

First Edition (September 1987)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are Inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for copies of this publication and for technical information
about IBM products should be made to your IBM Authorized Dealer or
your IBM Marketing Representative.

Operating System/2 and OS/2 are trademarks of the International
Business Machines Corporation.

©Copyright International Business Machines Corporation 1986, 1987
All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book contains technical information for the IBM Operating
System/2™ (OS/2™1). It provides a comprehensive and detailed
description of OS/2 interfaces. This book also provides descriptions
of OS/2 architecture, control structures, data structures, and 110
formats necessary to understand and use those interfaces.

This book is intended for the experienced user, system programmer,
and application developer. You should be knowledgeable about
operating systems and be proficient in one or more of the IBM Per
sonal Computer programming languages, as well as being familiar
with the 80286 architecture.

Related Publications

IBM Operating System/2™ User's Reference
IBM Operating System/2™ Programmer's Guide
IBM Personal Computer AT®2 Technical Reference
IBM Personal Computer XT™3 Model 286 Technical Reference
IBM Personal System/2™ Model 501/BM Personal System/2™
Model 60 Technical Reference
IBM Personal System/2™ Model 80 Technical Reference
IBM Personal Computer BIOS Technical Reference
IBM Personal Computer Macro Assembler/2
iAPX 286 Programmer's Reference Manual including the iAPX
286 Numeric Supplement 210498, or the iAPX 386 Programmer's
Reference Manual (IBSN 1-55512-022-9) Literature Department,
lnte1®4 Corporation, 3065 Bowers Avenue, Santa Clara, CA. 95051

1 IBM Operating System/2™ and OS/2 are trademarks of
International Business Machines Corporation

2 Personal Computer AT is a registered trademark of
International Business Machines Corporation

a Personal Computer XT Model 286 and IBM Personal System/2™
are trademarks of International Business Machines Corporation

4 Intel® is a registered trademark of Intel Corporation.

iii

iv

Contents

Chapter 1. Introduction . 1-1
API Function Requests . 1-2

Memory Management . 1-2
Process Control . 1-3

Timer Services . 1-3
Multitasking . 1-3
Interprocess Communication . 1-4

Session Management . 1-4
1/0 Services . 1-4

Code Page Support . 1-5
Device Monitor Services . 1-5
Printer/Spooler Services . 1-5

DevHlp Services 1-6
OS/2 Device Driver Architecture . 1-6
OS/2 Device Drivers . 1-7
Problem Determination . 1-7
Country Support Considerations . 1-7

Chapter 2. Application Program Interface (API) 2-1
Dynamic Linking . 2-2

PC Family API . 2-2
OS/2 Function Calls . 2-3

OS/2 Function Call Rules 2-3
OS/2 Function Call Characteristics 2-4

Function Call Format . 2-4
Interface Stack Frame 2-6
Function Calling Sequence Example 2-7
OS/2 Sample Functions . 2-8

Function DOSXAMPL 2-8
High-Level Language Interface Examples 2-9

OS/2 Compatibility Considerations 2-10
OS/2 Application Environments . 2-10
DOS Family and Full Function API 2-11
DOS Mode Exceptions 2-19

Chapter 3. Memory Management 3-1
Use of the Segmentation Hardware . 3-1

The Protection Features of the Ring Structure 3-2
OS/2 Mode Memory Management . 3-4

y

Real Memory Map (Protect mode only) 3-6
Real Mode Memory Map . 3-6
Memory Management Function Call Summary 3-8
Memory Subal location Package (MSP) 3-9

Memory Suballocation Example . 3-9
MSP Function Call Summary . 3-10

System Extensions . 3-11

Chapter 4. Process Control . 4-1
Timer Services 4-1

Timer Management . 4-1
Tirrie/Date 4-1
Timer Intervals 4-2
Timer Services Function Call Summary 4-3

Multitasking . 4-3
Tasking (Processes and Threads) 4-4
Multiple Independent Processes Diagram 4-6
Multiple Threads within a Process Diagram 4-7
Resource Management . 4-8
Tasking Function Call Summary . 4-8

Interprocess Communication (IPC) . 4-9

vi

Communication via Signals . 4-10
Communication via Messages . 4-10

Pipes 4-10
Communicating with a Pipe . 4-12
Comparing Pipes with Files: . 4-12
Queues . 4-13
Communicating with a Queue 4-13
Comparing Pipes and Queues 4-14
Queue Function Calls . 4-15

Managing Queues . 4-16
The Segment for Data Storage 4-16
Managing Data Storage Examples 4-16
Queue Element Copy Function 4-18
Queue Element Delete Function 4-18

Coordinating Execution Among Several Threads 4-19
Semaphores . 4-19

Comparison of RAM and System Semaphores 4-20
RAM Semaphore Diagram . 4-21
General Semaphore Function Calls 4-21
Signalling via Semaphore Function Calls 4-21
System Semaphore Function Calls 4-22

Starting and Stopping a Thread's Execution 4-22

IPC Function Call Summary . 4-23
Asynchronous Notification . 4-24

Asynchronous Notification Function Call Summary 4-25
Program Execution Control . 4-26

Dynamic Linking . 4-26
Demand Load . 4-27
1/0 Privilege Model . 4-27
EXE File Information . 4-28
Program Execution Control Function Call Summary 4-29

Errors and Exceptions . 4-29
Errors from Function Requests (Return Codes) 4-29
Hard Error Override . 4-29
Handling Machine Exceptions . 4-29
Errors and Exceptions Function Call Summary 4-30

OS/2 Message Functions (Message Retriever) 4-30
Message Functions Function Call Summary 4-30

Program Startup Conventions . 4-30

Chapter 5. Session Management . 5-1
Session Manager Application Support 5-3

Restrictions 5-4
Session Management API Function Call Summary 5-4

Chapter 6. 1/0 Services . 6-1
ASCllZ Strings . 6-1
Filename Specification 6-1
Device Names . 6-3
Code Page Support . 6-3

Code Page Management . 6-4
Code Page Dependent Information 6-5
Code Page Switching Examples 6-5
Code Page Preparation 6-6
Code Page Operation . 6-8
Code Page Supported Devices 6-10
Special Considerations and Limitations 6-10
Code Page API Summary . 6-12

System Initialization . 6-13
Hardware Characteristics . 6-13
Device Driver Installation . 6-13
CONFIG.SYS . 6-14

Device 1/0 Function Call Summary 6-14
File 1/0 Services . 6-14

File 1/0 Function Call Summary 6-15

vii

Video 110 Services . 6-16
Display Adapters Supported . 6-16

Video Graphics Array (VGA) . 6-16
IBM Personal System/2™ Display Adapter 6-17

VIO Support by Mode . 6-17
Text Modes Supported (Mono-Compatible) 6-17
VIO Calls Supported in Text Modes: 6-18
Graphics Modes Supported . 6-18
VIO Calls Supported in Graphics Modes 6-19

VIO Screen Save/Restore Operations 6-20
VIO Code Page Support . 6-21

Video Font File Organization . 6-23
Additional VIO Considerations . 6-25
VIO Function Call Summary . 6-25
DOS Mode Enhanced Graphics Adapter (EGA) Considerations 6-26

Keyboard 110 Services . 6-28
Keyboard 1/0 Function Call Summary 6-28
Binary Versus ASCII 110 . 6-28

Mouse 110 Services . 6-30
Mouse 110 Function Call Summary 6-30

DOS Mode INT 33H Mouse API 6-31
Device Monitor Services . 6-32

Character Device Monitors . 6-32
Monitor Processes . 6-34
Interfaces . 6-37
Module Description . 6-38

Device Monitor Function Call Summary 6-38
Monitor Data Structures . 6-39
Device Monitor Record . 6-40

Data Flow Through a Monitor 6-41
The Time Window of Monitor Registration 6-43

Hints for Using Monitors . 6-45
Providing Monitor Support in a Character Device Driver . . . 6-46

Keystroke Monitor Interface . 6-53
Printer/Spooler Services . 6-55

Printer/Spooler Structure . 6-55
Spooler Monitor . 6-57

DOS Mode Force Output to Printer 6-57
Spooler Operational Description 6-57
Spooler Monitor Interfaces . 6-59
OS/2 Font File Format . 6-60
Font File Header . 6-61
RAM Font Buffer CSD Pointer Block Format ·. 6-64

viii

Font Definition Block . 6-66

Chapter 7. OS/2 Device Driver Architecture 7-1
Types of Device Drivers 7-2
Application 1/0 to Devices 7-3

1/0 Support For The DOS Mode . 7-4
Components of a Device Driver 7-5

OS/2 Device Driver Contexts . 7-7
OS/2 Device Driver Operations . 7-8
Request Packet Queue Management 7-9
Memory Management 7-10
Semaphore Management . 7-11
Character Queue Management . 7-12
Hardware Interrupt Management 7-13
Device Driver Program Model . 7-20

Device Driver Header . 7-21
Pointer to Next Device Header Field 7-22
Device Attribute Field . 7-22
Offset to Strategy Routine Field . 7-24
Name/Units Field . 7-25

Creating a Device Driver . 7-26
Device Driver Initialization . 7-26
Device Driver INIT-Time Function Call Summary 7-27
Replacing Character Device Drivers 7-28
Compatibility with Previous-Level Device Drivers 7-29

Initialization of Previous-Level Device Drivers 7-30
DOS Execution Environment Generic IOCtl Support 7-30
DOS Execution Environment Software Interrupt Support 7-31

Using Advanced BIOS . 7-33
Device Driver Data Segment . 7-34
Obtaining a Logical ID . 7-34
Calling Advanced BIOS Services 7-35
Mapping Device Names to LID 7-35
Handling ABIOS Requests 7-36

Request Packets . 7-37
Length of Request Packet Field . 7-38
Block Device Unit Code Field . 7-38
Command Code Field . 7-38

Summary of Commands for Devices 7-39
Request Packet Status Field . 7-40
Queue Linkage Field . 7-42
Command-Specific Data Field . 7-42

OH/ INIT Initialize Device . 7-43

Ix

1H I MEDIA CHECK Check the Media 7-47
2H I BUILD BPB Build BIOS Parameter Block 7-50

Boot Sector Format . 7-51
4H, SH, 9H I READ or WRITE Perform 1/0 To A Device 7-53
5H I NONDESTRUCTIVE READ NO WAIT Nondestructive Input . 7-55
6H, AH I STATUS Input or Output Status 7-56
7H, BH I FLUSH Input or Output Flush 7-57
DH, EH I OPEN or CLOSE Open I Close Device 7-58
FH I REMOVABLE MEDIA Check for Removable Media 7-59
10H I GENERIC IOCtl 1/0 Control for Devices 7-60
11H I RESET MEDIA Reset Uncertain Media Condition 7-61
12H, 13H I LOGICAL DRIVE Get/Set Logical Drive Mapping . . . 7-62
14H I DEINSTALL Terminate the Device Driver 7-63

DEINSTALL Considerations 7-64
16H I PARTITIONABLE FIXED DISKS General query of device

support . 7-65
17H I GET FIXED DISK/LOGICAL UNIT MAP 7-66
Device Driver Examples . 7-68

Notes On Writing a Device Driver using Advanced BIOS . . . 7-72

Chapter 8. Device Helper Services . 8-1
DevHlp Services and Function Codes 8-1
DevHlp Services and Corresponding States 8-3
DevHlp Interfaces . 8-9

ABIOSCall Invoke ABIOS function . 8-10
ABIOSCommonEntry Invoke ABIOS Common Entry Point 8-12
AllocGDTSelector Allocate GOT Selectors 8-14
AllocPhys Allocate Fixed Block of Physical Memory 8-16
AllocReqPacket Get a Request Packet 8-17
Block This Thread From Running . 8-19
DeRegister Remove Monitor . 8-22
DevDone Flag 110 Complete 8-23
EOl Issue an End-Of-Interrupt . 8-24
FreeLIDEntry Release a Logical ID 8-26
FreePhys Free Physical Memory . 8-27
FreeReqPacket Free an Allocated Request Packet 8-28
GetDOSVar Get Address of Important DOS Variables 8-29
GetLIDEntry Get a Logical ID . 8-31
Lock Memory Segment . 8-33
MonFlush Flush Data from Monitor Chain 8-35
MonitorCreate Create a monitor . 8-36
MonWrite Give Data to Monitors . 8-39
PhysToGDTSelector Map Physical Address to a GOT Selector 8-41

x

PhysToUVirt Map Physical To User Virtual Address 8-43
PhysToVirt Map Physical Address to Virtual Address 8-45
ProtToReal Change Mode from Protect to Real Mode 8-49
PullParticular Remove Specific Request From List 8-51
PullReqPacket Remove Request From List 8-52
PushReqPacket Add Request To List 8-53
QueueFI ush Cl ear Character Queue 8-54
Queuelnit Initialize Character Queue 8-55
QueueRead Read a Character From a Queue 8-56
QueueWrite Put Character into Queue 8-57
RealToProt Change Mode from Real to Protect Mode 8-58
Register Add Monitor . 8-60
ResetTimer Reset Timer Handler . 8-62
ROMCritSection Flag Critical Section of Execution 8-63
Run Release Blocked Thread . 8-65
SchedClockAddr Get system clock routine 8-66
SemClear Release a Semaphore . 8-68
SemHandle Obtain a Semaphore Handle 8-70
SemRequest Claim a Semaphore 8-73
SendEvent Indicate an Event . 8-75
SetlRQ Set Hardware Interrupt Handler 8-77
SetROMVector Set DOS Mode Software Interrupt Vector 8-78
SetTimer Set Timer Handler . 8-80
SortReqPacket Insert Request In Sorted Order To List 8-82
TCYield Yield the CPU 8-83
TickCount Modify timer . 8-84
Unlock Memory Segment . 8-86
UnPhysToVirt Mark Completion of Virtual Address Use 8-87
UnSetlRQ Remove Hardware Interrupt Handler 8-89
VerifyAccess Verify Access to Memory 8-90
VirtToPhys Map Virtual Address to Physical Address 8-92
Yield Relinquish the CPU . 8-93

Chapter 9. Device Drivers . 9-1
ASYNC (RS232-C) Communications Device Driver 9-1

Hardware Support . 9-2
Personal Computer AT Adapter Support 9-2
PS/2 Adapter Support . 9-2
Attachment Support . 9-3
RS232-C Interface 9-4

RS232-C Enabling Characteristics 9-5
Output Modem Control Signals 9-8
Input Modem Control Signals . 9-8

xi

xii

Logical Flow Control (XON/XOFF) 9-9
Line Characteristics . 9-9
Break and Error Processing, Port Status, RI 9-9
State of the COM Port . 9-10
Event Notification . 9-10

States of the ASYNC Device Driver 9-11
Baud Rate . 9-12
Data Bits : . . 9-12
Parity . 9-12
Stop Bits . 9-13
DTR & RTS 9-13
DTR Control Mode . 9-14
RTS Control Mode . 9-14
Transmitting Break . 9-15
COM Event Word and COM Error Word 9-15
Output Handshaking using CTS, DSR, DCD 9-15
Input Sensitivity Using DSR . 9-16
Automatic Transmit Flow Control (XON/XOFF) 9-16
Automatic Receive Flow Control (XON/XOFF) 9-17
XON/XOFF characters . 9-17
Error Replacement Character Processing 9-17
Error Replacement Character 9-18 1

Break Replacement Character Processing 9-18
Break Replacement Character 9-18
Null Stripping . 9-19
Write Ti me-out State . 9-19
Write Time-out Value . 9-19
Read Ti me-out State . 9-20
Read Time-out Value 9-20
Transmit Immediate . 9-20

Reserved Device Names- COM1-N 9-21
Personal Computer AT Considerations- COM1, COM2 ... 9-21
PS/2 Considerations- COM1 - 3 9-22

Initialization I Resource Management 9-22
Personal Computer AT Initialization Considerations 9-23
PS/2 Initialization Considerations 9-24

Access Authorization . 9-25
Data Translation I Monitor Support /Spooler Support 9-25
File System Requests . 9-26

Open Processing . 9-26
Close Processing . 9-27
Read Processing . 9-28
Write Processing . 9-28

DOS Mode Considerations I Restrictions
Performance

Configuration
Pointer Draw (Screen) Device Driver

Full Draw Support
Disabled State Support

Mouse Device Driver
Mouse Device Overview
OS/2 Mode Mouse Support .
OS/2 Mode Mouse API .
DOS Mode Mouse Support .
Mouse Monitors .
MonitorCreate
Register
Deregister .
Mon Write
Mon Flush

DOS Mode INT 33H Mouse API
INT 33H-O Installed Flag and Reset
INT 33H-1 Show Pointer
INT 33H-2 Hide Pointer

9-30
9-31
9-31
9-32
9-32
9-33
9-34
9-34
9-49
9-53
9-56
9-59
9-60
9-60
9-60
9-60
9-60
9-61
9-65
9-66
9-67

INT 33H-3 Get Position & Button Status 9-68
INT 33H-4 Set Pointer Position . 9-69
INT 33H-5 Get Button Press Information 9-69
INT 33H-6 Get Button Release Information 9-70
INT 33H-7 Set Min & Max Horiz Position 9-72
INT 33H-8 Set Min & Max Vert Position 9-73
INT 33H-9 Set Graphic Pointer Block 9-74
INT 33H-10 Set Text Pointer . 9-75
INT 33H-11 Read Mouse Motion Counters 9-76
INT 33H-12 Set User-defined Subroutine 9-77
INT 33H-13 Light Pen Emulation On 9-78
INT 33H-14 Light Pen Emulation Off 9-79
INT 33H-15 Set Mickey/Pixel Ratio 9-80
INT 33H-16 Conditional Off . 9-81
INT 33H-19 Set Dbl Speed Threshold 9-81
INT 33H-20 Swap User-defined Subroutine 9-82
INT 33H-21 Query Save Mouse State Storage Requirements 9-84
INT 33H-22 Save Mouse Driver State 9-84
INT 33H-23 Restore Mouse Driver State 9-85

VDisk Device Driver . 9-86
CLOCK$ Device Driver . 9-87

CLOCK Device Time Format 9-88

xiii

Console Device Drivers (Screen and Keyboard) 9-89
Keyboard Device Driver KBD$. 9-89

Keyboard System Structure . 9-90
Keyboard Initialization . 9-92
Keyboard Run Time Operation . 9-92

Keystroke Monitors . 9-93
Keystroke Monitor Data Packet Definition 9-94
Values Acted On Prior to Passing Packet to Monitors 9-96
Values Acted On After Passing Packet To Monitors 9-97
Values for Packets Not Generated by a Keystroke 9-99
Value for Keys that the Translation Process does not

Recognize . 9-99
Special Key Processing . 9-99
Compatibility Operations . 9-101

EGA.SYS Device Driver . 9-102
EGA Register Interface . 9-102
Function FO - Read One Register 9-106
Function F1 - Write One Register 9-108
Function F2 - Read Register Range 9-110
Function F3 - Write Register Range 9-112
Function F4 - Read Register Set 9-114
Function F5 - Write Register Set 9-116
Function F6 - Revert to Default Registers 9-117
Function F7 - Define Default Register Table 9-118
Function F8 - Read Default Register Table 9-120
Function FA - Interrogate Driver 9-121

Using Extended Screen and Keyboard Control (ANSI.SYS,
ANSICALL.DLL) . 9-123

Limitations/Restrictions . 9-123
Control Sequences . 9-123
Control Sequence Syntax . 9-123
Cursor Control Sequences . 9-125

xiv

Cursor Position . 9-125
Cursor Up . 9-125
Cursor Down . 9-125
Cursor Forward . 9-126
Cursor Backward . 9-127
Horizontal and Vertical Position 9-127
Cursor Position Report . 9-128
Device Status Report . 9-128
Save Cursor Position . 9-129
Restore Cursor Position . 9-130

Erasing . 9-130

Erase in Display . 9-130
Erase in Line . 9-130

Controlling Display Mode . 9-130
Set Graphics Rendition (SGR) 9-131
Set Mode (SM) . 9-132
Reset Mode (RM) . 9-132

Keyboard Key Reassignment . 9-133
Diskette Device Driver . 9-137
Fixed Disk Device Driver . 9-138

Greater than 32Mb Partitioned support 9-138
Extended DOS Partition Architecture 9-139
Installing Block Devices in the Extended Partition 9-141
Creating Block Devices in the Extended DOS Partition 9-143
Deleting Block Devices in the Extended DOS Partition . . 9-143
Layout of Block Devices in the Extended DOS Partition . 9-144
Partition Table for Master Start-up Record 9-146
BPB and Get Device Parameters for Extended Volumes 9-147
Category 8 Generic IOCtl Commands 9-147
Category 9 Generic IOCtl Commands 9-147

EXTDSKDD.SYS Device . 9-148
Printer Device Driver . 9-154

Printer Device Driver Interfaces 9-159

Chapter 10. Functions and Utilities for Problem Determination 10-1
Design Elements . 10-1

Reliability Functions . 10-1
Semaphores . 10-1
Diskette processing . 10-1
File write-through . 10-1

Availability Functions . 10-2
Serviceability Functions . 10-2

System Trace Facility . 10-3
Using System Trace . 10-3

TRACEBUF and TRACE commands in CONFIG.SYS. 10-3
TRACE as an OS/2 Command Utility 10-4

Considerations/Limitations . 10-5
Stand-Alone Dump Facility . 10-5

Initiating a Dump . 10-6
Procedure used to start a Dump 10-6

Trace Formatter Utility . 10-7
Create Dump Diskette Utility . 10-9

Using the Create Dump Diskette Utility 10-9

xv

Chapter 11. Country Support Considerations 11-1
Introduction . 11-1

Country Dependent Information . 11-1
National Keyboard Layouts . 11-3

Code Page Configuration . 11-4
Utility and Configuration Command Support 11-5

Appendix A. The Linker . A-1
Converting Object Files to Executable Code A-1
About LINK Options . A-2

Using LINK Options . A-2
Entry of Numeric Parameters . A-4

Aligning Segments /ALIGNMENT . · A-5
Preparing Files for CodeView /CODEVIEW A-6
Reserving Paragraph Space /CPARMAXALLOC A-7
Ordering Segments /DOSSEG . A-8
Controlling Data Loading /DSALLOCATE A-9
Packing Executable Files /EXEPACK A-10
Optimizing Far Calls /FARCALLTRANSLATION A-11
Viewing the Options List /HELP . A-12
Controlling Run File Loading /HIGH A-13
Displaying Information about the Linking Process

/INFORMATION A-14
Copying Line Numbers to the Map File /LINENUMBERS A-15
Producing a Public Symbol Map /MAP A-16
Ignoring Default Libraries /NODEFAUL TLIBRARYSEARCH A-17
Disabling Far Call Translations /NOFARCALLTRANSLATION .. A-18
Preserving Compatibility /NOGROUPASSOCIATION A-19
Preserving Lowercase /NOIGNORECASE A-20
Not Packing Code Segments /NOPACKCODE A-21
Setting the Overlay Interrupt /OVERLAYINTERRUPT A-22
Packing Code Segments /PACKCODE A-23
Pausing to Change Disks /PAUSE A-24
Setting the Maximum Number of Segments /SEGMENTS A-25
Setting the Stack Size /STACK A-26
Warning of Incorrect Offset /WARNFIXUP A-27
Advanced LINK Topics A-28

Moving or Discarding Application Code Segments Under
OS/2 A-28

Order of Segments . A-28

xvi

Combined Segments A-28
Groups . A-29
Fix ups . A-30

Rules for Segment Packing in LINK A-31
The Map File . A-32

Linker Error Messages and Limits . A-35
Linker Limits . A-49

Module Definition File Statements . A-50
CODE Defines the default attributes for code segments A-51
DATA Defines the default attributes for data segments A-52
DESCRIPTION Inserts text into a program module A-54
EXPORTS Defines exported functions from dynamic link

libraries . A-55
HEAPSIZE Defines heap size in bytes A-57
IMPORTS Defines functions imported from dynamic link

libraries . A-58
LIBRARY Declares a dynamic link library A-60
NAME Declares a program module A-62
OLD Specifies previous version of a dynamic link module A-63
PROTMODE Sets a program module to run in the OS/2

environment . A-64
SEGMENTS Defines the attributes of code and data segments . A-65
STACKSIZE Defines stack size in bytes A-67
STUB Appends DOS executable file to the OS/2 program

module . A-68

Glossary . X-1

Index X-15

xvii

xviii

Chapter 1. Introduction

OS/2 has three methods of providing system services to application,
or subsystem, programs:

• API Function Requests
• IOCtl Functions
• DevHlp Services

The Application Programming Interface (API) function calls provide a
method for an application, or subsystem, to request OS/2 services
(function requests). API function requests are invoked by a Call
Return interface with the stack used to pass request parameters.

OS/2 device drivers are used by OS/2 to access the 1/0 hardware.
The IOCtl functions provide a method for an application, or sub
system, to send device-specific control commands to a device driver.
The IOCtl functions are issued through the DosDevlOCtl API function
request. The IOCtl functions are sub-functions of the DosDevlOCtl
API function request. (For a detailed description of the IOCtl functions
refer to Technical Reference, Vol. 2.)

The DevHlp services provide a method for OS/2 device drivers to
request OS/2 services. Many OS/2 device driver functions are related
to system operations rather than to hardware operations. The DevHlp
functions are used to request OS/2 system functions, when writing
your own OS/2 device driver.

OS/2 uses OS/2 device drivers to access 1/0 devices attached to an
IBM Personal Computer AT® or Personal Computer XT™ Model 286
or an IBM Personal System/2™. An Application Programmer can
write programs using the OS/2 device drivers supplied with OS/2, or
his own OS/2 device driver.

1-1

API Function Requests

All OS/2 API function requests are invoked with a CALL interface.
There are significant advantages when using a CALL programming
interface if the parameters are "pushed" onto the stack before
issuing the CALL. The hardware actually copies the parameters from
the requestor's stack to the receiving program's stack, thus giving
optimum addressability and protection at minimal execution cost.

OS/2 has a Dynamic Link facility by which linkage to a system func
tion or routine is not resolved until run time. The Dynamic Link
facility provides improved storage utilization because common library
routines need not be linked to each load module. Programs written to
the OS/2 interface are usually smaller in size (both on disk and in
memory).

In addition, a restricted subset of the OS/2 API function requests is
supported as a DOS Family AP/. Applications written to this API and
linked with OS/2 library routines are capable of executing in either
OS/2 or DOS modes.

The API Function Requests can be grouped into the following catego
ries by function:

• Memory Management
• Process Control
• Session Management
• 1/0 Services
• Country Support

Memory Management

OS/2 memory management allows an application to use the 80286
extended memory (physical storage up to 16Mb). OS/2 memory man
agement allows a user to concurrently execute more applications
than fit in memory. Also, any single application and its data can be
larger than real memory. OS/2 maintains the most active set of seg
ments in memory at any one time by swapping the least active seg
ments to disk, then reloading them when needed.

1-2

The memory management functions allow an application to:

• Allocate multiple data segments

• Implement an application as a number of distinct CALLable seg
ments with OS/2 providing loading on demand as necessary

• Explicitly load applications if desired

• Package an application so that the linkage to library routines or
infrequently used routines is not made until run time.

Process Control

OS/2 process control functions can be grouped into the following cat
egories by function:

• Timer Services
• Multitasking
• Interprocess Communication.

Timer Services

In addition to the Date and Time functions provided in DOS, OS/2 pro
vides the following functions:

• Regularly occurring intervals
• Asynchronous intervals
• Sleep for a period of time.

Multltasklng

The multitasking functions of OS/2 allow a user to operate several
applications concurrently. For most purposes, each application
appears to have the entire computer to itself and may be designed
and coded in much the same manner as with DOS. An application
can also be designed such that its functions are divided among a col
lection of cooperating processes.

1-3

Multitasking is an integral part of OS/2. A priority-based, time
sharjng scheduler is provided with special consideration being
offered for applications with time-critical response requirements.
Functions are provided to:

• Start new processes
• Start/stop/modify execution threads within a process
• Coordinate execution among several processes.

Interprocess Communication

The interprocess communications (IPC) functions allow processes to
communicate with one another. These functions allow a program to:

• Communicate between processes via pipes, signals, queues,
semaphores, and shared memory

• Explicitly control other processes execution

• Control access to serially reusable resources

• Signal occurrence of a flag event.

Session Management

The session management functions of OS/2 allow an application to
select, set status, start, and stop sessions.

1/0 Services

OS/2 provides the following 110 services to applications:

• 110 function calls
• Code Page support
• Device Monitor Services
• Printer/Spooler Services

OS/2 provides access to 110 through function calls and device drivers.
Some devices are accessed through function calls specific to the
device, such as the keyboard (KBD), mouse (MOU), and video 110
(VIO) calls.

1-4

Code Page Support

OS/2 Code Page Support allows a user to select a code page for key
board input and screen and printer output before running an applica
tion, a system command or utility in the OS/2 multitasking
environment. This allows the user in a particular country such as
England or Norway or a language region such as Canadian-French to
run with a code page that defines an ASCII-based character set con
taining characters used by that particular country or language.

Device Monitor Services

Character Device Monitors provide a mechanism for applications or
subsystems to monitor all characters passing through a device driver.
This mechanism allows any registered process to remove, insert or
modify the information passing through the device.

Keystroke Monitor: A keystroke monitor can pass the keystroke
through, consume the keystroke, or replace the keystroke with one or
many keystrokes. Some applications monitor all keystrokes and
provide global system function before more conventional applications
receive the keystrokes. Examples include national language support
for switching the keyboard layout and for Asian language input con
version.

Printer/Spooler Services

OS/2 provides printer/spooler services. The primary purpose of the
spooler is to accumulate data directed to a printer on a per session
basis. When the application is complete, the data will be output to the
printer in one contiguous data stream. This reduces the possibility of
intermixing printed output from different sessions to the same printer.
The spooler also has the capability of invoking the Code Page
Switcher which provides functions to allow an application to control
code pages and fonts.

1-5

DevHlp Services

Device driver helper routines are provided for managing the request
queue, blocking and unblocking, locking and unlocking memory.

Access to these system services is obtained at the time of device
driver initialization. The request packet for the INIT command con
tains a pointer to the DevHlp interface. The pointer to the DevHlp
interface is a bimodal pointer; that is, this pointer to the DevHlp inter
face is valid in both real mode and protect mode. The device driver
does not have to be sensitive to the mode of operation before
requesting DevHlp services.

A DevHlp service is invoked by setting up the appropriate registers,
loading a function code into the DL register, and making a FAR CALL
to the DevHlp interface routine, whose address was supplied at
device driver initialization time.

OS/2 Device Driver Architecture

OS/2 device drivers are divided into two parts - a strategy routine and
an interrupt routine:

• The strategy routine is called with an 110 packet which describes
the request. The strategy routine marks the request incomplete
and queues the request. If the device is not busy it starts the
device. Then it returns to the kernel which typically blocks on the
incomplete 110 packet.

• The interrupt routine services the 1/0 completion. If there is new
work in the queue, it starts the device. Then it indicates that the
previous operation is complete and unblocks any threads which
are waiting for this request to be completed.

1-6

OS/2 Device Drivers

The device drivers provided with OS/2 service requests in both the
DOS mode and the OS/2 mode. Where appropriate, OS/2 device
drivers provide a queued request interface rather than the serial
request design of DOS device drivers. OS/2 device drivers support
multitasking.

The device drivers supplied with OS/2 are:

• Asynchronous Communication (RS-232)
• Mouse Device Drivers
• Pointer Draw Device Driver
• VDisk
• CLOCK$
• Console (Screen and Keyboard)
• Screen (OS/2 mode)
• Keyboard (OS/2 mode)
• EGA Register Interface (DOS mode)
• Diskette
• Fixed Disk
• Printer

Problem Determination

OS/2 provides a system trace for problem determination.

Country Support Considerations

Country Support for OS/2 includes these features:

• Country Dependent Information
• Country APls
• National Keyboard Layouts
• Configuration Commands
• Translation of System Message Files

1-7

1-8

Chapter 2. Application Program Interface
{API)

The OS/2 Application Programming Interface (API) represents
requests for system services. The API functions are invoked by a
CALL-RETURN interface with the stack being used to pass the request
parameters. The most obvious benefits are:

• Less need for a high-level language system services library - the
respective function call may be interfaced directly from a high
level language such as IBM C/2™1.

• Optimum performance - the target routine may be invoked
directly rather than having an intermediary "router" get control
first.

• The same interface mechanism is available for invoking an OS/2
routine as well as a library routine.

• Function replacement is an architected and well-defined activity.

When using the multiple protection rings of the 80286, there are sig
nificant advantages to a CALL programming interface if the parame
ters are "pushed" onto the stack before issuing the CALL. The
hardware actually copies the parameters from the requestor's stack
to the receiving program's stack, thus giving addressability and pro
tection at minimal execution cost. All OS/2 functions are invoked via
the CALL interface. A means to similarly call system extensions and
1/0 privilege routines executing at protection ring 2 is also provided.
The application interface to the OS/2 mode and device drivers is
strictly hierarchical, and the 80286 hardware supports and enforces
this hierarchy.

1 C/2 is a trademark of International Business Machines Corporation.

2-1

Dynamic Linking

The 80286 protect mode CALL architecture also offers benefits of
greater importance than hierarchical structure and data copying. In
particular, the following are definite advantages over the typical static
module structure of DOS:

• Application programs need only load the most commonly used
segments when started. Exception processing routines do not
need to be loaded. They can be called (and be automatically
loaded by the system) as necessary.

• Dynamic link package updates can be transparent to their clients.
Existing applications can use enhanced function calls in a
dynamic link package, and the existing applications need not
change.

The actual programming steps required to use the dynamic link
feature are the same as those of a static environment. The steps are:

1. The programmer codes a call to a subroutine which is to be
dynamically linked and declares it "EXTERNAL FAR".

2. The compiler generates a standard external reference.

3. When the object module is linked, the linker is provided with the
names of libraries containing dynamic link definition records.
These records provide correspondence between the called entry
point and the module file containing the routine being called.

PC Family API

In developing a single product to be used on either OS/2 or DOS 3.3,
application developers can use a subset of the full function OS/2 API.
This subset is the DOS Family API. An application that is written to
this subset functions on either system.

The interface to the target operating system is provided as a set of
program modules. These modules are loaded only when executing in
a DOS mode.

Note: After compiling or assembling and linking for OS/2, you must
BIND your .EXE file in order to make it run in both the OS/2 and DOS
modes.

2-2

OS/2 Function Calls

This section describes how OS/2 function calls are issued. OS/2
applications must use the dynamic link mechanism (FAR CALL) to get
to all services. The old style (INT 21 H ...)function calls are supported
only for the DOS mode.

OS/2 Function Call Rules

Rules for the OS/2 interface are shown below:

Rule 1: All parameters are passed on the stack (SS:SP).

Remarks Passing parameters on the stack is consistent across a
broad base of languages on the 80286 family of
processors. This method allows direct access to the oper
ating system from high order languages. The minimum
recommended stack space available is 2K bytes.

Rule 2: All interfaces pass a return code back to the caller in AX.

Remarks The use of register AX as a function return code is also
consistent across many languages. All user registers
except the FLAGS register are preserved. The contents of
the FLAGS register are undefined. The state of the direc
tion flag in the FLAGS register is preserved. If the direc
tion flag was clear when an API was called then it will be
clear when the API returns.

Rule 3: All addresses of OUTPUT parameters are of the form:

selector: offset.

Remarks Fully qualified addresses are available across all memory
models as a method for returning values to a requester.
This allows one function entry point to serve all languages
and memory models.

2-3

Rule4: Each function is accessed by a FAR CALL.

Remarks This is a requirement for the functions to be dynamic link
entries.

Rules: All functions remove the parameters from the stack.

Remarks Parameter lists are fixed length on a function basis. Vari
able length parameter lists are not supported.

Rule 6: All function names must be upper case at link time.

Remarks If a compiler or assembler generates case-sensitive
(upper and lower case) external references, all calls or
function definitions must be in all UPPER case characters.

OS/2 Function Call Characteristics

The function call descriptions follow a pseudo assembly language
format. The interfaces are shown to be descriptive rather than to be
an example of a coding sequence. The conventions described below
are employed throughout this book.

Function Call Format

Because all parameters are pushed onto the stack, there are several
pseudo instructions to describe these operations.

• PUSH - push an item onto the stack
This can be used to push various size items onto the stack. The
data item types are described below.

• PUSH@ - push the address of an item onto the stack
All addresses in these interfaces are composed of a 32-bit value:
a 16-bit selector, and a 16-bit offset. This address can point to
any of the data item types.

• CALL - call a function

2-4

All function calls are accessed via FAR CALLs. This is a require
ment to utilize the Dynamic Link mechanism.

The following are data item types used to make up a parameter list:

• WORD - 2 bytes
This type of operand can be passed by value (pushed onto the
stack) or by reference (the address of the operand is passed on
the stack).

• DWORD - 4 bytes
This type of operand can be passed by value (pushed onto the
stack) or by reference (the address of the operand is passed on
the stack).

• ASCllZ - null (0) terminated character string
This type of operand can be accessed only by reference.

• Other - any other structure
This type of operand can be accessed only by reference.

2-5

Interface Stack Frame

All parameters are passed via the stack. An example stack frame is
shown below:

t
(HIGH ADDRESS

These items
are pushed
on the stack
by the caller.

~
This is pushed
on the stack
by a FAR CALL
to the function.

I
(LOW ADDRESS)

l_

)
Parameter 1
(push WORD)

Parameter 2 (segment)

r------------------------------
(offset)

more Parameters l

Parameter N
(push WORD)

caller's CS

~------------------------------

caller's IP

These are
removed by
the RET from
the function.

-4
This is removed
by the RET from
the function.

J
The following is the calling sequence that corresponds to the diagram
above.

PUSH WORD
PUSH@
•
•
•
PUSH
CALL

2-6

WORD

Parameter 1
Parameter 2

Parameter N
function

Function Calling Sequence Example

This is a sample function call. In Technical Reference, Vol. 2, the
function calling sequence is shown using pseudo code. The pseudo
code is similar to IBM Personal Computer Macro Assembler. Some
definitions and necessary statements for segments and procedures
are left out. The following example shows how a function call builds
a stack and also how the pseudo code relates to actual code.

Pseudo Code

extrn DOSXAMPL:far

PUSH WORD INl

PUSH@ WORD OUTl

PUSH WORD IN2

CALL DOSXAMPL

Actual Code

extrn DOSXAMPL:far

these items are in OS

INl
IN2

OUTl

push INl

push ds

dw
db

dw

44
•x•

a

mov ax.offset OUTl
push ax

mov al,IN2
xor ah,ah
push ax

call DOSXAMPL

2-7

OS/2 Sample Functions

The following are sample functions. The code indicated is similar to
IBM Personal Computer Macro Assembler. Some definitions and
necessary statements for segments and procedures are left out.

Function DOSXAMPL

This is an example function that retrieves information from a stack. It
shows entry and exit sequences for a function and how to access the
parameters.

push bp
mov bp,sp

les bx,[bp+8] get the@ of OUTl

mov word ptr es:[bx],77 ; put 77 in OUTl

mov ax,[bp+12] put INl in ax

mov bl,[bp+6] put IN2 in bl

mov ax,17 set the return code to 17

pop bp
ret (far) 8 remove parameters from stack

and return

2-8

High-Level Language Interface Examples

These are examples of high-level language interfaces for the "OS/2
Sample Functions" on page 2-8 and the "Function Calling Sequence
Example" oh page 2-7.

IBM Pascal Compller/2™2: This is an example of the interface used
with the IBM Pascal Compiler/2™.

Declaration function DOSXAMPL(p_inl :integer;
var p_outl :integer;

p_in2 :char
) : integer;

Data Declaration var p_inl,
p_outl :integer;
re :integer;
p_in2 :char;

Invocation re := DOSXAMPL(44,outl,xin2);

IBM C/2™3: This is an example of the interface used with the IBM
C/2™.

Declaration int far pascal DOSXAMPL();

Data Declaration int_outl;

int re;

char xin2;

Invocation re= DOSXAMPL(44,(char far*) &outl,xin2);

2 Pascal Compiler/2 is a trademark of
International Business Machines Corporation.

3 C/2 is a trademark of
International Business Machines Corporation.

2-9

OS/2 Compatibility Considerations

Three levels of Application Programming Interface (API) are sup
ported by OS/2 to provide different levels of function and
com pati bi I ity:

• OS/2 dynamic link full-function API for programs that require
multitasking and memory management function.

• DOS Family API (subset of OS/2 API) for programs that require
compatibility with both OS/2 and DOS.

• DOS interrupt-based API for programs that require only DOS
compatibility.

OS/2 Application Environments

Two application environments are supported by OS/2 for applications:

• The OS/2 mode
• The DOS mode

OS/2 provides two environments for running applications; the DOS
mode and the OS/2 mode. The DOS mode allows DOS applications to
run concurrently with OS/2 applications. The OS/2 mode allows mul
tiple OS/2 applications (both full-function and family) to run concur
rently.

The 80286 processor provides two hardware modes of operation, real
mode and protected mode. To support the two application environ
ments, OS/2 handles requests for service from both modes. OS/2
applications run in the protected mode of the processor.

A DOS application running in the DOS mode runs in both modes, that
is, the processor switches from real to protected mode and back
again. For example, all file requests are handled in protected mode.
This provides a means of insuring data integrity across multiple
applications in a multitasking operating system.

2-10

The following table shows the API support in each environment:

Environment
API OS/2 DOS DOS 3.3
OS/2 Yes No No
Family Yes Yes 1 Yes1

DOS No Yes2 Yes2

Notes:

1. See the API Functions in Technical Reference, Vol. 2 for Family
API restrictions.

2. For DOS API compatibility exceptions in the DOS mode see "DOS
Mode Exceptions" on page 2-19.

DOS Family and Full Function API

The DOS Family API function calls are a "subset" of the full OS/2 API
function calls. When an application program is written using only the
DOS Family API function calls, it can be linked to work with both OS/2
and DOS 3.3. A family application can also work under TopView.

In reading the chart that follows, remember:

• "Family API" (middle column) is a list of the family API functions
that work in the OS/2 mode, the DOS mode, and DOS 3.3.

• The "OS/2 Only" column means these function calls work in the
OS/2 mode only.

• The combination of both columns is the OS/2 full-function API.

• The function calls listed in the "Family API" column marked with
an asterisk (*) are supported, but with restrictions. The
restrictions are described in the detailed description for each
affected function call in Technical Reference, Vol. 2 as Family API
Considerations.

2-11

Function Type
Tasking

Asynchronous Notifi
cation

Interprocess Commu
nication

2-12

Famlly API Subset

* DosExecPgm
* DosExit

* DosHoldSignal
* DosSetSigHandler

OS/2 Only

DosCreateThread
DosCWait
DosEnterCritSec

DosExitCritSec
DosExitlist
DosGetlnfoSeg
DosGetPrty
Dos Ki 11 Process
Dos Pt race
DosSetPrty

OosCloseQueue
DosCloseSem
DosCreateQueue
DosCreateSem
DosflagProcess
DosMakePipe
DosMuxSemWait
DosOpenQueue
DosOpenSem
DosPeekQueue
DosPurgeQueue
DosQueryQueue
DosReadQueue
DosResumeThread
DosSemCiear
DosSemRequest
DosSemSet
DosSemSetWait

Function Type Famlly API Subset OS/2 Only
DosSemWait
DosSuspendThread
DosWriteQueue

Timer
DosGetDateTime
DosSetDateTime

* DosSleep
DosTimerAsync
DosTimerStart
DosTimerStop

Memory Management
* DosAI locSeg

DosAllocShrSeg
* DosAllocHuge
* DosCreateCSAlias

DosFreeSeg
DosGetHugeShift

DosGetShrSeg
DosGetSeg
DosGiveSeg
DoslockSeg
DosMemAvail

* DosReallocHuge
* DosReallocSeg

DosSubAlloc
DosSubFree
DosSubSet

DosUnlockSeg
Dynamic Linking

DosFreeModule
DosGetModHandle
DosGetModName
DosGetProcAddr
DosloadModule

2-13

Function Type Family API Subset OS/2 Only
Family API

DosGetMachi neMode
BadDynlink

Device Monitors
DosMonClose
DosMonOpen
DosMonRead
DosMonReg
DosMonWrite

Session Management
DosStartSession
DosStopSession
DosSelectSession
DosSetSession

Device 110 Services
Dos Beep

DosCLIAccess
DosDevConfig

* DosDevlOCtl
DosGetPID

DosPFSActivate
DosPFSCloseUser
DosPFSlnit
DosPFSQueryAct
DosPFSVerifyFont
DosPhysical Disk
DosPortAccess
DosSendSignal
KbdDeRegister

KbdCharln
KbdClose

KbdFI ushBuffer
KbdFreeFocus
KbdGetCp
KbdGetFocus

KbdGetStatus

2-14

Function Type Famlly API Subset

* KbdPeek

KbdSetStatus
KbdStringln

OS/2 Only
KbdOpen

KbdRegister
KbdSetCp
KbdSetCustXt
KbdSetFgnd

KbdSynch
KbdXlate
MouClose
MouDeRegister
MouDrawPtr
MouFlushQue
MouGetDevStatus
MouGetEventMask
MouGetNumButtons
MouGetNumMickeys
MouGetNumQueEI
MouGetPtrPos
MouGetPtrShape
MouGetScaleFact
MoulnitReal
MouOpen
MouReadEventQue
MouRegister
MouRemovePtr
MouSetDevStatus
MouSetEventMask
MouSetPtrPos
MouSetPtrShape
MouSetScaleFact
MouSynch
VioDeRegister
VioEndPopUp
VioGetAnsi
VioGetBuf

2-15

Function Type Family API Subset OS/2 Only
VioGetCp

VioGetConfig
VioGetCurPos
VioGetCurType
VioGetFont
VioGetMode
VioGetPhysBuf
VioGetState

VioModeUndo
VioModeWait
VioPopUp
VioPrtSc
VioPrtScToggle

VioReadCellStr
VioReadCharStr

VioRegister
VioSavRedrawUndo
VioSavRedrawWait

* VioScrlock
VioScrollDn
VioScrollUp
VioScrolllf
VioScrollRt

* VioScrU nlock
VioSetAnsi
VioSetCp

VioSetCurPos
VioSetCurType
VioSetFont
VioSetMode
VioSetState

VioShowBuf
VioWrtCellStr
VioWrtCharStr
VioWrtCharStrAtt
VioWrtNAttr
VioWrtNCell

2-16

Function Type Family API Subset OS/2 Only
VioWrtNChar
VioWrtTTY

File 1/0
DosBufReset
DosChDir
DosChgFi lePtr
DosClose
DosDelete
DosDupHandle

* DosFilelocks
* DosFindClose
* DosFindFirst
* DosFindNext

DosMkDir
Dos Move
DosNewSize

* DosOpen
DosQCurDir
DosQCurDisk

* DosQFHandState
DosQFilelnfo
DosQFileMode
DosQFslnfo
DosQHan~Type

DosQVerify
Dos Read

DosReadAsync
DosRmDir

OosScanEnv
DosSearchPath

DosSelectDisk
* DosSetFHandState

DosSetFi I el nfo
DosSetFi leMode
DosSetFsl nfo

DosSetMaxFH

2-17

Function Type Family API Subset OS/2 Only
DosSetVerify
Dos Write

DosWriteAsync
Errors and Exceptions

DosErrClass
* DosError
* DosSetVec

Messages
* DosGetMessage

DoslnsMessage
DosPutMessage

Trace
Program Startup

DosGetEnv
DosGetVersion

Code Page Support
* DosGetCp

DosSetCp
DosSetProcCp

Country Support
DosCaseMap
DosGetCollate

* DosGetCtrylnfo
DosGetDBCSEv

Note: BadDynlink is a call generated internally by the BIND utility.
BadDynlink is for dynamic link calls that are unresolved in DOS 3.3
and yet valid in the OS/2 mode. This allows applications to have a
set of function calls available in the OS/2 mode that are not available
in DOS 3.3. The DosGetMachineMode call can be used in the applica
tion to determine at run-time whether a call is appropriate.

If a routine is called in DOS 3.3 that is not valid for the DOS mode, the
BadDynlink routine aborts the application.

2-18

DOS Mode Exceptions

In the DOS mode, all the functions that are supported in DOS 3.3 with
SHARE installed are supported in OS/2 with some exceptions.

Note: Undocumented DOS 3.3 function calls are not supported.

DOS 3.3 Network Function Calls
No DOS 3.3 Network functions calls are supported.

Version Number
The version number returned to an application in response to
the version call is 10.0, instead of the displayed version number
1.0.

Background Freezing
When the process (the DOS mode application) is in a back
ground session, the DOS mode is frozen. The process receives
no task-time CPU service and no interrupts. One effect is that
an application that is tracking the time of day by counting clock
tics will have an incorrect count when it returns to the fore
ground.

Hooking Hardware Interrupts
DOS mode applications may hook any hardware interrupt vector
unless the interrupt is already owned by an OS/2 device driver
in which case the DOS mode application is terminated. If the
keyboard interrupt is hooked by an application, it is shared
between the OS/2 device driver and the DOS mode.

Direct Device Manlpulallon
There are restrictions on the devices DOS mode applications
may directly manipulate:

• 8042 Keyboard Interrupt Controller - DOS mode applications
may not reprogram the 8042 keyboard interrupt controller.

• 8253 Clock/Timer chip - DOS mode applications may repro
gram this at will.

• 8259 interrupt controller - DOS mode applications may not
reprogram the 8259 interrupt controller.

• Disk Controller - DOS mode applications may not repro
gram the disk controller(s), although they may have direct
access via INT13, INT25 and INT26. However, INT26 is not
allowed to non-removable media and for INT 13H, only

2-19

functions 01 (read status), 02 (read sectors), OA (read long),
and 15 (read DASO type) are allowed to non-removable
media.

• OMA Controller(s) - DOS mode applications may not repro
gra~ the OMA ports.

• COM/Parallel Port - DOS mode applications should not use
COM ports that are being used by OS/2 mode applications,
or by the Print Spooler utility.

Using a port in the DOS mode removes it from availability in
the OS/2 mode. If the OS/2 mode uses one of these ports, it
is unavailable to the DOS mocte. Applications that perform
1/0 din~ctly to the serial and parallel ports without checking
the BIQS presence indicators can interfere with the opera
tion of these devices by the OS/2 bimodal device drivers.

DOS mode applications will fail if they attempt to access the
BIOS 40: data area when the Asynchronous device driver is
loaded if SETCOM40 has not been run. AUX is no longer
supported as an alias for COM1.

Device Drivers
See "Compatibility with Previous-Level Device Drivers" on
page 7-29.

DOS Software Interrupts
See "DOS Execution Environment Software Interrupt Support"
on page 7-31 for exceptions.

DOS Commands

2-20

See "DOS Commands Compatibility Exceptions" in the OS/2
User's Reference.

Chapter 3. Memory Management

Memory management under OS/2 using the Protected Virtual
Address mode of the 80286 permits applications to allocate more
memory than could fit in the 640K physical limit that existed in pre
vious versions of DOS. In addition, if the user enables swapping,
OS/2 allows one or more applications to allocate more memory than
is physically available in the system.

Use of the Segmentation Hardware

A feature of OS/2 is utilization of memory beyond the 640K limit
through comprehensive memory management functions. These func
tions fully exploit the segmentation capability of the hardware in the
protected address mode of the 80286. Use of these functions allows
full utilization of the processor architectural storage limit of 16Mb.

Applications written with these memory management functions will
be able to use more memory than the 640Kb limit of previous DOS
versions. When memory becomes full, OS/2 maintains the most
active segments in storage. Inactive segments (least recently used
segments) are swapped to disk. Active segments are loaded into
storage as needed.

These new OS/2 mode functions permit you to concurrently execute
more programs than will fit in memory. Any single program and its
data can be larger than real memory.

3-1

The new functions provided allow a program to:

• Allocate a large number of data segments; each may be up to
64Kb.

• Allocate multiple memory segments of the maximum segment
size (64Kb).

• Keep each segment private or share it with other programs.

• Package an application so that the linkage to library routines or
infrequently used routines is not made until run time.

• Implement an application as a number of distinct CALLable seg
ments with OS/2 providing load on demand.

• Explicitly load programs if desired.

The Protection Features of the Ring Structure

The OS/2 protection model takes advantage of the 80286 ring pro
tection architecture to protect the integrity of applications.

The protection levels used by OS/2 for program execution are:

• Applications run at protection level 3.

• Special purpose routines (other than general device drivers)
requiring 110 privilege execute at protection level 2.

• The kernel and device drivers run at protection level 0.

3-2

The following diagram shows the application perspective of the pro
tection model provided by OS/2:

Application
"A"

Application
"B"

. . . ----- -----------·----------·-------·--- ---.
Special
Purpose

110 Routine

1/0 Operations

------------------r-------

OS/2 and
Device Drivers

Hardware

Privilege
Level3

Privilege
Level2

Privilege
LevelO

-- Control Flow
Data Ownership

••• •••• Data Access

For a module to be loaded at protection level 2, the CONFIG.SYS
IOPL=yes command must indicate this is to be allowed. Protection
level 2 modules cannot use dynamic link, and cannot make OS/2 func
tion calls.

3-3

The OS/2 protection model uses the 80286 ring protection architecture
to insure that for each level in the hierarchy, only programs at that
level, or a more privileged level, can access data at that level. For
example:

• An application has access only to its own data at level 3.

• A level 2 1/0 module has access to its clients' application data at
level 3.

• The kernel and device drivers have access to data at all levels.

OS/2 Mode Memory Management

Protect mode memory management enables an OS/2 mode applica
tion to use large real memory beyond the 640Kb boundary imposed
by previous versions of DOS. Memory management is supported with
both memory compaction and segment swapping.

In protect mode there is one Local Descriptor Table (LDT) per
process for all threads running under that process. Each process has
its own distinct address space, mapped by an LDT and the Global
lnfoSeg. The LDT provides a per process private address space
while the Global lnfoSeg provides addressability for system-wide
data and programs which are shared among all processes.

Together these tables provide a virtual address space of 1Gb.
However, the available virtual address space is limited by the avail
able disk storage space. The LDT and Global lnfoSeg provide a
mapping from this 1Gb virtual address space to the 16Mb (maximum)
physical address space of the 80286. OS/2 dynamic link routines
have LDT, as opposed to Global lnfoSeg, descriptors. Reference
"Dynamic Linking" on page 4-26 for more information on dynamic
link routines.

3-4

The following is a diagram of the segment swapping, protected
memory management of OS/2.

Application
Address
Spaces
.------.--1GB

Code

Data

System
Code

&
Data

1/2GB

LDT

GOT

Real
Memory

Code

Code

Data

System

16 MB

Secondary
Storage

Memory Code

-----------Mgt
Data

The features of protect mode memory management support include:

• Storage over-commitment - the amount of storage allocated at
any instant for data and code segments can be greater than the
amount of real memory available.

• Segment discard - real memory occupied by code segments that
are still in the address space of an application (though not cur
rently in use) can be reclaimed by discarding the segment. When
the discarded segment is later referenced, a fresh copy is read
from the .EXE file, whereas swapping restores from a swap area.

• Segment motion (memory compaction) - because segments are
variable length, real memory is subject to external fragmentation.
Holes of deallocated real memory, each of which is insufficient in
size to satisfy a request for memory, but which together would be
sufficient, are united in order to satisfy the request.

3-5

• Protection - applications only have addressability to memory seg
ments specifically authorized to them by the system. The OS/2
system and each individual application are protected from access
by other applications.

Real Memory Map (Protect mode only) ·

Real Memory

nMB

New Application

Code and Data Segments

x KB --------------------------~

OS/2

1MB
ROM and Video Buffers

640KB

New Application

Code and Data Segments

y KB --------------------------
OS/2

0

Movable,

Swappable
or

Non-swappable

Fixed

Movable,

Swappable
or

Non-swappable

Fixed

Note the x Kb and y Kb boundaries. These are movable boundaries
separating the fixed and movable regions of memory. The actual
location of these boundaries will vary depending on the system load
and the amount of real memory installed.

Real Mode Memory Map
A real mode system allows execution of a single DOS mode applica
tion in addition to new OS/2 mode applications.

A DOS mode application executes only below 1 Mb (in fact, because of
the reserved ROM and video buffer space, only below 640Kb) while
an OS/2 mode application may execute at any address.

3-6

The following diagram shows the memory layout for an OS/2 system
running both OS/2 mode applications and a single DOS mode applica
tion. OS/2 mode code and data segments are loaded above a
boundary set by the RMSIZE = command in CONFIG.SYS. The fol
lowing diagram assumes the boundary is set at 640K bytes.

Real Memory

New Application

Code and Data Segments

x Kb ·-·
1/0 Segments (Long Term)

OS/2
y Kb ·-·

OS/2
1Mb--~~~~~~~~--

ROM and Video Buffers
640Kb1--~~~~~~~~--i

Movable,

Swappable
or

Non-swappable

Fixed

z Kb ·-·

t-

----S-i-ng_l_e------1 I Variable size "Old" Application

OS/2 SYSTEM

Note the x Kb and y Kb boundaries. As in the previous Real Memory
Map, these are movable boundaries separating the fixed and
movable regions of memory. The actual location of these boundaries
will vary over time, depending on the system load and the amount of
real RAM installed.

Note the z Kb boundary. This defines the logical end of memory for
the DOS 3.3 application and may vary up to the 640Kb limit. Protect
mode memory is above this boundary.

3-7

Memory Management Functiqn Call Summary

The following memory management interfaces are supported: (For a
detailed description of these function calls refer to Technical Refer
ence, Vol. 2.)

DosAllocHuge

DosAllocSeg

DosAllocShrSeg

Allocates multiple memory segments of the
maximum segment size (64Kb).

Allocates a segment of memory to the requesting
process.

Allocates a shared memory segment.

DosCreateCS"llas Creates a code segment alias descriptor for a
data segment passed as input.

DosFreeSeg Deal locates a segment.

DosGetHugeShlft Returns a shift count. The shift count is used in
deriving the selectors to address memory allo
cated with DosAllocHuge.

DosGetSeg Gets access to a shared memory seQment.

DosGetShrSeg Allows a process to access a shc;1red memory
segment previously allocated by another
process.

DosGlveS'g

DosLockSeg

DosMemAvall

Gives a memory segment to another process.

Locks a discardable segment in memory.

Returns the size of the largest block of free
memory.

DosReallo.::Huge Changes the size of memory allocated by
DosAllocHuge.

DosRealloC?Seg Changes the size of a segment already allocated.

DosUnlockSeg Unlpcks a discardable segment.

3-8

Memory Suballocation Package (MSP)

In addition to the extensive segment swapping memory management
functions described above, OS/2 includes a high-performance mech
anism for suballocation within a segment (small model) similar to a
linked-list of storage descriptors.

The OS/2 Memory Suballocation Package (MSP) is a set of intraseg
ment memory allocation dynamic link routines. The functions support
memory suballocation within a segment. The memory suballocation
dynamic link routines are packaged within the dynamic link module
DOSCALL 1.DLL. External references to memory suballocation
dynamic link routines are resolved at link time.

Memory Suballocation Example

Following is an example of an application making memory suballo
cation requests. At the top is a succession of allocate requests which
deplete the FREE storage within the segment.

SOKB .----.

FREE
=SOKB

os~-~

Alloc
1 OKB __., 1 OKB

FREE
=40KB

Alloc
15KB __.,

10KB

15KB

FREE
=25KB

Alloc
20KB ~

10KB

15KB

20KB

FREE
=SKB

3-9

The application may now begin freeing the storage as it is no longer
needed. Adjacent free blocks are combined:

50

Free
15KB

KB

__..,

OB

10KB

15KB

20KB

FREE
=5KB

Free
10KB ----

10KB

FREE
=15KB

20KB

FREE
=5KB

Free
20KB

FREE
=25KB

__.. 20KB

FREE
=5KB

FREE
=50KB

MSP Function Call Summary

The following MSP interfaces are supported:
(For a detailed description of these function calls refer to
Technical Reference, Vol. 2.)

DosSubSet

DosSubAlloc

DosSubFree

3-10

Used either to initialize a segment for sub
allocation or to change the size of a suballo
cation segment previously initialized.

Al locates memory from a segment previously
allocated by DosAllocSeg or Dos AllocShrSeg
and initialized by DosSubSet.

Frees memory previously allocated by
DosSubAlloc.

System Extensions

OS/2 provides a base on which application developers can construct
solutions to more complex applications. To an application, these sol
utions typically appear as an extension of the operating system (for
example, Presentation Manager); and they require many of the same
capabilities as the kernel, such as protection, data isolation and
sharing, and an efficient means of invocation. The design of OS/2
provides functions that allow the extension author to obtain these
capabilities easily.

The system extension provides a callable routine which is its applica
tion interface. The actual connection from the application program to
the system extension is made at run time (see "Dynamic Linking" on
page 2-2 and "Dynamic Linking" on page 4-26 for details on this
linkage.) When called, the extension routine either performs the
request directly or passes the request on to a separate process which
performs the request asynchronously. System extensions are imple
mented as dynamic link modules.

The determination of processing directly or under a separate process
must be made based on the data isolation and performance charac
teristics of the solution being offered.

3-11

The following diagram shows the invocation of a system extension via
the run time dynamic linking.

Application •••• ·: : Application

.----.....__-~_1 A-.n I
Data Data

f------ ---·----
~---~

Data
for "A"

Data
for "B"

. r······ Privilege Level 3
------ ----- -------------:----~------------------ ---------------·

Device
Driver

Data

: :
: :

Kernel

Data

Privilege Level 0

• ••• ••• control flow
----- data ownership
-- data access

For processing of the request under a separate process, interprocess
communications techniques may be implemented using semaphores,
queues, signals, or shared memory.

The above diagram also demonstrates the program execution flow
and the data handling aspects of providing a system extension as a
callable routine. Note that the extension may allocate data exclusive
to each of its clients.

3-12

Chapter 4. Process Control

The process control functions of OS/2 are:

• Timer Services
• Multitasking
• Interprocess Communication (IPC)
• Asynchronous Notification
• Program Execution Control
• Errors and Exceptions
• OS/2 Message Functions

Timer Services

These services are related to time of day and intervals of time. They
provide the full range of time primitives for implementing timer-based
applications.

Timer Management

In OS/2; all time-related functions are based on a periodically inter
rupting time source. The timer operates With a frequency of approxi
mately 32 hertz. This rate is sufficient for most applications, but you
are limited to a time interval with a precision of less than 50 millisec
onds.

Time/Date

DosGetDateTime and DosSetDateTime are the function calls that get
and set the system date and time. (For a detailed description of these
function calls refer to Technical Reference, Vol. 2.)

4-1

Timer Intervals

In addition to the Date and Time functions, OS/2 provides the fol
lowing time-interval functions:

• Asynchronous intervals - the system notifies a task that a period
of time has elapsed.

• Regularly occurring intervals - the system continuously notifies a
task that a designated period of time has elapsed.

• Sleep for a period of time - a task can delay its execution for a
certain period of time.

The timer interval functions allow specification of the time interval in
milliseconds; however to reduce system overhead, the actual resol
ution Is typically on the order of 50 milliseconds.

The timing functions are only accurate to within one or two clock
ticks. The application can perceive that the time elapsed is longer
than specified because of delays in getting the application resumed.
All time values are in milliseconds and are rounded up to the next
clock tick. The clock tick duration can be determined by using the
DosGetlnfoSeg function and examining the timer interval field in the
Global lnfoSeg.

If it is necessary for an application to know the time elapsed while
waiting for a timer, a comparison can be made of the milliseconds
field (in the Global lnfoSeg) before the wait began and the millisec
onds field after the application resumed execution. This technique is
accurate to within one or two clock ticks. The value in the millisec
onds field will roll over every few weeks. If the application sus
pended prior to a rollover and awoke after a rollover then the elapsed
time calculation may need to take that into account.

When interrupts are disabled for periods longer than the clock tick
interval, the milliseconds field can lose time. However, the time of
day (hours, minutes, seconds), time in seconds since 1-1-70, and the
date will remain accurate. When interrupts must be disabled for a
long period, the elapsed time should be computed from seconds,
rather than milliseconds.

4-2

Timer Services Function Call Summary

For function call details, refer to Technical Reference, Vol. 2.

The timer services function calls provided are summarized as
follows:

Get the system date and time
Set the system date and time

DosGetDateTlme
DosSetDateTlme
DosSleep Synchronous pause (wait or sleep) for interval of

time
DosTlmerAsync
DosTlmerStart
DosTlmerStop

Multitasking

Start asynchronous timer, one shot
Start interval timer, asynchronous, continuous
Stop interval or asynchronous timer

Multitasking is an integral part of OS/2. A priority-based, time-slicing
scheduler is provided with special consideration for applications with
time critical response requirements.

The functions provided to a multitasking application developer
include the ability to:

• Initiate and terminate other processes
• Vary a process' dispatch priority
• Execute programs as separate processes
• Coordinate execution among several processes
• Communicate between several processes.

Many of these functions are also available for multiple execution
threads within a single process.

The multitasking features of OS/2 allow a user to operate several
applications concurrently. For most purposes, each application
appears to run in a separate protected computer by itself and can be
designed and coded in much the same manner as under the current
DOS. This case of multiple concurrent applications is the simplest
form of multitasking. In this instance, each application's execution is
managed under a process and one thread of execution.

4-3

For more complex application requirements, an application can be
designed such that its functions are divided among a collection of
cooperating processes (or threads).

Threads are dispatched for execution on a priority basis with a time
slicing scheduler being provided to ensure threads of equal priority
receive an equal opportunity to execute. For applications with time
critical response requirements, special mechanisms (such as
DosEnterCritSec and DosExitCritSec) are provided to ensure their
successful operation.

Tasking (Processes and Threads)

This section describes those functions that are provided to initiate
and terminate processes, to vary process priority, and to execute
other programs as separate processes.

The section "Interprocess Communication (IPC)" on page 4-9
describes those functions that provide coordination and communi
cation between processes.

Definitions

Process An instance of program execution. Includes at least one
thread and ownership of resources defined or used by the
program.

Thread A unit of execution within a process. A thread is the dis
patched unit.

A process is that identifiable entity which represents an executing
program and the resources in use by that program. Only a process
can own resources; a thread can only access resources on behalf of
its parent process.

The thread is the dispatched unit within a process. A thread is not
identifiable outside its parent process.

4-4

Where necessary, various sections of this book use terms such as
current thread, waiting thread, or parent thread. This terminology is
meant to clarify discussing one thread of a process, rather than the
process itself.

An application can be designed as several distinct processes or as
multiple threads within a single process. Consider the following:

• The creation and termination of a thread is very fast while the
creation of a process is relatively slow.

• Sharing of data and resources between threads is natural.
Sharing between processes requires special considerations.

• The creation of a process is costly to system memory.

• If the problem can be best solved by multitasking entities with a
high degree of independence, multiple processes is the proper
choice.

• Several independent processes may also be the best choice for
applications in which the independence or function of the process
model is required. This is particularly true when the various pro
grams of the application are tightly coupled with respect to inter
process communication or fixed, shared data areas.

• Multiple threads is the better choice if the concurrent execution
entities are started for only a short period of time as the overhead
to start and end a thread is much less than for a process.

• A thread is also more suitable for problems in which multiple
executions are needed, yet where each execution need not be
externally identifiable and does not require distinct or separate
resources.

4-5

The diagram below shows the process structure when the user has
started three applications: an editor, a communications handler, and
a data base manager. Because these are independent applications,
they have no knowledge of one another. The fact that they can share
a physical disk on which their individual Disk Files are located is
known and managed only by OS/2.

Multiple Independent Processes Diagram

Multiple Processes

Process Process Process

.....__E_d_ito_r ___ __.J [COMM. Handler] [Data Base Mgr J

l

4-6

Resources in use:
- Display

Resources in use:
-Comm. Line

- Disk File
- Printer

- Disk File

•
Process Unique Information

ID
Swap information
LDT pointer
Resources in use
- Files
- Pipes
- Programs
- Memory

Resources in use:
- Disk File

J

For a solution to an application where multiple asynchronous exe
cution threads are needed, the following diagram demonstrates how
the various threads might operate, each using different devices to
accomplish a portion of the overall solution.

