

APL/PC Version 2.1

by IBM Madrid Scientific Centre

-~-----.-. -- -------- -. -~-- - - --------------- _ ... -
Personal
Computer
Software ZZ33-0523-0

IBM Internal Use Only

I First Edition (November 1986)

This edition describes APL/PC Version 2, Release 1. Changes from the
original published edition supplied with the APL/PC Version 2 product
(6391329) are marked with a vertical bar in the margin.

It is possible that this material may contain references to, or information
about IBM products (machines and programs), programming or services that
are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products,
programming or services in your country.

This publication could contain technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of this pUblication.

Requests for copies of this product and for technical information about the
system should be made to your authorised IBM Personal Computer dealer.

© Copyright International Business Machines Corporation 1985, 1986

BM Internal Use Only

t'reface

['he emergence of the personal computer with its vast array of
:nd-user programs has truly revolutionised the world of
;omputing, but for the tens of thousands of people who have
lad - for nearly two decades, now - the opportunity to work at
\PL computer terminals, this change is more an evolutionary
levelopment along familiar lines. These people have learned
o expect user-friendly, highly interactive, personally
)roductive programs, and to them it is only natural that
)rograms with such qualities should now become available on
)ersonal computers.

:n the light of these observations, two questions come to mind:
What is it about APL that has encouraged and supported the
)roduction of such programs, and thereby anticipated the
;urrent trend? And why, with so many end-user programs
ivailable, should there be interest now in a general purpose
)rogramming language? The answers can perhaps be found by
)utting APL into perspective relative to other programming
anguages, and suggesting where APL programming may fit as
In intellectual activity.

General Purpose Programming
Languages

Early computing machines were programmed in "machine
language", the unadorned numeric codes that were directly
lnterpreted by the electrical circuits of the machine. Since the
Dnly digits that these circuits could recognise were (and are)
~ero and one, numbers within the machine had to be
represented in base-2, an awkward notational system at best.
Furthermore, the operations represented by the machine codes
were essentially very simple, having to do mostly with

Preface 111

IBM Internal Use Only

movement of data and the application of "logical", or
"boolean", operations to it. These basic building blocks then
had to be used in various combinations to synthetise
elementary arithmetic operations such as multiplication or
division.

I t is not difficult to imagine that developing a program to do
any significant amount of computation under these conditions
was extremely laborious and error prone, and attention was
soon turned to the possibility of using the machine itself to
take the pain out of programming, by developing programs to
translate into machine code something more easily understood
and managed by people than a language made up of sequences
of zeros and ones.

The first step, which resulted in "assembler" languages, was to
give mnemonic names to the machine operations, and also
allow the use of arbitrary names for the memory addresses
which are a part of each machine instruction. Programs
written in these languages essentially maintain a one-to-one
relationship with machine instructions, and so are completely
"machine dependent"; that is, they cannot be moved between
dissimilar machines without drastic revisions. Furthermore,
programmers writing in assembler must still deal directly with
matters that are not relevant to the inherent logic of the
problem being solved but are nevertheless required for
management of the machine.

The disadvantages of assembler languages were largely
overcome by the development of languages such as
FORTRAN, COBOL, and ALGOL60, which expressed the
necessary computations in a manner that corresponded
somewhat to ordinary mathematical notation, and used words
drawn from a natural language such as English, albeit with
specialised meanings pertinent to the computing process.
These languages broke free from the absolute machine
dependence of assembler, but they were still designed with
certain detailed characteristics of machines in mind, and they
carry along an intellectual overhead (for example, the idea of
different numerical "types") derived from the inner workings of
machines.

iv APL/PC, Version 2.1

IBM Internal Use Only

Most general purpose programming languages follow the
patterns established by these pioneering languages, although
they may differ from each other in significant respects.
Characteristically, they are implemented by means of
"compilers", translators that produce a complete machine
language version ("object code") of the programmed
application before the actual computation starts; they
generally deal with single numbers, and even when it is
possible to refer to an entire collection of data by a single
name, to process such a collection it is usually necessary to
explicitly call for iteration, or "looping"; and to a large extent
they require explicit management of storage facilities.

The Nature of APL

APL is a general purpose programming language quite unlike
those described above. It is based primarily on mathematical
notation, which has been evolving over a very long time as a
tool for dealing with both abstract ideas and practical
calculations, with no concern, of course, for the internal
workings of computers. As a consequence, APL differs most
markedly from the other general purpose languages in precisely
those attributes \vhich characterise them:

• The principal ilnplementations of APL as a working·
language are "interpretive", rather than compiled. That is,
programs written in APL are not translated ahead of time
to machine code, but instead, as each operation called for
in a program is encountered, an immediate translation
takes place, and the appropriate machine code is directly
executed. This provides immediate feedback in a local
context, and greatly facilitates experimentation while
developing a program.

• APL deals with collections of data, such as lists or tables,
by the direct application of commonly useful operations to
them, without the use of explicit looping. For example, it
takes but a single expression in APL to obtain the sums of
the columns in a table, or to mUltiply a set of quantities by

Preface V

IBM Internal Use Only

the unit price of each item. This not only nlakes
programming easier and less prone to error, but gives APL
the aspect of an exceedingly powerful calculator in
activities ranging from casual use to intensive exploration
of a pro blem area.

• The management of storage is not a concern for users of
APL, as both the allocation of space and the internal
representation of numbers are automatically determined as
soon as an object is given a name and a value. This makes
it possible to concentrate on the logic of the problem,
rather than the requirements of the nlachine, and
contributes substantially to the high productivity
associated with the use of APL.

Another distinguishing characteristic of A P L is the use of
"shared variables", the nwans by which APL manages input
and output in order to cOllununicate with the rest of the
computing world. The concept is sirnple and fundamental:
cornmunication between two systerns, be thcy computers or
people, requires that they have SOlllcthing in comInan which
each can alter and each can sense, as may be appropriate. In
terms of APL, a shared variablc is a data object, or array, that
can be sct and referenced by comnlunicating partners,
according to some synchronising discipline.

The influence of shared variables on the design of applications
lies in both the power it provides and the sinlplicity it
maintains:

• By n1cans of shared variables APL progratllS are able to
control the computing environment, including printers,
files, game devices, displays, or even other APL pragrarns,
without giving up the mathernatical attributes and the
inherent simplicity of the APL Janguage itself.

• The managernent of particular dev.ices is readily isolated in
separate progranls, or driven frolll tables, independent of
the overall logic of the application. This fa.cilitates good
design, and n1akes modification for new or different devices
relatively simple.

VI APL/PC, Version 2.1

IBM Internal Use Only

• In effect, the uses of APL can be extended without limit by
means of "auxiliary processors" - specialised progratns for
specific tasks - with which APL communicates through
shared variables.

To summarise, then, the answer to the question of how APL
came to anticipate current trends in personal computing can
be found in the attributes that distinguish APL from other
general purpose languages and enhance its productivity, in its
shared-variable based communications, and in the interactive
nature of APL systems. Together, these qualities have
strongly facilitated trial and experimentation, which has led to
the practice of developing APL-based applications
incrementally, with constant reference to the needs of users as
these become known and understood through actual use; a
development method that has recently been popularised as
"prototyping" .

The Rewards of Programming

The second question, which is \vhy should there be any interest
in a general purpose programming language, specifically in
J-\PL, when so many application packages are available, has
three answers. One is sin1ply that a ready-made application
package may not be completely satisfactory. Indeed, if such a
package does precisely what is wanted, and all that is wanted,
then the matter ends there. But if it doesn't quite match, and
compromise is not acceptable, then building it in APL, taking
advantage of the high productivity and ease of
experimentation, is a good way to get what is required.

A second answer is that there is considerable satisfaction to be
found in the successful construction of a program that
performs a useful task, or makes something happen outside of
the computer. Additionally, with APL - because of its
mathematical nature and the consequent variety of ways in
which equivalent operations can be stated - there is the
possibility of realising esthetic satisfaction from the elegance of
a particular forn1ulation, or getting intellectual pleasure from

Preface Vll

IBM Internal Use Only

new insights gained from experimenting with variations.
Properly approached, APL programming can be regarded as a
medium of expression and a tool of thought, with
characteristics of both natural language composition and
mathematics.

Finally, the third answer has to do with the nature of this
particular product. In addition to providing an advanced level
of "standard" APL which is compatible with most other APL
implementations, APL/PC 2.1 has a full complement of
facilities for reaching every part of the IBM Personal
Computer. There are auxiliary processors to put APL in
control of hardware, including display devices, communication
lines, laboratory experiments, printers, and games. There are
others to access the software environment, including programs
written in other languages, the DOS operating system and the
BIOS interrupts; and there is a direct facility for accessing the
computer memory, machine registers, and input/ output ports.

APL/PC 2.1 on a Personal Computer is thus a very well
equipped laboratory for conducting unlimited experiments in
computing. It is an ideal ground for learning about all aspects
of programming, and exploring the dynamic interactions
between hardware, software, and user, bringing to bear on the
subject the power and versatility of APL as the principal tool.

Adin Falkoff

viii APL/PC, Version 2.1

IBJ.\t1 Internal Use Only

Contents

Chapter 1. Introduction••.••.......... 1-1
The APL Package 1-8

The APL Character ROM 1-8
Displaying APL Characters using the Enhanced

Graphics Adapter 1-12
Displaying APL Characters using the Professional

Graphics Adapter 1-12
Backing Up Your Diskettes 1-13
Installing APL on Your Fixed Disk 1-13
Getting APL Started from Either Diskette or Fixed

Disk 1-15
Including Options in the APL Command 1-16
The APL Character Set 1-18
The Keyboard 1-19

Function Keys 1-19
Typewriter Keyboard 1-21
Numeric Keypad 1-24
Special Key Conlbinations 1-25
Keyboard Keycaps 1-26
Keyboard Template 1-27

The APL Input Editor 1-29
APL Input Editor Special Keys 1-29
How to Make Corrections on the Current Line 1-32

Use of Displays 1-33
Disk(ette) Drives 1-35
The Printer 1-36

Chapter 2. APL Tutorial 2-1
vVhat is APL? 2-3

Arrays and Functions 2-4
Interactivity 2-7

The APL Calculator 2-8
Order of Execution 2-10
Powers and La garithms 2-11
Circular Functions 2-13
Computations with Multiple Data Items 2-14

Contents ix

IBM Internal Use Only

Variations on the Compound Interest Problem .. 2-17
Named Data 2-18
APL WO"rkspaces 2-20
Other Functions and Operators 2-24

Input/Output 2-24
Shared Variables 2-25
A Simple Example 2-26
Shared and Other Variables 2-27

Debugging 2-28
Quad output 2-29
Tracing 2-30
Stopping 2-31
Alternate execution 2-31

Speeding Up APL Code 2-32
Use Timing Tools to Find Hot Spots 2-33
Eliminate Explicit Loops 2-33
Avoid Waxing or Waning Variables 2-35
Avoid Large Outer Products 2-36
Avoid Tiny Functions 2-36

An Example - Computing a Histogram 2-37
Computing the Histogram with an Explicit Loop 2-37
Computing the Histogram with an Outer Product 2-39
Computing the Histogram with Grade Up 2-41

How to Write a Timing Function 2-42
A Simple Timing Program 2-42
An Improved Timing Function 2-44
An Alternative Solution 2-46
Concluding Thought 2-47

Further Reading 2-48

Chapter 3. Using APL•.................... 3-1
An Example of the Use of APL 3-3

An Isolated Calculation 3-3
Storing Functions and Data 3-4

Characteristics of APL 3-5

Chapter 4. Fundamentals ...•..•.•......•...•... 4-1
Character Set 4-6
Spaces 4-8
Function 4-8
Order of Execution 4-9
Data 4-10

Arrays 4-10

x APLjPC, Version 2.1

IBM Internal Use Only

Constants 4-12
W orkspaces and Libraries 4-13
Names 4-14
Implementation Limits 4-15

Chapter 5. Primitive Functions and Operators 5-1
Scalar Functions 5-3

Plus, Minus, Times, Divide, and Residue 5-7
Conjugate, Negative, Signum, Reciprocal, and

Magnitude 5-8
Boolean and Relational Functions 5-9
Minimum and Maximum 5-11
Floor and Ceiling 5-11
Roll (Random Number Function) 5-12
Power, Exponential, General and Natural

Logarithm 5-12
Circular, Hyperbolic, and Pythagorean Functions 5-13
Factorial and Binomial Functions 5-15

Operators 5-17
Reduction 5-17
Scan 5-19
Axis 5-19
Inner Product 5-21
Outer Product 5-23

Mixed Functions 5-25
Structural Functions 5-30
Selection Functions 5-37

Selector Generators 5-42
Index Generator and Index Of 5-43
Membership 5-44
Grade Functions 5-44
Deal 5-48

Numeric Functions 5-48
Matrix Inverse and Matrix Divide 5-48
Decode and Encode 5-51

Data Transformations 5-53
Execute and Format 5-54
Picture Format 5-59

Chapter 6. System Functions and System Variables 6-1
System Functions 6-3

Canonical Representation - OCR 6-5
Delay - DDL 6-6

Contents xi

IB1\Il Internal Use Only

Execute Alternate - OEA 6-6
Expunge - OEX 6-7
Function Establishnlent - DFX 6-7
Natne Classification - DNC 6-8
Nanle List - DNL 6-9
Peek/Poke - DP[{ 6-9
Transfer Fornl - OTF 6-11

System Variables 6-14
Account Infornlation - DAI 6-16
Atomic Vector - DAV 6-16
Comparison Tolerance - OCT 6-17
Format Control - OFC '. 6-17
Index Origin - DID 6-18
Horizontal Tabs - DHT 6-18
Latent Expression - DLX 6-18
Line Counter - OLC 6-19
Printing Precision - OPF 6-19
Printing Width - DPW 6-20
Random Link - DRL 6-20
Terminal Control - OTC 6-20
Tenninal Type - OTT 6-20
Time Stamp - DTS 6-20
User Load - DUL 6-20
Workspace Available - 01{A 6-20

Chapter 7. Shared Variables••••.•....•...•. 7-1
Offers 7-6
Access Control 7-7
I~etraction 7-11
Inquiries 7-12

Chapter 8. Function Definition ...•...•.....•...•. 8-1
Canonical Representation and Function Establishment 8-3

The Function Header 8-5
Arnbi-Valent Functions 8-5
Local and Global Names 8-6
Branching and Staternent Numbers 8-7
Labels 8-9
Conlrnents 8-9

Function Editing - The V Fonn 8-10
Adding a Statement 8-10
Inserting or Replacing a Statement 8-11

xii APL/PC, Version 2.1

IBM Internal Use Only

Replacing the Header 8-11
Deleting a Statement 8-11
Modifying a Statement or Header 8-12
Function Display 8-12
Leaving the \j Form 8-13
Quitting the \j Form 8-14

Chapter 9. Function Execution 9-1
Halted Execution 9-4

State Indicator 9-4
State Indicator Damage 9-6

Trace Control 9-6
Stop Control 9-7
Locked Functions 9-8
Recursive Functions 9-9
Input and Output 9-10

Evaluated Input 9-11
Character Input 9-12
Interrupting Execution during Input 9-12
Normal Output 9-12
Bare Output 9-13

Chapter 10. System Commands 10-1
Active Workspace - Action Commands 10-9
Active Workspace - Inquiry Commands 10-13
Workspace Storage and Retrieval - Action

Commands 10-14
Libraries of Saved vVorkspaces 10-14
Workspace Names 10-14

Workspace Storage and Retrieval - Inquiry
Commands 10-20

Sign-Off 10-21

Chapter 11. Application W orkspaces ..•.....•...... 11-1
The AP2 Workspace 11-5

Example Session 11-8
The AP124 Workspace 11-8

Fundamentals 11-9
Building a Menu 11-10

The AP190 vVorkspace 11-19
The AP205 Workspace 11-21
The AP206 Workspace 11-21
The AP232X Workspace 11-26

Contents xiii

IBM Internal Use Only

The AP488 Workspace 11-28
Requirements 11-28
Reference Documentation 11-28
Hints to Avoid Trouble 11-28
Description of AP488 Functions 11-30

The APLFILE Workspace 11-42
The DEMO 124 Workspace 11-47
The DEM0206 vVorkspace 11-48
The DOSFNS Workspace 11-48
The EDIT Workspace 11-51
The EXCHG Workspace 11-55
The FI LE Workspace 11-56

Functions 11-57
Terminology 11-58
Examples of Use 11-71

The FOIL vVorkspace 11-73
The FORTRAN Workspace 11-74

Restrictions on FORTRAN Programs 11-74
Generation Process 11-75
Usage Protocol 11-78
PFOR TPAR Parameter Management Program 11-79
Sample FORTRAN Subroutines (IBM PC

Professional FO R TRAN) 11-81
The GEDIT Workspace 11-82
The GRAPHPAK Workspaces 11-84
The MUSIC Workspace 11-86
The PLOT Workspace 11-87
The PRINT Workspace 11-89
The PROFILE Workspace 11-91
The UTI L Workspace 11-92
The VM232 Workspace 11-95

Selecting a Terminal 11-96
Saving Your Line Parameter Definition 11-102
Connection with the Host 11-103
Functions 11-105
Example of Connection with the Host 11-108
Auxiliary Files on the Host 11-112

Chapter 12. Auxiliary Processors •................ 12-1
The Non-APL Program Interface Auxiliary

Processor: AP2 12-4
Basic Functions 12-5
Auxiliary Functions 12-8

xiv APL/PC, Version 2.1

IBM Internal Use Only

Sample AP2 session 12-9
Return Codes (Returned through the control

variable) 12-9
The Printer Auxiliary Processor: AP80 12-10

Patching AP80 for Other Printers 12-12
The Stack and Profile Auxiliary Processor: API0l . 12-14

Error Return Codes 12-17
The BIOS/DOS Interrupt Auxiliary Processor:
API03 12-18

BIOS/DOS Interrupt Function Call 12-19
I/O Port IN/OUT Request 12-22
Joystick Algorithm 12-23

The Full Screen Management Auxiliary Processor:
AP124 12-24

AP 124 Operation .. 12-24
Error Return Codes 12-33

The Host Communications Auxiliary Processors:
AP190 and AP190I 12-34

Possible uses for AP 190 12-35
Getting Started 12-35
Sending Keystrokes 12-35
Setting Keyboard Translation Table 12-36
Getting Host Status 12-36
Getting the Physical Screen 12-36
Get the Operator Infonnation Area 12-37
Sinlulate a Power On Reset 12-37
Get Cursor Position and Beep Indication 12-37
Get the Keyboard Translation Table 12-37
Get the Screen Format Array 12-38

The Full-Screen Auxiliary Processor: AP205 12-38
The Graphic Auxiliary Processor: AP206 12-39

Storage Management 12-39
Parameters 12-40
Use of AP206 12-47
Functions 12-48
Return codes 12-53

The File Auxiliary Processor: AP210 12-53
Control Commands 12-54
Control Subcommands 12-57
AP210 Return Codes 12-59
Examples of use 12-60

The Asynchronous Communications Auxiliary
Processor: AP232 12-62

Contents xv

IBM Internal Use Only

Control Commands 12-63
The Extended Asynchronous Communications
Auxiliary Processor: AP232X 12-69

Hardware Notes 12-70
AP232X Operation 12-70
AP232X Return Codes 12-75

The Music Auxiliary Processor: AP440 12-76
AP440 Command Syntax 12-77

The IBM GPIB Support Auxiliary Processor: AP488 12-79
Description of AP488 Functions 12-80

Chapter 13. How to Build an Auxiliary Processor 13-1
Access Control 13-4
Format of Shared Data 13-5
Shared Variable Processor Services and Return Codes 13-7

Processor Sign-on: OOH 13-8
Return to APL via Shared Variable Processor:

011-1 13-9
Share or Query the State of a Variable: 02H ... 13-10
Get the Present Value of a Shared Variable: 03H 13-11
Get a Block of Memory From the Workspace:

041-1 13 -12
Release Storage to the Workspace: 05H 13-13
Pass a Variable to APL and Release the Space:
06H 13-14

Pass a Scalar Integer Return Code to APL: 07H 13-15
Convert an APL Object from Type Boolean to

Integer: 08H 13-16
Convert from APL Z-code to ASCII: 09H 13-17
Convert from ASCII to APL Z-code: OAH 13-18
Share or Query the State of a Variable: OBH 13-19
Pre-read a Variable: OCH 13-20
Read a Previously Pre-read Variable: ODH 13-21
Release a Previously Pre-read Variable: OEH 13-22
Pass a Value to a Variable: OFH 13-23
Processor Sign-off: 10H 13-24
SVP Reserved Function: IIH 13-24
Locate an Associated Variable: 12H 13-25
Change the Keyboard / Screen Mode: 13H 13-26
Get Loop Count for Delay: 14H 13-27
Change the Keyboard I Screen lVlode Without

Clearing Screen: ISH 13-28
Notes 13-29

xvi APL/PC, Version 2.1

IBM Internal Use Only

Return Codes (Returned in CX Register) 13-30
Sample Auxiliary Processors 13-30
APL Interrupt Usage 13-31
How to Debug Auxiliary Processors 13-32
Exchange Assembly Programs 13-33

Appendix A. Backing up Diskettes•......... A-I
Before You Begin A-I
Protecting Your Original Diskette A-I
Backing Up Diskette with One Drive A-2
Backing Up Diskette with Two Drives A-4

I Appendix B. APL/PC 1.0 Workspace Migration B-1
I Workspaces in APL format B-1
I Workspaces in AIO format B-2

Appendix C. The APL Character Set and OA V ••••••• C-l

Appendix D. Internal Representation of Displayed
Characters•............... D-l

Appendix E. APL Keyboard Redefinition ••....•.••.. E-l

Appendix F. The GRAPHPAK Workspaces - Functions . F-l
GPBASE F-l
GPCI-IT 1.;'-3
GPCONT F-4
GPDEMO F-4
GPFIT F-6
GPGEOM F-7
GI)PLO~r F-8

I Appendix G. Hardware Modification for IBM 4860 PCjr G-l

I Appendix H. Patch to Restore BIOS Keyboard Handler . H-l

Index X-I

Contents XVll

IBM Internal Use Only

Notes:

xviii APLjPC. Version 2.1

IBM Internal Use Only

Figures

1-1. Character ROM Location on Display Adapter
Cards 1-]0

1-2. Retnoving the Character ROM 1-11
1-3. Keyboard with APL Character Set 1-28
4-1. APL Character Set 4-7
5-1. Primitive Scalar Functions 5-5
5-2. Identity Elements of Primitive Scalar Dyadic

Functions 5-7
5-3. The Pythagorean Functions 5-15
5-4. Inner Product 5-22
5-5. Prirnitive Mixed Functions 5-25
5-6. Scalar Vector Substitutions for Mixed Functions 5-29
6-1. System Functions 6-4
6-2. System Variables 6-15
7-1. System Functions 7-4
7-2. Access Control of a Shared Variable 7-9
7-3. Some Useful Settings for the Access Control

Vector 7-11
10-1. System Commands 10-4
10-2. Trouble Reports 10-7
10-3. Symbols Used in Command Definitions 10-8
10-4. Environment Within a Clear Workspace 10-9
11-1. IEEE-488 Addresses t 1-33
11-2. Timeout Control Codes 11-39
11-3. Mask Layout 11-40
D-1. Internal Representation of Displayed Characters D-2

Figures xix

IBM Internal Use Only

Notes:

xx APL/PC, Version 2.1

:BM Internal Use Only

Part 1. APL Introduction

Chapter 1. Introduction ••...•......•...•.•..••• 1-1
The APL Package 1-8

The APL Character ROM 1-8
Displaying APL Characters using the Enhanced

Graphics Adapter 1-12
Displaying APL Characters using the Professional

Graphics Adapter 1-12
Backing U p Your Diskettes 1-13
Installing APL on Your Fixed Disk 1-13
Getting APL Started from Either Diskette or Fixed

Disk 1-15
Including Options in the APL Command 1-16
The APL Character Set 1-18
The Keyboard 1-19

Function Keys 1-19
Typewriter Keyboard 1-21
Numeric Keypad 1-24
Special Key Combinations 1-25
Keyboard Keycaps 1-26
Keyboard Template 1-27

The APL Input Editor 1-29
APL Input Editor Special Keys 1-29
How to Make Corrections on the Current Line 1-32

Use of Displays 1-33
Disk(ette) Drives 1-35
The Printer 1-36

Chapter 2. APL Tutorial•.........•.•.•..•. 2-1
What is APL? 2-3

Arrays and Functions 2-4
Interactivity 2-7

The APL Calculator 2-8
Order of Execution 2-10
Powers and Logarithms :.......... 2-11
Circular Functions 2-13
Computations with Multiple Data Items 2-14

Part 1. APL Introduction

IBM Internal Use Onl~

Variations on the Compound Interest Problem .. 2-17
Named Data 2-18
APL Workspaces 2-20
Other Functions and Operators 2-24

Input/Output 2-24
Shared Variables 2-25
A Simple Example 2-26
Shared and Other Variables 2-27

Debugging 2-28
Quad output 2-29
Tracing 2-30
Stopping 2-31
Alternate execution '. 2-31

Speeding Up APL Code 2-32
Use Timing Tools to Find Hot Spots 2-33
Eliminate Explicit Loops 2-33
Avoid Waxing or Waning Variables 2-35
A void Large Outer Products 2-36
Avoid Tiny Functions 2-36

An Example - Computing a Histogram 2-37
Computing the Histogram with an Explicit Loop 2-37
Computing the I-Iistogram with an Outer Product 2-39
Computing the Histogram with Grade Up 2-41

How to Write a Timing Function 2-42
A Simple Timing Program 2-42
An Improved Timing Function 2-44
An Alternative Solution 2-46
Concluding Thought 2-47

Further Reading 2-48

APLjPC, Version 2.1

[BM Internal Use Only

Chapter 1. Introduction

The APL Package 1-8
The APL Character ROM 1-8
Displaying APL Characters using the Enhanced

Graphics Adapter 1-12
Displaying APL Characters using the Professional

Graphics Adapter 1-12
Backing Up Y o·ur Diskettes 1-13
Installing APL on Your Fixed Disk 1-13
Getting APL Started from Either Diskette or Fixed

Disk 1-15
Including Options in the APL Command 1-16
The APL Character Set 1-18
The Keyboard 1-19

Function Keys 1-19
Typewriter Keyboard 1-21
Numeric Keypad 1-24
Special Key Combinations 1-25
Keyboard Keycaps 1-26
Keyboard Template 1-27

The APL Input Editor 1-29
APL Input Editor Special Keys 1-29
How to Make Corrections on the Current Line 1-32

Use of Displays 1-33
Disk(ette) Drives 1-35
The Printer 1-36

Chapter 1. Introduction 1-1

IBM Internal Use Only

Notes:

1-2 APL/PC, Version 2.1

IBM Internal Use Only

APL is a general-purpose language that enjoys wide use in
such diverse applications as commercial data processing,
system design, mathematical and scientific computation, and
the teaching of mathematics and other subjects. It has proved
particularly useful in data-base applications, where its
computational power and communication facilities combine to
increase the productivity of both application programmers and
end users.

When implemented as a computing system, APL is used from
a typewriter-like keyboard. Statements that specify the work
to be done are typed and the computer responds by displaying
the result of the work at a device such as a video display or
printer. In addition to work purely at the keyboard and its
associated display, entries may also specify the use of printers,
disk files, or other remote devices.

A programming language should be relevant. That is, you
should have to write only what is logically necessary to specify
the job you want done. This may seem an obvious point, but
many of the earlier programming languages forced you to be
concerned as much with the internal requirements of the
machine as with your own statement of the problem. APL
takes care of those internal considerations automatically.

A programming language needs both both power and
simplicity. By power, we mean the ability to handle large or
conlplicated tasks. By simplicity, we mean the ability to state
what must be done briefly and neatly, in a way that is easy to
read and easy to write. You might think that power and
simplicity are competing requirements, so that if you have one,
you can't have the other, but that is not necessarily so.
Simplicity does not mean the computer is limited to doing
simple tasks, but that the user has a simple way to write
instructions to the computer. The power of APL as a
programming language comes in part from its simplicity.

The letters, APL, originated with the initials of a book written
by K. E. Iverson, A Programming Language (New York:
Wiley, 1962). Dr. Iverson first worked on the language at
I-Iarvard University, and then continued its development at
IBM with the collaboration of Adin Falkoff and others at the
IBM T.]. Watson Research Centre. The term APL now refers

Chapter 1. Introduction 1-3

IBM Internal Use Only

to the language that is an outgrowth of that work. AP L is the
language, and IBM Personal Computer APL is the
"brand-name" of a particular implementation of that language,
with extensions. The implementation and extensions were
developed by the IBM Madrid Scientific Centre. This
implementation, hereafter called APL, has the following
features:

• Shared variables, which allow the exchange of information
between independently operating processors. This allows
the separate loading of only those auxiliary processors
needed for a particular work session or application. It also
makes possible the design of new auxiliary processors for
an application that may not be currently supported by the
system.

• Facilities for conversion between the internal form and
transfer form of APL objects, including)IN, lOUT and
OTF, that allow workspaces to be interchanged between
different systems.

• Asynchronous communications with the IBM Virtual
Machine Facility/370 permits the exchange of works paces
and data files between systems, and allows devices attached
to the host to be used.

• All dyadic-defined functions are ambivalent, which allows
them to be used monadically without generating a syntax
error. The system function, ONe, can be applied to the left
argument" within a function to determine, at execution
time, whether the function actually has been called as
dyadic or monadic.

• Improved error recovery is made possible by the)RESET
command, which clears the state indicator, and DEA
(execute alternate), which allows the trapping of an APL
interrupt and error message to permit programmed means
of recovery.

• Event handling facilities are provided through an APL
interface to the BIOS/DOS interrupts, thus allowing these

1-4 APL/PC, Version 2.1

[BM Internal Use Only

interrupts to be trapped or generated for more control of
the system environment.

• The APL Workspace consists of two parts:

The main workspace, which has a maximum size of 64K
bytes, where all APL statements are executed and small
APL objects are created and modified.

The elastic workspace, which can use all additional free
memory. If space is needed for an operation in the
main workspace, every obj~ct not currently being
referenced will be automatically relocated to the elastic
workspace, and returned as needed.

• The following four data types are supported, and the
system automatically performs data-type conversions
whenever possible to minimise storage space:

Floating-point, with eight bytes per element

Integer, with two bytes per element

Character, with one byte per element

Boolean, with one bit per element

• The IBM Personal Computer Math Co-Processor may be
used for improved performance of floating-point
operations, such as the APL transcendental functions.

• The ability to start an application automatically by
specifying an APL system command at load time before
starting a work session. Functions that imitate some of the
system commands also are provided allowing the system
environment to be controlled from within a defined
function.

• The execution of machine code subroutines and the PEEK
and POKE memory contents is provided through the DPK
system function.

Chapter 1. Introduction 1-5

IBM Internal Use Only

• The appearance of numeric output can be improved using
picture format, and the dyadic grades allow character data
to be sorted in a specified collating sequence.

• Dynamic switching (either from the keyboard or by
software control) between the APL and National character
sets on the keyboard provides access to an extensive set of
characters that can be entered with one keystroke. The
keyboard layout may also be redefined dynamically to
allow for the various keyboard arrangements used on
European keyboards.

• Multiple display monitors can be used, with dynamic
switching between all modes.

• A full-screen input and output capability provides a
full-screen input editor, which allows corrections to be
made to a previous line that can then be re-entered for
execution. A full-screen, defined-function editor, and
multiple line deletion under the del (V) editor, increase the
ease with which programs can be created and edited.

• A file management capability allows the control of either
APL or DOS files, with sequential or direct access of fixed
length and variable length records.

• The optional IBM Graphics Printer can produce APL
characters, and can be used either as a system log to
provide a record of a work session, or to selectively print a
desired APL object or result.

• The speaker attached to the system unit of the IBM
personal computer can be used to generate music.

To use the IBM Personal Computer APL system, you must
have the following minimum configuration:

• Either: the IBM Personal Computer, the IBM Portable
Personal Computer, the IBM Personal Computer XT, the
IBM Personal Computer AT, the IBM 5140 PC
Convertible, the IBM 3270 Personal Computer/G, or the
IBM 3270 Personal Computer/GX.

1-6 APL/PC, Version 2.1

IBM Internal Use Only

The IBM 3270 Personal Computer may be used, but this
requires the "All Points Addressable Adapter card" in
order to be able to display the APL character set correctly.

The IBM 4860 PCjr must be modified with a small
hardware change. This is given in
Appendix G, "Hardware Modification for IBM 4860
PCjr" .

• 192K or more of random access memory. A minimum of
256K is preferred.

• One double-sided 5.25 inch diskette drive

• The IBM Monochrome and Printer Adapter, the IBM
Colour Graphics Adapter (or any hardware that emulates
it), the IBM Enhanced Graphics Adapter, or the IBM
Professional Graphics Adapter.

• DOS 2.0, or later version.

• Either: the IBM Monochrome Display, the IBM Colour
Display, the IBM Enhanced Colour Display, the IBM
Professional Colour Display, any other monitors that
attach to an appropriate adapter, or a television set and
RF modulator. (Television sets and RF modulators are
not sold by IBM).

• Optional IBM Personal Computer Math Co-Processor

• Optional IBM 80 CPS Graphics Printer or the IBM
Proprinter, with either the Parallel Printer Adapter or the
Monochrome Display and Printer Adapter.

• Optional IBM Personal Computer Expansion Unit

• Optional IBM Asynchronous Communications Adapter

Chapter 1. Introduction 1-7

IBI\1 Internal Use Only

l'he APL Package

I APL comes to you on a set of four 5.25 inch diskettes. These
are:

• APL System Diskette (Executable code, examples and
demonstration workspaces)

• APL Workspaces - 1 (General distributed workspaces)

• APL Workspaces - 2 (Graphic distributed workspaces)

I. APL 'Vorkspaces - 3 (FORTRAN distributed workspace
I and sample programs)

The APL program nlust be loaded into memory before you
can use it. You should read this entire chapter before trying to
use the AP L system.

l~he APL Character ItOM

The APL character ROM replaces certain lesser used symbols
in the IBM PC extended ASCII character set with the special
characters and symbols needed for APL.

It can be installed on either: the IBM Personal Computer
Monochrome Display and Printer Adapter; or the IBM
Personal Computer Colour Graphics Adapter. Under no
circurnstances should it be installed on any other display
adapter.

I t should be noted that APL will function correctly without
the ROM, but that any editing of APL functions or the entry
of APL expressions would be very difficult if APL characters
cannot be displayed correctly. The Colour (Jraphics Adapter,
when in graphics rnode, can display most of the APL character
set (including all of those actually used by AP L/PC 2.1)
without the use of the ROM. In addition, since the
installation of the ROM may cause certain symbols used by

1-8 APL/PC, Version 2.1

IBM Internal Use Only

other programs to be replaced by APL characters, care should
be taken in deciding where to install it.

• Monochrome-only systems:

The ROM must be installed on the IBM Personal
Computer Monochrome Display and Printer Adapter since
this is the only way that the rnonochrolne screen can
display APL characters.

• Colour-only systems:

When installed on the IBM Personal Computer Colour
Graphics Adapter, the ROM allows the display of APL
characters in the alphanumeric as well as the graphics
modes. The use of alphanumeric mode will provide a
faster display of output since graphic mode has the
overhead of generating the characters in software.
However, as APL characters can be displayed without the
ROM, it is recommended that it is not installed if use is
made of the system for non-APL text applications such as
word processing.

• Systems with two displays:

In this case the ROM may be installed on either adapter,
but will give a clearer definition of the APL characters on
the monochrome display. It is recommended that the
RO M be installed in whichever adapter is least used for
nOll-APL applications. If the system is intended solely for
APL use, then the ROM should be installed in the
monochrome adapter.

Installing the ROM

1. Open your PC and rernove the adapter onto which you
intend to install the ROM (consult the appropriate IBM
Personal Computer Guide to Operations for details of how
to do this).

2. Locate the existing character ROM. This will be the only
socketed (i.e. non-soldered) cornponent on the board.

Chapter 1. Introduction 1-9

IBM Internal Use Only

Figure I-Ion page 1-10 shows the approximate location
of this component.

mooDooooooommoom DO O~u
DDDDDDDOmm dc] D~ 00 ~~
DDDDODD~~llOOmDooo 0 DO 00

Monochrome Display Adaptor - ROM Location

~~DD~~~DDDD~D~~D~DDDD~DDrno
~ODD~ DODDD01J
DDOO~DDD DCJDD 0000000
~~ODOD~DODOD~DDD .

Colour Graphics Adaptor - ROM Location

Figure 1-1. Character ROM Location on Display Adapter Cards

3. Carefully insert the module puller between one end of the
ROM and its connector. (A suitable tool is provided with
this package). Rock the puller from side to side until the
end raises slightly (see Figure 1-2 on page 1-11). Repeat
this process at alternate ends until the ROM is free of its
connector. Remove the ROM and set it aside.

1-10 APLjPC. Version 2.1

IBM Internal Use Only

Side to Side
Rocking Motion

Module
Puller

Figure 1-2. Removing the Character ROM

Warning:

• Incorrect placement of the APL character ROM can
damage the display adapter. If you are unsure of your
ability to follow these instructions, you should consult
your IBM Dealer.

• The ROM is static sensitive. Maintain personal
grounding, by touching the system frame with one
hand, while installing the ROM.

• The pins of the ROM are easily bent.

4. Carefully align the pins of the APL character ROM with
I the connector and press firmly into place. Ensure that the
I notch at one end of the ROM is facing the same way as a
I similar notch in the connector.

5. Return the adapter to the PC and close the case (consult
the appropriate IBM Personal Computer Guide to
Operations for details of how to do this).

The adapter will now display the APL character set.

Chapter 1. Introduction 1-11

IBM Internal Use Only

Note: The characters displayed when the IBM Personal
Computer Diagnostic Diskette is run will no longer correspond
to those shown in the Guide to Operations.

Displaying APL Characters using the
Enhanced Graphics Adapter

The APL character ROM cannot be installed in the IBM
Personal Computer Enhanced Graphics Adapter. In normal
operations, this adapter will behave like a Colour Graphics
Adapter without the ROM, and APL characters will be
available in graphics modes only. However, a short program
called EGAAPL.COM is provided on the APL System Disk
which will load an APL font into the Enhanced Graphics
Adapter, giving the same advantages of speed as the ROM.

To load the APL font, ensure that EGAAPL.COM is in the
current directory and type EGAAPL. The font will remain
loaded until the system is rebooted .. Alternatively include
EGAAPL in your AUTOEXEC.BA T file.

Displaying APL Characters using the
Professional Graphics Adapter

The APL character ROM cannot be installed in the IBM
Personal Computer Professional Graphics Adapter. This
adapter will behave like a Colour Graphics Adapter without
the ROM, and APL characters will be available in graphics
modes only.

1-12 APLjPC, Version 2.1

IBM Internal Use Only

Backing Up Your Diskettes

Because you have only one copy of the APL system, you
should back up each diskette before you begin to use APL.
Backing up a diskette means to copy a diskette's data to
another diskette. A backup, that is, the copy, saves you the
time, trouble, and sometimes the expense, of recovering the
information on a diskette that has been lost, damaged, or
accidentally written over.

It is a good practice to back up your important program
diskettes as soon as you purchase or create them. Then store
your original diskettes in a safe place where they cannot be
damaged. Use the backup diskettes for everyday operations.

Your data diskettes should be backed up every time you add or
change information on them.

Full instructions on the procedure to create backup diskettes
may be found in Appendix A, "Backing up Diskettes".

Installing APL on Your Fixed Disk

If you have an IBM Personal Computer XT, an IBM Personal
Computer Expansion Unit, or an IBM Personal Computer AT
with fixed disk, you may wish to install APL on your fixed
disk. To do this, simply:

1. Start DOS from any drive, then make sure that the prompt
displayed is C> .

2. When the DOS prompt appears:

a. Insert your APL system diskette in drive A.

b. Type

cd \

Chapter 1. Introduction 1-13

IBM Internal Use Only

and press the Enter key.

c. Type

copy a:fdtrans.bat c:

and press the Enter key.

d. Type

fdtrans

and press the Enter key.

e. Insert each of the APL workspace diskettes when
requested.

When you see the message

APL transfer complete

the following will have occurred:

• A subdirectory named "APL" was created on your fixed
disk.

• The files from your APL diskette were copied to your fixed
disk (in subdirectory" APL").

• A batch file named "APL.BA T" was copied to the root
directory on your fixed disk to make it easy for you to start
APL.

When the transfer is complete, the "FDTRANS.BA T" may be
erased by typing:

erase fdtrans.bat

and press the Enter key.

In addition to the APL.BA T file that is created during the
fixed disk transfer procedure, a file called "RUN.BAT" is
provided as an example "BAT" file to start APL with a useful
set of auxiliary processors.

1-14 APL/PC, Version 2.1

IBM Internal Use Only

Getting APL Started from Either
Diskette or Fixed Disk

This section describes how to start APL from a diskette and
from a fixed disk.

• To start APL from diskette:

1. Insert your DOS diskette in drive A.

2. Switch on the power to your computer.

3. After you receive the DOS prompt, insert the APL
system diskette in drive A and enter the command

APL

• To start APL from your fixed disk:

1. Ensure APL is installed on your fixed disk.

2. Start DOS and enter the command, APL.

This will cause the batch file, APL.BAT, in the root
directory to be invoked.

After the APL command is executed, the following will appear
on the display screen:

Chapter 1. Introduction 1-15

IBM Internal Use Only

44
SAfaa ••• s2I1!L!ra}NrBI-='lIi_ ... -- Wi4 1M M¥·*M

... • ... ·'ah>~,ifili¥M'WW MWRii.W;U*

9*'4"'* 'E

I II I
Version 2.10

Personal Computer

*** IBM Internal Use Only ***
(C) Copyright IBM Corp 1985, 1986

Produced by
IBM Madrid Scientific Center

CLEAR WS

Including Options in the APL Command

You can include options in the APL command when you bring
up the system. The complete format of the APL command is:

APl [APx] [APy] ••• [)Q] [APl system command]

where the maximum number of names given after APL, of the
form APx, is fifteen.

• APx, APy, ... , represent the filenames of auxiliary
processors, which are programs that carry out special
actions not included in the APL language. You can also
build your own auxiliary processors (see
Chapter 13, "How to Build an Auxiliary Processor"). The
following auxiliary processors are included with the system:

1-16 APLjPC, Version 2.1

[BM Internal Use Only

AP2:
AP80:
APIOI:
API03:

AP124:
AP190:
API90I:
AP205:
AP206:
AP210:
AP232:
AP232X:
AP440:
AP488:

Interface to non-APL programs
IBM Graphics Printer control
Stack and Profile management
BIOS/DOS interrupt handling and I/O port
control
Full-screen display management
IBM PC 3278/79 communications
IRMA! PC 3278/79 communications
Full-screen display management
Graphics processor
DOS file management
Asynchronous communications
Extended asynchronous communications
Music generator
GPIB/IEEE488 communications

")Q" (quiet) means that you don't want the starting APL
message to appear on the screen. No output will appear
until after the first input, or the RT function from the
UTIL workspace has been executed. (See "The UTIL
Workspace" on page 11-92).

"APL system command" means that you can enter here
any APL system command to be executed at load time,
thus giving you the possibility of automatically starting an
APL application. (For the syntax of APL system
commands, see Chapter 10, "System Commands"). This
field, if given, must always be the last one in the line, and it
must start with a right parenthesis. All letters must be
uppercase.

f you wish to always have some auxiliary processors included,
Ir to automatically execute an APL system command, you
nay create a batch file to do so (see your IBM Personal
:omputer DOS manual).

""'he APL system command,)OFF, is used to exit from an
\.PL work session and transfer control to DOS. The active
{orkspace is lost unless it was explicitly stored earlier in the
fork session with a)SAVE or)OUT command. Any variables

IRMA is a trademark of Technical Analysis Corporation.

Chapter 1. Introduction 1-17

IBM Internal Use Only

actively shared with an auxiliary processor will be
automatically retracted upon exit from the APL system.

Examples:

APL AP2 APlOl)Q)LOAD PROFILE

This starts APL and auxiliary processors AP2 and APIOl.
Also, the workspace called PROFILE is loaded.

APL AP80

This will start APL and the printer auxiliary processor.

l~lle APL Character Set

The APL language has its own character set, which can be
divided into four main classes:

• Alphabetic, which consists of the Roman alphabet in
uppercase and lowercase form, and delta and delta
underbar.

• Numeric, which consists of the digits 0 through 9.

• Special APL characters (see Figure 4-1 on page 4-7).

• Blank.

1-18 APL/PC, Version 2.1

[BM Internal Use Only

The Keyboard

The APL system supports two different character-set mappings
:)f the IBM Personal Computer keyboard: the APL character
set and the National character set. The APL mapping is
Gormally active under the APL system, and is automatically
loaded with the system at the start of a work session. The
National character set can be accessed under control of the
!\PL system through the Clrl-Backspace key combination, as
iescribed in the section: "Special Key Combinations" on
page 1-25.

The keyboard may also be redefined to allow special key
urangements, such as those required in some European
:;ountries. See Appendix E, "APL Keyboard Redefinition".

The keyboard consists of three general areas:

• Function keys, labelled F1 through F10, on the left side of
the keyboard.

• The typewriter area in the middle, where you find the
familiar letter and number keys.

• The numeric keypad, which is similar to a calculator
keyboard, on the right side.

!\11 keys are typematz'c, which means they repeat their fhnction
for as long as you press them.

Function Keys

The only function keys automatically supported by the APL
system are:

• Aft-Fi: switch to the Monochrome Display mode, with 80
characters per line. This sets the BIOS video mode to 7.
(A special APL ROM is required to see the APL special
characters properly).

Chapter 1. Introduction 1-19

IBM Internal Use Only

• Alt-F3: switch to the Graphics Display in alphanumeric
mode, black and white, with 40 characters per line. This
sets the BIOS video mode to O. (A special APL ROM is
required to see the APL special characters properly).

• Alt-F4: switch to the Graphics Display in graphics mode,
colour, with 40 characters per line. This sets the BIOS
video mode to 4. (No special ROM is required in this
case).

• Alt-F5: switch to the Graphics Display in alphanumeric
mode, colour, with 40 characters per line. This sets the
BIOS video mode to 1. (A special APL ROM is required
to see the APL special characters properly).

• Alt-F6: switch to the Graphics Display in graphics mode,
black and white, with 40 characters per line. This sets the
BIOS video mode to 5. (No special ROM is required in
this case).

• Alt-F7: switch to the Graphics Display in alphanumeric
mode, black and white, with 80 characters per line. This
sets the BIOS video mode to 2. (A special APL ROM is
required to see the APL special characters properly).

• Alt-F8: switch to the Graphics Display in graphics mode,
black and white, with 80 characters per line. This sets the
BIOS video mode to 6. (No special ROM is required in
this case).

• Alt-F9: switch to the Graphics Display in alphanumeric
mode, colour, with 80 characters per line. This sets the
BIOS video mode to 3. (A special APL ROM is required
to see the APL special characters properly).

Other function key combinations may be defined through the
"Stack and Profile management auxiliary processor" APIO!.

Display modes listed as requiring the APL ROM on the
Graphics Display require the EGAAPL program to be
executed to display APL characters on the Enhanced Graphics
Adapter and Display.

1-20 APLjPC; Version 2.1

IBM Internal Use Only

Typewriter Keyboard

The middle area of the keyboard behaves much like a standard
typewriter. Under APL, the capitalised Roman alphabet and
the digits 0 through 9 are generated when one of these keys is
pressed. Most of the APL special characters that represent the
primitive functions are encoded as upper-shift, and are
generated by holding down either of the Shift keys and
pressing the desired key.

Note: The Shift keys are in the bottom row of the typewriter
area and have a wide arrow pointing upward.

When the National character set is active, the lowercase
Roman alphabet and the digits 0 through 9 are generated
when a key is pressed. The capital letters and some other
characters are obtained by holding down either of the Shift
keys and pressing the desired key.

Enter: This key, sometimes called the Carriage Return key, is
the large key with the bent arrow symbol on the right side of
the typewriter area. You usually have to press this key to
enter information into the computer. The Enter key is used to
pass an APL statement or a systern command to the APL
interpreter for execution.

Esc (Escape): The Esc key (also known as the Weak Attention
key) is in the upper-left corner of the typewriter area. Pressing
this key once generates a weak interrupt that halts execution at
the end of a statement. If pressed during a request for input,
the whole line is erased and the cursor moves to the beginning
of the same line.

Tab keys (Tabulation): The key located under the Esc key is
the tab key. If pressed, the cursor is moved to the next tab
position to the right, in the same line. Tab positions are
located in columns that are mUltiples of 8 from the left margin.
The tab key has a circular effect, i.e. the first position in the
line is the next tab position to the right of the last tab position
in the same line.

Chapter 1. Introduction 1-21

IBM Internal Use Only

If the tab key is pressed together with the Shift key, the cursor
is moved to the next tab position to the left in the same line.
The Shift-tab key has a circular effect, i.e. The next tab
position to the left of the starting position in the line is the last
tab position to the right of the same line.

Caps Lock: Although similar to a Shift Lock key on a
typewriter, the Caps Lock key affects only those keys that
produce the letters of the alphabet under the National
character-set mapping. Once the Caps Lock key has been
pressed, the alphabetic keys will continue to generate
upper-shift characters until the Caps Lock key is pressed
agaIn.

Lower-shift characters can be obtained from the Caps Lock
state by holding down one of the Shift keys and pressing the
desired key. When you release the Shift key, the keyboard
returns to the Caps Lock state.

The state of this key is ignored while the APL character set is
in effect. However, if the key is pressed under the APL
character set, its state will change, though it will not be
effective until the National character set gets control.

Backspace: The Backspace key is in the upper-right corner of
the typewriter area, and is marked with an arrow pointing to
the left. With the APL system, both the APL and National
mappings of the keyboard interpret the Backspace key as a
movement of the cursor to the left. The character to the left
of the initial position of the cursor will be erased.

PrtSc (Print Screen): Just below the Enter key is a key
labelled with PrtSc and ~t.. In both APL and National
character sets, pressing this key generates an asterisk. When
this key is pressed while one of the Shift keys is being pressed,
a signal is generated that causes a copy of the currently-active
screen to be printed. If you are using the IBM Monochrome
Display without the special ROM, non-APL characters will
appear on the screen but will be translated to APL characters
for the printer. This operation can be performed only if you
have a suitable printer attached to your system and you loaded
the printer auxiliary processor, AP80, either at the start of the
APL work session, or later, by means of AP2.

1-22 APLjPC. Version 2.1

IBM Internal Use Only

Other H Shifts": Besides the upper-shift key previously
described, the typewriter keyboard has two other "shift" keys -
the Alt (Alternate) and the Ctrl (Control) keys. Like the Shift
key, these keys must be held down while a desired key is
pressed.

The Alt key is used with the APL character-set mapping to
produce lowercase letters, and some special APL characters
along the top row. Under the National character set, the Alt
key has no effect with the typewriter keyboard. The Alt key is
also used with the keys on the numeric keypad to enter
characters not encoded on the keys. This is done by holding
down the Alt key while typing the three.;digit decimal ASCI I
code for the desired character (see Appendix C, "The APL
Character Set and DAV", and Appendix D, "Internal
Representation of Displayed Characters").

Some additional keys, duplicating other keys, are included in
the keyboard layout. These provide compatibility with the
IBM 3270 PCjG and IBM 3270 PCjGX APL keyboard
layouts. The extra keys are entered in Alt mode and give the
correct characters as engraved on the front of the keys on the
APL featured keyboards available as an option on these
devices.

, The APL keyboard layout of the IBM 3270 PC keyboard will
, not be correct when running Control Program (CP) if a DOS
, keyboard program has been loaded (e.g. KEYBUK). Similarly,
, the APL keyboard layout of the IBM 3270 PCjG or IBM 3270
, PCjGX keyboard will not be correct when running Graphics
, Control Program (GCP) if a DOS keyboard program has been
'loaded. The US keyboard format must be selected (using
, Ctrl-Alt-Fl) to ensure that the APL keyboard layout is
,correct. The appropriate national language keyboard layout
, may be reselected after exiting APL with Ctrl-Alt-F2.

The Ctrl key is similarly used to generate certain codes and
characters not otherwise available from the keyboard.

Many of the box characters may be ente!ed from the keyboard
using the Ctrl key: single box characters are produced by
Ctrl-S and the surrounding eight keys; double box characters
are produced by Ctrl-((The APL "(" key to the right of the L

Chapter 1. Introduction 1-23

IBM Internal Use Only

key) and the surrounding eight keys. The horizontal and
vertical bars are entered with Ctrl-H and Ctrl-V, and double
horizontal and vertical bars are entered with Ctrl-l and Ctrl-B
keys.

The Ctrl-Backspace combination is used to switch between the
APL and National character-set mappings. The Alt-Backspace
combination also has the same effect.

Numeric Keypad

This area of the keyboard is normally used in conjunction with
the APL Input Editor, which is described later in this chapter.
(See "The APL Input Editor" on page 1-29). The numeric
keypad also can be used as a calculator keypad by pressing
one of the Shift keys at the same time you press the keys on
the keypad, or by pressing the Num Lock key to enter the
Num Lock state. The Num Lock key affects the keys of the
numeric keypad in the same way the Caps Lock key affects the
alphabetic keys of the typewriter keyboard. Pressing the Num
Lock key once will cause upper-shift numeric characters to be
generated. You can temporarily nullify this state by holding
down a Shift key. To return the keypad to its normal mode
under the APL Input Editor, press the Num Lock key a
second time.

On the extreme right side of the keyboard are two keys that
are normally used with the numeric keypad.

The key engraved with a minus sign (-):

• When the APL character set is active, this generates the
"delta underbar" symbol in lower case and the minus sign
in upper case (shifted) mode.

• When the National character set is active, this generates
the minus sign in both lower and upper case modes.

The key engraved with a plus sign (+):

• In lower case mode (regardless of which character set is
active), this is an additional Enter key, with a function

1-24 APL/PC, Version 2.1

IBM Internal Use Only

slightly different fronl the nornlal Enter key located in the
typewriter keyboard. The normal Enter key, when pressed,
copies the line to be executed to the bottorn of the screen,
but the "plus" key executes the line in place and does not
affect the position of the cursor.

• In upper case (shifted) mode, this generates the plus sign.

Special Key Combinations

You should be aware of the special functions of the following
keys or combinations of keys:

• elrl-Backspace: Changes the keyboard from the National
character-set nlapping to APL, or from the APL
character-set mapping to Nat.ional. The Alt-Backspace
conlbination also has the sanle effect.

• elrl-Break: Generates a strong interrupt that will cause an
execution within a statement to halt as soon as the
interrupt is detected. The key is also used to halt a request
for literal (~) input from a defined function. If pressed
during any other request for input, the present line is
erased and the cursor moves to the start of the same line.

• elrl-Alt-Del: Performs a syslel1'l reset. which is the san1C
as switching the computer from off to on. H old down the
Ctrl and Alt keys, and press the Del key. Doing a system
reset with these keys is preferable to setting the Power
switch off and on again, because the systern will come up
faster.

• etrl-PrtSc or Alt-PrISc: This serves as an on-off switch for
sending display output to the printer as well as the screen,
provided you have previously loaded the printer-handling
auxiliary processor, AP80 (see "Getting APL Started froin
Either Diskette or Fixed Disk" on page 1-15 or "The AP2
Auxiliary Processor").

Press these keys to send display output to the printer, then
press them again to stop sending to the printer. Although
this action enables the printer to function as a system log,

Chapter 1. Introduction 1-25

IBM Internal Use Only

it slows down some operations because the computer waits
during the printing.

• Ctrl-Num Lock: Puts the computer into a pause state.
This can be used to temporarily stop printing or program
listing. The pause continues until any key, except the
"shift" keys, the Break key, the Ctrl-Num Lock key, or the
Ins key, is pressed.

Keyboard Keycaps

To simplify the use of APL on the standard PC or PC/AT
keyboard a set of APL keycaps may be purchased which will

. replace the existing set. These keycaps are for the 3179 colour
terminal, and although they are complete and correct for the
APL keyboard mode, certain upper case keys in National
mode may not be correctly positioned. To correct this, you
may use the DOS ANSI.SYS device driver to map these keys
to their engraved characters.

These keycaps are available from IBM as part numbers:

1351711 - English US
1351712 - German
1351713 - French (AZERTY)
1351714 - Italian
1351715 - English UK
1351719 - Belgian
1351720 - Danish
1351721 - Swedish
1351722 - Norwegian
1351723 - Portuguese
1351724 - Swiss/German
1351725 - Swiss/French

1-26 APLjPC, Version 2.1

IBM Internal Use Only

Keyboard Template

A template showing the APL character set for the IBM
Personal Computer keyboard has been included with this
book. This may be placed along the top of the keyboard as a
quick reference to the positions of the APL keys.

Figure 1-3 on page 1-28 shows the keyboard with the APL
character set.

Chapter 1. Introduction 1-27

IBM Internal Use Only

Figure 1-3. Keyboard with APL Character Set

1-28 APL/pet Version 2.1

IBM Internal Use Only

The APL Input Editor

The APL Input Editor is a full-screen editor. This means that
you can enter a line (with or without a previous change)
anywhere on the screen. To enter a line for execution, the
cursor must be on that line.

The cursor is a blinking underbar or block appearing just to
the right of the last character typed. You can position the
cursor by using the APL Input Editor special keys, which are
described in the next section. The cursor marks the position at
which a character is to be typed, inserted, or deleted.

The input editor can save much time during program
development by eliminating unnecessary re-typing. In
execution mode, the input editor can be used to make changes
to a previous line. When the changed line is entered, if the
normal Enter key was pressed, the line is echoed at the bottom
of the screen and executed. However, if the secondary Enter
key (the key engraved with a plus sign at the right of the
numeric keypad) was pressed, the line is executed in place.

The input editor also can be used within the del (\7) editor
during function definition (see Chapter 8, "Function
Definition") to help create or modify programs.

A full-screen, defined-function editor is included with the
EDIT workspace and is described in Chapter 11, "Application
Workspaces". This special editor provides additional features
that help make function definition even easier.

APL Input Editor Special Keys

You can use some of the keys on the numeric keypad, and the
Backspace key, to move the cursor on the screen, to insert
characters, or to delete characters. The keys and their
functions are:

• Up Arrow (Cursor Up - Numeric Keypad 8): Moves the
cursor up one line. If the cursor advances beyond the

Chapter 1. Introduction 1-29

IBM Internal Use Only

upper end of the screen, it will move off the screen and
reappear at the lower end in the same column.

• Down Arrow (Cursor Down - Numeric Keypad 2): Moves
the cursor down one line. If the cursor advances beyond
the lower end of the screen, it will move off the screen and
reappear at the upper end in the same column.

• Left Arrow (Cursor Left - Numeric Keypad 4): Moves the
cursor one position to the left. The cursor cannot advance
beyond the left edge of the screen.

• Right Arrow (Cursor Right - Numeric Keypad 6): Moves
the cursor one position to the right. The cursor cannot
advance beyond the right edge of the screen.

• Home (Numeric keypad 7): The cursor moves to the start
of the current line.

• End (Numeric Keypad 1): The cursor moves to the end of
the current line (just after the last non-blank character in
the line).

• Ctr/-Home (Control key plus Numeric keypad 7): All
characters to the left of the current position of the cursor
are erased in the current line and replaced by blanks.

• Ctr/-End (Control key plus Numeric keypad 1): Erases
characters from the current cursor position to the end of
the line.

• Ins (Numeric Keypad 0): Sets Insert mode on or off. If
Insert mode is off, pressing this key will turn it on. If
Insert mode is already on, pressing this key will turn it off.

You can tell when Insert mode is on, because the cursor is
displayed as a blinking block covering the character
position instead of a blinking underbar. When Insert mode
is on, the character at the cursor position, and characters
following the cursor, are moved to the right as you type
characters at the current cursor position. After each
keystroke, the cursor moves one position to the right. If
you try to write beyond the right edge of the screen

1-30 APL/PC, Version 2.1

[BM Internal Use Only

(regardless of the state of Insert mode), you will hear a
warning beep.

When Insert mode is off, any characters you type will
replace the existing characters on the line.

Pressing an Enter key when Insert mode is on will
automatically turn Insert mode off.

• Del (Numeric Keypad Decimal Point (•): Deletes the
character at the current cursor position. All characters to
the right of the one deleted move one position to the left to
fill the empty space.

• Backspace (Left arrow to left of Num Lock key): Its
function is the same as the Cursor-Left key followed by the
Del key, because the APL backspace is destructive.

• Esc: When pressed anywhere in a line, Esc causes the
whole line to be erased, and the cursor moves to the
beginning of the line. The line is not passed to APL for
processing. If you press Esc while a defined APL function
is executing (see Chapter 9, "Function Execution"), the
function is interrupted after the current line is executed.
This is called a weak interrupt.

• Tab: The cursor advances to the next tab position (a
multiple of eight positions from the left margin). The key
has a circular effect (wrap around on the same line).

• Back Tab (Shift-Tab): The cursor returns to the preceding
tab position (a multiple of eight positions from the left
margin). The key has a circular effect (wrap around on the
same line).

Chapter 1. Introduction 1-31

IBl\J Internal Use Only

How to Make Corrections 011 the Current Line
Any line of text typed while APL is in the input state will be
processed by the line editor, so you can use any of the keys
described in the previous section. APL is in the input state
whenever the cursor is visible. When one Enter key is finally
pressed, the entire line in which the cursor lies is passed to
APL for processing. The cursor is not visible during
processing time. When the cursor appears again, APL has
returned to the input state.

Changing Characters: If you are typing a line and discover you
typed something incorrectly, use the Cursor-Left or
Cursor-Right keys to move the cursor to where the mistake
was made, then type the correct characters over the incorrect
ones. You can then move the cursor back to the end of the
line, using the End key, and continue typing.

Erasing Characters: If you notice you have typed an extra
character in the line, you can erase (delete) the character using
the Del key or the Backspace key. Use the Cursor-Left or
other cursor-control keys to move the cursor to the character
you want to erase. Then press the Del key, and the character
is deleted. Or move the cursor to the right of the character to
be deleted, then press the backspace key. Use the End key to
move the cursor back to the end of the line and continue
typing.

Adding Characters: If you see that you have omitted
characters in the line you are typing, n10ve the cursor to where
you want to add the new characters. Press the Ins key to set
Insert rnode on, then type the characters you want to add.
The characters you type will be inserted at the cursor position.
The character that was at the cursor position, and those
following the cursor, will be pushed to the right. When you
are ready to resume typing where you left off, press the Ins key
again to set Insert rnode off (the cursor win return to its
ordinary form), and use the End key to get back to your place
in the line. Then continue typing. If you forget to press the
Ins key to set Insert mode off, it will automatically be turned
off when you press an Enter key. You don't have to move the

1-32 APL/PC, Version 2.1

IBM Internal Use Only

cursor to the end of a line before pressing the Enter key. The
whole line will be executed anyway.

Erasing Part of a Line: To end a line at the current cursor
position, press the Ctrl-End key. Then you can continue
typing. Similarly, the line up to (but not including) the current
cursor position may be erased with the Ctrl-Home key.

Cancelling a Line: To cancel a line that you are typing, press
the Esc key anywhere in the line. (You do not have to press
Enter). The line is completely erased, and the cursor moves to
the line beginning.

Use of Displays

APL enables you to work, sequentially, in the following eight
modes during the same working session:

• Monochrome Display

• Colour Graphics Adapter in alphanumeric modes:

1. Black and white, 40 characters per line.

2. Colour, 40 characters per line.

3. Black and white, 80 characters per line.

4. Colour, 80 characters per line.

• Colour Graphics Adapter in graphic modes:

1. Colour, 40 characters per line.

2. Black and white, 40 characters per line.

3. Black and white, 80 characters per line.

Chapter 1. Introduction 1-3 3

IBM Internal Use Only

Only the Colour Graphics Adapter graphic modes directly
support APL characters. You may use the Monochrome
Display mode or the alphanumeric modes of the Colour
Graphics Adapter. However, some APL characters will not be
displayed unless a special APL ROM is installed in the
corresponding Adapter.

Note: At any time during the work session, you can change
modes without leaving APL.

At load time, if you have both a Monochrome and Printer
Adapter, and a Colour Graphics Adapter, the Monochrome
mode is activated.

If you want to change to the Colour Display mode, press one
of the Alt F -key combinations, according to the following
table:

Key-Pressed

Alt-FI
Alt-F3

~lt-F5
Alt-F7

~lt-F9
Alt-F4
Al t-F6
Alt-F8

Changes to Mode

Monochrome
Alphanumeric Black and White 40
Alphanumeric Colour 40
Alphanumeric Black and White 80
Alphanumeric Colour 80

..... Graphic Colour 40
Graphic Black and White 40
Graphic Black and White 80

I For further information on these F-key settings, see "Function
I Keys" on page 1-19.

APL does not allow you to switch to a display that is not
available.

When you switch from one display to another, for example,
from display A to display B, the screen on display B clears;
however, the screen on display A does not. Thus you can keep
part of the session displayed on display A (graphics, listing of
APL objects, etc.) and continue working with display B.

To clear a screen you are working with, switch to that display
by pressing the appropriate Alt-F key combination. If you try
to switch to a display that is not physically connected or

1-34 APL/PC, Version 2.1

IBM Internal Use Only

switched on, you can return to the original display by pressing
the appropriate Alt-F key combination.

Note: The APL system detects the IBM Personal Computer
configuration reflected in the switch settings (see the PC
Technical Reference manual). If your actual configuration is
different (for example, you forgot to switch on your Colour
Display), the system may switch to a display that is not
operating, and you will not be able to see anything you type,
although it can be executed if you press an Enter key (more
about this later). This condition can easily be confused with a
system hang. If this happens, the best action is to return to
the active display by pressing the appropriate Alt-F key
combination.

Disk(ette) Drives

APL workspaces are collected into libraries, which are
identified by an integer number. Each disk drive of the IBM
Personal Computer represents an APL library, with the
following default identification number:

DOS APl
Device Drive Spec. library

First diskette drive A 1
Second diskette drive B 2
First fixed disk C 3
Second fixed disk D 4

Disk drives are usually controlled under APL by system
commands (see Chapter 10, "System Commands") relating to
workspace storage and retrieval. If no library number is
specified for these commands, the device that is the current
DOS default drive will be used. Specifying an invalid library
number that corresponds to a non-existent drive should be
avoided, because the system may perform an unintended
action.

The disk drives also can be controlled with the DOS file
management auxiliary processor, AP210, which is discussed in

Chapter 1. Introduction 1-35

IBM Internal Use Only

Chapter 12, "Auxiliary Processors", and the FILE workspace,
which is discussed in Chapter II, "Application Workspaces".
The drives that each library number refers to may be redefined
with the APIOI Profile and Stack Auxiliary processor, and this
may also be used to specify a path in addition to the drive for
each library.

The Printer

I The optional IBM 5152 Graphics Printer or IBM 4201
I Proprinter can be used to produce both APL and non-APL
I characters, if the printer auxiliary processor, AP80, is specified
I as a parameter to the APL command at load time, before the
I start of a work session, or has been loaded by means of AP2.
I Certain other printers may be used, but may require the use of
I a patched version of AP80 in order to operate correctly. See
I "Patching AP80 for Other Printers" on page 12-12 for further
I information.

I Note: Switch 6 on the IBM 4201 Proprinter must be set to
ION for correct operation with APL.

As described in a previous section about the keyboard, the
following key combinations can be used to control the printer:

• Shift-PrtSe: A printed copy is made of the currently-active
screen.

• elrl-PrlSe or Alt-PrISe: Acts as an On/Off switch for
sending display output to the printer, as well as to the
screen. This allows the printer to be used as a system log
to provide a record of the work session.

The AP80 auxiliary processor also allows selective printing of
desired APL objects or results. Chapter 12, "Auxiliary
Processors" discusses, in detail, the use of AP80 to control the
printer with a shared variable, and Chapter 11, "Application
Workspaces" explains the use of the PRINT workspace.

1-36 APL/PC, Version 2.1

BM Internal Use Only

:ontrol codes can be sent to the printer, but they will not
.freet the APL special characters.

Chapter 1. Introduction 1-37

IBM Internal Use Onl:

Notes:

1-38 APLjPC, Version 2.1

11\1 Internal Use Only

:llapter 2. APL Tutorial

What is APL? 2-3
Arrays and Functions 2-4
Interactivity 2-7

The APL Calculator 2-8
Order of Execution 2-10
Powers and Logarithms 2-11
Circular Functions 2-13
Computations with Multiple Data Items 2-14
Variations on the Compound Interest Problem .. 2-17
Named Data 2-18
APL vVorkspaces 2-20
Other Functions and Operators 2-24

Input/Output 2-24
Shared Variables 2-25
A Simple Example 2-26
Shared and Other Variables 2-27

Debugging 2-28
Quad output 2-29
l'racing 2-30
Stopping 2-31
Alternate execution 2-31

Speeding Up APL Code 2-32
Use Timing Tools to Find Hot Spots 2-33
Eliminate Explicit Loops 2-33
Avoid Waxing or vVaning Variables 2-35
A void Large Outer Products 2-36
Avoid Tiny Functions 2-36

An Exanlple - Computing a Histogram 2-37
Computing the Histogram with an Explicit Loop 2-37
Computing the Histogram with an Outer Product 2-39
Computing the Histogram with Grade Up 2-41

I-Iovv to Write a Timing Function 2-42
A Simple Timing Program 2-42
An Improved Timing Function 2-44
An Alternative Solution 2-46
Concluding Thougl).t 2-47

Chapter 2. APL Tutorial 2-r

IBM Internal Use Onl

Further Reading 2-4

Notes:

2-2 APLjPC, Version 2.1

BM Internal Use Only

What is APL?

\PL is an interactive, array-oriented computer language. It is
l system of computation based on four cardinal ideas:

l. APL is array-oriented; that is, data items are collected and
operated on in aggregates. It is as simple to operate on a
one-dimensional list (a "vector") or two-dimensional table
(a "matrix") as it is to work with a single number. Arrays
can be dynamically expanded or contracted to hold any
amount of data.

2. APL is function-oriented; that is, data arrays are
transformed into other data arrays by the application of
functions. A rich set of primitive functions is built-in to
APL; new functions are easy to write and have compatible
syntax and capabilities.

3. APL is interactive; that is, the user can readily write new
APL code at a display, can test it and correct it. A session
manager retains the most recent display of input and
output lines for ready reference. The user can build
packages of functions and data to perform some task; such
a package (a "workspace") can easily be examined or
altered.

4. APL hides details of its implementation; that is, the
physical details of the computer running APL are not the
concern of the user. APL automatically allocates the
correct amount of storage, assigns the format of numeric
data, performs all input/output, and checks automatically
for many kinds of errors, such as ensuring the correct type
and size of data being passed to subfunctions.

Some of the other notable features of APL include:

• simple and consistent syntax

• function recursion

• function tracing, suspension and resumption

Chapter 2. APL Tutorial 2-3

IBM Internal Use On I:

• uniform object naming within a one level store

• executability of incomplete functions

• simple input and output

• code portability

• easy library updating

• easy code updating

• direct links to other languages

A very simple example of calculation using APL:

TWOS+2*1 2 3 4 5 6 7 8 9 10
)SAVE TWOPOWER

This creates a list of powers of two and saves it on the user's
disk in a workspace named TWOPOWER. Many more
examples will be given below.

Arrays and Functions

Let us look in more detail at each of the terms used above.
An array can be as simple as a single number or single
character, and is then called a scalar. If it is a simple
one-dimensional list, it is called a vector. A two-dimensional
table is called a matrix. No special name exists for arrays with.
three or more dimensions. The number of dimensions of an
array is called its rank, and each dimension is called an axis.

An array must be homogeneous; that is, it must contain only
numbers or only characters. Characters can be chosen from
the 256 ASCI I characters, including: letters, digits,
punctuation marks, special characters, and control characters
such as line-feed. Numbers can be whole integers, or may
have fractional parts or exponents: in the terminology of other
computer languages, APL numbers may be either fixed or
floating point, at will. Boolean arrays (values of 0 and 1,
which are also truth values in APL) are packed together by

2-4 APL/PC, Version 2.1

~M Internal Use Only

PL to save storage, but for computational purposes, they are
eated like any other numbers.

n array with more than one dimension must be rectangular:
lat is, all parallel axes must contain the same number of data
.ements. For example, it is not permissible in APL to have a
latrix with a different number of items in each row.

'unctions come in several varieties. Most important are the
rimitive built-in functions, which perform arithmetic,
~lational, structural and general computing operations. For
xample:

"+" does addition

"x" does multiplication

"*" does exponentiation

"~" computes the logarithm

" ! " computes the factorial (Gamma) function

"v" computes the boolean "or"

" r" finds the maximum

" E" de~ermines membership in a set,

• " 1" searches a vector for a given item

• "Ii" determines the alphabetic or numeric order of an array

• " ?" generates random integers

• "T" converts to any desired number base

• "m" inverts a matrix

The primitive structural functions are unique to APL among
the widely used pro gramming languages. They include:

Chapter 2. APL Tutorial 2-5

IBM Internal Use On

• catenation (using comma, " I")

• determining the current shape of a data array (monadic
rho, "p")

• changing the shape of an array of data (dyadic rho, "p")

• extraction of the first (or last) few columns of a matrix or
items of a vector (take, "1''')

• dropping of the first (or last) few columns or items (drop,
"", ")

• transposition (transpose, "~")

• rotation and reflection (rotate, "$")

• extraction of an arbitrary rectangular subarray using vecto
subscripts (with" [] ")

• extraction of an arbitrary rectangular subarray according
to a boolean relationship (such as "(C;t; r r)/C")

There are nearly sixty primitive functions in APL, each one
symbolised by a single special character. With some
exceptions, the primitive functions can operate on arrays of
any size or rank. Similarly, the non-arithmetic and structural
functions work on numeric or character arrays in similar ways.

Other kinds of functions may be created by the user of APL as
needed. Derived functions are written as two or three adjacent
special characters, and represent a compound of one or two
primitive functions with a primitive operator. For example, the
built-in operator" /" is called reduction and means "combine
all items along one axis according to the indicated function".
"+ / 6 7 2" computes the sum 15 of the vector shown, "x / 6
7 2" computes the product 8 4, and "r / 6 7 2" computes
the maximum 7. The inner product operator, represented by a
period, combines two functions in a particular way. For
example, "A + • xB" is the familiar "dot product" of matrix
algebra.

2-6 APL/PC, Version 2.1

IBM Internal Use Only

Lastly, defined, or user-written functions correspond to the
subroutines or procedures of other languages, and may contain
many lines of code. They are generally written with the aid of
afunction editor. Only one control structure is permitted in
defined functions - the branch (or "go-to"), symbolised by an
arrow pointing to the right (-+). Loops can be written
explicitly with branches, but in practice, they are required
much less often in APL than in other programming languages
because of the built-in array functions and operators.

Note: The terms function and operator refer to two very
different kinds of object in APL. Functions work on data
arrays to produce new data arrays, while operators work on
functions to produce new functions. In other computer
languages, these terms are often used interchangeably.

Interactivity

Normally, all lines of APL must be entered from the keyboard.
However, any line may invoke user-defined functions, so often
all the user need type is a brief "trigger" expression to start a
long computation running. It is possible with the aid of
Auxiliary Processor 101 (APlOl) to automate responses that
would otherwise have to be typed in manually to a program
that requests them.

To write a defined function, a function editor is needed. APL
provides one built-in, called the del-editor, after the special
character "\J", which causes entry to it. The body of a defined
function consists of APL lines to be executed in order, plus
branch statements to alter the order of execution. The header
line gives the name of the defined function, and the names of
the dummy variables which are the input, output and local
work variables. (Other function editors are available too;
workspace ED IT has one written in APL, and another that
can invoke a DOS editor such as Personal Editor).

Testing a defined function is as simple as typing in a line of
APL code that executes it. A natural style of writing a
complex program in APL is to write and test subcomponents
separately. Test data for the subcomponents can be
pre-computed or entered by hand, and kept together with the

Chapter 2. APL Tutorial 2-7

IBM Intcinal Use Only

function being tested in the workspace. It is never necessary
to write a complete function in APL before testing it. This
procedure greatly decreases the time needed to produce a
working program.

When an error occurs in a line of APL code, the APL system
stops immediately and displays an error message along with a
copy of the offending statement and a pointer to the error
position. Often, the user can immediately determine the source
of the error, correct it, and resume execution from the point of
error. For exarnple, suppose that inside a defined function
narned COMPUTE, line 4 performs a division by variable X.
Should X happen to be 0 at some time, then execution of that
line would produce the following display:

DOMA.IN ERROR
COMPUTE [4]

Z+l+X
A

The execution of function COMPUTE is now suspended, and the
APL system is waiting for the user to type in a new conunand.
The user can determine that X is indeed 0, and then perhaps
might set X to another value and resume execution at this
same line to see what other errors show up. Eventually, the
user may abandon the current execution altogether, correct all
the errors discovered in the defined functions, and restart. For
more details see the section "Debugging" on page 2-28.

~I'he APL Calculator

For those who sit for the first time at an APL display, it can
be something as simple and easy to use as a pocket calculator.
In fact, the simpler operations are written with the usual
rnathematical notation, with no need to learn complicated
keywords. You just type the operation you wish to perform,
press the Enter key, and the system answers imrnediately with
the result. For instance:

2-8 APL/PC, Version 2.1

,BM Internal Use Only

2+3
5

Note: From now on, lines entered by the user will be indented
six positions to the right with respect to the results produced
by the machine. This notation is not arbitrary, since it
corresponds to the way things appear on the screen in most
APL systems.

