their working set. Consider segment size when packing items into 
segments. Too many small segments increase system overhead; large 
segments decrease the efficiency of the swap mechanism. Splitting a 
segment in two doesn't make sense if all code in the segment belongs to 
the same working set, but it does make sense to split large bodies of 
unrelated code and data. 
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As we said before, an exhaustive discussion of these issues is beyond 
the scope of this book. Programmers writing memory-intensive appli
cations should study the literature and their programs to optimize their 
performance in an OS/2 environment. Minimizing an application's 
memory requirements is more than being a "good citizen"; the smaller 
a program's working set, the better it will run when the system load 
picks up. 

9.4 Status and Information 
OS/2 takes advantage of the 80286 LDT and GDT architecture in pro
viding two special segments, called infosegs, that contain system infor
mation. OS/2 updates these segments when changes take place, so their 
information is always current. One infoseg is global, and the other is lo
cal. The global infoseg contains information about the system as a 
whole; the local infoseg contains process specific data. Naturally, the 
global infoseg is read only and is shared among all processes. Local in
fosegs are also read only, but each process has its own. 

The global infoseg contains time and date information. The "sec
onds elapsed since 1970" field is particularly useful for time-stamping 
events because calculating the interval between two times is easy. Sim
ply subtract and then divide by the number of seconds in the unit of 
time in which you're interested. It's important that you remember that 
the date/time fields are 32-bit fields but the 80286 reads data 16 bits at a 
time. Thus, if an application reads the two time-stamp words at the 
same time as they are being updated, it may read a bad value-not a 
value off by 1, but a value that is off by 63335. The easiest way to deal 
with this is to read the value and then compare the just read value with 
the infoseg contents. If they are the same, your read value is correct. If 
they differ, continue reading and comparing until the read and infoseg 
values agree. The RAS6 information is used for field system diagnosis 
and is not of general interest to programmers. 

The local infoseg segment contains process and thread information. 
The information is accurate for the currently executing thread. The 
subscreen group value is used by the presentation manager subsystem 
and is not of value to applications. For more information on global and 
local infosegs, see the OS/2 reference manual. 

6. Reliability, Availability, and Serviceability. A buzzword that refers to components in
tended to aid field diagnosis of system malfunctions. 
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A major requirement of OS/2 is the ability to support logical device and 
directory names. For example, a program needs to write a temporary 
scratch file to the user's fastest disk. Which disk is that? Is it drive C, 

. the hard disk? Some machines don't have a hard disk. Is it drive B, the 
floppy drive? Some machines don't have a drive B. And even if a hard 
disk on drive C exists, maybe drive D also exists and has more free 
space. Or perhaps drive E is preferred because it's a RAM disk. 
Perhaps it's not, though, because the user wants the scratch file 
preserved when the machine is powered down. This program needs the 
ability to specify a logical directory - the scratch file directory
rather than a physical drive and directory such as A:\ or C:\TEMP. The 
user could then specify the physical location (drive and directory) that 
corresponds to the logical directory. 

Another example is a spell-checker program that stores two diction
aries on a disk. Presumably, the dictionary files were copied to a hard 
disk when the program was installed, but on which drive and directory? 
The checker's author could certainly hard code a directory such as 
C:\SPELLCHK\DICTI. But what if the user doesn't have a C drive, or 
what if drive C is full and the user wants to use drive D instead? How 
can this program offer the user the flexibility of putting the dictionary 
files where they best fit and yet still find them when it needs them? 
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The answer to these problems is a logical device and directory name 
facility. Such a facility should have three characteristics: 

• It should allow the user to map the logical directories onto the ac
tual (physical) devices and directories at will. It should be poss
ible to change these mappings without changing the programs that 
use them. 

• The set of possible logical devices and directories should be very 
large and arbitrarily expandable. Some new program, such as our 
spelling checker, will always need a new logical directory. 

• The name set should be large and collision free. Many programs 
will want to use logical directory names. If all names must come 
from a small set of possibilities, such as Xl, X2, X3, and so on, 
two applications, written independently, may each choose the 
same name for conflicting uses. 

The original version of MS-DOS did not provide for logical devices 
and directories. In those days a maximum PC configuration consisted 
of two floppy disks. Operating the machine entailed playing a lot of 
"disk jockey" as the user moved system, program, and data disks in 
and out of the drives. The user was the only one who could judge which 
drive should contain which floppy and its associated data, and data 
files moved from drive to drive dynamically. A logical device mecha
nism would have been of little use. Logical directories were not needed 
because MS-DOS version 1.0 didn't support directories. MS-DOS ver
sions 2.x and 3.x propagated the "physical names only" architecture 
because of memory limitations and because of the catch-22 of new 
operating system features: Applications won't take advantage of the 
new feature because many machines are running older versions of 
MS-DOS without that new feature. 

None of these reasons holds true for OS/2. All OS/2 protect mode 
applications will be rewritten. OS/2 has access to plenty of memory. 
Finally, OS/2 needs a logical drive/directory mechanism: All OS/2 
machines have hard disks or similar facilities, and all OS/2 machines 
will run a variety of sophisticated applications that need access to pri
vate files and work areas. As a result, the environment string mecha
nism in MS-DOS has been expanded to serve as the logical name in 
OS/2. 
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Because of the memory allocation techniques employed by 
MS-DOS programs and because of the lack of segment motion and 
swapping in real mode, the MS-DOS environment list was very limited 
in size. The size of the environment segment was easily exceeded. OS/2 
allows environment segments to be grown arbitrarily, at any time, sub
ject only to the hardware's 64 KB length limitation. In keeping with the 
OS/2 architecture, each process has its own environment segment. By 
default, the child inherits a copy of the parent's segment, but the parent 
can substitute other environment values at DosExecPgm time. 

Using the environment string facility to provide logical names is 
straightforward. If a convention for the logical name that you need 
doesn't already exist, you must choose a meaningful name. Your instal
lation instructions or software should document how to use the environ
ment string; the application should display an error message or use an 
appropriate default if the logical names do not appear in the environ
ment string. Because each process has its own environment segment 
that it inherited from its parent, batch files, startup scripts, and initiator 
programs that load applications can conveniently set up the necessary 
strings. This also allows several applications or multiple copies of the 
same application to define the same logical name differently. 

The existing conventions are: 

PATH= 
PATH defines a list of directories that CMD.EXE searches when it 
has been instructed to execute a program. The directories are 
searched from left to right and are separated by semicolons. For 
example, 

PATH=C:\BIN;D:\TOOLS;. 

means search C:\BIN first, D:\TOOLS second, and the current 
working directory third. 

DPATH= 
DPATH defines a list of directories that programs may search to 
locate a data file. The directories are searched from left to right and 
are separated by semicolons. For example: 

DPATH=C:\DBM;D:\ TEMP;. 
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Applications use DPATH as a convenience to the user: A user can 
work from one directory and reference data files in another direc
tory, named in the DPATH string, without specifying the full path 
names of the data files. Obviously, applications and users must use 
this technique with care. Searching too widely for a filename is ex
tremely dangerous; the wrong file may be found because filenames 
themselves are often duplicated in different directories. To use the 
DPATH string, an application must first use DosScanEnv to locate 
the DPATH string, and then it must use DosSearchPath to locate the 
data file. 

INCLUDE= 
The INCLUDE name defines the drive and directory where com
piler and assembler standard include files are located. 

INIT= 
The INIT name defines the drive and directory that contains initial
ization and configuration information for the application. For exam
ple, some applications define files that contain the user's preferred 
defaults. These files might be stored in this directory. 

LIB= 
The LIB name defines the drive and directory where the standard 
language library modules are kept. 

PROMPT = 
The PROMPT name defines the CMD.EXE prompt string. Special 
character sequences are defined so that the CMD.EXE prompt can 
contain the working directory, the date and time, and so on. See 
CMD.EXE documentation for details. 

TEMP= 
The TEMP name defines the drive and directory for temporary 
files. This directory is on a device that is relatively fast and has suffi
cient room for scratch files. The TEMP directory should be con
sidered volatile; its contents can be lost during a reboot operation. 
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The environment segment is a very flexible tool that you can use to 
customize the environment of an application or a group of applications. 
For example, you can use environment strings to specify default op
tions for applications. Users can use the same systemwide default or 
change that value for a particular screen group or activation of the 
application. 
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Interprocess Communication (IPC) is central to OS/2. As we discussed 
earlier, effective IPC is needed to support both the tool-based architec
ture and the dynlink interface for interprocess services. Because IPC is 
so important, OS/2 provides several forms to fulfill a variety of needs. 

11.1 Shared Memory 
Shared memory has already been discussed in some detail. To summar
ize, the two forms are named shared memory (access is requested by 
the client by name) and giveaway shared memory (a current owner 
gives access to another process). Shared memory is the most efficient 
form of IPC because no data copying or calls to the operating system 
kernel are involved once the shared memory has been set up. Shared 
memory does require more effort on the part of the client processes; a 
protocol must be established, semaphores and flags are usually needed, 
and exposure to amok programs and premature termination must be 
considered. Applications that expect to deal with a low volume of data 
may want to consider using named pipes. 

11.2 Semaphores 
A semaphore is a flag or a signal. In its basic form a semaphore has 
only two states-on and off or stop and go. A railroad semaphore, for 
example, is either red or green -stop or go. In computer software, a 
semaphore is a flag or a signal used by one thread of execution to flag 
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or signal another. Often it's for purposes of mutual exclusion: "I'm in 
here, stay out." But sometimes it can be used to indicate other events: 
"Your data is ready." 

OS/2 supports two kinds of semaphores, each of which can be used 
in two different ways. The two kinds of semaphores-RAM sema
phores and system semaphores-have a lot in common, and the same 
system API is used to manipulate both. A RAM semaphore, as its name 
implies, uses a 4-byte data structure kept in a RAM location that must 
be accessible to all threads that use it. The system API that manipulates 
RAM semaphores is located in a dynlink subsystem. This code claims 
semaphores with an atomic test-and-set operation,! so it need not enter 
the kernel (ring 0) to protect itself against preemption. As a result, the 
most common tasks-claiming a free semaphore and freeing a sema
phore that has no waiters-are very fast, on the order of 100 micro
seconds on a 6-MHz l-wait-state IBM PC/AT.2 If the semaphore is 
already claimed and the caller must block or if another thread is wait
ing on the semaphore, the semaphore dynlink package must enter 
kernel mode. 

System semaphores, on the other hand, use a data structure that is 
kept in system memory outside the address space of any process. 
Therefore, system semaphore operations are slower than RAM sema
phore operations, on the order of 350 microseconds for an uncontested 
semaphore claim. Some important advantages offset this operating 
speed however. System semaphores support mechanisms that prevent 
deadlock by crashing programs, and system semaphores support ex
clusivity and counting features. As a general rule, you should use RAM 
semaphores when the requirement is wholly contained within one 
process. When multiple processes may be involved, use system 
semaphores. 

The first step, regardless of the type or use of the semaphore, is to 
create it. An application creates RAM semaphores simply by allocat
ing a 4-byte area of memory initialized to zero. The far address of this 
area is the RAM semaphore handle. The DosCreateSem call creates 
system semaphores. (The DosCreateSem call takes an exclusivity 
argument, which we'll discuss later.) Although semaphores control 
thread execution, semaphore handles are owned by the process. Once a 

1. An atomic operation is one that is indivisible and therefore cannot be interrupted in the 
middle. 
2. This is the standard environment when quoting speeds; it's both the common case and the 
worst case. Machines that don't run at this speed run faster. 
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semaphore is created and its handle obtained, all threads in that process 
can use that handle. Other processes must open the semaphore via 
DosOpenSem. There is no explicit open for a RAM semaphore. To be 
useful for IPC, the RAM semaphore must be in a shared memory seg
ment so that another process can access it; the other process simply 
learns the far address of the RAM semaphore. A RAM semaphore is 
initialized by zeroing out its 4-byte memory area. 

Except for opening and closing, RAM and system semaphores use 
exactly the same OS/2 semaphore calls. Each semaphore call takes a 
semaphore handle as an argument. A RAM semaphore's handle is its 
address; a system semaphore's handle was returned by the create or 
open call. The OS/2 semaphore routines can distinguish between RAM 
and system semaphores by examining the handle they are passed. 
Because system semaphores and their names are kept in an internal 
OS/2 data area, they are a finite resource; the number of RAM sema
phores is limited only by the amount of available RAM to hold them. 

The most common use of semaphores is to protect critical sections. 
To reiterate, a critical section is a body of code that manipulates a data 
resource in a nonreentrant way. In other words, a critical section will 
screw up if two threads call it at the same time on the same data 
resource. A critical section can cover more than one section of code; if 
one subroutine adds entries to a table and another subroutine removes 
entries, both subroutines are in the table's critical section. A critical 
section is much like an airplane washroom, and the semaphore is like 
the sign that says "Occupied." The first user sets the semaphore and 
starts manipulating the resource; meanwhile others arrive, see that the 
semaphore is set, and block (that is, wait) outside. When the critical 
section becomes available and the semaphore is cleared, only one of 
the waiting threads gets to claim it; the others keep on waiting. 

Using semaphores to protect critical sections is straightforward. At 
the top of a section of code that will manipulate the critical resource, 
insert a call to DosSemRequest. When this call returns, the semaphore 
is claimed, and the code can proceed. When the code is finished and 
the critical section is "clean," call DosSemClear. DosSemClear 
releases the semaphore and reactivates any thread waiting on it. 

System semaphores are different from RAM semaphores in this ap
plication in one critical respect. If a system semaphore is created for 
exclusive use, it can be used as a counting semaphore. Exclusive use 
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means that only the thread that set the semaphore can clear it;3 this is 
expected when protecting critical sections. A counting semaphore can 
be set many times but must be released an equal number of times 
before it becomes free. For example, an application contains function 
A and function B, each of which manipulates the same critical section. 
Each claims the semaphore at its beginning and releases it at its end. 
However, under some circumstances, function A may need to call func
tion B. Function A can't release the semaphore before it calls B 
because it's still in the critical section and the data is in an inconsistent 
state. But when B issues DosSemRequest on the semaphore, it blocks 
because the semaphore was already set by A. 

A counting semaphore solves this problem. When function B makes 
the second, redundant DosSemRequest call, OS/2 recognizes it as the 
same thread that already owns the semaphore, and instead of blocking 
the thread, it increments a counter to show that the semaphore has been 
claimed twice. Later, when function B releases the semaphore, OS/2 
decrements the counter. Because the counter is not at zero, the sema
phore is not really clear and thus not released. The semaphore is truly 
released only after function B returns to function A, and A, finishing 
its work, releases the semaphore a second time. 

A second major use of semaphores is signaling (unrelated to the sig
nal facility of OS/2). Signaling is using semaphores to notify threads 
that certain events or activities have taken place. For example, consider 
a multithreaded application that uses one thread to communicate over a 
serial port and another thread to compute with the results of that com
munication. The computing thread tells the communication thread to 
send a message and get a reply, and then it goes about its own business. 
Later, the computing thread wants to block until the reply is received 
but only if the reply hasn't already been received-it may have already 
arrived, in which case the computing thread doesn't want to block. 

You can handle this by using a semaphore as a flag. The computing 
thread sets the semaphore via DosSemSet before it gives the order to 
the communications thread. When the computing thread is ready to 
wait for the reply, it does a DosSem Wait on the semaphore it set 
earlier. When the communications thread receives the reply, it clears 
the semaphore. When the computing thread calls DosSemWait, it will 

3. This is a departure from the principle of resource ownership by process, not by thread. The 
thread, not the process, owns the privilege to clear a set "exclusive use" semaphore. 
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continue without delay if the semaphore is already clear. Otherwise, the 
computing thread blocks until the semaphore is cleared. In this exam
ple, we aren't protecting a critical section; we're using the semaphore 
transition from set to clear to flag an event between multiple threads. 
Our needs are the opposite of a critical section semaphore: We don't 
want the semaphore to be exclusively owned; if it were, the communi
cations th.read couldn't release it. \Ve also don't want the semaphore to 
be counting. If it counts, the computing thread won't block when it does 
the DosSem Wait; OS/2 would recognize that it did the DosSemSet 
earlier and would increment the semaphore counter. 

OS/2 itself uses semaphore signaling in this fashion when asynchro
nous communication is needed. For example, asynchronous I/O uses 
semaphores in the signaling mode to indicate that an I/O operation has 
completed. The system timer services use semaphores in the signaling 
mode to indicate that the specified time has elapsed. OS/2 supports a 
special form of semaphore waiting, called DosMuxSem Wait, which 
allows a thread to wait on more than one semaphore at one time. As 
soon as any specified semaphore becomes clear, DosMuxSem Wait 
returns. DosMuxSem Wait, like DosSem Wait, only waits for a sema
phore to become clear; it doesn't set or claim the semaphore as does 
DosSemRequest. DosMuxSem Wait allows a thread to wait on a 
variety of events and to wake up whenever one of those events occurs. 

11.2.1 Semaphore Recovery 
We discussed earlier some difficulties that can arise if a semaphore is 
left set "orphaned" when its owner terminates unexpectedly. We'll 
review the topic because it's critical that applications handle the situa
tion correctly and because that correctness generally has to be 
demonstrable by inspection. It's very difficult to demonstrate and fix 
timing-related bugs by just testing a program. 

Semaphores can become orphaned in at least four ways: 

1. An incoming signal can divert the CPU, and the signal h~ndler 
can fail to return to the point of interruption. 

2. A process can kill another process without warning. 

3. A process can incur a GP fault, which is fatal. 

4. A process can malfunction because of a coding error and fail to 
release a semaphore. 
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The action to take in such events depends on how semaphores are 
being used. In some situations, no action is needed. Our example of the 
computing and communications threads is such a situation. If the 
process dies, the semaphore and all its users die. Special treatment is 
necessary only if the application uses DosExitList to run code that 
needs to use the semaphore. This should rarely be necessary because 
semaphores are used within a process to coordinate multiple threads 
and only one thread remains when the exitlist is activated. Likewise, a 
process can receive signals only if it has asked for them, so an applica
tion that does not use signals need not worry about their interrupting its 
critical sections. An application that does use signals can use 
DosHoldSignal, always return from a signal handler, or prevent thread 
1 (the signal-handling thread) from entering critical sections. 

In other situations, the semaphore can protect a recoverable resource. 
For example, you can use a system semaphore to protect access to a 
printer that for some reason is being dealt with directly by applications 
rather than by the system spooler. If the owner of the "I'm using the 
printer" system semaphore dies unexpectedly, the next thread that tries 
to claim the semaphore will be able to do so but will receive a special 
error code that says, "The owner of this semaphore died while holding 
it. " In such a case, the application can simply write a form feed or two 
to the printer and continue. Other possible actions are to clean up the 
protected resource or to execute a process that will do so. Finally, an 
application can display a message to the user saying, "Gee, this data
base is corrupt! You better do something," and then terminate. In this 
case, the application should deliberately terminate while holding the 
semaphore so that any other threads waiting on it will receive the 
"owner died" message. Once the "owner died" code is received, that 
state is cleared; so if the recipient of the code releases the semaphore 
without fixing the inconsistencies in the critical section, problems will 
result. 

Additional matters must be considered if a process intends to clean 
up its own semaphores by means of a DosExitList handler. First, ex
clusive (that is, counting) semaphores must be used. Although an exit
list routine can tell that a RAM or nonexclusive system semaphore is 
reserved, it cannot tell whether it is the process that reserved it. You 
may be tempted simply to keep a flag byte that is set each time the 
semaphore is claimed and cleared each time the semaphore is released, 
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but that solution contains a potentially deadly window of failure. If 
the thread sets the "I own it" flag before it calls DosSemRequest, the 
thread could terminate between setting the flag and receiving the 
semaphore. In that case, the exitlist routine would believe, wrongly, 
that it owns the semaphore and would therefore release it-a very un
pleasant surprise for the true owner of the semaphore. Conversely, if 
the thread claims the semaphore and then sets the flag, a window exists 
in which the semaphore is claimed but the flag does not say so. This is 
also disastrous. 

Using exclusive system semaphores solves these problems. As I 
mentioned earlier, when the thread that has set a system semaphore dies 
with the semaphore set, the semaphore is placed into a special "owner 
died" state so that the next thread to attempt to claim the semaphore is 
informed of its orphan status. There is an extra twist to this for exclu
sive-use system semaphores. Should the process die due to an external 
cause or due to a DosExit call and that process has a DosExitList han
dler, all orphaned system semaphores are placed in a special "owner 
died" state so that only that process's remaining thread-the one ex
ecuting the DosExitList handlers-can claim the semaphore. When it 
does so, it still receives the special "owner died" code. The exitlist 
handler can use DosSemWait with a timeout value of 0 to see if the 
semaphore is set. If the "owner died" code is returned, then the 
DosExitList handler cleans up the resource and then issues 
DosSemClear to clear the semaphore. If a thread terminates by ex
plicitly calling DosExit with the "terminate this thread" subcode, any 
exclusive-use system semaphores that it has set will not enter this spe
cial "owner died" state but will instead assume the general "owner 
died" state that allows any thread in the system to claim the semaphore 
and· receive the "owner died" code. Likewise, any semaphores in the 
special "owner died" state that are not cleared by the DosExitList 
handlers become normal "owner died" semaphores when the process 
completely terminates. 

11.2.2 Semaphore Scheduling 
Although multiple threads can wait for a semaphore, only one thread 
gets the semaphore when it becomes available. OS/2 schedules sema
phore grants based on CPU priority: The highest-priority waiting 
thread claims the semaphore. If several waiting threads are at the high
est priority, OS/2 distributes the grants among them evenly. 
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11.3 Named Pipes 
We've already discussed anonymous pipes-stream oriented IPC 
mechanisms that work via the DosRead and DosWrite calls. Two pro
cesses can communicate via anonymous pipes only if one is a de
scendant of the other and if the descendant has inherited the parent's 
handle to the pipe. Anonymous pipes are used almost exclusively to 
transfer input and output data to and from a child process or to and from 
a subtree of child processes. 

OS/2 supports another form of pipes called named pipes. Named 
pipes are not available in OS/2 version 1.0; they will be available in a 
later release. I discuss them here because of their importance in the sys
tem architecture. Also, because of the extensible nature of OS/2, it's 
possible that named pipe functionality will be added to the system by 
including the function in some other Microsoft system software pack
age that, when it runs under OS/2, installs the capability. In such a case, 
application programs will be unable to distinguish the "add-on" 
named pipe facility from the "built-in" version that will eventually be 
included in OS/2. 

Named pipes are much like anonymous pipes in that they're a serial 
communications channel between two processes and they use the 
DosRead and DosWrite interface. They are different, however, in sev
eral important ways. 

• Named pipes have names in the file system name space. Users of 
a named pipe need not be related; they need only know the name 
of a pipe to access it. 

• Because named pipes use the file system name space and because 
that name space can describe machines on a network, named 
pipes work both locally (within a single machine) and remotely 
(across a network). 

• An anonymous pipe is a byte-stream mechanism. The system 
considers the data sent through an anonymous pipe as an undiffer
entiated stream of bytes. The writer can write a l00-byte block of 
data, and the reader can read the data with two 3D-byte reads and 
one 4O-byte read. If the byte stream contains individual messages, 
the recipient must determine where they start and stop. Named 
pipes can be used in this byte-stream mode, but named pipes also 
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support message mode, in which processes read and write streams 
of messages. When the named pipe is in message mode, OS/2 
(figuratively!) separates the messages from each other with pieces 
of waxed paper so that the reader can ask for "the next message" 
rather than for' 'the next 100 bytes." 

• Named pipes are full duplex, whereas anonymous pipes are ac
tuany a pair of pipes, each half duplex. \Vhen an anonymous pipe 
is created, two handles are returned -a read handle and a write 
handle. An open of a named pipe returns a single handle, which 
may (depending on the mode of the DosOpen) be both read and 
written. Although a full duplex named pipe is accessed via a 
single handle, the data moving in each direction is kept totally 
separate. A named pipe should be viewed as two separate pipes 
between the reader and the writer-one holds data going in, the 
other holds data coming back. For example, if a thread writes to a 
named pipe handle and then reads from that handle, the thread 
will not read back the data it just wrote. The data the thread just 
wrote in is in the outgoing side; the read reads from the incoming 
side. 

Ii Named pipes are frequently used to communicate with processes 
that provide a service to one or more clients, usually simulta
neously. The named pipe API contains special functions to facili
tate such use: pipe reusability, multiple pipes with identical 
names, and so on. These are discussed below. 

• Named pipes support transaction I/O calls that provide an effi
cient way to implement local and remote procedure call dialogs 
between processes. 

• Programs running on MS-DOS version 3.x workstations can ac
cess named pipes on an OS/2 server to conduct dialogs with 
server applications because, to a client, a named pipe looks ex
actly like a file. 

You'll recall that the creator of an anonymous pipe uses a special in
terface (DosMakePipe) to create the pipe but that the client process can 
use the DosRead and DosWrite functions, remaining ignorant of the 
nature of the handle. The same holds true for named pipes when they 
are used in stream mode. The creator of a named pipe uses a special 
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API to set it up, but its clients can use the pipe while remaining ig
norant of its nature as long as that use is serial.4 Named pipes are cre
ated by the DosMakeNmPipe call. Once the pipe is created, one of the 
serving process's threads must wait via the DosConnectNmPipe call 
for the client to open the pipe. The client cannot successfully open the 
pipe until a DosConnectNmPipe has been issued to it by the server 
process. 

Although the serving process understands that it's using a named 
pipe and can therefore call a special named pipe API, the client process 
need not be aware that it's using a named pipe because the normal 
DosOpen call is used to open the pipe. Because named pipes appear in 
the file system name space, the client can, for example, open a file 
called \PIPE\STATUS, unaware that it's a named pipe being managed 
by another process. The DosMakeNmPipe call returns a handle to the 
serving end of the pipe; the DosOpen call returns a handle to the client 
end. As soon as the client opens a pipe, the DosConnectNmPipe call 
returns to the serving process. 

Communication over a named pipe is similar to that over an anony
mous pipe: The client and server each issue reads and writes to the han
dle, as appropriate for the mode of the open. When a process at one end 
of the pipe closes it, the process at the other end gets an error code in 
response to write operations and an EOF indication in response to read 
operations. 