Multiple Threads within a Process Diagram

Process (unit of resource ownership)
I
I
I
I
I
I
I
I

= = = ~~~~~~i~~t~og =L~~e= = t = = = = Ti~;:;~~ication
l Thread I ~~~~~~

I
I
I
I
I
I
I
I

User l
Interface I======

1
_,

Thread Console
======.... and
i Keyboard
I
I
I
I
I

Disk File i
~~~=~sing1= = == = = 7= = === =.j Disk 

Process-Unique Information 
ID 
Swap information 
LDT pointer 
Resources in use 
- Files 
- Pipes 
- Programs 
- Memory 

I 
I 
I 
I 

Thread-Unique Information 
ID 
Disparching Information 
Priority 
Processor state 
Time slice 
Stack pointer 
Registers 

4-7 



Resource Management 

OS/2 provides resource management and tracks ownership at the 
process level. The resources which a process can own, or be 
granted controlled access to, are: 

• Files (and devices if opened at that level) 
• Memory 
• Pipes 
• Queues 
• System semaphores 

When a process terminates, any of the above resources which it does 
not explicitly close or release is released automatically. 

Tasking Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The tasking function calls are summarized as follows: 

DosCreateThread 
DosCwait 
DosEnterCrltSec 
DosExecPgm 
Dos Exit 
DosExltCrltSec 
DosGetlnfoSeg 
DosGetPrty 
DosKillProcess 
DosSetPrty 

4-8 

Start a thread of execution within a process. 
Wait for a child process's termination. 
Enter critical section of execution. 
Execute a program as a new process. 
Exit the current thread or process. 
Exit critical section of execution. 
Get addresses of system variables segments. 
Get a process's (or thread's) priority. 
Terminate another process. 
Set a process's (or thread's) priority. 



Interprocess Communication (IPC) 

OS/2 provides several methods for interprocess communication: 

• Signals 

• Messages 

- Pipes 
- Queues 

• Semaphores 

- RAM semaphores 
- System semaphores 

• Shared memory 

Pipes, queues, and semaphores are created by the applications. 
They are identified by handles, or addresses that are passed among 
the interested processes as necessary. 

The semaphore support provides serialization, or signalling, by 
means of RAM semaphores and system semaphores: 

• RAM semaphores are a High-performance mechanism best used 
between the threads within a process. 

• System semaphores are a high-function mechanism particularly 
suited for use between processes. 

To ease the task of sharing resources between programs, 05/2 
extends the standardized naming conventions of the file system to 
queues; system semaphores, and shared memory. This ensures ref
erences to the same name are resolved to the same resource. 

4-9 



Communication via Signals 

Communication via signals is used to allow one process to set an 
external event flag to another process. The target process must use 
DosSetSigHandler to inform OS/2 that it wishes to intercept any of 
three flags. Another process then can issue a DosFlagProcess indi
cating which of the flags to signal. The target process will receive 
control at the signal handler it has defined for that signal. 

Communication via Messages 

Two facilities provide for interprocess communication via 
messages - pipes and queues. 

Pipes 

Pipes are an IPC mechanism based on the file 1/0 concept. Pipes are 
a technique by which two related processes can communicate as if 
they were doing file 1/0. In fact, a program which inherits a pipe 
handle cannot distinguish if its 1/0 requests to that handle are to a file 
or pipe. 

For communicating via pipes, the standard OS/2 read and write func
tions are used. Pipe support is provided only for applications in 
which the pipe participants are a closely related group of processes. 
The functions provided are in the DosMakePipe function call. 

The storage required, or available, for a pipe 1/0 request to be per
formed can be a consideration. Pipes are effectively fixed length in 
nature. The most any pipe can hold is 64Kb at any one time. If a pipe 
is full, further write requests will block until sufficient data is removed 
from the pipe. 

4-10 



For example, with COMMAND.COM a user issues a DIR command, 
piping DIR's output to SORT. This gives a sorted directory listing. 

Piping Output of One Program to Another: The following diagram 
depicts how information is piped from one program to another: 

Command: DIR I SORT 

"DIR" 
Command 

Next 
IN 

= 

PIPE 

aaaaaaaaa 
aaaaaaaaa 

eeeeeeeee 
eeeeeeeee 

bbbbbbbbb 

ggggggggg 
ggggggggg 

Next 
OUT 

== ... 
SORT 

Program 

OS/2 keeps track of the data and free space in the pipe with the Next 
IN and Next OUT pointers. When the pipe is full, the next write by the 
DIR process waits until SORT has removed enough data to make 
room for the new message. 

Pipes can also be used as a form of a fixed length first-in-first-out 
(FIFO) circular queue providing communication between processes. 

4-11 



Communicating with a Pipe 

The following diagram depicts the use of a pipe to pass data to a 
server process X from three child processes A, B, and C. The 
sending processes send data independently of one another. Process 
X removes data from the pipe in the order in which it arrived. 

Next 
IN 

Next 
OUT 

!Process A~=== PIPE 

= = ~ Process X I aaaaaaaaa 
aaaaaaaaa 

l Process B f = = = 
eeeeeeeee 
eeeeeeeee 

bbbbbbbbb 
--------------- = = .... 

j Process C f = = = 
ggggggggg 
ggggggggg 
ggggggggg 

ccccccccc 

==== .... 

Comparing Pipes with Flies: 

• Similarities 

Data is communicated to pipes by the standard DosRead and 
DosWrite function calls. 
Pipes are closed by the standard DosClose function call. 

• Differences 

4-12 

Pipes are created by DosMakePipe rather than one of the file 
system create requests. 
Pipes need not be opened before being accessed, only the 
DosMakePipe is necessary. 
Pipes are implemented via an internal storage buffer mech
anism rather than having their data maintained on disk. 



When writing to a file, the requesting thread is blocked only 
while doing file 1/0. When writing to a pipe, the requesting 
thread will block if the pipe reader allows the pipe to fill up. 
Writing to a pipe is not interspersed. No other thread can 
write to that pipe until the write in progress is completed. 
Any thread that attempts to write to the pipe is blocked. 
Reading data from a pipe removes that data from the pipe. 
Subsequent reading will not find that data. 

Pipes are inherited in the same manner as files. A using process typ
ically creates a pipe, then starts a child process (which inherits the 
pipe handles) and communicates to the child process with the pipe 
handles. 

Queues 

For more sophisticated applications, queues provide a more powerful 
mechanism for interprocess communication of data between proc
esses. 

Communicating with a Queue 

The following diagram shows a queue passing data to a server 
process Y from three child processes D, E, and F. 

Queues 
Data 

Structure 

I Process D f = = = Message 'h' = = ~ Process Y j 

Message 'k' 

j Process E p = = = 
Message 'j' 

Message 'n' 

j Process F f = = = Message 'm' 

4-13 



As with pipes, the sending processes can send data independently of 
one another. However, unique to queues, outstanding elements can 
be ordered by priority or by arrival order, first-in first-out (FIFO) or 
last-in first-out (LIFO). Also, process Y can examine each element in 
the queue and remove them whenever, and in any order, desired. 

A feature of queues compared to pipes is that queues have a per
formance advantage because the data is not copied in queues, but is 
passed in a shared segment. Also, there is virtually no size limita
tion for the messages themselves. While the total message text a 
pipe can contain is 64Kb, queues can contain very large amounts of 
data. This is because each message is a unique block of storage and 
the aggregate of all messages can be dispersed across the entire 
machine. 

Comparing Pipes and Queues 

Queues are similar to pipes, with the following exceptions: 

• Pipes use the file system interface (close, read, write). Queues 
have their own special calls. 

• Pipes are data-stream oriented; queues contain message 
packets. 

• Pipes are FIFO; queue messages can be ordered FIFO, LIFO, or 
by priority and can be accessed in random order. 

• Data in queues can be purged. 

• Queue data is not copied; the shared segment containing the data 
must be made accessible to the recipient. 

• There can be multiple writers into a queue, but only one 
reader/owner. Multiple readers can be realized by means of mul
tiple threads within the process which owns a queue. 

• A count of the outstanding queue messages can be supplied to 
any process which has access to a queue. 

• Queues are variable length; however, the maximum number of 
elements which can be placed in a single queue is no greater 
than 3260. 

Like pipes, queues can be blocked on. 

4-14 



Pipes are a technique used by two processes to communicate as if 
they were doing file 1/0. In fact, a program which lists a file can have 
its input or output specified as being a pipe and the program would 
operate without change. The pipe support would ensure that all data 
read or written by the program went to a pipe rather than to a file or a 
printer. 

Programs using queues must be designed and coded with the con
cepts and function calls defined by queuing. These calls are not like 
the file 110 calls, and the processing of data is completely different 
from pipes. 

Queues are more efficient than pipes because, only a pointer to the 
data is passed. 

The storage required, or available, for the IPC to be performed is 
often a consideration. Pipes are fixed in length (not over 64Kb); while 
queues can be of relatively unbounded length because queue mes
sages do not need to be contained in one segment. 

The application designer must take into account all these factors bal
ancing the performance requirements against the storage use char
acteristics of each solution. 

Queue Function Calls 

For function call details, refer to Technical Reference, Vol. 2. 

The queue function calls are summarized as follows: 

Close a Queue 
Create a Queue 
Open a Queue 

DosCloseQueue 
DosCreateQueue 
DosOpenQueue 
DosPeekQueue 
DosPurgeQueue 
DosQueryQueue 
DosReadQueue 
DosWrlteQueue 

Get an element from queue, but do not remove it 
Purge all entries from a queue 
Find how many elements are in queue 
Get an element from a queue and remove it 
Add an element to a queue 

4-15 



Managing Queues 

This section is an aid to application programmers who are imple
menting more complex server environments with OS/2 queuing as the 
means of interface between processes. 

In these environments, it may be advisable to provide a dynamic link 
interface routine which fields application program requests in a lan
guage consistent with the server's other cal Is and translates the 
requests into the appropriate OS/2 queuing and memory manage
ment calls. 

For any of the techniques described here, the memory suballocation 
functions (DosSubAlloc, DosSubFree, and DosSubSet) should be used 
to allocate or free any message storage required. 

The Segment for Data Storage 

The OS/2 memory protection features provide total isolation between 
processes with memory being shared only when explicitly requested 
either by the shared memory function calls DosAllocShrSeg and 
DosGetShrSeg or by DosAllocSeg and DosGiveSeg or by DosGetSeg. 

When using the OS/2 queuing functions, the two processes involved 
in the queuing conversation must each have addressability to the 
data that is communicated. (The queuing support provides the offset 
and length of the data, but not message copy facilities.) 

Managing Data Storage Examples 

Several techniques can be used to manage the data storage required 
for the message that is transmitted, depending on the requirements of 
the particular application. For example: 

• For a solution which involves tightly coupled processes communi
cating with small messages, or at low data rates, manage the 
message storage in a single shared segment. 

4-16 

The name for this segment can be established by mutual agree
ment among the parties involved or, for simplicity, the name 
chosen for this segment could be the same as that chosen for the 
queue. 



The biggest disadvantage of this solution is the limit imposed by 
the single 64Kb segment size available for data elements; that is, 
64Kb is the limit that can be devoted to message storage. This 
may not be a problem if the server process is never busy for a 
long period of time or if only short messages are being sent. But, 
the 64Kb limit may not be acceptable for long messages or when 
the server process is unable to keep up with requests from 
several clients. Remember, for this example, the 64Kb limit 
applies to the sum of all messages for all client processes. 

• For a more complex server-client implementation, where poten
tially many client processes are driving a server, use a queue
driven server that provides support for several processes. 

For this example, assume the server provides either a single 
queue for all clients or a separate queue for each client. 

A table could be kept with each entry being composed of: 

The Process ID (PIO) 
- Shared memory segment name 
- Shared memory handle. 

On any CALL, the server need only obtain the currently active 
PIO, scan its table looking for that PIO and: 

If found, get the storage handle to be used for this process. 

If not found, the storage segment has not been created. As 
this must be the first request from this process, the shared 
segment must be created and a table entry setup for this 
process. 

When the server close function is received, the server must 
remove this process entry from the table. 

• You could also allocate the data segment with DosAllocSeg and 
use DosGiveSeg to pass addressability to the server. This 
method allows each message to be any size up to the 64Kb limit. 

For this technique, the following steps can be used: 

When issuing DosOpenQueue, the process ID of the queue 
owner is saved. 

The queue element segment is allocated, via DosAllocSeg, 
specifying the segment is to be shared. 

4-17 



DosGiveSeg is used to pass addressability to the segment 
from the cli.ent to the server. 

When a request is to be made, DosWriteQueue is issued ref
erencing this segment by providing the Recipient SegHandle 
(returned from DosGiveSeg) in the DataBuffer field. 

When the client completes its queue requests or terminates, the 
server should issue a DosFreeSeg to release the segment. 

Queue Element Copy Function 

A highly efficient element copy function can be implemented by 
means of the DosGiveSeg technique described above. As the client 
allocates the buffer and gives it to the server, there is no added per
formance cost required to subsequently make a copy of the data from 
the client's buffer to the server's buffer. 

Queue Element Delete Function 

Some server applications can require the ability to delete individual 
elements from a queue. For example, on discovering that a client 
process has terminated, it may be necessary to delete all remaining 
elements which are from that process. 

This can be accomplished by setting up a loop similar to the 
following: 

4-18 

Do until end_of_queue 
DosPeekQueue NoWait 
If Have Element AND element's PIO = PIO of interest 

Then 
DosReadQueue Element Peeked above 

End do 



Coordinating Execution Among Several Threads 

In a multitasking application environment, OS/2 functions allow proc
esses to exercise some control over other processes and/or threads 
within their own process. The functions provided include: 

• Semaphores (RAM-based and file-system-based} 
• Starting and stopping a thread's execution 

Semaphores 

Semaphore functions allow multiple processes (or threads} to control 
access to serially reusable resources within the same process. 
There are two types of semaphores supported: RAM semaphores and 
system semaphores. 

RAM Semaphores 
RAM Semaphores are defined by the requesting program allo
cating a double word of storage and using the address in the 
semaphore calls provided below. RAM semaphores are a 
minimal-function mechanism with OS/2 performing no resource 
management services such as freeing when the owner termi
nates. 

RAM semaphores are a high-performance mechanism that 
require using processes to have shared access to the same 
area of memory in which the RAM semaphore is defined. The 
affected processes define the semaphore by convention (mutual 
agreement} as a particular double word in some shared storage 
area. 

RAM semaphores are best suited for signaling. They cannot be 
used to control access to resources reliably. 

System Semaphores 
System Semaphores are defined by OS/2 in response to a 
create-semaphore function call. Once created, they can be 
accessed by separate processes, and OS/2 provides full 
resource management, including freeing and notification when 
the owner terminates. 

System semaphores are a full-function mechanism, providing 
control between any process and thread with OS/2 managing 
the storage for the semaphore data structure. System 
semaphores are defined within the file-system name space as a 

4-19 



pseudo file instead of a RAM location. The semaphore is a 
pseudo file in that its name takes the form of a file in the subdi
rectory SEM, although this subdirectory does not actually exist; 
system semaphores and their names are kept in memory. 

Comparison of RAM and System Semaphores 

When discussing semaphores, the terms owned, unowned, set, or 
clear are used to describe the state of a semaphore at a particular 
time. The concept of ownership applies only to system semaphores 
which are created with exclusive ownership indicated. When a 
semaphore is owned, it is an error for a thread other than the owner 
to try to mc;>dify that semaphore. 

The handle for RAM semaphores is the address of the double word of 
storage allocated. If the address of the RAM semaphore is invalid, 
the system will terminate the process with a general protection fault. 

• System semaphores are more flexible and easier to use than 
RAM semaphores because: 

They can be used by processes which do not share memory. 
- Their ownership is relinquished when the owner terminates. 
- They provide more function. 

• RAM semaphores offer a slight performance advantage over 
system semaphores because the handle used to refer to them is 
actually the address of the semaphore. The handle of a system 
semaphore must be translated to the memory address of the 
semaphore data structure. 

• RAM semaphores should not be used between processes to 
control access to a serially reusable resource because it is not 
possible to relinquish the semaphore should the owner end 
abnormally. In the case of system semaphores, should the owner 
end, OS/2 will release the semaphore and notify the next thread 
which gets the semaphore that the owner ended while holding the 
semaphore. 

4-20 

Note: RAM semaphores can be used between cooperating proc
esses. DosExitlist can be used, for instance, to write into a 
shared memory location to inform a process using a RAM 
semaphore that the semaphore owner has ended abnormally. 



RAM Semaphore Diagram 

The following diagram depicts the use of DosSemRequest and 
DosSemClear for serializing access to a resource. Only a single 
thread can enter the semaphore at a time. The effect is that all other 
threads are locked-out from use of the serially reusable resource 
until the entering thread leaves the semaphore. 

DosSemRequest sem = SRR 

Update 
or 

Access 

(Serially 
Reusable 
Resource) 

DosSemClear sem = SRR 

Multiple 
Concurrent 
Threads 

Multiple 
Concurrent 
Threads 

General Semaphore Function Calls 

The function calls provided for controlling access to a serially reus
able resource (via either RAM or system semaphores) are: 

DosSemClear 
DosSemRequest 

Clear a semaphore. 
Obtain a semaphore. 

Signalling via Semaphore Function Calls 

In addition to the resource control semaphore function calls 
described previously, OS/2 provides three function calls to signal that 
an event has occurred between threads/processes: DosSemSet, 
DosSemSetWait, and DosMuxSemWait. These function calls can be 
used in combination with the DosSemClear and DosSemSet function 
calls to awaken a blocked thread whenever a semaphore is cleared, 
rather than when it is no longer owned. In fact, owning a semaphore, 
as mentioned in the DosSemRequest description, does not apply to 
these function calls. 

4-21 



To allow a simple wait or post type of signalling between 
threads/processes, several function calls are provided: 

DosSemSet 
DosSemSetWait 
DosSemWalt 
DosMuxSemWalt 

Set a semaphore. 
Set a semaphore and wait for it to be cleared. 
Wait for a semaphore to be cleared. 
Wait for any one of many semaphores to be 
cleared. 

System Semaphore Function Calls 

The function calls provided to support the allocation, access authori
zation, and deallocation of system semaphores are: 

DosCloseSem 
DosCreateSem 
DosOpenSem 

Close a system semaphore. 
Create a system semaphore. 
Open an existing system semaphore. 

Starting and Stopping a Thread's Execution 

For explicitly controlling when a thread can execute, the following 
function calls are provided: 

DosResumeThread 
DosSuspendThread 

4-22 

Restart a thread's execution. 
Suspend a thread's execution. 



IPC Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The Interprocess Communication function calls provided are summa
rized as follows: 

DosCloseQueue 
DosCloseSem 
DosCreateQueue 
DosCreateSem 
DosMakePlpe 
DosMuxSemWalt 

Close a Queue 
Close a system semaphore. 
Create a Queue 
Create a system semaphore. 
Create a Pipe 
Wait for any one of many semaphores to be 
cleared. 
Open a Queue 
Open a system semaphore. 

DosOpenQueue 
DosOpenSem 
DosPeekQueue 
DosPurgeQueue 
DosQueryQueue 
DosReadQueue 

Get an element from Queue, but do not remove it 
Purge all entries from a Queue 
Find how many elements are in Queue 
Get an element from a Queue and remove it 

DosResumeThread Restart a thread's execution. 
DosSemClear Clear a semaphore. 
DosSemRequest Obtain a semaphore. 
DosSemSet Set a semaphore. 
DosSemSetWalt Set a semaphore and wait for it to be cleared. 
DosSemWalt Wait for a semaphore to be cleared. 
DosSuspendThread 

Suspend a thread's execution. 
DosWrlteQueue Add an element to a Queue 

4-23 



Asynchronous Notification 

Signals allow a process to intercept and deal with a variety of traps 
and external events. The signal facility allows a program to specify 
an on condition handler routine which is executed when the event 
occurs. 

Examples of events that can cause signal handlers to be executed 
are: 

• Control-Break (or Control-C) key pressed 
• Program terminated via DosKillProcess 

Each process can define a process-unique signal handler for any 
signal. 

Signals fall into two categories, traps and external events. Trap 
events are synchronous in that they are a result of an instruction exe
cuted by one of the process's threads. Most program traps (such as 
divide by 0) are handled via the DosSetVec function call. All other 
signals are external events. 

An incoming signal is handled in one of several ways: 

• The default action, typically IGNORE or TERMINATE PROCESS. 

• If the process has specified a signal handling address and the 
exception is a trap, the thread causing the trap will execute the 
signal handler routine. The thread executes that handler imme
diately. 

• If the process has specified a signal handling address and the 
exception is an external event, thread 1 (the original task thread) 
is diverted, in a forced far call analogous to a hardware interrupt, 
to the proper signal handler address. Because a signal repres
ents a time-critical event, if thread 1 is in the midst of a function 
call that does not complete quickly then the function call is 
aborted. The signal interrupt takes place immediately upon 
return from the OS/2 service call. Slow calls aborted in this 
manner are primarily device 1/0 calls. File function calls 
(disk open/close/read/write) are not normally aborted. 

4-24 



An application which expects to make non-emergency use of 
signals should reserve thread 1, perhaps by having it block upon 
an eternally reserved RAM semaphore, and use ano~her thread 
for program execution. 

Asynchronous Notification Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The Asynchronous Notification function calls provided are summa
rized as follows: 

DosHoldSlgnal Disable/Enable signal processing 
DosFlagProcess Set process external event flag 
DosSendSlgnal Send CTL-C or CTL-Break signal 
DosSetSlgHandler Define a routine to handle a signa1. 

4-25 



Program Execution Control 

Dynamic Linking 

Dynamic linking is the delayed binding of external references. There 
are two forms of dynamic linking: 

• Load time 
• Run time. 

Dynamic link routines, both load time and run time, are shared by 
invoking applications. Both the code and the data segments of a 
dynamic link routine are shared (unless the nonshared data option is 
selected during the module link process). It is a dynamic link rou
tine's responsibility to serialize access to its shared data segments. 

Note: A dynamic link routine can allocate nonshared memory. 

In load time dynamic llnklng, a program calls a dynamically linked 
routine just as it would any external routine. When the program is 
assembled or compiled, a standard external reference is generated. 
At link time, the programmer specifies one or more libraries con
taining routines to satisfy external references. External routines to 
be dynamically linked contain special definition records in the library. 
A definition record tells the linker that the routine in question is to be 
dynamically linked and provides the linker with a dynamiC link 
module name and entry name. The module name is the name of a 
special executable file with the filename extension of .DLL which con
tains dynamic link entry points. The linker stores module name or 
entry name pairs describing the dynamic link routines in the .EXE file 
created for the program. When the calling program is run, OS/2 loads 
the dynamic link routines from the modules specified and links the 
calling program to the called routines. · 

To invoke run time dynamic linking, the application uses the function 
calls described in this section. 

A dynamic link module can have an optional initialization routine. 
This routine is invoked when the dynamic link module is first loaded, 
before any dynamic link routine is actually called. The initialization 
routine is the entry point specified on an END statement in one of the 
Assembler source files of the dynamic link module. Only one source 

4-26 



file can have an END statement identifying an initialization routine. If 
no entry point is specified on any END statement, no initialization 
routine is called. Input to the initialization routine is as follows: 

AX = Module handle. 

SI = HEAPSIZE parameter from the .EXE file. 

DI = Module handle for the dynamic link module. 

DS = The library's DGROUP data segment if one exists. Other
wise, OS = The application's DS. 

Initialization routines exit via far return. Contrary to the standard 
convention, initialization routines set AX not equal to zero to indicate 
success and AX equal to zero to indicate failure. 

Demand Load 

The OS/2 demand load function supports loading code segments on 
demand when called during the execution of a program, as opposed 
to preloading all code segments before program execution begins. 
Code segments are discarded as required to provide space for other 
uses. Code segments which are demand loaded, as opposed to pre
loaded, are identified in the .EXE file header for the program. 

Demand Load is enabled only when swapping is turned on. 

Demand load is supported for the code segments of any program, not 
just for dynamic link routines. 

1/0 Privilege Model 

Although OS/2 applications do not have 1/0 privilege, subsystems can 
have routines which execute with 110 privilege. Code (and data seg
ments) requiring 110 privilege can be flagged when the subsystem is 
linked. Refer to "Dynamic Linking" on page 4-26. 

A routine requiring 1/0 privilege is allocated a 512-byte stack. Seg
ments executing with 110 privilege may not contain links to any other 
segments or modules. Such segments cannot issue OS/2 calls. 

Starting programs which require 1/0 privilege can be controlled by 
the CONFIG.SYS parameter IOPL. 

4-27 



EXE File Information 

The OS/2 .EXE file provides support for segmented programs and 
80286 protect mode programs. An OS/2 .EXE file represents either an 
application or a module containing dynamic link entry points. 

The following items are applicable to applications only: 

• Segment #:offset of entry point 
• Segment# passed in OS on program invocation 
• Segment #:offset of stack 
• Stack size 

The following items are kept on a per segment basis: 

• Code or data 
• If code segment, pre-load versus demand load 
• If data segment, whether segment is read only or read/write 
• Whether segment requires 110 privilege 
• Fix up records for external references including 

References resolved within this .EXE file 
References resolved via dynamic link. These include module 
name/entry point name pairs and/or module name/entry point 
ordinal pairs. Each pair identifies a dynamic link module 
(.DLL file) and a dynamic link routine within that module. 

• Fix up records to support 80287 emulation 
• Fix up records to support huge addressing 
• Debug information. 

The following items are kept per far call entry point: 

• Entry point name 
• Whether the entry point name is exported 
• Segment #:offset of entry point 
• The number of parameters which must be copied from the call

er's stack to the callee's stack when an entry point requiring VO 
privilege is invoked. 

4-28 



Program Execution Control Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The program execution control function cal Is provided are summa
rized as follows: 

DosFreeModule 
DosGetProcAddr 
DosGetModHandle 
DosGetModName 
DosloadModule 

Free Dynamic Link Module 
Get Dynamic Link Procedure Address 
Get Dynamic Link Module Handle 
Get Dynamic Link Module Name 
Load Dynamic Link Module 

Errors and Exceptions 

Errors from Function Requests (Return Codes) 

All function calls return AX = O if the operation is successful. If an 
error condition is encountered, AX = an error code. 

For function call return codes and return code details, refer to Tech
nical Reference, Vol. 2. 

Hard Error Override 

Hard error processing occurs without direct application notification. 
In the event that an OS/2 application needs to process these events, a 
new function call (DosError) is provided. This allows the application 
program to notify OS/2 that all permanent errors associated with the 
process, or an open handle belonging to the process, are to be 
reflected as immediate failures. 

Handling Machine Exceptions 

An application can provide a routine to process machine exceptions 
occurring while it is executing. This allows language libraries to 
furnish 287 emulation or error recovery routines. 

4-29 



Errors and Exceptions Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The errors and exceptions function calls provided are summarized as 
follows: 

DosError 

DosSetVec 

Allows a process to receive hard error notifica
tion without generating a hard error signal. 
Establish Handler for Exception Vector. 

OS/2 Message Functions (Message Retriever) 

The Message Retriever provides an application message functions to 
retrieve and insert variable message information, insert message 
text, and output messages. 

Message Functions Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The function calls provided are summarized as follows: 

DosGetMessage Get a system message with variable text 
inserted. 

DoslnsMessage Insert variable text string information into body of 
message. 

DosPutMessage Output a message to the supplied handle. 

Program Startup Conventions 

The rules on the content of various data areas and registers on 
program entry and termination are different for old programs than 
new programs. 

For old programs, the conventions of DOS 3.3 apply. 

For programs linked with OS/2, the new conventions are: 

• There is no Program Segment Prefix (PSP) 

4-30 



• The environment, program pointer, and arguments are passed in 
a segment (selector in AX) 

When the indicated program is given control, it will receive a pointer 
to a copy of the environment followed by a copy of the PgmPointer 
string followed by two argument strings. The following sample shows 
how to start a typical OS/2 program. 

Environment: ASCIIZ string 1 environment string 1 
ASCIIZ string 2 environment string 2 

ASCIIZ string n environment string n 
Byte of 0 

Program Pointer: ASCIIZ string of filename 
of program to run. 

Arguments: ASCIIZ argument string 1 
ASCIIZ argument string 2 
Byte of e 

Environment consists of a list of strings typically having the following 
form: 

parameter = value 

Program Pointer is an ASCllZ string of the drive, directory path, and 
filename of the program being executed. 

Arguments consist of two strings representing command parameters 
for the program as opposed to the environment parameters. When a 
program is started from the command line, GMO.EXE will set argu
ment string 1 to the program name as it was entered on the command 
line. Argument string 2 will contain program parameters as entered 
on the command line. 

Shown below is a dump of a sample environment, program pointer, 
and argument area. The dump was obtained after entering the fol
lowing command: 

c:src\startup 1111 2222 3333 4444 5555 6666 7777 8888 

4-31 



Sample Dump 

AX=004F BX=003F CX=00C3 OX=0000 SP=0200 BP=0000 SI=0000 OI=0088 
IP=0000 CS=001F OS=002F ES=0000 SS=003F NV UP EI PL NZ NA PO NC 
GOTR=1172E0 3007 IOTR=11B000 03FF TR=0010 LOTR=0028 IOPL=2 MSW=PM EM TS 
001F:0000 CC INT 3 

004F:0000 33 58 42 4F 58 30 43 4F-40 40 41 4E 44 2E 43 4F 
004F:0010 40 00 50 41 54 48 30 00-43 4F 40 53 50 45 43 30 
004F:0020 41 3A 5C 43 40 44 2E 45-58 45 00 00 43 3A 5C 53 
004F:0030 52 43 5C 53 54 41 52 54-55 50 2E 45 58 45 00 63 
004F:0040 3A 73 72 63 5C 73 74 61-72 74 75 70 00 20 31 31 
004F:0050 31 31 20 32 32 32 32 20-33 33 33 33 20 34 34 34 
004F:0060 34 20 35 35 35 35 20 36-36 36 36 20 37 37 37 37 
004F:0070 20 38 38 38 38 00 00 00-00 00 00 00 00 00 00 00 

3XBOX=COMMANO.CO 
M.PATH=.COMSPEC= 
A:\CMO.EXE .• C:\S 
RC\STARTUP.EXE.c 
: s rc\startup. 11 
11 2222 3333 444 
4 5555 6666 7777 
8888 •.•.•...•••• 

The following registers are set on program entry: 

CS:IP 

SS:SP 

OS 

ES 

AX 

BX 

ex 
DX 

SI 

DI 

BP 

Points to the program initial entry point specified in the 
.EXE header. 

Points to the stack specified in the .EXE header. 

Points to the data segment specified in the .EXE header. 
When the program does not contain an automatic data 
segment, DS will contain zero and the program must ini
tialize DS if necessary. 

0 

Environment segment handle (selector). 

Offset in environment of command line start 

Length of data segment (0 = 65536) 

STACKSIZE parameter from the .EXE file. 

HEAPSIZE parameter from the .EXE file. 

Module handle for the application executable. 

0 

There are functions provided specifically for program startup. These 
functions allow an application to tailor its operation to specific ver
sions of DOS. The function calls are: 

DosGetEnv 
DosGetVersion 

4-32 

Get the Environment String. 
Returns the DOS version number. 



Chapter 5. Session Management 

The top layer of the session manager is called the shell. The shell 
interfaces with the application user. The OS/2 shell is the Program 
Selector. The Program Selector allows the application user to start 
and switch among sessiohs. One DOS mode and multiple OS/2 mode 
sessions are supported. 

The shell uses lower level session manager functions to start ahd 
switch among applications. Each application runs in its own session 
and has its own screen. One session is visible and is called the fore
ground session. The other sessions are called background sessions. 
Background OS/2 sessions continue to run until they issue some func
tion which causes them to wait, for example, request keyboard input. 
The DOS mode is frozen in the background. 

The video, keyboard, and mouse subsystems support the session 
manager. Screen, keyboard, and mouse 110 are routed on a per 
session basis. The session manager with the assistance of the video 
subsystem saves the contents of the screen over a screen switch. 
Application participation, reference "VIO Screen Save/Restore 
Operations" on page 6-20, is required to save the contents of the 
screen for graphics modes. 

5-1 



The following diagram shows the Program Selector and the 
display/keyboard/mouse routing features of the Session Manager. 

5-2 

DOS 3.3 
Compatible 
Application 
(Real Mode) 

User Program Selector 
(and Session Switching) 

New 
Protect Mode 
Application 

New 
Protect Mode 
Application 

Display/Keyboard/Mouse 110 routing 
(per session) 

Keyboard 
Control 

Display I Keyboard Hardware 



Session Manager Application Support 

The following session manager functions are available to OS/2 mode 
application programs: 

1. Start a program in another session and include the started 
program in the switch list. The new session becomes a child 
session of the calling program's session. Child sessions may be 
manipulated by the parent session as follows: 

• Enable a parent session to switch one of its child sessions to 
the foreground. 

• Enable a parent session to set one of its child sessions 
selectable or non-selectable. 

This option affects selections made by the operator from the 
shell switch list. It does not affect selections made by the 
parent session. 

• Enable a parent session to bind one of its child sessions to 
itself so that, when the parent session is selected, the child 
session is brought to the foreground. 

This option affects selections made by the operator from the 
shell switch list. It does not affect selections made by the 
parent session. 

• Enable a parent session to terminate one or all of its child 
sessions. 

Note: Although a parent session/child session relationship 
exists, a parent process/child process relationship does not exist. 
Refer to the paragraph "Parent/Child Relationship:" in the 
Remarks section of DosStartSession in Technical Reference, Vol. 
2. 

2. Start a program in another session and include the started 
program in the switch list. No relationship is established 
between the new session and the calling program. 

5-3 



Restrictions 

The session mahager interfaces described in this section may not be 
issued under the following conditions: 

1. By a process started by RUN= in CONFIG.SYS. 

2. By a process started by the Detach command. 

3. During a VIO popup (by a process which has issued VioPopUp 
and not yet issued VioEndPopUp). 

A total of 12 sessions may be started, whether by the operator 
through the shell menu or by an application through the API 
described in this section. 

Session mahager APi calls issued by background processes will be 
blocked during a hard error or VIO popup. 

Session Management API Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The session management API function calls are summarized as 
follows: 

DosSelectSesslon 
DosSetSesslon 
DosStartSesslon 
DosStopSesslon 

5-4 

Select Session 
Set Session Status 
Start a Session 
Stop Session 



Chapter 6. 1/0 Services 

OS/2 provides 110 access to the major character and block devices 
through function calls. Some devices are accessed through function 
calls specific to the device, such as the keyboard (KBD) and video 1/0 
(VIO) calls. A device such as a disk is accessed using file system 
function calls. In addition, the file system API is used to access any 
named character device, such as LPT1 or COM1. 

Many 1/0 function calls use a parameter called a handle. A handle is 
a 16-bit value that refers to a particular device or file. 

ASCllZ Strings 

Several 1/0 function calls accept an ASCllZ string (an ASCII string ter
minated by a byte of binary zeros) as input. 

Country Considerations: ASCllZ strings can be composed of mixed 
single- and double-byte characters, and can be used in the following 
cases: 

• Filename and filename extension 
• Path name 
• Directory name 

Filename Specification 

The OS/2 standard filename consists of 1 to 8 bytes (characters), 
optionally followed by a dot and extension. The standard filename 
extension consists of 1 to 3 bytes (characters). This 8.3 limit on the 
format may be expanded in the future; programs should not parse 
filename strings. 

Leading blanks are not allowed in the filename specification. ASCII 
characters less than 20H are illegal as well as the following 
characters: 

<>+=;, ... /\[] 

A period (.) or dot is the delimiter between filename and extension. 
The standard filename definition of 8.3 bytes means that name 

6-1 



formats longer than 8.3 received from OS/2 mode applications are not 
truncated to the 8.3 format and considered acceptable. Instead, they 
are classified as erroneous names. 

Name formats received from DOS 3.3 applications running in the DOS 
mode will be truncated to the 8.3 format. The resulting name is con
sidered acceptable. 

Name formats received from new applications written to the Family 
API and running under the DOS mode are not truncated to the 8.3 
format. Instead, they are classified as erroneous names. This 
insures that the Family API behaves the same whether running in the 
DOS mode or the OS/2 mode. 

Verification of valid filename characters uses the Country Support 
CDIDS (Country Dependent Information Data Structures) for Double 
Byte Character Set (DBCS) environmental vector and for file system 
character names. Refer to Chapter 11, "Country Support 
Considerations" on page 11-1 for more information. 

Country Considerations: If the 8th byte of a filename or 3rd byte of the 
extension is the first byte of a double-byte character, then the name 
or extension is not truncated to 7 bytes or 2 bytes respectively, but 
instead is reported as an error. 

Filenames can be entirely single-byte, mixed single- and double-byte 
or entirely double-byte characters. The use of a double-byte char
acter counts as two bytes. All double-byte characters can be used, 
with the exception of double-byte space. 

6-2 



Device Names 

The operating system has reserved certain names for devices sup
ported by the base device drivers. These device names are listed as 
follows: 

COM1-COM3 
CLOCK$ 
CON 
SCREEN$ 
KBD$ 
LPT1 or PRN 
LPT2 
LPT3 
NUL 
POINTER$ 
MOUSE$ 

First through third serial ports 
Clock. 
Console keyboard and screen 
Screen. 
Keyboard 
First parallel printer 
Second parallel printer 
Third parallel printer 
Nonexistent (dummy) device 
Pointer draw device (Mouse screen support) 
Mouse 

These names can be used in the DosOpen function call to OPEN the 
corresponding devices. Note that these reserved device names take 
precedence over filenames; the OPEN always checks for a device 
name before checking for a filename. The only exception is that 
COM1-COM3 are only reserved device names when the ASYNC 
(RS232-C) Device Driver is loaded. This means that a filename which 
matches a reserved device name can never be OPENed, because the 
device will be OPENed instead. 

Code Page Support 

OS/2 code page management reads keyboard input and writes 
display and printer output for concurrent multiple processes that 
input and output ASCII based character data encoded in different 
code pages. 

A code page defines a character set by assigning each character to a 
location in a code page table. A character set is implemented by 
using a "character shape" table from which a character is selected 
for output by its associated display or printer. A character set is 
either downloaded to a device or ROM resident at the device. 

The system accomplishes this by switching the required code page 
for a code page supported device prior to input or output. 

6-3 



The required code page is the current code page of the process at the 
time it opens a device or a specific code page selected by the 
process with a set code page API function. A character set can also 
be plugged in the device, such as the Quietwriter® 1111 printer. 

In addition, the country APls retrieve country and language 
dependent information in the current code page of the calling process 
or in a code page selected by the process. 

Code Page Management 

Code Page Management allows a user to select a code page for key
board input and screen and printer output before running an applica
tion, a system command or utility in the OS/2 multitasking 
environment. This allows the user in a particular country such as 
England (code page 437) or Norway (code page 865) or language 
region such as Canadian-French (code page 863) to run with a code 
page that defines an ASCII-based character set containing characters 
used by that particular country or language. 

OS/2 supports the following code pages: 

437 U.S. IBM PC code page 
850 Multilingual code page 
860 Portuguese code page 
863 Canadian-French code page 
865 Nordic code page 

OS/2 allows the user to prepare one code page or a combination of 
two code pages from the above list. Installable code page files 
include keyboard translate tables, display character sets, printer 
character sets, and country/language information for each code page 
supported. 

The primary features of Code Page Management are: 

• User commands (CODEPAGE and DEVINFO) in CONFIG.SYS for 
commanding system initialization to prepare selected code pages 

1 Quietwriter is a registered trademark of 
International Business Machines Corporation 

6-4 



and devices for code page switching at run time when in char
acter text modes. 

• An OS/2 user command (CHCP) to change the code page of its 
session (command process that executes CHCP) and any applica
tion that runs in that session. CHCP affects printer code pages 
only on print jobs that are opened subsequent to the command. 

• API functions for an application to set and query code page for a 
process, keyboard input, video output, and spooled printer output. 

• System code page switching of keyboard, display, 
printer/spooler, and country information for concurrent processes 
in different code pages. 

Orie system country code, one system keyboard layout, and up to two 
system code pages can be configured for system use at run time. 

Code Page Dependent Information 

System information dependent on the code page includes: 

• Video character set for display 
• Keyboard translate table for scan code to character conversion 
• Printer translate table and ROM code pages for printer 
• Country format information for time, date, and ·other formats 
• Language collate sequence table for character string sorting 
• Language case map table from lower to upper case 
• Language DBCS environment vector of lead bytes 

This information is created at system initialization and maintained in 
system storage by OS/2 for each system code page that is prepared 
and is retrieved as needed according to code page. 

Code Page Switching Examples 

Some examples of code page switching that can occur are: 

• The printer character set is switched by the Print Spooler to the 
process code page (that opens the printer) before it outputs the 
process write data stream to the printer. 

• A process requests DosGetCtrylnfo for the country information of 
the system country code or another selected country code and 

6-5 



the information is provided encoded in the code page of the 
process. 

Switching the display to the code page that a system ASCII message 
is encoded in prior to output is not provided. 

Data file code page tagging and code page switching based on the 
file code page tag is not provided. Also, filenames created under one 
code page may not be accessible by that name under another code 
page because the name characters may case map differently. This 
can be avoided by using only the first 128 characters of a code page 
for filenames or only unaccented characters (a-z, A-Z, and 0-9). 

Code Page Preparation 

During system initialization the selected code pages specified in the 
CODEPAGE command are prepared to allow run time code page 
switching of the display, the keyboard, the printer(s), and the country 
information. The display, keyboard, and printer(s) to be prepared 
must be defined in a DEVINFO command. Country information is pre
pared for the system country code specified in the COUNTRY 
command. If a resource cannot be prepared for the selected code 
page(s), then it is prepared for a default code page. 

System resources default in the following ways at system initializa
tion for code page preparation when the code page cannot be found 
for the resource. 

• A keyboard layout defaults to the code page of the translate table 
designated as the default layout in the KEYBOARD.DCP file. The 
default layout is based on the national code page of its associ
ated country. KEYBOARD.DCP must be explicitly specified in the 
DEVINFO statement for the keyboard in CONFIG.SYS. 

• The display defaults to the code page of ROM_O for the device. 
• The printer defaults to the code page of ROM_O for the device. 
• The country information defaults to the code page of the first 

entry found in the COUNTRY.SYS file for the country code. Each 
entry is the same information for a given country code but 
encoded in a different code page. The first entry is based on the 
preferred country code page. 

Note: ROM_O means a device default code page which is the device 
native code page or the lowest addressed ROM code page. 

6-6 



In the following table, countries are shown on the left, country codes 
are shown next, their default code page assignment is listed in the 
third column, and country keyboard layouts are shown on the right. If 
country information cannot be prepared at system initialization 
because it is not found in the COUNTRY.SYS file for a code page 
selected with the CODEPAGE command, then it is prepared (main
tained for run time code page switching in memory) in the default 
code page. Similarly, a keyboard layout is prepared in its default 
code page if it cannot be prepared in the selected code page because 
it is not found in the KEYBOARD.DCP file. COUNTRY.SYS contains 
one default entry per country code and KEYBOARD.DCP contains one 
default entry per keyboard layout based on these assignments: 

Ctry Code 
Country Code Page Kbd 

Asia 099 437 -
Australia 061 437 -
Belgium 032 437 BE 

Canada 002 863 CF 

Denmark 045 865 DK 

Finland 358 437 SU 

France 033 437 FR 

Germany 049 437 GR 

Italy 039 437 IT 

Latin America 003 437 LA 

Netherlands 031 437 NL 

Norway 047 865 NO 

Portugal 351 860 PO 

Spain 034 437 SP 

Sweden 046 437 sv 

6-7 



Ctry Code 
Country Code Page Kbd 

Switzerland 041 437 SF,SG 

United Kingdom 044 437 UK 

United States 001 437 us 

Although only up to two code pages can be selected with the 
CODEPAGE command, the system may actually have prepared three 
or more code pages at system initialization in case a system 
resource defaults on code page preparation. For example, the key
board may be prepared for a default code page that is different than 
the two selected code pages for which the display is successfully pre
pared. 

Code Page Operation 

Each process has a code page tag maintained by the OS/2 kernel. A 
code page is a table that defines how characters are encoded. A 
code page tag is the identifier of the current code page for the 
process. See the IBM Operating System/2™ Programmer's Guide for 
a description of code pages and the IBM Operating System/2™ 
User's Reference for information on configuring code pages for the 
system. 

A child process inherits the code page tag value of its parent. The 
default code page for the first process of a program started in a 
session is the same as the session code page. The default code page 
for a new session is the primary code page specified in the 
CODEPAGE configuration command. A process code page tag may 
be changed with the function call DosSetCp or DosSetProcCp and 
queried by DosGetCp. However, DosSetCp or DosSetProcCp does 
not change its parent or any child process code page tags. See Tech
nical Reference, Vol. 2 for details about these function calls. 

6-8 



The following explains what code page is used when performing 
process input and output: 

• Spooled printer output by a process is printed by the spooler in 
the code page of the process. The code page that the spooler 
uses to print is established through the system spooler and file 
system at the time the process makes an open printer request. 

• Video output by a process is shown by the Video Subsystem in 
the current code page of the implied video handle being used for 
output by the process. The default display code page for a new 
session is the primary code page specified in the CODEPAGE 
configuration command or defaults to the display ROM code 
page. The display code page can be changed by a process with 
VioSetCp or DosSetCp for the logical display of the session to 
which the calling process belongs. 

• Keyboard scan code input is converted into ASCII characters by 
the keyboard device driver in the current code page of the key
board handle being used for input by a process. The default key
board handle code page for a session is the primary code page 
specified in the CODEPAGE configuration command or defaults to 
US437. The keyboard code page can be changed by a process 
with KbdSetCp or DosSetCp for the logical keyboard of the 
session to which the calling process belongs. 

• Utility and command output is shown in the current code page of 
the command process which executes the function. 

An invocation of a CMD.EXE process in OS/2 or a COMMAND.COM 
process in the DOS mode is a session. Therefore, the code page of 
the command process is the session code page. The user command 
CHCP is provided to change the code page of a session. CHCP per
forms the following functions: 

• Sets the session's command process code page 
• Sets the session's logical display code page 
• Sets the session's logical keyboard code page. 

The printer code page is based on the process code page at the time 
the process makes an open printer request. No special command is 
needed for the printer. 

6-9 



Code Page Supported Devices 

Device code page support is provided for the keyboard and certain 
printer and display devices with code page download and switch 
capability. 

The devices supported by OS/2 code page switching include: 

• IBM Personal System/2™ Display Adapter 
• IBM Proprinter™2 
• Quietwriter® ma 
• Enhanced Graphics Adapter (EGA) 
• Video Graphics Array (VGA) 

Special Considerations and Limitations 

Code Page Management has these special considerations and 
limitations: 

• One system country code is prepared at system initialization and 
cannot be changed at run time; however, information for other 
country codes can be retrieved through the Country API for 
country information. 

• One or two system code pages may be prepared at system initial
ization. The user can switch (CHCP) between them and so can a 
program through the API described in the following section. The 
system code pages are prepared based on CONFIG.SYS com
mands and system initialization and cannot be cha~ged at run 
time. 

• One system keyboard layout is prepared at system initialization 
and can be changed at run time using the KEYB utility. The new 
selected keyboard layout replaces the current keyboard translate 
tables for the system code pages defined by the CODEPAGE 
command in CONFIG.SYS, if the selected layout is available in 
those code pages. 

2 Proprinter is a trademark of 
International Business Machines Corporation 

3 Quietwriter is a registered trademark of 
International Business Machines Corporation 

6-10 



• The CODEPAGE command allows preparation for up to two 
selected code pages. However the system may actually have 
more than two different code pages active in the system in these 
cases: 

System Initialization defaults to a code page different than the 
selected code pages for a printer character set, display char
acter set, keyboard layout or the country information when 
the selected code page is not available. 

KEYS defaults to a different code page for the keyboard 
layout if it is not available in a selected code page. 

An application uses printer IOCtl to activate additional printer 
code pages. 

• The CHCP command only changes the code page of the 
command process to which it belongs and does not affect the 
code page of any other existing command process, other process 
or other subsystem handle. Its purpose is to allow the user to 
change the code page of the session. 

• The user can switch between two prepared code pages with the 
CHCP command and the application can switch between code 
pages with the appropriate APls. The primary (default) system 
code page is used throughout the system and by all applications 
if a switch never occurs following system initialization. If no 
system code pages have been prepared, then the system runs 
with the default code page available per device, country informa
tion, and keyboard layout. 

• An application controls the appearance of its screen display char
acteristics when using OS/2 APls to switch code pages. Charac
ters may not appear the same for different code pages. The 
application can offer code page selection to the user, if required, 
through its own application user interface. 

• The OS/2 system spooler must be installed for printer code page 
switching or be replaced by another printer monitor that receives 
code page commands from the printer device driver and provides 
the code page function support. 

• It is possible for an application to issue printer IOCtl commands 
to activate different code pages throughout its printed data 
stream. However, no data stream format is defined by OS/2. 
lmbedded escape sequences and printer control codes are 
allowed and not monitored by OS/2. 

6-11 



• OS/2 does not automatically switch to the code page of a 
filename and does not keep track of the code page of a filename. 
This allows the following possible situations to occur: 

The file is not accessible under a different code page 
because the filename is not recognized in that code page 
although valid in the original code page in which it was 
created. 

The wrong file becomes accessible under a different code 
page because the keyboard entered filename maps to a dif
ferent but valid filename in that code page. 

• The system does not automatically switch to the code page of a 
message prior to output. Therefore, messages encoded in a par
ticular code page may not be fully readable in another code page. 

Code Page API Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The code page function calls are summarized as follows: 

DosSetCp 

DosSetProcCp 
DosGetCp 

VloSetCp 
VloGetCp 
KbdSetCp 
KbdGetCp 
Printer IOCll 

6-12 

Set the code page of the calling process and the 
session's display and keyboard code page 
Set the code page of the calling process 
Get the code page of the calling process and the 
system code page(s) 
Set a video subsystem code page 
Get a video subsystem code page 
Set a keyboard subsystem code page 
Get a keyboard subsystem code page 
Requires Print Spooler to be installed 

• Activate a printer code page 
• Get the active printer code page 
• Validate a printer code page 



System Initialization 

OS/2 runs on the Personal Computer AT® model group, Personal 
Computer XT™ Model 286 model group, and the PS/2 model group. 
This is supported by loading the correct set of device drivers ·by 
model group. A different set of reserved filenames will contain the 
base device drivers for each supported model group that are not 
loaded by CONFIG.SYS processing. The kernel adapts itself to the 
correct mod~I in the hardware-dependent areas that are not device 
driver related. 

Hardware Characteristics 

OS/2 assumes that the following characteristics of PS/2 devices are 
statically assigned before OS/2 initialization: 

• "Sleep" or "wake" status 
• Interrupt level 
• 110 port(s) 

These device characteristics may not change after OS/2 initialization 
has begun. 

Device Driver Installation 

OS/2 automatically loads all base device drivers, which are model 
group dependent. OS/2 and the system installation procedure are not 
dependent on the specification of any device drivers in the 
CONFIG.SYS file for normal system operation. 

The system install process inserts the appropriate DEVICE= state
ments for all user specified device drivers into the CONFIG.SYS file. 
The names of tttese device drivers are based on the type of device 
driver the user has specified and the model group on which the 
system install process is running. The system install process also 
copies the correct device driver file to the IPL volume. 

If the user wants to manually insert DEVICE= statements into the 
CONFIG.SYS file, the user needs to ensure that the device driver 
being installed is correct for the model group the system is started 
on. 

6-13 



CONFIG.SYS 

The CONFIG.SYS file must not contain DEVICE= statements for the 
base device drivers required for basic OS/2 operation. 

Device 1/0 Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The device 1/0 function calls are summarized as follows: 

Dos Beep 
DosDevConflg 
DosDevlOCtl 
DosPortAccess 
DosPhyslcalDlsk 
DosCLIAccess 

Generate sound from speaker 
Get device configuration 
1/0 control for devices 
Request 110 access to devices 
Partitionable Disk support 
Request CLl/STI Access 

File 110 Services 

File handle values of FFFFH do not represent actual file handles but 
are used throughout the file system interface to indicate specific 
actions to be taken by the file system. Usage of this special file 
handle where it is not expected by the file system results in an error. 

Note: Null pointers are defined to be OOOOOOOOH throughout this book. 

Existing file systems that conform to the Standard Application 
Program Interface (Standard API) described in this section, do not 
necessarily support all the described information kept on a file basis. 
When such is the case, file system drivers return to the application a 
null (zero) value for the unsupported parameter. 

Note: The order of processing of multiple outstanding requests 
issued by multiple threads is not guaranteed. See "Request Packets" 
on page 7-37 for a discussion of the order in which requests are 
issued to the API by multiple threads and the order in which the 
requests arrive at a device driver. 

6-14 



Fiie 1/0 Function Call Summary 

For function call details, refer to Technical Reference, Vol. 2. 

The file 110 function calls are summarized as follows: 

DosBufReset 
DosChDlr 
DosChgFllePtr 
DosClose 
DosDelete 
DosDupHandle 
DosFlleLocks 

DosflndClose 
DosflndFlrst 
DosflndNext 
DosMkDlr 
Dos Move 
DosNewSlze 
DosOpen 
DosQCurDlr 
DosQCurDlsk 
DosQFHandState 
DosQFllelnfo 
DosQFlleMode 
DosQFslnfo 
DosQHandType 
DosQVerify 
Dos Read 
DosReadAsync 
DosRmDlr 
DosScanEnv 
DosSearchPath 
DosSelectDlsk 
DosSetFllelnfo 
DosSetFlleMode 

Flush file buffers 
Change current directory 
Change (Move) the file read or write pointer 
Close file handle 
Delete file 
Duplicate file handle 
Lock or unlock multiple ranges of bytes in an 
opened file 
Terminate usage of a directory search handle 
Find first matching file 
Find next matching file 
Make subdirectory 
Move a file 
Change size of a file 
Open or create a file 
Query current directory 
Query current default drive 
Query file handle state 
Query file information 
Query file mode 
Query file system information 
Query handle type 
Query the verify setting 
Read from a file 
Asynchronous Read from a file 
Remove subdirectory 
Scan environment segment 
Search a path for a filename 
Select disk 
Set file information 
Set file mode 

DosSetFHandState Set file state 
DosSetFslnfo 
DosSetMaxFH 
DosSetVerlfy 
Dos Write 
DosWrlteAsync 

Set file system information 
Define new maximum file handle 
Set verify setting 
Write to a file or device 
Asynchronous write to a file or device 

6-15 



Video 110 Services 

Display Adapters Supported 

OS/2 supports the following adapters: 

• Color Graphics Adapter (CGA) - Personal Computer AT® or Per
sonal Computer XT™ Model 286 

• Enhanced Graphics Adapter (EGA) - Personal Computer AT or 
Personal Computer XT Model 286 

• Video Graphics Array (VGA) - PS/2 only 

• IBM Personal System/2™ Display Adapter - Personal Computer 
AT or Personal Computer XT Model 286 

• IBM Per~onal System/2™ Display Adapter 8514/A- PS/2 only 

Video 110 MO) services are provided for any one of these adapters. 
Configurations including multiple displays are not supported. 

Video Graptllcs Array (VGA) 

The VGA is EGA compatible with the exception that it has additional 
video modes. 

Differences between VGA and EGA include: 

• EGA does not run on the PS/2. 
• VGA runs ONLY on the PS/2. 
• VGA supports additional text and graphics modes 
• VGA starts in a different mode than the EGA display. When a 

PS/2 monochrome display is present, the VGA starts in high 
resolution monochrome text mode (mode 7 +, 80x25 alphanu
meric text support with a 9x16 character cell and a 720x400 pixel 
resolution). When a PS/2 color display is present, the VGA starts 
in high reso,lution color text mode (mode 3+, 80x25 alphanumeric 
text support with a 9x16 character cell and a 720x400 pixel resol
ution). The OS/2 software starts with tf'lis display set to normal 
video mode (white letters on a black background). 

6-16 



IBM Personal System/2™ Display Adapter 

OS/2 supports the IBM Personal System/2™ Display Adapter and 
the IBM Personal System/2™ Display Adapter 8514/A. The IBM Per
sonal System/2™ Display Adapter is VGA-compatible and works on 
the Personal Computer AT and on the Personal Computer XT Model 
286. VGA-compatible modes are supported on the IBM Personal 
System/2™ Display Adapter. 

The IBM Personal System/2™ Display Adapter 8514/A is supported 
on the PS/2. VGA-compatible modes are supported on this adapter. 

VIO Support by Mode 

The following modes are supported by VIO: 

Text - Modes 0, 1, 2, 3 and their + and *variations, mode 7 and 
the + variation. 

Graphics - All Points Addressable (APA) modes 4, 5, 6, D, E, F, 10, 
11, 12, and 13. 

Note: Only a subset of VIO calls are supported in graphics modes. 
See "VIO Calls Supported in Graphics Modes" on page 6-19 for 
details. 

Not all modes are supported on all adapters. 

Text Modes Supported (Mono-Compatible) 

A/N represents Alpha/Numeric in the following charts. 

The following Text modes are supported by the EGA, VGA, and IBM 
Personal System/2™ Display Adapter: 

Mode Type Text Colors Cell Resolution 

7 A/N 80x25 -- 9x14 720 x 350 

7+ A/N 80x25 -- 9x16 720 x 400 

Note: The '+' mode variation is only supported by the VGA and IBM 
Personal System/2™ Display Adapter. 

6-17 



The following Text modes are supported by the CGA, EGA, VGA, and 
IBM Personal System/2™ Display Adapter: 

Mode Type Text Colors Cell Resolution 

0, 1 A/N 40x25 16 8x8 320 x 200 

O*, 1* A/N 40x25 16 8x14 320 x 350 

o+, 1+ A/N 40x25 16 9x16 360 x 400 

2,3 A/N 80x25 16 8x8 640 x 200 

2*, 3* A/N 80x25 16 8x14 640 x 350 

2+,3+ A/N 80x25 16 9x16 720 x 400 

Note: The '*' variations on the above modes are only supported by 
the EGA, VGA, and IBM Personal System/2™ Display Adapter. The 
'+' variations on the above modes are only supported by the VGA 
and IBM Personal System/2™ Display Adapter. For modes O and 2, 
the color burst is turned off on the CGA. 

VIO Calls Supported In Text Modes: 

All VIO calls are supported in text modes. 

Graphics Modes Supported 

The following graphics All Points Addressable (APA) modes are sup
ported by the CGA, EGA, VGA, and IBM Personal System/2™ Display 
Adapter: 

Mode Type Text Colors Cell Resolution 

4,5 APA 40x25 4 8x8 320 x 200 

6 APA 80x25 2 8x8 640 x 200 

Note: For modes 5 and 6, the color burst is turned off on the CGA. 

6-18 



The following additional APA modes are supported by the EGA, 
VGA, and IBM Personal System/2™ Display Adapter: 

Mode Type Text Colors Cell Resolution 

D APA 40x25 16 8x8 320 x 200 

E APA 80x25 16 8x8 640 x 200 

F APA 80x25 -- 8x14 640 x 350 

10 APA 80x25 16* 8x14 640 x 350 

* Only 4 colors are available on an EGA configuration with less than 
128Kb of video memory. 

The following additional APA modes are supported by the VGA and 
IBM Personal System/2™ Display Adapter: 

Mode Type Text Colors Cell Resolution 

11 APA 80x30 2 8x16 640 x 480 

12 APA 80x30 16 8x16 640 x 480 

13 APA 40x25 256 8x8 320 x 200 

VIO Calls Supported In Graphics Modes 

The VIO calls supported in graphics modes are a subset of those 
VIO calls supported for text modes. The following calls are 
supported: 

VloDeReglster 
VloEndPopUp 
VloGetConflg 
VloGetFont 
VloGetMode 
VloGetPhysBuf 
VloGetState 
VloModeUndo 
VloModeWalt 
VloPopUp 
VloReglster 
VloSavRedrawWalt 

Deregister a video subsystem 
Deallocate a popup display screen 
Get Video Configuration 
Get Font (request type 1 only) 
Get display mode 
Get physical display buffer 
Get Video State (request types O and 1 only) 
Undo previous restore mode registration 
Wait for restore mode notification 
Allocate a popup display screen 
Register a video subsystem 
Wait for screen save/redraw notification 

6-19 



VloSavRedrawUndo Undo previous save/redraw registration 
VloScrLock Lock screen for 110 
VloScrUnLock 
VloSetMode 
VioSetState 

Unlock screen for 110 
Set display mode 
Set Video State (request types O and 1 only) 

The other VIO calls, Print Screen, and Control Print Screen are not 
supported in graphics modes. 

VIO Screen Save/Restore Operations 

Screen save/restore operations are triggered in OS/2 by any of the 
following events: 

1. When the operator uses the hotkey to switch to another appl ica
tion, 

2. When an application issues DosStartSession (specifying fore
ground), 

3. When an application issues DosSelectSession, 

4. When an application issues VioPopUp (or a hard error popup is 
displayed), and 

5. When an application issues VioEndPopUp (or a hard error popup 
ends). 

For graphics modes, OS/2 notifies the application to perform the 
required save/restore operation. To be notified for events 1 through 3 
above, a graphics mode application issues VioSavRedrawWait. The 
return from the VioSavRedrawWait call provides the notification. A 
parameter returned on the call tells the application whether to 
perform a save or restore. To be notified for event 5, the application 
issues VioModeWait, and the return from VioModeWait is the notifica
tion. There is no notification for event 4. 

When an application's VioSavRedrawWait thread is notified to 
perform a save, the application must save the physical display buffer, 
video mode, state, and any other display adapter registers the appli
cation may have modified. 

When an application's VioSavRedrawWait thread is notified to 
perform a restore, it must restore the physical display buffer, video 
mode, state, and modified display adapter registers. When an appli-

6-20 



cation's VioModeWait thread is notified to perform a restore, the 
application must restore the video mode, state, and modified display 
adapter registers. An application's VioModeWait thread does not 
restore the physical display buffer. OS/2 saves/restores the physical 
display buffer over a popup. 

Note that a screen switch may occur while the foreground application 
is currently accessing (under the protection of VioScrLock) the phys
ical display buffer. In this case, the screen switch remains pending 
until either the application issues VioScrUnlock or the screen lock 
times out. 

A graphics mode application must issue VioSavRedrawWait. A 
graphics mode application must issue VioModeWait only if it writes 
directly to the registers on the display adapter. If VioModeWait is not 
issued, OS/2 will restore the physical display buffer, mode, and state 
at the completion of a popup. 

Screen save and restore operations for text modes are performed 
automatically by OS/2. A text mode application must issue 
VioSavRedrawWait and VioModeWait only if it writes directly to the 
registers on the display adapter. 

An application's VioSavRedrawWait thread may be notified to 
perform a restore before it is notified to perform a save. This would 
happen if the application was running in the background when it first 
issued VioSavRedrawWait. 

Note: The OS/2 Start command starts an application in the back
ground. 

VIO Code Page Support 

VIO code page support is provided for a subset of the display 
adapters supported in OS/2. VIO code page support is provided only 
for those adapters whose hardware supports down loadable fonts. 
The selection is limited to the following adapters: 

• EGA (Enhanced Graphics Adapter) - Personal Computer AT and 
Personal Computer XT Model 286 

• VGA (Video Graphics Array) - IBM Personal System/2™ only 
• IBM Personal System/2™ Display Adapter - Personal Computer 

AT® and Personal Computer XT™ Model 286 

6-21 



• IBM Personal System/2™ Display Adapter 8514/A - IBM Personal 
System/2™ only 

VIO allows an application to select one of two user-specified code 
pages as the current video code page. Alternately, the application 
may specify code page 0000 which corresponds to the ROM-resident 
code page. The following two VIO calls support code pages: 

• VioSetCp - sets the current video code page 
• VioGetCp - returns the current video code page 

VioSetCp can be used to specify one of the two code pages defined 
on the CODEPAGE statement in CONFIG.SYS. 

Code page 0000, the ROM-resident code page, may also be specified 
on VioSetCp. Code page 0000 is also used as the current video code 
page in the following cases: 

• No primary code page is identified during system initialization. 
• A primary code page is identified, but the corresponding video 

code page file is not found. This case will occur if there is no 
DEVINFO statement identifying a video code page file in 
CONFIG.SYS, or if the video code page file identified is not found. 

Code page 0000 may not be specified on the CODEPAGE= statement 
in CONFIG.SYS. 

VioSetCp associates the code page specified on the call with the VIO 
handle also specified. Because handle zero is the only VIO handle 
supported, all threads and processes within a session share the same 
handle and current video code page. 

Applications may not manipulate the Character Map Select Register. 

6-22 



Video Font Fiie Organization 

There is one video font file which contains all the fonts for all the 
code pages supported. Fonts are extracted from the video font file by 
the video subsystem. 

The video font file contains a file header and multiple font tables. 

Video Font Fiie Header: The font file header is shown below: 

Font File Header Length WORD 

Flags (Reserved= 0) WORD 

Offset to Font Pointers WORD 

# of Fonts in File WORD 

Font #1 Offset DWORD 

Font #2 Offset DWORD 

~ cL... 

~~~~-F-o_n_t_#_n_O_ff_s-et~~-~~ DWORD 

6-23

Video Font Table Format: Each font table has the following forrnat:

Font Length (header + table)

Font Header Length

CodePageld

Font Type (Reserved= 0)

Font Flags

#of Pixel Columns in Cell, this Font

#of Pixel Rows in cell, this Font

#of Pixel Columns in Cell, Base Font

#of Pixel Rows in Cell, Base Font

Offset to Font Table

Font Table Length in Bytes

of Code Points

Lowest Code Point

Highest Code Point

~ ~

Font for Lowest Code Point

~

WORD

WORD

WORD

WORD

WORD

BYTE

BYTE

BYTE

BYTE

WORD

WORD

WORD

WORD

WORD

Font Specific

,-...I i_., /'.'l_,

1~----F-o_n_t f_o_r_H-ig_h_e_s_t _C_o-de_P_o-in-t--T-1 Font Specific

The Font Flags field has the following values:

Bit O= 1
Bit 1=1
Bit 2-15

6-24

Partial font.
Code points are included with each font.
Reserved=O

Additional VIO Considerations

• The default mode used in the OS/2 mode is the highest resolution
supported by the primary display. Any conflicting switch settings
on the adapter are ignored.

• VIO calls issued by multiple threads and processes within a
session are serialized via a semaphore. Applications with mul
tiple threads and processes issuing VIO calls within a session
should be aware of the following potential lockout situations:

Issuing a VIO call within a critical section. This action will fail
if the thread entering the critical section gains control at a
time when another thread in the same process is in the
middle of a VIO call. Reference DosEnterCritSec and
DosExitCritSec in Technical Reference, Vol. 2 for more infor
mation.

Allowing a popup process to request a semaphore (or
resource) owned by another process within the same
session. This action will fail if the process owning the
resource gets blocked on a VIO call.

VIO Function Call Summary

For function call details, refer to Technical Reference, Vol. 2.

The VIO function calls are summarized as follows:

VloDeReglster
VloEndPopUp
VioGetAnsi
VloGetBuf
VloGetConflg
VloGetCp
VloGetCurPos
VloGetCurType
VloGetFont
VloGetMode
VloGetPhysBuf
VloGetState
VloModeUndo
VloModeWalt
VloPopUp
VloPrtSc

Deregister video subsystem
Deallocate a popup display screen
Get ANSI status
Get logical video buffer
Get video configuration
Get code page
Get cursor position
Get cursor type
Get font
Get display mode
Get physical display buffer
Get video state
Undo previous restore mode registration
Wait for restore mode notification
Allocate a popup display screen
Print screen

6-25

VloPrtScToggle
VloReadCellStr
VloReglster
VloReadCharStr
VloSavRedrawWalt
VloSavRedrawUndo
VloScrLock
VloScrUnLock
VloScrollDn
VloScrollLf
VloScrollRt
VloScrollUp
VloSetAnsl
VioSetCp
VloSetCurPos
VloSetCurType
VloSetFont
VloSetMode
VloSetState
VloShowBuf
VloWrtCellStr
VloWrtCharStr
VloWrtCharStrAH
VloWrtNAttr
VloWrtNCell
VloWrtNChar
VloWrtTIY

Ctrl-PrtSc notification
Read character attribute string
Register video subsystem
Read character string
Wait for screen save/redraw notification
Undo previous save/redraw registration
Lock screen for 110
Unlock screen for 1/0
Scrol I screen down
Scroll screen left
Scroll screen right
Scroll screen up
Turn ANSI on or off
Set code page
Set cursor position
Set cursor type
Set font
Set display mode
Set video state
Update display with logical video buffer
Write character attribute string
Write character string
Write character string with attribute
Replicate attribute
Replicate cell
Replicate character
Write TTY string

DOS Mode EGA Considerations

For some DOS mode EGA applications, OS/2 will not be able to
switch from DOS mode to OS/2 mode and then back again. Upon
return to the DOS mode application, the screen will be incorrect. The
DOS mode EGA applications that do not run successfully are:

• Applications that download fonts into a character generator block
other than block O; Character generator block O is supported.
(See EGA ROM BIOS function call INT 10H, AH = 11 H.)

• Graphics mode applications that use more than one display page.
• Advanced graphics mode applications that write directly to the

registers on the EGA adapter.

6-26

To supplement OS/2 screen switching support, a DOS mode applica
tion can be written to use the EGA Register Interface. See "EGA Reg
ister Interface" on page 9-102. Alternately, a DOS mode application
can be notified on a screen switch via Multiplex Interrupt 2FH,
AH=40H.

Note: On an IBM Personal System/2™ or an IBM Personal Computer
AT with the IBM Personal System/2™ Display Adapter, the registers
on the adapter are both readable and writable. For these configura
tions, OS/2 reads and saves the registers on a screen switch away
from DOS mode and restores the registers upon return to DOS mode.

OS/2 issues a new Multiplex Interrupt (INT 2FH) to signal the fol
lowing two events: moving the DOS mode application to the back
ground (AX=4001H) and moving the DOS mode application to the
foreground (AX=4002H). A DOS mode application that wishes to
receive this signal must "hook" the Multiplex Interrupt vector. That
is, when the application is started, it must save the current INT 2FH
vector and set the INT 2FH vector to point to the application's own
interrupt handler.

When the notification is received, the application must save all regis
ters, perform whatever processing is required, restore all registers,
and issue the IRET instruction to return to OS/2. Only the following
forms of processing are supported:

• Modifying application and/or video memory,
• Issuing ROM BIOS video service calls (INT 10H),
• Issuing EGA Register Interface calls (INT 10H), and
• Programming the EGA video card directly.

Note: If an application moving to the background uses the EGA Reg
ister Interface to save the EGA registers, these registers are restored
automatically when the application is returned to the foreground.

An application may receive notification that it is moving to back
ground at any time. At the point this notification occurs, the applica
tion (other than its INT 2FH handler) is frozen until it is returned to the
foreground. Code sequences that are sensitive to interruption can be
protected with CLl/STI.

When an application's INT 2FH handler receives notification with a
value in AH other than 40H, the application must issue the JMP FAR
instruction to branch to the previous INT 2FH vector.

6-27

Keyboard 1/0 Services

Keyboard 110 Function Call Summary

For function call details, refer to Technical Reference, Vol. 2.

The keyboard 1/0 function calls are summarized as follows:

KbdCharln
KbdClose
KbdDeReglster
KbdflushBuffer
Kbdfreefocus
KbdGetCp
KbdGetFocus
KbdGetStatus
KbdOpen
KbdPeek
KbdReglster
KbdSetCp
KbdSetCustXt
KbdSetFgnd
KbdSetStatus
KbdStrlngln
KbdSynch
KbdXlate

Read character, scan code
Close a logical keyboard
Deregister keyboard subsystem
Clear the keystroke buffer
Free the previous physical to logical bind
Get loaded translate table IDs
Bind the physical keyboard to a logical keyboard
Get keyboard status
Open a logical keyboard
Peek at a character
Register keyboard subsystem
Set the translate table
Install custom translate table
Set foreground keyboard priority
Set keyboard status
Read character string
Synchronize keyboard access
Translate scan code

Binary Versus ASCII 110

A user process performs 1/0 to a character device in either binary or
ASCII modes. These modes are set by the user process through the
IOCtl facility. In binary mode, data is transferred exactly as it
appears and for the data length that the user requested. In ASCII
mode, data can be edited, and/or translated by OS/2. The operations
that OS/2 performs for ASCII mode 1/0 are listed below.

6-28

For a read in ASCII mode:

• A caret (A) is a symbol meaning: press the Ctr/ key.
The following characters preceded with a caret (A):
AC, A Break, AS, AP, and APrtSc are handled specially.

• The data is read until the first AM or ENTER key is seen. This
means that the length of the read data can be less than the
requested length. Note that the data is always terminated with
the byte sequence OOH OAH.

• If "Z is encountered, no further data is read.

• Data will echo to the standard output device (screen) only if echo
mode is ON.

• Tabs are expanded into 8-character boundary spaces upon echo,
but left as 09H in the buffer.

For an ASCII mode write:

• The AS is interpreted for flow control.

• The AP or A PrtSc toggles printer echoing.

• The AC or A Break generates a signal for control-break hand I ing.

Note: The type ahead buffer is flushed for control-break bu't not
for Ac.

• Tabs are expanded to 8-character boundaries and filled with
spaces.

• ASCII character codes less than 20H are preceded with a caret
(A) and 40H is added to the codes.

"T and AU are not included in order to support certain foreign
currency symbols.

• Output is performed up to (but not including) a AZ or the length of
the request. The number actually written can be less than the
number requested.

A user process performs 110 to a block device strictly in binary mode.
Data is transferred without interpretation or translation.

6-29

Mouse 1/0 Services

Mouse 1/0 Function Call Summary

For function call details, refer to Technical Reference, Vol. 2.

The mouse 1/0 function calls are summarized as follows:

MouClose

MouDeReglster
MouDrawPtr
MouflushQue
MouGetDevStatus
MouGetEventMask

MouGetNumButtons
MouGetNumMlckeys
MouGetNumQueEI

MouGetPtrPos
MouGetPtrShape
MouGetScaleFact

MoulnltReal
MouOpen

MouReadEventQue
Mou Register
MouRemovePtr
MouSetDevStatus
MouSetEventMask

MouSetPtrPos
MouSetPtrShape
MouSetScalefact
MouSynch

6-30

Closes the mouse device for the current
session.
Deregister mouse subsystem
Release screen area for device driver use
Flush mouse event queue
Query current mouse device driver status flags
Query current mouse device 1 word event
mask
Query number of buttons
Query number of mickeys per centimeter
Query current status for the mouse device
event queue
Query current pointer position
Query pointer shape and size
Query scale factors for the current mouse
device
Initialize DOS Mode pointer draw
Opens the mouse device for the current
session
Read the mouse device event queue
Register mouse subsystem
Reserve screen area for application use
Set mouse device driver status flags
Assign new event mask to the current mouse
device
Set current pointer position
Set pointer shape and size
Set scale factors for the current mouse device
Get synchronous access

DOS Mode INT 33H Mouse API

OS/2 supports a subset of the Microsoft®4 DOS INT 33H mouse API.

The Microsoft INT 33H mouse API is available only to those applica
tions executing in the DOS mode. OS/2 mode applications must use
the mouse API device interface.

See "DOS Mode INT 33H Mouse API" on page 9-61 for a detailed
description of the DOS mode INT 33H function calls.

The DOS mode INT 33H Mouse API 1/0 function calls are summarized
as follows:

INT 33H - Function 0
INT 33H - Function 1
INT 33H - Function 2
INT 33H - Function 3
INT 33H - Function 4
INT 33H - Function 5
INT 33H - Function 6
INT 33H - Function 7
INT 33H - Function 8
INT 33H - Function 9
INT 33H - Function 1 O
INT 33H - Function 11
INT 33H - Function 12
INT 33H - Function 13
INT 33H - Function 14
INT 33H - Function 15
INT 33H - Function 16

Mouse installed flag and reset
Show mouse pointer
Hide mouse pointer
Get mouse pointer position and button status
Set mouse pointer position
Get button press information
Get button release information
Set minimum and maximum horizontal position
Set minimum and maximum vertical position
Set graphics pointer shape
Set text pointer shape
Read mouse motion counters
Set user-defined subroutine input mask
Light pen emulation on
Light pen emulation off
Set mickey/pixel ratio
Conditional off

INT 33H - Function 19 Set double speed threshold
INT 33H - Function 20 Swap user-defined subroutine
INT 33H - Function 21 Query save mouse state storage requirements
INT 33H - Function 22 Save mouse driver state
INT 33H - Function 23 Restore mouse driver state

4 Microsoft is a registered trademark of Microsoft Corporation

6-31

Device Monitor Services

Character Device Monitors

Character Device Monitors provide a mechanism for applications or
subsystems to monitor all characters passing through a device driver.
This mechanism allows any registered process to remove, insert or
modify the information passing through the device.

The OS/2 monitor mechanism consists of the OS/2 monitor calls and
the monitor dispatcher device helper. The monitor calls provide the
interface for the monitor to interact with the device driver and the
monitor's own input/output data buffers. The monitor dispatcher
device helper handles the interfaces for the device driver and the
mechanics of passing data from the output buffer of one monitor to
the input buffer of the next monitor in the chain.

6-32

Monitor Details

Monitor

DosMonOpen
DosMonReg
Dos Mon Close

Thread(s)

Dos Mon Read
Dos Mon Write

Monitor Dispatcher

DevHlp MonitorCreate
DevHlp Register

DevHlp Deregister

OPEN

REGISTER
(IOCTL)

Monitor

DosMonOpen
DosMonReg
DosMonClose

Thread(s)

DosMonRead
DosMonWrite

Dev Hip
MonWrite
Mon Flush

(Notify
Call)

Device Driver

CLOSE ------- Deregister

[

6-33

Monitor Processes

A character device monitor is an application process, or part of an
application process; that is, it runs at protection level 3 using
standard OS/2 function calls (DosMonXXX) to interact with the device
driver and the monitor's own input and output data buffers.

For a process to gain access to a device driver's data stream for
character monitoring, the monitor must do the following:

1. Issue the DosMonOpen call to establish a connection to the
device driver for monitors. DosMonOpen gets a device handle
that will be used in subsequent DosMonReg and DosMonClose
calls.

2. Issue the DosMonReg call to register a pair of input and output
buffers with the device driver and monitor dispatcher. After the
monitor is installed in the monitor chain, the monitor dispatcher
automatically moves data between monitors (if there is more than
one in the chain) and between the last monitor in the chain and
the device driver's monitor chain buffer.

The device handle for monitors returned from a DosMonOpen call is
unique to that process. A process needs to call DosMonOpen only
once per character device whose data stream(s) it wishes to monitor.
If a process issues more than one DosMonOpen call to the same
device, the same device handle will be returned. A process may then
register one or more monitors on the same device handle for moni
tors.

Note: Until the monitor returns successfully from the DosMonReg
call, no characters will enter the monitor's input buffer. It is the appli
cation's responsibility to synchronize completion of the DosMonReg
call and the subsequent monitoring of the data stream with device
input into the data stream. See the diagrams on pages 6-51 and 6-52
for examples.

6-34

After a monitor has gained access to the data stream, it may remove,
insert, modify or view all characters in data records passing through
the data stream by:

1. Issuing the DosMonRead call to move a data record from its input
buffer to a private data area that the monitor process can access
freely, and

2. Issuing the DosMonWrite call to move a data record from the
monitor process private buffer into its output buffer.

A data record is defined minimally as a WORD containing flags mean
ingful to the monitors and devices whose data stream they are moni
toring. The flag WORD is always the first WORD in the data record. A
monitor can modify the data record received on the last DosMonRead
call before calling DosMonWrite to return it to the device's data
stream. However, because the character device driver is sensitive to
these flags and to the entire data record, the monitor application
should never alter this order within a data record and must conform
to device driver "rules" on filtering data records. Refer to Chapter 9,
Device Drivers for device-specific descriptions of flag WORDs and
data records.

Data movement from the monitor's input buffer (DosMonRead) and
into the monitor's output buffer (DosMonWrite) is synchronized with
the device driver and monitor dispatcher. When a data record is
moved into the monitor's input buffer, the monitor process is signaled
by the monitor dispatcher that a data record is available for
DosMonRead. When DosMonRead completes movement of one data
record, the monitor dispatcher is signalled that a data record has
been removed and there is now more room for new data records.
The opposite is true for DosMonWrite.

Note: Monitors get control of all data in a data stream before an
application can read it. Therefore, a monitor's processing must be
fast, performing no 110 or semaphore waits. For example, there is no
recovery if a monitor application does a read for a character from the
device driver API buffer when it has not yet moved the character
through its input and output buffers into the device driver monitor
chain buffer. Complex processing in a monitor should be performed
within a monitor thread separate from that which makes
DosMonRead and DosMonWrite calls.

6-35

When a process no longer wishes to monitor a character device's
data stream, it relinquishes its access to the data streams by calling
DosMonClose. DosMonClose is issued with a specific opened device
handle for monitors, as returned from a previous DosMonOpen. All
monitors for the current process that registered using this handle
(those monitoring the particular character device) are terminated.

Pseudo code for a simple keystroke monitor is:

·***
' ; SIMPLE CHARACTER DEVICE MONITOR
;***

CALL DosSetPrty ;Set this monitor's thread
; priority high

GET ACCESS TO THE DEVICE'S DATA STREAM

CALL DosMonOpen ;get a device handle for monitors for
; the application

CALL DosMonReg ;register a pair of input and output
; buffers as a monitor

WHILE [we want to monitor the data stream]

CALL DosMonRead ;read a data record from the monitor's
;input buffer

;process, or filter, the data record (keystroke)

CALL DosMonWrite ;write a filtered data record into the
;monitor's output buffer

END WHILE

CALL DosMonClose

6-36

;close all monitors from this
;application registered on the same
;device handle

Below is a diagram that shows how monitors fit into the system struc
ture and how OS/2 supports these functions.

There are three interfaces in this diagram. They are labeled:

1. Program to device driver interface
2. Device driver to monitor dispatcher interface
3. Monitor dispatcher to monitor process interface

(1) .--------!

PROGRAM/
SUBSYSTEM
AREA

l
l Programs

Process

Buffers (B)

IPC

-.-~-;-~-~-~-~------~~~--.-:.-~--~-:~-~-;~:-~-:,----.-~:~:~:-_~]-~--
Device Driver----~ (DevHelp)

(A) DataFlow
Control Flow

Interfaces

1. Program to device driver

This interface establishes a monitor connection and tears it down.
This is the registration process.

• Open: DosMonOpen gets a handle to use for monitor registra
tion.

• Registration: DosMonReg registers monitor and data buffers.
• Deregistration/Close: DosMonClose deregisters the monitor.

6-37

2. Device driver to monitor dispatcher

This interface is provided with DevHlp routines to do the
following:

• MonitorCreate: Creates a chain of monitors.
• Register: Adds a monitor to a chain.
• Deregister: Removes a monitor from a chain.
• MonWrite: Passes data records to a monitor.
• MonFlush: Removes data from the monitor chain.

3. Monitor dispatcher to monitor process

The monitor dispatcher coordinates movement of data between
the device driver and monitor input/output buffers.

Module Description

• (A) Monitor Dispatcher: This package is common to all device
drivers and serves the device drivers and the monitors in user
space.

• (B) Monitor Buffer Management: Applications are responsible for
allocating their own monitor buffers, and setting the first WORD of
each buffer equal to the length of the buffer. The monitor dis
patcher starts and manages all buffers for registered monitors.

Device Monitor Function Call Summary

For function call details, refer to Technical Reference, Vol. 2.

The device monitor function calls are summarized as follows:

DosMonOpen
DosMonClose
DosMonReg
DosMonRead
DosMonWrlte

6-38

Open a connection to an OS/2 device monitor.
Close a connection to an OS/2 device monitor.
Register a set of buffers as a monitor.
Read data from a monitor structure.
Write data to a monitor structure.

Monitor Data Structures

The monitor data structures consist of buffers and data records.

The monitor API and monitor dispatcher device helper routines
manage the buffers for monitor applications. Applications registering
monitors are required to provide the length (number of bytes) of the
buffer in the first WORD of each buffer, length WORD included.
Thereafter, the application must not corrupt the buffer at any time.

Since more than one monitor from more than one process may be
registered as monitoring the same data stream, a minimum buffer
length must be defined to maintain data movement through all
buffers. The monitor dispatcher defines this minimum buffer length
as the length of the device driver's monitor chain buffer plus 20 bytes.
The length of a monitor's input and output buffers must be at least
this length. This is also the recommended length of the private data
area specified on a DosMonRead call.

In/Out Buffers specified on DosMonReg:

Fie Id Size

Length 2 Bytes

Used by Monitor Dispatcher 18 Bytes

Must be > = Length of device driver monitor
chain buffer plus 20 Bytes

Device driver monitor chain buffer specified on DevHlp
MonitorCreate:

Fie Id Size

Length 2 Bytes

Max read/write record size

Refer to pages 9-59, 9-93, and 9-155 for device driver specific informa
tion.

6-39

Device Monitor Record

Only one data record can be read (DosMonRead) or written
(DosMonWrite) at a time. Data records in any given input or output
buffer may be of different lengths.

Because the minimum buffer size for all buffers in a monitor chain is
defined in terms of the device driver's monitor chain buffer, the
maximum size of a data record is also defined in terms of this buffer's
size. A monitor application cannot write (DosMonWrite) into its
output buffer a data record whose length is greater than the length of
the device driver monitor chain buffer minus two bytes.

The first WORD of a data record is a flag word. A data record may
consist of only a flag word. The flags are defined as follows:

Monitor Flags

Byte 0

7 6 5 4 3

Open

Close

Flush

Reserved

Reserved

Reserved

Reserved

Reserved

13yte 1

Device Driver
Dependent

Flushing a data stream is an important operation. All data must be
cleaned out of the data stream at certain times. At these times, a
flush record will be placed in the data stream by the device driver by
a DevHlp_MonWrite and must pass through all monitors in the chain
to allow them to reset their internal states. The flush record will force
them to flush all internal buffers. Placement of new data records into
the chain by way of a DevHlp_MonWrite will be suspended until the
flush record reaches the device driver's input buffer. Therefore, flush
records must not be consumed by the monitor.

6-40

When an application receives a data record with an open or close bit,
the action to be taken depends on the issuing device driver. Refer to
Chapter 9, "Device Drivers" on page 9-1 for device driver specific
information.

Data Flow Through a Monitor

Monitor Y Monitor Z

Thread(s) Thread(s)

Monitor Dispatcher

DevHlp MonitorCreate
DevHlp Register

DevHlp Deregister

OPEN

REGISTER
(IOCTL)

DevHlp
MonWrite
MonFlush

(2)

Device
Driver (1)

CLOSE ------~ Deregister

(10)

Device Driver Monitor Buffer

(11)

API Buffer

1. The device driver receives the data and decides to which chain, if
any, to direct it.

2. A monitor is registered with the chain. The device driver calls
DevHlp_MonWrite (monitor dispatcher device helper routine) to
place the data into the chain's first buffer, allocated by the
monitor dispatcher when the monitor chain is created.

6-41

3. The monitor dispatcher automatically moves the data record from
the chain's first buffer into the input buffer of the first monitor in
the chain (Monitor Y).

4. Registered Monitor Y cal Is DosMonRead to get a data record
from the data stream and place it into its private data area.

5. After filtering the data record, registered Monitor Y returns the it
to the data stream by calling DosMonWrite to write the data
record into its output buffer.

6. The monitor dispatcher automatically moves the data record from
the output buffer of Monitor Y into a monitor dispatcher data area.

7. The monitor dispatcher automatically moves the data record from
the monitor dispatcher data area into the input buffer of the next
monitor in the chain, Monitor Z.

8. Registered Monitor Z cal Is Dos Mon Read to get a data record
from the data stream and place it into its private data area.

9. After filtering the data record, registered Monitor Z returns it to
the data stream by calling DosMonWrite to write the data record
into its output buffer.

10. The monitor dispatcher automatically moves the data record from
the output buffer of Monitor Z into the device driver's monitor
chain buffer.

11. The device driver moves the data from the device driver's
monitor chain buffer into its API buffer, where it is ready to be
read by an application.

6-42

The Time Window of Monitor Registration

An application that requires monitoring all characters passing
through a device, including those received by the device from the
time the application is invoked through the time the monitor is regis
tered and has gained access to the data stream, must do some addi
tional work. (For example, the case of type-ahead characters.) The
diagram on page 6-52 illustrates the time window between invocation
and completion of monitor registration when characters received by
the device are placed into the device's API buffer until monitor regis
tration is completed. Monitor registration is completed when charac
ters received by the device are then placed into the monitor chain.
The following pseudo code suggests a possible solution for such an
application:

;OUR APPLICATION WISHES TO MONITOR ALL CHARACTERS TO A
DEVICE, INCLUDING TYPE-AHEAD CHARACTERS

APPLICATION IS RUNNING
If no other monitors registered for this chain, data
to device is being written to device 1 s API buffer

CALL DosMonOpen ;get handle to the device

;We want to monitor all data received by the device since
; the application was invoked, including type-ahead data

CALL DosMonReg ;register a monitor with the data stream
;If DosMonReg returns no error, then data to device
; is being written to monitor chain (i.e. the input
; buffer of the first monitor in the chain)

IF [DosMonReg returned without error]
THEN

;The device driver will start placing data received from
the device into the monitor chain. The monitor
dispatcher will start moving data into the input buffer
of the first monitor in the chain.

6-43

;Before the DosMonRead/DosMonWrite thread is started, we
want to look at any type-ahead data that was received

; by the device BEFORE completion of monitor registration
; and make it available to another application.
;First, get any type-ahead data

WHILE [device's API buffer is not empty]

Get a character from the API buffer through the
Device Subsystem Call

Place it in a temporary buffer
END WHILE

;Now, make it available to another application by placing it
back in the device's data stream through our monitor's

; output buffer.

WHILE [temporary buffer is not empty]

Get a character from the temporary buffer

Build a device-specific monitor record

CALL DosMonWrite

END WHILE

;return it to the device's data
stream and, therefore, to the

; API buffer for another app

;Begin monitoring data stream - we may want to do this on
; a separate thread

WHILE [we want to monitor data stream]

CALL DosMonRead

;process the data

CALL DosMonWrite
END WHILE

CALL DosMonClose

END IF

6-44

;get a data record from data stream

;return the data to the data stream

;close all monitors from this process
; registered on the same device handle

Hints for Using Monitors

Some common problems occur in OS/2 monitor applications because
of failure to follow the guidelines outlined earlier.

1. The monitor input and output buffers specified when you call
DosMonReg should be defined separately, but within the same
segment. These buffers should be at least as large as the device
driver's monitor chain buffer plus 20 bytes. The first WORD of
each buffer should include the length of the buffer in bytes, length
WORD inclusive. If the buffers are incorrectly specified,
DosMonReg will return an error.

2. A monitor process should be written so the thread(s) that actually
read and write the monitor data run at the lowest time-critical pri
ority. They should never perform operations such as 1/0 or
semaphore waits that might delay them. The monitor process
can have other thread(s) running at normal priorities to handle
such things.

3. Complex processing should be done in threads separate from
your monitor (DosMonRead/DosMonWrite) threads. If not, the
processing may block the device's data stream. For example, an
application running in the same session may never receive data
on a read if complex processing is not done separately.

4. The monitor should not consume flush records but, should return
them to the data stream by calling DosMonWrite. If the flush
records are not returned, the monitor is blocking the data stream
and the device driver may send a "buffer full" signal. For
example, in the case of the keyboard, a beep will sound.

5. Threads in your application should not poll the device's API
buffer to ensure it is never time slicing or yielding so that other
threads may run. If polling is done in this fashion, threads will
not run, data will not reach the device driver's API buffer, and
applications will not find any data available when doing a read.
This may cause the system to stop running.

6. A single process can register more than monitors. In addition,
the process can distribute these monitors on different chains.

6-45

Providing Monitor Support in a Character Device Driver

A character device driver may define more than one data stream for
its device. Each data stream may be monitored by a "chain" of one
or more registered device monitors. Some devices drivers, such as
the keyboard and the mouse, may define their data streams on a per
session basis. Other device drivers, such as the printer, may define
their data streams on a per device basis.

When an OS/2 character device driver receives data from its device,
the driver decides where to direct it, that is, into which of its data
streams the driver will place the data. For example, when the key
board device driver receives a keystroke from the keyboard, it directs
that keystroke into the data stream for the current active session.

A character device monitor is an application or part of an application
that uses standard OS/2 function calls to interact with the device
driver to gain access to one of its data streams for monitoring or fil
tering all data passing through the device.

In order for an application to monitor data passing through a char
acter device, the character device driver must provide monitor
support.

6-46

A device driver must include in its DATA segment:

1. A buffer in which to build the data record placed into the monitor
chain on a DevHlp MonWrite call.

DS:SI (on calling DevHlp MonWrite) is the address of the data
record to be placed into the monitor chain. DS must point to the
device driver's data segment when DevHlp MonWrite is called.

2. For each data stream that can be monitored by a chain of moni
tors, a "monitor chain buffer" that will receive filtered data from
the chain of monitors; that is, from the output buffer of the last
monitor in the chain.

The first WORD of each monitor chain buffer must first (for
example, before calling DevHlp MonitorCreate) contain the
LENGTH of the buffer (length word inclusive). The length of a
monitor chain buffer will define:

a. The minimum size of all buffers that are part of the monitor
chain; that is, the length of each of the input and output
buffers of all monitors that register with the chain must be
greater than or equal to the length of the device driver
monitor chain buffer plus 20 bytes.

b. The maximum size of a data record placed into the chain of
monitor buffers (that is, the length of the device driver buffer
minus 2 bytes). See diagram on page 6-50.

A device driver must include in its CODE segment:

1. A NOT/FICA TION routine that is called by the monitor dispatcher
when the monitor dispatcher has placed a single 'filtered' data
record that has passed through the entire monitor chain into the
monitor chain buffer. The device driver must process this data
record before returning to the monitor dispatcher; for example,
make it available to device subsystem calls by moving it into the
API buffer.

When the NOTIFICATION routine has been called by the monitor
dispatcher,

a. the first WORD of the monitor chain buffer contains the length
(length word inclusive) of the filtered data record. See
diagram on page 6-50.

b. OS points to the device driver's data segment and ES:SI
points to the device driver's monitor chain buffer.

6-47

For each data stream that can be monitored by a chain of monitors a
device driver must define for the monitor dispatcher the location
(addresses) of the notification routine and the monitor chain buffer by
calling DevHlp MonitorCreate:

1. The monitor dispatcher assigns a handle to the chain of monitors
for the data stream. The device driver will use this handle when
instructing the monitor dispatcher to perform device helper func
tions on the chain of monitors (that is, DevHlp Register, DevHlp
MonWrite, DevHlp MonFlush, and DevHlp Deregister).

2. The device driver may call DevHlp MonitorCreate any time prior
to issuing other monitor dispatcher device helper functions:

a. When the device is loaded;

b. In response to an 'open' request, if DevHlp MonitorCreate
~as not been previously called to defin~ the monitor chain; or

c. In respons~ to a 'register' request, if DevHlp MonitorCreate
has not been previously called to define the monitor chain,
and before DevHlp Register is called.

A device driver must handle open, register, and close requests for
monitors.

1. When an application calls DosMonOpen to get a handle to the
device for monitors, an open request is sent to the device driver.
In response, a device driver may define a monitor chain for the
data stream by calling DevHlp MonitorCreate, if it has not previ
ously done so.

2; When an application calls DosMonReg to register a pair of buffers
as part of th~ chain of monitors for a specified data stream (see
DosMonReg INDEX parameter in Technical Reference, Vol. 2) for
a device, a register request is sent to the device driver. In
response, the device driver:

6-48

a. May call DevHlp MonitorCreate to define the monitor chain, if
it has not previously done.

b. Uses the handle returned from a previous DevHlp
MonitorCreate call and calls DevHlp Register, to direct the
monitor dispatcher to insert the buffers into the chain of mon
itors for the specified data stream.

For each monitor chain handle, the device driver should track
the number of monitors it registered with the monitor chain.

3. When an application calls DosMonClose to terminate monitoring
data passing through a device, a 'close' request is sent to the
device driver. In response, the device driver:

a. Must call DevHlp Deregister for each monitor chain handle
for monitors currently registered. This directs the monitor
dispatcher to remove all buffers associated with the process
that issued the DosMonClose from the chain of monitors for
the data stream.

Note: A single process may register monitors for more than
one data stream for a device. For example, a process may
register a keystroke monitor for each session.

b. May call for a monitor chain on return from each DevHlp
Deregister. If there are no monitors registered in the monitor
chain, call DevHlp MonitorCreate with the "remove chain"
option to remove the monitor chain's definition from the
monitor dispatcher's knowledge.

When monitors are registered in a chain of monitors for a device driv
er's data stream, the device driver must place data received from the
device into the chain of monitors so that it can be "filtered." The
device driver builds a data record in its data segment and calls
DevHlp MonWrite to write that record into the input buffer of the first
monitor in the monitor chain for the data stream. See page 6-52 for a
detailed description.

When a chain of monitors for a device driver's data stream is empty
(that is, a chain has been defined via a DevHlp MonitorCreate call,
but no monitors have been previously registered), the device driver
may use its monitor support to place a data record directly into its
monitor chain buffer by calling DevHlp MonWrite. The monitor dis
patcher automatically will call the device driver's notification routine
to move the data record into the device driver's API buffer. See page
6-51 for a detailed description.

When a device driver needs to guarantee that all data has been
cleaned out of the chain of monitors for a data stream, it issues a
DevHlp MonFlush call to direct the monitor dispatcher to place a spe
cially marked record, a FLUSH record, into the chain of monitors for
the data stream. This record must pass through all monitors in the
chain; therefore, all monitors in the chain that receive a FLUSH
record on a DosMonRead must return it to the monitor chain on a
DosMonWrite. No new data records will be placed into the monitor

6-49

chain until the FLUSH record reaches the device driver's monitor
chain buffer.

The following diagram shows a device driver monitor chain buffer
before a data record is placed into it by the monitor dispatcher.

Length
Word

xx I
------XX BYTES------

The following diagram shows a device driver monitor chain buffer
after a data record is placed into it by the monitor dispatcher. The YY
length is less than or equal to the length of the device driver monitor
chain buffer as initially defined.

Length
Word

VY I
-4-----YY BYTES----_.,.

6-50

The following diagram shows data movement through a character
device driver before monitor registration:

To Application Character
Device

• l
Character

Device Driver t---

Notification (1a)
Routine

READ character
~ thru subsystem Monitor Chain

call Buffer
0(1b)

API Buffer

(2)

.... -
~

T
d.J.

T
Note: No monitors are installed.

Data received by the device by an INT or a write passes through the
device driver to its API buffer. The device driver has an option to do
this by either:

1. Using the existing device driver monitor support to:

a. Write the data into the Monitor Chain buffer using DevHlp
MonWrite and let the monitor dispatcher automatically call
the device driver's notification routine (to signal the device
driver that data has been written into this buffer);

b. Let the device driver's notification routine move the data into
its API buffer.

2. Writing the data directly into its API buffer.

6-51

The following diagram shows data movement through a character
device driver during and after monitor registration:

To Application Character
Device

• I
Character (2a) ...

Device Driver 1--- Monitor

Notification
(1) (2b) Routine

READ character_ --thru subsystem Monitor Chain
Buffer call

~
(2c)

API Buffer_
-~

~

T
,.-.L...,

T

1. A process issues a DosMonReg call to register a monitor with a
character device. Until the monitor registration process has com
pleted successfully, data is written into the device driver's API
buffer.

2. Once the monitor registration process has completed success
fully,

6-52

a. Data is placed into the monitor chain by the device driver
using DevHlp MonWrite.

b. After the data has passed thru the monitor using
DosMonRead/DosMonWrite calls, the monitor dispatcher
moves the data into the device driver's monitor chain buffer
and calls the device driver's notification routine to signal it
that data has been placed into this buffer.

c. The device driver moves the data from its monitor chain
buffer into its API buffer.

Keystroke Monitor Interface

Some applications monitor all keystrokes and provide global system
function before more conventional applications receive the key
strokes. Examples include national language support for switching
the keyboard layout and for Asian language input conversion. Other
examples are applications which provide a desk calculator or key
stroke macro expansion. Hardware enforced protection requires that
the system provide interfaces for such applications, which run as
processes.

6-53

This diagram depicts the keyboard device keystroke monitor inter
face. The keystroke monitors have been previously enrolled as moni
tors. A monitor can pass the keystroke through, consume the
keystroke, or replace the keystroke with one or many keystrokes.

Keystroke Monitor Interface Diagram

Process-Time Keystroke Monitor

Key Key Key Key
Stroke Stroke Stroke Stroke
Monitor Monitor Monitor Monitor

• • ~ ~

Keystroke Distribution

................... _ .. Task Time Interrupt

I
Time

Keyboard Device Driver

~

Hardware

Key
Stroke
Monitor

•

i

l
Keystroke

Queue

•

Threads responsible for moving keystroke data through a monitor
chain must pay special attention to the thread priority. Keystroke
monitor threads must execute within the time critical priority class.
See Technical Reference, Vol. 2 description of DosMonReg for more
details concerning keystroke monitor priority.

6-54

Printer/Spooler Services

The printer/spooler is structured as shown in the diagram below:

Printer/Spooler Structure

App Process Spooler Process

Application Spooler (3)-"' Code Page -
Program

Switcher

~ (Monitor) ..._ (Dynalink) --
~ I I (4)

(1) (2) (7) (6)I (s)I

Spooled File
(disk)

_______________ _,

t------
__ .., --

Kernel
(7b) Async

,-----.... Device --~~~~ I Driver Printer (7c) j_(7a)

-- Printer -
Device (Ba) _J Driver

l
Printer

The data flow shown in the printer/spooler structure above is:

1. This flow is the normal API to the printer.

The Application program issues DosOpen, followed by "n"
DosWrites/DoslOCtls to the printer. The file system sends an
Open request packet to the printer device driver, followed by an
Activate Font IOCtl. The Application program's DosWrites go to
the printer device driver until a DosClose is issued.

2. This flow is from the printer device driver to the spooler through
the DosMonRead monitor interface.

6-55

I

The printer device driver sends an Open command buffer, fol
lowed by an Activate Font monitor command buffer, and then "n"
buffers corresponding to the Dos Writes.

3. This flow is by a Call interface to the Font Switcher dynamic link
routine.

a. This occurs when the Activate Font, Query Active Font, or
Verify Font command buffer is received by the spooler from
the printer device driver.

b. Escape sequence data and/or font data necessary to cause
the printer to perform the actual code page and font switch is
written to the temporary spool file by the Font Switcher. The
data is treated by the spooler as part of, and in sequence
with, the data being printed by the application program.

4. This flow is the return from the call described in the flow previ
ously.

5. This flow shows data being written by the spooler to a temporary
spool file using DosWrites. This is the data sent by the applica
tion program to be printed.

6. The spooler reads data from its temporary spool files on the disk,
in sequence based on its spool queues, using DosReads.

7. The spooler sends data to the device driver to be printed.

a. If the spooled printer is a parallel device, the spooler sends
the data back to the printer device driver in a monitor buffer
using Monitor Index 1 for the DosMonWrite.

b. If the spooled printer is an ASYNC device, the spooler sends
the data back to the ASYNC device driver using the DosWrite
function interface.

c. If the data to be returned is a Font Monitor Buffer Response,
the spooler sends the response back to the printer device jn a
monitor buffer using Monitor Index 2 for DosMonWrite.

8. The device driver sends data to the printer through the hardware
adapter.

a. The printer device driver sends the data to parallel printers.
b. The ASYNC device driver sends the data to serial printers.

6-56

Spooler Monitor

DOS Mode Force Output to Printer

The print spooler spools the printer output until a DosClose is issued.
When printing from the DOS mode, many applications use the INT17
interface which does not require DosOpen/DosClose. In this case,
the printer output is spooled until the program exits. The user may
press Ctrl-Alt-PrtSc (while the DOS mode is in the foreground) to
force printed output to be printed from DOS mode applications.

Spooler Operational Description

The Spooler uses a dynamic link module called the Font Switcher to
perform the code page and font switching.

lnltlallzatlon: When the Spooler is invoked by the user (user
command SPOOL), it accesses the system data structure which con
tains the code page and font information provided by the DEVINFO
command in CONFIG.SYS. If DEVINFO is present for the specified
printer name (LPTx) in the code page and font data structure, the
spooler will call the DosPFSlnit entry point of the Font Switcher
dynamic link module to initialize font switching. After the Spooler
and Font Switcher have completed initialization, print spooling along
with code page and font switching are enabled for the specified
printer.

If the DEVINFO code page and font information are not present in the
code page and font data structure maintained by the system for the
specified printer name, the spooler completes its initialization without
initializing the Font Switcher for the specified printer. In this case
spooling is enabled for the specified printer, however, code page and
font switching are not.

Activate Font: When an Activate Font - Font Monitor Buffer Command
is received by the spooler for a specific System File Number, the
spooler calls the DosPFSActivate entry point of the Font Switcher.
The Font Switcher changes the active code page and font for the
System File Number(/handle), and uses the font file to cause the code
page and font switch to occur. The code page and font switch occurs
in one of the following ways depending on the font support provided
by the target printer:

6-57

1. If the specified font is contained in the printer hardware (ROM or
cartridge, as specified by the DEVINFO command CONFIG.SYS),
the Font Switcher writes the escape sequence required to switch
the printer to this hardware font directly into the temporary spool
file. The escape sequence necessary to perform this switch is
available for the Font Switcher in the font file specified for the
printer.

2. If the specified font is not contained in the printer hardware, and
the printer allows multiple downloadable fonts, the Font Switcher
will write the following information directly into the temporary
spool file in the following order:

a. The escape sequence required to cause the font data that
follows to be loaded into the correct printer buffer;

b. The font information;

c. The escape sequence required to cause the printer to use the
buffer just loaded.

If the Activate Font command specifies a font which has been pre
viously loaded into a font buffer other than the one which is cur
rently active, the Font Switcher writes the escape sequence
required to switch the printer to the desired font buffer directly
into the temporary spool file.

All escape sequences and font information required are available
for the Font Switcher in the font file specified for the printer.

3. If the specified font is not contained in printer hardware, and the
printer allows a single font to be downloaded, the Font Switcher
will write the following information directly into the temporary
spool file in the following order:

6-58

a. The escape sequence required to cause the font data that
follows to be loaded into the correct printer buffer;

b. The font information;

c. The escape sequence required to cause the printer to use the
buffer.

All escape sequences and font information required are available
for the Font Switcher in the font file specified for the printer.