In the same way as we have performed an addition, we can
also use any other typical arithmetic operation, the symbols of
which are well known.

12-3
9

3-12
-9

4x7
28

30+6
5

Observe that, in APL, negative numbers are represented with a
special sign symbol, different from the one used for the
subtraction operation. This overbar (or high minus) is not a
function symbol, but is part of the representation of negative
numbers, just as the decimal point is used in the representation
of fractions. The overbar character is used whenever you want
to introduce a negative number, and can be obtained by
pressing and holding the Shift key and then pressing the 2 key.

If the number to be input is not an integer, the integer part
should be separated from the fractional part by a decimal
point.

2.5x4
10

You don't have to worry about whether the result of an
operation will be an integer or not; the system takes care of
that.

4+3
1.333333333

Chapter 2. APL Tutorial 2-9

IBM Internal Use Only

Order of Execution

Several consecutive operations may be performed in a single
line:

4x3+2
6

However, APL has a property that, at first sight, you may find
surprising: when several operations are to be performed
successively, the first one to be executed is the rightmost 'one.
In the above example, the division 3 + 2 will take place first,
giving a result of 1 • 5; then this number will be multiplied by
4 (4 X 1. 5), giving the expected result of 6.

Sometimes, if this rule is not taken into account, you may
believe at first sight that the result given by the machine is
wrong. But, with a little practice, you will soon get used to
this order of evaluation.

Let us look at an example:

4x3+2
20

If we are used to giving multiplication precedence over
addition, we wou~d tend to believe that the result of this
operation should be 14 (4 X 3 = 12; 12+2 = 14). But, since
APL evaluates from right to left, what has happened here is:
3+2 = 5; 4x5 = 20.

The reason why APL performs its operations in this way is not
arbitrary. Because APL has many more functions than
ordinary arithmetic, precedence rules based upon functions
would be quite complex, especially since they would have to
take into account the derived and user-defined functions, as
well as the primitives. To avoid this complication, the simple
right-to-Ieft rule is used, which makes the understanding of any
statement dependent only on its visible form, independent of
the particular functions involved. In any case, it is always
possible to make APL execute the calculations in any desired
order. A proper use of parentheses is sufficient.

2-10 APLjPC, Version 2.1

[BM Internal Use Only

14

20

(4x3)+2

4x(3+2)

In this way, we tell APL that we want to perform first the
operation located between the parentheses. Notice that while
is it not incorrect, it is never necessary to parenthesise the last
part of an APL statement because the right-to-Ieft rule
accomplishes the same result.

Obviously, you may use as many parenthesis pairs as you
want. You should only remember that, in a given line, there
must be as many opening parentheses as there are closing
parentheses, and these should be in the proper order, for
otherwise the whole line will be rejected by the system with an
error message.

Powers and Logarithms

Besides the operations we have seen (addition, subtraction,
multiplication and division), APL contains several more, of the
type usually available in pocket scientific calculators. For
instance, the power function, represented here by an asterisk:

4*3
64

4 to the power 3 (4 * 3) is equivalent to multiplying 4 times
itself three times, and is thus equal to 64. Observe, however,
that APL does not contain a symbol for the "square root",
since this is really a special case of the power operation, with
exponent equal to 0.5 (one half).

The power function can also be mixed with other operations in
the same line. For instanc,e, let us apply the formula of
compound interest to calculate the capital to be obtained, after
5 years, by f,1 0 0 0 at 11 % cumulative interest. We would
simply type the following:

1000x(1+0.11)*5
1685.058155

Chapter 2. APL Tutorial 2-11

IBM Internal Use Only

Notice that as operations are performed from right to left, the
power function (1. 11) * 5 would take place before the
product.

The operation inverse to the power function is the logarithm.
APL has a special symbol (~, obtained by pressing Alt-8) that
makes it available. This function has two forms:

10~2
0.3010299957

~10
2.302585093

The first case computes the decimal logarithm of 2. The
second, the natural logarithm of 10. In other words: when the
logarithm function is written between two values, (as in
1 0~2), the first value specifies the base of logarithm and the
second is the number for which the logarithm will be
computed. If the left value is not given, the system assumes
we want to obtain the natural logarithm (base e, where e =
2.718281828459). The same rule applies also to the power
function, i.e. if the power base is omitted, the system will use
in its place, the number e.

*2
7.389056099

*1
2.718281828

Observe that * 1 (e to the power 1) represents the value of
number e.

From now on, we will call dyadic functions (from the Greek
"duo", meaning two) those applied to two different values (the
"arguments"), one of which is written to the left and the other
one to the right of the symbol for the function, as in 3 *4. On
the other hand, we will call monadic functions (from the Greek
"monos", meaning one) those that only have a right argument,
as in *2.

Sometimes the same symbol represents different functions
when used in these two different ways, and we will see
examples of this later.

2-12 APLjPC, Version 2.1

BM Internal Use Only

:ircular Functions

\nother set of functions frequently used in scientific
:omputations is the trigonometric circular and hyperbolic
unctions (sine, cosine, tangent, and their inverses). In APL,
tIl of these are represented by a circle, (0, obtained by pressing
:he Shift-O combination), as a mnemonic for the "circular
unctions". The right argument of the circle is the value of the
tngle (in radians) to be used in the computation. The left
trgument is a number indicating which trigonometric function
Ne want to calculate, according to the following table:

left
argument

Trigonometric
function

Sine
Cosine
Tangent
Arc sine
Arc cosine
Arc tangent

As you see, the negative numbers represent the trigonometric
functions inverse to those obtained with the corresponding
positive numbers. Left arguments of 0, 4 to 7 and -4 to -7
are reserved for other operations, including the hyperbolic
functions; see the reference section in this manual). Recall
that the negative sign is obtained by pressing the Shift-2
combination.

Let us look at some examples:

101
0.8414709848

201
0.5403023059

-202
DOMAIN ERROR

-202
1\

The first two cases compute the sine and cosine of an angle of
1 radian. I n the third example we find an error message,
indicating that we have tried to perform an operation with an
invalid argument. In fact, it is impossible to find an angle
whose cosine is 2, since the cosine of every (non-complex)

Chapter 2. APL Tutorial 2-13

IBM Internal Use Onl)

angle belongs to the closed interval [-1, 1]. This error
message also appears with the ordinary arithmetic operations.
F or instance:

1+0
DOMAIN ERROR

1+0
A
1000*1000

DOMAIN ERROR
1000*1000
A

In the first case, the error happens because you cannot divide
an ordinary integer by zero. In the second case, 1000 to the
1000-th power is larger than the maximum number
representable in this APL system, and the operation cannot be
done.

Like the power and logarithm, the circular function also has a
monadic form (with a single argument). Its result is the
product of pi times the value of the argument:

02
6.283185307

01
3.141592654

Observe that 01 represents the value of pi.

Computations with Multiple Data Items

In APL, any of the functions we have just seen (and several
others we will see later) can be applied to a mUltiplicity of data
elements at the same time, thus allowing the execution of
many simultaneous operations in a simple way. A few
examples will explain it clearly:

5xl 3 5 7
5 15 25 35

3+1 2 3
3 1.5 1

1 2 3+4
0.25 0.5 0.75

2-14 APLjPC t Version 2.1

lBl\1 Internal Use Only

[n the first case, 5 is multiplied by the four values at the right
of the "titTleS" sign. The four results appear then in a single
line. In the second case, 3 is divided by 1, 2 and 3. Finally, in
the third example, each of the numbers 1, 2 and 3 is divided by
4. Notice that the multiplicity of values can be either at the
right or at the left of the operation to be performed.

This reduced notation finds many applications. For instance:
let us suppose we nlust perform the conversion to Dollars of
certain quantities expressed in Pounds Sterling, such as 1532,
12288 and 23881. If the exchange rate for the Dollar on a
certain date is 1.23, (1 Pound = 1.23 Dollars) the conversion
will be performed in the following way:

1532 12288 23881 x 1.23
1884.36 15114.24 29373.63

This is not the only way to perform computations with
multiple data items. Any of the seven function symbols we
have seen up to now may also apply to data collections on
both sides at the same time. But in this case there exists a
restriction: the number of data items at the left must be the
same as the number of data items at the right. The operation
is now performed in a pairwise manner, namely: the first
element on the left is combined with the first one on the right,
the second on the left with the second on the right, and so on,
until the end of both collections.

2 3 5 7 x 4 3 2 1
8 9 10 7

In the above example, the result is equal to 2 x4, 3 x 3, 5x2
and 7 x 1. Instead of the tin1es sign, you may use any other:

2 3 5 7 ~ 4 3 2 1
1 1 0 0

where we have obtained the results of 2~4, 3S3, 5~2 and
7~ 1, respectively.

What happens if the number of data items at the left is
different from the number of data items at the right? Let's try
it:

Chapter 2. APL Tutorial 2-15

123 x 3 4
LENGTH ERROR

1 2 3x3 4
A

IBM Internal Use Only

The system recognises an anomalous condition, and answers
with an error message.

There are other ways in which computation can be performed
on many data elements at once, using the APL operators:
reduction, scan, inner product and outer product. These
operators are used with primitive functions to produce derived
functions, which then operate on data collections in useful
ways.

For example, in the Pound to Dollar conversion problem
above, if we had been interested only in the total number of
Dollars, rather than the individual converted amounts, we
could have obtained this result directly, using the derived
function, plus-reduction:

+/1532 12288 23881 x 1.23
46372.23

Similarly, in the second example, to find the number of
instances in which the left argument is not greater than the
right, it is only necessary to write:

+/2 3 5 7 ~ 4 3 2 1
2

As it happens, since both arguments in this case are vectors,
this form is interchangeable with the inner product, and the
same result could be obtained by writing:

2 3 5 7 +.~ 4 3 2 1
2

Similarly, we may compute the total number of Dollars using
inner product, by:

1532 12288 23881 +.x 1.23
46372.23

2-16 APLjPC, Version 2.1

IBM Internal Use Only

M any other examples of inner product, using higher rank
arrays, will be found in the reference section of this manual.

Variations on the Compound Interest Problem

The execution of simultaneous operations with a series of data
items may be combined with the execution of several
consecutive operations in a single line. To give an example,
we shall repeat the compound interest problem we solved
above (fl000 over 5 years at 11 %).

1000 x (1+0.11)*5
1685.058155

Results like this are more sensibly displayed with just two
decimal digits, and in what follows we will do this in the
simplest way, using the primitive format function (<1»:

2<1>1000x(1+0.11)*5
1685.06

Let us now see what will be the effect of different interest rates
on the resulting capital. Let us try 10, 10.5, and 11 %. We
just have to replace 0.11 in the formula by the whole series of
values we now want:

2<1>1000X(1+0.10 0.105 0.11)*5
1610.51 1647.45 1685.06

Let us suppose we now want to maintain the interest rate at
11 0/0, but we want to test the effect of varying the time to 4, 5
and 6 years.

2<1>1000x(1+0.11)*4 5 6
1518.07 1685.06 1870.41

We could also keep the interest of 11 %, and a time of 5 years,
but vary the starting capital:

2<1>1000 1500 2000X(1+0.11)*5
1685.06 2527.59 3370.12

Commonly, compound interest is presented in terms of a table
of values for a set of interest rates over a number of years, for

Chapter 2. APL Tutorial 2-17

IBM Internal Use Only

a unit amount of capital, say t: 1 0 0 O. Such a table is easily
constructed in APL using the outer product:

2~1000x(l+0.10 0.105 0.11)0.*1 2 3 4 ~
1100.00 1210.00 1331.00 1464.10 1610.51
1105.00 1221.02 1349.23 1490.90 1647.45
1110.00 1232.10 1367.63 1518.07 1685.06

Named Data

Up to now, we have operated with numeric data explicitly
introduced whenever we want to make use of it. However,
many of these data collections take part more than once in our
calculations. If the data is a simple number (such as 3) this is
not a problem, but it is not easy to remember all the time that
the Dollar exchange rate is 1.23. In APL, this problem may be
solved by assigning a name to a value, and this can be done by
means of the following expression:

DOLLAR +- 1.23

with the meaning "the name DOLLAR is assigned the value
1.23". From now on, we may use the name DOLLAR in any
place where we would make use of its value. For instance: let
us repeat the Pound Sterling to Dollar conversion we
performed above.

1532 12288 23881 x DOLLAR
1884.36 15114.24 29373.63

If the exchange rate changes the next day (for instance, going
up to 1.29) and we want to repeat the above calculations, we
will just have to assign to the name DOLLAR the new value of
the rate, and repeat the same line, which thus becomes
independent of the current exchange rate:

DOLLAR + 1.29
1532 12288 23881 x DOLLAR

1976.28 15851.52 30806.49

In the above calculation there still exists a repetitive element.
It is possible that we are always interested in converting the
same amounts to their equivalent values. In this case, why not
also assign a name to these data iterils?

2-18 APLjPC, Version 2.1

IBM Internal Use Only

PRICES + 1532 12288 23881
PRICES x DOLLAR

1976.28 15851.52 30806.49

If the Dollar rate now changes again (going down to 1.18), the
repetition of the calculation becomes trivial.

DOLLAR + 1.18
PRICES x DOLLAR

1807.76 14499.84 28179.58

You can see that it is equally easy to assign a name to a single
number or to a collection of data items.

A valid APL name should start with a letter (upper case or
lower case), delta (8.) or delta underbar (~) and may continue
with letters, delta (8.), delta underbar (~), numbers, the
underbar character (_) or the overbar (-, the same one used in
the negative numbers). The number of characters in a valid
name should be at most twelve. If longer names are used, the
APL system accepts them anyway, but they are truncated to
twelve characters. Examples of valid names are:

DOLLAR PRICES values
Aa aA Xl Xla
A JOHN SMITH JOHN-SMITH
Very_long_name

though the last one will be converted by the system into
"Very _1 ong_na " . All the names in the preceding example
are different, and may contain different values at the same
time. Uppercase letters are distinguished from lower case,
therefore Aa, AA, aa and aA may be the names of four
independent data collections.

Once a name has been assigned a given value, we may want to
recall the value after some time has passed. For this purpose,
it is sufficient to type the name, ending the line, as always,
with the Enter key. For instance, if we have forgotten the last
exchange rate for the Dollar we assigned to the DOLLAR
name, we can ask the system what the value was. We can also
do the same with PRICES.

Chapter 2. APL Tutorial 2-19

DOLLAR
1.18

PRICES
1532 12288 23881

IBM Internal Use Only

Finally, we may want to keep, not the original data, but the
result of an operation. We should do exactly the same thing,
since we can assign to a name the result of any computation,
simple or complex.

values + PRICES x DOLLAR
values

1807.76 14499.84 28179.58

In the above example, we have assigned the result of the
operation PRICES x DOLLAR the name "values". Then
we asked for the value of "val ues", and obtained, of course,
the same numbers as when the operation was performed
directly.

In APL, the names assigned to values are called "variables".
The reason is that, as we have seen in the case of DOLLAR, the
actual value associated with the name may vary with time,
through successive assignments.

APL Workspaces

We have just seen how it is possible to give a name to one or
several data items if we intend to do many operations with
them. But what shall we do to preserve the values from one
day to the next? The problem is that all memory contents are
lost when the machine is turned off. Thus, if we turn it on
later and want to use APL again, we will find that the
variables we had been working with before have lost their
values, they have no value at all:

DOLLAR
VALUE ERROR

DOLLAR
1\

PRICES
VALUE ERROR

PRICES
1\

2-20 APL/PC, Version 2.1

[BM Internal Use Only

The new error message tells us that the. name pointed to by the
caret has not been assigned any value, or has lost it for some
reason.

However, once we have assigned values to one or more
variables, we can keep them on a diskette to be used later.
The set of things that are kept there (data, names, and other
objects) is called a workspace.

Let us suppose that we want to save the values of the data
assigned to the names "DOLLAR", "PRICES" and "values".
After assigning to these variables their respective values, and
before we turn off the machine or get out of APL, we will
insert a formatted diskette in the diskette drive and, after
closing the door, we will type the following line:

)SAVE SAMPLE

The light on the diskette unit will turn on for a few seconds.
Then the APL system answers with the present time and date
and the name of the new workspace (SAMPLE in this case).

Note: The drive door should never be opened while the light
is on. All the information contained on the diskette might be
destroyed.

All APL instructions beginning with a right parenthesis")"
belong to a special group called "APL system commands", and
are associated with workspace management, either on disk or
in memory. In our case, the)SAVE command, the name
assigned to the workspace will be used whenever we want to
recover it from the disk. This name may be the same as the
name of one of the variables contained in the workspace, and
may contain one to eight characters. The first must be an
uppercase letter, the others can be chosen from the uppercase
letters or the digits (0123456789). Workspace names with
lowercase letters are not allowed.

Note: The actual file name of the DOS file that APL creates
as a result of the) SA VE command is padded to eight
characters with underbars. However, these underbars should
not be entered when referring to the file with APL system

Chapter 2. APL Tutorial 2-21

IBM Internal Use Onl,

commands. (This also applies to files created by the)OUT
command).

If any function in the workspace is suspended for any reason,
then the)SAVE command will fail with a COMMAND ERROR
message. If this occurs, clear all suspensions with a)RESET
command and retry the) SA VE command.

Let us suppose we now turn off the machine, turn it on again
after some time, and wish to go on working with the data we
saved in workspace SAMPLE. It is now necessary to copy the
workspace frorn the diskette to the memory. This can be done
by means of the following command:

)LOAD SAMPLE

Before typing this command, the appropriate diskette (the one
where we saved the workspace) should be inserted in the
Personal Computer disk drive. Once the door is closed, we
may execute the above command, and the drive light will turn
on. After SOIne seconds, the light will turn off again, and APL
will write the time and date when the workspace was last saved
on the diskette. We now have access to the data we wish to
use:

DOLLAR
1.18

PRICES
1532 12288 23881

There exists one command that gives us the list of all the
variables contained in the workspace now active in memory.
This command is invoked in the following way:

)VARS
DOLLAR PRICES values

We can use it whenever we want to be reminded of the names
of all the variables in our active workspace.

Recall that, if some variable values are modified and you want
to keep their new values, the workspace must be saved again
before the nlachine is turned off or APL is exited, since
otherwise the changes will be lost, and the next time we

2-22 APL/PCt Version 2.1

IBM Internal Use Only

execute)LOAD SAMPLE we will find the old values, the last
to be saved in the diskette.

To save the active workspace on the diskette again, we don't
have to give its name in the)SAVE command, since the
system remembers it. I t is thus enough to type:

)SAVE

which will have the same effect as)SAVE SAMPLE. The new
values of the variables will replace those on the disk, which
will be lost.

Finally, it is possible to create a totally new unnamed
workspace to introduce new data collections that we want to
keep separated from any others we may have. The following
command can be executed for this purpose:

) CLEAR

and the system answers with the message "CLEAR WS". Ifwe
now ask for the names of the variables in the active
workspace, we will find there are none:

)VARS

We can then create the new variables we require. Some of
these may have the same names as others contained in a
different workspace, but the system differentiates between
them, since at a given time only the variables in the active
workspace are accessible.

Note: Be careful not to issue a)LOAD or a)CLEAR
command if the current workspace has been changed since the
last time if was)SAVEDed, unless it is desired to discard those
changes.

We will later see how to preserve a sequence of operations as
an APL function, or program, so that the same operations can
be performed repeatedly on different data without the necessity
of entering the operations from the keyboard each time. Once
defined, such functions are kept, like named data collections, in
a saved workspace, and are therefore available whenever that
workspace is loaded.

Chapter 2. APL Tutorial 2-23

IBM Internal Use Only

Other Functions and Operators

Many more functions exist in APL than can be touched upon
in this brief chapter. In particular, no examples are given here
of how to work with character data. We shall merely say that
a character array, such as one containing the letters of an
English sentence, can be manipulated by all the non-arithmetic
functions of APL which were illustrated above for numeric
arrays. (In fact, the histogram functions given below require
only minimal changes if their input vectors contain characters
instead of numbers).

The remaining sections of this chapter are of a less elementary
nature than what has gone before. They cover more advanced
topics, and are more concerned with conveying the "style" of
APL than merely the "facts". They are intended for users of
APL who have taken the first steps, .and feel comfortable in
writing simple code.

As with any language, one of the best ways to gain familiarity
with APL is to read the code of those well versed in it. The
defined functions in the supplied workspaces are a good place
to begin, as are the pieces of sample code given throughout
this book.

Input/Output

The simplest form of APL input and output is that used in the
calculator n10de described above. You enter what you wish
from the keyboard, and APL presents the results, if any, on
the display device. To get input to, or output from, a
function, APL provides the quote-quad (I:!l) and the quad (D).
With them, a function can output numeric or character
information to the user at the display in an extremely simple
manner. "Quote-quad" has a shape mnemonic of its purpose:
as a window to pass character data between the display and an
APL function, without modification. "Quad" also passes

2-24 APL/PC, Version 2.1

IBM Internal Use Only

information, but it evaluates its input, which may be any valid
APL expression.

Syntactically, the quad and quote quad are used like any
ordinary APL variable. For example, we can write a simple
APL statemerit:

Y+X

Then we can substitute quad or quote-quad for either of the
variables:

These lines mean "read a character string from the display, and
store it in variable Y", and" show the contents of variable X to
the user". If special formatting is desired for input or output,
the whole power of APL is available.

A more realistic example would be:

O+'ENTER YOUR NAME, PLEASE'
N+[!]

This presents an invitation on the display, then reads in the
line typed by the user and places it into variable N.

If an APL expression is not assigned to a variable at the left
hand end of a line, then it is automatically assigned 0, so that
its value is displayed.

Shared Variables

The primitive concept underlying all communication with APL
is the idea of a shared variable; that is, a variable accessible by
two parties, each of whom may both set and reference its
value.

In simplest terms, a shared variable is a conduit, a
communications link, between an APL workspace and a
second party. It looks and acts syntactically like an ordinary
variable. In this APL system the second party, at the other

Chapter 2. APL Tutorial 2-25

IBM Internal Use Only

end of the link, is always an auxiliary processor, a program
that runs outside of APL and logically connects to some other
subsystem on your machine. In versions of APL which allow
more than one simultaneous user, the second party can be
another APL workspace, and in all APL systems there are
permanently shared variables, called system variables, which are
shared with the underlying APL processor itself.

Quote-quad (l!J) may be considered a permanently shared
variable, and its auxiliary processor is the user at the display.
Its half-brother, quad (0), is not a pure shared variable, since
as explained above, it modifies its input.

A good analogy to the shared variable is a telephone
connection. We may dial any of several telephone numbers in
order to converse with a selected party at the other end of the
line. Similarly, we may "share a variable" with any of several
auxiliary processors (each identified by a unique number). As
with the telephone, the process of calling is the same for any
party, but after the link has been opened, we use different
signals to "converse" with each party.

A Simple Example

Suppose we wish to print one line of text. We need do only
the following:

1

2

80 OSVO 'XYZ'

OSVO 'XYZ'

XYZ+'This is a line of output.',DTC[2]

The first statement is called the shared variable offer. It
dedicates the otherwise ordinary APL variable XYZ to carry
messages to the printer. The second statement (which may
optionally also have "8 0" to the left of the DSVO) confirms
the sharing. If it did not return 2, meaning two way sharing
has been established, then communication with AP80 would
not be possible. (Think of the busy signal on a telephone
line). The third statement passes a string to AP80, which
passes it on to the printer. Since it ends with the new-line

2-26 APL/PC, Version 2.1

IBM Internal Use Only

character (written as OTC [2]), the line will be printed
immedia tely.

To send further lines, we do not need to re-open
communications by sharing the variable again. Continuing
from above,

XYZ+'This begins the 2nd line, '
XYZ+' and this ends it. ' ,OTC[2J

We should not expect to receive the same values as we sent
out, any more than we would expect the party at the other end
of the telephone line merely to echo back what we say. If we
look into variable XYZ to see what it contains, as by

O+XYZ

we will see 0 if AP80 has accepted the text strings for
processing, or some error indication if it has not.

Variable XYZ will continue to pass information between the
APL function and the printer until it is explicitly retracted (by
"OSVR") or erased (by")ERASE" or "OEX"), or a new
current workspace is loaded, or the user signs off from the
current APL session.

Shared and Other Variables

Syntactically, using a shared variable is just like using an
ordinary variable: you put values into it (which may be
computed by an APL expression), and you take values from it
and put them somewhere else. Once set, the value of a
variable does not change by itself, but will be changed by the
party that shares the variable.

Here is a comparison of four flavours of variables in APL,
showing the naming and sharing initialisation conventions:

Chapter 2. APL Tutorial 2-27

IBM Internal Use Only

Form Shared Initial-
Type of name with isation Example

Normal var Var name None None DOLLAR
Shared var Var name APnnn nnn DSVO XYZ
I/O var 0, [!] User Permanent 0, [!]
System var Dxx APl Permanent DWA, DTS

Most shared variables communicate with an auxiliary
processor, which is a program that performs a task outside the
APL workspace. A major purpose of many auxiliary
processors is to convert data between the workspace format
and the outside format, much as a telephone modem converts
sound to electrical impulses, and vice versa. They are typically
written in assembler language. For example, AP80 converts
the APL form of character strings into the printer's form,
which may involve the transmission of dot patterns that define
the APL character shapes, and also generates the necessary
printer instructions to carry out the process of printing.

Chapter 13, "How to Build an Auxiliary Processor" of this
manual is available for those who would like to write their own
auxiliary processor. Most users will be satisfied with using the
existing auxiliary processors, as described in
Chapter 12, "Auxiliary Processors". Even easier to use are
the APL functions in the supplied workspaces, as described in
Chapter 11, "Application Workspaces". For example,
function PRINT in the workspace of the same name uses
AP80.

Debugging

Finding errors in user-written programs is made easier by
several built-in features of APL: quad output, tracing,
stopping and conditional execution.

2-28 APL/PC, Version 2.1

IBM Internal Use Only

Quad output

The first is the simplest: to insert the clause "0+" at various
points in an APL statement in order to display the calculated
value at that point. For example, suppose a function looks
like this (displaying it with the built-in editor command
VFUNC[OJ V):

[OJ Z+X FUNC Y
[lJ Z+X+Y
[2J Z+Z*2+(X-Y)*2

This function is intended to add the squares of the sum and
the difference of two inputs, but for some unknown reason, it
produces the wrong answer sometitnes:

36

125

3 FUNC 3

3 FUNC 2

The latter number is wrong, the former right.

With a little judicious editing, we change the function to:

[OJ Z+X FUNC Y
[1] D+Z+(O+X)+O+Y
[2J Z+Z*D+2+D+(X-Y)*2

Note that parentheses were placed around X in line 1 so as not
to display the sum X+Y twice.

2
3
5
1
3
125

3 FUNC 2

We see that the error is in line 2: 2 is added to the square of
the difference before it is used as an exponent. (Recall that
APL obeys a strict right to left sequence of execution unless

Chapter 2. APL Tutorial 2-29

IBM Internal Use Only

modified by parentheses). The error may be corrected by
parenthesising Z * 2 in line 2.

Once the error is found, the function must be re-edited to
remove the 0+ clauses.

Tracing

An easier to use, though slightly less powerful, technique is to
use APL's built-in tracing feature. Any desired lines in any
user-written functions can be traced; that is, the result of those
lines can be displayed, identified by the function name and line
number. For example,

Tl1FUNC+1 2
3 FUNC 2

FUNC[1]
5
FUNC[2]
125
125

Note that 125 is shown twice, once from tracing line 2, and
then again as the result of the function call.

If an APL statement has several operations in it, then
potentially interesting partial results in the middle of the line
will not be displayed by tracing. This will not happen if the
lines are written in a good APL style: they should not be
overly long and should not be the artifical catenation of
several otherwise independent calculations.

The line numbers to be traced can be changed at any time
(even from within a user function) by giving a new value to the
trace vector. For example, to turn off the tracing of all lines in
a function, do

Tl1FUNC+l0

2-30 APL/PC, Version 2.1

IBM Internal Use Only

Stopping

Very similar to the tracing of lines is stopping before
designated lines. For example,

S~FUNC+l 2
3 FUNC 2

FUNC[l]

Execution has stopped just before line 1 of function FUNC
would have begun. The user is now free to interrogate (or
change) the values of any variables, such as

X
3

Y
2

Z
VALUE ERROR

Z
1\

Execution is resumed by entering a right arrow followed by the
line number to be executed. To resume at the next line, it is
common to keep the following APL statement ready for use on
an F-key:

~DLC

meaning "branch to the first line number kept in the system
variable OLC".

Stopping is frequently combined with tracing. Like the trace
vector, the stop vector may be reset (or set to nUll) at any
time.

Alternate execution

Often, within a user-written function, it may be possible to
anticipate possible errors and take preventive action. For
example, when dividing by a variable, if it should happen to be
zero, then an error will occur, and execution will halt.

Chapter 2. APL Tutorial 2-31

X+O
Y+3TX

DOMAIN ERROR
1'+3+X

A

IBM Internal Use Only

Such an error halt can be disconcerting, especially to a user of
another person's program. A simple way of checking for and
correcting any error detected by APL is to use the alternate
execution function, DEA. I ts two arguments are both
character strings holding APL statements. The right hand one
is executed first; if no error occurs, then the left hand string is
not used. But if the right hand statement fails for any reason,
then the left hand statement is executed in its place. Rewriting
the above statement:

999

'1'+999' DEA '1'+3+X'
l'

Often, the left hand statement contains a branch expression,
which transfers control in the case of an error. A useful
technique to avoid error messages from a user written function
is to invoke it in the right hand statement, for then OEA will
trigger the left hand statement if any error occurs during the
execution of that entire function.

A useful auxiliary function is 8EP supplied in the UTIL
workspace, which gives an indication of the cause of the most
recent error.

Speeding Up APL Code

I t is often the case that a slow running APL program can be
speeded up by judicious modification or rewriting. Because it
is important in practice, and because it offers a good way to
introduce much material important to the "style" of APL, we
give here a section on what to look for in such rewriting. this
section will be most helpful to someone who has used APL for
a while, and can therefore be skipped or skimmed on first

2-32 APLjPC, Version 2.1

IBM Internal Use Only

reading. First, we will give some helpful maxims, then we will
work through an example, and lastly we will write a simple
timing tool function.

Use Timing Tools to Find Hot Spots

In many programs, an adaptation of Pareto's Law on the
distribution of wealth holds true: that, roughly speaking, 200/0
of the program takes 80% of the time. The simple timing tool
developed below can assist in finding that time-consuming
portion.

For example, suppose it turns out on testing that one function,
BIGGEST, takes more than half of the total running time. If
it could be rewritten to be twice as fast, then the overall
program would run twenty five percent faster. It is often the
case that only one particular line in a function is responsible
for the largest part of the time spent in computation, and the
timing methods to be described can identify such lines as
candidates for revision.

Eliminate Explicit Loops

Explicitly written loops often increment an integer variable,
and then branch back for another iteration so long as that
variable is less than some limit. Such loops are to be avoided
if possible, since the interpreter will read and interpret each
line within the loop on each iteration, lowering the ratio of
useful computation to mere interpretation. The use of APL
vector and array operations can often eliminate explicit loops,
and, when they can be used, will usually result in clearer code.

For example, to sum the elements of vector V into scalar S,
one could write:

Note: l-origin indexing is assumed here and below.

Chapter 2. APL Tutorial 2-33

[0] S+SUMUP V;I
[1] I+S+O
[2J L:~«pV)<I+I+1)/O
[3J S+S+V[I]
[4] ~L

IBM Internal Use Only

However, it is both faster and clearer to use the APL reduction
operator and write:

S++/V

Of course, a loop must still be performed through the elements
of V; but this "implicit" loop will be in the machine code
which implements "plus reduction", and it will run very fast.
The explicitly written loop above requires probably the same
time for arithmetic summation, but additional time for
reinterpretation of the APL code, which must be done on each
pass through the loop.

Other APL primitives that can be used to replace explicit loops
are the scan operator (represented by backslash (\), the outer
and inner products, and vector subscripts. In addition, many
of the APL primitive functions automatically sweep through
the elements of array arguments.

I t is important to realise that it is not necessary to rewrite all
inefficient code in a program, but only those segments of code
which use the most time. For example, for casual,
experimental computation, an explicit loop is not necessarily
bad, even though it may not be the clearest expression of an
algorithm in APL. It is bad, however, if it consumes
considerably more time than equivalent loop-free code would,
in a program that is to be used frequently, and where
performance is important.

Except for user unfamiliarity with APL functions, the only
reasons for using explicit loops are that the algorithm is
inherently iterative (as are many techniques for solving
differential equations) or that too much space would be
consumed by the use of APL array operators in the formation
of intermediate results. In both cases, nevertheless, one should
strive on each iteration of a loop to process as much data as

2-34 APLjPC, Version 2.1

IBM Internal Use Only

possible, e.g. one entire plane of a three-dimensional array per
iteration.

A void Waxing or Waning Variables

Arrays or vectors that grow or shrink in size are one of the
most convenient features of APL. But if the arrays involved
are large, their use may consume a great deal of time because
it forces the APL interpreter to constantly reallocate storage
for them. If the size of a variable is known in advance, it is
faster to reserve space for it initially with zeroes or blanks, and
later place data within it by explicit subscripting.

For example, instead of appending a new element E to a
pre-existing vector V by:

V+10 ...
V+V,E

it is faster to use sUbscripting:

V+NpO
I+1

V[I]+E
I+I+1

In this example, I may not exceed N, the initial size assumed
for V. This case can be tested for by the user, and should it
occur, vector V could have another batch of zeroes appended
to the end. The point is to avoid too many automatic increases
in the storage size allocated to V.

Moving elements into many locations in such a vector may not
need an explicit loop, since a vector subscript can be used,
storing or retrieving a large amount of data at once. For
example, to insert three values at once into V:

V[1 2 3]+E,F,G

Chapter 2. APL Tutorial 2-35

IBM Internal Use Only

Avoid Large Outer Products

The outer product (written o. f where f is a built-in function)
produces a two dimensional table from its two arguments,
showing the result of every element in the left hand argument
combined with every element in the right hand one. This is
the equivalent of a double loop when written out with explicit
sUbscripting. Compared to the explicit loops, much running
time is generally saved.

However, if the arguments are lengthy, then the outer product
table can be quite large. This can lead to WORKSPACE FULL
conditions when the table itself is only an intennediate result
and the final result will not take up nearly as much space.
Furthermore, it can cause slow performance because managing
the storage for a large array may cause tirne consuming
rearrangements and movement of APL objects in the
workspace.

The worked out example of a histogram calculation below
shows one way that large outer product tables can be avoided
by the use of an alternate algoritlun.

Avoid rriny Functions

The choice of whether to call a separate function to perform
some calculation or incorporate that same code in-line
everywhere it is needed is an interesting one. For clarity, one
should strive to encapsulate as much code as possible in single
purpose well-nanled independent functions (often called tools).
There is some overhead involved in calling such functions,
however, and the clarity of the code may be diminished by the
need to renlember the meaning of additional natnes. A rule of
thulnb for nlaximising performance is that if the independent
function is doing anything more than some scalar arithnletic,
then it should not be coded in-line, since the calling overhead
will be tninor conlpared to the rest of the calculation.

2-36 APL/PC, Version 2.1

IBM Internal Use Only

An Example - Computing a Histogram

Let us now solve the following probleln: given a vector
INPUT, containing, for example the values, 7 7 5 2 3 4 5
3 5 7 2 7, count how many of each different value occur.
The histogram (bar chart) will be represented by two vectors:
vector ITEMS, the different items found: 2 3 4 5 7, and
vector COUNTS, the number of occurrences: 2 2 1 3 4.
Three different methods will now be given to compute the
histogram. Respectively, they will conserve space, time, and
both space and time. With minor changes, as noted, the three
functions presented will work for character instead of numeric
input vectors.

These examples assume some familiarity with APL, and so
may be skipped or skimmed on first reading.

Computing the Histogram with an Explicit
Loop

The first method is to loop through the data vector, one
number at a time. Check in the ITEMS vector if this item has
occurred already. If it has, add 1 to the appropriate count in
the COUNTS vector. If it hasn't, append the" item to the
ITEMS vector, and 1 to the COUNTS vector. This is the
classic technique for languages that can perform computation
only on scalars.

Here is the code (all examples use I-origin indexing):

Chapter 2. APL Tutorial 2-3 7

IBM Internal Use Only

[OJ RESULT+HISTl INPUT;COUNTS;ITEMS;JC;JD
[lJ A Compute histogram of vector INPUT
[2J A Result is a 2 row matrix
[3J A First row is unique items
[4J A Second row is count of each item
[5J A Space is conserved by explicit loop
[6J COUNTS+ITEMS+tO
[7J JD+l
[8J LOOP:? (JD>pINPUT)/OUT
[9J A See if next item appears in ITEMS
[10J JC+ITEMS t INPUT [JDJ
[11J ?(JC~pITEMS)/HAVE
[12J A A new item has been found in INPUT
[13J ITEMS+ITEMS,INPUT[JDJ
[14J COUNTS+COUNTS,l
[15J ?END
[16J A Increment count for existing item
[17J HAVE:COUNTS[JCJ+COUNTS[JCJ+l
[18J END:JD+JD+l
[19J ?LOOP
[20J A Combine ITEMS and COUNTS as a matrix
[21J RESULT+ITEMS,[O.5JCOUNTS

Note: If INPUT contains a character vector, we can change
the last line to:

[21J RESULT+(DAVtITEMS),[O.5JCOUNTS

A few points about style in writing defined functions should be
noted.

• Variables local to this function are listed in the header line,
to avoid cluttering up the workspace.

• Vectors ITEMS and COUNTS increase in size dynamically,
since we do not know initially how big they will become.

• The loop is tested for termination before using the index
variable JD.

• The variable names are long enough to be mnemonic. In
general, variables used only briefly for an unimportant
purpose should have short names, while variables used in

2-38 APL/PC, Version 2.1

(BM Internal Use Only

many places or for more important purposes should have
longer names.

Lastly, a reasonable number of comments have been
added. I t is an excellent rule that APL defined functions
should always have at least one comment, which states the
purpose of that function.

Running time for this method increases linearly with the
number of data items in INPUT, as does storage. However,
the running time will be relatively large, since the explicit loops
require repetitive interpretation of the code.

Computing the Histogram with an Outer
Product

We give the APL function first, and the explanation will
follow:

[OJ RESULT+HIST2 INPUT; ITEMS; COUNTS;
ALLITEMS;ITEMAT;ALLCOUNTS

[lJ R Compute histogram of vector INPUT
[2J R Result is a 2 row matrix
[3] R First row is unique items
[4J R Second row is count of each item
[5J R Time is conserved by outer product
[6] ALLITEMS+-l+(L/INPUT)+11+(r/INPUT)-L/

INPUT
[7J R Compare all possible items with INPUT
[8J ITEMAT+ALLITEMSo.=INPUT
[9] R Compress out duplicate items
[10] ALLCOUNTS++/ITEMAT
[11] ITEMS+(ALLCOUNTS~O)/ALLITEMS
[12] COUNTS+(ALLCOUNTS~O)/ALLCOUNTS
[13J R Combine ITEMS and COUNTS as a matrix
[14J RESULT+ITEMS,[0.5JCOUNTS

Note: If INPUT contains a character or non-integer vector,
change line 6 to:

[6] ALLITEMS+INPUT

Chapter 2. APL Tutorial 2-3 9

IBM Internal Use Only

If INPUT contains a character vector, we can change the last
line to:

[14] RESULT+(DAV1ITEMS),[O.5]COUNTS

In this method, the histogram is computed by means of several
intermediate arrays. First, we define vector ALLITEMS to
contain all integers from the minimum item in INPUT up to
the maximum item. For the example INPUT = 7 7 5 2 3
4 5 3 5 7 2 7, ALLITEMS will be 2 3 4 5 6 7.
Next, compute a boolean matrix ITEMAT with the outer
product of equality, comparing each scalar item in vector
ALLITEMS with each item in vector INPUT.

For the given INPUT, we find ITEMAT to be

0 a 0 1 a a 0 a a a 1 a
a a 0 a 1 a a 1 a a a a
a a 0 a a 1 0 a a 0 a 0
a 0 1 a a a 1 a 1 a a 0
a a 0 a a 0 0 a a a a 0
1 1 0 a a a a a a 1 a 1

For any row J and column K, item ITEMAT[J;K] shows the
equality value (i.e. a or 1) of item ALLITEMS [J] with item
INPUT[K].

Next, define vector ALLCOUNTS as the sum across each row
of ITEMAT: We compute ALLCOUNTS to be 2 2 1 3 a
4. In fact, ALLCOUNTS holds the counts for each number in
ALLITEMS. Lastly, compute the vector ITEMS by selecting
from ALLITEMS all items with non-zero counts. As expected,
ITEMS is 2 3 4 5 7. Compute the vector COUNTS by
selecting from ALLCOUNTS all items with non-zero counts.
As expected, COUNTS is 2 2 1 3 4.

Running time for this method increases linearly with the
number of data and linearly with the range of data, so that if
the data items are evenly distributed, running time could
increase quadratically with the number of items. Storage
required is linear with the number of items. But in fact, if the
range from the smallest to the largest item in INPUT is large,
then vector ALLITEMS could contain many possible items
that do not actually occur in INPUT. This would push up

2-40 APL/PC, Version 2.1

IBM Internal Use Only

both the running time and the temporary storage needed for
matrix ITEMAT. When the number of items is not large,
however, this function will run faster than the previous
method, and will not overrun the workspace available.

Computing the Histogram with Grade Up

Again, we give the APL function first, and explain it later.

[OJ RESULT+HIST3 INPUT;ITEMS;COUNTS;ORDINP;
FIRST;ITEMS;FIRSTAT;COUNTS

[lJ R Compute histogram of vector INPUT
[2J R Result is a 2 row matrix
[3J R First row is unique items
[4J R Second row is count of each item
[5J R Both time and space are conserved
[6J R Order the input vector
[7J ORDINP+INPUT[~INPUT]
[8J R Find first occurrence of each item
[9J FIRST+l,(lo/0RDINP)~-lo/0RDINP
[10] R Get item list and item count
[11] ITEMS+FIRST/ORDINP
[12] FIRSTAT+FIRST/lpORDINP
[13] COUNTS+«lo/FIRSTAT),l+pORDINP)-FIRSTAT
[14] A Combine ITEMS and COUNTS as a matrix
[15] RESULT+ITEMS,[0.5]COUNTS

Note: If INPUT contains a character vector, we can change
line 7 and the last line to;

[7] ORDINP+INPUT[OAV&INPUT]
[15] RESULT+(OAV1ITEMS),[O.5]COUNTS

First, we order the data vector and call it ORDINP. For our
example we find that ORDINP is 2 2 3 3 It 5 5 5 7 7
7. Compare each item in ORDINP with its left hand
neighbour, and note which are different. We find FIRST to
be 1 0 1 0 1 1 0 0 1 0 0 O. Select out the different
items, and call it vector ITEMS. As expected, ITEMS is 2 3
4 5 7. Find FIRSTAT, the locations of these items, by
compressing against the list of integers from 1 through to the
length on INPUT. For 1 origin indexing, they are at 1 3 5
6 g. Subtract each location from its right-hand neighbour to

Chapter 2. APL Tutorial 2-41

IBIVi Iniernai Use Oniy

generate the counts, and store in COUNTS As expected,
COUNTS is 2 2 1 3 4, where the last difference is from 1
plus the length of INPUT.

The grade-up function (Lh) runs in a time more than linearly
proportional to, but less than quadratically proportional to,
the number of items in its argument. So this method runs in
near-linear time, using a linear amount of storage. It uses the
least amounts of both time and space of the three techniques
presented above.

How to Write a Timing Function

This section will discuss the construction of a simple APL
function useful as a tool in timing individual statements.
Along the way, features of APL useful for both timing and
function editing will be demonstrated, as well as considerations
of environmentally independent APL coding.

This section may be skipped or skimmed on first reading as it
assumes some familiarity 'with APL.

A Simple Timing Program

The APL system includes a system variable DAI (Account
Information) useful for timing. The second component of this
vector is the elapsed computer execution time in milliseconds.
Hence, to time an APL statement, one need only record DAI,
execute the statement, and then subtract the saved DAI from
the current one:

1950

Z+DAI
A+(t1000)*3
(DAI-Z) [2J

We now write a timing function. It requires the user to pass
the APL statement to be timed as a character string; then this

2-42 APL/PC, Version 2.1

:Bl\1lnternal Use Only

;haracter string can be executed with the execute primitive
unction m:

[OJ T+TIMEO STMT
[1] R Time a single APL statement
[2] T+DAI[2]
[3] mSTMT
[4J T+DAI[2J-T

\ sample call is:

TIMEO 'A+(tl000)*3'
L970

ProblenlS

iince this function will be copied from a library workspace
nto the user's workspace, it must be as independent as
)ossible of the user's workspace. Three compatibility
)roblerns can be seen.

l. The function as written assurnes an index origin (system
variable DID) of 1, but the user n1ay have 0 or 1. In fact,
it is even possible that DID has been localised inside a user
function, and has not yet been assigned a value at the
rnoment that it calls the tirning function. In this case, no
subscript calculations can be perforrned at all.

~. If the APL statenlent alters the variables T or STMT, the
function will fail in unpredictable ways. E.g.

TIMEO 'T+7'
40946

~. Because the function is itself written in APL, it takes a
certain (small) time to run. Also, the interpretation of the
user's statement string can take a variable amount of time.

t By definition of the execute function, its argument string
Inay not be an APL system cornmand or an invocation of
the function editor, but only an arithmetic statenlent.

Chapter 2. APL Tutorial 2-43

IBM Internal Use Onl~

An Improved Timing Function

The three problems given can be solved as follows:

1. One might set DID to value 1 on entry and restore the old
value on exit from the timing function. (This could be
done most easily by making it a local variable, by
appending"; DID" to the header line, and adding a new
line "OIO+l "). But the APL statement might need the
outside value of DID, so this is not a good solution. It is
better to use the value of DID inherited from the calling
environment; that is, one would write

[2] T+OAI[OIO+l]

But because of the rare but troublesome possibility of no
value at all for DID, the best solution is to avoid
subscripting entirely, and use the take and drop functions
as shown below.

2. The problem of conflicting variable names can be solved
for most user workspaces most of the time by choosing
names in our function which are unlikely to be used in the
user's statement.

3. This "Heisenberg effect" of the measuring instrument
changing the measured result can be partially compensated
for if we execute TIMED I I a few times and take the
average execution time of TIMED on null statements as the
base time to be subtracted out.

4. APL system commands can be executed from inside a
user-written function by means of auxiliary processor 101.
For the purposes of simplicity, we shall simply not permit
them here.

The rewritten function looks like this:

2-44 APLjPC, Version 2.1

[BM Internal Use Only

[0] T_+TIME1 STMT_
[1] A Determine time an APL statement uses.
[2] A Statements must not begin with')' or
[3] A with 'V'
[4] T_+1+14-0AI
[5] ~STMT
[6] T_+-1S+(1+14-DAI)-T_

Note that TIME1 is independent of DID (the index origin)
:=ompletely. Also the function has been well commented.

Let us check that the nullification constant is correct:

TIME 1 "

TIME 1 "

TIME1 "

The constant -1 5 was chosen so that over a number of trials
timing a null statement on an IBM PC computer, the average
time appeared to be O.

Test this function on a typical APL statement:

1875

2175

1905

TIME 1 'A+(11000)*3'

TIME1 'A+(11000)*3'

TIME 1 'A+(11000)*3'

We see that the time will vary somewhat dependent on internal
activities of the APL system. If accurate timings are desired,
invoke the timing function in a loop and take the average.

Lastly, let us time the histogram functions given in the
previous section (the numbers shown are actual timings made
on a PC):

Chapter 2. APL Tutorial 2-45

IBM Internal Use Onl3

Io(-?100p40
TIME 1 IHlo(-HISTl II

6415
TIME 1 IH2+HIST2 II

5475
TIME 1 IH3+HIST3 II

375
A/A/H2=H3

1
Hlo(-Hl[;~Hl[l;]]
A/A/H2=Hl

1

The input vector is of length 100 with items chosen randomly
from the integers between 1 and 40. It is checked that output
matrix H2 is identical to H3. Since the items of Hi are not in
increasing order, but those of the other two output matrices
are, it is necessary to apply grade-up to H1 before finding that
it, too, is identical to the others.

An Alternative Solution

TIMEl still has a major flaw for timing simple expressions
(like A 0(- t 10) because the result of DAI is imprecise for short
times (for instance, due to intermittent workspace
management). A suitable solution to this problem is to
execute the statement to be timed several times. The following
function demonstrates a technique to allow a number of
iterations to be specified, as well as the statement to be timed.
Its main new idea is to build a new function (named FUN_)
inside the timing function, and then discard it upon exit.
(Discarding is done automatically by making the name FUN _ a
local name in the header line). Note the use of system
function OFX (FiX) to create the new local function from a
character matrix.

2-46 APL/PC, Version 2.1

IBM Internal Use Only

[0] T_+N_ TIME2 STMT_;FUN_
[1] R TIME2 function to average execution
[2] R times over several iterations.
[3] R N_ ++ Number of iterations
[4] R STMT ++ Statement to time
[5] ~(O=DNC IN ')/'N +11 R Default to one
[6] STMT_+(21rp,STMT:)+STMT_
[7] T_+«l,pSTMT_)p(pSTMT_)+'T_+FUN_'),[

DIO] (pSTMT_)+'T_+OAII
[8] T_+T_,[OIO] (N_,pSTMT_)pSTMT_
[9J T_+OFX T_+T_,[OIOJ (pSTMT_)+'T_+(OAI

T_) [OIO+1J +N_'
[10J T_+FUN_ R Execute built function

Examples:

1 TIME 2 'A,+110'
0

1 TIME 2 'A.+l10'
50

10 TIME 2 'A.+l10'
5

10 TIME 2 'A.+l10'
11

100 TIME 2 'A+l10'
4.9

100 TIME 2 'A.+l10'
5

Notice that the reliability of the result improves with the
number of iterations.

Concluding Thought

Often, an APL algorithm may be speeded up at the cost of
increased working storage, or vice versa. Sometimes, the
minimisation of both time and space can only be achieved by
expending much mental energy!

Chapter 2. APL Tutorial 2-47

IBM Internal Use Only

Further Reading

There have been a number of good introductions to APL
published, often as a method of computation for a special
field, sUGh as statistics.

The following books are all general introductions, and are
widely available:

• AP L: An Interactive Approach, by Leonard Gilman & Allan
Rose, 3rd Edition, 1983.

• APL: The Language and Its Usage, by Raymond Polivka &
Sandra Pakin, 1975.

• AP L \360 Programming and Applications, by Herbert
Hellerman & Ira Smith, 1976.

• Introduction to APL2, [by Jon McGrew,] IBM Form No.
SH20-9229, 1983.

• APL - An Introduction, Independent Study Program, IBM
Form No. SR20-7183, 1982.

• APL Programming Guide, IBM Form No. G320-6735,
1983.

2-48 APL/PC, Version 2.1

IBM Internal Use Only

Part 2. APL Language

Chapter 3. Using APL 3-1
An Example of the Use of APL 3-3

An Isolated Calculation 3-3
Storing Functions and Data 3-4

Characteristics of APL 3-5

Chapter 4. Fundamentals 4-1
Character Set 4-6
Spaces 4-8
Function 4-8
Order of Execution 4-9
Data 4-10

Arrays 4-10
Constants 4-12

W orkspaces and Libraries 4-13
Names 4-14
Implementation Limits 4-15

Chapter 5. Prhnitive Functions and Operators 5-1
Scalar Functions 5-3

Plus, Minus, Times, Divide, and Residue 5-7
Conjugate, Negative, Signum, Reciprocal, and

Magnitude 5-8
Boolean and Relational Functions 5-9
Minimum and Maximum 5-11
Floor and Ceiling 5-11
Roll (Random Number Function) 5-12
Power, Exponential, General and Natural

Logarithm 5-12
Circular, Hyperbolic, and Pythagorean Functions 5-13
Factorial and Binomial Functions 5-15

Operators 5-17
Reduction 5-17
Scan 5-19
Axis 5-19
Inner Product 5-21

Part 2. APL Language

IBM Internal Use Only

Outer Product 5-23
Mixed Functions, .. 5-25

Structural Functions 5-30
Selection Functions 5-37

Selector Generators 5-42
Index Generator and Index Of 5-43
Membership 5-44
Grade Functions 5-44
Deal 5-48

Numeric Functions 5-48
Matrix Inverse and Matrix Divide 5-48
Decode and Encode 5-51

Data Transformations 5-53
Execute and Format 5-54
Picture Format 5-59

Chapter 6. Systenl Functions and System Variables 6-1
System Functions 6-3

Canonical Representation - OCR 6-5
Delay - ODL 6-6
Execute Alternate - OEA 6-6
Expunge - OEX 6-7
Function Establishnlent - OFX 6-7
Natne Classification - ONC 6-8
N anle List - ON L 6-9
Peek/Poke - DPK 6-9
Transfer Fonn - DTF 6-11

System Variables 6-14
Account Information - O.lJ.I 6-16
Atomic Vector - DA V 6--16
Comparison Tolerance - OCT 6-17
Format Control - DFC 6-17
Index Origin - OIO 6-18
Horizontal Tabs - OTlT 6-18
Latent Expression - DLX 6-18
Line Counter - OLC 6-19
Printing Precision - OPP 6-19
Printing 'Vidth - DPW 6-20
Random Link - DRL 6-20
Tenninal Control - DTC 6-20
Terrninal Type - OTT 6-20
Time Stamp - DTS 6-20

APL/PC, Version 2.1

IBM Internal Use Only

User Load - DUL 6-20
Workspace Available - DWA 6-20

Chapter 7. Shared Variables ..•.•............•... 7-1
Offers 7-6
Access Control 7-7
Retraction 7-11
Inquiries 7-12

Chapter 8. Function Definition ..•.......•........ 8-1
Canonical Representation and Function Establishment 8-3

The Function Header 8-5
Ambi-Valent Functions 8-5
Local and Global Names 8-6
Branching and Statement Numbers 8-7
Labels 8-9
Comments 8-9

Function Editing - The V Form 8-10
Adding a Statement 8-10
Inserting or Replacing a Statement 8-11
Replacing the Header 8-11
Deleting a Statement 8-11
Modifying a Statement or Header 8-12
Function Display 8-12
Leaving the V Form 8-13
Quitting the V Form 8-14

Chapter 9. Function Execution .••....•••..•....•. 9-1
Halted Execution 9-4

State Indicator 9-4
State Indicator Damage 9-6

Trace Control 9-6
Stop Control 9-7
Locked Functions 9-8
Recursive Functions 9-9
Input and Output 9-10

Evaluated Input 9-11
Character Input 9-12
Interrupting Execution during Input 9-12
Normal Output 9-12
Bare Output 9-13

Chapter 10. System Commands 10-1

Part 2. APL Language

IBM Internal Use Only

Active Workspace - Action Commands 10-9
Active Workspace - Inquiry Commands 10-13
Workspace Storage and Retrieval - Action
Commands 10-14

Libraries of Saved W orkspaces 10-14
Workspace Names 10-14

Workspace Storage and Retrieval - Inquiry
Commands 10-20

Sign-Off 10-21

APL/PC, Version 2.1

BM Internal Use Only

Chapter 3. Using APL

An Example of the Use of APL 3-3
An Isolated Calculation 3-3
Storing Functions and Data 3-4

Characteristics of APL 3-5

Chapter 3. Using APL 3-1

IBM Internal Use Only

Notes:

3-2 APLjPC, Version 2.1

[Bl\1 Internal Use Only

APL takes one APL statement at a time, converts it to
vnachine instructions (the computer's internal language),
executes it, then proceeds to the next line. In contrast to
program compilers that convert complete programs to machine
language before executing any statements, APL allows you a
high degree of interaction with the computer. If something
you enter is invalid, you will get quick feedback on the
problem before you go any further, which also yields high
productivity gains.

An Example of the Use of APL

A statement entered at the keyboard may contain numbers or
symbols, such as + - x .. , or names formed from letters of
the alphabet. The numbers and special symbols stand for the
primitive objects and functions of APL - primitive in the sense
that their meanings are permanently fixed, and therefore
understood by the APL system without further definition. A
name, however, has no significance until a meaning has been
assigned to it.

Names are used for two major categories of objects. There are
names for collections of data that is composed of numbers or
characters. Such a named collection is called a variable.
Names may also be used for programs made up of sequences
of APL statements. Such programs are called defined
functions. Once they have been established, names of variables
and defined functions can be used in statements by themselves
or in conjunction with the primitive functions and objects.

An Isolated Calculation

If the work to be done can be adequately specified simply by
typing a statement made up of numbers and symbols, names
will not be required; entering the expression to be evaluated
causes the result to be displayed. For example, suppose you
want to compare the rates of return on money at a fixed
interest rate but with different compounding intervals. For

Chapter 3. Using APL 3-3

IBM Internal Use Only

1000 units at 6% compounded annually, quarterly, monthly, or
daily for 10 years, the entry and respon.se for the transaction
(assuming a printing precision (OPP) equal to 6) would look
like this:

OPP+6
1000x(1+0.06+1 4 12 365)*10X1 4 12 365

1790.85 1814.02 1819.4 1822.03

(The largest gain is apparently obtained in going from annually
to quarterly; after that the differences are relatively
insignificant.)

Several characteristic features of APL are illustrated in this
example: familiar symbols such as + - x .. are used where
possible; symbols are introduced where necessary (as the * for
the power function); and a group of numbers can be worked
on together.

Storing Functions and Data

Although many problems can be solved by typing the
appropriate numbers and symbols, the greatest benefits of
using APL occur when named functions and data are used.
Because a single name may refer to a large array of data, using
the name is far simpler than typing all of its numbers.
Similarly, a defined function, specified by entering its name,
may be composed of many individual APL statements that
would be burdensome to type again and again.

Once a function has been defined, or data collected under a
name, it is usually desirable to retain the significance of the
names for some period of time - perhaps for just a few minutes
- but more often for much longer, possibly months or years.
For this reason APL systems are organised around the idea of
a workspace, which might be thought of as a notebook in
which all the data items needed during some piece of work are
recorded together. An APL workspace will thus contain
defined functions, data structures, and a state indicator.

3-4 APL/PC, Version 2.1

[B1\1 Internal Use Only

Characteristics of APL

The remaining chapters of this part of the book describe APL
in detail, giving the meaning of each symbol and discussing the
various features of APL for the IBM Personal Computer.
These details should be considered in light of the nlajor
characteristics of APL, which may be surrunarised as follows:

• The primitive objects of the language are arrays (lists,
tables, lists of tables, etc.). For example, A + B is
meaningful for any conformable arrays A and B, the size of
an array (pA) is a prinutive function, and arrays may be
indexed by arrays, as in A [3 1 4 2].

• The syntax is silnpIe: there are only three statement types
(name assignment, branch, or neither), there is no function
precedence hierarchy, functions have either one, two, or no
arguments, and prirnitive functions and defined functions
(programs) are treated alike.

• The semantic rules are few: the definitions of primitive
functions are independent of the representations of data to
which they apply, all scalar functions are extended to other
arrays in the saIne \vay (that is, itenl-by-item), and
pritnitive functions have no hidden efiects (so-called
side-effects).

• The sequence control is simple: one statenlent type
ernbraces all types of branches (conditional, unconditional,
computed, etc.), and the completion of the execution of
any function always returns control to the point of use.

• External communications are established by means of
variables, which are shared between APL and other
systenls or subsystems (such as auxiliary processors).
These shared variables are treated both syntactically and
semantically like other variables. A subclass of shared
variables - system variables - provides convenient
comnlunications between APL programs and their
environment.

Chapter 3. Using APL 3-5

IBM Internal Use Only

The usefulness of the primitive functions is vastly expanded
by operators, which modify their behaviour in a systematic
manner. For example, reduction (denoted by /) modifies a
function to apply over all elements of a list, as in + / L for
summation of the items of L. The remaining operators are
scan (running totals, running maxima, etc.), the axis
operator which, for example, allows reduction and scan to
be applied over a specified axis (rows or columns) of a
table, the outer product, which produces tables of values as
in RATE 0 • * YEARS for an interest table, and the inner
product, a simple generalisation of matrix product that is
very useful in data processing and other non-mathematical
applications.

The number of primitive functions is few enough that each
is represented by a single, easily-read and easily-written
symbol, yet the set of primitives embraces operations from
simple addition to grading (sorting) and formatting. The
complete set can be classified as follows:

Arithmetic: + - x .. * $ 0 I L r ! m

Boolean and Relational: v A ItP 'Pi tv < S = ~ > 'i!

Selection and Structural: / \ f ~ [;] ... '" p
<1> ~ e

General: e 1 ? .1 T 1T &. ~ ~

3-6 APLjPC. Version 2.1

IBM Internal Use Only

Chapter 4. Fundamentals

Character Set 4-6
Spaces 4-8
Function 4-8
Order of Execution 4-9
Data 4-10

Arrays 4-10
Constants 4-12

W orkspaces and Libraries 4-13
Names 4-14
Implementation Limits 4-15

Chapter 4. Fundamentals 4-1

IBM Internal Use Only

Notes:

4-2 APL/PC, Version 2.1

IBM Internal Use Only

A typical statement in APL is of the form:

AREA+-3x4

The effect of the statement is to assign to the name AREA, the
value of the expression 3 x 4 to the right of the specification
arrow +-. The statement may be read informally as "AREA is
three times four".

The statement is the normal unit of execution. Two primitive
types occur: the specification shown above, and the branch,
which serves to control the sequence in which the statements
in a defined function (see Chapter 8, "Function Definition")
are executed. There is also a third type of statement that may
specify the use of a defined function without either a
specification or a branch.

A variant of the specification statement produces a display of
a result. If the leftmost part of a statement is not a name
followed by a specification, the result of the expression is
displayed. For example:

12

14

3X4

PERIMETER+-2 x (3+4)
PERIMETER

The result of any part of a statement can be displayed by
including the characters O+- at the appropriate point in the
statement. Moreover, any number of specification arrows may
occur in a statement. For example:

12

14

4

X+-2+0+-3xY+-4

x
Y

Entry of a statement that cannot be executed will cause an
error message to be displayed, which indicates the nature of
the error and the point at which execution stopped. For
example:

Chapter 4. Fundamentals 4-3

IBM Internal Use Only

X+5
3+(ZxX)

VALUE ERROR
3+(ZxX)

A

Following is a list of error messages, with information about
the cause and suggested corrective action.

DEFN

DOMAIN

Misuse of V or 0 symbols:

1. Invalid function header.

2. Use of other than a name alone in
reopening a function.

3. Improper request for a line edit or
display.

Argument is not valid.

0- - IMPLICIT The system variable 0- - (for example,
OIO) has been set to an inappropriate
value, or has been localised and not been
assigned a value.

INDEX

INTERRUPT

LENGTH

Index value out of range.

Execution interrupted:

1. The input line being typed is ignored.
Begin typing again.

2. Execution was suspended within an APL
statement.

TO RESUME EXECUTION, ENTER
A BRANCI-I TO THE STATEMENT
INTERRUPTED

Shapes not conformable.

4-4 APLjPC, Version 2.1

IBM Internal Use Only

RANK Ranks not conformable.

SI DAMAGE The state indicator (an internal list of
suspended and pendent functions) has been
damaged in editing a function or in carrying
out an) ERASE.

STACK FULL Too many nested functions called.
Definition of a very large function with V,
DFX, DTF or)IN.

SYMBOL TABLE FULL Too many names used. This error
can be corrected by executing the following
seq uences of commands:

SYNTAX

SYSTEM

)OUT,) CLEAR,)IN
or)OUT,) CLEAR,)SYMBOLS nnn,)IN
or) ERASE,)OUT,) CLEAR,)IN

Invalid syntax; for example, two variables
adjoining; function used without an
appropriate number of arguments;
unmatched parentheses.

Fault in internal operation of the system.

COMPLETE READER'S COMMENT
FORM AT THE BACK OF THE BOOK
AND SEND TO IBM.

SYSTEM LIMIT An implementation limit has been reached.

VALUE Use of name that does not have a value, or
an attempt to use a numeric constant whose
magnitude is too large or too small for
internal representation.

ASSIGN A VALUE TO THE VARIABLE,
DEFINE THE FUNCTION, OR
CHANGE THE VALUE OF THE
CONSTANT

Chapter 4. Fundamentals 4-5

IBl\1 Internal Use Only

WORKSPACE FULL Workspace is filled (perhaps by
temporary values produced in evaluating a
compound expression, or by values of
shared variables).

CLEAR STATE INDICATOR, ERASE
NEEDLESS OBJECTS, OR REVISE
CALCULATIONS TO USE LESS SPACE.

Character Set

The characters that may occur in a statement fall into four
main classes: alphabetic, numeric, special, and blank. The
alphabetics comprise the Roman alphabet in uppercase, the
saIne alphabet in lowercase, delta (8), and delta underbar (t}).
The complete set is shown in Figure 4-1 on page 4-7 with
suggested names.

4-6 APL/PC, Version 2.1

:BM Internal Use Only

ABCDEFGHIJKLMNOPQRSTUVWXYZ~
abcdefghijklmnopqrstuvwxyz~
0123456789-

dieresis a alpha 'tI' nor
over bar r upstile rp,f nand

< less L downstile ~ del stile
~ not greater underbar ~ delta stile

= equal V del <P circle stile
~ not less ~ delta ~ circle slope
> greater 0 null e circle bar
~ not equal

,
quote ~ log

V or 0 quad I I-beam
A and (left parenthesis 1;} del tilde
- bar) right parenthesis ~ base null .. divide [left bracket iii top null

+ plus] right bracket ~ slope bar
X times c left shoe f slash bar
? query ::> right shoe R cap null
w omega n cap [!] quote quad
e epsilon U cup quote dot
p rho .l base Ii] domino
tV tilde T top I stile

'" up arrow semicolon * star

'"
down arrow colon 1 iota

-+ right arrow , comma \ slope
+- left arrow . dot / slash
0 circle space ~ delta underbar

Figure 4-1. APL Character Set

The names suggested are for the symbols themselves and not
necessarily for the functions they represent. For example, the
downstile (L) represents both the minimum, a function of two
arguments, and the floor (or integer part), a function of one
argument. In general, most of the special characters (such as
+, -, x, and.. are used to denote primitive functions that are
assigned fixed meanings, and the alphabetic characters are
used to form names that may be assigned and re-assigned
significance as variables, defined functions, and other objects.

Chapter 4. Fundamentals 4-7

IBM Internal Use Onl~

Spaces

The blank character is used primarily as a separator. The
spaces that one or more blank characters produce are needed
to separate names of adjacent defined functions, constants, and
variables. For example, if F is a defined function, then the
expression 3 F 4 must be entered with the indicated spaces.
The exact number of spaces used in succession is not
important, and extra spaces may be used freely. Spaces are
not required between primitive functions and constants or
variables, or between a succession of primitive functions, but
they may be used if desired. For example, the expression 3 +4
may be entered with no spaces.

Function

The word/unction derives from a word that means to execute
or perform. A function executes some action on an array (or
arrays), called its argument (s), to produce an array as a result.
The result may serve as an argument to another function. For
example:

3x4

2+(3x4)

(-6)-1-3

A function (such as the negation used above) that takes one
argument is said to be monadic, and a function (such as times)
that takes two arguments is said to be dyadic. All APL
functions are either monadic or dyadic or, in the case of
defined functions only, niladic (taking no argument). The
argument of a monadic function always appears to the right of
the function. The arguments of a dyadic function appear on
each side of the function, and are called the left argument and
right argument. Certain of the special symbols are used to

4-8 APL/PC, Version 2.1

IBM Internal Use Only

denote two different functions, one monadic and the other
dyadic. For example, X-Y denotes subtraction of Y from X (a
dyadic function), and - Y denotes negation of Y (a monadic
function).

Each of the primitive functions is denoted by a single character
or by an operator applied to such a character (see
Chapter 5, "Primitive Functions and Operators"). For
example, + and x are primitive functions as are + / and x /
(since / denotes an operator).

Order of Execution

Parentheses are used in the usual way to control the order of
execution in a statement. Any expression within matching
parentheses is evaluated before applying to the result, any
function outside the matching pair.

In conventional notation, the order of execution of an
unparenthesised sequence of monadic functions may be stated
as follows: the (right-hand) argument of any function is the
value of the entire expression to the right. For example,
LOG SIN ARCTAN X means the Log of Sin of Arctan X. In
APL, the same rule applies to dyadic functions as well.
Moreover, all functions, both primitive and defined, are treated
alike; there is no hierarchy among functions, such as
multiplication being done before addition or subtraction.

An equivalent statement of this rule is that an unparenthesised
expression is evaluated in order from right to left. For
example, the expression 3 x 8 r 3 * I 5 -7 is equivalent to
3 x (8 r (3 * (I (5 -7)))). Their result is 27. A consequence
of the rule is that the only concrete use of parentheses is to
form the left argument of a function. For example,
(12+3)x2 is 8 and 12+3x2 is 2. However, redundant pairs
of parentheses can be used to help improve readability. Thus,
the expressions 12+3x2 and 12+ (3x2) are evaluated
identically, with a result of 2.

Chapter 4. Fundamentals 4-9

IBM Internal Use Only

Data

Data used in APL is one of two types - numeric or character.

Data is produced by: (1) explicit entry at the keyboard, (2)
execution of APL functions or operators, and (3) use of shared
variables and system functions or variables.

Arrays

Data is organised in ordered collections called arrays. Arrays
are characterised by their content (character or numeric), their
number of axes or dimensions (rank), and the number of
elements along each axis (shape). All elements of an array
must be of the same type - character or numeric. Arrays range
from scalars, which are dimensionless, to multi-dimensional
arrays of arbitrary rank and shape. These arrays are referred
to by the following terms:

• A scalar is an array having no dimensions.

• A vector is an array having one dimension.

• A matrix (or table) is an array having two dimensions.

Arrays having more than two dimensions can also be created.

An empty array is an array with one or more of its dimensions
equal to O. Such an array is either character or numeric, but
contains no elements.

A vector can be formed by listing its elements as described in
the discussion of constants. For example:

V+2 3 5 7 11 13 17 19
A+'ABCDEFGH'

The elements of a vector may be selected by indexing. For
example:

4-10 APL/PC, Version 2.1

IBM Internal Use Only

V[3 1 5]
5 2 11

A[8 5 1 4]
HEAD

Arrays of more complex structure may be formed with the
reshape dyadic function denoted by p.

M+2 4pV
M

2 3 5 7
11 13 17 19

ABCD
EFGH

B+2 4pA
B

These results have two dimensions or axes and are called tables
or matrices. A matrix has two axes and is said to be of rank 2;
a vector has one axis and is of rank 1. The left argument 2 4
in the preceding examples specifies the shape of the resulting
array. Arrays of arbitrary shape and rank may be produced by
the same scheme. For example:

T+2 3 4p'ABCDEFGHIJKLMNOPQRSTUVWX'
T

ABCD
EFGH
IJKL

MNOP
QRST
UVWX

The shape of an array can be determined by the monadic
function denoted by p.

pV pM pT
8 2 4 234

Elements may be selected from any array (other than a scalar)
by indexing in the manner shown for vectors, except that
indexes must be given for each axis:

M[2;3]
17

M[2 1;2 3 4]
13 17 19
357

P

MNOP
QRST
UVWX

T[2;1;4]

T[2;1 2 3;1 2 3 4]

Chapter 4. Fundamentals 4-11

IBM Internal Use Only

The indexing used in the preceding examples is called J -origin,
because the first element along each axis is selected by the
index 1. One may also use O-origin indexing by setting the
index origin to O. The index origin is a system variable denoted
by DIO (see Chapter 6, "System Functions and System
Variables"). Thus:

DIO+l
V[l 2 3J

235
B[2;3]

G

235

G

DIO+O
V[O 1 2J

B[1;2J

All remaining examples assume I-origin unless otherwise
stated.

Constants

A constant is a scalar or vector, either character or numeric,
that appears explicitly in an APL statement.

All numbers entered or displayed are in decimal, either in
conventional form (including a decimal point if appropriate) or
in scaled form. The scaled form consists of an integer or
decimal fraction called the multiplier followed immediately by
the symbol E then an integer (which must not include a
decimal point) called the scale. The scale specifies the power
of 10 by which the multiplier is to be multiplied. Thus
1 .44E2 is equivalent to 144.

Negative numbers are represented by an overbar (-)
immediately preceding the number; for example, -1.44 and
-144E-2 are equivalent negative numbers. The overbar can
be used only as part of a constant and is to be distinguished
from the bar that denotes negation, as in -x.

A scalar numeric constant is a number entered by itself. A
vector numeric constant is entered by listing the component
numbers in order, separated by one or more spaces.

A scalar character constant may be entered by placing the
character between quotation marks; a vector character constant

4-12 APLjPC, Version 2.1

In~1 Internal Use Only

may be entered by listing no characters, or two or more
characters, between quotation marks. The system displays
such a vector as the sequence of characters, with no enclosing
quotes and with no separation of the successive elements. The
quote character itself must be entered as a pair of quotes.
Thus, the abbreviation of CANNOT is entered as 1 CAN I IT 1

and prints as CAN IT.

\Vorkspaces and Libraries

The comrnon organisational unit in an APL system is the
workspace. When in use, a workspace is said to be active, and
is located in main storage. Part of each workspace is set aside
to serve the internal workings of the system, and the remainder
is used, as required, to store items of information and to hold
transient information generated during a computation.

The names of variables (data items) and defined functions
(programs) used in calculations always refer to objects known
by those names in the active workspace; information about the
progress of program execution is maintained in the state
indicator of the active workspace, and control information
affecting the fonn of output is held within the active
workspace.

Inactive workspaces are stored in libraries, where they are
identified by arbitrary names. They occupy space on disk and
cannot be worked with directly. vVhen required, copies of
stored workspaces can be made active, or (if stored in an
appropriate form) selected information may be transferred
from them into an active workspace.

vVorkspaces and libraries are managed by system commands, as
described in Chapter 10, "System Commands". '

Chapter 4. Fundamentals 4-13

IBM Internal Use Only

Names

Names of works paces, functions, and variables may be formed
from any sequence of alphabetic and numeric characters that
starts with an alphabetic and contains no blank. (For the
purpose of this definition, the overbar (-) and underbar (_) are
regarded as numeric characters. That is, they may be used to
form a name, but not to start it.)

Some additional restrictions on names exist for APL on the
IBM Personal Computer:

• The number of significant characters in the name of an
APL object is 12.

• Workspace names are subject to IBM Personal Computer
DOS file-naming restrictions, with a maximum length of 8
alphanumeric characters, beginning with an alphabetic
character.

• Lowercase letters, delta, delta underbar, overbar and
underbar are not allowed as part of a workspace name.

The environment in which APL operations take place is
limited by the active workspace. Hence, the same name may
be used to designate different objects (that is, functions or
variables) in different workspaces, without interference. Also,
because workspaces themselves are never the subject of APL
operations, but only of system commands, a workspace can
have the same name as an object it holds.

4-14 APLjPC, Version 2.1

IBM Internal Use Only

Implementation Limits

The APL interpreter for the IBM Persohal Computer has the
following implementation limits:

• The maximum value of any dimension of an APL object is
65520.

• The maximum number of elements in a variable is 65520.

• The maximum size of a boolean APL object is 8190 bytes.

• The maximum size of an integer APL object is 131040
bytes.

• The maximum size of a literal APL object is 65520 bytes.

• The maximum size of a floating-point APL object is
524160 bytes.

• The maximum number of lines in a function is 999.

• The maximum size of the symbol table is 32766 bytes.

• The maximum size of the stack is 4096 elements.

An APL workspace consists of two parts:

• The main workspace. It occupies a maximum of 64K bytes.
I t is in this part where APL statements are executed, and
where APL objects smaller than 8192 bytes may be created
and modified.

• The elastic workspace. It occupies all memory that is still
available. Its size has no limit other than the physical size
of the memory. APL objects that are not actually in use
during an execution sequence may be moved to the elastic
workspace if the space they occupy in the main workspace
is needed for other purposes. APL objects larger than 8192
bytes are created and modified in the elastic workspace.

Chapter 4. Fundamentals 4-15

IBM Internal Use Only

Notes:

4-16 APL/PC, Version 2.1

:BM Internal Use Only

Chapter 5. Primitive Functions and
Operators

Scalar Functions 5-3
Plus, Minus, Times, Divide, and Residue 5-7
Conjugate, Negative, Signum, Reciprocal, and

Magnitude 5-8
Boolean and Relational Functions 5-9
Minimum and Maximum 5-11
Floor and Ceiling 5-11
Roll (Random Number Function) 5-12
Power, Exponential, General and Natural

Logarithm 5-12
Circular, Hyperbolic, and Pythagorean Functions 5-13
Factorial and Binomial Functions 5-15

Operators 5-17
Reduction 5-17
Scan 5-19
Axis 5-19
Inner Product 5-21
Outer Product 5-23

Mixed Functions 5-25
Structural Functions 5-30
Selection Functions 5-37

Selector Generators 5-42
Index Generator and Index Of 5-43
Membership 5-44
Grade Functions 5-44
Deal 5-48

Numeric Functions 5-48
Matrix Inverse and Matrix Divide 5-48
Decode and Encode 5-51

Data Transformations 5-53
Execute and Format 5-54
Picture Format 5-59

Chapter 5. Primitive Functions and Operators 5-1

IBM Internal Use Only

Notes:

5-2 APLjPC, Version 2.1

IBM Internal Use Only

The primitive functions fall into two classes - scalar and mixed.
Scalar functions are defined in scalar arguments and are
extended to other arrays item-by-item. Mixed functions are
defined in arrays of various ranks and may give results that
differ from the arguments in both rank and shape. Five
primitive operators apply to scalar dyadic functions and to
certain mixed functions to produce many new functions.