The scenario just described is simple enough, but that's the problem: 
It's too simple. In real life, a serving process probably stays around so 
that it can serve the next client. This is the purpose behind the DosCon
nectN mPipe call. After the first client closes its end of the named pipe 
and the server end sees the EOF on the pipe, the server end issues a 
DosDisconnectNmPipe call to acknowledge that the client has closed 
the pipe (either explicitly or via termination). It can then issue another 
DosConnectNmPipe call to reenable that pipe for reopening by 
another client or by the same client. In other words, the connect and 
disconnect operations allow a server to let clients, one by one, connect 
to it via a single named pipe. The DosDisconnectNmPipe call can be 
used to forcibly disconnect a client. This action is appropriate if a client 
makes an invalid request or otherwise shows signs of ill health. 

4. Random access, using DosSeek, is not supported for pipes and will cause an error code to 
be returned. 
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We can serve multiple clients, one at a time, but what about serving 
them in parallel? As we've described it so far, our serving process han
dles only one client. A client's DosOpen call fails if the named pipe 
already has a client user or if the server process hasn't issued the 
DosConnectNmPipe call. This is where the instancing parameter, sup
plied to DosMakeNmPipe, comes in. 

When a named pipe is first opened,5 the instance count parameter is 
specified in the pipe flag's word. If this count is greater than 1, the pipe 
can be opened by a server process more than once. Additional opens 
are done via DosMakeNmPipe, which returns another handle to access 
the new instance of the pipe. Obviously the pipe isn't being "made" for 
the second and subsequent calls to DosMakeNmPipe, but the 
DosOpen call can't be used instead because it opens the client end of 
the named pipe, not the server end. The instance count argument is ig
nored for the second and subsequent DosMakeNmPipe calls. Extra in
stances of a named pipe can be created by the same process that created 
the first instance, or they can be created by other processes. Figure 11-1 
on the following page illustrates multiple instances of a named pipe. 

When a client process does a DosOpen on a named pipe that has 
multiple instances, OS/2 connects it to any server instance of the pipe 
that has issued a DosConnectNmPipe call. If no instances are avail
able and enabled, the client receives an error code. OS/2 makes no 
guarantees about distributing the incoming work evenly across all 
server instances; it assumes that all server threads that issued a 
DosConnectNmPipe call are equal. 

The multiple instance capability allows a single server process or 
perhaps multiple server processes to handle many clients simulta
neously. One process using four threads can serve four clients as 
rapidly as four processes, each with one thread, can do the job. As long 
as threads don't interfere with one another by blocking on critical sec
tions, a multiprocess server has no inherent efficiency advantage over a 
multithread server. 

The OS/2 named pipe package includes some composite operations 
for client processes: DosTransactNmPipe and DosCallNmPipe. 
DosTransactNmPipe is much like a DosWrite followed by a 

5. Like other non-file-system resident named objects, a named pipe remains known to the 
system only as long as a process has it open. When all handles to a named pipe are closed, 
OS/2 forgets all information concerning the named pipe. The next DosMakeNmPipe call 
recreates the named pipe from ground zero. 
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Figure 11·1. 
Multiple instances of a named pipe. 
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DosRead: It sends a message to the server end of the named pipe and 
then reads a reply. DosCallNmPipe does the same on an unopened 
named pipe: It has the combined effect of a DosOpen, a DosTrans
actNmPipe, and a DosClose. These calls are of little value if the client 
and server processes are on the same machine; the client could easily 
build such subroutines itself by appropriately combining DosOpen, 
DosClose, DosRead, and DosWrite. These calls are in the named pipe 
package because they provide significant performance savings in a net
worked environment. If the server process is on a different machine 
from the client process, OS/2 and the network transport can use a 
datagramlike mechanism to implement these calls in a network
efficient fashion. Because named pipes work invisibly across the net
work, any client process that performs these types of operations should 
use these composite calls, even if the author of the program didn't an
ticipate the program being used in a networked environment. Using the 
composite calls will ensure the performance gains if a user decides to 
use a server process located across the network. Readers familiar with 
network architecture will recognize the DosCallNmPipe function as a 
form of remote procedure call. In effect, it allows a process to make a 
procedure call to another process, even a process on another machine. 
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The OS/2 named pipe facility contains a great many features, as 
befits its importance in realizing the OS/2 tool-based architecture. This 
book is nofintended to provide an exhaustive coverage of features, but a 
few other miscellaneous items merit mention. 

Our above discussion concentrated on stream-based communica
tions, which can be convenient because they allow a client process to 
use a named pipe whiie ignorant of its nature. For exampie, you can 
write a spooler package for a device not supported by the system 
spoolers-say, for a plotter device. Input to the spooler can be via a 
named pipe, perhaps \PIPE\PLOTOUT. An application could then be 
told to write its plotter output to a file named \PIPE\PLOTOUT or 
even \\PLOTMACH\PIPE\PLOTOUT (across a network). The appli
cation will then use the spooler at the other end of the named pipe. 

Sometimes, though, the client process does understand that it's talk
ing to a named pipe, and the information exchanged is a series of mes
sages rather than a long stream of plotter data. In this case, the named 
pipe can be configured as a message stream in which each message is 
indivisible and atomic at the interface. In other words, when a process 
reads from a named pipe, it gets only one message per read, and it gets 
the entire message. Messages can queue up in the pipe, but OS/2 
remembers the message boundaries so that it can split them apart as 
they are read. Message streams can be used effectively in a networking 
environment because the network transport can better judge how to as
semble packets. 

Although our examples have shown the client and server processes 
issuing calls and blocking until they are done, named pipes can be con
figured to operate in a nonblocking fashion. This allows a server or a 
client to test a pipe to see if it's ready for a particular operation, thereby 
guaranteeing that the process won't be held up for some period waiting 
for a request to complete. Processes can also use DosPeekNmPipe, a 
related facility that returns a peek at any data (without consuming the 
data) currently waiting to be read in the pipe interface. Servers can use 
this to scan a client's request to see if they're interested in handling it at 
that time. 

Finally, we mentioned that a process that attempts a DosOpen to a 
named pipe without any available instances is returned an error code. 
Typically, a client in this situation wants to wait for service to become 
available, and it doesn't want to sit in a polling loop periodically 
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testing for server availability. The DosWaitNmPipe call is provided 
for this situation; it allows a client to block until an instance of the 
named pipe becomes available. When DosWaitNmPipe returns, the 
client must still do a DosOpen. The DosOpen can fail, however, if 
another process has taken the pipe instance in the time between the 
"wait" and the "open" calls. But because multiple waiters for a 
named pipe are serviced in priority order, such a "race" condition is 
uncommon. 

11.4 Queues 
Queues are another form of IPC. In many ways they are similar to 
named pipes, but they are also significantly different. Like named 
pipes, they use the file system name space, and they pass messages 
rather than byte streams. Unlike named pipes, queues allow multiple 
writes to a single queue because the messages bring with them informa
tion about their sending process that enables the queue reader to distin
guish between messages from different senders. Named pipes are 
strictly FIFO, whereas queue messages can be read in a variety of 
orders. Finally, queues use shared memory as a transfer mechanism; so 
although they're faster than named pipes for higher volume data trans
fers on a single machine, they don't work across the network. 

The interface to the queue package is similar but not identical to that 
of the named pipe interface. Like named pipes, each queue has a single 
owner that creates it. Clients open and close the queue while the owner, 
typically, lives on. Unlike named pipes, the client process must use a 
special queue API (DosReadQueue, DosWriteQueue, and so on) and 
thus must be written especially to use the queue package. Although 
each queue has a single owner, each queue can have multiple clients; so 
the queue mechanism doesn't need a facility to have multiple queues of 
the same name, nor does it need a DosWaitNmPipe equivalent. 

Queue messages are somewhat different from named pipe messages. 
In addition to carrying the body of the message, each queue message 
carries two additional pieces of information. One is the PID of the 
sender; OS/2 provides this information, and the sender cannot affect it. 
The other is a word value that the sender supplied and that OS/2 and the 
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queue package do not interpret. Queue servers and clients can use this 
information as they wish to facilitate communication. 

The queue package also contains a peek facility, similar to that of 
named pipes but with an interesting t~ist. If a process peeks the named 
pipe and then later reads from it, it can be sure that the message it reads 
is the same one that it peeked because named pipes are always FIFO. 
Queues, however, allow records to be read in different orders of prior
ity. If a queue is being read in priority order, a process might well peek 
a message, but by the time the process issues the queue read, some other 
message of higher priority may have arrived and thus be at the front of 
the list. To get around this problem, when the queue package peeks a 
message, it returns a magic cookie to the caller along with the message. 
The caller can supply this cookie to a subsequent DosReadQueue call 
to ensure that the peeked message is the one read, overriding the nor
mal message-ranking process. This magic cookie can also be supplied 
to the DosPeekQueue call to peek the second and subsequent records 
in the queue. 

Finally, one extremely important difference between queues and 
named pipes is that named pipes transfer (that is, copy) the data from 
the client to the server process. Queues transfer only the address of the 
data; the queue package does not touch the data itself. Thus, the data 
body of the queue message must be addressable to both the client and 
the serving process. This is straightforward if both the client and serv
ing threads belong to the same process. If the client and serving threads 
are from different processes, however, the data body of the queue mes
sage must be in a shared memory segment that is addressable to both 
the client and the server. 

A related issue is buffer reusability. An application can reuse a mem
ory area immediately after its thread returns from the named pipe call 
that wrote the data from that area; but when using a queue, the sender 
must not overwrite the message area until it's sure the reading process 
is finished with the message. 

One way to kill both these birds-the shared memory and the mem
ory reuse problems-with one stone is to use the memory suballoca
tion package. Both the client and the queue server need to have shared 
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access to a memory segment that is then managed by the memory sub
allocation package. The client allocates a memory object to hold the 
queue message and write it to the queue. The queue server can address 
that queue message because it's in the shared memory segment. When 
the queue manager is finished with the message, it calls the memory 
suballocator to release the memory object. The client need not worry 
about when the server is finished with the message because the client 
allocates a new message buffer for each new message, relying on the 
server to return the messages fast enough so that the memory suballoca
tor doesn't run out of available space. 

A similar technique on a segment level is to use giveaway shared 
memory. The client allocates a giveaway segment for each message 
content, creates the message, gives away a shared addressability to the 
segment to the server process, and then writes the message (actually, 
the message's address) to the queue. Note that the sender uses the recipi
ent's selector as the data address in this case, not its own selector. When 
the thread returns from that DosWriteQueue call, the client releases its 
access to the segment via DosFreeSeg. When the server process is fin
ished with the message, it also releases the memory segment. Because 
the queue server is the last process with access to that segment, the seg
ment is then returned to the free pool. 

Software designers need to consider carefully the tradeoffs between 
queues, named pipes, and other forms of IPC. Queues are potentially 
very fast because only addresses are copied, not the data itself; but the 
work involved in managing and reusing the shared memory may con
sume the time savings if the messages are small. In general, small mes
sages that are always read FIFO should go by named pipes, as should 
applications that communicate with clients and servers across a net
work. Very large or high data rate messages may be better suited to 
queues. 

11.5 Dynamic Data Exchange (DOE) 
DDE is a form of IPC available to processes that use the presentation 
manager API. The presentation manager's interface is message 
oriented; that is, the primary means of communication between a 
process and the presentation manager is the passing of messages. The 
presentation manager message interface allows applications to define 
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private messages that have a unique meaning throughout the PC. 
DDE is, strictly speaking, a protocol that defines new messages for 
communication between applications that use it. 

DDE messages can be directed at a particular recipient or broadcast 
to all presentation manager applications on a particular PC. Typically, 
a client process broadcasts a message that says, "Does anyone out there 
have this information?" or "Does aIlyone out there provide this ser-
vice?" If no response is received, the answer is taken to be no. If a 
response is received, it contains an identifying code6 that allows the 
two processes to communicate privately. 

DDE's broadcast mechanism and message orientation gives it a lot of 
flexibility in a multiprocessing environment. For example, a special
ized application might be scanning stock quotes that are arriving via a 
special link. A spreadsheet program could use DDE to tell this scanner 
application to notify it whenever the quotes change for certain stocks 
that are mentioned in its spreadsheet. Another application, perhaps 
called Market Alert, might ask the scanner to notify it of trades in a dif
ferent set of stocks so that the alert program can flash a banner if those 
stocks trade outside a prescribed range. DDEs can be used only by pre
sentation manager applications to communicate with the same. 

11.6 Signaling 
Signals are asynchronous notification mechanisms that operate in a 
fashion analogous to hardware interrupts. Like hardware interrupts, 
when a signal arrives at a process, that process's thread 1 stops after the 
instruction it is executing and begins executing at a specified handler 
address. The many special considerations to take into account when 
using signals are discussed in Chapter 12. This section discusses their 
use as a form of IPC. 

Processes typically receive signals in response to external events that 
must be serviced immediately. Examples of such events are the user 
pressing Ctrl-C or a process being killed. Three signals (flag A, flag B, 
and flag C), however, are caused by another process7 issuing an explicit 
DosFlagProcess API. DosFlagProcess is a unique form of IPC 

6. A window handle. 
7. This is the typical case; but like all other system calls that affect processes, a thread can 
make such a call to affect its own process. 
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because it's asynchronous. The recipient doesn't have to block or poll 
waiting for the event; it finds out about it (by discovering itself to be ex
ecuting the signal handler) as soon as the scheduler gives it CPU time. 

DosFlagProcess, however, has some unique drawbacks. First, a sig
nal carries little information with it: only the number of the signal and 
a single argument word. Second, signals can interrupt and interfere 
with some system calls. Third, OS/2 views signals more as events than 
as messages; so if signals are sent faster than the recipient can process 
them, OS/2 discards some of the overrun. These disadvantages (dis
cussed in Chapter 12) restrict signals to a rather specialized role as an 
IPC mechanism. 

11.7 Combining IPC Forms 
We've discussed each form of IPC, listing its strengths and weaknesses. 
If you use forms in conjunction, however, you benefit from their com
bined strengths. For example, a process can use named pipes or DDE to 
establish contact with another process and then agree with it to send a 
high volume of data via shared memory. An application that provides 
an IPC interface should also provide a dynlink package to hide the 
details of the IPC. This gives designers the flexibility to improve the 
IPC component of their package in future releases while still maintain
ing interface compatibility with their clients. 
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Signals 
The OS/2 signal mechanism is similar, but not identical, to the UNIX 
signal mechanism. A signal is much like a hardware interrupt except 
that it is initiated and implemented in software. Just as a hardware in
terrupt causes the CS, IP, and Flags registers to be saved on the stack 
and execution to begin at a handler address, a signal causes the applica
tion's CS, IP, and Flags registers to be saved on the stack and execution 
to begin at a signal-handler address. An IRET instruction returns con
trol to the interrupted address in both cases. Signals are different from 
hardware interrupts in that they are a software construct and don't in-
volve privilege transitions, stack switches, or ring 0 code. 

OS/2 supports six signals-three common signals (Ctrl-C, Ctrl
Break, and program termination) and three general-purpose signals. 
The Ctrl-C and Ctrl-Break signals occur in response to keyboard ac
tivity; the program termination signal occurs when a process is killed 
via the DosKiIl call. l The three general-purpose signals are generated 
by an explicit call from a thread, typically a thread from another 
process. A signal handler is in the form of a far subroutine, that is, a 
subroutine that returns with a far return instruction. When a signal ar
rives, the process's thread 1 is interrupted from its current location and 
made to call the signal-handler procedure with an argument provided 
by the signal generator. The signal-handler code can return,2 in which 

1. The process termination signal handler is not called under all conditions of process ter
mination, only in response to DosKiIl. Normal exits, GP faults, and so on do not activate the 
process termination signal handler. 
2. OS/2 interposes a code thunk, so the signal handler need not concern itself with executing 
an IRET instruction, which language compilers usually won't generate. When the signal han
dler is entered, its return address points to a piece of OS/2 code that contains the IRET 
instruction. 
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case the CPU returns from where it was interrupted, or the signal 
handler can clean its stack and jump into the process's code at some 
other spot, as in the C language's longjmp facility. 

The analogy between signals and hardware interrupts holds still fur
ther. As it does in a hardware interrupt, the system blocks further inter
rupts from the same source so that the signal handler won't be 
arbitrarily reentered. The signal handler must issue a special form of 
DosSetSigHandler to dismiss the signal and allow further signals to 
occur. Typically this is done at the end of the signal-handling routine 
unless the signal handler is reentrant. Also, like hardware interrupts, 
the equivalent of the CLI instruction-the DosHoldSignal call-is 
used to protect critical sections from being interrupted via a signal. 

Unlike hardware interrupts, signals have no interrupt priority. As 
each enabled signal occurs, the signal handler is entered, even if 
another signal handler must be interrupted. New signal events that 
come in while that signal is still being processed from an earlier 
event-before the signal has been dismissed by the handler-are held 
until the previous signal event has been dismissed. Like hardware inter
rupts, this is a pending-signal flag, not a counter. If three signals of the 
same kind are held off, only one signal event occurs when that signal 
becomes reenabled. 

A signal event occurs in the context of a process whose thread of ex
ecution is interrupted for the signal handler; a signal doesn't cause the 
CPU to stop executing another process in order to execute the first 
process's signal handler. When OS/2 "posts" a signal to a process, it 
simply makes a mark that says, "The next time we run this guy, store 
his CS, IP, and Flags values on the stack and start executing here in
stead. " The system uses its regular priority rules to assign the CPU to 
threads; when the scheduler next, runs the signaled thread, the dis
patcher code that sends the CPU into the application's code reads the 
"posted signal" mark and does the required work. 

Because a signal "pseudo interrupt" is merely a trick of the dis
patcher, signal handlers don't run in ring 0 as do hardware interrupt 
handlers; they run in ring 3 as do all application threads. In general, as 
far as OS/2 is concerned, the process isn't in any sort of special state 
when it's executing a signal handler, and no special rules govern what a 
thread can and cannot do in a signal handler. 
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Receiving a signal when thread 1 is executing an application ordyn
link code is straightforward: The system saves CS, IP, and Flags, and 
the signal handler saves the rest. The full register complement can be 
restored after the signal has been processed, and thread l' s nonnal ex
ecution resumes without incident. If thread 1 is executing a system call 
that takes the CPU inside the kernel, the situation is more complex. 
OS/2 can't emulate an interrupt from the system ring 0 code to the ap-
plication's ring 3 code, nor can OS/2 take the chance that the signal 
handler never returns from the· signal3 and therefore leaves OS/2's in
ternals in an intennediate state. Instead, when a signal is posted and 
thread 1 is executing ring 0 OS/2 code, the system either completes its 
operations before recognizing the signal or aborts the operation and 
then recognizes the signal. If the operation is expected to take place 
"quickly," the system completes the operation, and the signal is recog
nized at the point where the CPU resumes executing the application's 
ring 3 code. 

All non-I/O operations are deemed to complete "quickly," with the 
exception of the explicit blocking operations such as DosSleep, 
DosSem Wait, and so on. I/O operations depend on the specific device. 
Disk I/O completes quickly, but keyboard and serial I/O generally do 
not. Clearly, if we wait for the user to finish typing a line before we 
recognize a signal, we might never recognize it-especially if the sig
nal is Ctrl-C! In the case of "slow devices," OS/2 or the device driver 
tenninates the operation and returns to the application with an error 
code. The signal is recognized when the CPU is about to resume ex
ecuting the ring 3 application code that follows the system call that was 
interrupted. 

Although the application is given an error code to explain that the 
system call was interrupted, the application may be unable to reissue 
the system call to complete the work. In the case of device I/O, the ap
plication typically can't tell how much, if any, of the requested output 
or input took place before the signal interrupted the operation. If an 
output operation is not reissued, some data at the end of the write may 
be missing. If an output operation is restarted, then some data at the 

3. It's acceptable for a signal handler to clean up. thread 1 's stack, dismiss the signal,jump to 
another part of the application, and never return from the signal. For example, an application 
can jump into its "prompt and command loop" in response to the press of Ctrl-C. 
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beginning of the write may be written twice. In the case of DosSleep, 
the application cannot tell how much of the requested sleep has elapsed. 
These issues are not usually a problem; it's typically keyboard input 
that is interrupted. In the case of the common signals (Ctrl-C, Ctrl
Break, and process killed) the application typically flushes partial key
board input anyway. Applications that use other "slow" devices or the 
IPC flag signals need to deal with this, however. 

Although a process can have multiple threads, only thread 1 is used 
to execute the signal handler.4 This leads to an obvious solution to the 
interrupted system call problem: Applications that will be inconve
nienced by interrupted system calls due to signals should dedicate 
thread 1 to work that doesn't make interruptible system calls and use 
other thread(s) for that work. In the worst case, thread 1 can be totally 
dedicated to waiting for signals: It can block on a RAM semaphore that 
is never released, or it can execute a DosSleep loop. 

A couple of practical details about signals are worth noting. First, 
the user of a high-level language such as C need not worry about saving 
the registers inside the signal-handler routine. The language runtimes 
typically provide code to handle all these details; as far as the applica
tion program is concerned, the signal handler is asynchronously far 
called, and it can return from the signal by the return() statement. 
Also, no application can receive a signal without first requesting it, so 
you need not worry about setting up signal handlers if your application 
doesn't explicitly ask to use them. A process can have only one signal
handling address for each signal, so general-purpose dynlink routines 
(ones that might be called by applications that aren't bundled with the 
dynlink package) should never set a signal handler, doing so might 
override a handler established by the client program code. 

Signals interact with critical sections in much the same way as inter
rupts do. If a signal arrives while thread 1 is executing a critical section 
that is protected by a semaphore and if that signal handler never returns 
to the interrupted location, the critical section's semaphore will be left 
jammed on. Even if the signal handler eventually returns, deadlock oc
curs if it attempts to enter the critical section during processing of the 
signal (perhaps it called a dynlink package, unaware that the package 

4. For this reason, a process should not terminate thread 1 and continue executing with 
others; then it cannot receive signals. 
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contained a critical section). Dynlink packages must deal with this 
problem by means of the DosHoldSignal call, which is analogous to 
the CLI/STI instructions for hardware interrupts: The DosHoldSignal 
holds off arriving signals until they are released. Held-off signals 
should be released within a second or two so that the user won't be 
pounding Ctrl-C and thinking that the application has crashed. Appli-
cations can use DosHoldSignal, or they can simply ensure that thread 1 
never enters critical sections, perhaps by reserving it for signal han
dling, as discussed above. 

Ctrl-C and Ctrl-Break are special, device-specific operations. Set
ting a signal handler for these signals is a form of I/O to the keyboard 
device; applications must never do this until they have verified that 
they have been assigned the keyboard device. See Chapter 14, Inter
active Programs. 
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The Presentation 
Manager and 
VIO 
In the early chapters of this book, I emphasized the importance of a 
high-powered, high-bandwidth graphical user interface. It's a lot of 
work for an application to manage graphical rendition, windowing, 
menus, and so on, and it's hard for the user to learn a completely differ
ent interface for each application. Therefore, OS/2 contains a sub
system called the presentation manager (PM) that provides these 
services and more. The presentation manager is implemented as a 
dynlink subsystem and daemon process combination, and it provides: 

• High-performance graphical windowing. 

• A powerful user interface model, including drop-down menus, 
scroll bars, icons, and mouse and keyboard interfaces. Most of 
these facilities are optional to the application; it can choose the 
standard services or "roll its own." 

• Device independence. The presentation manager contains a so
phisticated multilevel device interface so that as much work as 
possible is pushed down to "smart" graphics cards to optimize 
performance. 
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Interfacing an application with the presentation manager involves a 
degree of effort that not all programmers may want to put forth. The in
terface to the application may be so simple that the presentation man
ager's features are of little value, or the programmer may want to port 
an MS-DOS application to OS/2 with the minimum degree of change. 
For these reasons, OS/2 provides a second interface package called 
VIO, l which is primarily character oriented and looks much like the 
MS-DOS ROM BIOS video interface. The initial release of OS/2 con
tains only VIa, implemented as a separate package. The next release 
will contain the presentation manager, and vIa will then become an 
alternate interface to the presentation manager. 

Fundamentally, the presentation manager and vIa are the equiva
lent of device drivers. They are implemented as dynlink packages 
because they are device dependent and need to be replaced if different 
devices are used. Dynlinks are used instead of true device drivers 
because they can provide high throughput for the screen device: A sim
ple call is made directly to the code that paints the pixels on the screen. 
Also, the dynlink interface allows the presentation manager to be im
plemented partially as a dynlink subsystem and partially as a daemon 
process accessed by that subsystem. 

These packages are complex; explaining them in detail is beyond the 
scope of this book. Instead, I will discuss from a general perspective 
the special issues for users of this package. 

vIa is essentially character oriented. It supports graphics-based ap
plications, but only to the extent of allowing them to manipulate the 
display controller directly so that they can "go around" vIa and pro
vide special interfaces related to screen switching of graphics applica
tions (see below). The base vIa package plays a role similar to that of 
the ROM BIOS INT 10/INT 16 interface used in MS-DOS. It contains 
some useful enhancements but in general is a superset of the ROM 
BIOS functions, so INT 10-based real mode applications can be 
quickly adjusted to use vIa instead. vIa is replaceable, in whole or in 
part, to allow applications being run with vIa to be managed later by 
the presentation manager package. 

The presentation manager is entirely different from vIa. It offers an 
extremely rich and powerful set of functions that support windowing, 

1. VIO is a convenience term that encompasses three dynlink subsystems: KBD (keyboard), 
VIO (Video I/O; the display adapter), and MOU (mouse). 
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and it offers a full, device-independent graphics facility. Its message
oriented architecture is well suited to interactive applications. Once the 
presentation manager programming model is learned and the key ele
ments of its complex interface are understood, a programmer can take 
advantage of a very sexy user interface with comparatively little effort. 
The presentation manager also replaces the existing VIO/KBD/MOU 
calls in order to support older programs that use these interfaces, 

13.1 Choosing Between PM and VIO 
The roles of VIO and the presentation manager sometimes cause confu
sion: Which should you use for your application? The default interface 
for a new application should be the presentation manager. It's not in 
OS/2 version 1.0 because of scheduling restrictions; owners of version 
1.0 will receive the presentation manager as soon as it is available, and 
all future releases will be bundled with the presentation manager. The 
presentation manager will be present on essentially all personal com
puter OS/2 installations, so you are not restricting the potential market 
for an application if you write it for the presentation manager. 