Query Active Font: When a Query Active Font - Font Monitor Buffer
Command is received by the spooler for a specific System File
Number, the spooler calls the DosPFSQueryAct entry point of the Font
Switcher. The DosPFSQueryAct function returns the active code page
and font for the specified System File Number(/handle) to the spooler.
The spooler returns the information to the printer device driver using
the Query Active Font Font Monitor Buffer Response. The printer
device driver then returns the information to the Query Active Font
IOCtl caller.

Verify Font: When a Verify Font - Font Monitor Buffer Command is
received by the spooler for a specific System File Number, the
spooler calls the DosPFSVerifyFont entry point of the Font Switcher.
The DosPFSVerifyFont function returns whether the specified code
page and font is available for the specified printer.

Spooler Monitor Interfaces

The interfaces required by the spooler for code page and font
switching are:

• System code page and font information

• Font Monitor Buffer Commands

Activate Font
Query Active Font
Verify Font

• Font Switcher function calls are summarized as follows:

DosPFSlnlt
DosPFSActlvate
DosPFSQueryAct
DosPFSVerlfyFont
DosPFSCloseUser

Initialize code page and font
Activate Font
Query Active Font
Verify Font
Close Font User Instance

For function call details, refer to Technical Reference, Vol. 2.

• Printer Font File Format

These interfaces are described in the following sections.

System Code Page Information: The spooler must be able to access
the System Code Page Information when it is invoked (user command
SPOOL) from some system provided data segment. The information
required is that provided by the CONFIG.SYS command DEVINFO.

6-59

This information includes the printer name, printer type, code page
and fonts provided in the printer hardware and the path name of the
font file to be used.

Font Monitor Buffer Commands: The Font Monitor Buffer Commands
which provide the code page and font switch interface between the
printer device driver and the spooler monitor are:

1. Activate Font
2. Query Active Font
3. Verify Font

These commands and their responses are described in detail in "Font
Monitor Buffer Commands" on page 9-159.

Printer Font Fiie Format: Each printer for which code page and font
switching is supported must have a font file which describes:

• Control Sequences for downloading and switching fonts

• Font definitions

OS/2 Font File Format
The format of the OS/2 Font File is shown in the following diagram:

Character Set
File Header

Control Sequence
Definitions

Character Set
Definition Block 1

Character Set
Definition Block 2

Character Set
Definition Block n

The Font File Header defines the printer which the font file supports
and has pointers to the Control Sequence Definitions section of the
file and to the first Font Definition Block. The Font Definition Blocks

6-60

are a linked list throughout the rest of the file. Each of these sections
of the font file are described in more detail below:

Font Fiie Header

The format of the font file header is shown in the following diagram:

00

02

QA

OB

OC

OD

OE

10

14

Font File Type Number

Printer Type

Version Major Number

Version Minor Number

Number of Hardware Fonts

Number of RAM Fonts

Control Sequence Blk Ptr

Character Set Def Blk Ptr

Reserved
(46 Bytes)

The definition of each field is as follows:

Font Fiie Type Number This field identifies the format version or type
of the font file. The value for the format specified for OS/2 is
4554h.

Printer Type This field is eight bytes which specify the printer type
which this font file supports.

Version Major Number This byte is the "major" version number of the
font file.

Version Minor Number This byte is the "minor" version number of the
font file.

Number of Hardware Fonts This byte specifies the maximum number
of hardware fonts (ROM or cartridge slots) whieh this printer
supports.

Number of RAM Fonts This byte specifies the maximum number of
fonts which this printer may have downloaded to it simultane
ously.

6-61

Control Sequence Blk Ptr This WORD pointer is the offset from the
beginning of the file at which the Control Sequence Definition
Section begins.

Character Set Def Blk Ptr This DWORD pointer is the offset from the
beginning of the file at which the first Font Definition Block
begins.

If this value is zero (0), there are no font definition blocks in this
file.

Reserved This area of 46 bytes is reserved and should be set to zero
(0).

Control Sequence Definitions: The following diagram shows the
format of the font file control sequence definition section:

00

02

20

22

xx

~

~

yy

CSD Section Size

Reserved

No. Hdw Font Select Ptrs

Hdw Font seq 0 pointer

~

Hdw Font seq n Pointer

No. RAM CSD Pointer Blks

RAM CSD Pointer Blk 1

RAM CSD Pointer Blk 2

~

RAM CSD Pointer Blk n

Control Sequence
strings

The definition of each field is as follows:

CSD Section Size Control Section Definition Section Size - This
WORD gives the total size in bytes of the CSD Section (including
itself)

Reserved This area is reserved and must be set to zero.

No. Hdw Font Select Ptrs This Word specifies the number of Hardware
Font Select Sequence DWORD pointers which follow.

6-62

Hdw Font Select x ptr Each DWORD pointer in the Hardware Font
Select Sequence Table points to the beginning of a length pre
fixed control sequence string which is in the "Control Sequence
Strings" area of this section.

The first control sequence corresponds to the control sequence
command for "Select Hardware Font O", the second control
sequence is for "Select Hardware Font 1 ", and so on. Hardware
Font O corresponds to the hardware default font of the printer.

For printer type 5202 only, the control sequences do not corre
spond to hardware fonts except for the first control sequence
which is necessary to select the hardware font when both code
page and font id are zero. If the printer type is 5202, the font file
is for a printer with plug-in cartridge fonts and the hardware font
select sequences are to select a cartridge code page, font id,
pitch, and whether proportional spacing is used. These items
are dynamically inserted into the control string at runtime.

When an Activate Font command is specified with both the OS/2
values set to zero, then Hardware Font 0 is selected.

Each pointer is an absolute DWORD offset from the beginning of
the file.

No. RAM CSD Pointer Blks This Word specifies the number of RAM
Font Buffer Control Sequence Definition Pointer Blocks (RAM
CSD Pointer Blk) which follow.

RAM CSD Pointer Blk x The RAM Font Buffer CSD Pointer Blocks are
an array in which each element (block) contains the control
sequences which correspond to a font buffer in the printer. The
order of the blocks correspond to the RAM font buffer number
(that is the first block corresponds to the first font buffer, and so
on). Each pointer in a RAM CSD Pointer Block is an absolute
DWORD offset from the beginning of the file to length prefixed
control sequence strings contained in the "Control Sequence
Strings" area of this section. Any pointer which is zero (0) indi
cates that the corresponding control sequence is not defined.

6-63

RAM Font Buffer CSD Pointer Block Format

Each RAM CSD Pointer Block has the following format:

00 Select Buffer Seq Ptr

04 Begin Download Seq Ptr

08 End Download Seq Ptr

OC Reserved
{20) Bytes)

Select Buffer Seq Ptr The Select Buffer Sequence DWORD pointer
points to the beginning of a length prefixed control sequence
string which is in the "Control Sequence Strings" area of this
section. This control sequence is used to "select" (or make
active) the font buffer. This pointer is an absolute offset from
the beginning of the file.

Begin Download Seq Ptr The Begin Font Download Sequence DWORD
pointer points to the beginning of a length prefixed control
sequence string which is in the "Control Sequence Strings"
area of this section. This control sequence specifies that a font
download for a particular font buffer follows. This pointer is an
absolute offset frotn the beginning of the file.

End Download Seq Ptr The End Font Download Sequence DWORD
pointer points to the beginning of a length prefixed control
sequence string which is in the "Control Sequence Strings"
area of this section. This control sequence specifies that a font
download for a particular font buffer is complete. This pointer is
an absolute offset from the beginning of the file.

Reserved Each RAM Font Buffer CSD Pointer block contains a
reserved area of 20 bytes which must be set to zero (0).

Control Sequence Strings This area of the section contains the actual
length prefixed control sequence strings pointed to by the
pointers described above. The first byte of each string indicates
the length of the string in bytes.

6-64

If the printer type is 5202, there are dynamic inserts for car
tridge code page, font id, pitch, and proportional spacing.
These inserts are made at the following positions of the control
string (starting counting with one):

Byte

9

10

16

17

18

19

20

Description

High order byte of code page

Low order byte of code page

High order byte of font ID

Low order byte of font ID

High order byte of pitch (1/1440 inches)

Low order byte of pitch (1/1440 inches)

Proportional spacing on/off

Value Description
O = Wild card
1 = Use fixed pitch
2 = Proportional

6-65

Font Definition Block

Each font definition block within the file has the following format:

00

04

06

08

OA

20

Pointer to Next Block

Code Page Number

Font Id Number

Length of Font Data

Reserved

Font Definition Data

The definition of each field is as follows:

Pointer to Next Block This DWORD pointer points to the next font defi
nition block in the file.

A value of zero (0) indicates that this is the last font definition
block in the file. This pointer is an absolute offset from the
beginning of the file.

Code Page Number This is the Code Page number of the font defi
nition contained within this block.

Font Id Number This is the Font Id number of the font definition con
tained within this block.

Note: The code page number and font id should not both be
zero because this indicates the default hardware OS/2. If both
are zero, the font will not be selected.

Length of Font Data This is the number of bytes in the "Font Definition
Data" area.

Reserved These bytes are reserved, and must be set to zero (0).

Font Definition Data This area contains the bytes which are sent to
the printer when downloading a particular font.

6-66

Chapter 7. OS/2 Device Driver Architecture

Device drivers written for DOS are synchronous and often non
interrupt driven. Because DOS is a single-task operating system, this
presents no problem. A program cannot proceed until the 1/0 has
been completed, so it is acceptable for the device driver to hold the
CPU until the 1/0 is complete.

OS/2, on the other hand, is a multitasking operating system. It must
be able to assign the CPU to tasks that are not waiting for 1/0. There
fore, device drivers written for OS/2 must surrender the CPU while
they are waiting for 1/0 completion. Consequently, OS/2 device
drivers must be interrupt-driven.

In addition, OS/2 provides a DOS mode to support DOS applications.
Consequently, OS/2 device drivers must support device 1/0 requests
in the DOS mode. This means that OS/2 device drivers must handle
1/0 requests issued by the applications running in the DOS mode and
may need to interlock DOS mode ROM BIOS device 110 with OS/2
mode device 1/0. Performance considerations also require that
device drivers be able to handle hardware interrupts without the
overhead of a mode changing method. OS/2 device drivers must
therefore be bimodal, that is, execute in both the OS/2 mode and the
DOS mode.

The basic characteristics of the OS/2 device driver are:

• Support of a multitasking environment

• Execution in both the DOS mode and the OS/2 mode

7-1

Types of Device Drivers

There are two types of device drivers:

• Character device drivers

• Block device drivers

Character device drivers manage 110 on character-oriented devices.
These devices perform 1/0 on a character-by-character basis. A
character device has a name like SCREEN$, KBD$, LPT1, or COM1.
A character device driver can support more than one device by
having multiple linked device headers where each header indicates a
different name.

Block device drivers support block-oriented devices. These devices
perform 1/0 on a block of data, typically through OMA (Direct Memory
Access). Applications request 1/0 on block-oriented devices via a file
system. Consequently, block device drivers do not have names.
Instead, a block device driver is assigned one or more drive letters.
A block device driver can support multiple devices (or units), so a
drive letter is assigned for each unit (or device). A block device
driver specifies the number of devices that it supports when it is
called to initialize. Refer to the INIT device command, "OH I INIT Ini
tialize Device" on page 7-43.

The order in which the block device drivers appear in the
CONFIG.SYS configuration file (via the DEVICE= command) deter
mines the order in which they receive drive letters.

7-2

Application 1/0 to Devices

An application accesses a device driver when it performs an 110
request. There are three kinds of interfaces that provide access to
device drivers:

• File system interface

• Subsystem interface

• IOCtl interface

The File system interface consists of the file 110 function calls. OS/2
applications use the DOS dynamic link calls for file 1/0, DOS applica
tions use the DOS dynamic link calls for file 1/0, and DOS applications
running in the DOS mode issue INT 21 H File 1/0 function calls. The
file 110 function calls are used primarily to perform 1/0 on block
devices like fixed disks. Some file 110 function calls can be used to
perform 1/0 on character devices. These calls include:

• DosOpen
• DosClose
• DosRead
• DosReadAsync
• DosWrite
• DosWriteAsync

The advantage of using the file 1/0 function calls to perform 1/0 on a
character device is that the application can redirect the 110. The
application performs 110 to a handle (file or device) which it obtained
from opening the named resource passed to it.

A subsystem interface shields an application from having to manage
device 110. The file system is an example of a subsystem. The file
system allows the applicatio_n to view a file as a logical sequence of
sectors, thus shielding the application from having to manage the
physical locations of the data on the disk media. Other subsystem
examples include the VIO, KBD; and MOU subsystems which provide
110 services for video, keyboard, and mouse devices respectively.

The IOCtl interface is the mechanism that an application or sub
system uses to send device-specific control commands to the device
driver. The IOCtl mechanism is DosDevlOCtl for new applications

7-3

and the INT 21H IOCtl request for DOS applications. 1/0 commands
can be sent to both block and character device drivers. The applica
tion or subsystem must first obtain the device handle by doing an
open on the device name.

1/0 Support For The DOS Mode

A device driver is responsible for managing 1/0 for its device.
Because many devices must be accessible from both the DOS mode
and the OS/2 mode, an OS/2 device driver must manage its device
across both modes of operation. Examples of such cross-mode
devices are disk, keyboard, screen, mouse and printer.

Device 110 in the DOS mode is performed in one of three ways:

• DOS INT 21 H interface
• ROM BIOS interface
• Direct access to the device

1/0 using the DOS INT 21H interface is transformed into the request
packet interface, which the device driver receives. (Similarly, 110
using the OS/2 dynamic link function calls are transformed into the
request packet interface.) Because the request packet interface is
standard across modes for new device drivers, it poses no problem
for the device driver in managing its device.

110 using the ROM BIOS poses some problems for an OS/2 device
driver. The OS/2 device driver must intercept the ROM BIOS soft
ware interrupt (by setting the vector with the DevHlp SetROMVector
see "SetROMVector Set DOS Mode Software Interrupt Vector" on
page 8-78) and interlock ROM BIOS operations on its device in two
ways:

• Serialize access to the device.

Serialize by using semaphores to indicate when the device is
busy with a request (and consequently cannot accept/tolerate a
request from ROM BIOS).

• Protect critical sections of ROM BIOS execution from suspension.

7-4

Suspension occurs when a user switches away from the applica
tion in the DOS mode to an application in the OS/2 mode. This
causes the DOS mode to be suspended in the background.
However, some 1/0 processing cannot tolerate being suspended.

Specific examples are the printer (BIOS INT 17H), disk (BIOS INT
13H), and screen (BIOS INT 10H). It is the responsibility of the
OS/2 device driver to intercept the appropriate ROM BIOS inter
rupt and issue the DevHlp function call, ROMCritSection, to
protect the ROM BIOS critical section of execution.

Note: When the OS/2 device driver issues ROMCritSection to
enter a ROM BIOS critical section, the user is not able to switch
away from the application in the DOS mode to an application in
the OS/2 mode. This poses potential problems for the user. For
example, if a DOS mode terminate-and-stay resident program
takes control while the CPU is executing the ROM BIOS, the time
spent in the ROM BIOS critical section will be longer. The worst
case is that the terminate-and-stay resident application is interac
tive, never allowing the OS/2 device driver to issue the exit from
critical section and never allowing the user to switch away from
the application in the DOS mode until the user terminates the
application.

Application 110 using direct access to a device driver's device poses
the same problem for the device driver under OS/2 as it does to a
device driver operating under DOS. If device state information is crit
ical or if device 1/0 must be serialized, then a device driver can
choose not to access the full function of the device. Control of the
device, in this case, would be shared between the application and the
device driver.

Components of a Device Driver

An OS/2 device driver contains one or more of the following
components:

• Strategy Routine

The strategy routine is called to handle 110 requests through a
request packet interface with the OS/2 kernel. The strategy
routine executes at task-time as a result of an application 1/0
request. Because application 110 requests can come from new
OS/2 applications running in the OS/2 mode and DOS applica
tions running in the DOS mode, the strategy routine must not
have a dependency on the mode in which it is invoked.

The strategy routine follows the FAR CALL/RET model. When it
is done processing, it performs a FAR RET to the kernel. By con-

7-5

vention, the strategy routine does not need to save and restore
any registers it uses, because the preservation of registers is
handled by the kernel.

The request packet interface is discussed in the section "Request
Packets" on page 7-37.

• Hardware Interrupt Handler

The hardware interrupt handler is called as the result of a hard
ware interrupt and executes at interrupt time. For performance
reasons the hardware interrupt handler must not have a depend
ency on the mode in which it is invoked.

The hardware interrupt handler follows the FAR CALL/RET
model. When it has completed processing, it performs a FAR
RET to the kernel. In addition, it must set or clear the CF (Carry
Flag) to indicate whether or not it owns the interrupt. By conven
tion, the hardware interrupt handler does not need to save and
restore any registers it uses. This is done by the kernel before
calling the device driver.

• Timer Handler

The timer handler is called as the result of a periodic clock tick
and executes at interrupt time. The timer handler manages time
outs and is similar to the INT 1CH user timer feature of ROM
BIOS. The timer handler must not have a dependency on the
mode in which it is invoked.

The timer handler follows the FAR CALL/RET model. When it has
completed processing, it performs a FAR RET to the kernel. The
timer handler must save and restore any registers it uses.

• Software Interrupt Handler

7-6

The software interrupt handler is called directly by a software
interrupt. Software interrupts can only be issued in the DOS
mode, so the software interrupt handler executes only in the DOS
mode. Typically, the software interrupt handler is used to inter
cept ROM BIOS software interrupts to serialize device access
between the protect mode and the real mode; or to prevent the
BIOS service from being suspended when the user attempts to
switch away from the DOS mode application to an OS/2 mode
application.

OS/2 Device Driver Contexts

There are four contexts (modes) in which OS/2 device drivers
operate. They are:

• Kernel Mode

The OS/2 kernel calls the device driver strategy routine for task
time operations. (Task-time is a generic term that refers to exe
cuting code as a thread within a process.) The strategy routine
will execute as a thread within a process. The strategy routine
will not be preempted by a task switch but may be interrupted by
incoming hardware interrupts. Kernel mode applies to both the
DOS mode and the OS/2 mode.

• Interrupt Mode

The OS/2 kernel calls the device driver interrupt-time compo
nents, the hardware interrupt handler, and the timer handler.
(Interrupt-time is a generic term that refers to executing code as
a result of an interrupt; the thread of execution does not belong to
a process.) The hardware interrupt handler and the timer
handler will not execute code as a thread belonging to a thread
specific process; the thread of execution results from a hardware
interrupt. Interrupt mode applies to both the DOS mode and the
OS/2 mode.

• User Mode

In user mode the device driver software interrupt handler is
called, and applies only to the DOS mode. The software interrupt
handler is invoked by a software interrupt. In this mode, the
device driver software interrupt handler may be preempted by a
task switch.

• INIT Mode

In INIT mode the device driver strategy routine is called with a
request packet containing the INIT command. The initialization
code runs in the OS/2 mode at the application privilege level with
110 privilege. A limited set of dynamic link function calls are
available for use, as well as a portion of the device helper
(DevHlp) function calls. This is discussed in the section "Device
Driver Initialization" on page 7-26.

7-7

OS/2 Device Driver Operations

To show the interaction between the strategy routine and the hard
ware interrupt handler in the processing of an 1/0 request, the fol
lowing example is presented.

The handling of an 110 request begins with OS/2 calling the strategy
routine entry point with a request packet. The strategy routine checks
the validity of the 110 request. If the request is valid, the strategy
routine may place the request on a work queue for the device, using
the DevHlp functions for request queue management.

If the device is currently idle, the strategy routine starts the request at
the device. The strategy routine may then wait for the device driver
interrupt by suspending its thread of execution with the DevHlp func
tion BLOCK.

When the device interrupt occurs, the hardware interrupt handler
checks the request to see if it has been completed. If the request has
not been completed, the hardware interrupt handler continues the
request at the device. If the request has been completed, the hard
ware interrupt handler sets the return status in the request packet.
The hardware interrupt handler may remove the completed request
packet from the work queue and start the next request at the device.
If the strategy routine is waiting for the device interrupt, (which is
blocked), then the hardware interrupt handler can wake up the
strategy routine with the DevHlp RUN.

In this example, the strategy routine queues the requests and only
initiates the 1/0 if the device has been inactive; the hardware inter
rupt handler starts requests as they reach the head of the work
queue. The thread context, in which the device driver determines
that a particular request is complete, is not necessarily the same
thread context in which the device driver received the request. This
is particularly true for the interrupt-time components of the device
driver. For example, the address of a user buffer passed to the
device driver when the request was issued belongs to a specific LDT,
which may not be the current LDT when the request ends. The device
driver can accommodate this by storing the buffer address as a 32-bit
physical address.

The device driver strategy routine is called by OS/2 with a pointer to
the request packet. The pointer to the request packet is bimodal: in

7-8

other words, the pointer is valid in both the DOS mode and the OS/2
mode. Any addresses passed in the request packets for read/write
requests are passed as 32-bit physical addresses (normalized).
Therefore, the device driver does not need to lock or convert the
addresses into physical addresses. The device driver only needs to
lock addresses that it receives from a source other than OS/2, such
as in the case of a process passing an address via a generic IOCtl.

The multitasking environment dictates that the components of the
device driver must be capable of handling requests simultaneously.
This means that the components of the device must relinquish exe
cution whenever possible. The device driver relinquishes control at
task-time by BLOCKING, YIELDING, or referencing a segment which
had been swapped out; OS/2 will not preempt a thread in the device
driver. However, once the device driver releases its execution, OS/2
can call the device driver with a new request. In other words, once
the strategy routine BLOCKS, YIELDS, or references a swapped-out
segment, its thread of execution can be called with a new request
under the context of a different thread.

While the strategy routine can assume that it will not be preempted
by other task-time instances, it must protect itself against its own
interrupt-time components. It should disable interrupts when
checking if the device is active and when examining the device
queue. The interrupt-time components will only be preempted by
other higher priority interrupts.

One component of the device driver may be preempted, the software
interrupt handler. The software interrupt handler is invoked by a soft
ware interrupt in the DOS mode. It can be preempted by background
OS/2 mode threads which are scheduled to execute and which may
issue 1/0 requests causing other components of the device driver to
be invoked.

Request Packet Queue Management

The strategy routine can either queue a request packet or process it
immediately. Typically, only read requests and write requests need
to be queued because the device is busy. Other types of requests
can usually be handled immediately by the strategy routine.

A block device driver such as the disk device driver, can process
queued requests in any order. For instance, the block device driver

7-9

can choose to sort the requests to optimize device access time. A
character device driver must always handle queued requests in the
order it received them; otherwise, mixed output could result.

The request packet queue is really a linked list. The request packet
contains a linkage field which allows the packets to be chained
together.

The device driver can manage its work queue of request packets with
the DevHlp functions for Request Queue Management.

In order to use the Request Queue Management DevHlp services, the
device driver must allocate a DWORD variable as a queue header,
with one queue header per queue. The DWORD variable must be ini
tialized to zero to indicate an empty linked list or the end of the linked
list.

The DevHlp services use the queue header to identify a specific
linked list of request packets and will set the header to the first
request packet in the list. The linkage field in the request packet is
then used to chain the request packet to another request packet.

Because the pointer to the request packet is bimodal (valid in both
the DOS mode and the OS/2 mode), the device driver can manipulate
the linkage fields in the request packets itself by using its own linked
list management.

Memory Management

The device driver must manage addressability to data across task
time and interrupt time operations. DevHlp services are provided to
allow the device driver to be independent of the CPU mode, whether
at task-time or interrupt-time. Addressability is particularly critical at
interrupt-time because the context of the current process may not
cover the address space containing the data buffer that the hardware
interrupt handler needs to access in order to move data.

To prevent an application from passing an unauthorized address, the
device driver can use the DevHlp service VerifyAccess to validate the
application's authority to access the memory. Because device
drivers execute at the operating system privilege level, they have
access rights to segments at all privilege levels. However, a well
balanced device driver must not allow an application to force the

7-10

device driver into accessing segments which the application does not
own. This check applies to addresses that an application passes
within a generic IOCtl request; the OS/2 kernel validates addresses
for READ and WRITE requests. If an application passes a bad
address to the device driver, the device driver could halt the system if
it does not verify the caller's access authority. Once an address has
been verified, the device driver can proceed with the 110 request.

The DevHlp services LOCK and UNLOCK are used to fix in place a
segment, which prevents the segment from being moved or swapped
while the device driver needs access to it. The device driver does not
need to lock segments for the READ or WRITE request packets.
However, segments referenced in the generic IOCtl request packet
will need to be locked by the device driver if it intends to access them
at interrupt time.

Once a segment has been locked, the device driver can convert the
virtual address (segment/selector:offset) into a physical address with
the DevHlp VirtToPhys for later use at interrupt time.

The DevHlps AllocPhys and FreePhys allow the device driver to get
and free a fixed amount of memory. The device driver must use the
DevHlps PhysToVirt and UnPhysToVirt to obtain a virtual address
(segment/selector:offset) to access the memory.

The device driver should choose to locate critical data structures or
data transfer areas in its data segment. This is optimal for perform
ance when access to the structures or buffers must take place at both
task time and interrupt time.

Semaphore Management

There are two kinds of semaphores, RAM semaphores and system
semaphores. RAM semaphores are defined by the semaphore user
by allocating a DWORD variable and using the address in place of the
handle in DevHlp semaphore services. OS/2 provides no resource
management on RAM semaphores (such as releasing the semaphore
when the owner terminates). System semaphores are created by an
application through a dynamic link function call. OS/2 provides full
resource management on system semaphores, including releasing of
the semaphore and notification when the owner of the semaphore ter
minates.

7-11

TypicaUy, a device driver creates and uses RAM semaphores to
control operations among its components. They are not restricted for
use by mode. The device driver may use RAM semaphores while
executing in user mode.

System semaphores are typically used by a device driver to commu
nicate to an application process. A device driver cannot create a
system semaphore; although it can use the system semaphore that
the application process has created. The application process must
pass the application's handle to the device driver in a generic IOCtl.
The device driver then uses the DevHlp service SemHandle to obtain
a semaphore handle that the device driver can use. The device
driver must indicate in the SemHandle call that the system
semaphore is IN-USE by the device driver. When the device driver no
longer needs to use the system semaphore to communicate with the
application, it must call the DevHlp SemHandle and specify that the
system semaphore is NOT-IN-USE.

Character Queue Management

Character queues are used by character device drivers to buffer data.
The two most frequently used structures for character buffers are the
FIFO and the CIRCULAR buffer.

A character device driver may use the DevHlp services to manage a
simple circular buffer for characters. The DevHlp services operate on
the following character queue header.

CharQueue STRUC
Qsize OW
Qchrout OW
Qcount OW
Qbase DB

CharQueue ENDS

?
?
?
?

Size of buffer in bytes
Index to next char out
Count of characters in buffer
Start of buffer

Prior to using the character queue DevHlp services, a device driver
must allocate the queue header and initialize the Qsize field. The
DevHlp Queuelnit must be called before calling any of the other char
acter queue DevHlps. The other fields in the queue header are
managed by the character queue DevHlps and do not need to be
examined or altered by the device driver.

A character device driver is not required to use the character queue
DevHlp services. A character device driver can define its own char-

7-12

acter buffer management, tailored to the requirements of its buffer
structure.

Hardware Interrupt Management

The device driver's hardware interrupt handler is the component of
the device driver which deals with a hardware interrupt. The hard
ware interrupt handler is called by the OS/2 kernel when the hard
ware interrupt occurs, therefore it must follow the FAR CALL/RET
model. By convention, the hardware interrupt handler does not need
to save and restore any registers it uses. This is done by the kernel.
For performance reasons, the hardware interrupt handler will be
called in the CPU mode that the hardware interrupt occurred. There
fore, the Hardware Interrupt Handler must not have a dependency on
the mode in which it is invoked.

Before the hardware interrupt handler can be invoked, its entry point
must be registered for a specific hardware interrupt. This may be
done during or after device driver initialization with the DevHlp
service SetlRQ. Once the call to the DevHlp has been made, the
hardware interrupt handler can be invoked.

Hardware interrupt sharing is not supported on the Personal Com
puter AT or the Personal Computer XT Model 286 A hardware inter
rupt level (IRQ) that is shared among two or more devices is referred
to as a shared interrupt. Interrupt sharing is an extension of a
device's design. A single interrupt level (IRQ) can be shared among
two or more devices if the devices are specifically built for interrupt
sharing. A device driver cannot share the hardware interrupt level
without cooperation from its device. This is true for both edge
triggered and level-sensitive interrupt environments.

In an edge-triggered interrupt environment, an interrupt request will
be recognized by the 8259 Programmable Interrupt Controller (PIC)
as a particular edge transition (like low-to-high) on the hardware
interrupt request line. The interrupt request line can remain level
without generating another interrupt. The 8259 PIC requires an End
Of-Interrupt (EOI) and another of the same kind of edge transition to
recognize an interrupt on that interrupt level.

In a level-sensitive interrupt environment, an interrupt request will be
recognized by the 8259 PIC as a particular level on the hardware
interrupt request line. The interrupt condition must be removed

7-13

before the EOI is issued or else the 8259 will continue to generate
interrupts for that interrupt level.

Note: OS/2 supports interrupt sharing only on the PS/2, which pro
vides a level-sensitive interrupt environment, where multiple device
drivers (devices) may share a particular hardware interrupt. On both
the Personal Computer AT and the Personal Computer XT Model 286,
hardware interrupts cannot be shared among multiple device drivers
(devices).

The basic model for managing a hardware interrupt follows:

1. The device driver must register an interrupt handler for a hard
ware interrupt, specifying whether the device driver intends to
share the interrupt level.

2. When invoked, the device driver interrupt handler tests the device
to see if it generated the interrupt.

3. If the device has an interrupt pending or caused a spurious inter
rupt, the interrupt handler owns the proces~ing of the interrupt.

The interrupt handler services the device, resets the interrupting
condition at the device, issues the End-Of-Interrupt (EOI) with the
DevHlp service EOI, and RET FAR with the indicator that it owned
the interrupt (CF = 0).

4. If the device does not have an interrupt pending, the interrupt
handler does not own processing of the interrupt.

The interrupt handler must RET FAR with the indicator that it
does not own the interrupt (CF = 1).

To permit two or more device drivers to share an interrupt level, each
device driver must adhere to the following rules:

1. Interrupt Level Sharing

7-14

All interrupt levels have the potential to be shared. There are
some restrictions.

SYSTEM TIMER RULE The system timer interrupt level (IRQ 0)
cannot be shared.

The system timer interrupt level is owned by a DOS mode
interrupt handler for compatibility operations.

ILL-BEHAVED DEVICE RULE An interrupt handler for an ill
behaved device must not share an interrupt level.

An ill-behaved device is one that generates interrupts
before its interrupt handler is installed or is one that cannot
be told to stop generating interrupts.

Well-behaved devices are devices that do not power-up with
interrupts pending and do not remain active after their han
dlers have terminated. Also, well-behaved devices do not
usually generate spurious interrupts.

BIOS INT HANDLER RULE A bimodal interrupt handler that uses
the BIOS interrupt handler to support interrupt processing
from 1/0 generated by the DOS mode must not share an
interrupt level.

A BIOS interrupt handler does not share its interrupt level,
but assumes that it owns the interrupt processing.

2. Initializing the Interrupt Vector

SET IRQ RULE The device driver must indicate when signing up
for a hardware interrupt level with the DevHlp SetlRQ that it
will share the interrupt.

IRQ ENFORCEMENT RULE If a device driver signs up for a hard
ware interrupt indicating that it will not share it, then a sub
sequent SetlRQ request to share that hardware interrupt
will be refused. Conversely, if a device driver signs up for a
hardware interrupt indicating that it will share it, then a sub
sequent SetlRQ request to exclusively own the hardware
interrupt will be refused.

DOS MODE SHARING RULE Interrupt sharing cannot be per
formed by a DOS mode interrupt handler.

A hardware interrupt is owned either by one or more
bimodal interrupt handlers (OS/2 device drivers) or by a
single DOS mode interrupt handler.

A DOS mode interrupt handler exclusively owns its hard
ware interrupt. It may not share its interrupt with a bimodal
device driver. A DOS mode interrupt handler may not share
its interrupt because, as part of the DOS mode, it can
execute only when the DOS mode is in the foreground.

7-15

COROLLARY If a bimodal device driver (OS/2 device driver) owns
a device that is accessible from a BIOS software interrupt,
the bimodal device driver's interrupt handler will own the
hardware interrupt level, not BIOS. However, the bimodal
device driver may NOT share its interrupt level with other
bimodal device drivers, if the bimodal interrupt handler
uses the BIOS interrupt handler when processing an inter
rupt generated by an 110 request from the DOS mode.

The bimodal device driver's interrupt handler may need to
support DOS mode 110 by using the BIOS interrupt handler
in the DOS mode. In this case, the bimodal device driver
must be aware that the BIOS interrupt processing does not
include a check for ownership of the interrupt level. In addi
tion, the bimodal device driver must be aware of the back
ground processing of OS/2 mode processes while the DOS
mode is in the foreground - the bimodal device driver is
always called in the current processor mode of operation.

IRQ MASK RULE The operating system owns the masking of the
hardware interrupt at the 8259 interrupt controller.

The operating system will enable the hardware interrupt at
the 8259 interrupt controller when the first interrupt handler
signs up for the hardware interrupt. This permits the inter
rupt handler to communicate with its device during initial
ization.

3. Processing The Interrupt

7-16

STI ENTRY RULE Interrupt handlers that share interrupts will be
entered with processor interrupts enabled.

This is to prevent the lockout of higher priority hardware
interrupts, because the search for the owner of the current
interrupt level takes a variable amount of time.

Interrupt handlers that do not share interrupts will be
entered with processor interrupts disabled.

A [.-JS mode interrupt handler will be entered with
processor interrupts disabled for compatibility.

IRQ OWNERSHIP RULE The device driver interrupt handler, when
invoked, must always interrogate its device to see if its
device caused the interrupt. If the interrupt handler's
device caused the interrupt, then the interrupt handler owns
the processing of the interrupt.

If the interrupt handler owns the processing of the interrupt,
it may briefly disable processor interrupts for critical oper
ations. It must issue the EOI as soon as possible.

The device driver interrupt handler must be aware that once
it issues the EOI, it could be reentered at its interrupt han
dler's entry point.

If the interrupt handler's device did not cause the interrupt,
then the interrupt handler must not issue an EOI.

INT RETURN RULE The interrupt handler, after taking the appro
priate action in processing the interrupt, must return an
indication whether it claimed the interrupt or not.

If the interrupt handler owns the interrupt, then it must clear
the CARRY FLAG (CF = 0) and issue a FAR RET when proc
essing is complete. If the interrupt handler does not own
the interrupt, then it must set the CARRY FLAG (CF = 1)
and issue a FAR RET.

SEARCH RULE The operating system calls each interrupt handler
registered for a particular interrupt level until one of the
interrupt handlers claims the interrupt.

EOI RULE Management of the 8259 interrupt controllers is the
responsibility of the operating system. However, the End
Of-Interrupt (EOI) is the responsibility of the interrupt
handler.

The interrupt handler must use the DevHlp EOI service to
issue the EOI as soon as possible in the processing of its
interrupt. This permits the 8259 interrupt controller to
process other interrupt requests at the current interrupt pri
ority as well as interrupt requests of lower priorities.

In a level-sensitive interrupt environment, the EOI must not
be issued to the 8259 interrupt controller(s) until the inter
rupt condition at the device is removed.

7-17

Advanced BIOS requires that all ABIOS staged-on interrupt
request blocks be processed for the LID that owns the inter
rupt prior to the EOI. (Refer to the ABIOS EOI Placement
Rule.)

PhysToVirt RULE Selectors used for PhysToVirt represent a crit
ical resource; an interrupt handler that uses PhysToVirt
must not issue the EOI until after it no longer needs the
addresses generated by PhysToVirt. Otherwise, the inter
rupt handler should disable processor interrupts before
issuing the EOI; this will allow the interrupt handler to use
the temporary selectors for its interrupt level without getting
another interrupt on its level.

POSITION RULE An interrupt handler that shares an interrupt
level must not depend on its position in the list of handlers
for that interrupt level.

4. Advanced BIOS Considerations For Interrupt Processing

7-18

ABIOS REQUEST BLOCK RULE The interrupt handler for a partic
ular Logical ID (LID), when invoked by the operating
system, must call Advanced BIOS for each ABIOS request
block that is Incomplete-Waiting-On-Interrupt, even if one of
the request blocks gets the return indicator that the inter
rupt belongs to it.

ABIOS EOI PLACEMENT RULE The EOI must be issued after all
ABIOS staged-on interrupt request blocks have been proc
essed for the LID that owns the interrupt.

ABIOS LID IRQ RULE Advanced BIOS defines one and only one
interrupt level per LID.

If a device driver handles more than one LID on the same
interrupt level, then the device driver could choose to reg
ister only one interrupt handler for any LID on that level. In
this case, the operating system will call the interrupt
handler only once when the interrupt occurs; the interrupt
handler must manage the processing of more than one LID
in order to determine if it owns the interrupt processing for
them.

In this case, the device driver interrupt handler should be
aware of the Fairness Criteria problem. A LID at the end of
the interrupt handler's list will not get as much service as a
very active LID at the front of the list.

5. Spurious Interrupts

In an edge-triggered interrupt environment, to handle a spurious
interrupt, reset the interrupt at the 8259 interrupt controller (EOI),
issue the global rearm if sharing interrupts, and enable processor
interrupts. Generally, these actions would be taken by the last
interrupt handler in the list of interrupt handlers.

In a level-sensitive interrupt environment, to handle a spurious
interrupt, reset the interrupt condition at the device, issue the
EOI, and enable processor interrupts.

Advanced BIOS provides the capability to reset a spurious inter
rupt at the device through the use of an Advanced BIOS Default
Interrupt Handler for the Logical ID (LID). The interrupt handler
calls the Advanced BIOS Default Interrupt Handler for its LID if
there are no outstanding Incomplete-Waiting-on-Interrupt request
blocks. The Advanced BIOS Default Interrupt Handler will indi
cate either that the interrupt condition was successfully reset or
that the interrupt did not belong to the device referenced by the
LID. In the case that the Advanced BIOS Default Interrupt
Handler replies that the device was successfully reset then the
interrupt handler must issue the EOI and return as owning the
interrupt.

For the case where there are Incomplete-Waiting-On-Interrupt
request blocks outstanding, Advanced BIOS keeps track of which
interrupts are expected, and will automatically service a spurious
interrupt when called by the interrupt handler. The interrupt
handler must call Advanced BIOS with each and every request
block that is Incomplete-Waiting-On-Interrupt for a LID even if the
first one returns an indication that it performed some processing.
The interrupt handler must be able to process the spurious
interrupt return code from any one of these calls to the Advanced
BIOS Interrupt service.

For a device driver that directly interfaces to the device, it must
check the device for the interrupt condition, even if the interrupt
condition does not correspond to an outstanding 1/0 request. If
the device had caused the spurious interrupt, the interrupt
handler must reset the interrupting condition at the device, issue
the EOI, and return as owning the interrupt.

Note: If the device causing the spurious interrupt in the level
sensitive interrupt environment is not identified and reset, then

7-19

the interrupt level is locked up. This is a feature of the 8259 inter
rupt controller operating in level-sensitive mode.

6. DEINSTALL Considerations

Refer to the section, "DEINSTALL Considerations" on page 7-64,
for details.

Notes: A single device driver with a single interrupt handler for a
particular interrupt level may share its interrupt level among one or
more devices that it owns. This case applies to devices of similar or
same nature, for example, a printer device driver supporting more
than one printer (adapter) on one interrupt level. For this case, the
operating system will invoke the device driver's interrupt handler
when the hardware interrupt occurs. The device driver's interrupt
handler must determine which of its devices caused the interrupt; the
interrupt handler will not get called for each device it manages.

If the device driver is supporting multiple devices on the same hard
ware interrupt, it only needs to process the first device it discovers
that was causing an interrupt on the interrupt level in question.

Because of the level-sensitive interrupt environment, other devices
that are requesting service will cause another interrupt to be gener
ated and the device driver would be re-entered at the same entry
point. Because of this, the device driver should strategically place
the EOI to allow an orderly processing of any re-entrant interrupt
requests.

However, if the device driver registers a separate unique interrupt
handler entry point for each device it owns, with the interrupt han
dlers sharing the same interrupt level, then the device driver must
adhere to the interrupt sharing rules. The operating system will
invoke each interrupt handler, until one handler claims the interrupt.
To the operating system, each registered interrupt handler entry point
appears as a separate interrupt handler. This allows the device driv
er's interrupt handler(s) to be called for each device.

7-20

Device Driver Program Model

The program model for the OS/2 device driver is a small model. In
other words, the device driver consists of two segments, a single
code segment and a single data segment. The device driver execut
able image does not contain a stack segment; a stack is provided by
the system.

Because the device driver has only one code segment, it must not
have any FAR CALLs or FAR JMPs internal to the code segment. The
device driver does not need to examine the code segment value.
OS/2 tracks the segment/selector and sets the proper value for the
CPU mode in the CS register when it calls the device driver compo
nents. This applies to both task time and interrupt time. OS/2 tracks
the data segment value in a similar fashion, and sets the proper value
for the CPU mode in the OS register.

The device driver loadable image may contain extra space in its data
segment area to be referenced and extra code in its code segment
area to be executed at initialization. Once the device driver has com
pleted initialization, only the primary areas of the code and data seg
ments will be kept. The extra space which is no longer needed, will
be returned to the system.

The file image of the device driver follows:

EXE Header

Device Driver
Header

1----------------

Data

Code

Data
Segment

Code
Segment

The data segment must be the first segment after the .EXE file
header. This allows the device header to be located immediately

7-21

after the .EXE file header because the device header is required to be
located at the beginning of the file.

Device Driver Header

The device driver's data segment must contain a Device Header as
the very first item. The Device Header has the following structure.

Fie Id Length

Pointer To Next Header DWORD

Device Attribute WORD

Offset To Strategy Routine WORD

Reserved WORD

Name or Units 8 BYTES

Reserved 8 BYTES

Pointer to Next Device Header Field

The pointer to the next header is set by OS/2 at the time the device
driver is loaded. For loadable device drivers, this field should be set
to -1. The pointer-to-next-header field is set by Syslnit and should be
left blank.

Note: For a character device driver that supports multiple devices,
the data segment contains a device driver header for each device.
These headers must be linked together and the first header must be
set to -1. The first word is an offset and the second word is the
segment.

Device Attribute Field

The Device Attribute field describes the characteristics of the device
driver to the system.

7-22

The format of the OS/2 device attribute field is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

c Ill I s 0 Ill Ill Ill Ill c N s K
H Ill B H p Ill LEVEL Ill Ill Ill L u c B
R Ill M R N Ill Ill Ill Ill K L R D

The attributes are:

Bit# Meaning
15 Set if character device driver
14 Reserved = O
13 Set if non-IBM block format, (block device drivers only). Set

for output-until-busy support, (character device drivers only).
12 Set if support shared device access checking (character

devices)
11 Set if support removable media (block devices) or device

open/close (character devices)
10 Reserved = O
9-7 Function level where 001 = OS/2 device driver
6 Reserved = 0
5 Reserved = 0
4 Reserved = 0
3 Set if CLOCK device
2 Set if NULL device
1 Set if standard output device (STDOUT)
0 Set if standard input device (STDIN)

Bit 15 Bit 15 is the device type bit. Use bit 15 to tell th~ system if the
device driver is a block or character device. For block device
drivers, bit 15 is 0. For character device drivers bit 15 is 1.

Bit 13 For block device drivers, bit 13 indicates the method the driver
uses to determine the media type.

If a block device driver uses information in the BPB to deter
mine the media type, bit 13 should be set to 1. If the device
driver uses the media descriptor byte to determine the media
type, bit 13 should be 0.

7-23

Bit 12 Bit 12 is the shared bit. It is set if the device name is NOT to
be protected by sharer. (Has no meaning for block device
drivers, must be 0.)

If clear (default), file system sharing rules DO NOT apply to the
device, and it is the responsibility of the device driver to
provide contention control.

If set, file system sharing rules DO apply to the device, just like
they apply to any other file system name. In addition, any
given physical device may have only one logical name.
(Devices cannot have aliases.)

Bit 11 For block device drivers, bit 11 is the removable media bit. If
set, this bit indicates that the device driver handles removable
media.

For character device drivers, bit 11 is the open/close bit. If set,
this bit indicates that the device driver must receive OPEN
AND CLOSE request packets.

Bit 9-7 Bits 9-7 indicate the function level where 001 = OS/2 device
driver.

Bit 3 Bit 3 is the clock device bit. It is used by a character device
driver to indicate the system clock device.

Bit 2 Bit 2 is the NULL attribute bit. It is used by character devices
only. Use bit 2 to tell OS/2 if your character device driver is a
NULL device. Although there is a NULL device attribute bit,
you cannot reassign the NULL device. This is an attribute that
exists for OS/2 so that OS/2 can tell if the NULL device is being
used.

Bits 1 and O For character devices, bits 1 and O are the standard
input/standard output bits. Use these bits to tell OS/2 if your
character device driver is the new standard input or standard
output device.

Offset to Strategy Routine Field

The offset to the strategy routine field contains the offset from the
start of the code segment to the strategy entry point. OS/2 uses this
offset to call the strategy routine. The pointer is a word value con
tained in the device header.

7-24

Name/Units Field

The name/units field contains the name of a character device sup
ported by the character device driver or the number of units sup
ported by the block device driver.

For a character device driver, the name of the device must be ASCII
characters and must be left-justified with the remaining space set to
blanks. The device name is used by applications to identify the
device for 1/0. A character device driver should consider the fol
lowing rule when selecting a device driver name.

• Rule

A device name takes precedence over a filename in a DosOpen
function call. This means that files cannot have the same name
as a character device. The DosOpen function call will always
open the device rather than the file.

Note: To avoid such conflicts with filenames, a character device
driver should choose a character string with some unusual char
acter such as a $ sign.

For a block device driver, the number of units can be placed in the
first byte. This is optional because OS/2 will fill this field during
device driver initialization.

For character device drivers using ABIOS, the device name repres
ents a single device identified by the Logical ID (LID). For block
device drivers using ABIOS, the number of units is equivalent to the
number of devices (or units) under the LID.

7-25

Creating a Device Driver

To create a device driver that OS/2 can install, perform the following:

• Originate the device header at 0, not at 100H.

• Set up the device header fields.

• Link the segments as a library.

Note: Because OS/2 installs the driver anywhere in memory, care
must be taken in any memory references. You should not expect that
your driver will always be loaded at the same place every time.

Device Driver Initialization

Device driver initialization occurs during system initialization. During
system initialization, base device drivers are preloaded with the
operating system. Installable device drivers are loaded during
CONFIG.SYS processing, via the DEVICE= configuration command.
After a device driver has been loaded, it will be called at its strategy
routine entry point with the request packet for the INIT command.

OS/2 device drivers have the following characteristics at INIT-time:

• Occupy memory below 640 Kb.

• Initialize in the OS/2 mode.

• Are able to use Advanced BIOS services at INIT-time.

• Have IOPL at all times.

• Are able to service hardware interrupts.

• Are able to use timer services.

• Are able to use some OS/2 dynamic link function calls.

7-26

During CONFIG.SYS processing, each DEVICE= command is proc
essed on a first-come-first-serve basis:

• The DEVICE= device driver file image is loaded into low
memory.

• The check for DEINSTALL of a previously initialized device driver
is performed.

• If DEINSTALL is successful, then the newly loaded device driver
is initialized.

Installable OS/2 device drivers initialize in the OS/2 mode. The
device driver strategy routine will run under the thread of the System
Initialization Process, at application level, with 1/0 privilege.
Because of the special system process, the installable device driver
is allowed to make dynamic link function calls only at INIT-time.

Device Driver INIT-Time Function Call Summary

For function call details, refer to Technical Reference, Vol. 2.

The list of function calls that the device driver can make is as follows:

Dos Beep

DosCaseMap

DosChgFllePtr

DosClose

DosDelete

DosDevConflg

DosDevlOCtl

DosFlndClose

Dosflndflrst

DosFlndNext

DosGetCtrylnfo

DosGetDBCSEv

DosGetEnv

Generate Sound From Speaker

Perform Case Mapping

Change (Move) File Read/Write Pointer

Close File Handle

Delete File

Get Device Configuration

1/0 Control for Devices

Close Find Handle

Find First Matching File

Find Next Matching File

Get Country Information

Get DBCS Environmental Vector

Get Address of Process Environment String

7-27

DosGetMessage

DosOpen

DosPutMessage

DosQCurDlr

DosQCurDlsk

DosQFllelnfo

DosQFlleMode

Dos Read

Dos Write

System Message with Variable Text

Open File

Output Message Text to Indicated Handle

Query Current Directory

Query Current Disk

Query File Information

Query File Mode

Read from File

Synchronous Write to File

DevHlp services are also available to device drivers at INIT-time.

Note: Because device driver initialization is invoked by way of the
strategy routine, the device driver must not issue a DosExit function
call. Instead, the device driver should return the INIT request packet
by setting the packet's return status and performing a FAR RET to the
kernel.

For more information see "OH I INIT Initialize Device" on page 7-43.

Replacing Character Device Drivers

OS/2 character device drivers can be replaced. For system char
acter device drivers, the appropriate bits in the attribute field of the
device driver header and the name of the character device driver
must match.

When the new device driver is loaded, the attribute field and name
are used to determine if the new device driver is attempting to
replace a driver already installed. If so, the previously installed
device driver is requested to DEINSTALL the indicated device. If the
already-installed device driver refuses the DEINSTALL command, the
new device driver is not allowed to initialize. If the already-installed
device driver performs the DEINSTALL, the new device driver is ini
tialized.

Note: The DEINSTALL command is needed to allow a device driver to
relinquish its interrupt vectors and its allocated physical memory.

7-28

Compatibility with Previous-Level Device Drivers

The term "previous-level" is used here to indicate DOS levels below
DOS 3.3

Not all previous-level DOS device drivers can be allowed to run in the
DOS mode. The supported set of previous-level device drivers has
the following restrictions:

• Previous-level block device drivers are not permitted in the DOS
mode. Block device drivers must be written to the OS/2 inter
faces.

• Only a limited set of previous-level character device drivers can
be supported by OS/2. In order to run in the DOS mode, a
previous-level character device driver must conform to the fol
lowing rules:

The character device driver cannot have a hardware interrupt
handler; its device must be a polled device rather than an
interrupt-driven one.

The character device driver can be called by OS/2 in the
DOS mode with all of the packets supported by character
devices:

0-INIT
3 - IOCtl input
4 - INPUT (read)
5 - NON-DESTRUCTIVE INPUT NO WAIT
6 - INPUT STATUS
7 - INPUT FLUSH
8-0UTPUT
9 - OUTPUT with verify

10 - OUTPUT STATUS
11 - OUTPUT FLUSH
12 - IOCtl output
13 - DEVICE OPEN
14 - DEVICE CLOSE
16 - GENERIC IOCtl

Receipt of these packets is limited by the same require
ments on the attribute field of the device header as in DOS
3.3. For example: IOCtl bit in the device header must be 1 to
receive IOCtl requests.

7-29

The side effect of running a previous-level character device driver is
that its device may be used only in the DOS mode. Only applications
running in the DOS mode can perlorm 1/0 to this device. Applications
in the OS/2 mode are not allowed to access the device.

Certain devices cannot be exclusive to the DOS mode. Character
devices in this category include:

• Mouse
• Clock

Consequently, a previous-level clock device driver cannot be sup
ported.

Initialization of Previous-Level Device Drivers

Previous-level character device drivers are installed in the same
manner as they were under DOS. The device driver program file is
specified in the configuration command, DEVICE=.

Previous-level device drivers are loaded and initialized in DOS mode.
The rules for replacing previous-level character device drivers are
the same. The replacement is guided by the name and attributes of
the device driver. The functions that can be performed at initializa
tion are more restrictive than for DOS 3.3. No INT 21 H functions can
be performed from the device driver initialization code.

DOS Execution Environment Generic IOCll Support

There are two types of generic IOCtls supported in the DOS mode.

• Function: AL= OOH

Where this function is the same as DOS 3.3 with the addition that
the register pair Sl:DI is the address of the parameter block in
OS/2 and DS:DX is the address of the data packet.

• Function: AL= OCH

7-30

This function is similar to function AL= OOH except that BX con
tains a handle to a device instead of a drive letter. This function
is useful for character devices.

The register contents are as follows:

Register Contents
AH 44H - IOCtl request
AL OOH - Drive oriented

OCH - Handle oriented
BL
BX
CH
CL
DS:DX
Sl:DI

Drive number
Handle value
Category
Function
Data block
Parameter block

Refer to the specific device IOCtl descriptions for the Categories and
Functions supported.

DOS Execution Environment Software Interrupt Support

The following is a list of the software interrupts supported and the
compatibility exceptions for DOS mode operation:

Interrupt

05H Print screen

12H Memory size

13H Disk I Diskette

Comments

Request ignored

Note: Shift-Print screen works for text
mode screens in both the OS/2 and DOS
modes.

Supported - size limited to DOS mode
size

For non-removable media only - these
functions are supported:

01 H - read status
02H - read sectors
OAH - read long
15H - read DASO type

7-31

14H ASYNC

15H Misc

17H Printer

19H Reboot (Re-start)

1AH TOD

7-32

If the ASYNC device driver is loaded in
the system, then INT 14H will not function
for its related ASYNC ports unless the
utility SETCOM40 is used. See
SETCOM40 in the User's Reference for
INT 14H considerations.

Functions not supported:

87H - Block Move
88H- Extended memory size
89H - Virtual mode
90H - Device busy
91 H - Int. complete

Functions supported with restrictions:

83H - Event wait
86H-Wait

Note: Both 83H and 86H are supported;
but the timer granularity is on the order
of 31ms. Because the RTC (Real Time
Clock) is free running, there will be a var
iance of up to 1 RTC tick.

Supported by OS/2 device driver

Supported - However, this does not
operate in the same manner as DOS 3.3.
The system is restarted as if Ctrl-Alt-Del
was pressed.

Functions not supported:

02H- Read RTC time
03H-Set RTC time
04H - Read RTC date
05H - Set RTC date
06H - Set RTC alarm
07H - Reset RTC alarm

1EH Diskette parameters Not used by device driver after boot
process

24H Hard error Supported - OS/2 calls the application
when a hard error occurs.

26H Direct write An error is returned on requests for non-
removable media.

2FH Multiplex Returns error "Not installed, not to be
installed" (printer only - request AL= 0
returns AL= 1);

33H Mouse Supported - When the OS/2 Mouse
device driver is loaded, INT 33H functions
are available.

Using Advanced BIOS

There are two methods that device drivers may use to invoke
Advanced BIOS, the Advanced BIOS Transfer Convention and the
Operating System Transfer Convention. For the Advanced BIOS
Transfer Convention, the Advanced BIOS Common Entry Points are
invoked to locate the specific Start, Interrupt, or Timeout entry points
for the requesting Logical ID. For the Operating System Transfer
Convention, the specific Start, Interrupt, or Timeout entry points must
be located for the requesting Logical ID and called.

OS/2 internal device drivers use the Operating System Transfer Con
vention to invoke Advanced BIOS services. User-written, installable,
device drivers may use either the Advanced BIOS Transfer Conven
tion or the Operating System Transfer Convention. DevHlps are pro
vided for both calling conventions.

Note: Both kinds of device drivers mentioned above will be com
monly termed as ABIOS device drivers.

7-33

For performance reasons, ABIOS device drivers should call
Advanced BIOS services with processor interrupts enabled.

Device Driver Data Segment

OS/2 recommends that an ABIOS device driver use its data segment
to contain the Advanced BIOS request blocks and data transfer
buffers. The device driver data segment is located in low memory
and the operating system guarantees addressability to the data
segment regardless of the processor mode (protect or real). The
device driver may also assume that the physical location of the
device driver data segment will not move. This will allow physical
data transfers to take place to buffers within the device driver's data
segment.

By using its data segment, the device driver can create logical
addressability to these data areas (for Advanced BIOS) in a mode
independent manner and without interrupt disable time consider
ations. Physical data transfers to buffers outside of the device
driver's data segment may take place if the buffer is locked.

Obtaining a Loglcal ID

During its initialization, an ABIOS device driver must obtain the
Logical ID (LID) for its physical device.

The allocation of a LID is managed by the operating system. This
ensures that the device driver gets a unique LID for its device type.
The operating system provides a DevHlp function GetLIDEntry to
obtain the LID for a device driver.

The DevHlp GetLIDEntry finds the LID for the specified Device ID and
allocates it to the calling device driver.

The counterpart to GetLIDEntry is the DevHlp FreeLIDEntry. This
service is required when the device driver DEINSTALLs or terminates
to release the device driver's claim to the LID. Refer to the section
"DEINSTALL Considerations" on page 7-64 for more details.

7-34

The operating system will prohibit access to a certain LID; specif
ically, the LID for System Services. The operating system manage
ment of LID access is similar to the management of hardware
interrupt levels or 110 ports.

Calllng Advanced BIOS Services

For ABIOS device drivers that use the Operating System nansfer
Convention, a DevHlp service (ABIOSCall) is provided to invoke
Advanced BIOS with the mode specific correct set of parameters.
The device driver passes the ABIOS request block pointer, its LID,
ahd the ABIOS primary function (start, interrupt, or timeout) to the
DevHlp ABIOSCall. This sets up the stack for the call to Advanced
BIOS and calls the ABIOS function.

For ABIOS device drivers that use the Advanced BIOS Transfer Con
vention, a DevHlp service (ABIOSCommonEntry) is provided to invoke
the Advanced BIOS Common Entry Points The device driver passes
the mode specific pointer to the ABIOS request block and the ABIOS
primary function (common start, common interrupt, or common
timeout) to the DevHlp service. The DevHlp service sets up the stack,
and calls the requested ABIOS common entry point.

Note: The return code of the ABIOS function will be in the ABIOS
request block.

Mapping Device Names to LID

Having identified its LID and the number of devices or physical units
the LID represents, the device driver must map each of its device
names to a unit within that LID.

Note: A device driver supports all units under a given LID.

All device drivers are known to the operating system by device
names, whether these names correspond to the ASCII string device
name in the header for character device drivers or to the logical units
(which correspond to drive letters) in the header for block device
drivers.

7-35

In the case of a character device driver with a single device driver
header, its device name must be mapped to the first unit of the LID it
obtained. If the character device driver has one device header but its
LID had multiple units, then the rest of the units are not used.

In the case of a character device driver with multiple device driver
headers, the operating system will call the strategy routine entry
point for each header during device driver initialization.

1. The first entry point called must map its device name to the first
unit of the LID.

2. The second entry point called must map its device name to the
next unit of the LID.

3. If the LID that was obtained by the first entry point has only one
unit, the second entry point must obtain another LID and map its
device name to the first unit of the second LID.

4. The device driver must start with the first LID and consume all the
units before going to the next LID.

For example:

The printer device driver has three device headers (LPT1, LPT2, and
LPT3), respectively. The first entry point will map LPT1 to the first
unit of the LID it obtained (let's use LID #12). If LID #12 supports only
one unit, the second entry point will map LPT2 to the first unit of
another LID it must obtain (let's use LID #17). If LID #17 supports
another unit, the third entry point will map LPT3 to the second unit of
LID #17.

In the case of a block device driver, the block device driver must
obtain the necessary number of LID/units for the number of logical
units it supports. The block device driver maps the first logical unit to
the first-LID/first-unit, the second logical unit to the next available
LID/unit, and so forth.

Handling ABIOS Requests

Refer to "Notes On Writing a Device Driver using Advanced BIOS" on
page 7-72, for a discussion on handling requests to Advanced BIOS.

A device driver must assume that it owns all outstanding ABIOS
request blocks for a given Logical ID. During interrupt-time proc-

7-36

essing, the device driver must call Advanced BIOS for each out
standing request that is Incomplete-Waiting-On-Interrupt.

Note: This in one of the reasons that a Logical ID is not shared
among device drivers.

Request Packets

The device driver strategy routine is called with ES:BX pointing to the
request packet. The pointer to the request packet (ES:BX) is bimodal.
In other words, the pointer is valid in both the DOS mode and the
OS/2 mode.

OS/2 does not guarantee that the order of API requests that are
issued by multiple threads will be preserved in the ordering that the
corresponding request packets arrive at the device driver. Multiple
application threads or threads created due to DosReadAsync and
DosWriteAsync can get blocked in the operating system. This allows
a device driver request packet for an API request by a subsequent
thread that does not get blocked to arrive out of order. A device
driver is responsible for providing a synchronization mechanism
between itself and application processes if it supports multiple out
standing requests; also, request packet ordering must be preserved.

7-37

The request packet consists of two parts, the request header and the
command-specific data field. The format of the request packet is
detailed below.

Fie Id Length

Length of Request Packet BYTE

Block Device Unit Code BYTE

Command Code BYTE

Status WORD

Reserved DWORD

Queue Linkage DWORD

Command-specific Data BYTES

Length of Request Packet Field

The length of the request packet is set to the total length in bytes of
the request packet (the length of the request header plus the length of
the data).

Block Device Unit Code Field

The block device unit code identifies the unit for which the request is
intended. This field has no meaning for character devices.

Command Code Field

The command code indicates tha requested function. The command
codes are listed in the following summary.

7-38

Summary of Commands for Devices

CODE FUNCTION BLOCK CHAR

OH INIT * *

1H MEDIA CHECK *

2H BUILD BPB *

3H Reserved

4H READ (input) * *

SH NONDESTRUCTIVE READ NO WAIT *

SH INPUT STATUS *

7H INPUT FLUSH *

SH WRITE (output) * *

9H WRITE WITH VERIFY * *

AH OUTPUT STATUS *

BH OUTPUT FLUSH *

CH Reserved

DH DEVICE OPEN * *

EH DEVICE CLOSE * *

FH REMOVABLE MEDIA *

10H GENERIC IOCtl * *

11H RESET MEDIA *

12H GET LOGICAL DRIVE MAP *

13H SET LOGICAL DRIVE MAP *

14H DEINSTALL *

15H Reserved

16H PARTITIONABLE FIXED DISKS *

17H GET FIXED DISK/LOGICAL UNIT MAP *

18H Reserved

19H Reserved

1AH Reserved

The commands are described in detail in the command section of this
chapter.

7.39

Request Packet Status Field

On entry to the strategy routine, the status field is only defined for
Open and Close request packets. For all other request packets the
status field is undefined on entry.

For an Open request packet, Bit 3 (08H) of the status field is SET if the
packet was generated from a DosMonOpen, otherwise it was a
DosOpen.

For a Close request packet, Bit 3 (08H) of the status field is SET if the
packet was generated by a DosMonClose or a DosClose of a handle
that was generated by a DosMonOpen (so that monitor handles gen
erated that are left open when a process exits will be closed prop
erly). Otherwise, it was a DosClose on a non-monitor handle.

On exit from the strategy routine the status field describes the
resulting state of the request as shown below:

15 14 13-10 9 8 7-0

E D RESERVED B D ERROR CODE
R E u 0 (bit 15 on)
R v s N
0 y E
R E

R
R
0
R

Bit 15 is the Error bit. If this bit is set, the low 8 bits of the status word
(7-0) indicate the error code.

Note: If the category is user-defined, then the error returned to the
caller is FFOOh ANDed with the byte-wide error code.

Bit 14 is a device driver defined error if set in conjunction with bit 15.

Note: If the category is user-defined, then the error returned to the
caller is FEOOh ANDed with the byte-wide error code.

Bits 13 - 10 are reserved.

7-40

Bit 9 is the Busy bit. It is only set by status calls and the removable
media call. See "STATUS" and "REMOVABLE MEDIA" in this
chapter for more information about the calls.

Bit 8 is the Done bit. If it is set, it means the operation is complete.
The driver sets the done bit to 1 when it exits.

Bits 7-0 are the low 8 bits of the status word. If bit 15 is set, bits 7-0
contain the error code. The error codes and errors are:

Error Codes
OOH
01H
02H
03H
04H
OSH
06H
07H
08H
09H
OAH
OBH
OCH
OOH
OEH
OFH
10H
11H
12H
13H

Description
Write protect violation
Unknown unit
Device not ready
Unknown command
CRC error
Bad drive request structure length
Seek error
Unknown media
Sector not found
Printer out of paper
Write fault
Read fault
General failure
Change disk (logical switch)
Reserved
Reserved
Uncertain media
Character 1/0 call interrupted
Monitors not supported
Invalid parameter

Uncertain Media (10H) should be returned when the state of the
media in the drive is uncertain. This response should NOT be
returned to the INIT command. For fixed disks, the device driver must
begin in a Media Uncertain state in order to have the media correctly
labelled. In general, the following guidelines may be used to deter
mine when to respond with uncertain media.

• When a drive-not-ready condition is detected. (In this case,
return uncertain media to all subsequent commands until a reset
media command is received.

7-41

• When accessing removable media without change-line support,
and a ti me delay of two or more seconds has occurred.

• When the state of the change-line indicates that the media may
have changed.

Character 1/0 call interrupted (11 H) should be returned when the
thread performing the 110 was interrupted out of a DevHlp Block
before completing the requested operation.

Monitors not supported (12H) should be returned for monitor com
mands (monitor open/close, register IOCtl) if monitors are not sup
ported by the device driver.

Invalid parameter (13H) should be returned when one or more fields
of the request packet contain invalid values.

Queue Linkage Field

The queue linkage is provided to maintain a linked list of request
packets. The device driver may use the request queue management
DevHlp services, or it may use its own queue management.

Note: Because a pointer to a request packet is bimodal (valid in both
the DOS mode and the OS/2 mode), the pointer may be used directly
in the queue linkage rather than a 32-bit physical address.

Command-Specific Data Field

The command code in the request header tells the device driver
which function to perform.

The function and parameters of a command appear in the command
specific data area of the request packet. The commands and the
actual formats of the corresponding request packets are discussed in
the following sections.

Note: All DWORD pointers are stored with offset first, then segment.

7-42

Purpose

Initialize the device.

Format of Request Block

Field

Request header

Data_1

Pointer_1

Pointer_2

Data_2

Remarks

OH/ INIT
Initialize Device

Length

13 BYTES

BYTE

DWORD

DWORD

BYTE

On entry, the request block contains the following fields as inputs to
the device driver:

Pointer_1 Points to the DevHlp Entry Point

Pointer_2 Points to the INIT arguments

Data_2 Drive number for the first block device unit

The DevHlp Entry Point is a bimodal address and is valid in both the
DOS mode and the OS/2 mode.
The DevHlp Entry Point is called to invoke a service specified in the
DL register.

The arguments for installable device drivers from the DEVICE= line
in the CONFIG.SYS file allow the device driver to use configurable
parameters to initialize itself and its device.

7-43

OH/ INIT
Initialize Device

At initialization time, the device driver runs as a thread under a
protect mode process at application level with 110 privilege. The
device driver may issue certain OS/2 dynalink function calls at this
time. Refer to "Device Driver Initialization" on page 7-26 for more
details.

On completion of initialization, the device driver must set fields in the
request packet as described:

Field

Data_1

OUTPUT Information tor INIT success

Number of logical block devices or units (block devices
only}

Pointer_1 WORD offset to end of code segment

WORD offset to end of data segment

Pointer_2 Points to the BPB array for the logical block devices or
units (block devices only}

Status Set the status word in the request header to 01 OOH

A block device driver must return in Data_ 1 the number of logical
devices or units that are available. The kernel's file system layer will
assign sequential drive letters to these units. A character device
driver will set Data_ 1 to zero.

Both block device drivers and character device drivers must set
Pointer_1 with the offsets of the code and data segments. This allows
a device driver to release code and data needed only by the device
driver's initialization routine. First, the initialization code and data
must be located at the end of the appropriate segments. Then, as the
final step in initialization, the device driver sets the offsets to the end
of the code segment and the end of the data segment. This also
permits a device driver to load with a maximum-sized data segment
(64 Kb} and let it release the amount that it does not need.

Note: Remember that the device driver code and data segments
reside in memory below 640K. The DOS mode requires contiguous
memory below 640K. Although memory returned by the device driver
from its data segment is available to the system, it is not available for
the DOS mode.

7-44

OH/ INIT
Initialize Device

A block device driver must return an array of BPBs for the logical
units that it supports in Pointer_2. A character device driver will set
Pointer _2 to zero.

The Status field in the request packet header must be set to indicate
no error and done.

If the device driver determines that it cannot set up the device and
wants to quit, it is recommended that it return with the error bit in the
request packet status field set to 1. The device driver can also return
the following:

Field

Data_1

OUTPUT Information for INIT failure

BYTE OOH

Pointer_ 1 WORD OOOOH

WORD OOOOH

Status 810CH

The status field in the request packet header must be set to indicate
the failure of the INIT request with the General Failure error return
code. The Status must also indicate that the request is done.

One of the above techniques must be used to return device initializa
tion failures from the device driver to the system initialization
process.

A character device driver that contains multiple device driver
headers can fail initialization on a subset of the headers in its header
chain.

The system initialization process remembers the last non-zero size
code and data segment offsets returned for the devices in the device
driver that completed initialization. These last values are used to
resize the device driver's code and data segments after INIT packets
have been sent to the device driver for each device in the device
driver header chain.

7-45

OH/ INIT
Initialize Device

When a device in the header chain cannot be initialized, the device
driver can set the code and data segments to zero, and/or set the
error bit in the request packet status field to indicate initialization
faillJre for that device. The device driver will not receive any future
request packets for a specific device if it returns a failure for the INIT
request packet for that device. If none of the devices in the device
driver header chain pass initialization, then the device driver will not
remain loaded.

Because the system initialization proce$s maintains the pass/fail
return status for each device header in a device driver header chain,
it is not recommended that the device driver manipulates the linkages
of the headers.

7-46

1 H I MEDIA CHECK
Check the Media

Purpose

Determine the state of the media.

Format of Request Block

Fie Id Length

Request header 13 BYTES

Media descriptor BYTE

Return code BYTE

Return pointer to previous volume ID if DWORD
supported

Remarks

On entry, the request packet will have the media descriptor field set
for the drive identified in the request packet header.

The device driver must perform the following actions for the MEDIA
CHECK request:

• Set the status word in the request packet header.
• Set the return code where:

-1 = Media has been changed
0 = Unsure if media has been changed
1 = Media unchanged

7-47

1 H I MEDIA CHECK
Check the Media

Examples of DOS media descriptor bytes:

Sectors/ Media

Disk Type Sides Track Descriptor

Fixed disk -- -- F8H

3 1/2-inch 2 9 F9H

3 1/2-inch 2 18 FOH

5 1/4-inch 2 15 F9H

5 1/4-inch 1 9 FCH

5 1/4-inch 2 9 FDH

5 1/4-inch 1 8 FEH

5 1/4-inch 2 8 FFH

8-inch 1 26 FEH

8-inch 2 26 FDH

8-inch 2 8 FEH

Note: To determine whether you are using a single-sided or a
double-sided diskette, for 8-inch diskettes (FEH), attempt to read the
second side, and if an error occurs you can assume the diskette is
single-sided.

For 8-inch diskettes:

7-48

FEH (IBM 3740 Format). Single-sided, single density, 128 bytes
per sector, soft sectored, 4 sectors per allocation unit, 1 reserved
sector, 2 File Allocation Tables (FATs), 68 directory entries, 77*26
sectors.

FDH (IBM 3740 Format). Double-sided, single density, 128 bytes
per sector, soft sectored, 4 sectors per allocation unit, 4 reserved
sectors, 2 FATs, 68 directory entries, 77*26*2 sectors.

1 H I MEDIA CHECK
Check the Media

FEH Double-sided, double density, 1024 bytes per sector, soft
sectored, 1 sector per allocation unit, 1 reserved sector, 2 FATs,
192 directory entries, 77*8*2 sectors.

Application programmers are encouraged to use the Generic IOCtl -
Get Device Parameters (Category 8, function 63) and reference the
BPB (BIOS Parameter Block) to determine the type of media.

7-49

2H I BUILD BPB
Build· BIOS ·Parameter· Block

Purpose

Build the BIOS Parameter Block (BPB). This is requested when the
media has changed or when the media type is uncertain.

Format of Request Block

Fie Id Length

Request header 13 BYTES

Media descriptor BYTE

Transfer address DWORD

Pointer to BPB table DWORD

Drive number BYTE

Remarks

On entry, the request packet will have the media descriptor set for the
drive identified in the request packet header. The transfer address is
a virtual address to a buffer containing the boot sector media if the
block device driver attribute field has bit 13 set, otherwise the buffer
contains the first sector of the File Allocation Table (FAT).

The device driver must perform the following actions:

• Set the pointer to the BPB table.

• Update the media descriptor.

• Set the status word in the request header.

The device driver must determine the media type in the drive in order
to return the pointer to the BPB table. Previously, the FAT ID byte
determined the structure and layout of the media. Because the FAT
ID byte has only eight possible values (F8 through FF), it is clear that,
as new media types are invented, the available values will soon be

7-50

2H I BUILD BPB
Build BIOS Parameter Block

exhausted. With the varying media layouts, OS/2 needs to be aware
of the location of the FATs and directories before it reads them.

The device driver reads the boot sector from the specified buffer. If
the boot sector is for DOS 2.00, 2.10, 3.10, 3.20, or OS/2, the device
driver returns the BPB from the boot sector. If the boot sector is for
DOS 1.00 or 1.10, the device driver reads the first sector of the FAT
into the specified buffer. The FAT ID is examined and the corre
sponding BPB is returned. Only two formats are possible for
diskettes formatted by a 1.00 or 1.10 system, 5 1/4-inch single-sided
(FEH) and 5 114-inch double-sided (FFH.)

The information relating to the BPB for a particular media is kept in
the boot sector for the media.

Boot Sector Format

Fie Id Length

Short JUMP (EBH) followed by a NOP 2 BYTES
(90H)

OEM name and version 8 BYTES

Bytes per sector WORD

Sectors per allocation unit (must be a BYTE
power of 2)

Reserved sectors (starting at logical WORD
sector 0)

Number of FATs BYTE

Number of root directory entries WORD
(maximum allowed)

Number of sectors in logical image (total WORD
sectors in media, including boot sector,
directories, for example.)

7-51

2H I BUILD BPB
Build BIOS Parameter Block

Fie Id Length

Media descriptor BYTE

Number of sectors occupied by a single WORD
FAT

Sectors per track WORD

Number of heads WORD

Number of hidden sectors WORD

The last three WORDs above help the device driver understand the
media. The number of heads is useful for supporting different mul
tiple head drives that have the same storage capacity but a different
number of surfaces. The number of hidden sectors is useful for sup
porting drive partitioning schemes.

For drivers that support volume identification and disk change, this
call should cause a new volume identification to be read off the disk.
This call indicates that the disk has legally changed.

7-52

4H, SH, 9H I READ or WRITE
Perform 1/0 To A Device

Purpose

Read from or write to a device.
Read From (4H} I Write To (SH} I Write with Verify (9H}

Format of Request Block

Fie Id Length

Request header 13 BYTES

Media descriptor BYTE

Transfer address DWORD

Byte I sector count WORD

Starting sector number for block device DWORD

System File Number WORD

Remarks

On entry, the request packet will have the media descriptor set for the
drive identified in the request packet header. The transfer address is
a 32-bit physical address of the buffer for the data. The byte/sector
count is set to the number of bytes to transfer (for character device
drivers} or the number of sectors to transfer (for block device
drivers}. The starting sector number is set for the block device
drivers. The System File Number is a unique number associated with
an open request.

The device driver must perform the following actions:

• Perform the requested function.
• Set the actual number of sectors or bytes transferred.
• Set the status word in the request header.

7-53

4H, SH, 9H I READ or WRITE
Perform 1/0 To A Device

The DWORD transfer address in the request packet is a locked 32-bit
physical address. The device driver can pass it to the DevHlp func
tion PhysToVirt to obtain a segment swapping address for the current
mode. The device driver does not need to unlock the address when
the request i~ completed.

Note: The functions IOCtl READ and IOCtl WRITE are not supported
by the new OS/2 device drivers.

7-54

SH I NONDESTRUCTIVE READ NO WAIT
Nondestructive Input

Purpose

Read character from buffer but do not remove it.

Format of Request Block

Fleld Length

Request header 13 BYTES

Returned character BYTE

Remarks

The device driver must perform the following actions:

• Return a byte from the device.

• Set the status word in the request header.

For input on character devices with a buffer, the device driver returns
from this function with the busy bit set to 0 along with a copy of the
first character in the buffer. The busy bit is set to 1 to indicate no
characters in the buffer. This function allows the operating system to
look ahead one input character without blocking in the device driver.

7-55

&H,·AM 1$TATUs·
Input or Ou~p~t Status .

Purpose

Determine input or output status on character devices.
Input Status (6H) I Output Status (AH)

Format of Request Block

Fie Id Length

Request header 13 BYTES

Remarks

The device driver must perform the following actions:

• Perform the requested function.

• Set the busy bit.

• Set the status word in the request header.

For output on character devices, if the busy bit is returned set to 1, a
subsequent write request to the device driver would have to wait for
the completion of a currently active request. If the busy bit is
returned set to 0, there is no current request. Therefore, a write
request would start immediately.

For input on character devices with a buffer, if the busy bit is returned
set to 1, there are no characters currently buffered in the device
driver. If the busy bit is returned set to 0, there is at least one char
acter in the device driver buffer. The effect of busy bit = O is that a
read of one character will not need blocking. Devices that do not
have an input buffer in the device driver should always return busy =
0.

7-56

Purpose

Flush or terminate all pending requests.
Input Flush (7H) I OutPut Flush (BH)

Format of Request Block

Fie Id

Request header

Remarks

7H, BH I FLUSH
Input or Output Flush

Length

13 BYTES

The device driver must perform the following actions:

• Perform the requested function.

• Set the status word in the request header.

This call tells the device driver to flush (terminate) all known pending
requests. Its primary use is to flush the input (or output) queue on
character devices.

7-57

,,,. ·.' .. ·.' . .,,.,:. ,

Dfl, EH i OPEN C>r Cl.O;SE
Open/ Close.[)evice

Purpose

Open or close the device.
Open Device (DH) I Close Device (EH)

Format of Request Block

Fleld Length

Request header 13 BYTES

System File Number WORD

Remarks

The System File Number is a unique number associated with an open
request.

The device driver must perform the following actions:

• Perform the requested function.

• Set the status word in the request header.

Character device drivers may use OPEN/CLOSE requests to correlate
using their devices with application activity. For instance, the device
driver may increase a reference count for every OPEN and decrease
the reference count for every CLOSE. When the count goes to 0, the
device driver can flush its buffers. This can be thought of as a "last
close causes flush," or as the device driver using the OPEN as an
indicator to send an initialization string to its device.

For example, to ensure that a printer is in a known state at the start of
an 1/0 stream, this call could be used to set the font and page size.
Similarly, the CLOSE call can be used to send a post-string (like a
form feed) at the end of an 1/0 stream. Using IOCtl to set these pre
strings and post-strings provides a flexible mechanism of serial 1/0
device stream control.

7-58

FH I REMOVABLE MEDIA
Check for Removable Media

Purpose

Check for removable media.

Format of Request Block

Fie Id Length

Request header 13 BYTES

Remarks

The device driver must perform the following actions:

• Set the busy bit of the status word.

Set the busy bit to 1 if the media is non-removable. Set the busy
bit to O if the media is removable.

• Set the status word in the request header.

The device driver receives this request packet when an application
issues an IOCtl function call to determine whether it is dealing with a
removable or non-removable media drive. For example, removable
or non-removable drives may print different versions of some
prompts.

7-59

io1ti/ aertia1c·;:1ac1r
.110··:··¢9nl~e1··far:.·:DwV:ic••·

Purpose

Send 1/0 control commands to a device.

Format of Request Block

Field

Request header

Function category

Function code

Parameter Buffer Address

Data Buffer Address

System File Number

Remarks

Length

13 BYTES

BYTE

BYTE

DWORD

DWORD

WORD

On entry, the request packet will have the IOCtl category code and
function code set. The parameter buffer and the data buffer
addresses will be set as virtual addresses. Note that some IOCtl
functions do not require data and/or parameters to be passed. For
these IOCtls, the parameter and data buffer addresses may contain
zeros. The System File Number is a unique number associated with
an open request.

The device driver must perform the following actions:

• Perform the requested function.
• Set the status word in the request header.

The device driver is responsible for locking the parameter and data
buffer segments, and converting the pointers to 32-bit physical
addresses if necessary.

Refer to Technical Reference, Vol. 2 for more detailed information.

7-60

11H I RESET MEDIA
Reset Uncertain Media Condition

Purpose

Reset the Uncertain Media error condition and allow OS/2 to identify
the media.

Format of Request Block

Field Length

Request header 13 BYTES

Remarks

On entry, the unit code identifies the drive number to be reset.

The device driver must perform the following actions.

• Set the status word in the request header.

• Reset the error condition for the drive.

Previous to this command, the device driver had returned the error
"Uncertain Media" for the drive. This action informs the device driver
that it no longer needs to return the error for the drive.

7-61

1·~H.~~~f(·~·~1~Jl~¥i~~- ·· :.: · .. , :·: · ..
GetlSttl.·l,OIJ.i~l:tf?,.ri~' :~~ppi11.9.

Purpose

Get/Set which logical drive is currently mapped onto a particular unit.
Get Logical Drive Mapping (12H) I Set Logical Drive Mapping (13H)

Format of Request Block

Fie Id Length

Request header 13 BYTES

Remarks

On entry, the unit code contains the unit number of the drive for which
this operation is to be performed.

The device driver must perform the following actions:

• For Get, it must return the logical drive that is mapped onto the
physical drive indicated by the unit number in the request header.

• For Set, it must map the logical drive represented by the unit
number onto the physical drive that has the mapping of logical
drives.

• The logical drive is returned in the unit code field. This field is
set to 0 if there is only one logical drive mapped onto the physical
drive.

• Set the status word in the request header.

7-62

14H I DEINSTALL
Terminate the Device Driver

Purpose

Terminate the character device driver.

Format of Request Block

Fie Id Length

Request Header 13 BYTES

Remarks

When a device driver is loaded, the attribute field and name in its
header are used to determine if the new device driver is attempting to
replace a driver (device) already installed. If so, the previously
installed device driver is requested by the operating system to
DEINSTALL the indicated device. If the installed device driver
refuses the DEINSTALL command, then the new device driver is not

. allowed to initialize. If the installed device driver performs the
DEINSTALL, then the new device driver is initialized.

If the character device driver honors the DEINSTALL request, it must
perform the following actions:

• Release any allocated physical memory.

• UnSet any hardware vectors that it had claimed.

• If the device driver has a software interrupt handler, it cannot
reset the vector, rather it must preserve the DOS mode vector
chain by doing a JMP to the previous handler.

• Perform any other cleanup.

• Clear the error bit in the status field to indicate a successful
DEINSTALL.

7-63

14H I DEINSTALL
Terminate the Device Driver

If the character device driver determines that it cannot or will not
abort, it should:

• Set the error bit in the status field and set the error code to 03H,
UNKNOWN COMMAND.

DEINSTALL Considerations

Logical IDs: An ABIOS device driver maps its device name to a unit
within a Logical ID (LID). It receives a DEINSTALL request for its
device name, which implies a single unit of a LID. To honor the
DEINSTALL request, it must relinquish the LID via the DevHlp
FreeLIDEntry at DEINSTALL time.

Note: To release a LID means to release all units under that LID. For
a LID that has multiple units, the device driver must discontinue
support of all units under the LID. If multiple units correspond with
multiple device headers in the device driver data segment, the device
driver must note which device header corresponds to each unit in the
DEINSTALL LID, and discontinue support.

Hardware Interrupts: In honoring a DEINSTALL command, a device
driver must remove its claim on the interrupt level. The DevHlp
UnSetlRQ provides this service.

If the device driver's device is ill-behaved (that is, it cannot be told to
stop generating interrupts or be quiesced), the device driver must not
remove its interrupt handler. In this case, the device driver must
refuse the DEINSTALL request.

Note: Because of the general interrupt sharing capabilities in a level
sensitive interrupt environment, device drivers should not assume
that the DevHlp SetlRQ service can be used to determine whether a
given device is being used by another device driver. Instead, the
DEINSTALL convention should be used on the logical device name
that another device driver may be using to access the same device.

7-64

16H I PARTITIONABLE FIXED DISKS
General query of device support

Purpose

This call is used by the system to ask the device driver how many
physical-partitionable fixed disks the device driver supports.

Format of Request Block

Field Length

Request Header 13 BYTES

Count BYTE

Reserved WORD

Reserved WORD

Remarks

This is done to allow the Category 9 Generic IOCtls to be appropri
ately routed to the correct device driver. This call is not tied to a par
ticular unit that the device driver owns, but is directed to the device
driver as a general query of its device support.

The device driver must perform the following actions:

• Set the count as discussed above (1-based).

• Set the status word in the request header.

7-65

•

17H /GET FIXED DISK/LOGICAL UNIT MAP

Purpose

This call is used by the system to determine which logical units
supported by the device driver exist on physical partitionable fixed
disk N.

Format of Request Block

Fie Id Length

Request Header 13 BYTES

Units-supported bit mask 4 BYTES

Reserved WORD

Reserved WORD

Remarks

On entry,the request packet header unit field identifies a physical disk
number (based on 0) instead of a logical unit number. The device
driver returns a bit map of which logical units exist on the physical
drive. The physical drive relates to the partitionable fixed disks
reported to the system by way of the PARTITIONABLE FIXED DISKS
command. It is possible that no logical units exists on a given phys
ical disk because it has not yet been initialized.

The device driver must perform the following:

• Set the 4-byte bit mask to indicate which logical units that it owns
exist on the physical partitionable fixed disk for which the infor
mation is being requested.

• Set the status in the request packet header.

7-66

17H I GET FIXED DISK/LOGICAL UNIT MAP

The bit mask is set up as follows. A O means the logical unit does not
exist and a 1 means it does. The first logical unit that the device
driver supports is the low-order bit of the first BYTE. The bits are
used from right to left in the diagram below starting at the low order
bit of each following BYTE. It is possible that all the bits will be 0.

For example, a block device driver supports five units spread over
the two diskette drives and one partitionable fixed disk in a system.
Unit O and unit 1 map to the diskette drives. Unit 2, 3, and 4 map to
the fixed disk. For the device command, this device driver will set
the 4-byte bit map to:

10000 0000 0000 0000 0000 0000 0001 1100 1 binary

or

•oo oo oo lC' hex

7-67

Device Driver Examples

Using PhysToVirt and UnPhysToVlrt: There are some basic guide-
1 ines when using the OevHlp services for address conversion,
PhysToVirt and UnPhysToVirt.

• Use ES:OI whenever possible when converting a single physical
address.

• Use ES:OI for the first address conversion when using two phys
ical addresses.

• Check the physical address pair and convert the physical address
that lies above 1 Mb first.

The following examples show the recommended way to use these
OevHlps in various scenarios. These examples apply to both task
time and interrupt-time operations, except where noted.