The definitions of certain functions depend on system variables
whose names begin with the symbol 0 (as in DID and OCT).
These system variables are discussed in more detail in
Chapter 6, "System Functions and System Variables".

Scalar Functions

A monadic scalar function extends to each item of an array
argument; the result is an array of the same shape as the
argument, and each item of the result is obtained as the
monadic function applied to the corresponding item of the
argument.

A dyadic scalar function extends similarly to a pair of
arguments of the same shape. To be conformable, the
arguments must agree in shape, or at least one of them must
be a scalar or a one-element array. If one of the arguments
has only one item, that item is applied in determining each
element of the result. If both arguments have one item but
different ranks, the result has the higher rank. For example:

1 2 3x4 5 6
4 10 18

3+4 5 6
7 8 9

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6
A

Each of the scalar functions is defined for all real numbers
with two general exceptions: the five boolean functions are
defined only on the numbers 0 and 1, and the functions = and

Chapter 5. Primitive Functions and Operators 5-3

IBM Internal Use Only

x are defined on characters as well as numbers. Specific
exceptions (such as 4+0) will be noted where appropriate.

The scalar functions are summarised in Figure 5-1 on
page 5-5 with their synlbols and brief definitions or examples,
which should clarify their use. The remainder of this chapter is
devoted to more detailed definitions.

5-4 APL/PC, Version 2.1

IBM Internal Use Only

Monadic form f B

Definition or Example

+Bis B
-Bis O-B
XB is (B>O) +B<O
+B is l+B
1-3.14 is 3.14

B LB rB

? B is Random choice
from 1.B

*Bis (2.71828 ..)*B
e*B is B is *eB

OB is 3.14159 •••

Name

Conjugate
Negative
Signum
Reciprocal
Magnitude
Floor
Ceiling

Dyadic form A f B

f Name

+ Plus
- Minus
x Times

Divide
1 Residue
L Minimum
r Maximum

Definition or Example

2+3.2 is 5.2
2-3.2 is -1.2
2x3.2 is 6.4
2+3 .2 is 0 • 625
AlB is B-AxLB+A+A=O
3L 7 is 3
3r7 is 7

Roll ? Deal A mixed Function
(see Figure 5-1)

Exponential * Power 2* 3 is 8
Natural e General AeB is Log B base A
logarithm logarithm AeB is (eB) +eA

Pi times 0 Circular, Hyperbolic, Pythagorean
(see table at left)

!O is 1 Factorial ! Binomial A ! B is (! B) + (! A) X ! B-A
!B is BX!B-1 2! 5 is 10 3! 5 is 10
or IB is Gamma (B+1)

"'1 is 0 "'0 is 1 Not N

A And A B AAB AVB A~ A~B

A (-A)OB AoB

(1-B*2)*0.5 0 (1-B*2)*0.5

V Or o 0 0 0 1 1
~ Nand 0 1 0 1 1 0
~ Nor

1 0 0 1 1 0
Arcsin B 1 Sine B 1 1 1 1 0 0
Arccos B 2 Cosine B
Arctan B 3 Tangent B
(-1+B*2)*0.5 4 (1+B*2)*0.5
Arcsinh B 5 Sinh B
Arccosh B 6 Cosh B
Arctanh B 7 Tanh B

< Less Relations:
~ Not greater Result is 1 if
= Equal relation holds,
~ Not less 0 if it does not:
> Greater 3 S7 is 1

Table of Dyadic 0 Functions :f:. Not equal 7S3 is 0

Figure 5-1. Primitive Scalar Functions

A dyadic function F may possess a left identity element L, such
that L F X equals X for any X, or a right identity element R,
such that X F R equals X. For example, one is a right
identity element of +, since X + 1 is X; zero is a left or right
identity of +; one is a left or right identity of x, and the general
logarithm function ~ has no identity element.

Chapter 5. Primitive Functions and Operators 5-5

IBM Internal Use Only

Identity elements become important as the appropriate result
of applying a function over an empty vector; for example, the
sum over an empty vector is 0 (the identity element of +), and
the product over an empty vector is 1 (the identity element of
x). These matters are discussed further in the treatment of the
reduction operator, which concerns such applications of dyadic
functions over vectors.

Figure 5-2 on page 5-7 lists the identity elements of the dyadic
scalar functions. The relational functions <, S, =, ~, >, and ~
have no true identity elements, except when considered as
boolean functions; that is, when restricted to the domains 0
and 1. These identity elements are included in the figure.

5-6 APL/PC, Version 2.1

IBM Internal Use Only

Dyadic Identity Left-
Function Element Right

Plus + 0 L R
Minus 0 R
Times x 1 L R
Divide + 1 R
Residue I 0 L
Minimum L (Note 1) L R
Maximum r (Note 2) L R
Power * 1 R
Logarithm ~ None
Circle 0 None
Binomial ! 1 L
And A 1 L R
Or V 0 L R
Nand 'Pi None
Nor 'tP None
Less < 0 These
Not greater :::;; 1 apply L
Equal = 1 for L R
Not less ~ 1 boolean R
Greater > 0 arguments R
Not equal ~ 0 only. L R

Notes:

1. The largest representable number.

2. The greatest in magnitude of representable negative numbers.

Figure 5-2. Identity Elements of Primitive Scalar Dyadic Functions

Plus, Minus, Times, Divide, and Residue

The definitions of the first four of these functions agree with
the familiar definitions, except that the indeterminate case 0 + 0
is defined to give the value 1. For X~O, the expression X+O
causes a domain error.

If A and B are positive integers, the result of the residue

Chapter 5. Primitive Functions and Operators 5-7

IBM Internal Use Only

function A I B is the remainder when dividing A into B. The
following definition covers all values of A and B.

1. If A=O, then AlB equals B.

2. If A ~ 0, then A I B lies between A and 0 (being permitted to
equal 0 but not A), and is equal to B-NxA for some
integer N.

F or example:

112.385 -31 -3 -2 -1 0 1 2
0.385 0 -2 -1 0 -2 -1 0

015.8 31-3 -2 -1 0 1 2 3
5.8 0 1 2 0 1 2 0

Conjugate, Negative, Signum, Reciprocal, and
Magnitude

3

The conjugate function +X yields its argument unchanged, the
negative function. -X yields the argument reversed in sign, and
the reciprocal Junction + X is equivalent to 1 + X. For example,
if X+4 -5, then:

+X
4 5

-X +X
0.25 -0.2

The result of the signum function xX depends on the sign of its
argument (-1 if X<O, 0 if X=O, and 1 if X>O). The 'magnitude
function 1 X (also called absolute value) yields the greater of X
and -X; in terms of the signum function, it is equivalent to
Xx xX. For example:

304

5-8 APLjPC, Version 2.1

IBM Internal Use Only

Boolean and Relational Functions

The boolean functions AND, OR, NAND (not-AND), and
NOR (not-OR) apply only to boolean arguments; that is, 0
and 1. If 0 is interpreted as false, and 1 is true, then the
definitions of these functions are evident from their names.
For example, AAB (read as A and B) equals 1 (is true) only if
A equals 1 (is true) and B equals 1. All cases are covered by
the following examples:

A+O 0 1 1
B+O 1 0 1
AAB AvB A~B A¥B

o 001 Oil 1 111 0 100 0

The monadic function NOT yields the logical complement of
its argument; that is "'0 is 1, and "'1 is O.

The relational functions apply to any numbers, but yield only
boolean results; that is 0 or 1. The result is 1 if the indicated
relation holds, and 0 otherwise. For example:

3 5 < 5 3 3 5 7 ~ 7 5 3
1 0 101

The comparisons in determining the results of the relational
functions are not absolute, but are made to a certain tolerance
specified by the comparison tolerance OCT. Two scalar
quantities A and B are considered to be equal if the magnitude
of their difference does not exceed the value of OCT multiplied
by the larger of the magnitudes of A and B; that is, if (I A - B)
is less than or equal to DCTx (I A) riB. Similarly, A~B is
considered to be true if (A - B) is greater than or equal to
-OCTx (I A) r (I B), and A>B is considered true if A~B is true
and A =B is not.

The comparison tolerance OCT is typically set to the value
lE-13. The setting DCT+O is also useful, because it yields
absolute comparisons, but may lead to unexpected results
because of the finite precision of the representation of
numbers. For example, if the maximum precision is 15
decimal digits, and all digits are displayed in printing, then:

Chapter 5. Primitive Functions and Operators 5-9

IBM Internal Use Only

DPP+15
DCT+O
X+0.666666666666667
X

0.666666666666667
'y+3xX
.Y-2

2.22044604925031E-15
2=.Y

o

1

When applied to boolean arguments only, the relations are, in
effect, boolean functions, and denote functions that may be
familiar from the study of logic, although referred to by
different names and symbols. For example, X~Y is the
exclusive-O R of X and .Y, and X~.Y is material implication. This
association should be clear from the following table, which
lists in the first two columns, the four possible sets of values of
two boolean arguments, and in the remaining columns the
values of the 16 boolean functions, with the symbols of the
boolean and relational functions of APL appended to
appropriate columns.

X .Y
o a
o 1
1 a
1 1

o a a a 0
00001
00110
o 1 0 1 0

A > <

X f .Y
o 0 0 1 111
1 110 000
o 1 1 a a 1 1
101 010 1

~ V 't/' = ~

1 1 1 1
1 1 1 1
001 1
o 1 0 1

~ ~

The 10 functions listed at the bottom of this table embrace all
non-trivial boolean functions of two arguments.
Consequently, any boolean expression of two arguments X and
.Y can be replaced by a simple APL expression as follows:
evaluate the expression for the four possible cases, find the
corresponding column in the table, then use the function
symbol at the bottom of the column, or, if none occurs, use X
or .Y or f'VX or f'V.Y or a or 1, as appropriate.

5-10 APL/PC, Version 2.1

IBJ.\t1 Internal Use Only

MininlUln and l\'laximuln

The dyadic functions, minimum and maximum, denoted by L
and r, perform as expected from their names. For exanlple:

X+-3 -2 -1 0 1 2 3
Y+3 2 1 0 -1 -2 -3
Xry

3210123
XLI

-3 -2 -1 0 -1 -2 -3

Floor and Ceiling

The monadic functionj7oor, denoted by L, yields the integer
part of its argument; that is, LX yields the largest integer that
does not exceed X. Similarly, the ceiling function denoted by
r X, yields the smallest integer that is not less than X. For
example:

4 2

X+-3.14 2.718
LX

-r-x
rx

-3 3
-L-X

The ceiling and floor functions are affected by the comparison
tolerance OCT as follows: if there is an integer I for which
I X-I does not exceed the value of DCTx 1 r II, then both LX
and r X equal I. For example, if results are represented and
printed to 15 decimal digits, then:

2

2

X+3xO.666666666666667
DCT+1E-13 DCT+O
LX LX

rx 2

3
rx

Chapter 5. Primitive Functions and Operators 5-11

iBM internai Use Oniy

Roll (Random Number Function)

The roll function is a monadic function named by similarity
with the roll of a die; thus 76 yields a (pseudo-) random
choice from 16 that is the first six integers beginning with
either 0 or 1 according to the value of the index origin DIO.
F or example:

DIO+1
76 76 76

1 5 3
76 6 6 6 6 6 6 6 6 6 6 6 6

4 2 1 556 3 4 5 1 145
DIO+O
76 6 6 6 6 6 6 6 6 6 6 6 6

0 2 0 243 5 5 3 0 3 2 4

The domain of the roll function is limited to positive integers.

The roll function uses an algorithm by D. H. Lehmer. The
result for each scalar argument X is a function of X and of the

I random link variable DRL. The result of the roll function is
I system-dependent, but typically for X < 2 * 31 is equal to
IDIO+XllX x 16807 x DRL+-1+2*31.

Power, Exponential, General and Natural
Logarithm

For non-negative integer right arguments, the power function
X*N is simply defined as the product over N repetitions of X.
I t is generalised to non-positive and non-integer arguments to
preserve the relation that X*A+B shall equal (X*A)x (X*B).
Familiar consequences of this extension are that X * -N is the
reciprocal of X*N, and X*+N is the Nth root of X. For
example:

2*-3 -2 -1 0 1 2 3
0.125 0.25 0.5 1 2 4 8

64*T1 2 3 4 5 6
64 8 4 2.828427125 2.29739671 2

The indeterminate case 0*0 is defined to have the value 1.

5-12 APL/PC, Version 2.1

IBM Internal Use Only

The domain of the power function X*Y is restricted in two
ways: if X=O, then Y must be non-negative; if X<O, then Y
must be an integer or a (close approximation to a) rational
number with an odd denominator. For example, -8*. 5 yields
a domain error, but -8*1+3 and -8*2+3 yield -2 and 4,
respectively.

The exponential function *X is equivalent to the expression
E*X, where E is the base of the natural logarithms
(approximately 2.71828). For example:

*-2 -1 0
0.1353352832 0.3678794412 1

*1 2
2.718281828 7.389056099

The natural logarithm function fIbX is the inverse of the
exponential; that is, *~X and ~*X both equal X. For example:

fIb1 2 3 4
o 0.6931471806 1.098612289 1.386294361

*fIb1 2 3 4
123 4

fIb*l 2 3 4
1 2 3 4

The domain of the natural logarithm function is limited to
positive numbers.

The general logarithm function BfIbX is defined as (fIbX)+fIbB.
I t is inverse to the power function in the following sense:
B*BfIbX and BfIbB*X both equal X. Limitations on the domain
follow directly from the defining expression.

Circular, Hyperbolic, and Pythagorean
Functions

The symbol 0 denotes a monadic function whose result equals
pi times its argument. For example:

01 2 0.5
3.141592654 6.283185307 1.570796327

Chapter 5. Primitive Functions and Operators 5-13

IBl\1 Internal Use Oniy

The symbol 0 is also used dyadically to denote a family of 15
related functions as follows: the expression IoX is defined for
integer values of I from -7 to 7, and is in each case
equivalent to one of the circular, hyperbolic, or pythagorean
functions, as indicated in Figure 5-1 on page 5-5.

The circular functions, sin, cos, and tan (1 oX, 2 oX II and 3 oX),
require an argument in radians. For example:

PI~o1
loPI+2 3 4

1 0.8660254038 0.7071067812

The hyperbolic functions, sinh and cosh (50X and 6oX), are the
odd and even components of the exponential function; that is,
50X is odd, 60X is even, and the sum (50X)+ (6oX) is
equivalent to *X. Consequently:

50X equals 0.5x(*X)-(*-X)
60X equals O. 5x (*X)+(*-X)

The definition of the hyperbolic tangent function, tanh (7 oX),
is similar to that of the tangent; that is 7 oX equals
(50X)+6oX.

The pythagorean functions OoX, 4oX, and -4oX are defined as
shown in Figure 5-1 on page 5-5, and are related to the
properties of a right triangle as indicated in Figure 5-3 on
page 5-15. They may also be defined as follows:

-4oX equals 50-6oX
OoX equals 2o-1oX or lo-2oX
40X equals 6o-50X

5-14 APL/PC, Version 2.1

IBM Internal Use Only

r----------'------~_4D

AC=l
AB=OoBC
BC=OOAB
AE=4oDE
DE= - 40AE

Figure 5-3. The Pythagorean Functions

Each of the family of functions, IoX, has an inverse in the
family; that is, (-I)oX is the inverse of IoX. Certain of the
functions are not monotonic, and their inverses are therefore
many-valued. The principal values are chosen in the following
intervals:

Arcosh R+-6oX R~O
R+-4oX R:?:O

Arctan R+-30X (IR)SoO.5

Arccos R+-2oX (R:?:O)A(RSol)

Arcsin R+-loX (IR)soO.5
R+OoX R~O
R+4oX R:?:O

Factorial and Binomial Functions

The factorial function, ! N, is defined, for positive integer
arguments, as the product of all positive integers up to N. An
important consequence of this definition is that IN equals
Nx !N-l, or equivalently, !N-l equals (!N)+N. This
relation is used to extend the function to all arguments except
negative integers. For example:

Chapter 5. Primitive Functions and Operators 5-15

N+1 2 3 4 5
IN

1 2 6 24 120
(IN)+N

1 1 2 6 24
10 1 2 3 4

1 1 2 6 24
F+.5 1 1.5 2 2.5
!F

IBM Internal Use Only

0.8862269255 1 1.329340388 2 3.32335097
(!F)+F

1.772453851 1 0.8862269255 1 1.329340388
1-0.5 0 .5 1 1.5

1.772453851 1 0.8862269255 1 1.329340388

This extension leads to the expression (! 0) + 0 or 1 T 0 for
! -1, and -1 is therefore excluded from the domain of the
factorial function, as are all negative integers.

The binomial function, MIN, is defined, for non-negative
integer arguments, as the number of distinct ways in which M
things can be chosen from N things. The expression
(IN)+ (!M)x (!N-M) yields an equivalent definition that is
used to extend the definition to all numbers. Although the
domain of factorial excludes negative integers, the domain of
the binomial does not, because any implied division by 0 in the
numerator 1 N is usually accompanied by a corresponding
division by 0 in the denominator; the function, therefore,
extends smoothly to all numbers, except where N is a negative
integer and M is not an integer.

The result of I! N is equivalent to coefficient I in the binomial
expansion (X+1)*N. For example:

o 1 2 313
1 3 3 1

5-16 APLjPC, Version 2.1

IBM Internal Use Only

Operators

An operator may be applied to a function to get a different
function. For example, the outer product operator, denoted
by the symbol o. may be applied to any of the primitive
scalar dyadic functions to derive a corresponding "table
function", as shown in the following for times and power:

A+l 2 3 4
Ao. xA

1 2 3 4
246 8
3 6 9 12
4 8 12 16

Ao .*A
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256

Four of the APL operators - reduction, scan, inner product, and
outer product - may apply to any primitive scalar dyadic
function. The axis operator applies to functions derived from
reduction and scan, and also to certain of the mixed functions.

Reduction

Reduction is denoted by the symbol I and applies to the
function that precedes it. For example, if V+l 2 3 4 5,
then + IV yields the sum of the items of V, and x IV yields
their product:

+IV xIV
15 120

In general, an expression of the form f. IV is equivalent to the
expression obtained by placing the function symbol f between
adjacent pairs of items of the vector V:

5

3

rlv
-IV

5

3

lr2r3r4r5

1-2-3-4-5

The last example emphasises that the general rule for the order
of execution from right to left is applied, and that as a
consequence, the expression - IV yields the alternating sum of

Chapter 5. Primitive Functions and Operators 5-17

IBM Internal Use Only

the itetns of V. The alternating sum is the sum obtained after
first weighting the items by nlultiplying alternate eletnents by 1
and -1. Thus:

A+1 -1 1 -1 1
VxA

1 -2 3 -4 5
+IVxA

3
-IV

3

Similarly, .. IV yields the alternating product:

V*A
1 0.5 3 0.25 5

xIV*A
1.875

1.875
"IV

The result of applying reduction to any scalar or vector is a
scalar; the value for a scalar or one-element vector argument is
the single item itself. (The application of reduction to other
arrays is treated in the discussion of the axis operator).

Reduction of an empty vector by any function is the identity
element of the function, if one exists, and a domain error if one
does not exist. Thus if V is an empty vector, +IV equals 0,
and AIV equals 1.

The reason for this definition is the extension to empty vectors
of an important relation between the reductions of two
vectors, P and Q, and the reduction of the vector V+P, Q,
which is obtained by chaining them together. For example:

+IV equals (+ IP)+ (+IQ)
xIV equals (xIP)x (xIQ)

If P is an empty vector, then + IP must equal 0 (the identity
element of +), and xlP must equal 1.

5-18 APL/PC, Version 2.1

IBM Internal Use Only

Scan

The scan operator is denoted by the symbol \ and applies to
the function that precedes it. When the resulting function is
applied to a vector V, it yields a vector of the same shape, the
Kth element of which is equal to the corresponding reduction
over the first K elements of V. For example:

+\1 2 3 4 5
1 3 6 10 15

X\l 2 3 4 5
1 2 6 24 120

v\O 0 1 0 1
o 0 111

A\l 1 0 1 0
1 1 000

<\0 0 1 0 1 1 0
o 0 1 0 0 0 0

The extension of scan to arrays other than vectors is treated in
the discussion of the axis operator.

Axis

A matrix can be viewed as a collection of either columns or
rows, and an array of higher rank can be viewed as a collection
of planes or hyperplanes. For example, a three-dimensional
array of shape 2 3 4 is normally represented as two planes of
3-by-4 matrices, but it can also be viewed as three planes of
2-by-4 matrices, or as four planes of 2-by-3 matrices. For any
chosen representation, the resulting (hyper)planes are
orthogonal to the chosen axis, and are said to lie along that
axis. Thus, in the preceding example, the 3-by-4 matrices lie
along the first axis.

In previous sections, the reduction and scan operators were
defined for a vector. This definition is extended to arrays of
higher rank by applying the function argument of the operator
bet\veen successive (hyper)planes. As the preceding example
shows, a multi-dimensional array can be viewed as a collection
of arrays of lesser rank which lie along any chosen axis. The
axis operator is used to select the chosen axis, and determines
the direction of application of the scan or reduction operators.

Chapter 5. Primitive Functions and Operators 5-19

IBl\1 Intcinal Usc Only

The axis operator is denoted by brackets immediately following
a scan or reduction operator. The brackets enclose an
expression yielding the index of the desired axis as a scalar or
one-element vector. If a scan or reduction operator is applied
to an array without the axis operator, the direction of
application will be along the last axis. For example:

D+M+3 4P112
1 2 3 4
5 6 7 8
9 10 11 12

+\ [l]M +/ [l]M
1 2 3 4 15 18 21 24
6 8 10 12

15 18 21 24
+\[2]M +/[2]M

1 3 6 10 10 26 42
5 11 18 26
9 19 30 42

+\M +/M
1 3 6 10 10 26 42
5 11 18 26
9 19 30 42

The result of the scan operation has the same shape as the
argument. The result of a reduction operation has a shape
similar to the shape of the argument, but with the indicated
axis of reduction removed. Indexing of axes is dependent on
the current value of the index origin, DIO. With DIO+l, the
leftmost or first axis has an index value of 1. The symbols f
and ~ also denote reduction and scan operations, which are
equivalent to the standard reduction and scan operators when
used with the axis operator. When used without an axis
operator however, these symbols cause the reduction or scan
operation to be applied along the FIRST axis.

The axis operator is also used to specify the axis of application
of the mixed functions, reverse, rotate, catenate, compress, and
expand. The axis operator cannot be used with the inner
product or outer product operators.

5-20 APLjPC, Version 2.1

IBM Internal Use Only

Inner Product

If P and Q are vectors of the same shape, the expression
+/pxQ has a variety of useful interpretations. For example, if
P is a list of prices and Q is a list of corresponding order
quantities, then + / px Q is the total cost. Expressions of the
same form using functions other than + and x are equally
useful, as suggested by the following examples (where B is used
to denote a boolean vector):

A/P=Q

+/P=Q

L/P+Q

+/pxB

Comparison of P and Q

Count of agreements between P and Q

Minimum distance for shipment to a particular
destination, where P represents the distances from
source to possible intermediate shipping points and
Q the distances from these points to the
destination.

Sum over a subset of P specified by B

Product over a subset of P specified by B

The inner product operator produces functions equivalent to
expressions of this form; it is denoted by a dot and applies to
the two functions that surround it. Thus P+ • xQ is equivalent
to +/pxQ, and px. *B is equivalent to x/P*B and, in general,
Pf. gQ is equivalent to f /PgQ, if P and Q are vectors.

The inner product is extended to arrays other than vectors
along certain fixed axes, namely the last axis of the first
argument and the first axis of the last argument. The lengths
of these axes must agree. The shape of the result is obtained
by deleting these axes and chaining the remaining shape
vectors. The consequences for matrix arguments are shown in
Figure 5-4 on page 5-22.

Chapter 5. Primitive Functions and Operators 5-21

Rf.gC

A Af.gB

~--------- pA pB
R r---------- If fK

B

Figure 5-4. Inner Product

I I

I I
I I
ICI
I I
I I
I I
I I
I I

i I

\!
IK

pALgB

The consequences for the shape of inner products on some
other arrays are shown in the following example:

pA pB pC pD pE pF pG pH
3 5 5 2 7 7 9 9 8 8 6 7 7

I I I I I
3 2 7 7 6 scalar

pA f.g B pCf.gD pEf.gF pGf.gH

Formally, pAf. gB equals (-l""pA), l""pB.

The inner product M+ • xN is commonly called the matrix
product. Examples of it also are shown in the following.

5-22 APLjPC, Version 2.1

IBM Internal Use Only

1
a
a
a
a
a
a

17

2

1
1
a
a
1
a
a

P+2 3 5 7
M+(l4-)O.Sl4-

M
1 1
1 1
1 1
a 1

M+.xM
2 3
1 2
a 1
M+.xP

15 12 7 2
P+.xM

5 10 17 a

MA.=M
a a a 1
a a a a
a a a a
a a a a

M-.xM
a -1 a -1
0 a 1 a
a 0 o -1

px.*M
6 30 210

MA.=O a 1 1
0 1 0

Either argument of an inner product may be a scalar or a
one-element vector; it is extended in the usual way. For
example, A +. x 1 is equivalent to + / A, and 1 +. xA is
equivalent to +fA.

Outer Product

The outer product operator, denoted by the symbols 0 •

preceding the function symbol, applies to any dyadic primitive
scalar function, so that the function is evaluated for each
member of the left argument paired with each member of the
right argument. For example, if A +1 2 3 and B+l 2 3 4-
5, then:

Ao. xB
1 234- 5
2 4- 6 8 10
3 6 9 12 15

Ao .<B
a 1 111
o all 1
a a all

Such tables may be better understood if they are labelled in a
way that is widely used in elementary arithmetic texts: values
of the arguments are placed beside and above the table, and
the function whose outer product is being computed is shown
at the corner. Thus:

Chapter 5. Primitive Functions and Operators 5-23

x

1
A 2

3

<

1
A 2

3

1

1
2
3

1

0
0
0

B
2

2
4
6

B
2

1
0
0

IBM Internal Use Only

3 4 5

3 4 5
6 8 10
9 12 15

3 4 5

1 1 1
1 1 1
0 1 1

In the preceding example, the shape of the result A 0 • xB is
clearly equal to (pA), (pB). This expression yields the shape
for any arguments A and B. Thus, if R+A o. +B, and A is a
matrix of shape 3 4, and B is a three-dimensional array of
shape 5 6 7, then R is a five-dimensional array of shape
3 4- 5 6 7. Moreover, R[I;J;K;L;M] equals
A [I; J] +B [K; L; M] for all possible scalar values of the
indexes.

5-24 APL/PC, Version 2.1

IBM Internal Use Only

Mixed Functions

The mixed functions are grouped in five classes according to
whether they concern the structure of arrays, selection from
arrays, generation of selector infornlation for use by selection
functions, numeric calculations, or transformations of data,
such as that between characters and numbers. All are listed in
Figure 5-5, with brief definitions or examples.

Those functions that may be changed by an axis operator may
also be used without an axis operator, in which case the axis is
the last or, for the functions denoted by e and -I, the first axis.

Figure 5-5 summarises the restrictions on the ranks of
arguments that nlay be used with each mixed function.

Name Sign(!) Definition or Example (2)

Functions Concerning the Structure of Arrays

Shape

Reshape

Ravel

Reverse
(3)

Rotate
(3)

pA

,A

ct>A

Act> A

pP is 4
pE is 3 4
p5 is '\.0
Reshape A to dimension V
3 4p'\.12 is E
12pE is 1.12
OpE is '\.0
,A is (x/pA)pA
,E is '\.12
p,5 is 1

DCBA
ct>X is HGFE

LKJI
IJ/(L

ct>[1JX is eX is EFGH
ABCD

ct>P is 7 5 3 2
3~P is 7 2 3 5 is -lct>P

BCDA
1 0 -l~X is EFGH

LIJK

Figure 5-5 (Part 1 of 4). Primitive l\lixed Functions

Chapter 5. Primitive Functions and Operators 5-25

IBM Internal Use Only

Name Sign(l) Definition or Example (2)

Functions Concerning the Structure of Arrays (cont)

Catenate, A,A
Laminate

P,~2 is 2 3 5 7 1 2
'T'J'HIS' is 'THIS'
P J [.5]P is 2 3 5 7

T ra nspose V~A
(4)

235 7
Coordinate I of A becomes

coordinate V[I] of result
AEI

~A

2 l~X is BFJ
CGK
DHL

1 l~E is 1 6 11
Reverse order of coordinates
~E is 2 l~E

Functions Concerning Selection from Arrays

Take

Drop
Compress

(3)

Expand
(3)

Indexing
(4, 5)

V1'A

V"'A
V/A

V\. A

2 31'X is ABC -21'P is 5 7
EFG

Take or drop IV[I] first (V[I]~O)
or last (V[I]<O) elements of
coordinate I

2 3"'X is L -Z"'P is Z 3
1 0 1 O/P is 2 5

1 3
1 0 1 O/E is 5 7

9 11
1 0 l/[l]E is 1 Z 3 4 is 1 0 1Tl

9 10 11 12
1 0 1'~2 is 1 0 2

A BCD
1 0 1 1 l'X is E FGH

I JKL
veAl P[2] is 3

P[4 3 2 1] is 7 5 3 2
M[A;AJ E[l 3;3 2 1] is 3 Z 1

11 10 9
A [A j •• E [1;] is 1 2 3 4
•• jA] E[j1J is 1 5 9

ABCD
'ABCDEFGHIJKL'[EJ is EFGH

IJKL

Figure 5-5 (Part 2 of 4). Primitive Mixed Functions

5-26 APL/PC, Version 2.1

IBM Internal Use Only

Name Sign(l) Definition or Example (2)

Functions That Generate Selector Information

Index '\.S
Generator

(4)
Index of Vl.A

(4)

Membershi p A€A

Grade up 4V
(4)

Grade down "{TV
(4)

Grade up A4A
(dyadic)
(4)

Grade down A"{TA
(dyadic)
(4)

Deal S7S
(4)

First S integers
'\.4 is 1 2 3 4
,.0 is an empty vector
Least index of A in V, or l+pV
P,.3 is 2

5 125
P,.E is 3 5 4 5

555 5
4 4,.4 is 1
pW€Y is pW
P€'\.4 is 1 1 0 0

o 1 1 0
E€P is 1 0 1 0

o 0 0 0
43 5 3 2 is 4 1 3 2

The permutation that would order
V (ascending or descending)

"{T3 5 3 2 is 2 1 3 4

'ABCDE'4'DEAL' is 3 1 2 4

'ABCDE'"{T'DEAL' is 4 2 1 3

W?Y is random deal of W elements
from ,.y

Functions That Involve Numeric Calculations

Matrix £EM £E2 2pl 1 0 1 is 1 -1
inverse 0 1

Arguments may be scalars,
vectors, or matrices

Matrix MmM (2 2pP)1B2 2pl 1 0 1 is -3 -4
division 5 7

Decode A.1A 10.11 7 7 6 is 1776
24 60 60.11 2 3 is 3723

Encode ATA 24 60 60T3723 is 1 2 3
60 60T3723 is 2 3

Figure 5-5 (Part 3 of 4). Primitive Mixed Functions

Chapter 5. Primitive Functions and Operators 5-27

IBM Internal Use Only

Name Sign(l) Definition or Example (2)

Functions That Involve Data Transformation

Execute ~V ~'1+2' is 3
~'P' is 2 3 5 7

Format ~A '-1.5'1\.=~-1.5 is 1
(Monadic) p~E is 3 12

X is ~X
Format VC'f)A 4 l~P is 2.0 3.0 5.0 7.0
(Dyadic) 6 -l~P is 2EOOO 3EOOO 5£000 7£000

'0,55 '~P is 0,02 0,03 0,05 0,07

Notes:

1. Restrictions on argument ranks are indicated by: 8 for scalar. V for
vector. M for matrix, and A for any array (see Figure 5-6 on page 5-29).

Conformability requirements are given in the text where each function is
defined.

2. Arrays used in examples:

P
2 3 5 7

E
1 2 3 1.1-

5 6 7 8
9 10 11 12

ABeD
EFGl1
IJKL

X

3. The function is applied along the last axis; the symbols f, ~, and e are
equivalent to /, \, and $, respectively, except that the function is
applied along the first axis. In general, the relevant axis is determined by
[V] or [8] after the function symbol.

4. Function depends on index origin.

5. Elision of any index selects all along that axis.

Figure 5-5 (Part 4 of 4). Primitive Mixed Functions

Figure 5-6 on page 5-29 shows for what mixed functions and
under what conditions scalar and vector arguments may be
substituted for each other.

5-28 APL/PC, Version 2.1

IBM Internal Use Only

1. A scalar may be used in place of a one-element vector.

a. as left argument of:
reshape 3 p 4
take 3 + 1. 5
drop 3 i- 1. 5
expand 1 \,5
transpose 1 ~ , 5

+-+ (,3)p4
+-+ (,3)+1.5
+-+ (,3)i-1.5
+-+ (,1)\,5
+-+ (,1)~,5

format 5iJj3 .2 +-+ (,5)iJj3.2 +-+ 0 5 iJj3.2

2.

3.

b. as right argument of:

execute
branch

A scalar is extended to conform as necessary:

a. as left argument of:

compress 1/ 1.3 +-+

rotate 1<P2 2p1.4 +-+

b. as right argument of:

compress 1 0 1 / 2 +-+
expand 1 0 1 \ 2 +-+

take 2 3 +3 +-+

1 1
1 1

1 0
1 0
2 3

A one-element vector is permitted in place of a scalar.

a. as left argument of:

compress (,1)/1.3
deal (,3)?5
rotate (,2)<p2

b. as right argument of:

index generator
deal

1.,5
3?,5

3 5

+-+
+-+

7

+-+
+-+
+-+

1.5
3?5

1 /
<P 2

1 /
1 \
+ 1

1/1.3
3?5

2<P 2

Figure 5-6. Scalar Vector Substitutions for Mixed Functions

1.3
2p1.4

2 2
2 2
1p3

3 5

2

7

Chapter 5. Primitive Functions and Operators 5-29

IBM Internal Use Only

Structural Functions

In the monadic structure functions, the argument may be any
type: numeric or character. In the dyadic selection and
structure functions, one argument may be any type, and the
other (which serves as an index or other selection indicator)
must be numeric, and in one case (expansion), is further
restricted to be boolean.

Shape, Reshape, and Ravel

The shape function is the monadic function p. When applied
to an array A, it yields the shape of A; that is, a vector whose
components are the dimensions of A. For example, if A is the
matrix of three rows and four columns:

1 2 3 4
5 6 7 8
9 10 11 12

then pA is the vector 3 4.

Because pA has one component for each axis of A, the
expression p pA is the rank of A. The following table shows
the values of pA and p pA for arrays of rank 0 (scalars) up to
rank 3. In particular, the function p applied to a scalar yields
an empty vector.

Type of Array pA ppA

Scalar 0
Vector N 1
Matrix MN 2
3-Dimensional LMN 3

The monadic function ravel is denoted by a comma. When
applied to any array A, it produces a vector whose elements
are the elements of A in row order. For example, if A is the
matrix:

5-30 APL/PC, Version 2.1

IBlVllntcrnal Use Only

A+3 4p2 4 6 8 10 12 14 16 18 20 22 24
A

246 8
10 12 14 16
18 20 22 24

and if V+ Jll then V is a 12-element vector containing the
integers 2 4 6 8 10 ••• 24. If A is a vector, then Jll is
equivalent to A; if II is a scalar, then ,A is a vector of length 1.

The reshape function is the dyadic function p, which reshapes
its right argument to the shape specified by its left argurnent.
If M+Dp V, then M is an array of dimension D whose elements
are the elements of V. For example, 2 3 pi 2 3 4 5 6 is
the matrix:

123
456

If N, the total number of elements required in the array Dp V, is
equal to the dimension of the vector V, then the ravel of Dp V
is equal to V. If N is less than p V, then only the first N
elements of V are used; if N is greater than p V, then the
elements of V are repeated cyclically. For example:

2 3pl 2
121
212

3 3pl 0 0 0
100
010
001

More generally, if A is any array, then Dpll is equivalent to
Dp JA. For example:

If:

A+2 3pl 2 3 4 5 6
A

123
4- 5 6

Then:

3 5pA
1 2 345
6 123 4
5 6 123

Chapter 5. Primitive Functions and Operators 5-31

IBM Internai Use Oniy

The expressions 0 p X and 0 3 P X and 0 0 p X are all valid; any
one or more of the axes of an array may have zero length.
Such an array is called an empty array. If D is an empty
vector, then DpA is a scalar.

Reverse and Rotate

The monadic function reverse is denoted by <P; if X is a vector
and K+<PX, then K is equal to X, except that the items appear
in reverse order. The axis operator applies to reversal and
determines the axis along which the vectors are to be reversed.
For example:

A
123
456

<P[1]A
456
123

<P[2]A
321
654

The expression $A denotes reversal along the last coordinate
of A, and eA denotes reversal along the first coordinate. For
example, if A is of rank 3, then $A is equivalent to <P[3]A,
and eA is equivalent to $ [1] A. The axis operator applies to
e, and e [J] A is equal to <P [J] A.

The dyadic function rotate is also denoted by <p. If K is a
scalar or one-element vector, and X is a vector, then K$X
results in a cyclic rotation of X, where K specifies the number
of positions that every element is to be shifted. For K>O, the
elements are rotated to the left; for K< 0, the rotation occurs to
the right. If the magnitude of K is larger than the number of
elements in X, the rotation will be more than one full cycle.
Formally, K<PX is defined as X[1+(pX) 1-1+K+'lpX]. For
example, if X+2 3 5 7 11, then 2$X is equal to
5 7 11 2 3, and -2$X is equal to 7 11 2 3 5. In
zero-origin indexing, the definition for K$X becomes
X[(pX)IK+lpX].

If the rank of X exceeds 1, the coordinate J, along which
rotation is to be performed, may be specified by the axis
operator in the form Z+K<P [J] X. Moreover, the shape of K
must equal the remaining dimensions of X, and each vector
along the Jth axis of X is rotated as specified by the

5-32 APL/PC, Version 2.1

IBM Internal Use Only

corresponding element of K. A scalar or one-element vector K
is extended to conform as required.

For example, if pX is 3 4, and J is 2, the shape of K must be
3, and Z[I;] is equal to K[I]4>X[I;]. If J is 1, pK must
be 4, and Z [; I] is equal to K [I] 4>x [; I]. For example:

M-E-3 4pl 2 3 4 ••• 12
M

1 2 3 4
5 6 7 8
9 10 11 12

o 1 2 3 4>[l]M 1 2 3 4>[2]M
1 6 11 4 2 3 4 1
5 10 3 8 7 8 5 6
9 2 7 12 12 9 10 11

The expression KeX denotes rotation along the first axis of X.
The axis operator applies to e, and Ke [J] X is equal to
K4> [J] x.

Catenate and Laminate

Catenate, denoted by a comma, chains vectors (or scalars) to
form a vector. For example:

X-E-2 3 5 7 11
X,X

2 3 5 7 11 2 3 5 7 11

For vectors, the dimension of X, Y is equal to the total number
)f elements in X and Y. A non-empty numeric vector cannot
)e catenated with a non-empty character vector.

[he axis operator applies to catenation and determines the
lxis along which vectors are to be catenated. In the absence of
In axis operator, catenation occurs along the last axis. For
~xample:

Chapter 5. Primitive Functions and Operators 5-33

ABC
DEF
GHI

ABC
DEF
GHI
ABC
DEF
GHI

111+3 3p'ABCDEFGHI'
111

111, [1]111 111, [2]M
ABCABC
DEFDEF
GHIGHI

iBM internai Use Oniy

1I1,M
ABCABC
DEFDEF
GHIGHI

Two arrays are conformable for catenate along axis I if all
other elements of their shapes agree. Moreover, two arrays
may be catenated along axis I if they differ in rank by 1, and
if the shape vector of the array of lower rank is identical to the
shape vector of the array of higher rank after dropping its Ith
dimension. For example:

ABC
DEF
GHI
PQR

V+'PQR'
111, [1] V

ABCP
DEFQ
GHIR

M, [2] V
ABCP
DEFQ
GHIR

M,V

A scalar argument of catenate will be replicated to form a
vector, or higher rank array, as required. For example:

c+'m'

Iillillilmlil

C, (C, [1]111, [1]C),C

mABCm
ltiDEFlti
ltiGHIm
ltililltiltilil

Laminate joins two arrays of the same rank and shape along a
new axis. The position of the new axis relative to the existing
axes is indicated by a fractional axis number. For example, if
the new axis is to be inserted between the existing axes, 1 and
2, the axis number must have a value between 1 and 2. If the
new axis is to be inserted ahead of the present first axis of the
right argument, the axis number must be between 0 and 1 (or,
if zero-origin indexing is used, between -1 and 0). Similarly, i
the new axis is to be after the last of the present axes, the axis

5-34 APL/PC, Version 2.1

IBM Internal Use Only

number must exceed the index of the present last axis by a
fraction between 0 and 1.

The result of lamination has rank 1 greater than the rank of
the arguments, and has the same shape except for the
interpolation of the new axis, along which it has length 2. The
comma, which normally denotes catenation, followed by an
axis operator associated with a non-integral index, produces
lamination. For example:

ABC
DEF
CHI

123
456
7S9

ABC
DEF
GHI

123
456
7S9

ABC
123

DEF
456

GHI
789

M+3 3p'ABCDEFCHI'
N+3 3p'1234567S9'
M

N

M,[.5]N

M,[1.5]N

Ai
B2
C3

D4
E5
F6

G7
HS
I9

M,[2.5]N

The shapes of the preceding laminations are 2 3 3 and 3 2
3 and 3 3 2; the position of the 2 shows the point where the
new axis is inserted in each case.

A scalar argument of laminate is extended as required. For
example:

Chapter 5. Primitive Functions and Operators 5-35

lx
2x

3x
4x

B+2 2p l 1234 1

B,[2.5]IX I

,B,[2.5]'x ' lx2x3x4x

Transpose

IBM Internal Use Only

The expression 2 1 ~M yields the transpose of the matrix M;
that is, if R+2 1 ~M, then each element R [I: J] is equal to
M[J;I]. For example:

M+3 4pl 2 3 ••• 12
M

12341
56782
9 10 11 12 3

4

2 l~M
5 9
6 10
7 11
8 12

If P is any permutation of the indexes of the axes of an array
A, then the dyadic transpose P~A is an array similar to A,
except that the axes are permuted: the Ith axis becomes the
P [I] th axis of the result. Hence, if R+P~A, then (pR) [P] is
equal to pA. For example:

A+2 3 5 7pt210
pA

2 3 5 7
P+2 3 4 1
pP~A

723 5

More generally, Q~A is a valid expression if Q is any vector
equal in length to the rank of A, which is complete in the sense
that if its items include any integer N, they also include all
positive integers less than N. For example, if p pA is 3, then 1
1 2 and 2 1 1 and 1 1 1 are suitable values for Q, but 1
3 1 is not. Just as for P~A, where P is a permutation, the
Ith axis becomes the Q [I] th axis of Q~A. However, in this
case, two or more of the axes of A may map into a single axis

5-36 APL/PC, Version 2.1

IBM Internal Use Only

of the result, thus producing a diagonal section of A, as shown
by the following:

123
456
7 8 9

159

A+3 3P19
A

1 1~A

B+3 5P115
B

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
1 l~B

1 7 13

The monadic transpose ~A reverses the order of the axes of its
argument. Formally, ~A is equivalent to ($1 ppA)~A. In
particular, for a matrix A, this reduces to 2 1 ~A and
conunonly is called the transpose of a nlatrix.

Selection Functions

The selection functions are all dyadic. One of the arguments
may be an array of any type. The other, which will be called
the selector, because it specifies the selection to be nlade, must
be numeric and, for expand, is further restricted to boolean.

Take and Drop

The take function is denoted by the up arrow (+). If S is a
non-negative scalar integer, and V is a vector, then S+ V results
in a vector of shape S, which is obtained by taking the first S
elements of V followed (if S>p V) by zeros if V is numeric, and
by spaces if it is not. For example:

235

ABC

3+2 3 5 7

3+'ABCDE'

7+2 3 5 7
2 3 5 7 000

(7+'ABCDE'), 'lIP
ABCDE m

If S is a negative integer, then S+ V takes elements as above,
but takes the last elenlents of V and fills as needed on the left.
The resulting vector is thus right-justified, and the original
ordering of the elements is maintained. For example:

357
-7+2 3 5 7

o 002 3 5 7

Chapter 5. Primitive Functions and Operators 5-37

IBM Internal Use Only

If A is any array, then W +A is valid only if the vector W has
one element for each axis of A, and WEI] determines how
many elements are to be taken along the Ith axis of A. For
example:

A+3 4P112
A 2 -3+A

1 2 3 4 2 3 4
5 6 7 8 6 7 8
9 10 11 12

2 3+A 2 6+A
123 5 6 7 8 0 0
567 9 10 11 12 0 0

The function drop ("') is defined similarly, except that the
indicated number of elements is dropped rather than taken.
For example, -1 1 ",A is the same matrix as the result of
2 -3 +A displayed in the preceding paragraph. If the number
of elements to be dropped along any axis equals or exceeds the
length of that axis, the resulting shape has a zero length for
the axis.

The rank of the result of take and drop functions is the same
as the length of the left argument.

Compress, Replicate and Expand

Compression of X by U is denoted by the expression U IX. If U
is a boolean vector, and X is a vector of the same dimension,
then U IX produces a vector of + I U elements chosen from
those elements of X that correspond to non-zero elements of U.
For example, if X+2 3 5 7 11 and U+l 0 1 1 0, then
UIX is 2 5 7, and (fVU)/X is 3 11.

C+'THIS IS AN EXAMPLE'
D+C~' ,
Cl+DIC
Cl

THISISANEXAMPLE

If U is all zeros, then U IX is an empty vector.

To be conformable, the dimensions of the arguments must
agree, except that a scalar or one-element vector argument on

5-38 APL/PC, Version 2.1

IBM Internal Use Only

the left, or a scalar on the right, is extended. So, 1/ X and
(,1)/X are equal to X.

Replicate is an extension of compress allowing a non-boolean
left argument:

Z+U/X

where X may be any array. U must be a scalar or a vector of
integers. Z is an array with the same rank as X, but with each
sub-array along the last axis replicated according to the format
indicated by U. -l-1-pZ is -l-1-pX.

If U is a scalar or one element vector, it will be extended to
-1 + 1 , pX elements before application of the function. If X is
a scalar, then it will be extended to a vector of as many
elements as +/U~O. In any other case, -l1'pX must be equal
to +/U~O.

N on-negative elements of U correspond to sub-arrays of X
along its last axis. If U [I] (an element of U) is non-negative,
then the corresponding subarray of X will be replicated U [I]
times. If U [I] is negative, then Z is filled with I U [I] fill
elements (0 if X is numeric, spaces if X is literal). If U is not
extended, then -1 + P Z is + / I u.

Examples:

2 / 1 2 3
1 1 2 2 3 3

2 3 / 4
4 4 4 4 4

1 0 2 3 / 1 2 3 4
1 3 3 4 4 4

1 1 2 0 0 0 1 / 'MERCURY'
MERRY

1 0 2 -1 3 -2 / 1 234
1 3 3 0 4 4 400

o 4 0 1 / 3 4P'l12
2 2 2 2 4
6 6 6 6 8

10 10 10 10 12

Expansion is the converse of compression and is denoted by
U\X. If Y+U\X, then U /Y is equal to X and (NU) /Y is an

Chapter 5. Primitive Functions and Operators 5-39

IBM Internal Use Only

array of zeros or spaces, depending on whether X is numeric or
character. In other words, U\X expands X to the format
indicated by the ones in U and fills in zeros or spaces. To be
conformable, + / U must equal p X. Continuing our previous
example:

D\C1
THIS IS AN EXAMPLE

The axis operator applies to compress, replicate and expand
and determines the axis along which they apply. If the axis
operator is omitted, the last axis is used. The symbols f and \
also denote compression (or replication) and expansion, but
when used without an axis operator, apply along the first axis.
F or example:

Q+3 4p'ABCDEFGHIJKL'
Q

ABCD
EFGH
IJKL

o 1 1 O/Q 1 1 a 1\[1JQ
BC ABCD
FG EFGH
JK

1 0 1/[1JQ IJKL
ABCD 1 1 0 1\Q
IJKL ABCD

1 a 1fQ EFGH
ABCD
IJKL IJKL

2 a 1/[1JQ
ABCD
ABCD
IJKL

2 a 1fQ
ABCD
ABCD
IJKL

If the right argument is a scalar, the result is a vector;
otherwise, the rank of the result of compress, replicate or
expand equals the rank of the right argument.

5-40 APL/PC, Version 2.1

IBM Internal Use Only

Indexing

Indexing may be either O-origin or I-origin, as discussed in
"Arrays" on page 4-10. The following discussion assumes
I-origin. If X is a vector and I is a scalar, then X [IJ denotes
the Ith element of X. For example, if X+2 3 5 7 11 then
X [2J is 3.

If the index I is a vector, then X [IJ is the vector obtained by
selecting from the elements indicated by successive
components of I. For example, X[l 3 5J is 2 5 11 and
X [5 4 3 2 1 J is 11 7 5 3 2. If the elements of I do
not belong to the set of indexes of X, the expression X [IJ
causes an index error report.

In general pX [IJ equals pI. In particular, if I is a scalar,
then X [IJ is a scalar, and if I is a matrix, then X [IJ is a
matrix. For example:

A+'ABCDEFG'
I+4 3p3 1 4 2 1 4 4 124 1 4
I A[IJ

3 1 4 CAD
2 1 4 BAD
4 1 2 DAB
4 1 4 DAD

If M is a matrix, it is indexed by a two-part list of the form
I; J, where I selects the row (or rows), and J selects the
column (or columns). For example:

M+3 4P112
M

123 4
567 8
9 10 11 12

7
M[2;3J

M[l 3;2 3 4J
234

10 11 12

In general, pM [I; JJ is equal to (pI) J pJ. Hence, if I and
J are both vectors, then M [I; JJ is a matrix; if both I and J
are scalars, M [I; JJ is a scalar; if I is a vector and J is a
scalar (or vice versa), M [I; JJ is a vector. The indexes are
not limited to vectors, but may be of higher rank. For
example, if I is a 3-by-4 matrix, and J is a vector of dimension
6, then M[I ;JJ is of dimension 3 4 6, and M[J; IJ is of

Chapter 5. Primitive Functions and Operators 5-41

IBM Internal Use Only

dimension 6 3 4. In particular, if T, P, and Q are matrices,
and if R+T [P; QJ , then R is an array of rank 4, and
R[I;J;K;LJ is equal to T[P[I;JJ ;Q[K;LJJ.

The form 111 [I; J indicates that all columns are selected; the
form 111 [; J J indicates that all rows are selected. For example,
111[2; J is 5 6 7 8, and 111 [; 2 lJ is the matrix with rows
2 1 and 6 5 and 109

The following example shows a matrix indexing a matrix to get
a three-dimensional array:

111+2 4p3 1 4 2 1 4 4 1
111

314 2
144 1

111 [;1I1J
4 3 2 1
3 223

4 1 1 4
1 1 1 1

An indexed variable may appear to the left of a specification
arrow if (1) the expression is executable in the environment,
and (2) the values of the expression on the left and right are
denoted by Land R, then l=x/pR or (l;tpL)/pL must
equal (l;tpR) / pRo For example:

X+2 3 5 7 11
X[l 3J+6 8
X

6 3 8 7 11

Selector Generators

All functions in this group have integer results which, although
they are commonly useful as the selector argument in selection
functions, are often used in other ways as well. For example,
the grade-up function (~) is commonly used to produce
indexes needed to order a vector into ascending order (as in
X [~X]), but may also be used in the treatment of
permutations as the inverse function; that is, ~P yields the
permutation inverse to P. Similarly, IN generates a vector of

5-42 APL/PC, Version 2.1

IBM Internal Use Only

N successive indexes, but O. 1 x 1N generates a grid of values
with an interval of 0.1.

Index Generator and Index Of

The index generator 1 applies to a non-negative scalar integer
N to produce a vector of length N that contains the first N
integers in order, beginning with the value of the index origin
DIO. For example, 15 yields 1 2 3 4 5 (in I-origin) or 0
1 2 3 4 (in O-origin), and 10 yields an empty vector. A
one-element array argument is treated as a scalar.

The index of function is dyadic. If V is a vector and S is a
scalar, then V 1 S yields the index (in the origin in force) of the
earliest occurrence of S in V; that is, the index of S in V. If S
differs from all items of V, then 1 S yields the first index
outside the range of V; that is, DIO+p V.

If S is any array, then VtS yields an array with the shape of
S, each item being determined as the index in V of the
corresponding item of S. For example:

A~'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
J~A1'HEAD CHIEF'
J

8 5 1 4 27 3 8 9 5 6
A[JJ

HEAD CHIEF
A[$JJ

FEIHC DAEH
A l' VAR3'

22 1 18 28

HEAD
CHIEF

8
3

5
8

M~2 5p'HEAD CHIEF'
M

A1M
1
9

4 27
5 6

Chapter 5. Primitive Functions and Operators 5-43

iBl\rf Internal Use Giily

Membership

The nlembership function, X e Y, yields a boolean array of the
same shape as X. Any particular element of Xe Y has the value
1 if the corresponding element of X belongs to Y; that is, if it
occurs as some element of Y. For example, (1 7) e 3 5 is
equal to 0 0 1 0 1 0 0 and I ABCDEFGH I e I COFFEE I
equals 0 0 1 0 1 1 0 O. The right argument Y may be of
any rank.

The selector argument of compression is commonly given by
applying the membership function, alone or in combination
with the scalar boolean and relational functions.

Grade Functions

The grade-up function, ihV, grades the items of vector V in
ascending order; that is, it yields a result of the same
dimension as V whose first item is the index (in the origin in
force) of the smallest item of V, whose second item is the index
of the next smallest item, and so on. Consequently, V[4\V]
yields the elements of V in ascending order. For example, if
V+8 3 7 5, then ~V is 2 4 3 1, and V[4\V] is 3 5 7 8.

If the items of V are not all distinct, the ranking among any
set of equal elements is determined by their position. For
example, ~4 3 1 3 4 2 yields 3 6 2 4 1 5.

The grade-down function, 'V, grades the items of V in
descending order. Among equal elements, the ranking is
determined by position, just as for grade-up. Consequently,
~V equals the reversal of 4\V only if the items of V are distinct.
F or example:

A+7 2 5 11 3
4\A

25314

'A 41352

8+4 3 1 3 4 2
4\B

3 6 241 5 '8 1 5 246 3

The monadic grade functions apply only to numeric vectors.

5-44 APL/PC, Version 2.1

IBM Internal Use Only

Grade Down (Dyadic): z + L ~ R

R may be any non-scalar character array, as may L. i is an
integer vector of shape 1'" pR, containing the permutation of
11 + pR that puts the sub-arrays along the first axis of R in
non-ascending order according to the collating sequence L.

Grading works by searching in L (in row-major order) for each
element of R, and then attaching a significance dependent on
where it was first found. The significance depends on both the
location and the rank of L.

Any elements of R not found in L have collating significance
as if they were found immediately past the end of L. Z leaves
the order among elements of equal collating significance
undisturbed.

Examples:

IABCDEI ~ IDEAL I

4 2 1 3

DEAL
LEAD
DEAD
DEED
DALE

R + 5 4plDEALLEADDEADDEEDDALEI
R

IABCDEI ~ R
24135

The last axis of L is the most significant for grading, and the
first axis of L is the least significant. Thus, in the following
example, differences in spelling have higher significance than
differences in case:

Chapter 5. Primitive Functions and Operators 5-45

IBl\{ Interna! Use Un!y

R + 5 4p ' dealDealdeadDeadDEEDI
R

deal
Deal
dead
Dead
DEED

abcde
ABCDE

L + 2 5p'abcdeABCDE'
L

Z + L Vi R
Z

5 2 143
R[Z;]

DEED
Deal
deal
Dead
dead

DIO is an implicit argument of dyadic grade down.

Grade Up (Dyadic): Z + L & R

R may be any non-scalar character array, as may L. Z is an
integer vector of shape 1'" pR, containing the permutation of
1.1 + pR that puts the sub-arrays along the first axis of R in
non-descending order according to the collating sequence L.

Grading works by searching in L (in row-major order) for each
element of R, and then attaching a significance dependent on
where it was first found. The significance depends on both the
location and the rank of L. Any elements of R not found in L
have collating significance, as if they were found immediately
past the end of L. Z leaves the order among elements of
equal collating significance undisturbed.

5-46 APLjPC, Version 2.1

IBM Internal Use Only

'ABCDE' ~ 'DEAL'
3 124

DEAL
LEAD
DEAD
DEED
DALE

R ~ 5 4p'DEALLEADDEADDEEDDALE'
R

'ABCDE' ~ R
5 3 142

The last axis of L is the most significant for grading, and the
first axis of L is the least significant. Thus, in the following
example, differences in spelling have higher significance than
differences in case:

deal
Deal
dead
Dead
DEED

abcde
ABCDE

R ~ 5 4p'dealDealdeadDeadDEED'
R

L ~ 2 5p'abcdeABCDE'
L

Z ~ L 4l R
Z

34125

dead
Dead
deal
Deal
DEED

R[Z;]

OIO is an implicit argument of dyadic grade up.

Chapter 5. Primitive Functions and Operators 5-47

IBM Internal Use Only

Deal

The deal function, M? N, produces a vector of length M, which
is obtained by making M (pseudo-) random selections, without
replacement, from the population IN. Both arguments are
limited to scalars or one-element vectors. Each selection is
made by appropriate application of the scheme described for
the function roll.

The expression, N? N, yields a random permutation of the items
of IN. The expression, P[M?pP], selects M distinct elements
from the population defiried by the items of a vector P. For
example:

) CLEAR
CLEAR WS

P+ 'ABCDEFGH'
P[3?pP]

BGE

Numeric Functions

P[(pP)?pP]
ECBGDHAF

The numeric mixed functions apply only to numeric arguments
and produce numeric results.

Matrix Inverse and Matrix Divide

The domino (m) represents two functions that are useful for a
variety of pro blems, including the solution of systems of linear
equations, determining the projection of a vector on the
subspace spanned by the columns of a matrix, and determining
the coefficients of a polynomial that best fits a set of points in
the least-square sense.

When applied to a non-singular matrix A, the expression, mA
(matrix inverse), yields the inverse of A, and X+BmA (matrix
divide) yields a value of X that satisfies the relation

5-48 APLjPC, Version 2.1

IBM Internal Use Only

A / J B=A +. xX and is therefore the solution of the system of
linear equations conventionally represented as AX = B.

F or example:

A+-(14)o.~14
A fi)A A+. xfi)A

1 0 o 0 1 0 0 0 1 0 o 0
1 1 o 0 -1 1 a 0 0 1 o 0
1 1 1 0 0 -1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 o 1

B+-l 3 6 10
X+-B[i]A A+.xX
B 1 3 6 10

1 3 6 10 <filA)+.xB
X 1 2 3 4

1 2 3 4
C+-4 2pl 2 3 5 6 9 10 14
¥+-Cfi)A
C

1 2
3 5
6 9

10 14
Y A+.xY (fi)A)+.xC

1 2 1 2 1 2
2 3 3 5 2 3
3 4 6 9 3 4
4 5 10 14 4 5

The last example above shows that if the left argument is a
matrix C, then Cfi)A yields a solution of the system of
equations for each column of C.

If A is non-singular, and I is an identity matrix of the same
dimension, then the matrix inverse filA is equivalent to the
matrix divide IfilA. More generally, for any matrix P, the
expression lilP is equivalent to the expression
((1.R) 0 • = l.R)mp, where R is the number of rows in P.

The domino functions apply more generally to non-square
ma trices, and to vectors and scalars; any argument of rank
greater than 2 is rejected (RANK ERROR). For matrix
arguments A and B, the expression X+-Bfi!A is executed only if:

1. A and B have the same number of rows, and

Chapter 5. Primitive Functions and Operators 5-49

IBM Internal Use Only

2. The columns of A are linearly independent.

If X+-BIlJA is executable, then pX is equal to (l.J.pA), l.J.pB,
and X is determined so as to minimise the value of
+/, (B-A+.xX)*2.

The domino functions apply to vector and scalar arguments as
follows, except that:

1. The shape of the result is determined as specified above.

2. A vector is treated as a one-column matrix.

3. A scalar is treated as a one-by-one matrix.

The reasoning for this interpretation of a vector as a
one-column (rather than one-row) matrix is that the right
argument is treated geometrically (as will be seen in a later
example) as defining a space spanned by its column vectors,
and the left argument was seen (in an earlier example) to be
treated so as to yield a solution for each of its column vectors.
Indeed, a one-row matrix, right argument (unless I-by-l)
would be rejected under condition 2 above.

F or scalar arguments X and Y, the expression my is equivalent
to +¥ and, except that it yields a domain error for 0000, the
expression, XIilY, is equivalent to X+Y.

The use of rII for a non-square right argument can be
illustrated as follows: if X is a vector, and ¥+F X, then
YIilX 0 • * 0 , 1 D yields the coefficients of the polynomial of
degree D, which best fits (in the least-square sense) the
function F at the points, X.

The definition of BrIIA has certain useful geometric
interpretations. If B is a vector, and A is a matrix, then saying
that +/ (B-A+. xBrIIA)*2 is a minimum, is equivalent to
saying that the length of vector B-A+. xBrIIA is a minimum.
But A + • xBmA is a point in the space spanned by the column
vectors of A, and is therefore the point in this space that is
closest to B. In other words, P+A + • xBrIIA is the projection of
B on the space spanned by the columns of A. Moreover, the

5-50 APL/PC, Version 2.1

IBJ\lI Internal Use Only

vector B - P must be normal to every vector in the space; in
particular, (B-P)+. xA is a zero vector.

If A and B are single-column matrices, then BillA is a I-by-l
rnatrix, and A +. xBIi}A is equivalent to A xS, where S is the
scalar' 'pBIIJA. If A and B are vectors, then BillA is a scalar,
and the projection of B on A is therefore given by the simpler
expression, AxBmA. For example:

A+4.5 1.7
B+2 5
P+AxBIiIA
P

3.403197926 1.28565255
N+B-P
N

-1.403197926 3.71434745
N+.xA

3.552713679E-15

Similar analysis shows that if A is a vector, then iliA is a vector
in the direction of A; that is, lilA is equal to SxA for some
scalar S. Moreover, A+. x lilA is equal to 1. In other words,
lilA is the image of vector A obtained by inversion in the unit
circle (or sphere).

Decode and Encode

For vectors R and X, the decode (or base-value) function RJ.X
yields the value of the vector X evaluated in a number system
with radices R[l] ,R[2] , ••• ,R[pR]. For exarnple, if
R+24 60 60, and X+l 2 3 is a vector of elapsed time in
hours, minutes, and seconds, then R loX has the value 3723,
and is the corresponding elapsed tilne in seconds. Similarly,
10 10 10 101.1 7 7 6 is equal to 1776, and
2 2 2 1.1 0 1 is equal to 5. Formally, RJ.X is equal to
+ /WxX, where W is the weighting vector determined as follows:
W [pW] is equal to 1 and W [I -1] is equal to R [I] xW [I] .
For example, if R is 24 60 60, then W is 3600 60 1.

Scalar (or one-element vector) arguments are extended to
conform, as required. For example, 101.1 7 7 6 yields
1776. The arguments are not restricted to integers; for

Chapter 5. Primitive Functions and Operators 5-51

IUl\/r Inf"" .. n .. 1 11C'"" 11fthr
"'All. 'fA A "' ••• A_ ""..:J'" "' ••• J

example, if X is a scalar, then XloC is the value of the
polynomial, with coefficients C arranged in descending order
on the powers of X.

The decode function is extended to arrays in the manner of the
inner product: each of the radix vectors along the last axis of
the first argument is applied to each of the vectors along the
first axis of the second argument. There is one difference; if
either of these distinguished axes is of length 1, it will be
extended as necessary (by replication of the element) to match
the length of the other argument. Except for this different
treatment of unit axes, the shape of the result of AloB is
determined as the shape of the inner product, namely
(-l.vpA) J l.vpB.

The encode or representation function RT X is, for certain
arguments, inverse to the decode function. For example:

1776

R+l0 10 10 10
Rlol 7 7 6

RT1776
1 7 7 6

For a radix R having positive integer elements, Rlo (RTX)
equals (x / R) I X rather than X. For example;

10 10 10 10T123 10 10 10T123
o 1 2 3 123

10 10T123 10T123
2 3 3

More precisely, the definition of the encode function is based
on the definition of the residue function; for a vector left
argument and scalar right argument, encode is equivalent to
the function, ENCODE, whose representation is shown at the
left below:

5-52 APL/PC, Version 2.1

IBM Internal Use Only

Z-E-A ENCODE B;I
Z-E-OxA 1 0

2 2 2T13
1

I-E-pA -2 -2 -2T13
L:+(I=O)/O
Z[I]-E-A[I]IB
+(A[IJ=O)/O
B-E-(B-Z[I])';'A[I]
I-E-I-1
+L

-1 -1

0 6 1

0 1 1

0 1 -1

-1
2 0 2T13

2 2 2T-13

-2 2 -2T13

The basic definition of RT X concerns a vector R and a scalar
X, and produces a result of the shape of R. It is extended to
arrays as follows: each radix vector along the first axis of R is
applied to get the representation of each item of X, the
resulting representations being arrayed along the first axis of
the result. For example:

10 10 10T215 486 72 219 3
24020
1 8 710
5 6 293

10 8
10 8
10 8

1 1
2 7
3 3

R-E-10 10 10,[1.5J8 8 8
R

RT123

The expression for the shape of the result of RT X is the same
as for the shape of the outer product, namely (pR), pX.

Data Transformations

Of the two functions in this class, the format is a true type
transformation, being designed to produce a character array
that represents the data in its numeric argument. Over a
certain class of arguments, the execute function is inverse to
the format and is therefore considered as a type transformation
as well, although its applicability is, in fact, much broader.

Chapter 5. Primitive Functions and Operators 5-53

Execute and Format

Any character vector or scalar can be regarded as a
representation of an APL statement (which mayor may not be
well-formed). The monadic function denoted by $I! (execute)
takes as its argument, a character vector or scalar, and
evaluates or executes the APL statement it represents. When
applied to an argument that might be interpreted as a system
command or the opening of function definition, an error will
necessarily result when evaluation is attempted, because
neither of these is a well-formed APL statement.

The execute function may appear anywhere in a statement, but
it will successfully evaluate only valid (complete) expressions,
and its result must be at least syntactically acceptable to its
context. Thus, execute applied to a vector that is empty,
contains only spaces, or starts with + (branch symbol) or R

(comment symbol), produces no explicit result, and therefore
can be used only on the extreme left. For example:

m' ,
Z+$I!' I

VALUE ERROR
Z+$I!' I

1\

The domain of $I! is any character array of rank less than 2,
and RANK and DOMAIN errors are reported in the usual way:

7

C+' 3 4'
+/mC

$l!1 3pC
RANK ERROR

m1 3pC
1\

m3 4
DOMAIN ERROR

$l!3 4
1\

An error can also occur in the attempted execution of the APL
expression represented by the argument of m; such an indirect
error is reported by the error type prefaced by the symbol m
and followed by the character string and the caret marking the
point of difficulty. For example:

5-54 APL/PC, Version 2.1

IBM Internal Use Only

~'4+0'
~ DOMAIN ERROR

4+0
A
~,)WSID'

~ VALUE ERROR
)WSID

A

The symbol iI> denotes two format functions, which convert
numeric arrays to character arrays. These functions have
several significant uses, besides the obvious one for composing
tabular output. For example, the use of format is
complementary to the use of execute in treating bulk input and
output, and in the management of combined alphabetic and
numeric data.

The monadic format function produces a character array that
will display the same as the display normally produced by its
argument, but makes this character array explicitly available.
For example:

) CLEAR
CLEAR WS

M~2=?4 4p2
R~iI>M
M R

0 1 o 1 0 1 o 1
0 a 1 1 0 a 1 1
1 0 1 1 1 a 1 1
0 a 1 1 0 0 1 1

pM pR
4 4 4 8

R[;2 X 14] pil>2 5
0101 3
0011 A/,R=iI>R
1011 1
0011 iI>'ABCD'

ABeD
X~34
'THE VALUE OF X IS ',iI>X

THE VALUE OF X IS 34

The monadic format function applied to a character array
yields the array unchanged, as shown by the last two examples.
For a numeric array, the shape of the result is the same as the
shape of the argument, except for the required expansion along
the last coordinate, with each number going, in general, to

Chapter 5. Primitive Functions and Operators 5-55

IBM Internal Use Only

several characters. The format of a scalar number is always a
vector.

The printing normally produced by APL systems may vary
slightly from system to system, but the result produced by the I
monadic format will have no final column of all spaces, and no
initial spaces for a vector or scalar argument.

The dyadic format function accepts only numeric arrays as its
right argument, and uses variations in the left argument to
provide progressively more detailed control over the result.
Thus, for Z+Li'PR, the argument L may be a numeric or
character vector.

If numeric, L may be a single number, a pair of numbers, or a
vector of length 2 x -1 + 1 t pR. In general, a pair of numbers
controls the result: the first determines the total width of a
number field, and the second sets the precision. For decimal
form, the precision is specified as the number of digits to the
right of the decimal point, and for scaled form, it is specified as
the number of digits in the multiplier. The form to be used is
determined by the sign of the precision indicator, with negative
numbers indicating scaled form. Thus:

A+3 2p12.34
pO+A

12.34

-34.567 0 12 -0.26 -123.45

-34.567
o

-0.26
12

-123.45
3 2

3 24

3 18

pO+12 3i'PA
12.340

.000
-.260

R+9 2i'PA
S+9 -2i'PA
pO+R

12.34 -34.57
.00 12.00

-.26 -123.45

pO+S
1.2EOOl -3.5EOOl
O.OEOOO 1.2EOOl

-2.6E-001-1.2E002
3 18

5-56 APLjPC, Version 2.1

-34.567
12.000

-123.450

pO+6 Oi'PA
12 -35

o 12
o -123

IBM Internal Use Only

If the width indicator of the control pair is 0, a field width is
chosen so that at least one space will be left between adjoining
numbers. If only a single control number is used, it is treated
as a number pair with a width indicator of 0:

pO+2<r>A
12.34 -34.57

.00 12.00
-.26 -123.45

3 15
pO+O 2<r>A

12.34 -34.57
.00 12.00

-.26 -123.45
3 15

pO+-2<r>A
1.2EOOl -3.5EOOl
O.OEOOO 1.2E001

-2.6E-00l -1.2E002
3 20

pO+O -2<r>A
1.2E001 -3.5EOOl
O.OEOOO 1.2EOOl

-2.6E-00l -1.2E002
3 20

Each column of an array can be individually composed by a
left argument that has a control pair for each:

pO+O 2 0 2<r>A
12.34 -34.57

.00 12.00
-.26 -123.45

3 15
pO+6 2 12 -3<r>A

12.34 -3.46EOOl
.00 1.20EOOl

-.26 -1.23E002

pO+S 3 0 2<r>A
12.340 -34.57

.000 12.00
-.260 -123.45

3 16
pO+8 0 0 -2<r>A
12 -3.5EOOl
o 1.2EOOl
o -1.2E002

3 18' 3 18
6 2 8 3 3 0 4 0 5 0 12 4<r>,A

12.34 -34.567 0 12 0 -123.4500

The format function applied to an array of rank greater than 2
:l pplies to each of the planes defined by the last two axes. For
~xample:

) CLEAR
'::LEAR WS

L+2=?2 2 5p2
L 4 l<r>L

0 1 0 1 0 .0 1.0 .0 1.0 .0
0 1 1 1 0 .0 1.0 1.0 1.0 .0

1 1 0 0 1 1.0 1.0 .0 .0 1.0
1 0 0 0 0 1.0 .0 .0 .0 .0

fabular displays incorporating row and column headings, or
)ther information between columns or rows, are easily set up
lsing the format function and catenation. For example:

Chapter 5. Primitive Functions and Operators 5-57

IBM Internal Use Only

) CLEAR
CLEAR WS

ROWS+4 3p'JANAPRJULOCT'
YEARS+75+t4
TBL+.001X-4E5+?4 4p8E5
(I I J [lJROWS) J (2<1>9 O'(f)YEARS) J [lJ 9 2~TB[;

76 77 78 79
JAN -294.77 204.48 -33.08 26.21
APR -224.83 -362.36 143.09 143.44
JUL 347.75 -93.20 15.53 264.77
OCT -372.34 -357.23 23.76 136.92

The left argument of format has obvious restrictions, because
the width of a field must be large enough to hold the requested
fonn. If the specified width is inadequate, the result will be a
DOMAIN error. However, the width does not have to provide
open spaces between adjoining numbers. For example,
boolean arrays can be tightly packed:

) CLEAR
CLEAR WS

0101
0011
1011
0011

1 Oil)2=?4 l.J.p2

The following formal characteristics of the format function
need not concern the general user, but may be of interest in
certain applications:

• The least width needed for a column of numbers C with
precision Pis:

W+(v/R<O)+(~PeO -l)+(lp)+
(5Jr/OJ(R~0)+Ll0~IR+R=0)[1+P~OJ

where R is the rounded value of C given by

R+(L.5+Cxl0*IP)+10*lp

• The expressions, (M~A) J N~B and (M J N) '(f)A J B, are
equivalent if M and N are full control vectors; that is, if
«pM)=2 X-l+pA)A (pN)=2X-l+pB. If 2=pM, then
(M'(f)A) J Mi15B and Mi15A J B are equivalent.

5-58 APLjPC, Version 2.1

IBM Internal Use Only

Picture Format

If the left argument L is a character vector, it is a pattern for
the result Z. The length of the last dimension of Z will be an
exact mUltiple of the length of L, and numbers in R will appear
tn numerical field positions shown in the pattern, along with
different kinds of decorations. Formally, -1'" p Z will equal
r<:xpL, where K is an integer. If L has more than one
a.umerical field, then K will be 1. The system variable OFC is
:tn implicit argument of picture format.

<\ numerical field is defined as a sequence of characters
)ounded by blanks and containing at least one decimal digit
'numeric character). The digits appearing in a field are both
)lace holders and control characters for that field. Non-digits
n the pattern are decorators, which fall into three classes:
;imple, controlled, or conventional.

\. simple decoration may be imbedded in a numerical field or
:tand alone. Such a decoration always appears in the result in
he same relative position as in the pattern, regardless of the
lumerical values being formatted.

\. candidate for a controlled decoration is one that is
mmediately adjacent to the leftmost or rightmost digit in a
lUmerical field. It becomes controlled if one of the digits 1, 2
Ir 3 appears in the field.

~he dot and comma are conventional decorators because they
pecify decimal points or group separators according to known
onventions. If a dot appears in the pattern between two
.igits, and it is the only such dot in the field, then it will be
egarded as a decimal point and be reproduced in the result if
here are fractional digits to be displayed. Similarly, a comma
1 the pattern that is bordered by digits on both sides will be
egarded as a conventional decoration. In this case, any
umber of occurrences in a field are admissible, and the
orresponding commas in the result will be included only if
ordered by digits there as well.

:ontrol functions of numeric characters are:

Chapter 5. Primitive Functions and Operators 5-59

IBM Internal Use Only

o Pad zeros outward from the decimal point

1 Float nearest decorators if number is negative

2 Float nearest decorators if number is non-negative

3 Float nearest decorators

4 Do not float nearest decorator

5 Normal digit

6 Field ends at first non-digit character other than a decimal
point or a comma

7 Exponential symbol replaced by next non-digit character
other than a decimal point or a comma

8 Fill with DFC [3] (* for "check-protection") when
otherwise blank

9 Pad zeros outwards to this position if non-zero

If more than one of the numeric control characters (1, 2, 3 or
4), appears in a field, the outermost ones control the sides of
the field that each is nearest to.

The normal digit to use in the pattern is 5. A field of only 5's
will suppress leading and trailing zeros.

If there is only one field, it is used for every column of
numbers in R:

1

28

Z+' 555.55t~ 1 0 10.1 100
Z

10.1 100
pZ

If there is more than one field, there must be one for every
column of numbers in R:

5-60 APL/PC, Version 2.1

IBM Internal Use Only

Z~' 5 5.5 5.55'~ 1.12 2.12 3.12
Z

1 2.1 3.12
pZ

11

A 0 can be used in the field to pad zeros to a particular point:

Z~' 005 5.50 5.550'~ 1.12 2.12 3.12
Z

001 2.12 3.120
pZ

15

Embedded decorators may be included:

Z~'HERE: 5 ; THERE: 5.55r~ 1.12 3.12
Z

HERE: 1 ; THERE: 3.12
pZ

24

A single field may have embedded decorators:

z~r05/55/55r~ 70481
Z

07/04/81
pZ

8

A 1 can be used in the field to float a decorator in against a
number for negative values only:

32

z~r -551.50r~ -1 0 10 -100
Z

-1.00 .00 10.00 -100.00
pZ

A floating decorator may be on both sides of a number:

32

Z~'(551.50)'~ -1 0 10 -100
Z

(1.00) .00 10.00 (100.00)
pZ

A 2 can be used in the field to float a decorator in against a
number for non-negative values only:

Chapter 5. Primitive Functions and Operators 5-61

IBM Internal Use Only

32

Z+' +552.501~ -1 0 10 -100
Z

1.00 +.00 +10.00 100.00
pZ

A 3 can be used in the field to float a decorator in against a
number for all values:

32

Z+' f553.501~ 1 0 10 100
Z

£1.00 £.00 £10.00 f100.
pZ

A 4 can be used with a 1, 2, or 3 in the field to mix
non-floating and floating decorators. It blocks the floating
effect of a 1, 2, or 3 on its side of the pattern.