The presentation manager interface allows an application to utilize a 
powerfui, graphicai user interface. In generai form it;s standardized for 
ease of use, but it can be customized in a specific implementation so 
that an application can provide important value-added features. On the 
other hand, if you are porting an application from the real mode envi
ronment, you will find it easier to use the VIO interface. Naturally, 
such programs run well under the presentation manager, but they forgo 
the ability to use graphics and to interact with the presentation man
ager. The user can still "window" the VIO application's screen image, 
but without the application's knowledge or cooperation. To summarize, 
you have three choices when writing an application: 

1. Only use the VIO interface in character mode. This works well in 
a presentation manager environment and is a good choice for 
ported real mode applications. The VIO interface is also sup
ported by the Family API mechanism. This mode is compatible 
with the Family API facility. 

2. Use the special VIO interface facilities to sidestep VIO and 
directly manipulate the display screen in either character or 
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graphics mode. This also works in a presentation manager envi
ronment, but the application will not be able to run in a window. 
This approach can be compatible with the Family API if it is 
carefully implemented. 

3. Use the presentation manager interface-the most sophisticated 
interface for the least effort. The presentation manager interface 
provides a way to ' 'operate" applications that will become a 
widely known user standard because of the capabilities of the in
terface, because of the support it receives from key software ven
dors, and because it's bundled with OS/2. The user is obviously at 
an advantage if he or she does not have to spend time learning a 
new interface and operational metaphors to use your application. 
Finally, Microsoft is a strong believer in the power of a graphical 
user interface; future releases of OS/2 will contain "more-faster
better" presentation manager features. Many of these improve
ments will apply to existing presentation manager applications; 
others will expand the interface API. The standard of perfor
mance for application interfaces, as well as for application perfor
mance, continues to evolve. The rudimentary interfaces and 
function of the first -generation PC software are no longer con
sidered competitive. Although OS/2 can do nothing to alleviate 
the developer's burden of keeping an application's function com
petitive, the presentation manager is a great help in keeping the 
application's interface state of the art. 

Clearly, using the presentation manager interface is the best strategy 
for new or extensively reworked applications. The presentation man
ager API will be expanded and improved; the INT lO-like VIa func
tions and the VIa direct screen access capabilities will be supported 
for the foreseeable future, but they're an evolutionary dead end. Given 
that, you may want to use the VIa mechanism or the Family API facili
ties to quickly port an application from a real mode version and then 
use the presentation manager in a product upgrade release. 

13.2 Background I/O 
A process is in the background when it is no longer interacting directly 
with the user. In a presentation manager environment, this means that 
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none of the process's windows are the keyboard focus. The windows 
themselves may still be visible, or they may be obscured or iconic. In a 
VIO environment, a process is in the background when the user has 
selected another screen group. In this case, the application's screen dis
play is not visible. 

A presentation manager application can easily continue to update its 
window dispiays when it is in the background; the appiication can con
tinue to call the presentation manager to change its window contents in 
any way it wishes. A presentation manager application can arrange to 
be informed when it enters and leaves the background (actually, 
receives and loses the keyboard focus), or it can simply carryon with 
its work, oblivious to the issue. Background I/O can continue regardless 
of whether I/O form is character or graphics based. 

VIO applications can continue to do I/O in background mode as 
well. The VIO package maintains a logical video buffer for each screen 
group; when VIO calls are made to update the display of a screen group 
that is in the background, VIO makes the requested changes to the logi
cal video buffer. When the screen group is restored to the foreground, 
the updated contents of the logical video buffer are copied to the dis
play's physical video buffer. 

13.3 Graphics Under VIO 
VIO is a character-oriented package and provides character mode ap
plications with a variety of services. As we have just seen, when a 
screen switch takes place, VIO automatically handles saving the old 
screen image and restoring the new. VIO does provide a mechanism to 
allow an application to sidestep VIO and directly manipulate the physi
cal video buffer, where it is then free to use any graphical capability of 
the hardware. There are two major disadvantages to sidestepping VIO 
for graphics rather than using the presentation manager services: 

1. The application is device dependent because it must manipulate 
the video display hardware directly. 

2. VIO can no longer save or restore the state of the physical video 
buffer during screen switch operations. The application must use 
a special VIO interface to provide these functions itself. 
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The following discussion applies only to applications that want to 
sidestep the presentation manager and VIO interfaces and interact 
directly with the display hardware. 

Gaining access to the video hardware is easy; the VIO call 
VioGetBuf provides a selector to the video buffer and also gives the ap
plication's ring 2 code segments, if any, permission to program the 
video controller's registers. The complication arises from the screen
switching capabilities of OS/2. When the user switches the application 
into a background screen group, the contents of the video memory 
belong to someone else; the application's video memory is stored some
where in RAM. It is disastrous when an application doesn't pay atten
tion to this process and accidentally updates the video RAM or the 
video controller while they are assigned to another screen group. 

Two important issues are connected with screen switching: (1) How 
does an application find out that it's in background mode? (2) Who 
saves and restores its screen image and where? The VioScrLock call 
handles screen access. Before every access to the display memory or the 
display controller, an application must first issue the VioScrLock call. 
While the call is in effect, OS/2 cannot perform any screen switches. 
Naturally, the application must do its work and quickly release the 
screen switch lockout. Failure to release the lock in a timely fashion has 
the effect of hanging the system, not only for a user's explicit screen 
switch commands, but also for other facilities that use the screen switch 
mechanism, such as the hard error handler. Hard errors can't be pre
sented to the user while the screen lock is in effect. If OS/2 needs to 
switch screens, and an aberrant application has the screen lock set, 
OS/2 will cancel the lock and perform the screen switch after a period 
(currently 30 seconds). This is still a disaster scenario, although a 
mollified one, because the application that was summaJily "delocked" 
will probably end up with a trashed screen image. The screen lock and 
unlock calls execute relatively rapidly, so they can be called frequently 
to protect only the actual write-to-screen operation, leaving the screen 
unlocked during computation. Basically, an application should use 
VioScrLock to protect a block of I/O that can be written, in its entirety, 
without significant recomputation. Examples of such blocks are a 
screen scroll, a screen erase, and a write to a cell in a spreadsheet 
program. 
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VioScrLock must be used to protect code sequences that program 
the display hardware as well as code sequences that write to video 
memory. Some peripheral programming sequences are noninterrupt
ible. For example, a two-step programming sequence in which the first 
I/O write selects a multiplexed register and the second write modifies 
that register is uninterruptible because the first write placed the 
peripheral device into a special state. Such sequences must be protected 
within one lock/unlock pair. 

Sometimes when an application calls VioScrLock, it receives a spe
cial error code that says, "The screen is unavailable." This means that 
the screen has been switched into the background and that the applica
tion may not-and must not-manipulate the display hardware. Typi
cally, the program issues a blocking form of VioScrLock that suspends 
the thread until the screen is again in the foreground and the video dis
play buffers contain that process's image. 

An application that directly manipulates the video hardware must do 
more than simply lay low when it is in the background. It must also save 
and restore the entire video state-the contents of the display buffer 
and the modes, palates, cursors, and so on of the display controller. 
VIa does not provide this service to direct-screen manipulation pro
cesses for two reasons. First, the process is very likely using the display 
in a graphics mode. Some display cards contain a vast amount of video 
memory, and VIa would be forced to save it all just in case the applica
tion was using it all. Second, many popular display controllers such as 
the EGA and compatibles contain many write-only control registers. 
This means that VIa cannot read the controller state back from the card 
in order to save it for a later restoration. The only entity that under
stands the state of the card, and therefore the only entity that can restore 
that state, is the code that programmed it-the application itself. 

But how does the system notify the process when it's time to save or 
restore? Processes can call the system in many ways, but the system 
can't call processes. OS/2 deals with this situation by inverting the 
usual meaning of call and return. When a process first decides to 
refresh its own screen, it creates an extra thread and uses that thread to 
call the VioSavRedrawWait function. The thread doesn't return from 
this call right away; instead, VIa holds the thread "captive" until it's 
time for a screen switch. To notify the process that it must now save its 



182 PART II THE ARCHITECTURE 

screen image, VIO allows the captive thread to return from the 
VioSavRedrawWait call. The process then saves the display state and 
screen contents, typically using the returned thread. When the save 
operation is complete, VioSavRedrawWait is called again. This noti
fies VIO that the save is complete and that the screen can now be 
switched; it also resets the cycle so that the process can again be noti
fied when it's time to restore its saved screen image. In effect, this 
mechanism makes the return from VioSavRedrawWait analogous to a 
system-to-process call, and it makes the later call to VioSavRedraw
Wait analogous to a return from process to system. 

The design of OS/2 generally avoids features in which the system 
calls a process to help a system activity such as screen switching. This 
is because a tenet of the OS/2 design religion is that an aberrant process 
should not be able to crash the system. Clearly, we're vulnerable to that 
in this case. VIO postpones the screen switch until the process saves its 
screen image, but what if the process somehow hangs up and doesn't 
complete the save? The screen is in an indeterminate state, and no 
process can use the screen and keyboard. As far as the user is con
cerned, the system has crashed. True, other processes in the system are 
alive and well, but if the user can't get to them, even to save his or her 
work, their continued health is of little comfort. 

The designers of OS/2 were stuck here, between a rock and a hard 
place: Applications had to be able to save their screen image if they 
were to have direct video access, but such a facility violated the "no 
crashing" tenet of the design religion. Because the video access had to 
be supported and the system had to be crash resistant, we found a two
part workaround. 

The first part concerns the most common cause of a process hanging 
up in its screen-save operation: hard errors. When a hard error occurs, 
the hard error daemon uses the screen switch mechanism to take control 
of the screen and the keyboard. The hard error daemon saves the ex
isting screen image and keeps the application that was in the fore
ground at the time of the hard error from fighting with the daemon over 
control of the screen and the keyboard. However, if the hard error 
daemon uses the screen-switching mechanism and if the screen-switch
ing mechanism allows the foreground process to save its own screen 
image, that process might, while saving its screen image, try to use the 
device that has the hard error and thus deadlock the system. The device 
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in error won't service more requests until the hard error is cleared, but 
the hard error can't be cleared until the daemon takes control. The 
daemon can't take control until the foreground process is through sav
ing, and the foreground process can't complete saving until the device 
services its request. Note that this deadlock doesn't require an explicit 
I/O operation on the part of the foreground process; simply allocating 
memory or referencing a segment might cause swapping or loading ac
tivity on the device that is experiencing the hard error. 

A two-part approach is used to solve this problem. First, _deadlocks 
involving the hard error daemon are managed by having the hard error 
screen switch do a partial screen save. When I said earlier that VIa 
would not save the video memory of direct access screen groups, I was 
lying a bit. When the system is doing a hard error screen switch, VIa 
will save the first part (typically 4 KB) of the video memory-enough 
to display a page of text. We don't have to worry about how much video 
RAM the application was using because the video display will be 
switched to character mode and the hard error daemon will overwrite 
only a small part of video memory. Naturally, this means that the hard 
error daemon must always restore the original screen group; it can't 
switch to a third screen group because the first one's video memory 
wasn't fully saved. 

VIa and the hard error daemon keep enough free RAM around to 
save this piece of the video memory so that a hard error screen switch 
can always take place without the need for memory swapping. When 
the hard error daemon is finished with the screen, the overwritten video 
memory is restored from the buffer. As we discussed above, however, 
VIa can't restore the state of the video controller itself; only the appli
cation can do that. The VioModeWait function is used to notify the ap
plication that it must restore the screen state. 

In summary, any application that directly accesses the video hard
ware must provide captive threads to VioSavRedrawWait and to 
VioModeWait. VioSavRedrawWait will return when the application 
is to save or to restore the video memory. VioModeWait will return 
when the application is to restore the state of the video controller from 
the application's own record of the controller's state. 

The second part of the "application hangs while saving screen and 
hangs system" solution is unfortunately ad hoc: If the application does 



184 PART II THE ARCHITECTURE 

not complete its screen save operation within approximately 30 sec
onds, the system considers it hung and switches the screen anyway. The 
hung process is suspended while it's in background so that it won't sud
denly "come alive" and manipulate the screen. When the process is 
again in the foreground, the system unsuspends it and hopes that it will 
straighten itself out. In such a case, the application's screen image may 
be trashed. At best, the user can enter a "repaint screen" command to 
the application and all will be well; at worst, the application is hung up, 
but the system itself is alive and well. Building a system that can detect 
and correct errors on the part of an application is impossible; the best 
that we can hope to do is to keep an aberrant application from 
damaging the rest of the system. 

I hope that this long and involved discussion of rules, regulations, 
doom, and disaster has not frightened you into contemplating programs 
that communicate by Morse code. You need be concerned with these 
issues only if you write applications that manipulate the display device 
directly, circumventing either VIO or the presentation manager inter
faces. These concerns are not an issue when you are writing ordinary 
text applications that use VIO or the presentation manager or graphics 
applications that use the presentation manager. VIO and the presenta
tion manager handle screen saving and support background display 
writing. Finally, I'll point out, as a curiosity, that even processes that 
use handle operations only to write to STDOUT use VIO or the presen
tation manager. When STDOUT points to the screen device, the operat
ing system routes STDOUT writes to the VIO/presentation manager 
packages. This is, of course, invisible to the application; it need not con
cern itself with foreground/background, EGA screen modes, hard error 
screen restorations, and the like. 



Interactive 
Programs 

14 

A great many applications interact with the user via the screen and the 
keyboard. Because the primary function of most desktop computers is 
to run interactive applications, OS/2 contains a variety of services that 
make interaction powerful and efficient. 

As we've seen in earlier chapters, interactive programs can use the 
piesentation mar.ager to manage their interface, or they can do it them-
selves, using VIO or direct video access for their I/O. The presentation 
manager provides a great deal of function and automatically solves a 
great many problems. For example, a presentation manager application 
doesn't have to concern itself with the sharing of the single keyboard 
among all processes in its screen group. The presentation manager 
takes care of that by handling the keyboard and by simply sending key
board events to each process, as appropriate. 

If you're writing an application that uses the presentation manager, 
then you can skip this chapter. If you're writing an application that 
does not use the presentation manager but that may be used in an in
teractive fashion, it's very important that you understand the issues dis
cussed in this chapter. They apply to all programs that use VIO or the 
STDIN/STDOUT handles to do interactive I/O, even if such programs 
are being run via the presentation manager. 
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14.1 1/0 Architecture 
Simply put, the system I/O architecture says that all programs read 
their main input from the STDIN handle and write their main output to 
the STDOUT handle. This applies to all non-presentation manager ap
plications, but especially to interactive applications. The reason is that 
OS/2 and program-execution utilities such as CMD.EXE (shell pro
grams) cooperate to use the STDIN/STDOUT mechanism to control 
access to the screen and keyboard. For example, if two processes read 
from the keyboard at the same time, some keys go to one process, and 
the rest go to the other in an unpredictable fashion. Likewise, it is a bad 
idea for more than one process to write to the screen at the same time. 1 

Clearly, you don't want too many processes doing keyboard/screen I/O 
within a single screen group, but you also don't want too few. It would 
be embarrassing if a user terminated one interactive application in a 
screen group, such as a program run from CMD.EXE, and CMD.EXE 
failed to resume use of the keyboard/screen to print a prompt. 

So how will we handle this? We might be running a great many pro
cesses in a screen group. For example, you could use CMD.EXE to ex
ecute a spreadsheet program, which was told to execute a subshell
another copy of CMD.EXE. The user could then execute a program to 
interpret a special batch script, which in turn executes an editor. And 
this editor was told to run a copy of a C compiler to scan the source 
being edited for errors. Oh, yes, and we forgot to mention that the top 
level CMD.EXE was told to run a copy of the assembler in parallel with 
all these other operations (similar to the UNIX "&" operation). 

Many processes are running in this screen group; some of them are 
interactive, and some are not, and at any time only one is using the key
board and the screen. Although it would be handy to declare that the 
most recently executed process will use the keyboard and the screen, 
you can't: The most recently executed program was the C compiler, 
and it's not even interactive. OS/2 cannot decide which process should 
be using the screen and keyboard because OS/2 lacks any knowledge of 
the function of each process. OS/2 knows only their child-parent rela
tionships, and the situation can be far too complex for that information 
to be sufficient. 

1. Within the same screen group and/or window, of course. Applications that use different 
virtual screens can each write to their own screen without regard for other virtual screens. 
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Because OS/2 can't determine which process should be using the 
screen and the keyboard, it doesn't try. The processes themselves make 
the determination. The rule is simple: The process that is currently 
using the screen and the keyboard can grant access to a child process, 
or it can keep access for itself. If a process grants access to a child 
process, then it must keep off the screen and the keyboard until that 
child terminates. Once the child process is granted use of the screen 
and the keyboard, the child process is free to do as it wishes, perhaps 
granting access to its own children. Until that child process terminates, 
the parent must avoid device conflict by staying quiet. 

Let's look at how this works in real life. For example, CMD.EXE, 
the first process in the screen group, starts up with STDIN open on the 
keyboard and STDOUT open on the screen. (The system did this by 
magic.) When this copy ofCMD.EXE is told to execute the spreadsheet 
program, CMD.EXE doesn't know if the spreadsheet program is in
teractive or not, so it lets the child process - the spreadsheet 
program-inherit its STDIN and STDOUT handles, which point to the 
keyboard and to the screen. Because CMD.EXE granted access to 
the screen and the keyboard to the child, CMD.EXE can't use STDIN 
or STDOUT until that child process terminates. Typically, at this point 
CMD.EXE would DosCWait on its child process. 

Now the spreadsheet program comes alive. It writes to STDOUT, 
which is the screen, and it reads from STDIN, which is the keyboard. 
When the spreadsheet program is instructed to run CMD.EXE, it does 
so, presuming, as did its parent, that CMD.EXE is interactive and 
therefore letting CMD.EXE inherit its STDIN and STDOUT handles. 
Now the spreadsheet must avoid any STDIN/STDOUT I/O until its 
child-CMD.EXE-terminates. As long as these processes continue 
to run interactive children, things are going to work out OK. When the 
children start to die and execution starts popping back up the tree, ap
plications restart, using the screen and the keyboard in the proper order. 

But what about the detached assembly that CMD.EXE started before 
it ran the spreadsheet? In this case, the user has explicitly told 
CMD.EXE that it wants the application run "detached" from the key
board. If the user specified a STDIN for the assembler-perhaps a 
file-then CMD.EXE sets that up for the child's STDIN. If the user 
didn't specify an alternate STDIN, CMD.EXE opens STDIN on the 
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NULL device so that an application that reads it will receive EOF. In 
this way, CMD.EXE (which knew that the application wasn't to use 
the keyboard because the user gave explicit instructions) did not let the 
child process inherit STDIN, so CMD.EXE continues to use it, printing 
a new prompt and reading a new command. Figure 14-1 shows a typi
cal process tree. The shaded processes have inherited a STDIN, which 
points to the keyboard, and a STDOUT, which points to the screen. All 
such processes must lie on a single path if the rules are followed 
because each process has the option of allowing a maximum of one 
child to inherit its STDIN and STDOUT handles unchanged. 

You are undoubtedly becoming a bit concerned at this point: "Does 
this mean I'm forced to use the limited, serial STDIN/STDOUT inter
face for my high-resolution graphics output?" I'm glad you asked. 
What we've been discussing is the architectural model that must be 
followed because it's used systemwide to avoid screen and keyboard 
conflicts. However, applications can and should use special services to 
optimize their interactive I/O as long as they do so according to the 

= Processes using the keyboard 

Figure 14-1. 
Processes using the keyboard. 
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architectural model. Specifically, OS/2 provides the KBD, VIO, and 
MOU dynlink packages. These high-performance programs interface 
directly with the hardware, avoiding the STDIN/STDOUT limited in
terfaces. The key is "directly with the hardware": A process is welcome 
to use hardware-specific interfaces to optimize performance, but only af 
ter it has ensured that the architectural model grants it access to that 
device. 

In practice, this is straightforward. Any interactive program that 
wants to use KBD first ensures (via DosQHandType) that its STDIN 
handle is open on the keyboard. If STDIN is not open on the keyboard, 
the keyboard belongs to another program, and the interactive program 
must not burst in on the rightful owner by using KBD. All dynlink 
device interfaces are trusting souls and won't check your bona fides 
before they do their stuff, so the application must look before it leaps. 
The same applies to STDOUT, to the keyboard device, and to the VIO 
package. All applications must verify that STDIN and STDOUT point 
to the keyboard and the screen before they use any device-direct inter
face, which includes VIO, KBD, MOU, and direct device access. 

What's an interactive program to do if it finds that STDIN or 
STDOUT doesn't point to the keyboard and screen devices? I don't 
know, but the author of the application does. Some applications might 
not be truly interactive and therefore would work fine. For example, 
Microsoft Macro Assembler (MASM) can prompt the user for the 
names of source, object, and listing files. Although MASM is 
technically interacting with the user, MASM is not an interactive appli
cation because it doesn't depend on the ability to interact to do its work. 
If STDIN points to a file, MASM is perfectly happy reading the file
names from that file. MASM doesn't need to see if STDIN points to the 
keyboard because MASM doesn't need to use the KBD package. In
stead, MASM reads its names from STDIN and takes what it gets. 

Other programs may not require an interactive interface, but when 
they are interacting, they may want to use KBD or VIO to improve per
formance. Such applications should test STDIN and STDOUT to see if 
they point to the appropriate devices. If they do, applications can cir
cumvent the STDIN/STDOUT limitations and use KBD and VIO. If 
they don't, the applications are stuck with STDIN and STDOUT. 
Finally, many interactive applications make no sense at all in a nonin
teractive environment. These applications need to check STDIN and 
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STDOUT, and, if they don't point to the devices, the applications 
should write an error message to STDERR and terminate. Admittedly, 
the user is in error if he or she attempts to run an interactive applica
tion, such as a WYSIWYG editor, detached, but printing an error mes
sage is far better than trashing the display screen and fighting with 
CMD.EXE over the keyboard. The screen group would then be totally 
unusable, and the user might not even be able to terminate the editor if 
he or she can't get the terminate command through the keyboard 
contention. 

It's technically possible, although highly unusual, for an application 
to inherit access to the keyboard yet not have access to the screen. More 
commonly, an application has access to the screen but not to the key
board. Although most users would find it confusing, power users can 
detach programs such as compilers so that any output summary or error 
messages they produce appear on the screen. Although the user may 
end up with intermingled output, he or she may like the instant notifica
tion. Each application that wants to use VIO, KBD, or the environment 
manager needs to check STDIN and STDOUT individually for access 
to the appropriate device. 

Earlier in this section, we talked about how applications work when 
they create children that inherit the screen and the keyboard, and it pro
bably sounded complicated. In practice, it can be simple. For example, 
the technique used to DosExecPgm a child that will inherit the key
board can be used when the parent itself doesn't have the keyboard and 
thus can't bequeath it. Therefore, the parent doesn't need to check its 
STDIN status during the DosExecPgm. To summarize, here are the 
rules: 

Executing Programs 

• If the child process is to inherit the STDIN handle, the parent 
process must not access that handle any further until the child 
process terminates . 

• If the child process is not to inherit the STDIN handle (so that 
your program can continue to interact), then the child process 
STDIN must be opened on a file or on the NULL device. Don't 
rely on the child not to use the handle; the child might DosEx
ecPgm a grandchild that is not so well mannered. 
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• A process can let only one child at a time inherit its STDIN. If a 
process is going to run multiple child processes in parallel, only 
one can inherit STDIN; the others must use alternative STDIN 
sources. 

• All these rules apply to STDINs open on pipes and files as well as 
to KBD, so your application needn't check the source of STDIN. 

AU Processes 

• Verify that the STDIN handle points to the keyboard before using 
KBD, SIGBRK, or SIGCTLC (see below). You must not uSe these 
direct device facilities if STDIN is not open on the keyboard. 

• Verify that the STDOUT handle points to the screen before using 
VIO. You must not use direct device facilities if STDOUT is not 
open on the screen. 

• If the process executes any child that inherits its STDIN, it must 
not terminate itself until that child process terminates. This is 
because the parent will assume that the termination of the direct 
child means that the STDIN handle is now available. 

14.2 Ctrl-C and Ctrl-Break Handling 
Just when you think that it's safe to go back into the operating system, 
one more device and process tree issue needs to be discussed: the han
dling of Ctrl-C and Ctrl-Break. (Once again, this discussion applies 
only to programs that don't explicitly use the presentation manager 
facility. Those applications that do use the presentation manager have 
all these issues handled for them automatically.) These two events are 
tied to the keyboard hardware, so their routing has a great deal in com
mon with the above discussion. The fundamental problem is simple: 
When the user presses Ctrl-C or Ctrl-Break, what's the operating sys
tem to do? Clearly, a process or processes or perhaps an entire subtree 
of processes must be killed or signaled. But do we kill or signal? And 
which one(s)? 

OS/2 defines a convention that allows the processes themselves to 
decide. Consider a type of application-a "command application"
that runs in command mode. In command mode, a command applica
tion reads a command, executes the command, and then typically 
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returns to command mode. Furthermore, when the user presses Ctrl
Break, the command application doesn't want to terminate but to stop 
what it's doing and return to command mode. This is the style of most 
interactive applications but not that of most non interactive applications. 
For example, if the user types MASM to CMD.EXE, the CMD.EXE 
program runs MASM as a child process. CMD.EXE is a command ap
plication, but MASM is not. The distinction between "command appli
cation" and "noncommand application" is not made by OS/2 but is 
merely descriptive terminology that is useful in this discussion. 