• To get a logical address to place in an ABIOS request block:

1. Call PhysToVirt with ES:OI for the converted address.

2. Store the converted address in the ABIOS request block.

3. Call the ABIOS service.

4. Call UnPhysToVirt.

• To convert a single physical address to use as the source in a
data transfer to a logical address, (that is, one that was passed as
input for this data transfer request):

1. Save OS.

2. Call PhysToVirt with OS:SI for the converted address.

3. Perform the data transfer.

4. Restore OS.

5. Call UnPhysToVirt.

7-68

• To provide two logical addresses in order to do a data transfer:

1. Examine the physical address pair. If one of the physical
addresses is above 1 MB, then convert it first.

2. Call PhysToVirt with ES:DI for the first address.

3. Save OS.

4. Call PhysToVirt with DS:SI for the second address.

5. Perform the data transfer.

6. Restore OS.

7. Call UnPhysToVirt.

• To Do multiple data transfers:

1. Examine the first physical address pair. If one of the physical
addresses is above 1 MB, then convert it first.

2. Call PhysToVirt with ES:DI for the first address.

3. Save OS.

4. Call PhysToVirt with DS:SI for the second address.

5. Perform the data transfer.

6. Restore OS.

7. Examine the second physical address pair. If one of the phys
ical addresses is above 1 MB, then convert it first.

8. Call PhysToVirt with ES:DI for the first address.

9. Save OS.

10. Call PhysToVirt with DS:SI for the second address.

11. Perform the data transfer.

12. Restore OS.

13. Perform these steps until all data transfers are complete.

14. Call UnPhysToVirt.

7-69

• To provide two logical addresses for a data transfer which must
be broken down into smaller chunks in order to YIELD
periodically:

1. Examine the physical address pair. If one of the physical
addresses is above 1 MB, then convert it first.

2. Call PhysToVirt with ES:DI for the first address.

3. Save OS.

4. Call PhysToVirt with DS:SI for the second address.

5. Perform the data transfer on the chunk.

6. Restore DS.

7. Call UnPhysToVirt.

8. YIELD.

9. When control is returned, repeat these steps.

• To pass two logical addresses to a subroutine, one of which must
be converted from a physical address, the other is obtained from
the device driver's data segment:

7-70

1. Examine the physical address pair. If one of the physical
addresses is above 1 MB, then convert it first.

2. Call PhysToVirt with ES:DI for the address to convert.

3. Save the converted address in the appropriate input param
eter to the subroutine.

4. Save the other logical address (located in the device driver's
data segment) in the appropriate input parameter to the sub
routine.

5. Call the subroutine.

6. Call UnPhysToVirt.

• To use two logical addresses to do a data transfer at interrupt
time before the EOI:

1. Examine the physical address pair. If one of the physical
addresses is above 1 MB, then convert it first.

2. Call PhysToVirt with ES:OI for the first address.

3. Save OS.

4. Call PhysToVirt with OS:SI for the second address.

5. Perform the data transfer.

6. Restore OS.

7. Call UnPhysToVirt.

8. Issue the EOI.

• To use two logical addresses in order to do a data transfer at
interrupt time after the EOI:

1. Issue the EOI.

2. Examine the physical address pair. If one of the physical
addresses is above 1 MB, then convert it first.

3. Save the interrupt flag.

4. Disable interrupts.

5. Call PhysToVirt with ES:OI for the first address.

6. Save OS.

7. Call PhysToVirt with OS:SI for the second address.

8. Perform the data transfer.

9. Restore OS.

10. Restore the interrupt flag.

11. Call UnPhysToVirt.

7-71

Notes On Writing a Device Driver using Advanced BIOS

The following is a high-level example of how a device driver would be
written to use Advanced BIOS.

To determine the basic structure of the device driver, certain design
points must be identified.

• The kind of device to be supported (character or block).

• The nature of the 1/0 to the device (synchronous or staged,
Program 110 (PIO) or Direct Memory Access (OMA)).

A staged request can be further refined to be staged on a time
delay, staged on an interrupt or both. Staged on a time delay
means the operation involves waiting for a specific length of time
before the operation can be continued or is completed. Staged
on an interrupt means the operation involves waiting for an inter
rupt to occur.

PIO or OMA refers to the type of addressing required for data
transfers. PIO is done using virtual addresses (which are also
referred to as logical addresses) of the form:

segment/selector: offset.

OMA is done using physical addresses which are 32-bit numbers
indicating the data transfer location in memory.

• The maximum number of devices.

• The maximum number of interrupt levels.

These items determine the nature of the device driver, that is, how
the task-time and interrupt-time portions of the device driver relate to
each other and which of the DevHlp services will be used for
blocking, queueing, timers, and others.

7-72

Note that the type and number of devices generally indicate the
logical device names (for example, COM1, LPT1) that the device
driver will support.

• A device type is identified by its ABIOS-architected device ID.

• A specific device is identified by a Logical ID (LID) and unit
number under that LID.

• 1/0 to the device is performed by calling the ABIOS entry point
(Start, Interrupt, or Timeout) that corresponds to the particular
LID.

• Parameters are passed to an ABIOS service through a request
block structure.

• 1/0 requests can be synchronous (run to completion), or staged
(run until blocked, waiting for an interrupt or time).

• Staged requests may have well-defined time delays between
certain stages.

• Data transfers may use either virtual addresses

(segment/selector:offset)

or physical addresses.

Before using ABIOS services and during initialization, a device driver
must identify every LID for which it will accept requests. To do this,
the device driver uses the architected ABIOS Device ID for its device.
The device driver uses the DevHlp GetLIDEntry, which searches
through the Advanced BIOS common data area looking for the LID
that corresponds to the given device ID.

In general, by making repeated calls to GetLIDEntry and counting the
number of units supported by each LID it obtains, the device driver
determines how many supported devices are configured in the
system. The device driver will only process interrupts and requests
for its maximum number of supported devices. Any LID of the device
driver's device type that is leftover must be unclaimed so another
device driver can support it.

7-73

A device driver knows which LID corresponds to a given logical
device name (for example, COM1) because of the rule forcing the
operating system logical device names to be in the same order as the
LID entries for an associated device ID.

For example, assuming one unit per LID, then an installable printer
device driver will support LPT3 (the third printer) by locating the third
LID that corresponds to device ID of printer (that is "awake").

The device driver must determine which interrupt level each LID will
use by using the ABIOS function, Return LID Parameters. The device
driver will register interrupt handler entry points for the interrupt
levels that it supports with the DevHlp SetlRQ. It keeps a list of every
LID that corresponds to each interrupt handler.

Note: If the device driver supports multiple devices and the number
of interrupt levels for those devices exceed the number of supported
interrupt levels, the device driver will ignore any LID that it cannot
support because too many different interrupt levels are required.

At task time, when the device driver strategy entry point for a given
device header receives a request packet, the device driver knows
which logical device name and LID (and unit number) correspond to
that entry point.

The device driver strategy routine sets up an ABIOS request block
and uses the DevHlp ABIOSCall to invoke the Advanced BIOS START
routine to begin the requested ABIOS function. ABIOS requires that
the ReturnCode field in the ABIOS request block be initialized to
FFFFH. ABIOS will set the ReturnCode to its appropriate value.

Note: Either portion of the device driver, the task-time strategy
routine or the interrupt handler, may start an ABIOS request. For
simplicity, the example will use the strategy routine as the caller of
the Advanced BIOS START service.

The pointer to the ABIOS request block and any logical data transfer
pointers can be set up by the device driver independent of mode if the
data transfer areas are in the device driver's data segment.

(segment/selector:offset)

7-74

If the data transfer is to take place to a logically addressed buffer in a
bimodal environment, the device driver will need to double buffer the
data transfer if the target location of the data could be high memory
while running in real mode or if the device driver needs to run
enabled. That is, the device driver should use an intermediate buffer
located in its data segment (which is below 1 MB) for the data
transfer performed by ABIOS. The device driver would then complete
the data transfer to the user data buffer itself.

In a multi-staged request, the address of the logically addressed data
buffer may have to be changed by the device driver in the Advanced
BIOS request block from stage to stage. This is normal because of
the bimodal characteristics of the operating environment. For
devices that require physical address data transfer (for example,
OMA-oriented devices), the device driver must ensure that the buffer
area is locked for the duration of all stages of the request.

Interrupt during START: If the request is staged on an interrupt then
ABIOS will set the ReturnCode appropriately only when the par
ticular service is ready to be resumed through the Advanced
BIOS INTERRUPT routine. The device driver strategy routine
must also set a flag to indicate whether a request has com
pleted the START request to the point at which the strategy
routine interrogates the ReturnCode. This must be done to
accommodate the case where the interrupt occurs after ABIOS
updates the ReturnCode, but before the device driver strategy
routine interrogates the ReturnCode. In this case, the device
driver Interrupt handler is invoked by the interrupt and can take
appropriate action on the request block, even though the device
driver strategy routine has not completed processing the
request block.

For example, if the strategy routine is expected to BLOCK the
request until the interrupt occurs, but the interrupt handler is
invoked before the strategy routine is able to BLOCK, the inter
rupt handler needs to flag the fact that the interrupt handler
already processed the request block. The strategy routine,
when it gets control, will then see that it should not check the
ReturnCode in the request block and it does not have to BLOCK
because the request is already completed. The strategy routine
will set up the request packet with the return information and
return the completed request to the kernel.

7.75

This example would be more complex if, when the strategy
routine got control, the request was still incomplete (as would
occur in a multi-staged request). The strategy routine would
still ignore the ReturnCode because the request block would
already be at a different stage (than the START) but the strategy
routine may still have to BLOCK.

Interrupt after START: For a staged ABIOS request that must wait for
the interrupt associated with the specified LID to occur after the
request is STARTed, the ReturnCode of the request will be set
to stage-on interrupt by the ABIOS START function. This indi
cates that the request is incomplete. Several requests for this
LID may START and be waiting for the device interrupt. These
incomplete requests are commonly referred to as outstanding
requests for the LID.

Note: The request is considered to be an outstanding request for the
LID, even if the START service has not returned control to the caller
of the START service.

A device driver never assumes that the return codes for an ABIOS
request occur in any given order. The ReturnCode should always be
checked to determine what actions to perform on the request block.

When the device driver interrupt handler is invoked by the device
interrupt, it knows which LID is associated with the interrupt level.
The interrupt handler must individually examine each LID associated
with the interrupt level. For a LID, the interrupt handler must process
all outstanding staged-on interrupt request blocks. That is, the Inter
rupt handler is required by ABIOS to call the Advanced BIOS INTER
RUPT routine for every outstanding staged-on interrupt request block
to completely process one LID. This includes a START request block
in which the ReturnCode has been changed from FFFFH to stage-on
interrupt but where the START service has not yet returned control to
its caller. If one of the request blocks for the LID caused the interrupt,
then after the interrupt handler has called ABIOS with all the out
standing request blocks owned by this LID, the interrupt handler will
not need to process any other LID associated with this interrupt level.

7-76

If a given LID has no outstanding ABIOS request blocks, the device
driver will call the Advanced BIOS DEFAULT INTERRUPT service for
that LID. The DEFAULT INTERRUPT service will reset the interrupt
condition for that LID if the LID falsely caused the interrupt. It will
then return to the device driver interrupt handler, indicating that the
interrupt belonged to the LID.

If there is at least one outstanding ABIOS request block for a given
LID, ABIOS will automatically invoke the DEFAULT INTERRUPT
service if the LID generates a false interrupt. The device driver must
be able to process the false interrupt return code for any call to the
ABIOS INTERRUPT routine. This return code indicates that the inter
rupt belonged to the LID, was reset by ABIOS, and the device driver
is responsible for issuing the EOI and returning to the operating
system as owning the interrupt. The device driver is still responsible
for calling ABIOS with any remaining staged-on-interrupt request
blocks for this LID.

The device driver interrupt handler may issue the EOI (via the DevHlp
EOI function) only after completely processing the LID that owns the
interrupt or after the LID's DEFAULT INTERRUPT service indicates
that the LID's device caused the interrupt. In other words, the Inter
rupt handler must process all outstanding requests under the LID that
owns the interrupt, even after finding a request block which indicates
that it caused the interrupt. The interrupt handler may stop proc
essing any LID for this interrupt only when the interrupt is claimed by
a LID, either by a request under the owning LID or by the owning
LID's DEFAULT INTERRUPT service.

The interrupt handler knows that once it issues the EOI after com
pletely processing a LID, another LID requesting service at the
current interrupt level, would create another interrupt.

Once the EOI is issued, the interrupt handler can be reentered at its
entry point. If the Interrupt handler is reentered, it must process
every LID, including the one that is near completion or just com
pleted.

In order to keep the pre-EOI processing time to a minimum, the inter
rupt handler may wish to issue its EOI either before it sets the return
information in the operating system request packet, or before it
begins processing a request packet that was queued by the device
driver strategy routine.

7-77

If the interrupt handler did not find any LID that claimed the given
interrupt either with a request block or by a DEFAULT INTERRUPT
service, the interrupt handler must exit, indicating that the interrupt
did not belong to it; that is, it was not caused by any LID that the
device driver owns.

Eventually, the ReturnCode from ABIOS will show that the ABIOS
request block is complete. The device driver can then clean up the
device driver request packet queue and take the next request packet
and try to start another ABIOS request block.

The device driver will support the timeout requirements of Advanced
BIOS with the DevHlp SetTimer and the DevHlp TickCount. Instead of
counting every clock tick, the device driver will use TickCount to force
its timer tick entry point to receive control as infrequently as possible.
The design of the Advanced BIOS TIMEOUT function is in 1-second
increments.

Device drivers in an Advanced BIOS environment have the same
requirement to support DOS mode operations as they do in OS/2. In
addition, for certain devices such as diskette and disk, the device
driver must reset the device when switching between Advanced BIOS
operation and BIOS operation. This is because state of the device
information is kept internally to the Advanced BIOS and BIOS device
blocks, which would get out of synchronization if the device were not
reset when switching between the two sets of code.

7-78

Chapter 8. Device Helper Services

Many of the functions of an OS/2 device driver are related to system
operations rather than to hardware operations. Therefore, an inter
face to operating system services is therefore available to device
drivers through the DevHlp interface.

Access to these system services is obtained at the time of device
driver initialization. The request packet for the INIT command con
tains a pointer to the DevHlp interface. The pointer to the DevHlp
interface is a bimodal pointer; that is, this pointer to the DevHlp inter
face is valid in both the DOS mode and the OS/2 mode. The device
driver does not have to be sensitive to the mode of operation before
requesting DevHlp services.

The DevHlp services are listed below. A service is invoked by setting
up the appropriate registers, loading a function code into the DL reg
ister, and making a FAR CALL to the DevHlp interface routine, whose
address was supplied at device driver initialization time.

DevHlp Services and Function Codes

DevHlp Service Code Description
SchedClockAddr 0 Get system clock routine
DevDone Device 1/0 complete
Yield 2 Yield the CPU
TCYield 3 Yield the CPU to time-critical
Block 4 Block thread on event
Run 5 Unblock thread
SemRequest 6 Claim a semaphore
SemClear 7 Release a semaphore
SemHandle 8 Get a semaphore handle
PushReqPacket 9 Add request to list
Pul I ReqPacket A Remove request from I ist
Pull Particular B Remove a specific request from list
SortReqPacket c Insert request in sorted order to list

8-1

DevHlp Service Code Description
AllocReqPacket D Get a request packet
FreeReqPacket E Free request packet
Queuelnit F Initialize character queue
QueueFlush 10 Clear character queue
QueueWrite 11 Put a character in the queue
QueueRead 12 Get a character from the queue
Lock 13 Lock segment
Unlock 14 Unlock segment
PhysToVirt 15 Map physical-to-virtual address
VirtToPhys 16 Map virtual-to-physical address
PhysToUVirt 17 Map physical-to-user virtual
AllocPhys 18 Allocate physical memory
Free Phys 19 Free physical memory
SetROMVector 1A Set Software interrupt vector
SetlRQ 18 Set a hardware interrupt handler
UnSetlRQ 1C Reset a hardware interrupt handler
SetTimer 10 Set a timer handler
ResetTimer 1E Remove a timer handler
MonitorCreate 1F Create a monitor
Register 20 Install a monitor
DeRegister 21 Remove a monitor
Mon Write 22 Pass data records to monitor
MonFlush 23 Remove all data from stream
GetDOSVar 24 Return pointer to DOS variable
Send Event 25 Indicate an event
ROMCritSection 26 ROM BIOS critical section
Verify Access 27 Verify memory access
Reserved 28
Reserved 29
Reserved 2A
Reserved 28
Reserved 2C
AllocGDTSelector 20 Allocate GOT Selectors
PhysToGDTSelector 2E Map physical to virtual address
RealToProt 2F Real Mode to Protect Mode
ProtToReal 30 Protect Mode to Real Mode
EOI 31 Issue an End-Of-Interrupt

8-2

DevHlp Service
UnPhysToVirt
TickCount
GetLIDEntry
FreeLIDEntry
ABIOSCall
ABIOSCommonEntry
Reserved

Code
32
33
34
35
36
37
38

Description
Mark PhysToVirt complete
Modify timer
Get Logical ID
Release Logical ID
Invoke ABIOS function
Invoke ABIOS Common Entry Point

As discussed in the section on device driver architecture, device
driver code may run in one of four contexts.

• Kernel mode - the context in which the device driver strategy
routine runs.

• Interrupt mode - the context in which the device driver hardware
interrupt handler runs.

• User mode - the context in which the device driver handler for a
DOS mode software interrupt runs.

• lnit mode - the context in which the device driver Strategy routine
runs when it is called with the INIT request packet.

DevHlp Services and Corresponding States

Certain restrictions apply as to when individual DevHlp services can
be used. The following list outlines which DevHlp services are
allowed in which contexts (kernel, interrupt, user, or initialization).

DevHlp Service Code Kernel Interrupt User lnlt

SchedClockAddr 0 * *

DevDone 1 * *

Yield 2 *

TCYield 3 *

Block 4 * *

8-3

DevHlp Service Code Kernel Interrupt User lnlt

Run 5 * * *

SemRequest 6 * *

SemClear 7 * * *

SemHandle 8 * *

PushReqPacket 9 *

Pul I ReqPacket A * *

Pul I Particular B * *

SortReqPacket c *

AllocReqPacket D *

FreeReqPacket E *

Queuelnit F * * * *

QueueFlush 10 * * *

Queue Write 11 * * *

QueueRead 12 * * *

Lock 13 *

Unlock 14 * *

PhysToVirt 15 * * *

VirtToPhys 16 * *

PhysToUVirt 17 *

AllocPhys 18 * *

Free Phys 19 * *

SetROMVector 1A * *

SetlRQ 18 * *

UnSetlRQ 1C * * *

8-4

DevHlp Service Code Kernel Interrupt User lnlt

SetTimer 10 * *

ResetTimer 1E * * *

MonitorCreate 1F * *

Register 20 *

DeRegister 21 *

Mon Write 22 * * *

Mon Flush 23 *

GetDOSVar 24 * *

SendEvent 25 * *

ROMCritSection 26 *

Verify Access 27 *

AllocGDTSelector 20 *

PhysToGDTSelector 2E * * * *

RealToProt 2F *

ProtToReal 30 *

EOI 31 * *

UnPhysToVirt 32 * * *

TickCount 33 * * * *

GetLIDEntry 34 * *

FreeLIDEntry 35 * *

ABIOSCall 36 * * * *

ABIOSCommonEntry 37 * * * *

8-5

Related DevHlp services are grouped together in the following cate
gories.

1. System Clock Management

• SchedClockAddr

2. Process Management

• Block
• DevDone
• Run
• TCYield
• Yield

3. Semaphore Management

• SemClear
• SemHandle
• SemRequest

4. Request Queue Management

• AllocReqPacket
• FreeReqPacket
• PullParticular
• PullReqPacket
• PushReqPacket
• SortReqPacket

8-6

5. Character Queue Management

• QueueFlush

• Queuelnit

• QueueRead

• QueueWrite

6. Memory Management

• AllocGDTSelector

• AllocPhys

• FreePhys

• Lock

• PhysToGDTSelector

• PhysToUVirt

• PhysToVirt

• Unlock

• UnPhysToVirt

• Verify Access

• VirtToPhys

7. Interrupt Management

• EOI

• Seti RO

• SetROMVector

• UnSetlRQ

8. Timer Services

• ResetTimer

• SetTimer

• TickCount

8-7

9. Monitor Manag~ment

• DeRegister
• MonFlush
• MQnitorCreate
• MonWrite
• Register

10. System Services

• GetDOSVar
• SendEvent
• ROMCritSection

11. Processor Mode Services

• ProtToReal
• RealToProt

12. Advanced BIOS Services

• ABIOSCall
• ABIOSCommonEntry
• FreeLIDEntry
• GetLIDEntry

8-8

DevHlp Interfaces

Calling conventions for each of the DevHlp services follow. In addi
tion to the explicit effects noted under each service, the interrupt flag
can be set or cleared by some services, and other flags can be
affected by the calls. Some services require that the interrupt flag be
off when they are called.

The device driver can assume that the state of the interrupt flag will
be preserved, and that the DevHlp routine will not enable interrupts
unless stated otherwise in the functional description for each routine.
The only exceptions apply to functions that allow the device driver to
relinquish control of the CPU. Therefore, during calls to functions
such as Yield and TCYield, the device driver cannot assume that
interrupts will remain disabled.

All registers except flag registers are preserved across DevHlp calls
unless specified as containing return parameters.

The functional descriptions for the DevHlp services follow in alpha
betical order.

8-9

ABIOSCall-
lnvoke ABIOS function

Purpose

This routine is used to invoke an ABIOS service for the Operating
System Transfer Convention.

Processing
MOV AX. LID
MOV SI.RB_Offset

MOV DH.Entry_Point

MDV DL.DevHlp_ABIOSCall
CALL [Device_Help]

Results

;Logical ID
;Offset in data segment
; to ABIOS request block
;Specifies entry point
; e = start
; 1 = interrupt
; 2 = timeout

'C' Clear if no error
ABIOS service invoked.

'C' Set if error
AX = error code

ABIOS not present.
Unknown ABIOS Command

Remarks

The stack is set, depending on the current address mode, for the call
to ABIOS, and the indicated ABIOS function is called according to the
Operating System Transfer Convention. Refer to Operating System
Transfer Convention on page 7-33. When the ABIOS function returns,
ABIOSCall will clean up the stack before returning to the device
driver.

8-10

ABIOSCall
Invoke ABIOS function

Note: Advanced BIOS functions called in user mode may need to be
protected from being suspended in the background. This will occur
when the DOS mode is in the foreground and the user selects an
OS/2 mode application to run. The DOS mode will be suspended. To
protect the ABIOS function, the device driver should issue the DevHlp
call ROMCritSection.

Note that OS must point to the device driver's data segment. If OS had
been previously used in a PhysToVirt call, it must be reset to the
device driver's data segment.

8-11

··· •.. ~f}IOSCom·111onEntry
··invoke ABIOS Common Entry Point

Purpose

This service is used to invoke an ABIOS Common Entry Point
according to the Advanced BIOS Transfer Convention.

Processing
MOV Sl,RB_Offset ;Offset in data segment

; to ABIOS request block
MOV DH,Entry_Point ;Specifies entry point

; e = start
; 1 = interrupt
; 2 = timeout

MOV DL,DevHlp_ABIOSCommonEntry
CALL [Device_Help]

Results
1 C1 Clear if no error

ABIOS service invoked.
1 C1 Set if error

AX = error code

Remarks

ABIOS not present.
Unknown ABIOS Command

ABIOSCommonEntry sets up the stack, depending on the current
address mode, for the call to one of the Advanced BIOS Common
Entry Points. It then invokes the indicated ABIOS common entry
point. On return from the ABIOS function, the ABIOSCommonEntry
cleans up the stack before returning to the device driver.

8-12

ABIOSCommonEntry
Invoke ABIOS Common Entry Point

Note: Advanced BIOS functions called in user rnode may need to be
protected from being suspended in the background. This will occur
when the DOS mode is foreground and the user selects an OS/2
mode application to run. The DOS mode will be suspended. To
protect the ABIOS function, the device driver should issue the DevHlp
call ROMCritSection.

Note that OS must point to the device driver's data segment. If OS had
been previously used in a PhysToVirt call, it must be reset to the
device driver's data segment.

8-13

AllocGDTSelector·
Allocate GDT Selectors·

Purpose

This function allocates a set of GOT selectors for a device driver to
use. This allocation is performed at device driver INIT time.

Processing
MDV ES,address_high ; 32-bit address of GDT
MDV DI,address_low selector array
MDV CX,number ;Number of selectors requested
MDV DL,DevHlp_AllocGDTSelector
CALL [Device_Help]

Results
1C1 Cleared if successful
1 C1 Set if error

AX = error code
Invalid address
Zero selectors requested
Not enough selectors available

Remarks

AllocGDTSelector is used to allocate a set of GOT selectors for a
device driver to use for bimodal task-time and interrupt-time oper
ations.

The address passed in ES:DI gives the location of an array of words
to be filled in with the GOT selectors allocated. The value of CX spec
ifies the number of selectors to be allocated. Note that the selector
values returned may not be contiguous values.

A bimodal device driver supports both real mode and protect mode
1/0 and must be able to transfer data without being dependent on the
current mode of operations. In addition, the interrupt handler of a
bimodal device driver must be able to address data buffers regard
less of the context of the current process (the current LDT will not
necessarily address the data space that contains the data buffer that

8-14

AllocGDTSelector
Allocate GOT Selectors

the interrupt handler needs to access). The PhysToGOTSelector func
tion is used to establish the addressability of a GOT selector, and the
GOT selector's addressability will remain valid and the same until
another PhysToGOTSelector call is made for the same selector.

The RealToProt function is used to change processor mode from real
mode to protect mode, and the ProtToReal function is used to return
the processor to real mode. The device driver must always return the
processor to the same mode it was in when entered if either the
ProtToReal or RealToProt functions are used.

8-15

AilocPhys
Allocate Fixed Block of Physical Memory

Purpose

AllocPhys is used by device drivers to allocate a block of fixed
memory.

Processing
MOV BX,size_low
MOV AX,size_high
MOV DH,high_or_low

MOV DL,DevHlp_AllocPhys
CALL [Device_Help]

Results

;size in bytes

;Relative position to 1 megabyte
; = e above 1 megabyte
; = 1 below 1 megabyte

1 C1 Clear if memory allocated
AX:BX = 32-bit physical address.

1 C1 Set if memory not allocated
AX = error, memory not allocated.

Remarks

The memory allocated by this function is fixed memory, and may not
be "unfixed" via the Uh lock call.

If memory is requested to be allocated high (above 1 megabyte), and
no memory above 1 megabyte is available, then an error is returned.
The device driver could then attempt to allocate low memory.

Conversely, if memory is requested to be allocated low (below 1
megabyte), and no memory below 1 megabyte is available, then an
error is returned and the device driver could try allocating high
memory, if appropriate.

8-16

AllocReqPacket
Get a Request Packet

Purpose

This service returns a pointer to an empty request packet.

Processing
MOV DH,wait_flag

MOV DL,DevHlp_AllocReqPacket
CALL [Device_Help]

Results

;Wait for available
request packet
= e if to wait
= 1 if not to wait

'C' Cleared if a request packet was allocated.
ES:BX is the virtual address of

the allocated request packet.
'C' Set if a request packet was not allocated.

Remarks

AllocReqPacket returns a bimodal pointer to a maximum size request
packet. The bimodal pointer is a virtual address that is valid for both
the DOS mode and the OS/2 mode.

Some device drivers, notably the disk device driver, need to have
additional request packets to service task-time requests. Because
device drivers are bimodal, they cannot use a packet residing in their
data segment because the resulting pointer is not bimodal.

Request packets that were allocated by an AllocReqPacket may be
placed in the request packet linked list.

8-17

AllocReqPacket
Get a Request Packet

Request packets allocated in this manner should be returned to the
kernel as soon as possible via the FreeReqPacket function. The
system as a whole has a limited number of request packets, so it is
important that a device driver not allocate request packets and hold
them for future use.

The state of the interrupt flag is not preserved across calls to this
DevHlp.

8-18

Block
This Thread From Running

Purpose

This service "sleeps" the thread executing in the device driver until
either the Run call is issued on the event identifier or a timeout
occurs.

Processing
MOV BX,event_id_low
MOV AX,event_id_high
MOV 01,time_limit_high
MOV CX,time_limit_low

MOV DH,interruptible_flag

MOV DL,DevHlp_Block
CALL [Device_Help]

Results
1 C1 Clear if event wakeup.
1 C1 Set if unusual wakeup.

;Low word of event id
;High word of event id
;Timeout interval
;in milliseconds
; = -1 if to never timeout
;Tells if sleep is interruptible

= e interruptible
; = 1 non-interruptible

1 Z1 Set if wakeup due to timeout.
1 Z1 Cleared if sleep was interrupted.
AL Awake code, non-zero if unusual wakeup.

Interrupts enabled.

Remarks

The return from the Block call indicates whether the "wakeup"
occurred from a normal of Run call or an expiration of the time limit.

Block removes the current thread from the run queue and starts exe
cuting some other thread. The thread blocked in the device driver is
reactivated and Block returns when Run is called with the same
event identifier, when the time limit expires, or when the thread is
signalled.

8-19

Block
This Thread From Running

The event identifier is an arbitrary 32-bit value, but a convention must
be followed to coordinate with the thread issuing the Run function.
The standard convention for Block/Run operations is to use the
address of some structure or memory cell associated with the reason
for blocking and running. For example, a thread blocking until some
resource is cleared normally blocks "on" the address of the owner
ship flag for that resource.

Because dual-mode device drivers may be Blocked in one mode and
Run in the other, using the virtual address as the event identifier is
not sufficient; the virtual address of an item in one mode is not the
same as its virtual address in the other mode. A possible option for a
device driver is that it Blocks/Runs on the 32-bit address of a request
packet being processed for the thread.

The Block/Run mechanism is so designed that it cannot guarantee
immunity from a faulty wakeup by some other thread in the system
running a 32-bit key value, which happens to match some unrelated
blocking thread's key. The goal is to choose keys which can be
known to the Blocker and the Runner and have a high likelihood of
being unique. Users of Block/Run must always check the reason for
their wakeup to make sure that the event really took place and that
the wakeup wasn't accidental.

When calling Block it is important to use the sequence:

Disable Interrupts
while (need to wait)

Block (value)
Disable Interrupts

Interrupts are turned off before checking the condition (1/0 done,
resource freed, whatever) ti rst to avoid a deadlock by getting an
interrupt-time Run call before completing the call to Block. Block
reenables the interrupts. Also note the "while" clause, it is essential
to recheck the awaited condition and, if necessary, re-disable inter
rupts and re-call Block. The convention of using an address as an
event identifier should prevent double use of an identifier.

8-20

Block
This Thread From Running

A time limit of -1 means that Block waits indefinitely until Run is
called. Block can only be called by the task-time portion of a device
driver.

When using Block to block a thread, the driver can specify whether
or not the sleep may be interrupted. If the sleep is interruptible, then
the kernel can abort the blocked thread and return from the Block
without using a corresponding Run. In general, the sleep should be
marked as interruptible unless the sleep duration is expected to be
short, that is, less than a second.

If the return from the Block indicates that the sleep was interrupted,
that means that some internal event occurred that requires attention
(like a signal, process death, or some other forced action). The
device driver should respond by performing any necessary cleanup,
setting the error code in the status field of the request packet, setting
the done bit, and returning the request packet to the kernel.

8-21

De Register
Remove Monitor

Purpose

DeRegister removes all of the monitors associated with the specified
task from the specified monitor chain.

Processing
MOV BX.monitor_PID
MOV AX.monitor_handle
MOV DL.DevHlp_DeRegister
CALL [Device_Help]

Results
•c• Clear if OK

Process ID of monitor task
MonitorCreate handle for chain

AX = # of monitors still registered in chain,
after Deregistration.

1 C1 Set if error
AX = error code

Invalid monitor handle

Remarks

This function may only be called at task time in the OS/2 mode.

To remove a monitor from a monitor chain, the device driver must
supply the PIO of the process that owns the monitor being removed
and the handle of the monitor chain that is affected. All monitors
belonging to the specified PIO are removed from the monitor chain.

A single process may register more than one monitor with the same
monitor chain. Therefore, DeRegister removes all monitors associ
ated with the specified process from the specified monitor chain.

8-22

Purpose

Dev Done
Flag 1/0 Complete

This function signifies that a request has completed and unblocks any
threads waiting in the kernel for the request.

Processing
LES BX,request_packet

MOV DL,DevHlp_DevDone
CALL [Device_Help]

Results

None

Remarks

;Pointer to I/0 request
; packet.

This service will set the "done" bit in the status field of the request
packet header and issue RUNs on thread(s) which are blocked in the
kernel waiting for the request packet to be completed. DevDone is
called from the device interrupt routine. The device driver should set
any error flags in the status field before calling the routine.

Because the virtual address of a request packet is bimodal (the
virtual address is valid in both the DOS mode and the OS/2 mode),
the device driver may pass the request packet pointer to DevDone
without being sensitive to the mode of operations.

DevDone does not apply to request packets that were allocated from
the AllocReqPacket function call.

The device driver does not have to call DevDone for requests that are
completed at task time (in the strategy routine). Requests that are
completed at strategy time should return with the done bit set in the
request packet.

8-23

EOI
Issue an End-Of-Interrupt

Purpose

This routine is used to issue an End-Of-Interrupt to the master/slave
8259 interrupt controller(s) as approptiate to the interrupt level.

Processing
MOV AL, IRQnum

MOV DL,DevHlp_EOI
CALL [Device_Help]

Results

None

Remarks

;Interrupt level number
;(0-F)

This routine is used to issue an End-Of-Interrupt to the 8259 interrupt
controller(s) on behalf of a device driver interrupt handler. If the spec
ified interrupt level is for the slave 8259 interrupt controller, then this
routine will issue the EOI to both the master and slave 8259s.

Device drivers must use this service in their interrupt handlers for
upward compatibility.

Note that this routine is callable at lnit-time for interrupt processing.

This DevHlp does not change the state of the interrupt flag. If the
device driver returns to the operating system immediately after
issuing the EOI, then it should disable interrupts prior to the EOI. Dis
abling intetrupts prior to issuing the EOI allows the processing for
this interrupt level to be completed before the system services the
next Interrupt. This reduces the probability of excessive nested inter
rupts causing a system stack overflow.

8-24

EOI
Issue an End-Of-Interrupt

If any post EOI work is done by the INT handler, it should be limited to
the first or non-nested interrupt. Nested INT processing should be
done only prior to the EOI.

8-25

FreeLIDEntry
Release a Logical ID

Purpose

This routine is used to release a Logical ID. This must be done at
DEINSTALL or termination time.

Processing
MOV AXsLID

MOV DLsDevHlp_FreeLIDEntry
CALL [Device_Help]

Results
1 C1 Clear if no error
1 C1 Set if error

AX = Error Code
Not your LID.

;Logical ID from
; GetLIDEntry

LID does not exist.
ABIOS not present.

Remarks

The attempt to free a Logical ID may fail if the device driver does not
own the LID or if the LID does not exist.

Note that DS must point to the device driver's data segment. If DS
was previously used in a PhysToVirt call, it must be reset to the
device driver's data segment.

8-26

Purpose

Free Phys
Free Physical Memory

FreePhys is used to release memory allocated by the AllocPhys call.

Processing
MOV BX,address_low
MOV AX,address_high
MOV DL,DevHlp_FreePhys
CALL [Device_Help]

Results

;32-bit physical address

1 C1 Cleared if memory freed
1C1 Set if memory not freed

Cannot free memory not allocated with AllocPhys.

Remarks

Any memory that the device driver allocated by way of the AllocPhys
should be released prior to device driver termination.

8-27

FreeReqPacket
Free an Allocated Request Packet

Purpose

This service is used to release a request packet previously allocated
by AllocReqPacket

Processing
LES BX,request_packet

MOV DL,DevHlp_FreeReqPacket
CALL [Device_Help]

Results

None

Remarks

;Pointer to request packet
; previously allocated.

The device driver should only free a request packet that had been
previously allocated by AllocReqPacket. The DevDone service
should not be used to return an allocated request packet.

The system as a whole has a limited number of request packets, so it
is important that a device driver not allocate request packets and
hold them for future use.

The state of the interrupt flag is not preserved across calls to this
DevHlp.

8-28

GetDOSVar
Get Address of Important DOS Variables

Purpose

Returns the address of a kernel variable.

Processing
MOV AL,varnumber
MOV DL,DevHlp_GetDOSVar
CALL [Device_Help]

Results
1 C1 Cleared if no error

;Variable wanted.

AX:BX points to the variable.
1C1 Set if error

Remarks

The following is the list of read only variables:

Index Description of variable

1 SyslNFOseg:WORD

Bimodal segment address of the System Global lnfoSeg. Valid
at both task time and interrupt time.

2 LoclNFOseg:DWORD

Selector/Segment address of the local (LDT) INFO segment.
Valid only at task time.

3 Reserved

4 VectorSDF:DWORD

Pointer to the stand-alone dump facility. Valid at both task
time and interrupt time.

5 VectorReboot:DWORD

Pointer to restart the OS/2. Valid at both task time and inter
rupt time.

8-29

GetDOSVar
Get Address of Important DOS Variables

6 Reserved

Pointers to the MSATS facility, OS/2 mode and DOS mode.
Valid at both task time and interrupt time.

7 YieldFlag:BYTE

Indicator for performing yields. Valid only at task time.

8 TCYieldFlag:BYTE

Indicator for performing time-critical yields. Valid only at task
time.

9 Reserved

10 Reserved

11 DOS mode Code Page Tag Pointer: DWORD Segment/offset of
the current code page tag of DOS mode. Valid only at task
time.

These variables are maintained by the kernel for the benefit of device
drivers.

The returned pointer is a bimodal pointer, that is, the returned
address is valid in either the DOS mode or the OS/2 mode. Note that
the address returned is the "address" of the indicated variable; the
variable may contain a vector to some facility or it may contain some
structure.

8-30

GetLIDEntry
Get a Logical ID

Purpose

This routine is used to obtain a Logical ID (LID) for devices that exist
(that is, devices that are "awake").

Processing
MOV AL,DeviceID
MOV BL,RelativeLID#

MOV DH,DeviceState

MOV DL,DevHlp_GetLIDEntry
CALL [Device_Help]

Results
1 C1 Clear if no error

AX = LID number
1 C1 Set if error

AX = error code

;Desired Device ID
;Nth Logical ID of this Device ID
; (0 - FF) where 0 = first unclaimed
; LID (i.e., first one available)
; 1 = the first LID
;Requested LID indicator

0 = all other LIDs
1 = OMA, POS

LID already owned.
LID does not exist.
ABIOS not present.

Remarks

GetLIDEntry is used by a device driver to obtain a LID entry. Because
OS/2 does not support the Advanced BIOS Sleep/Wake functions, only
devices that are "awake" are considered to exist and thus available to
device drivers.

This function may be employed in two ways. One way is for the
device driver to specify a relative LID. Because the ordering of LIDs
corresponds to ordering of the physical devices, a device driver that
desires to support a certain relative device can determine if a LID
entry is available. (An example is a character device driver that sup-

8-31

GetLIDEntry
Get a Logical ID

ports COM4; that is, it wishes to get the LID entry for the fourth COM
port.)

The other way to use this function is for the device driver to request
the first available LID for its device type. (An example is a block
device driver that wishes to get the first available LID for diskettes.)

In either use of this function, GetLIDEntry will search the ABIOS
Common Data Area table for an entry corresponding to the specified
Device ID. If an entry is located that matches the caller's form of
request, it is returned to the caller. If a LID entry is found but already
owned, an error is returned. If no LID entry is fpund, an error is also
returned.

Some LIDs will not be allocated to device drivers. Certain Device IDs
are used by the operating system kernel to perform such actions as
mode switching. The reserved Device IDs are:

• System Services

Certain LIDs will be allocated as shared. For these Device IDs,
GetLIDEntry will allow multiple device drivers to access the LID con
currently. It is up to the device driver to determine if the device is
busy or available for use when needed. The list of Device IDs that
are allocated as shared follows:

• OMA
• POS

Note: GetLIDEntry must be called with the DeviceState parameter set
to 1 in order to obtain a LID for these Device IDs. In all other cases,
DeviceState must be set to 0.

Note: OS must point to the device driver's data segment. If OS was
previously used in a PhysToVirt cal!, it must be reset to the device
qriver's data segment.

8-32

Lock
Memory Segment

Purpose

Lock is called by device drivers at task time to lock a memory
segment.

Processing
MOV AX,segment_@
MOV BH,duration

MOV BL,waitflag

MOV DL,DevHlp_Lock
CALL [Device_Help]

Results

;Selector or segment
;Advisory duration of lock
; = e if short-term
; = 1 if long-term
;= e Block till locked
;= 1 Return if it is not

immediately available

1 C1 Clear if segment locked
AX:BX = lock handle

1 C1 Set if segment unavailable or invalid handle.
AX, BX not preserved

Remarks

If the segment is unavailable, the caller must specify whether Lock
should block until the segment is available and locked, or return
immediately.

If the advisory lock duration parameter indicates that the segment is
expected to be locked (fixed) for a long time, the segment may be
moved to the region reserved for fixed, OS/2 mode segments.

The duration of the lock must be set to SHORT-TERM for operations
that are expected to complete in two seconds or less. Use of short
term locks for longer periods of time prevents an adequate amount of
movable, swappable memory from being available for system use.

8-33

Lock
Memory Segment

Prior to requesting a lock on a process-supplied address, a device
driver must verify the process' access to the memory with the DevHlp
VerifyAccess. The device must not yield the CPU between the
VerifyAccess and the Lock, otherwise the process could shrink the
segment before it has been locked. Once the user access has been
verified, the device driver may lock the segment (and convert the
address to a 32-bit physical address). The access verification is valid
for the duration of the lock.

The Lock call need only be done on addresses that are received from
user processes (such as an address that is passed via an IOCtl).

8-34

MonFlush
Flush Data from Monitor Chain

Purpose

MonFlush removes all data from the specified monitor chain (such as
the data stream).

Processing
MOV AX,monitor_handle
MOV DL,DevHlp_MonFlush
CALL [Device_Help]

Results
•c• Clear if OK

AX = e
'C' Set if error

AX = error code

;MonitorCreate handle for chain

Invalid monitor handle

Remarks

This function may be called at task time in the OS/2 mode only.

The general format of monitor records requires that every record
contain a flag word as the first entry. One of the flags is used to indi
cate that this record is a flush record. The flush record consists of
only the flag word. This record is used by monitors along the chain to
reset internal state information and to assure that all internal buffers
are flushed. The flush record must be passed along to the next
monitor because the monitor dispatcher will not process any more
information until the flush record is received at the end of the chain.

Subsequent MonWrite requests will fail (or block) until the flush com
pletes.

The state of the interrupt flag is not preserved across calls to this
DevHlp.

8-35

MonitorCreate
Create a monitor

Purpose

MonitorCreate creates an initially empty chain of monitors or
removes an empty chain of monitors.

Processing
LES SI,final_buffer ;Address of device driver's

LOS DI,notify_rtn
MOV AX,Handle

; monitor chain buffer
;Address of notification routine
;Handle for this chain

= e create new monitor chain
; < > e specifies chain to be removed

(returned from previous create call)
MOV DL,DevHlp_MonitorCreate
CALL [Device_Help]

Results
'C' Clear if OK

AX =monitor chain handle if Handle was "0".
AX = 0 if handle was not "0".

'C' Set if error
AX = error code

Remarks

Invalid monitor handle
Not enough memory
Monitor chain not empty
Invalid parameter
(If handle not 0, this error is returned if
all monitor tasks registered with this chain
have been previously deregistered.)

The monitor chain buffer is a buffer owned by the device driver. On
calling MonitorCreate, the first word of this buffer is the length of the
buffer in bytes (including the first word).

When the monitor chain handle specified is 0, a new monitor chain is
created. When the monitor chain handle specified is not 0, the

8-36

MonitorCreate
Create a monitor

monitor chain created by a previous MonitorCreate call is removed,
or destroyed.

A monitor chain is a list of monitors, with a device driver monitor
chain buffer address and code address as the last element on this
list. Data is placed into a monitor chain via the MonWrite function;
the monitor dispatcher feeds the data through all registered monitors,
putting the resulting data, if any, into the specified device driver
monitor chain buffer. When data is placed in this buffer the device
driver's notification routine is called at task time. The device driver
should initiate any necessary action in a timely fashion and return
from the notification entry point without delay.

Note: If the MonWrite function is called at interrupt time and if the
monitor chain is empty, the driver notification routine will be called at
interrupt time. Under all other circumstances it is called at task time.

The MonitorCreate function establishes one of these monitor chains.
The chains are created empty so that data written into them is placed
immediately into the device driver's buffer.

This routine can also destroy a monitor chain if the handle parameter
(AX) is non-zero. The non-zero value is the handle of the chain to
remove.

This function may only be called at task time in the OS/2 mode.

A MonitorCreate call must be made before a monitor can be Regis
tered with the chain. This can be done at any time including during
the installation of the device driver at system initialization.

Notification Routine Considerations

• The notification routine (notify_rtn) is called by the monitor dis
patcher when a data record has been placed in the device driv
er's monitor chain buffer. The monitor dispatcher sets ES:SI =
address of the device driver's monitor chain buffer and DS = the
device driver's DS before calling the notification routine.

• The device driver must process the contents of the monitor chain
buffer before returning to the monitor dispatcher. This entry point
will be called in the OS/2 mode only.

8-37

MonitorCreate
Create a monitor

• When the notify_rtn is called, the first word of the buffer is filled in
with the length of the record just sent to the device driver. There
is one notification routine call per record.

8-38

Mon Write
Give Data to Monitors

Purpose

MonWrite passes data records to the monitors for filtering.

Processing
LDS SI,data_record_offset ; Offset of data record in DS
MOV CX,count ;Byte count of data record
MOV AX,monitor_handle ;handle for chain returned from

; previous MonitorCreate call
MOV DH,wait_flag ;wait/nowait flag
MOV DL,DevHlp_MonWrite
CALL [Device_Help]

Results
•c• Clear if OK

AX = 0
1C1 Set if error

AX = error code

Remarks

Invalid monitor handle
Not enough memory
Data record too large

This function may be called at task time or interrupt time. The
wait_flag is set to 0 if the MonWrite request occurs at task or user
time and the device driver wishes to have the monitor dispatcher
perform the synchronization. A value of 1 is specified if no wait is
required. A value of 1 must be specified at interrupt time.

The DS register must be set to the device driver data segment.

8-39

Mon Write
Give Data to Monitors

The not-enough-memory condition can arise when the MonWrite call
is made and the buffer does not contain sufficient free space to
receive the data. If this condition occurs at interrupt time, an overrun
has occurred. If it occurs at task (or user) time, the process can
block.

A MonFlush in-progress can also cause a not-enough-memory condi
tion.

Each call to MonWrite will send a single complete record. The data
sent by this call is considered to be a whole record. A data record
must not be larger than the length of the device driver's monitor
chain buffer minus two bytes.

The state of the interrupt flag is not preserved across calls to this
DevHlp.

8-40

PhysToGDTSelector
Map Physical Address to a GDT Selector

Purpose

This function converts a 32-bit address to a GOT selector-offset pair.

Processing
MOV AX,address_high ;32-bit physical address
MOV BX,address_low
MOV CX,length ;Length of segment
MOV SI.selector ;Selector to be setup
MOV DL,DevHlp_PhysToGDTSelector
CALL [Device_Help]

Results
'C' Cleared if successful
'C' Set if error

AX = error code
Invalid address
Invalid selector

Remarks

PhysToGDTSelector is used to provide addressability through a GOT
selector to data. A bimodal device driver supports both real mode
and protect mode 1/0 and must be able to transfer data without being
dependent on the current mode of operations. In addition, the inter
rupt handler of a bimodal device driver must be able to address data
buffers regardless of the context of the current process (the current
LDT will not necessarily address the data space that contains the
data buffer that the interrupt handler needs to access). The GOT
selector's addressability will remain valid and the same until another
PhysToGDTSelector call is made for the same selector.

The AllocGDTSelector function is used at INIT time to allocate the
GOT selectors that the device driver may use with the
PhysToGDTSelector. The RealToProt function (see "RealToProt
Change Mode from Real to Protect Mode" on page 8-58) is used to
change processor mode from real mode to protect mode, and the

8-41

PhysToGDTSelector
Map Physical Address to a GOT Selector

ProtToReal function (see "ProtToReal Change Mode from Protect to
Real Mode" on page 8-49) is used to return the processor to real
mode. The device driver must always return the processor to the
same mode it was in when entered if either the ProtToReal or
RealToProt functions are used.

PhysToGDTSelector creates selector:offset addressability for a 32-bit
physical address. The selector created, however, does not represent
a normal memory segment such as those usually managed by OS/2
and is more of a "fabricated segment" for private use by the device
driver. Such a segment can not be passed on system calls and may
only be used by the device driver to fetch data.

8-42

PhysToUVirt
Map Physical To User Virtual Address

Purpose

In the OS/2 mode PhysToUVirt converts a 32-bit physical address to a
valid selector-offset pair addressable out of the current LDT. In the
DOS mode, PhysToUVirt converts a 32-bit physical address to a valid
segment-offset pair, if the address is below 1 megabyte.

Processing
MOV AX,address_high ;32-bit physical address

;(or selector, if request type 2)
MOV BX,address_low ,
MOV CX,length ;Length of area (less than or

; equal to 65535, 0 = 65536)
MOV DH,request_type ;Type of Request

; 0 - get virtual address, make
; segment readable/executable
; 1 - get virtual address, make
; segment readable/writable
; 2 - free virtual address
, (OS/2 mode only)

MDV DL,DevHlp_PhysToUVirt
CALL [Device_Help]

Results
1 C1 Set if error

Invalid address
1C1 Cleared if successful

ES:BX -- segment/selector-offset pair
(for request types 0 and 1).

Remarks

PhysToUVirt will leave its result in ES:BX. PhysToUVirt can also be
used in the OS/2 mode to free a selector returned on a prior
PhysToUVirt call.

This function is typically used to provide a caller of a device driver
with addressability to a fixed memory area, like ROM code and data.

8-43

PhysToUVirt
Map Physical To User Virtual Address

The device driver must know the physical address of the memory
area to be addressed.

In the OS/2 mode, the offset returned in BX is O for request types O
and 1.

For request type 2, AX contains a selector on entry to PhysToUVirt,
and BX and ex are ignored.

PhysToUVirt creates selector:offset LDT addressability for a 32-bit
physical address. This function is provided so a device driver can
give an application process addressability to a fixed memory area,
such as in the BIOS-reserved range from 640Kb to 1 Mb. It can also
be used to give a client application addressability to a device driver's
data segment.

The selector created, however, does not represent a normal memory
segment such as those usually managed by OS/2 and is more of a
fabricated segment for private use between a device driver and an
application. Data within such a segment cannot be passed on system
calls and may only be used by the receiving application to fetch data
variables.

8-44

PhysToVirt
Map Physical Address to Virtual Address

Purpose

In the OS/2 mode, PhysToVirt converts a 32-bit address to a valid
selector-offset pair. In the DOS mode, PhysToVirt converts a 32-bit
address to a segment-offset pait.

Processing
MOV AX,address_high
MOV BX,address_low
MOV CX,length
MOV DH, result

MOV DL,DevHlp_PhysToVirt
CALL [Device_Help]

Results
1 C1 Cleared if successful
'C' Set if error

AX = Error code
DH Set to a on input

;32-bit physical address

;Length of segment
;Leave result

a in DS:SI
; 1 in ES:DI

DS:SI Valid virtual address
ES No mode switch, ES is preserved.

Mode switch, if ES contains the address of the
device driver data segment on input, it will
be converted to a valid virtual address.
Otherwise, it is set to zero.

DH Set to 1 on input
ES:DI Valid virtual address
OS No mode switch, OS is preserved.

Mode switch, if OS contains the address of the
device driver data segment on input, it will
be converted to a valid virtual address.
Otherwise, it is set to zero.

'Z' Cleared if no change in addressing mode
1 l 1 Set if addressing mode has changed

previously stored addresses
must be recalculated.

8-45

PhysToVirt
Map Physical Address to Virtual Address

Remarks

PhysToVirt will leave its result in either ES:DI or DS:SI, giving the
device driver the ability to move strings in either direction. The
returned virtual address will not remain valid if the device driver
blocks or yields control. The returned virtual address also may be
destroyed if the device driver routine which issues the PhysToVirt
calls another routine.

On the Personal Computer AT and Personal Computer XT Model 286,
if the current mode is the DOS mode and the data lies above 1 Mb,
then PhysToVirt will set the target segment register (OS or ES) with a
special value and return to the device driver with interrupts disabled.
An UnPhysToVirt DevHlp call must be made prior to exiting the
device driver in this case.

The device driver must not enable interrupts or change the segment
register (ES or OS - whichever contains the returned value) before the
device driver has finished accessing the data area. Any change to
the contents of the segment register in question will invalidate the
mapping. For example, saving and restoring the value in the
segment register will cause the register to refer to memory in the first
megabyte of system memory. Once the device driver has finished
accessing the data area, it must restore the previous interrupt state.

While pointer(s) generated by this routine are in use, the device
driver may only call another PhysToVirt request. No other DevHlp
routines can be called, because they may not preserve the special
OS/ES values created by the PhysToVirt.

The performance characteristics of PhysToVirt are highly vaiiable. In
the DOS mode where the entire data area lies below 1 MB or in the
OS/2 mode, PhysToVirt is very fast. In the DOS mode where part or
all of the data area lies above 1 Mb, PhysToVirt will be very slow.

On the PS/2, if the current mode is the DOS mode and the data lies
above 1 Mb, then PhysToVirt will switch into the OS/2 mode and
return a selector-offset pair. This mode switch requires the use of the
companion function, UnPhysToVirt, to switch back to the DOS mode.

8-46

PhysToVirt
Map Physical Address to Virtual Address

UnPhysToVirt is required to be used any time PhysToVirt is used, with
certain qualifications:

1. When use of the converted addresses is ended (no more
PhysToVirts), and

2. Before the procedure which issued the PhysToVirt returns to its
caller.

In addition, multiple PhysToVirt calls may be performed prior to
issuing the UnPhysToVirt. Only one call to UnPhysToVirt is needed.
When calling PhysToVirt the first time, DS must point to the device
driver's device header.

PhysToVirt preserves the registers CS, SS, SP, and DS if called with
DH= 1, or ES if called with DH= 0. The only exception to this case is
when a mode switch takes place. If a switch to the OS/2 mode occurs
because the specified address lies above 1 Mb and the current mode
was the DOS mode, then:

• The segment addresses in CS and SS will be set for the current
mode.

• SP will be preserved.

• DS will be preserved unless it is being used for the converted
address.

• ES will be set for the current mode only if it contains the data
segment value of the device driver and is not being used for the
converted address.

If that a previous PhysToVirt had been done (using either OS or ES)
with no address mode change flagged, then the PhysToVirt that
requires a mode switch to the OS/2 mode causes the previously con
verted PhysToVirt address to be invalid for the current mode.
PhysToVirt must be re-issued to recalculate the address.

When PhysToVirt is being used to recalculate an address after a
mode switch is flagged, the second PhysToVirt will not cause a mode
switch. The previous address will therefore be valid and preserved
(so long as the recalculation uses the opposite segment register as
the one that originally caused the mode switch).

8-47

PhysToVirt
Map Physical Address to Virtual Address

Note also that in the event of a mode switch, any previously stored
address pointers that contain the DS for the device driver's data
segment must be stored again by the device driver. The zero flag
(ZF) is set if a change in address mode occurred. In this case the
device driver must recalculate and store again any buffer addresses
that were previously saved.

The pool of temporary selectors used by PhysToVirt in the OS/2 mode
is not dynamically extendable. The converted addresses are valid as
long as the device driver does not relinquish control (Block, Yield, or
RET). An interrupt handler may use converted addresses prior to its
EOI, with interrupts enabled. Interrupt handlers should issue an
UnPhysToVirt if necessary before making the EOI statement. If an
interrupt handler needs to use converted addresses after its EOI, it
must protect the converted addresses by running with interrupts disa
bled.

Note that the task-time strategy routine of a device driver may run
enabled on a PS/2.

The segment length parameter must be set to the length of the
transfer.

Note: For performance reasons, a device driver should try to opti
mize its usage of PhysToVirt and UnPhysToVirt. For the first
PhysToVirt call that the device driver makes, it should pick the
address that is likely to cause a mode switch and use the ES register.
This would permit the mode switch to take place and retain the driv
er's data segment (OS).

For examples on how to use PhysToVirt, see the examples discussed
in the section "Using PhysToVirt and UnPhysToVirt" on page 7-68.

8-48

ProtToReal
Change Mode from Protect to Real Mode

Purpose

This DevHlp allows a device driver to change processor mode from
protect mode to real mode at interrupt time.

Processing
MOV DL,DevHlp_ProtToReal
CALL [Device_Help]

Results
1 C1 Cleared if successful

Mode has changed to real mode.
'C' Set if error

Mode has not been changed.

Remarks

On entry, OS should be set to the device driver's data segment. On
exit, the contents of ES have been changed.

This function is used at interrupt-time to change the processor mode
from protect mode to real mode in order to service the device inter
rupt. The function DevHlp_RealToProt is used to switch the processor
mode back from real mode to protect mode (see "RealToProt Change
Mode from Real to Protect Mode" on page 8-58).

Once the processing is complete, the device driver must return the
processor to the original mode the processor was in when the device
driver was entered. For example:

8-49

ProtToReal
Change Mode from Protect to Real Mode

Device driver entered in Protect Mode.

Call DevHlp_ProtToReal - change to real mode.

Device processing in Real Mode

Call DevHlp_RealToProt - change back to protect mode.

Device driver returns or exits.

The following shows an example of how to determine whether the
processor must be switched from protect mode to real mode and back
by checking the MSW:

8-50

smsw ax
push ax
rcr ax,l
jnc rml
DevHlp ProtToReal

rml: .

pop ax
rcr ax,l
jnc rm2
DevHlp RealToProt

rm2: .

get current msw
save original msw
pe bit -> cf
already real mode?
no, switch to real mode

process in real mode

get original msw
pe bit -> cf
originally in real mode?
no, switch back to protect mode

PullParticular
Remove Specific Request From List

Purpose

PullParticular pulls the specified packet from the selected request
packet linked list. If the packet is not found, then an indicator is set
on return.

Processing
MOV SI,OFFSET DS:queue

LES BX,request_packet
MOV DL,DevHlp_PullParticular
CALL [Device_Help]

Results
1C1 Cleared if no error.

;Location of queue head (should
; match PushRequest value)
;Pointer to request packet.

1C1 Set if the specified request is not found.

Remarks

A device driver uses PushReqPacket/PullReqPacket to maintain a
work queue for each of its devices. PullParticular is used to remove
a specific request packet from the work queue, typically for the case
where a process has terminated before finishing its 1/0.

PullParticular may also be used to remove request packets that were
allocated by an AllocReqPacket from the request packet linked list.

8-51

PuHReqPacket
Remove Request From List

Purpose

PullReqPacket pulls the next waiting request packet from the
selected request packet linked list. If there is no packet in the list,
then an indicator is set on return.

Processing
MOV SI.OFFSET DS:queue

MOV DL,DevHlp_PullReqPacket
CALL [Device_Help]

Results

;Location of queue head (should
; match PushReqPacket value)

1 C1 Set if there is no request.
1 C1 Cleared if no error.

ES:BX Pointer to request packet.

Remarks

A device driver uses PushReqPacket/PullReqPacket to maintain a
work queue for each of its devices/units. The device driver must
provide the storage for the DWORD work queue head, which defines
the start of the request packet linked list. The work queue head must
be initialized to 0.

PullReqPacket may also be used to remove request packets that were
allocated by an AllocReqPacket from the request packet queue.

8-52

Purpose

PushReqPacket
Add Request To List

PushReqPacket adds the current device request packet to the linked
list of packets to be executed by the device driver.

Processing
MOV SI.OFFSET DS:queue

LES BX,request_packet

MOV DL,DevHlp_PushReqPacket
CALL [Device_Help]

Results

None

Remarks

;Location of the OWORD queue head
; (which points to the first
; request in the list.)
;Pointer to request
; packet.

A device driver uses PushReqPacket/PullReqPacket to maintain a
work queue for each of its devices. The device driver must provide
the storage for the DWORD work queue head, which defines the start
of the request packet linked list. The work queue head must be ini
tialized to 0.

The device driver task-time thread should add all incoming read/write
requests to its request list. The driver task-time thread should then
determine whether the interrupt-time thread is active, and if not, it
should send the request to the device. Because the device may be
active at this point, the driver task-time thread must turn off interrupts
before calling the device; otherwise a window exists in which the
device finishes before the packet is put on the list.

PushReqPacket may also be used to place request packets that were
allocated by an AllocReqPacket in the request packet work queue.

8-53

', .. <; '., ;:,:·, •< ? ~ ,;., :(;.;~··:: =;, '/:'::,/>--=·=.~<.,

:QueueF1.~sti·''. ~: :';• < -,

... Clear Character·· Queue

Purpose

QueueFlush clears the character queue structure that is specified (it
empties the buffer).

Processing
MOV BX.OFFSET DS:queue

MOV DL,DevHlp_QueueFlush
CALL [Device_Help]

Results

None

Remarks

;Points to the queue structure
; to be flushed. (The Qsize
; field must be set up.)

QueueFlush operates on the simple character queue structure initial
ized by Queuelnit.

8-54

Queuelnit
Initialize Character Queue

Purpose

Queuelnit initializes the specified character queue structure.

Processing
MOV BX.OFFSET DS:queue

MOV DL,DevHlp_Queueinit
CALL [Device_Help]

Results

None

Remarks

;Points to the queue structure
; to be initialized. (The
; Qsize field must be set up.)

Queuelnit must be called before any other queue manipulation sub
routine.

Prior to this call, the device driver must allocate the character queue
buffer with the following queue header and initialize the Qsize field.

For example:

Qsize OW ?
Qchrout OW ?
Qcount OW ?
Qbase DB ?

;size of queue in bytes
;index of next char out
;count of chars in the queue
;start of queue buffer

8-55

" ,,,. •' , ,

·QueueRead
Read a Character From a Queue

Purpose

QueueRead returns and removes a character from the beginning of
the specified character queue structure. If the queue is empty, an
indicator is set.

Processing
MOV BX.OFFSET DS:queue
MOV DL,DevHlp_QueueRead
CALL [Device_Help]

Results

;Points to the queue structure.

1C1 Set if the queue is empty,
1C1 Cleared otherwise.
AL The character read from the queue.

Remarks

QueueRead operates on the simple character queue structure initial
ized by Queuelnit.

8-56

Queue Write
Put.Character into Queue

Purpose

QueueWrite adds a character at the end of the specified character
queue structure. If the queue is full, an indicator is set.

Processing
MOV BX.OFFSET DS:queue
MOV AL,char

MOV DL,DevHlp_QueueWrite
CALL [Device_Help]

Results

;Points to the queue structure.
;Character to insert at the end
; of the queue.

1 C1 Clear if character stored successfully.
1 C1 Set if queue is full.

Remarks

QueueWrite operates on the simple character queue structure initial
ized by Queuelnit.

8-57

RealToProt
Change Mode from Real to Protect Mode

Purpose

This DevHlp allows a device driver to change processor mode from
real mode to protect mode at interrupt time.

Processing
MOV DL,DevHlp_RealToProt
CALL [Device_Help]

Results
1C1 Cleared if successful

Mode has changed to protect mode.
1 C1 Set if error

Mode has not been changed.

Remarks

On entry, DS should be set to the device driver's data segment. On
exit, the contents of ES have been changed.

This function is used at interrupt-time to change the processor mode
from real mode to protect mode in order to process the device inter
rupt. The function DevHlp_ProtToReal is used to switch the processor
mode back from protect mode to real mode (see "ProtToReal Change
Mode from Protect to Real Mode" on page 8-49).

Once the processing is complete, the device driver must return the
processor to the original mode that the processor was in when the
device driver was entered. For example:

8-58

RealToProt
Change Mode from Real to Protect Mode

Device driver entered in Real Mode.

Call DevHlp_RealToProt - change to protect mode.

Device processing in Protect Mode

Call DevHlp_ProtToReal - change back to real mode.

Device driver returns or exits.

The following shows an example of how to determine whether the
processor must be switched from real mode to protect mode and back
by checking the MSW:

smsw ax
push ax
rcr ax,l
jc pml
DevHlp RealToProt

pml: •

pop ax
rcr ax,l
jc pm2
DevHlp ProtToReal

pm2: .

get current msw
save original msw
pe bit -> cf
already protect mode?
no, switch to protect mode

process in protect mode

get original msw
pe bit -> cf
originally in protect mode?
no, switch back to real mode

8-59

Register
Add• Monitor

Purpose

Register adds a monitor to the chain of monitors for a class of device.

Processing
LES SI,input_buffer
MOV DI,output_buffer_offset
MOV CX,monitor_PID
MOV AX,monitor_handle

MOV DH,placement_flag
MOV DL,DevHlp_Register
CALL [Device_Help]

Results
1C1 Clear no error
•c• Set if error

AX = error code

;Address of input buffer
;Offset of output buffer
;Process ID of monitor task
;handle for chain returned from

; previous MonitorCreate cal·
;High or Low place in chain

Invalid monitor handle
Not enough memory

Remarks

This function may only be called at task time in the OS/2 mode.

A monitor chain must have previously been created with
MonitorCreate.

A single process may register more than one monitor (with
"different" input and output buffers) with the same monitor chain.

The first word of each of the input and output buffers must contain the
length in bytes (length word inclusive) of the buffers. The length of
the monitor's input and output buffers must be greater than the length
of the device driver's buffer plus 20 bytes.

8-60

Register
Add Monitor

The input buffer, output buffer offset, and placement flag are supplied
to the device driver by the monitor task (which is asking to be regis
tered).

The device driver must identify the monitor chain with the monitor
handle returned from a previous MonitorCreate call. The device
driver can determine the PIO of the requesting monitor task from the
Local lnfoSeg. Refer to "GetDOSVar Get Address of Important DOS
Variables" on page 8-29.

8-61

Purpose

ResetTimer removes a timer handler for the device driver.

Processing
MOV AX.Offset cs:timer_handler
MOV DL,DevHlp_ResetTimer
CALL [Device_Help]

Results
1 C1 Cleared if no error
1C1 Set if error

Invalid handler

Remarks

;offset to timer handler

This function removes a timer handler from the list of timer handlers.
Timer handlers are analogous to the user timer interrupt (Int 1CH).
Refer to "TickCount Modify timer" on page 8-84 for a discussion on
timer handlers.

DS should be set to the device driver's data segment. If the device
driver had done a PhysToVirt referencing the DS register, it should
restore OS to the original value.

8-62

ROMCritSection
Flag Critical Section of Execution

Purpose

ROMCritSection flags a critical section of execution in a DOS mode
software interrupt handler to prevent the DOS mode from being sus
pended in the background.

Processing
MOV AL,enter_or_exit ;Critical Section flag

; = e exit
; < > e enter

MOV DL,DevHlp_ROMCritSection
CALL [Device_Help]

Results

None.

Remarks

This service is called by a device driver's DOS mode software inter
rupt handler.

Sections of ROM BIOS code must be protected from preemption. Pre
emption occurs when a user switches away from the DOS mode. This
causes the DOS mode to be suspended in background. However,
some 110 processing cannot tolerate being suspended. Specific
examples are the printer (BIOS INT 17H), disk (BIOS INT 13H), and
screen (BIOS INT 10H). It is the responsibility of the OS/2 device
driver to intercept the appropriate ROM BIOS interrupt and issue the
DevHlp function call, ROMCritSection, to protect the ROM BIOS crit
ical section of execution.

8-63

ROMCritSection
Flag Critical Section of Execution

Note: When the OS/2 device driver issues ROMCritSection to "enter"
a ROM BIOS critical section, the user will not be able to switch away
from the screen of the DOS mode to another screen. This has poten
tial problems for the user. For example, if some DOS mode
terminate-and-stay-resident program takes control while the CPU is
executing the ROM BIOS, the time spent in the ROM BIOS critical
section will be longer, and the user will be unable to switch tasks.
The ·worst case is that the terminate-and-stay-resident application is
interactive, never allowing the OS/2 device driver to issue the "exit"
from critical section and never allowing the user to switch away from
the screen of the DOS mode until the user terminates the application.

8-64

Purpose

Run
Release Blocked Thread

This is the companion routine to Block. When Run is called, it
awakens all threads that were blocked for this particular event identi
fier.

Processing
MOV BX,event_id_low
MOV AX,event_id_high
MOV DL,DevHlp_Run
CALL [Device_Help]

Results
AX = count of those woken.
1 Z1 set according to AX.

Remarks

;Low word of event identifier.
;High word of event identifier.

Run returns immediately to its caller; the awakened threads will be
run at the next available opportunity. Run is often called at interrupt
time.

Refer to "Block This Thread From Running" on page 8-19 for a
detailed discussion.

8-65

; • •) •• , ·:· ..< :, ' > "i'=< ''>:. ··'(:;;:~.; ::),' ··~ ,

·scl1eiic1&toaatr:·
~·:;<l•t .• yst •. r'1,··:01~~~·:·:rolltine.
',_ .. = ,. :: ··.: . -'. : .. ·. ' .. · : '.!""":.·· .. ,:, ·::.:~ .. "i<'.:·:· .. ,.,,_ · .. ·· . :..·. :·:·:·, ': ... ' '_', '. . : .. ·., :.·.,.,.

Purpose

This service is provided to the clock device driver to allow it to obtain
a pointer to the address of the system's clock tick handler,
SchedClock. SchedClock must be called on each occurrence of a
periodic clock tick.

Processing
MOV AX,Pointer_Save ;Offset in OS to a DWORD

; where the pointer will
; be returned

MOV DL,DevHlp_SchedClockAddr
CALL [Device_Help]

Results
Pointer_Save will contain the address of
the system tick handler.

Remarks

The clock device driver calls this DevHlp service during the clock
device driver's initialization. For input to this DevHlp, the clock
device driver must ensure that its OS points to the device driver's
data segment and supply the offset to a DWORD area. The DevHlp
service will then fill in the device driver's save area with a bimodal
pointer to a DWORD in system memory. The DWORD in system
memory contains the pointer to the SchedClock routine. This is illus
trated in the following diagram:

Device driver
data segment

Pointer_ Save

System
SchedClock

pointer

System
timer

handler

l pointer J+--------1--{ SchedClock_Addr .~1-------1__ SchedClock
routine

8-66

SchedClockAddr
Get system clock routine

The pointer that is returned to the device driver in Pointer_Save is a
bimodal pointer which is valid in either the DOS mode or the OS/2
mode. The device driver does not need to perform any conversions
on this pointer for DOS mode or OS/2 mode operations. The device
driver can then use the pointer it has in Pointer_Save to call
SchedClock. SchedClock is called by the clock device driver with a
CALL FAR INDIRECT, using the pointer to the area which contains the
actual address of the SchedClock routine.

SchedClock must be called at interrupt time for each periodic clock
tick to indicate the passage of system time. The "tick" is then dis
persed to the appropriate components of the system. A definition of
the interface to SchedClock follows.

MOV AL,millisecs
MOV DH,EDiflag

CALL [pointer]

;Milliseconds since last call
;Indicator of EDI
; = 0 prior to EOI
; = 1 after EDI
;Pointer to the area which

contains the actual address
; of SchedClock

The clock device driver's interrupt handler must run with interrupts
enabled as the convention, prior to issuing the EOI for the timer inter
rupt. Any critical processing, such as updating the fraction-of
seconds count, must be done prior to calling SchedClock.
SchedClock must then be called to allow system processing prior to
the dismissal of the interrupt. When SchedClock returns, the clock
device driver must issue the EOI and call SchedClock again. Note
that once the EOI has been issued, the device driver's interrupt
handler may be reentered. The DevHlp SchedClock is also reentrant.

The device driver must not get the actual address of the SchedClock
routine but instead use the pointer returned by the DevHlp call.

8-67

Se.mClear
~elease a.·S~maphore ·

Purpose

This function releases a semaphore and restarts any blocked threads
waiting on the semaphore.

Processing
MOV BX,sem_handle_low ;Semaphore handle
MOV AX,sem_handle_high
MOV DL,DevHlp_SemClear
CALL [Device_Help]

Results
1 C1 Cleared if no error
1 C1 Set if error

AX = error code

Remarks

error_invalid _handle
error_excl_sem_already_owned
error_invalid_at_interrupt_time
error_protection_violation

A device driver may clear either a RAM semaphore or a system
semaphore. The device driver may obtain (own) a semaphore
through SemRequest.

The semaphore handle for a RAM semaphore is the virtual address of
the doubleword of storage allocated for the semaphore. Virtual
address is used as a generic term for addresses: segment:offset for
the DOS mode; selector:offset for the OS/2 mode. To access a RAM
semaphore at interrupt time, the device driver must locate the
semaphore in the device driver's data segment (OS).

For a system semaphore, the handle must be passed to the device
driver by the caller by way of a generic IOCtl. The device driver must
convert the caller's handle to a system handle with SemHandle.

8-68

SemClear
Release a Semaphore

A RAM semaphore can be cleared at interrupt time only if it is in
storage that is directly addressable by the device driver, that is, in
the device driver's data segment.

8-69

sern:tlanii18··:
.··9~i~i11:·.····· ~·11'1•r:l~·~r:e ·Ha1,1~:,·E! ...

Purpose

This function provides a semaphore handle to the device driver.

Processing
MOV BX,sem_key_low ;Semaphore identifier
MOV AX,sem_key_high ,
MOV DH,usage_flag ;Indicates if in use

; = e not-in-use
; = 1 in-use

MOV DL,DevHlp_SemHandle
CALL [Device_Help]

Results
1 C1 Cleared if no error

AX:BX set to the system handle.
1C1 Set if error

AX contains error code.
Invalid handle for the semaphore if DH= 1.

Remarks

This function is used to convert the semaphore handle (or user "key"}
provided by the caller of the device driver to a system handle that the
device driver may use. This handle then becomes the "key" that the
device driver uses to reference the System Semaphore. This allows
the System Semaphore to be referenced at interrupt time by the
device driver. This "key" is also used when the device driver is fin
ished with the system semaphore. The device driver must call
SemHandle with the usage_flag indicating that the device driver is
finished with the system semaphore.

SemHandle is called at task time to indicate that the system
semaphore is IN-USE, and is called at either task time or interrupt
time to indicate that the system semaphore is NOT-IN-USE. IN-USE
means that the device driver may be referencing the System

8-70

SemHandle
Obtain a Semaphore Handle

Semaphore. NOT-IN-USE means that the device driver has finished
using the system semaphore and will not be referencing it again.

The "key" of a RAM semaphore is its virtual address, where virtual
address is the generic term for both DOS mode and OS/2 mode
address forms (segment:offset, selector:offset). SemHandle may be
used for RAM semaphores. Because RAM semaphores have no
system handles, SemHandle will simply return the RAM semaphore
"key" back to the caller.

A device driver can determine that a semaphore is a RAM
semaphore if the key remains unchanged upon return from the
SemHandle function. If the key returned from SemHandle is different
than the one passed to the function, then the device driver can deter
mine that it is a handle for a System semaphore.

If carry is returned from this function, the device driver should issue
the DevHlp VerifyAccess request with TypeOfAccess of Read/Write
indicated before assuming this is a RAM semaphore. If a Ram
semaphore is to be used, it must be accessed only at task time unless
it is in locked storage.

It is necessary to call SemHandle at task time to indicate that a
System Semaphore is IN-USE because:

1. The caller-supplied semaphore handle refers to task-specific
system semaphore structures. These structures are not available
at interrupt time, so SemHandle converts the task-specific handle
to a system-specific handle. For uniformity, the other semaphore
DevHlp functions accept only system-specific handles regardless
of the mode (task time or interrupt time).

2. An application could delete a system semaphore while the device
driver is using it. If a second application were to create a system
semaphore soon after, the system structure used by the original
semaphore could be reassigned. A device driver which tried to
manipulate the original process's semaphore would inadvertently
manipulate the new process's semaphore. Therefore, the
SemHandle IN-USE indicator increases a counter so that,
although the calling thread may still delete its task-specific refer-

8-71

SemHandle
Obtain a Semaphore Handle

ence to the semaphore, the semaphore remains in the system
structures.

A device driver must subsequently call SemHandle with NOT-IN-USE
when the semaphore use is done so that the system semaphore
structure can be freed. There must be a call to indicate NOT-IN-USE
to match every call to indicate IN-USE (one-to-one relationship).

The state of the interrupt flag is not preserved across calls to this
DevHlp.

8-72

SemRequest
Claim a Semaphore

Purpose

This function claims a semaphore. If the semaphore is already
owned, the thread in the device driver is blocked until the semaphore
is released or until a timeout occurs.

Processing
MDV BX,sem_handle_low
MDV AX,sem_handle_high
MDV CX,sem_timeout_low
MDV DI,sem_timeout_high

MDV DL,DevHlp_SemRequest
CALL [Device_Help]

Results

;Semaphore handle

;Timeout value
;in milliseconds

= -1 wait forever
e no wait if sem owned

> e timeout

1 C1 Cleared if no error.
1 C1 Set if error.

AX = error code.
error_sem_timeout
error_sem_owner_died
error_invalid_handle
error_too_many_sem_requests
error_interrupted
error_protection_violation

Remarks

SemRequest checks the state of the semaphore. If it is unowned,
SemRequest marks it "owned" and returns immediately to the caller.
If the semaphore is owned, SemRequest will optionally block the
device driver thread until the semaphore is unowned, then try again.
The timeout parameter is used to place an upper limit on the amount
of time to block before returning to the requesting device driver
thread.

8-73

SemRequest
Claim a Semaphore

SemClear is used at either task time or interrupt time to release the
semaphore.

The semaphore handle for a RAM semaphore is the virtual address of
the doubleword of storage al located for the semaphore. Virtual
address is used as a generic term for addresses: segment:offset for
the DOS mode; selector:offset for the OS/2 mode. To access a RAM
semaphore at interrupt time, the device driver must locate the
semaphore in the device driver's data segment (OS).

For a system semaphore, the handle must be passed to the device
driver by the caller through a generic IOCtl. The device driver must
convert the caller's handle to a system handle with SemHandle.

Note that this service is valid in user mode only for RAM
semaphores. System semaphores are not available in user mode by
device drivers.

The state of the interrupt flag is not preserved across calls to this
DevHlp.

8-74

Send Event
Indicate an Event

Purpose

This routine is called by a device driver to indicate the occurrence of
an event.

Processing
MOV AH.event
MOV BX.argument

MOV DL,DevHlp_SendEvent
CALL [Device_Help]

Results
1 C1 Cleared if no error.

;Event being signalled
;Parameter for the event
; being signalled

1 C1 Set if error sending signal.

Remarks

The events are defined as:

• Event = 0 (Reserved)

• Ctrl + Break

- event= 1
- argument = 0 (Reserved)

• Ctrl + C

event= 2
argument = 0 (Reserved)

• Ctrl + Numlock

event= 3
argument = Foreground session number

8-75

Send Event
Indicate an Event

• Ctrl + PrtSc

- event= 4
- argument = 0 (Reserved)

• Shift + PrtSc

- event= 5
- argument = 0 (Reserved)

• Session Manager Hot Key from the Keyboard

- event= 6

8-76

- argument = Hot Key ID

The keyboard device driver uses the Hot Key ID which was set by
way of keyboard IOCtl 56H (SET SESSION MANAGER HOT KEY).

SetlRQ
Set Hardware Interrupt Handler

Purpose

This service is used to set a hardware interrupt vector to the device
driver interrupt handler.

Processing
MOV AX.Offset CS:handler ;Interrupt handler offset
MOV BX.IRQnum ;Interrupt level number (0 - FH)
MOV DH,Shared_Int ;Interrupt sharing (=0 not shared, =1 shared)
MOV DL.DevHlp_SetIRQ
CALL [Device_Help]

Results
1 C1 Clear if no error
1C1 Set if error

IRQ is not available.

Remarks

The attempt to register an interrupt handler for an IRQ to be Shared
will fail if the IRQ Is already owned by another device driver as Not
Shared, owned by a DOS mode intertupt handier, or is the IRQ used
to cascade the slave 8259 interrupt controller (IRQ 2).

The attempt to register an interrupt handler for an IRQ to be Not
Shared will fail if the the IRQ is already owned by another device
driver as Shared or Not Shared, owned by a DOS mode interrupt
handler, or is the IRQ used to cascade the slave 8259 interrupt con
troller.

OS should be set to the device driver's data segment. If the device
driver had done a PhysToVirt referencing the OS register, it should
restore OS to its original value.

The IRQnum value is range checked and 'C' is set if not from Oto
OFH.

8-77

""'

setROMVeetor
Set DOS ModeSoftware Interrupt Vector

Purpose

This service is used to replace a DOS mode software interrupt
handler with a handler from the device driver. This service returns a
DOS mode pointer to the previous software interrupt handler for
chaining.

Processing
MOV AX,OFFSET CS:handler
MOV BX,intnum
MOV SI,OFFSET CS:saveDS

MOV DL,DevHlp_SetROMVector
CALL [Device_Help]

Results
'C' Clear if no error

;Interrupt handler offset
;Interrupt number
;offset in CS of WORD
; to save DOS mode DS

AX:DX = DOS mode pointer to previous header.
CS:[SI] =DOS mode DS of device driver.

'C' Set if error
Invalid interrupt number.

Remarks

The device driver can register a software interrupt handler for a DOS
mode software interrupt. This is typically done to intercept a ROM
BIOS software interrupt, which allows the device driver to perform
any processing needed to coordinate device 1/0 between the driver
and ROM BIOS.

The device driver may not register a software interrupt handler for
any of the interrupt vectors reserved for hardware interrupts. The
reserved interrupt numbers are:

8-78

08 - OFH
50 - 57H
70 - 77H

SetROMVector
Set DOS Mode Software Interrupt Vector

The device driver's software interrupt handler for the DOS mode soft
ware interrupt receives control directly when the interrupt occurs.
Consequently, the DS register is not set up for the handler on entry.
The handler must set the DS register with the value that
SetROMVector had previously saved in the CS:[SI] location.

When calling SetROMVector, the device driver must ensure that DS is
set to the device driver's data segment. If the device driver had done
a PhysToVirt referencing the DS register, it must restore DS to the
original value.

8-79

:·>setTime.r"· ·
>,,~1··.Tirnet.Handler

Purpose

SetTimer adds a timer handler to the list of timer handlers to be
called on a timer tick.

Processing
MOV AX.OFFSET CS:timer_handler
MOV DL,DevHlp_SetTimer
CALL [Device_Help]

Results
•c• Cleared if no error.
1 C1 Set if error.

;Offset of timer handler.

Timer handler disallowed (maximum number of
handlers reached or timer handler already set).

Remarks

The DevHlp SetTimer is a subset of the DevHlp TickCount.

This function allows a device driver to add a timer handler to a list of
timer handlers called on every timer tick. A device driver may use a
timer handler to drive a non-interrupt device instead of using time
outs with the Block and Run services. Block and Run are costly on
a character-by-character basis; the cost is one or more task switches
per character 1/0. Timer handlers are required to save and restore
registers.

A maximum of 32 different timer handlers are available in the system.

While a timer handler is in the format of a FAR CALL/RETURN routine
(When it is finished processing, it performs a return), it operates in
Interrupt State. The timer handler is analogous to the user timer (Int
1CH) handler. Care should be taken not to remain in the handler very
long.

8-80

SetTimer
Set Timer Handler

OS should be set to the device driver's data segment. If the device
driver had done a PhysToVirt referencing the OS register, it should
restore OS to the original value.

Timer handlers are responsible for saving and restoring registers on
entry and exit.

8-81

~CirlB~~~#.,1 .•
Sn$ert···.Reqq~~.t-ln·.Sorted·Orcler.To·· .. l.ist

Purpose

This routine is used by block (disk) device drivers to add a new
request to their work queue. This routine inserts the request packet
in the linked list of request packets in the order of starting sector
number.

Processing
MOV SI.OFFSET DS:queue

LES BX,request_packet

MOV DL,DevHlp_SortReqPacket
CALL [Device_Help]

Results

None

Remarks

;Location to DWORD queue
; head (which points to
; first request). It
; should be initialized
; to a.
;Pointer to request
; packet.

The sorting by sector number is aimed at reducing the length and
number of head seeks. This is a simple algorithm and does not
account for multiple heads on the media or for target drive in the
request packet. SortReqPacket inserts the current request packet
into the specified linked list of packets, sorted by starting sector
number.

SortReqPacket may be used to place request packets that were allo
cated by an AllocReqPacket in the request packet queue.

8-82

TC Yield
Yield the CPU

Purpose

This function is similar to the Yield function, except that the CPU may
only be yielded to a time-critical thread, if one is available.

Processing
MOV DL,DevHlp_TCYield
CALL [Device_Help]

Results

None

Remarks

It is not necessary for the device driver to do both a Yield and a
TCYield; the TCYield function is a subset of the Yield function.

The one part of the kernel that can take a lot of CPU time is in device
drivers, particularly those that perform program 110 on long strings of
data or that poll a device. These device drivers periodically should
check the TCYield Flag and call the TCYield function to yield the CPU
to a time-critical thread.

The location of the TCYield Flag is obtained from the GetDOSVar
call.

For performance reasons, the device driver should check the TCYield
Flag once every 3 milliseconds. If the flag is set, then the device
driver should call TCYield.

Because the device driver may relinquish control of the CPU, the
device driver should not assume that the state of the interrupt flag
will be preserved across a call to TCYield.

8-83

Tick Count
Modify timer

Purpose

TickCount will register a new timer handler or modify a previously
registered timer handler to be called on every N timer ticks instead of
every timer tick.

Processing
MOV AX.OFFSET CS:timer_handler ;offset to timer handler
MOV BX.count ;N tick counts (0-FFFF)

; e means FFFFH+l ticks
MOV DL,DevHlp_TickCount
CALL [Device_Help]

Results
1 C1 Cleared if no error
1 C1 Set if error

Timer handler cannot be modified or set.

Remarks

A device driver may use a timer handler to drive a non-interrupt
device instead of using timeouts with the Block and Run services.
Block and Run are costly on a character-by-character basis; the cost
is one or more task switches per character 1/0. Timer handlers are
required to save and restore registers.

While a timer handler is in the format of a FAR CALL/RET routine, it
operates at interrupt time. The timer handler is analogous to the user
timer (INT 1CH) handler. Care must be taken not to remain in the
handler very long.

For a new timer handler, TickCount will register the timer handler to
be called on every N timer ticks instead of every timer tick.

8-84

TickCount
Modify timer

For a previously registered timer handler, TickCount changes the
number of ticks that must take place before the timer handler gets
control. This will allow device drivers to support the timeout function
without needing to count ticks.

At task time, this DevHlp may be used to modify a timer handler reg
istered through SetTimer or may be used to register a new timer
handler that is initially invoked every N ticks.

In user mode (task time), this DevHlp may be used only to modify a
timer handler already registered.

In interrupt mode (interrupt time), this DevHlp may be used only to
modify a timer handler already registered. This allows an interrupt
handler to reset the timing condition at interrupt time.

Note that SetTimer sets a default of N ticks to 1. Multiple TickCount
requests may be issued for a given timer handler, but only the last
TickCount setting will be in effect.

TickCount affects only the specified registered timer handler. It has
no effect on other timer handlers.

OS should be set to the device driver's data segment. If the device
driver did a PhysToVirt referencing the OS register, it should restore
OS to the original value.