36

Z+' -551.45*1~ -1 0 10.1 -100
Z

-1 *
pZ * 10.1 * -100 *

A 6 can be used to end a field that is otherwise continued. It
allows any character other than a digit, decimal point, to end a
field.

Z+'06/06/05'~ 7 4 81
Z

07/04/81
pZ

8

A 7 can be used to specify a double field for scaled formatting.
The next decorator to the right of a 7 replaces the E in scaled
form.

Z+'1.70*00'~ 12345
Z

1.23*04
pZ

7

An 8 can be used in the field to have otherwise blank positions
in the result filled with OFe [3] :

5-62 APL/PC, Version 2.1

IBM Internal Use Only

Z+' 8555.50'~ 1 a 10 100
Z

1.00 *.00 **10.00 *100.00
pZ

32

A 9 can be used in the field to pad zeros to a particular point
only for non-zero numbers:

21

Z+' 555.59'~ 1 0 100
Z

1.00 100.00
pZ

If DFC[4] is not a 0, then it is used to fill a field that would
otherwise be an error, because the number is too large.

Z+' 555.59'~ 1 1000 100
DOMAIN ERROR

21

Z+' 555.59'~1 1000 100
A

OFC[4]+' ?'
Z+1 555.59'~ 1 1000 100
Z

1.00 ????? 100.00
pZ

For more examples, refer to the Format Control system
variable (OFC).

Chapter 5. Primitive Functions and Operators 5-63

IBM Internal Use Only

Notes:

5-64 APL/PC, Version 2.1

IBM Internal Use Only

Chapter 6. System Functions and
System Variables

System Functions 6-3
Canonical Representation - OCR 6-5
Delay - ODL 6-6
Execute Alternate - DEA 6-6
Expunge - OEX 6-7
Function Establishrnent - OFX 6-7
Name Classification - ONC 6-8
Name List - DNL 6-9
Peek/Poke - OPK 6-9
Transfer Form - OTF 6-11

Systern Variables 6-14
Account Information - OAI 6-16
Atomic Vector - OA V 6-16
Comparison Tolerance - OCT 6-17
Forrnat Control - DFC 6-17
Index Origin - DID 6-18
Horizontal Tabs - OHT 6-18
Latent Expression - OLX 6-18
Line Counter - OLC 6-19
Printing Precision - OPP 6-19
Printing Width - OPW 6-20
Randorn Link - DRL 6-20
Terminal Control - OTC 6-20
Terminal Type - OTT 6-20
Time Stamp - O.TS 6-20
User Load - OUL 6-20
Workspace Available - OWA 6-20

Chapter 6. System Functions and System Variables 6-1

IBM Internal Use Onl~

Notes:

6-2 APL/PC, Version 2.1

IBM Internal Use Only

Although the primitive functions of APL deal only with
abstract objects (arrays of numbers and characters), it is often
desirable to bring the power of the language to bear on the
management of the concrete resources of the environment of
the system in which APL operates. This can be done within
the language by identifying certain variables as elements of the
interface between APL and its host system, and using these
variables for communications between them. Although still
abstract objects to APL, the values of such system variables
may have any required concrete significance to the host
system.

In principle, all necessary interaction between APL and its
environment could be managed with a complete set of system
variables. However, in some situations it is more convenient,
or otherwise more desirable, to use functions based on the use
of system variables that may not themselves be made explicitly
available. Such functions are called system functions.

System variables and system functions are denoted by
distinguished names that begin with a quad (D). The use of
such names is reserved for the system and cannot be applied to
user-defined objects. They cannot be erased; those that denote
system variables can appear in function headers, but only to be
localised (see Chapter 8, "Function Definition"). \Vithin APL
statements, distinguished names are subject to all the normal
rules of syntax.

System Functions

Like the primitive abstract functions of APL, the system
functions are available throughout the system, and can be used
in defined functions. They are monadic or dyadic, as
appropriate, and have explicit results. In most cases they also
have implicit results, in that their execution causes a change in
the environment. The explicit result always indicates the
status of the environment relevant to the possible implicit
result. Altogether, seventeen system functions are provided.
Six of these are for managing the shared-variable facility and

Chapter 6. System Functions and System Variables 6-3

IBM Internal Use Only

are described in Chapter 7, "Shared Variables". The other
eleven are shown in Figure 6-1 and are described after the
figure.

Requirements Effect on
Function Rank Domain Environment Explicit Result

OCR A l~ppA Array of None Canonical Representation
characters of object named by A.

The result of anything
other than an unlocked
defined function is size
o O.

ODL S O=ppS Numeric None, but requires Scalar value of
value S secs to complete. actual delay.

OEX A 2~ppA Array of Erase objects named A boolean vector whose
characters by rows of A, [th element is 1 if the

except labels or [til name is now free.
halted functions.

OFX N 2=ppA Matrix of Fix definition of Vector that represents
characters function represented name of function

by N, unless its established, or scalar
name already used row index of fault that
for an object other prevented establishment.
than function that
is not halted.

ONC A 2~ppA Array of None Vector' giving the usage
characters of the name in each row

of A:
o - name available
1 - label
2 - variable
3 - function
4 - other

A ONL N 1~ppN AIN€1 2 3 None Same as monadic form,
Elements of except only names
A must be starting with letters
alphabetic. in A will be included.

ONL N 1~ppN AIN€! 2 3 None Matrix of rows (in
alphabetic order) that
represent names of
designated kinds in
dynamic environment:
1, 2, 3 for labels,
variables and functions.

A OEA B 1~ppB Characters None Executes B. For error,
1~ppA executes A.

Figure 6-1 (Part 1 of 2). System Functions

6-4 APL/PC, Version 2.1

IBM Internal Use Only

Requirements Effect on
Function Rank Domain Environment Explicit Result

N DPK A O=ppN N is a None Peek memory contents.
scalar Result is character
positive vector of elements
integer. of DAV.

l=ppA A is a
numeric
vector
of two
elements.

l~ppN Character Changes memory Poke memory contents.
scalarl Result is character
vector. vector with previous

contents.
l=ppA Numeric

vector of
two
elements.

DPK A l=ppA See dyadic Depends on user Executes machine
DPK programs. language program.

Returns register
contents and nags.

DTF A l~ppA Character Generate transfer If A is a name, result
scalarl form or fix new is the transfer form. If
vector. object in WS. A is a transfer form,

result is name of object
fixed.

Figure 6-1 (Part 2 of 2). System Functions

Canonical Representation - OCR

The canonical representation of a defined function, as defined in
Chapter 8, "Function Definition", is obtained by applying the
system function OCR to the character array representing the
name of the function. When applied to any argument that
does not represent the name of an unlocked defined function,
it yields a matrix of dimension 0 by O. Possible error reports
for OCR are RANK error, if the argument is not a vector or
scalar, or DOMAIN error if the argument is not a character
array. The use of OCR is further described in
Chapter 8, "Function Definition".

Chapter 6. System Functions and System Variables 6-5

IBM Internal Use Only

Delay - DDL

The delay function, denoted by DDL, causes a pause in the
execution of the statement in which it appears. The argument
of the function determines the duration of the pause, in
seconds, but the accuracy is limited by other possible demands
on the system at the moment of release. Moreover, the delay
can be ended by a strong interrupt. The explicit result of the
delay function is a scalar value equal to the actual delay. If
the argument of DDL is not a scalar with numeric value, a
RANK or DOMAIN error will be reported.

The delay function may be used freely in situations where
repeated tests may be required at intervals to determine if an
expected event has taken place. This is useful in certain kinds
of interaction between users and programs.

Execute Alternate - DBA

If you execute the statement

Z+L DBA R

and there is an error in the expression R, or if R is interrupted,
then execution of R is ended without an error message, and L
is executed instead.

Rand L must be character vectors or scalars. Both must
contain only valid APL characters.

R is taken to represent an APL expression, and is executed in
the context of the statement in which it is found. Z is the
value of the APL expression in R if R executes successfully. If
the expression has no value, then L DBA R has no value. If
R fails to execute successfully, L is executed instead and Z is
the value of the expression in L. If this expression has no
value, then L DBA R has no value. Execution of L is subject
to normal error handling.

6-6 APL/PC, Version 2.1

IBM Internal Use Only

'1.2' OEA '1.4'
1 2 3 4

'1.2' OEA '14.5'
1 2

, -+ IDEA I 14 • 5 I
I 1 2 • 3 IDEA '1. 4 • 5 '

~ DOMAIN ERROR
12.3
A

If R calls a defined function F, then the statements executed by
F are also under the control of the error trap. In particular, R
could call a long running function, and L could be an error
recovery function.

An indication of the type of error that caused the right
argument to fail to execute may be obtained using the fJ.ET
function from the UTI L workspace. See "The UTI L
Workspace" on page 11-92.

Expunge - DEX

Certain name conflicts can be avoided by using the expunge
function OEX to eliminate an existing use of a name. Thus
OEX I PQR I will erase the object PQR unless it is a label or a
halted function. The function returns an explicit result of 1 if
the name is now unencumbered, and a result of 0 if it is not,
or if the argument does not represent a \vell-formed name.
The expunge function applies to a matrix of names and then
produces a logical vector result. OEX will report a RANK
error if its argument is of higher rank than a matrix, or a
DOMAIN error if the argument is not a character array. A
single name may also be presented as a vector or scalar.

Function Establishment - OFX

The definition of a function can be established or fixed by
applying the system function DFX to its character
representation. The function DFX produces as an explicit
result, a character vector that represents the name of the
function being fixed while replacing any existing definition of a
function with the same name.

Chapter 6. System Functions and System Variables 6-7

IBM Internal Use Only

An expression of the form OFX M will establish a function if
both the following conditions are met:

1. M is a valid representation of a function. Any matrix that
differs from a canonical matrix only in the addition of
non-significant spaces is a valid representation. A row of M
consisting of only spaces will appear as an empty statement
in the resulting function.

2. The name of the function to be established does not
conflict with any existing use of the name for a halted
function (defined in Chapter 9, "Function Execution") or
for a label or variable.

If the expression fails to establish a function, then no change
occurs in the workspace, and the expression returns a scalar
index of the row in the matrix argument where the fault was
found. If the argument of DFX is not a matrix, a RANK error
will be reported, and if it is not a character array, a DOMAIN
error will result.

Name Classification - ONC

The monadic function ONC accepts a matrix of characters and
returns a numerical indication of the class of the name
represented by each row of the argument. A single nalne may
also be presented as a vector or scalar.

The result of ONL is a suitable argument for ONe, but other
character arrays may also be used, in which case the possible
results are integers ranging from 0 to 4. The significance of 1,
2, and 3 are as for ON L; a result of 0 signifies that the
corresponding name is available for any use; a result of 4
signifies that the argument is not available for use as a name.
The latter case may arise because the argument is a
distinguished name or not a valid name at all.

6-8 APLjPC, Version 2.1

IBM Internal Use Only

Name List - DNL

The dyadic function DNL yields a character matrix, each row
of which represents the name of an object in the dynamic
environment. The right argument is an integer scalar or vector
that determines the class of names produced as follows: 1, 2,
and 3 invoke the names of labels, variables and functions.
The left argument is a scalar or vector of alphabetic characters
that restricts the name produced to those with an initial letter
occurring in the argument. The ordering of the rows of the
result is alphabetic.

The monadic function DNL behaves analogously with no
restriction of initial letters. For example, ONL 2 produces a
matrix of all variable names, and either of DNL 2 3 or DNL
3 2 produces a matrix of all variable and function names.

The uses of ON L include the following:

• In conjunction with OEX, all the objects of a certain class
can be dynamically erased, or a function can be readily
defined that will clear a workspace of all but a preselected
set of objects.

• In conjunction with OCR, functions can be written to
automatically display the definitions of all or certain
functions in the workspace, or to analyse the interactions
among functions and variables.

• The dyadic form of ONL can be used as a convenient guide
in the choice of names while designing or experimenting
with a workspace.

Peek/Poke - OPK

This function has three different uses that may be requested as
follows:

1. Peek the memory contents.

R~N DPK AR,ADDR

Chapter 6. System Functions and System Variables 6-9

IBM Internal Use Only

where:

N is the number of bytes desired.

ADDR is the starting address (in decimal code).

AR may be 0 or 1. If 0, ADDR is absolute. If 1, ADDR is
relative to the workspace origin.

R is a character vector with the contents of the selected
memory positions as elements of DA V (that is, if the bit
configuration of a byte is the base-2 representation of 120,
the corresponding result will be the 120th element of DAV
in zero origin).

2. Poke the memory contents.

R~V DPK AR ,ADDR

where:

V is a character vector with the values to be inserted in
memory as elements of DA V.

AR and ADDR are interpreted as in 1 above.

R is the previous contents of the changed memory.

3. Execute memory.

R~DPK AR,ADDR

executes the machine language program contained in the
indicated address and returns in R the final contents of the
registers and flags in the following order: AL, AH, BL,
BH, CL, CH, DL, DH, low SI, high SI, low DI, high DI,
low BP, high BP, low flags, high flags.

Executable programs must end with a long RET assembly
instruction (it is considered as a far procedure). The
program must return the stack as it was found on entry.

6-10 APLjPC, Version 2.1

IBM Internal Use Only

An example of using DPK to execute a small machine code
program may be found in the WHISTLE function in the
UTIL workspace. See "The UTIL Workspace" on
page 11-92.

Warning: If you give control to an address that does not
contain executable code, the system is likely to hang.

Some uses of DPK:

• Both the weak attention and the strong attention keys can
be disabled by turning on bit 128 in byte X'7AC' relative
to the origin of the workspace. The current value of this
byte may be obtained by 1 DPK 1 1964. See the
ESC_OFF and ESC_ON functions described in "The UTIL
Workspace" on page 11-92, for functions to set and reset
this bit. BE\VARE: If you turn this bit on, you will be
unable to interrupt the execution of APL functions until
you turn it off again!

• Terminal output can also be inhibited by turning on bit 64
in the same byte. However, this bit will be automatically
turned off at the first terminal input (including stacked
input). See the HT and RT functions described in "The
UTI L Workspace" on page 11-92, for functions to set and
reset this bit.

I. The use of the printer as a system log is controlled by bit
I 16 in the same byte. Turning the bit on will cause any
I output displayed on the screen to be prin~ed as well. This
I bit is normally toggled on and off by Ctrl-PrtSc or
I Alt-PrtSc. See the PRT _ON and PRT _OFF functions
I described in "The UTI L Workspace" on page 11-92, for
I functions to set and reset this bit.

Transfer Form - DTF

In the expression:

Z~DTF R

Chapter 6. System Functions and System Variables 6-11

IBM Internal Use Only

if R is the name of a variable or a defined function, then Z is a
character vector, that is the transfer form for that object. If
the transfer form cannot be formed, then Z is an empty
character vector (' ').

R must be a character scalar or vector. Z is a character
vector.

If R is the transfer form of a variable or a defined function,
then that object is established in the workspace, and Z is a
character vector containing its name. If the transfer form is
invalid, then Z is an empty character vector (' r). This is
called the inverse transfer form.

Inverse transfer form ignores name class conflicts. That is, if
there is a variable named X in the active workspace, an inverse
transfer form may be performed to establish a function with
the same name X. Similarly, if there is a function named X in
the active workspace, an inverse transfer form may be
performed to establish a variable with the same name X.
Additionally, if there is a shared variable named X in the active
workspace, and an inverse transfer form is performed to
establish a variable with the same name X, then the old
variable is expunged before the new variable is formed, so that
any share on that variable is retracted.

The transfer form is a character vector. It represents the name
and value of a variable, or a displayable defined function. It is
produced by the monadic system function DTF R, where R is
the name of the object.

The transfer form is a character vector with four parts:

1. A data type code header character:

• "F" for a function

• "N" for a numeric array

• "e" for a character array

2. The name of the object, followed by a blank.

6-12 APLjPC, Version 2.1

IBM Internal Use Only

3. A character representation of the rank and shape of the
array, followed by a blank.

4. The body, consisting of a character representation of the
array elements in row major order (the ravel of the array).
Numeric conversions are carried to 15 digits.

The body of the transfer form of a defined function is the ravel
of its canonical form character matrix.

Examples:

OPW+45
THIS + 2 3P16
Z+021F 'THIS'
Z

NTHIS 2 2 3 1 2 3 4 5 6
pZ

23
THAT+3 4p'ABCDEFGHIJKL'
Z+OTF 'THAT'
Z

CTHAT 2 3 4 ABCDEFGHIJKL
pZ

24

fJ
[lJ
[2J fJ

FPLUS

33

fJ
[lJ
[2J
[3J
[4J fJ

Z+L PLUS R
Z+L+R

Z+OTF 'PLUS'
Z
2 2 10 Z+L PLUS RZ+L+R
pZ

V+PRIMES N;DIO;M
OIO+1
M+1N
V+(l=O+.=(l+M)o.IM)/M

Z+OTF 'PRIMES'
Z

FPRIMES 2 4 21 V+PRIMES N;OIO;M
M+1N

+.=(l+M)o.IM)/M
pZ

99

OIO+1
V+(l=O

Chapter 6. System Functions and System Variables 6-13

IBM Internal Use Only

System Variables

System variables are instances of shared variables (see
Chapter 7, "Shared Variables"). The characteristics of shared
variables that are most significant here are:

• If a variable is shared between two processors, the value of
the variable when used by one of them may well be
different from what that processor last specified, and

• Each processor is free to use or not use a value specified by
the other, according to its own internal workings.

System variables are shared between a workspace and the APL
processor. Sharing occurs automatically each time a
workspace is activated and, when a system variable is localised
in a function, each time the function is used.

Figure 6-2 on page 6-15 lists the system variables and gives
their significance and use. Two classes can be distinguished:

1. Comparison tolerance, format control, horizontal tabs,
index origin, latent expression, printing precision, printing
width and random link. In these cases, the value you
specify (or that available in a clear workspace) is used by
the APL processor during the execution of operations to
which they relate. Except for the latent expression (see
below), if this value is inappropriate, or if no value has
been specified after localisation, an IMPLICIT error will
result at the time of execution.

2. Account information, atomic vector, line counter, time
stamp, terminal control, terminal type, user load, and
workspace available. In these cases, localisation or your
setting is immaterial. The APL processor will always reset
the variable before it can be used again.

6-14 APL/PC, Version 2.1

IBM Internal Use Only

Name

Class I:

OCT

DFC

OHT

DID

DLX

Opp

DPW

ORL
Class 2:

OAI

DAV

OLC

OTS

Value in
Clear WS

10

1

I I

10

79

10

Meaningful
Range

o or 1

Characters

115

30-132

Purpose

Comparison tolerance used in
monadic r L
dyadic <S=~>~e: 1 I

Format control used in dyadic iii
(Picture format)

This variable is ignored by the
system.

Index origin: used in indexing
and in? 1 ~ , ~ OFX

Latent expression executed on
activation of a workspace.

Printing precision: affects
numeric output and monadic iii

Printing width: affects all but
bare output and error reports.

Random link: used in ?

Account information:
identification,computer time,
connect time, keying time (all
times in milliseconds and
cumulative during sessions.)

Atomic vector.

Line counter: statement numbers
of functions in execution or
halted, most recently activated
first.

Time stamp: year, month, day
(of month), hour (on 24-hour
clock minute, second,
millisecond.

:Figure 6-2 (Part 1 of 2). System Variables

Chapter 6. System Functions and System Variables 6-15

Value in
Name Clear WS

Class 2 (cont):

OTC

OTT

OUL

OWA

o

1

Meaningful
Range

IBM Internal Use Only

Purpose

Terminal control: a three
element vector containing the
backspace, new line, and
line-feed characters in that
order.

Terminal type: always 0

User load: always 1

Workspace available (in
bytes): main workspace plus
elastic workspace size.

Figure 6-2 (Part 2 of 2). System Variables

Account Information - OAI

Account information returns a length four numeric vector
containing: user identification (always 1 in APL/PC 2.1),
computer time, connect time and keying time (all times in
milliseconds and cumulative during session).

Note: This is provided to be compatible with other APL
systems. The times returned may not be sufficiently accurate
to use in benchmarks against other APL implementations.

Atomic Vector - OAV

The atomic vector OA V is a 256-element character vector,
containing all possible characters. Certain elements of OA V
may be screen-control characters, such as new line or line feed.
The indexes of any known characters can be determined by an
expression such as OAV1'ABCabc l •

6-16 APLjPC, Version 2.1

IBM Internal Use Only

Comparison Tolerance - DCT

Comparison tolerance: used in monadic rand L and dyadic <,
~, =, ~, >, '1:., E, 1 and I. The value in a clear workspace is
lE-13.

Format Control - DFC

This is a five-element character vector containing control
characters implicitly used by the picture format. The value in
a clear workspace is ' • ,* 0 _ ' .

The element definitions are:

DFC [1] Use for conventional decimal point

DFC [2] Use for conventional comma

DFC [3] Fill when otherwise blank for digit

DFC[4] Fill when otherwise DOMAIN ERROR for overflow

DFC[5] Display as blank (may not be ,.0123456789)

Elements of DFC beyond 5 are not defined.

DFC[l] is used wherever a decimal point is needed in picture
format:

DFC [1] +-' , '
'5.5555'(li 3.1415

3,1415

DFC [2] is used wherever a comma is needed in picture
format:

DFC [2] +-' • '
'555,555,555'(li 123456789

123.456.789

DFC [3] is used where a field containing an 8 would otherwise
be blank in picture format:

Chapter 6. System Functions and System Variables 6-17

oFC[3]+'0'
'855555'if) 1234

001234

IBM Internal Use Only

oFC [4] is used to fill where a field is too small for a number
or a non-scalar item in picture format:

oFC[4]+'?'
15555 ' if) 123456

????

IfoFC[4] is '0' (which is the default), then a field that is
too small will result in a DOMAIN error.

oFC [5] is replaced by a blank without ending a field
wherever it is used in picture format:

oFC[5]+'e'
'£.e355'if) 12

t 12

Index Origin - oIO

Index origin: used in indexing and in ?, 1, ih, ~, ~ and oFX.
The value in a clear workspace is 1.

Horizontal Tabs - oHT

The value of oHT is ignored by the IBM Personal Computer
APL System.

Latent Expression - DLX

The APL expression represented by the latent expression is
automatically executed whenever the workspace is activated.
The value in a clear workspace is an empty vector.

Formally, oLX is used as an argument to the execute function
moLX, and any error message, will be appropriate to the use of
that function.

6-18 APLjPC, Version 2.1

IBM Internal Use Only

Common uses of the latent expression include the form
OLX + I G I , used to invoke an arbitrary function G; the form,

OLX+"'FOR CHANGES, ENTER: NEW'"

is used to print a message upon activation of the workspace,
and the form OLX + , ?OLC' is used to automatically restart a
suspended function. The variable DLX may also be localised
within a function and respecified therein to furnish a different
latent expression when the function is suspended. For
example:

DLX+'F'
V F;OLX

[1]
[2]
[3]
[4-] V

DLX+'?DLC,pO+"RESUME LESSON'"
'WE NOW BEGIN LESSON 2'
DRILLFUNCTION

)SAVE ABC

On the first activation of workspace ABC, the function F
would be automatically invoked; if it were later saved with F
halted, subsequent activation of the workspace would
automatically continue execution from the point of
interruption.

Line Counter - OLC

The line counter contains a vector of line numbers of defined
functions either, currently being executed, or halted (suspended
or pendent), with the most recently activated line number first.
The value in a clear workspace is an empty vector.

Printing Precision - Opp

Printing precision affects numeric output and monadic~. The
value in a clear workspace is 10.

Chapter 6. System Functions and System Variables 6-19

IBM Internal Use Only

Printing Width - DPIV

Printing width affects all but bare output and error reports.
The value in a clear workspace is 79.

Random Link - DRL

Random link is used in ? The value in a clear workspace is
16807.

Terminal Control - DTe

Terminal control is a length 3 character vector containing the
backspace, new line, and line feed characters (in that order).

Terminal Type - OTT

Terminal type is always set to a value of 0 in APL/PC 2.1.

Time Stamp - DTS

Date and time stamp is a length 7 numeric vector giving: year,
month, day (of month), hour (on 24 hour dock), minute,
second and millisecond.

User Load - DUL

User load is always set to a value of 1 in APL/PC 2.1.

Workspace Available - DIVA

Workspace available (in bytes).

6-20 APLjPC, Version 2.1

[BM Internal Use Only

Chapter 7. Shared Variables

Offers 7-6
Access Control 7-7
Retraction 7-11
Inquiries 7-12

Chapter 7. Shared Variables 7 -1

IBM Internal Use Only

Notes:

7-2 APLjPC, Version 2.1

BM Internal Use Only

fwo otherwise independent, concurrently-operating processors
;an communicate, and thereby be made to cooperate, if they
;hare one or more variables. Such shared variables constitute
in interface between the processors, through which
lnformation may be passed to be used by each processor for its
Dwn purposes. In particular, variables may be shared between
an APL workspace and some other processor that is part of
the overall APL system, to achieve a variety of effects,
including the control and use of devices such as printers,
communication links, and disk drives.

In an APL workspace, a shared variable may be either global
or local, and is syntactically indistinguishable from ordinary
variables. It may appear to the left of an assignment, in which
case its value is said to be set, or elsewhere in a statement,
where its value is said to be used. Either form of reference is
an access.

At any instant, a shared variable has only one value - the
value last assigned to it by one of its owners.
Characteristically however, a processor using a shared variable
will find its value different from what it might have set earlier.

A given processor can simultaneously share variables with
several other processors. However, each sharing is bilateral;
that is, each shared variable has only two owners. This
restriction does not represent a loss of generality in the
systems that can be constructed, and commonly useful
arrangements are easily designed. For example, a shared file
can be made directly accessible to a single control processor
that communicates bilaterally with (or is integral with) the file
processor itself. In turn, the central processor shares variables
bilaterally with each of the using processors, controlling their
individual access to the data, as required.

It was noted in Chapter 6, "System Functions and System
Variables" that system variables are instances of shared
variables in which the sharing is automatic. It was not pointed
out, however, that access sequence disciplines are also imposed
on certain of these variables, although one effect of this was
noted; namely, variables, like the time stamp, accept any value
specified, but continue to provide the proper information when
used. The discipline that accomplishes this effect is an

Chapter 7. Shared Variables 7 -3

IBM Internal Use Onl)

inhibition against two successive accesses to the variable,
unless the sharing processor (the system) has set it in the
interim.

When ordinary, "undistinguished" variables are to be shared,
explicit actions are necessary to accomplish the sharing and
establish a desired access discipline.

Sharing a variable is an act of communication between two
processors. There are several aspects to such communication,
involving:

• Establishing
• Controlling
• Querying
• Retracting

Thus is should not be surprising that there are system
functions to deal with each of these aspects of the
communication and these are described below. Six system
functions are provided for these purposes - three for the actual
management, and three to provide related information. These
are summarised in Figure 7 -1.

Requirements [1] Effect on Explicit
Function Rank Length Domain Environment Result

P DSVO N 2~ppN (x/pP)e Pe Tenders offer Degree of
1,-1~pN 1~t-l+2*15 to processor coupling now

P if first (or in effect for
[2] only) name of the name pair.

pair is not Dimension:
previously

,x/-l-¥pN offered and
not already in
use as the
name of an
object other
than a
variable.

DSVO N 2~ppN None [2] None Degree of
coupling now in
effect for the
name pair.
Dimension:

,x/-l-¥pN

Figure 7-1 (Part 1 of 2). System Functions

7-4 APLjPC, Version 2.1

BM Internal Use Only

Requirements [1] Effect on Explicit
Function Rank Length Domain Environment Result

C OSVC N 2~ppN (l~pPC)A A/C€O 1 Sets access New setting of
2~ppC l=x/pC control. access control.

or [2]
Dimension:

(pC)=
(-l,,"pN) ,4 (-l,,"pN) ,4

I

DSVC N 2~ppN [2] None Existing access None
control.

DSVR N 2~ppN None [2] Retracts offer Degree of
(ends sharing) coupling before

retraction.
Dimension:

,x/-1,,"pN

DSVQ P l~ppP l~p,P P€ None If O=pP: Vector
1,,"t-1+2*15 of IDs of

processors
making offers
to this user.

If l=x/pP:
Matrix of names
offered by
processor P but
not yet shared.

Notes:

1. If a requirement is not met, the function is not executed, and
a corresponding error report is printed.

2. Each row of N (or N itself if 2~p pN) must represent a name
or pair of names. If a pair of names is used for an offer
(dyadic DSVO), either the pair, or the first name only, can
be used for the other functions.

Figure 7-1 (Part 2 of 2). System Functions

Chapter 7. Shared Variables 7-5

IBM Internal Use Onl~

Offers

A single offer to share is of the form offer P OSVO N, where
P is the identification of another processor, and N is a
character vector representing a pair of names. The first of this
pair is the name of the variable to be shared, and the second is
a surrogate name. The name of the variable may be its own
surrogate, in which case only the one name need be used,
rather than two.

Note: The surrogate names have no effect in this
implementation of APL and are provided to allow code
compatibility with other APL systems.

The explicit result of the expression P OSVO N is the degree
of coupling of the name in N: 0 if no offer has been made, 1 if
an offer has been made but not matched, 2 if sharing is
completed.

An offer to any processor (other than the offering processor
itself) requests an increase in the coupling of the name offered,
if the name has zero coupling and is not the name of a label or
a function. An offer never decreases the coupling.

The monadic function DSVO does not affect the coupling of
the name represented by its argument, but does report the
degree of coupling as its explicit result. If the degree of
coupling is 1 or 2, a repeated use of dyadic DSVO has no
further implicit result, and either monadic or dyadic DSVO may
be used for inquiry.

The following is an example of a defined function for offering
a name (to be entered on request) to a processor P:

[OJ Z+OFFER P;Q
[1 J r!J+ I NAME: I

[2J -+(1 11\.=Q+5+r!J)/Z+0
[3J Z+P DSVO Q
[4J -+(2=Z+OSVO Q)/L
[5J INO DEAL I
[6 J -+0
[7J L: I ACCEPTED I

7-6 APLjPC, Version 2.1

BM Internal Use Only

f the arguments of DSVO fail to meet any of the basic
'equirements listed in Figure 7-1 on page 7-4, the appropriate
!rror report results, and the function is not executed. An offer
:0 a processor will be acknowledged, whether or not the
)rocessor happens to be available.

fhe value of a shared variable, when sharing is first completed,
lS determined thus: if both owners had assigned values
previously, the value is that assigned by the first to have
offered; if only one owner had, it has that value; if neither had,
the variable has no value. Names used in sharing are subject
to the usual rules of localisation.

A set of offers can be made by using a vector left argument (or
scalar or one-element vector that is automatically extended)
and a matrix right argument, each of whose rows represent a
name or a name pair. A vector left argument should have as
many items as the right argumnet has rows. The offers are
then treated in sequence and the explicit result is the vector of
the resulting degrees of coupling.

Auxiliary processors are identified by positive integers between
2 and 32767.

Access Control

In most practical applications, it is important to know that a
new value has been assigned between successive uses of a
shared variable, or that use has been made of an assigned
value before a new one is set. Because, as a practical matter,
this cannot be left to chance, an access control mechanism is
embodied in the shared variable facility.

The access control operates by inhibiting the setting or use of
a shared variable by one owner or the other, depending on the
access state of the variable and the value of an access control
matrix, which is set jointly by the two owners, using the dyadic
form of the system function DSVC. If one user had followed
his offer to share V by the expression 1 1 1 1 DSV C 'V ' ,

Chapter 7. Shared Variables 7 -7

IBM Internal Use Onl~

the following sequence would have been enforced: the use of
V by the second processor would be automatically delayed
until V is set by the first one, and the use by the latter would
be delayed until V is set by the former.

Figure 7-2 on page 7-9 shows the three access states possible
for a shared variable, the possible transitions between states,
and the potential inhibitions imposed by the access control
matrix (ACM). The first row of the ACM is associated with
setting of the variable by each owner, and the second with its
use. The permissible operations for any state are indicated by
the zeros in ACMAASM, where ASM is the representation of the
access state shown in the figure. This can be confirmed by
using the figure to validate each of the following statements:

• If ACM [1 ; 1] = 1, then two successive sets by A require an
intervening access (set or use) by B.

• If ACM [1 ; 2 J = 1, then two successive sets by B require an
intervening access by A.

• If ACM [2 ; 1 J = 1, then two successive uses by A require an
intervening set by B.

• If ACM[2; 2J =1, then two successive uses by B require an
intervening set by A.

7 -8 APLjPC, Version 2.1

IBM Internal Use Only

Figure 7-2. Access Control of a Shared Variable

The value of the access state representation is not directly
available to you, but the value of the access control matrix is
given by the monadic function DSVC. For a shared variable V,
the result of the expression DSVC 'V' executed by user A is
the access control vector ,ACM (the four-element ravel of ACM).
However, if user B executed the same expression, he would
obtain the result , <PACM. The reason for the reversal is that
sharing is symmetric: neither owner has precedence over the
other, and each sees a control vector in which the first one of
each pair of control settings applies to his own accesses. This
symmetry is evident in the figure; if it were redrawn to
interchange the roles of A and B, the control matrix would be
the row-reversal of the matrix shown.

The setting of the access control matrix for a shared variable is
determined in a way that maintains the functional symmetry.

Chapter 7. Shared Variables 7-9

IBM Internal Use Only

An expression of the form L DSVC 'V' executed by user A
assigns the value of the logical left argument L to a
four-element vector which, for the purposes of the present
discussion, will be called QA. Similar action by user B sets QB.
The value of the access control matrix is determined as
follows:

ACM+(2 2pQA)v~2 2pQB

Because ones in ACM inhibit the corresponding actions, it is
clear from this expression that one user can only increase the
degree of control imposed by the other (although he can, by
using DSVC with a left argument of zeros, restore the control
to that minimum level at any time).

Access control can be imposed only after a variable is offered,
either before or after the degree of coupling reaches 2. The
initial values of QA and QB when sharing is first offered are
zero.

The access state when a variable is first offered (degree of
coupling is 1) is always the initial state shown in the figure. If
the variable is set or used before the offer is accepted, the state
changes accordingly. Completion of sharing does not change
the access state.

Figure 7-3 on page 7-11 lists a number of settings of the
access control vector that are of common practical interest.
Anyone of them can be represented by a simplification of
Figure 7-2 on page 7-9 obtained by omitting the control
matrix and deleting the lines representing those accesses that
are inhibited in the particular case. For example, with
maximum constraints, all the inner paths would be removed
from the figure.

7 -10 APL/PC, Version 2.1

IBM Internal Use Only

Access Control Vector
as seen by: Comments

A B

0 0 0 0 0 0 0 0 No constraints

0 0 1 1 0 0 1 1 Half-duplex. Ensures each use is
preceded by a set by partner.

1 1 0 0 1 1 0 0 Half-duplex. Ensures each set is
preceded by an access by partner.

1 1 1 1 1 1 1 1 Reversing half-duplex. Maximum
constraint.

0 1 1 0 1 0 0 1 Simplex. Controlled communications
from B to A.

Figure 7-3. Some Useful Settings for the Access Control Vector

A group of N access control matrices can be set at once by
applying the function OSVC to an N-by-1.I- matrix left argument
and an N-rowed matrix right argument of names. The explicit
result is an N-by-1.I- matrix giving the current values of the
(ravels of) control matrices. When control is being set for a
single variable, the left argument may be a single 1 or 0 if all
inhibits or none are intended. A scalar, a one-element vector,
or a four-element vector left argument L is treated as the
N-by-1.I- matrix (N, 1.1-)pL.

Retraction

Sharing offers can be retracted by the monadic function DSVR
applied to a name or matrix of names. The explicit result is
the degree (or degrees) of coupling before the retraction. The
implicit result is to reduce the degree of coupling to zero.

Retraction of sharing is automatic if you sign off or load a
new workspace. Sharing of a variable is also retracted by its

Chapter 7. Shared Variables 7 -11

IBM Internal Use Only

erasure or, if it is a local variable, upon completion of the
function in which it appeared.

The nature of the shared-variable implementation is often such
that the current value of a variable set by a partner will not be
represented within a user's workspace until actually required to
be there. If this is the case, the value will be copied to the
user's workspace when the variable is to be used, when sharing
is ended, or when a) SA VE command is issued (since the
current value of the variable must be stored). Under any of
these conditions, it is possible for a WS FULL error to be
reported. In all cases, the prior access state remains in effect,
and the operation can be retried after corrective action.

Inquiries

There are three monadic inquiry functions that produce
information concerning the shared variable environment but
do not alter it: the functions DSVO and DSVC, already
discussed, and the function DSVQ. A user who applies the
DSVQ function to an empty vector obtains a vector result
containing the identification of each user making a specific and
unmatched sharing offer to him. A user who applies this
function to a non-empty argument obtains a matrix of the
names offered to him by the processor identified in the
argument. This matrix includes only those names that have
not been accepted by counter-offers.

The expression (O;tDSVO M)/[lJM+DNL 2 can be used to
produce a character matrix whose rows represent the names of
all shared variables in the dynamic environment.

7-12 APL/PC, Version 2.1

[BM Internal Use Only

Chapter 8. Function Definition

Canonical Representation and Function Establishment 8-3
The Function Header 8-5
Ambi-Valent Functions 8-5
Local and Global Names 8-6
Branching and Statement Numbers 8-7
Labels 8-9
Com.tnents 8-9

Function Editing -The V Form 8-10
Adding a Statement 8-10
Inserting or Replacing a Statement 8-11
Replacing the Header 8-11
Deleting a Statement 8-11
Modifying a Statement or Header 8-12
Function Display 8-12
Leaving the V Form 8-13
Quitting the V Form 8-14

Chapter 8. Function Definition 8-1

IBM Internal Use Only

Notes:

8-2 APL/PC t Version 2.1

[BM Internal Use Only

A defined function can be established in an APL workspace in
three ways:

1. It can be copied from a stored workspace using the system
command)IN, as described in Chapter 10, "System
Commands".

2. I t can be established in execution mode, using either of the
system functions OFX or OTF, either in direct keyboard
entry or in the course of execution of another defined
function.

3. It can be established in function definition mode.

Regardless of which method has been used for establishing a
function, its definition can be displayed or modified either in
the function definition mode, in which certain editing
capabilities are built-in, or by the combined use of the system
functions OCR and OFX.

Canonical Representation and Function
Establishment

The character representation of a function is a character matrix
satisfying certain constraints: the first row of the matrix
represents the function header and must be one of the forms
specified below under "The Function Header" on page 8-5.
The remaining rows of the matrix, if any, constitute the
function body, and may consist of any sequence of characters.
If the character representation satisfies additional constraints,
such as left justification of the non-blank characters in each
row, then it is said to be a canonical representation.

Applying OCR to the character array representing the name of
an already established function will produce its canonical
representation. For example, if OVERTIME is an available
function:

Chapter 8. Function Definition 8-3

DEF+DCR 'OVERTIME'
DEF

PAY+R OVERTIME H;TIME
TIME+OrH-40
PAY+Rx1.5xTIME

pDEF
3 21

IBM Internal Use Only

The function OCR applied to any argument that does not
represent the name of an unlocked defined function yields a
matrix of shape 0 o.

The use of OCR does not change the status of the function
OVERTIME, which remains established and can be used for
calculations. Thus:

7 5 8 OVERTIME 35 40 45
o 0 60

If OVERTIME should be expunged:

DEX 'OVERTIME'
1

it is no longer available for use:

7 5 8 OVERTIME 35 40 45
SYNTAX ERROR

7 5 8 OVERTIME 35 40 45
A

The function can be re-established by DFX:

DFX DEF
OVERTIME

The function DFX produces as its explicit result, the vector of
characters that represents the name of the function being fixed,
while replacing any existing definition of a function with the
same nalne. The function OVERTIME can now be used again:

7 5 8 OVERTIME 35 40 45
a a 60

An expression of the form DFX 111 will establish a function if
the conditions described under "Canonical Representation and
Function Establishment" on page 8-3 are met.

8-4 APL/PC, Version 2.1

IBM Internal Use Only

The Function Header

The valence of a function is defined as the number of explicit
arguments that it takes. A defined function may have a
valence of 0, 1, or 2, and mayor may not yield an explicit
result. These cases are represented by six forms of header as
follows:

Type

Dyadic
Monadic
Niladic

Valence Resul t

2
1
o

R+A F B
R+F B
R+F

No Result

A F B
F B
F

The names used for the arguments of a function become local
to the function, and additional local names may be designated
by listing them after the function name and argument,
separated from them and from each other by semicolons; the
name of the function is global. The significance of these
distinctions is explained below.

Except that the function name itself may be repeated in the list
of local names, a name may not be usefully repeated in the
header. Nor is it obligatory for the arguments of a defined
function to be used within the body, or for the result variable
to be specified in the course of function execution.

Ambi-Valent Functions

Defined functions with a valence of 2 may be called either
monadically (without a left argument) or dyadically. All
dyadic defined functions are thus ambi-valent; that is, a left
argument is not required when the function is called in
context. In such a case, the left argument will be undefined
(will have no value) inside the function, and its name class will
be zero.

For example, the function ROOT calculates the Nth root of its
right argument. If no left argument is provided when the
function is called, a default value is supplied:

Chapter 8. Function Definition 8-5

[0] Z+N ROOT A
[1] ?(O~ONC 'N')IRN
[2J N+2
[3] RN:Z+A*+N

2 ROOT 64 729 4096
8 27 64

ROOT 64 729 4096
8 27 64

3 ROOT 64 729 4096
4 9 16

Local and Global Names

IBM Internal Use Only

In the execution of a defined function, it is often necessary to
work with intermediate results or temporary functions that
have no significance either before or after the function is used.
The use of local names for these purposes, so designated by
their appearance in the function header, avoids cluttering the
workspace with many objects introduced for such transient
purposes, and allows greater freedom in the choice of names.
Names used in the function body, and not so designated, are
said to be global to that function.

A local name may be the same as that for a global object, and
any number of names local to different functions may be the
same. During the execution of a defined function, a local
name will temporarily exclude from use a global object of the
same name. If the execution of a function is interrupted
(leaving it either suspended, or pendent, as described in
Chapter 9, "Function Execution"), the local objects keep their
dominant position during the execution of later APL
operations, until such time as the halted function is completed.
Even the system commands and the del form of function
definition (see below) reference local objects under these
circumstances.

The localisation of names is dynamic in the sense that it has
no effect except when the defined function is being executed.
Furthermore, when a defined function uses another defined
function during its execution, a name localised in the first (or
outer) function continues to exclude global objects of the same

8-6 APLjPC, Version 2.1

IBM Internal Use Only

name from the range of the second (or inner) function. This
means that a name localised in an outer function has the
significance assigned to it in that function when used without
further localisation in an inner function. The same name
localised in a sequence of nested functions has the significance
assigned to it at the innermost level of execution. The
shadowing of a name by localisation is complete, in the sense
that once a name has been localised, its global and outer
values are nullified, even if no significance is assigned to it
during execution of the function in which it is localised.

Branching and Statement Numbers

Statements in a function are normally executed successively,
from top to bottom, and execution stops at the end of the last
statement in the sequence. This normal order can be modified
by branches. Branches are used in the construction of iterative
procedures, in choosing one out of a number of possible
continuations, or in other situations where decisions are made
during the course of function execution.

To facilitate branching, the successive statements in a function
definition have reference numbers associated with them,
starting with the number 1 for the first statement in the
function body and continuing with successive integers, as
required. Thus, the expression -+4 signifies a branch to the
fourth statement in the function body, and when executed,
causes statement 4 to be executed next, regardless of where the
branch statement itself occurs. (In particular -+4 may be
statement 4, in which case the system will simply execute this
"tight loop" indefinitely, until interrupted by an action from
the keyboard. This is a trap to be avoided.)

A branch statement always starts with the branch arrow (or
right arrow) on the left, and this can be followed by any
expression. For the statement to be effective, however, the
expression must be an integer, or a vector whose first element
is an integer, or an empty vector; any other value results in a
DOMAIN or RANK error. If the result of the expression is a
valid result, the following rules apply:

Chapter 8. Function Definition 8-7

IBM Internal Use Only

1. If the result is an empty vector, the branch is empty and
execution continues with the next statement in the function
if there is one, or else the function ends.

2. If the result is the number of a statement in the function,
then that statement is the next to be executed.

3. If the result is a number out of the range of statement
numbers in the function, then the function ends. The
number 0 and all negative integers are outside the range of
statement numbers for any function.

Because zero is often a convenient result to compute, and is
not the number of a statement in the body of any function, it
is often used as a standard value for a branch intended to end
the execution of a function. It should be noted that in the
function definition mode described below, zero is used to refer
to the header. This has no bearing on its use as a target for a
branch.

An example of the use of a branch statement is shown in the
following function, which computes the greatest common
divisor of two scalars:

[0] Z+M GCD N
[1] L:Z+M
[2] M+MIN
[3] N+Z
[4] 7(0~M)IL

The compression function in the form U IV gives V if U is equal
to 1, and an empty vector if U is equal to O. Thus, the fourth
statement in GCD is a branch statement that causes a branch
to the first statement (labelled" L", see below), when the
condition O":1:.M is true, and a branch with an empty vector
argument, that is, normal sequence, when the condition is
false. In this case, there is no next statement and so execution
of the function ends.

8-8 APL/PC, Version 2.1

IBM Internal Use Only

Labels

If a statement occurring in the body of a function definition is
prefaced by a name and a colon, the name is assigned a value
equal to the statement number. A name used in this way is
called a label. Labels are used to advantage when it is
expected that a function definition may be changed for one
reason or another, since a label automatically assumes the new
value of the statement number of its associated statement as
other statements are inserted or deleted.

The name of a label is local to the function in which it
appears, and must be distinct from other label names and from
the local names in the header.

A label name may not appear immediately to the left of a
specification arrow. In effect, it acts as a (local) constant.

Comments

The lamp symbol ~ (the cap-null) signifies that what follows is
a comment for illumination only and is not to be executed; it
may occur anywhere in a statement. Everything to the left of
the first lamp character in a line is treated as executable code
and everything to its right is assumed to be a comment.

If there is executable code to the left of a lamp character, the
blanks between the last character of the executable code and
the lamp will be preserved. This may be used to align the
lamp characters vertically to make the comments easier to
read.

Chapter 8. Function Definition 8-9

IBM Internal Use Only

Function Editing - The v Form

The functions OCR and DFX together form a basis for
establishing and revising functions. Convenient definition
and/or editing with them, however, requires the use of
prepared editing functions, which must be defined, stored in a
library, and explicitly activated when needed. The del form
described here provides another means for function entry and
revision, which is always present for use.

When you enter the del character (V) followed by the name of
a defined function, the system responds by displaying [N + 1] ,
where N is the number of statements in the function. It is now
possible to:

• add, insert, or replace statements

• replace the header

• modify the header or a statement

• delete statements

• display all or part of the definition

A new function is started by entering the desired header on the
same line as the opening V. Once the function definition mode
has thus been entered, the treatment of a new function is
identical to that for a function already defined.

Adding a Statement

If the response to the display of statement number [N+l] is a
statement, it is accepted as a line added at the end of the
definition. The system response is [N+2]. Additional
statements may continue to be added to the definition in this
way. If an empty statement is entered, the system will
re-display the line number in brackets.

8-10 APL/PC, Version 2.1

IBM Internal Use Only

Inserting or Replacing a Statement

If the response to the statement number displayed by the
system is [N], where N is any positive number with or without
a fractional part, the system will display [N]. A statement
entered will replace an existing statement N.

The system continues by displaying the next appropriate
number. For example, if the statement number entered was
[3] , the next number displayed will be [1.4-]; if [3 • 02], then
[3 .03]; if [3 • 29], then [3. 3], and so forth.

A statement may be submitted with line number [N]; it will
be inserted or will replace an existing statement in the way
described. The response of the system in this case is to display
the next statement number.

Replacing the Header

If you enter [0], the system responds with [0]. You may
now enter any legal header, which will replace the existing
header. Following this, the system displays [1]. The entire
operation may be done by entering [0] and, on the same line,
the header.

Deleting a Statement

A statement may be deleted by entering a delta in brackets
followed by the statement number, for example, [£12]. The
response of the system is to display the next statement
number. In the example, the response will be [3]. Several
statements may be deleted at a time, as in [£12 3 5]. A
range of statements may be deleted by [2£15], which deletes
statements 2 to 5 (inclusive).

Chapter 8. Function Definition 8-11

IBM Internal Use Only

Modifying a Statement or Header

One or more characters can be added to the end of statement
N, or staternent N can be corrected, by entering [NOO]. In
response, the system displays statement N; the cursor moves to
the end of the statement, and the keyboard unlocks. The
statement may be extended, or modified, by using the normal
revision procedures for entry. In response, the system displays
the next statement number and awaits entry.

The header may be modified in this way by entering [000].

Any line displayed anywhere on the screen during function
definition can be modified in place, and incorporated in the
function definition by using the Enter key after modification.
Since the modified line is brought to the bottom of the screen
when entered, this facility may be used for transferring selected
lines from one function, whose definition is still on the display,
to another that is currently being defined or edited.

You can modify several lines of a function wherever they are
displayed on the screen, and run through them in order with
the alternate Enter key (the" +" key associated with the
numeric keypad), which will enter them in place. This avoids
the scrolling of lines off the screen, and maintains the same
line on the display for further modification or study.

Function Display

The canonical representation of a function includes the header
and body displayed as a character matrix. The V form permits
display of a canonical representation modified as follows:

1. The header, labelled lines and comment statements are
offset one space to the left.

2. Statement numbers in brackets are appended to the left of
the statements.

3. A statement number of 0, in brackets, is prefixed to the
header.

8-12 APL/PC, Version 2.1

[BM Internal Use Only

The following is the function display of function OVERTIME,
the canonical representation of which was displayed at the
beginning of this chapter:

VOVERTIME[OJ'iJ
[OJ PAY+R OVERTIME H;TIME
[lJ TIME+OrH-40
[2J PAY+Rx1.5xTIME

While in function definition mode, display of the entire
definition can be requested by responding with [OJ. The
statements will be listed in numeric order, taking into account
deletions and insertions. Following the last statement, the
next appropriate line number will be displayed. The definition
from statement N onward can be similarly displayed by
entering [ON].

Statement N alone can be displayed by entering [NO]; in this
case the statement number N is repeated by the system after
the display of the statement itself. Statements N to M can be
displayed by entering [NOMJ.

Leaving the v Form

The del form may be left, and the function in the active
workspace updated, by typing a 'iJ on a line by itself, or as the
last character on any entry that does not contain a comment.
In particular, it can fo11o'w a request for display or a function
statement, and either can be included in the same entry that
both opens and closes the definition mode. For example,
'iJDET[OJ V displays the function DET, and VDET[10] '-+L V
modifies the contents of line 10 in the function DET. On
leaving the del form, the statements are reordered according to
their statement numbers, and the statement numbers are
replaced by the integers 1, 2, 3, and so on.

A function definition can be locked by either opening or
closing the definition mode with a del-tilde,~. The use of this
is explained in Chapter 9, "Function Execution".

Chapter 8. Function Definition 8-13

IBM Internal Use Only

Quitting the v Form

Typing [~J will quit the del form. Any changes made to the
function during the current editing session will be cancelled,
and immediate execution mode will be resumed.

8-14 APL/PC, Version 2.1

IBM Internal Use Only

Chapter 9. Function Execution

Halted Execution 9-4
State Indicator 9-4
State Indicator Damage 9-6

Trace Control 9-6
Stop Control 9-7
Locked Functions 9-8
Recursive Functions 9-9
Input and Output 9-10

Evaluated Input 9-11
Character Input 9-12
Interrupting Execution during Input 9-12
Normal Output 9-12
Bare Output 9-13

Chapter 9. Function Execution 9-1

IBM Internal Use Only

Notes:

9-2 APL/PC, Version 2.1

IBM Internal Use Only

A defined function may be used like a primitive function,
except that it cannot be the argument of a primitive operator.
In particular, a defined function may be used within its own
definition or that of another defined function. When a
function is called, or put into use, its execution begins with the
first statement, and continues with successive statements,
except as this sequence is altered by branch instructions.

Consider the function OVERTIME.

[0] PAY+R OVERTIME H;TIME
[1] TIME+OrH-40
[2] PAY+Rx1.5xTIME

If this function is invoked by a statement such as
X OVERTIME Y, the effect is to assign to the local name R
the value of X, and to H the value of Y" and then execute the
body of the function OVERTIME. Except for having a value
assigned initially, the argument variable is treated as any other
local variable and, in particular, may be respecified within the
function.

A function like OVERTIME, which produces an explicit result,
may properly be used in compound expressions. In the
OVERTIME function, the last value received by PAY during
execution is the explicit result of the function. For example:

YTDAT+l00 200 150
YTDAT+YTDAT+OT+5 7 6 OVERTIME 35 40 45
OT

o 0 45
YTDAT

100 200 195

PAY, itself, is a local variable and therefore has no significance
after the function is executed:

PAY
VALUE ERROR

PAY
A

Defined dyadic functions may be called monadically (without a
left argument). In such a case, the left argument will not have
a value during execution, and its name class will be O.

Chapter 9. Function Execution 9-3

IBM Internal Use Only

Halted Execution

The execution of a function F may be stopped before
completion in a variety of ways: by an error report, by an
attention signal, or by the stop control, which is explained
below. When this happens, the function is said to be
suspended, and its progress can be resumed by entering a
branch statement from the keyboard. Whatever the reason for
suspension, the name of the function is displayed, with a
statement number beside it. In the case of an error stop or an
interrupt, the statement itself is also displayed, with an
appropriate message and an indication of the point of
interruption. Unless a specification appears in the statement
to the right of this point, the state of the computation has
been restored to the condition obtaining before the statement
started to execute.

In general, therefore, the displayed number is that of the
statement that should be executed next if the function is to
continue normally. Execution can be resumed at that point by
entering a branch to that number specifically, a branch to an
empty vector, or a branch to OLe. Entering +0, or a branch
to another number outside the range of statement numbers,
causes an immediate exit from the function and it is no longer
suspended.

In the suspended state, all normal activities are possible, but
names used refer to their local significance, if any. The system
can execute statements or system commands, resume execution
of the function at an arbitrary point, or enter definition mode
to work on the suspended function, or some other. Pendent
functions can be edited with the del ('\1) editor.

State Indicator

Entering the system command)SI causes a display of the
state indicator; a typical display has the following form:

9-4 APL/PC, Version 2.1

IBM Internal Use Only

)SI
* H[7]

0[2J
F[3]

This display indicates that execution was halted before
completing (perhaps before starting) execution of statement 7
of function H, that the current use of function H was invoked
in statement 2 of function G, and that the use of function G
was in turn invoked in statement 3 of F. The * appearing to
the left of H [7] indicates that the function H is suspended.
The functions G and F are said to be pendent, because their
execution cannot be restarted directly, but only as a
consequence of function H resuming its course of execution.
The term halted is used to describe a function that is either
pendent or suspended.

Further functions can be invoked in the suspended state.
Thus, if G were now invoked and a further suspension occurred
in statement 5 of Q (Q "ras invoked in statement 8 of G), a
subsequent display of the state indicator would appear as
follows:

)SI
* Q[5J

G[8J
* H[7J

G[2J
F[3J

Because the line counter, OLe, holds the current statement
numbers of functions that are executing, its value at this point
would be the vector 5 8 7 2 3.

The sequence from the last to the preceding suspension can be
cleared by entering a right arrow (-+). This behaviour is
illustrated by continuing the foregoing example as follows:

-+-
)SI

* 8[7J
G[2]
F[3]

OLe
723

Chapter 9. Function Execution 9-5

IBM Internal Use Only

Repeated use of -+- will clear the state indicator completely and
restore OLe to an empty vector. The same effect can be
obtained with a single use of the)RESET command. The
cleared state indicator displays as if a blank line had been
entered.

State Indicator Damage

If the name of a function occurs in the state indicator list, then
erasure of the function or replacement of the function by
copying a function with the same name (even another instance
of the same function) will make it impossible for the original
course of execution to be resumed. In such an event, an SI
DAMAGE report is given. In addition, the APL system will give
an SI DAMAGE report if a halted function is edited to change
the order of its labels or to modify its header.

If an SI DAMAGE report is given for a suspended function, it
will not be possible to resume its execution by entering a
branch statement, but the function can be invoked again, with
or without prior clearance of the state indicator.

In case of SI DAMAGE, display of the state indicator will
show the damage by giving -1 as the current statement
number of the affected function.

Trace Control

A trace is an automatic display of information generated by
the execution of a function as it progresses. In a complete
trace of a function, the number of each statement executed is
displayed in brackets, preceded by the function name and
followed by the final value produced by the statement. The
trace of a branch statement shows a branch arrow followed by
the number of the next statement to be executed. The trace is
useful in analysing the behaviour of a defined function,
particularly during its design.

9-6 APLjPC, Version 2.1

[BM Internal Use Only

The tracing of a function PROFIT is controlled by the trace
control for PROFIT, denoted by TijPROFIT. If one sets
TIJPROFIT+2 3 5, then statements 2, 3, and 5 will be traced
in any later execution of PROFIT. TijPROFIT+l0
discontinues tracing of PROFIT. A complete trace of
PROFIT is obtained by TIJPROFIT+1N, where N is the
number of statements in PROF IT. In general, the trace
control for any function is designated by prefixing TIJ to the
function name.

Stop Control

A function can be caused to execute up to a certain statement
and then stop in the suspended state. This is frequently useful
in analysing a function, for example by experimenting with
local variables or intermediate results. The stops are set by the
stop control in the same manner as the trace. For example,
stops that will stop execution of the function PROFIT before
lines 4 and 12 are executed can be set by entering
SIJPROFIT+4 12.

At each stop, the function name and line number are
displayed, as described above for suspended functions. To go
to the next stopping point after the first, execution must be
explicitly restarted by entering an appropriate branch
statement.

Trace control and stop control can be used in conjunction.
Moreover, either of the controls may be set within functions.
In particular, they may be set by expressions that initiate
tracing or stops as a result of certain conditions that may
develop during function execution, such as a particular
variable taking on a particular value. They may only be used
as the left argument of specification. They may not be used by
themselves or as the argument to a function.

Chapter 9. Function Execution 9-7

IBM Internal Use Only

Locked Functions

If the symbol Til' (called del-tilde) is used instead of V to open
or close a function definition, the function becomes locked. A
locked function cannot be revised or displayed in any way.
Any associated stop control or trace control is nullified after
the function is locked.

A locked function is treated essentially as a primitive, and its
inner workings are concealed as much as possible. Execution
of a locked function is ended by any error occurring within it,
or by a strong interrupt. If execution stops, the function is
never suspended but is immediately abandoned. The message
displayed for a stop is DOMAIN ERROR, if an error of any
kind occurred; WORKSPACE FULL and the like, if the stop
resulted from a system limitation, or INTERRUPT.

Moreover, a locked function is never pendent, and if an error
occurs in any function invoked either directly or indirectly by a
locked function, the execution of the entire sequence of nested
functions is abandoned. If the outermost locked function was
invoked by an unlocked function, that function will be
suspended; if it was invoked by a keyboard entry, the error
message will be displayed with a copy of that statement.

Similarly, when a weak interrupt is encountered in a locked
function, or in any function that was ultimately invoked by a
locked function, execution continues normally up to the first
interruptable point - either the next statement in an unlocked
function that invoked the outermost locked function, or the
completion of the keyboard entry that used this locked
function. In the latter case, the weak interrupt has no net
effect.

Locked functions may be used to keep a function definition
proprietary, or as part of a security scheme for protecting
other proprietary information. They are also used to force the
kind of behaviour just described, which sometimes simplifies
the use of applications.

9-8 APL/PC, Version 2.1

:BM Internal Use Only

Recursive Functions

1\ defined function whose name has not been made local and is
lsed in the body of the function definition is said to be defined
recursively. For example, one definition of the
greatest-common-divisor function states that the greatest
:;ommon divisor of zero and any number N is N; for any other
pair of numbers it is the greatest common divisor of the
residue of the second number by the first, and the first
number. The words "greatest common divisor" are used in the
definition. This suggests that a greatest-common-divisor
function GCDR can be written whose canonical representation
is:

DCR'GCDR'
R+A GCDR B
R+B
+(O=A)/A
R+(AIB)GCDR A

18 GCDR 45
9

This can be compared to the equivalent function GCD defined
iteratively in Chapter 8, "Function Definition".

Executing an erroneously-defined recursive function will often
result in a STACK FULL report. The non-trivial execution of
a properly-defined recursive function may also have this effect
because of the very deep nesting of function calls that is often
required.

Chapter 9. Function Execution 9-9

IBM Internal Use Only

Input and Output

In many applications, such as text processing, it is necessary to
supply information as the execution of the application
program progresses. It is also often convenient, even in the
use of an isolated function, to supply information in response
to a request, rather than as arguments to the function as part
of the original entry. This is illustrated by considering the use
of the function CI, which determines the growth of a unit
amount invested at periodic interest rate R for a number of
periods T:

DCR'CI'
A+R CI T
A+(l+R)*T

For example, the value of 1000 pounds at 5 percent for 7
years, compounded quarterly, might be found by:

1000x(0.05+4)CI 7x4
1415.992304

The casual user of such a function might, however, find it
difficult to remember which argument of CI is which, how to
adjust the rate and period stated in years for the frequency of
compounding, and whether the interest rate is to be entered as
the actual rate (for example, 0.05) or as a percentage (for
example, 5). An exchange of the following form might be
more suitable:

INVEST
ENTER CAPITAL AMOUNT IN POUNDS
0:

1000
ENTER NUMBER OF TIMES COMPOUNDED EACH YEAR
0:

1+
ENTER ANNUAL INTEREST RATE IN PERCENT
0:

5
ENTER PERIOD IN YEARS
0:

7
VALUE IS 1415.992304

9-10 APL/PC, Version 2.1

[BM Internal Use Only

Each of the entries (1000, 4, 5, and 7) occurring in such an
exchange must be accepted, not as an ordinary entry (which
would only evoke the response 1000, etc.), but as data to be
used within the function INVEST. Facilities for this are
provided in two ways - evaluated input and character input. A
definition of the function INVEST, which uses evaluated input,
is as follows:

OCR 'INVEST'
INVEST;C;R;T;F
'ENTER CAPITAL AMOUNT IN POUNDS'
C+O
'ENTER NUMBER OF TIMES COMPOUNDED EACH YEAR'
F+O
'ENTER ANNUAL INTEREST RATE IN PERCENT'
R+O-!-Fx100
'ENTER PERIOD IN YEARS'
T+FxO
'VALUE IS ',~CxR CI T

Evaluated Input

The quad symbol (0) appearing anywhere other than
immediately to the left of a specification arrow signifies a
request for keyboard input as follows: the two symbols 0:
are displayed, and the keyboard is unlocked on the next line,
indented from the left margin. Any valid expression entered at
this point is evaluated, and the result substituted for the quad.
Suppose F is a function whose definition includes a quad
symbol:

OCR 'F'
Z+F
Z+4XO

F
0:

3+2
20

An invalid entry in response to a request for quad input causes
an appropriate error report, after which input is again awaited.
F or example, entering an expression that has no result
produces a value error. Function definition mode (the editing
or display of functions, or creation of new functions) is not
pennitted during 0 entry. In general, a system command

Chapter 9. Function Execution 9-11

IBM Internal Use Only

entered during 0 input is executed, but the system's response
to the command is not treated as a response to O. After
execution of a command, valid input is again awaited (unless
the command was one that replaced the contents of the active
workspace). An empty input (one containing nothing other
than zero or more spaces) is rejected and the system again
awaits input.

Character Input

The quote-quad symbol [!] (that is, a quad superimposed on a
quote) appearing anywhere other than immediately to the left
of a specification arrow is a request for character input; entry
is permitted at the left margin and data entered is accepted as
characters. For example:

CAN'T

CAN'T

X+[!]

x
(Quote-quad input, not indented)

Interrupting Execution during Input

The response -+ entered in response to 0 abandons execution
of the function and any pendent functions leading up to it.

A request for I!J input can be interrupted by entering the
Ctrl-Break key combination.

Normal Output

The quad symbol appearing immediately to the left of a
specification arrow indicates that the value of the expression to
the right of the arro\v is to be displayed in the standard format
(subject to the printing precision OPP and the printing width
OPW). Hence, O+X is equivalent to the statement X. The
longer form O+X is useful when employing multiple
specification. For example, O+Q+X*2 assigns to Q the value
X * 2, then prints the value of X * 2.

9-12 APL/PC, Version 2.1

[BM Internal Use Only

The maximum length of a line of normal display (measured in
characters) is called the printing width and is given by the value
of the system variable DPW. A display whose lines exceed the
printing width is ended at or before the maximum length, and
continued on subsequent lines.

Bare Output

Normal output includes a concluding new-line signal so that
the succeeding display (either input or output) will begin at a
standard position on the following line. Bare output, denoted
by expressions of the form [!]+X, does not include this signal if
it is followed either by another bare output or by character
input (of the form X+!!l).

Character input following a bare output is treated as though
you had spaced over to the position occupied at the conclusion
of the bare output, so that the characters received in response
will be prefixed by the characters displayed in the bare output.
This allows for the possibility that, after the keyboard is
unlocked, you backspace into the area occupied by the
preceding output. The following function prompts you with
whatever message is supplied as its argument, and evaluates
the response:

OCR 'PROMPT'
Z+PROMPT MSG
!!l+MSG
Z+[!]

U sing such a function, the expression

PROMPT 'ENTER CAPITAL: I

would have the following effect:

Displayed by system:
ENTER CAPITAL: 1000

Entered by user

The value of Z is the string of characters contained in MSG,
followed by the characters you entered, not including
explicitly-entered trailing blanks.

Chapter 9. Function Execution 9-13

IBM Internal Use Only

The new-line signals that would be supplied by the system to
break lines that exceed the printing width are not supplied with
bare output. However, because an expression of the form [!]+X
entered directly from the keyboard (rather than being executed
as part of a defined function) must necessarily be followed by
another keyboard entry, the output it causes is concluded with
a new-line signal.

9-14 APL/PC, Version 2.1

IBM Internal Use Only

Chapter 10. System Commands

Active Workspace - Action Commands 10-9
Active Workspace - Inquiry Commands 10-13
Workspace Storage and Retrieval - Action

Commands 10-14
Libraries of Saved Workspaces 10-14
Workspace Names 10-14

Workspace Storage and Retrieval - Inquiry
Commands 10-20

Sign-Off 10-21

Chapter 10. System Commands 10-1

IBM Internal Use Only

Notes:

10-2 APL/PC, Version 2.1

[BM Internal Use Only

A.n APL system recognises two broad classes of instructions -
r;tatements and system commands. System commands control
the start and end of a work session, saving and reactivating
copies of a workspace, and transferring data from one
workspace to another.

System commands are prefixed by a right (closing) parenthesis.
System commands can be invoked only by individual entries
from the keyboard and cannot be executed dynamically as part
of a defined function.

(However, some system commands may be emulated by APL
functions, such as the IN and OUT functions in the FILE
workspace. Also the API0l Auxiliary Processor may be used
to stack system commands for execution as though they had
been entered from the keyboard).

The system commands are summarised in Figure 10-1 on
page 10-4, and will be discussed under three main headings:

1. The active workspace.

a. Action.
b. Inquiry.

2. Workspace storage and retrieval.

a. Action.
b. Inquiry.

3. Access to the system.

Chapter 10. System Commands 10-3

IBM Internal Use Only

Normal Trouble
Form Purpose Response Reports

Active \Vorkspace - Action Commands

)CLEAR Activate a clear \VS CLEAR I4S 3
)SYMBOLS pi Set size of symbol I4AS number 3

table CLEAR J,./S
)STACK pi Set size of I4AS number 3

execution stack CLEAR J,./S
)ERASE nms Erase objects f£om 3,5,7

active \VS
)1N tf Copy all objects SAVED time date 1,3,8,9, 11,

from transfer file 14
to active \VS

)IN tf nms Copy named objects SAVED time date 1,3,4,8,9,
from transfer file II, 14
to active WS

)RESET Clear the state 3
indicator

Active \Vorkspace - Inquiry Commands

)SYMBOLS Give size of symbol number number 3
table and available
space in bytes

I

)STACK Give size of number 3
execution stack

)FNS List defined (names) 3
functions

)VARS List variables (names) 3
)S1 List halted state indicator 3

functions
)SINL List halted state indicator 3

functions and names and names

\Vorkspace Storage and Retrieval - Action Commands

)WS1D NS id Change ID of active WAS ws 3
workspace

)SAVE Nsid Replace named WS time date wsid 2,3,6, II, 13,
with copy of active 14
WS

)SAVE Place copy of time date wsid 2, 3, 6, II, 13,
active workspace 14
in library

)LOAD Nsid Activate copy of time date I, 3, 10, I I, 12,
named workspace 14

Figure 10-1 (Part 1 of 2). System Commands

10-4 APLjPC, Version 2.1

IBM Internal Use Only

Normal Trouble
Form Purpose Response Reports

)OUT t f Generate a transfer time date 2,3, 11, 13, 14
file with all
objects in the
active workspace

)OUT tf nms Generate a transfer time date 2, 3, 4, 11, 13,
file with the 14
objects in nms

)DROP us id Drop workspace or 1,3, 11, 13
file from library

Workspace Storage and Retrieval - I nquiry Commands

)NSID Give identification (number) name 3
of active workspace

)LIB List workspaces or (names) 3,11
files in desired
library

Access to the System

)OFF End use of APL Return to DOS 3

Notes:

1. . Items in parentheses are optional.

2. Abbreviations and Meanings:

• WS: workspace

• wsid: a workspace name possibly preceded by a library
number

• tf: transfer file name possibly preceded by a library
number

• pi: positive integer

• nms: list of names

3. 11le conlmands,) ERASE,)FNS, and)VARS have variants
that are system functions.

Figure 10-1 (Part 2 of 2). System Commands

Chapter 10. System Commands 10-5

IBM Internal Use Only

A system command that is not recognisable, or is improperly
formed, is rejected with the report COMMA.ND ERROR. Certain
commands may also result in more specific trouble reports;
these are discussed in the appropriate context and are
summarised in Figure 10-2 on page 10-7.

10-6 APL/PC, Version 2.1

IBM Internal Use Only

No Message Meaning Remedy

1 NOT FOUND No stored workspace
with given ID

2 LIB FULL No room on the disk Change the disk or
drop unneeded WS

3 COMMAND ERROR
4 nms NOT FOUND Workspace does not

contain objects
with purported
names

5 nms NOT ERASED Purported names
could not be erased

6 NOT SAVED A clear workspace Give a name to the
with no name cannot workspace
be saved

OR OR
Attempted replace. Rename active
ment of a stored workspace then store
workspace whose ID
does not match that
of the active WS

7 SI DAMAGE State indicator Clear SI PRESET)
damaged by) ERASE

8 SYMBOL TABLE FULL Too many names Erase objects not
used needed, then:

)OUT NS,)CLEAR,
)SYMBOLS n,
)IN ws,)NSID ws

9 NS FULL Workspace full 1. Erase unneeded
objects

2. Clear SI PRESET)
10 NS TOO LONG \Vorkspace does not

fit in main storage
11 NOT READY The door of the Ensure that diskette is

drive you want to inserted correctly and
access is open or that the drive door is
diskette is not closed.
inserted correctly.

12 INVALID NS Workspace was not Check file. Convert
saved by APL/PC to APL/PC 2.1 format.
2.1. (See description of

) LOAD).
13 PROTECTED Diskette is write Check diskette.

protected. Remove write-protect
tab.

14 TOO MANY FILES Insufficient DOS file Increase number of file
handles. handles in CONFIG.SYS

\-VARNING: Changing diskettes during an input/output operation,
or when you have open files, may damage your diskette.

Figure 10-2. Trouble Reports

Chapter 10. System Commands 10-7

IBM Internal Use Only

Once the execution of a system command has started, it
cannot be interrupted, although display of the system's
response to the command can be suppressed by an interrupt
signal.

In the text that follows, each system command is shown in a
sample form. The meaning of the symbols used in the sample
command forms is shown in Figure 10-3. In use, the
appropriate names or numbers should, of course, be
substituted.

A
LIBNO

WSNAME
FILENAME
EXT
NAME

OBJ

()

[]

A letter of the alphabet
A library number (that is, the
number of a disk drive).
If this field is not given, the default
drive is assumed.
A workspace name
A DOS file name
A DOS file extension
A string formed by numbers and
uppercase letters, starting with a
letter
The name of an object within a
workspace (that is, a function or a
variable)

Items enclosed in parentheses may,
in some cases, be omitted.

Items enclosed in brackets may, in
some cases, be omitted; when items
are omitted, the system supplies
default values.

Figure 10-3. Symbols Used in Command Definitions

10-8 APLjPC, Version 2.1

IBM Internal Use Only

Active Workspace - Action Commands

The following system commands affect or modify the active
workspace, the environment in which computation takes place
and, in which, names have meaning. In particular, the active
workspace contains the settings of the state indicator
(discussed in Chapter 9, "Function Execution") and other
elements of the computing environment, mediated by several
of the system variables (discussed in Chapter 6, "System
Functions and System Variables").

) CLEAR

This command is used to make a fresh start, discarding the
contents of the active workspace, and resetting the
environment to standard initial values (see Figure 10-4). At
sign-on, you receive a clear workspace characterised by these
same initial values, unless a system command has been
included in the starting APL invocation line, and successfully
executed.

The environment in a clear workspace is as follows:

Workspace name
Symbol table size
Stack size
State indicator
Comparison tolerance, OCT
Format control, OFC
Horizontal tabs, OHT
Index origin, DID
Latent expression, DLX
Line counter, OLC
Printing precision, OPP
Printing width, OPW
Random link, ORL
Work area available, OWA

None (CLEAR WS)
2048 bytes
12 8 elements
Cleared
lE-13
•• *0_
Empty
1
Empty
Empty
10
79
16807
Depends on PC memory size

Figure 10-4. Environment Within a Clear Workspace

Chapter 10. System Commands 10-9

IBM Internal Use Only

)STACK N

Sets the size of the execution stack, in number of elements.
The following table indicates the APL operations that use the
stack, and the stack size they need:

Number of
APl operation stack elements

Pending parenthesis I
Pending bracket I
Execute I
Quad input 2
Execute alternative I
Niladic defined fn 2
Monadic defined fn I
Dyadic defined fn I

A minimum of 64, and a maximum of 4096 stack elements
may be selected by the)STACK command.

This command may be executed in unclear workspaces, the
only restriction being that the stack itself must be empty. An
attempt to change the maximum with a non-empty SI, or to
set it outside the range permitted by the system, is rejected
with the message COMMAND ERROR. Valid use of the
command results in a report showing the former limit.

)SYMBOLS N

Sets the size of the symbol table in bytes. New values of the
maximum size may be set only in a clear workspace. A
minimum of 512 and a maximum of 32766 bytes may be
selected by the)SYMBOLS command.

A typical series of commands to change the size of the symbol
table of a)SAVE-ed workspace is:

)LOAD WS
)OUT WS
) CLEAR
)SYMBOLS N
)IN WS
)WSID WS
)SAVE

10-10 APLjPC, Version 2.1

IBM Internal Use Only

An attempt to change the maximum once the workspace is no
longer clear, or to set it outside the range permitted by the
system, is rejected with the message COMMAND ERROR. Valid
use of the command results in a report showing the former
limit.

)ERASE OBJ1 (OBJ2 (OBJ3 ••• »

The objects named are erased from the workspace; shared
variable offers with respect to any of them are retracted.

If a halted function is erased, the report SI DAMAGE is
displayed. I t is not possible to resume the execution of an
erased function, and you should enter one or more right
arrows to clear the state indicator of indications of damage.

If an object named in the command cannot be found, the
report NOT ERASED is displayed, followed by a list of the
objects not found.

)IN [LIBNO] FILENAME [OBJ1 (OBJ2 •••)]

The indicated objects or system variables are copied from the
indicated transfer file (FILENAME) into the active workspace.
The system reports the date and time at which the transfer file
was last written to disk.

If the list of objects to be copied is on1itted, all objects and
system variables are copied from the transfer file.

If the indicated transfer file is unavailable for some reason,
copying cannot take place. In this case the message NOT
FOUND will be reported. If any objects are specifically
requested but not found in the transfer file, then a list of such
names is reported, followed by NOT FOUND.

When an object to be copied has the same name as an object
in the active workspace, the copied object replaces it. If there
was a shared variable offer with respect to the variable thus
replaced, the offer is retracted.

Chapter 10. System Commands 10-11

IBM Internal Use Only

The latent expression (OLX) is not executed by)IN, even if a
complete workspace transfer form file is copied into the active
workspace.

The)IN command can be used even when the execution stack
is not empty. Note, however, that this can redefine local
variables as well as global objects, so that care is needed when
using this command in a workspace with an unclear execution
stack.

The following trouble reports may arise during copying:

• WORKSPACE FULL

There is not enough space to accommodate all the material
to be copied. However, those objects copied before space
was exhausted remain in the active workspace.

• SYMBOL TABLE FULL

New names occurring in the copied material exhaust the
capacity of the symbol table. Those objects copied before
the symbol table was exhausted remain in the active
workspace.