The system convention is that Ctrl-C and Ctrl-Break mean "Stop 
what you're doing." OS/2 generates signals in response to Ctrl-C and 
Ctrl-Break; it never directly kills a process. OS/2 can easily decide 
which process to signal when Ctrl-C or Ctrl-Break is pressed: It signals 
the lowest command process in the process tree in that screen group. At 
first glance, this may not seem easy. How can OS/2 distinguish com
mand processes, and how can it determine the "lowest"? The total 
process tree in a screen group may be very complex; some processes in 
it may have died, creating multiple now-independent "treelets." 

The process tree may be complex, but the tree of processes using the 
keyboard is simpler because a process can't let multiple children simul
taneously inherit its STDIN. A process can only inherit the keyboard,2 
not open it explicitly; so a single path down the tree must intersect (or 
contain) all command processes. This single path can't be fragmented 
because of missing processes due to child death because a process that 
has let a child inherit its STDIN must not terminate until the child does. 
So, all OS/2 needs is to find any command process in the command 
subtree and then look at its descendants for another command process 
and so on. The bottommost process receives the signal. 3 

Figure 14-2 illustrates a possible process tree. The shaded processes 
have inherited handles to the keyboard and screen; those marked with 
C are command processes. 

This now begs the final question: How can OS/2 tell if an applica
tion is a command process or not? It can tell because all command 

2. Actually, a process should only inherit the keyboard. The keyboard device can be opened 
explicitly, but doing so when a process's inherited STDIN doesn't point to the keyboard 
device would be a serious error. 
3. Actually, OS/2 uses a more efficient algorithm than this; fm merely illustrating that find
ing the lowest command process is not difficult. 
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= Processes using the keyboard 

Figure 14·2. 
Ctrl-C routing in a process tree. 

processes/command applications do something that other processes 
never do. By definition, a command process doesn't want to be sum
marily killed when the user presses Ctrl-C or Ctrl-Break, so all com
mand processes establish signal handlers for Ctrl-C and Ctrl-Break. 
Because all command processes intercept Ctrl-C and Ctrl-Break, all we 
need now is to establish the convention that only command processes 
intercept Ctrl-C and Ctrl-Break. This hearkens back to our earlier 
discussion of checking STDIN before directly using the keyboard 
device. Telling the keyboard device that you want the Ctrl-C or Ctrl
Break signals routed to your process is a form of I/O with the keyboard 
device, and it must only be done if your program has verified that 
STDIN points to the keyboard device. Furthermore, intercepting Ctrl-C 
or Ctrl-Break just so that your program can clean up during unexpected 
termination is unnecessary and insufficient. The SIGTERM signal or, 
better, the exitlist mechanism provides this capability and covers 
causes of death other than the keyboard. So all processes that intercept 
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Ctrl-C and Ctrl-Break have access to the keyboard, and they want to do 
something other than die when the user presses Ctrl-C or Ctrl-Break. 
They fit the command process definition. 

Now that we've exhaustively shown how OS/2 finds which process 
to send a Ctrl-C signal, what should the process do when it gets the sig
nal? Obey the system convention and stop what it's doing as quickly as 
is wise. If the application isn't working on a command, the application 
typically flushes the keyboard type-ahead buffer and reprompts. If the 
application is working on a command that is implemented in code 
within the application, the application jumps from the signal handler to 
its command loop or, more commonly, sets a flag to terminate the cur
rent command prematurely.4 

Finally, if the application is running a child process, it typically 
stops what it's doing by issuing a DosKiII on that child command sub
tree. This, then, is how Ctrl-C can kill a program such as MASM. 
Ctrl-C is sent to MASM's closest ancestor that is a command process,5 
which in turn issues a DosKilI on MASM's subtree. MASM does any 
exitlist cleanup that it wishes (probably deleting scratch files) and then 
terminates. When the command process that ran MASM, typically 
CMD.EXE, sees that MASM has terminated, it prints AC on the screen, 
followed by a new prompt. 

4. Occasionally, terminating a command halfway through could leave the user's work 
trashed. In such a case, finishing the command is prudent. 
5. Often, CMD.EXE is MASM's direct ancestor, but other programs, such as a build utility, 
could have come between CMD.EXE and MASM. 
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The Fi Ie System 
The file system in OS/2 version 1.0 is little changed from that of 
MS-DOS, partially in an effort to preserve compatibility with 
MS-DOS programs and partially due to limitations imposed by the 
project's schedule. When the schedule for an "all singing, all dancing" 
OS/2 was shown to be too long, planned file system improvements 
were moved to a future release. To explain the rationale for postponing 
something so useful, I'll digress a little. 

The microcomputer industry developed around the dual concepts of 
mass market software and standards. Because software is mass mar
keted, you can buy some very sophisticated and useful programs for a 
modest sum of money -at least modest in comparison to the develop
ment cost, which is often measured in millions of dollars. Mass market
ing encourages standards because users don't want to buy machines, 
peripherals, and systems that don't run these programs. Likewise, the 
acceptance of the standards encourages the development of mass mar
ket software because standards make it possible for a single binary pro
gram to execute correctly on a great many machines and thus provide a 
market big enough to repay the development costs of a major 
application. 

This synergy, or positive feedback, between standards and mass 
market software affected the process of developing operating systems. 
At first glance, adding new features to an operating system seems 
straightforward. The developers create new features in a new release, 
and then applications are written to use those new features. However, 
with mass market software, it doesn't work that way. Microsoft could 
indeed release a new version of OS/2 with new features (and, in fact, 
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we certainly will do so), but initially few new applications will use said 
new features. This is because of the initial limited market penetration 
of the new release. For example, let's assume that at a certain time after 
the availability of a new release, 10 percent of OS/2 users have up
graded. An ISV (Independent Software Vendor) is planning its next 
new product-one it hopes will be a bestseller. The ISV must decide 
whether to use the new feature and automatically lock itself out of 90 
percent of the potential market or to us~ the common subset of features 
contained in the earlier OS/2 release and be able to run on all 
machines, including the 10 percent running the OS/2 upgrade. In gen
eral, ISVs won't use a nonvital feature until the great majority of exist
ing systems support that feature. 

The key to introducing new features in an operating system isn't that 
they be available and useful; it's that the release which contains those 
new features sees widespread use as quickly as possible. If this doesn't 
happen, then the new feature pretty much dies stillborn. This is why 
each MS-DOS release that contained major new functionality coin
cided with a release that was required to use new hardware. MS-DOS 
version 2.0 was required for the IBM XT product line; MS-DOS ver
sion 3.0 was required for the IBM AT product line. And OS/2 is no ex
ception: It wasn't required for a new "box," but it was required to 
bring out the protect mode machine lying fallow inside 80286-based 
machines. If a new release of a system doesn't provide a new feature 
that makes people want it or need it badly, then market penetration will 
be slow. People will pay the cost and endure the hassle of upgrading 
only if their applications require it, and those applications dare require 
it only if most people have alre~dy upgraded. 

Because of this, the initial release of OS/2 is "magical" in the eyes 
of its developers. It provides a window of opportunity in which to in
troduce new features into the PC operating system standard, a window 
that won't be open quite as wide again for a long time. And this post
poned major file system enhancements: The file system can be en
hanced in a later release and benefit existing applications without any 
change on their part, whereas many other OS/2 features needed to be in 
the first release or they might never be available. 
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15.1 The OS/2 File System 
Although OS/2 version 1.0 contains little in the way of file system 
improvements, it does contain two that are significant. The first is asyn
chronous I/O. Asynchronous I/O consists ·of two functions, DosReadA
sync and DosWriteAsync. These functions are identical to DosRead 
and DosWrite except that they return to the caller immediately, usually 
before the I/O operation has completed. Each takes the handle of a 
semaphore that is cleared when the I/O operation completes. The 
threads of the calling process can use this semaphore to poll for opera
tion complete, or they can wait for the operation to complete. The 
DosMuxSem Wait call is particularly useful in this regard because it 
allows a process to wait for several semaphore events, which can be 
asynchronous I/O events, IPC events, and timer events, intermingled as 
the programmer wishes. 

The second file system feature is extended partitioning; it supports 
dividing large physical disks into multiple sections, several of which 
may contain FAT file systems. In effect, it causes OS/2 to treat a large 
hard disk as two or more smaller ones, each of which meets the file sys
tern's size limits. It's widely believed that MS-DOS is limited to disks 
less than 32 ~.1B in size. This isn't strictly true. The limitation is that a 
disk can have no more than 65,535 sectors; the standard sector size is 
512 bytes, which gives the 32 MB value. Furthermore, each disk is 
limited to 32,768 clusters. A sector is the unit of disk storage; disks can 
read and write only integral sectors. A sector's size is established when 
the disk is formatted. A cluster is the unit of disk space allocation for 
files and directories. It may be as small as one sector, or it may be four 
sectors, eight sectors, or some other size. Because the MS-DOS file sys
tem supports a maximum of 65 KB sectors but only 32 KB clusters, a 
32 MB disk must be allocated in two-sector (or bigger) clusters. It's 
possible to write a device driver that uses a sector size that is a multiple 
of 512 bytes, which gets around the 65 KB sector restriction and allows 
the use of a disk greater than 32 MB. This trick works for MS-DOS and 
for OS/2, but it's not optimal because it doesn't do anything to increase 
the maximum number of allocation clusters from the existing 32 KB 
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value, l which means that because many disk files are small a lot of 
space is wasted due to internal fragmentation. 

The OS/2 version 1.0 extended partitioning feature provides an in
terim solution that is not quite as convenient as large sectors but that 
reduces the wastage from internal fragmentation: It allows more than 
one disk partition to contain a FAT file system. Multipartitioned disks 
are possible under MS-DOS, but only one partition can be an MS-DOS 
(that is, FAT) file system. This restriction has been relaxed in OS/2 so 
that, for example, a 60 MB disk can be partitioned into two separate 
logical disks (for example, C and D), each 30 MB. 

15.2 Media Volume Management 
The multitasking capability of OS/2 necessitated major file system en
hancements in the area of volume management. A disk volume is the 
name given to the file system and files on a particular disk medium. A 
disk drive that contains a fixed medium always contains the same vol
ume, but a disk drive from which the media (such as floppy disks) can 
be removed will contain whatever disk-whatever volume-the user 
has in it at the time. That volumes can change becomes a problem in a 
multitasking environment. For example, suppose a user is using a word 
processor to edit a file on a floppy disk in drive A. The editor has 
opened the file and is keeping it open for the duration of the edit. 
Without closing the file or terminating the editor, the user can switch to 
a screen group in which a spreadsheet program is running. The user 
might then need to insert a different disk into drive A -one that con
tains data needed by the spreadsheet. If the user then switches back to 
the word processor without remembering to change the floppy disk, 
disaster will strike. Pressing the Page Down key will cause the editor to 
try to read another sector from its already open disk file. The operating 
system knows-because of FAT information stored in RAM buffers
that the next sector in the text file is sector N, and it will issue a read to 
sector N on the wrong medium-the spreadsheet floppy disk-and 
return that to the word processor program as the next sector of the text 

1. The FAT file system can deal with a maximum of 32 KB allocation units, or clusters. No 
matter what the size of the disk, all files must consume disk space in increments of no smaller 
than 1/32Kth ofthe total disk size. This means that a 60 MB disk, using 1024 byte sectors, allo
cates space in 2048-byte increments. 
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file. And, at that, the user is getting off lightly; he or she might just as 
easily have given the word processor a command that caused it to write 
a sector to the disk, which would do double damage. A file on the 
spreadsheet floppy would be destroyed by the "random" write, and the 
text file would be corrupted as well because it's missing a sector write 
that it should have received. 

We can't solve this problem by admonishing the user to be careful; 
many programs read from and write to disk without direct user inter
vention. For example, the word processor might save work in progress 
to disk every two minutes. If this time interval elapses while the user is 
still working with the spreadsheet program on the spreadsheet floppy 
disk, our hypothetical "flawless" user is still S.O.L.2 

OS/2 resolves these problems by recognizing that when an applica
tion does I/O to an open file the I/O is not really aimed at drive A; it's 
aimed at a particular floppy disk volume-the one containing the open 
file. Each disk volume, removable or not, has a volume name stored in 
its root directory and a unique 32-bit volume identifier stored in its boot 
sector. Figure 15-1 illustrates the two volume names-one for com
puter use and one for human use. Each file handle is associated with a 
particular 32-bit volume ID. When an I/O request is made for a file 
handle, OS/2 checks to see if the proper volume is in the drive by com
paring the 32-bit value of the request with that of the medium currently 
spinning. If they match, the operation completes. If the mounted vol
ume is different from the requested volume, OS/2 uses the hard error 
daemon mechanism to prompt the user to insert the correct volume in 
the drive. 

Sector 
o 

VOLUME LABELS 

IJ I 
32-bit volume 10 t~ ___ volume name in 
in boot sector home directory 

Figure 15·1. 
Volume 10 and volume name location. 

2. Severely out of luck. 
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Three problems must be overcome to make this scheme practical. 
First, checking the volume ID of the medium must be fast. You can't 
afford to read the boot sector each time you do an I/O operation if 
doing so halves the speed of disk I/O. Second, you need assurance that 
volume IDs are unique. Third, you need a plan to deal with a volume 
that doesn't have a volume ID. 

Keeping down the cost of volume verification is easy if you know 
when a volume is changed; obviously, the ID is read from the boot sec
tor only when a medium has been changed. But how can OS/2 tell that a 
media change has occurred? It can't; that's a device driver issue. 

For starters, if the device contains a nonremovable medium, recheck
ing its volume ID is never necessary. The device driver understands 
this, and when it is asked the status of the medium, it responds, 
"Unchanged." Some removable media drives have a flag bit that warns 
the driver that the door has been opened. In this case, when asked, the 
device driver tells OS/2 that the medium is "uncertain." The driver 
doesn't know for sure that it was really changed, but it may have been; 
so OS/2 rechecks the volume ID. Rechecking the volume ID is more 
difficult when a removable media device has no such indicator. 

In this case, the author of the device driver uses device-specific 
knowledge to decide on a minimum possible time to effect a media 
change. If the device is ready, yet less than the minimum possible time 
has elapsed since the last operation, the driver knows that the same 
medium must be in the drive. If more than the minimum possible time 
has elapsed, the driver returns ' 'medium uncertain, " and OS/2 
rechecks the volume label. This time interval is typically 2 seconds for 
floppy disk drives, so effectively an extra disk read is done after every 
idle period; for any given episode of disk I/O, however, no extra reads 
are needed. 

Ensuring that a volume ID is unique is another problem. Simply lec
turing the user on the wisdom of unique IDs is inadequate; the user will 
still label three disks "temp" or number them all as "10." And even 
the hypothetical perfect user might borrow from a neighbor a disk 
whose name is the same as one the user already owns. OS/2 deals with 
this problem by using a 32-bit randomized value for disk volume IDs. 
When a disk is formatted, the user enters a supposedly unique name. 
This name is checksummed, and the result, combined with the number 
of seconds between the present and 1980, is used to seed a random 
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number generator. This generator returns a 32-bit volume ID. Although 
accidentally duplicating a volume ID is obviously possible, the four 
billion possible codes make it quite unlikely. 

The name the user enters is used only to prompt the user to insert the 
volume when necessary, so it need not be truly unique for the volume 
management system to work. If the user names several disks WORK, 
OS/2 still sees them as independent volumes because their volume IDs 
are different. If the user inserts the wrong WORK disk in response to a 
prompt, OS/2 recognizes it as the wrong disk and reissues the "Insert 
disk WORK" prompt. After trying each WORK volume in turn, the 
user will probably decide to relabel the disks! 

The thorniest problem arises from unlabeled disks-disks formatted 
with MS-DOS. Forcing the user to label these disks is unacceptable, as 
is having OS/2 automatically label them with volume IDs: The disk 
may be read-only, perhaps permanently so. Even if the disk is not read
only, the problem of low density and high density raises its ugly head. 
Low-density disks can be read in a high-density drive, but writes made 
to a low-density disk from a high-density drive can only be read on 
high-density drives. If a low-density disk is placed in a high-density 
drive and then labeled by OS/2, its boot sector is no longer readable 
when the disk is placed in a low-density drive. 

For volumes without a proper volume ID, OS/2 attempts to create a 
unique substitute volume ID by checksumming parts of the volume's 
root directory and its FAT table. OS/2 uses the existing volume name if 
one exists; if there is no volume name, OS/2 attempts to describe the 
disk. None of these techniques is foolproof, and they require extra disk 
operations every time the medium is identified. Therefore, software 
distributors and users should make every effort to label disks that OS/2 
systems are to use. OS/2 labels are backward compatible with MS-DOS 
version 3.x labels. 

The OS/2 DISKCOPY command makes a byte-by-byte verbatim 
copy of a floppy disk, except that the duplicate disk has a different vol
ume ID value in the boot sector (the volume label name is not changed). 
OS/2 users can't tell this, however, because the DISKCOMP utility 
lies, and if two disks are identical in every byte except for the volume 
ID, it reports that the disks are identical. However, if the user uses 
DISKCOPY to duplicate the disk under OS/2 and then compares the 
two with DISKCOMP under MS-DOS 3.x, a difference is reported. 
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Our discussion so far has centered on file reads and writes to an open 
handle. Reads and writes are volume-oriented operations because 
they're aimed at the volume on which the file resides. DosOpens, on 
the other hand, are drive oriented because they search the default or 
specified drive for the file in question (or create it) regardless of the 
volume in the drive. All handle operations are volume oriented, and all 
name-based calls are drive oriented. Currently, you cannot specify that 
a given file is to be opened on or created on a specific volume. To en
sure that a scratch or output file is created on a certain volume, arrange 
to have a file open on that volume and issue a write to that file immedi
ately before doing the file open. The write operation followed by a 
DosBufReset will ensure that the particular medium is in the drive at 
that time. 

15.3 1/0 Efficiency 
OS/2 provides full blocking and deblocking services for all disk I/O re
quests. A program can read or write any number of bytes, and OS/2 
will read the proper sectors into internal buffers so that only the speci
fied bytes are affected. Naturally, every DosRead or DosWrite call 
takes time to execute, so if your program makes few I/O calls, each for 
large amounts of data, it will execute faster. 

I/O performance can be further improved by making sector aligned 
calls, that is, by requesting a transfer of an integral multiple of 512 
bytes to or from a file seek position that is itself a multiple of 512. OS/2 
reads and writes entire disk sectors directly from and to the device 
hardware without an intermediate copy step through system buffers. 
Because the file system keeps logically adjacent sectors physically ad
jacent on the disk, disk seek times and rotational latency are such that 
one can read or write four sectors of data (2048 bytes) in essentially the 
same time needed to read or write one sector (512 bytes). 

Even if the length or the file position of the request isn't a multiple of 
512, OS/2 performs the initial fraction of the request via its buffers, 
directly transfers any whole sectors out of the ~iddle of the request, 
and uses the buffers for the fractional remainder. Even if your requests 
aren't sector aligned, making them as large as feasible is beneficial. 
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To summarize, I/O is most efficient when requests are large and sec
tor aligned. Even misaligned requests can be almost optimally serviced 
if they are large. Programs that cannot naturally make aligned requests 
and that are not I/O intensive should take advantage of the blocking and 
deblocking services that OS/2 provides. Likewise, programs that need 
to make large, unaligned requests should use OS/2' s blocking manage-
ment. Programs that need to make frequent, small, nonaligned requests 
will perform best if they read blocks of sectors into internal buffers and 
deblock the data themselves, avoiding the overhead of frequent 
DosRead or DosWrite calls. 





16 

Device Mon itors, 
Data Integrity, 
and Timer 
Services 
In discussing the design goals of OS/2, I mentioned continuing to sup
port the kinds of functionality found in MS-DOS, even when that func
tionality was obtained by going around the operating system. A good 
example of such functionality is device data manipulation, a technique 
that usually involves hooking interrupt vectors and that is used by 
many application programs. For example, pop-up programs such as 
SideKick have become very popular. These programs get into memory 
via the terminate and stay resident mechanism and then edit the key
board interrupt vector to point to their code. These programs examine 
each keystroke to see if it is their special activate key. If not, they trans
fer control to the original interrupt handler. If the keystroke is their spe
cial activate key, they retain control of the CPU and display, or "pop 
up," a message or a menu on the screen. Other programs hook the 
keyboard vector to provide spell checking or keyboard macro expan
sion. Some programs also hook the BIOS entry vector that commands 
the printer, either to substitute alternate printer driver code or to manip
ulate the data sent to the printer. Programs that turn a spreadsheet's out
put sideways are an example of this. 
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In general, these programs edit, or hook, the interrupt vectors that 
receive device interrupts and communicate with device driver routines 
in the ROM BIOS. The functions provided by such programs and their 
evident popularity among users demonstrate a need for programs to be 
able to monitor and/or modify device data streams. The OS/2 mecha
nism that does this is called a device monitor. 

16.1 Device Monitors 
The design of device monitors had to meet the general requirements 
and religion of OS/2. Specifically, the MS-DOS technique of letting 
applications receive interrupts by editing the interrupt vectors could 
not be allowed because doing so would destroy the system's ability to 
provide a stable environment. Furthermore, unlike MS-DOS, OS/2 
doesn't use the ROM BIOS as a form of device driver, so hooking the 
BIOS communication vectors would not provide access to the device 
data stream. In addition, allowing an application to arbitrarily interfere 
with a device driver's operation is contrary to OS/2 design principles; 
the device driver is the architectural embodiment of knowledge about 
the device, and it must be involved in and "aware" of any external ma
nipulation of the data stream. The result is an OS/2 device monitor 
mechanism that allows processes, running in their normal ring 3 state, 
to monitor and edit device data streams with the prior permission and 
knowledge of the appropriate device driver. 

Specifically, a process registers itself as a device monitor by calling 
the appropriate device driver via a DosMonReq call. I The process also 
provides two data buffers, one for incoming monitor data and another 
for outgoing monitor data. Processes can easily call OS/2, but OS/2 has 
no way to call processes.2 OS/2 gets around this by inverting the nor
mal sense of a call and return sequence. When OS/2 needs to "call" a 
process, it requires that process to call OS/2 beforehand with one of its 
threads. OS/2 holds this thread captive until the callback event takes 
place. OS/2 then accomplishes a call to the process by releasing the 
thread so that it returns from the holding system call and resumes ex
ecution within the process. When the process is ready to "return" to 
OS/2, it recalls the holding entry point (see Figure 16-1). 

1. Which is a dynlink package that eventually calls the device driver via a DosDevIOCtl call. 
2. Signals are a partial exception to this, but signals have limitations, as discussed earlier. 
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Process calls OS/2 OS/2 "calls" Process 

Process call Process call FCN call 

lil n 
I I I I I 

OS/2 OS/2 

FCN 

Return Return 

Figure 16-1. 
"Calling" a process from OS/2. 

OS/2 uses this technique for monitors as well. A monitoring process 
is required to call the OS/2 entry point directly after registering itself 
as a device monitor. OS/2 notifies the monitor process of the presence 
of data in the incoming buffer by allowing this thread to return to the 
process. Figure 16-2 on the following page illustrates a device with two 
monitoring processes, X and Y. 

But we need to discuss a few additional details. First, because OS/2 
strives to make processes see a consistent environment regardless of the 
presence of other processes, each device can have as many monitors as 
the device driver allows. OS/2 connects multiple device monitors into a 
chain so that the device data stream is passed through the first monitor 
in the chain, then through the second monitor, and so on. When a 
process registers itself as a monitor, it specifies whether it wants to be 
first in the chain or last in the chain; some applications are sensitive to 
this. The first monitor to register itself as first is truly first; the next 
monitor to ask for first actually becomes second, and so forth. The 
same algorithm applies to monitors that want to be last: The first to so 
request becomes the last, the second to request last becomes next to last, 
and so forth. 
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Figure 16-2. 
Device monitors. 

The actual format of the monitor data stream is device specific; the 
device driver decrees the format. Some device drivers have special 
rules and requirements. For example, the keyboard device driver allows 
monitoring processes to insert the "screen switch" key sequence into 
the data stream, whereupon it is recognized as if the user had typed it at 
the physical keyboard. But the device driver will not pass such se
quences that really were typed through the monitor chain; they are 
directly obeyed instead. 

This approach prevents an amok keyboard monitor from effectively 
crashing the system by intercepting and consuming all attempts by the 
user to switch screen groups. The screen device driver does not allow 
device monitors, not because the performance impact would be too big 
(as it, in fact, would be) but because the VIO and presentation manager 
dynlink packages totally circumvent the screen device driver so that it 
never sees any screen data being written. 

The DosMonRead call holds the device's thread until incoming data 
is available. The DosMon Write call returns the CPU to the process as 
soon as it is able. The same thread that calls DosMonRead need not be 
the one to call DosMonWrite (see below). 
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Because monitors are an important component of OS/2, an applica
tion must be very careful to use them properly; therefore, some caveats 
are in order. First, monitors are inserted into the device data chain, with 
obvious effects on the data throughput rate of the device. Each time the 
user presses a key, for example, a packet must pass through every moni
tor in the keyboard chain before the application can read the key and 
obey or echo it. Clearly, any sluggishness on the part of a monitor or 
the presence of too many monitors in a chain will adversely affect sys
tem response. The thread involved in reading, processing, and writing 
monitor data should be set at a high priority. We recommend the lowest 
of the force run priority categories. Furthermore, the monitor compo
nent of a monitoring application must contain no critical sections or 
other events that could slow or suspend its operation. In addition, if a 
monitor data stream will be extensively processed, a normal-priority 
thread must be used to handle that processing so that the high-priority 
thread can continue to transfer monitor data in and out without impedi
ment. For example, an auxiliary thread and buffer must be used if a 
keyboard monitor is to write all keystrokes to a disk buffer. 

Finally, if a monitor process terminates abnormally although OS/2 
properly unlinks it from -the monitor chain, the data in the process's 
monitor buffers is lost. Clearly, losing an unspecified amount of data 
without warning from the keyboard data stream or perhaps from print
er output will upset the user no little amount. Monitoring processes 
must be written carefully so that they minimize this risk. 