Timer handlers are responsible for saving and restoring registers on
entry and exit.

A maximum of 32 different timer handlers are available in the system.

8-85

Unlock
; Memory.Segment

Purpose

This service unlocks a locked memory segment.

Processing
MOV BX,lock_handle_low
MOV AX,lock_handle_high
MOV DL,DevHlp_Unlock
CALL [Device_Help]

Results
1 C1 Cleared if no error.
•c• Set if error.

;Handle for segment
; returned by Lock

Invalid handle or cannot unlock memory.

Remarks

Unlock cannot be used on memory allocated by AllocPhys.

8-86

UnPhysToVirt
Mark Completion of Virtual Address Use

Purpose

UnPhysToVirt is required to mark completion of address conversion
from PhysToVirts.

Processing
MOV DL,DevHlp_UnPhysToVirt
CALL [Device_Help]

Results
1 Z1 Cleared if no address mode change.
1 Z1 Set if address mode change.

Remarks

This function forms part of the structure of mode-dependent
addressing on behalf of a device driver, relieving it of the need to
understand the CPU mode and the subsequent effects on accessing
memory.

On the PS/2, if the converted address caused a switch to the OS/2
mode in PhysToVirt, UnPhysToVirt will switch back to the DOS mode.

UnPhysToVirt must be called by the same procedure that issued the
PhysToVirt when use of converted addresses is completed and before
the procedure returns to its caller. The procedure that called
PhysToVirt may call other procedures before calling UnPhysToVirt.
Multiple PhysToVirt calls may be issued prior to issuing the
UnPhysToVirt. Only one call to UnPhysToVirt is needed.

The ZF is set if a mode switch occurred. This allows the device driver
to recalculate any stored pointers that were not used in the data
transfer operations with the PhysToVirt.

8-87

UnPhysToVirt
Mark Completion of Virtual Address Use

UnPhysToVirt, if switched to the DOS mode, will reset the registers
CS and SS to the DOS mode.

SP will be preserved.

OS will be reset to the device driver's data segment.

Note that the addresses that caused the switch into the OS/2 mode
cannot be preserved or converted for the DOS mode.

The ES register wi II not be preserved. The ES register is also set to
the device driver data segment.

8-88

UnSetlRQ
Remove Hardware Interrupt Handler

Purpose

This routine removes the current hardware interrupt handler.

Processing
MOV BX,IRQnum

MOV DL,DevHlp_UnSetIRQ
CALL [Device_Help]

Results

;IRQ Interrupt number
; (0 - F)

1 C1 Set if caller is not the owner of
or one of the owners of the IRQ.

Remarks

DS must point to the device driver's data segment on entry.

8-89

' ·.· ' ' ,,

~ J(erifvAc~~~s·:
Verify Access- to Memory

Purpose

This routine verifies that the user process has the correct access
rights for the memory that it passed to the device driver.

Processing
MDV AX.Segment_@
MDV CX.MemLength

MDV DI.Mem_Offset
MDV DH.TypeOfAccess

MOV DL.DevHlp_VerifyAccess
CALL [Device_Help]

Results
1 C1 Clear if no error

Access verified.
1 C1 Set if error

Access attempt failed.

Remarks

;Selector or segment
;Length of memory area
; in bytes (e means 64 KB)
;Offset to memory area
;Verify access for

= e read access
; = 1 read/write access

A device driver can receive addresses to memory as part of a generic
IOCtl request from a process. Because the operating system cannot
verify addresses imbedded in the IOCtl command, the device driver
must request verification in order to prevent itself from accidentally
erasing memory on behalf of a user process. If the verification test
fails, then VerifyAccess will terminate the process.

Note that verification may only take place in the OS/2 mode. If
VerifyAccess is called in the DOS mode, it will return stating that the
memory is accessible.

8-90

Verify Access
Verify Access to Memory

Once the process has been verified as having the needed access to a
specific address location, the device driver doesn't need to request
access verification each time it yields the CPU during task-time proc
essing of this process's request. If the process makes a new request,
then the device driver must request access verification.

Note also that, prior to requesting a Lock on user process-supplied
addresses, the device driver must verify the user process's access to
the memory with the VerifyAccess DevHlp call. The device driver
must not yield the CPU between the VerifyAccess and the Lock, other
wise the user process could shrink the segment before it has been
locked. Once the user access has been verified, the device driver
may convert the virtual address to a physical address and lock the
memory. The access verification is valid for the duration of the lock.

8-91

. VirtToPhys
Map Virtual Address to Physical Address

Purpose

When in the OS/2 mode, it converts a selector-offset pair to a 32-bit
physical address. When in the DOS mode, VirtToPhys converts a
segment-offset pair to a 32-bit physical address.

Processing
LDS SI.address

MOV DL,DevHlp_VirtToPhys
CALL [Device_Help]

Results

;Virtual address:
; segment:offset or selector:offset

1 C1 Cleared to indicate no error.
AX:BX Physical address: 32-bit number.

Remarks

The virtual address should be locked ·by way of the DevHlp service
Lock prior to invoking this function, if the segment is not known to be
locked already.

This function is typically used to convert a virtual address supplied by
a process by way of a generic IOCtl, in order that the memory may be
accessed at interrupt time.

8-92

Purpose

Yield
Relinquish the CPU

This routine yields the CPU to a scheduled thread of equal or higher
priority.

Processing
MDV DL,DevHlp_Yield
CALL [Device_Help]

Results

None

Remarks

05/2 is designed so that the CPU is never preemptively scheduled
while in kernel mode. In general, the kernel either performs its job
and exits quickly, or it blocks waiting for (usually) 1/0 or (occa
sionally) a resource. It is not necessary for the device driver to do
both a Yield and a TCYield; the Yield function is a superset of the
TCYield function.

The one part of the kernel that can take a lot of CPU time is in device
drivers, particularly those that perform program 110 on long strings of
data or poll the device. These drivers should periodically check the
Yield Flag and call the Yield function to yield the CPU if another
process needs it. Much of the time the context won't switch; Yield
switches context only if an equal or higher priority thread is sched
uled to run.

The address of the Yield Flag is obtained from the GetDOSVar call.
Refer to "GetDOSVar Get Address of Important DOS Variables" on
page 8-29.

8-93

Yield
Relinquish the CPU

For performance reasons, the device driver should check the Yield
Flag once every 3 milliseconds. If the flag is set, then the device
driver should call Yield.

Because the device driver may relinquish control of the CPU to
another thread, the device driver should not assume that the state of
the interrupt flag will be preserved across a call to Yield.

8-94

Chapter 9. Device Drivers

The device drivers provided with OS/2 service requests in both the
DOS mode and the OS/2 mode. Where appropriate, OS/2 device
drivers provide a queued request interface rather than the serial
request design of DOS device drivers. OS/2 device drivers support
multitasking.

This chapter references the IOCtl interface. The IOCtl interface
allows an application or subsystem to send device-specific control
commands to the device driver. The IOCtl function uses the
DosDevlOCtl function request for OS/2 applications and the INT 21 H
IOCtl request for DOS applications. See Technical Reference, Vol. 2
for a detailed description of the DosDevlOCtl function request and the
IOCtl functions.

ASYNC (RS232-C) Communications Device Driver

The Asynchronous Communications (ASYNC) device driver enables
application programs or system programs (for example, Print
Spooler) to utilize the RS232-C interface of the system in the OS/2
mode. The device driver will allow an application program in the
OS/2 mode to support full duplex communications while the device
driver:

• Services the RS232-C port in an interrupt-driven manner.

• Provides transmit and receive queues.

• Provides different automatic control modes of the modem control
signals.

• Provides logical data stream flow control (XON/XOFF) for transmit
and receive.

The ASYNC device driver can be installed optionally by the user via a
DEVICE= command in CONFIG.SYS. This device driver uses up low
memory, making that memory unavailable to DOS mode programs;
therefore, this device driver should not be installed unless it is
required.

9-1

The user will normally want to use the ASYNC device driver either in
conjunction with the Print Spooler (if a serial printer is to be used), or
with an application program that utilizes the RS232 enabling capabili
ties of the ASYNC device driver coupled with a serial device attached
to the system.

Hardware Support

Supported hardware for the RS232-C ASYNC communications device
driver includes:

• The IBM Personal Computer AT and IBM Personal Computer XT
Model 286. The IBM Personal Computer AT Serial/Parallel
Adapter card (#0215, #3395, and #3400) is the supported adapter.

• The PS/2 family computers (Models 50, 60 and 80).

Personal Computer AT Adapter Support

On the Personal Computer AT, the device driver supports a maximum
of two ASYNC ports, each on separate interrupt levels. The device
driver will recognize ASYNC ports with the following base 1/0
addresses:

• 3F8H (must generate a level 4 interrupt)
• 2F8H (must generate a level 3 interrupt).

No other base 110 addresses will be recognized or supported, and no
other interrupt level combinations are supported.

The ASYNC device driver for the Personal Computer AT interfaces
directly to the hardware.

PS/2 Adapter Support

The ASYNC device driver for the PS/2 uses the Advanced BIOS inter
face for the ASYNC device. It does not interface directly to the hard
ware and does not support any device which requires direct
hardware access.

9-2

The device driver supports a maximum of three ASYNC ports on a
maximum of two different interrupt levels. The interrupt levels must
have Advanced BIOS support, with one unit per Logical ID (LID) for
the ASYNC device ID.

The only ASYNC devices supported on PS/2 are COM1, COM2, and
COM3. These devices correspond to the first three LIDs in the
Advanced BIOS common data area that have the architected ASYNC
device ID. These devices also correspond to the first three ASYNC
addresses in the ASYNC 40: area.

If a device has capabilities other than ASYNC which cannot be uti
lized independently (for example, as in the Advanced BIOS separate
LID architecture, and others) of the ASYNC capabilities, and if
Advanced BIOS assigns that device the ASYNC device ID, then that
device can only be used for ASYNC in that power-on session.

If the device is not assigned the ASYNC device ID, it is not supported
by this device driver.

If the device is assigned the ASYNC device ID and it has additional
capabilities (for example, a built in modem) beyond supporting the
RS232-C port, the device driver will not recognize those additional
capabilities (and potential limitations). Also, the device driver will
not inform any application program of those additional capabilities (or
limitations). And the device driver will not limit the control of the
RS232-C interface or the device to only those modes which are
acceptable to the extended hardware capabilities of that RS232-C
port.

If an ASYNC device is not supported by OS/2 but is recognized by
Advanced BIOS as an ASYNC device ID, the device driver may recog
nize and try to use that unsupported device if it is COM1, COM2, or
COM3.

Attachment Support

The ASYNC device driver does not provide any support for devices
attached to the RS232-C port. The device driver provides enabling
support for the RS232-C interface itself. Application programs, sub
systems, and systems programs provide the support needed to use
devices attached to the RS232-C port.

9-3

The ability to support a device can be determined by understanding
the level of RS232-C interface enabling support the device driver pro
vides, along with the characteristics of the attachment hardware in
question and the required functions to be supported.

The ASYNC device driver provides a mechanism where one or more
additional device drivers can be installed to support specific COM
ports. This feature may be required for the following reasons:

• To allow an application program to support a special device not
adequately supportable with this ASYNC device driver.

• To allow additional COM ports (besides COM1-3 on PS/2) to be
supported.

• To enhance the level of device driver function for a given COM
port. (This may be required for certain subsystem support.)

RS232-C Interface

The ASYNC interface consists of separate read and transmit lines.

There are two separate modem control signals whose output values
can be controlled by the device driver:

• Data Terminal Ready (DTR)
• Request To Send (RTS).

There are four separate modem control signals whose input values
are available to the device driver:

• Data Set Ready (DSR)
• Clear To Send (CTS)
• Data Carrier Detect (DCD) also known as Receive Line Signal

Detect (RLSD)
• Ring Indicator (RI).

The receive and transmit data lines have the following hardware
characteristics:

• Logical 1 - Marking - More negative than -3 Volts. This state
could mean no data.

• Logical O - Spacing - More positive than + 3 Volts. This state
could mean break condition.

9-4

The modem control signal lines have the following hardware
characteristics:

• Function ON when more positive than +3 Volts.
• Function OFF when more negative than -3 Volts.

RS232-C Enabling Characteristics

The device driver supports the ASYNC interface in an interrupt-driven
manner. This allows the multitasking capabilities of OS/2 to be sup
ported while ASYNC data reception and transmission is taking place.

With the current ASYNC hardware, when data is given to the transmit
hardware, data will be transmitted at the physical RS232-C interface.
When data is given to the transmit hardware, it has not yet been phys
ically transmitted (at the RS232 interface). The data is considered
completely transmitted by the transmit hardware at the physical
RS232 interface when the transmit shift register of the UART is empty.
The IOCtl Return Transmit Data Status (Category 1 Function 65H) can
be used to determine this information.

The device driver transmit queue is a memory buffer between the
OS/2 system and the transmit hardware. It is considered to be owned
by the device driver because the device driver controls the data
movement into and out of the transmit queue. Algorithms for this
data movement may change between releases of the device driver.
Changes in the ASYNC hardware may cause changes in the data
movement algorithms and/or external interfaces.

The device driver receive queue is a memory buffer between the
OS/2 system and the receive hardware. It is considered to be owned
by the device driver because the device driver controls the data
movement into and out of the receive queue. Algorithms for this data
movement also can change between releases of the device driver.
Changes in the ASYNC hardware can cause changes in the data
movement algorithms and/or external interfaces.

Data that applications send (made available by Write requests) get
placed in the device driver transmit queue. When an interrupt occurs
to tell the device driver that the hardware is ready for more data, the
device driver will give the transmit hardware more data from the
transmit queue.

9-5

When an interrupt occurs to tell the device driver that the hardware
has received data, that data is placed in the device driver receive
queue. When the device driver gets a read request (Read request
packet) from the application, the device driver fills the read request
from the receive queue.

The size of the receive and transmit queues are available from the
following IOCtls:

• Return number of chars in receive queue
(Category 1 Function 68H).

• Return number of chars in transmit queue
(Category 1 Function 69H).

The device driver services each communications port independently.
Requests issued to a given port have no effect on any other communi
cations ports that the device driver may be servicing.

The device driver processes Read and Write request packets inde
pendently for a given port. An application can be written to support
simultaneous reception and transmission of data. In addition, the
device driver can process an IOCtl request simultaneously with out
standing Read and Write requests.

The device driver does not schedule the processing of IOCtl requests.
The device driver processes the IOCtl request when received, regard
less of what else it is doing. This may cause unexpected results if,
for instance, the baud rate is modified while data reception or trans
mission is taking place.

The application should issue only one IOCtl request at a time. If the
application issues another IOCtl request before the first IOCtl request
completes, the results are UNDEFINED.

The device driver will queue multiple Read and Write request packets
independently. The device driver always will begin processing the
Read request packets in the order that they are received. It will
always begin processing the Write request packets in the order that
they are received.

Note: The operating system does not guarantee that file system
requests will be delivered to a device driver in the order in which
they are issued by an application. This means that a request by one

9-6

thread can get blocked in the operating system, thus allowing a sub
sequent request by a different thread for the same function (for
example, DosWrite) to pass through and arrive ahead of the first
thread at the device driver. This is true for synchronous operations
performed by multiple threads, or asynchronous operations per
formed by the same thread.

Because of thread priority considerations and the system dynamics,
the order observed by the application of completing requests of the
same type may not be in the order that they were received by the
device driver. The device driver will always keep the data in the
same order in which the Read and Write request packets (of the same
type) were received in. There is no ordering or timing between dif
ferent types of request packets.

A First Level Open is described in the section on "States of the
ASYNC Device Driver" on page 9-11. A First Level Open occurs
when the device driver receives an OPEN request packet for the port
and the port is not al ready open (from a previous open without a
matching close). A CLOSE request packet causing the device driver
to process the next OPEN request packet as a First Level Open, is
called a last level close. Because the requests that an application
issues sometimes get out of order before they reach the device
driver, an application cannot consider a CLOSE a last level CLOSE
until the CLOSE completes. If the application issues an OPEN
request to the COM port before a previously issued CLOSE request is
completed, then the results are UNDEFINED.

The Flush request may be completed before all the appropriate
request packets (that have been queued by the device driver) have
been flushed. The appropriate request packets will eventually be
flushed (and return to the caller) based on their priority and the
system dynamics. Once the Flush request has been processed, the
appropriate request packets will not cause data to be transmitted (or
received data to be moved) incorrectly.

The device driver supports different time-out processing character
istics and time-out settings for the Read and Write requests.

The device driver removes from an application how to know exactly
when a given character is being transmitted or received (at the hard
ware interface). Therefore, an application cannot expect to provide
real-time flow control of data (in the middle of data transmission or

9-7

reception) based on logical characters (XON/XOFF) or based on the
state of the modem control signals by:

• Manually controlling or monitoring those modem control signals
• Manually monitoring the queue status
• Manually monitoring data moving across the link.

Therefore, the device driver provides automatic modes of operation
that are controllable via IOCtls, to allow OS/2 mode applications
automatically to control the data flow through the RS232-C port.

Output Modem Control Signals

Besides allowing the application to control directly RTS and DTR, the
device driver has different automatic control modes to control the
value of the output modem control signals. They are:

• Open and Close processing of DTR and RTS
• Disable/Enable DTR & RTS
• RTS toggling on transmit
• Input handshaking using DTR & RTS.

These different control modes are described in the section on "States
of the ASYNC Device Driver" on page 9-11 and in the IOCtls
description.

Note: The level of support provided by this device driver requires
that DTR and RTS are turned on at least once, even if this puts the
device driver in a mode where they will never be turned on again.

Input Modem Control Signals

Besides allowing the application to read directly the current state of
DSR, CTS, DCD, and RI, the device driver has different automatic
modes that cause it to respond to the value that some input modem
control signals may have. They are:

• Output handshaking using CTS, DSR, DCD
• Input sensitivity using DSR.

These different control modes are described in the section on "States
of the ASYNC Device Driver" on page 9-11 and in the IOCtls
description.

9-8

Additional information on the state of the input modem control signals
is available by using the IOCtl Return COM Event Information (Cate
gory 1 Function 72H).

Logical Flow Control (XON/XOFF)

The application can attempt to manually control the flow of data by
using the following IOCtls:

• Transmit Immediate (Category 1 Function 44H)
• Stop Transmit behave as if XOFF received

(Category 1 Function 47H)
• Start Transmit behave as if XON received

(Category 1 Function 48H).

The device driver also will control automatically the flow of trans
mitted data based upon the reception of XON/XOFF characters. This
is referred to as automatic transmit flow control (XON/XOFF) and is
described in the section on "States of the ASYNC Device Driver" on
page 9-11.

The device driver also will attempt to control the flow of data that is
received by automatically transmitting XON/XOFF characters to the
system it is communicating with, based on the amount of space left in
the receive queue. This is referred to as automatic receive flow
control (XON/XOFF) and is described in the section on "States of the
ASYNC Device Driver" on page 9-11.

Line Characteristics

IOCtls can be used to control and read the baud rate, number of stop
bits per character, number of data bits per character, and the parity
characteristics of the line. See the section on "States of the ASYNC
Device Driver" on page 9-11.

Break and Error Processing, Port Status, RI

The device driver can be commanded to transmit a Break with an
IOCtl (Category 1 Function 4BH and Function 45H).

An application can detect where an error or break occurred in the
input data stream by using Break Replacement Character Processing
and Error Replacement Character Processing. This requires certain

9.9

binary byte combinations to be reserved for this purpose. See the
section on "States of the ASYNC Device Driver" on page 9-11.

State of the COM Port

The following IOCtls can be used to determine the state of the COM
port or if a given event happened. However, the exact timing
relationship between this information and the specific data being
received or transmitted at the time of the event is not available.

• Return COM Event Information (Category 1 Function 72H)
• Return COM Status (Category 1 Function 64H)
• Return COM Error (Category 1 Function 6DH).

Event Notification

The device driver does not provide any capabilities of event notifica
tion. For example, the only way for an application to know that RI
changed state or that a Break condition occurred is to poll that status
with the IOCtl Return COM Event Information. This should not be a
problem for those applications that can use the automatic control
modes of the device driver during the course of a communications
dialog (for time-critical control functions). Polling could be adequate
for non-time-critical event monitoring.

9-10

States of the ASYNC Device Driver

This section itemizes the different processing states of the ASYNC
device driver, the ASYNC hardware, and the ASYNC control signals.

The items that will be discussed are:

• Baud Rate
• Data Bits
• Parity
• Stop Bits
• DTR and RTS
• DTR Control Mode
• RTS Control Mode
• Transmitting Break
• Event Word and COM Error
• COM Error
• Output handshaking using CTS, DSR, DCD
• Input sensitivity using DSR
• Automatic Transmit Flow Control (XON/XOFF)
• Automatic Receive Flow Control (XON/XOFF)
• XON/XOFF Characters
• Error Replacement Character Processing
• Error Replacement Character
• Break Replacement Character Processing
• Break Replacement Character
• Null Stripping
• Write Time-out State
• Write Time-out Value
• Read Time-out State
• Read Time-out Value
• Transmit Immediate

The following will be given for each item:

• A brief description.

• The initial (default) value.

• The device driver effect when the device driver receives an OPEN
request packet for the port and the port is not al ready open (from
a previous open without a matching close). This is called a First

9-11

Level Open. If applicable, the way the state of the device driver
is affected by a close request packet.

• The MODE utility (in the OS/2 mode) used to alter the state of this
item or the MODE utility (in the OS/2 mode) altering the state of
this item.

Baud Rate

Baud rate is the speed for which the hardware is configured. See
IOCtls "Set Baud Rate" (Category 1 Function 41H) and "Return
Current Baud Rate" (Category 1 Function 61 H).

Initial Value - 1200 baud.

First Level Open - No effect.

Mode Utility - User interface to change the baud rate.

Data Bits

The number of bits that are contained in each character transmitted
or received by way of the communications hardware. See IOCtls "Set
Line Characteristics" (Category i Function 42H) and ''Return Line
Characteristics" (Category 1 Function 62H).

Initial Value - 7 data bits.

First Level Open - No effect.

Mode Utility - User interface to change the number of data bits.

Parity

Determines whether a parity bit exists and (if appropriate) what algo
rithm determines its value. See IOCtls "Set Line Characteristics"
(Category 1 Function 42H) and "Return Line Characteristics" (Cate
gory 1 Function 62H).

Initial Value - Even Parity.

First Level Open - No effect.

Mode Utility - User interface to change the parity characteristics.

9-12

Stop Bits

Determines the number of stop bits associated with each character
transmitted or received by way of the communications hardware.
See IOCtls "Set Line Characteristics" (Category 1 Function 42H) and
"Return Line Characteristics" (Category 1 Function 62H).

Initial Value - 1 stop bit.

First Level Open - No effect.

Mode Utility - User interface to change the number of stop bits.

DTR & RTS

The value of the modem control signals Data Terminal Ready (DTR)
and Request To Send (RTS) put out by the communications hardware.
Each signal is controlled independently and can be either ON or OFF.
See IOCtls "Set Modem Control Signals" (Category 1 Function 46H)
and "Return Modem Control Output Signals" (Category 1 Function
66H).

Initial Value - When the device driver starts the port during device
driver initialization, their values will be turned off.

First Level Open - The signals are normally turned on but there are
many conditions that may cause the signals to be affected differ
ently. See IOCtls "Set Modem Control Signals" (Category 1 Func
tion 46H) and "Set Device Control Block" Information NOTE 1
(Category 1 Function 53H) for a complete explanation.

Close Considerations - A close request packet, when after processing
this close request the port will not be open any more from another
open without a close (last level close), will cause DTR and RTS to
be turned OFF after the transmit hardware has completely trans
mitted all the data that it has been given to transmit by the device
driver and at least 10 additional character times have elapsed.

Mode Utility - Not applicable for direct control. Indirect effects
through altering processing modes of the device driver are pos
sible.

9-13

DTR Control Mode

The different control modes for DTR are:

• Enable
• Disable
• Input Handshaking

The Enable and Disable control modes of DTR affect DTR processing
during a First Level Open. When these control modes are set via the
Category 1 Function 53H IOCtl, the value of the DTR signal may be
modified immediately by the device driver. The action will depend on
the previous control mode of DTR and the current value of the DTR
modem control signal. If the control mode of DTR is Input Hand
shaking, then the device driver will control the DTR signal, depending
on how full the receive queue is. The bits that control these states of
the device driver are in the device control block. See IOCtls "Set
Modem Control Signals" (Category 1 Function 46H} and "Set Device
Control Block Information" NOTE 1 (Category 1 Function 53H}.

Initial Value - Enable.

First Level Open - No effect.

Mode Utility - User interface to change the DTR Control Mode of the
device driver.

RTS Control Mode

The different control modes for RTS are:

• Enable
• Disable
• Input Handshaking
• Toggling on Transmit

The Enable and Disable control modes affect RTS processing during
a First Level Open. When these control modes are set using the Cat
egory 1 Function 53H IOCtl, the value of the RTS signal may be imme
diately modified by the device driver. The action will depend on the
previous control mode of RTS and the current value of the RTS
modem control signal. If the control mode of RTS is Input Hand
shaking, the device driver will control the RTS signal, depending on
how full the receive queue is. If the control mode of RTS is Toggling
on Transmit then the device driver will control the RTS signal,
depending on whether it transmits data. The bits that control these

9-14

states of the device driver are in the device control block. See IOCtls
"Set Modem Control Signals" (Category 1 Function 46H) and "Set
Device Control Block Information" NOTE 1 (Category 1 Function 53H).

Initial Value - Enable.

First Level Open - No effect.

Mode Utility - User interface to change the RTS Control Mode of the
device driver.

Transmitting Break

The device driver can be transmitting a break. See IOCtls Break On
(Category 1 Function 4BH) and Break Off (Category 1 Function 45H).

Initial Value - Not transmitting a break.

Close Considerations -A CLOSE request packet, when after proc
essing this close request the port will not be open any more from
another open without a close (last level close), will cause the
device driver to tell the hardware not to transmit a break any
more.

Mode Utility - Not applicable.

COM Event Word and COM Error Word

These two words have bits which show status of the COM port. When
an event happens the appropriate bits are turned on. The bits are
cleared when the word is read with the appropriate IOCtl. See IOCtl
Return COM Event Information (Category 1 Function 72H) and Return
COM Error (Category 1 Function 6DH).

Initial Value - All defined bits are 0.

First Level Open - All defined bits are 0.

Mode Utility - Not applicable.

Output Handshaking using CTS, DSR, DCD

This mode of the device driver can be controlled independently for
each modem control signal. When this mode of the device driver is
enabled, the device driver will not give data to the transmit hardware
if the appropriate modem control signal is OFF. See IOCtl "Set
Device Control Block" Information NOTE 3 (Category 1 Function 53H).

9-15

Initial Value - Output handshaking using CTS and DSR is enabled.
Output handshaking using DCD is disabled.

First Level Open - No effect.

Mode Utility - User interface to enable/disable this mode of the device
driver for CTS and DSR (independently). Mode will always
disable this mode of operation of the device driver for DCD.

Input Sensitivity Using DSR

When the device driver is enabled for this mode of operation and DSR
is OFF, the device driver will discard receive data. See IOCtl "Set
Device Control Block Information" NOTE 4 (Category 1 Function 53H).

Initial Value - Input Sensitivity using DSR is enabled.

First Level Open - No effect.

Mode Utility - User interface to enable/disable this mode of the device
driver.

Automatic Transmit Flow Control (XON/XOFF)

When the device driver is enabled for this mode of operation, the
device driver will stop sending data to the transmit hardware when an
XOFF is received, and resume sending data to the transmit hardware
when an XON is received. See IOCtl "Set Device Control Block
Information" NOTE 2 (Category 1 Function 53H).

Initial Value - Automatic transmit flow control is disabled.

First Level Open - No effect on whether the device driver is enabled
or disabled for this mode of operation. The state of the device
driver will be reset to show that it has not received an XOFF so it
can transmit (due to automatic transmit flow control) if it is
enabled for this mode of operation.

Mode Utility - User interface to enable/disable t~is mode of the device
driver.

9-16

Automatic Receive Flow Control (XON/XOFF)

When the device driver is enabled for this mode of operation, the
device driver will transmit an XOFF when its receive queue gets close
to full, and an XON when its receive queue is about half full. See
IOCtl "Set Device Control Block" Information NOTE 2 (Category 1
Function 53H).

Initial Value - Automatic Receive Flow Control is disabled.

First Level Open - No effect on whether the device driver is enabled
or disabled for this mode of operation. The state of the device
driver will be reset to show that the last flow control character
automatically transmitted was an XON if it is enabled for this
mode of. operation.

Close Considerations - If the last automatically transmitted character
by the device driver was an XOFF and a CLOSE request packet is
received, (when after processing this close request the port will
not be open any more from another open without a close - Last
Level Close), the device driver will automatically transmit an XON,
if possible.

Mode Utility - Always disables Automatic Receive Flow Control.

XON/XOFF characters

The characters used for automatic transmit and automatic receive
flow control. See IOCtl "Set Device Control Block Information" NOTE
2 (Category 1 Function 53H).

Initial Value - XON is 11H and XOFF is 13H.

First Level Open - The XON and XOFF characters are reset to their
initial values.

Mode Utility - No effect.

Error Replacement Character Processing

The processing that the device driver performs when a received char
acter had an error (parity, framing, overrun, or lack of receive queue
space) is determined by whether error replacement character proc
essing is enabled (active). See IOCtl "Set Device Control Block
Information" NOTE 5 (Category 1 Function 53H).

Initial Value - Error replacement character processing is disabled.

9-17

First Level Open - Error replacement character processing is disa
bled.

Mode Utility - No effect.

Error Replacement Character

The character value that the device driver uses if Error Replacement
Character Processing is enabled. See IOCtl "Set Device Control
Block Information" NOTE 5 (Category 1 Function 53H).

Initial Value - OOH.

First Level Open - Reset to OOH.

Mode Utility - No effect.

Break Replacement Character Processing

If break replacement character processing is enabled, and the device
driver detects a break condition, it will place the break replacement
character in the device driver receive queue. If break replacement
character processing is disabled, the device driver will not place any
character in the device driver receive queue when it detects a break
condition. See IOCtl "Set Device Control Block Information" NOTE 7
(Category 1 Function 53H).

Initial Value - Break replacement character processing is disabled.

First Level Open - Break replacement character processing is disa-
bled.

Mode Utility - No effect.

Break Replacement Character

The character value that the device driver uses if Break Replacement
Character Processing is enabled. See IOCtl "Set Device Control
Block Information" NOTE 7 (Category 1 Function 53H).

Initial Value - OOH.

First Level Open - Reset to OOH.

Mode Utility - No effect.

9-18

Null Stripping

If the device driver is enabled for null stripping, characters read in
from the receive hardware (non error or non break) with a value of
OOH are thrown away. These null characters are stripped (not
checked for Automatic Transmit Flow Control) even if the XON or
XOFF character has been set to OOH, and are not placed in the device
driver receive queue. See IOCtl "Set Device Control Block
Information" NOTE 6 (Category 1 Function 53H).

Initial Value - Null stripping is disabled.

First Level Open - Null stripping is disabled.

Mode Utility - No effect.

Write Time-out State

When the device driver processes a WRITE request packet, it can be
with normal or infinite time-out processing. With normal time-out
processing, if no data is given to the transmit hardware within a spec
ified amount of time, the request will be completed. With infinite
time-out processing, the request will be completed only when all the
data from the request has been given to the transmit hardware. See
IOCtl "Set Device Control Block" Information NOTE 8 (Category 1
Function 53H).

Initial Value - Normal Write time-out processing.

First Level Open - No effect on write time-out processing.

Mode Utility - User interface to set infinite or normal write time-out
processing.

Write Time-out Value

The user specific value, in .01 seconds units (based on 0, where 0 =
.01 seconds), is used for the write time-out processing, if normal write
time-out processing is enabled. See IOCtl "Set Device Control Block
Information" NOTE 8 (Category 1 Function 53H).

Initial Value - 1 Minute.

First Level Open - Set to 1 Minute.

Mode Utility - No effect.

9-19

Read Time-out State

When the device driver processes a READ request packet, it can be
with normal, with NO-WAIT, or with Wait For Something time-out
processing. With normal time-out processing, if no data is received
in the specified period of time, the request will be completed. With
NO-WAIT time-out processing, the request will obtain whatever data
is available in the device driver receive queue (at the time the
request is processed by the device driver) and return. With Wait-For
Something time-out processing, the request will act like NO-WAIT
time-out processing. However, if no data is available when the
device driver processes the request, the device driver.will wait until
some data is available or until the request times out due to normal
time-out processing. See IOCtl "Set Device Control Block
Information" NOTE 9 (Category 1 Function 53H).

Initial Value - Normal Read time-out processing.

First Level Open - The device driver is set to Normal Read Time-out
processing.

Mode Utility - No effect.

Read Time-out Value

The user specific value, in .01 seconds units (based on 0, where 0 =

.01 seconds), is used for the read time-out processing, if normal read
time-out or Wait For Something time-out processing is enabled. See
IOCtl "Set Device Control Block" Information NOTE 9 (Category 1
Function 53H).

Initial Value - 1 Minute.

First Level Open - Set to 1 Minute.

Mode Utility - No effect.

Transmit Immediate

The device driver may be told to transmit a byte immediately,
bypassing the normal file system write requests (bypassing the data
to be transmitted in the transmit queue). Only one character at a time
can be waiting to be transmitted "immediately." See IOCtl "Transmit
This Byte Immediately" Category 1 Function 44H.

9-20

Initial Value - There is no character waiting to be transmitted imme
diately.

First Level Open - There is no character waiting to be transmitted
immediately.

Close Considerations - A CLOSE request packet, when after proc
essing this close request the port will not be open any more (from
another open without a close), will cause the device driver to
attempt to transmit the character waiting to be transmitted imme
diately. If the device driver cannot transmit the character waiting
to be transmitted immediately (See IOCtl "Transmit this Byte
Immediately" Category 1 Function 44H), then it will not try to
transmit the character and proceed with the close processing.

Mode Utility - Not applicable.

Reserved Device Names- COM1-N

The device name AUX does not appear in the Device Header of the
ASYNC device driver. The ASYNC device driver does not support the
reserved name AUX for either DOS mode applications or OS/2 mode
applications.

Personal Computer AT Considerations- COM1, COM2

The Personal Computer AT ASYNC device driver will have device
names COM1 and COM2 in its Device Header.

Device name COM1 will correspond to the ASYNC hardware with its
base address in 40:0 (during initialization) and device name COM2
will correspond to the ASYNC hardware with its base address in 40:2
(during initialization). After the ASYNC device driver initialization,
the contents of the 40: area are not monitored by the ASYNC device
driver. The values in 40: are set to 0 for any COM port that is initial
ized. If these values are restored later in the same power on session,
the integrity of the ASYNC device driver could be adversely affected
by any process that directly accesses hardware through the 40: area.

It should be noted that if the adapter card is configured as a sec
ondary COM port, the system may not always treat it as COM2.

Note: The mapping of the 40: area to COMn must be consistent
across all device drivers that support the ASYNC hardware in the
Personal Computer AT hardware environment.

9-21

Refer to the SETCOM40 Utility for more information.

PS/2 Considerations- COM1 - 3

The PS/2 ASYNC device driver will have device names COM1, COM2,
and COM3 in its Device Header.

Device name COM1 will correspond to the first LID in the Advanced
BIOS common data area with the ASYNC device ID. Device name
COM2 will correspond to the second LID and device name COM3 will
correspond to the third LID in the Advanced BIOS common data area
with the ASYNC device ID. The Advanced BIOS architecture ensures
that the ordering in the 40: area will match the ordering of the LIDs in
the common data area. Compatibility BIOS supports up to 4 ASYNC
devices on PS/2 and the device driver assumes that the order of the
Logical IDs match the order of the addresses of these devices in the
40: area.

Additional ASYNC devices may be supported by additional device
drivers.

The mapping of the ASYNC Logical ID ordering to COMn must be con
sistent across all device drivers that support the ASYNC hardware in
the PS/2 hardware environment.

Initialization I Resource Management

The device driver is loaded and initialized with a DEVICE= statement
in CONFIG.SYS. The name of the device driver for the Personal Com
puter AT is COM01.SYS and the name of the device driver for the
PS/2 is COM02.SYS. The device driver does not process any parame
ters on the DEVICE= statement. It is the responsibility of the instal
lation process or the user to have the correct DEVICE= statement in
the CONFIG.SYS file, depending on whether the OS/2 is installed on:

• IBM Personal Computer AT and IBM Personal Computer XT
Model 286 - COM01.SYS

• IBM Personal System/2™ Models 50, 60, and 80 - COM02.SYS

During initialization, the device driver will attempt to free memory
from its data segment for ports it does not need to support. The
device driver will not remove device names from its Device Header
for ports that do not get initialized.

9-22

The device driver will not deinstall a device if the system requests it.
If another device driver wishes to support a port already supported by
this device driver, it needs to initialize before this ASYNC device
driver. Taking the appropriate action, means this device driver will
not prevent the other device driver from supporting the COM port in
question. There are many ways this can be done, depending on the
system. See initialization considerations below.

Dynamic ownership of a given COM port between different device
drivers in the same boot of OS/2 is not supported. Only one device
driver can support a given COM port in a given boot of OS/2.

If a supported port encounters a condition where it fails to initialize, a
message will be displayed to indicate the nature of the condition.

If installation fails due to errors for all supported ports, the system
will display a message and pause, allowing corrective measures to
be taken.

Personal Computer AT Initialization Considerations

The device driver will not attempt to initialize or support a port if it
does not get the INIT request packet for the port's corresponding
device name.

If the device driver gets the INIT request packet for a given device
name it will check to see if a valid 110 address (2F8H or 3F8H) is in
the appropriate 40: area (that corresponds to that device name).
COM1 is 40:0 and COM2 is 40:2.

If the 40: area does not have a valid 110 address, the device driver
fails the initialization of this port and will not support this port.

Otherwise, the devfoe driver attempts to get exclusively the interrupt
level that corresponds to the 1/0 address for this port. If the interrupt
level is not available, then the device driver fails the initialization of
this port and will not support this port.

If the interrupt level is available, then the device driver will give back
the interrupt level, set to 0 the 40: area address for this port (this will
normally prevent INT 14H from functioning for this port), initialize the
port, and set up to support the port during this start-up of OS/2.

9-23

In summary, in order for the device driver to support a port on the
Personal Computer AT, the following must be true:

• The device driver must get an INIT request packet for the device
name.

• The 40: area that corresponds to the device name must have a
valid 110 address.

• The appropriate interrupt level must be available for exclusive
use, even though the device driver will not claim the interrupt
level for exclusive use during initialization.

The device driver claims ownership of the port by not DEINSTALLING
the corresponding device name and by setting to 0 the corresponding
40: area.

Another device driver can cause this device driver not to claim a port
by initializing before this device driver and doing at least one of the
following:

• Not allowing this device driver to receive an INIT request packet
for a given device name.

• Putting an invalid 1/0 address in the corresponding 40: area (for
example, 0).

• Owning exclusively the appropriate interrupt level at initialization
time.

PS/2 lnltlallzation Considerations

The device driver will not attempt to initialize or support a port if it
does not get the INIT request packet for the port's corresponding
device name.

If the device driver gets the INIT request packet for a given device
name then it will attempt to claim ownership of the specific LID posi
tion for the ASYNC device ID that corresponds to the device name
being initialized.

If the LID is not available, then the device driver fails the initialization
of this port and will not support this port.

If the LID is available, then the device driver will initialize the port
and set up support for this port during this start-up of OS/2. The

9-24

device driver will set to 0 the appropriate 40: area (this will normally
not allow INT 14H to function for this port).

In summary, for the device driver to support a port on PS/2, the fol
lowing must be true:

• The device driver must get an INIT request packet for the device
name.

• The ASYNC LID corresponding to the device name must be avail
able.

The device driver claims ownership of the port by not DEINSTALLING
the corresponding device name and by claiming the appropriate
ASYNC logical ID. The device driver also sets to 0 the corresponding
40: area.

Another device driver can cause this device driver not to claim a port
by initializing before this device driver and doing at least one of the
following:

• Not allowing this device driver to receive an INIT request packet
for a given device name.

• Claiming the appropriate ASYNC LID.

Access Authorization

The device driver does not prevent multiple processes from concur
rently opening the same device name. This is the responsibility of
the user or the subsystems that reside between the applications and
the device driver. Allowing multiple processes to use (OPEN) concur
rently the same device name could cause unexpected results.

Data Translation I Monitor Support /Spooler Support

The device driver provides no data translation, code page, or monitor
support. It is the responsibility of the application or subsystem to
provide any function required in these areas.

Spooling from LPT to COM is supported by the print spooler but
spooling from COM to LPT or COM to COM is not supported. The
level of code page support provided by the print spooler is available
through LPT and the print spooler.

9-25

Any requests for registering or opening a monitor chain to COMn will
be rejected by the device driver.

The device driver deals with binary data and provides no special
processing in the area of "binary" or "ASCII" mode.

File System Requests

Open Processing

The device driver does not claim the interrupt level the port is on until
the port is open. If the interrupt level is not available, the Open
request packet is failed. The interrupt level is claimed exclusively on
the Personal Computer AT. The interrupt level is claimed shareable
on PS/2.

If a timer tick handler is not available during First Level Open proc
essing, the open request may fail.

If the device driver receives an OPEN request packet and the COM
device is not already open (from a previous open without a close), the
device driver does special processing. See "States of the ASYNC
Device Driver". This is called a First Level Open. If a subsequent
open request is issued before a previous First Level Open request
has completed, the device driver may process the open request
packets in a different order than they were issued. This could cause
the First Level Open to take effect at a different time from what the
application was expecting.

An OPEN request should never be issued until a previous last level
CLOSE request has completed. If an OPEN request is issued before a
previous last level CLOSE has completed, the function performed by
a last level close and a First Level Open may not occur.

On the Personal Computer AT, if the port is not already open (First
Level Open), the device driver will attempt to clear out any data in the
receive hardware. On PS/2, if the port is not already open (First
Level Open), the device driver will rely on the "reset I initialize"
Advanced BIOS function to reset and clear the UART receive hard
ware.

9-26

Close Processing

An application should never close an open handle to a COM port
while there are requests outstanding to that handle. If a request has
not completed, it may be waiting for time-out processing. IOCtls may
be used to determine the current time-out processing and to change
the current time-out processing.

If the device driver receives a CLOSE request packet, the device
driver will do some special processing. When after processing this
close request the port will not be open any more from another open
without a close - Last Level Close. See "States of the ASYNC Device
Driver" on page 9-11. The device driver, (when processing a close
request that causes the port not to be open any more - Last Level
Close), will:

• Clear the receive and transmit queues.

• Turn break off if currently transmitting a break.

• Clear any character waiting to be transmitted immediately if it
cannot be transmitted. If it can be transmitted, the device driver
will make sure that it is given to the transmit hardware.

• If currently enabled for automatic receive flow control
(XON/XOFF) and the last character that the device driver auto
matically transmitted was an XOFF, the device driver will attempt
to automatically transmit an XON, if possible.

• Wait until all the data in the transmit hardware has been phys
ically transmitted.

• Unclaim the interrupt level.

• Turn DTR & RTS OFF if they are not already OFF. The device
driver will wait the specified number of character times first (see
"States of the RS232 Device Driver").

9-27

Read Processing

The device driver will begin processing Read requests in the order
that they are received by the device driver.

Note: This may not be the same order that the requests were issued
by the application. If the device driver receives more than one Read
request, the request packet will be queued on the Read request
packet queue for later processing.

Applications may not see read requests completed in the order that
they were received by the device driver. The order of the data placed
in the read requests will reflect the order the requests were received
by the device driver.

The data for the read requests comes from the device driver receive
queue. Because of time-out processing, it is normal for the total
number of read characters requested not to be read. This is not con
sidered an error. The request is completed when time out is com
pleted or when the amount of data requested is placed in the read
buffer.

The different kinds of Read Time-out processing are discussed in the
"States of the ASYNC Device Driver" on page 9-11.

To reduce the probability of a device driver receive queue buffer
overrun, the communications protocol should take into account the
size of the device driver receive queue.

Write Processing

The device driver will begin processing write requests in the order
that they are received by the device driver.

Note: This may not be the same order that the requests were issued
by the application. If the device driver receives more than one write
request, the request packet will be queued on the Write request
packet queue for later processing.

Applications may not see write requests complete in the order that
they were received by the device driver. The order of the data trans
mitted due to the Write requests will reflect the order that the
requests were received by the device driver.

9-28

The data from the Write requests are placed in the device driver
transmit queue. The number of characters written are considered to
be the number of characters given to the transmit hardware and not
the number of characters placed in the device driver transmit queue.
Because of time-out processing, it is possible that the total number of
Write characters requested will not be transmitted. This is not con
sidered an error. The request is completed when completes or when
the amount of data requested is given to the transmit hardware (but
not actually transmitted at the physical RS232C interface).

The different kinds of write time-out processing are discussed in the
section on "States of the ASYNC Device Driver" on page 9-11.

If infinite write time-out processing is enabled, then it is the responsi
bility of the application to monitor the status of the write requests.
The application may have to issue an IOCtl to disable infinite write
time-out processing to cause the write request to complete (without
all the data being transmitted). If an application does not wish to
check that all the data is given to the transmit hardware on each write
request, the application can use the infinite time-out processing mode
of the device driver to ensure that all the data has been given to the
transmit hardware before the request completes.

In order to increase the throughput (ratio of number of characters
transmitted per second to the baud rate), the application should keep
the write requests as large as possible.

9-29

DOS Mode Considerations I Restrictions

DOS mode applications that go directly to the COM hardware or that
use INT 14H are not supported. The 40: area is set to Oby the device
driver for those ports serviced by the device driver.

Previous-level DOS device drivers that go directly to COMn hardware
are not supported.

The DOS 3.3 CITY Utility is not supported.

The AUX device name does not appear in the device header for the
ASYNC device driver. AUX does not correspond to COM1.

We strongly recommend applications using a serial printer from the
DOS mode spool print data to the print spooler through the appro
priate LPT handles.

The only support to COMn in the DOS mode is through the file
system. Family API restrictions should be consulted for the subset of
Category 1 IOCtls that are supported in the DOS mode.

COM support in the DOS mode is incompatible with COM support in
DOS. COM support in DOS 3.3 is half duplex through INT 14H. COM
support in OS/2 has the following attributes:

• Full duplex

• Interrupt driven

• Sophisticated time-out processing

• Many different control modes of the modem control signals

• Logical flow control capabilities

• No application knowledge of state of modem control signals and
data flow on a character basis.

9-30

The device driver makes no attempt to restrict or mold the function of
file system requests because they may have come from the DOS
mode. To achieve the full capabilities of the file system access to
COM, the application needs access to the full range of Category 1
IOCtls. The design and externals of the ASYNC device driver are
based on the requirements of new OS/2 mode applications that use
the RS232-C port of the system.

If the DOS mode is concurrently sharing a COM port with OS/2 mode
(not recommended), then care must be taken not to switch away from
the DOS mode while the DOS mode application has requests out
standing in the file system. Switching away from the DOS mode,
while file system requests are outstanding, could cause the device
driver not to process certain file system requests that are outstanding
(for a given port).

Refer to the SETCOM40 command in the IBM Operating System/2™
User Reference.

Performance

The achievable performance is very sensitive to its environment. The
type and amount of other system activity will determine the achiev
able performance. On PS/2 the number of COM ports or other
devices on the same interrupt level will significantly affect the achiev
able performance level.

Trying to receive data at too high a baud rate could cause hardware
overrun errors or receive queue overrun errors. Receive queue
overrun errors are easily solved by adjusting the communications
protocol to the size of the device driver receive queue.

Trying to transmit data at too high a baud rate also could cause the
performance of the OS/2 system to be lessened severely.

Configuration

The baud rate can be set with the MODE command or with an IOCtl.
The baud rate should not be set to values which may cause receive
overruns or adverse OS/2 system performance effects.

9-31

Pointer Draw (Screen) Device Driver

The Mouse Pointer Draw (Screen) device driver draws the system
default and user-supplied mouse pointer images on the screen at
interrupt time.

In the OS/2 mode, the pointer draw device driver (POINTDD.SYS) pro
vides two levels of display mode support:

• Full draw support.

• Disabled state support.

Full Draw Support

Full draw support includes the full pointer drawing capabilities of a
pointer device driver. The following display modes are supported at
this level:

• Text only

modes 0, 1, 2, 3 and their + and* variations.
mode 7 and its + variation.

These modes are always accepted by the CheckModeProtect func
tion.

If a mode other than one of the above is set using VioSetMode and
pointer drawing is not disabled, the pointer device driver will report
an error to the mouse device driver causing the mouse device driver
to shut down. When the Mouse device driver is shut down, the API is
active but no interrupt data can be returned. In this case, a status
flag is set and is available using MouGetDevStatus.

9-32

Disabled State Support

Disabled State support is available when the pointer draw functions
have been disabled by the MouSetDevStatus function. When this
occurs, an extended set of display modes is supported by the
CheckModeProtect function. These display modes are:

• Text modes

modes 0, 1, 2, 3 and their + and *variations.
mode 7 and its + variation.

• Graphics modes

modes 4, 5, 6, 7, D, E, F, 10, 11, 12, and 13.

• The IBM Personal System/2™ Display Adapter advanced function
modes.

In the disabled state, no pointer drawing is performed by the pointer
draw device driver. Instead, the application is expected to perform
the pointer draw functions.

While in this state, subsequent MouSetDevStatus function calls to re
enable the pointer drawing will continue to be bypassed until
VioSetMode resets the screen mode to one of the supported modes.

In the DOS mode, the pointer draw device driver (POINTDD.SYS) pro
vides full pointer draw functions for the following modes:

• Text modes

modes 0, 1, 2, 3, and their + and* variations.
mode 7 and its + variation.

• Graphics modes

modes 4, 5, 6. D, E, F, and 10.

All other modes will cause the mouse device driver to shut down.

9.33

Mouse Device Driver

Mouse Device Overview
This section describes the standard mouse device driver interface
provided by OS/2 for both DOS mode and OS/2 mode applications.

Mouse Devices Supported: Mouse device drivers are supported in
both DOS mode and OS/2 mode for the following devices:

• Microsoft®1 Bus (parallel) Mouse for IBM Personal Computers
(part number 037-099, 100ppi)

• Microsoft® Bus (parallel) Mouse for IBM Personal Computers
(part number 037-199, 200ppi)

• Microsoft® Mouse (serial) for IBM Personal Computers (part
number 039-099, 100ppj)

• Microsoft® Mouse (serial) for IBM Personal Computers (part
number 039-199, 200ppi)

• PC Mouse™2 (serial) by Mouse Systems (part number
900120-214, 100ppi)

• Visi On™a Mouse (serial) (part number 69910-1011, 100ppi)

• Microsoft® Mouse (lnPort) for IBM Personal Computers (part
number 037-299, 200ppi)

• PS/2 Mouse (In-Processor) for IBM Personal System/2™ Com
puters (part number 6450350, 200ppi)

While the OS/2 mouse device drivers support both DOS mode and
OS/2 mode applications, the means by which DOS mode applications
access the mouse device differs from OS/2 mode application access.

DOS mode applications must use the interrupt 33H (INT 33H) interface
described later in this chapter. OS/2 mode applications must use the

1 Microsoft is a registered trademark of Microsoft Corporation

2 PC Mouse is a trademark of Metagraphics/Mouse Systems

a Visi On is a trademark of Visi On Corporation

9-34

OS/2 mode MOUxxx API also described in this chapter and in Tech
nical Reference, Vol. 2.

OS/2 mode applications may not use the INT 33H API nor may DOS
mode applications use the MouXxx mouse interface.

PS/2 Mouse: The PS/2 mouse is an "in-processor" mouse. It is not
compatible with existing mouse devices. The PS/2 mouse requires
its new device driver. The PS/2 mouse is supported for both the DOS
mode and OS/2 mode applications but only on a PS/2 processor. The
PS/2 mouse is not supported on the Personal Computer AT or Per
sonal Computer XT Model 286.

The Personal Computer AT serial mouse attachment cards will not fit
in the PS/2 chassis. However, the OS/2 mouse devices are supported
on PS/2 by allowing the user to connect the mouse devices to the
PS/2 serial port. The PS/2 mouse device driver implementation uti
lizes ABIOS Pointing Device ABIOS commands.

OS/2 D/D Serial Mouse Interrupt Sharing: OS/2 Personal Computer
AT Serial mice do not share interrupts. Mouse device drivers attempt
to capture the COM line specified by the SERIAL keyword on the
mouse device's DEVICE statement in the CONFIG.SYS file. If exclu
sive use is denied, mouse device driver installation will fail. The
OS/2 PS/2 mouse device drivers are modified to allow interrupts to be
shared with other ASYNC drivers. The request for interrupts is non
exclusive.

On the PS/2, the mouse device drivers will always receive exclusive
access to the requested 1/0 port. However, the mouse device driver
will never receive exclusive access to the device interrupt.

System Install ensures that mouse device driver initialization takes
place prior to ASYNC device driver initialization. This allows the
ASYNC device driver to determine that it is not responsible for ser
vicing that port. This will ensure that mouse device drivers will not
be preempted from the COMx ports by the ASYNC device drivers.

For PS/2, OS/2 Mouse device drivers utilize the ABIOS command
"Return LID Parameters" to determine which interrupt level they are
executing on. Under no circumstances can the Mouse Device drivers
select a predetermined interrupt.

9.35

Mouse Screen Resolutions: The screen resolution is determined by
either system default or by the application's issuing an explicit
VioSetMode call in the OS/2 mode or an INT 10H, AH = 0 in the DOS
mode or INT 10H, AH = 11 Character Font Generator Selections.
When in DOS mode the virtual display resolution is used. The virtual
display resolution depends on the display mode selected. The fol
lowing display modes are supported:

Text Graphics Vlrtual (X, Y) Cell
Mode Type Resolution Resolution Coordinates Size
0 BW Text 40 x 25 320 x 200 640 x 200 8 x 8
o+ BW Text 40 x 25 320 x 350 640 x 200 8 x 14
O* BW Text 40 x 25 360 x 400 640 x 200 9 x 16

CO Text 40 x 25 320 x 200 640 x 200 8 x 8
1+ CO Text 40 x 25 320 x 350 640 x 200 8 x 14
1* CO Text 40 x 25 360 x 400 640 x 200 9 x 16
2 BW Text 80 x 25 640 x 200 640 x 200 8 x 8
2+ BW Text 80 x 25 640 x 350 640 x 200 8 x 14
2* BW Text 80 x 25 720 x 400 640 x 200 9 x 16
3 CO Text 80 x 25 640 x 200 640 x 200 8 x 8
3+ CO Text 80 x 25 640 x 350 640 x 200 8 x 14
3* CO Text 80 x 25 720 x 400 640 x 200 9 x 16
4 Graphics 320 x 200 640 x 200 2x 1
5 Graphics 320 x 200 640 x 200 2 x 1
6 Graphics 640 x 200 640 x 200 1 x 1
7 Mono 80 x 25 720 x 350 640 x 200 9 x 14
7+ Mono 80 x 25 720 x 400 640 x 200 9 x 16
D Graphics 320 x 200 640 x 200 2x1
E Graphics 640 x 200 640 x 200 1x1
F Graphics 640 x 350 640 x 350 1 x 1
10 Graphics 640 x 350 640 x 350 1x1

Mouse Installation: Mouse support is installed at IPL (start-up} time.
The mouse support may be tailored according to the user's needs.
This is accomplished via use of the CONFIG.SYS file to define system
mouse requirements.

The following describes the CONFIG.SYS DEVICE= keywords avail-
able to customize the mouse subsystem and related mouse device
driver installation.

• The SERIAL= keyword is used to specify the communications
port that a serial mouse device is connected to.

9-36

Note: Utilities support up to eight COM ports on PS/2 (COM1 -
COM8) and up to two on Personal Computer AT (COM1 and
COM2). Device drivers support up to three on PS/2 (COM1 -
COM3) and up to two on Personal Computer AT (COM1 and
COM2). COM1, COM2 and COM3 should be used for ASYNC.

This keyword is not valid for nonserial mice, (Microsoft Bus
Mouse, Microsoft lnPort Mouse, and IBM PS/2 Mouse, for
example).

If this keyword is not present (for serial mice), the default used is
COM1. Otherwise, either COM1 or COM2 must be specified for
the Personal Computer AT or PS/2. COM3 through COM8 may be
specified for serial mice on a PS/2 only.

• The QSIZE = keyword is used to specify the event queue length
to be used for all OS/2 mode sessions.

If this keyword is not present, a default of 10 (maximum queue
elements) is used. If a queue length is specified, the keyword
must be followed by a signed integer in the range:

1 < = integer < = 100

Each queue element occupies 10 bytes. Therefore, the default
event queue size allocates 100 bytes of event queue buffer space
per session.

A maximum of 16 sessions is allowed to utilize mouse support at
any one time. This is true even if the number of sessions speci
fied for the system is greater than 16. If an attempt is made to
open mouse support for more than 16 sessions, an error will
occur.

• The MODE= keyword, enables the user to specify whether the
mouse support is required for DOS mode only, OS/2 mode only or
both modes.

The acceptable MODE= values are:

B = Both DOS mode and OS/2 mode support
P = OS/2 mode support only
R = DOS mode support only

The default for the MODE= option is Both. Consequently, if this
MODE= option is not specified, both DOS mode and OS/2 mode
device driver support will be loaded into the system.

9-37

For example, if the user specifies a CONFIG.SYS file with a
DEVICE= mouseAOO.sys and none of the other parameters, the
internal result would be as if the user had specified the following
statement:

DEVICE=mouseA00.sys,SERIAL=COMl,MODE=b,QSIZE=l0

Mouse Device Driver Packaging: The DOS mode and OS/2 mode
device drivers are contained within the same executable modules.
Each of the supported devices is supplied with a named device driver
containing both DOS mode and OS/2 mode function.

Personal Computer AT Mouse Device Drivers: The following drivers
support the Personal Computer AT and Personal Computer XT Model
286. (These are not to be used for PS/2 hardware.)

• MOUSEAOO.SYS = PC Mouse by Mouse Systems - Serial (part
number 900120-214)

• MOUSEA01.SYS = Visi On Mouse - Serial (part number
69910-1011)

• MOUSEA02.SYS = Microsoft Mouse for IBM Personal Computers
- Serial (part numbers 039-099 and 039-199)

• MOUSEA03.SYS = Microsoft Mouse for IBM Personal Computers
- Parallel (part numbers 037-099 and 037-199)

• MOUSEA04.SYS = Microsoft Mouse for IBM Personal Computers
- lnPort (part number 037-299)

PS/2 Mouse Device Drivers: The following drivers support PS/2
hardware:

• MOUSEBOO.SYS = PC Mouse by Mouse Systems - Serial (part
number 900120-214)

• MOUSEB01.SYS = Visi On Mouse - Serial (part number
69910-1011)

• MOUSEB02.SYS = Microsoft Mouse for IBM Personal Computers
- Serial (part numbers 039-099 and 039-199)

• MOUSEB05.SYS = PS/2 In-Processor Mouse (part number
6450350)

9-38

The system loads the entire module into storage during initialization.
The mouse device driver examines the parameter on the MODE=
keyword (if one exists) on the CON FIG.SYS, DEVICE= MOUSExx.SYS
line specifying the mouse device driver to determine whether both
modes of support are required.

If OS/2 mode is not required, the storage occupied by the OS/2 mode
only portions of the mouse device driver support is removed from
storage.

Mouse Pointer Draw Implementation: Communication between both
DOS mode and OS/2 mode mouse device drivers and the pointer
draw screen device routine is conducted by way of a FAR call from
the mouse driver to the entry point of the screen pointer draw routine.

The setup required for the mouse device driver prior to issuing the
call to the pointer draw routine is as follows:

• Set DS:SI to point to the session data control block described
below.

• Set the screen_func field to indicated the desired function code.

• Issue a FAR call to the screen pointer draw routine. The address
to be called must be stored in the screen_entp field of the session
data control block.

When the mouse device driver calls the screen pointer draw routine,
the draw routine must issue a CLI to disable interrupts. The mouse
device driver will have disabled the IOCtls and the mouse device
interrupts. These will be enabled by the mouse device driver after the
pointer draw routine returns to it.

All addresses to data obtained via a DevHlp_AllocPhys is stored in
the control blocks in 32 bit physical address form. The pointer draw
routine must convert these addresses to virtual format (selector:offset
for OS/2 mode and segment:offset for DOS mode) with the
DevHlp_PhysToVirt call. The resulting selector is temporary and will
be valid for no more than 400 microseconds. If an interrupt occurs
during the 400 microsecond span, the temporary selector becomes
invalid.

Consequently, the screen pointer draw routine must:

• Disable interrupts using the CLI instruction

9-39

• Complete all operation within the 400 microsecond time limit
• Reenable interrupts.

It is possible for the screen pointer draw routine to do repetitively the
following in order to bypass the 400 microsecond time limit:

• Enable interrupts
• Disable interrupts
• Call DevHlp_PhysToVirt
• Execute draw functions.

However, interrupt time operations should be as limited in scope and
duration as possible to reduce the impact on the remainder of the
system. Therefore, all effort should be directed to completing the
pointer draw operations as quickly as possible and without exceeding
a single 400 microsecond interval.

The functions to be supported by the screen pointer draw routine are:

• screen_func = 0 = DrawPointer (Bimodal)
• screen_func = 1 = RemovePointer (Bimodal)
• screen_func = 2 = FreePointerMemory (Bimodal)
• screen_func = 3 = CheckModeProtect (OS/2 mode only)
• screen_func = 4 = CheckModeReal (DOS mode only)
• screen_func = 5 = GetPointerMemory (Bimodal)

The following chart outlines the interrupt state of the 8259 for the
commands that may be executed with calls from the mouse device
driver to the screen pointer draw routine. The chart also describes
the execution modes from which the commands may be invoked.

Function Type
DrawPointer
RemovePointer
FreePointerMemory
CheckModeP rotect
CheckModeReal
GetPoi nterMemory

9-40

Interrupt Status
Disabled@ 8259 Level
Disabled@ 8259 Level
Disabled @ 8259 Level

. Disabled@ 8259 Level
Disabled@ 8259 Level
Disabled@ 8259 Level

Call Modes
Interrupt, User, Kernel
Interrupt, User, Kernel
User, Kernel
Kernel
User
User, Kernel

Details concerning each of these commands follow:

• DrawPointer draws the current mouse pointer image if it is not
within the area defined by the collision area definition fields and
if it is not already visible on the screen.

• RemovePointer removes the current mouse pointer image from
the screen if it was visible. Before the call, an advisory param
eter (CX) is set as follows:

ex= o

ex= 1

The RemovePointer call may not be immediately fol
lowed by a DrawPointer call. The Pointer device
driver must consider such a call an unconditional
request for pointer removal, and honor the remove
pointer.

The RemovePointer call will be immediately followed
by a DrawPointer call (that is, the pointer image is to
be moved rather than removed). The Pointer device
driver can consider this RemovePointer call as advi
sory.

A Pointer device driver which examines the ex value may
decide, if ex is 1, to defer removal of the pointer image until the
DrawPointer call can be examined also. Depending on the
sophistication of the pointer driver, this can provide more effi
cient image updating. However, the pointer driver may choose to
ignore the advisory indication (eX = 1), in which case it must
always remove the pointer image.

For the case where ex is 1, it is guaranteed that for the given
screen group, no other function call will be made to the pointer
driver between the RemovePointer and the DrawPointer calls.
However, there is no guarantee that a function call for another
screen group will not occur. Thus, the pointer driver making use
of the advisory nature of RemovePointer must save pointer infor
mation on a per-screen-group basis. The Screen_ Tble field can
be used by the pointer driver to extend the per-screen-group
information as needed.

• FreePointerMemory can only be issued after a RemovePointer to
free both the current pointer image buffer and its associated
screen restore buffer. This call has no effect if the default pointer
is the screen pointer.

9-41

• CheckModeProtect verifies the requested mode_data structure
values as either supportable or unsupportable:

If the requested OS/2 mode screen mode is unsupportable,
the mouse screen device driver will set an error code of 1 in
the AX register and return.

If the requested mode is supportable, the function will set the
control block mode data fields accordingly and set a valid
return code of 0 in AX. In addition, the cell sizes (in the
control block) for the new mode must be filled in.

Mode_data is a 12 byte data structure pointed to by ES:DI.
The mode_data structure is defined below.

• CheckModeReal verifies the requested mode_data structures
values as either supportable or unsupportable as follows:

If the requested DOS mode screen mode is unsupportable,
the mouse screen device driver will set an error code of 1 in
the AX register and return

If the requested mode is supportable, the mouse screen
device driver will set the control block mode data fields and
set a valid return code of 0 in AX. In addition, the cell sizes
(in the control block) for the new mode are filled in.

Real_mode_data is a 3-byte data structure pointed to by
ES:DI. The Real_mode_data structure is defined below.

• GetPointerMemory will only be issued after a FreePointerMemory
in order that the mouse screen device driver may allocate
memory for both the new pointer image buffer and its associated
screen restore buffer.

9-42

This function receives the address of the pointer definition control
block in ES:DI. The pointer definition control block contains two
addresses. They are:

- The address of the pointer image buffer
- The address of the pointer definition record

The pointer definition record is defined below.

If the pointer image data is incomplete, unsupportable, or this
function can't get the memory required to copy the pointer image
buffer, an error code of 1 is returned in the AX register.

If the image data is OK, this function:

Copies the pointer definition record data into the control
block
Copies the pointer image buffer, and
Sets a val id return code of O in the AX register.

In order to maximize pointer image draw performance, there are
restrictions on defining graphics pointer images. These limitations
follow:

• Graphics modes utilizing the 320x200 resolution require pointer
images be defined with 4 pixels per byte.

• Graphics modes utilizing the 640x200 resolution require pointer
images be defined with 8 pixels per byte.

In other words, graphics pointer images must be defined in byte
width multiples. Non-byte width definitions will be accepted by the
pointer draw routine but may result in unexpected pointer images
appearing on the display screen.

The pointer image does not need to be drawn on the screen by the
pointer draw routine. It is feasible for the pointer draw routine to dis
patch a process at level 2 or 3 and have that process affect pointer
draw operations.

This approach may be of particular use to those subsystems and
Environment Managers which conduct a large number of screen or
processing functions for each interrupt.

Mouse Device Driver - Default Pointers: The default pointer images
supplied by the system are a default text pointer for OS/2 mode only
and a default text and graphics pointer for DOS mode. Two images
are supplied; Default text image, and Default graphics image.

The default text image is defined as a one-word reverse video block
in which the screen character remains visible.

The default graphics image is defined as an upward pointing arrow
leaning toward the right side of the screen.

The same graphics pointer image is used for both medium (320x200)
and high resolution (640x200) graphics modes. Medium resolution
pointers may contain up to four colors. High resolution pointers are
limited to two colors, black and white.

9-43

The bit definitions of the default pointer images follow:

DefText Struct
ANDmsk DW
XORmsk DW
DefText Ends

;default text pointer
0FFFFH ;default text AND mask
07700H ;default text XOR mask

DefGrph Struct ;default graphics pointer

ANDmask DB 11111111B,11000011B ;default graphics ptr
DB 11111111B,10000011B ;AND mask
DB 11111111B,00000011B
DB 11111110B,00000011B
DB 11111100B,00000011B
DB 11111000B,00000011B
DB 11110000B,00000011B
DB 11100000B,00000011B
DB 11000000B,00000011B
DB 10000000B,00000011B
DB 10000000B,00000011B
DB 11110000B,00000011B
DB 11110000B,00000011B
DB 11100000B,00111111B
DB 11100000B,01111111B
DB 11100000B,01111111B

XORmask DB 00000000B,00000000B ;XOR mask
DB 00000000B,00010000B
DB 00000000B,00110000B
DB 00000000B,01110000B
DB 00000000B,11110000B
DB 00000001B,11110000B
DB 00000011B,11110000B
DB 00000111B,11110000B
DB 00001111B,11110000B
DB 00011111B,11110000B
DB 00000001B,11110000B
DB 00000011B,00010000B
DB 00000011B,00000000B
DB 00000110B,00000000B
DB 00000110B,00000000B
DB 00000000B,00000000B

DefGrph Ends

9-44

For all system-supported modes, Totlength is equal to:

• 4 for text modes.
• 64 for graphic modes.

Mouse Device Driver - Control Blocks: Internal mouse pointer control
blocks are described below. These structures are used by both the
mouse device DOS mode and OS/2 mode drivers and the screen
pointer draw routines.

Key to Notes

M = Mouse device driver access only
P = Pointer draw device driver access only
BM = Both peek - only mouse device driver may modify
BP = Both peek - only pointer device driver may modify
MON = Mouse device driver + monitor

Mouse Session Data Area Template (118 Byte structure)

This control block is passed during calls from the mouse
device driver to the pointer draw device driver.

DS : SI points to this control block

scrgp_data STRUC

Session control data sub-table (next 40 Bytes)

Rowscale_Fact DW ? M row coordinate scale factor
Colscale_Fact DW ? M column coordinate scale factor
Row_Remain DW ? M row coordinate move remainder
Col_Remain DW ? M column coordinate move remainder
D_Status DW ? M device status flags
E_Mask DW ? M enabled event table
Hdle_Cntr DW ? M # of active device handles
E_Queue DW ? M event queue DS starting offset
Eq_Head DW ? M event queue head displacement
Eq_Tail DW ? M event queue tail displacement
Eq_PID DW ? M PIO blocked on event queue
Eq_Size DB ? M # of used elements in queue
Chain_Size DB ? M # of monitors in chain
Chain_Hdle DW ? M monitor chain handle

9-45

Screen_Entp DD ? M screen driver entry point address

Screen_Tble DD ? p @ to screen drivers data table
Screen_Func ow ? B screen driver function code
Screen_DS DD ? BM screen driver data segment address

stored as offset/selector or
stored as offset/segment

Monitor chain output buffer (next 14 Bytes)

MB_Len ow ? MON Monitor Buffer Length (14 bytes)
MFlags ow ? MON monitor flags
EMask ow ? MON event occurrence mask value
Time DD ? MON event time stamp (Time of Day in milliseconds
Row_Pos DW ? MON current pointer row coordinates
Col_Pos ow ? MON current pointer column coordinates

Display information data sub-table (next 64 Bytes)
Display Mode fields

Length ow ? BP len of display mode fields (bytes)
Mtype DB ? BP mono text/color text/color graphic
Color DB ? BP # of color bits (graphic type only)
TCol_Res ow ? BP column resolution (text)
TRow_Res ow ? BP row resolution (text)
GCol_Res ow ? BP column resolution (graphics)
GRow_Res ow ? BP row resolution (graphics)
Col_Cell -Size DW ? BP graphics col res/ text col res
Row_Cell_Size DW ? BP graphics row res/ text row res

Mouse Pointer fields

Ptr _Flags ow ? p pointer image visible/hidden
Ptr_Height ow ? p height of ptr image (resolution units)
Ptr_Width ow ? p width of ptr image (resolution units)

Ptr_Row_Pos ow ? BM current ptr row coord position
Pt r _Col _Pos DW ? BM current ptr col coord position

Ptr_Row_Ref ow ? p row coord ptr shape reference pxl
Ptr _Col_Ref ow ? p col coord ptr shape reference pxl
Ptr_Image_Buf DD ? p physical addr to ptr image bufr
Ptr_Buf_Len ow ? p pointer image buffer len (bytes)
Ptr_Imagelen ow ? p pointer image length (bytes)
Ptr_Imageoff ow ? p pointer image offset (bytes)
Ptr_Linelen ow ? p pointer image line length
Ptr_Skiplen ow ? p pointer image skip length
Tot_Linelen ow ? p pointer total line length
Ptr_Savstart ow ? p pointer save start pointer

9-46

Ptr_Savend DW ? ; P
Ptr_Savstartodd DW ?; P
Ptr_Savendodd DW ? ; P

pointer save end pointer
pointer save start odd pointer
pointer save end odd pointer

Collision Area fields

Area_Flags DW ? BM area flags (area defined/undefined)
Area_Row_Pos DW ? BM area starting row coord position
Area_Col_Pos DW ? BM area starting col coord position
Area_Row_End DW ? BM area ending row coord position
Area_Col_End DW ? BM area ending col coord position

scrgp_data ENDS

Pointer Definition Record Template
(12 byte structure)

Following is used to pass data about the pointer image
during the MouSetPtrShape call.

Ptr_def_cb structure points to this control block.

ptr_template STRUC
buf_len DD ?
width DW ?
height DW ?
col_hot DW ?
row_hot DW ?

ptr_template ENDS

BM ptr shape buffer byte length
BM pointer width shape dimension
BM pointer height shape dimension
BM ptr col coord hot spot pixel
BM ptr row coord hot spot pixel

Mode Data Record Template
(12 byte structure for OS/2 mode)

Following is used to pass setmode data only. After setmode
a copy of this is in the equivalent fields in the first
control block.

ES : DI points to this control block

Mode_Data STRUC
len DW ? BM Length of this data structure
m_type DB ? BM Display Mode type value
m_color DB ? BM Number of color bits
tcol_res DW ? BM text column resolution

9-47

trow_res
gcol_res
grow_res

Mode_Data

ow ?
ow ?
ow ?

ENDS

BM text row resolution
BM graphics column resolution
BM graphics row resolution

GetPointerMemory Data Structure

Used to pass pointer image @ and associated control block
from mouse dd to pointer draw dd on MouSetPtrShape only.

ES : DI points to this control block

ptr_def_cb STRUC
addrl DD ?
addr2 DD ?

ptr_def_cb ENDS

BM addr to ptr definition record
BM addr to ptr image buffer

CheckModeReal Data Structure

The structure's first (3) fields (R_Mode, Ex_Rows,
Ex_Points), are copied from the DOS mode BIOS data
area. Indicates that mode to which the DOS mode is
about to be set by an INT 18H, AH=e (setmode) call, or is
about to be changed by INT 18H, AH=ll, AL=lx (character
generator calls). The Pointer Draw Device Driver will
return to the Mouse Device Driver the new Display Mode's
virtual coordinate maximum grid values via the virt_rows and
virt_cols structure fields.

ES : DI points to this control block

Real_Mode_Data STRUC For real mode support
r_mode DB ? BM Standard Disp Mode, CGA
ex_ rows DB ? BM Number of Rows, EGA
ex_points ow ? BM Standard Disp Mode, EGA
virt_rows ow ? BP New Disp Mode Virt Coord Row Max
virt_cols DW ? BP New Disp Mode Virt Coard Col Max

Real _Mode_Data ENDS

9~8

OS/2 Mode Mouse Support
This section describes the standard OS/2 mouse device support for
OS/2 mode applications.

Overview: Mouse device drivers have characteristics which are quite
different from most other devices. They are read-only devices which
provide data at approximately 30 events per second. The data is
structured, that is, it will arrive as a packet of data containing abso
lute screen location, button up/down and other information.

The OS/2 mode mouse driver model described in this section is
designed to provide a basic, machine-independent, high-performance
interface. Applications and Environment Managers may use this
interface to obtain mouse device services.

The Base Mouse Subsystem (BMS) is a dynamic link module which
executes on level 3 (application level). The BMS receives all MouXxx
calls (as a common entry point) and passes those calls to the appro
priate handler. One handler per session is allowed.

Normally, the system supplied default handler is the session's mouse
handler. However, Environment Managers, OEM, and custom mouse
device drivers may find it necessary to intercept MouXxx calls for
various reasons. A particular custom handler may service many dif
ferent sessions, provided it uses MouRegister with each of those ses
sions.

Pointer image updating is executed by the mouse device driver uti
lizing functions supplied by the display device drivers. The pointer
updating occurs at interrupt time, ensuring that the pointer shape
moves smoothly and promptly across the screen. The MouXxx API
contains three commands which allow the application to:

• Set the pointer shape
• Reserve a collision area where the pointer must not be drawn
• Free a collision area to the pointer device.

The responsibilities of the mouse driver have been well separated
from those of a screen driver. Pointer updating functions call the
display device drivers rather than attempting to draw the pointer
image directly. This maintains independence between the mouse
and display devices. It does require that custom display device

9-49

drivers conform to the pointer device driver interface to allow the
pointer shape to be drawn and also requires that the application syn
chronize display access.

Pointer Draw Installation: The mouse pointer image update design
allows the update routine to be installed with the video subsystem.
Custom and OEM video subsystems, which allow display modes not
supported by the base video subsystem, may implement interrupt
time screen pointer image updating by providing screen image draw
routines for execution by the pointer device driver.

Screen pointer draw routines are called by the mouse pointer device
driver at interrupt time. The screen pointer draw routines are
installed as character device drivers at start time.

The necessary steps for installing a screen pointer image draw
routine are outlined below:

• Pointer draw routines are installed at IPL time by including them
on a DEVICE= keyword in the CON FIG.SYS file as named char
acter device drivers. No special mechanism is needed. The
default pointer draw device driver file named POINTDD.SYS is
needed.

• The display (screen) = IOCtl (category 3, Function 72H) must be
supported by the named pointer draw device driver. This IOCtl
allows the mouse subsystem router/handler to query the pointer
draw device driver for the entry (far call) address.

• When an application uses MouOpen to a mouse handle, the
mouse subsystem handler/router will inspect the stack to deter
mine if the call specified a non-system pointer draw device driver
name.

If the pointer is 0, the mouse subsystem will use the default
(system supplied) device driver. This means that the session
is restricted to display modes 0 through 7.

If the pointer was not 0, the mouse subsystem will follow the
pointer to get the ASCllZ name of the pointer draw device
driver.

• The mouse subsystem handler/router will OPEN the pointer draw
character device driver using DosOpen. Using the device handle
returned by the OPEN, the handler/router will then issue the cate
gory 3, Function 72H screen IOCtl to get the entry address

9-50

(selector: offset) of the pointer draw device driver. The mouse
device driver will issue FAR calls to this entry address when the
mouse has a pointer manipulation request.

• The mouse subsystem handler/router will then do a DosOpen to
the mouse device driver. The return value from this call will be a
standard OS/2 device handle.

• The mouse subsystem handler/router will use the DosOpen
device handle to pass the entry address of the pointer draw
routine to the mouse device driver. This is done by using the cat
egory 7, Function 5AH mouse IOCtl addressed to the mouse
device driver's DOS handle.

• The mouse device driver will call the pointer draw routine with
each request without their being linked prior to start time.
Linkage will be established (via the IOCtls) for each pointer draw
device driver specified by a MouOpen.

• There may be only one pointer draw routine (driver) for each
session.

• This mechanism applies to OS/2 mode only.

Handler/Router: There are three aspects to an OS/2 mouse
handler/router:

• MouXxx API to allow applications to avoid the specifics of the low
level IOCtl interface

• Circular buffers to receive events

• Pointer management interface.

The driver is installed as a character device, with the name
"MOUSExxx.SYS." The MouOpen function call initializes the device
(sets initial coordinates, checks for mouse presence).

The MouXxx interface allows the caller to obtain information about
the current state of the mouse, set parameters, allow the application
to determine which events are to be passed into the device circular
buffer, and others.

The circular 110 buffer is a high-efficiency buffer shared by all client
applications in the session and the mouse device driver. There is
only one queue per session, no matter how many applications within

9-51

the session are utilizing the mouse device. The driver uses this inter
face to provide "events." The caller can specify what constitutes an
event. Examples of events are pressing buttons and moving a
mouse.

Events are time-stamped so that a higher-level interface library
package can provide such features as pressing the mouse button
twice.

Coordinates: Coordinates are mouse event's "absolute" position rel
ative to the top left corner (0,0) of the display screen. This means
that the units in which the mouse position is reported depends on the
display mode in which the session is executing. There are two dif
ferent possibilities:

• In TEXT mode, pointer position is reported in CHARACTER units.
• In GRAPHICS mode, pointer position is reported in PIXELS.

By supplying pointer coordinates as offsets to absolute screen posi
tion, higher level library support for translating data into an absolute
coordinates may no longer be necessary.

For those systems that wish to operate in terms of "relative" mouse
movement (mickey) displacements, the MouSetDevStatus call allows
the library support or the application to set the mouse device driver
to return mickey movements and not screen coordinates.

Motion: The unit of motion for a mouse is known as a "mickey." This
is similar to the pixel, the unit of addressability on a screen.

The OS/2 mouse driver provides calls to determine the number of
units of motion per centimeter, so that an application, window
manager or other package can relate motion to a physical screen.

Mou Xxx and IOCtl Calls: The mouse IOCtl is category 7. Applica
tions should not concern themselves with the detai Is of the mouse
IOCtl interface. Instead, the OS/2 Mouse device driver should be
accessed by applications via the MouXxx APL Only Environment
Managers and custom mouse device drivers need be aware of the
IOCtl interface.

9-52

All mouse device driver IOCtl functions have an application-level
MOU API equivalent function. The IOCtl function codes and their
MOU API equivalents are as follows:

IOCll Fen MOU API Function. Function Performed
IOMR_NB MouGetNumButtons Get # of mouse buttons
IOMR_MC MouGetNumMickeys Get# of mickeys/centimeter
IOMR_GS MouGetDevStatus Get device status flags
IOMW_DS MouSetDevStatus Set device status flags
IOMR_QS MouGetNumQueEI Get event queue status
IOMR_RD MouReadEventQue Read event queue contents
IOMR_GF MouGetScaleFact Get current scaling factors
IOMW_SS MouSetScaleFact Set new scaling factors
IOMR_GM MouGetEventMask Get current event mask
IOMW_EM MouSetEventMask Set new event mask

NIA MouOpen Open mouse support
NIA MouClose Close mouse support
NIA Mou Register Install a mouse subsystem
NIA MouDeRegister Deinstall a mouse subsystem
NIA MoulnitReal Initialize DOS mode driver

IOMW_SP MouSetPtrShape Assign new pointer shape
IOMW_GP MouGetPtrShape Assign new pointer shape
IOMW_DP MouDrawPtr Unmark collision area
IOMW_RP MouRemovePtr Mark collision area

OS/2 Mode Mouse API

Please refer to Technical Reference, Vol. 2 for a discussion of the
function calls dealing with Mouse OS/2 mode APls. A summary of
Mouse OS/2 mode API descriptions follows:

Mou Register
MouDeReglster
MoulnitReal
MouOpen

MouClose

MouDrawPtr
MouRemovePtr
MouFlushQue
MouGetDevStatus

Register mouse subsystem
Deregister mouse subsystem
Initialize DOS mode pointer draw
Opens the mouse device for the current
session
Closes the mouse device for the current
session.
Release screen area for device driver use
Reserve screen area for application use
Flush mouse event queue
Query current pointing device driver status
flags

9-53

MouGetEventMask

MouGetNumButtons
MouGetNumM lckeys
MouGetNumQueEI

MouGetPtrPos
MouGetPtrShape
MouGetScalefact

MouReadEventQue
MouSetDevStatus
MouSetEventMask

MouSetPtrPos
MouSetPtrShape
MouSetScalefact
MouSynch

Query current pointing device one-word event
mask
Query number of buttons
Query number of mickeys per centimeter
Query current status for the pointing device
event queue
Query current pointer position
Query pointer shape and size
Query scale factors for the current pointing
device
Read the pointing device event queue
Set device status flags
Assign new event mask to the current pointing
device
Set current pointer position
Set pointer shape and size
Set scale factors for the current pointing device
Synchronize (serialize) access to the mouse
device driver

The MouOpen and MouClose commands are mapped by the Mouse
Base Subsystem Router into the DosOpen and DosClose IOCtl com
mands, respectively. MouRegister and MouDeRegister are directed
to the higher level Mouse Base Subsystem Router and do not trans
late down to the IOCtl device driver level.

The Base Mouse Subsystem receives all MouXxx function calls.
Function specific data is passed on the user's stack in the following
format:

Mouse Router return address
Value of application OS reg.
Entry point return address
Function code
Application {caller) ret addr
Function specific parameters

2 words <== Top of Stack
1 word
1 word
1 word
2 words
2 - 10 bytes depending on call

Events: The mouse driver provides data to the user through the
standard OS/2 asynchronous and parallel 1/0 interfaces described in
other sections of this Chapter.

Mouse events are placed in a circular 1/0 buffer. The conditions
which generate an event are controllable through the event mask

9-54

feature and are available by way of the MouSetEventMask call or the
equivalent mouse IOCtl command.

Mouse events have the following format:

WORD Event Mask
DWORD time stamp in milliseconds
WORD Row absolute / mickeys
WORD Column absolute / mickeys

These fields have the following meaning:

Event Mask: This indicates which event(s) are in this record. See the
MouGetEventMask call description in Technical Reference, Vol. 2 for
details on the event mask bit definitions.

Time: This is a time stamp for the event. It is provided so that higher
level interface packages can provide features like two mouse button
presses with selective timing, and so that mouse and keyboard
monitor events can be synchronized. The time value is the number of
milliseconds since the last IPL.

Row and Column I Mickeys: This may indicate either absolute posi
tion of the mouse pointer shaper relative to the top left corner of the
display screen or mickey mouse movement.

If reporting coordinates (the default), they will be in either pixel or
character offsets, depending on whether the display mode for the
session is graphics or text, respectively.

The application must explicitly invoke reporting of mouse mickey
units with the MouSetDevStatus call. In this case, events are
reported in units of mouse movement. For rows, a negative number
means movement toward the upper part of the screen. For columns,
a negative number means movement toward the left part of the
screen.

Pointer: Maintenance of the pointer (shape and location) is per
formed by the mouse device driver. An application must provide the
mouse driver with a pointer image that the driver will use to draw the
pointer for that session.

Applications utilizing mouse services need to ensure that the mouse
jevice driver and the application do not attempt to update the screen

9-55

at the same location, at the same time. The MOU API provides three
commands to accomplish these functions:

• MouSetPtrShape
• MouDrawPtr
• MouRemovePtr

It is the responsibility of the application to synchronize pointer oper
ations between itself and the pointer shape draw routine.

Display Modes Supported: Graphic modes are only supported in the
OS/2 mode if the application performs all drawing and moving of the
pointer. The controlling application must first issue MouSetDevStatus
and indicate no interrupt time pointer drawing, plus pointer move
ment reported in mickeys. Next, issue VioSetMode to the desired
graphics modes. The graphic modes that are supported are 4, 5, 6,
OOH, OEH, 010H, 011H, 012H, 013H and the 8514/A adapter Advanced
Functions modes.

DOS Mode Mouse Support

This section describes the standard OS/2 mouse device support for
DOS mode applications.

Overview: DOS mode mouse support is based on the Microsoft INT
33H support.

DOS mode Mouse support preserves the INT 33H interface and is
substantially compatible with existing Microsoft support.

Pointer Draw Installation: DOS mode pointer draw installation is
implemented via the MoulnitReal call. The shell issues the
MoulnitReal call during shell initialization. The sequence of events is
as follows:

At SYSINIT (IPL) time, the shell (System Session Manager) issues
MoulnitReal.

9-56

In order to establish addressability between the DOS mode mouse
device driver and the DOS mode screen pointer draw routine:

• The shell issues a MoulnitReal to open the system default Pointer
Draw Device Driver.

• The MoulnitReal issues category 3 (screen) IOCtl 72H to the DOS
mode/OS/2 mode (shared) mode screen pointer draw device
driver. This IOCtl will return the address of the pointer draw
routine entry point.

• The MoulnitReal will then issue category 7 (mouse) IOCtl 5BH to
the DOS mode mouse device driver. This IOCtl passes the pointer
draw address obtained from the preceding category 3, function
72H IOCtl to the mouse device driver.