• NOT READY

The door of the drive you want to access is open or the
inserted diskette is not properly formatted.

• I/O ERROR

Data error on the read operation.

)RESET

The state indicator is cleared.

10-12 APLjPC, Version 2.1

IBM Internal Use Only

Active Workspace - Inquiry Commands

The following commands report aspects of the workspace
environment, but produce no change in it.

)SYMBOLS

Gives two numbers: the first one shows the current size of the
symbol table, in bytes; the second one, shows the current size
of the available space in the symbol table, in bytes.

)STACK

Gives the current size of the execution stack, in number of
elements.

)FNS

Reports a list of the functions in the active workspace, in
alphabetic order. It also accepts the specification of one or
more "starting letters" for the names listed, e.g.)FNS FG lists
all function names beginning with either F or G.

)VARS

Reports a list of the variables in the active workspace, in
alphabetic order. It also accepts the specification of one or
nl0re "starting letters" for the names listed, e.g.) VARS XY
lists all variable names beginning with either X or Y.

)SI

Displays the state indicator, showing the status of halted
functions, with the most-recently-halted first. The list shows
the name of the function and the number of the statement at
which work is halted. The actions that you can take with
respect to a halted function are described in
Chapter 9, "Function Execution".

Suspended functions are marked in the state indicator by an
asterisk, while pendent functions appear in the state indicator

Chapter 10. System Commands 10-13

IBM Internal Use Only

without an asterisk. Damage to the state indicator is shown by
a statement number of -1 beside the name of the affected
function.

)SINL

Displays the state indicator in the same way as)SI, but in
addition, with each function listed, lists names that are local to
its execution.

Workspace Storage and Retrieval -
Action Commands

You may request that a duplicate of the currently active
workspace be saved for later use. When a duplicate of a saved
workspace is reactivated later, the entire environment of
computation is restored, except that variables that were shared
in the active workspace are not automatically shared again
when the workspace is reactivated.

Libraries of Saved Workspaces

Each disk drive in the IBM Personal Computer is called a
library (see Chapter 1, "Introduction"). Library
identifications are usually consecutive numbers.

Workspace Names

A saved workspace must be named. The name of a workspace
may duplicate a name used for an APL object within the
workspace.

Workspace names are subject to DOS file naming restrictions
and may be composed of up to eight upper case alphabetic
and numeric characters, but not spaces or special symbols;
workspace names must begin with an alphabetic character.

10-14 APLjPC, Version 2.1

IBM Internal Use Only

)WSID [LIBNO] WSNAME

Assigns the name indicated and, optionally, the library number
indicated, to the active workspace

Setting of the active workspace's identification is acknowledged
by the report WAS • •• followed by the former name,

)SAVE [[LIBNO] WSNAME]

A duplicate of the active workspace is saved (optionally, in the
indicated library) under the indicated name. If the workspace
name is omitted, it is supplied from the workspace
identification. After saving, the active workspace has the same
identification (including library number and name) as the saved
workspace.

Current values of the shared variables are saved in the stored
copy. This does not affect the state of sharing in the active
workspace.

Saving is acknowledged by a report showing the date and time
at which the workspace was saved, and the name of the saved
workspace.

The file written to disk will have a filename of the specified
W8NAME, padded to eight characters with underbar characters
and will have an extension of" .APL". Any existing file of the
same name will be overwritten.

The padding of names with underbars provides some
protection from DOS device names. This allows workspaces
to have identical names to DOS devices. For example,)SAVE
NUL saves a workspace with a file name of NUL _____ ,APL,
rather than writing the file to the NUL device, which would
result in nothing being saved.

The command to save the active workspace may be rejected,
with trouble reports as follo,vs:

• NOT SAVED

Chapter 10. System Commands 10-15

IBM Internal Use Only

Saving is not permitted when the name given in the
command matches the identification of an existing saved
workspace but does not match the identification of the
active workspace. This restriction prevents you from
accidentally overwriting one workspace with another.

This message may also appear if the workspace has no
name (is a CLEAR JiS) and the)SAVE command does not
assign a new name to it.

• LIBRARY FULL

There is not enough space on the disk to accommodate the
workspace.

• NOT READY

The door of the drive you want to access is open or the
inserted diskette is not properly formatted.

• PROTECTED

The diskette in the indicated drive is write-protected.

• I/O ERROR

Data error on the write operation.

)OUT [LIBNO] FILENAME [OBJ1 (OBJ2 •••)]

This command writes the transfer form of objects in the active
workspace to a transfer file. The optional list specifies what
objects to transfer. The default is to transfer all the objects
and system variables in the workspace.

The FILENAME can be different to the current WSID and will
not affect the WSID of the active workspace. The file written
to disk will have a filename of the specified FILENAME,
padded to eight characters with underbar characters and will
have an extension of ".AIO". Any existing file of the same
name will be overwritten. No provision is made to append
extra objects to an existing "AIO" file.

10-16 APLjPC, Version 2.1

IBM Internal Use Only

The)OUT conunand can be used even when the execution
stack is not empty. Note, however, that the local definition of
a localised object will be written to the transfer file. To
provide further protection, lOUT of a full workspace with a
non-empty stack is not allowed, and the error report
"INVALID COMMAND" will be given.

This conunand may be rejected with trouble reports as follows:

• NOT FOUND

If any objects are specifically requested but not found in
the active workspace, a list of such names is reported
followed by NOT FOUND.

• LIBRARY FULL

The LIBRARY FULL error message may be reported if
the selected disk does not have enough space for the
transfer file.

• NOT READY

The door of the drive you want to access is open or the
inserted diskette is not properly formatted.

• PROTECTED

The diskette in the indicated drive is write-protected.

• I/O ERROR

Data error on the write operation.

)LOAD [LIBNOJ WSNAME

A duplicate of the indicated workspace (including its entire
computing environment) becomes your active workspace.

Shared variable offers in the former active workspace are
retracted. Following a successful)LOAD, the system reports
the date and time at which the loaded workspace was last

Chapter 10. System Commands 10-17

IBM Internal Use Only

saved. The system then immediately executes the latent
expression (OLX).

Invalid requests to load a workspace may result in the reports:

• NOT FOUND

If the indicated workspace cannot be found on the selected
drive.

Note: A file that has not been created by a)SAVE
command cannot be)LOADed, even though its extension is
".APL".

A valid workspace that has been renamed must have its
name padded to eight characters with underbars in order to
be found by the)LOAD command.

• INVALID WS

If the indicated workspace has not been created by the
APL/Personal Computer Version 2.1. If the workspace
was created under Personal Computer APL Version 1.0,
you can convert it by executing the following procedure:

1. Invoke APL/PC Version 1.0 from DOS.

2.) LOAD the workspace.

3.)OUT the whole workspace in transfer form.

4.)OFF from APL Version 1.0.

5. Invoke APL/PC Version 2.1 from DOS, including
AP210 as a required auxiliary processor.

6.) LOAD the MIGRATE workspace and enter the name
of the transfer form file when requested. For more
details on using the MIGRATE workspace see
Appendix B, "APL/PC 1.0 Workspace Migration".

7.)CLEAR the active workspace.

10-18 APL/PC. Version 2.1

IBM Internal Use Only

8.)IN the workspace from the transfer form file.

9.)WSID to set the appropriate name.

10.)SAVE it to the disk.

• NOT READY

The door of the drive you want to access is open or the
inserted diskette is not properly formatted.

• I/O ERROR

Data error on the read operation.

)DROP [LIBNO] FILENAME[.EXTJ

The named file is removed froin the indicated library. If no
extension is given, the default is ".APL". Dropping a
workspace has no effect on the active workspace.

You may get the following trouble reports:

• NOT FOUND

If the workspace you want to drop does not exist.

• NOT READY

The door of the drive you want to access is open or the
inserted diskette is not properly formatted.

• PROTECTED

The diskette in the indicated drive is write-protected.

• I/O ERROR

Data error on the write operation.

Chapter 10. System Commands 10-19

IBM Internal Use Only

Workspace Storage and Retrieval -
Inquiry Commands

)WSID

Reports the identification of the active workspace, showing the
library number if explicitly stated, and the workspace name.

)LIB [LIBNO] [NAME][.EXT]

Displays those files, the names of which start with NAME, and
that have the given extension • EXT in the indicated drive
LIBNO. If no extension is given, all files starting with NAME
are listed. If no name is given, all files with the given
extension are listed.

Examples:

)LIB 1
)LIB 1 APL

)LIB 1 .APL
)LIB 1 .AIO
)LIB 1 .EXE
)LIB 1 •
)LIB AP.EXE

Lists all files in drive 1.
Lists all files with name starting with
"APL".
Lists all saved workspaces.
Lists all workspaces in transfer form.
Lists all "EXE" files in the drive.
Lists all files with a blank extension.
Lists all files on the default drive with
names starting with "AP" and having an
extension of" .EXE".

You can get the following error reports:

• NOT READY

The door of the drive you want to access is open or the
inserted diskette is not properly formatted.

• I/O ERROR

Data error on the read operation.

10-20 APLjPC, Version 2.1

[BM Internal Use Only

Sign-Off

)OFF

Gets out of APL and gives control back to the Disk Operating
System. The active workspace is lost.

Chapter 10. System Commands 10-21

IBM Internal Use Only

Notes:

10-22 APL/PC, Version 2.1

[BM Internal Use Only

Part 3. Application Guide

Chapter 11. Application W orkspaces •..•..••.•••.•. 11-1
The AP2 Workspace 11-5

Example Session 11-8
The AP124 Workspace 11-8

Fundamentals 11-9
Building a Menu 11-10

The AP190 Workspace 11-19
The AP205 Workspace 11-21
The AP206 Workspace 11-21
The AP232X Workspace 11-26
The AP488 Workspace 11-28

Requirements 11-28
Reference Documentation 11-28
Hints to Avoid Trouble 11-28
Description of AP488 Functions 11-30

The APLFILE Workspace 11-42
The DEM0124 Workspace 11-47
The D EM 0206 Workspace 11-48
The DOSFNS Workspace .. , 11-48
The ED! T VV orkspace 11-51
The EXCHG Workspace 11-55
The FI LE Workspace 11-56

Functions 11-57
Terminology 11-58
Examples of Use 11-71

The FOIL Workspace 11-73
The FORTRAN Workspace 11-74

Restrictions on FORTRAN Programs 11-74
Generation Process 11-75
Usage Protocol 11-78
PFORTPAR Parameter Management Program 11-79
Sample FORTRAN Subroutines (IBM PC

Professional FORTRAN) 11-81
The GEDIT Workspace 11-82
The G RAPHP AK W orkspaces 11-84
The MUSIC Workspace 11-86

Part 3. Application Guide

IBM Internal Use Only

The PLOT Workspace 11-87
The PRINT Workspace 11-89
The PROFILE Workspace 11-91
The UTI L Workspace 11-92
The VM232 Workspace 11-95

Selecting a Terminal 11-96
Saving Your Line Parameter Definition 11-102
Connection with the Host 11-103
Functions 11-105
Example of Connection with the Host 11-108
Auxiliary Files on the Host 11-112

Chapter 12. Auxiliary Processors ...•.•.••.......• 12-1
The Non-APL Program Interface Auxiliary

Processor: AP2 12-4
Basic Functions 12-5
Auxiliary Functions 12-8
Sample AP2 session 12-9
Return Codes (Returned through the control
variable) 12-9

The Printer Auxiliary Processor: AP80 12-10
Patching AP80 for Other Printers 12-12

The Stack and Profile Auxiliary Processor: AP I 0 1 . 12-14
Error Return Codes 12-17

The BIOS/DOS Interrupt Auxiliary Processor:
API03 12-18

BIOS/DOS Interrupt Function Call 12-19
I/O Port IN/OUT Request 12-22
Joystick Algorithm 12-23

The Full Screen Management Auxiliary Processor:
AP124 12-24

AP124 Operation 12-24
Error Return Codes 12-33

The Host Communications Auxiliary Processors:
AP190 and AP1901 12-34

Possible uses for AP190 12-35
Getting Started 12-35
Sending Keystrokes 12-35
Setting Keyboard Translation Table 12-36
Getting Host Status 12-36
Getting the Physical Screen 12-36
Get the Operator Information Area 12-37
Simulate a Power On Reset 12-37

APL/PC, Version 2.1

BM Internal Use Only

Get Cursor Position and Beep Indication 12-37
Get the Keyboard Translation Table 12-37
Get the Screen Format Array 12-38

The Full-Screen Auxiliary Processor: AP205 12-38
The Graphic Auxiliary Processor: AP206 12-39

Storage Management 12-39
Parameters 12-40
Use of AP206 12-47
Functions 12-48
Return codes 12-53

The File Auxiliary Processor: AP210 12-53
Control Commands 12-54
Control Subcommands 12-57
AP210 Return Codes 12-59
Examples of use 12-60

The Asynchronous Communications Auxiliary
Processor: AP232 12-62

Control Commands 12-63
The Extended Asynchronous Communications
Auxiliary Processor: AP232X 12-69

Hardware Notes 12-70
AP232X Operation 12-70
AP232X Return Codes 12-75

The Music Auxiliary Processor: AP440 12-76
AP440 Command Syntax 12-77

The IBM GPIB Support Auxiliary Processor: AP488 12-79
Description of AP488 Functions 12-80

2hapter 13. How to Build an Auxiliary Processor 13-1
Access Control 0 13-4
Format of Shared Data 0 •••• 0 • • • • • • •• 13-5
Shared Variable Processor Services and Return Codes 13-7

Processor Sign-on: OOH 13-8
Return to APL via Shared Variable Processor:
01H 0 0 ••••• o .• 0 •••••• 0 •••••••••• 13-9

Share or Query the State of a Variable: 02H 0.. 13-10
Get the Present Value of a Shared Variable: 03H 13-11
Get a Block of Memory From the \Vorkspace:

04H 0 •• 0 •••• 0 ••• 0 ••• 0 0 •• 0 • • • •• 13-12
Release Storage to the Workspace: 05H ... 0 • 0 13-13
Pass a Variable to APL and Release the Space:
06H 13-14

Pass a Scalar Integer Return Code to APL: 07H 13-15

Part 3. Application Guide

IBM Internal Use Onl:

Convert an APL Object from Type Boolean to
Integer: 08H 13-1 ~

Convert from APL Z-code to ASCII: 09H 13-1'
Convert from ASCII to APL Z-code: OAH 13-11
Share or Query the State of a Variable: OBH 13-1~
Pre-read a Variable: OCH 13-2(
Read a Previously Pre-read Variable: ODH 13-2
Release a Previously Pre-read Variable: OEH 13-2:
Pass a Value to a Variable: OFH 13-2:
Processor Sign-off: 10H 13-2·
SVP Reserved Function: 11H 13-2'
Locate an Associated Variable: 12H 13-2:
Change the Keyboard I Screen Mode: 13H 13-2<
Get Loop Count for Delay: 14H 13-2~
Change the Keyboard / Screen Mode Without

Clearing Screen: ISH 13-2~
Notes 13-2~
Return Codes (Returned in CX Register) 13-3(
Sample Auxiliary Processors 13-3(
APL Interrupt Usage 13-3]
How to Debug Auxiliary Processors 13-3:
Exchange Assembly Programs 13-3:

APL/PC, Version 2.1

BM Internal Use Only

Chapter 11. Application Workspaces

The AP2 Workspace 11-5
Example Session 11-8

The AP124 vVorkspace 11-8
Fundamentals 11-9
Building a Menu 11-10

The AP190 Workspace 11-19
The AP205 Workspace 11-21
The AP206 Workspace 11-21
The AP232X Workspace 11-26
The AP488 Workspace 11-28

Requirements 11-28
Reference Documentation 11-28
Hints to Avoid Trouble 11-28
Description of AP488 Functions 11-30

The APLFILE Workspace 11-42
The DEM0124 Workspace 11-47
The D EM 0206 Workspace 11-48
The DOSFNS \Vorkspace 11-48
The EDIT Workspace 11-51
The EXCHG Workspace 11-55
The FI LE Workspace 11-56

Functions 11-57
Terminology 11-58
Examples of Use 11-71

The FOIL vVorkspace 11-73
The FORTRAN vVorkspace 11-74

Restrictions on FO R TRAN Programs 11-74
Generation Process 11-75
U sage Protocol ,...... 11-78
PFORTPAR Parameter Management Program 11-79
Sample FORTRAN Subroutines (IBM PC

Professional FORTRAN) 11-81
The GEDIT Workspace 11-82
The G RAPHPAK Workspaces 11-84
The MUSIC Workspace ,........ 11-86
The PLOT Workspace 11-87

Chapter 11. Application W orkspaces 11-1

IBM Internal Use Only

The PRINT Workspace 11-89
The PROFILE Workspace 11-91
The UTI L vVorkspace 11-92
The VM232 Workspace 11-95

Selecting a Terminal 11-96
Saving Your Line Parameter Definition 11-102
Connection with the Host 11-103
Functions 11-105
Example of Connection with the Host 11-108
Auxiliary Files on the Host 11-112

Notes:

11-2 APL/PC. Version 2.1

BM Internal Use Only

[he APL diskettes have a number of workspaces in transfer
"'arm (extension" .AIO") or APL form (extension" .APL").
fhese workspaces contain functions that you can call from
{our programs to perform the following applications:

~ Dynamic loading of auxiliary processors and non-APL
programs (AP2).

• Basic functions to help in building full-screen applications
(AP124 and AP20S).

• Basic functions to help in building graphic applications
(AP206).

• Management of APL files (APLFILE).

• Emulation of the DOS operating system functions
(DOSFNS).

• Using the APL full-screen function editor (ED IT).

• Using Personal or Professional Editor to edit APL
functions (ED IT).

• Loading and use of exchange assembly programs
(EXCHG).

• U sing DOS file management routines (FI LE).

• Communicating with FORTRAN subroutines
(FORTRAN).

• Samples for the music auxiliary processor (MUSIC).

• Using the printer from APL programs (PRINT).

• Initialising the APL session (PROFILE).

• Various graphic applications (PLOT, FOIL, GEDIT,
GRAPHPAK).

• Various general purpose utility programs (UTI L).

Chapter 11. Application Workspaces 11-3

IBM Internal Use Only

• Communication with other machines and equipment
(VM232, AP232X, AP190, AP488).

These functions also can be used as examples of how to
program with the corresponding auxiliary processors in the
APL/Personal Computer 2.1 system:

I. AP2, EXCHG and FORTRAN use the non-APL program
I interface auxiliary processor (AP2).

• PRINT uses the printer auxiliary processor (AP80).

• PROFILE uses the stack and profile auxiliary processor
(APIOI).

• DOSFNS and UTIL use the DOS-BIOS interface auxiliary
processor (AP103).

• The EDIT function in the EDIT workspace and the AP124
workspace use the VSAPL compatible full-screen auxiliary
processor (AP 124).

• The EDAPL function in the EDIT workspace uses AP2
and AP210.

• API90 uses the IBM PC 3278/79 emulation card
communications auxiliary processor (API90).

• AP205 uses the APL/PC 1.0 compatible full-screen
auxiliary processor (AP20S).

• AP206, PLOT, FOIL, GEDIT and GRAPHPAK use the
graphics auxiliary processor (AP206).

• FILE and APLFILE use the file auxiliary processor
(AP210).

• VM232 uses the RS232 interface auxiliary processor
(AP232) as well as the file manager (AP210 and FILE).

• AP232X uses the extended RS232 interface auxiliary
processor (AP232X).

11-4 APLjPC, Version 2.1

BM Internal Use Only

MUSIC uses the music generator auxiliary processor
(AP440).

AP488 uses the GPIB/IEEE488 interface auxiliary
processor (AP488).

rhe AP2 Workspace

[he AP2 auxiliary processor allows you to define special areas
)f memury (partitions) where non-APL programs may be
oaded and executed, and non-executable files may be loaded.
Vlemory for the partitions is taken out of the APL active
,vorkspace, and returned to it when the partitions are
iiscarded. A certain number of partitions (usually 8) may be
iefined at the same time. Memory allocation is dynamic -
:here is no restriction in the memory size or the address where
1 partition may reside at a given time.

Files of four different types may be loaded in a partition:

1: Non-executable file.

2: APL auxiliary processor.

3: Exchange-assembly program, i.e. a program capable of
accepting data from APL and returning a result. For an
explanation of how these programs may be built, see the
description of the AP2 auxiliary processor in
Chapter 12, "Auxiliary Processors" ("The Non-APL
Program Interface Auxiliary Processor: AP2" on
page 12-4), as well as Chapter 13, "How to Build an
Auxiliary Processor").

4: Standard DOS program. No direct data exchange takes
place in this case, though data may be passed through files
(see the EDAPL function in the EDIT workspace, as an
example).

Chapter 11. Application Workspaces 11-5

IBM Internal Use Only

If a program of type 3 or 4 is to be executed, an additional
parameter (restore type) indicates the information to be
restored after execution ends:

0: Neither the interrupt vector nor the program code are
restored after execution of these programs. The programs
are assumed not to destroy the interrupt vector.

1: The interrupt vector is automatically restored after
execution of these programs. The program code is not
restored.

2: The program code is automatically restored after execution
of these programs. They therefore become reusable. (This
is applicable, for instance, to the Personal Editor).
However, the interrupt vector is not restored, and is
assumed to be maintained by execution of the program.

3: Both the interrupt vector and the program code are
automatically restored after execution of these programs.

The default value of this parameter is O.

The AP2 workspace provides a set of simple functions that
perform non-APL program operations. The functions included
are:

• HELP - Provides a listing of all the functions in the
workspace together with their syntax.

• CLEAR n - Unloads all programs currently active, and
redefines the maximum number of partitions to n.

• MAP - Provides a listing of all the partitions and their
contents.

• n GET p - Assigns space to partition p. Space is
measured in paragraphs of 16 bytes, i.e. a size of n
paragraphs is equivalent to 16 xn bytes.

• 'filespec I LOAD p[, t [,kJ J - Loads the indicated
file into partition p. f i 1 espec can be given both in

11-6 APLjPC t Version 2.1

[BM Internal Use Only

DOS or in APL library format (see description of
filespec in the FILE workspace, "Terminology" on
page 11-58). If t, the type of the file, is not given, it is
assumed to be 4. If k, the restore information, is not
given, it is assumed to be O. Space for the file is assumed
to have been requested previously, by means the GET
function.

For file types 2-4, if the filespec does not contain the
extension, ".COM" is assumed. If the file is not found, the
operation is retried with an extension of" .EXE".

• 'filespec' GLOAD p[, t [,kJ J - Loads the
indicated file into partition p. If the type is not given, 4 is
assumed. If the restore information is not given, 0 is
assumed. The appropriate space to load the file is
automatically requested.

• UNLOAD P - Unloads any file previously loaded in
partition p.

• FREE P - Frees the space currently occupied by partition
p.

• UFREE P - Unloads the file and frees the space occupied
by partition p.

• [pJ AUXP 'filespec' - Loads the indicated auxiliary
processor in partition p, or in the first available partition,
if p is not given.

• ['parameters'] RUN P - Executes the program
contained in partition p, passing to it the indicated
parameters.

• [pJ PE 'filespec I - Loads the Personal Editor in
partition p (1, if p is not given) and edits the indicated file.
The partition is assigned a size of 64 K bytes.

Chapter 11. Application Workspaces 11-7

IBl\t1 Internal Use Only

Notes:

1. Programs to be executed using AP2 should not use the DOS
4A or 4B functions.

2. Programs that grow into storage below themselves will need
a partition of sufficient size to allow for this.

3. Programs should not rely on Ctr/-Break being available, as
this is disabled by AP2.

4. Programs that expect the entire memory below
COMMAND. COM to be available to them should not be
executed from AP2.

Example Session
4000 GET 1 A Get a 64k partition

4000x16 Bytes reserved for partition 1
Return code 0

A Load the DOS FORHAT Program
'C:\DOS21\FORMAT' LOAD 1

Loading module C:\DOS21\FORMAT in partition 1
Return code 0

A Execute the FORHAT program
'A: /V' RUN 1

Executing program loaded in partition 1
Parameters A: /V
Insert new diskette for drive A:
and strike an~ ke~ when read~
(Output from Format l reply N to return to APL).
End of execution. Return code 0

The AP124 Workspace

This workspace contains a set of cover functions to assist in
the use of the full screen auxiliary processor, AP124, in an
application. A screen definition facility makes it possible to
define a screen as a set of fields, each one with its own name
or number, where information can be sent or retrieved by
means of appropriate functions.

11-8 APLjPC, Version 2.1

IBM Internal Use Only

U sing a fullscreen interface adds a professional appearance
and, more importantly, can yield substantial productivity gains
to the APL applications you build. To that end,
APL/Personal Computer 2.1 is provided with a powerful
auxiliary processor and an easy APL interface to assist you in
this area.

Fundamentals

The display you are using on your IBM Personal Computer
should be considered as a character array for the purposes of
the following discussion.

The size of this array depends on the screen mode: it can be
either a 25 by 80 or a 25 by 40 character array. This area may
be sub-divided into smaller rectangular sections, more
convenient to your data processing needs. These rectangular
areas are called fields. The fullscreen auxiliary processor,
AP124, works only in terms of fields. Functions in the AP124
vv'orkspace perform actions to a field or a group of fields.

Fields have type, determining how a field may be acted upon:
There are two types of fields: "input/output", allowing input
from the keyboard to be typed and displayed; and "output
only", capable of receiving data from an APL function but not
from the keyboard.

Fields also have attributes which define how the information
contained in the fields is to be displayed. Attributes are
expressed as an integer value, depending on the actual display
to be used. Some of these attributes define the colour of the
field or whether it should be displayed as blinking, reverse
video, etc.

Chapter 11. Application \Vorkspaces 11-9

IBM Internal Use Only

Building a Menu

As an example of the use of the AP 124 workspace, we will
define a screen, containing some information and requesting
data from the user. The AP 124 workspace includes functions
allowing you to define menus quickly, and making it easy to
maintain them.

Let's assume the menu you wish to define is for an overtime
payment system. You should collect and process the following
data:

• Employee clock number.

• Employee name.

• Number of overtime hours worked each day (M onday to
Sunday).

• Per-day overtime rate. This will be fixed at the moment,
but may be adjusted at a later date.

Now we have to step though some simple decisions to design
the screen: First, how big should the screen be, 25 by 40 or 25
by 80 characters? We will choose 25 by 40, since this size is
more appropriate to the manual page width. Second, we nlust
sketch the layout for the fields. The following is a
representation of the desired menu:

11-10 APL/PC, Version 2.1

IBM Internal Use Only

0000000001111111111222222222233333333334
1234567890123456789012345678901234567890

01 APL Overtime System
02--
03
04
05Input the following data, press Enter:
06
07 Employee Number XXXXXXX
08 Employee Name XXXXXXXXXXXXXXX
09
10 Mon Tue Wed Thu Fri Sat Sun
I1Hours X.XX X.XX X.XX X.XX X.XX X.XX X.XX
12Rate 1.25 1.25 1.25 1.25 1.25 1.50 2.00
13
14
15
16
17
18
19
20--
21The following options may also be used:
22
23 Fl - Help F3 - Exit
24
25

The row and column numbers at the top and left of the
diagram are included just for clarity.

We also need a name for the screen: in this example, we will
use the name OVERTIME.

Now everything is planned and ready, function FSDEF from
the AP124 workspace will be used to build the menu. The
function is invoked thus:

FSDEF 'Menu_Name'

the first time it is used, and:

Field_Def FSDEF 'Field_Data'

once per field to be defined.

Menu_Name defines the name by which this screen is to be
known. This name should begin with an upper or lower case

Chapter 11. Application W orkspaces 11-11

IBM Internal Use Only

letter, the delta (fl) character or the delta underbar (~)
character; and may continue with any of these, plus the digits
0-9.

Field_Def is a six element vector with the following
information:

1. Start row of the field

2. Start column of the field

3. Field height

4. Field length

5. Field type: either ° (Input/Output) or 2 (Output only).

6. Field Attribute: an integer between 0 and 255. The
following are some attribute examples applicable to the
monochrome and the colour monitor in the alphanumeric
modes (see the IBM Technical Reference Manual for full
details):

o - No display
1 - Underlined
7 - Normal
9 - Highlighted underlined

15 - Highlighted
112 - Reverse video
120 - Highlighted reverse video
12 9 - Blinking reverse video
135 - Blinking normal

If the field length is given as 0, the length will be automatically
derived from the value of Field_Data. This is the data to
be written on the field at initial menu usage. It must be a
character vector.

Alternatively, the following field definition format may be used
to assign a name to the field being defined:

11-12 APL/PC, Version 2.1

IBM Internal Use Only

Field_Def and Field_Data are the same as above.
Field_Name is the name you wish to assign to this field.
This name should consist of upper or lower case letters, digits,
delta (fj,) or delta underbar (1)).

FSDEF also allows you to define a group of fields so that they
may be referred to collectively. This is especially useful for
changing the attribute of a complete set of fields, or to switch
the type of a set of fields from Input/Output to Output only,
or vice versa. This is done in the following way:

'Group_Name' FSDEF Number_of_Fields

Number _of_Fields is the number of fields defined
immediately before the execution of this line that are to be
included in the group. Each of these previously defined fields
must have been named.

The following function can be used to display a menu after it
has been completely defined:

FSSHOW 'Menu_Name'

N ow let's write a function to define our sample menu and
display it on the screen:

Chapter 11. Application \Vorkspaces 11-13

IBM InternaiUse Oniy

[0] DEFINEjA
[lJ FSDEF 'OVERTIME'
[2] 1 12 1 20 2 7 FSDEF ' APL Overtime System'
[3] 2 1 1 40 2 7 FSDEF 40p'-'
[4] A~'Input the following datal press enter:'
[5] 5 1 1 0 2 7 FSDEF 'PROMPT' FSDEF A
[6] 7 4 1 16 2 7 FSDEF 'Employee Number'
[7] 8 4 1 16 2 7 FSDEF 'Employ'ee Name'
[8] 7 22 1 7 0 7 FSDEF 'Emp_No' FSDEF "
[9] 8 22 1 150 7 FSDEF 'Emp_Name' FSDEF "
[10] A~'Mon Tue Wed Thu Frf Sat Sun'
[11] 10 7 1 0 2 7 FSDEF A
[12] 11 1 1 0 2 7 FSDEF 'Hours'
[13] 12 1 1 0 2 7 FSDEF 'Rate'
[14] 11 7 1 4 0 7 FSDEF 'Hours Mon' FSDEF "
[15] 11 12 1 4 0 7 FSDEF 'Hours Tue' FSDEF "
[16] 11 17 14 0 7 FSDEF 'Hours-Wed' FSDEF "
[17] 1122 1 4 0 7 FSDEF 'Hours-Thu' FSDEF "
[18] 11 27 1 4 0 7 FSDEF 'Hours-Frf' FSDEF "
[19] 11 32 1 4 0 7 FSDEF 'Hours-Sat' FSDEF "
[20) 11 37 1 4 0 7 FSDEF 'Hours-Sun' FSDEF "
[21] 'Hours' FSDEF 7 -
[22] 12 7 1 4 0 7 FSDEF 'Rate Mon' FSDEF '1.25'
[23] 12 12 1 4 0 7 FSDEF 'Rate Tue'- FSDEF '1.25'
[24] 12 17 1 4 0 7 FSDEF 'Rate-Wed' FSDEF '1.25'
[25) 12 22 1 4 0 7 FSDEF 'Rate-Thu' FSDEF '1.25'
[26] 12 27 1 4 0 7 FSDEF 'Rate-Frj' FSDEF '1.25'
[27] 12 32 1 4 0 7 FSDEF 'Rate-Sat' FSDEF '1.50'
[28] 12 37 1 4 0 7 FSDEF 'Rate-Sun' FSDEF '2.00'
[29] 'Rates' FSDEF 7 -
[30] 18 1 1 402 7 FSDEF 'Msg_Area' FSDEF "
[31] 20 1 1 40 2 7 FSDEF 40p'-'
[32] A~'The following options may also be used:'
[33] 21 1 1 0 2 7 FSDEF A
[34] A~'F1 - Help F3 - Exit'
[35] 23 3 1 0 2 7 FSDEF A
[36] FSSHOW 'OVERTIME'

You will notice we named some of the fields. These are the
ones we wish to operate with. You will also observe we have
defined an extra field called 'Msg_Area', where the program
can output any errors found in input validation, or any other
system message.

I We would normally write a function like this for each panel in
lour system. Each of these panel definition functions then only
I needs to be executed once in order to create the global
I variables that are used by other functions in this workspace.
I (Of course, they would have to be re-executed if any changes

11-14 APL/PC, Version 2.1

IBM Internal Use Only

to the panels are made by editing the appropriate panel
definition function).

Let's look at the next stage of combining the screen with the
function that will drive the input-output operation (a "driver").
The following cover functions can be used in the driver:

FSMODE 'Mode_Name'

This function sets the screen mode, where Mode_Name is
either an integer or a name:

o
1
2
3
4
5
6
7

C040
BW40
BW80
C080
COGR
BWGL
B\VGH
MONO

Colour 25 x 40
Black and White 25 x 40
Black and White 25 x 80
Colour 25 x 80
Colour 320 x 200
Black and White 320 x 200
Black and White 640 x 320
Monochrome display

FSUSE 'Menu_Name'

This function intialises the menu named Menu_Name. This is
the basic call used to allow' you to start using a menu. I twill
share variables with AP 124, load the indicated pre-defined
menu, and leave you ready to use it.

Cursor_Offset FSSETCURSOR 'Field_Name'

This call sets the cursor in a specific field or at any position on
the screen. The left argument may be omitted, and the cursor
offset will be defaulted to the first position in that field.
F ield--.Name is the name you selected for the field during
definition of the menu.

'Data' FSWRITE 'Field_Name'

This function writes Data to a given field, the one named
Field_Name during menu definition.

FSWAIT

Chapter 11. Application \Vorkspaces 11-15

IBM Internal Use Only

This function will display the active menu, and wait for user
input. When the user presses a certain key (see below),
control returns to APL, and the result of function FSWAIT is
the following (call it B):

• B[l] - Return code: 0 if ok, otherwise 1

• B [2 3] - Key pressed to complete the call:

o 0 - Enter
o 1 - Alternate Enter (Large Plus Key)
1 n - An F Key, where n is the key number (l to 30)
l.j. 1 - Esc Key
l.j. 2 - Ctrl Break
6 1 - Home
6 2 - End
6 3 - PgUp
6 l.j. - PgDn

• R [4] _. Field number where cursor was located at return
to APL, or zero if it was outside all the fields.

• R [5 6] - Cursor offset (rowl column) into that field. If
field was zero, then offset is. from the top-left corner of the
screen.

• R [7 •••] - List of fields updated during this FSWAIT
request.

The list of updated fields will particularly improve your
processing time, if used properly. In general, it is only
necessary to read and validate those fields, rather than reading
back and checking ALL the fields, which, for a very large
screen can be a very long process.

Two other functions perform a similar task to FSWAIT. Their
calling syntax and return are the same, with the following
exceptions:

1. FSSCAN will refresh the screen, check if any key has been
pressed, and return to APL. The BIOS scan code of the

11-16 APL/PC. Version 2.1

IBM Internal Use Only

key will be returned in in position R [2 3]. If no key had
been pressed, R [2 3] will be -1 -1.

2. FSINKEY will refresh the screen, wait until any key is
pressed, and return to APL. The BIOS scan code of the
key will be returned in position R [2 3].

FSREAD 'Field_Name'

This function reads data from one field or a group of fields. If
the result is numeric, it is a return code indicating that the
operation failed. Otherwise, the result will be the contents of
the requested field or Group field.

Additional functions assisting in the use of the screen:

• FSllPLOFF or FSllPLON

Turn the keyboard from APL to National mode
(FS11PLOFF) , and vice versa (FS11PLON).

• FSBEEP

Sets the beep flag. A beep will sound at the next read and
wait call (FSWllIT, FSSCAN, FSINKEY).

• FSCLE11R

Clears the display.

• FSCLOSE

Purges all global variables and retracts all shared variables.
It should be used at the end of your session.

• FSCOPY

Sends the current active screen to the printer. AP80 must
have been loaded explicitly at APL initialisation, or
through AP2.

• FSFIELD 11

Chapter 11. Application Workspaces 11-17

IBM Internal Use Only

This function translates a field name to the corresponding
field number, or vice versa.

• FSFORMAT

Returns the active format array.

• 'Data' FSIWRITE 'Field_Name'

Immediate write of Data to the display and buffer areas.

• FSOPEN

Shares variables with AP124. This function is used
internally by FSUSE or FSMODE.

• FSSCREEN

Returns a copy of the current screen as a character array.

• A FSSETFI 'Field_Name'

Changes the attribute of a field or a group of fields.

• A FSSETFT 'Field_Name'

Changes the type of a field or a group of fields.

• FSSTATUS

Returns the status of the session,

R [1] - Return code of call
R [2] - 1: Keyboard in APL mode.
R [3] - 1: Monochrome adapter installed.
R [4] - 1: Colour adapter installed.
R [5] - 1: Beep request pending.

The following is an example of a driver function that uses the
above defined menu:

11-18 APL/PC, Version 2.1

IBM Internal Use Only

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7J
[8J
[9]
[..]
[..]

DRIVER;R;A
~(FSMODE 'MONO')/E124
~(FSUSE 'OVERTIMEt)/E124
~(FSSETCURSOR 'Hours Mon')/E124

ASK:~(l+R+FSWAIT)/E124
~(1=R[2])/FK

A Examine fields changed
A These are listed by 6~R

A+FSREAD 'Hours'
FK: ••••
E124:'Fullscreen Error in Driver'

The AP190 Workspace

This workspace provides some functions to make the use of
either: the AP190 (for the IBM PC 3278/79 emulator card), or
the AP190I (for the IRMA PC 3278/79 emulator card)
versions of the AP 190 communications auxiliary processor
easier. These functions use a shared variable called Cl 9 0, but
do not test for presence of the auxiliary processor. You should
do this before using the functions: Execute the instruction
1 9 0 DSVO 'Cl 9 0 ' ,twice. If the result of the second
instance of this instruction is not 2, then the AP has not been
loaded.

• SETUP _IBM - Defines a set of variables containing the
most commonly used communication control characters
under appropriate names (such as Enter, PF1, PAl, etc)
for the IBM PC 3278/79 emulation card. These variables
can be used to send data to the host in the following way:

C190+character_string_vector

Example:

C190+'LOGOFF' ,Enter

• SETUP _IRMA - Defines a set of variables containing the
most commonly used communication control characters
under appropriate names (such as Enter, PF1, PAl, etc)
for the IRMA PC 3278/79 emulation card.

Chapter 11. Application Workspaces 11-19

IBM Internal Use Only

• WAIT_HOST - Waits until the host is in a "ready to receive
input" state.

I. KEY I text r - Sends characters in t ext as keystrokes
I to host. This function includes a delay to allow time for
I the keystrokes to be sent, and this may need to be tuned
I for different systems. See text in function INFO for more
I information.

I. READSCR - Returns the screen as an n x 80 character
I array.

• READBASE - Returns the operator information area as an
80 character vector.

I. CURSOR - Returns a three element numeric vector. The
I first two element give the (O-origin) row and column of the
I cursor on the screen, and the third is a beep flag (0 for no
I beep, 1 for beep requested by host).

I. GET _TABLE - Returns a 256 x 2 array containing the
I current keyboard translation table.

I. LOAD _TRANS tabl e - Sets the keyboard translation
I table to 256 x 2 array, tabl e.

I. TRANS - An editor for keyboard translation tables. The
I following keyboard translation tables are supplied in the
I APl90 workspace: UK_ENGLISH, UK_APL,
I US_ENGLISH, US_APL, FRENCH, FRENCH_APL,
I GERMAN and GERMAN_APL.

Note that the APL translation tables may only be used
with AP190I.

I. APL_ON _OFF - Switches between non-APL and APL
I (UK_ENGLISH and UK_APL) keyboard modes (AP1901
I only).

• PWR_RESET - Issues a simulated power-on reset.

11-20 APL/PC, Version 2.1

IBM Internal Use Only

• SET _QUADTS - A sample program that demonstrates how
to set the PC date and time clock using a host VM session.

The AP205 Workspace

The AP205 workspace has been included for compatibility with
those workspaces in the Personal Computer APL system,
Version 1.0, that used the old full screen auxiliary processor,
AP205. Its use for new applications is not recommended.

The AP206 Workspace

The AP206 workspace contains a set of basic functions to help
using the AP206 graphics auxiliary processor. This processor
maintains a set of graphic parameters that may be
independently modified by means of a set of functions:

• SHARE - Shares variable G with the graphic auxiliary
processor. This function must be executed before any of
the others.

The following functions modify what we call "the parameters"
of the graphic processor.

• MODE n - Sets the screen mode to n. Legal modes are 4, 5
(320-200 graphic screen), 6 (640-200 graphic screen), 7
(monochrome, no graphics), 8 (virtual mode, optionally
used while changing other parameters from an APL mode
different from the present graphic screen mode. When this
mode is used, other parameters may be changed without
the screen being erased).

• BG n - Changes the background colour to n (0-31, see the
appropriate PC Technical Reference Manual).

Chapter 11. Application Works paces 11-21

IBM IuternalUse Only

• PALETTE n - Changes the colour palette to n (0-1). This
paranleter is only useful in mode 4.

• COLOR n - Sets the colour parameter to n (0-255) for all
graphics and characters drawn subsequently, until this
parameter is changed again.

I. STY LE n - Sets the style parameter to n (0-255) for all
I graphics and characters drawn subsequently, until this
I parameter is changed again. This .sets the top 16 bits of
I the colour/style parameter and defines the pattern of dots
I that are used to form the line. A style value of 0 gives a
I solid line. For an 8 element boolean vector V (1 = dot, 0
I = space), the style parameter needed is given by STY LE
I (8p2)J.tvV.

• THICKNESS n1 n2 - Sets the X and Y thickness
parameters to n1 (1-4 in modes 4, 5; 1-8 in mode 6) and
n2 (1-200), respectively. This parameter affects all
subsequent graphics and characters until redefined.

• WINDOW n1 n2 m1 m2- Sets the current window on
the graphic screen to a rectangle defined· by nln2 (left
and right horizontal boundaries) and m1 m2 (bottom and
top vertical boundaries).

• VIEWPORT n1 n2 m1 m2 - Sets the current viewport,
mapping a coordinate system into the current window.
nl n2 are the X coordinates to be assigned to the window
left and right horizontal boundaries. m1 m2 are the Y
coordinates to be assigned to the window bottom and top
vertical boundaries. The values of n1, n2, ml and m2
must lie in the interval [-163 83, 163 83] .

• POSITION pl p2 - Sets the "incremental position"
parameters. All graphics and characters subsequently
drawn are automatically displaced p1 positions in the
horizontal direction, p2 in the vertical direction.

• SCALE sl 52 - Sets the "scale parameters". All
subsequent graphics and characters are applied a
percentage scaling (100 means no change) in the horizontal

11-22 APL/PC, Version 2.1

IBM Internal Use Only

axis (51) and the vertical axis (52). If 52 is omitted, 51 is
used for both directions.

Scales that are multiples of 33.33 (rounded to the nearest
integer) are recommended for text drawing. Otherwise (or
if both scales are unequal) some characters may appear a
little distorted.

• INCLINATION n - Sets the "inclination displacement" (a
percentage of the value of Y that is added to the value of
X for all subsequent graphics and characters). Values of 0,
100, or -100 are recommended for texts.

• DELTA n1 n2 - Sets the "automatic displacement" to be
added to the normal character separation in character
string drawings. n1 is the displacement in the horizontal
direction, n2 in the vertical direction. This function should
be used only for character strings. However, the same
parameters have a different interpretation for filling of
graphic drawings, and in this case the following function
should be used:

• n1 FPATTERN n2 - n1 and n2 are the definitions of the
fill pattern to be used in the odd and even lines of
subsequent filled graphic drawings. Both arguments may
contain up to four colour elements (0-3).

Example: 2 0 2 0 FPATTERN 0 2 0 2 will fill
drawings with a set of red points (in the appropriate
palette).

• AUT06 n - Where n may be one or zero, sets the
autodisplacement switch for literals. If n is 1, subsequent
characters in a string are automatically displaced an
amount dependent on the character being drawn. The
DEL T A displacements are added to this automatic
displacement. If n is 0, no auto displacement is included
and only the DELTA displacement is applied. Thus, if the
DEL TA parameters are also zero, all characters in a string
will overstrike.

Chapter 11. Application Workspaces 11-23

IBM Internal Use Only

• AUTOCAT n - Where n may be one or zero. If n is 1,
successive strings are automatically catenated (the
POSITION parameter is adjusted to the end of the
precedent string). If n is 0, the POSITION parameter
remains unchanged.

• HORX n - Where n may be one or zero. If n is 1, the
viewport X axis appears horizontal in the screen.
Otherwise, the viewport is rotated 90 degrees
counterclockwise with respect to the window, and the X
axis becomes vertical.

• VSB n - Where n may be one or zero. If n is 1, all
graphic operations are performed on a "Virtual Screen
Buffer" (VSB) rather than the physical screen buffer (SB).
Otherwise, operations are performed directly on the
physical screen buffer.

The following two functions affect the parameters as a whole.

1. PDEFAULT - Sets all the parameters to their default
values.

2. PARMS - Displays the present values of all the parameters,
in a way that makes it very easy to adjust them using one
of the preceding functions.

The following functions draw texts or graphics on the screen:

• CLEAR - Erases the graphic screen.

• FILLY n - Where n is a number in the interval 0-255.
The current window is filled with the bit configuration
defined by n (e.g. if n is zero, the window is erased).

• PRTSC - Copies the window to the graphics printer.

• TYPE x - Where x is a character string, draws the string
in the current screen (VSB or SB) according to the present
values of the parameters.

11-24 APL/PC, Version 2.1

IBM Internal Use Only

• DRAW X - Where x is a three column integer matrix (a
graphic matrix), draws a graphic in the current screen (VSB
or SB). The second and third columns in x are the X and
Y coordinates of each point in the graphic. The first
column is the "visibility" of the movement from the
previous point to the next (0, move; 1, draw). For more
information on this function, see the description of the
AP206 auxiliary processor, "The Graphic Auxiliary
Processor: AP206" on page 12-39.

• FILL x - Where x is a graphic matrix, modifies the
graphic matrix so that function DRAW fills it according to
the patterns defined through function FPATTERN (see
above. Remember the DELTA parameters are the same as
those changed by FPATTERN). (E.g. DRAW FILL 4
3pO a a 1 100 a 1 50 100 1 a 0 draws and fills
a triangle).

• GINPUT x - Where x is a graphic matrix, draws the
graphic in the screen (similarly to DRAW) and accepts
graphic input modifications from the keyboard, passing
back the resulting matrix to APL. For more information
on this, see the description of the AP206 auxiliary
processor, "The Graphic Auxiliary Processor: AP206" on
page 12-39.

• COMPACT x - Where x is a graphic matrix, returns
another graphic matrix where unneeded rows have been
eliminated. It can be used on the result of GINPUT to
optimise space.

• REVERSE - Interchanges the colours drawn on the present
window.

The following functions use the screen buffers (VSB and SB) as
well as special memory buffers (window buffers, or WB), where

I copies of the whole or part of the screen may be kept. Screen
I images can be copied between the APL active workspace and
I the screen buffers; or between the screen buffers and the
I screen. The screen buffers may be repeatedly copied to the
I screen in order to produce an animated display.

Chapter 11. Application Works paces 11-25

IBM Internal Use Only

• SCR2BUF n - Where n in an integer in the interval 1-128,
copies the current window in the current screen (VSB or
SB) to the window buffer (WB) recognised by number n.
If this WB did not exist, it is created. Otherwise, it is
replaced.

• DELBUF nl [n2] - Where nl n2 are WB numbers,
deletes all WBs in the interval nl-n2. If n2 is not given,
only nl will be deleted.

• BUF2SCR nl [n2 [n3 [n4]]] ~ Performs an
animated copy from the WBs in the interval nl-n2 to the
current active (VSB or SB). The full copy operation is
repeated n3 times (default is 1). A delay of n4 hundredths
of a second (default is 4) \vill be included between any two
subsequent copies.

• BUF2APL n - Returns to APL the present contents ofWB
number n, as a literal matrix.

• APL2BUF K - Where K is a literal matrix as the one
returned to APL by function BUF2APL, copies the graphic
information in K to the first available WB, and returns its
number.

• VSB2SCR - Copies all the information contained in the
virtual screen buffer (VSB) to the physical screen buffer.

The AP232X Workspace

To assist in using the AP232X asynchronous communication
auxiliary processor, a workspace called AP232X is available.
This provides an interface to all of the AP232X calls, and
includes error checking to provide useful diagnostics on call
failures. Two functions called SHARE _ 232 and
RETRACT _ 2 32 are provided to share and retract the C23 2
and D2 3 2 shared variables that are used by the other

11-26 APLjPC, Version 2.1

IBM Internal Use Only

functions in the workspace. The SHARE_232 function should
be executed before any of the other functions are used.

Other functions are:

• SETUP - ~Ielps you to define the initialisation parameters.
You are prompted for them in their proper order, and a
global variable called PARMS is generated.

• port INIT23 2 data - Initialises the indicated port (1
ifnot given) to the indicated data (such as the PARMS
variable generated by SETUP).

• PARMS232 port - Recovers the initialisation data for the
indicated port.

• port TRANSMIT data - Transmits the indicated
(character) data to the indicated port (1 if not given).

• RECEIVE port - Gets the characters currently in the
receive buffer, up to the first turnaround character, or to
the buffer end.

• flag BUFSTAT port - Returns the transmit and
receive buffer sizes for the indicated port and the number
of characters in each, as a four element vector. If" flag"
is present, the result is displayed with proper explanations.

• flag LCR port - Returns the present value of the LCR
register for the indicated port. If "flag" is present, then
the register is presented visually in a proper way.

• flag MCR port - Returns the present value of the
MCR register for the indicated port. If "flag" is
present, then the register is presented visually in a proper
way.

• flag LSR port - Returns the present value of the LSR
register for the indicated port. If "flag" is present, then
the register is presented visually in a proper way.

Chapter 11. Application Workspaces 11-27

IBM Internal Use Only

• flag MSR port - Returns the present value of the MSR
register for the indicated port. If "flag" is present, then
the register is presented visually in a proper way.

• port SETLCR value - Sets the LCR register for the
indicated port (1 if not given) to the indicated value.

• port SETMCR value - Sets the MCR register for the
indicated port (1 if not given) to the indicated value.

• RESET23 2 port - Resets the transmit and receive
buffers for the indicated port, purging them.

• SETBRK port - Sends a break to the indicated port. It
contains a delay, which should be tuned to your device.

The AP488 Workspace

Requirements

• IBM GPIB/IEEE-488 Adapter Card(s)

• IBM Software Support for the GPIB Adapter

Reference Documentation

• IBM Guide to the General Purpose Interface Bus Support

Hints to A void Trouble

AP488 is an interface between APLjPC 2.1 and the device
driver software that is supplied with the programming support
for the IBM GPIB/IEEE-488 hardware. Most, but not all, of
the functions that are available in the IBM software package
have been implemented. This auxiliary processor may only be
used with the IBM General Purpose Interface Bus

11-28 APL/PC, Version 2.1

IBM Internal Use Only

Programming Support (Part number 6024201, Feature codE
4201).

The following functions are NOT supported:

• IBRDA - Read Data Asynchronously

• IBWRTA - Write Data Asynchronously

• IBCMDA - Write Commands Asynchronously

The following variables are reserved:

• C488 - The AP488 control variable

• D48 8 - The AP488 character vector variable

• IBSTA - The GPIB status variable

• IBERR - The GPIB error number variable

• IBCNT - The GPIB auxiliary count variable

The three functions that process character vectors (IBRD,
IBWRT, IBCMD) are modified by the high order bit of the
device number. If this bit is zero, translation will take place
between the APL internal character set and ASCII. If the bit
is one, then no translation will occur. The high order bit may
be reset with the function "ASCI I" and set with "BINARY".

In all functions, the word' device' refers to the integer that is
returned by the IBFIND function. This always refers to an
instrument. The word "adapter" is also an integer returned by
IBFIND, but in this case it refers to the IBM adapter board
itself, not an instrument. The word "either" means either an
instrument or an adapter board.

If you have not already done so, please read the introductory
chapters in the IBM GPIB Support Package documentation
before continuing with AP488. It is easy to become frustrated
unless you are familiar with the basic concepts of the
IEEE-488 standard.

Chapter 11. Application Works paces. 11-29

IBM Internal Use Only

Some additional hints to avoid trouble:

• Few instruments can support tri-state timing (the default
with the IBM support package). Unless you are certain
that all instruments on your interface adapter can support
this option, you should select the open collector interface
instead.

• Local Lockout is good in a production environment, but
not when you are setting up an experiment.

• Automatic Serial Polling is not always a good idea. Some
instruments can not respond to a serial poll.

• Do not try to read from, or write to a file that has the
same name as an instrument. For example, if you have an
instrument named "DVM", do not try to access a file
named "DVM.DAT". DOS will intercept this access and
send the data to your instrument with sometimes amusing
but always unpredictable results.

• Read your instrument manual carefully. Some instruments
are very sensitive to the format of data that is sent to them.
For example, one instrument may require line feed
terminator on every message, while another may totally
lock up if it receives one. Data format is instrument specific
and not part of the IEEE-488 standard.

• Changes to "GPIB.COM" do not take effect until the next
reboot of your system. Be sure to reinitialise your system
via Ctrl-Alt-Del after making any changes with the
IBCONF configuration program.

• The entry "DEVICE= GPIB.COM" must be in your
"CONFIG.SYS" file. In addition, "CONFIG.SYS" must
be in the root directory of your boot disk. "GPIB.COM"
must also reside on your boot disk. After booting your
system, neither "CONFIG.SYS" nor "GPIB.COM" are
required. You may change diskettes without fear of
problems until the next time that you reboot.

11-30 APL/PC, Version 2.1

IBM Internal Use Only

Description of AP488 Functions

All functions in this workspace return one or more values.
For those functions that do not return a data value, the
IBSTA status status word is returned.

Translation On, ASCII

ASCII address

This function takes an integer argument (the device number
returned by IBFIND) and turns off the no translation bit.
This is the default, and is not normally necessary unless you
have turned on this bit with the BINARY function. The
returned value is the new device number that you should use
for further accesses to the device or adapter.

No Translation, BINARY

BINARY address

This function takes an integer argument (the device number
returned by IBFIND) and turns on the no translation bit.
This bit prevents the automatic translation of data between
ASCII and APL's internal representation. You would
normally use this function only when the data is a binary data
stream such as that returned by a digital oscilloscope. The
returned value is the new device number that you should use
for further accesses to the device.

Change Adapter, IBBNA

device IBBNA 'adaptername '

This function changes the adapter used to access the specified
device. This change is temporary and disappears after you
leave APL. ' adaptername I is a string containing
'GPIBx' where 'x' is a number from zero through three.

Chapter 11. Application Workspaces 11-31

Active Controller, IBCAC

flag IBCAC adapter

IBM Internal Use Only

The flag is zero to take control immediately (possibly
asynchronously), and non-zero to force synchronous
assumption of control with respect to data transfer. Adapter
refers to a GPIBx adapter handle obtained from IBFIND.

Selected Device Clear, IBCLR

IBCLR device

This function sends the listen address(es) of the specified
device followed by selected device clear (SDC), unlisten and
untalk. It usually clears a device to some specified initial state.
Not all devices respond to SDC.

Send GPIB Commands, IBCMD

'gpib_commands ' IBCMD adapter

This function sends data out through the specified adapter
with A TN true. It is up to you to ensure that the string
contains valid GPIB commands. See Figure II-Ion
page 11-33 for a table of IEEE-488 addresses with their
character equivalents (in ASCII). This is one of the
commands that is modified by the state of the high order bit of
the file handle. Also see ASCII and BINARY.

11-32 APL/PC, Version 2.1

IBM Internal Use Only

Listen Talk Device #

20h SP 40h ~ 00
21h ! 41h A 01
22h " 42h B 02
23h # 43h C 03
24h $ 44h D 04
25h y. 45h E 05
26h & 46h F 06
27h , 47h G 07
28h (48h H 08
29h) 49h I 09
2Ah * 4Ah J 10
2Bh + 4Bh K 11
2Ch , 4Ch L 12
2Dh 4Dh M 13 -2Eh 4Eh N 14
2Fh / 4Fh 0 15
30h 0 50h P 16
31h 1 51h Q 17
32h 2 52h R 18
33h 3 53h S 19
34h 4 54h T 20
35h 5 55h U 21
36h 6 56h V 22
37h 7 57h W 23
38h 8 58h X 24
39h 9 59h Y 25
3Ah : 5Ah Z 26
3Bh ; 5Bh [27
3Ch < 5Ch , 28
3Dh = 5Dh] 29
3Eh > 5Eh -. 30

Figure 11-1. IEEE-488 Addresses

Enable/Disable DMA, IBDlVlA

flag IBDMA adapter

These addresses may
be used with Parallel
Polling.

Primary Listen Address
= Device number + 32

Primary Talk Address
= Device number + 64

Secondary Addresses
extent from X'60'
through X'7E' and
are always device
dependent.

This function enables or disables DMA on the specified
adapter provided that D MA was not disabled when you
configured your device driver. If the flag is zero, programmed
I/O is used (temporarily), and when non-zero, DIvIA is
reactivated.

Chapter 11. Application W orkspaces 11-3 3

IBM Internal Use Only

Change/Disable EOS Termination Method, IBEOS

flag IBEOS either

This routine changes the way the EOS termination byte is
handled by IBRD and IBWRT. See the IBM documentation
for a full description.

Change/Disable END Termination Method, IBEOT

flag IBEOT either

If the supplied flag is zero, the END message is not sent
concurrently vlith the last byte of an IBWRT. If the flag is
non-zero, then it is. This can be very useful when you're
making adapter level writes.

Return Unit Descriptor, IBFIND

IBFIND 'defined488thing'

This is always the first thing that has to be done before an
instrument or controller may be accessed. I t returns an integer
value that is used in all subsequent device or board level calls.
If the integer returned is negative, then an error has occurred.
See IBSTA, IBERR and IBCNT for a complete description of
the error.

Active Controller to Standby, IBGTS

flag IBGTS adapter

If zero, the integer simply disables the controller function. If
non-zero, then the controller is disabled, but monitors the bus
waiting for an END message. When the END message is
detected, the adapter enters the NRFD holdoff state. This is
norn1ally used in board level I/O calls.

11-34 APL/PC, Version 2.1

IBM Internal Use Only

Set/Clear Individual Status Bit, IBIST

flag IBIST adapter

Although an adapter is specified, this function is used when
the PC is NOT the active controller but rather a device being
controlled elsewhere. If zero, flag sets the parallel poll status
bit false and if non-zero, it sets this bit true. The actual state
of the bit (0 or 1) is specified by the external controller when it
sends the parallel poll configure message.

Go to Local, IBLOC

IBLOC either

I BLOC sends unlisten, listen address(es) of the specified device,
Go to Local (GTL), unlisten and untalk. This temporarily
overrides the Local Lockout state. (Local Lockout is useful
when you have knob twiddlers coming into your lab but
horrible when you're trying to set up an experiment).

Online/Offline, IBO NL

flag IBONL either

If the flag is zero, the device or adapter is placed in an omine
state (essentially a close function). The device descriptor is no .
longer valid and can not be used to place the device back
online! IBFIND is the inverse of this function.

Change Primary Address, IBP AD

address IBPAD either

The address specifies a ne\v primary address for subsequent
GPIB activity. It may range from zero through thirty (be sure
not to conflict with anything already on the bus). This is
primarily useful when you are adding a device to a system
temporarily and don't 'want to configure it in permanently.
Also see IBSAD, IBEOS and IBEOT.

Chapter 11. Application Workspaces 11-3 5

Pass Control, IBPCT

IBPCP device

IBM Internai Use Oniy

This function passes control of the GPIB bus to another
controller. The adapter enters controller idle state at the end
of this function (CIDS). Be sure that the device you specify
can act as a controller.

Parallel Poll Configure, IBPPC

flag IBPPC either

See the IBM manual for a description of the flag word.

Read Data, IBRD

IBRD either

This routine can access either an adapter or a device. It reads
data until

• EOS is detected (if active)

• END is detected (always)

• Buffer is full (always)

Be careful! This is one of the routines affected by the state of
the high order bit of the file handle. Also see ASCII and
BINARY.

Read from a Device into a DOS file, IBRDF

filename IBRDF either

This routine performs a read from the specified device or
adapter and sends the output to a DOS file rather than back
to APL. The DOS file is opened for output, not append, so
only one record may be placed in each unique file. The

11-36 APL/PC, Version 2.1

IBM Internal Use Only

filename is a character vector that may include a full drive,
path, filename and extension specification.

Conduct a Parallel Poll, IBRPP

IBRPP either

This routine returns a parallel poll byte. If you specify a
device, it is mapped into the correct adapter instead.

Request/Release System Control, IBRSC

adapter IBRSC integer

If the integer is zero, all system control functions are
disallowed until a IBONL followed by an IBFIND occurs.

Request Serial Poll, IBRSP

IBRSP device

This function returns the serial poll byte from the specified
instrument as an integer. If the integer is negative, an error
has occurred. Analyse IBSTA, IBERR and IBCNT to find the
exact problem.

Set Serial Poll Status, IBRSV

flag IBRSV adapter

This function puts the specified flag into the serial poll
response register of the specified controller. If bit 6 (X' 40') is
true, then service is requested as well. Normally used when
the adapter is not the system controller.

Chapter 11. Application Works paces 11-3 7

IBM Internal Use Only

Change Secondary Address, IBSAD

address IBSAD either

The address specifies a new secondary address for subsequent
GPIB activity. It may range from X'60' through X'7E'
normally. If it is zero or X'7F' then the secondary address is
disabled. This is a temporary function. Also see IBPAD J

IBEOS and IBEOT.

Send Interface Clear, IBSIC

IBSIC adapter

This routine sends the interface clear message for 100
microseconds.

Set Receive Buffer Size, IBSIZE

IESIZE integer

This routine specifies the maximum data size for IBRD. Must
be less than 32000.

Set/Clear Remote Enable Line, IBSRE

flag IBSRE adapter

If the flag is zero, the remote enable line of the specified
adapter is turned off; if one then it is turned on.

Change or Disable Timeout Limit, IBTMO

time IBTMO either

Time may range from zero through seventeen. Changes the
timeout limit on the specified device or adapter. Range is from
10us through 1000 seconds. See Figure 11-2 on page 11-39
for a list of the available control codes.

11-38 APLjPC, Version 2.1

IBM Internal Use Only

Mnemonic Code Time Out

TNONE 0 Infinite
T10US 1 10 us
T30US 2 30 us
T100US 3 100 us
T300US 4 300 us
T1MS 5 1 ms
T3MS 6 3 ms
T10MS 7 10 ms
T30MS 8 30 ms
TI00MS 9 100 ms
T300MS 10 300 ms
TIS 11 1 s
T3S 12 3 s
T10S 13 10 s
T30S 14 30 s
TI00S 15 100 s
T300S 16 300 s
TI000S 17 1000 s

Figure 11-2. Timeout Control Codes

Trigger Device, IBTRG

IBTRG device

This routine sends a group execute trigger message (GET) to
the specified device. Not all instruments respond to GET.

Wait for Selected Event, IBWAIT

integer IBWAIT either

The integer is a mask (See Figure 11-3 on page 11-40). This
routine permits waiting for a specified event or events to occur.

Chapter 11. Application Workspaces 11-39

IBM Internal Use Only

Mnemonic Bit Description

ERR 15 Error Detected
TIMO 14 Timeout
END 13 EOI or EOS
SRQI 12 SRQ detected by CIC
RQS 11 Device requires service
CMPL 8 DMA Completed
LOK 7 Local Lockout State
REM 6 Remote state
CIC 5 Controller-In-Charge
ATN 4 Attention Asserted
TACS 3 Talker Active
LACS 2 Listener Active
DTAS 1 Device Trigger State
DCAS 0 Device Clear State

Figure 11-3. Mask Layout

Write Data, IBWRT

data IBWRT either

This routine can access either an adapter or a device. It sends
data until:

• EOS is detected (if active)

• Buffer is empty (always)

Be careful! This is one of the routines affected by the state of
the high order bit of the file handle. Also see ASCII and
BINARY.

Write Data from DOS File to Device, IBWRTF

f,ilename IBWRTF either

This routine writes all of the data from the specified DOS file
to the device or adapter. No translation is done; ALL
characters are sent. This includes any CRjLF's in the file and
the Ctrl-Z that is placed in the file by many editors. EOI is
sent concurrent with the last byte of data. A full drive, path,
filename and extension specification may be given for filename.
Debug is sometimes useful for modifying the data file.

11-40 APLjPC, Version 2.1

IBM Internal Use Only

Check Return Code, CHK_ 488

This function may be used to validate the return codes
generated by the functions listed above. It takes a right
argument of the value returned by these functions, and a left
argument listing the valid return codes that should be
accepted.

Example:

A First get device handle
HANDLE ~ IBFIND 'GPIBO'
A Set Remote Enable Line
A This puts device into remote mode
A Suppress return code of 256
256 CHK 488 1 IBSRE HANDLE
A Set Interface Clear
304 CHK 488 IBSIC HANDLE
A Send command to GPIB:
A Unlisten (ASCII "7"), PC Talk address,
A DVM Listen address.
A Suppress both 376 and 312 return codes
376 312 CHK 488 '?@(' IBCMD HANDLE
A NON send command string to the DVM to
A inftfallise it such that it will send
A data. This is device dependent!
372 296 CHK_488 'Command string' IBWRT HANDLE
A DVM nON ready to send out data.
A Send commands to GPIB:
A Unlisten, DVM Talk address,
A PC Listen address
372 CHK_488 '?H ... ' IBCMD HANDLE
A Now listening to DVM
A Read in the data
VOLTS ~ IBRD HANDLE
VOLTS

r1.234567E+02(cr,lf)

Chapter 11. Application Workspaces 11-41

IBM Internal Use Only

The APLFILE \Vorkspace

APLFI LE is a set of functions which may be used to create
and use a PC DOS file of APL arrays. The functions are most
useful when a file must contain APL arrays of arbitrary rank
and dimension, when variable length records must be accessed
randomly, or when records are longer than the maximum
length otherwise permitted. APLFILE uses auxiliary processor
AP210 supplied with APL/PC 2.1.

It is designed to be as compatible as possible with the
VAPLFILE workspace distributed with VSAPL and APL2.
The main functions are:

• L CREATE F

F is a character vector containing the PC DOS name to be
assigned to the file. L is a physical description of the file:
L [0] = the maximum number of arrays which may be
written. Default = 100. L[lJ = The blocksize of the file
used to store the data. Default = 512. Each array requires
an integral number of blocks. The maximum allowable
block size with AP210 is 32512. L [2] = The number of
blocks for data. Default = 1 • 1 xL [0]. The left argument
"L" may be elided, in which case the default file size
parameters will be used unless the right argument is
composed with the "AS" function. The AS function may
be used to specify both the file name and the file
parameters as CREATE F AS L.

• USE F

F is a character vector containing the name of an existing
APLFILE file. This function shares appropriately named
variables with the file processor, opens the file, and defines
global variables associated with the file in use. A left
argument consisting of the single character I R r will cause
USE to open the file for read/only access .

• RELEASE F

11-42 APL/PC, Version 2.1

IBM Internal Use Only

F is a character vector containing the name of a file. This
function retracts and expunges the variables shared with
AP210 and expunges the global variables associated with
the file in use. The file is closed. The explicit result of the
function is 1 if variables are actually retracted. A result of
o means the file was not in use or F is not the name of a
file.

• (F AT I) SETA

Sets A as the I-th. array in the file whose name is in the
character vector F. (F[I]+A). I SET A may be used to
set A as the 1-tho element of the file last mentioned in use
of the functions USE or AT. The meaning of I is
dependent on the workspace index origin. Note that when
replacing an existing array, space is found for the new
array before the old one is erased. In this wayan
interruption in processing will never lose an existing array.

• GET F AT I

Returns the array set in the I-th. position of the file whose
name is in the character vector F. (F [I]). GET I may
be used to get the I-th. element of the file last mentioned in
use of the functions USE or AT. The meaning of ' I is
dependent on the workspace index origin.

• DELETE F

Erases the file whose name is in the character vector F.

The following optional functions are not necessary for proper
use of this package but may be useful:

• RENAME F AS G

Renames file F as G. The old and new file names may also
be specified as left and right arguments (e.g.
F RENAME G), or as a single right argument containing
the two names separated by a space.

• REPLICATE F AS G

Chapter 11. Application Workspaces 11-43

IBlVi Internai Use Oniy

. Replicates file F as G. The old and new file names may
also be specified as left and right arguments (e.g. F
REPLICATE G), or as a single right argument containing
the two names separated by a space.

• REFORMAT F AS L

Reformats file F as a new file whose size is described by
containing all the components of the existing file F. L
is as defined for the CREATE function. F and L may also
be given as left and right arguments (e.g. F REFORMAT
L).

• FILEIN A AS F

Reads contents of Ala file A into APLFILE file F. The
format of the Ala file is assumed to be as generated by the
FILEOUT function described below. The Ala and
APLFILE file names may also be specified as left and right
arguments (e.g. A FILEIN F), or as a single right
argument containing the two names separated by a space.

• FILEOUT F AS A

vVrites contents of APLFILE file F into Ala file F. Each
record is written to the AIO file as an APL variable. The
Nth record is written as a variable called "RECORDN". The
APLFILE and AIO file names may also be specified as left
and right arguments (e.g. F FILEOUT A), or as a single
right argument containing the two names separated by a
space.

• GETl F AT I

Returns the account number of the person who last set the
I-th. element of F (always 1 in APLjPC 2.1), and the time
stamp of the set.

• GETTs F AT I

Returns the time stamp when the I-th. array was set. If I
is negative, the time stamp of the file creation is returned.

11-44 APL/PC, Version 2.1

IBM Internal Use Only

• SIZe A

Returns the size of array A in bytes.

• RHo F

Returns the number of arrays which may be written in the
file F, where file F is a file which is in use.

• ERASe F AT I

Undefines the I-th. element of F and releases the space
used by it in the file. I may be a vector.

• FREEBLOCKs F

Each array stored on the file (with the exception noted
below) requires a contiguous set of blocks.
FREEBLOCKs returns a vector of the contiguous available
blocks. This can be useful on 'FILE FULL' to determine
if a file has outgrown its space, or is merely fragmented.
There is a function called COMBINE (which is executed
automatically before a 'FILE FULL' message is given)
which attempts to minimise the fragmentation. The result
of FREEBLOCKs could change after executing COMBINE.

Note: Small scalar numbers take zero blocks.

• EXISt F AT I

Returns 1 if F [I] has been set, 0 if F [I] does not
contain a value, or -1 if I is out of range. I may be a
vector.

• SHVARS

Returns a matrix of the names of currently shared
variables.

The following namelists exist in the workspace:

FILEREAD - Functions needed for get access only.

Chapter 11. Application W orkspaces 11-45

IBM Internai Use Oniy

FILEWRITE - Additional functions needed for set access.

APLFILE - All the functions in the above list and the
optional ones.

When an error is encountered during the use of the APLFI LE
functions, an appropriate message is printed, after which
execution of the current function and any associated pendant
functions is abandoned. However, if the variable" 0" contains
a negative number, then after any error message, execution will
be suspended with a normal APL error message. This may be
useful when debugging new applications.

It is recommended that the functions "CHK" and "TRY"
normally be locked.

The following global variables are defined whenever a file is
used.

FILEID contains the name of the file last referenced in the
"USE" or "AT" functions. This is formed from the
specified filename with any drive letter, library number,
path or file extension removed. For this reason, any files
to be accessed simultaneously must have different names.

'C~ I ,FILEID and 'D~ I ,FILEID are variables shared
with AP210.

, F ~ I , F I LEID contains the file description as follows:

o - Account number of file creator (always 1 in APLjPC
2.1).

1 - Number of arrays permitted.
2 - Blocksize.
3 - Number of data blocks.
4 - Row dimension of an index array.
5 - Number of index arrays.
6 - Number of salvage index arrays.
7 - Total number of blocks.
8-14 - DTS at creation.

11-46 APLjPC, Version 2.1

IBM Internal Use Only

The DEM0124 Workspace

This workspace is designed to give the user a sample of the
capabilities of the APl24 auxiliary processor.

The demonstration provides an on-line reference to the various
calls to AP124, and shows some interesting applications for it,
both in industry and education.

AP 124 is a simple to use and yet powerful interface to both
the keyboard and video services provided by the IBM Personal
Computer hardware.

This demonstration requires APl24 to be in the APL session,
and, if you wish to print any of the screens, also AP80. This
may be accomplished by specifying the APs at session start-up
time as in:

APL AP80 AP124

Alternatively, they may be loaded by using AP2.

This workspace is supplied in ".APL" form on the system
diskette and may be loaded by a)LOAD DEM0124 command.

Note: A confusing situation can arise if this demonstration
workspace is run on a PC with a colour adapter installed but
no screen attached, as all output 'will be directed to this
adapter giving the appearance of a hung PC. Press ESC twice
and then Alt-FI to return control to the monochrome adapter.

Chapter 11. Application Workspaces 11-47

IBM Internai Use Oniy

The DEM0206 Workspace

DEM0206 is a sample workspace demonstrating most of the
AP206 capabilities. APL should be loaded with AP206. The
starting function in this workspace (which is executed through
DLX) is called DEMO. The demonstration is bilingual
(English/Spanish). The minimum storage requirement is 320k.

This workspace is supplied in ".APL" form on the system
diskette and may be loaded by a)LOAD DEM0206 command.

Note: A confusing situation can arise if this demonstration
workspace is run on a PC with a colour adapter installed but
no screen attached, as all output will be directed to this
adapter giving the appearance of a hung PC. Press ESC twice
and then Alt-Fl to return control to the monochrome adapter.

The DOSFNS Workspace

The DOSFNS workspace uses API03 to provide emulation of
some of the more useful DOS commands. Except where
noted, these are monadic functions. The commands available
are:

• CHDIR - Queries or changes the current directory. The
argument is of the form t d: path t where t d: 1 is the
drive to be changed and 1 path 1 is the path leading to the
directory required. If only a drive is specified, the current
directory is displayed. If the argument is an empty vector,
the current directory of the default drive is displayed.

• CHDRIVE - Queries or changes the current default drive.
The argument is of the form t d: t where I d: ' is the
drive to become the current default drive. (The":" is
optional). If the argument is an empty vector, the drive
letter of the current default drive is displayed.

11-48 APL/PC, Version 2.1

IBM Internal Use Only

• CLS - Clears the screen. It is a niladic function.

• DATE - Allows the current date to be set. DATE is a
niladic function. It displays the current value and allows a
new value to be entered.

• DIB - Displays a directory list. The argument is of the
form I d: path' where J d: I is the drive of which the
directory is to be displayed and I path I is the path
leading to the directory whose contents are to be displayed.
M ore finely defined searches are also possible by specifying
a filespec after the path (e. g. I * . AP L' will list all files
with an extension of "APL"). Hidden and system files are
included in the display and are marked with the letters "H"
and "S" respectively. Read-only files are similarly marked
with an "R".

• ERASE - Erases a file. The argument is of the form
I d: filename r where'd: r is the drive on which the
file is stored and J f i 1 ename I is the name of the file to
be erased, and may include a path definition.

• MKDIR - Creates a new sub-directory. The argument is of
the form I d: path J where I d: I is the drive on which the
new sub-directory is required and I path I is the path
leading to the direct0ry required. A new directory is
created at the end of the specified path.

• RENAME - Renames a file. The argument is of the form
I d: oldname newname I where I d: I is the drive on
·which the file is stored, I oldname I is the name of the file
to be renamed (and may include a path definition), and
I newname I is the new name by which the file is to be
known. RENAME may also be used dyadically, with the
old name as the left argument and the new name as the
right argument.

• RMDIR - Removes a sub-directory. The argument is of the
fonn I d: path I where I d: ' is the drive on which the
sub-directory is to be deleted and I path I is the path
leading to the directory.

Chapter 11. Application Workspaces 11-49

IBM Internal Use Only

• SETDATE - Allows a file's time-stamp to be changed. The
argument is of the form 'd: f i1 ename' where I d: ' is
the drive on which the file is stored and I f i 1 ename I is
the name of the file, and may include a path definition. It
displays the current time-stamp and allows a new value to
be entered. It will then update the time-stamp and
re-display the new value. Press "Enter" when satisfied with
the time-stamp displayed.

• SETMODE - Allows a file's attributes (achive, system,
hidden or read-only) to be changed. The argument is of
the form 'd: f i 1 ename' where'd: ' is the drive on
which the file is stored and 'f i1 ename' is the name of
the file, and may include a path definition. It displays the
current attributes and allows new attributes to be entered.
I t will then update the attributes and re-displays the new
settings. Press "Enter" when satisfied with the attributes
displayed.

• SPACE - Queries the available space on a drive. The
argument is of the form I d: ' where I d: I specifies the
drive for which space usage is to be displayed. (The":" is
optional). If the argument is an empty vector, the space
on the current default drive is displayed.

• TIME - Allows the time-of-day clock to be set. TIME is a
niladic function. It displays the current value and allows a
new value to be entered.

• VERI FY - Queries or changes the current verify switch
setting. An argument of 1 or 0 ·will set or reset
(respectively) the verify switch. An empty vector argument
will display the current setting.