The device monitor feature threatens OS/2' s fundamental architec
tural principles more than any other. Thus, its presence in the system 
testifies to its importance. Specifically, device monitors violate the 
design principle of minimizing interference between processes, a.k.a. 
encapsulation. Clearly, a process that is monitoring a device's data 
stream can affect the output of or input to a great many processes other 
than itself. This is sometimes called a feature, not a bug. For example, 
the printer spooler uses monitors to intercept output aimed at the print
er' storing it on disk, and to feed data from those disk files to the actual 
printer device. Clearly, spooling printer output interferes with another 
process, but the interference is valuable. Designers of monitoring appli
cations must ensure that their applications damage neither the system's 
performance nor its stability. 
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16.2 Data Integrity 
I've discussed data integrity in a multitasking environment several 
times. This section does not review that material in detail but brings 
together all the elements and introduces a few related system facilities. 

The first problem in a multitasking system is that multiple processes, 
or mUltiple threads within a process, may try to simultaneously manip
ulate the same resource-a file, a device, a data structure in memory, 
or even a single byte of memory. When the manipulation of a resource 
must be serialized to work correctly, that manipulation is called a criti
cal section. This term refers to the act of manipulating the resource, but 
not particularly to the code that does so. Clearly, if any of four sub
routines can manipulate a particular resource, entering any of the four 
is entering the critical section. 

The problem is more pervasive than a programmer unfamiliar with 
the issue might assume. For example, even the simple act of testing a 
word to see if it holds the value 4 and incrementing it if it doesn't is a 
critical section. If only one thread in one process can access this word, 
then the critical section is serialized. But if more than one thread can 
access the word, then more than one thread could be in the critical sec
tion at the same time, with disastrous results. Specifically, consider the 
assembly language sequence shown in Listing 16-1. It looks simple 
enough: Test to see if COUNT holds 4; if it doesn't, increment it; if it 
does, jump to the label COMPLETE. Listing 16-2 shows what might 
go wrong in a multithreaded environment: Thread A checks the value 
to see if it's 4, but it's 3. Right after the compare instruction, a context 
switch takes place, and thread B is executed. Thread B also performs 
the compare, sees the value as 3, and increments it. Later, thread A 
resumes execution, after the compare instruction, at a. location where it 
believes the COUNT value to be 3; so it also increments the value of 
COUNT. The value is now 5 and will continue to be incremented way 
past the value of 4 that was supposed to be its upper limit. The label 
COMPLETE may never be reached. 

I apologize for again lecturing on this topic, but such problems are 
very nonobvious, rarely turn up in testing, are nearly impossible to find 
in the field, and the very possibility of their existence is new with OS/2. 
Thus, "too much is not enough," caveat-wise. Now that we've re
viewed the problems, let's look at the solutions. 
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o 

COUNT, 4 
COMPLETE 
COUNT 

Event counter 

is this the 4th? 
yes, we're done 
count event 

Listing 16-1. 

Thread A Thread B 

CMP COUNT, 4 [count is now 3J 
-------------------context switch---> 

CMP COUNT,4 [count is 3J 
JE COMPLETE 
INC COUNT [count is 4J 

<-----------context switch--------

JE COMPLETE [jmp not takenJ 
INC COUNT [count is now 5J 

Listing 16-2. 

A programmer inexperienced with a multitasking environment 
might protest that this scenario is unlikely, and indeed it is. Maybe the 
chances are only 1 in 1 million that it would happen. But because a mi
croprocessor executes 1 million instructions a second, it might not be 
all that long before the l-in-l-million unlucky chance comes true. Fur
thennore, an incorrect program nonnally has multiple unprotected crit
ical sections, many of which are larger than the 2-instruction window 
in our simple example. 

The program must identify and protect all critical sections; a pro
gram that fails to do so will randomly fail. You can't take solace in 
there being only one CPU and assuming that OS/2 probably won't con
text switch in the critical section. OS/2 can context switch at any time, 
and because context switching can be triggered by unpredictable exter
nal events, such as serial port I/O and rotational latency on a disk, no 
amount of testing can prove that an unprotected critical section is safe. 
In reality, a test environment is often relatively simple; context switch
ing tends to occur at consistent intervals, which means that such 
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problems tend not to turn up during program test. Instead, they turn up 
in the real world, and give your program a reputation for instability. 

Naturally, testing has its place, but the only sure way to deal with 
critical sections is to examine your code carefully while assuming that 
all threads in the system are executing simultaneously. 3 Furthermore, 
when examining a code sequence, always assume that the CPU will 
reschedule in the worst way. If there is any possible window, reality 
will find it. 

16.2.1 Semaphores 
The traditional solution for protecting critical sections is the sema
phore. The two OS/2 semaphores-RAM and system-each have ad
vantages, and the operation of each is guaranteed to be completely 
immune to critical section problems. In the jargon, their operation is 
guaranteed atomic. Whenever a thread is going to manipulate a critical 
resource, it first claims the semaphore that protects the resource. Only 
after it controls the semaphore does it look at the resource because the 
resource's values may have changed between the time the semaphore 
was requested and the time it was granted. After the thread completes 
its manipulation of the resource, it releases the semaphore. 

The semaphore mechanism protects well against all cooperating4 
threads, whether they belong to the same process or to different pro
cesses. Another OS/2 mechanism, called DosEnterCritSec, can be 
used to protect a critical section that is accessed only by threads belong
ing to a single process. When a thread issues the DosEnterCritSec call, 
OS/2 suspends execution of all other threads in that process until a sub
sequent DosEnterCritSec call is issued. Naturally, only threads ex
ecuting in application mode are suspended; threads executing inside 
the OS/2 kernel are not suspended until they attempt to return to appli
cation mode.5 The use of DosEnterCritSec is dangerous because the 
process's other threads may be suspended while they are holding a crit
ical section. If the thread that issued the DosEnterCritSec then also 
tries to enter that critical section, the process will deadlock. If a dynlink 

3. This is more than a Gedankenexperiment. Multiple processor machines will be built, and 
when they are, OS/2 will execute multiple threads, even within one process, truly 
simultaneously. 
4. Obviously, if some thread refuses to claim the semaphore, nothing can be done. 
5. I leave as an exercise to the reader to explain why the DosEnterCritSec call is not safe un
less all other threads in the process make use of it for that critical section as well. 
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o 

COUNT, 4 

COMPLETE 

COUNT 

Event counter 

is this the 4th? 

yes, we're done 

count event 

Listing 16-1. 

Thread A Thread B 

CMP COUNT, 4 [count is now 3] 

-------------------context switch---> 

CMP COUNT,4 [count is 3] 

JE COMPLETE 

INC COUNT [count is 4] 

<-----------context switch--------

JE COMPLETE [jmp not taken] 

INC COUNT [count is now 5] 

Listing 16-2. 

A programmer inexperienced with a multitasking environment 
might protest that this scenario is unlikely, and indeed it is. Maybe the 
chances are only 1 in 1 million that it would happen. But because a mi
croprocessor executes 1 million instructions a second, it might not be 
all that long before the l-in-l-million unlucky chance comes true. Fur
thennore, an incorrect program nonnally has multiple unprotected crit
ical sections, many of which are larger than the 2-instruction window 
in our simple example. 

The program must identify and protect all critical sections; a pro
gram that fails to do so will randomly fail. You can't take solace in 
there being only one CPU and assuming that OS/2 probably won't con
text switch in the critical section. OS/2 can context switch at any time, 
and because context switching can be triggered by unpredictable exter
nal events, such as serial port I/O and rotational latency on a disk, no 
amount of testing can prove that an unprotected critical section is safe. 
In reality, a test environment is often relatively simple; context switch
ing tends to occur at consistent intervals, which means that such 
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problems tend not to turn up during program test. Instead, they turn up 
in the real world, and give your program a reputation for instability. 

Naturally, testing has its place, but the only sure way to deal with 
critical sections is to examine your code carefully while assuming that 
all threads in the system are executing simultaneously.3 Furthermore, 
when examining a code sequence, always assume that the CPU will 
reschedule in the worst way. If there is any possible window, reality 
will find it. 

16.2.1 Semaphores 
The traditional solution for protecting critical sections is the sema
phore. The two OS/2 semaphores-RAM and system-each have ad
vantages, and the operation of each is guaranteed to be completely 
immune to critical section problems. In the jargon, their operation is 
guaranteed atomic. Whenever a thread is going to manipulate a critical 
resource, it first claims the semaphore that protects the resource. Only 
after it controls the semaphore does it look at the resource because the 
resource's values may have changed between the time the semaphore 
was requested and the time it was granted. After the thread completes 
its manipulation of the resource, it releases the semaphore. 

The semaphore mechanism protects well against all cooperating4 
threads, whether they belong to the same process or to different pro
cesses. Another OS/2 mechanism, called DosEnterCritSec, can be 
used to protect a critical section that is accessed only by threads belong
ing to a single process. When a thread issues the DosEnterCritSec call, 
OS/2 suspends execution of all other threads in that process until a sub
sequent DosEnterCritSec call is issued. Naturally, only threads ex
ecuting in application mode are suspended; threads executing inside 
the OS/2 kernel are not suspended until they attempt to return to appli
cation mode.5 The use of DosEnterCritSec is dangerous because the 
process's other threads may be suspended while they are holding a crit
ical section. If the thread that issued the DosEnterCritSec then also 
tries to enter that critical section, the process will deadlock. If a dynlink 

3. This is more than a Gedankenexperiment. Multiple processor machines will be built, and 
when they are, OS/2 will execute multiple threads, even within one process, truly 
simultaneously. 
4. Obviously, if some thread refuses to claim the semaphore, nothing can be done. 
5. I leave as an exercise to the reader to explain why the DosEnterCritSec call is not safe un
less all other threads in the process make use of it for that critical section as well. 
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package is involved, it may have created extra threads unbeknownst to 
the client process so that the client may not even be aware that such a 
critical section exists and might be in use. For this reason, Dos En
terCritSec is safe only when used to protect short sections of code that 
can't block or deadlock and that don't call any dynlink modules. 

Still another OS/2 critical section facility is file sharing and record 
locking, which can be used to protect critical sections when they con
sist of files or parts of files. For example, a database program certainly 
considers its master database file a critical section, and it doesn't want 
anyone messing with it while the database application has it open. It can 
open the file with the file-sharing mode set to "allow no (other) read
ers, allow no writers." As long as the database application keeps the 
file open, OS/2 prevents any other process from opening (or deleting!) 
that file. 

The record-locking mechanism can be used to provide a smaller 
granularity of protection. A process can lock a range of bytes within a 
file, and while that lock is in effect, OS/2 prevents any other process 
from reading or writing those bytes. These two specialized forms of 
critical section protection are unique in that they protect a process 
against all other processes, even "uncooperating" ones that don't pro
tect their own access to the critical section. Unfortunately, the file-shar
ing and record-locking mechanisms don't contain any provision for 
blocking until the conflict is released. Applications that want to wait 
for the conflict to clear must use a polling loop. Use DosSleep to block 
for at least a half second between each poll. 

Unfortunately, although semaphores protect critical sections well, 
sometimes they bring problems of their own. Specifically, what hap
pens if an asynchronous event, such as program termination or a signal, 
pulls the CPU away from inside a critical section and the CPU never 
returns to release the semaphore? The answers range from "moot" to 
"disaster," depending on the circumstances. The possibilities are so 
manifold that I'll group some of them. 

What can you do if the CPU is pulled away inside a critical section? 

• Ignore it. This is fine if the critical section is wholly accessed by a 
single process and that process doesn't use signals to modify the 
normal path of execution and if neither the process nor its dynlink 
routines attempt to enter the critical section during DosExitList 
processing. 
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• Clear the semaphore. This is an option if you know that the 
resource protected by the semaphore has no state, such as a sema
phore that protects the right to be writing to the screen. The trick 
is to ensure that the interrupted thread set the semaphore and that 
you don't accidentally clear the semaphore when you don't set it. 
For example, if the semaphore is wholly used within a single 
process but that process's DosExitList handlers may use it, they 
can force the semaphore clear when they are entered. 

• Detect the situation and repair the critical section. This detection 
can be made for RAM semaphores only during process termina
tion and only if the semaphore is solely used by that process. In 
such a case, you know that a thread in the process set the sema
phore, and you know that the thread is no longer executing the 
critical section because all threads are terminated. You can test 
the semaphore by using a nonblocking DosSemSet; if it's set, 
"recover" the resource. 

System semaphores are generally better suited for this. When 
the owning thread of a system semaphore dies, the semaphore is 
given a special mark. The next attempt to set the semaphore 
returns with a code that tells the new owner that the previous 
owner died within the critical section. The new owner has the op
tion of cleaning up the resource. 

Another possibility is to try to prevent the CPU from being yanked 
out of a critical section. Signals can be momentarily delayed with the 
DosHoldSignal mechanism. Process termination that results from an 
external kill can be postponed by setting up a signal handler for the 
KILL signal and then using DosHoldSignal. This last technique 
doesn't protect you against termination due to GP fault and the like 
however. 

16.2.2 DosBufReset 
One remaining data integrity issue-disk data synchronization-is not 
related to critical sections. Often, when a DosWrite call is made, OS/2 
holds the data in a buffer rather than writing it immediately to disk. 
Naturally, any subsequent calls made to read this data are satisfied cor
rectly, so an application cannot see that the data has not yet been writ
ten unless the reading application uses direct physical access to the 
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volume (that is, raw media reads). This case explains why CHKDSK 
may erroneously report errors that run on a volume that has open files. 

OS/2 eventually writes the data to the disk, so this buffering is of 
concern only when the system crashes with unwritten buffered data. 
Naturally, such crashes are expected to be rare, but some applications 
may find the possibility so threatening that they want to take protective 
steps. The two OS/2 functions for t..lJ.is purpose are flushing (hId write
throughs. The flush operation-DosBufReset-writes all dirty 
buffers-those with changed but unwritten data in them-to the disk. 
When the call returns, the data is on the disk. Use this call sparingly; 
although its specification promises only that it will flush buffers associ
ated with the specified file handle(s), for most file systems it writes all 
dirty buffers in the system to disk. Moreover, if file handles are open to 
a server machine on the network, most or all of that server's buffers get 
flushed, even those that were used by other client machines on the net
work. Because of these costs, applications should use this operation 
judiciously. 

Note that it's not true that a flush operation simply causes a write to 
be done sooner rather than later. A flush operation may also cause extra 
disk writes. For example, consider an application that is writing data 10 
bytes at a time. In this case, OS/2 buffers the data until it has a full sec
tor's worth. A series of buffer flush operations arriving at this time 
would cause the assembly buffer to be written to the disk many extra 
and unnecessary times. 

16.2.3 Writethroughs 
Buffer flushes are expensive, and unless they are used frequently, they 
don't guarantee a particular write ordering. Some applications, such as 
database managers, may want to guarantee that data be written to the 
disk in exactly the same order in which it was given to OS/2 via 
DosWrite. For example, an application may want to guarantee that the 
data is in place in a database before the allocation chain is written and 
that the chain be written before the database directory is updated. Such 
an ordering may make it easy for the package to recover the database in 
case of a crash. 

The OS/2 mechanism for doing this is called writethrough-a status 
bit that can be set for individual file handles. If a writethrough is in 
effect for a handle to which the write is issued, OS/2 guarantees that the 
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data will be written to the disk before the DosWrite operation returns. 
Obviously, applications using writethrough should write their data in 
large chunks; writing many small chunks of data to a file marked for 
writethrough is very inefficient. 

Three caveats are associated with writethroughs: 

• If writethrough is set on a file after it is open, all subsequent writes 
are written through, but data from previous writes may still be in 
dirty buffers. 

• If a writethrough file is being shared by multiple processes or is 
open on multiple handles, all instances of that file should be 
marked writethrough. Data written to a handle not marked write
through may go into the buffers. 

• The operation of data writethroughs has some non intuitive 
surprises when used with the current FAT file system. Specifi
cally, although this feature works as advertised to place the file's 
data sectors on the disk, it does not update the directory entry that 
specifies the size of the file. Thus, if you extend a file by 10 sec
tors and the system crashes before you close the file, the data in 
those 10 sectors is lost. If you had writethrough set, then those 10 
sectors of data were indeed written to the disk; but because the 
directory entry wasn't updated, CHKDSK will return those sec
tors to the free list. 

The writethrough operation protects the file's data but not the 
directory or allocation information. This is not a concern as long 
as you write over a portion of the file that has been already ex
tended, but any writes that extend the file are not protected. The 
good news is that the data will be on the disk, as guaranteed, but 
the bad news is that the directory entry won't be updated; if the 
system crashes, file extensions cannot be recovered. The recom
mended solution is to use DosNewSize to extend the file as 
needed, followed by DosBufReset to update the directory infor
mation on the disk, and then to writethrough the data as needed. 
Overextending the file size is better than doing too many 
NewSize/BufReset combinations; if you overextend, you can al
ways shrink the file before closing it with a final DosNewSize. 
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16.3 Timer Services 
Frequently, applications want to keep track of the passage of real time. 
A game program may want events to occur asynchronously with the 
user's input; a telecommunications program may want to track how 
long a response takes and perhaps declare a link timed-out after some 
inteival. Othei programs may need to pace the display of a demonstra
tion or assume a default action if the user doesn't respond in a reason
able amount of time. OS/2 provides several facilities to track the 
passage of real time; applications should use these facilities and shun 
polling and timing loops because the timing of such loops depends on 
the system's workload and the CPU's speed and because they totally 
lock out from execution any thread of a lower priority. 

Time intervals in OS/2 are discussed in terms of milliseconds to iso
late the concept of a time interval from the physical mechanism 
(periodic clock interrupts) that measures time intervals. Although you 
can specify a time interval down to the millisecond, the system does 
not guarantee any such accuracy. 

On most hardware, OS/2 version 1.0 uses a periodic system clock in
terrupt of 32 Hz (32 times a second). This means that OS/2 measures 
time intervals with a quantum size of 31.25 miHiseconds. As a result, 
any timeout value is subject to quantization error of this order. For ex
ample, if a process asks to sleep for 25 milliseconds, OS/2 knows that 
the request was made at some time after the most recent clock tick, but 
it cannot tell how long after, other than that less than 31.25 millisec
onds had elapsed between the previous clock tick and the sleep request. 
After the sleep request is made, another clock tick occurs. Once again, 
OS/2 can't tell how much time has elapsed since the sleep request and 
the new clock tick, other than that it was less than 31.25 milliseconds. 
Lacking this knowledge, OS/2 uses a simple algorithm: At each clock 
tick, OS/2 decrements each timeout value in the system by the clock 
tick interval (generally 31.25 milliseconds). Thus, our 25-millisecond 
sleep request may come back in 1 millisecond or less or in 31.25 milli
seconds. A request to block for 33 milliseconds could come back in 32 
milliseconds or in 62.5 milliseconds. 

Clearly, the OS/2 timer functions are intended for human-scale tim
ing, in which the lJ.n-second quantization error is not noticeable, and not 
for high-precision timing of fast events. Regardless of the resolution of 



218 PART II THE ARCHITECTURE 

the timer, the system's preemptive scheduler prevents the implementa
tion of high-accuracy short-interval timing. Even if a timer system call 
were to time out after a precise interval, the calling thread might not 
resume execution immediately because a higher-priority thread might 
be executing elsewhere. 

One form of OS/2 timer services is built into some system calls. For 
example, all semaphore blocking calls support an argument that allows 
the caller to specify a timeout value. When the specified time has 
elapsed, the call returns with a "call timed out" error code. Some 
threads use this facility to guard against being indefinitely locked out; 
if the semaphore call times out, the thread can give up, display an error 
message, or try another tactic. Other threads may use the facility ex
pecting to be timed out: They use the timeout facility to perform peri
odic tasks and use the semaphore just as an emergency flag. Another 
thread in the system can provide an emergency wakeup for the timer 
thread simply by clearing the semaphore. 

Blocking on a semaphore merely to delay for a specific interval is 
unnecessary; the DosSleep call allows a thread to block uncondi
tionally for an arbitrary length of time, subject, of course, to the timer's 
quantization error.6 DosSleep measures time intervals in a synchro
nous fashion: The thread is held inside the operating system until the 
time interval has elapsed. OS/2 provides an asynchronous timer service 
that allows timing to take place in parallel with a thread's normal ex
ecution. Specifically, the DosTimer ASYDe call is made with a timeout 
interval, such as DosSleep, and also with the handle of a system sema
phore.? The DosTimer AsYDe call returns immediately; later, when the 
time interval has elapsed, the system semaphore is cleared. The process 
can poll the semaphore to see if the time is up, and/or it can block on 
the semaphore to wait for the time to elapse. Of course, if a process 
contains mUltiple threads, some can poll and others can block. 

The DosTimerStart call is identical to the DosTimer ASYDe call ex
cept that the semaphore is repeatedly cleared at the specified interval 
until a corresponding DosTimerStop call is made. DosTimerStart 
clears the semaphore; the process must set it again after it's been 
cleared. 

6. And subject to the fact that if thread 1 is doing the DosSleeping the sleep will be inter
rupted if a signal is taken. 
7. Unlike most semaphore applications, the timer functions work only with system sema
phores. RAM semaphores may not be used because of the difficulty in posting a RAM 
semaphore at interrupt time; the RAM that contains the semaphore may be swapped out. 
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None of the above-mentioned facilities is completely accurate for 
tracking the time of day or the amount of elapsed time. As we men
tioned, if a higher-priority thread is consuming enough CPU time, 
unpredictable delays occur. Even DosTimerStart is susceptible to los
ing ticks because if the CPU is unavailable for a long enough period the 
process won't be able to reset the semaphore soon enough to prevent 
missing its next clearing. Applications that want a precise measurement 
of elapsed time should use the time values stored in the global infoseg. 
We also recommend that applications with a critical need to manage 
timeouts, even if they are executing in the lower-priority background, 
dedicate a thread to managing the time-critical work and elevate that 
thread to a higher priority. This will ensure that time-critical events 
aren't missed because a high-priority foreground thread is going 
through a period of intensive CPU usage. Of course, such an applica
tion must be designed so that the high-priority timer event thread does 
not itself consume significant CPU time; it should simply log the timer 
events and rely on its fellow normal-priority threads to handle the ma
jor work involved. 





17 

Device Dr ivers 
and Hard Errors 
The multitasking nature of OS/2 makes OS/2 device drivers considera
bly more complex than MS-DOS device drivers. Furthermore, when
ever you have devices, you must deal with device failures-the 
infamous hard errors. The handling of hard errors in a multitasking en
vironment is likewise considerably more complex than it was under 
MS-DOS. 

17.1 Device Drivers 
This section gives an overview of device drivers, paying special atten
tion to their key architectural elements. Writing a device driver is a 
complex task that must be undertaken with considerable care; a great 
many caveats and "gotchas" lie in wait for the unsuspecting program
mer. Many of these "gotchas" are of that most favorite breed: ones that 
never show up in testing, only in the field. This section is by no means 
an exhaustive discussion of device drivers, nor is it a how-to guide. 
Study the OS/2 device driver reference documentation carefully before 
setting out to write your own. 

In Chapter 2 I briefly discussed device independence and the role 
that device drivers play in bringing it about. I said that a device driver is 
a package of code that transforms I/O requests made in standard, 
device-independent fashion into the operations necessary to make a 
specific piece of hardware fulfill that request. A device driver takes 
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data and status information from the hardware, in the hardware
specific format, and massages that information into the form that the 
operating system expects to receive. 

The device driver architecture has two key elements. First, each 
hardware device has its own device driver to hide the specific details of 
the device from the operating system. Second, device drivers are not 
hard-wired into the operating system when it is manufactured; they are 
dynamically installed at boot time. This second point is the interesting 
one. If all device drivers were hard-wired into OS/2, the technique of 
encapsulating device-dependent code into specific packages would be 
good engineering practice but of little interest to the user. OS/2 would 
run only on a system configured with a certain magic set of peripheral 
devices. But because device drivers are dynamically installable at boot 
time, OS/2 can work with a variety of devices, even ones that didn't ex
ist when OS/2 was written, as long as a proper device driver for that 
device is installed at boot time. Note that device drivers can be in
stalled only at boot time; they cannot be installed after the system has 
completed booting up. This is because in a future secure environment 
the ability to dynamically install a device driver would give any appli
cation the ability to violate system security. 

Saying that device drivers merely translate between the operating 
system and the device is a bit of oversimplification; in reality, they are 
responsible for encapsulating, or owning, nearly all device-specific 
knowledge about the device. Device drivers service the interrupts that 
their devices generate, and they work at task time (that is, at noninter
rupt time). If a device monitor is necessary for a device, the device 
driver writer decides that and provides the necessary support. If an ap
plication needs direct access to a device's I/O ports or to its special 
mapped memory, 1 the driver offers those services to processes. The 
device driver also knows whether multiple processes should simulta
neously use the device and either allows or disallows this. 

17.1.1 Device Drivers and OS/2 Communication 
Because device drivers need to call and be called by OS/2 efficiently 
and because device drivers must handle hardware interrupts efficiently, 
they must run at ring O. This means that device drivers must be trusted 
and must be trustworthy. A flaky device driver-or worse, a malicious 

1. For example, the display memory of a eGA or an EGA card. 
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one-can do unlimited and nearly untraceable damage to any applica
tion or data file in the system. 

OS/2 can easily call a device driver. Because OS/2 loaded the device 
driver into memory, it knows the address of its entry point and can call 
it directly. For the device driver to call OS/2 is trickier because the 
driver doesn't know the memory locations that OS/2 occupies nor does 
it have any control over the memory descriptor tables (LDT and GDT). 
When the device driver is initialized, OS/2 supplies the device driver 
with the address of the OS/2 DevHlp entry point. Device drivers call 
this address to access a variety of OS/2 services, called DevHlp ser
vices. The OS/2 DevHlp address references a GDT selector so that the 
DevHlp address is valid at all times-in protected mode, in real 
mode,2 at interrupt time, and during device driver initialization. Some 
DevHlp functions are only valid in certain modes, but the DevHlp 
facility is always available. 