• MoulnitReal will then return to the shell with a completion code
indicating the result of the DOS mode mouse initialization
process.

Handler/Router: The Mouse Handler/Router is applicable only to
OS/2 mode mouse support. In OS/2 mode, it directs operations
among multiple sessions. In addition, it allows the MouXxx calls to
be intercepted and synchronized between multiple processes in a
session. This interception is done by an environment Manager,
mouse subsystem, or a sophisticated application.

DOS mode mouse support calls may be intercepted by hooking the
INT 33H vector. While there are multiple OS/2 mode sessions
allowed, there may not be more than one DOS mode session. Conse
quently, there is no need for, and no support provided for, a DOS
mode mouse handler/router.

Coordinates: The OS/2 mode mouse reports its coordinate position in
absolute displacement (characters or pixels) from the upper left
corner of the screen. In a similar manner, DOS mode mouse support
reports mouse coordinates relative to the upper left corner of the
screen.

In contrast, the DOS mode mouse support reports the position in
virtual screen units. The virtual display coordinates are relative to
the display mode. Refer to the table on page 9-36 for a list of the sup
ported display modes and their virtual display coordinates.

9-57

The OS/2 Mouse Device Drivers do not limit the virtual display coordi
nate settings. However, if an application wishes to define the display
with a larger virtual coordinate grid than the physical, it should also
be prepared to perform the pointer image drawing because the OS/2
virtual coordinate support will always map back to the virtual display
space. The relative displacement of one unit will depend on the
dimensions of the screen and the associated resolution for the mode
setting on the display while the DOS mode is the foreground session.

Motion: As with OS/2 mode mouse support, the unit of motion for a
mouse is known as a "mickey". This is similar to the pixel, the unit of
addressability on a screen.

IOCtl Calls: There is only one IOCtl supported for the DOS mode
mouse device driver.

Portions of the mouse device driver are used by both the DOS mode
and OS/2 mode device drivers. This shared portion supports the Cat
egory 7 (mouse), Function SBH IOCtl for the DOS mode. This IOCtl is
only used by the shell and then only at shell initialization time.

The OS/2 mode shell (System Session Manager) always exists in the
OS/2 system. It is the shell (at shell initialization time) that calls for
DOS mode mouse device initialization. The purpose of this shell call
is to determine the entry point of the screen pointer draw device
driver. It is this entry point which the mouse device driver will call on
interrupts to have the pointer image updated for the DOS mode
session.

There are no other mouse IOCtls in OS/2 that are supported by the
DOS mode device driver.

Events: The Microsoft INT 33H DOS mode mouse API is designed to
detect and report "changes" in the state of the mouse. Consequently,
the mouse support reports events such as:

• Button Press data
• Button Release data
• Button Number
• Mouse movement

9-58

Pointer: The DOS mode mouse API supports application pointer
image setting. Two commands are provided to enable the application
to modify the DOS mode pointer shape. They are:

• Set Text Pointer Shape
• Set Graphics Pointer Shape

The first command is used while the display is in text modes. The
second command is used while the display is in graphics modes.

Display Modes Supported: All text modes are supported (0, 1, 2, 3
and 7). Graphic modes 4, 5, 6, OOH, OEH, OFH and 010H are also sup
ported.

Mouse Monitors

Some applications need to view mouse device events as they arrive
from the device driver. These applications may wish to consume
some of the mouse events, or they may wish to replace some mouse
events with one or more other mouse events. This is made possible
by the "mouse monitor" function.

The mouse device driver supports device monitors. The device
driver passes information to the monitor in packets consisting of a
word of monitor flags plus the standard mouse device driver event
buffer. The packet format is as described below:

WORD <00> -- Monitor Flags -- open, close, etc.
WORD <02> -- Event mask (see MouGetEventMask for definitions)
DWORD <04> -- Time stamp in milliseconds
WORD <08> -- Absolute horizontal (x or row) screen position
WORD <0A> -- Absolute vertical (y or column) screen position

The following DevHlp monitor control functions are used by the OS/2
Mouse Device drivers to implement mouse monitors:

• MonitorCreate
• Register
• Deregister
• MonWrite
• MonFlush

9-59

The OS/2 Mouse Device Driver uses the DevHlp monitor control func
tions for the following situations:

MonltorCreate

Creates a monitor chain for each OS/2 session, supported by the
system, when the Mouse Device Driver receives and processes the
system's INIT request.

Removes each support session's monitor chain when a DEINSTALL
request is received and processed.

Register

Add a monitor to a monitor chain for the current session when a reg
ister request is received and processed.

The size of the mouse device driver's data buffer is 16 bytes. This is
the value to be used in calculating the sizes of the input/output
buffers required for the DosMonReg call.

Dereglster

Remove a monitor from the current session's monitor chain when a
deregister request is received and processed.

Mon Write

Provide the current session's monitor chain event data at interrupt
time.

Monflush

Flush all data from session's monitor chain.

For additional information concerning device monitor function, see
"Device Monitor Services" on page 6-32.

9-60

DOS Mode INT 33H Mouse API

Please refer to Technical Reference, Vol. 2 for a discussion of the
function calls dealing with Mouse OS/2 mode APls. OS/2 supports a
subset of the Microsoft DOS INT 33H mouse API. Refer to the table on
page 9-36 for the display modes supported.

The Microsoft INT 33H mouse API is available to only those applica
tions executing in the DOS mode. OS/2 mode applications must use
the MOUxxx mouse device interface.

The Mouse Device Driver provides DOS mode applications with an
INT 33H interface to the pointing device hardware. The DOS mode
support is not equivalent to the OS/2 OS/2 mode support instead, it
preserves the Microsoft INT 33H mouse interface.

The DOS mode Mouse does not support:

• Device handles
• Monitor chains
• IOCtl direct function access.
• MOU API function calls.

All DOS mode mouse functions are accessed on the software INT 33H
interface. When a software interrupt 33H is detected, a DOS mode
Mouse Handler Routine is invoked. All function relevant information
is supplied by the caller in the following seven registers:

• AX
• BX
• ex
• DX
• SI
• ES
• DI

There are two states for the DOS mode Mouse support:

• The OS/2 Mouse Device Driver is loaded into the operating
system. When this state is active, all DOS mode Mouse functions
listed in this section are available for user support.

• The OS/2 Mouse Device Driver processes a Delnstallation
request. In this state the DOS mode Mouse support is limited to

9-61

INT 33H, Function call 0. This is also true if an
invalid/unsupported display mode was set.

Mouse Device Driver Interfaces/Requirements: To get DOS mode
mouse support, use MODE= R or MODE= B on the DEVICE= state
ment of CONFIG.SYS.

Mouse Device Driver Button Definitions: The DOS mode button defi
nition depends on the number of buttons on the mouse device.

Button definitions are used on functions 3, 5, 6, and 12. Button
number assignments are as follows:

Two-button mouse:

Bit# Mouse Button
1 Rightmost button
0 Leftmost button

Three-button mouse

Bit# Mouse Button
2 Center button
1 Rightmost button
0 Leftmost button

9-62

Mouse Device Driver Function Summary: The software INT 33H inter
face is provided only for DOS mode support. The INT 33H Mouse API
provides the following functions:

Function Performed
O Mouse Installed Flag and Reset
1 Show Mouse Pointer
2 Hide Mouse Pointer
3 Get Mouse Pointer Position & Button Status
4 Set Mouse Pointer Position
5 Get Button Press Information
6 Get Button Release Information
7 Set Min and Max Horizontal Position
8 Set Min and Max Vertical Position
9 Set Graphics Pointer Shape
10 Set Text Pointer Shape
11 Read Mouse Motion Counters
12 Set User-Defined Subroutine Input Mask
13 Light Pen Emulation Mode ON
14 Light Pen Emulation Mode OFF
15 Set Mickey/Pixel Ratio
16 Conditional OFF
19 Set Double Speed Threshold
20 Swap User-defined Subroutine
21 Query Save Mouse State Storage Requirements
22 Save Mouse Driver State
23 Restore Mouse Driver State

9-63

The function number and the function specific parameters are passed
to the Mouse Device Driver in the four general purpose registers and
the SI, DI and ES registers.

• The AX register is always used to contain the requested function
number.

• The BX, CX, and DX registers are used as needed for function
specific input parameters.

• SI and DI are used for function call 16.

• ES is used for function calls 9 and 12.

On return from a software interrupt 33H function call, the general
purpose registers contain return codes and/or mouse requested data
items. The registers used are function-specific and detailed under
each individual call description.

All input parameters are checked on function calls requiring parame
ters.

If an INT 33H function call is issued when the Mouse
Hardware/Software is not properly initialized, the call will return an
error code of 0 in AX.

The INT 33H Interface is based on the concept of a virtual display
screen coordinates. All coordinates are input/output relative to a
default range of rows and columns. The default virtual range is
required for the OS/2 Mouse Device Driver to perform the pointer
image tracking on the display. However, an application is not
stopped from altering the virtual display coordinate limits through the
INT 33H interface. If an application alters virtual display coordinate
grids to be greater than the physical display resolution, the pointer
tracking will be unpredictable and all virtual coordinates read from
the INT 33H interface may be inaccurate. This is properly support
able if the application which set the virtual coordinate ranges also
assumes responsibility of pointer image drawing. The application
can assume the INT 33H motion counters will not be affected and
therefore is a stable source of pointer image motion data.

The mouse device driver maps the physical display resolution to the
virtual display screen coordinate system independent of the physical
display mode.

9-64

INT 33H-O Installed Flag and Reset

Purpose Determines if the DOS mode Mouse device is present.

If the appropriate mouse device hardware and software are
available, this function will return a value of -1 in the AX reg
ister. In addition, this call will set/reset all of the software
tracking mechanisms used by the other DOS mode mouse
function calls to their default values.

If the mouse hardware and/or software is not available for
interaction, or if the video mode is not supported, this call
will return a value of 0 in AX.

Input Parameters:

AX = function code of 0
BX= not used
ex= not used
DX= not used

Return codes/data values:

If mouse support is not available, then
AX= 0
If mouse support is installed then

BX= -1
else (mouse support is available)

AX= -1
BX = number of mouse device buttons supported.

The following table defines the default function values set
when Mouse support is available (AX = -1):

Function Default value
Mouse pointer position Screen center
Pointer redraw flag -1, Pointer hidden
Graphics pointer image Mouse default image
Text pointer image Reverse video
Interrupt call mask All O's, no routine in use
Light pen emulation mode Enabled
Mickey/pixel ratio (horizontal) 8 to 8
Mickey/pixel ratio (vertical) 16 to 8
Min/Max ptr position (horizontal) Display/mode dependent
Min/Max ptr position (vertical) Display/mode dependent

9-65

INT 33H-1 Show Pointer

Purpose Requests that the mouse device driver draw the pointer
image and update the pointer redraw flag.

This function determines if the mouse pointer image is
already visible (pointer redraw flag = 0). If the pointer
image is already visible, this function is a no-op.

If the pointer redraw flag is not 0, this call increments the
pointer redraw flag. After the pointer redraw flag is incre
mented, it is checked again to see if it is equal to 0.

If the redraw flag was incremented to 0, the pointer image is
redrawn on the display screen.

If the internal cursor flag is already 0, this function has no
effect.

This function also clears conditional off (function 16) values.

Input Parameters:

AX = function code of 1
BX= not used
ex= not used
DX= not used

Return codes/data values:

9-66

AX = Unchanged
BX = Unchanged
ex= Unchanged
DX = Unchanged

INT 33H-2 Hide Pointer

Purpose Requests the mouse device driver to hide the pointer image
and update the pointer redraw flag.

This function decrements the mouse pointer redraw flag. If
the pointer image is already hidden, the call returns to the
application. If the mouse pointer redraw flag was decre
mented to -1, then the pointer image is hidden.

When the cursor is hidden, the mouse device driver con
tinues to track the motion of the pointer on the screen. It
simply does not draw the pointer image on the display.

This function is used to ensure that the pointer device driver
will not interfere with data being written on the screen by
application programs.

This function always decrements the cursor flag regardless
of its current value.

Input Parameters:

AX = function code of 2
BX= not used
ex= not used
DX= not used

Return codes/data values:

AX = Unchanged
BX = Unchanged
ex = Unchanged
DX = Unchanged

9-67

INT 33H-3 Get Position & Button Status

Purpose Returns the current mouse button status and pointer image
screen coordinates ((columns, rows) or (x, y)).

Input Parameters:

AX = function code of 3
BX= not used
ex= not used
DX= not used

Return codes/data values:

9-68

AX = Unchanged
BX = mouse button status
ex = horizontal (x or column) pointer coordinate
DX = vertical (y or row) pointer coordinate

The mouse button status value is a bit mask indicating which
mouse button(s) are currently pressed/released.

A SET bit is defined as a button being pressed.

Bit# Value/meaning
3-15 Reserved = 0

For two button mouse

Bit# Value/meaning
2 Reserved = 0
1 Set if rightmost button pressed
0 Set if leftmost button pressed

For three button mouse

Bit# Value/meaning
2 Set if center button pressed
1 Set if rightmost button pressed
0 Set if leftmost button pressed

The pointer coordinates are relative to the range defined for
the mouse under the virtual terminal concept. The ranges
are display mode dependent. See "Mouse Screen
Resolutions" on page 9-36 for a description of the virtual
screen resolution by mode.

INT 33H-4 Set Pointer Position

Purpose Assigns the mouse pointer image to a new screen location.

If the coordinates are too large, or too small, the mouse
pointer position is set to the maximum or minimum screen
values, respectively.

Input Parameters:

AX = function code of 4
BX= not used
ex = new pointer horizontal coordinate
DX = new pointer vertical coordinate

Return codes/data values:

AX = Unchanged
BX = Unchanged
ex = Unchanged
DX = Unchanged

INT 33H-5 Get Button Press Information

Purpose Returns a specified button's status information.

Button status information consists of:

• Up/down state of all buttons
• A button press counter value
• The last button press screen position coordinates

The button press counter contains the number of times the
requested button was pressed since the last time this call
was issued.

The button press counter is reset to O by this call. There is
no overflow checking performed for the button press
counter(s) when they are updated.

The button press screen position coordinates are always
reported in a virtual display mode value.

The pointer coordinates are relative to the range defined for
the mouse under the virtual terminal concept. The ranges
are display mode dependent. See "Mouse Screen
Resolutions" on page 9-36 for a description of the virtual
screen resolution by mode. The values follow:

9-69

Input Parameters:

AX = function code of 5
BX = button status requested

0 = leftmost button
1 = rightmost button
2 = center button

ex= not used
DX= not used

Return codes/data values:

AX = Bit-mapped as follows:

Bit# Meaning
0 = 0 If leftmost button is UP, 1 if down
1 = 0 If rightmost button is UP, 1 if down
2 = O If center button is UP, 1 if down
3-15 = Not used

BX = Button counter value
ex = Last button press horizontal coordinate position
DX = Last button press vertical coordinate position

This function uses AX to return a value. If the input param
eter in BX is illegal, then the output registers are returned
as:

AX= 0
BX= 0
ex= o
DX= 0

INT 33H-6 Get Button Release Information

Purpose Returns a specified button's status information.

9-70

Button status information consists of:

• up/down state of all buttons
• a button release counter value
• the last button release screen position coordinates.

The button release counter will contain the number of times
the requested button was released since the last time this
call was issued.

The button release screen position coordinates are always
reported in a virtual display mode value.

The pointer coordinates are relative to the range defined for
the mouse under the virtual terminal concept. The ranges
are display mode dependent. See "Mouse Screen
Resolutions" on page 9-36 for a description of the virtual
screen resolution by mode. The returned values are:

Input Parameters:

AX = function code of 6
BX = button status requested

0 = leftmost button
1 = rightmost button
2 = center button

ex= not used
DX= not used

Return codes/data values:

AX = Bit-mapped as follows:

Bit# Meaning
0 = O If leftmost button is UP, 1 if down
1 = 0 If rightmost button is UP, 1 if down
2 = O If center button is UP, 1 if down
3-15 = Not used

BX = Button counter value
ex = Last button press horizontal coordinate position
DX = Last button press vertical coordinate position

This function uses AX to return a value. If the input param
eter in BX is illegal, then the input registers are returned
as:

AX= 0
BX= 0
ex= o
DX= 0

9-71

INT 33H-7 Set Min & Max Horiz Position

Purpose Assigns virtual screen minimum and maximum horizontal
coordinate positions.

By defining virtual screen horizontal minimum and
maximum coordinates, the pointer image is limited to a
subset of the physical display horizontal movement area.

If the value is too small, the current minimum value is used.
Values larger than the maximum, the physical display resol
ution, may be used but with unpredictable pointer image
tracking results.

If the maximum value is less than the minimum, then the two
values are swapped.

If the pointer image is outside of the area when the call is
made, it is moved to just inside the area.

Input Parameters:

AX = function code of 7
BX= not used
ex = minimum virtual screen horizontal position
DX = maximum virtual screen horizontal position

Return codes/data values:

9-72

AX = Unchanged
BX = Unchanged
ex = Unchanged
DX= Unchanged

INT 33H-8 Set Min & Max Vert Position

Purpose Assigns virtual screen minimum and maximum vertical coor
dinate positions.

By defining virtual screen vertical minimum and maximum
coordinates, the pointer image is limited to a subset of the
physical display vertical movement area.

If the value is too small, the current minimum value is used.
Values larger than the maximum, the physical display resol
ution, may be used but with unpredictable pointer image
tracking results.

If the maximum value is less than the minimum the two
values are swapped.

If the pointer image is outside of the area when the call is
made, it is moved to just inside the area.

Input Parameters:

AX = function code of 8
BX= not used
ex = minimum virtual screen vertical position
DX = maximum virtual screen vertical position

Return codes/data values:

AX = Unchanged
BX = Unchanged
ex = Unchanged
DX = Unchanged

9-73

INT 33H-9 Set Graphic Pointer Block

Purpose Assigns a new graphics mouse pointer image.

This function defines the shape, color and hot spot of the
mouse pointer when the display is in graphics mode.

The following pointer image information must be provided:

• New pointer image horizontal hot spot coordinate
• New pointer image vertical hot spot coordinate
• Pointer to the new pointer image buffer

The hot spot coordinates are pixel value indices relative to
the upper left corner of the pointer. The relative hot spot
coordinates must be in the range of +I- 16.

The pointer image buffer must have a length of 64 bytes.
The pointer image buffer is logically divided into two bit
level masks:

• The first 32 bytes define the screen mask. The screen
mask determines whether the pointer pixels are part of
the shape or background.

• the last 32 bytes define the pointer mask. The pointer
mask determines how the pixels under the pointer con
tribute to the color of the pointer.

The pointer draw routine first logically ANDs the screen
mask with the 256 bits of data that define pixels under the
pointer. Then it logically XORs the pointer mask with the
result of the AND operation.

In modes 6, OOH, OEH, OFH and 010H each screen bit
defines the color of a single pixel. Thus, one bit in the
screen mask and one bit in the pointer mask define the
pixel's color when the pointer is over it.

In modes 4 and 5, each pair of screen bits defines the color
of a single pixel. Consequently, a pair of bits in the screen
mask and a pair in the pointer mask define a pixel's color.

Input Parameters:

9-74

AX = function code of 9
BX = pointer hot spot (horizontal position)
ex = pointer hot spot (vertical position)

DX = address of screen and pointer masks
ES = segment of screen and pointer masks

Return codes/data values:

AX = Unchanged
BX = Unchanged
CX = Unchanged
DX = Unchanged
ES = Unchanged

INT 33H-10 Set Text Pointer

Purpose Defines a text (character) pointer image.

Input Parameters:

AX = Function code of 10
BX = pointer select

0 selects the software text pointer
1 selects the hardware cursor

CX = Screen mask value/hardware cursor start scan line
DX = Pointer mask value/hardware cursor stop scan line

For the software text pointer, the masks (CX and DX) are
bitmapped as follows:

Bit# Meaning
15 Blinking
14-12 Background Color
11 Intensity
10-8 Foreground Color
7-0 Character

Return codes/data values:

AX = Unchanged
BX = Unchanged
CX = Unchanged
DX = Unchanged

9.75

INT 33H-11 Read Mouse Motion Counters

Purpose Returns the number of mickeys the mouse has moved hor
izontally and vertically since the last time this function was
called.

The returned value is between -32768 and 32767.

A positive number indicates motion to the right for horizontal
motion, and to the bottom for vertical motion.

This call sets the counts to 0. Overflow is ignored.

Input Parameters:

AX = Function code of 11
BX= Not used
ex= Not used
DX= Not used

Return codes/data values:

9-76

AX= Unchanged
BX = Unchanged
ex = Horizontal count
DX = Vertical count

INT 33H-12 Set User-defined Subroutine

Purpose Sets the call mask and subroutine address for the mouse
hardware interrupts.

The mouse driver will call the designated subroutine if any
of the mask conditions are met.

To cause the subroutine to be invoked for a certain condi
tion, set the corresponding bit in the call mask to a 1. If the
subroutine is not to be invoked for a condition, the corre
sponding bit should be a 0.

Input Parameters:

AX = Function code of 12
BX= Not used
ex = Call mask
DX = Offset of subroutine
ES = Segment of subroutine

The call mask is a word value with the following bit map:

Bit# Meaning
15-7 Reserved (0)
6 Center button released
5 Center button pressed
4 Rightmost button released
3 Rightmost button pressed
2 Leftmost button released
1 Leftmost button pressed
O Pointer position changed

Return codes/data values:

AX= Unchanged
BX = Unchanged
CX = Unchanged
DX = Unchanged
ES = Unchanged

When the mouse driver calls the subroutine, it loads the fol
lowing values into the general purpose registers:

AX = Condition mask (similar to the call mask except a
bit is set only if the condition has occurred.)

BX = Button State
CX = Pointer Coordinate (horizontal)

9-77

DX = Pointer Coordinate (vertical)
SI = Last raw vertical mickey count read from mouse
DI = Last raw horizontal mickey count read from mouse

Note: Because the OS register contains the mouse driver
data segment, the user's subroutine must set it to its own
data segment value.

INT 33H-13 Light Pen Emulation On

Purpose Instructs the mouse device driver to emulate a light pen.

Calls to the PEN function in IBM Basic will return the pointer
position at the last "pen down".

The "pen down" state is created by pressing the leftmost
and rightmost buttons at the same time.

The "pen off the screen" state occurs when either button is
up.

Input Parameters:

AX = Function code of 13
BX= Not used
ex= Not used
DX= Not used

Return codes/data values:

9-78

AX = Unchanged
BX = Unchanged
CX = Unchanged
DX = Unchanged

INT 33H-14 Light Pen Emulation Off

Purpose Disables the mouse device driver light pen emulation.

Input Parameters:

AX = Function code of 14
BX= Not used
ex= Not used
DX= Not used

Return codes/data values:

AX = Unchanged
BX = Unchanged
ex = Unchanged
DX = Unchanged

9-79

INT 33H-15 Set Mickey/Pixel Ratio

Purpose Sets the mickey-to-pixel ratio for horizontal and vertical
mouse motion.

The ratios specify the number of mickeys per eight pixels.
The values must be in the range:

1 <=value<= 32767

The default horizontal ratio is 8 to 8. With this ratio, mouse
travel to move the pointer image completely across the
screen horizontally depends on the mouse device being
used. The following table describes the movement by
device.

The default vertical ratio is 16 mickeys to 8 pixels. With this
ratio, mouse travel to move the pointer image completely
across the screen vertically depends on the mouse device
being used. The following table describes the movement by
device:

Manufacturer Mouse PPI Mouse Horlz Vert
Travel
4.0 in
2.0 in
2.0 in
4.0 in
2.0 in
4.0 in
4.0 in
2.0 in

Part No
Microsoft 037-099 100
Microsoft 037-199 200
Microsoft 037-299 200
Microsoft 039-099 100
Microsoft 039-199 200
Mouse Systems 900120-214 100
Visi On 69910-1011 100
PS/2 6450350 200

Input Parameters:

AX = Function code of 15
BX= Not used

Type
Bus
Bus
In Port
Serial
Serial
Serial
Serial
ln-Proc

ex = Horizontal Mickey/Pixel Ratio
DX = Vertical Mickey/Pixel Ratio

Return codes/data values:

9-80

AX = Unchanged
BX= Unchanged
ex= Unchanged
DX = Unchanged

Travel
6.4 in
3.2 in
3.2 in
6.4 in
3.2 in
6.4 in
6.4 in
3.2 in

INT 33H-16 Conditional Off

Purpose Defines a region on the screen for updating.

If the mouse pointer is in the defined region, or moves into
it, this function will hide the defined region while it is being
updated. After this function is called, function 1 must be
called later to show the pointer again.

This function is similar to function 2, but is intended for
advanced applications that need quicker screen updates.
Because of the number of parameters required, this function
cannot be called from interpreted BASIC.

Input Parameters:

AX = Function code of 16
BX= Not used
CX = Left Column (x or width) screen coordinate
DX = Upper Row (y or height) screen coordinate
SI = Right Column (x or width) screen coordinate
DI = Lower Row (y or height) screen coordinate

Return codes/data values:

AX = Unchanged
BX = Unchanged
CX = Unchanged
DX = Unchanged

INT 33H-19 Set Dbl Speed Threshold

Purpose Sets the threshold speed for doubling pointer motion on the
screen.

The default value is 128 mickeys per second. If the mouse
moves faster than this number, pointer motion doubles in
speed.

Input Parameters:

AX = Function code of 19
BX= Not used
CX =Not used
DX = Threshold speed in mickeys/second

9-81

Return codes/data values:

AX = Unchanged
BX = Unchanged
CX = Unchanged
DX = Unchanged

INT 33H-20 Swap User-defined Subroutine

Purpose Sets the call mask and subroutine address for the mouse
hardware interrupts and returns the previous values of the
call mask and subroutine address.

The mouse driver will call the designated subroutine if any
of the mask conditions are met.

To cause the subroutine to be invoked for a certain condi
tion, set the corresponding bit in the call mask to a 1. If the
subroutine is not to be invoked for a condition, the corre
sponding bit should be a 0.

Input Parameters:

AX = Function code of 20
BX= Not used
ex = Call mask
DX = Offset of subroutine
ES = Segment of subroutine

The call mask is a word value with the following bit map:

Bit# Meaning
15-7 Reserved (0)
6 Center button released
5 Center button pressed
4 Rightmost button released
3 Rightmost button pressed
2 Leftmost button released
1 Leftmost button pressed
0 Pointer position changed

Return codes/data values:

9-82

AX = Unchanged
BX= Unchanged
ex = Previous call mask
DX = Offset of previous subroutine
ES = Segment of previous subroutine

When the mouse driver calls the subroutine, it loads the fol
lowing values into the general purpose registers:

AX = Condition mask (Similar to the call mask except a bit
is set only if the condition has occurred.)

BX = Button State

CX = Pointer Coordinate (horizontal)

DX = Pointer Coordinate (vertical)

SI = Last raw vertical mickey count read from mouse

DI = Last raw horizontal mickey count read from mouse.

Note: Because the OS register contains the mouse driver
data segment, the user's subroutine must set it to its own
data segment value.

Because this call occurs at interrupt time, it should process
the information quickly and return. If it does not, interrupts
could be lost.

9-83

INT 33H-21 Query Save Mouse State Storage
Requirements

Purpose Get the size of the buffer required to store the current state
of the mouse driver.

Input Parameters:

AX = Function code of 21
BX= Not used
ex= Not used
DX= Not used

Return codes/data values:

AX = Unchanged
BX = Size of buffer required to store the mouse state
ex = Unchanged
DX = Unchanged

INT 33H-22 Save Mouse Driver State

Purpose Save the mouse driver state in a user buffer.

This function moves the mouse driver data, required to
restore the mouse driver state, into the user defined buffer.
This function is used in conjunction with function 23 when
the mouse driver state must be saved and later restored.

Input Parameters:

AX = Function code of 22
BX= Not used
ex= Not used
DX = Offset of buffer
ES = Segment of buffer

Return codes/data values:

9-84

AX = Unchanged
BX = Unchanged
ex = unchanged
DX = Unchanged
ES = Unchanged

INT 33H-23 Restore Mouse Driver State

Purpose Restore the mouse driver state from a user buffer.

This function restores mouse driver data previously saved
by function 22 (Save Mouse Driver State). This function is
used in conjunction with function 23 when the mouse driver
state must be saved and later restored.

Input Parameters:

AX = Function code of 23
BX= Not used
ex= Not used
DX = Offset of buffer
ES = Segment of buffer

Return codes/data values:

AX = Unchanged
BX = Unchanged
ex = Unchanged
DX= Unchanged
ES = Unchanged

9-85

VDisk Device Driver
OS/2 includes a Virtual Disk installable device driver. This driver,
called VDISK.SYS supports the command line configuration shown
below.

In CONFIG.SYS:

device=[d:][path]vdisk.sys [bbbb] [ssss] [dddd]

bbbb The first numeric value, if present, is the disk size in kilo
bytes. The default is 64, the minimum value is 16.

ssss The second numeric value, if present, is the sector size in
bytes. The default is 128. Allowed values are 128, 256, 512,
and 1024.

dddd The third numeric value, if present, is the number of root
directory entries. The default is 64, the minimum value is 2
and the maximum value is 1024.

VDISK adjusts the value of dddd to the nearest sector size
boundary. For example, if you give a value of 25, and the
sector size is 512 bytes, 25 is rounded up to 32, the next mul
tiple of 16, (there are 16 32-byte directory entries in 512
bytes).

Note: In the event that there is not enough memory to create the
VDISK volume, VDISK will try to make a DOS volume of 16K size.

The device driver VDISK.SYS calls the OS/2 memory manager to allo
cate its memory requirements.

Note: The OS/2 file system cannot accept a root directory containing
more than 255 sectors. For example, a 64K RAM disk with 128 byte
sectors and 1024 directory entries requires 256 sectors. This should
be considered by the user when setting these parameters. In the
above example, the maximum number of directories the user should
specify when using 128 byte sectors is 1020.

9-86

CLOCK$ Device Driver

OS/2 assumes that the CMOS real-time clock is available in the
system. The CLOCK$ device defines and performs functions like any
other character device except that it is identified by a bit in the attri
bute word. OS/2 uses this bit to identify the device driver, and there
fore, this device can take any name. The device has been named
"CLOCK$" to avoid possible conflicts with any files named "CLOCK."

OS/2 on the Personal Computer AT makes use of the clock/calendar
chip for its clock ticks. This device is not available on other models
of the PC family and is therefore not programmed by the DOS mode
applications. When the DOS mode is in the foreground, the regular
18.2 HZ clock ticks arrive and are intercepted and/or disposed of in a
DOS 3.3 compatible manner. When the DOS mode is in the back
ground, the 18.2 HZ clock is masked off. The clock/calendar clock
continues to run in both modes.

The CLOCK$ device itself -- the driver that sets and returns time of
day -- is dual mode and services both modes. There is no reserva
tion of the device; the time can be set from either mode.

The CLOCK device is unique because OS/2 reads or writes a 6-byte
sequence which encodes the date and time. Writing to this device
sets the date and time, and reading from it gets the date and time.

The following diagram illustrates the binary time format used by the
CLOCK device:

9-87

CLOCK Device Time Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

Days since 1-1-80 Minutes Hours Sec/100 Seconds
Low-byte Hi-byte

The CLOCK$ device driver sets and maintains the following fields in
the Global lnfoSeg:

TIME

Time from 1-1-1970 in seconds
Milliseconds
Hours
Minutes
Seconds
Hundredths
Ti mer interval

DATE

Day
Month
Year
Day of week

The CLOCK$ device driver ensures that the date, time from 1-1-70 in
seconds, and time of day (hours, minutes, seconds) fields remain syn
chronized with the CMOS clock and that the hundredths of seconds
field is correctly synchronized with the seconds field.

9-88

Console Device Drivers (Screen and Keyboard)

In OS/2, the generic console device driver has been replaced by two
independent device drivers:

Screen or console output (SCR$)
Keyboard input (KBD$).

The KBD$ device driver supports the OS/2 interrupt-driven architec
ture. The SCR$ and KBD$ device drivers are part of the resident
device driver set.

Keyboard Device Driver KBD$

The keyboard device driver interfaces the physical keyboard to appli
cations through various levels of routines.

9-89

Keyboard System Structure

r------------------------------------~

I LVL 2 or 3 !
! Mon 1 Mon 2

1

I
I I

i.\f ~~~------~~--~~---~~::::=::::::::== ::::::::::::::::::::::=:::::::::::=::::====~--
K
E
y
B i---....:.H.:...:Wc..:....__~
0 Interrupt
A
R
D

Interrupt
Handler

(1)

Scan Code
Scan Code (1)

Transaction

XI ate
Table

XI ate
Table

XI ate
Table

Translation

KCB

Code Page
Control Block

US/437

CP 1

CP2

Keyboard
Input
Buffer

Handler

KIB

(1)

Monitor
Dispacher

Unless
Monitors
Registered

Read Char. (2)
Data Rec.
IOCiL

I LVLO
-- ------~-------------------------
LVL 3 I

KbdCharin (3)

--1>: DATA FLOW
--.. : CONTROL FLOW

APPLICATION

9-90

Note:

(1) Is part of the device driver interrupt handler
(2) Is part of the device driver strategy routine
(3) Is part of the base sub-system/router

The device driver receives the make-and-break keystroke scan codes
and performs one or more of the following operations:

• Translates the scan code to an ASCII character

• Recognizes the key as a special key and signals the appropriate
routine for processing

• Passes the key to the monitor dispatcher for further custom proc
essing by monitors

• Places the key character data record into the appropriate ses
sion's keyboard input buffer.

• Calls the following sub-system functions to support handles:

KbdOpen - Create a new logical keyboard

KbdClose - Delete a logical keyboard

KbdGetFocus - Bind the real keyboard to the logical one

KbdFreeFocus - Free the real to logical keyboard bind.

The keyboard device driver supports code page switching. The fol
lowing is a result of this support:

• Each handle may use one of two system-wide code pages. One
is the current and the other may be swapped to. Each handle
may also use the PC US 437 code page.

• The code pages to use are defined in CONFIG.SYS with the
CODEPAGE and DEVINFO commands.

• The code pages are for one language only. Code pages for dif
ferent languages could result if default code pages are not
accepted during execution of the KEYB command. This could
occur when attempting to load translate tables in a nonsupported
code page for that language.

• The user is allowed, via the KEYB command, to change the lan
guage layout of the keyboard.

9-91

• The user may control, by the KbdSetCp sub-system function or
the CHCP command, which of the two code pages is used in the
handle for translation.

• Two sub-system functions support code page switching:

KbdSetCp - Set to an installed code page, load if necessary.

KbdGetCp - Get the current in-use code page.

• KbdSetCustXt - Adds a custom code page option

• KbdXlate - Translates a scan code

• KbdSetCp, KbdGetCp,and KbdXlate may be replaced in the sub
system by the use of the KbdRegister function.

• The code page header contains the code page number, the lan
guage ID of the table, the language default table indicator, and
the keyboard type indicator.

Keyboard Initialization

Prior to CONFIG.SYS processing, the device driver and keyboard sub
system routines are loaded. As part of the device driver load, the
keyboard initialization routine is executed. At this time level 0
memory is allocated and initialized. This memory will contain the
KCBs, KIB, code pages, and related control blocks. A KCB is created
for each possible session; this KCB is referred to as the 'default'
logical keyboard for that session and is initialized to use the default
code page.

At the end of CONFIG.SYS processing, after the CODEPAGE and
DEVINFO statements have been processed, the code pages must be
initialized. This is done by calling KbdSetCp.

Keyboard Run Time Operation

When a session is started, a default logical keyboard will already
exist. This keyboard is identified to the sub-system by a 0 handle.
Any program may share the keyboard by using handle 0.

If multiple programs use the default keyboard, they must coordinate
their access to it. The default keyboard logically terminates when the
session terminates.

9-92

If a program wants a logical keyboard separate from the default
logical keyboard, it does a KbdOpen. This open creates a new logical
keyboard, but does not make the physical to logical bond. As a result
of an open, a handle unique within a process is returned to the caller
which is later used to identify the logical keyboard. The handle own
ership is tied to the process; handles are not inherited. Use of
KbdOpen does not prohibit the process from using the default key
board.

To make the physical to logical bond, the process issues the
KbdGetFocus, using the handle identifying the logical keyboard.
Once the bond is made, the logical keyboard may receive keystrokes.
Note that type-ahead keystrokes are not possible before the bond is
made. The Keyboard API may ,only be used when the bond is made
or with handle 0 when no other handle has the bond.

The bond represents a foreground keyboard; one exists per session.
This is either the default or a created logical keyboard.

Breaking the bond is done with the KbdFreeFocus call. If other
threads have a KbdGetFocus outstanding, the thread having the
highest priority will get the bond. If there are no KbdGetFocus calls
outstanding, the physical keyboard will revert to the default keyboard.

A logical keyboard is destroyed with a KbdClose. The close will do a
free focus, flush buffer, and de-allocate the KCB and related memory.
Close will be done by the process kill mechanism, if not done by the
program.

Keystroke Monitors

Some applications need to view the raw keystrokes as they arrive
from the keyboard at interrupt time. These applications may wish to
consume, modify, or replace keystrokes. This is made possible by
the keystroke monitor function.

When the DosMonReg call is used with keyboard devices, the index
indicates the session, from 0 to 15 (see DosGetlnfoSeg). -1 indicates
the session of the calling thread.

The size of the keyboard device driver's data buffer is 16 bytes. This
is the value to be used in calculating the sizes of the input/output
buffers required for the DosMonReg call.

9-93

The keyboard device driver supports device monitors. The keyboard
device driver passes its information to the monitors in packets which
contain the following information:

Keystroke Monitor Data Packet Definition

MonFlagWord: Word

c XlatedChar: Byte
h
a XlatedScan: Byte
r
D DBCS Status: Byte

a
t DBCS Shift Byte

a Shift State: Word

R Milliseconds: DWord e
c
0
r
d

KbdDDFlagWord Word

MonFlagWord Lower Byte: Monitor Dispatcher Flags

Bit# Meaning

7-3 RESERVED = 0
Should be passed untouched on packets being passed on.
Should be set to 0 on packets that are being inserted by a
monitor.

2 FLUSH
This is a flush packet. No other information in the packet has
meaning. Monitor should flush its internal buffers and pass
the packet quickly.

CLOSE
Not used by keystroke monitors.

0 OPEN
Not used by keystroke monitors.

9-94

MonFlagWord Upper Byte: Original Scan code, as read from the hard
ware. If 0, this packet was inserted for other reasons, see
"KbdDDFlagWord" on page 9-95. Monitors pass this field untouched.
Monitors should put a 0 here if they insert a packet.

CharData Record: Same as defined by the KbdCharln function call in
Technical Reference, Vol. 2.

KbdDDFlagWord

Bit# Meaning

15, 14 Available.
These bits are available for communication between monitors.
They are not used by the device driver in any way. The
monitor applications coordinate the use of these flags.

13-10 RESERVED = 0
Monitors should pass these flags as is. They should set these
flags to O in packets that they create.

9 ACCENTED
This key was translated using the previous key passed, which
was an accent key (Refer to 10H ACCENT KEY on page 9-98).
In the case where an accent key is pressed and the following
key doesn't use the accent, a packet containing the accent
character itself is first passed, with this bit set (and the scan
code field of MonFlagWord, see above, would be 0, indicating
a non-key-generated record). Then a valid packet containing
that following keystroke is passed, without this bit set.

8 MULTIMAKE
The translation process sees this scan code as a typeamatic
repeat of a toggle key or a shift key. Because toggle and shift
keys only change state on the first make after each key-break,
no state information is changed (for example, the NUMLOCK
toggle bit in the shift status word is not changed, even though
this may be the Numlock key). If this key is a valid character,
it will not go into the KIB once this bit is set.

7 SECONDARY
The scan code prior to the one in this packet was the SEC
ONDARY KEY PRl:FIX (see below).

9-95

6 KEY BREAK
This record is generated by the release (the BREAK) of the key
involved.

5-0 Numeric field that tells the device driver that this is a key that
requires action. The number in this field is filled in during the
translation of the scan-code. The value here allows the device
driver to act on keystrokes without regard for what scan codes
the keyboard uses or character codes that the current trans
lation process may be using. The following values are cur
rently defined:

VALUE FOR KEYS THAT ARE ALWAYS PLACED IN THE KIB

O - No special action. Always place in KIB.

Values Acted On Prior to Passing Packet to Monitors

Except for the final keystroke of the REBOOT and DUMP key
sequences, all of these values are passed on to the monitors. They
will NOT be placed in the KIB. The XlatedChar and XlatedScan fields
are undefined for these values:

Scan Code Meaning

01H ACK
This scan code was a keyboard acknowledge. Personal Com
puter AT attached keyboards would set this value on a FAH
scan code.

02H SECONDARY KEY PREFIX
This scan code was a prefix scan code generated by the
Enhanced Keyboard, indicating that the next scan code coming
is one of the secondary keys that exists on that keyboard.
Usually set on a EOH scan code or a hex E1 scan code.

03H KBD OVERRUN
This scan code was an over-run indication from the keyboard.
On a Personal Computer AT attached keyboard, this value
would be set on a FFH scan code.

04H RESEND

9-96

This scan code was a "resend" request from the keyboard. On
a Personal Computer AT attached keyboard this value would
be set on a FEH scan code.

05H REBOOT KEY
This scan code is the key that completes the multi-key restart
sequence. On a Personal Computer AT attached keyboard this
value would be used when the Ctrl +Alt+ Delete sequence is
seen.

06H DUMP KEY
This scan code is is the key that completes the multi-key Stand
Alone Dump request sequence. On a Personal Computer AT
attached keyboard, this value would be used on completion of
the second consecutive press of Ctrl +Alt+ Numlock without
other keystrokes between the two presses.

07H-OAH See "Values Acted On After Passing Packet To Monitors."

OBH Invalid Accent Combination
This scan code is one that follows an accent scan code, but the
combination was not valid and neither key is put in the KIB.

Note: This is set if the Canadian-French code pages are in
use.

OC-OFH RESERVED = 0
(Will be treated as UNDEFINED, see entry 3FH.)

Values Acted On After Passing Packet To Monitors

Except where noted, these will be placed in the KIB when the device
driver is in BINARY mode, but will not be placed in the KIB when the
device driver is in ASCII mode. Also noted are those that never get
placed in the KIB.

Scan Code Meaning

07H SHIFT KEY
This scan code translated as a shift key and has affected the
shift status fields of the CharData record but does not generate
a defined character, so it will not be placed in the KIB. The
XlatedChar field is undefined.

08H PAUSE KEY
This scan code was translated as the key sequence meaning
PAUSE. On a Personal Computer AT attached keyboard, this
value will be used when the Ctrl + Numlock sequence is seen.
The key itself will not be placed in the KIB.

9-97

09H PSEUDO-PAUSE KEY
This scan code is translated into the value that is treated as
the PAUSE key when the device driver is in ASCII mode. On
most keyboards this would be when the Ctrl + S combination is
seen. The key itself will not be placed in the KIB.

OAH WAKE-UP KEY
This scan code is the key that follows a PAUSE KEY or
PSEUDO-PAUSE KEY which will cause the pause state to be
ended. The key itself will be not be placed in the KIB.

1 OH ACCENT KEY
This scan code was translated as a key to be used in trans
lating the NEXT key to come in. The packet containing this
value is passed when the accent key is hit, but it is not put into
the KIB (unless the ACCENTED bit is on). Refer to ACCENTED
bit on page 9-95. The next key determines this decision. If the
next key is one that can be accented, then it will be passed by
itself, with the ACCENTED bit on. If that next key cannot be
accented by this accent, then two packets are passed. The
first contains the character to print for the accent itself, has
this value (ACCENT KEY) and has the ACCENTED flag (which
says it's okay to put it in the KIB). The second packet contains
a regular translation of that following key.

Note: The two packets get passed for every language except
Canadian-French. See entry OBH.

11H BREAK KEY
This scan code was translated as the key sequence meaning
BREAK. On the Personal Computer AT attached keyboard, this
value will be used where the Ctrl +Break sequence is seen.

12H PSEUDO-BREAK KEY
This scan code is translated into the value that is treated as
the BREAK key when the device driver is in ASCII mode. On
most keyboards this would be when the Ctrl + C combination is
seen. Note that the event generated by this key is separate
from that generated by the BREAK KEY when in the binary
mode.

13H PRINT SCREEN KEY

9-98

This scan code was translated as the key sequence meaning
PRINT SCREEN. On a Personal Computer AT attached key
board, this value will be used where the Shift-PrtSc sequence
is seen.

14H PRINT ECHO KEY
This scan code was translated as the key sequence meaning
PRINT ECHO. This value will be used where the Ctrl + PrtSc
sequence is seen.

15H PSEUDO-PRINT ECHO KEY
This scan code is translated into the value that is treated as
the PRINT ECHO key when the device driver is in ASCII mode.
On most keyboards this would show as the Ctrl + P combina
tion.

16H PRINT-FLUSH KEY
This scan code is translated into the key sequence Print-Flush.
This value will be used where the Ctrl +Alt+ PrtSc sequence is
seen.

17-2FH RESERVED = 0
Will be treated as undefined, see entry 3FH.

Values for Packets Not Generated by a Keystroke

Scan Code Meaning

30-37H RESERVED

38-3EH RESERVED
Will be treated as UNDEFINED, see entry 3FH.

Value for Keys that the Translation Process does not Recognize

Scan Code Meaning

3FH UNDEFINED
This scan code, or its combination with the current shift state,
was not recognized in the translation process.

Special Key Processing

OS/2 examines each incoming keyboard character to determine if it
should cause an asynchronous signal to be sent to some process (for
example, Ctrl + C). The keyboard device driver responds to the fol
lowing keystrokes:

9-99

Event Signalled Value
or Signal Placed

Keys Mode Handler Called in KIB

Ctrl +c Binary Nothing 03H

Ctrl +c ASCII SIGINTR Nothing

Ctrl+S Binary Nothing 13H

Ctrl +s ASCII event_ CtrlScrlk Nothing

Ctrl+P Binary Nothing 10H

Ctrl+P ASCII event_ Ctrl PrtSc Nothing

Ctrl+Break Binary SIG BREAK OO:OOH

Ctrl+Break ASCII SIGINTR Nothing

Ctrl + Numlock Binary event_ CtrlScrlk Nothing

Ctrl + Numlock ASCII event_ Ctrl Scrlk Nothing

Ctrl + PrtSc Binary event_ Ctrl P rtSc 00:72H

Ctrl + PrtSc ASCII event_ Ctrl PrtSc Nothing

PrtSc Binary event_ShftPrtSc Nothing

PrtSc ASCII event_ShftPrtSc Nothing

Notes:

1. The value xxH represents the translated ASCII field in the char
acter data record.

2. The value xx:yyH represents the translated ASCll:translated scan
code fields of the character data record.

3. Ctrl + Numlock has no effect on an IBM Enhanced keyboard; the
Pause key provides this function.

9-100

Key

Hot Key

Ctrl +Alt+ Del

Meaning

Change sessions

System IPL (Restart)

Ctrl +Alt+ Numlock Pressed twice means system dump

PrtScr Print the current display screen (Shift+ PrtScr
on an IBM Personal Computer AT keyboard
and Print Screen on an IBM Enhanced key
board)

In addition to passing individual characters, the driver must specif
ically recognize the character (or character sequence, or other
special action) that indicates the special signal or hot key to the
session manager. When this event is recognized, the Send_Event
helper function is invoked.

Note that the system hot key is defined by IOCtl Category 4 Function
56H (Set Session Manager Hot Key).

Compatibility Operations

The DOS mode runs in its own session; the session mechanism keeps
OS/2 mode programs from affecting the compatibility screen. When
the DOS mode is no longer in the foreground, the old application is
frozen, keeping it from affecting the OS/2 screen. The DOS mode
has, in effect, an independent SCRN and KBD device driver in the
form of a DOS mode CON driver. This driver is compatible with the
ROM INT10 and INT16 entries and their associated low-memory data
structures.

9-101

EGA.SYS Device Driver
EGA.SYS is a device driver which provides support for the EGA Reg
ister Interface in the DOS mode. In the DOS mode, to support
advanced graphics modes D, E, F and 10, the mouse pointer draw
device driver must save/restore the EGA registers. Because the EGA
registers are not readable, this can be done only if the application
cooperates in setting the registers in the first place. Rather than
doing 1/0 directly to the registers on the adapter, the application sets
the registers through the EGA Register Interface.

EGA Register Interface

The EGA Register Interface is a library of ten functions supported for
DOS mode, advanced graphics (modes D, E, F, and 10) applications.
These functions do the following:

• Read from or write to one or more of the EGA write-only regis
ters.

• Define default values for the EGA write-only registers, reset the
EGA registers to these default values, or return the default
values.

• Check whether the EGA Register Interface is present and, if so,
return its version number.

When your application uses the EGA Register Interface, OS/2 main
tains a backup copy of (shadows) how the EGA registers are set.
Then, if the operator switches away from and later returns to your
application, the registers will be restored properly.

It is not necessary to use the EGA Register Interface to set the mode,
color palette, or palette registers. Instead, use ROM BIOS function
call INT 10H with AH = OOH, OBH, or 10H, respectively.

How to Call the EGA Register Interface: To call EGA Register Inter
face functions from an assembly language program:

1. Load the registers with the required parameter values.

2. Execute software interrupt 10h.

Values returned by the EGA Register Interface functions are placed in
registers.

9-102

EGA Register Interface Restrictions: Functions not supported

Multiple display pages in graphics modes are not supported. Fonts
may be loaded (using ROM BIOS INT 10H with AH = 11 H) into char
acter generator block 0 only.

Attribute Controller Registers

Before your application program uses the Attribute Controller regis
ters (110 address 3COH) in an extended interrupt 10H call, it must set
the flip-flop that selects the address or data register so that it selects
the address register (by doing an input from 110 port 3BAH or 3DAH).
The flip-flop is always reset to this state upon return from the
extended interrupt 10H call.

Interrupt routines that access the attribute chip must also leave the
flip-flop set to the address register upon return from the interrupt.
Note, if your application program sets the flip-flop so that it selects
the Data register and expects the flip-flop to remain in this state, your
application must disable interrupts between the time it sets the flip
flop to the Data register state and the last time the flip-flop is
assumed to be in this state.

Sequencer Memory Mode Register

When the Sequencer Memory Mode register (110 address 3C5H, data
register 4) is accessed, the sequencer produces a glitch on the CAS
lines that may cause problems with video random access memory.
As a result, your application program cannot use the EGA Register
Interface to read from or write to this register. Instead, use the fol
lowing procedure to safely alter this register:

1. Disable interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 0.

3. Read/modify/write the Sequencer Memory Mode register.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset
register to 1.

5. Enable interrupts.

9-103

Input Status Registers

Your application program cannot use the EGA Register Interface to
read Input Status registers O (110 address 3C2H) and 1 (1/0 address
3BAH or 3DAH). If your program must read these registers, it should
do so directly.

Graphics Controller Miscellaneous Register

When the Graphics Controller Miscellaneous register (110 address
3CFH, data register 6) is accessed, a glitch on the CAS lines occurs
that may cause problems with video random access memory. As a
result, your application program should not use the EGA Register
Interface to read from or write to this register.

EGA Register Interface function F6 does not alter the state of the
Graphics Controller Miscellaneous register. Instead, use the fol
lowing procedure to safely alter this register:

1. Disable interrupts.

2. Set Synchronous Reset (bit 1) in the Sequencer Reset register to
0.

3. Read/modify/write the Graphics Controller Miscellaneous reg
ister.

4. Set Synchronous Reset (bit 1) in the Sequencer Reset register to
1.

5. Enable interrupts.

9-104

EGA Register Interface Functions: This section describes each EGA
Register Interface function in detail. The following list shows these
functions by function number:

Number
(Hex) Function
FO Read one register
F1 Write one register
F2 Read register range
F3 Write register range
F4 Read register set
F5 Write register set
F6 Revert to default registers
F7 Define default register table
F8 Read default register table
FA Interrogate driver

Note: Calls F9H, and FBH through FFH are reserved.

Each function description includes:

• The parameters required to make the call (input) and the
expected return values (output).

• Any special considerations regarding the function.

If the function description does not specify an input for a parameter,
you don't need to supply a value for that parameter before making the
call. If the function description does not specify an output value for a
parameter, the parameter's value is the same before and after the
call.

Note: The EGA Register Interface does not check input values, so be
sure that the values you load into the registers before making a call
are correct.

9-105

Function FO • Read One Register

Purpose Function FO reads data from a specified register on the EGA.

Input:

Output:

AH= FOH

BX = Pointer for pointer/data chips:

BH = 0
BL= Pointer

Ignored for single registers

DX = Port number:
Pointer/data chips

Oh: CRT Controller (3?4H)
Sh: Sequencer (3C4H)

10h: Graphics Control!er (3CEH)
18h: Attribute Controller (3COH)

Single registers

20h: Miscellaneous Output register (3C2H)
28h: Feature Control register (3?AH)
30h: Graphics 1 Position register (3CCH)
38h: Graphics 2 Position register (3CAH)

? = B for monochrome modes or D for color modes

AX: Restored
BH: Restored
BL: Data
DX: Restored

All other reQisters restored.

Example: The following example saves the contents of the Sequencer
Map Mask register in "myvalue:"

myvalue db ?
mov ah, 0f0h ; f0 = read one register
mov bx, eee2h ; bh = e I bl = map mask

; index
mov dx, eeeah ; dx = sequencer
int leh ; get it!
mov myvalue, bl ; save it!

9-106

The following example saves the contents of the Miscella
neous Output register in "myvalue":

myvalue db ?
mov ah, efeh f0 = read one register
mov dx, 0020h dx =miscellaneous

output register
int leh get it!
mov myvalue, bl save it!

9-107

Function F1 - Write One Register

Purpose Function F1 writes data to a specified register on the EGA.

Input:

Output:

When your application program returns from a call to func
tion F1, the contents of registers BH and DX are not
restored. Your program must save and restore these regis
ters if desired.

AH= F1h

BL = Pointer for pointer/data chips
Data for single registers,

BH = Data for pointer/data chips
(ignored for single registers)

DX = Port number:
Pointer/data chips

Oh: CRT Controller (3?4H)
Sh: Sequencer(3C4H)
10h: Graphics Controller (3CEH)
18h: Attribute Controller (3COH)

Single registers

20h: Miscellaneous Output register (3C2H)
28h: Feature Control register (3?AH)
30h: Graphics 1 Position register (3CCH)
38h: Graphics 2 Position register (3CAH)

? = B for monochrome modes or D for color modes

AX: Restored
BL: Restored
BH: Not restored
DX: Not restored

All other registers restored.

Example: The following example writes the contents of "myvalue"
into the CRT Controller Cursor Start register:

9-108

myvalue db 3h
mov ah, enh fl = write one register
mov bh, myvalue bh = data from myvalue
mov bl ' eeeah bl = cursor start index
mov dx, eeeeh dx = crt controller
int leh write it!

The following example writes the contents of "myvalue" into
the Feature Control register:

myvalue db 2h
mov ah, enh
mov bl, myvalue
mov dx, ee2ah
int lah

fl = write one register
bl = data from myvalue
dx = feature control register
write it!

9-109

Function F2 - Read Register Range

Purpose Function F2 reads data from a specified range of registers on
the EGA. A range of registers is defined to be several regis
ters on a single chip that have consecutive indexes. This
call is applicable for pointer/data chips.

Input:

Output:

AH= F2h

CH = Starting pointer value

CL = Number of registers (must be > 1)

DX = Port number:

Oh: CRT Controller (3?4h)
Sh: Sequencer (3C4h)
10h: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

? = 8 for monochrome modes or D for color modes

ES:BX = Points to table of one-byte entries (length = value
in CL). On return, each entry is set to the contents of
the corresponding register.

AX: Restored
BX: Restored
CX: Not restored
DX: Restored
ES: Restored

All other registers restored.

Example: The following example saves the contents of the Attribute
Controller Palette registers in "paltable:"

9-110

paltable db 16 dup (?)
mov ax, ds

mov es, ax
mov bx, offset paltable

mov ah, 0f2h

mov ex. 0010h

mov dx, 0018h

int 10h

assume paltable in
data segment

es = data segment
es:bx = paltable
address

f2 = read register
range

ch = start index
of 0

cl = 16 registers
to read

dx = attribute
controller

read them!

9-111

Function F3 • Write Register Range

Purpose Function F3 writes data to a specified range of registers on
the EGA. A range of registers is defined to be several regis
ters on a single chip that have consecutive indexes. This
call is applicable for the pointer/data chips.

Input:

Output:

AH= F3h

CH = Starting pointer value

CL = Number of registers (must be > 1)

DX = Port number:

Oh: CRT Controller (3?4h)
Sh: Sequencer (3C4h)
1 Oh: Graphics Controller (3CEh)
18h: Attribute Controller (3COh)

? = B for monochrome modes or D for color modes

ES:BX = Points to table of one-byte entries (length = value
in CL). Each entry contains the value to be written to
the corresponding register.

AX: Restored
BX: Not restored
CX: Not restored
DX: Not restored
ES: Restored

All other registers restored

Example: The following example writes the contents of "cursloc" into
the CRT Controller Cursor Location High and Cursor
Location Low registers.

9-112

cursloc db Glh, eeh cursor at page
off set 0100h

mov ax, ds assume cursloc in
data segment

mov es, ax es = data segment
mov bx, offset cursloc es:bx = cursloc

address
mov ah, 0f3h f3 = write register

range
mov ex, 0e02h ch = start index

of 14
cl = 2 registers to
write

mov dx, eeeeh dx = crt controller
int leh write them!

9-113

Function F4 - Read Register Set

Purpose Function F4 reads data from a set of registers on the EGA. A
set of registers is defined to be several registers that may or
may not have consecutive indexes, and that may or may not
be on the same chip.

Input:

Output:

AH= F4H

CX = Number of registers (must be > 1)

ES:BX = Points to table of records with each entry in this
format:

Bytes 1-2: Port number:

Pointer/data chips

Oh: CRT Controiler (3?4H)
Sh: Sequencer (3C4H)
10h: Graphics Controller (3CEH)
18h: Attribute Controller (3COH)

Single registers

20h: Miscellaneous Output register (3C2H)
28h: Feature Control register (3?AH)
30h: Graphics 1 Position register (3CCH)
38h: Graphics 2 Position register (3CAH)

? = B for monochrome modes or D for color modes

Byte 3: Pointer value (0 for single registers)

Byte 4: EGA Register Interface fills in data read from reg
ister specified in bytes 1-3.

AX: Restored
BX: Restored
CX: Not restored
ES: Restored

All other registers restored

Example: The following example saves the contents of the Miscella
neous Output register, Sequehcer Memory Mode register,
and CRT Controller Mode Control register in "results:"

9-114

outvals dw 0020h miscellaneous output
register

db e e for single registers
db ? returned value
dw eeeah sequencer
db 04h memory mode register

index
db ? returned value
dw eeeeh crt cont roll er
db 17h mode control register

index
db ? returned value

results db 3 dup (?)
mov ax, ds assume outvals in

data segment
mov es, ax es = data segment
mov bx, off set outvals ; es:bx = outvals

address
mov ah, 0f 4h f 4 = read register set
mov ex, 3 number of entries in

outvals
int H>h get values into outvals
mov s i. 3 move the returned

values from
add s i. offset outvals outvals
mov di. off set results to results
mov ex, 3 3 values to move

loop: mov al, [si] move one value from
mov [di], al outvals to results
add si , 4 skip to next source byte
inc di point to next destination

byte
1 oop 1 oop

9-115

Function FS - Write Register Set

Purpose Function FS writes data to a set of registers on the EGA. A
set of registers is defined to be several registers that may or
may not have consecutive indexes, and that may or may not
be on the same chip.

Input:

Output:

AH= FSh

CX = Number of registers (must be > 1)

ES:BX = Points to table of values with each entry in this
format:

Bytes 1-2: Port number:

Pointer/data chips

Oh: CRT Controller (3?4H)
Sh: Sequencer(3C4H)
10h: Graphics Controller (3CEH)
18h: Attribute Controller (3COH)

Single registers

20h: Miscellaneous Output register (3C2H)
28h: Feature Control register (3?AH)
30h: Graphics 1 Position register (3CCH)
38h: Graphics 2 Position register (3CAH)

? = B for monochrome modes or D for color modes

Byte 3: Pointer value (0 for single registers)

Byte 4: Data to be written to register specified in bytes 1-3

AX: Restored
BX: Restored
CX: Not restored
ES: Restored

All other registers restored

Example: The following example writes the contents of "outvals" to
the Miscellaneous Output register, Sequencer Memory
Mode register, and CRT Controller Mode Control register:

9-116

outvals dw 002Elh ; miscellaneous output
register

db e e for single registers
db 0a7h output value
dw eeeah sequencer
db 04h ; memory mode register index
db 03h output value
dw eeeeh crt controller
db 17h mode control register index
db 0a3h output value
mov ax, ds assume outvals in

data segment
mov es, ax es = data segment
mov bx, offset outvals ; es:bx = outvals

; address
mov ah, 0f 5h f5 = write register set
mov ex, 3 number of entries in

outvals
int leh write the registers!

Function F6 - Revert to Default Registers

Purpose Function F6 restores the default settings of any registers that
your application program has changed through the EGA
Register Interface. The default settings are defined in a call
to function F7 (described in the next section).

Input:

AH= F6h

Output:

All registers restored

Example: The following example restores the default settings of the
EGA registers:

mov ah, 0f6h f6 = revert to default

int leh
registers

do it now!

9-117

Function F7 - Define Default Register Table

Purpose Function F7 defines a table containing default values for any
pointer/data chip or single register. If you define default
values for a pointer/data chip, you must define them for all
registers within that chip.

Input:

Output:

AH= F7h

DX = Port number:

Pointer/data chips

Oh: CRT Controller (3?4H)
Sh: Sequencer(3C4H)
10h: Graphics Controller (3CEH)
18h: Attribute Controller (3COH)

Single registers

20h: Miscellaneous Output register (3C2H)
28h: Feature Control register (3?AH)
30h: Graphics 1 Position register (3CCH)
38h: Graphics 2 Position register (3CAH)

? = B for monochrome modes or D for color modes

ES:BX = Points to table of one-byte entries. Each entry con
tains the default value for the corresponding register.
The table must contain entries for all registers.

AX: Restored
BX: Not restored
DX: Not restored
ES: Restored

All other registers restored

Example: The following example defines default values for the Attri
bute Controller:

9-118

attrdfl t db aah, a1h, a2h, a3h, a4h, ash, a6h, a1h
db 10h, llh, 12h, 13h, 14h, 15h, 16h, 17h
db aah, aah, afh, aah
mov ax, ds assume attrdflt in

data segment
mov es, ax es = data segment
mov bx, offset attrdfl t es:bx = attrdflt

address
mov ah, 0f7h f7 = define default

register table
mov dx, 0018h dx = attribute

controller
int 10h do it!

The following example defines a default value for the
Feature Control register:

featdflt db aah
mov ax, ds assume featdflt in

data segment
mov es, ax es = data segment
mov bx, offset featdfl t es:bx = featdflt

address
mov ah, 0f7h fl = define default

register table
mov dx, 0028h dx = feature

control register
int 10h do it!

9-119

Function F8 - Read Default Register Table

Purpose Function F8 reads the table containing default register
values for any pointer/data chip or single register.

Input:

Output:

9-120

AH= OF8H

DX = Port number:

Pointer/data chips

Oh: CRT Controller (3?4H)
Sh: Sequencer(3C4H)
10h: Graphics Controller (3CEH)
18h: Attribute Controller (3COH)

Single registers

20h: Miscellaneous Output register (3C2H)
28h: Feature Control register (3?AH)
30h: Graphics 1 Position register (3CCH)
38h: Graphics 2 Position register (3CAH)

? = B for monochrome modes or D for color modes

ES:BX = Points to a table into which the default values are
returned. The table must have room for the full set of
values for the pointer/data chip or single register spec
ified.

AX: Restored
BX: Not restored
DX: Not restored
ES: Restored

All other registers restored

Function FA - Interrogate Driver

Purpose Function FA returns a value specifying whether the EGA.SYS
driver is present.

Input:

Output:

AH= FAh

BX= 0

AX: Restored
BX: 0, if EGA.SYS driver is not present
ES:BX: Pointer to EGA Register Interface version number, if

present:
Byte 1: Major release number
Byte 2: Minor release number (in 1/100ths)

Example: The following example interrogates the driver and displays
the results:

gotmsg db "EGA.SYS driver found", Odh, Oah, 24h
nopmsg db "EGA.SYS driver not found", Odh, Oah, 24h
revmsg db "revision $"
crlf db Odh, Oah, 24h
ten db 10

mov bx, a must be a for this call
mov ah, Ofah fa = interrogate driver
int !Oh interrogate!
or bx, bx bx = a ?
jnz found branch if driver present
mov dx, off set nopmsg ; assume nopmsg in data

; segment
mov ah, 09h 9 = print string
int 21h output not found message
jmp continue that•s all for now

found: mov dx, offset gotmsg assume gotmsg in data
segment

mov ah, 09h 9 = print string
int 21h output found message
mov dx, offset revmsg assume revmsg in data

segment
mov ah, 09h 9 = print string
int 21h output "revision "
mov dl , es: [bx] dl = major release

number

9-121

add dl t "G" convert to ASCII
mov ah, 2 2 = display character
int 21h output major release

number
mov dl t

II II dl = 11
•

11

mov ah, 2 2 = display character
int 21h output a period
mov al, es: [bx+l] al = minor release

number
xor ah, ah ah = G
idiv ten al = lGths, ah = lGGths
mov bx, ax save ax in bx
mov dl t al dl = lGths
add dl t "G" convert to ASCII
mov ah, 2 2 = display character
int 21h output minor release

lGths
mov dl, bh dl = lGGths
add dl' "G" convert to ASCII
mov ah, 2 2 = display character
int 21h output minor release

1G0ths
mov dx, offset crlf; assume crlf in data

segment
mov ah, 09h 9 = print string
int 21h output end of line

continue: the end

9-122

Using Extended Screen and Keyboard Control
(ANSI.SYS, ANSICALL.DLL)

This section explains how you can issue special control character
sequences to:

• Control the position of the cursor

• Erase text from the screen

• Set the display mode

• Redefine the meaning of keyboard keys

ANSI extended screen and keyboard control sequences are sup
ported in the DOS mode by ANSI.SYS, an installable device driver.

In the OS/2 mode, these control sequences are supported by
ANSICALL.DLL, a dynamic link module.

Note: In this section, unless otherwise specified, ANSI refers to both
ANSI.SYS and ANSICALL.DLL.

Limitations/ Restrictions

ANSI operates on a per-session basis.

OS/2 mode ANSI is affected when keys are reassigned in a code page
environment. ANSI does not provide code page support for key reas
signment in the DOS mode.

Control Sequences

Control Sequence Syntax

Each of the cursor control sequences is in the format:

ESC [parameters COMMAND

9-123

ESC The 1-byte ASCII code for ESC (1 BH).
It is not the three characters ESC.

[The character [.

para me- The numeric values you specify for#.
ters The # represents a numeric parameter.

A numeric parameter is an integer
value specified with ASCII characters.
If you do not specify a parameter
value, or if you specify a value of 0, the
default value for the parameter is used.

COMMAND An alphabetic string that represents
the command. It is case specific.

For example:

ESC [2;H>H

could be created using BASIC as follows:

The IBM Personal Computer Basic
Version 3.00 Copyright IBM Corp. 1981, 1982, 1983, 1984
xxxxx Bytes free

Ok
open "sample" for output as 1
Ok
print #1, CHR$(27);"[2;10H";"x row 2 col 10"
Ok
close #1
Ok

Notice that "CHR$(27)" is ESC.

9-124

Cursor Control Sequences

The following tables contain the cursor control sequences you can
use to control cursor positioning.

Cursor Position

Cursor Position Function

ESC [#;#H Moves the cursor to the
position specified by the
parameters. The first
parameter specifies the row
number and the second
parameter specifies the
column number. The
default value is 1. If no
parameter is given, the
cursor is moved to the
home position.

This example copies the file SAMPLE from the previous example, to
CON, which places the cursor on row 2 column 10 of the screen:

type sample

Cursor Up

Cursor Up Function

ESC[#A Moves the cursor up one or
more rows without
changing the column posi-
tion. The value of# deter-
mines the number of lines
moved. The default value
for # is 1. This sequence is
ignored if the cursor is
already on the top line.

Cursor Down

9-125

Cursor Down Function

ESC[#B Moves the cursor down one
or more rows without
changing the column posi-
tion. The value of# deter-
mines the number of lines
moved. The default value
for # is 1. The sequence is
ignored if the cursor is
already on the bottom line.

Cursor Forward

Cursor Forward Function

ESC[#C Moves the cursor forward
one or more columns
without changing the row
position. The value of#
determines the number of
columns moved. The
default value for # is 1.
This sequence is ignored if
the cursor is already in the
rightmost column.

9-126

Cursor Backward

Cursor Backward Function

ESC[#D Moves the cursor back one
or more columns without
changing the row position.
The value of# determines
the number of columns
moved. The default value
for# is 1. This sequence is
ignored if the cursor is
already in the leftmost
column.

Horizontal and Vertical Position

Horlzontal and Vertlcal Function
Position

ESC [#;#f Moves the cursor to the
position specified by the
parameters. The first
parameter specifies the line
number and the second
parameter specifies the
column number. The
default value is 1. If no
parameter is given, the
cursor is moved to the
home position.

9-127

Cursor Position Report

Cursor Position Report Function

ESC [#;#R The cursor sequence report
reports the current cursor
position through the
standard input device. The
first parameter specifies the
current line and the second
parameter specifies the
current column.

Device Status Report

Device Status Report Function

ESC [6n The console driver gives a
cursor position report
sequence on receipt of
device status report.

Note: Do not use the Device Status Report as part of a prompt.

This example tells ANSI to put the current cursor position (row and
column) in STDIN. Then the program reads it from STDIN and outputs
to STDOUT.

9-128

PROGRAM dsr(INPUT,OUTPUT);

VAR
f:FILE OF CHAR;
key:CHAR;

FUNCTION inkey:CHAR;
VAR

ch:CHAR;
BEGIN

READ(f,ch);
inkey:=ch

END;

BEGIN
ASSIGN(f,'user');
RESET(f);

WRITE(CHR(27),'[6n');
key:=inkey;
key:=inkey;
key:=inkey;

END.

WRITE('row ',inkey,inkey,'
key:=inkey;
WRITE(inkey,inkey)

Save Cursor Position

Save Cursor Position Function

{ read character }
{ from the }
{ keyboard buffer }

{ issue a DSR }
{ read up to }
{ first digit }
{ of the row }

column ');
{ skip to column}
{ write column }

ESC [s The current cursor position
is saved. This cursor posi-
tion can be restored with
the restore cursor position
sequence (see below).

9-129

Restore Cursor Position

Restore Cursor Position Function

ESC [u Restores the cursor to the
value it had when the
console driver received the
save cursor position
sequence.

Erasing

The following tables contain the control sequences you can use to
erase text from the screen.

Erase In Display

Erase In Display Function

ESC [2J Erases all of the screen and
the cursor goes to the home
position.

Erase In Line

Erase In Line Function

ESC[K Erases from the cursor to
the end of the Ii ne and
includes the cursor posi-
ti on.

Controlling Display Mode

The following tables contain the control sequences you can use to set
the moge of operation. They are:

• Set Graphics Rendition (SGR)
• Set Mode (SM)
• Reset Mode (RM)

9-130

Set Graphics Rendition (SGR)

SGR Function

ESC [#; ... ;#m Sets the character attribute
specified by the parameters. All
following characters have the
attribute according to the
parameters until the next occur-
rence of SGR.

Parameter Meaning
0 All attributes off

(normal white on
black)

1 Bold on (high inten-
sity)

4 Underscore on
(mono-com pa ti bl e
modes)

5 Blink on
7 Reverse video on
8 Canceled on (invis-

ible)
30 Black foreground
31 Red foreground
32 Green foreground
33 Yellow foreground
34 Blue foreground
35 Magenta foreground
36 Cyan foreground
37 White foreground
38 Reserved
39 Reserved
40 Black background
41 Red background
42 Green background
43 Yellow background
44 Blue background
45 Magenta background
46 Cyan background
47 White background

9-131

Set Mode (SM)

SM Function

ESC [=#h Invokes the screen width or
or ESC [=h type specified by the
or ESC [=Oh parameter.
or ESC [?7h

Parameter Meaning
0 40x25 black and

white
1 40x25 color
2 80x25 black and

white
3 80x25 color
4 320x200 color
5 320x200 black

and white
6 640x200 black

and white
7 Wrap at end of

line. (Typing
past end-of-line
results in new
line.)

Reset Mode (RM)

RM Function

ESC [=#I Parameters are the same
or ESC [=I as Set Mode (SM) except
or ESC [=01 that parameter 7 resets
or ESC [?71 wrap at end-of-line mode

(characters past end-of-line
are thrown away).

9-132

Keyboard Key Reassignment

When the application does a KbdStringln call, the reassigned key's
ASCII code is converted to the specified string and is passed back to
the calling application.

OS/2 mode ANSI is affected when keys are reassigned in a code page
environment. ANSI "remembers" the code page under which a key is
reassigned. The keyboard subsystem checks for reassigned keys
when the application calls the KbdStringln function. When areas
signed key is detected, the ANSI support:

• Checks to see what code page the requester is running under.

• Looks internally to see if the key has been reassigned under that
code page.

• If there is a key reassignment for that code page, gives the reas
signment string.

• Otherwise, gives the original ASCII codes.

A maximum storage of 64Kb may be allocated to OS/2 mode ANSI
reassigned key definitions.

The following table contains the control sequences you can use to
redefine the meaning of keyboard keys.

9-133

The control sequence Is: Function

ESC [#;#; ... #p The first ASCII code in the
or ESC ["string"p control sequence defines
or ESC [#;"string";#; which code is being

#;"string";#p mapped. The remaining
or any other combination of numbers define the

strings and decimal sequence of ASCII codes
numbers generated when this key is

intercepted. However, if the
first code in the sequence is
0 (NULL) the first and
second code make up an
extended ASCII redefinition

Here are some examples:

To execute these examples, you can either:

• Create a file that contains the following statements and then use
the TYPE command to display the file that contains the statement.

• Execute the command at the OS/2 prompt.

9-134

1. Reassign the Q and q key to the A and a (and the other way as
well):

Creating a File:

ESC [65;8lp
ESC (97; 113p
ESC [81;65p
ESC (113; 97p

A becomes Q
a becomes q
Q becomes A
q becomes a

At the OS/2 Prompt:

prompt $e[65;8lp
prompt $e[97;113p
prompt $e[81;65p
prompt $e[113;97p

A becomes Q
a becomes q
Q becomes A
q becomes a

2. Reassign the F10 key to a DIR command followed by a carriage
return:

Creating a File:

ESC [0;68;"dir";13p

At the OS/2 Prompt:

prompt $e[0;68;"dir";13p

The $e is the prompt command characters for ESC. The 0;68 is
the extended ASCII code for the F10 key; 13 decimal is a carriage
return.

3. The following example sets the prompt to display the current
directory on the top of the screen and the current drive on the
current line.

prompt $e[s$e[1;30f$e(K$p$e[u$n$g

If the current directory is C:\FILES, and the current drive is C, this
example would display:

C:\FILES

C>

9-135

4. The following DOS mode assembly language program reassigns
the F10 key to a DIR B: command followed by a carriage return.

TITLE SETANSI.ASM - SET F10 TO STRING FOR ANSI.SYS
CSEG SEGMENT PARA PUBLIC 1 CODE 1

ASSUME CS:CSEG,DS:CSEG
ORG Hl0H

ENTPT: JMP SHORT START
STRING DB 27, 1 [0;68; 11 DIR B: 11 ;13P 1 ;Redefine F10 key
STRSIZ EQU $-STRING ;Length of above message
HANDLE EQU 1 ;Pre-defined file

;Handle for standard output

START PROC NEAR
MOV BX,HANDLE ;Standard output device
MOV CX,STRSIZ ;Get size of text to be sent
MOV DX,OFFSET STRING ;Pass offset of string

;To be sent
MOV AH,40H ;Function= 11 write to device"
INT 21H ;Call DOS
RET ;Return to DOS

START ENDP

CSEG ENDS
END ENT PT

9-136

Diskette Device Driver

The floppy disk device driver is able to run in a multitasking, dual
mode environment.

The following functions are provided.

• Read
• Write

Reading and writing can be done in either of two modes. Abso
lute mode allows the user to specify a logical sector to be used
for the starting 1/0 location. The other mode requires the track
and sector number to be specified.

• Verify
• Format

With this function the user is able to determine if the drive is
present, if the direct access storage device (DASO) is a diskette
with change line available/not available, or if the DASO is a fixed
disk.

• Get/Set Device Parameters

9-137

Fixed Disk Device Driver

The fixed disk device driver is able to run in a multitasking, dual
mode environment.

The following functions are provided.

• Read
• Write

Read and write requests can be made in either of two modes.
Absolute mode allows the user to specify a logical sector to be
used for the starting 110 location. The other mode requires the
cylinder and head and sector number to be specified.

• Verify
• Format
• Get/Set Drive Parameters

With this function the user is able to determine the number of
consecutive drives that are attached, the maximum usable value
for head number, the maximum usable value for cylinder number,
and the maximum usable value for sector number.

The user is able to determine if a DASO is present, if the DASO is
a diskette with change line available/not available, or if the DASO
is a fixed disk. If the DASO is a fixed disk, the number of 512-byte
blocks contained is returned. In addition, the disk device driver
has some special support code for DOS mode applications which
can issue INT 13H, which also runs in user state.

Greater than 32Mb Partitioned Jupport

Large fixed disk (greater than 32Mb) are supported by OS/2 with par
titioning of the disk. The extended partition is indicated by a system
ID byte of OSH in the partition table of the Master Boot (Start-up)
Record. This partition cannot be started, and programs that can set
startable partitions (such as OS/2 FDISK) will not allow the partition
to be marked as able to start.

Note: This extended partition support can be used on any fixed disk
supported by OS/2.

9-138

The extended DOS partition can be created only if a primary DOS par
tition already exists on a startable drive. A Primary DOS partition is a
partition with a system ID byte of 01 H or 04H. If the drive cannot be
started, then an extended DOS partition may be created without
having a primary DOS partition.

The Extended DOS Partition starts and ends on a cylinder boundary.

Extended DOS Partition Architecture

The Extended DOS Partition consists of a collection of extended
volumes which are linked together by a pointer in the extended
volumes' extended start-up record. An extended volume consists of
an extended start-up record and one logical block device. An
extended volume created within the extended DOS partition can be
any size from one cylinder long up through the maximum available
contiguous space in the extended DOS partition. However, in OS/2 an
extended volume cannot be larger than 32Mb due to the limitations of
the FAT file system. All extended volumes must start and end on a
cylinder boundary. An extended volume will correspond to an image
of a physical disk. The extended start-up record corresponds to the
master start-up record at the beginning of an actual physical disk and
the logical block device corresponds to the DOS partition that is
pointed to by the master start-up record.

Therefore, the logical block device begins with a normal DOS start-up
sector if it is a DOS logical block device (system id= 1 or 4). This
logical block device must start on a cylinder and head boundary and
follows the extended start-up record on the physical disk. The logical
block device and the extended volume both end on the same cylinder
boundary.

Each extended volume contains an extended start-up record, located
in the first sector of the disk location assigned to it. This extended
start-up record contains the 55AAH signature ID byte. This allows
programs that look at the extended (master) start-up record to be
compatible. This extended start-up record also contains a partition
table, which can contain only 2 types of entries. The start-up code is
not critical, as the devices are not considered startable. The start-up
code may simply report a message indicating an unstartable partition
if it is executed.

9-139

The partition table portion of the extended start-up record is the same
as the partition table structure in the master start-up record. This
structure has four partition entries of 16 bytes each. The system ID
byte must be filled in for all four entries with one of the following
values:

OOH No space allocated in this entry.

01H DOS partition up to 16Mb

04H DOS partition with 32Mb > SIZE > 16Mb

OSH Maps out area assigned to the next extended volume. Serves
as a pointer to the next extended start-up record.

06H Reserved.

If the system ID byte is O then the values in that partition table entry
will be set to 0.

If OS/2 detects any values other than 01 H or 04H, it will ignore that
entry and not attempt to install the logical block device. This will
allow future expansion of devices in this area without problems of
compatibility with earlier systems.

The partition start and end fields (C,H,S) will be filled in for any of the
four partition entries in an extended start-up record that have one of
the above system ID bytes. This will allow a program such as FDISK
to determine the allocated space in the extended DOS partition, as
well as allowing the device drivers to determine the physical DASO
area that belongs to it. The partition start and end fields (C,H,S) for
the partition entry that points to the logical block device (system ID
01 H, 04H, or 06H) map out the physical boundaries of the logical block
device. They are offset relative to the beginning of the extended
start-up record that the entry resides in. The partition start and end
fields (C,H,S) for the partition entry that points to the next extended
volume (system ID 05H) map out the physical boundaries of the next
extended volume. They are relative to the beginning of the entire
physical disk.

The relative sector and number of sector fields will be set up differ
ently depending on what system ID byte is used. If 01H, 04H or 06H is
in the system ID field for that extended partition entry (pointer to the
logical block device), the relative sector field will be set up as an
offset from (and including) the start of the extended start-up record for
the associated extended volume. The number of sectors (size) field

9-140

will be filled in with the size of the created logical block device area,
in other words, the number of sectors mapped out by the start and
stop cylinder/track/sector fields. The size of the extended volume
can be calculated by adding the relative sector field and the sector
size field of the associated extended start-up record.

If the system ID byte is 05H, then the relative sector field is the offset
(of the next extended volume) in sectors from the start of the entire
extended DOS partition. The number of sectors field is not used in
this field, and will be filled with OOH's.

This architecture allows only one logical block device to be defined
for each extended start-up record. Therefore, only a maximum of two
partition entries at a time is used in each extended start-up record; an
entry with system ID byte of (01 H, 04H, or 06H) and an entry with ID of
05H, which is the pointer to the next extended volume. Although only
two entries can be used, a program installing these devices will not
assume that the first two entries will be the non-zero entries.

Installing Block Devices in the Extended Partition

To install block devices, the device drivers will first install the
primary DOS partitions on both the 80H and 81 H physical drives if any
exist. This will insure that an existing drive letter (D:) on the 81 H
drive will remain the same. After these devices are installed, on the
80H drive, the drivers will look for the existence of the extended DOS
partition. If one exists, then it will look at the first sector of the
extended DOS partition for the first extended start-up record. If there
is a valid system ID (01 h, 04h, or 06h) in any of the four partition
entries, the device is installed and assigned the next available drive
letter. This will occur before any CONFIG.SYS device drivers are
loaded so the FDISK will correctly display the drive letter when space
is allocated for the drive.

9-141

The first extended start-up record (in the extended DOS partition) is a
special case because it is possible there will not be a device to be
installed defined in the partition table. The first device might have
been created and then deleted at some time, but the first extended
start-up record is needed to point to the next one, if one exists. Any
other extended start-up record will always have a device to be
installed.

An extended start-up record may not contain a device that will be
installed by that driver. For example, a logical block device with a
system ID byte of 06H would not be installed in OS/2.

Once a device has been installed (or the special cases above occurs),
the device driver will search the other partition entries for a system
ID byte of 05H, indicating that another device (extended volume)
exists. If a 05H is not found, there are no more logical block devices
(extended volumes) in the extended DOS partition.

If a 05H system ID is found, the start location in that partition entry
will be read in order to find the location of the next extended start-up
record (extended volume). When located, it will be read in and then
the process repeated in order to install additional devices.

Once all the valid devices for a physical drive have been installed,
the next physical drive will be examined and the entire process
repeated.

A device driver will not assume any order dependency when
searching for a particular system ID byte in an extended start-up
record. All four possible entries in a extended start-up record parti
tion table will be searched before a driver decides that a particular
system ID byte does not exist.

9-142

Creating Block Devices In the Extended DOS Partition

To create the structure for an extended volume in the extended DOS
partition, FDISK will determine if there is available space in the
extended DOS partition and if less than 24 total devices are allocated
in the system. The maximum number of block devices allowed is 26,
and two are used by diskettes A: and 8:. If so, then the program will
create an extended start-up record at the space located, with a parti
tion entry filled in with the size and location information for that
logical block device. If this is not the first extended start-up record,
the program will back up to the last extended start-up record in the
chain (as linked by the 05H entries), and create a partition entry in
that extended start-up record that has the size and location data for
the newly created record. This action will create the pointer required
to locate the newly created start-up record.

If this is the first extended start-up record (in the extended DOS parti
tion), only the size, type and location of the logical block device need
to be put into a partition entry. The start of the extended DOS parti
tion in the master start-up record will serve as a pointer to this
extended volume.

Deleting Block Devices In the Extended DOS Partition

To delete a block device, the program will set to 0 the 16-byte parti
tion entry that contained the system ID byte that indicated the device
type (01 H, 04H, or 06H). Also, if in the same extended start-up record
there exists a partition entry with system ID of 05H, indicating that
another extended volume exists, this information will be copied to the
05H partition entry of the previous extended start-up record. There is
one exception to this rule: if the logical block device deleted is at the
beginning of the extended DOS partition, only the partition entry indi
cating the device type would be set to 0. The 05h pointer information
will be left in place.

9-143

Layout of Block Devices In the Extended DOS Partition

E
x
t

D
0
s
p
a
r
t

i
0

n

•

Master Boot Record (Note 1)

(Note 2tl > 4 2 5 0 55AA

Primary DOS Partition (Note 4)
DOS C: drive 32Mb > size

Other Operating system Partition (XENIX) (Note 5)

Extended Boot Record (Note 6)

(Note 7) > 14 5 0 0 55AA

LOGICAL block device D: (Note 8)
32Mb > Size > 16Mb

Extended Boot Record (Note 9)

(Note 10) > ~1 5 0 0 55AA

LOGICAL block device E:
Size< 16Mb

Extended Boot Record

(Note 11) >le 5 o o 55AA

Area reserved for OS/2 use (Note 12)

Extended Boot Record

(Note 13) >j 4 0 0 0 55AA

LOGICAL block device G:
32Mb > Size > 16Mb

Free Space in Extended Partition

Free Space not allocated to any partition

<

•

~

(Note 3)

E
x
t

v
0

I
u
m
e

Note 1 Master start-up (boot) record code, starting at Trk 000, Hd
00, Sec 01 of disk 80H or 81H.

9-144

Note 2 Partition table for master start-up record. See "Partition
Table for Master Start-up Record" on page 9-146 for layout.
The 4 is the system ID byte in the partition table that indi
cates a DOS partition bigger than 16Mb, the 2 is a XENIX
partition, and the 05H maps the extended DOS partition.

Note 3 55AAH is the signature to validate the master start-up
record.

Note 4 Primary DOS area, must reside entirely in first 32Mb of disk.
C: is block device 80H. D: is block device 81 H if it exists.
This partition has a maximum size of 32Mb.

Note 5 Other operating system on disk; XENIX in this example.

Note 6 Extended start-up record for extended volume that corre
sponds to logical block device D:. (This assumes only 80H
block device exists.) If 81 H block device exists, then this
would be block device E:.