• VOL - Queries the volume id of a drive. The argument is
of the form 'd: I where'd: ' specifies the drive for which
the volume label is to be displayed. (The":" is optional).

11-50 APLjPC, Version 2.1

IBM Internal Use Only

The EDIT Workspace

This workspace contains two functions:

EDIT

This is an APL full-screen, defined-function editor. It is used
with AP124.

To use the EDIT function, you must include the full-screen
auxiliary processor, AP124, as a parameter to the APL
command at load time before you begin an APL work session,
or load it dynamically through AP2. For example,

APL AP124

To edit an APL function with the full-screen editor, you must
copy the ED IT workspace into your active workspace with the
command:

)IN EDIT EDIT

If the name of the function you want to create or edit is FN1,
enter the following line:

EDIT r FNl r

The screen is cleared and the first page of the function
definition appears. You may now move the cursor, using the
four arrow keys on the numeric keypad, change any character
in the lines displayed, insert characters (with the Ins key),
delete characters (with the Del key), delete to the end of a line
(with the Ctrl-End key combination), delete to the beginning
of a line (with the Ctrl-Home key combination), and move the
cursor to the beginning of the next line (by pressing the Tab
key). The function keys can also be used as indicated in the
lowest line of the screen. The function keys are described next.

Fl TOP - Displays the first or top page of the function.

Chapter 11. Application Workspaces 11-51

IUM Internal Use Only

F2 BOT - Displays the last or bottom page of the function.

F3 END - Ends function definition. All modifications to
the function are kept and the new definition of the
function will be established in the active workspace. If
this process fails, the bottom line of the display will be
updated with an error message to indicate the line
number found to be in error.

F4 LIN - Clears the screen and displays only the line
pointed to by the current cursor position. You can use
this to edit lines longer than the screen width. The
maximum line length this method allows is 160
characters.

F5 INS - Inserts a new line after the current cursor
position.

F6 COP - Copies a line: You must first move the cursor to
the line you want to be copied, then press F6. An
asterisk (*) will be displayed by the word COP on the
bottom line of the screen. The system is now in "copy"
state. Then move the cursor to the line after which the
indicated line is to be copied (possibly on another page).
Finally, press F6 again to cause the copy to take place.
Alternatively, press Esc to cancel the copy operation.
The asterisk is erased and the system is no longer in
"copy" state.

F7 XEC - Executes the line pointed to by the cursor. The
line is executed under the control of DEA, so that any
error that occurs will not suspend the execution of
EDIT.

F8 EO L - Moves the cursor to the end of the line pointed
to by the cursor.

F9 DEL - Deletes the line pointed to by the cursor.

F20 (Shift-FlO) CAN - Cancels function definition. No
changes are kept. The function remains as it was at the
beginning of the edit session.

11-52 APL/PC, Version 2.1

IBM Internal Use Only

All other function keys are ignored.

Other Special Keys:

Tab M aves the cursor to beginning of the next line.

Shift-Tab Moves the cursor to beginning of the preceding line.

PgDn

PgUp

End

Home

Enter

Displays the next page.

Displays the preceding page.

Displays the last page.

Displays the first page.

Moves the cursor down one line at a time. If the
cursor is in the last displayed line when this key is
pressed, the whole function will be scrolled up one
line.

In addition to using the F9 key, a line may be deleted by
moving the cursor to the beginning of that line and pressing
the Ctrl-End key conlbination. The line will remain on the
screen as a blank line, but will be automatically deleted when
F3 is pressed to end the edit session. Only the part of the line
contained in the currently displayed page will be erased. If the
line to be erased extends beyond the right edge of the screen,
you must press F4 with the cursor on this line, and then erase
it using the Ctrl-End key.

Locked functions cannot be edited using this function.

You should also be warned that no check for function
suspension is made. If the function being edited is suspended,
the END command (F3) will fail, though you may still rename
the function so as not to lose the changes made.

This full-screen function editor can be used to create new
defined functions and modify existing ones.

You may also find this editor useful to copy a function to a
new name, leaving the old version intact. Just invoke EDIT

Chapter 11. Application Workspaces 11-53

IBM Internal Use Only

for the original function, change the name in the header line,
and press END (F3).

EDAPL

For larger functions you might prefer to use a system editor,
and APL provides a method for doing just that.

The EDIT workspace contains a function called EDAPL. This
may be used to call the IBM Personal Editor, the IBM
Professional Editor, or any other well-behaved editor that runs
under PC DOS.

EDAPL performs the following operations:

1. Validates the function name and generates its canonical
representation (if it already exists).

2. Creates a temporary file with the name of the function and
an extension of" .PEA" and writes the canonical
representation to this file.

3. Loads the required editor into a memory partition and
executes it to edit the created file.

4. When the editor releases control to APL, the file is read
back and the new function is fixed.

5. The temporary file is deleted.

To invoke the editor use:

'Editor_Name' EDAPL 'Function_Name'

If Editor _Name is omitted, it -will default to using the IBM
Personal Editor. To use the IBM Professional Editor, specify
EDIT as the Editor_Name.

Note: Function names must not exceed 8 characters, as DOS
restricts the file name to 8 characters. Similarly, the function
name must not contain lower case letters or the overbar

11-54 APL/PC, Version 2.1

IBM Internal Use Only

character. If necessary, use a temporary name for editing and
later replace it using the Del-editor.

The EXCHG Workspace

Several exchange assembly programs have been included in the
package. These functions are invoked through the AP2
auxiliary processor, and are capable of receiving information
from APL and passing back their results. For an explanation
of how they operate, see description of "The Non-APL
Program Interface Auxiliary Processor: AP2" on page 12-4.

APL cover functions to execute these programs are provided in
the EXCHG workspace:

1. HEXOBJ X - Displays the internal Hex representation
(including header) of APL object X. Its result contains the
header block plus the variable in hexadecimal code.

The source for the invoked exchange program is included
in the package to provide an example of how to code this
type of programs.

2. HEXCONV X - Converts integers to hexadecimal and
hexadecimal to integers.

This function is designed to give assembler language
assistance to the conversion of APL objects to hexadecimal
and vice versa. I t loads and executes the
HEXCONV.COM exchange program. If X is an integer, it
is translated into hexadecimal. If X is a literal hex string, it
is translated into integer.

Failure to translate is signalled by the return of a value of
-1. The program will only translate integers in the range
0-255 and hex codes OO-FF. Only scalars, or vector arrays
will be accepted by the program. Matrices and higher rank
objects will be rejected.

Chapter 11. Application W orkspaces 11-55

Example:

HEXCONV 1 2 3 4 10
010203040A

HEXCONV '01020AOBr
1 2 10 11

IBM Internal Use Only

3. A FINDST B - Searches a long character vector (B) for all
instances of a particular string of characters (A).

This function loads and executes the FIND ST. COM
exchange program. It returns either: an empty vector, if
no matches are found; or the O-origin positions of the
matches in the string. If insufficient space is available to
generate the result, a value of -1 will be returned.

Example:

'JILL' FINDST 'JACK AND JILL'
9

'Ar FINDST 'JACK AND JILL'
1 5

4. FERRET X - Finds all instances of a character string (X) in
all the functions of the active workspace. It uses the
FINDST.COM exchange program.

The FILE Workspace

The FI LE workspace has been designed to help you work with
DOS files, and allows either sequential or random access. It
uses the file auxiliary processor, AP210. This workspace
enables you to create a file, WRITE into it, and READ from
it. To do so, you WOPEN an old or new file, and WRITE data
into it. You then CLOSE the file to save it on disk. If you
only want to read data from an old file, without writing any
more data into it, on the next access simply OPEN the file and
READ in records, either randomly or sequentially.

II-56 APLjPC, Version 2.1

IBM Internal Use Only

To use the FI LE workspace from APL programs, you must
include the file auxiliary processor, AP2IO, as a parameter to
the APL command at load time before you begin an APL
work session, or you may load it dynamically with the
non-APL program interface auxiliary processor, AP2. For
example, the APL invocation line could be:

APL AP210

When APL is ready, you must copy the FILE workspace into
your active \vorkspace by entering:

)IN FILE

If this command executes successfully, the following set of
functions will be loaded into your active workspace.

Functions

The transfer file, FILE.AIO, contains a number of functions
for manipulating DOS files, including:

• WOPEN
• OPEN
• SIZE
• READ
• READD
• READV
• WRITE
• WRITED
• WRITEV
• CLOSE
• DELETE
• RENAME

Other functions in this file that are used for related purposes
are:

• APLPATCH
• PATCH
• GEN_TV

• IN

Chapter 11. Application Workspaces 11-57

IBM Internal Use Only

• PIN
• OUT
• COMPARE
• TYPE
• TYPEV

Terminology

The following terms are used in the descriptions of the syntax
for the functions:

Brackets are used to indicate that a parameter is optional.

"code" can be any of the following characters:

A (APL) The records in the file are APL objects and their
headers in APL internal form. Matrices, vectors, and
arrays of any rank may be stored and recovered.
Different records of a file may contain objects of different
types (for example, characters, integers, or real numbers).
An APL object in a record may occupy up to the actual
record length (not necessarily the same number of bytes),
but the header fills a part of that area. (See
Chapter 13, "How to Build an Auxiliary Processor" for
the structure and memory requirements of an APL
header).

B (Bool) The records in the file contain strings of bits
without any header (packed eight bits per byte). The
equivalent APL object will be a boolean vector. In this
case, all records must be equal to the selected record
length.

C (Chars) The contents of the record is a string of
characters in APL internal code, without any header. All
records must be equal to the selected record length, with
each character occupying one byte.

D (ASCI I) The contents of the record is a string of
characters in AJ\SCII code, without any header. Each
character occupies one byte.

11-58 APL/PC, Version 2.1

IBl\t1 Internal Usc Only

"f il e_no" is a positive integer that you define for future
reference to a file when you open it.

"filespec" must be in the following DOS syntax (see DOS
manual):

[d:] [\subdirectory\]filename[.ext]

or in the APL library syntax:

[library_number] filename[.ext]

Warning: Changing diskettes during an input/ output
operation, or when you have open files, may damage your
diskette.

Errors encountered during the execution of these functions
may cause a message containing an AP210 return code to be
displayed. The meanings of these return codes are listed in
"AP210 Return Codes" on page 12-59.

WOPEN

This function opens a DOS data file for reading or writing,
with sequential or random access. A maximunl of ten files
may be open (through TiOPEN or OPEN) at anyone time.

The syntax of the function is:

[file_no] WOPEN 'filespec[,code] ,

If no file by that name exists in the indicated drive or
directory, a new file is created. If" f il e_no" is ornitted, 1 is
assumed. If "code" is omitted, A is assurned.

OPEN

This function opens a DOS data file for read-only sequential
or random access. A maximUIn of ten files may be open
(through WOPEN or OPEN) at anyone tirne.

[file_no] OPEN 'filespec[,code] I

Chapter 11. Application Workspaces 11-59

IBM Internal Use Only

If no file by that name exists in the indicated drive or
directory, an error will result; see "AP210 Return Codes" on
page 12-59 for a list of all possible return codes. If
"f il e_no" is omitted, 1 is assumed. If "code" is omitted,
A is assumed.

SIZE

This function returns the size of a file when it was last opened.
The syntax is:

SIZE file_no

SIZE can only be used after the file has been (W)OPENed
successfully.

READ

This function reads a DOS data file, sequentially or randomly,
that was opened using (W)OPEN. The syntax is:

READ file_no [record_no [record_size]]

where

o < record_size ~ 32512

"f il e_no" matches the number that you specified in
(W)OPENing the file.

If no "record_no" is specified, the default is sequential
access to the file. Under sequential access, the first record
(record 0) will be accessed by either a READ or WRITE
command immediately after the (W) OPEN; the second record
(record 1) will be accessed on the next command, and so on.
The READ, READD, READV, WRITE, WRITED and WRITEV
functions work from the same access point, meaning that the
access point is advanced sequentially to the next record each
time any of these commands are issued.

11-60 APL/PC, Version 2.1

IBM Internal Use Only

Random access is designated by specifying a particular rec(
"record_size" can only be specified when using randon
access. If the record_s ize is not specified, the default i
the record_size specified in the previous operation. If
record_size is not specified on the first READ or WRI1
the default is 128 bytes.

READD

This function reads a DOS data file, sequentially or randomly,
that "vas opened using (W)OPEN. The syntax is:

READD file_no [byte_no [record_size]]

where:

o < record_size S 32512

"file_no" matches the number that you specified in
(W)OPENing the file.

"file_no", "byte_no" and "record_size" must all be
integer.

If byte_no is not specified, the default is sequential access to
the file. Random access is designated by specifying a
particular "byte_no" position in the file. "record_size"
can only be specified when using random-access.

READV

This function sequentially reads a variable-length record APL
or DOS character file that was previously opened using
(W)OPEN. The syntax is:

READV file_no

The file_no matches the number that you defined in
(W) OPENing the file.

Chapter 11. Application Workspaces 11-61

IBM Internal Use Only

This function may only be used if file was opened with codes
A or D.

WRITE

This function writes to a DOS data file, either sequentially or
randomly, that was previously opened using WOPEN. (Trying
to WRITE to a file opened by OPEN will result in an error; see
"AP210 Return Codes" on page 12-59 for a list of all possible
return codes.) When the WRITE function is issued, it will
write over any existing data in the currently accessed record.

The syntax for this function is:

[file_no [rec_no [rec_size]]] WRITE DATA

where:

o < rec_size S 32512

"file_no" matches the number arbitrarily defined when
WOPENing the file. If not given, 1 is assumed.

If the rec_no is not specified on the first READ or WRITE
the default is sequential access to the file. Under sequential
access, the first record (record 0) will be accessed by either a
READ or WRITE command immediately after the (W)OPEN;
the second record (record 1) will be accessed on the next
command, and so on. The READ, READD, READV, WRITE,
WRITED and WRITEV functions work from the same access
point, meaning that the access point is advanced sequentially
to the next record each time any of these commands are
issued. '

Random access is designated by specifying a particular record.
If the record size, rec_size, is not specified, the default is
the rec_size specified on the previous READ or WRITE

If the rec_size has not been specified, the default is 128
bytes.

11-62 APL/PC, Version 2.1

IBM Internal Use Only

WRITED

This function writes to a DOS data file, either sequentially or
randomly, that was previously opened using WOPEN. (Trying
to WRITED to a file opened by OPEN will result in an error;
see "AP2IO Return Codes" on page 12-59 for a list of all
possible errors.) When the WRITED function is issued, it will
write over any existing data in the currently accessed record.

The syntax for this function is:

[file_no [byte_no [rec_size]]] WRITED DATA

where:

o < rec_size ~ 32512

"file_no" matches the number that you arbitrarily defined
in WOPENing the file. If not given, 1 is assumed.

"file_no", "byte_no" and "rec_size" must all be
integer.

If "byte_no" is not specified, the default is sequential access
to the file. Random access is designated by specifying a
particular "byte_no". If the record size, rec_size, has
not been specified, the default is 128 bytes.

\VRITEV

This function sequentially writes a variable-length record APL
or DOS character file that was previously opened using
WOPEN. The syntax is:

[file_no] WRITE V DATA

The file_no matches the number that you defined in
WOPENing the file. If not given, 1 is assumed.

Chapter 11. Application Workspaces 11-63

IBM Internal Use Only

This function may only be used if file was opened with codes
A or D.

CLOSE

This function closes a file that was previously opened using
(W)OPEN. The previously assigned f il e_no is now
available for reuse. «W) OPENing a f il e_no without having
closed the corresponding file will cause the current file to be
closed, and then re-opened according to the new request).

The syntax for CLOSE is:

CLOSE file_no

DELETE

This function deletes DOS data files. (Files may also be erased
in DOS using ERASE, or in APL using)DROP.) The syntax
for DELETE is:

DELETE 'filespec'

RENAME

This function changes the name of the file specified in the right
argument to the name and extension specified in the left
argument. The left argument drivel directory (or APL library
number) must be specified. If a different subdirectory in the
same drive is specified, a move is performed instead of a
rename. Renaming to a different drive is not allowed. The
syntax is:

'new_filespec' RENAME 'old_filespec'

Note: If renaming an APL workspace (" .APL") or a transfer
file (" .AI 0"), the file name must be padded to eight characters
with underbars.

11-64 APL/PC, Version 2.1

IBM Internal Use Only

APLPATCH

This function allows you to make hexadecimal patches in DOS
files (including .EXE files). It reads a DOS file listing the flIes
to be changed, and the changes to be made. It is used as:

APLPATCH 'filespec'

Where filespec is the name of a patch file to be processed.
Records in this file are of the form:

• Comment - any record beginning with an asterisk.

• File name - a record containing the name of the file to be
patched as: "FILE filespec". This must be immediately
followed by one or more groups of three records of the
form:

Address - hexadecimal address of start of data to be
patched.

Old data - hexadecimal representation of data expected
to be in the file to be patched. The patch will not be
made unless the contents of the file exactly matches the
data specified.

New data - hexadecimal representation of the data to
be patched into the file.

The address and data specifications must consist of pairs of
characters (0 to 9, A to F) with no intervening spaces.

PATCH

This function allows you to make hexadecimal patches in DOS
files (including .EXE files). It works interactively. The
patches are made one byte at a tilne. First the hexadecimal
address of the byte (relative to the beginning of the file) is
requested, then the present contents are displayed, and finally,
a prompt is nlade for the new value. (It must be given as two
hexadecimal digits). After the patch has been made, a new one

Chapter 11. Application Workspaces 11-65

IBM Internal Use Only

can be entered. Entering an empty line (pressing the Enter key
with no data) exits the function.

The syntax for PATCH is:

PATCH 'filespec'

Example:

PATCH 'FILE.EXE'
GIVE ADDRESS: 129A
IS 00
GIVE NEW VALUE OR EMPTY LINE TO CANCEL PATCH

: 07
GIVE ADDRESS: (press Enter key to leave PATCH)

IGEN TV

1 This function allows a copy of the APL program to be
1 modified for correct operation under TopView. The function
I must be run on the same machine as will be used for
1 APL/TopView use, because machine-dependent timing
1 information will be stored in the generated program. However,
1 to run the GEN _TV function, APL must be started without
I Top View being active.

I To create a TopView compatible version of APL:

11. COPY APL.EXE APLTV.EXE

12. APL AP210

13.)IN FILE

14. GEN_TV 'APLTV.EXE'

15.)OFF

I Then the APL TV.EXE program can be used in place of the
1 supplied APL.EXE. For example, use "APLTV AP2IO" to
I start the TopView compatible version of APL with AP210.
1 The level identification of the modified version displayed when
1 APL is started will be "2.10TV".

11-66 APL/PC, Version 2.1

IBM Internal Use Only

IN

This function imitates the)IN command (see
Chapter 10, "System Commands") under control of AP210.
I t can· be called from another APL function, thus effectively
providing a powerful IN facility. You can call this function in
two different ways:

~ If you want to copy a whole file into your active
workspace, you must call the IN function in the following
way:

IN '[d:]fi1ename '

where f i1 ename is the name of the file you want to copy.
You must not give an extension, but the name should be
completed to eight characters with underbars if a file
created by the)OUT command is to be read. APL
assumes an extension of .AIO and appends it to the file
name. The result is a 1 if the file exists; otherwise the
result is O.

Example:

IN 'MYFILE __

This line will copy the whole file, MYFILE __ .AIO, into
your active workspace.

• If you want to copy only part of a file (some functions
. and! or variables) into your active workspace, you must call
the IN function in the following way:

name1ist_matrix IN '[d:]fi1ename '

In name1 ist_matr ix, you have to give the names of
the functions and variables (APL objects) you want to
copy. If there is more than one object, each name must be
given as a row of a character matrix. For f i1 ename, see
above. Only the indicated objects are copied into the
active "workspace. The function returns a logical vector
result - a 1 per object copied and a 0 per object not copied.

Chapter 11. Application Workspaces 11-67

IBM Internal Use Only

Example:

(2 3p'FUNVAR') IN 'MYFILE __ '

The left argument of the IN function in the preceding
example is a 2-by-3 character matrix, the first row of which
is FUN and the second is VAR. This line copies into your
active workspace the objects (functions and/or variables),
FUN and VAR, from MYFILE __ .AIO.

PIN

This function is a protected IN. It works like IN, except that
an object is copied only if the outstanding object in the active
workspace has no current value. You can call this function in
two different ways:

• If you want to copy a whole file into your active
workspace, you must call the PIN function in the following
way:

PIN '[d:Jfilename'

where filename is the name of the file you want to copy.
You must not give an extension, but the name sho8Id be
completed to eight characters with underbars if a file
created by the)OUT command is to be read. APL
assumes an extension of .AI ° and appends it to the file
name. The result is a 1 if the file exists; otherwise the
result is O.

Example:

PIN 'MYFILE __

This line will copy the whole file, MYFILE __ .AIO, into
your active workspace.

• If you want to copy only part of a file (some functions
and! or variables) into your active workspace, you must call
the PIN function in the following way:

namelist_matrix PIN '[d:Jfilename'

11-68 APL/PC, Version 2.1

IBM Internal Use Only

In name1 ist_matr ix, you have to give the names of
the functions and variables (APL objects) you want to
copy. If there is more than one object, each name must be
given as a row of a character matrix. For f i1 ename, see
above. Only the indicated objects are copied into the
active workspace. The function returns a logical vector
result - a 1 per object copied and a ° per object not copied.

Example:

)ERASE FUN
VAR+7
(2 3p'FUNVAR') PIN 'MYFILE __

The left argument of the IN function in the preceding
example is a 2-by-3 character matrix, the first row of which
is FUN and the second is VAR. This line copies into your
active workspace only the object FUN because VAR had a
value before PIN was executed (in VAR+7 we set VAR to
the value of 7), and therefore the result of PIN will be
1 O.

OUT

This function emulates the)OUT command (see
Chapter 10, "System Commands") under control of AP210,
and can be called from another APL function, thus effectively
providing a powerful OUT facility. You can call this function
in two different ways:

• If you "want to copy your entire active workspace (all
functions and all variables) into an .AIO file (that is, a
transfer file), you must call the OUT function in the
following 'vay:

OUT '[d:]fi1ename '

where f i1 ename is the name of the transfer file. You
must not give an extension. APL assumes an extension of
.AIO and appends it to the file name. If you want to
generate a file that is compatible with the)IN command,
you should complete the name to 8 characters with the

Chapter 11. Application Workspaces 11-69

iBM intcrnai Use Oniy

appropriate numbers of underbars. The result is a 1 if the
operation is successful; otherwise, the result is O.

Example:

OUT IMYFILE __

This line \vill copy all functions and variables of your
active workspace into the file, MYFILE __ .AIO.

• If you want to copy only part of your workspace (some
functions and! or variables) into a file, you must call the
OUT function in the following way:

namelist_matrix OUT 1 [d:Jfilename'

In namel ist_matr ix, you have to give the names of
the functions and variables (APL objects) you want to
copy. If there is more than one object, each name must be
given as a row of a character matrix. For filename, see
above. Only the indicated objects will be included in the
file. The function returns a logical vector result - a 1 per
object copied and a 0 per object not copied.

Example:

(2 3p'FUNVAR') OUT 'MYFILE __ '

The left argument of the OUT function in the preceding
example is a 2-by-3 character matrix, the first row of which
is FUN and the second is VAR. This line creates a transfer
file called MYFILE __ .AIO and writes into it, the objects
FUN and VAR in the transfer form.

COMPARE

This function compares two files. The syntax is:

record_size COMPARE filespec_matrix

The right argument is a two-row character matrix, each row
containing the filespec of one of the files to be compared,
followed by a comma, followed by the code in which the file is

11-70 APL/PC, Version 2.1

IBM Internal Use Only

to be read. The left argument indicates the length of the
record with which the files are to be read.

The COMPARE function gives no result if both files are
identical. Otherwise, it lists the pairs of corresponding records
that are different. The function also indicates which of the
files is shorter, if applicable.

Example:

80 COMPARE 2 11p'FILE1.EXT,DFILE2.EXT,D'

This example compares files, FILE1.EXT and FILE2.EXT,
both of which are read with a record length of 80 in ASCII
code.

TYPE

This function emulates the DOS TYPE command. The syntax
IS:

[record_size en]] TYPE 'filespec[,code] ,

The file with the indicated f il espec is displayed at the
terminal.

"record_size", if given, specifies the record length of a
fixed record length file, the n first characters of which are to
be typed. If n is not given, the full record_size is typed.
If record_size is not given, the file is assunled to contain
variable length records.

Examples of Use

Following are examples of using the various DOS file-handling
functions.

WOPEN 'FILE.EXT'

Creates a new file. Records will contain APL objects with
header (default code). File number will be defaulted to 1.

Chapter 11. Application Workspaces 11 ~ 71

IBM Internal Use Only

WRITE 110

First record will be a vector of elements from 1 to 10 (origin
1). Default record_no is 0; default record_size is 128
bytes.

1 WRITE 2 3P16

A matrix of two rows and three columns, of elements from 1
to 6, is written sequentially to the file.

CLOSE 1

The file is closed.

OPEN 'FILE.EXT'

Open the same file for read-only operation, with the same file
number.

READ 1 1

Read the second record first: the following matrix is displayed:

123
456

READ 1 0

N ow ask for the first record: the result is the vector of integers:

1 2 3 4 5 6 7 8 9 10
CLOSE 1

Close the file.

DELETE 'FILE.EXT'

Delete the file.

11-72 APL/PC, Version 2.1

IBM Internal Use Only

The FOIL Workspace

This workspace contains a set of functions that make it easy to
create text foils or pie charts. The created objects are stored in
the workspace and may be redrawn later at will.

• DEFFOI L - Interactively defines a text foil, made up of the
following parts:

1. A name for the APL variable where the foil will be
kept.

2. Text for each line in the foil. The following parameters
may be defined: colour, size, and margin width (if the
latter is given a value of -1, this line will be centred).

An empty line ends the foil definition. The FOIL function
is then automatically invoked to display the resulting text
foil.

• FOIL x - Where x is an APL variable containing a text
foil definition, displays it on the screen. Lines are
automatically spaced to optimise the appearance of the
display.

• DEFPIE - Interactively defines a pie chart. The result is
kept in an APL variable, the name of "which is requested.

• PIE x - Where x is an APL variable containing a pie
chart definition, displays it on the screen.

The FOIL workspace requires the AP206 graphic auxiliary
processor to be active.

Chapter 11. Application Workspaces 11-73

IBM Internal Use Only

,The FORTRAN Workspace

I This workspace contains a set of functions designed to assist in
I the generation and calling of FORTRAN subroutines from
I APL as if they were APL functions. The FORTRAN
I language implementations supported are:

,. IBM PC Professional FORTRAN

I. IBM PC FORTRAN 2.0

, In the following text, the word FORTRAN is used to imply
I both versions unless a particular ilnplementation is explicitly
, specified.

I The workspace uses the services of the PFORTPAR program
I which is used to pass FORTRAN parameters.

, Calls to FORTRAN subroutines compiled under FORTRAN
I are supported. Programs in other languages (like IBM Macro
I Assembler, Pascal or C) written to be called as FORTRAN
I subroutines are also supported.

I Restrictions on FORTRAN Programs

I Communication with the FORTRAN subroutine must be
I through explicit arguments (no COMMON, limited I/O).

I IBM PC Professional FORTRAN may only be compiled or
I run on a machine with a Math Co-processor option installed.
I However, it should be noted that although programs must be
I compiled on a machine with the Math Co-processor option
I installed, they may be run on any machine under APL, as the
I services of APL's 8087 emulator module will autolnatically be
I invoked, if required. Programs rnaking use of the 8087
I emulator should be very carefully tested as not all of the 8087
I instructions are included in the emulator code.

I AP2, like other auxiliary processors, may only pass up to a
I 32512 byte object (regardless of the number of elements). In

11-74 APL/PC, Version 2.1

IBM Internal Use Only

I order to pass more than 32512 bytes to a FORTRAN
I subroutine in one variable, such objects should be passed as a
I series of 32512 byte objects and concatenated in the
I FORTRAN subroutine.

I Generation Process

f Before FORTRAN subroutines may be called from APL, a
i generation process must be performed. The following
. procedure should be used to generate a module containing one
or more FORTRAN compatible subroutines:

1. AP2 and AP210 n1ust be included in your APL session.

2. The FORTRAN subroutines are assumed to have been
compiled outside APL. The" .OB]" modules should be
available.

3. Generate the assembler interface (IBM PC Professional
FORTRAN):

or,

'name' GEN_ASM fmv 'SUB1;SUB2; ••• '

where 'name' is the name to be given to the module, and
SUBl, SUB2, ... are the names of the FORTRAN
compatible subroutines.

The source program "name.ASM" will be generated.

4. Generate the assembler interface (IBM PC FORTRAN
2.0):

'name' GEN_ASM_MS fmv 'SUB1;SUB2; .•. '

where 'name' is the name to be given to the module, and
SUBl, SUB2, ... are the names of the FORTRAN
compatible subroutines.

The source program "name.ASM" will be generated.

Chapter 11. Application W orkspaces 11-7 5

IBM Internal Use Only

I 5. Assemble the interface:

I ASM 'name;'

The assembler will be invoked. The object program
'name.OB], will be generated.

Only the small assembler may be used via AP2, this is
designated as ASM.EXE on the diskette.

I 6. Link the interface with the subroutines and generate the
I executable module.

Depending on the nature of the FORTRAN code, it may
be necessary to include a library in the LINK command.
Example:

LINK Iname+SUB1+SUB2+ ••• tt CON;1

17. Generate the APL driver functions. For each subroutine, a
I function should be written (using any of the APL editors)
I with as many definition lines as the arguments to be passed
I to the subroutine, and in the same order. We recommend
I that the name of this function is the same as the name of
I the corresponding subroutine. Each definition line will
I start by two cap null characters (R), not separated by
I blanks, and will define the argument type and initial value
I in the following way:

I RR[RESULT_NAME+] TYPE ARG_NAME+INIT_VALUE

where RESULT _NAME, if given, is the name of the APL
variable where the value of the argument after execution
should be passed back to APL.

TYPE is one of the following:

INTEGER*2
INTEGER*4
REAL *4 or REAL
REAL*8
LOGICAL*1
LOGICAL*4 or LOGICAL

11-76 APL/PC, Version 2.1

IBM Internal Use Only

Additionally, for IBM PC Professional FORTRAN, the
following TYPEs may be used:

CHARACTER
APL

Similarly, for IBM PC FORTRAN 2.0, to signal that the
special Microsoft conventions for character data are to be
used:

CHARASCII
CHARDATA

CHARACTER and CHARASCII types specify that the
data should be translated between the internal APL
character represention and ASCII. APL and
CHARDA TA types specify that the data is not to be
translated.

INTEGER is not permitted, since the Professional
FORTRAN compiler allows it to be user defined to be
either INTEGER*2 or INTEGER *4.

An additional TYPE is also allowed:

TEMPREAL

Which allows numeric data to be translated to 10 byte
temporary real for use with IBM PC Macro Assembler or
other special applications.

ARC _NAME is a dummy name (usually the same as the
name given to the corresponding argument in the
FORTRAN subroutine). The nalne may be followed by a
DIMENSION term (e'.g. A(1)).

INIT _ VALUE is any APL expression generating the initial
value(s) to be passed to the FORTRAN argument.

Example:

Chapter 11. Application W orkspaces 11-77

RRREAL*8 A(l)+A
ARR+REAL*8 SUM+O
p.p.INTEGER*2 N+pA

IBM Internal Use Only

The example defines the interface to a subroutine with
three arguments: the first one is a double-precision vector,
the length of which is given by the integer third argument.
The result is computed on the double-precision second
argument and passed back to APL through variable R.

The block of definition lines may be preceded by, or
followed by, as many APL-lines as are necessary to build a
complete function.

I 8. For each FORTRAN subroutine, the following function
I should be executed:

GEN_FORT 'driver_function_name'

I After this function has been executed, the driver function
I will be ready to be used.

The compiler adds a lot of AP2 shared variable references
to the program, which, once compiled should not be edited.
To change anything in the driver function, you should
uncompile it first, by:

UNGEN_FORT 'driver_function_name'

1 Usage Protocol

I Before the APL driver function can be used, the following two
1 loading functions must have been executed once:

11. PFORT 'drive:'

to load the parameter management program in partition 2.

12. 1 40 LOAD 'name'

to load the executable module in partition 1. The "40"
represents the size assigned to partition 1. Its actual value
nlay depend on the size of the module.

11-78 APL/PC, Version 2.1

IBM Internal Use Only

You should ensure that the usage of these partitions does not
cause any conflicts with other parts of your application.

From this point, the APL driver functions can be used to call
the corresponding subroutines, as if they were normal APL
functions. The functions assume the programs to be loaded in
partitions 1 and 2, as specified.

PFORTPAR Parameter Managenlent
Program

Note: This section may be ignored by users who are not
! interested in building their own parameter passing interfaces
I for use with the FORTRAN workspace. There are several
I functions included in the vvorkspace, vvhich assist in the direct
I usage of PFORTPAR, which are documented in the
I workspace.

I PFORTPAR is an ex~hange assembly program callable from
I AP2, that provides different type conversions and storage
I allocation for APL objects.

I This program operates on the 2 exchange assembly variables D
I and E. It can be used to build the parameter list for a
I FO R TRAN subroutine.

I E is a data variable for the operation. Original APL data will
I be passed through it, one parameter at a time. On return,
I parameters will be passed back to APL through this variable.

I D is a 2 element control variable for the PFORTPAR exchange
I assernbly program. There are several operations depending on
I the first element of D.

I. O,n - Reset the environment for n parameters.

I. 0,0 - Total reset. All storage is freed. This call must be
I done before the last use of PFORTPAR, otherwise some
I main storage may be lost.

Chapter 11. Application W orkspaces 11-79

IBM Internal Use Only

I. A number between 1 and 20: Set parameter n to the value
I ofE.

I. A number between -1 and - 20: Get parameter n through
I E.

I The second element in the last two cases determines the data
I type:

I 1 - Integer*2 .
12 - Real*8
I 3 - APL Character (for Professional FORTRAN)
I 4 - Integer*4
15 - Real*4
I 6 - Logical* 1
I 7 - Logical *4
18 - ASCII Character (for Professional FORTRAN)
I 9 - Temporary Real (only valid for Assembler)
I 10 - APL Character (for FORTRAN 2.0)
I 11 - ASCII Character (for FORTRAN 2.0)

I Return codes will be passed through variable D:

I Code Meaning
I 9 9 - All storage freed, routine reset.
I 0 - Success: Element 2 is the segment offset of the
I parm-table. Element 3 is the maximum number of
I parameters. Element 4 is the number of parameters
I already specified.
I -1 - Value Error. The requested parameter is not there.
I - 2 - Type Error, D must be boolean or integer.
I - 3 - Rank Error, D must be vector.
I 1+ - Length Error, D must have 2 elements.
I - 5 - Already in use. RESET should be called first.
I 6 - Invalid second element. More parameters than
I allowed.
I -7 - Invalid sequence. RESET must be called first.
I - 8 - Parameter is out of previously defined range.
I - 9 - Parameter already defined, cannot be redefined.
I -10 Requested parameter has not yet been defined.
I -11 Some space could not be released to APL.
I -12 Specified type is not valid.

11-80 APL/PC, Version 2.1

IBM Internal Use Only

I -27 - No space available. Parameters too large to fit in
I memory.

I Sample FORTRAN Subroutines (IBM PC
I Professional FORTRAN)

I. FADD.FOR

This FORTRAN subroutine, adds a vector of numbers,
like APL +/.

I. F1.FOR

Generates two matrices, one real, the other integer*4 .. Also
assigns a value to a character variable depending on a
logical argument.

I. F2.FOR

Performs the product of two complex vectors. In APL,
each element in the complex vector is represented by two
consecutive elements.

I Sample Case:

I Assume ASM and LINK are located in drive A:, and the
I subroutine's" .OB]" modules in drive B:. The following will
I generate the APL-FORTRAN interfaces.

IB:SAMPLE' GEN ASM fmv 'FADD;Fl;F2'
ASM 'B:SAMPLE,~:;'
LINK 'B:SAMPLE+B:FADD+B:Fl+B:F2,B:,CON;'

I The starting APL driver functions (FADD, Fi, F2) are already
I included in the FORTRAN workspace.

I The APL driver functions will be generated thus:

GEN FORT 'FADD'
GEN-FORT 'Fl'
GEN:FORT 'F2'

I Load the executable modules:

Chapter 11. Application Workspaces 11-81

PFORT 'B:'
1 40 LOAD 'B:SAMPLE'

I Execute the APL driver functions:

I FADD 11000
I 500500
I Fl 1 1
13 546
I I
13 546
I C
10123456789
I Fl a
I C
IABCDEFGHIJ
1 0 1 F2 a 1
1-1 a

IBl\1 Internal Use Only

I Note: For IBM PC FORTRAN 2.0, only FADD is correctly
1 defined, because the other two are dependent on special IBM
I PC Professional FORTRAN data types. GEN_ASM_MS must
I be used in place of GEN _ASM.

The G ED IT Workspace

This workspace implements a graphic input application that
makes it possible to generate complex "images" graphically,
store them in the workspace, and reproduce them later on the
screen. An "image" is stored in the workspace as a set of
variables, all of which start by the same prefix (the "image"
name) followed by the APL character tJ. and a three digit
number. Each variable contains graphic information in the
form of:

1. Parameter settings for AP206.

2. Text strings to be drawn.

3. Graphic matrices to be drawn.

The following functions are included in the workspace:

11-82 APL/PC, Version 2.1

IBM Internal Use Only

• [mode] GEDIT 'image_name' - The graphic editor.
The optional left argument is the screen mode to be used
(the default is 4). The right argument is the name of the
"ilnage" to be created or modified. If the image exists, it is
drawn and the terminal opens for graphic input. If the
image is new, the terminal opens on an empty screen.

vVhen the terminal is open for graphic input, you may use
the numeric keypad to move the cursor, fix points, add
straight lines, delete lines, and so forth. The Tab key and
the Backspace key are also useful to move the cursor along
the image. The F -keys can be used to change the cursor
movement mode (i.e. the length of cursor step or the speed
of cursor advance). For additional details on the use of
these keys, see the description of "interactive input mode"
in "The Graphic Auxiliary Processor: AP206" on
page 12-39. .

Besides these keys, directly supported by AP206, GEDIT
uses other keys to perform special operations, such as
changing background colour, drawing or filling circles or
polygons, drawing text, etc. A full description of these
additional operations may be displayed by executing
function HELPGEDIT in the workspace, or pressing the H
key when in graphic input mode (when the GEDIT
function is active).

• DEMO - Shows on the screen an image generated through
GEDIT. Graphic input mode is entered, allowing changes
or additions. To leave this state (automatically entered
when loading the workspace through the)LOAD
comtnand) press the E key.

• SHARE - Shares variable G with the graphic auxiliary
processor (AP206). It is not needed if GEDIT is executed.
However, it must be invoked before IMAGE or PRINT is
used, if GEDIT has not been called since the workspace
was loaded.

In the next three functions, nl ist is a numeric vector of
image component numbers.

Chapter 11. Application Workspaces 11-83

IBlYI Internal Use Only

• [nl ist] IMAGE r image_name r - Shows on the
screen, the "image" defined by the prefix image_name.
If nl ist is given, only the indicated components of the
image are shown.

• [nl ist] DISPLAY r image_name' - Lists the
different variables making up the image defined by the
prefix image_name. If nl ist is given, only the
indicated components are listed.

• enlist] ERASE f image_name f - Erases the full
image defined by the prefix image_name. If nl ist is
given, only the indicated components are erased. The
remaining components are renumbered.

• PRINT - Equivalent to IMAGE, but the image is also
printed.

The GRAPHPAK Workspaces

There are seven workspaces on the APL Workspaces - 2
diskette together containing a set of functions compatible with
the GRAPI-IPAK workspace, as implemented under IBM
APL2 Program Product (5668-899). These are included for use
by APL2 and VS APL programmers wishing to develop
applications which will run on both mainframe and personal
computers, or to use the PC for prototyping and program
development purposes. The Math Co-processor option is
strongly recommended to users of these workspaces.

G RAPHPAK has been divided to correspond to the seven
groups of the same name in the mainframe product. These
are:

GPBASE contains the fundamental drawing and writing
functions;

G PCHT contains functions for drawing charts;

ll-84 APL/PC, Version 2.1

IBM Internal Use Only

GPCONT contains functions for drawing contour maps;

GPDEMO contains functions illustrating aspects of

GPFIT

G RAPHPAK. This workspace is supplied in
".APL" form and should be)LOADed to run the
demonstra tion.

contains functions for curve fitting;

GPGEOM contains descriptive geometry functions;

G PPLOT contains plotting functions.

A list of the functions in these 'vorkspaces is provided in
Appendix F, "The GRAPHPAK Workspaces - Functions".

Note: Developers of programs intended to run only on IBM
PC family machines should use the functions provided in the
cover workspace AP206. These will generally prove faster and
more convient for such applications.

To run the dernonstration contained in the GPDEMO, the
complete G RAPHPAK package must be assembled:

)LOAD GPDEMO
)IN GPBASE
)IN GPGEOM
)IN GPPLOT
)IN GPCHT (*)
)IN GPCONT (*)

DEMO

The last two parts, each marked with a *, are optional, and
need only be included if the full demonstration is to be run.

Chapter 11. Application W orkspaces 11-85

IBM Internal Use Only

The MUSIC Workspace

The MUSIC workspace provides a sample of the use of the
AP440 auxiliary processor, which makes it possible to create
music in your IBM Personal Computer using the attached
speaker.

To use the speaker from APL programs, you must include the
music auxiliary processor, AP440, as a parameter to the APL
command at load time before you begin an APL work session,
or load it dynamically through AP2. For example,

APL AP440

To copy the MUSIC workspace into your active workspace,
you must enter:

)IN MUSIC

The following melodies are included in the MUSIC workspace.
Each melody is a part of a well-known musical piece.

SA KURA
BUG
SCALES

POP
HUMOR
DANDY

STARS
FORTY
MARCH

BLUE
HAT

To perform them, you have to execute the following:

PLAY name

where name is the title of the melody.

11-86 APLjPC, Version 2.1

IBM Internal Use Only

The PLOT Workspace

This workspace contains a number of functions that make it
easy to build histogralns and graphic plots of mathematical
functions. A set of control variables allow the user to define
the plot characteristics, such as where the axis must be drawn,
what axis marks should be induded, ·whether linear or
logarithmic scales are selected, and so on and so forth. The
meaning of these control variables and the values they may be
assigned can be obtained from the workspace by typing
HELPPLOT.

If any of the control variables does not exist, default values
will be used instead.

The PLOT workspace requires the AP206 graphic auxiliary
processor to be active.

The following user functions are described here:

• [title] PLOT plot_data - Plots a graph.
"t i tl e", if given, is the title to be typed at the top of the
plot. The plot data is a three-dimensional object, that may
be generated by means of the auxiliary functions VS and
AND.

F or example, if we want to obtain the plots of two
dependent variables (YI, Y2), as functions of the
independent variable X (where X, YI and Y2 are assumed
to be APL vectors containing the corresponding data, all of
them with the same number of elements), the following line
will do it:

PLOT (Yl AND Y2) VS X

Other AND /VS combinations may be obtained.

Function DEMOPLOT in the workspace gives an example of
the use of the PLOT function.

Chapter 11. Application Workspaces 11-87

IB1\1 Internal Use Only

Function DEFPLOT allows you to define a plot
conversationally.

• RPLOT - Same as PLOT, but the X and Y axes are
reversed.

• [title] HPLOT hist_data - Plots a histogram.
"title", if given, is the title to be typed at the top of the
histogram. The histogram data is a bi-dimensional object,
that may be generated by means of the auxiliary function
AND. The independent variable is not given, and assumed
to be a set of subsequent integers.

F or example, if we want to obtain the plots of two
dependent variables (Yl, Y2), (where Yl and Y2 are
assumed to be APL vectors containing the corresponding
data, both with the same number of elements), the
following line will do it:

HPLOT Yl AND Y2

Function DEMOHPLOT in the workspace gives an example
of the use of the HPLOT function.

Function DEFHPLOT allows you to define a histogram
conversationally.

• RHPLOT - Same as HPLOT, but the X and Y axes are
reversed.

• CLEARPLOT - Eras~s all the plot control variables, so that
the default values will be used in successive plots, unless
the control variables are redefined.

• PARMSPLOT - Allows you to define conversationally the
plot control variables.

• BEGIMAGE 'image_name' - Indicates that all
subsequent plots will be kept in the workspace as an
"image" with the name image_name. See description of
"images" in "The GEDIT vVorkspace" on page 11-82.

11-88 APL/PC, Version 2.1

IBM Internal Use Only

• ENDIMAGE - Indicates that all subsequent plots should not
be kept in the previously defined "image" (given by the last
execution of BEGIMAGE).

• Functions DISPLAY, ERASE and IMAGE are described in
"The GEDIT \Vorkspace" on page 11-82.

The PRINT \Vorkspace

To use the printer from APL programs, you must include the
printer auxiliary processor, AP80, as a parameter to the APL
command at load time before you begin an APL work session,
or load it later with the non-APL program interface auxiliary
processor (AP2). For example,

APL AP80

This workspace contains the following functions:

• PRINT can be used to selectively print any APL object or
result, of any rank or type (that is, literal or numeric), from
your APL program. I t may be called from any other APL
user-defined function, thus giving the program control of
the printer.

To copy the PRINT function to the active workspace, you
should execute the following:

)IN PRINT PRINT

Function PRINT may be used in the following way:

[Page_length] PRINT object

If Page_l ength is omitted, 60 lines per page are
assumed. The current page position is maintained by a
global variable named "lc" (line count).

The following examples show what is printed for various
entries:

Chapter 11. Application Workspaces 11-89

Entry

PRINT 2+2

PRINT I ABCabc ,

IBM Internal Use Only

Printed

4

ABCabc

PRINT 110 1 2 3 4 5 6 7 8 9 10

PRINT 2 3p'ABCDEF' ABC
DEF

(A variable can also be printed)

X+'IS A VARIABLE'
PRINT 'X ,,X X IS A VARIABLE

If the PRINT function is used to print a character string
beginning ·with OAV[OIO+255], the remaining characters
in the string are sent to the printer in alphameric mode. In
this way, printer control codes can be included and
executed. These control codes are used to obtain
emphasised printing, large character sizes, and other special
printing functions.

If the first character in the string is not OAV[OIO+255],
the whole string is printed as given. Therefore, a single
character can have a dual function, depending on the
selected printing nlode.

AP80 will automatically use a compressed style of
character if OPW has a value greater than 80. These
smaller characters allo·w lines of up to 132 characters to be
printed.

Note: Turning the printer off and then on will reset all
options. In some circumstances this can be n10re
convenient than sending all the required codes to reset
everything.

• The PRINT _DOC function, uses PRINT and the file
auxiliary processor (AP210) to obtain a listing at the
printer of a DOS ASCII file.

11-90 APL/PC~ Version 2.1

IBM Internal Use Only

• PRINT _ GEN function generates a set of variables that may
be used to provide the printer control codes to produce
complex documents.

• The DEMO function shows how to cOlnbine the printer
control codes and the PRINT function.

The PROFILE Workspace

This workspace uses the APIOI profile and stack auxiliary
processor to initialise the APL session. It includes a function
(PROFILE), that establishes an F-key profile, defines some
APL libraries to be equivalent to certain sub-directories,
executes some floating-point APL functions to prime the Math
Co-processor emulator, and uses the input stack to)CLEAR
the active workspace, in this way taking itself out of the
memory. This function provides an example of how automatic
loading and even disconnection of APL applications may take
place.

Function PROFILE is invoked by the workspace latent
expression, which is automatically executed whenever the
workspace is loaded:

OLX
PROFILE

Since latent expressions are only executed when a)LOAD
command is performed, which requires the workspace to be in
.APL format, this workspace is provided both in the .APL and
the .AIO formats. To use it, invoke APL in the following way:

APL APIOl ...)LOAD PROFILE

where' ... ' represents the names of other auxiliary processors
that you may wish to load at sign-on time. The PROFILE
workspace 'will be loaded automatically, the PROFILE
function will be executed, the function keys and the libraries
will be defined, and a clear workspace will be generated.

Chapter 11. Application W orkspaces 11-91

IBM Internal Use Only

If larger default sizes are required for any of the definitions
stored by AP 101, it may be convienent to add the request for
the larger sizes to the PROFILE function. For example,
adding the line X+512 50 40, to the PROFILE function
between the existing lines 3 and 4, would set the maximum
stack size to 512 bytes, the maximum F-key definition to 50
characters, and the maximum library definition to 40
characters.

A second function in the PROFILE workspace (COPY)
emulates the)COPY command (which is not supported by
APL/PC 2.1). This function has two arguments: the left
argument is the name of the copy source workspace. The right
argument is the list of objects to be copied (a character string
with the names separated by spaces).

Note: This function will not work, and the active workspace
may be lost, if the default drive does not have enough space to
save both the active workspace and the objects to be copied!

The UTIL Workspace

The UTI L workspace provides a selection of functions that
may be of general use. It contains some functions to assist in
application writing and some demonstration functions that
show how API03 may be used to: read the joystick port; peek
and poke 110 ports and obtain or free memory for DOS
function calls.

• R+APLIST - Returns (in R) a list of the numbers of the
currently active Auxiliary Processors.

• APL_DEUTSCH - Sets German keyboard layout on APL
keyboard - Y and Z keys are exchanged.

• APL_FRANCAIS - Sets French keyboard layout on APL
keyboard - A-Q and W-Z keys are exchanged.

• APL_OFF - Switches the keyboard to national mode.

11-92 APL/PC, Version 2.1

IBM Internal Use Only

• APL_ON - Switches the keyboard to APL mode.

• APL_RESTORE - Sets the international keyboard layou
on the APL keyboard.

• R+ASCI I - Returns (in R) the APL to ASCI I translati,
table.

• R+BIGFONT A - Takes a character string argument (A)
and returns (in R) the string in a large font.

• R+DATA_TYPE A - Returns (in R) the type of its
argument (0 = boolean, 1 = integer, 2 = real, 3 = literal).

• R+DIR - Uses API03 to return the directory of the default
drive.

• R+EQUIP _AVAIL - Returns (in R) the system equipment
flags as a boolean vector. See the Technical Reference
manual for further details.

• ESC_OFF - Disables the Esc and Ctrl-Break keys from
interrupting APL execution until ESC _ON is executed.

Warning: Use with care!

• ESC_ON - Enables the Esc and Ctrl-Break keys to
interrupt APL execution.

• R+FORMAT A - Formats its right argument (A) like
APL2' s format function.

• R+FREEMEM A - Takes an address (A) returned by
GETMEM and returns the storage to the active workspace,
using AP I 03.

• R+GETMEM B - Where B is the is number of bytes
required, extracts that amount of space from the active
workspace and returns (in R) the memory address where
the space has been found. It uses API03.

Chapter 11. Application Workspaces 11-93

IBM Internal Use Only

• R+HEX A - Converts A to hex if it is numeric, or from hex
to decimal if it is a literal string.

• HT - Disables output to the display until RT is run or
keyboard is used.

• R+INKEY - Mimics BASIC inkey function using API03.
Returns (in R) the keyboard scan code.

• R+IV INPORT P - Uses AP I 03 to read the current value
from a specific I/O port (P). If IV is given, a word (two
bytes) is retrieved. Otherwise, a byte is retrieved.

• R+JOYSTICKS - A cover function for the API03 joystick
algorithm.

• R+KEYB - Returns the address of the APL keyboard
translate table.

• KEYBOA.RD - Allows interactive modification of the layout
of the APL keyboard.

• R+MEM_SIZE - Returns (in R) the true size of the
machine.

• R+P OUTPORT V - Uses AP103 to send data (V, one or
two integers in the range 0-255) to a system I/O port (P).

• R+N PEEK A - Gets N bytes from the address defined by
A (the same address definition as in OPK), but result is in
hex.

• N POKE A. - Like OPK, but N is given in hex format.

I. PRT _OFF - Turns off the use of the printer as system log.

I. PRT_ON - Turns on the use of the printer as system log.
I Any output displayed on the screen will be printed as well.

I. QUEUE A - Places string A in keyboard buffer area. This
I may be used to stack commands that continue to be
I interpreted even after APL has terminated. For example:

11-94 APL/PC, Version 2.1

IBM Internal Use Only

CR+DTC[OIO+l]
QUEUE')OFFt ,CR, 'PC_CMD' ,CR, 'APL' tCR

exits APL, runs "PC_CMD" as a DOS command and then
restarts APL.

• RT - Enables output to the display. It is the inverse of HT
or the)Q(uiet) command in the APL invocation line.

• SPEAKER - A sample program that uses INPORT and
OUTPORT to produce a noise in the PC speaker.

• STORY _BOARD - Enables PC Storyboard Picture Taker to
be executed when Shift-PrtSc is pressed.

• WHERE t text I - Gives a listing of all functions in the
active workspace that contain the indicated text.

• WHISTLE - A practical demonstration of using GETMEM,
FREEMEM, PEEK and DPK to load a machine code
program into memory and execute it.

• R+WSNAME - Returns (in R) the name of the active
wor kspace. I f it has no name, 8 p OA V [DI 0] is returned.

• R+f1ET - Returns (in R) an indication of the last error
encountered.

The VM232 Workspace

The VM232 workspace supports communications with IBM
Virtual Machine Facility/370 (VM/370) on an IBM
Systemj370 with an ASCII port or an equivalent machine.

To operate this application, you need:

• The IBM Personal Computer Asynchronous
Communications Adapter.

Chapter 11. Application Workspaces 11-95

IBM Internal Use Only

• Either a duplex modem (either acoustic or direct coupled),
or a direct cable connection to the host computer. (The
communications program does not support
communications using a half-duplex modem).

To use this application from APL programs, you must include
both the asynchronous communications auxiliary processor,
AP232, and the file management auxiliary processor, AP210,
as parameters to the APL command at load time, before you
begin an APL work session (or load them through AP2). For
example:

APL AP232 AP210

Then you must copy the files, VM232 and FILE, into your
workspace using the following commands:

)IN VM232
)IN FILE

You are now ready to start communications with the host.

Selecting a Terminal

When you start up the communications program, you are in
the terminal-selection phase. A series of menus lets you select
which type of terminal the IBM Personal Computer will
simulate, and the detailed features of that terminal.

The terminal-selection phase has three levels of menus. The
first-level menu lists the different line parameter definitions
that can be selected. When you select one of these definitions,
a second-level menu lists the terminal options that can be
specified for the selected definition. When you select one of
the options, a third-level menu lists the possible choices for
that option.

To start the terminal-selection phase, you have to call the
function SETUP. The following will then appear:

11-96 APL/PC, Version 2.1

IBM Internal Use Only

SETUP
LINE PARAMETER DEFINITION. Select:

1: VM
2: Unused
3: Unused
4: Other
5: Current Definition

0:

o Menu item 1 ("VM") gives you a terminal that operates
with most IBM VM/370 System Control Programs running
on an IBM computer (see "VM/370 Terminal").

• Menu items 2 and 3 are listed here for future use.

• Menu item 4 ("Other") lets you specify pertinent
parameters to define your own terminal (see
"User-Specified Terminal" on page 11-100).

• Menu item 5 ("Current Definition") lets you use a terminal
specification that you have created in a previous call to the
function SETUP, and that you have saved using the
procedure described under "Saving Your Line Parameter
Definition" on page 11-102. The application "remembers"
whether you created your current definition using menu
item 1 or 4; when you type 5 and press Enter, it brings up
the corresponding second-level menu.

VM/370 Terminal

To access VM/370 and have your IBM Personal Computer
operate as a VM/370 terminal, you have to type 1 and press
the Enter key while in the LINE PARAMETER DEFINITION
menu. The following menu then appears:

PARAMETER CHANGE. Select:
0: No change
1: Baud rate
2: Parity
3: Turnaround local

0:

This is the PARAMETER CHANGE menu. Using this menu,
you can change the baud rate, the type of parity checking, and

Chapter 11. Application \Vorkspaces 11-97

IBM Internal Use Only

the line turnaround character sent to the host. You can also
return to APL if you type the number 0 and then press the
Enter key.

• Baud rate: Describes the speed at which characters are
sent across the communications line. The higher the rate,
the faster the transmission will be. Generally, this rate is
determined by the baud rate that the transmission
equipment can handle and/or the baud rates available at
the input port for the host computer. If you want to
change the baud rate for the host computer, type 1 on the
PARAMETER CHANGE menu and press the Enter key.
The following menu appears:

BAUD RATE. Select:
0: No change
1: 75
2 :
3 :
4:
5:
6 :
7 :
8 :
9 :

10:
0:

110
150
300 *
600

1200
1800
2400
4800
9600

The asterisk (*) in item 4 indicates that the VMj370
terminal will start up with a communication-line speed of
300 baud (or bits per second), unless you change it. This is
the currently-defined value. Type the item number that
corresponds to the baud rate you are using. For example,
if you are connecting to a 1200-baud computer port, type 6
and press the Enter key. This sets the line's bit rate to
1200 baud. The PARAMETER CHANGE menu appears on
the screen again.

• Parity: Characters transmitted over an asynchronous
communications line are sent serially as sequences of l's
and 0' s that represent each character. The parity bit is the
eighth bit of the ASCII character code and is added to the
7-bit code, depending on your selection, so that the
character may be checked for accuracy at the receiving end.
You have to set the parity to match the type expected by

11-98 APL/PC, Version 2.1

IBM Internal Use Only

the host computer. To set the parity bit, enter 2 on the
PARAMETER CHANGE menu and press the Enter key.
The following appears:

PARITY. Select:
0: No change
1: NONE
2: ODD
3: EVEN
4: MARK *
5: SPACE

0:

The types of parity checked are:

NONE: No parity bit is added to the character
transmitted. Eight bits of data are transmitted for each
character.

ODD: The surn of all bits, including parity, of the
character transmitted, is odd.

EVEN: The sum of all bits, including parity, of the
character transmitted, is even.

MARK: The parity is always set to 1. This is the
default.

SPACE: The parity is always set to O.

To select the type of parity checking your host systeln uses,
type the corresponding item number and press the Enter
key. The PARAMETER CHANGE menu appears on the
screen again.

• Turnaround Local Character: To tell the host computer
that you have completed typing a line of text, you press
the Enter key. The character produced 'when you press
Enter is called the turnaround local or line turnaround
character sent to the host. The turnaround character
indicates the end of a line of input sent to the host
computer. The host computer takes action on that line
and sends back a response.

Chapter 11. Application Workspaces 11-99

IBl\t1 Internal Use Only

The currently-defined value for this character is a Carriage
Return. If you wish to change the value of this parameter,
type 3 on the PARAMETER CHANGE menu, and press the
Enter key. The following appears on the screen:

TURNAROUND LOCAL CHARACTER. Select:
a: No change
1: CR (aDB) *
2: XON (11B)
3: XOFF(13B)
4: EOT (04H)
5: LF (OAH)

D:

If you want the turnaround character to be, for example,
the line feed (LF), type 5 and press the Enter key. The
PARAMETER CHANGE menu appears on the screen again.

User-Specified Terminal

When you select item 4 ("Other") in the LINE PARAMETER
DEF IN IT ION menu, you can specify all of the terminal
features to make your IBM Personal Computer operate as a
terminal for your particular host system. The following menu
appears:

PARAMETER CHANGE. Select:
0: No change

D:

1: Baud rate
2: Parity
3: No. of stop bits
4: Half/Full dpx.
5: Turnaround local
6: Delete chars.
7: End of line char.

To return to APL, type 0 and press the Enter key.

• Baud rate: See "VMj370 Terminal" on page 11-97.

• Parity: See "VMj370 Terminal" on page 11-97.

• No. of stop bits: Stop bits are sent by your IBM Personal
Computer after each character to keep the line in

11-100 APL/PC, Version 2.1

IBM Internal Use Only

synchronisation. These bits let the receiver detect the
beginning of the next transmitted character. Usually one
stop bit is required (default). The number of stop bits you
select must match the number required by your host
system. To change the number of stop bits, type 3 on the
PARAMETER CHANGE menu and press the Enter key.
The following menu appears:

NO. OF STOP BITS. Select:
0: No change
1: 1 *
2: 2

0:

To select two stop bits, type 2 and press the Enter key.
Pressing Enter returns you to the PARAMETER CHANGE
menu.

• I-Ialf/Full dpx: Although a full duplex modem is required,
this application does not support duplex transmission
protocol. Therefore, when you type 4 in the PARAMETER
CHANGE menu, the following message appears:

FULL DUPLEX NOT SUPPORTED

and the PARAMETER CHANGE menu is displayed again.

• Turnaround local: "end-of-line" designator. To change
this character you have to type 5 in the PARAMETER
CHANGE menu and press the Enter key. For more
information, see "VM/370 Terminal" on page 11-97.

• Delete chars: When you are in communications with the
host computer, the host may transmit characters you do
not want displayed on your screen. Generally these are
special ASCI I characters known as control characters.

If you want to change the Delete characters, type 6 in the
PARAMETER CHANGE menu and press the Enter key.
The following will appear on your screen:

Chapter 11. Application Workspaces 11-101

IBM Internal Use Only

DELETE CHARS. Select up to 4:
0: No change
1: Unused
2: CR (ODH)
3: LF (OAH)
4: BELL(07H)
5: XON (llH)
6: XOFF(13H)
7: ESC (lBH)
8: TAB (09H)
9: BS (08H)

0:

Type the numbers of the characters you want to delete.
You can type a maximum of four numbers. Then press the
Enter key to return to the PARAMETER CHANGE menu.

• End of line char: The character selected from this menu
specifies the end-of-line character sent from the host
computer. This character indicates that a new line should
be started on the screen.

The default value provided is a Carriage Return. If you
wish to change the value of the end-of-line character sent
by the host, type 7 on the PARAMETER CHANGE menu
and press the Enter key. The following is displayed:

END OF LINE CHAR. Select:
0: No change
1: CR (ODH) *
2: XON (llH)
3: XOFF(13H)
4: EOT (04H)
5: LF (OAH)

0:

Type the number of the character you wish to use and
press the Enter key to return to the PARAMETER CHANGE
n1enu.

Saving Your Line Parameter Definition

After you have defined the line parameters for your system,
you can save your new specifications by executing:

)OUT name

11-102 APL/PC. Version 2.1

IBM Internal Use Only

where "name" is the name of the transfer file in which your
application will be stored (see Chapter 10, "System
Commands" for a description of the)OUT command).

The parameter definition you have saved is now your current
definition. The next time you use your application, you have
to load it using the conunand:

} CLEAR
)IN name

where" name" is the name you used when you saved the
application with the)OUT command (see
Chapter 10, "System Commands" for a description of the
)IN command).

If you do not want to change the new parameters again, you
need not call the function SETUP.

Connection with the Host

When you have selected the communications parameters, you
must establish a connection with the host computer by
executing the following:

TERMINAL

A beep sounds and the following messages are displayed:

Computer connection NOT established
You are starting up as a terminal
Check computer or modem connection
Starting in RECEIVE state
Press Esc key to go into SEND state

Depending on the type of connection between your IBM
Personal Computer and the host system, you must do the
following:

• Modem Connection: Read the instructions for the modem
carefully to understand how to use the telephone set for
voice and data transmission.

Chapter 11. Application \Vorkspaces 11-103

IBM Internal Use Only

In general, what you must do is dial the number of the
host computer, either by using the telephone or by typing
the dial-up commands required by the modem. When you
use the dial-up commands, you must go into SEND state
by pressing the Esc key. When you hear the modem's
carrier (a high-pitched tone), the connection has been made
and you must go to the following step.

• Direct Cable Connection or Modem Connection Complete
(you hear a carrier): At this stage, two things may have
happened:

Your IBM Personal Computer was not opened as a
terminal (cursor not visible on the screen). You will
have to press the Esc key to go into SEND state. You
may now have to send a BREAK to the host computer
(the application will prompt you for it). You will
answer YES or NO, depending on the needs of your
host system. The use of BREAK is system-dependent;
check with the person who has installed your host
system. If your host system requires a BREAK to be
sent, sending it will cause your IBM Personal
Computer to open as a terminal.

Your IBM Personal Computer has opened as a
terminal to the host computer. You will receive the
following:

VM/370 ONLINE
!

(cursor placed here)

Connection is established. You can proceed to log on
to your host system.

Each line entered is passed to the host for execution. There is
no transmission transparency in this mode: Only standard
ASCII characters may be transmitted; APL special characters
will be lost and not sent to the host. You may, however, go
into the host APL system and execute system commands, load
workspaces, and call APL functions.

11-104 APL/PC, Version 2.1

IBM Internal Use Only

APL statements that are prefixed with the I-beam character
(I) are executed by the IBM APL/Personal Computer 2.1
system, and are not passed to the host. APL system
commands cannot be executed in this way.

The entering of a line consisting of a single 1-bealn character
(I) is considered as a request to exit function TERMINAL and
go back into local APL mode. However, transrnission is not
interrupted (that is, the connection is not lost) until you
expressly log off from the remote system. You may also
reenter terminal mode by executing the TERMINAL function
again. If you had not disconnected the remote system, you
should not log on again at this point.

Note: If transmission fails at any point and your terminal
does not return control to you, you can press the Esc key and
execute the APL line:

You can then try to repeat the operation by invoking the
TERMINAL function again.

Functions

Four special .APL functions are included in the workspace and
may be used for transferring files between the host and the
IBM Personal Computer.

These functions may be invoked in terminal mode by preceding
their names with an I-beam character (I). The functions are:

• UPLOAD
• DOWNLOAD
• APLOUT
• APLIN

These functions assume the following prerequisites:

• Transmission has been established.

Chapter 11. Application Workspaces 11-105

IBM Internal Use Only

• The host VMj370 system contains the file, EDIT EXEC, as
described below.

• The host VM/370 system contains the file, APL EXEC, to
load VSAPL.

• The host VM/370 system contains the APL workspace,
OUT, as described below.

UPLOAD

Sends a file from disk(ette) to a minidisk in the host. The file
must be composed of DOS variable-length records separated
by a new-line character and a line-feed character (in that
order). The last record must also end with these two
characters. Transmission is transparent; that is, all remaining
254 characters (except new line and line feed) may be sent.

When this function is invoked, it asks for the filespec of the
source file to be sent (ENTER SOURCE FILE NAME). The
filespec must be given in DOS format
([drive:]name. ext). If the file does not exist, NOT
FOUND is written and the request is repeated. To exit, press
Enter.

Next the target file name is requested (ENTER TARGET
FILE NAME). It must be given in Conversational Monitor
System (CIVIS) format: filename filetype filemode. If the
target file nalne already exists, a warning is given (FILE
EXISTS. DO YOU WANT TO REPLACE?). If the answer
is YES, the old file "viII be deleted. Otherwise, uploading
stops. If everything is correct, the file is transferred and
converted to its final fonn to assure transparency. Sorne
operations (including invoking APL in the host and executing
an APL function) are automatically performed by the function.

11-106 APL/PC, Version 2.1

IBM Internal Use Only

DOWNLOAD

Performs the opposite operation to UPLOAD. It sends a file
from a minidisk in the host to a disk(ette) in your IBM
Personal Computer.

APLOUT

Takes an APL workspace in transfer form (extension .AIO) on
the IBM Personal Computer and sends it to the host. The
final result of the execution of this function is a CMS file with
filetype AIO, which may be loaded into a VSAPL workspace
by means of the following instructions:

APLIN

) CLEAR
)SYMBOLS size
)COpy OUT IN
I r IN I filename 1

)ERASE IN
)SAVE wsname

Performs the opposite operation to APLOUT. The source
workspace nlust be in normal VSAPL WS format (that is, not
in .AIO form). The function automatically invokes APL, loads
the workspace, converts it into AIO form with the help of the
OUT workspace (see below) and sends it to the Personal
Computer with transmission transparency. The final result is a
file in transfer form, which is created on the Personal
Computer's disk(ette), and which may be loaded directly into
the active workspace by means of the)IN command.

The transformations of alphabetic characters in going between
the IBlYI Personal Computer and the VM/370 system are as
follows:

Chapter 11. Application \Vorkspaces 11-107

IBM Internal Use Only

Source Alphabet:
Caps

Function Capitals Lower Case Underscored

UPLOAD Capitals Lower Case N/A

DOWNLOAD Capitals Lower Case Special
Characters

APLOUT Capitals Caps N/A
Underscored

APLIN Capitals Lower Case Lower Case

Example of Connection with the Host

Load the VM232 and FILE workspaces.

)IN VM232
)IN FILE

Then create a file to be uploaded to the host.

1 WOPEN 'B:TEST,D'

37

A+'FIRST LINE',OTC[OIO+l 2]
A+A,'SECOND LINE',OTC[OIO+l 2]
A+A,'LAST LINE',DTC[OIO+l 2],'+'
pA

1 0 37 WRITE A
CLOSE 1
TYPEVIB:TEST'

FIRST LINE
SECOND LINE
LAST LINE

The file just created has three records with the indicated
information.

You will now have to call the functlon SETUP (if you have not
get done so) to establish the characteristics of the type of
terminal your IBM Personal Computer will simulate, and the
detailed features of that terminal.

11-108 APL/pet Version 2.1

IBM Internal Use Only

The IBM Personal Computer is connected to the host
computer through a duplex modem with a half-duplex
protocol.

To connect your IBM Personal Computer to the host
computer, you must execute the function TERMINAL. The
following will appear on your screen:

TERMINAL
Computer connection NOT established
You are starting up as a terminal
Check computer or modem connection
Starting in RECEIVE state
Press Esc key to go into SEND state

You have to dial up here. When the connection is established,
you will receive the message

VM/370 ONLINE

and you can proceed to log on.

L user name
ENTER PASSWORD:
******** HHHHHHHH
SSSSSSSS

password

Connection messages are received here. You may now IPL
CMS.

Chapter 11. Application Workspaces 11-109

IBM Internal Use Only

CMS
IUPLOAD (Request to send)
ENTER SOURCE FILE NAME (Prompt from UPLOAD)
B : TEST (Our answer)
ENTER TARGET FILE NAME (Prompt)
TEST TEST A (Our answer)
FILE EXISTS. DO YOU WANT TO REPLACE?

Y
END OF TRANSMISSION
3 RECORDS SENT
APL

v SAP L 4.0

CLEAR WS

)LOAD OUT
SAVED 10:13:47 02/01/83
CMSIN 'TEST TEST A'
RO;
)OFF HOLD
R;
ERASE TEST HIO A
R;

(Prompt)
(Our answer)
(From this point the
system generates a
set of lines assuring
transparency of the
transmission.)

At this point, uploading is complete and the terminal opens.
You are again connected to eMS.

11-110 APLjPC, Version 2.1

IBM Internal Use Only

TYPE TEST TEST A
FIRST LINE
SECOND LINE
LAST LINE
R;
IDOWNLOAD
ENTER TARGET FILE NAME
B:TEST1
ENTER SOURCE FILE NAME
TEST TEST A

APL

v S

CLEAR WS

)LOAD OUT

A P L 4.0

SAVED 10:37:47 02/01/83
CMSOUT 'TEST TEST AI
R28;
)OFF HOLD
R;
10
ERASE TEST HID A
R;

(user eMS command)
(System answer)

(DO\VNLOAD request)
(Prompt from DOWNLOAD)
(Our answer)
(Prompt)
(Our answer)
(Send back the file)
(Next commands are
generated automatically)

Chapter 11. Application Workspaces 11-111

END OF TRANSMISSION
10 RECORDS RECEIVED

I

TYPEV'B:TEST1'
FIRST LINE
SECOND LINE
LAST LINE

TERMINAL

Q PRT
NO PRT FILES
R;
LOG
(Logoff message)

VM/370 ONLINE

IBM Internal Use Only

(Records sent in blocks
of 10, number given is
rounded up to a mUltiple
of 10)
(\Ve are again under eMS)
(A single I-beam followed
(by ENTER returns to IBM
APL/Personal Computer 2.1)

(Back to terminal state)
(Startup messages here)
(This is a CYIS command)

The VM/370 system is now in receive state. To return to IBM
APL/Personal Computer 2.1, you have to press Esc, then
Ctrl-Break, and then ~.

The terminal opens now, and you are back in IBM
APL/Personal Computer 2.1.

Auxiliary Files on the Host

To be able to use this application, your host system must have
the following files in your minidisk A.

• EDIT EXEC
• The APL workspace OUT
• APL EXEC

11-112 APL/PC; Version 2.1

IBM Internal L'se Only

EDIT EXEC

&CONTROL OFF
CP TERMINAL ESCAPE OFF CHARDEL OFF

LINEND OFF LINEDEL OFF LINESIZE 165
CP SET MSG OFF WNG OFF ACNT OFF
SET BLIP OFF
SET TERMINAL LINESIZE 255
&STACK CASE M
&STACK RECFM V
EDIT &1 &2 &3 &4 &5 &6 &7

Chap~er 11. Application W orkspaces 11-113

IBM Internal Use Only

The APL Workspace OUT

The functions in this workspace can be divided into three
different sets:

• Those that perform EXPORT/IMPORT:

CMSOUT Converts 256-character files into
ASCII -compatible files.

CMSIN Converts ASCII-compatible files into
256-character files.

APLOUT Like CMSOUT, but underscored letters are
replaced by lowercase letters.

APLIN Like CMSIN, but lowercase letters are replaced
by underscored letters.

• Auxiliary to EXPORT/IMPORT:

CIN Used by CMSIN, APLIN

COUT Used by CMSOUT, APLOUT

CASC Used by CMSIN, APLIN, CMSOUT,
APLOUT

XUL Used by APLOUT

XULl Used by APLIN

CMS Used by all four and STACK

• IN/OUT Functions:

IN Equivalent to the) IN command (see "The
FI LE \Vorkspace" on page 11-56).

OUT Equivalent to the)OUT command (see "The
FI LE Workspace" on page 11-56).

11-114 APL/PC, Version 2.1

IBM Internal Use Only

In the function listings on the following pages, some non-APL
characters are included. These characters must be generated
from a 3270 terminal in "APL-OFF" mode. The only
functions containing these non-APL characters are: CAPL,
CIN, COUT, GASC, XUL and XUL1.