Why don't device drivers simply use dynamic links to access OS/2 
services, the way that applications do? The OS/2 kernel dynlink inter
face is designed for processes running in user mode, at ring 3, to call 
the ring 0 kernel. In other words, it's designed for outsiders to call in, 
but device drivers are already inside. They run at ring 0, in kernel 
mode, and at interrupt time. One, of course, could kludge things so that 
device drivers make dynlink calls, and then special code at those OS/2 
entry points would recognize a device driver request and do all the spe
cial handling. But every system call from a normal application would 
be slowed by this extra code, and every service call from a device 
driver would likewise be slowed. As a result, device drivers have their 
own private, high-efficiency "backdoor" entry into OS/2. Figure 17-1 
on the following page illustrates the call linkages between OS/2 and a 
device driver. OS/2 calls only one entry point in the device driver, pro
viding a function code that the device driver uses to address a dispatch 
table. OS/2 learns the address of this entry point when it loads the 
device driver. The device driver in turn calls only one OS/2 address, 
the DevHlp entry point. It also supplies a function code that is used to 
address a dispatch table. The device driver is told this address when it 
receives its initialize call from OS/2. Not shown is the device driver's 
interrupt entry point. 

2. A GDT selector cannot literally be valid in real mode because the GDT is not in use. OS/2 
uses a technique called tiling so that the selector, when used as a segment address in real 
mode, addresses the same physical memory as does the protect mode segment. 
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Figure 17-1. 
Device driver call linkages. 
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17.1.2 Device Driver Programming Model 

Device driver 

The programming model for device drivers under MS-DOS is simple. 
Device drivers are called to perform a function, and they return when 
that function is complete or they encounter an unrecoverable error. If 
the device is interrupt driven, the CPU hangs in a loop inside the device 
driver while waiting for the driver's interrupt handler to be entered; 
when the operation is complete, the interrupt handler sets a private flag 
to break the task-time CPU out of its wait loop. 

The OS/2 device driver model is considerably more complicated 
because OS/2 is a multitasking system. Even if the thread that calls the 
device driver with a request has nothing better to do than wait for the 
operation to complete, other threads in the system could make good use 
of the time. Another effect-of the OS/2 multitasking architecture is that 
two or more threads can simultaneously call a device driver. To explore 
this last issue fully, we'll digress for a moment and discuss the OS/2 in
ternal execution model. 

By design, OS/2 acts more like a subroutine library than like a 
process. The only dispatchable entities in the system are threads, and 
all threads belong to processes. When a process's thread calls OS/2, 
that thread executes OS/2' s code.3 It's like walking up to the counter at 
a fast-food restaurant and placing your order. You then slip on an apron, 
run around behind the counter, and prepare your own order. When the 
food is ready, you take off the apron, run back around to the front of the 
counter, and pick up the food. The counter represents the boundary 

3. The few exceptions to this don't affect the issues discussed here. 
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between ring 0 (kernel mode) and ring 3 (application mode), and the 
apron represents the privileged state necessary to work behind the 
counter. 

Naturally, OS/2 is reentrant; at anyone time many threads are ex
ecuting inside OS/2, but each is doing work for only one process-the 
process to whom that thread belongs. Behind the counter are several 
folks wearing aprons, but each is working only on his or her own order. 
This approach simplifies the internals of OS/2: Each instance of a sec
tion of code is doing only one thing for one client. If a section of code 
must wait for something, it simply blocks (analogous to a semaphore 
wait) as long as it has to and resumes when it can. Threads within the 
kernel that are competing for a single resource do so by internal sema
phores, and they are given access to these semaphores on a priority 
basis, just as they are when executing in application mode. 

OS/2 makes little distinction between a thread running inside the 
kernel and one running outside, in the application's code itself: The 
process's LDT remains valid, and the thread, while inside the kernel, 
can access any memory location that was accessible to the process in 
application mode, in addition to being able to access restricted ring 0 
memory. The only distinction the scheduler makes between threads in
side and those outside the kernel is that the scheduler never preempts a 
thread running inside the kernel. This greatly relaxes the rigor with 
which kernel code needs to protect its critical sections: When the CPU 
is executing kernel code, the scheduler performs a context switch only 
when the CPU voluntarily blocks itself. As long as kernel code doesn't 
block itself, wait on a semaphore, or call a subroutine that waits on a 
semaphore, it needn't worry about any other thread entering its critical 
section.4 

When OS/2 calls a device driver at task time, it does so with the 
thread that was exe.cuting OS/2-the thread that belongs to the client 
process and that made the original service call. Thus, the task-time part 
of a device driver is running, at ring 0, in the client's context. The cli
ent's LDT is active, all the client's addresses are active, and the device 
driver is immune from being preempted by other task -time threads (but 
not by interrupt service) until it blocks via a DevHlp function or 
returns to OS/2. 

4. Although hardware interrupts still occur; any critical section modified at interrupt time is 
still vulnerable. 
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OS/2 device drivers are divided into two general categories: those 
for character mode devices and those for block mode devices. This ter
minology is traditional, but don't take it too literally because character 
mode operations can be done to block mode devices. The actual distinc
tion is that character mode device drivers do I/O synchronously; that is, 
they do operations in first in, first out order. Block mode device drivers 
can be asynchronous; they can perform I/O requests in an order differ
ent from the one in which they received them. A traditional serial char
acter device, such as a printer, must not change the order of its requests; 
doing so scrambles the output. A block device, such as a disk, can 
reverse the order of two sector reads without problems. 

Figure 17-2 shows an algorithm for character mode device drivers.5 

OS/2 calls the device driver with a request, as shown at the top of the 
figure. If the device driver is busy with another request, the new 

OS/2 code 

Issue request to device 
driver. • 

Request is now complete. 
Continue. 

Figure 17·2. 

Device driver 

Block until device is 
available. 

Perform request. Block 
until interrupts complete 
if necessary. 

Complete request and 
return to OS/2. 

Simplified character mode device driver model. 

5. See the device driver reference manual for more details. 

Device interrupt 

Device interrupt 
(if any) 

Perform next step in 
110 operation. 

When done, use DevHlp 
ProcRun to unblock task 
time thread. 

End of interrupt 
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requesting thread should block on a RAM semaphore until the device is 
available. When the device is free, the task-time thread does the re
quested operation. Sometimes the work can be done at task time (such 
as an IOCTL call asking about the number of characters in an input 
buffer), but more frequently the task-time thread initiates the operation, 
and the work is completed at interrupt time. If the task -time thread 
needs to wait for interrupt service, it should block on a RAM sema
phore6 that the interrupt-time code will clear. When the last associated 
device interrupt takes place and the operation is complete, the interrupt 
code releases the RAM semaphore. The task-time thread awakens and 
returns to OS/2 with the status bits properly set in the request block. 

Figure 17-3 on the following page shows an algorithm for block 
devices. The general outline is the same as that for character devices but 
more complicated because of the asynchronous nature of random
access devices. Because requests can be processed in any order, most 
block device drivers maintain an internal work queue to which they 
add each new request. They usually use a special DevHlp function to 
sort the work queue in sector number order so that disk head motion is 
minimized. 

The easiest way to understand this figure is to think of a block mode 
device driver as being made up of N threads: one interrupt-time thread 
does the actual work, and all the others are task -time threads that queue 
the work. As each request comes into the driver via a task-time thread, 
that thread simply puts the request on the queue and returns to OS/2. 
Later, the device driver's interrupt service routine calls the DevHlp 
DevDone function to tell OS/2 that the operation is complete. Return
ing to OS/2 with the operation incomplete is permissible because the 
request block status bits show that the operation is incomplete. 

Sometimes, OS/2 needs to wait for the operation (such as a read 
from a directory); so when the device driver returns with the operation 
incomplete, OS/2 simply waits for it to finish. In other circumstances, 
such as flushing the cache buffers, OS/2 may not wait around for the 
operation to complete. It may go on about its business or even issue a 
new request to the driver, using, of course, a new request block because 
the old one is still in use. This design gives the system a great deal of 
parallelism and thereby improves throughput. 

6. Located in the device driver data area. 
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Figure 17·3. 
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Block mode device driver model. 

Device interrupt 
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If further work on 
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End of interrupt 

I said that a block mode device driver consists of several task-time 
threads and one interrupt-time thread. The term interrupt-time thread is 
a bit misleading, however, because it's not a true thread managed by the 
scheduler but a pseudo thread created by the hardware interrupt mecha
nism. For example, a disk device driver has four requests queued up, 
and the READ operation for the first request is in progress. When it 
completes, the driver's interrupt service routine is entered by the hard
ware interrupt generated by the disk controller. That interrupt-time 
thread, executing the driver's interrupt service routine, checks the 
status, verifies that all is OK, and calls various DevHlp routines to post 
the request as complete and to remove it from the queue. It then notes 
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that requests remain on the queue and starts work on the next one, 
which involves a seek operation. The driver's interrupt-time code 
issues the seek command to the hardware and then returns from the in
terrupt. When the disk stops seeking, another interrupt is generated; the 
interrupt-time code notes the successful seek, issues the read or write 
operation to the controller, and exits. 

As you can see, the repeated activation of the device driver's inter
rupt service routine is much like a thread, but with two major differ
ences. First, every time an interrupt service routine is entered, it has a 
fresh stack. A task-time thread has register contents and a stack that are 
preserved by the system; neither is preserved for an interrupt service 
routine between interrupts. A task-time thread keeps track of what it 
was doing by its CS:IP address, its register contents, and its stack con
tents. An interrupt service routine must keep track of its work by means 
of static values stored in the device driver's data segment. Typically, 
interrupt service routines implement a state machine and maintain the 
current state in the driver's data segment. Second, a true thread remains 
in existence until explicitly terminated; an interrupt service thread is 
an illusion of a thread that is maintained by repeated interrupts. If any 
one execution of the interrupt service routine fails to give the hardware 
a command that will generate another interrupt, the interrupt pseudo 
thread will no longer exist after the interrupt service routine returns. 

The block mode driver algorithm descdption left out a detail. If the 
disk is idle when a new request comes in, the request is put on the queue, 
but there is no interrupt-time pseudo thread to service the request. 
Thus, both the task-time and interrupt-time parts of a device driver 
must be able to initiate an operation. The recommended approach is to 
use a software state machine to control the hardware and to ensure that 
the state machine, at least the start operation part of it, is callable at 
both task and interrupt time. The algorithm above is then modified so 
that after the task -time part of a block device driver puts its request on 
the driver's internal queue it verifies that the device (or state machine 
or interrupt pseudo thread) is active. If the device has been idle, the 
task-time thread in the device driver initiates the operation by calling 
the initial state of the state machine; it then returns to OS/2. This 
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primes the pump; the interrupt pseudo thread now continues to run un
til the request queue is empty. 

Figure 17-4 shows an overview of the OS/2 device driver architec
ture. Each device driver consists of a task-time part, an interrupt-time 
part (if the device generates interrupts), and the start-operation code 
that is executed in either mode. The driver's data area typically con
tains state information, flags, and semaphores to handle communica
tion between the task-time part and the interrupt. Figure 17-4 also 
shows that the task-time part of a device driver can have multiple in
stances. It can be called by several threads at the same time, just as a 
shared dynlink library routine might be. Unlike a dynlink library, a 
device driver has no instance data segment; the device driver's data seg
ment is a global data segment, 'accessible to all execution instances of 
the device driver's task-time component. Just as a dynlink package uses 
semaphores to protect critical data areas in its global data segment, a 
device driver uses semaphores to protect the critical data values in its 
data segment. Unlike dynlink routines, the device driver has an addi
tional special thread - the interrupt service thread. A device driver 
can't protect critical sections that are accessed at interrupt time by 
using semaphores because an interrupt service thread cannot block. It 
must complete the interrupt service and exit -quickly, at that. When 
you write device drivers, you must minimize the critical sections that 
are entered by the interrupt service thread and protect them via the 
CLI/STI instruction sequence. 
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17.1.3 Device Management 
Device drivers do more than talk to the device; they also manage it for 
the system. Device drivers are called each time a process opens or 
closes a device; device drivers determine whether a device can be used 
by more than one process simultaneously. Likewise, device drivers 
receive device monitor requests from applications via the IOCTL inter-
face and, when appropriate, call OS/2 via the DevHlp interface to per-
form the bulk of the monitor work. Finally, device drivers can grant 
processes access to the device's I/O ports, to the device's mapped 
memory, and/or to special control areas in the device driver's data area 
itself. Once again, processes ask for these features via IOCTL; the 
device driver grants the requests via a DevHlp dialog with OS/2. Some 
device drivers are degenerate; they don't actually transfer data but exist 
solely to manage these other tasks. The screen device driver is an exam
ple. Screen data is always written directly to the display buffer by VIO, 
the application, or the presentation manager. The screen device driver 
exists to grant direct access, manage screen groups, and so on. 

17.1.4 Dual Mode 
The last key architectural feature of device drivers is that they are writ
ten in dual mode: The driver code, both task time and interrupt time, 
must be able to execute in protected mode and real mode. The process 
of mode switching between protected mode and real mode is quite 
slow-about 800 microseconds. If we decreed that all device drivers 
run only in protected mode and that service interrupts run only in pro
tected mode, a disk request from a real mode program might require six 
or more mode switches-one for the request, and five for the inter
rupts-for a penalty of almost 5 milliseconds. Consequently, device 
drivers must run in whatever mode the CPU is in when the request 
comes along or the interrupt arrives. 

At first glance, this seems easy enough: As long as the device driver 
refrains from computing its own segment selectors, it can execute in 
either mode. The catch is that OS/2 may switch between modes at every 
call and/or interrupt, and the addresses of code and data items are dif
ferent in each mode. A device driver might be called in protected mode 
with an address in the client process's address space. When the "data 
ready" interrupt arrives, however, the CPU may be running in real 
mode, and that client's address is no longer valid-for two reasons. 
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One, the segment selector part of a memory address has a different 
meaning in real mode than it does in protected mode; and, two, the cli
ent's selector was in the LDT, and the LDT is invalid at interrupt time.7 

OS/2 helps device drivers deal with addressing in a dual mode environ
ment in three ways: 

1. Some addresses are the same in both modes and in either pro
tected mode or real mode. The DevHlp entry point, the global in
foseg address, the request packet address, and any addresses 
returned via the DevHlp GetDosVar function are valid at all 
times and in both modes. 

2. Although the segment selector value for the device driver's code 
and data segments is different in each mode, OS/2 loads the 
proper values into CS and DS before it calls the device driver's 
task -time or interrupt-time entry points. As long as a device 
driver is careful not to "remember" and reuse these values, it 
won't notice that they (possibly) change at every call. 

3. OS/2 provides a variety of DevHlp functions that allow a device 
driver to convert a selector:offset pair into a physical address and 
then later convert this physical address back into a selector:offset 
pair that is valid at that particular time. This allows device drivers 
to convert addresses that are outside their own segments into 
physical addresses and then, upon each task-time or interrupt
time call to the driver, convert that physical address back into one 
that is usable in the current mode. This avoids the problem of 
recording a selector:offset pair in protect mode and then trying to 
use it as a segment:offset pair in real mode. 

17.2 Hard Errors 
Sometimes the system encounters an error that it can neither ignore nor 
correct but which the user can correct. A classic example is the user 
leaving ajar the door to the floppy drive; the system can do nothing to 
access that floppy disk until someone closes the door. Such an error is 
called a hard error. The term originated to describe an error that won't 
go away when the operation is retried, but it also aptly describes the 
effort involved in the design of OS/2 to deal with such errors. 

7. See the device driver reference manual for more details. 
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The manner in which MS-DOS handles hard errors is straightfor
ward. In our drive door example, MS-DOS discovers the problem when 
it is deep inside the bowels of the system, communicating with the· disk 
driver. The driver reports the problem, and MS-DOS displays some text 
on the screen-the infamous "Abort, Retry, Ignore?" message. Typi
cally, the user fixes the problem and replies; MS-DOS then takes the 
action specified by the user, finishes its work, and returns to the appli-
cation. Often, applications didn't want the system to handle hard errors 
automatically. Perhaps they were concerned about data integrity and 
wanted to be aware of a disk-writing problem, or they wanted to pre
vent the user from specifying "lgnore,"8 or they didn't want 
MS-DOS to write over their screen display without their knowing. To 
handle these situations, MS-DOS lets applications store the address of a 
hard error handler in the INT 24 vector; if a handler is present, MS
DOS calls it instead of its own handler. 

The system is in an unusual state while processing an MS-DOS hard 
error. The application originally calls MS-DOS via the INT 21 vector. 
MS-DOS then calls several levels deep within itself, whereupon an in
ternal MS-DOS routine calls the hard error handler back in the applica
tion. Because MS-DOS is not generally reentrant, the application 
cannot recall MS-DOS via INT 21 at this point; doing so would mean 
that it has called MS-DOS twice at the same time. The application pro
bably needs to do screen and keyboard I/O when handling the hard er
ror, so MS-DOS was made partially reentrant. The original call 
involves disk I/O, so MS-DOS can be reentered via a screen/keyboard 
I/O call without problem. 

Several problems prevented us from adopting a similar scheme for 
OS/2. First, unlike the single-tasking MS-DOS, OS/2 cannot suspend 
operations while the operating system calls an application -a call that 
might not return for a long time. Second, major technical and security 
problems are involved with calling from ring 0 (the privileged kernel 
mode) to ring 3 (the application mode). Also, in the MS-DOS environ
ment, deciding which process was responsible for the operation that 
triggered the hard error is easy: Only one application is running. OS/2 
may have a hard time detennining which process to alert because more 

8. This response is classic. Sophisticated users understand the likely consequences of such a 
reply, but most users would interpret "Ignore" as "Make the problem go away" -an ap
parently ideal solution! 
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than one process may have caused a disk FAT sector or a disk directory 
to be edited. The improved buffering techniques employed by OS/2 
may cause a hard error to occur at a time when no process is doing any 
I/O. Finally, even if we solve all these problems, the application that 
triggers the hard error may be running in a background screen group 
and be unable to display a message or use the keyboard. Even if the ap
plication is in the foreground screen group, it can't use the screen and 
keyboard if it's not the process currently controlling them. 

17.2.1 The Hard Error Daemon 
This last problem yields a clue to the solution. OS/2 supports multiple 
screen groups, and its screen group mechanism manages multiple si
multaneous use of the screen and the keyboard, keeping the current 
users-one in each screen group-isolated from one another. Clearly, 
we need to use screen groups to allow a hard error dialog to be com
pleted with the user without interfering with the current foreground ap
plication. Doing so solves the problem of writing on another 
application's screen image and therefore removes most of the need for 
notifying an application that a hard error has occurred. 

Specifically, OS/2 always has running a process called the hard er
ror daemon. When a hard error occurs, OS/2 doesn't attempt to figure 
out which process caused it; instead, it notifies the hard error daemon. 
The hard error daemon performs a special form of screen group switch 
to the reserved hard error screen group and then displays its message 
and reads its input. Because the hard error daemon is the only process 
in this screen group, screen and keyboard usage do not conflict. The 
previous foreground process is now temporarily in the background; the 
screen group mechanism keeps it at bay. 

Meanwhile, the process thread that encountered the hard error in the 
kernel is blocked there, waiting for the hard error daemon to get a 
response from the user. The thread that handles the hard error is never 
the thread that caused the hard error, and the kernel is already fully 
reentrant for different threads; so the hard error daemon thread is free 
to call OS/2 at will. When the user corrects the problem and responds 
to the hard error daemon, the hard error daemon sends the response 
back to the kernel, which allows the thread that encountered the error to 
take the specified action. That thread either retries the operation or pro
duces an error code; the hard error daemon returns the system to the 
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Figure 17-5. 
Hard error handling. 

original screen group. The screen group code then does its usual trick 
of restoring the screen image to its previous state. Figure 17-5 illus
trates the hard error handling sequence. A process thread encounters a 
hard error while in the OS/2 kernel. The thread blocks at that point 
while the hard error daemon's previousiy captured thread is reieased. 
The hard error daemon performs a special modified screen switch at 
(1), displays its message, gets the user's response, restores the applica
tion screen group at (2), and reenters the OS/2 kernel. The response 
code is then passed to the blocked application thread, which then 
resumes execution. 

Although the most common cause of hard errors is a disk problem
for example, an open drive door or a medium error-other events that 
require user intervention or user notification use the hard error mecha
nism. For example, the volume management package (see 15.2 Media 
Volume Management) uses the hard error mechanism to display its 
"Insert volume <name>" messages. As I mentioned earlier, MS-DOS 
applications running in the compatibility box can encounter problems, 
such as locked files, that they can't understand. Rather than have these 
applications fail mysteriously, OS/2 uses the hard error daemon mecha
nism to inform the user of the cause of the real mode application's 
difficulties. Although the application running in the compatibility box 
sees an operating system that acts like MS-DOS, the operating system 
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is actually OS/2. Because of this, hard errors encountered by a real 
mode process are handled by an amalgam of the MS-DOS INT 24 
mechanism and the OS/2 hard error daemon. See Chapter 19, The 3X 
Box. 

17.2.2 Application Hard Error Handling 
In some cases an application doesn't want the system to handle its hard 
errors. For example, an application designed for unattended or remote 
operation, such as a network server, may want to pass notification of 
hard errors to a remote correspondent rather than hanging up forever 
with a message on a screen that might not be read for hours. Another 
example is ~ database program concerned about the integrity of its mas
ter file; it may want to know about hard errors so that it can take some 
special action or perhaps use an alternative master file on another 
device. OS/2 allows a process to disable automatic hard error handling 
on a per file basis. Our network example will want to disable hard error 
pop-ups for anything the process does; our database example may want 
to disable hard error pop-ups only for its master file, keeping their con
venience for any other files that it might access. When a hard error oc
curs on behalf of a process or a handle that has hard error pop-ups 
disabled, OS/2 assumes that a FAIL response was entered to a 
hypothetical hard error pop-up and returns to the application with a 
special error code. The application must analyze the code and take the 
necessary actions. 
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I/O Pr ivi lege 
Meehan ism and 
Debugging/ 
Ptraee 
The earlier chapters of this book focused on the "captains and kings" 
of the operating system world, the major architectural features. But like 
any real world operating system, OS/2 contains a variety of miscella
neous facilities that have to be there to get the work done. Although 
these facilities may not be major elements in some architectural grand 
scheme, they still have to obey the principles of the design religion. 
Two of them are the I/O privilege mechanism and the debugging 
facility. 

18.1 1/0 Privilege Mechanism 
Earlier I discussed the need for a mechanism that allows applications 
high-speed direct access to devices. But the mechanism must control 
access in such a way that the system's stability isn't jeopardized and in 
such a way that applications don't fight over device control. OS/2 meets 
this requirement with its I/O privilege mechanism. This facility allows 
a process to ask a device driver for direct access to the device's I/O 
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ports and any dedicated or mapped memory locations it has. The I/O 
privilege mechanism can be used directly by an application, which 
necessarily makes it device dependent, or indirectly by a dynlink pack
age. The dynlink package can act as a kind of device driver; a new ver
sion can be shipped with new hardware to maintain application 
compatibility. This pseudo device driver is normally much faster than a 
true device driver because of the customized procedural interface; not 
entering ring 0 and the OS/2 kernel code saves much time. 

Unfortunately, this isn't a free lunch. Dynlink pseudo device drivers 
can do everything that true device drivers can except handle interrupts. 
Because hardware interrupts must be handled at ring 0, the handler 
must be part of a true device driver. Frequently, a compromise is in 
order: Both a dynlink package and a true device driver are provided. 
The true device driver handles the interrupts, and the dynlink package 
does the rest of the work. The two typically communicate via shared 
memory and/or private IOCTLs. An example of such a compromise is 
the system KBD dynlink package. The system VIO package doesn't 
need a device driver to handle interrupts because the display device 
doesn't generate any. 

The two components in the OS/2 I/O access model are access to the 
device's memory and access to its I/O ports. Granting and controlling 
access to a device's mapped memory is easy because the 80286 pro
tect mode supports powerful memory management facilities. First, a 
process asks the device driver for access to the device's memory, for ex
ample, to the memory buffer of a eGA board. Typically, a dynlink 
package, rather than an application, does this via the DosDevIOCtl 
call. If the device driver approves the request, it asks OS/2 via the 
DevHlp interface to set up an LDT memory descriptor to the proper 
physical memory locations. OS/2 returns the resultant selector to the 
device driver, which returns it to the calling process. This technique 
isn't limited to memory-mapped device memory; device drivers can 
use it to allow their companion dynlink packages direct access to a 
piece of the device driver's data segment. In this way, a combination 
dynlink/device driver device interface can optimize communication 
between the dynlink package and the device driver. 

Providing I/O port access to a process is more difficult because it is 
supported more modestly by the 80286 processor. The 80286 uses its 
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ring protection mechanism to control I/O access; the system can grant 
code running at a certain ring privilege access to all I/O ports, but it 
can't grant access to only some I/O ports. It's too dangerous to grant an 
application access to all I/O ports simply because it uses VIO and VIO 
needs direct port access for the display adapter. This solution would 
mean that OS/2's I/O space is effectively unprotected because almost 
all prograrns use VIa or the presentation manager directiy or 
indirectl y. 

Instead, OS/2 was designed to allow, upon request from the device 
driver, any code segments marked! to execute at ring 2 to have I/O ac
cess. The bad news is that access to all I/O ports must be granted in
discriminately, but the good news is that the system is vulnerable to 
program bugs only when those ring 2 segments are being executed. The 
capabilities of ring 2 code, as it's called, are restricted: Ring 2 code 
cannot issue dynlink calls to the system. This is partly a result of ring 
architecture (supporting ring 2 system calls would require significant 
additional overhead) and partly to discourage lazy programmers from 
flagging their entire process as ring 2 to avoid sequestering their I/O 
routines. 

As I said, in OS/2 version 1.0 the ring mechanism can restrict I/O 
access oniy to a limited degree. Any malicious program and some 
buggy programs can still damage system stability by manipulating the 
system's peripherals. Furthermore, a real mode application can issue 
any I/O instruction at any time. A future release of OS/2 that runs only 
on the 80386 processor will solve these problems. The 80386 hardware 
is specifically designed to allow processes access to some I/O ports but 
not to others through a bit map the system maintains. This map, which 
of course the application cannot directly change, tells the 80386 which 
port addresses may be accessed and which must be refused. This map 
applies equally to protect mode and real mode applications.2 OS/2 will 
use the port addresses supplied by the device driver to allow access 
only to the I/O ports associated with the device(s) to which the process 
has been granted access. This release will not support application code 
segments running at ring 2; any segments so marked will be loaded 
and run at ring 3. The change will be invisible to all applications that 

1. This is done via a special command to the linker. 
2. Actually, to "virtual real mode" applications. This is functionally the same as real mode 
on earlier processors. 
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use only the proper I/O ports. Applications that request access to one 
device and then use their I/O permissions to program another device 
will fail. 