Note 7 Logical block device D: partition table entry. This has a
maximum size of 32Mb, which is indicated by the system ID
of 4. This must set the logical DOS block device as starting
at the next cylinder and head boundary. The 05h system ID
byte in the second partition entry maps out the space allo
cated to the next extended volume. The starting
cyl/sec/head in the partition entry with ID of 05H is the
location of the next extended start-up record of the next
extended volume.

Note 8 Logical block device D:. Logical DOS devices always begin
with a DOS start-up record as does the primary DOS parti
tion.

Note 9 Extended start-up record for logical block device E:.

Note 10 Partition table entry for logical block device E:. This logical
DOS block device is less than 16Mb, as indicated by the
system ID of 01 h. The entry with system ID of 05H maps out
the space allocated to the next extended volume.

Note 11 The system ID byte of 06H indicates a reserved area. These
areas are not limited to 32Mb and may not be used in OS/2.
This would have a block device letter of F: in a system that
would recognize system ID 06h. Note also that a pointer
exists to the next extended volume.

Note 12 Reserved

9-145

Note 13 Partition table entry for final DOS logical block device. Note
the absence of 05h ID byte means that there are no other
extended volumes allocated in the extended DOS partition.
This would have a block device letter of G: if the previous
logical block device was recognized. Otherwise it would be
F:.

Partition Table for Master Start-up Record

Offs Purpose Head Sector Cylinder

1 BE Partition 1 begin boot ind H s CYL

1 C2 Partition 1 end syst ind H s CYL

1 C6 Partition 1 rel sect Low word High word

1 CA Partition 1 # sects Low word High word

1CE Partition 2 begin boot ind H s CYL

102 Partition 2 end systind H s CYL

106 Partition 2 rel sect Low word High word

1 DA Partition 2 # sects Low word High word

1DE Partition 3 begin boot ind H s CYL

1 E2 Partition 3 end syst ind H s CYL

1 E6 Partition 3 rel sect Low word High word

1 EA Partition 3 # sects Low word High word

1 EE Partition 4 begin boot ind H s CYL

1 F2 Partition 4 end syst ind H s CYL

1 F6 Partition 4 rel sect Low word High word

1FA Partition 4 # sects Low word High word

1 FE Signature

9-146

BPB and Get Device Parameters for Extended Volumes

For purposes of the BIOS Parameter Block (BPB) and Get Device
Parameters (Generic IOCtl), an extended volume appears to the
system as a virtual physical fixed disk. The extended start-up record
will correspond to the master start-up record of a real fixed disk and
the logical block device will correspond to the primary DOS partition.

This means that the BPB of the logical DOS block device of the
extended volume will describe the environment in the extended
volume; this consists of the extended start-up record and the logical
block device. The meaning of the fields will be consistent to the
meaning of the fields for the primary DOS partition; they relate to the
entire physical disk, the primary DOS partition, and the master
start-up record. For example, the number of hidden sectors will be
the distance from the beginning of the extended start-up record (of
the extended volume in question) to the start of the logical DOS block
device (the DOS start-up record). The number of sectors field will
describe only the logical block device just as it normally only
describes the primary DOS partition.

Category 8 Generic IOCtl Commands

The philosophy described above also applies to the disk generic IOCtl
commands. For any logical block device of an associated extended
volume; physical cylinder, head, sector 1/0 is mapped to within the
extended volume. Cylinder 0, head 0, sector 1 is mapped to the
extended start-up record. An error condition will be generated for
any attempt to do C,H,S 1/0 beyond the size of the extended volume
in question.

Category 9 Generic IOCtl Commands

Category 9 generic IOCtl commands are used to access the entire
physical fixed disk without consideration of logical volumes. Physical
cylinder, head, sector begin at the start of the physical drive instead
of at the beginning of an extended volume. "Get physical device
parameters" describes the entire physical device.

9-147

EXTDSKDD.SYS Device

This installable device driver allows you to access and use a disk
device by referencing a logical drive letter. The format of the
CONFIG.SYS DEVICE statement is:

DEVICE=EXTDSKDD.SYS /D:ddd[T:ttt][/S:ss]
[/H:hh][/C][/N][/F:f]

These parameters are defined as follows:

/D:ddd specifies the physical drive number. A physical drive has the
value 0 through 255. A value of 0 specifies the first physical diskette
drive and is referenced as drive A from the OS/2 command line.

The value 1 specifies the second physical diskette drive.

The value 2 specifies the third physical diskette drive (which must be
external).

A fixed disk drive can be partitioned into many different logical drives
using the FDISK utility. Assigning a new drive letter to the physical
fixed disk in this environment is not meaningful and is not supported.

/T:ttt specifies the number of tracks per side (1-999). The default is 80
tracks per side.

/S:ss specifies the number of sectors per track (1-99). The default is
nine sectors per track.

/H:hh is the maximum number of heads (1-99). The default number is
two heads.

IC specifies that Changeline support is required. This is meaningful
only on machines that support diskette Changeline, such as the IBM
Personal Computer AT and PS/2.

9-148

/F:f specifies the device type (form factor). Choose from the list
below. The default is 2.

Value Device
0 160/180 KB
0 320/360 KB
1 1.2 MB
2 720 KB
7 1.44MB

The general rules for drive letter assignment are discussed following
these few simple examples. In the first three examples it is assumed
that there are no extended DOS partitions on the IBM Personal Com
puter AT fixed disk.

Example 1 - To set up a logical drive (0) for a 720 KB external
diskette drive on a IBM Personal Computer AT (one internal diskette
drive and one fixed disk), use the following command:

OEVICE=EXTOSKOO.SYS /0:2

Example 2 - To be able to copy from a 720 KB external diskette drive
to the same drive, put the same command in the CONFIG.SYS file
twice, which (for an IBM Personal Computer AT) assigns the logical
drive letters D and E to the drive.

OEVICE=EXTOSKOO.SYS /0:2
OEVICE=EXTOSKOO.SYS /0:2

Example 3 - You can use EXTDSKDD.SYS to copy from an internal
drive to the same internal drive. Assume you have an IBM Personal
Computer AT with a 1.2Mb drive as the first diskette drive and a
320/360 KB drive as the second physical diskette drive and a fixed
disk. The CONFIG.SYS command would be:

OEVICE=EXTOSKOO.SYS /0:0 /T:80 /5:15 /H:2 /C /F:l

This assigns the logical drive letter D to the first diskette drive. It can
now be referenced as A and D. The command

A>copy fil el d:

copies "file1" from one diskette to another diskette using the 1.2Mb
drive only. OS/2 prompts you to insert the diskette for the appro
priate logical drive.

9-149

Example 4 - If in the previous example FDISK had been used to set up
an extended DOS partition on the Personal Computer AT fixed disk,
the same DEVICE= statement in CON FIG.SYS would result in the
logical drive letter E (instead of D) being assigned to the first diskette
drive. It can now be referenced as A and E. The command

A>copy filel e:

copies "file1" from one diskette to another diskette using the 1.2Mb
drive only. OS/2 prompts you to insert the diskette for the appro
priate logical drive.

General Rules For Drive Letters: The first physical internal diskette
drive is assigned A. The second internal diskette drive is assigned B.
The letters beginning with Care assigned in the order devices (or
device drivers) are encountered. The existence of internal physical
devices (diskettes and fixed disks) is checked first including partitions
on the fixed disks; then the CONFIG.SYS file is checked for device
drivers. For OS/2 to recognize an external physical device the
CONFIG.SYS file must have the correct device driver information.

The drive letter B automatically is used, even if there is only one
physical diskette drive, that is, on machines with only one diskette
drive, there are two logical diskette drives A and B. In this case, the
parameter /0:1 is an error. The first fixed disk, or the first block
device driver, cannot have a drive letter assigned lower than C. On
each fixed disk a drive letter is assigned for each primary and
extended DOS partition.

For machines with an external drive, if the external device driver is
loaded twice, where /D:dd is the same, it generates two logical drives
for the one physical drive. This provides the ability to transfer data
from one diskette to another in that same drive.

The same concept can also be applied to internal drives. In this case,
OS/2 automatically loads a disk device driver for the drive at setup
time. By including a DEVICE= EXTDSKDD.SYS in the CONFIG.SYS
file for the same drive, two drive letters will be associated with the
same drive. The command

DEVICE=EXTDSKDD.SYS /D:e

in the CONFIG.SYS file at start-up time causes OS/2 to load another
diskette driver for the first diskette drive. As described above, the
drive letter depends on the number of diskette drives and the number

9-150

of fixed disks in the machine. For a machine with two diskette drives
and a fixed disk that does not have any extended DOS partitions, the
logical drive letter for the first diskette is drive D. With this setup you
can copy files from the first physical diskette drive to the first logical
diskette drive by referencing them as A and D.

The following table describes the logical drive letter assigned to the
external device driver for certain machine configurations and values
of ID.

Note: More than one external device driver can be installed at the
same time even though this table shows one external device driver.
The existence of any VDISKs will not affect the drive letter assign
ments described below if the DEVICE= VDISK.SYS commands are
after the DEVICE= EXTDSKDD.SYS commands in the CON FIG.SYS
file.

Internal Internal External Physical Logical
diskette fixed drives drive drive
drives disk attached? number letter

drives* (/D:ddd} assigned

1 0 No 0 C:

1 0 No 1 error

1 1 No 0 D:

1 1 No 1 error

1 1 No 128 error

1 2 No 0 E:

1 2 No 1 error

1 2 No 128 error

1 0 Yes 0 C: **

1 0 Yes 1 error

1 0 Yes 2 C:

9-151

Internal Internal External Physlcal Log lea I
diskette fixed drives drive drive
drives disk attached? number letter

drives* (/D:ddd) assigned

1 1 Yes 0 D:

1 1 Yes 1 error

1 1 Yes 2 D:

1 1 Yes 128 error

1 2 Yes 0 E:

1 2 Yes 1 error

1 2 Yes 2 E:

1 2 Yes 128 error

1 2 Yes 129 error

2 0 No 0 C:

2 0 No 1 C:

2 0 No 2 error

2 1 No 0 D:

2 1 No 1 D:

2 1 No 2 error

2 1 No 128 error

2 2 No 0 E:

2 2 No 1 E:

2 2 No 2 error

2 2 No 128 error

2 2 No 129 error

2 0 No 0 C: **

9-152

Internal Internal External Physlcal Log lea I
diskette fixed drives drive drive
drives disk attached? number letter

drives* (/D:ddd) assigned

2 0 Yes 1 C: **

2 0 Yes 2 C:

2 1 Yes 0 D: **

2 1 Yes 1 D: **

2 1 Yes 2 D:

2 1 Yes 128 error

2 2 Yes 0 E: **

2 2 Yes 1 E: **

2 2 Yes 2 E:

2 2 Yes 128 error

2 2 Yes 129 error

* These values assume that there are no extended DOS partitions
on the fixed disk(s).

** The external drive is not recognized.

Note that a physical drive number above 127 is an error.

9-153

Printer Device Driver

The printer device driver runs in a multitasking, dual-mode environ
ment.

The following functions are supported:

• Initialize Printer Device Driver
• Print Character
• Return Printer Device Driver Status
• Open Device
• Close Device
• Deinstall
• Generic IOCtl functions

Set/Return Frame Control
Set/Return Infinite Retry
Initialize Printer Port
Return Printer Port Status
Register/Query Monitor Support
Activate Code Page/Font
Query Code Page/Font
Verify Code Page/Font

When the user asks for printer status with the generic IOCtl request,
the following information is returned:

• Busy/not busy
• Acknowledge
• Out of paper
• Selected
• 1/0 error
• Timeout

The printer device driver provides character device monitor support
on a per device basis. The printer device driver supports the regis
tration of two monitor chains. The first chain (INDEX= 1) is normally
considered to be the data chain and is used by the printer device
driver to send character data to a monitor. The second chain
(INDEX= 2) is normally considered to be the code page chain, but it is
used by the printer device driver only to receive the results of a code
page request. The code page request sent to the monitor was per
formed using the first chain (INDEX= 1).

9-154

The printer spooler is an example of a monitor that registers itself on
both the data chain and the code page result chain. The input buffer
specified when the spooler registers INDEX= 2 is never used by the
spooler. All data and code page requests from the printer device
driver to the spooler on one chain are sent to insure that the spooler
processed the requests in order. The second chain was implemented
to enhance processing. Processes that issue code page requests are
blocked until they receive an indication that their request is valid.
The second chain allows a monitor to respond to the printer device
driver quickly and efficiently.

Therefore, printer device driver monitors must be designed with
extreme care and thought must be given to their position in the chain
when other monitors are involved. The following items list some of
the possibilities:

Notes:

1. If a monitor wishes only to process character data and it is the
only monitor in the chain, or it is registered to be in a position to
process the data after the spooler, it only needs to register on the
data chain (INDEX= 1). This monitor would never see the code
page requests from the spooler, because the spooler sends these
requests out on the code page result chain. If the spooler wasn't
part of the chain, then the printer device driver would never issue
the code page requests.

2. If a monitor wishes to process both the character data and the
code page requests and it is the only monitor in the chain, it must
register itself on both the data and code page result chains. It
must also expect to receive both the data and code page requests
on the data chain, it must respond to the code page requests on
the result chain as quickly as possible.

3. If a monitor wishes to process both the character data and the
code page requests and its position in the chain is after the
printer spooler, it must expect to receive the character data from
the spooler on its data chain (INDEX= 1) and the code page
requests from the spooler on the code page chain (INDEX=2). A
monitor in this situation would not be able to easily synchronize
the code page requests with the data requests; the spooler will
pass the code page results along the result chain before all the
data has been spooled and released.

9-155

4. If a monitor wishes to process both the character data and the
code page requests and its position in the chain is before the
printer spooler, it registers itself on the data chain (INDEX= 1).
The spooler will register itself on both chains. All data and code
page requests will be sent to the first monitor on the data chain.
This monitor must pass on to the spooler all the information it
receives, in the order received.

The printer device driver passes the character information to the
monitors in data packets. The character information in the data
packets is preceded by control information. The maximum size of the
data packet which consists of both the control information and the
character data is 134 bytes. This value is used to calculate the size of
the monitor input/output buffers required for the DosMonReg call.

Byte O Byte 1

Tl Monitor Flags joevice Dep Flags!

Control Word 2

_1___ ~'~~~S_y_st_e_m~Fi_le~N_um~b_e_r~~~
Word 4

Tl------
Data Character Data

J_ 1--------1

The printer device driver passes the code page information to the
monitors in data packets. The code page information in the data
packets is preceded by control information.

9-156

11
Control

Byte o Byte 1

Monitor Flags joevice Dep Flagsj

Word 2

~ ~' ___ s_ys_t_e_m_F_i_le_N_u_m_b_er ____ __.

Byte 4 Byte 5

Command Byte I Reserved

Word 6

Reserved 0

Word 8

Code Page I
Information ~-----R_et_u_rn __ c_o_de __ A_r_ea ______ ~

Word A

Code Page Value

WordC

Font Value

The printer device driver is in INIT MODE when its strategy routine is
called with a request packet containing the INIT command. The
initialization code runs in the OS/2 mode at the application privilege
level with 1/0 privilege.

The printer device driver will handle print requests received at its
strategy entry point from the file system in the form of request
packets as well as INT17H software interrupt requests received from
the DOS mode while in user mode.

The printer device driver has three printer specific IOCtl commands
to support the code page and font switching provided in OS/2. All of
the actual code page and font switching function for printers is pro
vided by the code page switcher spooler. When the spooler is
started, it checks to see if code page support is required. If it is, the
spooler will cause the code page switcher support to be loaded and
initialized. In order to support these IOCtls, there are Font Monitor
Buffer Command/responses in the monitor interface to the spooler.

9-157

The functions provided by the IOCtls and Font Monitor Buffer
Command/responses are:

• Activate Font
• Query Active Font
• Verify Font

These IOCtls and monitor code page and font buffer
command/responses are described in detail in "Printer Device Driver
Interfaces" on page 9-159.

Activate Font: Refer to "Printer/Spooler Structure" on page 6-55,
when an application within a process issues a DosOpen for a printer
(i.e. LPT1, LPT2, LPT3 or PRN). The file system issues an Activate
Font IOCtl to the printer device driver to set the active code page and
font according the active code page of the process making the open
request.

An application within a process may also issue the Activate Font
IOCtl to the printer device driver by using the handle returned from
the DosOpen at any time. This allows the application to change the
active code page and font in the middle of its print job.

When the printer device driver receives the Activate Font IOCtl, if the
spooler or another monitor is registered, the printer device driver will
use the Font Monitor Buffer command to send the Activate Font
command to the registered monitor in its monitor input buffer. If the
spooler, or another monitor, is not registered, the printer device
driver will return the appropriate return code to the caller of the Acti
vate Font IOCtl.

Query Active Font: When the printer device driver receives the Query
Active Font IOCtl, if the spooler or another monitor is registered, the
printer device driver will use the Font Monitor Buffer command to
send the Query Active Font command to the registered monitor in its
monitor input buffer. The monitor will return the active code page
and font information to the printer device driver in its monitor output
buffer. The printer device driver then returns the active code page
and font information to the caller of the Query Active Font IOCtl.

If the spooler, or another monitor, is not registered, the printer device
driver will return the appropriate return code to the caller of the
Query Active Font IOCtl.

9-158

Verify Font: When the printer device driver receives the Verify Font
IOCtl, if the spooler or another monitor is registered, the printer
device driver will use the Font Monitor Buffer command to send the
Verify Font command to the registered monitor in its monitor input
buffer. The monitor will return whether the specified code page and
font is valid to the printer device driver in its monitor output buffer.
The printer device driver then returns the return code to the caller of
the Verify Font IOCtl.

If the spooler, or another monitor, is not registered the printer device
driver will return the appropriate return code to the caller of the
Verify Font IOCtl.

Printer Device Driver Interfaces

The interfaces required by the printer device driver for code page and
font switching are:

• Activate Font IOCtl - Category 5 Function 48h
• Query Active Font IOCtl - Category 5 Function 69h
• Verify Font IOCtl - Category 5 Function 6Ah
• Font Monitor Buffer Commands

Activate Font
Query Active Font
Verify Font

Font Monitor Buffer Commands

Printer Monitor Record: Each monitor record can be of variable
length. However, there must be a word of flags at the beginning of
each monitor record. The flags are defined as follows:

9-159

Monitor Flags Device Driver
Dependent

Byte 0 Byte 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 then
Flush

Reserved Reserved

1 trlnter Code Page Monitor
Buffer Command I Response

Code Page
Command Processed

INT 17H Code Page Request

Status

When the Status bit is set to 1 (byte 1, bit 3), this indicates that the
monitor buffer is a status packet from the printer device driver. In
this case, the next six bytes are:

Byte 2 and 3

System File Number

Byte4 Byte 5

·status Reserved, Set to O I

Byte 6 and 7

Reserved, Set to O

Byte 2 & 3 System File Number WORD

Byte4

Bytes

Status byte which indicates the type of printer error. This
will be the same 8 bits returned as the status field in a
request header.

Reserved, and must be set to zero (0).

Byte 6 & 7 Reserved WORD, must be set to zero (0).

When the Font Monitor Buffer command bit is set to 1 (byte 1, bit 0),
this indicates that the monitor buffer is a Font Monitor Buffer

9-160

command or a response to a previous Font Monitor Buffer command.
In this case, the next six bytes are:

Byte 2 and 3

System File Number

Byte 4 Bytes

Command Byte Reserved, Set to O I

Byte 6 and 7

Reserved, Set to 0

Byte 2 & 3 System File Number

Byte4 Font Monitor Buffer Command Byte which indicates the
type of command or response.

Bytes Reserved, and must be set to 0.

Byte 6 & 7 Reserved WORD, must be set to 0.

When the Code Page Command Processed bit is set to 1 (byte 1,
bit 1), the Font Monitor Buffer command has been processed by the
spooler. The printer device driver sends Font Monitor Buffer com
mands on monitor chain Index= 1. A monitor which services the Font
Monitor Buffer command will use MonWrite to place the Font Monitor
Buffer Response on Monitor chain lndex=2. Data to be printed con
tinues to flow on monitor chain Index= 1. Monitor chain Index= 2 is
used only for the Font Monitor Buffer responses so that the printer
device driver does not block a program issuing a code page and font
IOCtl request when print data monitor buffers are already queued
ahead of the IOCtl request.

When the INT17H Code Page Request bit is set to 1 (byte 1, bit 2), the
Activate Code Page Request was issued automatically by the printer
device driver on behalf of INT17H processing and the application is
not waiting for a response.

The valid Font Monitor Buffer commands, along with the remainder of
the buffer contents for the responses, are as follows:

Byte 4 = 01 H Activate Font

9-161

Command Data, starting at byte 8:

08

OA

oc

WORD

WORD

WORD

Return Code

Code Page

Font Id

Return Code A WORD value starting at byte 8, and includes the fol-
lowing values:

• Successful completion
• Code page and font switching not active
• Unable to access specified font file
• Unable to locate or activate specified code page
• Unable to locate or activate specified font.

Code Page The value of the code page to make the currently active
code page.

Fontld

OOOOH If both the code page value and font ID are
specified as 0, set printer to hardware default
code page and font.

0001 H-FFFFH Valid code page numbers.

The ID value of the font to make currently active.

OOOOH If both the code page value and Font Id are
specified as zero (0), set printer to hardware
default code page and font.

If only the font Id is specified as 0, any font
within the specified code page is acceptable.

0001H-FFFFH Valid font ID numbers, font types defined by
the font file definitions .. *

Remarks The Font Monitor Buffer command is passed on monitor
chain index= 1 by the printer device driver to the spooler.
The Font Monitor Buffer response is returned by the
spooler on monitor chain index= 2 to the printer device
driver.

Byte 4 = 02H Query Active Font

There is no additional command data.

9-162

The response is as fol lows:

08

OA

oc

WORD

WORD

WORD

Return Code

Code Page

Font Id

Return Code A WORD value starting at byte 8, and includes the fol
lowing values:

• Successful completion
• Code page and font switching not active.

Code Page The value of the currently active code page.

Valid numbers are between 0 and 65535.

A value of 0 for both the code page and font ID indicates
that the hardware default code page and font is active.

Font Id The ID value of the currently active font.

Valid numbers are between 0 and 65535.

Remarks The Font Monitor Buffer command is passed on monitor
chain index= 1 by the printer device driver to the spooler.
The Font Monitor Buffer response is returned by the
spooler on monitor chain index= 2 to the printer device
driver.

Byte 4 == 03H Verify Font

Command Data, starting at byte 8:

Return Code A WORD value starting at byte 8, and includes the fol-
lowing values:

• Code page and font valid
• Code page not valid
• Font not valid

9-163

• Code page and font switching not active
• Unable to access specified font file.

Code Page The value of the code page to validate.

Fontld

Values may be Oto 65535.

The Font ID to validate.

Values may be 0 to 65535. A value of 0 indicates that any
font within the specified code page is acceptable.

Remarks The Font Monitor Buffer command is passed on monitor
chain index= 1 by the printer device driver to the spooler.
The Font Monitor Buffer response is returned by the
spooler on monitor chain index= 2 to the printer device
driver. Because the Activate Font may also contain data
to be printed, it may also be returned by the spooler on
monitor chain index= 1.

9-164

Chapter 10. Functions and Utilities for
Problem Determination

Design Elements

Reliability Functions

Semaphores

Semaphore mechanisms sequence the updating or processing of data
by asynchronous operations.

Diskette processing

OS/2 maintains an awareness of the volume label associated with
each open file and an awareness of the volume label on the current
diskette in each drive. You are instructed to insert the correct diskette
whenever 1/0 is requested for a diskette which is not the current one.
After you respond, OS/2 reads and compares the volume label to
verify that the correct volume has been inserted. OS/2 then performs
the requested 1/0. This feature is supported for file 110 using file
handles.

Fiie write-through

Applications have the ability to know that a successful file write oper
ation has occurred in order to sequence file updates to minimize the
impact of a system failure. This can be done with synchronous file
110 to synchronous files. The VERIFY command is available for vali
dating file updates.

10-1

Availability Functions

The following items help maximize system availability. They also can
be used to improve reliability.

Termination exit capablllty - Termination exits are provided.

Error recovery -An application can attempt recovery from any error
it detects. Upon detection of an error, the application can attempt to:
retry, ignore, correct, or abort.

Locallzatlon of Damage -Termination is done on a process basis.
When an error occurs, and error recovery cannot be accomplished,
only the affected process(es) are terminated.

Serviceability Functions

The following functions are provided for problem determination and
isolation in a multitasking environment:

Create Dump Diskette Utlllty - Creates a diskette to be used with the
stand-alone dump facility. This utility should be executed imme
diately following system installation.

Note: This procedure (CREATEDD) is required only ONCE for each
dump. It does not need to be done on every re-installation/re-start.

System Trace Faclllty -Allows important system events to be
recorded.

Stand-alone Dump Faclllty - Initiated by pressing Ctrl/Alt/Numlock
twice.

Note: This procedure will require a system restart (re-boot) after the
dump is complete.

10-2

System Trace Facility

The OS/2 System Trace Facility helps support personnel in diag
nosing system problems. It provides an internal system interface that
allows the placing of variable length data in a variable size circular
trace buffer. This provides a histo.rical trail of system events that
could be useful in isolating the cause of a system failure.

Using System Trace

TRACEBUF and TRACE commands In CONFIG.SYS.

There are two CONFIG.SYS commands used to indicate that system
tracing is desired. The format of the commands follows:

TRACEBUF = y

where y is an integer that represents the size of the Circular Trace
Buffer in 1 K increments.

• If the 'TRACEBUF' command is invalid, the command is ignored
and a 'TRACEBUF' will be allocated only if a 'TRACE' command
is specified.

• If this facility receives errors in trying to allocate the trace buffer
and associated data, an error message will be reported and
tracing will never be enabled.

• If multiple 'TRACEBUF' commands are given, the last one super
sedes all previous occurrences.

• If a 'TRACE' command is in the CONFIG.SYS file, but no valid
'TRACEBUF' command is present, a 4K buffer is allocated.

• If a 'TRACEBUF' command is in the CONFIG.SYS file, but no
'TRACE' command is present, the buffer exists (if it could be allo
cated), but no trace events will be enabled during initialization.

• If neither 'TRACEBUF' nor 'TRACE' appears in CONFIG.SYS, no
trace buffer will be allocated and tracing will never be enabled.

TRACE =(ON l OFF) [x [,x ...]]

Where xis an integer that indicates whether an event is to be enabled
(ON) or disabled (OFF) for system tracing, multiple events can be

10-3

individually selected by listing one after the other. The values of the
numbers are between O and 255, and are referred to as major event
codes. Examples of events associated with different major event
codes are tasking events or hardware interrupts.

• An invalid 'TRACE' command results in error message(s) and is
ignored. If the command is invalid, the buffer is allocated only if
either 'TRACE' or 'TRACEBUF' is specified.

• If no parameters are listed after the ON/OFF parameter, then ON
indicates all trace calls encountered are traced and OFF means
no tracing is done.

• Multiple 'TRACE' commands are allowed in the CONFIG.SYS file.

• If an event code is referenced in multiple 'TRACE' commands, the
last reference supersedes all others.

TRACE as an OS/2 Command Utillty

The OS/2 command utility 'TRACE' provides dynamic
enabling/disabling of tracing by the user. This utility is available only
in the OS/2 mode. The format of the command is:

[d:] [path] TRACE (ON : OFF) [x [,x •••]]

where xis a decimal integer between 0 and 255 inclusive, corre
sponding to a major trace event code that is to be traced (ON) or not
traced (OFF).

• If no parameters are listed after the ON/OFF parameter, then ON
indicates all trace calls encountered are traced and OFF means
no tracing is done.

• If no trace buffer was allocated during the processing of the
CONFIG.SYS file at initialization time, an error message will
result and no tracing is provided by the system.

• If a number is outside of the given range, an error message is
generated for that number and processing of the remainder of the
command continues.

• If the ON/OFF parameter is invalid, or all of the major event
codes are invalid, a message is generated and the entire
command is ignored.

10-4

Considerations/Limitations

The trace buffer is circular and wraps. In some cases, you may lose
useful information if trace is not disabled (with TRACE OFF) imme
diately after the problem has occurred.

Stand-Alone Dump Facility

The Stand-Alone Dump facility aids in providing problem determi
nation services for OS/2. The OS/2 Stand-Alone Dump facility is used
to dump to diskettes all physical memory, including the 640K - 1 M
address space. Memory between 640K and 1 M contains information
belonging to 110 adapters that have shared memory (display, smart
communications adapters, and others).

The major portion of the Stand-Alone Dump functions independently
of OS/2, although a portion of the Dump facility is part of the fixed and
memory resident portion of OS/2. The purpose of the memory resi
dent code is to stabilize the system hardware and initiate the start of
the Stand-alone Dump diskette.

A keystroke sequence (Ctrl +Alt+ Numlock pressed twice) is entered
to invoke the stand-alone dump. That keystroke sequence is detected
by the keyboard device driver and control is passed to memory resi
dent stand-alone dump code. That code sets up the hardware so a
start-up of a diskette can be done. It then starts a stand-alone dump
diskette to initiate the actual dumping of physical memory. The
stand-alone-dump diskette is created with the Create Dump Diskette
Utility. The stand-alone dump will be analyzed by an IBM Customer
Representative.

10-5

Initiating a Dump

Procedure usecl to start a Dump

To initiate a dump, press the Numlock key twice in a row while
holding the Ctrl +Alt keys down. The user should exercise caution
when initiating a dump because system activities in progress will
stop without cleanup. The Ctrl +Alt+ Numlock keys may be used in
either the OS/2 mode or the DOS mode. A prompt will instruct you to
insert the stand-alone dump diskette in drive A. The dump code will
verify that a CREATEDD diskette has been inserted in drive A. This is
done to avoid an accidental start on a fixed disk system by placing an
incorrect diskette in drive A.

From this point, all physical memory will be dumped to diskette(s). If
additional diskettes are needed after the initial stand-alone dump
diskette, then formatted diskettes can be used. Each time you are
prompted to insert another diskette, you may end the memory dump
by re-inserting the first dump diskette.

If additional diskettes are required, a header record will be placed on
each additional diskette. This header record also contains the
summary information available at the time this diskette is loaded for
dumping. After the dump has completed, a summary record will be
written on the first stand-alone dump diskette. The summary record
will contain, at a minimum, information pertaining to the range of
physical memory dumped, the number of diskettes used in the dump,
and the physical memory range that was placed on each diskette.
Once the dump is complete, you need to re-start OS/2 in order to use
OS/2 again.

10-6

Trace Formatter Utility
The Trace Formatter Utility is a service aid that can be used in con
junction with the system trace facility to debug problems in the OS/2
system. The facility captures the current contents of the system trace
buffer, analyzes each trace record, and displays the formatted data
on the standard output device. The standard output device can be the
display, a printer or a file.

The format of the command is:

[d:] [path] TRACEFMT

[d:] [path] is the optional drive and path where the system can find
the TRACEFMT utility.

To use the trace formatter, a trace buffer must have been allocated at
IPL time. To allocate a trace buffer, you must include either the
TRACEBUF or TRACE command in CONFIG.SYS. Tracing is not
required to be active (that is, TRACE= ON) at the time the TRACEFMT
command is issued.

The trace formatter can be invoked as many times as required to
diagnose the problem.

The formatted trace records are displayed in reverse time-stamp
order (that is, newest records first). Each formatted trace record con
sists of header information and optional data. The header informa
tion contains:

• The title of the trace event. The title is a string describing the
event. Each major/minor event code combination is converted to
a unique title.

• For events that have a pre-invocation and post-invocation code, a
string is displayed indicating whether the trace record is the pre
invocation or post-invocation of the event.

10-7

• The issuing process ID in the form "Issuing Process ID=xxxx"

• Two strings that represent the trace record flag word as follows:

"Kernel Call" or "Dynlink Call" to indicate the type of call
invocation

"OS/2 Mode" or "DOS Mode" to indicate the mode of the
calling process

• The time stamp of the event in the form "Time Stamp= ss.hh,
where "ss" is seconds and "hh" is hundredths of seconds. If the
time stamp is the same as the previous trace record, the time will
not be displayed. Instead, the string "Time Stamp= " is dis
played.

Following the header information fields, the optional event specific
data is displayed. If unrecognized trace records have been added to
the trace buffer, the trace formatter will display "Unrecognized Trace
Event" as the event title, followed by the rest of the header data. It
will then display the major and minor code contained in the trace
record.

An example formatted trace output appears below:

OosHoldSignal Post-Invocation
Issuing Process I0=0006 OS/2 Mode Kernel Call Time Stamp= ..•.
Return Code=OOOO

OosHoldSignal Pre-Invocation
Issuing Process I0=0006 OS/2 Mode Kernel Call Time Stamp= .••.
Action Code=OOOO

OosGetShrSeg Post-Invocation
Issuing Process I0=0006 OS/2 Mode Kernel Call Time Stamp= .•..
Selector=0307 Return Code=aooo

OosGetShrSeg Pre-Invocation
Issuing Process I0=0006 OS/2 Mode Kernel Call Time Stamp=23.44
Name=\SHAREMEM\SMG\SGTITLE

10-8

Create Dump Diskette Utility

This utility is used to create the initial, start (boot) diskette that con
tains the files necessary to perform the stand-alone dump. The
diskette is also made to appear full to prevent accidentally placing
data other than from the dump on the diskette. If additional dump
diskettes are needed for a given dump, use diskettes that were for
matted with the FAT based OS/2 FORMAT utility.

You can only invoke this utility from the OS/2 mode of OS/2.

Using the Create Dump Diskette Utility

To invoke the Create Dump Diskette utility, enter the following:

[d:] [path] CREATEDD x

Where:

[d:] [path] - is the optional drive and path where the CREATEDD utility
can be found by the system.

x - is the destination drive that contains the diskette to be used as the
dump diskette.

If no parameter or an an invalid parameter is specified, the utility
ends and no dump diskette is created.

The CREATEDD utility calls the FORMAT utility. Therefore, FORMAT
must reside in the Default Directory or the Path must be set up to find
the FORMAT utility.

10-9

10-10

Chapter 11. Country Support
Considerations

Introduction

Country Support for OS/2 includes these features:

• Country dependent information

• Country APls

• National keyboard layouts

• Configuration commands

• Translated system message files

Country Dependent Information

Country information is available in OS/2 for all-the countries and cor
responding country codes listed below:

Country Code
United States 001
Canada 002
Latin America 003
Netherlands 031
Belgium 032
France 033
Spain 034
Italy 039
Switzerland 041
United Kingdom 044
Denmark 045
Sweden 046
Norway 047

11-1

Country
Germany
Australia
Japan
Korea
People's Republic of China
Taiwan
Asia
Portugal
Finland
Arabic
Hebrew

Code
049
061
081
082
086
088
099
351
358
785
972

For each country code there is a corresponding set of country
dependent information contained in the COUNTRY.SYS file that
includes:

• Time and date format, currency symbol and decimal separator
information

• Lower to upper case mapping table for ASCII characters

• Collating sequence table for ASCII character string sorting by
SORT utility

• DBCS environmental vector table for double-byte character sets.

The set of country dependent information that is used by OS/2 is
determined by the country code the COUNTRY command is set to in
CONFIG.SYS. This system country code is always the same for all
application sessions. Country information retrieval is based on the
country code and code page of the calling process or a selected
country code and selected code page.

Applications can request country information for the system country
code used by OS/2 or a specific country code using the Country API
calls:

11-2

DosGetCtrylnfo - Get the time, date and other format information
for the current country code or a selected country code.

DosCaseMap - A variable length string of ASCII characters is
case mapped from lower to upper case and returned.

DosGetCollate - Get the collate sequence table for sorting

DosGetDBCSEv - Get the DBCS environment vector binary value
ranges of valid lead bytes for double-byte characters.

Please refer to Technical Reference, Vol. 2 for more detailed informa
tion about function calls and the format of the information returned.

National Keyboard Layouts

System keyboard layouts are available for different countries. The
following table lists these different countries and the two-letter code
that is used to select the desired keyboard layout with the KEYB
utility:

Keyboard Code
Belgium BE
Canadian-French CF
Denmark DK
Finland SU
France FR
Germany GR
Italy IT
Latin America LA
Netherlands NL
Norway NO
Portugal PO
Spain SP
Sweden sv
Swiss-French SF
Swiss-German SG
United Kingdom UK
United States us

The system keyboard layout is selected by the utility command KEYB
and the same layout is used for all application sessions. Multiple
KEYB commands can be selected by the user in a given session. The
last keyboard layout selected determines the current keyboard layout
in the system. The United States keyboard layout is the default
layout.

Note: This two-letter code is also used in the CONFIG.SYS
DEVINFO = command.

11-3

Code Page Configuration

Code page configuration of the system is necessary to be able to suc
cessfully switch between two code pages at run time. The following
set of commands must be set up correctly in CONFIG.SYS for this
purpose:

Command Purpose

CODEPAGE Specify one or two code page identifiers the system is
to set up to use.

COUNTRY Specify the country code and a fully specified file
name. The file contains a set of country information
characters encoded according to a code page based
on ASCII. The system defaults to the COUNTRY.SYS
file in the root directory of the start drive if no file is
specified.

DEVINFO Specify the keyboard layout selection and a fully
specified file name. The file contains a keyboard
layout table for translating keystrokes into characters
encoded according to a code page based on ASCII.
The system defaults to the KEYBOARD.DCP file in the
root directory of the boot drive if no file is specified.

DEVINFO Specify for the display device a fully specified file
name. The file contains a video font table for dis
playing characters encoded according to a code page
based on ASCII. The system does not have a default
file name but the file VIOTBL.DCP is provided.

DEVINFO Specify for the printer device a fully specified file
name. The file contains a printer font table for
printing characters encoded according to a code page
based on ASCII. The system does not have a default
file name but the files 4201.DCP and 5201.DCP are
provided.

Incorrect, partial, or mismatched set-up of commands for code page
selections, country code, keyboard layout, display, and printer may
cause ineffective switching between code pages at run time. See the
User Reference for the description and syntax of each command and
the CHCP change code page command.

11-4

Utility and Configuration Command Support

The configuration command COUNTRY has the format
COUNTRY= xxx where xxx is the country code for the country
dependent information. This command causes the current country
code to change from the system default (United States=001) to xxx.

The various countries supported and their associated country codes
are discussed earlier in this chapter.

The CONFIG.SYS RUN= command can be used with the KEYB utility
to start the system with a system keyboard layout other than the U.S.
default. The KEYB (yy] utility is used to change the system keyboard
layout.

The OS/2 System Installation allows system installation for a selected
country code and keyboard layout.

11-5

11-6

Appendix A. The Linker

This appendix contains the following subjects:

• Converting object files to executable code
• Linker options
• Linker error messages
• Module definition file statements

Note: The OS/2 Linker does not support the use of the APPEND
command and will not find run time libraries in APPEND directories.

Converting Object Files to Executable Code

To convert object code files to executable code, the OS/2 Linker
requires the following syntax:

LINK object-list,[run-file],[map-file],[library-list],
[definition-file],[/options list];

The preceding syntax has the following meaning:

object-list

[run-file]

[map-file]

[Ii brary-1 ist]

[definition-file]

[/options list]

A list of object files to be linked together. Sep
arate filenames with plus (+)signs or blanks.
The default extension is .OBJ.

The name of the file to receive the executable
output. The default filename is the name of the
first listed object file. The default extension is
.EXE.

The name of the file to receive the map listing.

A list of libraries for LINK to search. Separate
list items with plus (+) signs or blanks. The
default extension is .LIB.

An optional module definition file.

An optional list of linker parameters.

The commas (,) shown in the command line syntax are required if all
the input fields are specified on a single line. If the command line
does not end with a semicolon(;), the linker will prompt for any

A-1

remaining input fields not given on the command line or in a
response file.

Note: For further information on linking, see Chapters 7 and 8 in the
OS/2 Programmer's Guide. Those chapters explain:

• How to link dynamic link libraries
• How to use the linker by:

Responding to prompts
Typing on the command line
Creating an Automatic Response File (ARF).

About LINK Options

LINK can be used to link programs written with the IBM languages in
either the OS/2 or DOS environments. The overlay capability is for
use in the DOS 3.3 environment only.

Using LINK Options

The linker options control the tasks performed by LINK. You may
specify an option anywhere before the last comma on the command
or response line. Every option must begin with the slash character,
even if other options appear before it on the line.

You can abbreviate option names as long as your abbreviations
contain enough letters to distinguish the specified option from other
options. Minimum abbreviations are listed with the description for
each option on the following pages. Link does not recognize spaces
between characters, nor does it recognize transpositions (changes in
order). The link options are:

Option

/ALIGNMENT

/CODEVIEW

/CPARMAXALLOC

/DOSSEG

/DSALLOCATE

A-2

Description

Sets segment alignment factor

Includes debugging information for
the CodeView debugger

Changes value of maximum number
of reserved paragraphs

Forces ordering of segments

Controls data loading

/EXEPACK Packs executable files

/FARCALL TRANSLATION

/HELP

Optimizes intra-segment far calls

Writes a list of the available options
to the screen

/HIGH

/INFORMATION

Cohtrols loading the run file

Displays information about the
linking process

/LINENUMBERS

/MAP

Copies line numbers to the map file

Lists all public symbols in your
program

/NODEFAULTLIBRARYSEARCH Ignores default libraries

/NOFARCALLTRANSLATION Disables far call translations

/NOGROUPASSOCIATION Provides compatibility with previous
compiler versions

/NOIGNORECASE Case sensitive

/NOPACKCODE Disables code segment packing

/OVERLA YINTERRUPT Sets the overlay

/PACKCODE Packs code segments

/PAUSE Pauses to change disks

/SEGMENTS Sets the maximum number of seg
ments

/STACK

/WARNFIXUP

Sets the stack size

Warns of incorrect offset

A-3

Entry of Numeric Parameters

Numeric parameters on the linker options and in the module defi
nition statements can be entered in decimal, hexadecimal, or octal.
The format follows the C language conventions.

The C entry conventions are:

Decimal

Hexadecimal

Octal

A-4

Any number which begins with anything other
than a 0 digit. For example: 1, 65536, 2084,
234

A number which must begin with Ox and
contain 0 - 9, A - F. For example: OxFFF, Ox10

Any number which begins with the digit 0
which contains only the digits 0 - 7. For
example: 010, 05000, 0777

Aligning Segments
/ALIGNMENT

This option directs LINK to set the segment alignment factor in the
executable file to the number given, which must be a power of 2. The
default alignment is 512.

This option is valid only for code linked to run in the OS/2 environ
ment.

Format

I ALIGNMENT:number

The minimum abbreviation is /A.

Remarks

Aligning a segment means adjusting its address to the next address
occurring on a specific boundary based on the alignment factor. The
adjusted, or aligned, address will then be evenly divisible by the
alignment factor.

The number can be a hexadecimal, decimal, or octal number.

/ALIGNMENT tells the linker to adjust the beginning of a segment to
the next address boundary which matches the specified alignment
factor.

A-5

Preparing Files for·CodeView
/CODEVIEW

This option directs LINK to include symbolic debugging information
for CodeView in the output executable file.

Format

/CODEVIEW

The minimum abbreviation is /CO.

Remarks

/CODEVIEW cannot be used with /EXEPACK.

A-6

Reserving Paragraph Space
/CPARMAXALLOC

This option allows you to change the default value of the MAXALLOC
field, which controls the maximum number of paragraphs reserved in
storage for your program. A paragraph is defined as the smallest
storage unit (16 bytes) addressable by a segment register.

This option is valid only for code linked to run in the DOS 3.3 environ
ment or in the DOS environment of OS/2.

Format

/CPARMAXALLOC:number

The minimum abbreviation is /CP.

Remarks

The maximum number of paragraphs reserved for a program is deter
mined by the value of the MAXALLOC field at offset OCH in the EXE
header.

The default for the MAXALLOC field is 65535 (decimal), or 64K minus
1. You can reset the default to any number between 1 and 65535
(decimal, octal, or hexadecimal). Changing the number is helpful
because:

• Program efficiency is not increased by reserving all available
storage.

• You may need to run another program within your program and
you need to reserve space for that program.

If the value you specify is less than the computed value of MINALLOC
(at offset OAH), the linker uses the value of MINALLOC instead.

A-7

Ordering, Segments
/DOSSEG

The /DOSSEG option forces segments to be ordered according to the
following rules:

1. All segments with a class name ending in CODE.

2. All other segments outside of DGROUP.

3. DGROUP segments in the following order:

a. Any segments of class BEGDATA. (This class name is
reserved for IBM use.)

b. Any segments not of class BEGDATA, BSS, or STACK.
c. Segments of class BSS.
d. Segments of class STACK.

Format

/DOSSEG

The minimum abbreviation is /DO.

Remarks

Linking with the standard IBM C runtime libraries automatically
enables the /DOSSEG option by way of a comment record in the
startup module.

An additional effect of this option is that the linker inserts 16 bytes of
NULLs in front of the segment named _TEXT, if present. This is nec
essary for C runtime library support.

A-8

Controlling Data Loading
/DSALLOCATE

By default, LINK loads all data starting at the low end of the data
segment. At run time, LINK sets the OS (data segment) pointer to the
lowest possible address to allow the entire data segment to be used.

You can use the /DSALLOCATE option to tell LINK to load all data
starting at the high end of the data segment. To do this, set the OS
pointer at run time to the lowest data segment address that contains
program data.

This option is valid only for code linked to run in the DOS 3.3 environ
ment or in the DOS environment of OS/2.

Format

/DSALLOCATE

The minimum abbreviation is /DS.

Remarks

The /DSALLOCATE option is typically used with the /HIGH option to
take advantage of unused storage within the data segment. You can
reserve any available storage below the area specifically reserved
for DGROUP, using the same DS pointer.

A-9

Packing Executable ,files
/EXEPACK

This option directs LINK to remove sequences of repeated bytes (typi
cally nulls) and to optimize the load-time relocation table before cre
ating the DOS executable file. This option is valid only for code
linked to run in DOS 3.3 or in the DOS mode of OS/2.

OS/2 executable files are always compressed.

Format

/EXEPACK

The minimum abbreviation is /E.

Remarks

Executable files linked with this option are usually smaller and load
faster than files linked without this option. However, you cannot use
symbolic debugging programs with packed files.

The /EXEPACK option does not always save a significant amount of
disk space and may sometimes increase file size. Programs that
have a large number of load-time relocations (about 500 or more) or
long streams of repeated characters are usually shorter if packed.

/EXEPACK cannot be used with /CODEVIEW.

A-10

Optimiz~ng Far Calls
/FARCALL TRANSLATION

This option directs LINK to optimize intra-segment far calls into the
sequence

NOP
PUSH CS
CALL NEAR address

By default, the linker does not perform this optimization.

This option is valid only for code linked to run in the OS/2 environ
ment.

Format

/FARCALLTRANSLATION

The minimum abbreviation is /FAR.

Remarks

In most medium and large model programs, this option will yield sig
nificant savings in executable size and load time. However, there is a
small chance that the linker, during this optimization, will mistakenly
identify a byte with a value of Ox9a as a far call, when in fact it is an
assembled constant. Take care when using this option.

A-11

Viewing the Options List
/HELP

The /HELP option causes LINK to write a list of the available options
to the screen. This may be convenient if you need a reminder of the
available options. Do not give a file name when using the /HELP
option.

Format

/HELP

The minimum abbreviation is /HE.

A-12

Controlling Run File Loading
/HIGH

The /HIGH option loads the run file as high as possible in storage
without overlaying the transient portion of COMMAND.COM. The
COMMAND.COM file occupies the highest area of storage when
loaded and the run file as low as possible.

Use the /HIGH option in association with the /DSALLOCATE option.

This option is valid only for code linked to run in the DOS 3.3 environ
ment or in the DOS environment of OS/2.

Format

/HIGH

The minimum abbreviation is /HI.

Remarks

The /HIGH option should not be used with programs written in C.

A-13

Displayin9·.1nforrna·uon about the . Linking Process
/INFORMATION

The /INFORMATION option directs the linker to display information
about the linking process, including the phase of linking and the full
name of each module a$ it is processed.

Format

/INFORMATION

The minimum abbreviation is /I.

Remarks

/INFORMATION is useful for debugging.

A-14

Copying Line Numbers to the Map File
/LINENUMBERS

The /LINENUMBERS option directs the linker to copy the starting
address of each program source line to a map file. The starting
address is the address of the first instruction that corresponds to the
source line.

Format

/LINENUMBERS

The minimum abbreviation is /LI.

Remarks

LINK copies the line number data only if you give a map file name in
the LINK command line and only if the given object file has line
number information. Line numbering is available in some high level
languages.

The Macro Assembler does not copy line number information to the
object file. If an object file has no line number information, the linker
ignores the /LINENUMBERS option.

If you do not specify a map file in a LINK command, you can still use
the /LINENUMBERS option to force the linker to create a map file.
Just place the option at or before the List File prompt. LINK gives the
forced map file the same file name as the first object file specified in
the command and gives it the default extension .MAP.

A-15

Producing a Public Symbol Map
/MAP

The /MAP option causes LINK to produce a listing of all public
symbols declared in your program. This list is copied to the map file
created by the linker.

Format

/MAP [:number]
The minimum abbreviation is /M.

Remarks

The number parameter specifies the maximum number of public
symbols that the linker can sort in the map file. If you give no
number, the limit is 2048. Valid values are 1 through 32767. They can
be specified in hex, decimal, or octal.

Specifying a number also causes the public symbols to be sorted by
address only and not by name, regardless of the number. If you want
to reduce the size of your map files by removing the list sorted by
name, link with /MAP followed by a small number, but large enough
to accommodate the number of public symbols in your program.

If you do not specify a map file in a LINK command, you can use the
/MAP option to force the linker to create a map file. LINK gives the
forced map file the same name as the first object file specified in the
command and the default extension .MAP.

For a complete description and examples of the listing file format, see
"The Map File" in this appendix.

A-16

Ignoring Default Libraries
/NODEFAUL TLIBRARYSEARCH

The /NODEFAULTLIBRARYSEARCH option directs the linker to ignore
any library names it may find in an object file. A high-level language
compiler may add a library name to an object file to ensure that a
default set of libraries is linked with the program. Using this option
bypasses these default libraries and lets you name the libraries you
want by including them on the LINK command line.

Format

/NODEFAUL TLIBRARYSEARCH

The minimum abbreviation is /NOD.

A-17

Disabling Far Call Tral1slatlone
/NOFARCALLTRANSLATION

This option directs LINK to disable translation of intra-segment far
calls. This option is only valid for the OS/2 mode.

Format

/NOFARCALL TRANSLATION

The minimum abbreviation is /NOF.

Remarks

This is the default (see FARCALLTRANSLATION).

A-18

Preserving Compatibility
/NOGROUPASSOCIATION

The /NOGROUPASSOCIATION option causes the linker to process a
certain class of fix-up routines in a manner compatible with previous
versions of the linker. This option is provided primarily for compat
ibility with previous versions of other IBM language compilers.

This option is valid only for code linked to run in the DOS 3.3 environ
ment or in the DOS environment of OS/2.

Format

/NOGROUPASSOCIATION

The minimum abbreviation is /NOG.

Remarks

The /NOGROUPASSOCIATION option should not be used with pro
grams written in C.

A-19

Preserving· Lowercase
/NOIGNORECASE

The /NOIGNORECASE option directs LINK to treat uppercase and
lowercase letters in symbol names as distinct letters. Normally, LINK
considers uppercase and lowercase letters to be identical, treating
the names TWO, Two, and two as the same. When you use the
/NOIGNORECASE option, the linker treats TWO, Two, and two as dif
ferent names.

Format

/NOIGNORECASE

The minimum abbreviation is /NOi.

Remarks

The /NOIGNORECASE option typically is used with object files
created by high-level language compilers. Some compilers treat
uppercase and lowercase letters as distinct letters and assume that
the linker does the same.

A-20

Not Packing Code Segments
/NOPACKCODE

This option directs LINK not to try to pack neighboring logical code
segments into one physical segment.

This option is valid only for code linked to run in the OS/2 environ
ment.

Format

/NOPACKCODE:

The minimum abbreviation is /NOP.

Remarks

/NOPACKCODE should be used to override the default, /PACKCODE.

For more information on packing, see the /PACKCODE option and
"Rules for Segment Packing" in this appendix.

A-21

Setting the Qverlay Interrupt
/OVERLA Y'NTERRUPT

By default, the DOS interrupt number used for passing control to
overlays is 3FH. The overlay interrupt option allows you to select a
different interrupt number.

This option is valid only for code linked to run in the DOS 3.3 environ
ment or in the DOS environment of OS/2.

Format

/OVERLAYINTERRUPT:number

The minimum abbreviation is /0.

Remarks

The number can be a decimal number from Oto 255, an octal number
from 0 to 0377, or a hexadecimal number from 0 to OxFF. Numbers
that conflict with DOS interrupts are not prohibited, but IBM does not
recommend their use.

A-22

Packing Code Segments
/PACKCODE

This option directs LINK to try to pack neighboring logical code seg
ments into one physical segment.

This option is valid only for code linked to run in the OS/2 environ
ment.

Format

/PACKCODE:[pack/ i m it]

The minimum abbreviation is /PAC.

Remarks

The option /PACKCODE is the default. The option /NOPACKCODE
should be used to override /PACKCODE.

The optional packlimit is the limit at which to stop packing. If no
number is given, LINK uses 65530. For more information on packing,
see "Rules for Segment Packing" in this appendix.

A-23

Paus.ing· tc5••:change,.,1)1~is
. /PAUSE

The PAUSE option causes LINK to pause before writing the execut
able file to disk so that you can change disks.

Format

/PAUSE

The minimum abbreviation is /PAU.

Remarks

If you choose the /PAUSE option, the linker displays the following
message before creating the run file:

About to generate .EXE file
Change diskette In drive letter and press Enter

The letter is the proper drive name. This message appears after the
linker has read data from the object files and library files and after it
has written data to the map file, if one was specified. LINK resumes
processing when you press Enter. After LINK writes the executable
file to disk, the following message appears:

Please replace orlglnal diskette
In drive letter and press Enter

Note: Do not remove the disk used for the temporary file, if one has
been created. If the temporary disk message appears when
you have specified the /PAUSE option, you should press Ctrl
Break to end the LINK session. Rearrange your files so that
LINK can write the temporary file and the executable file to the
same disk, then try again.

A-24

Setting the Maximum Number of Segments
/SEGMENTS

The /SEGMENTS option directs the linker to process no more than
number segments per program. If it meets more than the given limit,
the linker displays an error message and stops linking. The /SEG
MENTS option bypasses the default limit of 128 segments.

Format

/SEGMENTS:number

The minimum abbreviation is /SE.

Remarks

If you do not specify /SEGMENTS, the linker reserves enough storage
space to process up to 128 segments. If your program has more than
128 segments, you must set the segment limit higher to increase the
number of segments LINK can process. Set the segment limit lower if
you get the following LINK error message:

Segment limit set too high

The number can be any integer value in the range 1 to 3072.

Example

This example sets the segment limit to 192:

LINK file/SE:192,,;

The next example sets the segment limit to 255 (X 1 FF'):

LINK moda+modb,run/SEGMENTS:Oxff,ab,em+mlibfp;

A-25

Setting the. Stack Size
/STACK

The /STACK option sets the program stack to the number of bytes
given by size. The linker automatically calculates the stack size of a
program, basing the stack size on the size of any stack segments
given in the object files. If you specify /STACK, the linker uses the
given size in place of any value it may have calculated.

Format

/STACK:size

The minimum abbreviation is /ST.

Remarks

The size can be any positive integer value in the range 1 to 65535.

The stack size can also be changed with the STACKSIZE module defi
nition file statement.

Example

The first example sets the stack size to 512 bytes.

LINK file/STACK:512,,;

The second example sets the stack size to 255 (X'FF') bytes.

LINK moda+modb,run/ST:OxFF,ab,\lib\start;

The final example sets the stack size to 24 (30 octal) bytes.

LINK startup+file/ST:030,,;

A-26

Warning of Incorrect Offset
/WARNFIXUP

The /WARNFIXUP option directs the linker to issue a warning for each
segment-relative fix up of location-type "offset," such that the
segment is contained within a group but is not at the beginning of the
group. The linker will include the displacement of the segment from
the group in determining the final value of the fix up, opposite to what
happens with DOS 3.3 executables.

Format

/WARNFIXUP

The minimum abbreviation is /W.

A-27

Advanced LINK Topics

Moving or Discarding Application Code Segments Under
OS/2

OS/2 can move and discard application code segments, and move
and swap data segments to take best advantage of storage.

Note: If the application must use a local heap, you can reserve heap
space at run time by using the OS/2 service DosReallocSeg to
increase the size of the automatic data segment. The auto
matic data segment is the group of logical segments, defined
with the IBM Macro Assembler pseudo-op GROUP, named
DGROUP.

Order of Segments

LINK copies segments to the executable file in the same order that it
meets them in the object files. This order is maintained throughout
the program unless the linker finds two or more segments having the
same class name. Segments having identical class names belong to
the same class type and are copied to the executable files as contig
uous blocks.

Combined Segments

LINK uses combine types to tell if two or more segments that are
sharing the same segment name should be one segment. The
combine types are public, stack, common, and private.

• If a segment is combine type public, the linker combines it with
any segments of the same name and class. When LINK combines
segments, it makes the segments contiguous in storage; you can
reach each address in the segments using an offset from one
frame address. The result is the same as if the segments were
defined as a whole in the source file.

The linker preserves the align type of each segment in the com
bined segment. So, even though the individual segments
compose a single, larger segment, the code and data in each
segment retain the original align type of the segment. If LINK

A-28

tries to combine segments that total more than 64K bytes, it dis
plays an error message.

• If a segment is combine type stack, the linker combines individual
segments as it does for publlc combine types. A difference is
that, for stack segments, LINK copies an initial stack-pointer
value to the executable file. This stack-pointer value is the offset
to the end of the first stack segment (or combined stack segment)
that LINK meets. If you use the stack type for stack segments,
you need not give instructions to load the segment into the SS
register.

• If a segment is combine type common, the linker combines it with
any segments of the same name and class. When LINK combines
common segments, it places the start of each segment at the
same address. This creates a series of overlapping segments.
The resulting combination segment has a length equal to the
length of the longest individual segment.

• LINK assigns a default combine type private to any segments with
no explicit combine type definition in the source file. LINK does
not combine private segments.

Groups

A group lets LINK address non-contiguous segments of various
classes relative to the same frame address. When LINK addresses
groups, it adjusts all storage references to items in the group relative
to one frame address.

Segments of a group need not be contiguous, belong to one class, or
have the same combine type. All segments of the group must fit
within 64K bytes of storage. For OS/2 mode executable objects, a
group is synonymous with a OS/2 selector or a physical segment.

Groups do not affect the order of loading segments. You must use
class names and enter object files in the correct order to guarantee
contiguous segments. If the group is smaller than 64K bytes of
storage, LINK may place segments that are not part of the group in
the same storage area. LINK does not specifically check that all seg
ments in a group fit within 64K of storage. If the segments are larger
than the 64K byte maximum, the linker can produce a fix-up overflow
error.

A-29

A description of groups and defining groups is in the IBM Personal
Computer Macro Assembler/2 Language Reference book.

Fix ups

Once the linker knows the starting address of each segment in a
program and establishes all segment combinations and groups, it can
fix up any unresolved references to labels and variables. The linker
computes an appropriate offset and segment address and replaces
the temporary address values with the new values.

The size of the value that LINK computes depends on the type of ref
erence. If LINK discovers an error in the anticipated size of the refer
ence, it displays a fix-up overflow error message. This happens, for
example, when a program tries to use a 16-bit offset to address an
instruction in a segment with a different frame address. It also occurs
when the segments in a group do not fit within a single, 64K block of
storage.

LINK resolves four types of references:

• Short
• Near self-relative
• Near segment-relative
• Long.

• A short reference occurs in JMP instructions that try to pass
control to labeled instructions that are in the same segment or
group. The target instruction must be no longer than 128 bytes
from the point of reference. The linker computes a signed, 8-bit
number for this short reference. It displays an error message if
the target instruction belongs to a different segment or group (dif
ferent frame address). The linker also displays an error message
if the distance from the frame address to the target is more than
128 bytes in either direction.

• A near self-relative reference occurs in instructions that get
access to data relative to the same segment or group. The linker
computes a 16-bit offset for this near self-relative reference. It
displays an error message if the data resides in more than one
segment or group.

• A near segment-relative reference occurs in instructions that
attempt to get access to data either in a specified segment or
group, or relative to a specified segment register. LINK com-

A-30

putes a 16-bit offset for this near segment-relative reference. It
displays an error message if the offset of the target within the
specified frame is greater than 64K bytes or less than 0 bytes.
LINK also displays an error message if LINK cannot address the
beginning of the canonical frame of the target.

• A long reference occurs in CALL instructions trying to access an
instruction in another segment or group. LINK computes a 16-bit
frame address and a 16-bit offset for this long reference. The
linker displays an error message if the computed offset is greater
than 64K or less than 0 bytes. The linker also displays an error
message if LINK cannot address the beginning of the canonical
frame of the target.

Rules for Segment Packing in LINK

When the linker produces an OS/2 executable object, it can pack dis
tinct, adjacent segments into the same physical or file segment.
Physical or file segments are represented by entries in the program
segment table. The rules that LINK uses when packing segments
follow:

• The limit of the total size of a set of segments packed into a file
segment is 64K. LINK starts a new file segment while packing
segments into a file when the size of the file segment reaches
64K.

• LINK packs adjacent segments only into a file segment.

• LINK packs segments in the same group into a file segment.
LINK does not pack segments in different groups into a file
segment. If a segment in one group occurs between segments in
another group, an error occurs.

• /PACKCODE is the default. /NOPACKCODE should be used to
override the default.

• If the segment type (CODE or DATA) is not the same in all the
packed segments, LINK sets the file segment flags to NON
SHARED CODE.

• If LINK packs any segments that have an attribute of NON
SHARED, it sets the file segment flags NONSHARED CODE.

• If LINK packs any segments that are not ERONL Y (execute/read
only), it marks the entire file segment as not ERONLY.

A-31

• If LINK packs any segments that are PRELOAD, it designates the
entire file segment as PRELOAD.

The Map File

The map file lists the names, load addresses, and lengths of all seg
ments in a program. It also lists the names and load addresses of
any groups in the program, the program's start address, and mes
sages about any errors the linker encountered. If the /MAP LINK
option is used, the map file lists the names and load addresses of all
public symbols.

In the map file for programs that execute in the 05/2 environment,
segment information has the general form:

PROGRAM_A

Start Length Name Class

0001:0000 02c24H _TEXT CODE
0001:2c30 02s02H EMULATOR_TEXT CODE
0001:s132 00e00H C_ETEXT END CODE
0002:0000 00110H EMULATOR_DATA FAR_DATA
0003:0000 00036H NULL BEGDATA
0003:0036 00708H DATA DATA -

The Start column shows the address of the first byte in the segment,
in the form segment number:offset. The segment numbers are
indexes to the segment table of the executable file, and start from 1.
The Length column shows the length of the segment in bytes. The
Name column shows the name of the segment, and the Class column
shows the class name of the segment.

Group information has the general form:

Origin
0003:0

Group
DGROUP

At the end of the listing file, the linker shows the address of the
program entry point.

Program entry point at 0001:02A0

A-32

In the map file for programs that execute in the DOS environment,
segment information has the general form:

Start Stop Length Name

00000H 02B86H 02B87H _TEXT
02B90H 05091H 02502H EMULATOR_TEXT
05092H 05092H 00000H C_ETEXT
050A0H 0520FH 00170H EMULATOR_DATA
05210H 05245H 00036H NULL
05246H 05761H 0051CH _DATA

Class

CODE
CODE
ENDCODE
FAR_DATA
BEGDATA
DATA

The Start column shows the address of the first byte in the segment.
The number shown is the offset from the beginning of the program.
This number is referred to as the frame number. The Stop column
shows the address of the last byte in the segment. The Length column
has the length of the segment in bytes. The Name column shows the
name of the segment, and the Class column shows the class name of
the segment.

Group information has the general form:

Origin
0521:0

Group
DGROUP

At the end of the listing file, the linker shows the address of the
program entry point.

Program entry point at 0000:02A0

If you have specified the /MAP LINK option, the linker adds a public
symbol list to the map file. Symbols are listed twice: once in alpha
betical order, second, in load address order This list has the general
form shown in the following example. The form is the same for pro
grams that execute in either the OS/2 or DOS environments. For
each symbol address, the number to the left of the colon (:) repres
ents a segment number for the programs that execute in the OS/2
environment, and a frame number for programs that execute in the
DOS environment.

A-33

Address

eee3:e71A
eee3:e718
eee1:2a1c
eee3:e719
eee1:eCF6

Address

eeee:eeee
eeee:ee00
0000:0000
00e1:e010
0001:0180
0001:0238
0001:02AO
0001:0368

Publics by Name

$i8_implicit_exp
$i8_inpbas
$i8 input
$i8-input ws - -
$i8_output

Publics by Value

Imp DOSWRITE
Imp DOSDEVCONFIG
Imp DOSEXIT

_main
_count words
_analyze
_as tart
_cintDIV

(DOSCALLS.138)
(DOSCALLS.52)
(DOSCALLS.5)

The first three symbols shown in the example under Publics by Value
are imported public symbols and appear in map files created for pro
grams that run only in the OS/2 environment.

A-34

Linker Error Messages and Limits

This section lists error messages produced by the IBM Linker.

Fatal errors cause the linker to stop running. Fatal error messages
have the following format:

location: error L 1 xxx: message text

Non-fatal errors indicate problems in the executable file. LINK
produces the executable file (and sets the error bit in the header if for
the OS/2 mode). Non-fatal error messages have the following format:

location: error L2 xxx: message text

Warnings indicate possible problems in the executable file. LINK
produces the executable file (it does not set the error-bit in the
header for the OS/2 mode). Warnings have the following format:

location: error L4xxx:
message text

In th$se messages, location is the input file associated with the error,
or LINK if there is not input file. If the input file is a module defi
nitions file, the line number will be included, as shown below:

foo.def(3}: fatal error L 1030:
missing Internal name

If the input file is an .OBJ or .LIB file and has a module name, the
module name is enclosed in parentheses, as shown in the following
examples:

SLIBC.LIBLfile}
MAIN.OBJ(maln.c}
TEXT.OBJ

A-35

The following error messages may appear when you link object files
with LINK.

L 1001 option : option name ambiguous
A unique option name does not appear after the option indicator
(/). For example, the command

LINK /N main;

produces this error, because LINK cannot tel I which of the three
options beginning with the letter N is intended.

L 1002 option : unrecognized option name
An unrecognized character followed the option indicator (/), as in
the following example:

LINK /ABCDEF main;

L 1003 option : MAP symbol llmlt too high
The specified symbol limit value following the MAP option is
greater than 32767, or there is not enough memory to increase
the limit to the requested value.

L 1004 option : Invalid numeric value
An incorrect value appeared for one of the linker options. For
example, a character string is entered for an option that requires
a numeric value.

L 1005 option : packing llmit exceeds 65536 bytes
The number following the /PACKCODE option is greater than
65536.

L 1006 option : stack size exceeds 65534 bytes
The size you specified for the stack in the /STACK option of the
LINK command is more than 65534 bytes.

L 1007 option : Interrupt number exceeds 255
You gave a number greater than 255 as a value for the
/OVERLA YINTERRUPT option.

L 1008 option : segment limit set too high
The specified limit on the /SEGMENTS option is greater than 3072
using the /SEGMENTS option.

L1009 option: CPARMAXALLOC: illegal value
The number you specified in the /CPARMAXALLOC option is not
in the range 1 to 65535.

A-36

L 1020 no object modules specified
You did not specify any object-file names to the linker.

L 1021 cannot nest response files
A response file occurs within a response file.

L 1022 response llne too long
A line in a response file is longer than 127 characters.

L 1023 terminated by user
You entered Ctrl + C or Ctrl +Break.

L 1024 nested right parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1025 nested left parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1026 unmatched right parenthesis
A right parenthesis is missing from the contents specification of
an overlay on the command line.

L 1027 unmatched left parenthesis
A left parenthesis is missing from the contents specification of an
overlay on the command line.

L 1030 missing internal name
In the module definitions file, when specifying an import by entry
number, you must give an internal name, so the linker can iden
tify references to the import.

L1031 module description redefined
In the module definitions file, a module description specified with
the DESCRIPTION keyword is given more than once.

L 1032 module name redefined
In the module definitions file, the module name is defined more
than once with the NAME or LIBRARY keyword.

L 1040 too many exported entries
An attempt is made to export more than 3072 names.

L 1041 resident-name table overflow
The total length of all resident names, plus three bytes per name,
is greater than 65534.

A-37

L 1042 nonresident-name table overflow
The total length of all nonresident names, plus three bytes per
name, is greater than 65534.

L 1043 relocation table overflow
There are more than 65536 load-time relocations for a single
segment.

L 1044 imported-name table overflow
The total length of all the imported names, plus one byte per
name, is greater than 65534 bytes.

L 1045 too many TYPDEF records
An object module contains more than 255 TYPDEF records.
These records describe communal variables. This error can only
appear with programs produced by compilers that support com
munal variables.

L1046 too many external symbols in one module
An object module specifies more than the limit of 1023 external
symbols. Break the module into smaller parts.

L1047 too many group, segment, and class names in one module
The program contains too many group, segment, and class
names. Reduce the number of groups, segments, or classes, and
recreate the object files.

L 1048 too many segments in one module
An object module has more than 255 segments. Split the module
or combine segments.

L 1049 too many segments
The program has more than the maximum number of segments.
The SEGMENTS option specifies the maximum allowed number;
the default is 128. Relink using the /SEGMENTS option with an
appropriate number of segments.

L1050 too many groups in one module
The linker found more than 21 group definitions (GRPDEF) in a
single module. Reduce the number of group definitions or split
the module.

L 1051 too many groups
The program defines more than 20 groups, not counting
DGROUP. Reduce the number of groups.

A-38

L 1052 too many libraries
An attempt is made to link with more than 32 libraries. Combine
libraries, or use modules that require fewer libraries.

L 1053 symbol table overflow
The program has more than 256K bytes of symbolic information,
such as public, external, segment, group, class, and file names.
Combine modules or segments and recreate the object files.
Eliminate as many public symbols as possible.

L 1054 requested segment limit too high
The linker does not have enough memory to allocate tables
describing the number of segments requested (the default is 128
or the value specified with the /SEGMENTS option). Try linking
again using the /SEGMENTS option to select a smaller number of
segments (for example, use 64 if the default was used previ
ously), or free some memory by eliminating resident programs or
shells.

L 1056 too many overlays
The program defines more than 63 overlays.

L 1057 data record too large
A LEDATA record (in an object module) contained more than 1024
bytes of data. This is a translator (compiler or assembler) error.
Note which translator (compiler or assembler) produced the
incorrect object module and the circumstances, and contact your
authorized IBM Personal Computer dealer.

L 1070 segment size exceeds 64K
A single segment contains more than 64K bytes of code or data.
Try compiling, or assembling, and linking using the large mode.I.

L 1071 segment _TEXT larger than 65520 bytes
This error is likely to occur only in small-model C programs, but it
can occur when any program with a segment named _TEXT is
linked using the /DOSSEG option of the LINK command. Small
model C programs must reserve code addresses 0 and 1; this is
increased to 16 for alignment purposes.

L 1072 common area longer than 65536 bytes
The program has more than 64K bytes of communal var.iables.
This error cannot appear with object files produced by the IBM
Macro Assembler. It occurs only with programs produced by IBM
C or other compilers that support communal variables.

A-39

L 1073 file-segment llmlt exceeded
There are more than 255 physical or file segments.

L 1074 name : group larger than 64K bytes
A group contained segments which total more than 65536 bytes.

L 1075 entry table larger than 65535 bytes
Because of an excessive number of entry names, you have
exceeded a linker table size limit. Reduce the number of names
in the modules you are linking.

L 1080 cannot open list flle
The disk or the root directory is full. Delete or move files to make
space.

L 1081 out of space for run file
The disk on which .EXE file is being written is full. Free more
space on the disk and restart the linker.

L 1082 stub .EXE Ille not found
The stub file specified in the module definitions file is not found.

L 1083 cannot open run Ille
The disk or the root directory is full. Delete or move files to make
space.

L 1084 cannot create temporary flle
The disk or root directory is full. Free more space in the directory
and restart the linker.

L 1085 cannot open temporary flle
The disk or the root directory is full. Delete or move files to make
space.

L 1086 scratch Ille missing
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

L 1087 unexpected end-of-file on scratch file
The disk with the temporary linker-output file is removed.

L 1088 out of space for list file
The disk on which the listing file is being written is full. Free
more space on the disk and restart the linker.

A-40

L1089 filename: cannot open response Ille
The linker could not find the specified response file. This usually
indicates a typing error.

L 1090 cannot reopen llst Ille
The original disk is not replaced at the prompt. Restart the linker.

L 1091 unexpected end-of-Ille on llbrary
The disk containing the library probably was removed. Replace
the disk containing the library and run the linker again.

L 1092 cannot open module definitions Ille
The specified module definitions file cannot be opened.

L 1100 stub .EXE Ille lnvalld
The stub file specified in the definitions file is not a valid .EXE
file.

L 1101 lnvalld object module
One of the object modules is non-valid. If the error persists after
recompiling, contact your authorized IBM Personal Computer
dealer.

L 1102 unexpected end-of-file
A non-valid format for a library was found.

L 1103 attempt to access data outside segment bounds
A data record in an object module specified data extending
beyond the end of a segment. This is a translator error. Note
which translator (compiler or assembler) produced the incorrect
object module and the circumstances, and contact your author
ized IBM Personal Computer dealer.

L 1104 filename : not valid llbrary
The specified file is not a valid library file. This error causes the
linker to stop running.

L 111 O DosAllocHuge felled
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

L 1111 DosReallocHuge falled
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

A-41

L1112 DosGetHugeShlft failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

L1113 unresolved COMDEF; internal error
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

L1114 Ille not sultable for /EXEPACK; rellnk without
For the linked program, the size of the packed load image plus
the packing overhead is larger than that of the unpacked load
image. Relink without the EXEPACK option.

L2000 Imported entry point
A MODEND, or starting address record, referred to an imported
name. Imported program-starting addresses are not supported.

L2001 fix up(s) without data
A FIXUP record occurred without a data record immediately pre
ceding it. This is probably a compiler error. Note the conditions
and contact an authorized service coordinator.

L2002 fix up overflow near number in frame seg segname target
seg segname target offset number
The following conditions can cause this error:

• A group is larger than 64K bytes.
• The program contains an intersegment short jump or interseg

ment short cal I.
• The name of a data item in the program conflicts with that of a

subroutine in a library included in the link.
• An EXTRN declaration in an assembler-language source file

appeared inside the body of a segment.

For example:

code SEGMENT public 1 CODE 1

EXTRN main:far
start PROC far

call main
ret

start ENDP
code ENDS

The following construction is preferred:

A-42

EXTRN main:far
code SEGMENT public 'CODE'
start PROC far

cal 1 main
ret

start ENDP
code ENDS

Revise the source file and recreate the object file.

L2003 lntersegment self-relative fix up
An intersegment self-relative fix up is not allowed.

L2004 LOBYTE-type fix up overflow
A LOBYTE fix up produced an address overflow.

L2005 fix up type unsupported
A fix up type occurred that is not supported by the linker. This is
probably a compiler error. You should note the conditions when
the error occurs and contact your authorized IBM Personal Com
puter dealer.

L2010 too many fix ups In LIDATA record
There are more fix ups applying to a LIDATA record than will fit in
the linker's 1024-byte buffer. The buffer is divided between the
data in the LIDATA recor~ itself and run-time relocation items,
which are 8 bytes apiece, so the maximum varies from 0 to 128.
This is probably a compiler error.

L2011 name : NEAR/HUGE conflict
Conflicting NEAR and HUGE attributes are given for a communal
variable. This error can occur only with programs produced by
compilers that support communal variables.

L2012 name : array-element size mismatch
A far communal array is declared with two or more different
array-element sizes (for example, an array declared once as an
array of characters and once as an array of real numbers). This
error cannot occur with object files produced by the IBM Macro
Assembler. It occurs only with IBM C and other compilers that
support far communal arrays.

L2013 LIDATA record too large
A LIDATA record in an object module contains more than 512
bytes of data. Most likely, an assembly module contains a very
complex structure definition or a series of deeply-nested DUP

A-43

operators. For example, the following structure definition causes
this error:

alpha DB 10DUP(ll DUP(l2 DUP(13 DUP(...))))

Simplify the structure definition and reassemble. (LIDATA is a
DOS term.)

L2020 no automatic data segment
No group named DGROUP is declared.

L2021 library instance data not supported in the DOS mode
The library module is directed to have instance data. This works
in the OS/2 mode only.

L2022 name allas internalname: export undefined
A name is directed to be exported but is not defined anywhere.

L2023 name alias internalname: export Imported
An imported name is directed to be exported.

L2024 name: symbol already defined
One of the special overlay symbols required for overlay support
is defined by an object.

L2025 name~ symbol defined more than once
Remove the extra symbol definition from the object file.

L2026 multiple definitions for entry ordinal number
More than one entry point name is assigned to the same ordinal.

L2027 name : ordinal too large for export
You tried to export more than 3072 names.

L2028 automatic data segment plus heap exceeds 64K
The size of DGROUP near data plus requested heap size is
greater than 64K.

L2029 unresolved externals
One or more symbols are declared to be external in one or more
modules, but they are not publicly defined in any of the modules
or libraries. A list of the unresolved external references appears
after the message, as shown in the following example:

_exit in file(s)
main.obj (main.c)

_fopen in files(s)
fileio.obj(fileio.c) main.obj(main.c)

The name that comes before in file(s) is the unresolved external
symbol. On the next line is a list of object modules which have

A-44

made references to this symbol. This message and the list are
also written to the map file, if one exists.

L2030 starting address not code (using class 'CODE')
You specified a starting address to the linker which is a segment
that is not a CODE segment. Reclassify the segment to CODE, or
correct the starting point.

L4001 frame-relative fix up, frame Ignored
A fix up occurred with a frame segment different from the target
segment where either the frame or the target segment is not
absolute. Such a fix up is meaningless in the OS/2 mode, so the
target segment is assumed for the frame segment.

L4002 frame-relative absolute fix up
A fix up occurred with a frame segment different from the target
segment where both frame and target segments were absolute.
This fix up is processed using base-offset arithmetic, but the
warning is issued because the fix up may not be valid in OS/2
environment.

L4010 Invalid alignment specification
The number following the /ALIGNMENT option is not a power of 2,
or is not in numerical form.

L4011 PACKCODE value exceeding 65500 unreliable
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4012 load-high disables EXEPACK
The options /HIGH and /EXEPACK are mutually exclusive.

L4013 Invalid option for new-format executable Ille Ignored
If an OS/2 environment program is being produced, the options
/CPARMAXALLOC, /DSALLOCATE, /EXEPACK,
/NOGROUPASSOCIATION, and /OVERLAYINTERRUPT are mean
ingless, and the linker ignores them.

L4014 Invalid option for old-format executable Ille Ignored
If an OS/2 format program is produced, the options /ALIGNMENT,
/NOFARCALLTRANSLATION, and /PACKCODE are meaningless,
and the linker ignores them.

L4020 name: code-segment size exceeds 65500
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

A-45

L4021 no stack segment
The program does not contain a stack segment defined with
STACK combine type. This message should not appear for
modules compiled with the IBM C/2 Compiler but it could appear
for an assembler-language module. Normally, every program
should have a stack segment with the combine type specified as
ST ACK. You can ignore this message if you have a specific
reason for not defining a stack or for defining one without the
STACK combine type.

L4022 name1, name2 : groups overlap
Two groups are defined such that one starts in the middle of
another. This may occur if you defined segments in a module
definitions file or assembly file and did not correctly order the
segments by class.

L4023 exportname : export internal-name conflict
An exported na,me, or its associated internal name, conflict with
an already-defined public symbol.

L4024 name : multiple definitions for export name
The name name is exported more than once with different
internal names. All internal names except the first are ignored.

L4025 name : Import Internal-name conflict
An imported name, or its associated internal name, is also
defined as an exported name. The import name is ignored. The
conflict may come from a definition in either the module definition
file or an object file.

L4026 modulename : self-imported
The module definitions file directed that a name be imported from
the module being produced.

L4027 name : multiple definitions for Import Internal-name
An imported name, or its associated internal name, is imported
more than once. The imported name is ignored after the first
mention.

L4028 name : segment already defined
A segment is defined more than once with the same name in the
module definitions file. Segments must have unique names for
the linker. All definitions with the same name after the first are
ignored.

A-46

L4029 name : DGROUP segment converted to type data
A segment which is a member of DGROUP is defined as type
CODE in a module definition file or object file. This probably hap
pened because a CLASS keyword in a SEGMENTS statement is
not given.

L4030 name : segment attributes changed to conform with auto-
matic data segment
The segment named name is defined in DGROUP, but the shared
attribute is in conflict with the instance attribute. For example,
the shared attribute is NONSHARED and the instance is SINGLE,
or the shared attribute is SHARED and the instance attribute is
MULTIPLE. The bad segment is forced to have the right shared
attribute and the link continues. The image is not marked as
having errors.

L4031 name : segment declared in more than one group
A segment is declared to be a member of two different groups.
Correct the source file and recreate the object files.

L4032 name : code-group size exceeds 65500 bytes
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4034 more than 239 overlay segments; extra put In root
You specified an overlay structure containing more than 239 seg
ments. The extra segments have been assigned to the root
overlay.

L4036 no automatic data segment
The program or dynalink library did not define a group named
DGROUP, which is recognized by the linker as the automatic data
segment.

L4040 NON-CONFIRMING : obsolete
In the module definitions file, NON-CONFORMING is a valid
keyword for earlier versions of LINK and is now obsolete.

L4041 HUGE segments not yet supported
This feature is not implemented in the linker.

L4042 cannot open old version
An old version of the EXE file, specified with the OLD keyword in
the module definitions file, could not be opened.

A-47

L4043 old version not segmented-executable format
The old version of the .EXE file, specified with the OLD keyword
in the module definitions file, does not conform to segmented
executable format.

L4050 too many public symbols
The /MAP option is used to request a sorted listing of public
symbols in the map file, but there were too many symbols to sort
(the default is 2048 symbols). The linker produces an unsorted
listing of the public symbols. Relink using IMAP:number.

L4051 filename : cannot find library
The linker could not find the specified file. Enter a new file name,
a new path specification, or both.

L4053 VM.TMP: Illegal flle name; ignored
VM.TMP appears as an object-file name. Rename the file and
rerun the linker.

L4054 filename : cannot find flle
The linker could not find the specified file. Enter a new file name,
a new path specification, or both.

A-48

Linker Limits

The table below summarizes the limits imposed by the linker. If you
find one of these limits, adjust your program so the linker can accom
modate it.

Item Limit

Symbol table 256K

Load-time relocations Default is 32K. If /EXEPACK is used,
(for OS/2 programs) the maximum is 512K.

Public symbols The range 7700-8700 can be used as a
guideline for the maximum number of
public symbols allowed; the actual
maximum depends on the program.

External symbols per 1023
module

Groups Maximum number is 21, but the linker
always defined DGROUP so the effec-
tive maximum is 20.

Overlays 63

Segments 128 by default; however, this maximum
can be set as high as 3072 by using the
/SEGMENTS option of the LINK
command.

Libraries 32

Group definitions per 21
module

Segments per module 255

Stack 64K

A-49

Module Definition File Statements

Notes:

1. Any line in the module definition file preceded by a semi-colon(;)
is considered a comment. The linker ignores them.

2. The module definition file statement keywords must be in upper
case.

Statement

CODE

DATA

DESCRIPTION

EXPORTS

HEAPSIZE

IMPORTS

LIBRARY

NAME

OLD

PROTMODE

SEGMENTS

STACKSIZE

STUB

A-50

Description

Defines default attributes for code segments

Defines default attributes for data segments

Inserts text into a program module

Defines exported functions from dynamic link
libraries

Defines heap size in bytes

Defines imported functions from dynamic link
libraries

Declares a dynamic link library

Declares a program module

Directs preservation of earlier ordinals

Declares program to run in the OS/2 mode only

Defines attributes for code and data segments on
a per segment basis

Defines stack size in bytes

Appends DOS ex~cutable file to the OS/2
program module

CODE
Defines the default attributes for code segments

Purpose
Defines a default attribute for code segments within a program
module. The default attributes of individual segments can be over
ridden using the SEGMENTS statement.

Format
CODE load executeon/y iopl

Remarks

load (optional) A keyword which specifies when a segment
is to be loaded. Specify one of the following:

PRELOAD Load segment immediately.

LOADONCALL (default) Load segment on demand.

executeonly (optional) A keyword which specifies the access rights
to code segments. Specify one of the following:

EXECUTEONL Y Sets access rights to execute only.

EXECUTEREAD (default) Sets access rights to execute
or read.

iopl (optional) The keyword iopl specifies whether or not
code segments have 110 privilege.

Example

IOPL Code segments have 1/0 privilege.

NOIOPL (default) Code segments do not have 110 privi
lege.

CODE PRELOAD IOPL

A-51

DATA
Defines the default attributes for data segments

Purpose
Defines default attributes for data segments within a program
module. All data segments are movable and swappable. With the
exception of data segments specified with the option NONSHARED,
the data segments in a dynamic link module are shared across all
dynamic link modules in the library.

The default attributes of individual segments can be overridden using
the SEGMENTS statement.

Format
DATA load readonly instance iopl shared

Remarks

load (optional) A keyword which specifies when a segment is to
be loaded. Specify one of the following:

PRELOAD Load segment immediately.

LOADONCALL (default) Load segment on demand.

readonly (optional) A keyword which specifies the access rights to
data segments.

READONLY Sets access rights to read only.

READWRITE (default) Sets access rights to read or write.

instance (optional) A keyword which defines how the automatic
data segment, that is, the physical segment represented
by DGROUP, is to be shared. Specify one of the following:

A-52

NONE Specifies that there is to be no automatic data
segment.

SINGLE Specifies that the automatic data segment is to be
shared by all instances of the module. This option is
valid only for dynamic link libraries.

MULTIPLE Specifies that the automatic data segment is to
be copied for each instance of the module.

DATA
Defines the default attributes for data segments

Default: MULTIPLE for program modules and SINGLE for
dynamic link libraries.

The linker ensures that the automatic data segment attri
bute specified by SINGLE or MULTIPLE matches the
default sharing attribute of all data segments. By default,
DATA SINGLE forces shared data. By default, DATA MUL
TIPLE forces nonshared data. Similarly, DATA SHARED
forces DATA SINGLE; DATA NONSHARED forces DATA
MULTIPLE.

If you specify contradictory statements such as DATA
SINGLE and NONSHARED, the instance option will control
the automatic data segment only. In this example, the
automatic data segment is shared and all other data seg
ments are nonshared.

iopl (optional) The keyword iopl specifies whether or not data
segments have 1/0 privilege.

shared

Example

IOPL Data segments have 1/0 privilege.

NOIOPL (default) Data segments do not have 110 privilege.

(optional) Specifies whether or not a unique copy of the
READWRITE data segments should be loaded for each
process using a dynamic link library. You can specify the
following values:

SHARED A single copy of each data segment is loaded.
The copy is shared by all processes using the
dynamic link library.