Functions:

APLIN APLOUT CAPL
CMSOUT COUT GASC
XULl

eIN
IN

eMS
OUT

V APLIN X;A;SH;N;I;DIO;ASC;Nl;N2;AUX
[1] DIO+O
[2] N+X,' HIO(192'
[3] A+110 DSVO 'N'
[4] +{O~l+A+N)/E
[5] +{A/ 0 1 1 =3+A)/E
[6] CMS 'ERASE ',X,' AIO'
[7J SH+X,' AIO(192 FIX'
[8J A+l10 OSVO ISH'
[9] +(v/ 0 1 1 ~3+SH)/E
[10] GASC
[llJ L:+(O=pA+N)/O
[12J SH+80+XULl CIN A
[13J +L
[l1+J E:' ERROR'

V

CMSIN
XUL

Chapter 11. Application W orkspaces 11-115

IBM Internal Use Only

V APLOUT X;A;B;SH;N;I;OIO;ASC;Nl;N2;AA
[1] OIO+O
[2J N+X,(4 0[' leXJ+' AIO'),'(192'
[3J A+l10 OSVO 'N'
[4J ~(O~l+A+N)/E
[5J ~(A/ a 1 1 =3+A)/E
[6J CMS 'ERASE ',(X+(Xl' ')+X),' HIO'
[7J SH+X,! HIO(192'
[8J A+l10 DSVO ISH'
[9J ~(v/ 0 1 1 ~3+SH)/E
[1 OJ CASC
[llJ L:~(O=pA+N)/O
[12J SH+COUT XUL A
[13J ~L

[14J E: I ERROR'
V

V Z+CAPL X
[lJ Z[('$'=Z)/lpZ+XJ+'~1
[2J Z[(I@I=Z)/lpZJ+'a l

[3J Z[(I#'=Z)/lPZJ+18'
V

V Z+CIN X;DIO;I;J
[lJ OIO+O
[2J X+(I+Ze'"_I)/lpZ+X,«-l+X)e l "_')/' 1

[3J X+(Nl,N2)[«pNl)xZ[XJ=I_I)+ASClZ[X+l]J
[4J Z+(~IvJ+-l~I)/Z
[5J Z+(~I+(~J)/I)\Z
[6J Z[I/1.pIJ+X

\/

\/ CMS X;CP;I
[lJ CP+'CMS'
[2J I+l00 DSVO 'cpr
[3J CP+X
[4J I R' , «fiCP) , I ; f

\/

11-116 APLjPC, Version 2.1

IBM Internal Use Only

~ CMSIN X;A;SH;N;I;DIO;ASC;N1;N2;AUX
[lJ DIO+O
[2] N+{(Xl' ')+X+CAPL X),, HIO(192'
[3] A+ll0 DSVO 'N'
[4] +(O~l+A+N)/E
[5] +{A/ 0 1 1 =3+A)/E
[6] CMS 'ERASE ',X
[7] SH+X,'(192 1

[8] A+l10 DSVO 'SHI
[9J +{v/ 0 1 1 ~3+SH)/E
[10] CASC
[11J L:+{O=pA+N)/O
[12] SH+CIN A
[13J +L
[14J E: IERROR'

~

~ CMSOUT X;A;B;SH;N;I;DIO;ASC;N1;N2;AA
[lJ DIO+O
[2J N+(X+(Xl l ')+X),«Xl' ')~X+CAPL X),'(192 1

[3J A+l10 OSVO 'N'
[4J +(O~l+A+N)/E
[5J +(A/ 0 1 "1 =3+A)/E
[6J CMS 'ERASE ,,X,, HID'
[7J SH+X,' HIO(192'
[8J A+110 DSVO 'SH'
[9J +(v/ 0 1 1 ~3+SH)/E
[10] CASC
[llJ L:+(O=pA+N)/O
[12J SH+COUT A
[13J +L
[14J E:' ERROR I

~

Chapter 11. Application W orkspaces 11-117

IBM Internal Use Only

V Z+COUT X;I;J;DIO
[lJ DIO+O
[2J Z+ ,X
[3J X+~Z€(~ASC€DAV[23 30J)/ASC
[4J I+,~(2,pI)pl"_r[I~pN1J;(ASC,ASC)[I+(N1J

[5J
[6J
[7J
[8J
[9J
[10J

V

V
[lJ
[2J

[3J

[4J

[5J

[6]

[7]

[8]

[9]

[10]

[11J

'iJ

N2) lX/ZJ
Z+(~X)/Z
J+(~X)/O,-l~+\X+l
X+((+/X)+pX)pO
X[JJ+l
Z-E-X\Z
Z[(~X)/lpXJ-E-I

GASC;DIO
DIO+O
ASC+' ',DAV[23J,'#$%&"()*+,-./01234567
89:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ASC-E-ASC,'Jabcdefghijklmnopqrstuvwxyz',
DAV[30]
Nl-E-OAV[O 248J,'g',DAV[224 244 229 249
12 225 11 245 230 246 226J
Nl-E-Nl,DAV[231 234 251 227 247 232 2224
25 228 233 237 238 31J .
Nl-E-Nl,OAV[15 14J,'~~',DAV[(1+18),(16+14
21,(26+14),(32+13),131]
Nl-E-Nl, 'li' ,DAV[30] , 'KX~~-IQ_··'i]~awnuc::>Ixf
rLIAV~Ir:J''5.~'
N2~'~!pl€iT~~ef\\m~~~~?+D~~~O[R',DTC[O
1]
N2~N2,'YMN',DAV[240 239],'QQ',DAV[241J,
, E'gJll!.i.' ,OAV [20] , , QK' ,DAV [21 9 220 J
N2~N2,'~',DAV[222 223 242J,'EB§X',DAV[
243J,'K',DAV[(203+14), 235 236J
N2~N2,DAV[(207+112), 221 250 23 252 253
254 255 132 13]

11-118 APL/PC, Version 2.1

IBM Internal Use Only

[1]
[2]
[3]
[4J
[5J
[6J
[7J
[SJ
[9J
[10J
[11J
[12J
[13J
[14]
[15]
[16J
[17J
[18J
[19J
[20J
[21J
[22]
[23]
[24J
[25]

[26J
[27J
[28J
[29]
[30J
[31J
[32J
[33J
[34J
[35]

'iJ ~B+L§ IN §Hl;~K2;~KM;~KA;~Kl;DPP;DIO
DPP+15+DIO+l+ZR+0

'iJ

§li1+§lil,«~' ';§lil)/' AIO'),'(192 FIX'
DWA+110 DSVO 'SH1'
+(O~l+~Hl)/O --
ZR+l
~(0=Pbt§)/~KL2
~B+(l+pL§)pO

~KL2 : ~KA+ I I

~KL3:+(O=p~Kl+§Hl)/O
ZXA+ZXA,l~ -8 0[1+(1+ZX1)elCE'J~80+ZXl
~«1~ZX1)E' C')/ZXL3 -- --
ZXM+(ZXA\' ')~ZXA-
ZXA+(ZXAl l ')+ZXA
~(O=pL~)/~KL1 --
+«p~KA»2+1~Pbt~)/~KL2
+(~lE~~A.=(l~Pbt§)+1~~KA)/~KL2

ZXL1:ZX1+m(ZXMt' ')+ZXM
-~KM+(~KM1'-I)~~KM -

ZX2+\0
~KL4:+(~Kl=O)/~KL5
ZX2+ZX2,~(ZXM\' ')+ZXM
~KM+(ZKM11-1)~~KM --
+~KL4,~K1+~Kl-1

ZXL5:+(fFC'=1+ZXA)/ZXL6,ZXL7
-;(l+~KA),'+',(;~K23:«0;~~K2)/'p'),~KM,
(0~p~K2)/' 0 1

+~KLS
~KL6:~Kl+' '=O\OpDFX ~K2p~KM
+ZXL9

ZXL7:+(A/'DFC'=3+1+ZXA)/ZXL8
-;(1~ZKA),'+',(~~K2):«0;p~K2)/'p,),'~KM'
ZXLS:ZX1+1
~KLg:~(Oep~§)/~KL2
~B[(L~A.=(l~pL~)+l+ZKA)\lJ+~Kl
+(O=PI!§)/~KL2
+(Oe~H)/l!KL2

Chapter 11. Application \Vorkspaces 11-119

[1]
[2]
[3]

[4]
[5]
[6]

[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

IBM Internal Use Only

V ~B~~KM OUT ~~l;~KA;~Kl;DPP;CMS

\J

DPP~16

~("'OEp~KM)/~KLl
~KM~(A/~KMv.~«-ltp~KM),3)t~ 3 3 p'OUT
~Hl~KM')f~KM~DNL 2 3
ZXL1:ZR~O~DNC ZXM
~KLO:~(o=p~KM)70
~KA~lt«~Kl~3=DNC ~KM[DIO;J)/'F'),'CN'[
OIO+-ltm'0',(2=DNC ~KM[OIO;])/',m"o=o\
Op',~KM[DIO;],'" ']
~Kl~~(~Kl/'DCR" I),~KM[DIO;],~Kl/rtr t

~KA~~KA,«r '~~KM[OIO;])/~KM[OIO;]),
, r, (i!> (P p ~K 1) , p ~K 1) " ", <f5 ~K 1
~KA~«(-1+1tp~KA)p' '), 'X'),~KA~(~Kl,
79) t ((~K 1 ~ r (p ~KA) .. 71) , 71) P ~KA , 71 p' ,
~(2=DSVO '~~1')/~KL2
CMS~'CMS'
OWA~100 DSVO 'CMS'
CMS~'ERASE ',~Rl,' AIO'
, R' , (<f5C11lS) , , ; ,
~Hl~~Hl,' AIO(192 FIX'
DWA~110 DSVO r~Hlr
~(O~lt~Hl)/'~~B~OI

~KL2:~Hl~~KA[OIO;]
ZXA~ 1 0 -4-ZXA
:;(0~ltP~KA)7~KL2
~KM~ 1 0 -4-~KM
~~KLO

\J R~XUL X;I;J
[lJ J~26~I~'~~QllgEQHIlKLMNQEQB~rYENKI~'lR~

,X
[2J R[J/lpRJ~'abcdefghijklmnopqrstuvwxyzt[

J/IJ

11-120 APL/PC, Version 2.1

IBM Internal Use Only

" R+XUL1 X;I;J
[lJ J+26~I+'abcdefghijklmnopqrstuvwxyz'\R~

,X
[2J R[J/lpRJ+'~§QQ~EQHliK~MNQfQB~rg~N~l~'[

J/IJ

Accessing Host APL

You should consult your local installation personnel for
guidence in accessing host APL (e.g. VS APL Release 4,
Program Product 5748-APl). In general, certain eMS
minidisks may need to be linked, which may require special
authorisation or passwords.

Chapter 11. Application Workspaces 11-121

IBM Internal Use Only

Notes:

11-122 APL/PC, Version 2.1

IUIVI Internal Use Only

Chapter 12. Auxiliary Processors

The Non-APL Program Interface Auxiliary
Processor: AP2 12-4

Basic Functions 12-5
Auxiliary Functions 12-8
Sample AP2 session 12-9
Return Codes (Returned through the control
variable) 12-9

The Printer Auxiliary Processor: AP80 12-10
Patching AP80 for Other Printers 12-12

The Stack and Profile Auxiliary Processor: AP101 . 12-14
Error Return Codes 12-17

The BIOS/DOS Interrupt Auxiliary Processor:
API03 12-18

BIOS/DOS Interrupt Function Call 12-19
I/O Port IN/OUT Request 12-22
Joystick Algorithm 12-23

The Full Screen Management Auxiliary Processor:
AP124 12-24

AP124 Operation 12-24
Error Return Codes 12-33

The Host Communications Auxiliary Processors:
AP190 and AP190I 12-34

Possible uses for AP190 12-35
Getting Started 12-35
Sending Keystrokes 12-35
Setting Keyboard Translation Table 12-36
Getting Host Status 12-36
Getting the Physical Screen 12-36
Get the Operator Information Area 12-37
Simulate a Power On Reset 12-37
(Jet Cursor Position and Beep Indication 12-37
Get the Keyboard Translation Table 12-37
Get the Screen Format Array 12-38

The Full-Screen Auxiliary Processor: AP205 12-38
The Graphic Auxiliary Processor: AP206 12-39

Storage Management 12-39

Chapter 12. Auxiliary Processors 12-1

IBM Internal Use Only

Parameters 12-40
Use of AP206 12-47
Functions 12-48
Return codes 12-53

The File Auxiliary Processor: AP210 12-53
Control Commands 12-54
Control Subcommands 12-57
AP210 Return Codes 12-59
Examples of use 12-60

The Asynchronous Communications Auxiliary
Processor: AP232 12-62

Control Commands 12-63
The Extended Asynchronous Communications
Auxiliary Processor: AP232X 12-69

Hardware Notes 12-70
AP232X Operation 12-70
AP232X Return Codes 12-75

The Music .A.uxiliary Processor: AP440 12-76
AP440 Command Syntax 12-77

The IBM GPIB Support Auxiliary Processor: AP488 12-79
Description of AP488 Functions 12-80

Notes:

12-2 APL/PC, Version 2.1

IUM Internal Use Only

The auxiliary processors discussed in this chapter are:

• AP2 - Non-API., progranl interface
• AP80 - IBM Graphics Printer control
• APIOI - Stack and profile
• API03 - BIOS/DOS interrupt handling
• AP124 - Full-screen display n1.anagernent
• API90 -] 3M 3278/79 elnulation card communications
• AP190I - IRMA 3278/79 ernulation card cotnmunications
• AP205 - l~"ull-screen display management
• A P206 - Graphics
• A P21 0 - DOS file management
• AP232 - Asynchronous conununications
• AP232X - Extended asychronous communications
• AP440 - Music generator
• AP488 - GPIB/IEEE488 interface

Each aux,iliary processor requires storage space in addition to
that required for APL and the shared variable processor
($SVP). When you start APL with at least one auxiliary
processor, the shared variable proceSSOf is loaded with it. If
you load rtlore than one auxiliary processor, only one copy of
the shared variable processor is loaded. (Shared variables are
described in Chapter 7, "Shared Variables").

N ole: The shared variable processor supplied with APL/ PC
2.1 has a litnit on the nlaxirnum size of objects it can handle of
32512 bytes. Passing larger objects to Of from auxiliary
processors will give unpredictable results.

The following table gives approximate sizes for the APL, the
auxiliary processors and other modules. EXAPL (dyadic
fonnat) and $SCR are autornatically loaded by APL, so their
coulbined size is given. The shared variable processor, $SVP,
and the 8087 ernulator, $8087, are autofilatically loaded by
APL if they are required.

Olapter 12. Auxiliary Processors 12-3

Module

APL+EXAPL+$SCR
$SVP
$8087
AP2
APBO
APIOI
API03
AP124
AP190
AP190I
AP205
AP206
AP210
AP232
AP232X
AP440
AP488

IBM Internal Use Only

Approximate
Size (K-bytes)

7B.l
3.4
7.6
3.2
3.1
1.2
0.7

12.4
2.1
2.2
8.3

10.2
2.9
5.0
2.7
0.8
2.7

rrlle N·on-APL Prograln Interface
Auxiliary Processor: AIJ 2

This processor is designed to load and execute non-APL
program.s written either as programs that can be executed from
the DOS conlmand processor, or as APL functions (Exchange
Assembly programs).

The AP2 processor acquires special areas of memory frOIn the
APL workspace, called partitions, where programs can be
loaded and executed, and non-executable files may be loaded.

The processor exchanges information with APL through three
shared variables:

1. Control variable (the name of which must begin with the
letter C).

2. Two data variables (whose names must begin with D and
E, respectively).

12-4 APLjPC, Version 2.1

IBM Internal Use Only

In the control variable the desired function to be perfonned is
specified, while other parameters are passed through the data
variables.

U pan return, the control variable contains the return code (see
the Return Codes table) and the data variables will contain the
objects generated through the appropriate function.

The functions which can be used are divided into 2 groups:

• Basic Functions

• Auxiliary Functions

Basic :Functions

The basic functions are used for acquiring space, loading,
executing and unloading programs or files, and returning space
to APL. They rnay be performed either separately or in
combination, by using the following format (where brackets
enclose an optional argulnent):

C~pllp2Ip3[lp4[,P5JJ

where:

• pl I p2 are the nUlnbers from 1 to 5 corresponding to the
initial and final basic operations the user wants to execute.
(If just one operation is required, both numbers will be the
saIne). The basic operations and the order of their
execution are:

1. Acquisition of mernory and assignment to a partition

2. Loading programs/files into the acquired memory

3. Execution of the loaded progratn

4. Unloading the loaded prograrn/file

5. Freeing nlemory and returning it to APL

Chapter 12. Auxiliary Processors 12-5

IB1\1 Internal Use Only

• p3 - the number of the partition to be used

• p4 - the type of the file (this parameter is required if
operation 2 is being requested. It will be ignored in all
remaining functions):

1: Non-executable file

2: Auxiliary processor

3: Exchange-assetnbly program

4: Standard DOS program

• p5 - the restore information for execution. This parameter
is applicable to type 3 and 4 files, and n1ay be given if
operation 2 is being requested. It will be ignored with all
remaining functions and file types:

0: Neither the interrupt vector nor the program code are
restored after execution of these programs. The
programs are assumed not to destroy the interrupt
vector.

1: The interrupt vector is autonlatically restored after
execution of these programs. The program code is not
restored.

2: The prograln code is automatically restored after
execution of these programs. They therefore become
reusable. (This is applicable, for instance, to the
Personal Editor). However, the interrupt vector is not
restored, and is assumed to be maintained by execution
of the program.

3.: Both the interrupt vector and the program code are
automatically restored after execution of these
programs.

The default value of this parameter is O.

Notes:

12-6 APL/PC, Version 2.1

IB1\1 Internal Use Only

1. -VVhen executing basic operation 1 (acquisition of nletnory)
without function 2 (load), the nurnber of paragraphs of 16
bytes to be acquired nlust be specified in the variable D.

2. When executing basic operation 2, it is always necessary
that variable D contains the file specification (i.e.
D+' Cd:]fi1ename[. ext]' or
D+' [1 ibn] f i1 ename [• ext] , , where 1 ibn is an
APL library number). For file types 2-4, if the extension is
omitted, COM is assumed. If the file is not found, the
operation is retried with an extension of EXE.

3. With the auxiliary processors (file type 2), only t\vo types
of basic operations are permitted: loading
(C+l,3 ,p, 2), or unloading (C+4, 5 ,p), where p is the
partition number.

4. When exchange-assembly programs (type 3) receive
control, positions 80H and 82H of the segm.ent prefix
contain seglnent pointers to the addresses of variables D
and E. That is to say, the value of D is at [DS:80] :0, and
the v~lue of E is at [DS:82] :0. (The seglnent prefix is at
DS:O, according to DOS rules). When control is returned
to AP2, the processor tests the values of the objects
pointed to by those sanle positions (80H and 82H at the
segment prefix). If they are valid APL objects, they are
passed to APL through shared variables D and E,
respectively, and the butTers are freed. If either of these is
not a valid APL object, the value will not be passed to
APL. In this case, it is the responsibility of the
exchange-assembly program to free the respective buffers
by means of interrupt X'B6').

5. When executing standard DOS programs (type 4), the
value in variable E (if any) is passed to the DOS program
as a pararneter string. The value is assumed to be of type
literal.

Example: To call the Personal Editor with an initial file
natne (i.e. equivalent to PE B:FI LE.EXT under DOS) the
literal 'B: FILE. EXT' would be passed through variable
E.

Chapter 12. Auxiliary Processors 12-7

IBM Internal Use Only

6. Insufficient storage allocated to a partition for a program
to execute in will lead to the loss of your APL session.
Some programs grow into storage below themselves, and
sufficient storage should be allocated to allow for this.
DOS provides no memory protection facilities. Similarly,
pro graIns expecting the entire memory to be available to
them such as MASM 2.0 will cause problems.

7. Prograrns to be executed using AP2 should not use the
DOS 4A or 4B functions.

8. Ctrl-Break will be disabled by AP2, so programs to be
executed using AP2 should not rely on this being available.

Auxiliary Functions

C + O[,pJ

This function returns the state of the partition specified in the
parameter or of all partitions, if onutted. Variable E returns
the name and extension of the file contained in the partition, if
any. Variable D returns 4 pararnetcrs per partition:
compound type of file in the partition, start address in
paragraphs, length of the partition in paragraphs, and actual
length used by the file, in paragraphs. For auxiliary
processors, this last information is replaced by the processor
identification number if sign-on to the SVP was performed
successfully.

The compound type of a file is a two digit decimal integer.
The first digit is the type of the file; the second one is the
restore infornlation for execution.

Example: a compound type of 31 rneans the file is of type 3
(exchange program) and the interrupt vector is automatically
restored after execution.

C + -l,parameter.

This function unloads and frees the memory of all the
partitions and establishes a new maximum number of

12-8 APL/PC, Version 2.1

IBM Internal Use Only

partitions with the value specified in the paralneter. The valid
range of values for parameter is from 1 to 100.

Salnple AP2 session

1 1 1

2 2 2

0

o

o

R Share with AP2
2 DSVO 3 lp'CDE'

R Verify the share
DSVO 3 lp'CDE'

R Request 20K bytes
D+-r20480f16

of memory

C+-l 1 1
n 1 l=Get Memory, in partition 1
A Check return code
C

R Allocation succeeded
R Define name of the program to load
D+'PROGRAM'
C+2 2 1 4 3
R 2 2=Load, Partition 1, 4= std DOS,
R 3=Restore interrupt and program code
C

R Pass argument to progz'am
E+'ARGUMENT',OTC[2]
C+3 5 1
R 3=Execute, 5=Free memory, l=Partition
C

Return Codes (Returned througb the control
variable)

Code
o
2
3

Meaning
- Success
- File not found
- Path not found

4 - No file handles
5 - Access denied
8 - Insufficient memory for file handles

15 - Invalid drive
21 - Drive not ready

Chapter 12. Auxiliary Processors 12-9

23 - Data error
25 - Seek error
27 - Sector not found
30 - Read fault
31 - General failure

IBM Internal Use Only

-1 - Data variable D required and not shared
-2 - Invalid object in the control variable
-3 - Invalid object in data variable D

4 - Non-executable file requested as executable
- 5 - Loading of this prograrn is expressly prohibited
- 6 - Program to be loaded is larger than partition

- 2 6 - Insufficient memory to process request

The following return codes will only occur as a result of
attempting to pass a previously freed exchange-assembly
object:

-1001 - Unable to free space allocated to C
-1002 - Unable to free space allocated to D
-1003 - Unable to free space allocated to E

rrhe Prillter Auxiliary Processor: AP80

The AP80 auxiliary processor can be accessed from APL on
the IBM Personal COlnputer and provides a way to control the
IBM Graphics Printer frotn APL functions. It allows you to
specify the printing parameters and to print character strings.
The entire APL character set is supported.

To use this auxiliary processor, you must include AP80 as a
parameter to the APL command at load time before you begin
an APL work session. For example,

APL AP80

Alternatively, it may be loaded through AP2.

Ar80 must be loaded to allow any use of the printer from
within APL.

12-10 APL/PC, Version 2.1

nU\1 Internal Use Only

The following APL line must be executed before the auxiliary
processor can be used:

80 DSVO 'name'

\vhere name is the narne of the APL variable being shared with
the auxiliary processor.

The result of the preceding line will be a 1 if the variable name
has been accepted by the auxiliary processor. This processor
accepts only one variable.

The following line must be executed next:

DSVO 'name'

The execution of this line must give a result of 2. If not, the
auxiliary processor is not active, or a different variable has
been shared with it and has not been retracted.

Any chai'acter string (vector or scalar) assigned to the variable
defined by name, will be interpreted as a conillland to the
auxiliary processor.

I f the first character in the string is DA V [D.I 0 + 255], the
remaining characters in the string are sent to the printer in
alphan1eric mode. In this way, printer control codes can be
included and executed. The printer control codes that may be
used are listed in the PRINT_GEN function in the PRINT
workspace.

When a new-line character is found, the print head returns to
the beginning of the saIne line. A line-feed character sends the
print head to the beginning of the next line.

If the first character in the string is not OAV[DIO+255], the
whole string is printed as given. A new-line character sends
the print head to the beginning of the next line, as does a
line-feed character.

Therefore, a character can have a dual function, depending on
the selected printing nlode.

Chapter 12. Auxiliary Processors 12-11

Exanlple:

1

2

DIO+-1
80 OSVO 'X'

DSVO 'X'

IBM Internal Use Only

Variable X has been offered to, and accepted by, AP80.

X+-'ABCD' ,OTC[2]

The printer prints the string ABCD followed by a return to the
beginning of the next line (caused by the New line character,
OPC [2], in one-origin).

X+DAV[256159],'E'

Set enlphasised mode (printer control code).

X+-' ABeD' ,DTC[2]

The printer prints the string ABCD in emphasised mode,
followed by a new line.

OSVR 'X'
2

Finally, the variable is retracted.

If the value of OPW is less than or equal to 80, nonnal
characters are printed. Otherwise, compressed mode is used
and the printable line length is increased from 80 to 132. This
affects all three modes of using AP80: screen copy, screen log,
and direct printing through a shared variable.

Patching AP80 for Other Printers

I AP80 can be patched for use \vith Graftrax, the IBM 5182
I Colour Printer, the IBM 3852-2 Colour Ink Jet Printer, or for
I wide printers such as the FXlOO and MXIOO printers.

I To apply a patch to the copy of AP80 on the default drive, the
I following procedure nlay be used:

12-12 APL/PC, Version 2.1

IBM Internal Use Only

APl AP210
)IN FILE
APLPATCH 'AP80GRAF.PAT'

I where AP80GRAF.PAT is the name of the DOS file
I containing the required patch.

I Patch for Graftrax (AP80G RAF.PA T):

I Addr Old New
1347 2B 56 Different setup for compressed print
I 35A 59 4C Change graphics mode from "Y" to "l"

The accented national characters and SOIne of the other special
characters cannot be printed, but the normal APL characters
should print correctly.

I Patch for IBM 5182 Colour Printer (AP805182.PAT):

I Addr
1367
1368
136E
I
I

Old New
99 OF
04 07
03 05

Point to different
character table (optional)

Modify character spacing (Note that
compressed print does not work
correctly with the IBM Colour Printer)

I Patch for IBM 3852-2 Colour Ink-Jet Printer
I (AP803852.PAT):

I Addr Old New
1347 2B 56
135A 59 4B
136E 03 01
I 3BO 4C 4B
I 3C4 02 01

Different setup for compressed print
Change graphics mode from ny" to "K"
Modify character spacing
Change graphics mode from "l" to "K"
Modify character spacing

I Patch for }"XI00jMXI00 type printers with wider print lines
I (AP80FXMX.PAT):

Chapter 12. Auxiliary Processors 12-13

IBM Internal Use Only

I Addr
1344
1353
137E
13A9

Old New
50 84
50 84
84 D2
84 D2

Switch to compressed mode at DPW>132
Max length of normal line = 132
Max length of compressed line = 210
Max length of compressed line = 210
(Graftrax) I

I Note: The addresses given above are for the APL PATCH
I function in the FI LE workspace. To use the DOS DEB U G
I program, add X' 100' to each address.

The Stack and Profile Auxiliary
Processor: APIOI

APIOI is an auxiliary processor to support the following
functions:

• Input line stack. Lines added to the stack are provided as
input for subsequent requests for input, in the same order
they were given. 'The default size of the stack is 1024
bytes.

• Function-key definition.

• Library definition. Up to 30 APL libraries with nunlbers
from 1 to 30 may be defined to various DOS directories or
sub-directories. APL file corrunands ()LIB,)LOAD,
)SA VE,)DROP,)IN and lOUT) will work automatically

with these libraries. The two file auxiliary processors,
AP210 and AP2 will also allow the use of these library
numbers.

• Screen-keyboard mode change. The screen may be defined
as monochrome or one of the colour monitor modes. The
keyboard may be defined to be APL or National.

The auxiliary processor must be invoked at APL load time in
the following way:

12-14 APL/PC, Version 2.1

IBM Internal Use Only

APl APIOI

or it may be loaded dynamically by nleans of AP2.

A variable is shared with APIOl in the usual way. Once the
variable has been accepted by APIOl, the following commands
are recognised (the name of the shared variable is assumed to
be X):

• X + 'ST any char string'

Inserts the character string in the input line stack. The
string may contain new-line characters, which will provide
each of the corresponding lines as input when input is
subsequently requested.

• X + 1ST'

Clears the stack of all lines previously ad.ded to it.

• X + I Fn any char string'

Where n is a number from 1 to 30, d.efines the
corresponding function key to produce the given character
string. New lines may also be included in the string to
produce inlffiediate execution. There is a maximum length
of the function key string (new line characters included).
I ts default value is 15.

}-:"l-lO are the normal F-keys. F11-20 are the same keys,
together with the shift key. F21-30 are again the same
keys, together with the Ctrl key.

• X + 'Fn I

U ndefines function k.ey number n.

• X + 'Fa I

U ndefines all function keys.

• X + 'F?'

Chapter 12. Auxiliary Processors 12-15

IB1\1 Internal Use Only

Returns in X the current definition of the F -keys, as a
matrix with 30 rows and as many columns as the current
nlaximum.

• X -+- 'Ln directory string'

Where n is a number from 1 to 30, defines the
corresponding library number to refer to the given
directory string. Both drive definitions and sub-directories
may be included in the string, which should end with a
"\". (For exarnple: "e: \SUBl \SUB2\"). There is a
maximurn length of the directory string. Its default value
is 15.

• X-+-' Ln'

Restores library number n to its default state. If n is a
library number that corresponds to a valid PC DOS drive
id, then it will recover its default mapping. (e.g. library 1 is
"1\:",2 is "B:", 3 is "C:", etc.).

• X-+-' LO'

Restores all library numbers to their default state. All
library numbers that correspond to valid PC DOS drive ids
will recover their default mapping. (e.g. library 1 is "A:", 2
is "B:", 3 is "C:", etc.).

• X -+ I L? I

Returns in X the current definition of the libraries, as a
matrix with 30 rows and as many columns as the current
maxImum.

Where:

m - is a number between 256 and 32767, sets m as the new
size of the input stack butler. The current contents of
the stack buffer are lost. The default size is 256.

12-16 APLjPC, Version 2.1

IUI\-I Internal Use Only

n - is a number between 10 and 100, sets n as the new
maxinlum length for F-key definitions. All current
F-key definitions are lost. The default size is 15.

p - is a number between 10 and 100, sets p as the new
maxirnum length for each library definition. The
current contents of the library definition buffer are
lost. The default size is 15.

A value of 0 for any of these parameters leaves the
corresponding setting unchanged .

• X + n

I f a S;n~ 7, B I OS screen mode n. is selected, if possible. If
the monochrome adapter is not present, nlode 7 will be
rejected with a return code of -3 O. The same win happen
with modes 0-6 if the colour graphics monitor adapter is
not present.

\Vith the help of this function, the user may build a
PROFILE (see the preceding chapter) to initialise APL to
any cne of the supported rnodes.

If n=-l, the APL-on keyboard is selected.

If n=-2, the national (APL-ofl) keyboard is selected.

Error Return Codes

Code 1\11 eaning
a - Success
1 - Invalid object
2 - Object too large

-26 - No space available
-3 a - Invalid BIOS screen mode

Chapter 12. Auxiliary Processors 12-17

IB1\1 Internal Use Only

1-'lle BIOS/DOS Illterrupt Auxiliary
Processor: AP 103

The AP 1 03 auxiliary processor provides an interface to
generate BIOS and DOS interrupts or function calls. This
processor replaces APIOO (included in the Personal Computer
APL System, Version 1.0), and extends its function to include
integer specification of the shared variable and I/O port word
and byte access. A joystick algorithm has also been included
as a special case.

The processor utilises a single shared variable that may have
any valid name.

To nlake the best use of the facilities of this AP, it is advisable
to refer to the PC Technical Reference manual for details of
the processor registers, port addresses and BIOS interrupts.
Refer also to the DOS Technical Reference Manual for details
of DOS calls and interrupts.

To use this auxiliary processor, you must include API03 as a
pararneter to the APL comnland at load tirne before you begin
an APL work session. You may also load it dynamically
through AP2.

For example,

APL API03

The foHewing APL line must be executed before the auxiliary
processor can be used.

103 DSVO 'name'

where name is the narne of the APL variable being shared
with AP 103. The result of the previous line will be a 1 if the
variable name is accepted.

The following line must be executed next.

OSVO 'name'

12-18 APL/PC, Version 2.1

IBM Internal Use Only

I t must give a result of 2. If not, either the auxiliary processor
is not active, or a different variable has been shared with it and
has not been retracted.

BIOS/DOS Interrupt Function Call

Any integer or character vector with at least 17 elements
assigned to the variable nanle, will be interpreted as a
command to the auxiliary processor to generate a BIOS/DOS
interrupt. If integer, all values nlust be positive and in the
range 0-255. If character, it will be considered equivalent to
the one-byte integers that are equal to the position of each
elen1ent in the APL atomic vector (DAV), in zero index origin.

The elerrlents of the vector must contain the following
information:

C[l]
C[2]
C[3]
C[4]
C[5]
C[6]
C[7]
C[a]
C[9]
C[lO]
C[ll]
C[12]
C[13J
C[14]
C[15]
e[16]

C[17]

- Interrupt number
- Al register
- AH register
- Bl register
- BH register
- Cl register
- CH register
- Dl register
- DH register
- SI register low part
- SI register high part
- Dl register low part
- DI register high part
- BP register low part
- BP register high part
- Input: reserved
- Return: low order flags
- Translation options(*)
- Return: high order flags

plus none, two or four of the following additional elements:

C[la] - DS segment low part
C[19] - DS segment high part
C[20] - ES segment low part
C[2l] - ES segment high part

Chapter 12. Auxiliary Processors 12-19

IBM Internal Use Only

* Al register translation options:

Value Input Output

0 as-is as-is
64 as-is ASCII/APl

128 APl/ASCII as-is
192 APL/ASCII ASCII/APl

If elenlent 16 is 128 or 192, AL values are considered as
internal APL characters, and are translated to their ASCI I
equivalents before the interrupt takes effect. If element 16 of
the input comnland was 0 or 128, the return values are passed
as they are. However, if element 16 of the input command
was 64 or 192, the AL values are considered as ASCII
characters, and are translated to their internal APL
equivalents. (See the preceding diagrarn). This feature is to
provide compatibility with the AP 100 auxiliary processor
supplied with APL/PC 1.0 where only characters strings could
be passed to or from the AP. When using the numeric form of
input to API03, the translation option should be ignored, and
its value set to O.

The value returned will be a vector with the sarne type and
nurnber of elenlents as the input. The register values will be
updated to their new values after execution of the interrupt.
The flags will be returned in elements 16 and 17.

Failure to parse the request will be signified by a return code
of -1. Specifying an integer register value outside of the range
o through 255 will cause unpredictable results.

Example of Use:

To read an ASCI I character struck from the keyboard, using
BIOS interrupt 16B and APl03, you can execute the following
function (see the Technical Reference manual for information
about ill as interrupts):

12-20 APL/PC, Version 2.1

IBM Internal Use Only

[0] Z+,INKEY;X;DIO
[lJ DID-E-O
[2] Z+103 OSVO 'X'
[3] Z+DSVO 'X'
[4-] X+22, 16pO
[5] Z+X [1 2J

• Line 1 sets the origin to O.

o Lines 2 and 3 share variable X with API03.

• Line 4 assigns to the shared variable X, the input needed to
address interrupt 16H; that is:

Element 0 is the number of the interrupt desired (22 is
equivalent to X'16').

Elernent 2, the contents of All, is set to O.

Elements 15 and 16 are set to O.

The contents of the renlaining elelnents are not
important.

• Line 5 returns the result of the interrupt:

Elenlent 1 returns the contents of AL, the struck key
code.

Element 2 returns the contents of AH, the key scan
code.

'Vhen you call the function, INKEY, the system stops
processing when line 4 is executed. The system waits for you
to press any key. When you do so, the function returns a
two-element vector: the first elenlent is the key code, and the
second is the scan code (see "Keyboard Encoding and Using"
in the appropriate Personal Con1puter Technical Reference
nlanual).

The INKEY function in the UTI L workspace provides the
same capability as this example. See "The UTI L Workspace"
on page 11-92.

Chapter 12. Auxiliary Processors 12-21

IB1\1 Internal Use Only

Notes:

1. AP100, as supplied with APLjPC Version 1.0 had the ability
to repeatedly issue interrupts with various values of the A L
register. This mode of operation is not supported by AP 103.

I 2. If AP 103 is used to issue a call to BIOS to switch between
I 40 and 80 column modes, it is bnportant that the appropriate
I BIOS equipment flag is changed to reflect this change.
I Failure to do so will cause problems in graphics modes when
I backspacing or inserting characters. The mode may be safely
I changed using AP J01, API 24 or AP206.

I/O Port IN/OUI' Request

This function is designed to permit a user defined function to
read from or write to specific hardware ports with either byte
or word data.

C -+- DH,DL,AL
Perform a byte OUT command.
Return: always O.

C -+- DH,DL,AL,AH
Perform a word OUT cornmand.
Return: always O.

C -+- DH,DL
Perform a byte IN command.
Return: value of AL register.

C -+- 1 2 p DH,DL
Perform a word IN command.
Return: value of AX register.

If any of the register values are not in the range 0-255,
unpredictable results will occur. Failure to parse the command
will result in a return of -1.

12-22 APL/PC, Version 2.1

IBM Internal Usc Only

J oystic){ Algoritlull

In addition to the above functions, a special case has been
included in this AP to permit the scanning and calculat.ion of
the position of devices attached to the Games Control Adapter
(e.g. joysticks or paddles).

This function clears the port and then scans it for a change,
calculating the joystick position in a convenient way for APL
processing.

It should be noted that it is the responsibility of the user
defined {unction to issue the call at regular enough intervals to
permit timely interception of changes in joystick requests.

Syntax of this function is:

C +- 1 2 p 2 1

(0201 H is the Games Adapter port).

Return code in C:

C [1] - Joystick-A X Co-ordinate
C [2] - J oystick-A Y Co-ordinate
C[3] - Joystick-B X Co-ordinate
C[4] - 10ystick-B Y Co-ordinate
C [5] - 10yst.ick-A Button 1
C[6] - 10ystick-A Button 2
C[7] - loystick-B Button 1
C[8] - 10ystick-B Button 2

If it is not possible to obtain enough space to generate the
above return code, the result will be -2.

Chapter 12. Auxiliary Processors 12-23

IBM Internal Use Only

Tile Full ScreeIl]\tlallagement Auxiliary
Processor: AP124

This auxiliary processor allows you to control the screen from
an APL defined function. It permits your application to:

• Write to the formatted screen.

• Read fronl the formatted screen.

• Copy screen images to a printer.

• Produce colours, highlighting, reverse video, etc.

• Control the keyboard translation.

• Enter" Inkey" mode to trap single key interrupts.

• Run asynchronously.

• Define up to 100 fields.

AP 124 requires two shared variables: a data variable, (whose
name nlust start with a "D"), and a command-control variable
(whose nan1e must start with a "C"). These variables may be
shared in any order but only one pair is allowed.

AP124 Operation

In the following, the physical screen is the adapter card screen
rnemory, and the logical screen is a buffer in normal melnory
containing a copy of the screen contents. Operations are
performed nonnally on the logical screen, the information of
which is transferre.d to the physical screen (i.e. the physical
screen is refreshed) by certain calls (Read and Wait, Immediate
vVrite).

12-24 APL/PC, Version 2.1

IBM Internal Use Only

Clear Screen/Change Mode

Syntax:

Ct 1 ~o - Clear screen.
Ctl+-O ,Mode - Clear screen and change display mode.
Both the logical screen and the physical screen are cleared.

where Mode is an integer from 0 to 7.

o = 25 x 40 Black and White Alpha.
1 = 25 x 40 Colour Alpha.
2 = 25 x 80 Black and White Alpha.
3 = 25 x 80 Colour Alpha.
4 = 200 x 320 Colour Graphics.
5 = 200 x 320 Black and White Graphics.
6 = 200 x 640 Black and White Graphics.
7 = 25 x 80 lVlonochrome Display.

Format the Screen into Fields

Syntax:

Dat~n by 6 numeric array

ctl~l - Format the screen.

ctl~l ,Field_number(s) - Refonnat field(s).

This call permits you to divide your logical screen into
rectangular areas known as fields. Each field is defined in
ternlS of its offset [rorn the left hand corner of the screen, its
depth and its width. You must also indicate whether the field
is input or input/output and its display "attribute".

Exanlple:

Dat~l 6pl0 5 1 1 0 7

Chapter 12. Auxiliary Processors 12-25

IBl\1 Internal Use Only

defines a field in the tenth ro\v, fifth colurnn, one high, one
wide. The field has a type of input/output and attribute is
normal.

lIint: To provide a complete background colour, define field 1
of your array as 1 1 1, n , 2 , c, (where (where n is either
1000 for 40 column modes, 2000 for 80 column modes) and c
is the background colour attribute, e.g. 31 will give blue.

This is possible because this implementation of AP124 permits
fields to overlap. Fields defined in the format nlatrix may
overlap fields already defined by previous rows of the matrix.

The special case of a 1000 or 2000 character long field covering
the entire screen also sets the border colour to the sanle
attribute setting.

The six elements of each row of the format array are defined
as:

1. Start row of the field

2. Start column of the field

3. Field height

4. Field length

5. Field type: either 0 (Input/Output) or 2 (Output only).

6. Field attribute: an integer between 0 and 255. The
following are some attribute examples applicable to the
monochrome and the colour n10nitor in the alphanunlCric
modes (see the IBM Technical Reference Manual for full
details):

a - No display
1 - Underlined
7 - Nornlal
9 - llighlighted underlined

15 - Highlighted
112 - Reverse video

12-26 APLjPC, Version 2.1

IBM Internal Use Only

120 - IIighlighted reverse video
12 9 - Blinking reverse video
13 5 - Blinking normal

Immediate "Vrite of Data to Screen

Syntax:

Dat~n by max_length array of character
data

Ctl~2JField_number(s)

where n is the nurnber of fields you are writing data to. This
call pernlits you to write data to the logical screen. The data
are transferred inunediately to the physical screen.

max_l ength is the maximum length of the requested fields,
i.e. the total number of characters in the longest field.

Read and Wait

In norn1al operation, the physical screen is refreshed. Then,
either the auxiliary processor waits for a certain key to be
pressed, or it returns to APL with information on whether a
key was pressed.

Syntax:

Ctl+3
or,
Ctl~3 0

Allow interactive input and return to APL when a special key
I is pressed. (See table below for return values). Assigning the
I control variable a scalar value of 3, or the two element vector
I 3 0, are cornpletely equivalent.

Ctl~3 1

Chapter 12. Auxiliary Processors 12-27

IBM Internal Use Only

Return to APL when any key is pressed.

Ctl+3 2

Test for a key pressed.

Ctl+3 3

Return to APL when any key except a cursor movelnent key is
pressed. ("Semi-inkey" mode).

If any of the above calls has 3 elements, this indicates the
auxiliary processor to inhibit refreshing the physical screen.

Return from this call: Dat is a vector of at least 5 elements:

Dat [1 2] For call 3 0, a code indicating the special key
pressed to return to APL. For calls 3 1, 3 2 and
3 3, the BIOS scan code. (For call 3 2, if no key
has been pressed, return is -1 -1).

Dat [3] Field nurnber where the cursor was located at
return to APL (0 = the cursor was not in a field).

Dat [4 5] Cursor position within that field.
(Row/Colurnn). If Field nunlber is 0, these
elements give the offset from top-left of the
screen. Offsets are given in one origin, i.e. 1 1
specifies the top-left corner of the field.

Dat [6 •••] List of fields updated during this call.

List of special keys and key return codes for the 3 ° case:

o 0 - Enter key (New line key)
o 1 - Enter key 2 (Large plus key)
1,N - F key (\Vhere "N" (1S;N~30) is the nurnber of the key

that was depressed. 1-10: normal F-keys; 11-20: F-keys
in shift mode; 21-30: F-keys in Ctrl mode).

4 1 - Esc
4 2 - Ctrl Break
6 1 - HOine

12-28 j\.PLjPC, Version 2.1

IBM Internal Use Only

6 2 - End
6 3 - Pg Up
6 4- - Pg Dn

While AP124 is in the 3 0 "Read and Wait" state, the user
may type on the screen. The cursor movenlent keys rnay be
used in the normal way. Three other keys have special
functions:

Ctrl-Backspace This key will toggle the keyboard between
APL and National modes.

Ctrl-End

Ctrl-Honle

This key will clear to the end of the field.
However, if the field has less than 80 columns,
only the current line will be cleared to its end.

This key will clear from the cursor to the start
of the field. lIowever, if the field has less than
80 columns, only the current line will be
cleared to its beginning.

Delayed \Vrite of Data to Screen

Syntax:

Dat+n by max_length array of character
data

ctl+4-,Field_number(s)

where n is the number of fields you are sending data to. This
call permits you to write data to the logical screen, which will
be displayed at the next refresh of the physical screen.

max_l ength is the nlaximum length of the requested fields,
i.e. the total nunlber of characters in the longest field.

Chapter 12. Auxiliary Processors 12-29

IB~f Internal Use Only

Get Data from the Logical Screen

Syntax:

Ctl~5,Field_number(s)

Return: Dat is a character array with so many rows as the
nUlnber of fields requested, and so many columns as the
maximum field length (field length is the total nUlnber of
characters in a field).

This call enables you to read data frorn the logical screen.

Update I~ield Types

Syntax:

Dat~New field Type(s)
Ctl~6,Field_number(s)

where the new type is a number:

o - Field is input/output.

2 - Field is output only.

This call updates column five of the format array previously
specified for the indicated fields.

Update Field Attributes

Syntax:

Dat~Attribute(s)

Ctl<-7,Field_number(s)

The new attribute is an integer from 0-255. See "The AP124
Workspace" on page 11-8, or the Technical Reference
Manual, for more information on attributes.

12-30 APL/PC, Version 2.1

IBM Internal Use Only

Control and Infornlation Request

Syntax:

ctl+-8 - Set to APL Keyboard.
Ctl+-8 0 - Set to APL Keyboard. (Same as Ctl+-8).
Ctl +8 1 - Set to National Keyboard.
Ctl +-8 2 - Return Status.

Return:

Dat [1] - Keyboard in APL mode.
Dat [2J - Monochrome Adapter installed.
Dat [3 J - Colour Adapter installed.
Dat [4J - Beep request pending.

Syntax:

ctl +-8 3 - Give address of Logical screen.

This call is designed for use by advanced programmers. The
return is a integer vector 'with the requested address encoded
as:

Addr+-(16x256iDat[1 2J)+256iDat[3 4J

The above formula computes the address so a,s to be useful for
a DPK of the logical screen. This is 2000 bytes long and is
stored with no attributes. (e.g. 2000 DPK 0 ,Addr is the
current screen). It should be considered as a ravelled 25x80
character rnatrix, into which ASCII data Inay be directly
pecked or poked.

Get Fonnat 'I'able

Syntax:

ctl+-9

Return: Dat is a n by 6 numeric matrix, where n is the current
nurnber of fields defined.

Chapter 12. Auxiliary Processors 12-31

IBM Internal Use Only

This call returns the current format array stored by AP 124.

If no format array currently exists then Dat is set to:

Print or Retrieve the Current Logical Screen

Syntax:

Ctl+l0 - Print the active screen on the printer.

N otel: AP80 or equivalent rnust be loaded; otherwise the
print request will Iail. If the printer runs out of paper,
AP124 will return error code 54 in Ctl.

Note 2: AP124 will print the physical screen currently
being displayed. I t is the user's responsibility to make sure
the active screen contains the desired image.

Ctl+10 1 - Return Logical screen in Dat variable.

Sound a Beep to Alert User

Syntax:

Ctl+ll - Delayed Beep.

Ctl-<-11 0 - Delayed Beep. (SaIne as Ctl+11).

Ctl+11 1 - Imnlediate Beep.

Ctl +11 2 - Cancel previous delayed Beep.

If the beep is delayed, it "vill occur at the next" Read and
Wait" operation. To find out whether a beep is pending,
specify call 8 2 and examine the fourth element.

12-32 APL/PC, Version 2.1

IBM Internal Use Only

Set the Cursor

Syntax:

Dat+Field_no I ROJ-v offset I Column_offset
Ctl+12

This call is designed to set the cursor in a specific screen
location. Field_no is a defined field. If it is zero, then
row and column are considered as co-ordinates from the top
left corner of the screen. Da t must be a three element
nurneric vector. Offsets are given in one origin, i.e. 1 1
specifies the top-left corner of the field.

Error Return Codes

Code Meaning
o - Success

11 - Ct 1 Rank Error
12 - Ct 1 Length Error
13 - Ctl Domain Error
14 - Invalid call
21 - Dat Rank Error
22 - Dat Length Error
23 - Dat Domain Error
24 - Da t not shared
25 - Dat Value Error
26 - Da t too large
30 - Invalid field number
31 - Invalid mode or device not attached
37 - Invalid field type
38 - Invalid attribute
54 - Printer out of paper

Chapter l2. Auxiliary Processors 12-3 3

IBl\1 Internal Use Only

l'he Host Comnlunications Auxiliary
Processors: AP190 and AP1901

These auxiliary processors are designed to permit
APL/Personal Computer, Version 2.1 to communicate with a
host session in a simple way convenient to APL.

You can carry out the following actions with these APs:

• Send keystrokes, induding control keys such as "Enter" to
a host.

• Get the status of the host (e.g. input inhibited, ready).

• Retrieve the screen inlage as an n x 80 character array.

It is necessary to have an IBM PC 3278/79 etnulation card
installed before AP190 can be used or an IRMA PC 3278/79
emulation card installed for AP190I.

Please note that the IBM 3278/79 emulation card does NOT
support APL characters. To understand what characters may
be sent to the host, regard the tenninal as a 3278 model 2
without the APL feature.

The IRMA 3278/79 emulation card does however give full
APL support.

Both APs contain sufficient code to run the adapter cards
without the respective emulators installed. They are both
completely stand-alone. lIowever, you may desire to load the
appropriate terminal emulator before starting APL in order to
use the facilities provided by the enlulator.

Note: When using the IBM PC3278 emulator that drives the
3278/79 emulation card, the Alt-R (r) and Alt-S (s) keys are
taken over by the elnulator. To obtain these characters either
use KEYBOARD from the UTI L workspace to reassign these
keys or use Alt-Backspace to set the keyboard to national
mode.

12-34 APL/PC, Version 2.1

IBM Internal Use Only

Possible uses for AI' .l90

• Run IMS/CICS sessions to collect and process data in 1

PC.

• Run a VSAPL or APL2 session in a cooperative mannt

• Run laboratory equipment, and pass results to host
seSSIon.

• Any task which is labour intensive and requires operator
attendance for an extended period, to acquire data that will
be further processed.

Getting Started

Invoke APL with AP190 for the IBM card, or with AP1901 for
the I RMA card, or load the appropriate AP using AP2. Once
in APL, share with AP190 in the nortnal manner. Only one
shared variable is required (no special nanling restrictions).
After offering the variable, test for its acceptance by AP 190 (a
degree of coupling of 2). If not accepted, then AP190 has not
been loaded in this APL session or another variable is already
shared with it.

Sending Keystrokes

Syntax:

C + character_string_vector

Return: zero if OK.

The character string may also contain special control
characters (see the AP 190 workspace).

In this and the subsequent function descriptions, C will be the
narne of the shared variable.

Chapter 12. Auxiliary Processors 12-35

IBM Internal Use Only

I Setting Keyboard l"ranslation Table

I C +- 256 2 P keyboal':d_tra12s1ation_table

I Return: zero if OK. The default keyboard translation tables
I for both AP190 and AP 1901 is UK English. Tables for some
I other keyboards may be found in the AP190 workspace.
I AP1901 tnay also be loaded with an APL translation table.

Getting IIost Status

Syntax:

C -(- 0

Return: numeric integer in C.

If zero, then host is in a "ready" state. If greater than zero,
then host status is either "system not available", "input
inhibited", or both. A test of host status should always be
made after key strokes have been sent to ensure the host is
ready to accept more processing and has not gone down!

Getting the Physical Screen

Syntax:

C +- 1

Return: either a 24 x 80 character array for AP190, or a 32 x
80 character array for AP 1901. This array represents the
screen as if it were being viewed.

I The screen contents nlaY be assigned to a variable and
I processed using the full power of APL, providing a very
I flexible way of extracting data froln a standard host enquiry.

C +- 1 1

I As above, but the array returned is not translated to the APL
I character set.

12-36 APL/PC, Version 2.1

IB1\'1 Internal Use Only

Get the Operator Inforl11ation Area.

Syntax:

C +- 2

Return: a vector of 80 characters representing this area.

C +- 2 1

I As above, but the vector returned is not translated to the APL
I character set.

Simulate a Power On Reset

Syntax:

C +- 3

Return: always a numeric zero.

I Get Cursor I~osition and Beep Indication

I Syntax:

C +- 4

I Return: a three element numeric vector, containing the row
I and COlUllUl of the cursor (in O-origin), and a flag (0 or 1) to
i indicate that the host has requested the ternunal to beep.

Get the Keyboard Translation Table

Syntax:

C +- 5

Return: the current keyboard translation table.

Olapter 12. Auxiliary Processors 12-37

IBM Internal Use Only

I Get the Screen FOrl11at Array

I Syntax:

C + 6

I Return: the screen format in the form of an AP124 format
I array.

The Full-Screen Auxiliary Processor:
AI)205

The full-screen auxiliary processor, AP205, is included as a
part of the IBM APL/Personal Computer SystelTI, Version 2.1,
for compatibility with applications developed for the IBM
Personal Computer APL Systcrn, Version 1.0 (the 1.0 version
of AP205 is not compatible with APL/PC Version 2.1). This
auxiliary processor will not be described here, since its use is
not recommended for the developrnent of new applications
(AP124 should be used in this case).

The following cOlnmands have been added/replaced to AP205
(in the following, C is the control shared variable):

• C+13 sounds a beep.

• C+O [,M[,BC]] clears the screen. If M is given, screen
mode is changed. If BC is given, it defines a background
colour.

In mode 4, normal colour is now yellow. In modes 6 and 8, it
is white. In mode 8, the background colour is really the
character colour. Therefore, it may be changed with this
command.

12-38 APL/PC, Version 2.1

IBM Internal Use Only

rflle Graphic Allxiliary l'rocessor: AP206

This processor represents graphic information defined as a set
of straight-line segments, drawing the boundary and/or filling
the area. It is oriented towards the colour-graphics ada.ptor,
although it can also generate the image in memory (without
displaying it on the screen) for printing on the graphics printer.
It works with a single shared variable (no name restrictions),
and supports the following basic functions:

• Representation of graphic infonnation.

• Generation of graphic characters \vith a variable fonnat.
The definition of a set of these characters is included in
AP206. The entire APL character set is included, but some
special PC characters (such as the box characters) are not.

• Storage and fast regeneration of the whole screen or a part
of it.

• Animated presentation of irnages.

• Printing of the whole screen or a part of it.

• Interactive generation of inlages.

Storage Managenlellt

This processor dynarnically acquires and frees certain memory
buffers, taken from the APL workspace. The acquired areas
are restored to the APL workspace as a stack (last-in first-out),
though they can be freed in any order, so that when one of
them is freed, the space does not become available until all the
subsequently requested areas have been liberated.

Certain areas in this processor can be explicitly requested by
the user. In these cases, it is the user's responsibility to free
them when they are no longer needed. These user-requested
areas include:

Cl1apter 12. Auxiliary Processors 12-39

IBM Internal Use Only

1. A virtual screen buffer (VSB), usable for the following
purposes:

• To use AP206 in the absence of the colour-graphics
monitor adapter and its screen buller (SB). The
generated irnages may be copied to the graphics printer.

• To prepare an image slowly and transfer it irrnnediately
to the screen with a VSB to SB copy.

2. Up to 128 different window buffers (WB), used to keep
images for any of the following purposes:

• To be used later.

• To be repeated along the screen.

• To generate animation.

• To be transferred to/from APL variables.

Parameters

The work of this auxiliary processor is controlled by a set of
25 integer parameters. When the shared variable is shared,
these parameters receive a set of default values. At any time,
one or several parameters may be changed.

The following is a list of all the 25 control paranleters, in the
order they must be specified, including the range of values
allowed for each one:

12-40 APL/PC, Version 2.1

IBM Interna.l Use Only

NO NAME

1 MODE
2 BG
3 PAL

Description Values

Screen mode 4-8
Background colour (00 colour) 0-31
Palette(01-10-11 line colour) 0-1

4 COLOUR Bit combination defining colour
/STYLE and line style

5 REPX Pixel repetitions in X axis 1-8
6 REPY Pixel repetitions in Y axis 1-200

7 WXl
8 WX2
9 WYl

10 WY2

11 VXl
12 VX2
13 VYI
14 VY2

15 XO
16 YO
17 FX
18 FY
19 FI

Left column of window
Right column of window
Bottom row of window
Top row of window

0-(WX2-1)
(WXl+l)-ncol
0-(WY2-1)
(WYl+l)-200

Viewport X coord. of (WXl,WYl) ~ VX2
Viewport X coord. of (WX2,WY2) ~ VXl
Viewport Y coord. of (WXl,WYl) ~ VY2
Viewport Y coord. of (WX2,WY2) ~ VYI

Initial X coord. for next operation
Initial Y coord. for next operation
Scale factor for X axis (7.)
Scale factor for Y axis (7.)
Inclination factor (7.)

20 PARM20 Extra character displacement in X axis
or filling code for even lines.

21 PARM21 Extra character displacement in Y axis
or filling code for odd lines.

22 SI-122
23 SW23
24 SW24
25 SN25

Chars autodisplacement switch 0-1
Chars autocatenation switch 0-1
Horizontality of X axis 0-1
VSB switch 0-1

1. Parameters 1,2,3: MODE, BG, PAL

The colour-graphics monitor adapter describes a full screen
with 128000 bits (approximately 16K bytes). The way in
which these 128000 bits define pixels on the screen depends
on the adapter Inode. There are two basic modes:

• Each bit defines a pixel. The screen is nlade up of 200
rows, 640 pixels each. If a bit is off, it appears as
black. If it is on, it appears in the background colour.

C,11apter 12. Auxiliary Processors 12-41

IUM Internal Use Only

• Each bit pair defines a pixel. The screen is nlade up of
200 ro\vs, 320 pixels each. The four combinations
allowed are:

a. 00 - background colour

b. 01 - colour 1

c. 10 - colour 2

d. 11 - colour 3

All conlbinations of these can be selected through the
MODE, BG, PAL parameters.

MODE can take any of the following values:

4 - activates mode 200x320 with 2 palettes available.

5 - activates mode 200x320 with just one palette available.

6 - activates mode 200x640.

7 - activates the monochrome display, with no change in
the internal colour monitor mode.

8 - maintains the current mode. Allows change of other
parameters without the screen being erased.

The default mode is the active nlode when the variable was
shared.

BG can have any of the following values:

BG Background Colour
0,16 black
1,17 blue
2,18 green
3,19 cyan
4,20 red
5,21 nlagenta
6,22 brown
7,23 light grey

12-42 APL/PC, Version 2.1

IBl\1 Internal lJse Only

8,24 dark grey
9,25 light blue

10,26 light green
11,27 light cyan
12,28 light red
13,29 light Inagenta
14,30 yellow
15,31 white

Values 0-15 give low foreground intensity, 16-31 give
double foreground intensity. Default value for BG is 16 in
rnodes 4-5, 15 in modes 6-7.

PAL (only active in mode 4) can be assigned the values 0
and 1, with the following effect:

MODE=4 MODE=4 MODE=5
NAME BITS PAl=O PAl=l PAl=O,l --
Colour 1 01 Green Cyan Cyan
Colour 2 10 Red Magenta Red
Colour 3 11 Brown White ~~hi te

The default value is 1.

More infornlation can be found in the PC Technical
Reference Manual.

2. Paranleters 4, 5, 6: COLOUR/STYLE, REPX, REPY

REPX must have a value between 1 and 4 in rnodes 4-5, or
between 1 and 8 in mode 6. This parameter defines the
number of tilnes a pixel must be repeated along the X axis,
to the right. The full representation of a pixel (with its X
repetitions) will be called a "unit of horizontal
representation" (UHR).

REPY must be a nurnber 1-200, that defines the nurnber of
tirnes the U HR will be repeated along the Y axis.

If both paranleters have a value of 1, the pixel will not be
repeated along any axis (this is their default value).

Olapter 12. Auxiliary Processors 12-43

IBM Internal Use Only

COLOUR/STYLE specifies a value between -32768 and
32767. This may be broken into the COLOUR and
STYLE parts by: (16p2)TCS to give a 16 elernent
vector. The least significant 8 bits define the combination
of colours for the UBR: 1 bit per pixel in mode 6, 2 bits
per pixel in modes 4-5.

Exanlple: In modes 4-5, COLOUR = 85 generates Colour 1,
whatever the value of REPX, since 85 = 01 01 01 01.

In a silnilar way, COLOUR = 170 generates Colour 2, since
170 = 10 10 10 10; COLOUR = 255 generates Colour 3,
and COLOUR = 0 generates the background colour.
However, other combinations are possible.

The default value for COLOUR is 255.

The lnost significant 8 bits define the line style for the
UBR. These bits define the pattern of dots to be placed
along the line. A 0 gives a dot, and a 1 gives a space so
that STYLE = 0, causes a solid line to be drawn. The
specified pattern of 8 dots is applied cyclically along the
line.

The COLOUR and STYl.E values may be cotnbined into
the two byte signed integer required by AP206 by:

CS+L(2iSTYLE,(8p2)TCOLOUR)-65536 x 128<STYLE

3. Parameters 7,8,9, 10:WXI, WX2, WYI, WY2

They provide the definition of a window on the graphic
screen. Rows are nunlbered 0-199. Colunms are nun1bered
0-639 in mode 6, 0-319 in Inodes 4-5.

The default window is the maximum allowed by the default
nlode, i.e. 0 31 9 0 1 9 9 for rnodes 4-5, 0 63 9 0 1 9 9
for rnode 6.

4. Parameters 11, 12, 13, 14: VXI, VX2, VYI, VY2

They define a viewport, or system of cartesian coordinates
over the previously defined window. The default value is

12-44 APL/PC, Version 2.1

IBM lntcrnal Use Only

eq ua1 to the window, but other combinations are possible.
All four parameters defining the viewport Inust lie in the
interval [-16383, 16383].

Example: a viewport equal to -160 160 -100 100
would locate the origin of coordinates in the centre of the
screen.

If VX 1 > VX2, a synunetry with respect to the vertical axis
is performed. Likewise, if VY 1 > VY2, a synunetry with
respect to the horizontal axis is perfonned. If both apply,
then a central symmetry takes place.

5. Paralneters 15, 16, 17, 18, 19: XO, YO,FX, FY, FI

The coordinates X, Y, defined explicitly in the graphic
matrix, or implicitly in the representation of graphic
characters, are transformed in the following way:

Xl = X + Y x FI + 100
X2 = XO + Xl x FX + 100
Y2 = YO + Y x FY + 100

FI is an inclination factor, slanting characters and/or
graphics the percentage indicated. A positive value slants
to the right, a negative value to the left. FX and FY are
scale n.lctors affecting the corresponding axis. XO and YO
are additional translations of coordinates. Their default
values are 0, 0, 100, 100, 0, providing the "identity"
transformation.

In the case of texts, the internal definition of the character
set is also af1ected by these transformation pararneters.
However, the shape of sorne resulting characters rnay be
sornewhat distorted unless the scale parameters are chosen
both equal to a rnultiple of 33.33 (rounded to the nearest
integer) and the inclination factor is either zero, or a
mUltiple of 100 (positive or negative).

6. Paralneters 20, 21: PARM20, PARM21

Their values are interpreted in two diiIerent ways,
depending on the function they are applied to.

Chapter 12. Auxiliary Processors 12-45

IBl\t1 Internal Use Only

• During polygon filling, they define the filling colours to
be used.

• During text \vriting, they give the extra displacement
between characters.

\Vhen an area is filled, the values of these parameters
define the UHR for even and odd lines, respectively, with
the same criterion explained for parameter COLOUR.
Values between 0 and 255 are allowed. The 8 bits in the
values define the UHR, 1 bit per pixel in mode 6, two bits
per pixel in modes 4 and 5.

When a text is written, these pararneters provide an extra
displacement between characters in a string. Each
character has its own width, which is added to PARIYI20 to
cornpute the X position of the next character in the string.
PAR1\121 allows the string itself to be written in any angle
(\vith sloping characters).

Both pararneters may have negative values. Their default
values are both zero.

7. Parameters 22,23,24,25: SW22, SW23, SW24, SW25

The last four parameters are switches. Their values are
only 0 or I.

SW22: When its value is I (the default) each character is
written to the right of the preceding one, at a
distance depending on the actual character written
before. When SW22 = 0, this translation is not
performed. All the characters in the string would
then appear one of top of the others, unless
PARM20 or PARM21 are in effect.

SW23: When its value is 1 (the default) the values of XO
and YO are automatically re-adjusted (at the end of
an operation) to the coordinates of the last pixel to
be drawn. In this way, for instance, successive
strings would concatenate on the screen. If
SW23 = 0 no re-adjustment of XO, YO is performed.

12-46 APL/PC, Version 2.1

IBM Internal Use Only

This parameter does not affect graphics, only
character strings.

SW24: \Vhen its value is 1 (the default) the X axis in the
viewport runs horizontally from left to right and
the Y axis vertically frorn bottom to top. If
SvV24 = 0, the X axis runs vertically from bottom
to top, and the Y axis horizontally from right to
left (i.e. a 90 degrees counterclockwise rotation is
performed).

All of the above assumes that the viewport-to-window
correspondence does not introduce any symrnetrical
transformation. If these synunetries are present, the 90
degree rotation affects the corresponding viewport axis.

S\rV25: vVhen its value is 0 (the default if the
colour-graphics monitor adapter is installed)
graphics are generated directly on the SB. When
S\V25 = 1 (the default when the colour-graphics
monitor adapter is not installed) images are
generated on the VSB. The VSB buffer is acquired
automatically the first time SvV25 is assigned a
value of 0, and it is not freed until the shared
variable is retracted. Therefore it is convenient to
acquire the VSB before any WB are requested, to
make easier the return of the space of the latter to
APL.

Use of AP206

The different functions are defined by the rank, type and
diInension of APL objects assigned to the shared variable.
When this is shared, the existence or absence of the
colour-graphics monitor adapter is detected, and the VSB is
acquired if the answer is negative. When the variable is
retracted, all buffers are freed automatically.

When a given function has been performed, the value returned
through the shared variable may be one of the following:

Chapter 12. Auxiliary Processors 12-47

IBM Internal Use Only

• A return code: 0 (success) or a negative integer (see
attached table).

• A positive integer (function "literal matrix").

• A vector of 25 integers, the parameters (functions 0 and I).

• A literal matrix (function 8).

• A graphic matrix.

Functions

The following objects may be assigned to the shared variable:

• 0 - Request for the default parameters. MODE is the one
active when the variable was shared. Window is the
maximum possible in that mode. The shared variable
returns a vector of all the 25 default parameters.

• 1 - Request for the current parameters. A vector of the 25
values is returned.

• 2 - The whole SB or VSB is erased (filled with zeros).

• 2,n - The current window is filled up with UHR = n.

• 3 [,density[,margin]] - Copies the present window
of the active screen (SB or VSB) to the graphic printer.
The density parameter can be 0 (low density printing,
the default) or 1 (high density printing). "margin" is
number of spaces to be added as a left rnargin of the
printed copy (the default centres the window on the paper).

• 1+ - Copies the VSB to the SB.

• 5 ,nl [,n2J - Drops WB numbers nl through n2, freeing
their space. If n2 is not given, only nl is dropped.

• 6 ,n1 [,n2 [,repeat [,wait]]] - Copies buffer nl
to the current window on the active screen (SB or VSB). If

12-48 APL/PC, Version 2.1

181"1 Internal Use Only

n2 is given, buffers nl through n2 are copied sequentially
(each one crases the preceding one). If "repeat" is
given, the whole operation is repeated the indicated
n umber of times. Finally, "wa it" specifies nUlllber of
hundredths of a second between any two buffer copying
operations. "repeat" default value is 1, "wait" default
value is 4. This function perfornls an anirnated
presentation of the buffer contents on the screen.

• 7, n - Erases WB nurnber n, if it exists, generates it again
and copies the current window from the active screen (SB
or VSB) into it.

• 8 , n - Sends to APL the contents of WB number n in the
form of a literal matrix. Each row contains the description
of a row of the window, each character is a description of 4
pixels (in modes 4-5) or 8 pixels (in mode 6). The first and
last characters in each row may contain extra pixels to
complete the window buffer.

• A vector of 25 integers - A new set of parameters is defined
to the auxiliary processor. In fact, a single or a few
parameters may be changed by means of an indexed
assignment to the shared variable, in the following way:

G+l R G is the shared variable.
R Get the current parameters.
G[2 4 6]+A,B,C
R Change parameter 2 to A,
R 4 to Band 6 to C.

• A literal vector - The string is written on the active screen,
affected by the current parameters.

• A literal nlatrix - Acquires a new WB, copies on this the
contents of the matrix (as defined in function 8) and
returns to APL a number between 1 and 128 giving the
identification number of the \VB. (The first free WB
number is always assigned).

• A 3 colunm integer matrix - Draws on the active screen the
polygon shape resulting from the application of the current
parameters to the graphic matrix and/or fills the indicated
area. Each row in the graphic matrix defines a point on

Cnapter 12. Auxiliary Processors 12-49

IBl\1lnternaJ Use Only

the viewport coordinate systenl by means of three values:
a control code, and the X-Y coordinates of the point.
After the drawing has been conlpleted, this function Inay
go into a "graphic input" state, allowing the user to change
the graphic interactively.

The control code is an integer in the range 0-31. Each
binary bit in this integer has a different meaning. In the
following, bit 0 is assumed to be the least significant bit in
the integer:

Bit 0 - 0: move to position (X,Y)
1 : draw to position (X,Y)

Bit 1 - 0: (XI'Y) directly defines next position
1 : (X,Y) is displacement from present

position
Bit 2 - 0: Do not fill the area

I: Fill the area
Bit 3 - 0: Draw the border of the area

1 : Do not draw -the border of the area
Bit 4 - 0: Do not go into graphic input

1 : Go into graphic input

When bit 4 is 1 at least in one row of the matrix,
interactive graphic input is entered after the drawing has
been completed. The cursor is positioned in the

. coordinates of the last row where bit 4 had a value of 1.

Examples of typical control codes are:

Draw a polygon:

o - Move to X,Y (do not draw)
1 - Draw to X,Y

Draw a polygon and fill the area:

4 - Move to X,Y (do not draw)
5 - Draw to X,Y

Go into interactive input mode:

16 - Set the cursor at this position

12-50 APLjPC, Version 2.1

IBM Internal Use Only

While in interactive input mode, the user may modify the
dra\ving by Ineans of the keyboard. The following keys
ha ve a special function:

Cursor movement: the four arrows and the corner keys
on the numeric keypad move the cursor in the
appropriate direction.

FI-F8: set the cursor movement step size (Fl -
smallest, F8 - largest). Fn sets the step size to a value
double as the one set by Fn-l.

F9: set cursor movement mode to constant speed.
Speed is changed when the cursor movement keys are
pressed.

FlO: set cursor movement mode to constant
acceleration. Acceleration is changed vvhen the cursor
movement keys are pressed.

Del key: Fix point (pen-up from previous fixed point).

Ins key: Fix point (pen-down from previous fixed
point).

Tab key: Move forward fronl fixed point to fixed point.

Backspace key: Move backwards from fixed point to
fixed point.

All points previously fixed (both in the drawing and with
Del/Ins) can be directly accessed in this way.

Plus key on the numeric keypad: Draw a line between
the fixed point where the cursor is located and the
previous one.

Minus key on the numeric keypad: Delete the line
between the fixed point where the cursor is located and
the previous one.

The two preceding keys only act if the present point has
been reached by means of the Tab or Backspace keys.

Chapter 12. Auxiliary Processors 12-51

IBM Interna.1 Use Only

ENTER key: in speed and acceleration modes (F9, FlO)
the cursor stops.

In the step modes (FI-F8) cursor shape toggles froln a
small cross to cross-hairs.

Any other keys: control is passed back to APL. The
shared variable vvill return the following value: a Inatrix
containing the final definition of the drawing appearing
on the screen, plus an extra line with the following
inforrnation: key pressed (as 011 V index, in zero origin)
and final X,Y position of the cursor.

• A colour replacement matrix (the colours of all pixels
within the current window nlay be changed with this
function). This is a 4 by 2 integer nlatrix if nlode is 4 or 5,
and a 2 by 2 integer matrix for rnode 6. Rows define
colours (0, 1, 2, 3 for modes 4 and 5; 0, I for mode 6). A
value of -1 in column 1 indicates that the corresponding
colour will be considered a "boundary colour" and will be
replaced to the value in column 2 at the sarne row. If a
row does not contain a value of -1 the corresponding
colour will be changed to the value in colunm 1, if the pixel
with that colour is "exterior"; to the value in column 2 if it
is "interior".

To find out whether a pixel is "exterior" or "interior", do
the following: Consider the horizontal screen line passing
through that pixel and lirnited by the current window.
Cornpute the nurnber o["boundary" pixels (pixels with
"boundary colours"). I[it is odd, lnake it even by
eliminating the central pixel. One pixel will be "interior" if
the nUlnber of boundary pixels to its left is odd. It will be
"exterior" if it is even.

Exalnplcs:

The following matrix (in mode 6) changes the whole
window to reverse video:

12-52 APL/PC, Version 2.1

IBM Internal Use Only

Assume we have a single empty triangle drawn in
colour 3 in the current window (all pixels are
background colour, 0, except the triangle border). We
want to change the triangle border to colour 1, and fill
its interior with colour 2. The following matrix will do
it:

o 2
1 1
2 2

-1 1

Return codes

Code Meaning
o - Success.

-N - (0 < N < 26) Invalid value for the Nth parameter.
-26 - No space available or too many WB's.
-27 - Invalid function.
-28 - Invalid value.
-29 - No active screen exists (SB or VSB).
- 30 - Printer error.

l"he File Auxiliary Processor: AIJ 210

The file auxiliary processor, AP210, is used to read frorn, or
write to, fixed- or variable-length DOS disk files under control
of the DOS file system.. The reading and vvriting can be either
seq uential or random. lJ p to ten files may be accessed
sinlultaneously; However, DOS lllUst be configured with a
sufIicient nUlnber of file handles to pennit this. See the
description of the" Fl LES" parameter of the "CONFI G .SYS"
configuration file in the DOS manual.

To use this auxiliary processor, you must include AP210 as a
paran1eter to the APL cornmand at load time, before you
begin an APL work session. You n1ay also load it dynanlical1y
through AP2. For exatnple,

Chapter 12. Auxiliary Processors 12-53

IBM Internal Use Only

APl AP210

Two shared variables are required to process a file: a data
variable and a control variable. They can be offered in any
order. The name of the data variable must always begin with
the letter "D", and the control variable must begin with the
letter "C". The remaining characters in both nanles (possibly
none) must be the same, because the coupling of both
variables is recognised by their name. Examples of valid pairs
are: C and D, Cl and Dl, and CXjj and DXjj. The control
variable is used to select the operation to perform and to
control each input/output operation. Up to ten pairs of
shared variables may be shared with AP210 at anyone time.

The following APL lines must be executed before the auxiliary
processor can be used:

210 DSVO 'Cxx'
210 DSVO 'Dxx'

where xx is the cornman part of the narnes of both variables.

The preceding two instructions must give a result of 1. You
then test if the variables have been accepted by AP210 by
executing the following:

DSVO 'Cxx'
DSVO 'Dxx'

Both must give a result of 2. Otherwise, AP210 is not active
or has already accepted ten pairs of variable narnes.

Control Commands

Once the control variable has been shared, the first value you
assign to it should be a character vector, which is considered to
be a command that describes the file name and specifies the
function to be performed. The following commands are
accepted:

12-54 APL/PC, Version 2.1

IBM Internal Use Only

IR,filespec[,code]
IW,filespec[,code]
DL,filespec
RN,filespec,filespec

Open for read-only
Open for read/write
Delete file
Rename file

where f il espec is the DOS file identification, of the form:

[d:] [pathJfilename[.ext]

d: is a letter that identifies the drive (typically A, B, C, etc.).
path is a valid DOS path. filename is a valid DOS file
name (up to eight characters), and ext (the extension of the
natne) has no tuore than three characters (see your DOS
manual).

Alternatively, filespec may be an APL file identification, of
the form:

[libn] filename[.ext]

where 1 ibn is an APL libraty number (see AP 101 in this
chapter).

code is a single letter selecting a given interpretation of the
file data. Four different interpretations are supported:

Code Interpretation of Data

A (APL) The records in the file contain APL objects, with
their headers. In this way, matrices, vectors, and
arrays of any rank may be stored and recovered.
Different records of a file may contain objects of
different types (for exarnple, characters, integers,
or real nutnbers). An APL object in a record rrlaY
occupy up to the actual record length (not
necessarily the saIl1e nurrlber of bytes), but the
header fills a part of that area. (See
Chapter 13, "I-low to Build an Auxiliary
Processor" for the structure and m.emory
requirements of an APL header).

Chapter 12. Auxiliary Processors 12-55

IHl\'1 Internal Use Only

B (Bool) The records in the file contain strings of bits
without any header (packed eight bits per byte).
The equivalent APL object will be a boolean
vector. In this case, all records lnust be equal to
the selected record length.

C (Chars) The contents of the record is a string of characters
in APL internal code, without any header. All
records nlust be equal to the selected record
length.

D (ASCII) The contents of the record is a string of characters
in ASCII code, without any header. All records
must be equal to the selected record length.

If the code is not stated specifically, code A is the default.

'Varning: Changing diskettes during an inputj output
operation, or when you have open files, may destroy data on
the diskettes.

The IR conunand opens the file for read-only operations. If
the operation is successful, the control variable passes into the
subcol1unand state. You must then specify which data transfer
operation you want to perform. (See "Control Subcotrunands"
below). The IvV command works in a sirnilar way, but the file
is opened for both read and write operations. If the file
cannot be opened, the control variable remains in the
corrunand state.

When th~ D L command is received, the file with the specified
filespec is erased from the designated drive (or the default if no
drive was specified). Then the control variable returns to the
cOlnmand state.

When the RN command is received, the nanle and extension of
the file specified in the first parameter is changed to the name
and extension given in the second parameter. The drive
specified in the second parameter MUST be the same specified
in the first parameter. If a different path is given in the second
paralneter, a move is performed instead of a renanle. Rename
to a diIIerent drive is not allowed. After this command has

12-56 APL/PC, Version 2.1

IBlVI Internal Use Only

been executed, the control variable returns to the command
state.

Once a command has been received and executed, a return
code is passed back to APL through the control variable,
indicating whether or not the cOlnmand was executed
successfully and, if not, the reason for the failure.

I If an IR or IW comrnand executes successfully (giving a return
I code of 0 in the control variable), the data variable will be set
I to the size, in bytes, of the file just opened.

Control Subcolllnlands

Once a file has been opened for input (command I R) or
input/output (command I\V), the control variable passes into
the subcommand state. It now accepts the assignment of
numeric vectors specifying the operation to perfonn, with the
following structure:

C+op[,rn [,rs]]

The following are valid operations:

o - Read a fixed length record. Record size is defaulted to 128
unless specified by the r s operand or by a previous
subcommand. Files are considered as divided in fixed size
records. rn is the record number. If not given,
sequential operation is assumed.

1 - Write a fixed length record. Record size is defaulted to
128 unless specified by the rs operand or by a previous
subcommand. Files are considered as divided in fixed size
records. rn is the record number. If not given,
sequential operation is assulned.

2 - Direct read to a file. Record size is defaulted to 128 unless
specified by the 1:S operand or by a previous
subcornmand. Files are considered as continuous strings
of data. rn is the starting byte. If not given, sequential
operation is assumed.

C.bapter 12. Auxiliary Processors 12-57

IBl\;1 Internal Use Only

3 - Direct write to a file. Record size is defaulted to 128
unless specified by the rs operand or by a previous
subcolnmand. Files are considered as continuous strings
of data. rn is the starting byte. If not given, sequential
operation is assumed.

4 - Read a variable length record. This conlllland may only
be used if the file 'vas opened with codes A or D. r s is
the scan distance (where, in the case of code 0, the
CR/LF combination would be expected to reside). If not
given, 128 is assunled unless this parameter has been
specified by a previous subcommand. rn is the record
number. If not given, sequential operation is assumed.

5 - \Vrite a variable length record. This conlllland may only
be used if the file was opened with codes A or D. rn is
the record number. If not given, sequential operation is
assumed. Direct write of variable records is allowed, but
should be done with great care. Records should be
replaced by others with exactly the same length. If this is
not done, the whole file, starting at the replaced record,
may be damaged.