18.2 Oebugging/Ptrace 
Because OS/2 goes to a great deal of effort to keep one application 
from interfering with another, special facilities were built to allow 
debugging programs to manipulate and examine a debuggee (the 
process being debugged). Because a debugger is available for OS/2 and 
writing your own is laborious, we expect few programmers to write 
debuggers. This discussion is included, nevertheless, because it further 
illuminates the OS/2 architectural approach. 

The first concern of a debugger is that it be able to read and write the 
debuggee's code and data segments as well as intercept traps, signals, 
breakpoints, and the like. All these capabilities are strictly in the do
main of OS/2, so OS/2 must "export" them to the debugger program. 
A second concern is system security: Obviously, the debug interface 
provides a golden opportunity for "cracker" programs to manipulate 
any other program, thereby circumventing passwords, encryption, or 
any other protection scheme. OS/2 prevents this by requiring that the 
debuggee process be flagged as a debug target when it is initially exe
cuted; a debugger can't latch onto an already-running process. Further
more, when secure versions of OS/2 are available, processes executed 
under control of a debugger will be shorn of any permissions they 
might have that are in excess of those owned by the debugger. 

Before we examine the debugging interface, we should digress for a 
moment and discuss the OS/2 approach to forcing actions upon threads 
and processes. Earlier I described the process of kernel execution. I 
mentioned that when a process thread makes a kernel request that 
thread itself enters kernel mode and services its own request. This ar
rangement simplified the design of the kernel because a function is 
coded to perform one action for one client in a serial, synchronous 
fashion. Furthermore, nothing is ever forced on a thread that is in 
kernel mode; any action taken on a thread in kernel mode is taken by 
that thread itself. For example, if a process is to be killed and one of its 
threads is in kernel mode, OS/2 doesn't terminate that thread; it sets a 
flag that says, "Please kill yourself at your earliest convenience." 
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Consequently, OS/2 doesn't need special code to enumerate and release 
any internal flags or resources that a killed kernel-mode thread might 
leave orphaned, and in general no thread need "understand" the state 
of any other. The thread to be killed cleans itself up, releasing 
resources, flags, and whatever before it obligingly commits suicide. 

But when is the thread's "earliest convenience"? Thread termina
tion is a jorced event, and all threads check for any pending forced 
events immediately before they leave kernel mode and reenter applica
tion mode. This transition takes place frequently: not only when a sys
tem call returns to the calling application, but also each time a context 
switch takes place. 

Although it may appear that forced events might languish unpro
cessed, they are serviced rapidly. For example, when a process issues a 
DosKiIl function on its child process, each thread in the child process 
is marked "kill yourself." Because the parent process had the CPU, ob
viously, when it issued the DosKiIl, each of the child's threads is in 
kernel mode, either because the thread is working on a system call or 
because it was artificially placed in kernel mode when the scheduler 
preempted it. Before any of those now-marked threads can execute 
even a single instruction of the child application's code, they must go 
through OS/2' s dispatch routine. The "kill yourself" flag is noted, and 
the thread terminates itself instead of returning to application mode. As 
you can see, the final effect of this approach is far from slow: The 
DosKill takes effect immediately - not one more instruction of the 
child process is executed.3 The only significant delay in recognizing a 
forced event occurs when a system call takes a long time to process. 
OS/2 is not very CPU bound, so any call that takes a "long time" (1 

second or more) must be blocked for most of that time. 
When a kernel thread issues a block call for an event that might take 

a long time-such as waiting for a keystroke or waiting for a sema
phore to clear-it uses a special form of block called an interruptible 
block. When OS/2 posts a force flag against a thread, it checks to see if 
that thread is blocking interruptibly. If it is, that thread is released from 
its block with a special code that says, "You were awakened not 
because the event has come to pass but because a forced event was 

3. Excepting any SIGKILL handlers and DosExitList handlers, of course. 
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posted." That thread must then finish the system call quickly (gener
ally by declaring an error) so that the thread can go through the dis
patch routine and recognize the force flag. I described this mechanism 
in Chapter 12 when I talked about another kind of forced event-the 
OS/2 signal mechanism. An incoming signal is a forced event for a 
process's thread 1; it therefore receives the same timely response and 
has the same effect of aborting a slow system call. 

I've gone through this long discussion of forced events and how 
they're processed because the internal debugging facility is based on 
one giant special forced event. When a process is placed in debug state, 
a trace force flag is permanently set for the initial thread of that process 
and for any other threads it creates. When any of those threads are in 
kernel mode-and they enter kernel mode whenever anything of in
terest takes place-they execute the debuggee half of the OS/2 trace 
code. The debugger half is executed by a debugger thread that issues 
special DosPtrace calls; the two halves of the package communicate 
through a shared memory area built into OS/2. 

When the debuggee encounters a special event (for example, a Ctrl
C signal or a GP fault), the trace force event takes precedence over any 
other, and the debuggee's thread executes the debuggee half of the 
DosPtrace code. This code writes a record describing the event into a 
communications buffer, wakes up the debugger thread, which is typi
cally blocked in the debugger's part of the DosPtrace code, and blocks, 
awaiting a reply. The debugger's thread wakes up and returns to the 
debugger with the event information. When the debugger recalls 
DosPtrace with a command, the command is written into the commu
nications area, and the debuggee is awakened to read and obey. The 
command might be "Resume normal execution," "Process the event 
as you normally would," or "Give me the contents of these locations in 
your address space," whereupon the debuggee thread replies and re
mains in the DosPtrace handler. 

This approach is simple to implement, does the job well, and takes 
advantage of existing OS/2 features. For example, no special code is 
needed to allow the debugger access to the debuggee' s address space 
because the debuggee itself, unwittingly in the DosPtrace code, reads 
and writes its own address space. Credit goes to the UNIX ptrace 
facility, upon which this facility was closely modeled. 
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Finally, here are a few incidental facts that the readers of this book, 
being likely users of debugging facilities, should know. OS/2 maintains 
a linkage between the debugger process and the debuggee process. 
When the debugger process terminates, the debuggee process also ter
minates if it has not already done so. The debuggee program need not 
be a direct child of the debugger, when the debugger process makes its 
initial DosPtrace call, OS/2 connects it to the last process that was exe
cuted with the special tracing option. If a process is executed with the 
tracing option but no debugger process subsequently issues a 
DosPtrace function, the jilted debuggee process is terminated in about 
two minutes. 
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The 3x Box 
It's of critical importance that OS/2 do a good job of running existing 
MS-DOS applications, but as we've discussed, this is a difficult task. 
To offer the official MS-DOS interfaces under OS/2 and therefore 
claim upward compatibility would be easy; unfortunately, few popular 
applications would run successfully in such an environment. Most so
phisticated applications take direct control of the machine environment 
and use MS-DOS for tasks the application doesn't want to bother with, 
such as file I/O, keyboard buffering, and so forth. If we're to run exist
ing applications successfully, we must provide a close facsimile to a 
real mode PC running MS-DOS in all respects, not just the INT 21 pro
gram interface. 

OS/2 provides such a highly compatible environment, called the real 
mode screen group, the compatibility box, or simply the 3x box. The 3x 
box is an environment that emulates an 8086-based PC running 
MS-DOS version 3.3.1 MS-DOS programs execute in real mode, and 
because emulating real mode from within protected mode is prohibi
tively slow, OS/2 physically switches into real mode to execute 
MS-DOS applications. Because MS-DOS programs are well aware of 
the MS-DOS memory layout, this layout is replicated for the OS/2 3x 
box. The first N bytes (typically 640 KB) are reserved for the exclusive 
use of the low-memory parts of OS/2 and the 3x box; protected mode 
applications never use any of this memory. Thus, programs that are 
careless about memory allocation or that make single-tasking assump
tions about the availability of memory can run in a multitasking envi
ronment. Figure 19-1 on the following page illustrates the OS/2 

1. For OS/2 version 1.0, the 3x box is compatible with MS-DOS version 3.3. 
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memory layout. The low bytes of memory are reserved for the device 
drivers and portions of OS/2 that must run in real mode. The remainder 
of the space, up to the RMSIZE value, is dedicated to the 3x box. Mem
ory from 640 KB to 1 MB is reserved for ROMs and video display 
buffers. Memory above 1 MB holds the remainder of OS/2 and all pro
tect mode applications. Nonswappable, fixed segments are kept at one 
end of this memory to reduce fragmentation. 

OS/2 uses the screen group mechanism to provide a user interface to 
the 3x box. One screen group is designated the real mode screen group; 
automatically, OS/2 executes COMMAND.COM in that screen group 

Figure 19·1. 
System memory layout. 
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when it is first selected. The user accesses the real mode environment 
by selecting that screen group and returns to the protected mode envi
ronment by selecting another screen group. OS/2 version 1.0 supports a 
single real mode screen group because the real mode compatibility is 
provided by actually running the application in real mode. Thus, only 
one 640 KB area is reserved for all real mode applications, and ad-
judicating between the conflicting hardware manipulations of multiple 
real mode applications without any assistance from the 80286 micro
processor hardware would be prohibitively difficult. The 80386 micro
processor, however, provides a special hardware facility called virtual 
8086 mode that will allow a future release of OS/2 to support multiple 
real mode screen groups, but only on an 80386-based machine. 

The operating system that services the 3x application's INT 21 re
quests is not an exact copy of MS-DOS; it's actually a low-memory ex
tension of OS/2 itself. Because OS/2 is derived from MS-DOS, OS/2 
executes MS-DOS functions in a manner identical to that of the real 
MS-DOS. OS/2 supports the non-MS-DOS functions mentioned 
above by staying out of the way as much as possible and letting the 3x 
application "party hearty" with the hardware. For example, hooking 
most interrupt vectors is supported, as is hooking INT 21 and the ROM 
BIOS INT vectors. The ROM BIOS calls themselves are fully sup
ported. Frequently, staying out of the way is not as easy as it may 
sound. For example, OS/2 must intercept and monitor real mode calls 
made to the disk driver part of the ROM BIOS so that it can prevent 
conflict with ongoing, asynchronous protect-mode disk I/O. OS/2 may 
find it necessary to momentarily block a real mode application's BIOS 
call until the protect mode device driver can release the hardware. Once 
the real mode application is in the BIOS, the same interlock mecha
nism prevents the protect mode device driver from entering the disk I/O 
critical section. 

Hard errors encountered by the real mode application are handled by 
a hybrid of the OS/2 hard error daemon and the 3x box INT 24 mecha
nism in a three-step process, as follows: 

1: Hard error codes caused by events unique to the OS/2 environ
ment-such as a volume manager media change request-acti
vate the hard error daemon so that the user can get an accurate 
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explanation of the problem. The user's response to the hard error 
is saved but is not yet acted upon. Hard error codes, which are 
also present in MS-DOS version 3.3, skip this step and start at 
step 2. 

2: If the real mode application has installed its own hard error han
dler via the INT 24 vector, it is called. If step 1 was skipped, the 
code should be known to the application, and it is presented 
unchanged. If step 1 was taken, the error code is transformed to 
ERROR_I24_GEN_FAILURE for this step. The response 
returned by the program, if valid for this class of hard error, is 
acted upon. This means that hard errors new to OS/2 can actually 
generate two pop-ups-one from the hard error daemon with an 
accurate message and one from the application itself with a Gen
eral Failure message. This allows the user to understand the true 
cause of the hard error and yet notifies the application that a hard 
error has occurred. In such a case, the action specified by the ap
plication when it returned from its own hard error handler is the 
one taken, not the action specified by the user to the initial hard 
error daemon pop-up. 

3: If the real mode application has not registered its hard error han
dler via the INT 24 mechanism, OS/2 provides a default handler 
that uses the hard error daemon. If step 1 was taken and the hard 
error daemon has already run, it is not run again; OS/2 takes the 
action specified in response to the hard error pop-up that was 
displayed. If step 1 was not taken because the hard error code is 
MS-DOS 3.x compatible and if step 2 was not taken because the 
application did not provide its own handler, then OS/2 activates 
the hard error daemon in step 3 to present the message and receive 
a reply. 

The 3x box supports only MS-DOS functionality; no new OS/2 fea
tures are available to 3x box applications-no new API, no multiple 
threads, no IPC, no semaphores, and so on.2 This decision was made 
for two reasons. First, although any real mode application can damage 
the system's stability, allowing real mode applications to access some 

2. There are two exceptions. The OPEN function was extended, and an INT 2F multiplex 
function was added to notify real mode applications of screen switches. 
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protect mode features may aggravate the problem. For example, termi
nate and stay resident programs may manipulate the CPU in such a way 
as to make it impossible for a real mode application to protect a critical 
section with semaphores and yet guarantee that it won't leave the sema
phore orphaned. Second, because OS/2 has only one real mode box and 
it labors under a 640 KB memory ceiling, it doesn't make sense to de
velop new real mode applications that use new OS/2 functions and thus 
require OS/2. 

The 3x box emulation extends to interrupts. OS/2 continues to con
text switch the CPU when the 3x box is active; that is, the 3x box appli
cation is the foreground application. Because the foreground process 
receives a favorable priority, its CPU is preempted only when a time
critical protect mode application needs to run or when the real mode 
application blocks. If the CPU is running a protect mode application 
when a device interrupt comes in, OS/2 switches to real mode so that a 
real mode application that is hooking the interrupt vectors can receive 
the interrupt in real mode. When the interrupt is complete, OS/2 
switches back to protected mode and resumes the protected application. 

Although protected mode applications can continue to run when the 
3x box is in the foreground, the reverse is not true. When the 3x box 
screen group is in the background, all 3x box execution is suspended, 
including interrupts. Unlike protected mode applications, real mode 
applications cannot be trusted to refrain from manipulating the screen 
hardware when they are in a background screen group. Normally, a 
real mode application doesn't notice its suspension when it's in back
ground mode; the only thing it might notice is that the system time-of
day has apparently "jumped forward." Because mode switching is a 
slow process and leaves interrupts disabled for almost 1 millisecond, 
mode switching can cause interrupt overruns on fast devices such as 
serial ports. The best way to deal with this is to switch the real mode 
application into a background screen group; with no more real mode 
programs to execute, OS/2 does no further mode switching. 

Some OS/2 utility programs such as FIND are packaged as Family 
API applications. A single binary can run in both protected mode and 
real mode, and the user is saved the inconvenience of switching from 
real mode to protected mode to do simple utility functions. This works 
well for simple utility programs without full screen or graphical 
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interfaces and for programs that have modest memory demands and 
that in other ways have little need of OS/2' s extended capabilities. Ob
viously, if an application can make good use of OS/2' s protect mode 
features, it should be written to be protect mode only so that it can take 
advantage of those features. 



20 

Family API 
When a new release of a PC operating system is announced, application 
writers face a decision: Should they write a new application to use some 
of the new features or should they use only the features in earlier 
releases? If they go for the sexy new features, their product might do 
more, be easier to write, or be more efficient; but when the program hits 
the market, only 10 percent of existing pes may be running the new 
release. Not all of the existing machines have the proper processor to be 
'able to run the new system, and, of those, many of their users haven't 
seen the need to Q"O to the exoense and endure the hassle of uD2:rading o J: - - - ... _ -

their operating system. If it's viable to write the new application so that 
it requires only the old operating system (and therefore runs in com
patibility mode under the new operating system), then it's tempting to 
do so. Even though the product is not as good as it might be, it can sell 
to 100 percent of the installed base of machines-l0 times as many as 
it would if it required the new operating system. 

And here you have the classic "catch-22" of software standards: If 
users don't see a need, they won't use the new system. If they don't use 
the new system, applications will not be written explicitly for it; so the 
users never see a need. Without some way to prime the pump, it will be 
a long time before a comprehensive set of applications are available 
that use the new system's features. 

OS/2 tackles this problem in several ways. The software bundled 
with OS/2 runs in protected mode, and OS/2 attempts to include as 
much additional user function as possible to increase its value to a user 
who initially owns no protected mode applications. The most impor
tant user acceptance feature of OS/2, however, is called Family API. 
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Family API is a special subset of the OS/2 protected mode API. Using 
special tools included in the OS/2 developer's kit, you can build appli
cations that use only the Family API. The resultant .EXE file(s) run 
unchanged in OS/2 protect mode or on an 8086 running MS-DOS 2.x 
or 3.x.1 Thus, developers don't have to choose between writing applica
tions that are OS/2 protect mode and writing applications that are 
MS-DOS compatible; they can use the Family API mechanism and do 
both. Your applications will run as protected mode applications under 
OS/2 and as MS-DOS applications under a true MS-DOS system. 

Clearly, the Family API is a noteworthy feature. It offers some OS/2 
functions, together with the dynamic link system interface, to programs 
that run under MS-DOS without a copy of OS/2 anywhere in sight. It 
does this by providing an OS/2 compatibility library that accepts the 
OS/2 system interface calls and implements them itself, calling the un
derlying MS-DOS system via INT 21 as necessary. This information 
should give you a big head start in figuring out which OS/2 functions 
are included in the Family API: Clearly all functions that have similar 
INT 21 functions-such as DosOpen, DosRead, and DosAllocSeg
are supported. Also present are functions, such as DosSubAlloc, that 
can be supported directly by the special Family API library. Features 
that are extremely difficult to support in a true MS-DOS environment, 
such as multiple threads and asynchronous I/O, are not present in the 
Family API. 

Where does this library come from? And how does it get loaded by 
MS-DOS to satisfy the OS/2 executable's dynlink requests? It's all 
done with mirrors, as the expression goes, and the "mirrors" must be 
built into the application's .EXE file b~cause that file is all that's pres
ent when a Family API application is executed under MS-DOS. Figure 
20-1 shows the layout of a Family API .EXE file. 

OS/2 needed to define a new .EXE file because the existing 
MS-DOS .EXE file format contained too little information for the 
OS/2 protect mode segmented environment. Because, as we've dis
cussed, the 8086 memory architecture is-despite the terminology 
normally used-a linear memory architecture, the MS-DOS .EXE for
mat described only a single hunk of memory that was to be loaded 

1. Of course, they also run in the MS-DOS 3.x compatible screen group under OS/2; but ex
cept for convenience utilities, it's generally a waste to dedicate the one real mode screen group 
to running an application that could run in any of the many protect mode screen groups. 
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contiguously. OS/2 needs each segment described separately, with in
formation on its status: read only, code or data, demand load or preload, 
and so on. Naturally, OS/2 also needs a .EXE format with special 
records to describe loadtime dynamic links. This new .EXE format 
was defined so that its initial bytes look exactly like those of the old 
MS-DOS .EXE file header. A special flag bit is set in this fake .EXE 
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header that is ignored by all releases of MS-DOS but that OS/2 recog
nizes to mean "It's not true. I'm really an OS/2 .EXE file. Seek to this 
location to find the true, new-style .EXE header." 

When an MS-DOS system is told to load this .EXE file, it sees and 
believes the old .EXE file header. This header does not describe the ap
plication itself but a body of special code built into the .EXE file before 
the actual application's code: the Family API loader and library. In 
other words, to MS-DOS this .EXE file looks like a valid, executable 
program, and that program is the Family API loader and library. The 
Family API loader and library are loaded into memory, and execution 
begins. MS-DOS doesn't load in the body of the application itself 
because it wasn't described as part of the load image in the special 
MS-DOS .EXE file header. As soon as it starts to execute, the Family 
API loader begins reading in the application's segments, performs a 
loader's general relocation chores, and fixes up dynlink references to 
the proper entry points in the Family API library package. When the 
application is loaded, the Family API loader block moves the applica
tion to its final execution address, which overlays most of the Family 
API loader to reclaim that space, and execution begins. 

All OS/2 .EXE files have this fake MS-DOS .EXE format header. In 
non - Family API executables, the Family API loader and library are 
missing, and by default the header describes an impossibly big 
MS-DOS executable. Should the application be accidentally run under 
a non -OS/2 system or in the OS/2 compatibility screen group, 
MS-DOS will refuse to load the program. Optionally, the programmer 
can link in a small stub program that goes where the Family API loader 
would and that prints a more meaningful error message. As we said 
earlier, the old-style .EXE headers on the front of the file contain a flag 
bit to alert OS/2 to the presence of a new-style .EXE header further into 
the file. Because this header doesn't describe the Family API loader 
and library parts of the file, OS/2 ignores their presence when it loads a 
Family API application in protected mode; the application's dynlink 
references are fixed up to the normal dynlink libraries, and the Family 
API versions of those libraries are ignored. 

There Ain't No Such Thing As A Free Lunch, and the same unfortu
nately applies to the Family API mechanism. First, although the 
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Family API allows dynlink calls to be used in an MS-DOS environ
ment, this is not true dynlinking; it's quasi dynlinking. Obviously, run
time dynlinking is not supported, but even loadtime dynlinking is 
special because the dynlink target library is bound into the .EXE file. 
One of the advantages of dynlinks is that the target code is not part of 
the .EXE file and can therefore be changed and upgraded without 
changing the .EXE file. This is not true of the dynlink emulation li
brary used by the Family API because it is built into the .EXE file. For
tunately, this disadvantage isn't normally a problem. Dynlink libraries 
are updated either to improve their implementation or to add new fea
tures. The Family API library can't be improved very much because its 
environment-MS-DOS-is limited and unchanging. If new Family 
API features were added, loading that new library with preexisting 
Family API .EXE files would make no sense; those programs wouldn't 
be calling the new features. 

A more significant drawback is the size and speed hit that the 
Family API introduces. Clearly, the size of a Family API .EXE file is 
extended by the size of the Family API loader and the support library. 
The tools used to build Family API executables include only those li
brary routines used by the program, but even so the library and the 
loader add up to a nontrivial amount of memory - typically 10 KB to 
14 KB in the .EXE file and perhaps 9 KB (the loader is not included) in 
RAM. Finally, loading a Family API application under MS-DOS is 
slower than loading a true MS-DOS .EXE file. Comparing loadtime 
against the loadtime of MS-DOS is tough for any operating system 
because loading faster than MS-DOS is difficult. The .EXE file con
sists of a single lump of contiguous data that can be read into memory 
in a single disk read operation. A relocation table must also be read, but 
it's typically very small. It's hard for any system to be faster than this. 
Clearly, loading a Family API application is slower because the loader 
and library must be loaded, and then they must, a segment at a time, 
bring in the body of the application. 

Although the Family API makes dual environment applications pos
sible, it can't totally hide from an application the difference between 
the MS-DOS 3.x and the OS/2 execution .environment. For example, 
the Family API supports only the DosFindFirst function for a single 
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search handle at a time. An application that wants to perform multiple 
directory searches simultaneously should use DosGetMachineMode 
to determine its environment and then use the unrestricted 
DosFindFirst function if running in protect mode or use the INT 21 
functions if running in real mode. Likewise, an application that wants 
to manipulate printer data needs to contain version-specific code to 
hook INT 17 or to use device monitors, depending on the environment. 
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The Future 
This chapter is difficult to write because describing the second version 
of OS/2 becomes uninteresting when that version is released. Further
more, preannouncing products is bad practice; the trade-offs between 
schedule and customer demand can accelerate the inclusion of some 
features and postpone others, often late in the development cycle. If we 
talk explicitly about future features, developers may plan their work 
around the availability of those features, and be left high and dry if said 
features are postponed. As a result, this chapter is necessarily vague 
about both the functional details and the release schedule, discussing 
future goals for features rather than the features themselves. Design 
your application, not so that it depends on the features described here, 
but so that it is compatible with them. 

OS/2 version 1.0 is the first standard MS-DOS-compatible operat
ing system that unlocks the memory-addressing potential of the 
80286-a "train" that will "pull" a great many APIs into the stan
dard. On the other hand, foreseeable future releases cannot expect such 
penetration, so the designers of OS/2 version 1.0 focused primarily on 
including a full set of APIs. Major performance improvements were 
postponed for future releases simply because such improvements can 
be easily added later, whereas new APIs cannot. Most of the planned 
work is to take further advantage of existing interfaces, not to create 
new ones. 

21.1 File System 
Clearly, the heart of the office automation environment is data -lots of 
data-searching for it, reading it, and, less frequently, writing it. A 
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machine's raw number-crunching capacity is relatively uninteresting 
in this milieu; the important issue is how fast the machine can get the 
data and manipulate it. Certainly, raw CPU power is advantageous; it 
allows the use of a relatively compute bound graphical user interface, 
for example. But I/O performance is becoming the limiting factor, 
especially in a multitasking environment. Where does this data come 
from? If it's from the keyboard, no problem; human typing speeds are 
glacially slow to a computer. If the data is from a non-mass-storage 
device, OS/2' s direct device access facilities should provide sufficient 
throughput. That leaves the file system for local disks and the network 
for remote data. The file system is a natural for a future release up
grade. Its interface is generic so that applications written for the first 
release will work compatibly with new file systems in subsequent 
releases. 

Talking about pending file system improvements is relatively easy 
because the weaknesses in the current FAT file system are obvious. 

• Large Disk Support 
Clearly, a new file system will support arbitrarily large disks 
without introducing prohibitive aUocation fragmentation. Alloca
tion fragmentation refers to the minimum amount of disk space 
that a file system can allocate to a small file- the allocation unit. 
If the allocation unit is size N, the average file on the disk is ex
pected to waste N/2 bytes of disk space because each file has a 
last allocation unit and on the average that unit will be only half 
filled. Actually, if the allocation unit is large, say more than 2 
KB, the average fragmentation loss is greater than this estimate 
because a disproportionate number of files are small. 

The existing MS-DOS FAT file system can handle large disks, 
but at the cost of using very large allocation units. Depending on 
the number and the size of the files, a 100 MB disk might be as 
much as 50 percent wasted by this fragmentation. The new 
Microsoft file system will support a very small allocation unit
probably 512 bytes-to reduce this fragmentation, and this small 
allocation unit size will not adversely affect the performance of 
the file system. 