NONSHARED A unique copy of each READWRITE data
segment is loaded for each process using the
dynamic link library.

Default: NONSHARED for program modules and SHARED
for dynamic link libraries.

DATA SHARED READONLY PRELOAD

A-53

DESCRIPTION
Inserts text into a program module

Purpose
Inserts text, such as source control information or copyright informa
tion, into a program module.

Format
DESCRIPTION 1text 1

Remarks

•text• A one line string of ASCII characters enclosed in single
quotation marks.

Example
DESCRIPTION 'Calendar, Version 1.ee·

A-54

EXPORTS
Defines exported functions from dynamic link

libraries

Purpose
Defines the names and attributes (functions) in the dynamic link
libraries which are to be exported. The EXPORTS statement pre
cedes the definitions. You can specify as many as 3072 export defi
nitions, each on a separate line, after the EXPORTS statement. You
must specify an export definition for every function in a dynamic link
library.

Format
EXPORTS exportname =internal name ordinal res iop/-parmwords

Remarks

exportname One or more ASCII characters which define the func
tion name to be used by applications to access the
exported function.

internalname (optional) Defines the actual name of the function in
the dynamic link library.

ordinal

res

(optional) An integer number which specifies the func
tion's ordinal position within the dynamic link entry
table. It is specified as @ordinal, where ordinal is the
integer position number. If specified, the entrypoint
can be called by either name or ordinal.

(optional) The keyword RESIDENTNAME specifies that
the function's entry points should be kept resident in
memory. Use this option only if you specified the
ordinal option. If the call is by entry point rather than
by ordinal, frequently used entry points keep resident
in memory enables OS/2 to resolve calls more rapidly.

iopl-parmwords (optional) A numeric value which you must specify
for functions executing with 1/0 privilege. A function
which executes with 110 privilege is allocated a
512-byte stack. When the function is called, the
number of parameters (words) specified by iopl-

A-55

EXPORTS
Defines exported functions from dynamic link
libraries

parmwords is copied from the caller's stack to the new
stack.

Although the EXPORTS statement is normally used to identify func
tions in dynamic link libraries, the statement is also used for func
tions within program modules which execute with 110 privilege. When
this is the case, the only valid arguments are exportname (to identify
the function within the application) and iopl-parmwords.

Example
EXPORTS

A-56

SampleRead
Stringin=IntStringln
ScreenOut 6
CharTest @3 RESIDENTNAME

Purpose

HEAPSIZE
Defines heap size in bytes

Defines the number of bytes an application needs for its local heap.

Format
HEAPSIZE bytes

Remarks

bytes

Example
HEAPSIZE seee

An (integer) number which specifies the local
heap size in bytes.

A-57

· 1MPORtS
Delin'.es·functions i111ported from dynamic. link
libraries

Purpose
Defines the names of functions to be imported from dynamic link
libraries. External references to dynamic link libraries generally are
resolved by specifying the .LIB files for the dynamic link library to the ·
linker. The IMPORTS statement is an alternate method of resolving
external references to dynamic link libraries. IMPORTS must
precede the definitions. Specify each definition on a separate line.

Format
IMPORTS internalname= libraryname.entry

Remarks

internalname (optional) Specifies the name used by the application to
call the function being imported. internalname is a unique
name comprised of one or more ASCII characters.

libraryname The name of the dynamic link library which contains the
function.

entry The name of the function to be imported. It can be either
of the following:

A-58

.entryname The name of the function as it appears in the
dynamic link library .

. entryordinal The ordinal value of the function. The
ordinal value corresponds to the entry point
in the dynamic link library.

You can import OS/2 functions in the DOSCALLS library
only by using .entryordinal.

Note: .entryname references to DOSCALLS are not sup
ported and will fail during the module load. Therefore,
rather than directly importing OS/2 functions, link with
DOSCALLS.LIB.

IMPORTS
Defines functions imported from dynamic link

libraries

Example
IMPORTS

Sample.SampleWrite
Read=Sample.SampleRead

A-59

LIBRARY
Declares a dynamic link library

Purpose
Specifies that the executable file being created is a dynamic link
library. It also specifies the type of library initialization required for
the library.

Note: The LIBRARY statement tells LINK to build a dynamic link
library. Do not associate the LIBRARY statement with .LIB files which
are libraries of object modules.

Format
LIBRARY libraryname initialization-type

Remarks

libraryname (optional) Defines the name of the dynamic link library.
After a dynamic link library has been loaded,
libraryname is the name known to OS/2. The
libraryname is not normally specified. The
libraryname can be up to eight characters.

Use caution when specifying a libraryname that differs
from the filename of the .DLL being created. Subse
quent load requests, in the process of determining
whether a .DLL has already been loaded, will recog
nize only this libraryname as the name of the loaded
dynamic link library.

Default: The executable filename, not including the
extension.

initialization-type (optional) Keyword specifying the type of library
initialization required by the library module. This
keyword is ignored if a library initialization routine is
not defined for the library module. It must be one of
the following:

A-60

• INITGLOBAL - called only once when the library
module is loaded initially.

• INITINST ANCE - called once for each process
which gains access to the library module.

LIBRARY
Declares a dynamic link library

Default: INITGLOBAL

When the dynamic link module is loaded, it (optionally) can call an
initialization routine before calling the dynamic link library. See
"Program Execution Control" on page 4-26 for additional information.

Specify either the NAME statement or the LIBRARY statement. You
cannot specify both. If neither NAME nor LIBRARY is specified, the
default is NAME. If you use the LIBRARY statement, it must be the
first statement in the module definition file.

Example
LIBRARY MathCall

A-61

NAME
Declares a program module

Purpose
Specifies that the executable file being created is a program module.

Format
NAME modulename

Remarks

modulename (Optional) Defines the name of the program module.

Remarks

After a program module has been loaded, the name
known to OS/2 is the modulename, which can have up
to eight characters. The modulename is not normally
specified.

Default: The executable filename, not including the
extension.

Specify either the NAME statement or the LIBRARY statement. You
cannot specify both. If neither NAME nor LIBRARY is specified, the
default is NAME. If you use the NAME statement, it must be the first
statement in the module definition file.

Example
NAME Calendar

A-62

OLD
Specifies previous version of a dynamic link

module

Purpose
Directs the linker to use export ordinals from the specified dynamic
link library.

Format
OLD 'filename'

Remarks

If 'filename' is not found in the current directory, the linker looks in
the list of directories in the user's PATH environment variable.

Exported names in this module matching exported names in the OLD
module will be assigned ordinal values from the OLD module unless:

• The name in the OLD module does not have an assigned ordinal.

• An ordinal is explicitly assigned to the name in this dynamic link
library.

The OLD statement is useful for preserving export ordinals across
successive versions of a dynamic link module.

Example
OLD 'doscalls.dll 1

A-63

PROTMODE
Sets a program module to run in the OS/2 envi
ronment

Purpose
Directs the linker to set the OS/2-bit in the OS/2 executable file
header. PROTMODE specifies that the program module runs in the
OS/2 environment only.

Format
PROTMODE

Remarks
PROTMODE designates that the executable file is not to be operated
in the DOS mode; that is, it will not be "bound" using the BIND utility.
If your program is never to run in the DOS mode, use PROTMODE to
eliminate the floating-point fix ups and entry table entries for internal
reference fix ups from the executable file. Eliminating them removes
wasted space in the file of OS/2-environment-only programs.

Example
PROTMODE

A-64

SEGMENTS
Defines the attributes of code and data segments

Purpose
Defines the attributes of code and data segments on a per segment
basis. The specified parameters override the CODE and DATA state
ments' defaults. The SEGMENT statement must precede all other
definitions, and you can specify any number of segment definitions
after the SEGMENT statement. You must type each segment defi
nition on a separate line.

Format
SEGMENTS segmentname class load readonly executeonly iopl
shared

Remarks

segmentname Defines the code or data segment whose attributes are
being specified. Enclose segmentname in single quotes
if it is equal to a definition statement keyword such as

'DATA' or'CODE'.

class (optional) A keyword which specifies the class of the
segment, such as

CLASS 'classname'.

If no 'classname' is given, the linker assumes class
'CODE'. Any segment whose classname ends in 'CODE'
(case ignored) is recognized as a code segment by the
linker: if a segment is defined without a CLASS option, it
becomes type code.

load (optional) A keyword which specifies when a segment is
to be loaded. Specify one of the following:

PRELOAD Load the segment immediately.

LOADONCALL (default) Load the segment on demand.

readonly (optional) A keyword which specifies the access rights to
data segments.

A-65

SEGMENTS
Defines the attributes of code and data segments

READONL Y Sets access rights to read only.

READWRITE (default) Sets access rights to read or write.

executeonly (optional) A keyword which specifies the access rights to
code segments.

EXECUTEONLY Sets access rights to execute only.

EXECUTEREAD. (default) Sets access rights to execute
or read.

iop/ (optional) The keyword iopl specifies whether or not seg
ments have 1/0 privilege. This option applies to both
code and data segments.

shared

Example
SEGMENTS

IOPL Segments have 110 privilege.

NOIOPL (default) Segments do not have 1/0 privilege.

(optional) Specifies whether or not a unique copy of the
READWRITE data segments should be loaded for each
process using a dynamic link module. You can specify
the following values:

SHARED A single copy of each data segment is loaded.
The copy is shared by all processes using the
dynamic link module.

NONSHARED A unique copy of each READWRITE data
segment is loaded for each process using the
dynamic link module.

Default: NONSHARED for program modules and
SHARED for dynamic link libraries.

CSEG LOADONCALL
CSEG2 EXECUTEREAD
DSEGl READONLY
DSEG2 SHARED

A-66

Purpose

STACKSIZE
Defines stack size in bytes

Defines the number of bytes an application needs for its stack. The
value specified for STACKSIZE overrides the size of any stack
segment defined in the application.

Format
ST ACKSIZE bytes

Remarks

bytes An (integer) number which specifies the stack size.

Example
STACKSIZE 1024

A-67

stua·
A,ppend•.··oos .. executebleifile to• .. the.·•<)$(2•.•program
module

Purpose
Appends the DOS executable file to the top of the OS/2 program
module being created. The stub is called if the OS/2 program module
is executed under DOS. For example, the stub could display a
warning message and terminate.

Format
STUB 'filename'

Remarks

'filename' The name of the DOS executable file.

If 'filename' is not found in the current directory, the linker looks in
the list of directories in the user's PATH environment variable.

Example
STUB 1 astub.exe 1

A-68

Glossary

abort. Cancel, end, fail, prema
turely end, stop.

abnormal termination. Unusual ces
sation of processing prior to
planned termination.

access. To obtain use of storage, a
device, or a service.

access mode. A technique that is
used to obtain a specific logical
record from, or to place a specific
logical record into, a file assigned
to a mass storage device.

active session. Foreground
session.

addressability. (1) The ability of a
process to access code or data.
(2) Size of an address space.

algorithm. (1) A finite set of well
defined rules for the solution of a
problem in a finite number of steps.
(2) Method of calculation.

allocate. To assign or use for a
specific purpose. For example, to
assign memory for a programs data
segment.

alphanumeric character. Consisting
of letters, numbers, and other char
acters, such as punctuation marks
and mathematical symbols.

American National Standard Code
for Information Interchange (ASCII).
The code developed by ANSI for
information interchange among data
processing systems, data communi-

cation systems, and associated
equipment. The ASCII character set
consists of 7-bit control characters
and symbolic characters.

American National Standards
Institute. An organization spon
sored by the Computer and Busi
ness Equipment Manufacturers
Association for establishing volun
tary industry standards.

ANSI. American National Standards
Institute.

API. (1) Application Program Inter
face. (2) The OS/2 function calls.

application. A program or group of
programs that apply to a particular
business area, such as the Inven
tory Control or the Accounts Receiv
able application.

appllcatlon program. A program
used to perform an application or
part of an application.

archive. (1) A copy of a data set
that can be used if the original data
is lost. (2) The storage of object
files in a library.

ARF. Automatic Response File used
in linking.

ArgPolnter. The address of a set of
argument strings.

argument. Numbers, letters, or
words that change the execution of
a command.

X-1

ASCII. American National Standard
Code for Information Interchange,
normally to refer to a string of char
acters.

ASCllZ. American National
Standard Code for Information Inter
change, normally to refer to a string
of ASCII characters where the string
is terminated with a byte of 0.

ASM. Abbreviation for Assembler.

assembler. A computer program
that translates an assembly lan
guage source code file into a form
that can be executed.

asynchronous. (1) Without regular
time relationship. (2) Unexpected
or unpredictable with respect to the
execution of a program's
instructions.

attribute. A characteristic or prop
erty of one or more entities, for
example, the attribute for a dis
played field could be blinking.

automatic mode. A method of oper
ation that, under specific conditions,
does not require human inter
vention.

auxiliary. A process or device not
under direct control of the proc
essing unit.

bimodal. Pertaining to both the DOS
mode and the OS/2 mode.

binary. (1) Pertaining to a system
of numbers to the base two; the
binary digits are O and 1.
(2) Involving a choice of two condi
tions.

X-2

binary string. A sequence of con
secutive binary digits.

bit. Either of the binary digits 0 or 1
used in computers to store informa
tion.

block. (1) To wait, usually for an
1/0 event to complete or for a
resource to become available.
(2) A storage area used to hold
information.

boot. Initial program load after
reset.

BPB. BIOS Parameter Block

buffer. (1) A temporary storage
unit, especially one that accepts
information at one rate and delivers
it at another rate. (2) An area of
storage, temporarily reserved for
performing input or output, from
which data is read, or into which
data is written.

buffer address. A numeric value
denoting a unique memory location
for a buffer.

byte. The amount of storage
required to represent one character;
a byte is 8 bits.

bytes per sector. The term used to
identify the number of bytes that can
be stored on a sector of a
disk/diskette (i.e., 512}.

CALL. The action of bringing a
computer program, a routine, or a
subroutine into effect, usually by
specifying the entry conditions and
an entry point.

CF. Carry flag.

character. A letter, digit, or other
symbol.

character display. A display that
uses a character generator to
display predefined character boxes
of images (characters) on the
screen. This kind of display cannot
address the screen any less than
one character box at a time.

character key. A keyboard key that
allows the user to enter the char
acter shown on the key.

character set. A group of charac
ters used for a specific reason; for
example, the set of characters a
printer can print or a keyboard can
support.

character string. A sequence of
consecutive characters.

character variable. The name of a
character data item whose value
may be assigned or changed while
the program is running.

child. (1) Pertaining to a secured
resource, either a file or library,
that uses the parent resources. A
child resource can have only one
parent resource. (2) A process
created by a parent process that
shares resources of parent process.

chlld process. (1) A dependent
process; contrast with parent
process. (2) A process that is
created by another process.

CLI. Assembly language instruction
to disable processor interrupts. The
effect is to prevent hardware inter
rupts from being recognized by the

processor until an STI instruction is
issued.

cllck. Press the mouse button (or
press the mouse button twice in
rapid succession).

client process. A process that uses
some service or dynamic link
library. A process is a client of the
service or library.

close. (1) To end an activity and
remove it from the display. (2) To
release a device.

code. (1) Instructions for the com
puter. (2) To write instructions for
the computer; to program. (3) A
representation of a condition, such
as an error code.

code page. The character
encoding, for keyboard input and
display and spooled printer output.

code point. A single character or
shape defined in the code page and
presented on the display or printer.

code segment. See segment

COM. (1) Represents one of the
serial communications ports sup
ported by OS/2 (COM1, COM2,
COM3). (2) Communication.

command. A request to perform an
operation or run a program. When
parameters, arguments, flags, or
other operands are associated with
a command, the resulting character
string is a single command.

command processor. (1) A
program executed to perform an
operation specified by a command.
(2) A system or user task that proc-

X-3

esses a set of commands from a
queue.

compile. (1) To translate a
program written in a high-level pro
gramming language into a machine
language program. (2) The com
puter actions required to transform
a source file into an executable
object file.

condition. An expression in a
program or procedure that can be
evaluated to a value of either true
or false when the program or proce
dure is running.

configuration. The group of
machines, devices, and programs
that make up a computer system.

constant. A data item with a value
that does not change.

context. The environment in which
a program executes.

contiguous. To be in actual contact
with or touching along a boundary.

coprocessor. A microprocessor on
an expansion card or the system
board.

CS. Code Segment.

current. Active.

cursor. (1) A movable symbol
(such as an underline) on a display,
used to indicate to the user where
the next typed character will be
placed or where the next action will
be directed. (2) A marker that indi
cates the current data access
location within a file.

X-4

customize. To describe {to the
system) the devices, programs,
users, and user defaults for a partic
ular data processing system.

cylinder. All fixed-disk or diskette
tracks that can be read or written
without moving the disk drive or
diskette drive read/write mech
anism.

DASO. Direct Access Storage
Device.

data area. A storage area used by
a program to hold information.

DB. Define byte. A MASM
pseudo-op to declare a byte of
memory.

DBCS. Double Byte Character Set

DD. Define Double Word. A MASM
pseudo-op to declare a double word
of memory.

dead key. Inactive key.

deallocate. To release a resource
that is assigned to a specific task.

default value. A value stored in the
system that is used when no other
value is specified.

delnstall. To remove. Used as a
device driver command.

delete. A function that enables data
held in storage to be removed.

delimiter. (1) A flag that separates
and organizes items of data. Syn
onymous with punctuation symbol,
separator. (2) A string of one or
more characters used to separate

or organize elements of computer
programs or data, for example,
parenthesis, blank character, arith
metic operator, if, "BEGIN". (3) A
character that groups or separates
words or values in a line of input.

dereglster. To remove. Used as a
device monitor command.

destination drive. The target drive
in an operation involving two or
more logical drives.

DevHlp. Refers to the OS/2 services
available in writing device drivers.

device. An electrical or electronic
machine that is designed for a spe
cific purpose and that attaches to a
computer, for example, a printer,
plotter, or disk drive.

device attributes. Characteristics of
a device, described in the device
header of a device driver.

device BPB. Data structure used to
describe DASO devices.

device driver. A program that oper
ates a specific device, such as a
printer, disk drive, or display.

device handle. Device identifier.

device name. A name reserved by
the system or a device driver that
refers to a specific device.

device type. The general name for
a kind of device.

digit. Any of the numerals from 0
through 9.

directory. A type of file containing
the names and controlling informa
tion for other files or other directo
ries.

disable. (1) To make nonfunctional.
(2) The state of a processing unit
that prevents the occurrence of
certain types of interruptions. (3) A
state in which a transmission
control unit or audio response unit
can not accept incoming calls.

disk. A flat circular plate with a
surface layer on which data can be
stored by magnetic recording.

diskette. A thin, flexible magnetic
plate that is permanently sealed in a
protective cover. It can be used to
store information copies from the
disk or another diskette.

diskette drive. The mechanism
used to read and write information
on diskettes.

dispatch. To allocate time on a
processor to jobs or tasks that are
ready for execution.

display. (1) In word processing, a
device for visual presentation of
information on any temporary
character-imaging device. (2) A
visual presentation of data. (3) To
present data visually.

display device. An output unit that
gives a visual representation of
data.

display screen. The part of the
display device that displays infor
mation visually.

OMA. Direct Memory Access

X-5

DOS. (1) IBM Personal Computer
Disk Operating System. (2) The
DOS mode of OS/2.

double-byte character. A single
symbol requiring two bytes to code;
for example, Chinese characters.

dump. (1) To copy the contents of
all or part of storage, usually to an
output device. (2) Data that has
been dumped.

dump diskette. A diskette that con
tains a dump or is prepared to
receive a dump.

DW. Define Word. A MASM
pseudo-op to declare a word of
memory.

dynamic priority variation. The
changes in a thread's priority based
on the state of the system and the
state of thread relative to the
system.

EBCDIC. Extended Binary-Coded
Decimal Interchange Code.

EBCDIC character. Any one of the
symbols included in the 8-bit
EBCDIC set.

enable. (1) To make functional.
(2) The state of a processing unit
that allows the occurrence of
certain types of interruptions.
{3) The state !n wh!ch a trans
mission unit can accept incoming
calls on a line.

environment. The settings for vari
ables and paths set associated with
each process.

execute/execution. Do, start, or
run.

X-6

exit value. A numeric value that a
command returns to indicate
whether it completed successfully.
Some commands return exit values
that give other information, such as
whether a file exists.

expression. A representation of a
value. For example, variables and
constants appearing alone or in
combination with operators.

FAT. File Allocation Table.

FCB. (1) Function control block.
(2) File control block. (3) Forms
control buffer.

field. (1) An area in a record or
panel used to contain a particular
category of data. (2) The smallest
component of a record that can be
referred to by a name.

FIFO. (1) Fi rst-i n-fi rst-out. (2) A
type of queue where the oldest ele
ments in the queue are removed
before any newer elements.
(3) Order of transferred data
packets.

file. A collection of related data that
is stored and retrieved by an
assigned name.

file handle. File identifier.

file pointer. An internal name that
is a pointer to a structure containing
information about a file.

file specification. The name and
location of a file. A file specification
consists of a drive specifier, a
pathname, and a filename.

Ille system. The collection of files
and file management structures on
a physical or logical mass storage
device.

filename. (1) The name used by a
program to identify a file. (2) The
portion of the identifying name that
precedes the extension.

filespec. See File specification.

fllter. A command that reads
standard input data, modifies the
data, and sends it to standard
output.

first-in-first-out{FIFO). (1) A type of
queue where the oldest elements in
the queue are removed before any
newer elements. (2) Order of trans
ferred data packets.

fixed disk. A flat, circular,
nonremovable plate with a surface
layer on which data can be stored
by magnetic recording.

flag. (1) A modifier that defines the
action of a command. (2) The
action or return from a command.

floppy disk. Deprecated term for
diskette.

flush. Delete, erase, or remove.

foreground session. The session
currently interacting with the user.

format. (1) A defined arrangement
of such things as characters, fields,
and lines, usually used for displays,
printouts, or files. (2) The pattern
which determines how data is
recorded.

function. (1) A specific purpose of
an entity, or its characteristic
action. (2) A synonym for proce
dure.

graphic character. (1) A character,
other than a control character, that
is normally represented by a
graphic. (2) A character that can
be displayed or printed.

half-byte. Either the first or last four
consecutive bits of a byte. A
hexadecimal character represents a
half-byte.

hard disk. Fixed disk.

hard error. (1) Error caused by the
state of the hardware (e.g., printer
off-line). (2) An unrecoverable
error.

hertz {Hz). A unit of frequency
equal to one cycle per second.

hexadecimal code. A code based
on the radix 16, in which the digits 0
through 9 and the letters A through
F represent the code.

hot key. A key recognized by the
system as a request for a particular
service or action. OS/2 has two hot
keys: Ctrl + Esc to return to the
Program Selector and Alt+ Esc to
switch between active sessions.

hung. Halted or stopped.

Hz. Abbreviation for hertz.

lnit. Initialization, usually refers to
an initialization routine.

Initialize. To set counters, switches,
addresses, or contents of storage to

X-7

zero or other starting values at the
beginning of, or at prescribed
points, in the operation of a com
puter routine.

Input. (1) Pertaining to a device
process, or channel involved in an
input process, or to the data or
states involved in an input process.
(2) Data to be processed. (3) Syn
onymous with input data, input
process.

Input device. Physical devices used
to provide data to a computer.

interactive. (1) Permitting contin
uous dialog between the user and
the operating system. (2) Per
taining to an application in which
each entry cal Is forth a response
from a system or a program.

Interactive processing. A proc
essing method in which each
system user action causes response
from the program or the system.

interface. A shared boundary
between two or more entities. An
interface might be a hardware com
ponent to link two devices together
or it might be a portion of storage or
registers accessed by two or more
computer programs.

Interrupt-time. A generic term that
refers to executing code as a result

cution does not belong to a process.

1/0. Input/output.

IPC. Interprocess Communications
via semaphores, pipes, queues, etc.

X-8

IPL. (1) Initial program load; the
first time the operating system is
loaded into memory and initialized.
(2) To reload and initialize the oper
ating system via a power off/on or
by pressing Ctrl +Alt+ Del.

Invoke. To activate a procedure at
one of its entry points.

KB. Kilobyte.

kbd. keyboard.

KCB. (1) Keyboard Control Block.
(2) A data area containing variables
pertaining to a given logical key
board, created by the KbdOpen API.

kill. To end or suppress a process.

Kiiobyte. 1024 bytes.

label. (1) The name in the disk or
diskette directory that identifies a
file. (2) The field of an instruction
that assigns a symbolic name to the
location at which the instruction
begins.

LIB. (1) An abbreviation for library.
(2) Used as an extension on library
files. (3) The Librarian utility which
creates and manages Object
Libraries.

library. A collection of functions,
calls, subroutines, or other data.

linefeed. An ASCII character that
causes an output device to move
forward one line.

load. (1) To move data or pro
grams into storage. (2) To place a
diskette into a diskette drive. (3) To
insert paper into a printer.

logical device. Redirected disk, file,
printer, or other specific device.

memory. Storage on electronic
chips. Examples of memory are
random access memory, read only
memory, or registers.

memory compaction. Relocating
allocated storage segments into
contiguous locations in order to
place all free storage in one large
block.

menu. A displayed list of items
from which a user can make a
selection.

message. A response from the
system to inform the user of a con
dition which may affect further proc
essing of a program.

module. A discrete programming
unit that usually performs a specific
task or set of tasks.

monitor. (1) A routine which exam
ines input to a character device
driver and can delete, modify, or
expand the character before
passing it back to the device driver.
(2) A routine which filters the
input/output stream.

multi. Two or more.

multiprogramming. (1) A mode of
operation that provides for the inter
leaved execution of two or more
computer programs by a single
processor. (2) The processing of
two or more programs at the same
time.

multitasking. The concurrent exe
cution of two or more tasks by a
computer.

nest. To incorporate a structure or
structures of some kind into a struc
ture of the same kind. For example,
to nest one loop (the nested loop)
within another loop (the nesting
loop); to nest one subroutine (the
nested subroutine) within another
subroutine (nesting subroutine.)

NPX. Numeric Coprocessor

NUL. Null character

null. Having no value, containing
nothing.

null character (NUL). The character
hex 00, used to represent the
absence of a printed or displayed
character.

numeric. Pertaining to any of the
digits 0 through 9.

OBJ. A file name extension that
identifies a relocatable object file.

object code. Machine-executable
instruction, usually generated by a
compiler from source code written
in a higher level language. Con
sists of directly executable machine
code. For programs that must be
linked, object code consists of relo
catable machine code.

object Ille. A program unit that is
the output of an assembler or a
compiler and is suitable for input to
the linker.

object module. Synonym for object
file.

octal. A base eight numbering
system.

X-9

offset. The number of measuring
units from an arbitrary starting point
in a record, area, control block, or a
segment to some other point.

onllne. (1) Pertaining to a user's
ability to interact with a computer.
(2) Pertaining to the operation of a
functional unit that is under the con
tinual control of a computer.

open. To make a file or device
available to a program for proc
essing.

operand. (1) An entity to which an
operation is applied. (2) That which
is operated upon. An operand is
usually identified by the address
part of an instruction. (3) Informa
tion entered with a command name
to define the data on which a
command processor operates and
to control the execution of the
command processor. (4) An
expression to whose value an oper
ator is applied.

operating system. Software that
controls the running of programs; in
addition, an operating system may
provide services such a resource
allocation, scheduling, input/output
control, and data management.

option. A specification in a state
ment that can be used to influence
the execution of the statement.

output. (1) Synonym for output
data; output process. (2) The result
of processing.

output device. The physical device
used by a computer to present data
to a user.

X-10

output file. A file that is opened by
a program so that the program can
write to that file.

parameter. Information supplied by
the programmer or user to a
command, or function. An attribute,
value, or variable.

parent. The owning or creating
process, as opposed to a child
process.

parent directory. The directory one
level above the current directory.

parm. Abbreviation for parameter.

PgmPointer. The address of an
ASCllZ string of the drive, directory
path and filename of the program to
be executed.

physical device. Device.

pipe. To direct the data so that the
output from one process becomes
the input to another process.

pixel. Picture element.

pop. Retrieving information from a
stack.

preempt. To take control away
from, such as, to interrupt the exe
cution of a process to allow another
process to execute.

print queue. A file containing a list
of the names of files waiting to be
printed.

print spooler. The program which
manages the print queue.

priority. A rank assigned to a task
that determines its precedence in
receiving system resources.

procedure. (1) The course of action
taken for the solution of a problem.
(2) The description of the course of
action taken for the solution of a
problem.

process. A collection of system
resources including one or more
threads.

process ID. A unique number
assigned to a process.

prompt. A displayed request for
information or user action.

protect mode. A mode of 80286
memory addressing in which virtual
addresses are mapped to physical
addresses by on-chip circuitry.

pseudo. Artificial, simulated.

Pull. To remove from.

push. Placing information on a
stack (to put on or in).

queue. A line or list formed by
items waiting to be processed.

RAM semaphore. A simple, effi
cient form of semaphore used to
serialize different threads of a
single process.

random access. An access mode in
which records can be read from,
written to, or removed from a file in
any order.

RAS. Reliability, Availability, and
Serviceabi I ity.

redirection. The reassignment of
the standard input and standard
output devices.

refresh. The process of repeatedly
producing a display image on a
display space so that the image
remains visible.

RET. Return.

return code. A code returned by a
function, which the caller may use
to influence the execution of suc
ceeding instructions.

reverse video mode. A form of
highlighting a character, field, or
cursor by reversing the color of the
character, field, or cursor with its
background; for example, changing
a red character on a black back
ground to a black character on a red
background.

routine. Part of a program, or a
sequence of instructions called by a
program, that may have some
general or frequent use.

run. To cause a program, utility, or
other machine function to be per
formed.

run time. The elapsed time taken
for the execution of a computer
program. Synonymous with run
duration.

sector. An area on a disk track or a
diskette track reserved to record
information

segment. A contiguous area of
storage.

X-11

semaphore. A signal mechanism
used to control access to system
resources.

separator. A character used to sep
arate parts of a command or file.

sequential access. An access
method in which records are read
from, written to, or removed from a
file based on the physical order of
the records.

session. A routing mechanism for
user interaction via the console.

shared data segment. A data area
created in memory that can be
shared by programs.

shared memory. An OS/2 feature
that allows system memory to be
shared among processes.

source module. The source state
ments or codes that constitute the
input to the compiler or assembler
for translation.

source program. A set of
instructions written in a program
ming language, that must be trans
lated to machine language compiled
before the program can be run.

spawn. Create, develop, generate.

stack. An area in storage that
stores temporary register informa
tion, parameters, and return
addresses of subroutines.

stack pointer. A register that con
tains the current location of the top
of the stack.

X-12

standalone. Pertaining to oper
ations that are independent of
another device, program, or system.

standard Input. The primary source
of data going into a command.
Standard input comes from the key
board unless redirection or piping is
used, in which case standard input
can be from a file or the output from
another command.

standard output. The primary desti
nation of data coming from a
command. Standard output goes to
the display unless redirection or
piping is used, in which case
standard output can be a file or
another command.

storage. (1) The location of saved
information. (2) In contrast to
memory, the saving of information
on physical devices such as disk or
tape.

string. A linear sequence of entities
such as characters or physical ele
ments. Examples of strings are
alphabetic string, binary element
string, bit string, character string,
search string, and symbol string.

suballocation. The allocation of a
part of one extent for occupancy by
elements of a component different
from the one occupying the
remainder of the extent.

subdirectory. A directory contained
within another directory in the file
system hierarchy.

subroutine. (1) A sequence of
statements that may be used in one
or more computer programs and at
one or more points in a computer

program. (2) A routine that can be
part of another routine.

swap flle. A file that contains seg
ments of a program or data tempo
rarily moved out of main storage.

synchronous. Pertaining to two or
more processes that depend upon
the occurrences of specific events
such as common timing signals.

system. The computer and its asso
ciated devices and programs.

task-time. A generic term that
refers to executing code as a thread
within a process.

terminate. Conclude, end, finish,
stop.

thread. A unit of execution within a
process.

toggle. Change or switch.

transposition. To change the order
as to reverse the order.

typeamatlc key. A key that repeats
its function when held down.

valid. Correct.

variable. A parameter with different
values at any one time. The values
are usually restricted to data type.

wlldcard character. Global filename
characters.

write protection. Restriction of
writing into a data set, file, or
storage area by a user or program
not authorized to do so.

X-13

X-14

Index

Special Characters
/ASCII mode 6-28
/binary mode 6-28
/CGA APA Modes 6-18
/CGA, EGA, & VGA APA
Modes 6-18

/Character Device Monitors 6-32
/CONFIG.SYS 6-13, 6-14

/CPARMAXALLOC A-7
/device driver initialization 6-13
/device handle 6-1
/Device Monitors, Character 6-32
/device name 6-3
/DEVICE= commands 6-14
/Display Adapters Supported 6-16
/DOS Mode Mouse API 6-31

/DOSSEG A-8
/DSALLOCATE A-9
/EGA APA Modes 6-18
/file handle 6-1
/filename 6-1
/handle 6-1

/HIGH option A-13
/IBM Personal System/2™ Display
Adapter 6-17

/initialization 6-13
/installation 6-13
/INT 33H Mouse API 6-31
/interrupt 33 6-31
/Monitors, Character Device 6-32

/NOGROUPASSOCIATION A-19
/OVERLA YINTERRUPT A-22
/printer font file 6-60
/printer font file Control
definitions 6-62

/printer font file font
definitions 6-66

/printer font file header 6-61

/spooler Activate Font 6-57
query active font 6-59

/spooler description 6-57
activate font 6-57
initialization 6-57

/spooler Query Active Font 6-59
verify font 6-59

/spooler Verify Font 6-59
/Supported APA Modes 6-18
/Text Modes Supported 6-17
/VGA APA Modes 6-18
/VIO Support by Mode 6-17

A
ABIOS eoi placement rule 7-18
ABIOS LID IRQ rule 7-18
ABIOS request block rule 7-18
ABIOS, Mouse 9-35
ABIOSCall 8-10
ABIOSCommonEntry 8-12
absolute disk, interrupt
additional VIO considerations 6-25
Advanced BIOS/device driver

notes 7-72
advanced linker topics A-28
allocating paragraph space A-7
AllocGDTSelector 8-14
AllocPhys 8-16
AllocReqPacket 8-17
ANSI and Code pages 9-133
ANSI.SYS 9-123
API 2-11
application 1/0 to devices 7-3
Application Program Interface

CALL-RETURN 2-1
calling sequence 2-1
DOS family and full API 2-10
DOS family considerations 2-10
dynamic linking 2-1

X-15

Application Program Interface (con-
tinued)

function implementation 2-1
interface stack frame 2-1
partitionable disk API 6-14
PC family programming

model 2-1
request format and character

istics 2-1, 2-4
ASCllZ Strings 6-1
asynchronous

communications/COM 9-1
asynchronous notification

DosFlagProcess 4-25
DosHoldSignal 4-25
DosSetSigHandler 4-25
signals 4-24

Asynchronous Notification function
calls

DosFlagProcess 4-25
DosHoldSignal 4-25
DosSetSigHandler 4-25

attribute field 7-22
attribute field bits

clock device 7-24
device type 7-23
format 7-23

B

Generic IOCtl request 7-24
Get/Set Logical Device 7-24
NULL 7-24
removable media 7-24
shared 7-24
standard input 7-24
standard output 7-24

BEGDATA class name A-8
bimodal device drivers 7-1
BIOS interrupt rule 7-15
Block 8-19
block device drivers 7-2
block device unit code field 7-38

X-16

boot sector format 7-51
BPB 9-147
BSS class name A-8
buffer, monitor chain 6-39
BUILD BPB 7-50
busy bit 7-40

c
C interface examples 2-9
call Advanced BIOS services,

device drivers 7-35
Calling Conventions 2-3
chain buffer, monitor 6-39
character device drivers 7-2
character queue management 7-12
class names

BEGDATA A-8
BSS A-8
CODE A-8
STACK A-8

clear to send (CTS) 9-4
clock device bit 7-24
Clock services 4-1
CLOCKS device driver

CLOCK device time format 9-88
CODE class name A-8
code page configuration 11-4
code page function calls

DosGetCp 6-12
DosSetCp 6-12
DosSetProcCp 6-12
KbdGetCp 6-12
KbdSetCp 6-12
Printer IOCtl 6-12
VioGetCp 6-12
VioSetCp 6-12

code page support
&12@CODE.

API functions 6-4
page switching 6-4
user commands 6-4

code page API summary 6-12
code page dependent

information 6-5

code page support (continued)
code page function calls 6-12
code page operation 6-8
code page preparation 6-6
code page support, features

of 6-4
code page supported

devices 6-10
code page switching

example 6-5
special considerations and limi

tations 6-10
code segments A-21, A-23

packing A-21, A-23
CODE statement A-51
CodeView A-6
COM 9-1
COM/access authorization 9-25
COM/additional function

support 9-3
COM/additional port support 9-3
COM/attachment support 9-3
COM/automatic control 9-7
COM/automatic monitoring 9-7
COM/automatic receive flow

control 9-9
COM/automatic receive flow

control/XON-XOFF 9-9
COM/automatic transmit flow

control 9-9
COM/automatic transmit flow

control/XON-XOFF 9-9
COM/ AUX 9-21, 9-30
COM/binary - ASCII 9-25
COM/binary data 9-25
COM/break 9-9
COM/break replacement

character/processing 9-9
COM/CLOSE 9-27
COM/CLOSE/automatic receive flow

control 9-27
COM/CLOSE/break

processing 9-27

COM/CLOSE/DTR 9-27
COM/CLOSE/interrupt level 9-27
COM/CLOSE/last level close 9-27
COM/CLOSE/ATS 9-27
COM/CLOSE/transmit

hardware 9-27
COM/CLOSE/transmit immediate

processing 9-27
COM/code page support 9-25
COM/CTS 9-4
COM/custom device support 9-3
COM/data translation 9-25
COM/DCD 9-4
COM/device driver/close consider

ation 9-11
COM/device driver/defaults 9-11
COM/device driver/Mode

Utility 9-11
COM/device driver/open consider-

ation 9-11
COM/device driver/states 9-11
COM/device names 9-21
COM/device names/ Advanced

BIOS 9-21
COM/device names/COMn 9-21
COM/device

names/determination 9-21
COM/device names/logical ID 9-21
COM/device names/none 9-21
COM/device names/Personal Com-

puter AT 9-21
COM/device names/PS/2 9-21
COM/device names/40: 9-21
COM/DOS

mode/considerations 9-30
COM/DOS mode/CTTY 9-30
COM/DOS mode/FAPI 9-30
COM/DOS mode/file system 9-30
COM/DOS mode/IOCtls 9-30
COM/DOS mode/old device

drivers 9-30
COM/DOS mode/printing 9-30
COM/DSR 9-4

X-17

COM/OTA 9-4
COM/OTA/CLOSE 9-8
COM/OTA/disable 9-8
COM/OTA/enable 9-8
COM/OTA/input handshaking 9-8
COM/OTA/OPEN 9-8
COM/error 9-9
COM/error replacement

character/processing 9-9
COM/event notification 9-10
COM/file system 9-26
COM/first level open 9-7
COM/flow control/automatic 9-9
COM/flow control/IOCtls 9-9
COM/flow control/manual 9-9
COM/FLUSH 9-7
COM/initialization 9-22
COM/initial ization/CONFIG .SYS

ordering 9-22
COM/initialization/DEINSTALL 9-22
COM/initialization/device

names 9-22
COM/initialization/DEVICE= 9-22
COM/initialization/filenames 9-22
COM/initialization/interrupt

level 9-23
COM/initialization/logical ID 9-24
COM/initialization/multiple device

drivers 9-22
COM/initialization/Personal Com-

puter AT 9-23
COM/initialization/PS/2 9-24
COM/initialization/40: 9-23, 9-24
COM/input modem control

signals 9-4, 9-8
COM/input sensitivity/DSA 9-8
COM/INT 14H 9-30
COM/interrupt driven 9-5
COM/IOCtl 9-5
COM/last level close 9-7
COM/line characteristics 9-9
COM/Ii ne characteristics/baud

rate 9-9

X-18

COM/line characteristics/data
bits 9-9

COM/line
characteristics/parity 9-9

COM/line characteristics/stop
bits 9-9

COM/manual control 9-7
COM/manual monitoring 9-7
COM/marking 9-4
COM/Mode

Utility/performance 9-31
COM/monitor support 9-25
COM/multiple requests 9-5
COM/multiple

requests/ordering 9-6
COM/OFF 9-4
COM/ON 9-4
COM/OPEN 9-26
COM/OPEN/first level open 9-26
COM/OPEN/initialize port 9-26
COM/OPEN/interrupt level 9-26
COM/OPEN/last level close 9-26
COM/OPEN/timer tick 9-26
COM/output handshaking/CTS 9-8
COM/output handshaking/DCD 9-8
COM/output handshaking/DSA 9-8
COM/output modem control

signals 9-4
COM/output modem control

signals/automatic control 9-8
COM/output modem control

signals/manual control 9-8
COM/overlapped input output 9-6
COM/performance 9-31
COM/performance/configuration 9-31
COM/performance/hardware

overrun 9-31
COM/performance/receive queue

overrun 9-31
COM/Personal Computer

AT/adapter 9-2
COM/Personal Computer AT/direct

to hardware 9-2

COM/Personal Computer AT /input
output addresses 9-2

COM/Personal Computer
AT/interrupt levels 9-2

COM/Personal Computer
AT /number of ports 9-2

COM/physical interface 9-5
COM/PS/2/adapter 9-2
COM/PS/2/ Advanced BIOS 9-2
COM/PS/2/i nterrupt levels 9-2
COM/PS/2/number of ports 9-2
COM/READ 9-5, 9-28
COM/READ/multiple requests 9-28
COM/READ/ordered requests 9-28
COM/READ/queueing of

requests 9-28
COM/READ/receive queue 9-28
COM/READ/receive queue buffer

overrun 9-28
COM/READ/ti me-out

processing 9-28
COM/receive queue 9-5
COM/RI 9-4
COM/RLSD 9-4
COM/RS232-C 9-4
COM/RTS 9-4
COM/RTS/CLOSE 9-8
COM/ATS/disable 9-8
COM/ATS/enable 9-8
COM/RTS/input handshaking 9-8
COM/RTS/OPEN 9-8
COM/ATS/toggling on transmit 9-8
COM/schedule requests 9-5
COM/spacing 9-4
COM/spooler support/COM to

COM 9-25
COM/spooler support/COM to

LPT 9-25
COM/spooler support/LPT to

COM 9-25
COM/states/automatic receive flow

control (XON-XOFF) 9-17
COM/states/automatic transmit flow

control (XON-XOFF) 9-16

COM/states/baud rate 9-12
COM/states/break replacement

character 9-18
COM/states/break replacement

character processing 9-18
COM/states/COM error word 9-15
COM/states/data bits 9-12
COM/states/DTR 9-13
COM/states/DTR Control

Mode 9-14
COM/states/DTR Disable 9-14
COM/states/DTR Enable 9-14
COM/states/DTR Input

Handshaking 9-14
COM/states/error replacement

character 9-18
COM/states/error replacement

character processing 9-17
COM/states/event word 9-15
COM/states/input sensitivity using

DSR 9-16
COM/states/null stripping 9-19
COM/states/output handshaking

using CTS 9-15
COM/states/output handshaking

using DCD 9-15
COM/states/output handshaking

using DSR 9-15
COM/states/parity 9-12
COM/states/read time-out

state 9-20
COM/states/read time-out

value 9-20
COM/states/ATS 9-13
COM/states/ATS Control

Mode 9-14
COM/states/ATS Disable 9-14
COM/states/ATS Enable 9-14
COM/states/ATS Input

Handshaking 9-14
COM/states/ATS toggling on

transmit 9-14
COM/states/stop bits 9-13

X-19

COM/states/transmit
immediate 9-20

COM/states/transmitting
break 9-15

COM/states/write time-out
state 9-19

COM/states/write time-out
value 9-19

COM/states/XOFF character 9-17
COM/states/XON character 9-17
COM/system

performance/degradation 9-31
COM/timeout processing 9-7
COM/transmit hardware 9-5
COM/transmit queue 9-5
COM/WRITE 9-5, 9-28
COM/WRITE/multiple

requests 9-28
COM/WRITE/ordered

requests 9-28
COM/WRITE/queueing of

requests 9-28
COM/WRITE/throughput 9-28
COM/WRITE/time-out

processing 9-28
COM/WRITE/transmit

hardware 9-28
COM/WRITE/transmit queue 9-28
COM/40: 9-30
command codes

command code field 7-38
device driver 7-42
summary 7-38, 7-42

command processor portions
command-specific field, request

header 7-42
command, CONFIG.SYS 10-3
command, TRACE 10-3, 10-4
command, TRACEBUF and

TRACE 10-3
commands
concurrent execution 3-1
CON FIG.SYS

device driver button
definitions 9-62

X-20

CONFIG.SYS (continued)
device driver function

summary 9-63
device driver interface require

ments 9-62
CONFIG.SYS command 10-3
console device drivers

device drivers, screen and key
board 9-89

keyboard device drivers
(KBD$) 9-89

keyboard initialization 9-92
keyboard run time

operation 9-92
keystroke monitor data

packet 9-94
keystroke monitors 9-93

contexts, device driver 7-7
control screen cursor 9-123
control sequences 9-123
controlling data loading A-9
controlling display mode 9-130
controlling run file loading A-13
converting object files to executable

code A-1
coordinating execution

EXE file information 4-28
RAM semaphores 4-19
RAM semaphores, comparison

of 4-20
system semaphores 4-19
system semaphores, comparison

of 4-20
copying line numbers to the map

file A-15
Country Support 11-1

Country codes 11-1
country dependent

information 11-1
introduction 11-1
national keyboard layouts 11-3
utility and configuration 11-5

cparMaxALLOC field A-7

Create Dump Diskette Utility 10-2,
10-9

CREATEDD, Create Dump Diskette
Utility 10-2, 10-9

creating a device driver 7-26
Ctrl +Alt+ NumLock keys 10-6
cursor 9-123
cursor backward 9-127
cursor control 9-125
cursor control sequences

cursor backward 9-127
cursor down 9-125
cursor forward 9-126
cursor position 9-125
cursor position report 9-128
cursor up 9-125
device status report 9-128
erase in display 9-130
erase in line 9-130
horizontal position 9-127
keyboard key

reassignment 9-133
restore cursor position 9-130
save cursor position 9-129
set graphics rendition 9-130
vertical position 9-127

cursor up 9-125

D
data carrier detect (DCD) 9-4
data loading A-9
data set ready (DSR) 9-4
DATA statement A-52
data structure, monitor 6-39
data terminal ready (DTR) 9-4
date
Date services 4-1
default libraries A-17

ignoring A-17
Default Pointers 9-43
definition file statements,

module A-50

DEINSTALL 7-63
DEINSTALL hardware

interrupts 7-64
DEINSTALL Logical IDs 7-64
demand load 4-27
Deregister 9-60
DESCRIPTION statement A-54
design elements

&12@DES.
initiating a dump 10-5
using system trace 10-2

availability functions 10-2
reliability functions 10-1
serviceability functions 10-2
stand-alone dump facility 10-5
system trace facility 10-2

DevDone 8-23
DevHlp 9-59
DevHlp ABIOSCall 8-10
DevHlp ABIOSCommonEntry 8-12
DevHlp character queue

structure 7-12
DevHlp EOI 8-24
DevHlp FreeLIDEntry 8-26
DevHlp function codes 8-1
DevHlp GetLIDEntry 8-31
DevHlp modes 8-3
DevHlp services 8-1
DevHlp TickCount 8-84
DevHlp UnPhysToVirt 8-87
DevHlp VerifyAccess 8-90
DevHlp, AllocGDTSelector 8-14
DevHlp, AllocPhys 8-16
DevHlp, AllocReqPacket 8-17
DevHlp, Block 8-19
DevHlp, DeRegister 8-22
DevHlp, DevDone 8-23
DevHlp, FreePhys 8-27
DevHlp, FreeReqPacket 8-28
DevHlp, GetDOSVar 8-29
DevHlp, Lock 8-33
DevHlp, MonFlush 8-35
DevHlp, MonitorCreate 8-36

X-21

DevHlp, MonWrite 8-39
DevHlp, PhysToGDTSelector 8-41
DevHlp, PhysToUVirt 8-43
DevHlp, PhysToVirt 8-45
DevHlp, ProtToReal 8-49
DevHlp, PullParticular 8-51
DevHlp, PullReqPacket 8-52
DevHlp, PushReqPacket 8-53
DevHlp, QueueFlush 8-54
DevHlp, Queuelnit 8-55
DevHlp, QueueRead 8-56
DevHlp, QueueWrite 8-57
DevHlp, RealToProt 8-58
DevHlp, Register 8-60
DevHlp, ResetTimer 8-62
DevHlp, ROMCritSection 8-63
DevHlp, Run 8-65
DevHlp, SchedClockAddr 8-66
DevHlp, SemClear 8-68
DevHlp, SemHandle 8-70
DevHlp, SemRequest 8-73
DevHlp, SendEvent 8-75
DevHlp, SetlRQ 8-77
DevHlp, SetROMVector 8-78
DevHlp, SetTimer 8-80
DevHlp, SortReqPacket 8-82
DevHlp, TCYield 8-83
DevHlp, Unlock 8-86
DevHlp, UnSetlRQ 8-89
DevHlp, VirtToPhys 8-92
DevHlp, Yield 8-93
device attribute 7-22, 7-23
DEVICE CLOSE 7-58
device driver

attribute 7-23
command codes 7-42
header 7-21
request packet 7-37

device driver architecture
bimodal device driver

operation 7-8
components of a device

driver 7-5
types of device drivers 7-2

X-22

device driver commands
BUILD BPB 7-50
FLUSH 7-57
GENERIC IOCtl 7-60
INIT 7-43
LOGICAL DRIVE 7-62
MEDIA CHECK 7-47
NONDESTRUCTIVE READ NO

WAIT 7-55
OPEN or CLOSE 7-58
READ 7-53
REMOVABLE MEDIA 7-59
RESET MEDIA 7-61
STATUS 7-56
WRITE 7-53

device driver contexts 7-7
device driver data segment,

Advanced BIOS 7-34
device driver DEINSTALL 7-63
device driver examples 7-68
device driver function calls

DosBeep 7-27
DosCaseMap 7-27
DosChgFilePtr 7-27
DosClose 7-27
DosDelete 7-27
DosDevConfig 7-27
DosDevlOCtl 7-27
DosFindClose 7-27
DosFindFirst 7-27
Dos Fi ndNext 7-27
DosGetCtrylnfo 7-27
DosGetDBCSEv 7-27
DosGetEnv 7-27
DosGetMessage 7-27
DosOpen 7-27
DosPutMessage 7-27
DosQCurDir 7-27
DosQCurDisk 7-27
DosQFilelnfo 7-27
DosQFileMode 7-27
DosRead 7-27
DosWrite 7-27

device driver functions
device driver GET FIXED

DISK/LOGICAL UNIT MAP 7-66
device driver header 7-21, 7-22
device driver initialization 7-26
device driver interrupt

sharing 7-13
device driver notes/using Advanced

BIOS 7-72
device driver PARTITIONABLE

FIXED DISKS 7-65
device driver program model 7-21
device driver, application

access 7-~

device driver, bimodal
operations 7-1

device driver, block 7-2
device driver, character 7-2
device driver, creating 7-26
device driver, DOS mode 7-4
device driver, DosDevlOCtl 7-3
device driver, dual mode 7-1
Device Driver, EGA.SYS 9-102
device driver, interrupt handling

rules 7-6
device driver, interrupt sharing

rules 7-14
device driver, multiple block

devices 7-2
device driver, multiple character

devices 7-2
device driver, previous-level 7-29
device driver, queueing

requests 7-9
device driver, software interrupt

handler 7-6
device driver, strategy routine 7-5
device driver, timer handler 7-6
device driver, types 7-2
device drivers, OS/2

commands, printer
device 9-158

creating 7-26
device driver architecture 7-1

device drivers, OS/2 (continued)
device header 7-21
diskette device driver 9-137
fixed disk device driver 9-138
printer device driver 9-154
responses, printer device 9-158
status word 7-40

device field, next 7-22
device header 7-21
device header fields

attribute 7-22
header 7-22
name/unit 7-25
next device header 7-22
strategy routine 7-24

device helper services 8-1
ABIOSCal I 8-3
ABIOSCommonEntry 8-3
AllocGDTSelector 8-3
AllocPhys 8-3
AllocReqPacket 8-3
Block 8-3
character queue

management 7-12
DeRegister 8-3
DevDone 8-3
DevHlp interfaces 8-9
EOI 8-3
FreeLIDEntry 8-3
FreePhys 8-3
FreeReqPacket 8-3
function codes 8-1
GetDOSVar 8-3
GetLIDEntry 8-3
GrantPortAccess 8-3
Lock 8-3
memory management 7-10
MonFlush 8-3
MonitorCreate 8-3
MonWrite 8-3
PhysToGDTSelector· 8-3
PhysToVirt 8-3
PortUsage 8-3
ProtToReal 8-3

X-23

device helper services (continued)
PullReqPacket 8-3
PushReqPacket 8-3
QueueFlush 8-3
Queuelnit 8-3
QueueRead 8-3
QueueWrite 8-3
RealToProt 8-3
Register 8-3
ResetTimer 8-3
ROMCritSection 8-3
Run 8-3
SchedClockAddr 8-3
semaphore management 7-11
SemClear 8-3
SemHandle 8-3
Sem Request 8-3
SendEvent 8-3
services and corresponding

states 8-3
SetlRQ 8-3
SetROMVector 8-3
SetTi mer 8-3
SortReqPacket 8-3
TCYield 8-3
TickCount 8-3
Unlock 8-3
UnPhysToVirt 8-3
UnSetlRQ 8-3
VerifyAccess 8-3
Vi rtT oPhys 8-3
Yield 8-3

device names 6-3
CLOCK$ 6-3
COM1-COM3 6-3
CON 6-3
KBD$ 6-3
LPT1 or PAN 6-3
LPT2 6-3
LPT3 6-3
MOUSE$ 6-3
NUL 6-3
POINTER$ 6-3
SCA 6-3

X-24

device names (continued)
SCREEN$ 6-3

DEVICE OPEN 7-58
device status report 9-128
device type bit 7-23
DEVICE= parameter string

character device monitors 6-32
device driver architecture 7-1
device driver examples 7-68
device driver header 7-22
device driver program

model 7-21
device monitor services 6-32
driver 7-38
EXTDSKDD.SYS device 9-148
replacing character device 7-28

devices, ill-behaved 7-15
devices, well-behaved 7-15
DGROUP A-8
directory entries
disabled state support 9-33
disabling far call translations A-18
disk
diskette
Diskette, Create Dump 10-2, 10-9
displaying information about the

linking process A-14
done bit 7-41
DOS mode device driver 7-4
DOS mode EGA

considerations 6-26
DOS mode exceptions 2-19
DOS mode INT 33H mouse

API 6-31
DOS mode Mouse 9-56
DOS Mode Mouse -

Coordinates 9-57
DOS Mode Mouse - Display Modes

Supported 9-59
DOS Mode Mouse -

Handler/Router 9-57
DOS Mode Mouse - IOCtl

Calls 9-58

DOS Mode Mouse - Motion 9-58
DOS mode Mouse - Overview 9-56
DOS mode Mouse - Pointer 9-59
DOS Mode Mouse API 9-61
DOS mode sharing rule 7-15
DOS mode Software Interrupt

Support 7-31
DOS mode, device driver 7-4
DOS mode, interrupt sharing 7-15
DosError 4-29
DosReallocSeg A-28

services A-28
DosSetVec 4-30
dual mode device drivers 7-1
Dump Facility 10-2, 10-5
Dump, Create Diskette Utility 10-2,

10-9
dynamic link 2-4
dynamic link calls, device

driver 7-27
Dynamic Link Conventions 2-3
dynamic linking 4-26
dynamic linking, run time 4-26

E
EGA considerations, DOS

mode 6-26
EGA.SYS Device Driver 9-102
EOI 8-24
eoi rule 7-17
erase control sequences

erase in display 9-130
erase in line 9-130

erase in display control
sequence 9-130

erase in line control
sequence 9-130

erasing control sequences 9-130
error bit 7-40
error codes
error codes, status word 7-41
error handling

error codes 4-29

error handling (continued)
errors and exceptions 4-29
errors, function requests 4-29
function request errors 4-29
handling machine

exceptions 4-29
hard error handling 4-29
hard error override 4-29
return codes, function

requests 4-29
errors and exceptions function calls

DosSetVec 4-30
events

event mask 9-55
mickeys/row and column 9-55
row and column/mickeys 9-55
time 9-55

example 2-7, 2-8
examples of device drivers 7-68
EXE file information 4-28
executable files A-10

packing A-10
EXPORTS statement A-55
Extended DOS Partition 9-139
extended partition 9-138
extended screen and keyboard,

using
control sequence syntax 9-123
cursor control sequences 9-125
limitations/restrictions 9-123

extended start-up record 9-1'39
extended volume 9-139
extension
extensions, system 3-11

F
family API 2-11

full function API 2-11
far call translations,

disabling A-18
FAT (see File Allocation Table)
field name 7-25

X-25

field, attribute 7-22
file
file handles
file 110
file sectors
filename
filename extension
files A-6
fix-ups A-30

long A-30
near segment-relative A-30
near self-relative A-30
short A-30

format bit 7-23
Formatter Utility, Trace 10-7
FreeLIDEntry 8-26
FreePhys 8-27
FreeReqPacket 8-28
full draw support 9-32
function call 2-4
function call rules 2-3
function call summary (MSP) 3-10

system extensions 3-10
Function Calling Sequences 2-3
function calls 2-4, 2-6, 2-7, 2-8

DosAllocHuge 3-8
DosAllocSeg 3-8, 4-17
DosAllocShrSeg 3-8
DosBufReset 6-15
DosChDir 6-15
DosChgFilePtr 6-15
DosClose 6-15
DosCloseQueue 4-15
DosCreateCSAlias 3-8
DosCreateQueue 4-15
DosDelete 6-15
DosDelete. 6-15
DosDupHandle 6-15
DosF!!eLocks 6-~5

DosFindClose 6-15
DosFindFirst 6-15
DosFindf'.Jext 6-15
DosFlagProcess 4-25
DosFreeModule 4-29

X-26

function calls (continued)
DosFreeSeg 3-8
DosGetEnv 4-32
DosGetHugeShift 3-8
DosGetMessage 4-30
DosGetModHandle 4-29
DosGetModName 4-29
DosGetProcAddr 4-29
DosGetSeg 3-8
DosGetShrSeg 3-8
DosGetVersion 4-32
DosGiveSeg 3-8, 4-17
DosHoldSignal 4-25
DoslnsMessage 4-30
DosLoadModule 4-29
DosLockSeg 3-8
DosMemAvail 3-8
DosMkDir 6-15
DosMonClose 6-38
DosMonOpen 6-38
DosMonRead 6-38
DosMonReg 6-38
DosMonWrite 6-38
DosMove 6-15
DosNewSize 6-15
DosOpen 6-15
DosOpenQueue 4-15, 4-17
DosPeekQueue 4-15
DosPurgeQueue 4-15
DosPutMessage 4-30
DosQCurDir 6-15
DosQCurDisk 6-15
DosQFHandState 6-15
DosQFilelnfo 6-15
DosQFileMode 6-15
DosQFslnfo 6-15
DosQHandType 6-15
DosQueryQueue 4-15
DosQVerify 6-15
DosRead 6-15
DosReadAsync 6-15
DosReadQueue 4-15
DosReallocHuge 3-8
DosReallocSeg 3-8

function calls (continued)
DosRmDir 6-15
DosSelectDisk 6-15
DosSetFHandState 6-15
DosSetFilelnfo 6-15
DosSetFileMode 6-15
DosSetFslnfo 6-15
DosSetMaxFH 6-15
DosSetSession 5-4
DosSetSigHandler 4-25
DosSetVerify 6-15
DosStartSession 5-4
DosStopSession 5-4
DosSubAlloc 3-10
DosSubFree 3-10
DosSubSet 3-1 O
DosUnlockSeg 3-8
DosWrite 6-15
DosWriteAsync 6-15
DosWriteQueue 4-15

function calls, INT21

G
Generic IOCtl 7-30, 7-60
Generic IOCtl, Category 8 9-147
generic IOCtl, category 9 9-147
get
Get Device Parameters 9-147
GET FIXED DISK/LOGICAL UNIT

MAP 7-66
GET LOGICAL DRIVE MAP 7-62
GetDOSVar 8-29
GetLIDEntry 8-31
greater than 32Mb partitioned

support
BPB and get device

parameters 9-147
creating block devices 9-143
deleting block devices 9-143
extended DOS partition architec-

ture 9-139
installing block devices 9-141

groups
DGROUP A-8

H
handle
hardware interrupt

management 7-13
hardware interrupt sharing 7-13
hardware interrupts,

DEINSTALL 7-64
header, device driver 7-22
HEAPSIZE statement A-57
horizontal position 9-127

i/o privilege model 4-27
110 services 6-1

ASCllZ strings 6-1
DosBufReset 6-15
DosChDir 6-15
DosChgFi lePtr 6-15
DosClose 6-15
DosDelete 6-15
DosDupHandle 6-15
DosFileLocks 6-15
DosFindClose 6-15
DosFindFirst 6-15
Dos Fi ndNext 6-15
DosMkDir 6-15
DosMove 6-15
DosNewSize 6-15
DosOpen 6-15
DosQCurDir 6-15
DosQCurDisk 6-15
DosQFHandState 6-15
DosQFilelnfo 6-15
DosQFileMode 6-15
DosQFslnfo 6-15
DosQHandType 6-15
DosQVerify 6-15
DosRead 6-15
DosReadAsync 6-15

X-27

1/0 services (continued)
DosRmDir 6-15
DosScanEnv 6-15
DosSearchPath 6-15
DosSelectDisk 6-15
DosSetFHandState 6-15
DosSetFilelnfo 6-15
DosSetFileMode 6-15
DosSetFslnfo 6-15
DosSetMaxFH 6-15
DosSetVerify 6-15
DosWrite 6-15
DosWriteAsync 6-15
file 1/0 function call

summary 6-15
file 1/0 services 6-14
filename specification 6-1
general information 6-1
i/o support for the DOS

mode 7-4
video 1/0 services 6-16

IBM C Compiler interface,
example 2-9

refid = OS/2.compatibility con
siderations 2-10

id= OS/2.0S/2
refid = OS/2.function calls 2-1

ignoring default libraries A-17
ill-behaved device rule 7-15
ill-behaved devices 7-15
IMPORTS statement A-58
incorrect offset warning A-27
information A-14
INIT 7-43
INIT Mode 7-7
INPUT FLUSH 7-57
INPUT STATUS 7-56
installed flag and reset

conditional off 9-81
get button press

information 9-69
get button release

information 9-70
get position and button

status 9-68

X-28

installed flag and reset (continued)
hide pointer 9-67
light pen emulation off 9-79
light pen emulation on 9-78
query save mouse state 9-84
read mouse motion

counters 9-76
restore mouse driver state 9-85
save mouse drive state 9-84
set dbl speed threshold 9-81
set graphic pointer block 9-74
set mickey/pixel ratio 9-80
set Min & Max horiz

position 9-72
set Min & Max Vert

position 9-73
set pointer position 9-69
set text pointer 9-75
set user-defined

subroutine 9-77
show pointer 9-66
swap user-defined

subroutine 9-82
int return rule 7-17
INT 33H 9-35, 9-56, 9-61, 9-65, 9-66,

9-67, 9-68, 9-69, 9-70, 9-72, 9-73,
9-74, 9-75, 9-76, 9-77, 9-78, 9-79,
9-80, 9-81, 9-82, 9-84, 9-85

INT 33H - Function Code OH 9-65
INT 33H - Function Code 1 H 9-66
INT 33H - Function Code 10H 9-75
INT 33H - Function Code 11H 9-76
INT 33H - Function Code 12H 9-77
INT 33H - Function Code 13H 9-78
INT 33H - Function Code 14H 9-79
INT 33H - Function Code 15H 9-80
INT 33H - Function Code 16H 9-81
INT 33H - Function Code 19H 9-81
INT 33H - Function Code 2H 9-67
INT 33H - Function Code 20H 9-82
INT 33H - Function Code 21 H 9-84
INT 33H - Function Code 22H 9-84
INT 33H - Function Code 23H 9-85

INT 33H - Function Code 3H 9-68
INT 33H - Function Code 4H 9-69
INT 33H - Function Code 5H 9-69
INT 33H - Function Code 6H 9-70
INT 33H - Function Code 7H 9-72
INT 33H - Function Code SH 9-73
INT 33H - Function Code 9H 9-74
INT 33H Mouse API 9-61
interface 2-4, 2-6
Interface Rules 2-3
interprocess communication

messages 4-9
refid = OS/2.interprocess com-
munications 4-9

semaphores 4-9
shared memory 4-9
signals 4-9

interrupt handler, device
driver 7-6

interrupt handling rules, device
driver 7-6

Interrupt Mode 7-7
interrupt processing 7-13
interrupt processing, 8259

enabling 7-16
Interrupt routine 7-8
interrupt sharing 7-13
interrupt sharing, device depend

ency 7-13
interrupt sharing, DOS mode inter

rupt handler 7-15
interrupt sharing, getting an

IRQ 7-15
interrupt sharing, ill-behaved

device 7-15
interrupt sharing, processing inter-

rupts 7-16
interrupt sharing, restrictions 7-14
interrupt sharing, rules 7-14
Interrupt Sharing, Serial

Mouse 9-35
interrupt sharing, support of DOS

mode 110 7-16

interrupt sharing, well-behaved
device 7-15

interrupt sharing, with BIOS inter
rupt handlers 7-15

interrupt sharing, 8259
enabling 7-16

Interrupt 33 9-61
interrupt-time 7-7
interrupts, OS/2
intra-segment far calls A-18
IOCtl 9-52
IOCtl READ 7-53
IOCtl WRITE 7-53
IOMR_GF 9-53
IOMR_GK 9-53
IOMR_GM 9-53
IOMR_GS 9-53
IOMR_MC 9-53
IOMR_NB 9-53
IOMR_QS 9-53
IOMR_RD 9-53
IOMW_DP 9-53
IOMW_EM 9-53
IOMW_GP 9-53
IOMW_RP 9-53
IOMW_SK 9-53
IOMW_SP 9-53
IOMW_SS 9-53
IPC function calls

DosCloseQueue 4-23
DosCloseSem 4-23
DosCreateQueue 4-23
DosCreateSem 4-23
DosMakePipe 4-23
DosMuxSemWait 4-23
DosOpenQueue 4-23
DosOpenSem 4-23
DosPeekQueue 4-23
DosPurgeQueue 4-23
DosQueryQueue 4-23
DosReadQueue 4-23
DosResumeThread 4-23

X-29

IPC function calls (continued)
DosSemClear 4-23
DosSemRequest 4-23
DosSemSet 4-23
DosSemSetWait 4-23
DosSemWait 4-23
DosSuspendThread 4-23
DosWriteQueue 4-23

IPC functions
communicating with a pipe 4-12
communicating with a

queue 4-13
communication via

messages 4-10
communication via signals 4-10
comparing pipes and

queues 4-14
comparing pipes with files 4-12
comparing pipes with flags 4-12

irq enforcement rule 7-15
irq mask rule 7-16
irq ownership rule 7-16

K
KBD 9-133
KbdStringln 9-133
Kernel Mode 7-7
keyboard considerations 11-5
keyboard device driver 9-89
keyboard 110 services

KbdCharln 6-28
KbdClose 6-28
KbdDeRegister 6-28
KbdFlushBuffer 6-28
KbdFreeFocus 6-28
KbdGetFocus 6-28
KbdGetStatus 6-28
KbdOpen 6-28
KbdPeek 6-28
KbdRegister 6-28
KbdSetCustXt 6-28
KbdSetFgnd 6-28
KbdSetStatus 6-28

X-30

keyboard 1/0 services (continued)
KbdStringln 6-28
KbdSynch 6-28
KbdXlate 6-28
keyboard 1/0 function call

summary 6-28
keyboard reassignment 9-133
keyboard run time operation 9-92
keyboard, country support 11-3
keys, reassign 9-133
keystroke monitors 9-93

L
length of request packet field 7-38
LIBRARY statement A-60
line numbers A-15

copying to the map file A-15
LINK command options A-2
LINK files, specifying A-32
LINK fix-ups A-30
LINK options A-2

/CODEVIEW A-6
/CPARMAXALLOC A-7
/DOSSEG A-8
/DSALLOCATE A-9
/EXEPACK A-10
/FARCALL TRANSLATION A-11
/HELP A-12
/HIGH A-13
/INFORMATION A-14
/LINENUMBERS A-15
/MAP A-16
/NODEFAUL TLIBSEARCH A-17
/NOFARCALL TRANSLATION A-18
/NOGROUPASSOCIATION A-19
/NOIGNORECASE A-20
/NOPACKCODE A-21
/OVERLAYINTERRUPT A-22
/PACKCODE A-23
/PAUSE A-24
/SEGMENTS A-25
/STACK A-26
/WARNFIXUP A-27

LINK options (continued)
abbreviations A-2
ALIGNMENT
ordering segments A-8

linkage field, request header 7-42
linker options A-2
linker utility, See link A-2
Lock 8-33
logical block device 9-139
Logical IDs, DEINSTALL 7-64
lowercase, preserving A-20

M
managing queues

DosCloseQueue 4-16
DosCreateQueue 4-16
DosOpenQueue 4-16
DosPeekQueue 4-16
DosPurgeQueue 4-16
DosQueryQueue 4-16
DosReadQueue 4-16
DosWriteQueue 4-16
process ID (PIO) 4-17
shared memory 4-17
shared memory handle 4-17

map A-16
public symbol A-16

map file A-32
MEDIA CHECK 7-47
memory
memory addressability 7-10
memory management 7-1 O

function call summary 3-9
memory management

interface 3-8
memory suballocation 3-9
MSP summary 3-10
protection features of the ring

structure 3-1
ring structure, protection fea

tures of 3-1
segmentation hardware, use

of 3-1

memory management (continued)
suballocation memory manage

ment 3-10
summary 3-8

memory management
functions 3-8

memory map
memory subal location 3-9
memory subal location package

(MSP) 3-9
message function calls

DosGetMessage 4-30
DoslnsMessage 4-30
DosPutMessage 4-30
refid = OS/2.program startup
conventions 4-30

message functions
message retriever 4-30
refid = OS/2.message
functions 4-30

refid = OS/2.message
retriever 4-30

mode 9-130
mode of operation

reset mode (RM) 9-132
set graphics rendition

(SGR) 9-130
set mode (SM) 9-132

mode of operation control
sequences

set graphics rendition 9-130
modes, device driver 7-7
module definition file statements

CODE A-51
DATA A-52
DESCRIPTIO"I A-54
EXPORTS A-55
HEAPSIZE A-57
IMPORTS A-58
LIBRARY A-60
NAME A-62
OLD A-63
PROTMODE A-64
SEGMENTS A-65

X-31

module definition file statements
(continued)

STACKSIZE A-67
STUB A-68

monitor chain buffer 6-39
Monitor Create 8-36, 9-60
monitor data structure 6-39
monitor data structures

keystroke 9-93
mouse 9-59
printer 9-155

Monitor DeRegister 8-22
Monitor Flush 8-35, 9-60
monitor record 6-40
Monitor Register 8-60
monitor support

character device monitors 6-32
device monitor function

call 6-38
device monitor record (see also

monitor data structure) 6-40
device monitor services 6-32
DosMonClose 6-38
DosMonOpen 6-38
DosMonRead 6-38
DosMonReg 6-38
DosMonWrite 6-38
keystroke monitor

interface 6-53
Monitor Write 8-39, 9-60
monitors, keystroke 9-93
monitors, mouse 9-59
monitors, printer 9-155
MouClose 9-53
MouDeRegister 9-53
MouDrawPtr 9-53, 9-56
MouGetDevStatus 9-53
MouGetEventMask 9-53
MouGetNumButtons 9-53
MouGetNumMickeys 9-53
MouGetNumQueEI 9-53
MouGetPtrShape 9-53
MouGetScaleFact 9-53

X-32

MouOpen 9-53
MouReadEventQue 9-53
MouRegister 9-53
MouRemovePtr 9-53, 9-56
Mouse - DOS mode 9-56
Mouse - General Information 9-34
Mouse - OS/2 mode 9-49
Mouse - Screen Resolutions 9-36
Mouse ABIOS 9-35

refid =mouse.interrupt
sharing 9-35

Mouse API, OS/2 mode 9-53
Mouse Control Blocks 9-45
mouse device driver 9-34

control blocks 9-45
coordinates 9-52
default pointers 9-43
device driver packaging 9-38
devices supported 9-34
display modes supported 9-56
DOS mode mouse support 9-56
handler/router 9-51
motion 9-52
mouse installation 9-36
OS/2 mode 9-49
OS/2 mode overview 9-49
overview 9-34, 9-56
pointer draw

implementation 9-39
PS/2 9-35
screen resolutions 9-36

Mouse Device Driver - Control
Blocks 9-45

Mouse Device Driver - Default
Pointers 9-43

Mouse Device Driver
Packaging 9-38

Mouse Devices 9-34
Mouse Devices Supported 9-34
mouse 110 services

DOS mode INT 33H mouse
API 6-31

MouClose 6-30
MouDeRegister 6-30

mouse 1/0 services (continued)
MouDrawPtr 6-30
MouFlushQue 6-30
MouGetDevStatus 6-30
MouGetEventMask 6-30
MouGetNumButtons 6-30
MouGetNumMickeys 6-30
MouGetNumQueEI 6-30
MouGetPtrPos 6-30
MouGetPtrShape 6-30
MouGetScaleFact 6-30
MoulnitReal 6-30
MouOpen 6-30
MouReadEventQue 6-30
MouRegister 6-30
MouRemovePtr 6-30
mouse 1/0 function call

summary 6-30
mouse 1/0 services 6-30
MouSetEventMask 6-30
MouSetPtrPos 6-30
MouSetPtrShape 6-30
MouSetScaleFact 6-30

Mouse Installation 9-36
Mouse IOCtl 9-53
Mouse IOCtl Calls 9-52
mouse monitors 9-59

Deregister 9-60
MonFlush 9-60
MonitorCreate 9-60
MonWrite 9-60
register 9-60

mouse pointer draw
implementation 9-39

executable commands 9-40,
9-42

functions supported 9-40
pointer draw installation 9-50

Mouse, PS/2 9-35
MouSetDevStatus 9-53
MouSetEventMask 9-53
MouSetPtrShape 9-53, 9-56
MouSetScaleFact 9-53

MouXxx API 9-35, 9-52
MSP memory management inter

faces 3-10
multiple character device support

per device driver 7-22
multiple device headers per

driver 7-2, 7-22
Multitasking

independent processes 4-3
multiple threads 4-7
refid = OS/2.multitasking 4-3

N
NAME A-62
name/units field 7-25
no packing code segments A-21
NONDESTRUCTIVE READ NO

WAIT 7-55
NULL bit 7-24

0
obtaining a Logical ID, device

drivers 7-34
OLD statement A-63
optimizing far calls A-11

FARCALL TRANSLATION A-11
option character (/) A-2
options with LINK A-2
options, using A-2
ordering segments A-8
OS/2
OS/2 API 2-11
OS/2 application

environments 2-10
OS/2 components
OS/2 device driver operations 7-8
OS/2 function calls, see function

calls also
Asynchronous Notification 4-25
Control, Program

Execution 4-29
device driver 7-27

X-33

OS/2 function calls, see function
calls also (continued)

DosBeep 6-14
DosDevConfig 6-14
DosDevlOCtl 6-14
DoslOAccess 6-14
DosPhysicalDisk 6-14
DosSendSignal 6-14
DosSleep 4-1
DosTimerAsync 4-1
DosTimerStop 4-1
errors and exceptions 4-30
exceptions and exceptions 4-30
Interprocess

Communication 4-23
Interval 4-3
IPC 4-23
Message Functions 4-30
Message Retriever 4-30
Multitasking 4-8
Notification 4-25
OS/2 program selector 5-4
Program Execution Control 4-29
queue 4-15
screen switcher 5-4
Tasking 4-8
Timer 4-3

OS/2 interrupts, see interrupts
OS/2 mode memory

management 3-4
Global lnfoSeg 3-4
Local Descriptor Table

(LDT) 3-4
OS/2 mode Mou~e -

Coordinates 9-52
OS/2 mode Mouse - Display Modes

Supported 9-56
OS/2 mode Mouse - Events 9-54
OS/2 mode Mouse -

Handler/Router 9-51
OS/2 mode Mouse - Motion 9-52
OS/2 mode Mouse - MouXxx and

IOCtl Cal Is 9-52

X-34

OS/2 mode Mouse - Overview 9-49
OS/2 Mode Mouse - Pointer Draw

Installation 9-50
OS/2 mode Mo4se API 9-53
OS/2 mode Mouse Pointer 9-55
OS/2 mode Mouse Support 9-49
OS/2 registers, see registers, OS/2
OS/2com pa ti bi I ity

considerations 2-10
output
OUTPUT FLUSH 7-57
OUTPUT STATUS 7-56
overlays

p

setting the interrupt
number A-22

packing code segments A-23
paragraph space A-7
partition table 9-146
partition table, master start-up

record 9-146
PARTITIONABLE FIXED

DISKS 7-65
Pascal interface examples 2-9
Pascal interface, example 2-9
permanent error processing 4-29
PhysToGDTSelector 8-41
Phys ToUVi rt 8-43
PhysToVirt 8-45
PhysToVirt rule 7-18
pointer (screen) device driver 9-32
Pointer Images 9-43
position rule 7-18
preparing files for A-6
preparing files for CodeView A-6
preparing for CodeView A-6
preserving compatibility

LINK A-19
preserving lowercase A-20
previous-level device drivers 7-29
previous-level device drivers,

lnit 7-30

previous-level device drivers,
install 7-30

previous-level device drivers,
rules 7-29

printer Activate Font 9-158
Printer Activate FontlOCtl 9-159
printer device driver 9-154
printer Font Monitor Buffer Com-

mands 9-159, 9-161
printer monitor record 9-159
printer monitors 9-155
printer Query Active Font 9-158
Printer Query Active

FontlOCtl 9-159
printer Verify Font 9-159
Printer Verify FontlOCtl 9-159
problem determination

functions, problem
determination 10-1

utilities, problem
determination 10-1

process control
intervals, asynchronous 4-1
time/date 4-1
timer management 4-1
timer services 4-1

processing interrupts 7-13
processing interrupts, interrupt

sharing 7-16
producing a public symbol

map A-16
program execution control

dynamic link module 4-26
dynamic link routines 4-26
dynamic linking 4-26
dynamic linking, load time 4-26
dynamic linking, run time 4-26

program execution function calls
DosFreeModule 4-29
DosGetModHandle 4-29
DosGetModName 4-29
DosGetProcAddr 4-29
DosloadModule 4-29

program segment
protection model 3-3
PROTMODE statement A-64
ProtT oReal 8-49
PS/2 Mouse 9-35
public symbol map A-16

producing A-16
PullParticular 8-51
PullReqPacket 8-52
PushReqPacket 8-53

Q
QSIZE 9-37
queue element functions

copy function 4-18
delete function 4-18

queue linkage field, request
header 7-42

QueueFI ush 8-54
queueing request packets, device

driver 7-9
Queuelnit 8-55
QueueRead 8-56
QueueWrite 8-57

R
READ (input) 7-53
real memory map, compatibility

mode 3-6
real memory map, protect

mode 3-6
real mode memory map 3-6
RealToProt 8-58
reassign keys 9-133
Register 9-60
registers, OS/2
REMOVABLE MEDIA 7-59
removable media bit 7-24
replacing character device

drivers 7-28
request handling 7-8

X-35

request header 7-37
command-specific data

field 7-42
queue linkage field 7-42
status word 7-40

request header command-specific
field 7-42

request header queue linkage
field 7-42

request header status error
codes 7-41

request header status field 7-40
request packet 7-37
request packet format 7-38
request packet header 7-38
request packet queue

management 7-9
request to send (RTS). 9-4
reserving paragraph space A-7
RESET MEDIA 7-61
ResetTimer 8-62
resource management

files 4-8
memory 4-8
pipes 4-8
queues 4-8
system semaphores 4-8

restore cursor position 9-130
ring structure 3-2

protect features of 3-2
ROMCritSection 8-63
routines
routines, strategy 7-24
RS232-C/COM 9-1
rule, ABIOS eoi placement 7-18
rule, ABIOS LID IRQ 7-18
rule, ABIOS request block 7-18
rule, BIOS interrupt 7-15
rule, DOS mode sharing 7-15
rule, eoi 7-17
rule, ill-behaved device 7-15
rule, int return 7-17
rule, irq enforcement 7-15

X-36

rule, irq mask 7-16
rule, irq ownership 7-16
rule, PhysToVirt 7-18
rule, position 7-18
rule, search rule 7-17
rule, set irq 7-15
rule, sti entry 7-16
rule, system timer 7-14
rules, interface 2-3
Run 8-65
run file loading A-13
run time dynamic linking 4-26

s
save cursor position 9-129
SchedClockAddr 8-66
screen cursor control 9-125
Screen Resolutions 9-36
search rule 7-17
sector alignment A-5
segment A-5
segment order A-8
segmentation hardware 3-1
segments A-21, A-23

no packing code segments A-21
packing code segments A-23

SEGMENTS statement A-65
segments, setting the

number A-25
semaphore function calls

DosCloseSem 4-22
DosCreateSem 4-22
DosMuxSemWait 4-22
DosOpenSem 4-22
DosResumeThread 4-22
DosSemClear 4-21
DosSemRequest 4-21
DosSemSet 4-22
DosSemSetWait 4-22
DosSemWait 4-22
DosSuspendThread 4-22
signalling 4-21

semaphore management 7-11
SemClear 8-68
SemHandle 8-70
SemRequest 8-73
SendEvent 8-75
SERIAL 9-36
serial communications/COM 9-1
Serial Mouse Interrupt

Sharing 9-35
Serviceability Functions 10-2
session management 5-1
session manager application

support 5-3
set
set graphics rendition, control

sequence 9-130
set interrupt vector 4-30
set irq rule 7-15
SET LOGICAL DRIVE MAP 7-62
SetlRQ 8-77
SetROMVector 8-78
SetTimer 8-80
setting stack size A-26
setting the overlay interrupt A-22
setting the sector alignment

factor A-5
setting the segment sector align-

ment factor A-5
shared bit 7-24
shared interrupt architecture 7-13
small model, device driver 7-21
software interrupt handler 7-6
software interrupt handler, device

driver 7-6
SortReqPacket 8-82
spooler monitor 6-57

spooler operational
description 6-57

STACK class name A-8
stack frame 2-6
stack size, setting A-26
ST ACKSIZE statement A-67
Stand-alone Dump Facility 10-2,

10-5

standard input bit 7-24
standard output bit 7-24
state of the COM port 9-10
statements, module definition

file A-50
CODE A-51
DATA A-52
DESCRIPTION A-54
EXPORTS A-55
HEAPSIZE A-57
IMPORTS A-58
LIBRARY A-60
NAME A-62
OLD A-63
PROTMODE A-64
SEGMENTS A-65
ST ACKSIZE A-67
STUB A-68

status field 7-40
status field error codes 7-41
status field, request header 7-40
status word 7-40
status word bits

busy 7-40
done 7-41
error 7-40
error code 7-41

sti entry rule 7-16
strategy routine 7-8
strategy routine, device driver 7-5
strategy routines 7-24
structure, monitor data 6-39
STUB statement A-68
support of previous-level device

drivers 7-29
system extensions 3-11
system initialization

device driver installation 6-13
hardware characteristics 6-13

system timer rule 7-14
System Trace 10-3
System Trace Facility 10-2, 10-3

X-37

T
task-time 7-7
Tasking (processes and threads)

communicate between
processes 4-4

coordinate execution 4-4
execute programs 4-4
initiate other processes 4-4
terminate other processes 4-4

tasking function calls
DosCreateThread 4-8
DosCwait 4-8
DosEnterCritSec 4-8
DosExecPgm 4-8
DosExit 4-8
DosExitCritSec 4-8
DosGetlnfoSeg 4-8
DosGetPrty 4-8
DosKillProcess 4-8
DosSetPrty 4-8

TCYield 8-83
TickCount 8-84
time
Time services 4-1
timer function calls

DosGetDateTime 4-3
DosSetDateTime 4-3
DosSleep 4-3
DosTimerAsync 4-3
DosTimerStart 4-3
DosTimerStop 4-3

timer handler 7-6
timer handler, device driver 7-6
Timer services 4-1
Trace Facility 10-2, 10-3
Trace Formatter Utility 10-7
TRACEBUFandTRACE

commands 10-3
TRACEFMT, Trace Formatter

Utility 10-7
translation A-18
types of devices

X-38

u
Unlock 8-86
UnPhysToVirt 8-87
UnSetlRQ 8-89
User Mode 7-7
using advanced BIOS 7-33
Using System Trace 10-3
Utility, Create Dump Diskette 10-2,

10-9
Utility, Trace Formatter 10-7

v
VerifyAccess 8-90
vertical position 9-127
video font file header 6-23
video font file organization 6-23
video font table format 6-24
Video Graphics Array (VGA) 6-16
viewing the options list A-12
VIO code page support 6-21
VIO function call summary

VioEndPopUp 6-26
VioGetAnsi 6-26
VioGetBuf 6-26
VioGetConfig 6-26
VioGetCp 6-26
VioGetCurPos 6-26
VioGetCurType 6-26
VioGetFont 6-26
VioGetMode 6-26
VioGetPhysBuf 6-26
VioGetState 6-26
VioModeUndo 6-26
VioModeWait 6-26
VioPopUp 6-26
VioPrtSc 6-26
VioPrtScToggle 6-26
VioReadCei iStr 6-26
VioReadCharStr 6-26
VioRegister 6-26
VioSavRedrawUndo 6-26
VioSavRedrawWait 6-26
VioScrLock 6-26

VIO function call summary (con-
tinued)

VioScrollDn 6-26
VioScrolllf 6-26
VioScroll Rt 6-26
VioScrollUp 6-26
VioScrUnLock 6-26
VioSetAnsi 6-26
VioSetCp 6-26
VioSetCurPos 6-26
VioSetCurType 6-26
VioSetFont 6-26
VioSetMode 6-26
VioSetState 6-26
VioShowBuf 6-26
VioWrtCellStr 6-26
VioWrtCharStr 6-26
VioWrtCharStrAtt 6-26
VioWrtNAttr 6-26
VioWrtNCell 6-26
VioWrtNChar 6-26
VioWrtTTY 6-26

VIO screen save/restore
operations 6-20

VirtToPhys 8-92
Virtual Disk device driver

w
warning of incorrect offset A-27
wel I-behaved devices 7-15
WRITE (output) 7-53
WRITE (output) WITH VERIFY 7-53

y
Yield 8-93

communications device
driver 9-1

Numerics
2FH multiplex interrupt

X-39

TM Operating System/2 is a trademark of
International Business Machines Corporation.

® IBM is a registered trademark of
International Business Machines Corporation.

---- ------- ----- ---- -. ---- - - -------------·-®

© IBM Corp. 1987

International Business
Machines Corporation
P.O. Box 1328-W
Boca Raton
Florida 33429-1328

Printed in the
United States of America
All Rights Reserved.

84X1434