Chapter 21 The Future 261 

• File Protection 
A new file system also must support file access protection as part 
of the move toward a fully secure environment. File protection is 
typically a feature of multiuser operating systems; the MS-DOS 
FAT file system was designed for a single-user environment and 
contains no protection facilities. So why do we need them now? 
One reason is that a networked PC is physically a single-user 
machine, but logically it's a multiuser machine because multiple 
users can access the same files over the network. Also, as we shall 
see, it is sometimes useful to be able to protect your own files 
from access by yourself. 

Today, most network installations consist of server machines 
and client machines, with client machines able to access only files 
on server machines. MSNET and PCNET servers have a rudi
mentary form of file protection, but it needs improvement (see 
below). In the future, as machines become bigger and as products 
improve, files on client machines will also be available across the 
network. Clearly, a strong protection mechanism is needed to 
eliminate risks to a client machine's files. Finally, a file protec
tion mechanism can be useful even on a single-user machine that 
is not accessible from a network. Today a variety of "Trojan" 
programs claim to be one thing but actually are another. In a non
networked environment, these programs are generally examples 
of mindless vandalism; typically, they purge the contents of the 
victim's hard disk. In a future office environment, they might edit 
payroll files or send sensitive data to someone waiting across the 
network. If you, as a user, can put sensitive files under password 
protection, they are safe even from yourself when you unwittingly 
run a Trojan program. That program doesn't know the password, 
and you certainly will decline to supply it. Self-protection also 
prevents someone from sitting down at your PC while you are at 
lunch or on vacation and wreaking havoc with your files. 

Protection mechanisms take two general forms: capability 
tokens and access lists. A capability token gives access to an object 
if the requestor can supply the proper token, which itself can take 
a variety of forms. A per-file or per-directory password, such as is 
available on existing MSNET and PCNET products, is a kind of 
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capability token: If you can present the pas,sword, you can access 
the file. Note that the password is associated with the item, not the 
user. The front door key to your house. is a good example of a ca
pability token, and it shows the features and limitations of the 
approach very well. Access to your house depends on owning the 
capability token-the key-and not on who you are. If you don't 
have your key, you can't get in, even if it's your own house. Any
body that does have the key can get in, no matter who they are. A 
key can sometimes be handy: You can loan it to someone for a day 
and then get it back. You can give it to the plumber's office, for 
example, and the office can give it to the plumber, who can in 
turn give it to an assistant. Capability tokens are flexible because 
you can pass them around without notifying the owner of the pro
tected object. 

This benefit is also the major drawback of capability token sys
tems: The capabilities can be passed around willy-nilly and, like a 
key, can be duplicated. Once you give your key out, you never 
know if you've gotten "them" back again. You can't enumerate 
who has access to your house, and if they refuse to return a key or 
if they've duplicated it, you can't withdraw access to your house. 
The only way to regain control over your house is to change the 
lock, which means that you have to reissue keys to everybody who 
should get access. In the world of houses and keys, this isn't much 
of a problem because keys aren't given out that much and it's easy 
to contact the few people who should have them. Changing the ca
pability "lock" on a computer file is much more difficult, how
ever, because it may mean updating a great many programs that 
are allowed access, and they all have to be updated simulta
neously so that none is accidentally locked out. And, of course, the 
distribution of the new capability token must be carried out 
securely; you must ensure that no "bad guy" gets a chance to see 
and copy the token. 

And, finally, because a separate capability token, or password, 
needs to be kept for each file or directory, you can't possibly 
memorize them all. Instead, they get built into programs, stored in 
files, entered into batch scripts, and so on. All these passwords-
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the ones that are difficult to change because of the hassle of updat
ing everybody-are being kept around in "plain text" in stan
dardized locations, an invitation for pilferage. And just as the lock 
on your door won't tell you how many keys exist, a capability 
token system won't be able to warn you that someone has stolen a 
copy of the capability token. 

An alternative approach is t..he access list mechanism. It is 
equivalent to the guard at the movie studio gate who has a list of 
people on his clipboard. Each protected object is associated with a 
list of who is allowed what kind of access. It's easy to see who has 
access-simply look at the list. It's easy to give or take away ac
cess-simply edit the list. Maintaining the list is easy because no 
change is made unless someone is to be added or removed, and the 
list can contain group names, such as "anyone from the produc
tion department" or "all vice presidents. " 

The fly in this particular ointment-and the reason that 
MSNET didn't use this approach-is in authenticating the iden
tification of the person who wants access. In our movie studio, a 
picture badge is probably sufficient.1 With the computer, we use a 
personal password. This password doesn't show that you have ac
cess to a particular file; it shows that you are who you claim to be. 
Also, because you have only one password, you can memorize it; 
it needn't be written on any list. Finally, you can change the pass
word frequently because only one person-the one changing it, 
you - needs to be notified. Once the computer system knows that 
you're truly Hiram G. Hornswoggle, it grants or refuses access 
based on whether you're on an access list or belong to a group that 
is on an access list. MS-DOS can't use this approach because it's 
an unprotected system; whatever flag it sets in memory to say that 
you have properly authenticated yourself can be set by a cheater 
program. OS/2 is a protect mode operating system and is secure 
from such manipulation provided that no untrusted real mode 
applications are executed.2 A networking environment provides 
an extra challenge because you can write a program-perhaps 

1. Note that the photo on the badge, together with a hard-to-duplicate design, keeps the badge 
from being just another capability token. 
2. A future OS/2 release will take advantage of the 80386 processor's virtual real mode 
facility to make it safe to run untrusted real mode programs on an 80386. 
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running on an MS-DOS machine to avoid protection mecha
nisms-that "sniffs" the network, examining every communica
tion. A client machine can't send a plain-text password over the 
network to authenticate its user because a sniffer could see it. And 
it certainly can't send a message saying, "I'm satisfied that this is 
really Hiram." The client machine may be running bogus soft
ware that will lie and say that when it isn't true. In other words, a 
network authentication protocol must assume that "bad guys" 
can read all net transmissions and can generate any transmission 
they wish. 

As should be clear by now, a future OS/2 file system will sup
port per-object permission lists. OS/2 will be enhanced to support 
users' identifying themselves by means of personal passwords. 
Future network software will support a secure network authen
tication protocol. 

A new file system will do more than support access lists; it will also 
support filenames longer than the FAT 8.3 convention, and it will sup
port extended file attributes. The FAT file system supports a very 
limited set of attributes, each of which are binary flags - system, hid
den, read-only, and so on. Extended attributes allow an arbitrary set of 
attributes, represented as text strings, to be associated with each file. 
Individual applications will be able to define specific attributes, set 
them on files, and later query their values. Extended attributes can be 
used, for example, to name the application that created the file. This 
would allow a user to click the mouse over the filename on a directory 
display and have the presentation manager bring up the proper applica
tion on that file. 

Finally, although this file system wish list looks pretty good, how do 
we know that we've covered all the bases? And will our new file sys
tem work well with CD-ROM3 disks and WORM drives? The answers 
are "We don't" and "It doesn't," so a future OS/2 release will support 
installable file systems. An installable file system is similar to an install
able device driver. When the system is initialized, not only device 
drivers but new file system management packages can be installed into 
OS/2. This will allow specialized file systems to handle specialized 

3. Special versions of compact discs that contain digital data instead of digitized music. When 
accessed via a modified CD player, they provide approximately 600 MB of read-only storage. 
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devices such as CD-ROMs and WORM, as well as providing an easy 
interface to media written on foreign file systems that are on non
MS-DOS or non-OS/2 systems. 

21.2 The 80386 
Throughout this book, the name 80386 keeps cropping up, almost as a 
kind of magical incantation. To a system designer, it is a magical 
device. It provides the protection facilities of the 80286, but it also pro
vides three other key features. 

21.2.1 Large Segments 
The 80386 has a segmented architecture very much like that of the 
80286, but 80286 segments are limited to 64 KB. On the 80386, seg
ments can be as large as 4 million KB; segments can be so large that an 
entire program can run in 2 segments (one code and one data) and es
sentially ignore the segmentation facilities of the processor. This is 
called flat model. Writing programs that deal with large structures is 
easier using flat model, and because compilers have a hard time gener
ating optimal segmented code, converting 8086/80286 large model 
programs to 80386 flat model can produce dramatic increases in execu
tion speed. 

Although a future release of OS/2 will certainly support large seg
ments and applications that use· flat model internally, OS/2 will not 
necessarily provide a flat model API. The system API for 32-bit appli
cations may continue to use segmented (that is, 48-bit) addresses. 

21.2.2 Multiple Real Mode Boxes 
The 80386 provides a mode of execution called virtual real mode. Pro
cesses that run in this mode execute instructions exactly as they would 
in real mode, but they are not truly in real mode; they are in a special 
8086-compatible protected mode. The additional memory management 
and protection facilities that this mode provides allow a future version 
of OS/2 to support more than one real mode box at the same time; 
multiple real mode applications will be able to execute simultaneously 
and to continue executing while in background mode. The virtual real 
mode eliminates the need for mode switching; thus, the user can ex
ecute real mode applications while running communications applica
tions that have a high interrupt rate. 
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21.2.3 Full Protection Capability 
The virtual real mode capability, coupled with the 80386's ability to 
allow/disallow I/O access on a port-by-port basis, provides the hard
ware foundation for a future OS/2 that is fully secure. In a fully secure 
OS/2, the modules loaded in during bootup-the operating system it
self, device drivers, install able file systems, and so on-must be 
trusted, but no other program can accidentally or deliberately damage 
others, read protected files, or otherwise access or damage restricted 
data. The only damage an aberrant or malicious program will be able to 
do is to slow down the machine by hogging the resources, such as con
suming most of the RAM or CPU time. This is relatively harmless; the 
user can simply kill the offending program and not run it anymore. 

21.2.4 Other Features 
The 80386 contains other significant features besides speed, such as 
paged virtual memory, that don't appear in an API or in a specific user 
benefit. For this reason, we won't discuss them here other than to state 
the obvious: An 80386 machine is generally considerably faster than an 
80286-based one. 

So what do these 80386 features mean for the 80286? What role will 
it play in the near and far future? Should a developer write for the 
80286 or the 80386? First, OS/2 for the 803864 is the same operating 
system, essentially, as OS/2 for the 80286. The only new API in 80386 
OS/2 will be the 32-bit wide one for 32-bit mode 80386-only binaries. 
The other features-such as virtual memory, I/O permission mapping, 
and multiple real mode boxes-are of value to the user but don't pre
sent any new APIs and therefore are compatible with all applications. 
Certainly, taking advantage of the 80386' s new instruction order codes 
and 2A32-byte-Iength segments will require a new API; in fact, a pro
gram must be specially written and compiled for that environment. 
Only applications that can't function at all using the smaller 80286-
compatible segments need to become 80386 dependent; 80286 protect 
mode programs will run without change and without any disadvantage 
on the 80386, taking advantage of its improved speed. 

To summarize, there is only one operating system, OS/2. OS/2 sup
ports 16-bit protected mode applications that run on all machines, and 

4. A product still under development at the time of this writing. All releases of OS/2 will run 
on the 80386, but the initial OS/2 release treats the 80386 as a "fast 80286. " The only 80386 
feature it uses is the faster mode-switching capability. 
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OS/2 will support 32-bit protected mode applications that will run only 
on 80386 machines. A developer should consider writing an application 
for the 32-bit model5 only if the application performs so poorly in the 
16-bit model that a 16-bit version is worthless. Otherwise, one should 
develop applications for the 16-bit model; such applications will run 
well on all existing OS/2-compatible machines and on all OS/2 
releases. Later, when the 80386 and OS/2-386 have sufficient market 
penetration, you may want to release higher-performance upgrades to 
products that require the 80386. 

21.3 The Next Ten Years 
Microsoft believes that OS/2 will be a major influence in the personal 
computer industry for roughly the next ten years. The standardization 
of computing environments that mass market software brings about 
gives such standards abnormal longevity, while the incredible rate of 
hardware improvements brings on great pressure to change. As a result, 
we expect OS/2 to live long and prosper, where long is a relative term 
in an industry in which nothing can survive more than a decade. What 
might OS/2's successor system look like? If we could answer that to
day, a successor system would be unnecessary. Clearly, the increases in 
CPU performance will continue. Personal computers will undoubtedly 
follow in the footsteps of their supercomputer brethren and become 
used for more than calculation, but also for simulation, modeling, and 
expert systems, not only in the workplace but also in the home. The fu
ture will become clearer, over time, as this most wonderful of tools 
continues to change its users. 

The development of OS/2 is, to date, the largest project that 
Microsoft has ever taken on. From an initially very small group of 
Microsoft engineers, to a still small joint Microsoft-IBM design team, 
to finally a great many developers, builders, testers, and documenters 
from both Microsoft and IBM, the project became known affec
tionately as the "Black Hole." 

As I write this, OS/2 is just weeks away from retail sale. It's been a 
great pleasure for me and for the people who worked with me to see our 
black hole begin to give back to our customers the fruits of the labors 
that were poured into it. 

5. When it is announced and documented. 
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anonymous pipe 
a data storage buffer that OS/2 maintains in RAM; used for inter
process communications. 

Applications Program Interface (API) 
the set of calls a program uses to obtain services from the operating 
system. The term API denotes a service interface, whatever its form. 

background category 
a classification of processes that consists of those associated with a 
screen group not currently being displayed. 

call gate 
a special LDT or GDT entry that describes a subroutine entry point 
rather than a memory segment. A far call to a call gate selector will 
cause a transfer to the entry point specified in the call gate. This is a 
feature of the 80286i80386 hardware and is normaily used to provide a 
transition from a lower privilege state to a higher one. 

captive thread 
a thread that has been created by a dynlink package and that stays 
within the dynlink code, never transferring back to the client process's 
code; also a thread that is used to call a service entry point and that will 
never return or that will return only if some specific event occurs. 

child process 
a process created by another process (its parent process). 

closed system 
hardware or software design that cannot be enhanced in the field by 
third-party suppliers. 

command subtree 
a process and all its descendants. 
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context switch 
the act of switching the CPU from the execution of one thread to 
another, which may belong to the same process or to a different one. 

cooked mode 
a mode established by programs for keyboard input. In cooked mode, 
OS/2 handles the line-editing characters such as the back space. 

critical section 
a body of code that manipulates a data resource in a non-reentrant way. 

daemon program 
a process that performs a utility function without interaction with the 
user. For example, the swapper process is a daemon program. 

debuggee 
the program being debugged. 

debugger 
a program that helps the programmer locate the source of problems 
found during runtime testing of a program. 

device driver 
a program that transforms I/O requests made in a standard, device
independent fashion into the operations necessary to make a specific 
piece of hardware fulfill that request. 

device monitor 
a mechanism that allows processes to track and/or modify device data 
streams. 

disjoint LDT space 
the LDT selectors reserved for memory objects that are shared or that 
may be shared among processes. 
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dynamic link 
a method of postponing the resolution of external references until load
time or runtime. A dynamic link allows the called subroutines to be 
packaged, distributed, and maintained independently of their callers. 
OS/2 extends the dynamic link (or dynlink) mechanism to serve as the 
primary method by which all system and nonsystem services are 
obtained. 

dynlink 
see dynamic link. 

dynlink library 
a file, in a special format, that contains the binary code for a group of 
dynamically linked subroutines. 

dynlink routine 
see dynamic link. 

dynlink subsystem 
a dynlink module that provides a set of services built around a resource. 

encapsulation 
the principle of hiding the internal implementation of a program, func
tion, or service so that its clients can tell what it does but not how it does 
it. 

environment strings 
a series of user-definable and program-definable strings that are associ
ated with each process. The initial values of environment strings are es
tablished by a process's parent. 

exitlist 
a list of subroutines that OS/2 calls when a process has terminated. The 
exitlist is executed after process termination but before the process is 
actually destroyed. 



272 Glossary 

Family Applications Program Interface (Family API) 
a standard execution environment under MS-DOS versions 2.x and 3.x 
and OS/2. The programmer can use the Family API to create an appli
cation that uses a subset of OS/2 functions (but a superset of MS-DOS 
3.x functions) and that runs in a binary-compatible fashion under 
MS-DOS versions 2.x and 3.x and OS/2. 

file handle 
a binary value that represents an open file; used in all file I/O calls. 

file locking 
an OS/2 facility that allows one program to temporarily prevent other 
programs from reading and/or writing a particular file. 

file system name space 
names that have the format of filenames. All such names will even
tually represent disk "files" -data or special. Initially, some of these 
names are kept in internal OS/2 RAM tables and are not present on any 
disk volume. 

forced event 
an event or action that is forced upon a thread or a process from an ex
ternal source; for example, a Ctrl-C or a DosKill command. 

foreground category 
a classification of processes that consists of those associated with the 
currently active screen group. 

GDT 
see global descriptor table. 

general priority category 
the OS/2 classification of threads that consists of three subcategories: 
background, foreground, and interactive. 

general protection (GP) fault 
an error that occurs when a program accesses invalid memory locations 
or accesses valid locations in an invalid way (such as writing into read
only memory areas). 



Glossary 273 

giveaway shared memory 
a shared memory mechanism in which a process that already has access 
to the segment can grant access to another process. Processes cannot 
obtain access for themselves; access must be granted by another 
process that already has access. 

global data segment 
a data segment that is shared among all instances of a dynlink routine; 
in other words, a single segment that is accessible to all processes that 
call a particular dynlink routine. 

global descriptor table (GDT) 
an element of the 80286/80386 memory management hardware. The 
GDT holds the descriptions of as many as 4095 global segments. A 
global segment i& accessible to all processes. 

global subsystem initialization 
a f~cility that allows a dynlink routine to specify that its initialize entry 
point should be called when the dynlink package is loaded on behalf of 
its first client. 

grandparent process 
the parent process of a process that created a process. 

handle 
an arbitrary integer value that OS/2 returns to a process so that the 
process can return it to OS/2 on subsequent calls; known to program
mers as a magic cookie. 

hard error 
an error that the system detects but which it cannot correct without user 
intervention. 

hard error daemon 
a daemon process that services hard errors. The hard error daemon may 
be an independent process, or it may be a thread that belongs to the ses
sion manager or to the presentation manager. 
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huge segments 
a software technique that allows the creation and use of pseudo seg
ments larger than 65 KB. 

install able file system (IFS) 
a body of code that OS/2 loads at boot time and that provides the soft
ware to manage a file system on a storage device, including the ability 
to create and maintain directories, allocate disk space, and so on. 

instance data segment 
a memory segment that holds data specific to each instance of the 
dynlink routine. 

instance subsystem initialization 
a service that dynlink routines can request. A dynlink routine's initial
ize entry point is called each time a new client is linked to the routine. 

interactive category 
a classification of processes that consists of the process currently in
teracting with the keyboard. 

interactive program 
a program whose function is to obey commands from a user, such as an 
editor or a spreadsheet program. Programs such as compilers may 
literally interact by asking for filenames and compilation options, but 
they are considered non interactive because their function is to compile 
a source program, not to provide answers to user-entered commands. 

interprocess communications (IPC) 
the ability of processes and threads to transfer data and messages 
among themselves; used to offer services to and receive services from 
other programs. 

interruptible block 
a special form of a blocking operation used inside the OS/2 kernel so 
that events such as process kill and Ctrl-C can interrupt a thread that is 
waiting, inside OS/2, for an event. 
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1/0 privilege mechanism 
a facility that allows a process to ask a device driver for direct access to 
the device's I/O ports and any dedicated or mapped memory locations 
it has. The I/O privilege mechanism can be used directly by an applica
tion or indirectly by a dynlink package. 

IPC 
see interprocess communications. 

KBD 
an abbreviated name for the dynlink package that manages the key
board device. All its entry points start with Kbd. 

kernel 
the central part of OS/2. It resides permanently in fixed memory loca
tions and executes in the privileged ring 0 state. 

LDT 
see local descriptor table. 

ioadiime dynamic Hnking 
the act of connecting a client process to dynamic link libraries when the 
process is first loaded into memory. 

local descriptor table (LDT) 
an element of the 80286/80386 memory management hardware. The 
LDT holds the descriptions of as many as 4095 local segments. Each 
process has its own LDT and cannot access the LDTs of other 
processes. 

logical device 
a symbolic name for a device that the user can cause to be mapped to 
any physical (actual) device. 

logical directory 
a symbolic name for a directory that the user can cause to be mapped to 
any actual drive and directory. 



276 Glossary 

low priority category 
a classification of processes that consists of processes that get CPU time 
only when no other thread in the other categories needs it; this category 
is lower in priority than the general priority category. 

magic cookie 
see handle. 

memory manager 
the section of OS/2 that allocates both physical memory and virtual 
memory. 

memory overcommit 
allocating more memory to the running program than physically exists. 

memory suballocation 
the OS/2 facility that allocates pieces of memory from within an appli
cation's segment. 

MOU 
an abbreviated name for the dynlink package that manages the mouse 
device. All its entry points start with Mou. 

multitasking operating system 
an operating system in which two or more programs/threads can exe
cute simultaneously. 

named pipe 
a data storage buffer that OS/2 maintains in RAM; used for inter
process communication. 

named shared memory 
a memory segment that can be accessed simultaneously by more than 
one process. Its name allows processes to request access to it. 

open system 
hardware or software design that allows third-party additions and up
grades in the field. 
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object name buffer 
the area in which OS/2 returns a character string if the DosExecPgm 
function fails. 

parallel multitasking 
the process whereby programs execute simultaneously. 

parent process 
a process that creates another process, which is called the child process. 

pbysical memory 
the RAM (Random Access Memory) physically present inside the 
machine. 

PID (Process Identification Number) 
a unique code that OS/2 assigns to a process when the process is 
created. The PID may be any value except O. 

pipe 
see anonymous pipe; named pipe. 

presentation manager 
the graphical user interface for OS/2. 

priority 
(also known as CPU priority) the numeric value assigned to each run
nable thread in the system. Threads with a higher priority are assigned 
the CPU in preference to those with a lower priority. 

privilege mode 
a special execution mode (also known as ring 0) supported by the 
80286/80386 hardware. Code executing in this mode can execute 
restricted instructions that are used to manipulate key system struc
tures and tables. Only the OS/2 kernel and device drivers run in this 
mode. 
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process 
the executing instance of a binary file. In OS/2, the terms task and 
process are used interchangeably. A process is the unit of ownership, 
and processes own resources such as memory, open files, dynlink 
libraries, and semaphores. 

protect mode 
the operating mode of the 80286 microprocessor that allows the operat
ing system to use features that protect one application from another; 
also called protected mode. 

queue 
an orderly list of elements waiting for processing. 

RAM semaphore 
a kind of semaphore that is based in memory accessible to a thread; 
fast, but with limited functionality. See system semaphore. 

raw mode 
a mode established by programs for keyboard input. In raw mode OS/2 
passes to the caller each character typed immediately as it is typed. The 
caller is responsible for handling line-editing characters such as the 
back space. 

real mode 
the operating mode of the 80286 microprocessor that runs programs 
designed for the 8086/8088 microprocessor. 

record locking 
the mechanism that allows a process to lock a range of bytes within a 
file. While the lock is in effect, no other process can read or write those 
bytes. 

ring 3 
the privilege level that is used to run applications. Code executing at 
this level cannot modify critical system structures. 
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runtime dynamic linking 
the act of establishing a dynamic link after a process has begun execu
tion. This is done by providing OS/2 with the module and entry point 
names; OS/2 returns the address of the routine. 

scheduler 
the part of OS/2 that decides which thread to run and how long to run it 
before assigning the CPU to another thread; also, the part of OS/2 that 
determines the priority value for each thread. 

screen group 
a group of one or more processes that share (generally in a serial 
fashion) a single logical screen and keyboard. 

semaphore 
a software flag or signal used to coordinate the activities of two or 
more threads; commonly used to protect a critical section. 

serial multitasking 
the process whereby multiple programs execute, but only one at a time. 

session manager 
a system utility that manages screen group switching. The session man
ager is used only in the absence of the presentation manager; the pre
sentation manager replaces the session manager. 

shared memory 
a memory segment that can be accessed simultaneously by more than 
one process. 

signaling 
using semaphores to notify threads that certain events or activities have 
taken place. 

signals 
notification mechanisms implemented in software that operate in a 
fashion analogous to hardware interrupts. 
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software tools approach 
a design philosophy in which each program and application in a pack
age is dedicated to performing a specific task and doing that task very 
well. See also encapsulation. 

stack frame 
a portion of a thread's stack that contains a procedure's local variables 
and parameters. 

static linking 
the combining of multiple compilands into a single executable file, 
thereby resolving undefined external references. 

single-tasking 
a computer environment in which only one program runs at a time. 

swapping 
the technique by which some code or data in memory is written to a 
disk file, thus allowing the memory it was using to be reused for 
another purpose. 

system semaphore 
a semaphore that is implemented in OS/2's internal memory area; 
somewhat slower than RAM semaphores, but providing more features. 

System File Table (SFT) 
an internal OS/2 table that contains an entry for every file currently 
open. 

task 
see process. 

thread 
the OS/2 mechanism that allows more than one path of execution 
through the same instance of an application program. 

thread ID 
the handle of a particular thread within a process. 
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thread of execution 
the passage of the CPU through the instruction sequence. 

time-critical priority 
a classification of processes that may be interactive or noninteractive, 
in the foreground or background screen group, which have a higher 
priority than any non-time-critical thread in the system. 

time slice 
the amount of execution time that the scheduler will give a thread 
before reassigning the CPU to another thread of equal priority. 

VIO 
an abbreviated name of the dynlink package that manages the display 
device. All its entry points start with Vio. 

virtual memory 
the memory space allocated to and used by a process. At the time it is 
being referenced, the virtual memory must be present in physical mem
ory, but otherwise it may be swapped to a disk file. 

virtualization 
the general technique of hiding a complicated actual situation behind a 
simple, standard interface. 

writethrough 
an option available when a file write operation is performed which 
specifies that the normal caching mechanism is to be sidestepped and 
the data is to be written through to the disk surface immediately. 

3xbox 
the OS/2 environment that emulates an 8086-based PC running MS
DOS versions 2.x or 3.x. 
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