I The valid range of values for rn for fixed or variable
I read/write operations is 0 to 32767. For direct read/,vrite
I operations it may be any non-negative integer. rn is always
I defined in zero origin (i.e., the first record in a file is record 0;
I the first byte in a file is byte 0). If not specifically stated, the

first value of rn after opening a file is 0 (that is, the first
record or byte position in the file).

The valid range of values for rs is 1 to 32512 for fixed
read/write operations, 12 to 32512 for variable operations.

Write operations are not allowed if the Subcoll1mand state was
entered through the I R command.

If the control variable is assigned an empty vector while in the
subcommand state, the file is closed and the control variable
reverts to the command state.

12-58 APL/PC, Version 2.1

IBM Internal Use Only

Once an operation has been requested, the data variable is
used as a burrer, where the actual transfer of records takes
place. If the operation is a read, the value of the record can
he found in the data variable after the successful completion of
the requested operation (confirrned by the return code passed
through the control variable). I f the desired operation is a
write, the value of the record lnust be assigned to the data
variable before the corresponding subcornmand is assigned to
the control variable.

AP210 Iteturn Codes

Code Meaning
o - Success
1 - Invalid conunand
2 - File not found
3 - Path not found
'+ - No file handles
5 - Access denied
6 - Invalid file handle
8 - InsufIicient Inemory for file control blocks

12 - Invalid access code
15 - Invalid drive
17 - Not the saIne device
18 - No Inore files
1 9 - A ttempt to write on write protected diskette
21 - Drive not ready
23 - Data error
25 - Seck error
27 - Sector not found
2 9 - ¥irite fault
3 a - Read fault
31 - General failure

- 2 6 - No space available
-2 9 - Invalid APL object
- 31 - Invalid type in control variable
-32 - Control variable rank error
- 33 - Invalid length of control variable
- 3 6 - I nvalid file translati on code
-37 - Data variable value error
- 38 - Invalid type in data variable

Chapter 12. Auxiliary Processors 12-59

IBIVI Internal Use Only

-40 - Data variable not shared
-41 - File is not active, issue a primary command
-43 - Invalid object

44 - CR,LF not found in scan length
-L~ 5 - End of file
-46 - Incomplete record, padded with nulls
-47 - Invalid subcomtnand

48 - Could only 'write a partial record (disk full)
-49 - Data variabJe value exceeds record size for fixed or

variable replace

Note: These return codes are inconlpatible with those
returned by the version of AP210 supplied with APL/PC 1.0.

l~xanlples of use
210 DSVO 2 2p'C1Dl'

1 1

Variables CI and DI are ofIered to AP210.

DSVO 2 2p 'C1Dl'
2 2

Variables Cl and Dl have been accepted by AP210.

o
Cl+'IW,B:FILE.EXT'
Cl

File B:FILE.EXT is created. Records will contain APL objects
with header (default code). We are now in subcon1mand mode.

Dl+tl0

First record will be a vector of eletnents from 1 to] O.

o

Cl+1
Cl

Subcommand to write the first record in the file. Default
record nUlnber is 0, default record size is 128 bytes.

12-60 APL/PC, Version 2.1

IB~I Internal Use Only

Dl+2 3P16

Second record will be a Inatrix of 2 rows, 3 columns, of
elenlents from 1 to 6.

o
Cl+l
Cl

Subcommand to write sequential1y in the file.

Cl+' I

An empty vector closes the file and puts the control variable in
conunand tnode.

o

Cl+'IR,B:FILE.EXPI
Cl

Open the same file for read-only operation.

o

Cl+0 1
Cl

Dl
123
456

Read the second record first.

o

Cl+0 0
Cl

Dl
1 2 3 4 5 6 7 8 9 10

Read no\v the first record.

Cl+10

Close the file and go into comrnand state.

o

Cl+IRN,B:FILE.EXT,B:NEWFILE.XXX'
Cl

Renarne the file to NEW FI LE.XXX.

Chapter 12. Auxiliary Processors 12-61

o

Cl+'DL,B:NEWFILE.XXX'
Cl

Delete the file.

DSVR 2 2p'C1Dl'
2 2

Finally, retract the shared variables.

IBM Internal Use Only

TIle Asynchronous Communications
Auxiliary Processor: AP232

The AP232 auxiliary processor can be accessed from APL on
the IBM Personal Computer and provides an interface for
communications between the IBM Personal Computer and a
host (IBM System/370). (See "Asynchronous
Communications Adapter" in the Technical Reference manual.)

This auxiliary processor is supplied for compatibility with
APL.PC 1.0. New applications should used the new extended
version, AP232X.

To use this auxiliary processor, you must include AP232 as a
parameter to the APL command at load time before you begin
an APL work session, or you Inay load it dynamically through
AP2. For example,

APl AP232

The following APL line must be executed before the auxiliary
processor can be used:

232 DSVO 'name'

where nanle is the name of the APL variable being shared with
the auxiliary processor.

12-62 APL/PC, Version 2.1

IBM Internal Usc Only

The result of the preceding line will be a 1 if the variable name
has been accepted by the auxiliary processor. This processor
accepts only one variable.

The following line must be entered next:

DSVO 'name'

It must give a result of 2, If not~ the auxiliary processor is not
active or a different variable has been shared with it and has
not been retracted.

Control Commands

Once the control variable has been shared, the first value you
assign to it must be a character string representing a cOlnmand
which indicates the function that the auxiliary processor has to
perform. The functions are the following:

• Initialise (0)
• Transrnit (l)
• Receive (2)
• Get port status (3)
• Set break (4)
• Get buffer size (5)

All commands are strings of at least two characters. The first
one is a number that indicates the function to be perfornled
(see above). The second is the port address and must always
be 1.

If you do not issue a valid conunand, an error code is returned
(see below for return codes).

This auxiliary processor has three buffers:

1. A 1000-byte buffer to communicate with the APL
interpreter. If the buffer ever gets full, a code of 2 is
returned.

2. A 255-byte buffer to transmit data to the host. The
auxiliary processor does not allow it to get full.

Chapter 12. Auxiliary Processors 12-63

IB1\1 Internal Use Only

3. A 2000-byte buffer to store the data received from the
host. (See the conunand "Receive" below.)

For an exatnple of how to use this auxiliary processor, look at
the functions included in the VM232 workspace.

Initia.lise (0)

This comrnand is used to initialise the port. It consists of a
string of characters of the fonn:

CNBPSX

where:

• C indicates the type of the command. It must be o.

• N is the port address (always I).

• B indicates the desired transmission baud rate. It can have
one of the following values:

Value
a
1
2
3
4
5
6
7
8
9

Baud Rate
75

110
150
300
600

1200
1800
2400
4800
9600

• P indicates the parity, as shown in the following table:

Value
a
1
2
3

Parity
None
Odd
Even
Mark

12-64 APLjPC, Version 2.1

IBM Internal Use Only

4 Space

• S indicates the number of stop bits you want. It can be
either 1 or 2.

• X indicates the word length in bits. Its value ranges from 5
through 8.

The return code produced by this command is a numeric scalar
indicating:

• -1: success

• 3: error

Transmit (1)

This command consists of a string of characters of the
following form:

eNS

where:

• C indicates the type of the command. It must be 1.

• N is the port address. It nlust be 1.

• S represents the string of ASCII characters that is to be
sent.

The return code is always the numeric scalar, -1.

Chapt.er 12. Auxiliary Processors 12-65

IBM Internal Use Only

Receive (2)

The command consists of a string of characters of the fonn:

CNTED

where:

• C indicates the type of the command. It must be 2.

• N is the port address. I t must be 1.

• T represents the turnaround character.

• E is the end-of-line character sent by the host.

• D represents four delete characters. If you want to give
fewer than four delete characters, the rernaining positions
ITlust be filled by blanks. Blank is never a delete character.

The system returns a string of characters, the first character of
which is one of the following:

DAV[DIO]
DAV[DIO+9]
DA V [DI 0 + 12]
DAV[DIO+13]

(Success)
(Buffer empty, no character read)
(Buffer overflow)
(Character error in buffer)

The rest of the characters returned fonn the string received
from the host.

Get Pori Status (3)

This cornrnand returns the content of both the modem status
register (MSR) and the line status register (LSR).

The command consists of a string of characters of the form:

CN

where:

12-66 APL/PC, Version 2.1

IBM Internal Use Only

• C indicates the type of the conlmand. It must be 3.

• N is the port address. I t must be 1.

The return code is a boolean vector in which bits 1 througl
(in one origin) represent the content of the MSR, and bits
through 16, the content of the LSR, as shown by the
following:

Port Status Bits
< >
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I I I I I I I I I I I I I I I I
76543 2 076 543 2 1 0

~<~------------------~> ~<~------------------~>

MSR Bits LSR Bits

Set Break (4)

The Set Break command sends a break to put the host in the
receive state.

The command consists of a string of characters of the form:

CN

where:

• C indicates the type of the command. It must be 4.

• N is the port address. It n1ust be 1.

The return code is always the nUIneric scalar, -1.

Chapter 12. Auxiliary Processors 12-67

IBM Internal Use Only

Get Buffer Size (5)

This· conunand is used to ask for the size of contents of the
buffer that is currently occupied (either transrnit or receive
bufier).

The syntax of the command is:

CND

where:

• C indicates the operation. It must be 5.

• N is the port address (must be 1).

• 0 is the operational type of the buffer ("R" for the receive
buffer, "VV" for the transrnit buffer).

This command returns a two-element numeric vector, in which
the first element is one of the following codes:

• -1: Success

• 10: Buffer more than three-quarters full

• 11: Buffer overflow

The second element is the number of bytes occupied by the
contents of the buffer.

12-68 APLjPC, Version 2.1

IBM Internal Use Only

l"he Extended Asynchronous
Communications Auxiliary Processor:
AP232X

This Auxiliary Processor allows you to control one or two
asynchronous communication ports on your IBM PC from an
APL defined function.

In addition it allows your application to:

• Define transmit and receive buffer sizes.

• Set the Line Status Register.

• Set the Modem Status Register.

• Control the retry count on specific lines.

• Set the Request-To-Send line on or off at initialisation.

• Control the translation of input or output.

• Specify end-of-line and turn-around characters.

• Specify up to 4 characters to be removed from data stream.

AP232X requires two shared variables: a data variable (whose
name must start with a "D") and a control/command variable
(whose nalne must start with a "G"). These variables may be
shared in any order, but only one pair can be shared with
AP232X at any time. If, on testing the status of the share, a
"1" is given as the degree of coupling, the following
possibilities should be investigated:

1. AP232X has not been loaded.

2. Another pair of variables are active with it.

3. No asynchronous communication adapters are installed in
this PC.

Chapter 12. Auxiliary Processors 12-69

IBM Internal Use Only

lIard ware Notes

1. The jumper module on the COM2 card should be turned
180 degrees and replugged. (See the PC Technical
Reference Manual for details).

2. It should also be noted that ROM BIOS does not verify
any card configured as COM2 (2Fn). Therefore the only
certain way to verify that the COM2 is O.K., is to:

a. Remove COM 1 card completely.

b. Remove COM2 card and reconfigure it as COM 1.

c. Replace second card in its nonnal slot.

d. Power on the system.

e. If power-on tests run O.K., then the card is good.

3. The wiring of cables and connectors used to attach devices
to RS232 ports should be carfully checked. Appropriate
connection data is usually provided in the documentation
supplied by the manufacturer of the device to be attached.

AP232X Operation

Initialis'e a POl1

In this and the following sections, the two shared variables are
represented by the names C and D, respectively for the control
and data variables.

This information required below should be obtained from the
documentation supplied with the device to be attached.

Syntax:

C-+-O [,Port]

D -+- Integer vector parameter list:

12-70 APLjPC, Version 2.1

IBM Internal Use Only

D [1]: Baud Rate of Port.

The following rates are supported: 50, 75, 110, 135, 150,
300,600, 1200, 1800, 2000, 2400, 3600,4800, 7200, 9600 or
19200. A rate setting of 135 will give a true rate of 134.5
baud.

D [2]: Number of Bits per byte.

This can be one of the following: 5, 6, 7 or 8. A
rnaximurn of 7 bits per byte rnay be used if a stop bit is to
be included.

D [3]: Stop bit(s) required.

o - No (1 bit per byte regardless of size).
1 - Yes (if 5 bits per byte, then generate 1.5, otherwise
generate 2).

D [4]: Parity type.

o - None
1 - Odd
2 - Even
3 - Mark
4 - Space

D [5]: Raise Request-to-send line.

0- No
1 - Yes

D [6] : Add Line Feed Character if New Line detected on
output.

o - No
1 - Yes

This n~ature is of particular value if the device is a printer.

D [7]: Translate input using ASCII to APL translation
table.

01apter 12. Auxiliary Processors 12-71

IBM Internal Use Only

o - No translation.
1 - Translation takes place.

D [8 J: Translate output using APL to ASCII translation
table.

o - No translation.
1 - Translation takes place.

Parameters 7 and 8 give the flexibility of using your own
translate table in the workspace, permitting customised
translation tables for special devices.

D [9J: Clear-to-send line retry count.

D [1 0 J : Dataset ready line retry count.

D[11]: Carrier detect retry count.

These are the retry counts, to be used when initialising the
adapter, indicating whether a potential problem exists with
the device attached to them. A value of zero ignores the
line. -1 is the maximum number of retries.

D[12J: Turn around character.

This is the character used to delimit records in the receive
burrer. A value of -1 will cause no turn around character
to be used.

D [13 J: End-of-line character. A value of -1 will cause no
end-of.-line character to be used.

D [14 1 5 16 17]: Characters to be deleted from
data stream.

Values of -1 will cause no characters to be removed.

All of the above characters are specified as indices of DAV in
zero origin (0-255).

D [18 J: Receive buffer size.

12-72 APL/PC, Version 2.1

[8M Internal Use Only

The receive buffer size has a range of lK to 32K bytes.

D [1 g]: TransInit buffer size.

The transmit buffer size has a range of 255 to 32K bytes.

Buffer sizes should be selected according to the baud rate and
characteristics of the device. For example, a plotter will have
a great deal of data sent to it, so it should have a large
transtnit buffer, but will only need a small receive buffer.

The values in this parameter list should be chosen to agree
with those suggested by the manufacturer of the device to be
attached.

Recover Port Initialisation Parameters

Syntax:

C +- 1 [,Port]

The data variable returns a seventeen element vector as
specified in the preceding section.

Transmit Data to Port

Syntax:

C +- 2 [,Port]
D +- Characters to transmit

Receive Data froln a Port

Syntax:

C +- 3 [,Port]

The data variable will contain either all characters currently in
the buffer or up to the first turnaround character encountered.

Chapter 12. Auxiliary Processors 12-73

IB1\1 Internal Use Only

Get Status

Syntax:

C -+- 4,Port,1

The data variable returns transmit and receive buffer sizes and
number of characters in each as a 4 element integer vector.

C -+- 4,Port,2

The data variable returns a four by eight boolean array which
is a direct copy of the LCR, MCR, LSR, and MSR registers,
in row order.

Set LCR I MCR Registers

Syntax:

C -+- 5,Port,n
D +- 8 element boolean vector representing
new register value

where n is:

1 = Line control register (LCR).
2 Modem control register (M CR).

Reset the Transmit and Receive Buffers

Syntax:

C -+- 6 [,Port]

Buffers are frozen and purged.

12-74 APLjPC, Version 2.1

[BM Internal Use Only

AP232X Return Codes

Code Meaning
o - Success
1 - Receive buffer empty
2 - Invalid port specified

10 - Ct 1 has invalid Length
11 - Ct 1 has invalid Type
12 - Ctl has invalid Rank
14 - Invalid function request
21 - Dat has invalid Rank
22 - Da t has in valid Length
23 - Dat has invalid Type
24 - Da t not shared
25 - Da t value error / locked
26 - Dar. too large
30 - Invalid baud rate
31 - Invalid number of bits per byte
32 - Invalid Stop bits
33 - Invalid Parity code
34 - Invalid RTS flag
35 - Invalid Linefeed add flag
36 - Invalid translation to ASCII flag
37 - Invalid translation to AJ>L flag
38 - Invalid CTS retry count
39 - Invalid RTS retry count
40 - Invalid COD retry count
41 - Invalid turnaround character
42 - Invalid EOL character
43 - Invalid delete char no. 1
44 - Invalid delete char no. 2
45 - Invalid delete char no. 3
46 - Invalid delete char no. 4
50 - Time-out on CTS line
51 - Time-out on OSR line
52 - Time-out on RLSO line
53 - Invalid receive buffer size
54 - Invalid transmit buffer size

Chapter 12. Auxiliary Processors 12-7 5

IBl\1 Internal Use Only

l"lle Music Auxiliary Processor: AP440

The AP440 auxiliary processor provides an easy way to create
music at the attached speaker. To use this auxiliary processor,
you should have an elementary knowledge of music and its
notation.

To use this auxiliary processor, you must include AP440 as a
parameter to the APL command at load time, before you
begin an APL work session, or load it dynamically through
AP2. For example,

APl AP440

The APL line:

440 DSVO 'name'

must be executed before tlie auxiliary processor can be used.
name is the name of any APL variable.

The result of the preceding line will be ai, if the variable name
is accepted. This auxiliary processor accepts only one variable.

The line:

DSVO 'name'

must be executed next and must give a result of 2. If not, the
auxiliary processor is not active or a different variable has
been shared with it and has not been retracted.

Any character string assigned to narne will be interpreted as a
set of cornmands to the auxiliary processor to play music.
Comnlands may be joined within a single character string in
any way you desire, or passed through another variable which
is then assigned to the shared variable.

12-76 APLjPC, Version 2.1

IBM In tcrnal Use Only

AP440 COlnnland Syntax

{[tenlpo] [octave] [rnode] [length] [NOTESPEC] [pause]}

where:

[tempo] :

[octave] :

[mode] :

[length] :

Tn (n = 0 to 6; default 4)

On[{+ -}] (n = 0 to 6; default 3)

Mn (n = 0 to 2; default 0)

Ln (n = 0 to 6; default 0)

[NOTESPEC]: tone [{# + -}] En] [.] (tone = A to G; n =
o to 6, defa~lt 0)

[pause] P En] [.] (n = 0 to 6; default 0)

NOTESPEC A to G, optionally followed by #, +, or -, and a
digit (0 to 6), optionally followed by a period.

Plays the indicated note in the current octave. #
or + specifies a sharp, and - specifies a flat. The
digit, if given, specifies the length of the note,
according to the following:

o complete note
1 half note
2 quarter note
3 quaver note
4 semiquaver note
5 quarter quaver note
6 half-quarter quaver note

If a period is given, the note is played as a dotted
note; that is, its length is multiplied by 3/2.
Additional dots are ignored, if present.

Chapter 12. AuxiJiary Processors 12-77

length

nl0de

IBM Internal Use Only

Ln, where n is a digit from 0 to 6, sets a given
length (according to the previous table) applied
to all later notes in this or different strings of
commands, unless a new Ln cornmand is found
or a note has its own length given, which takes
priority. If no Ln command has ever been given,
LO is assumed as the default.

M n, where n is a digit from 0 to 2, selects the
music mode, according to the following table:

o Music staccato. Each note will play 3/4 of the
length. The rest will be a pause.

1 Music normal. Each note will play 7/8 of its
length.

2 Music legato. Each note will play its full
length.

If no Mn command has ever been given, M 1 is
assumed.

octave On, where n is a digit from 0 to 6, optionally
followed by a + or - sets the current octave.
Each octave goes from C- to B+. Octave 3
contains rniddle A (440 Hertz). If + or - is not
present, the number given is the absolute octave.
A + sign specifies a relative displacement to
higher octaves. A - sign corresponds to a
relative displacement to lower octaves. If no On
command has ever been given, 03 is assumed.

pause P, optionally followed by a digit from 0 to 6,
optionally followed by a period, defines a pause
or rest. The digit, if given, specifies the length of
the pause. This length may be enlarged to 3/2 its
value if a period follows. The length values are
interpreted according to the same table indicated
in the note-definition command.

12-78 APLjPC, Version 2.1

IBM Internal Use Only

tempo Tn, where n is a digit from 0 to 6, sets the tempo
of the play, according to the following table,
where the nUInber of quarter notes per minute
equivalent to each tempo is indicated in
parentheses:

o Largo (54)
1 Largetto (66)
2 Adagio (78)
3 Andante (96)
4 Moderato (120)
5 Allegro (156)
6 Presto (198 per minute)

If no Tn command has ever been given, T4 is
assumed.

To play tied notes, connect the expressions of the two notes.
You can also assign sub-tunes to any APL variable (not
shared with AP440) and call them repetitively with different
tempos, octaves, or lengths, by assigning that variable to the
shared variable.

For an example of how to use this auxiliary processor,
examine the variables included in the MUSIC workspace.

The IBM GPIB Support Auxiliary
Processor: AP488

The IBM General Purpose Interface Bus Adapter provides an
interface between an IBM Personal Computer and the
IEEE-488 General Purpose Interface Bus (GPIB), allowing
control of multiple devices or instruments (such as plotters,
multimeters, and disk drives).

Auxiliary processor 488 provides an interface between APL
and the IBM General Purpose Interface Bus (GPIB) Adapter
Prograrnnling Support.

Chapter 12. Auxiliary Processors 12-79

IBM Internal Use Only

Part No Feature

General Purpose Interface Bus 6451503 1503
Programming Support 6024201 4201

Each Personal Computer can accommodate up to four GPIB
Adapters and provide support for up to 48 devices. The IBM
GPIB Adapter can perfonn as a controller, a talker, or a
listener with these compatible devices. The IBM GPIB
Adapter also provides capabilities for data transfer between
workstations, and the connection of several computers for
sharing of instruments or peripheral I/O devices.

Description of AP488 Functions

Thirty five functions are defined to auxiliary processor 488,
nUlnbered 0 through 34. Function calls 21,29,31, and 33 are
reserved for future use. Each numeric function code has a
matching APL function in the AP488 workspace, as follows:

o IBWAIT
lIBONL
2IBRSC
3 IBSIC
4IBSRE
5IBLOC
6IBRSV
7IBPPC
8IBPAI)
9IBSAI)
10 IBIST
11 IBDl'AA
121BEOS
13IBTMO
14IBEOT
151BGTS
16IBCAC
17IBRDF
18IBFIND
19IBRPP
20IBSTAT
21
22IBCLR

Wait for Selected Event
Online or Omjne
Request or Release Systeln Control
Send Interface Clear
Set or Clear Remote Enable Line
Go to Local
Request Service
Parallel Poll Configure
Change Primary Address
Change or Disable Secondary Address
Individual Status Bit
Enable or DisableDMA
Change or Disable EOS Method
Change or Disable Timeout Limit
Enable or Disable EN!) Message
Active Controller Go To Standby
BeCOlne Active Controller
Read Data Into File
Open Device Adapter I:file I-landle
Conduct Parallel Poll
Return IBSTA, IBERR, IBCNT
Reserved
Clear Device with Selected Device Clear

12-80 APL/PC, Version 2.1

IBM Internal Use Only

23 IBTRG Trigger Device
24 IBPCT Pass Control
25 IBRSP Conduct Serial Poll
26 IBBNA Change Adapter Name
27 IBSIZE Set Data Buffer Size
28 IBR11 Read Data
29 Reserved
30 IB\VRT Write Data
31 Reserved
32 IBCMD Send Commands
33 Reserved
34 IBWRTF Write Data From File

The general format of processor calls is:

[D488~optjonal data]
C488~functjon code, handle, [optional parmJ
VALUE~488
[DATA~D488J

All functions return a value which is unlikely to be zero. In
most cases, the integer equivalent of IBSTA (the IEEE-488
sixteen bit integer status word) is returned. Two functions (19
- IBRPP, and 25 - IBRSP) return integer poll responses if no
error has occurred.

ClJ. 88 accepts only integer values and DlJ. 88 accepts only
character vectors. This is true for all functions.

IBSTA, Status 'Vord Layout

The status variable is a sixteen bit integer variable. All sixteen
bits mean something:

Chapter 12. Auxiliary Processors 12-81

IBM Internal Use Only

Bit Value Meaning

0 1000000000000000 - ERR GrIB Error
1 0100000000000000 - TIMO Time Umit Exceeded
2 0010000000000000 - END Device Detected END or EOS
3 0001000000000000 - SRQI SRQ Detected
4 0000100000000000 - RQS Device Requires Service
5 0000010000000000 - Reserved
6 0000001000000000 - Reserved
7 0000000100000000 - CMPL I I 0 Completed
8 0000000010000000 - LOK Device is in Lockout State
9 0000000001000000 - REM Device is in Remote State

10 0000000000100000 - CIC Device is Controller-I n-Charge
11 0000000000010000 - ATN Attention is asserted
12 0000000000001000 - TACS Device is Talker
13 0000000000000100 - LACS Device is Ustener
14 0000000000000010 - DTAS Device in Device Trigger state
15 0000000000000001 - DCAS Device in Device Clear state

When ERR is true, the sixteen bit integer status word is
returned to APL as a negative value. It should be clear that
any positive return code is good. A negative value means that
ERR is true, an error or abnormal condition has occurred:

• IBSTA bits are set
• IBERR numeric return code is available thru function call

20 (IBSTAT)

IBERR, Error number

o Driver or DOS error
1 Function requires GPIB adaptor to be

Controller-In-Charge
2 Write function detected no listeners
3 Interface adapter not addressed correctly
4 Invalid argument to function call
5 Function requires GPIB adaptor to be System Active

Controller
6 I/O operation aborted
7 Nonexistent interface adapter
8 Reserved
9 Reserved
10 Asynchronous operation not complete
11 No capability for operation
12 Unable to access file

12-82 APL/PC, Version 2.1

IBM Internal Use Only

13 Reserved
14 Bus command error during device call
15 Serial Poll status byte lost
16 SRQ remains asserted

Notation

In the following descriptions:

DEVICE refers to a device connected to the GPIB

ADAPTER refers to the GPIB Adapter board

EITHER refers to either an adapter or a device

Function 0, Wait for Selected Event (IBW AIT)

C488+0,EITHER,MASK
IBSTA+C488

This function causes the system to wait for any of the events
specified in the mask integer. The mask layout is exactly the
saIne as that of the IBSTA variable.

Function' 1, Online or Offline (IBONL)

C488+1,EITHER,FLAG
IBSTA+C488

This function is the inverse of IBFIND. If FLAG is zero, it
closes the file handle. If FLAG is not zero, it does nothing
(except waste tilne).

Function 2, Request or Release System Control
(IBRSC)

C488+2,ADAPTER,FLAG
IBSTA+C488

Chapter 12. Auxiliary Processors 12-83

IBJ\r1 Internal Use Only

This function enables or disables System Controller functions
(Remote Enable, Interface Clear). The IEEE-488 specification
does not specifically pennit schemes where System Control
nlay be passed back and forth between instruments, but it does
not forbid them either. This routine would be used in such a
scheme.

Function 3, Send Interface Clear (IBSIC)

C488+3,ADAPTER
IBSTA+C488

This function causes the adapter board to assert the Interface
Clear signal if the adapter is currently supporting Systetn
Controller functions.

Function 4, Set or Clear Relnote Enable Line
(IBSI~E)

C488+4,ADAPTER,FLAG
IBSTA+C488

This routine asserts the Remote Enable signal if FLAG is
non-zero, else it unasserts it.

Function 5, Go to Local (IBLOC)

CLJ.88+5,EITHER
IBSTA+C488

This routine temporarily removes "Local Lockout" from the
specified instrulnent. Normally, this will re-enable front panel
controls. The next time the instrument is accessed via the
interface, "Local Lockout" will resume. There is no way to
turn off this condition pernlanently (except by changing the
option in CONFIG. SYS).

12-84 APL/PC, Version 2.1

181\1 Internal Use Only

I~unction 6, Request Service (IBRSV)

C488~6,ADAPTERJSTATUS
IBSTA~C488

This function is used when the adapter is configured as an
instrument, not the system controller. It sets the byte that is
returned when the system controller performs a serial poll. If
STATUS has the X' 40' bit on, this routine will also assert SRQ.

Function 7, Parallel Poll Configure (IBPPC)

C488~7,EITHERJCONFIG
IBSTA~C488

This function configures an instruInent or an adapter to
respond to a parallel poll. Be certain that the device to be
configured has a GP IB address in the range of zero through
seven. For information on the CONFIG integer, see the
"Guide to the General Purpose Interface Bus Adapter
Programnling Support".

Function 8, Change Primary Address (IBP AD)

C488~8,EITHERJADDRESS
IBSTA~C488

This routine permits you to over-ride the primary address of
the device or adapter that was specified by IBCONF. This
change remains in effect until IBONL is called, or your
prograln ends.

11"unction 9, Change or Disable Secondary Address
(IBSAD)

C488~9,EITHERJADDRESS
IBSTA+C488

This routine permits you to override the secondary address of
the device or adapter that was specified by IBCONF. This

Chapter 12. Auxiliary Processors 12-85

IBM Internal Use Only

change remains in effect until IBONL is called, or your
program ends.

Function 10, Individual Status Bit (IBIST)

C488+10,ADAPTER,FLAG
IBSTA+C488

This routine sets the parallel poll response bit to true if FLAG
is not zero, else the routine sets the response bit to false. The
adapter must have been previously configured to respond to a
parallel poll.

Function 11, Enable I Disable DMA (IBDMA)

C488+11,ADAPTER,FLAG
IBSTA+C488

This routine permits you to temporarily disable and re-enable
DMA transfers. If FLAG is zero, DMA is disabled and the
adapter will use programmed I/O exclusively. If FLAG is not
zero, then the adapter will use DMA.

Note: DMA may only be used if you configured your system
to use DMA via the IBCONF utility supplied by the GPIB
Programming Support.

Function 12, Change or Disable EOS Method
(IBEOS)

C488+12,EITHER,FLAGWORD
IBSTA+C488

This function changes or disables the End Of String method.
FLAGWORD specifies both the EOS character, and what to do
when it is detected during a read or write. For further
information on the FLAGWORD integer, see the "Guide to the
General Purpose Interface Bus Adapter Programming
Support".

12-86 APL/PCt Version 2.1

IBM Internal Use Only

Function 13, Cbange or Disable Timeout Limit
(IBTMO)

C488+13,EITHER,FLAGWORD
IBSTA+Cl~88

This function changes the amount of titne that the interface
will wait before reporting a timeout error. Litnits range from
10 microseconds through one thousand seconds, or forever.
FLAGWORD ranges fronl zero through seventeen and is
described in the "Guide to the General Purpose Interface Bus
Adapter Programming Support" .

• "unction 14, Enable or Disable END Message
(IBEO'f)

C488+14,EITHER,FLAG
IBSTA+C488

This function specifies whether or not EOI is set concurrently
with the last byte of the data. If FLAG is zero, then EOI is
not sent. If FLAG is non-zero, then EOI is sent. If the handle
refers to an adapter, then the value specified by FLAG
overrides the specification on all devices attached to the
adapter card.

Function 15, Active Controller Go To Standby
(IBGTS)

C488+15,ADAPTER,FLAG
IBSTA+C488

This routine is very useful for transferring data between two
instruments without bothering to read it into APL first. It is
normally used in conjunction with IBCMD. The function
unasserts the ATN line and goes to the standby state. If FLAG
is non-zero, then the adapter monitors the data transfer and
goes into a "Not Ready For Data" state when the END
message is detected. This pennits synchronous resumption of

Chapter 12. Auxiliary Processors 12-87

IBM Internal Use Only

control via IBCAC. If FLAG is zero, then no monitoring is
performed.

Function 16, Becolne Active Controller (IBCAC)

C488+16,ADAPTER,FLAG
IBSTA+C488

This function is used to resume control of the GPIB system.
If FLAG is zero, then control is forced immediately (and
possibly asynchronously with respect to data transfer). If
FLAG is non-zero, then control is resumed synchronously with
respect to data transfer.

Function 17, Read Data Into File (IBRDF)

D488+'FULL DOS FILE SPECIFICATION'
(Including Path)
C488+17,EITllER
IBSTA+C488

This function reads data from the GPIB and writes it to a
DOS file. Any data already in the file is over-written. The
transfer will end when either the END or the EOS nlessage is
detected.

Function 18, Open Device or Adapter File I-Iandle
(IBFIND)

D488+'UNIT NAME'
C488+18,O
RESULT+C488

This function performs an "open" on the specified device.
You supply the name of the instrument or adapter board to
D488, and the function returns a file handle or IBSTA if an
error occurs. The result will always be a file handle if the
integer that is returned is positive, and will always be IBSTA if
the integer is negative.

12-88 APL/PC, Version 2.1

IBl\t1 Internal Use Only

FUllction 19, Conduct Parallel Poll (IBRPP)

C488+19 ,EITHER, 0
RESULT+C488

This function causes the adapter to perform a parallel poll.
The value returned is either the response byte from the poll (if
the value is positive) or IBSTA if the value is negative (an
error was detected). The EITHER may be either an adapter or
a device. If the handle refers to a device, the software will
actually perform a parallel poll on the adapter board that owns
the device.

Function 20, Return IBST A, IBERR, IBCNT
(IBSTAT)

C488+20
RESULT+C488
IBSTA+RESULT[l] +0
IBERR+RESULT[2]
IBCNT+RESULT[3]

This function is used to retrieve the current values of IBSTA f

IBERR, and IBCNT. No actual GPIB activity results, this
function only reads three integers from the auxiliary processor.

Function 22, Clear Device with Selected Device Clear
(IBCLR)

C488+22,DEVICE
LBSTA+C488

This function clears (or is supposed to clear) the internal
device dependant functions of the specified instrument. The
routine actually sends "Selected Device Clear" to the device.
Not all instrurnents support the "SOC" message.

Function 23, Trigger Device (IBTRG)

C488+23,DEVICE
IBSTA+C488

Chapter 12. Auxiliary Processors 12-89

IBM Internal Use Only

This function sends the GET (group execute trigger) message
to the device specified by EITHER. Many devices do not
support this function.

Function 24, Pass Control (IBPCT)

C488~24JDEVICE
IBSTA~C488

This function passes "Controller-In-Charge" authority to the
specified device. Be CERTAIN that the device specified can
support controller functions. .

Function 25, Conduct Serial Poll (IBRSP)

C488~25JDEVICEJO
RESULT~C488

This function performs a serial poll of the specified device and
returns the resultant status byte (if no error occurred), or else
it returns IBSTA. If the returned integer is positive, the
response is a status byte. If the returned integer is negative,
then the response is IBSTA.

Function 26, Change Adapter Nalne (IBBNA)

D488~IGPIB I

C488~26,DEVICE
IBSTA~C488

This function changes the adapter (GPIBO-GPIB3) used to
access the instrument specified by DEVICE. D488 is
assigned a five character name that consists of "GPIB"
followed by the character zero through three.

Function 27, Set Data Buffer Size (IBSIZE)

C488+27,BUFFSIZE
IBSTA~C488

12-90 APL/PC. Version 2.1

IUM Internal Use Only

This function sets the maxitnunl read buffer size in the
auxiliary processor. No I/O is performed.

Function 28, Read Data (IBRD)

C488+-28,EITHER
IBSTA+-C488
DATA+D488

This function reads data from the specified device or adapter
and returns it to APL through D48 8. If the high order bit
(X'8000') of the EITHER is true, then no translation of the
data from ASCII to Z-CODE (the internal APL character set)
is perfornled. The BINARY function is provided to set this bit,
and the ASCI I function to reset it.

Function 30, Write Data (IBWRT)

D488+-DATA
C488+-30,EITHER
IBSTA+-C488

This function writes data from a character vector to the
instrument that is specified by EITHER. If the high order bit
(X'8000') of the EITHER is true, then no translation of the
data from ASCII to Z-CODE (the internal APL character set)
is performed. The BINARY function is provided to set this bit,
and the ASCI I function to reset it.

Function 32, Send Commands (IBCMD)

D488+-COMMANDS
C488+-32,ADAPTER
IBSTA+-C488

This function sends actual GPIB comnlands out through the
adapter. You may send any valid sequence of IEEE-488
cOInmands. For more information on IBCMD, see the "Guide
to the General Purpose Interface Bus Adapter Programming
Support".

Chapter 12. Auxiliary Processors 12-91

IBM Internal Use Only

Function 34, Write Data Front File (IBWRTF)

D488+'FULL DOS FILE SPECIFICATION'
(Including Path)
C488+34,EITHER
IBSTA+C488

This function reads data from a DOS disk file, and sends it to
the specified device (or adapter) as one long record. No
translation is done.

12-92 APL/PC, Version 2.1

IBM Internal Use Only

Cllapter 13. lIow to Build an Auxiliary
Processor

Access Control 13-4
Format of Shared Data 13-5
Shared Variable Processor Services and Return Codes 13-7

Processor Sign-on: OOH 13-8
Return to APL via Shared Variable Processor:

011-1 13-9
Share or Query the State of a Variable: 02H ... 13-10
Get the Present Value of a Shared Variable: 0311 13-11
Get a Block of M emory From the Workspace:

041-1 13-12
Release Storage to the Workspace: 051-1 13-13
Pass a Variable to APL and Release the Space:

061-1 13-14
Pass a Scalar Integer Return Code to APL: 07H 13-15
Convert an APL Object from Type Boolean to

Integer: 08H 13-16
Convert from APL Z-code to ASCII: 09H 13-17
Convert from ASCI I to APL Z-code: OAH 13-18
Share or Query the State of a Variable: OBH 13-19
Pre-read a Variable: OCH 13-20
Read a Previously Pre-read Variable: ODH 13-21
Release a Previously Pre-read Variable: OEH .. ' 13-22
Pass a Value to a Variable: OFH 13-23
Processor Sign-off: lOB 13-24
SVP Reserved Function: lIB 13-24
Locate an Associated Variable: 121-1 13-25
Change the Keyboard / Screen Mode: 13H 13-26
Get Loop Count for Delay: 14II 13-27
Change the Keyboard / Screen Mode Without

Clearing Screen: 15H 13-28
Notes 13-29
Return Codes (Returned in ex Register) 13-30
Sample Auxiliary Processors] 3-310
APL Interrupt Usage 13-31

Chapter 13. How to Build an Auxiliary Processor 13-1

IBM Internal Use Only

How to Debug Auxiliary Processors 13-32
Exchange Assembly Programs 13-33

Notes:

13-2 APL/PC, Version 2.1

IBM Internal Use Only

The APL/Personal Computer System, Version 2.1, includes a
wealth of auxiliary processors implementing interfaces to most
of the devices now available for the IBM Personal Computer.
However, you may wish to further extend the facilities of your
APL system by writing your own, user-tailored auxiliary
processors.

To build your own a uxiliary processors, you must have a good
understanding of APL, APL data types, assembler language,
and the information in this chapter. You will need the IBM
Personal Computer lVlacro Assembler if you desire to build
your own auxiliary processors.

Essentially, an auxiliary processor (AP) provides a service that
involves exchange of data. One obvious service is accessing a
file. However, the services that an AP can provide are limited
only by the facilities available in the system and the
imagination of the designer.

Auxiliary processors exchange information with the APL
processor through shared variables. A variable becomes
shared when you offer to share it and the auxiliary processor
accepts the offer. You and the AP, in effect, then become
partners. Each partner can assign a value to the shared
variable (specify it) and get its latest value (reference it).

The shared variable processor (SVP) is a part of the APL
processor and manages all shared-variable oilers and
information exchange. This processor is loaded in main
menlory only if at least one auxiliary processor using its
services (the name of which begins with "AP") has been
selected at APL load time.

Chapter 13. How to Build an Auxiliary Processor 13-3

IB1\1 Internal Use Only

Access Control

I t is often necessary for the partners to control the sequence in
which they access a shared variable. If the access is not
controlled, one partner can specify a variable twice before the
other can reference the first value, or one partner can reference
a variable twice before the other can specify a second value.

Each shared variable is associated with a 4-bit control vector
that provides a means of regulating access to the variable.
Each partner presents its own version of the access-control
vector to the SVP. The efiective, or combined, access-control
vector is the logical OR of the two. Thus, each partner can
impose more discipline, but neither can reducde the discipline
imposed by the other.

The meaning of each of the four bits, as given by an auxiliary
processor to the SVP, is:

Bit Meaning

o If 1, disallow my successive specification until my partner
has accessed the variable (either referenced or specified
it).

1 If 1, disallow my partner's successive specification until I
have accessed the variable.

2 If 1, disallow my successive reference until my partner has
specified the variable.

3 If 1, disallow my partner's successive reference until I
have specified the variable.

The SVP allows or disallows each access according to the
variable's access state. The access state at any point in time
depends on the variable's combined access-control vector and
the prior accesses by each partner.

13-4 APL/PC. Version 2.1

IBM Internal Use Only

Fornlat of Shared Data

APL data on the IBM Personal Cornputer has a special
internal format. Data passed from APL to the auxiliary
processor, and data passed back to APL, must be in that same
format. The maximum size of an APL object that may be
passed to or from an auxiliary processor is 32512 bytes. If you
pass invalid data to APL, unpredictable errors may occur.

Each variable contains information that describes its data type,
shape, and size. This information is called its header, and is
located at the beginning of the object. It consists of the
following fields:

$PTR EQU WORD PTR [0] A pointer. Should be
ignored by the A.P.

$NB EQU WORD PTR [2] Number of bytes in
this APL object. It
MUST be rounded up
to EVEN.

$NELM EQU WORD PTR [4] Number of elements in
this APL object.

$TYPE EQU BYTE PTR [6] APL object type:
O=Logical, l=Integer,
2=Real, 3=Character

$RANK EQU BYTE PTR [7] Rank of object (0-63).
$DIMI EQU WORD PTR [8] First dimension (if any).

As many dimensions as
value of $RANK follow.

A scalar has a rank of 0 and is a variable with no dimension.
I t has only one elernent and contains no size information.

A variable with rank greater than 1 includes size information:
as many dimensions as the value of its rank. Each dirnension
must be a two-byte integer, with a value in the range 0 to
32767. The maximum rank of a variable is 63.

An APL variable may be one of four types:

• real (floating point)
• integer
• logical (boolean)
• literal (character)

Chapter 13. How to Build an Auxiliary Processor 13-5

IBM Internal Use Only

When you receive numeric data frorn APL, you should be
prepared to accept the data in any representation and to
convert between different representations. .

Regardless of a variable's data type, its elements are located
immediately after the header, and the whole object is padded
up to an even number of bytes. If the variable has more than
one dimension, its elements are stored in row order (as if the
APL primitive ravel had been applied to the variable).

Elements of a logical variable are represented as logical values
(0 or 1), with one bit per element. The bytes of a logical
variable, and the bits within the byte, are in row order. The
word containing the last element can have undefined elements
on the right. For example, the elements of a 19-element
logical variable are stored in four bytes (two words) in the
sequence shown below. Unused elements of the fourth byte
are undefined.

o 1 2 3 4 567 o 1 2 3 4 567 o 1 2 x x x x x

Elements of an integer variable are represented as binary
numbers, with two bytes (one word) per elernent. Actual
values must belong to the interval [- 32767, 32767]

Elements of a real variable are represented in long
floating-point format, with eight bytes per element.

Elements of a character variable are represented in APL
internal code, with one byte per element in row order. The
word containing the last element can have one undefined byte
on the right. An SVP service function has been provided to
translate character data in APL internal fonn to ASCII and
vice versa.

13-6 APL/PC, Version 2.1

IBM Internal Use Only

Shared Variable Processor Services allt
Return Codes

The IBM Personal Conlputer APL system Version 1.0 inch
a set of SVP services and macros that could be used to buil~
auxiliary processors. Although this interface is still supporte,
by the IBM APL/Personal Computer system Version 2.1, for,
compatibility reasons, it will not be described here, since a
new, easier, and more powerful interface between AP's and
SVP has been incorporated to the system. This interface, to be
described below, is recommended to all users who want to
build new auxiliary processors.

The new SVP interface is accessed through interrupt OB6I1 and
may be used whenever the SVP has been loaded (i.e. when at
least one AP has been invoked at APL load time). The value
of the BP register is critical to all SVP interface calls, thus it
should not be used by the AP, or restored to its original value
whenever an SVP service is requested.

Service calls are passed information and return results in the
processor's registers. The value of register All when the
interrupt is executed indicates the function to be performed.

A file ($A.P.MAC) has been included in this package,
containing equates for the service calls and the APL object
headers. You are advised to include this file in your AP source
program.

The following is a short description of all the SVP services
supported by the new interface:

Chapter 13. How to Build an Auxiliary Processor 13-7

IBM Internal Use Only

Processor Sign-on: OOH

On Register Contents
Entry

AH OOH

BX Processor number range 2 to 32767

On Register Contents
Return

CX Return code; if carry set

Description

This function will sign on the auxiliary processor to the shared
variable processor.

See notes 1 and 2.

13-8 APL/PC, Version 2.1

IBM Internal Use Only

Return to APL via Shared Variable I>rocessor:
OlH

On Register Contents
Entry

AH OIH

On Register Contents
Return

All register contents lost

Description

This call is used to signal the end of an Auxiliary processor
call, it is the method of releasing control to the APL
interpreter.

\Vhen the SVP wishes to re-enter the auxiliary processor it will
be at the instruction directly after the \Vait request.

Special note, the DP register nlust be nlaintained at the value it
had on entry to the auxiliary processor follo\ving the last wait
call.

See notes 1 and 2.

Chapter 13. Ilow to Build an Auxiliary Processor 13-9

IBM Internal Use Only

Share or Query the State of a Variable: 0211

On Register Contents
Entry

AH 02H

BX 0; if variable not shared, else variable identifier

CH Access control vector for variable

CL Initial character of the variable name, this
value is given in APL Z-code or zero if any
character should be accepted

On Register Contents
Return

BX Variable identification, or a zero if not
accepted or retracted

CX Return code

DS Aligned to object passed if any (at DS:O)

CF If set; the variable if any had no value;
see CX for reason.
If not set; the variable value has been read

Description

If BX = 0 and a matching offer is found, the variable is
shared and the access control vector is set.

If BX~O and the variable has been retracted by APL, the
variable is retracted by the Auxiliary Processor.

If this is a control variable (recognised through the access
control vector), the present value of the variable, if any, is
read.

13-10 APL/PC. Version 2.1

IBM Internal Use Only

The variable identification should be kept by the AP to be
used whenever a service pertaining to this variable is sent to
the SVP.

See notes 1, 3 and 5.

Get the Present Value of a Shared Variable:
0311

On Register Contents
Entry

AH 03H

BX Variable identification

On Register Contents
Return

ex Return code

DS Aligned to object passed if any

CF If set; value could not be read, reason code in ex
If not set; then variable was read

Description

Read the contents of a variable set by APL assignment.
Variable passed is in APL internal format.

See notes 1, 3 and 5.

Chapter 13. How to Build an Auxiliary Processor 13-11

IBM Internal Use Only

Get a Blocl{ of Menlory Fronl the Workspace:
041-1

On Register Contents
Entry

AH 04H

OX N umber of 16 byte paragraphs required

On Register Contents
Return

OS Pointer to requested space

CX Return code

OX N umber of blocks availa.ble

CF If set; no space available
If not; set request succeeded

Description

This call provides the auxiliary processor or exchange assembly
program with a method of obtaining storage from that unused
but allocated to the APL workspace.

See notes I and 3.

13- I 2 APLjPC, Version 2.1

IBl\rl Internal Use Only

Release Storage to the \Vorksilace: 05H

On Register Contents
Entry

AH 051-1

DS Address of storage to de-allocate

On Register Contents
Return

ex Return code

DX If carry not set; number of 16 byte paragraphs
released

CF If set; operation failed, see ex for reason
If not set; operation successful

Description

This call allows you to release storage back to the workspace.
I t is the responsibility of the AP to make sure all areas of
storage obtained from the workspace are freed back to APL.
All values passed by the SVP to the AP must also be freed by
the latter.

M emory allocation is nmde on a push down stack basis. The
following example illustrates the allocation method: Assume A
to be the first request, and B the second. If A is freed, no
memory will be returned to the workspace, since B is still in
use. When B is freed, all the areas previously occupied by A
and B are returned to the APL workspace.

See notes 1 and 4.

Olapter 13. How to Build an Auxiliary Processor 13-13

IBM Internal Use Only

Pass a Variable to APL and Release the
Space: 06H

On Register Contents
Entry

AH 06H

BX Variable identification

DS Pointer to the variable to be passed

On Register Contents
Return

CX Return code

DX N umber of paragraphs released

CF If set; operation failed, see CX for reason
If not set; operation successful

Description

This call permits you to assign a variable to APL and release
it's space.

See notes 1 and 4.

13-14 APL/PC, Version 2.1

IBM Internal Use Only

Pass a Scalar Integer Return Code to APL:
0711

On Register Contents
Entry

All 0711

EX Variable identification

ex Return code to passed

On Register Contents
Return

ex Return code

CF If set; operation failed, see ex for reason
I f not set; success

Description

This call is designed to ease the passing of a return code to
APL to indicate to the caller that a particular operation
requested of the auxiliary processor has been carried out.

See notes 1 and 4.

Chapter 13. How to Build an Auxiliary Processor 13-15

IBM Internal Use Only

Convert an APL Object from rrype Boolean to
Integer: 08H

On Register Contents
Entry

All 0811

DS Points to the variable for conversion

On Register Contents
Return

CX Return code from operation

DS Points to converted APL object

CF If set; operation failed, see CX for reason
If not set; operation successful

Description

This call converts APL boolean objects into integers, which are
more convenient to work with. If the conversion is not done
in place, the SVP will release the storage from the old object.
(The value of DS on return rnay be different fi-orn the one on
entry).

See notes 1 and 4.

13-16 APL/PC, Version 2.1

IBM Internal Use Only

Convert from APL Z-code to ASCII: 091-1

On Register Contents
Entry

AH 09H

OS This register pair point to an input character
Sf string to be converted

DS This register pair point at the output location
DJ·

CX N umber of bytes to be converted

On Register Contents
Return

CX Return code

CF If sct; operation failed, see CX for reason
If not set; success

Description

This call gives a service to translate a character vector to to
ASCI I from APL internal code known as Z-codes.

You should always remember to point at the start of data for
conversion not at the start of object.

I Note that the input and the output must both be in the same
I segtnent.

I Translations may be done "in place" that is DS:SI pair may
I equal DS:DI pair.

See notes 1 and 4.

Chapter 13. How to Build an Auxiliary Processor 13-17

IBM Internal Use Only

Convert from ASCII to APL Z-code: OAf I

On Register Contents
Entry

All OAH

DS This register pair point to an input character
Sf string to be converted

DS This register pair point to output location
DI

CX N umber of bytes to be converted

On Register Contents
Return

CX Return code

CF If set; operation failed, see CX for reason
If not set; success

Description

This call gives a service to translate a character vector to to
APL internal code known as Z-codes from ASCII.

You should always remember to point at the start of data for
conversion not at the start of object.

I N ate that the input and the output must both be in the same
I segment.

I Translations may be done "in place" that is DS:SI pair may
I equal DS:DI pair.

See notes 1 and 4.

13-18 APLJPC. Version 2.1

181\1 Internal Use Only

Share or Query the State of a Variable: OBH

On Register Contents
Entry

AH OBH

BX 0; if variable not shared, else variable
identifier

ClI Access control vector for variable

CL Initial character of the variable name, this
value is given in APL Z-code or a zero
if any character should be accepted

On Register Contents
Return

BX Variable identification, or a zero
if accepted or retracted

CX Return code

DX If carry not set, and if the variable is a control
variable, the number of 16-byte paragraphs
needed for its value

CF If set; the variable, if any, had no value,
see CX for reason
If not set; the variable value has been read

Description

If BX = 0 and a matching offer is found, the variable is
shared and the access control vector is set.

If BX~O and the variable has been retracted by APL, the
variable is retracted by the Auxiliary Processor.

Chapter 13. How to Build an Auxiliary Processor 13-19

IBM Internal Use Only

If this is a control variable (recognised through the access
control vector), the size needed to read its value, is
returned.

The variable identification should be kept by the AP to be
used whenever a service pertaining to this variable is sent to
the SVP.

Equivalent to AH = 02H, but the variable value, if any, is just
pre-read.

See notes 1 and 4.

l")re-read a Variable: OClI

On Register Contents
Entry

AH OCH

BX Variable identification

On Register Contents
Return

CX Return code

DX Number of paragraphs required

CF If set; operation failed, see CX for reason
If not set; operation succeeded

Description

This call enables you to pre-read a variable to see if it can be
successfully copied to your internal buffer area.

See notes 1 and 4.

13-20 APL/PC, Version 2.1

IBM Internal Use Only

Read a Previously Pre-read Variable: ODII

On Register Contents
Entry

All ODn

BX Variable identification

DS Pointer to area to receive variable

On Register Contents
Return

CX Return code

CF If set; operation failed, see CX for reason
If not set; successful

Description

This call gives a method of reading a variable to your internal
storage area.

See notes 1 and 4.

Chapter 13. How to Build an Auxiliary Processor 13-21

IBM Internal Use Only

Release a Previously Pre-read Variable: OEll

On Register Contents
Entry

All OEH

BX Variable identification

On Register Contents
Return

CX Return code

CF If set; operation failed, see CX for reason
If not.set; successful

Description

This function will be used when the AP decides to abandon
reading a previously pre-read variable.

See notes 1 and 4.

13-22 APL/PC, Version 2.1

IBM Internal Use Only

Pass a Value to a Variable: OFH

On Register Contents
Entry

AH OFH

BX Variable identification

DS Pointer to object to be passed

On Register Contents
Return

CX Return code

CF If set; operation failed, see CX for reason
If not set; successful

Description

This call permits you to assign a new value to a shared
variable.

See notes 1 and 4.

Chapter 13. How to Build an Auxiliary Processor 13-23

IBM Internal Use Only

Processor Sign-off: 1011

On Register Contents
Entry

All lOll

HX Processor number (used for sign-on)

On Register Contents
Return

ex Return code

CF If set; operation failed, see ex for reason
If not set; successful

Description

This function should normally not be used. When sign-on has
failed, sign-off should NEVER be executed. It is provided for
very special case, when an auxiliary processor may sign on and
off dynarnically frOnl the SVP.

After request, execution is returned to the next instruction
after the INT OB6H

To make a formal termination you must use the $RET macro
supplied in $AP.MAC.

See notes 1 and 3.

SVP Reserved }:function: 1111

Function AH = 11 H is reserved for systern use.

13-24 APLjPC, Version 2.1

IBM Internal Use Only

Locate an Associated Variable: 1211

On Registcr Contcnts
-Entry

AH 121-1

BX Variable identification

CL Initial letter of associated variable

On Register Contents
Return

BX Identification of associated
variable

ex Return code

CF If set; operation failed, see ex for reason
If not set; successful

Description

Two variables are considered to be associated if their names,
with the exception of the first letter, are the same, and they are
shared v/ith the same auxiliary processor.

See notes 1 and 4.

Chapter 13. How to Build an Auxiliary Processor 13-25

IBM Internal Use Only

Change the Keyboard I Screen Mode: 13H

I On I Register Contents
Entrv

w

AH 13H

BX Desired mode (see table below)

On Register Contents
Return

CX Return code

CF If set; operation failed, see CX for reason
If not set; successful

Description

This call permits the BIOS monitor mode to be changed or the
I keyboard translation to be changed. A side effect of this call is
I that the screen is cleared if a screen mode change is requested
I (non-negative values of BX). Valid BX values:

o - 25 x 40 Black and White Alphanumeric
1 - 25 x 40 Colour Alphanumeric
2 - 25 x 80 Black and White Alphanumeric
3 - 25 x 80 Colour Alphanumeric
4 - 200 x 320 Colour Graphics
5 - 200 x 320 Black and White Graphics
6 - 200 x 640 Black and White Graphics
7 - 25 x 80 Monochrome display

-1 - Set keyboard to APL Translation
-2 - Set keyboard to National Translation

See notes 1 and 4.

13-26 APLjPC, Version 2.1

IBM Internal Use Only

Get Loop Count for Delay: 1411

On Register Contents
Entry

All 141-1

On Register Contents
Return

CX Loop count for delay

This function returns in ex the appropriate value so that a
subsequent LOOP instruction will introduce a delay of one
hundredth of a second.

See notes 1 and 4.

Chapter 13. How to Build an Auxiliary Processor 13-27

IBM Internal Use Only

I Change the Keyboard I Screen Mode Without
I Clearing Screen: 1511

On Register Contents
Entry

AH 13H

BX Desired mode (see table on page 13-26).

On Register Contents
Return

CX Return code

CF If set; operation failed, see CX for reason
If not set; successful

I Description

I This call permits the BIOS monitor m.ode to be changed
I without unnecessary erasure of screen contents.

I It is essentially the same as call 131--1, but may be used to swap
I between the monochrome display and the colour display
I without affecting the text displayed on either. The colour
I display must already be in the correct mode otherwise
I unpredictable results will be given.

I See notes 1 and 4.

13-28 APL/PC t Version 2.1

IBM Internal Use Only

Notes

1. Register BP must retain its original value over all calls to
interrupt OB6H.

2. All register contents are lost.

3. Registers ES, SI, DI are saved. All others are lost.

4. Registers DS, ES, SI, DI are saved. All others are lost.

5. The SVP requests space for the value to be passed. It is
the auxiliary processor's responsibility to release that space
when no longer needed (through function AI-I = 5, for
instance).

Chapter 13. How to Build an Auxiliary Processor 13-29

IBM Internal Use Only

I Return Codes (Returned in ex Register)

Code Meaning
o - Success

-1 - Value error
- 5 - Already signed on
- 6 - Processor table full
-7 - Invalid sequence
- 8 - Variable locked
- 9 - Variable not shared

-11 - Not signed on
-20 - No variable offered
- 21 - Another variable offered
-22 - Not shared
-23 - Shared
-24 - Data variable referenced/specified
- 25 - Control variable referenced
-26 - No space available
- 27 - Variable was retracted
- 28 - Invalid block of rnemory to be released
- 2 9 - Invalid object/value
- 30 - Screen mode not supported in this PC

Sample Auxiliary Processors

Two sample auxiliary processors in source (assembly) code are
supplied as part of the package. They are called AP 11.ASM (a
single variable AP), and AP12.ASM (a two variable AP).
&J'hey can be used as examples on how to build your o\vn
auxiliary processor.

13-30 APL/PC, Version 2.1

IBM Internal Use Only

APL Illterrupt Usage

The following information is given to assist system
programmers to integrate APL into a total PC environment.

During session initialisation APL stores the pre-session
interrupt vectors at the location of interrupt 90B onward. (lnt
OH through 8FI-1 are copied to 90H through 011 EH
respecti vely).

Therefore, if you have installed a program as a DOS extension,
which utilises Int 5H before the APL session, you may invoke
this function by calling Int 95H, using AP103 during the APL
session.

APL itself utilises:

Int OB5H For internal purposes

Int OB6H SVP Services described earlier

If the AP80 auxilary processor has not been loaded then
interrupt 5H will point to a dummy address to prevent
misleading results from a print screen request.

The following are also taken over by APL:

lInt 2H Non-maskable

lInt 4H Overflow

Int 9H Keyboard

Int 24H Critical DOS error

Int OH Divide overflow

lInt 1 BH Keyboard Break

Chapter 13. How to Build an Auxiliary Processor 13-31

lInt D71-! Overflow (AT)

If AP2 is loaded then also:

lnt 2IB DOS function request

IBM Internal Use Only

flow to Debug Auxiliary Processors

To help in the debugging of your Auxiliary Processor, you may
use the DOS DEBUG prograrn. The procedure would be the
following:

1. Select the point (in the AP) where you want to set the first
DEBUG breakpoint. At that point, insert in your source
the following assenlbly instruction:

INT 3

2. Assemble and link-edit your AP.

3. Invoke APL under DEBUG in the following way:

DEBUG APl.EXE APxxx

where APxxx is the name of your AP.

4. When DEBUG gives you control, execute the following
DEBUG commands:

-9

5. APL will start normally. Execute now the proper APL
instructions so that your AP will receive control. (Share
variables etc.) DEBue; will intercept the execution at the
place you inserted INT 3. You rnay now follow the
execution of the AP using DEB U G. Note: The keyboard
will maintain its APL definition during execution of debug.

13-32 APL/PC, Version 2.1

IBM Internal Use Only

Exchange Assembly Programs

There is a second way of building user-tailored processors:
developing an exchange-assembly program, capable of getting
information from APL and passing back results, and called
through the non-APL program interface auxiliary processor
(AP2). This makes it possible to extend APL in an extrenlely
free fashion. You may, in fact, perform the equivalent of
adding new APL primitives to your own system.

A simple example of this power is demonstrated by the
FINDST function in the EXCHG workspace, which also
contains APL defined function FIND to perform the same
task. Although the speed differences are marginal on small
objects, when their arguments get very large the gain in speed
by FINDST becomes very apparent.

To assist you in the understanding of this method a sample
source progratn (HEXOBJ.ASM) has been included with the
system. It works as a monadic function with explicit result.
FINDST on the other hand acts as a dyadic function with
explicit result.

On close examination of the l-lEXOBJ program you should
note 1\vo things: first, the arguments of the function are passed
from APL to the exchange program through AP2 shared
variables D and E. The exchange program receives pointers to
their values. This pointers are located in the program segment
prefix, at addresses DS:80H and DS:82H, respectively.

Second, the exchange assembly program is also at liberty to
use the services of the SVP via interrupt OB6H, (This fact is
also true for APL programs through the BIOS/DOS interrupt
auxiliary processor, API03. See the DOSFNS workspace).

Return of arguments is via the same method. AP2 expects the
return values to be pointed from the same addresses in the
segnlent prefix. They are passed then to APL through shared
variables D and E.

Chapler 13. How to Build an Auxiliary Processor 13-33

IBl\t1 Internal Use Only

Objects passed to or from the exchange assembly program
have the same format as those described for an auxiliary
processor.

If the exchange assembly program takes storage from the
workspace, and if it is not sending it back as a result through
addresses 80H or 82H in the segment prefix, it is its
responsibility to free that storage, otherwise it will be lost
during the remainder of this AP L session.

If an object is received from APL, but not passed back, the
exchange program must free its space. If no results are passed
in one shared variable, the 80H or 82H pointer must be
zeroed. Failure to do this will be signalled by a return from
AP2 of either -1002 or -1003 which should alert you to this
situation.

13-34 APL/PC, Version 2.1

IB1\1 Internal Use Only

Appendix A. Backillg up Diskettes

Before You Begin

You will need these diskettes:

• The diskettes you ,vant to back up - we're going to call
these your original diskettes. You may also see them called
source diskettes.

• The diskettes that will become the backup diskettes. Other
names for these diskettes are target or destination diskettes.

• DOS diskette

Protecting Your Original Diskette

Hint: It's a good idea to put a tab over the write-protect
notch to make sure you don't accidentally write on your
original diskettes. You may remove the tab when the backup
diskettes have been made.

When the write .. protect notch is covered, if the diskettes get
mixed up, a message similar to the following appears:

Target diskette write protected

Correct, then strike any key

If you get this message:

1. Remove the original diskette from the drive.

2. Insert the backup diskette.

3. Press any key.

Appendix A. Backing up Diskettes A-I

IBM Internal Use Only

(You do not have to press the Enter key.)

Backing Up Diskette with One Drive

If you have only one diskette drive, you must relnove the
original diskette and insert the backup. You may have to
make this switch several times; the Disk Operating System
(DOS) will tell you when.

The DISKCOPY conunand will give you the following
messages:

Insert source diskette in drive A:

Insert target diskette in drive A:

So you should:

INSERT: WHEN:

Original diskette "source" message appears
Backup diskette "target" message appears

IMPORTANT: Read all of the following steps BEFORE
starting.

1. Make sure DOS is ready and A> is displayed.

2. Insert the DOS diskette in the drive, if it is not already
there.

3. Type:

diskcopy

and press the Enter key. The following Inessage appears:

Insert source diskette in drive A:

Strike any key when ready

BEFORE YOU PRESS A KEY:

a. Remove the DOS diskette that is in the drive.

A-2 APL/PC. Version 2.1

IBM Internal Use Only

b. Insert your original diskette.

c. NOW press any key.

4. You will see the in use light come on while the original
diskette is being read; then the follo\ving is displayed:

Insert target diskette in drive A:

strike any key when ready

BEFORE PRESSING A KEY:

a. Remove your original diskette.

h. Insert the backup diskette.

c. NOW press any key to tell DOS the correct diskette
has been inserted.

5. You will see the in use light come on while the backup
diskette is being written. Then the message shown in Step
3 will appear again.

Hint: For this procedure, you can remember which
diskette to insert if you remetnber "Original = Source".

Insert your original diskette when DISKCOPY asks for the
source diskette.

6. Repeat Steps 3 and 4 until the following message appears:

Copy complete

COpy another (Y/N)!

Remove the backup diskette from the drive.

7. Type:

y

if there are more diskettes to backup. If so, repeat the
process for the next diskette to be copied. Otherwise, type:

Appendix A. Backing up Diskettes A-3

IBM Internal Use Only

n

The DOS prompt, A> , is displayed.

(You don't have to press the Enter key.)

8. With a felt-tip pen, mark the label of each backup diskette
with the contents, the date, and perhaps, the word
"Backup" .

Backing Up Diskette ,vith T"vo Drives

1. Make sure DOS is ready and A> is displayed.

2. Insert your DOS diskette in drive A.

3. Type:

diskcopy a: b:

and press the Enter key. The following message appears:

Insert source diskette in drive A:

Insert target diskette in drive B:

Strike any key when ready

4. Remove your DOS diskette from drive A.

5. Insert your original diskette in drive A.

6. Insert your backup diskette in drive B.

7. Press any key.

This tells DOS you are ready, and DOS starts copying the
diskette.

If the diskette had not previously been fonnatted with the
same format as the original diskette, aforn1atting while
copying message will appear.

A-4 APL/PC, Version 2.1

IBM Internal Use Only

All information is now being copied from the diskette it
drive A to the diskette in drive B.

You will see one in use light go on, then the other.

8. When the copy has been made, you will see a message
sintilar to the following:

Copy complete

COpy another (Y/N)!

Remove the original diskette and backup diskettes from the
drive.

9. Type:

y

if there are more diskettes to backup. If so, repeat the
process for the next diskette to be copied. Otherwise, type:

n

The DOS prompt, A> , is displayed.

(You don't have to press the Enter key.)

10. Remove the last backup diskette from the drive.

11. With a felt-tip pen, mark the label of each backup diskette
with the contents, the date, and perhaps, the word
"Backup" .

Appendix A. Backing up Diskettes A-5

IBM Internal Use Only

Notes:

A-6 APL/PC, Version 2.1

IBM Internal Use Only

I Appendix B. APL/PC 1.0 Workspace
I Migration

I W orkspaces generated by nleans of the IBM Personal
I Computer APL (Version 1.0) are not compatible with the IBM
I APL/Personal Computer Version 2.1. A migration procedure
I must be performed.

I W orkspaces generated by means of the internally distributed
I APL/PC 1.1 and saved as ".APL" files are compatible, but
I workspaces saved as ".AIO" files are not and also require the
I use of the migration procedure.

I Workspaces generated by means of the IBM APL Personal
I Cornputer Version 2.0 product are fully compatible.

I Warning: before attempting to migrate workspaces, a back-up
I copy of each workspace to be nligrated should be made. This
I will prevent any loss of valuable programs or data should any
I unexpected problems arise during the migration procedure.

I W orkspaces in APL format

I To be migrated, Version 1.0 workspaces must be in transfer
I form, i.e. they should have been generated in one of the
I following ways:

I. With the)OUT comrnand.

I. \Vith the OUT function in the FILE workspace.

! APL workspaces in transfer form are recognised because they
have an ext.ension of" .AI 0".

Appendix B. APL/PC 1.0 Workspace Migration B-1

IBM Internal Use Only

I APL 1.0 workspaces in APL format should be converted to
I transfer form before being migrated to Version 2.1. This is
I done in the following way:

I 1. Activate Personal Computer APL Version 1.0.

12. Perform the following APL operations for each
I APL-format workspace to be converted:

)LOAD wsid
)RESET
)OUT wsid

I If you get a SYSTEM LIMIT error message while the)OUT is
I being performed, it means there is a very large object in the
I workspace. You will have to split it into smaller objects.
I (This lirnitation is not in effect in APL/PC Version 2.1).

I If you get a LIBRARY FULL error message, the Ala
I workspace does not fit in the disk(ette). Discard the partial
I copy you will find there, and use a diskette with more available
I space.

I Warning: If you)LOAD a Version 1.0 compatible workspace
I under Version 2.1, the command will be rejected with the
I message INVALID WORKSPACE. However, the message NOT
I FOUND will appear if you try to)LOAD a Version 2.1
I compatible workspace under APL/PC 1.0.

I Workspaces in AIO format

I W orkspaces in ".AI 0" format (transfer file) may be directly
I migrated to APL Version 2.1 in the following way:

I 1. Activate APL/Personal Computer Version 2.1.

I 2. Perform the following APL operation for each Ala-format
I workspace to be converted:

)LOAD MIGRATE

B-2 APL/PC, Version 2.1

IBM Internal Use Only

You will be prompted for the name of the (.AIO)
workspace to be migrated. The name should be given in
the following way:

[libn] filename

i.e. an APL library number may be included, but the
extension (.AIO) should not be given.

From this point, the process is completely automatic. The
converted workspace will overwrite the old copy. This
workspace will be compatible with Version 2.1, but not
with Version 1.0.

Warning: If you)IN a 1.0 compatible workspace under
Version 2.1, the corrunand will perform successfully, but if you
try to execute a function, you are likely to get a SYNTAX
ERROR message in an apparently correct line, with the caret
pointing to an APL right or left arrow. The same will happen
if you try to execute a 2.1 compatible workspace under APL
1.0. In this latter case, however, the arrows may appear as
other symbols (Y2 or the spanish peseta).

Appendix B. APL/PC 1.0 Workspace Migration B-3

IBM Internal Use Only

Notes:

B-4 APL/PC, Version 2.1

IBM Internal Use Only

Appendix C. The APL Cilaracter Set
and DAV

The table in this appendix contains the APL character set in
the order in which it is contained in the Atomic Vector (DAV).
The third column in this table gives the Alt code needed to
produce the character under the APL keyboard mapping.

The Atomic Vector is given as it would be printed or when
shown on a display with the APL character ROM installed.
Certain characters, below ASCII 128, cannot be produced
without using this ROM. However, these characters are
included for conlpatibility with the character set of the IBM
mainfranle program product APL2, and are not used in
APL/PC Version 2.1.

Appendix C. The APL Character Set and DA V C-l

IBM Internal Use Only

I OAV[I] Alt Code I OAV[I] Alt Code

0 (NULL) 000 32 ~ 251
1 -+ 158 33 V 252
2 -+ 171 34 ~ 237
3 t 024 35 <I> 232
4 + 025 36 e 233
5 E 238 37 ill 146
6 236 38 l" 174
7 p 230 39 .t 175
8 044 40 I 159
9 ? 063 41 .1 157

10 126 42 T 152
11 0 234 43 f 240
12 + 043 44 -\- 241
13 045 45 / 047
14 .. 246 46 \ 092
15 ~ 015 47 n 239
16 * 042 48 B 225
17 x 245 49 c 226
18 033 50 :::> 227
19 124 51 0 248
20 r 169 52 ex. 224
21 L 028 53 w 249
22 = 061 54 <; 128
23 ;t 244 55 ~ 135
24 > 062 56 059
25 ~ 242 57] 093
26 < 060 58 [mu
27 ~ 243 59 041
28 -A 229 60 040
29 It/' 231 61 058
30 A 094 62 A 065
31 v 235 63 B 066

C~2 APLjPCt Version 2.1

IBM Internal Use Only

I DAV[I] Alt Code I DAV[I] Alt Code

64 C 067 96 h 104
65 D 068 97 i 105
66 E 069 98 j 106
67 F 070 99 k 107
68 G 071 100 l 108
69 H 072 101 m 109
70 I 073 102 n 110
71 J 074 103 0 111
72 K 075 104 P 112
73 L 076 105 q 113
74 M 077 106 r 114
75 N 078 107 s 115
76 0 079 108 t 116
77 P 080 109 u 117
78 Q 081 110 V 118
79 R 082 111 w 119
80 S 083 112 x 120
81 T 084 113 Y 121
82 U 085 114 z 122
83 V 086 115 !! 247
84 W 087 116 095
85 X 088 117 253
86 Y 089 118 0 048
87 Z 090 119 1 049
88 6- 030 120 2 050
89 a 097 121 3 051
90 b 098 122 4 052
91 c 099 123 5 053
92 d 100 124 6 054
93 e 101 125 7 055
94 f 102 126 8 056
95 g 103 127 9 057

Appendix C. The APL Character Set and DA V C-3

IBM Internal Use Only

I OAV[I] Alt Code I OAV[I] Alt Cod

128 046 160 a 160
129 (CR) 013 lin 161
130 (NL) 010 162 6 162
131 (BS) 008 163 U 163
132 (SP) 032 164 ii 164
133 (TAB) 009 165 N 165
134 0 144 166 a 166 -
135 ~ 145 167 0 167 -
136 039 168 l 168
137 (1i1 228 169 e 130
138 V 031 170 -, 170
139 I't/' 250 171 + 026
140 254 172 u 172
141 1 141 173 173
142 A 142 174 ii 132
143 A 143 175 e 137
144 a 131 176 DOTS 176 ON1/4

145 e 136 177 ~OTS 177 ON 1,'2

146 i 140 178 DOTS 178 ONJ/4

147 0 147 179 I 179
148 6 148 180 -1 180
149 0 149 181 =9 181
150 U 150 182 11 182
151 U 151 183 11 183
152 e 138 184 =j 184
153 0 153 185 =j! 185
154 0 154 186

"
186

155 ¢ 155 187 =n 187
156 £ 156 188 dJ 188
157 a 133 189 --.lJ 189
158 +- 027 190 ::::l 190
159 a 134 191 I 191

C-4 APL/PC, Version 2.1

IBM Internal Use Only

I DAV[I] Alt Code I DAV[I] Alt Code

192 L 192 224 fSl 022
193 ---.L 193 225 ~ 001
194 -r 194 226 .1 002
195 ~ 195 227 • 003
196 196 228 • 004
197 + 197 229 ... 005
198 P= 198 230 • 006
199 I~ 199 231 (BEL) 007
200 '-'= 200 232 ~ 016
201 r;= 201 233 017
202 .JL 202 234 0 019
203 -" 203 235 - 011
204 I~ 204 236 Q 012
205 205 237 ~ 014
206 ..JL 206 238 139 I,

207 ---.L 207 239 ii 129
208 --1L 208 240 096
209 -r 209 241 @ 064
210 II 210 242 " 034
211 lL 211 243 # 035
212 b 212 244 $ 036
213 F 213 245 0/0 037
214 rr 214 246 & 038
215 -it- 215 247 ~ 020 II

216 =t= 216 248 § 021
217 -.J 217 249 ~ 023
218 r 218 250 018
219 • 219 251 123
220 ill 220 252 029
221 IJ 221 253 } 125
222 [J 222 254 Q 127
223 ~ 223 255 255

Appendix C. The APL Character Set and DA V C-5

iBM iniernai Use Oniy

Notes:

C-6 APL/PC, Version 2.1

IBM Internal Use Only

Appendix D. Internal Representation of
Displayed Characters

The National keyboard character set for the IBM Personal
Computer has been modified to include some APL characters.
The following table contains all the Alt codes (in decimal and
hexadecimal) and the characters that they produce under the
National mapping of the keyboard.

Note: Some alternate codes are reserved for system control
functions, and will not generate a displayable character. The
reserved codes are:

Ait Code Control Function

007 Beep

008 Backspace

009 Tab

010 Line feed

027 Escape (Interrupt)

127 National to APL

Appendix D. Internal Representation of Displayed Characters D-l

IBM Internal Use Only

DECIMAL t 0 16 32 48 64 80 96 VALUE

HEXA • DECIMAL 0 1
VALUE

2 3 4 5 6

0 0 NUll ~ SP 0 @ p ,

1 1 E ~ I 1 A Q a •

2 2 1- • • II 2 B R b •

3 3 ~ D =IF 3 C S c
4 4 + 9T $ 4 D T d
5 5 4- § CYo 5 E U e
6 6 • lSI & 6 F V f
7 7 BEL B

,
7 G W g

8 8 BS i (8 H X h
9 9 TAB 1) 9 I Y

.
1

J Z
.

10 A NL *
• J --+ •

B - + • K [k 1 1 - +-- , -

12 C ~ L , < L " 1
I 3 0 CR +--+ - - M] m
14 E ~ IJ. • > N !\ n
15 F (J9 \J / ? 0 0 · -

Figure D-l (Part 1 of 2). Internal Representation of Displayed
Characters

D-2 APL/PC, Version 2.1

1 1 2

7

P
q
r
S

t
u
v
W

x
y
Z

{
I
}

"\.,

Q

IBM Internal Use Only

OE CIMAL - 128 144 160 176 192 208 224 VALUE

HE)(A • DE CIMAL
VALUE

8 9 A 8 C D E

0 0 (, 0
,

DOTS 11 ex a ON 1/4

••
,

DOTS B I I ~ •
U 1 ON 1/2

2 2
,

EH
, DOTS C e 0 ON 3/4 LI

3 3 A A , lL :) a 0 U r--

4 4 •• •• ,."", b R a 0 n ~ , , ,."",

7\ 5 5 a 0 N 1= F
6 6

0 1\ a H p a u ~ r--
-

7 7 <;
,

0 I \t u Dl
8 1\ T · <D 8 e {, A

•• W 9 9 •• 0 r ,....- e e t-- Ir , ••
10 A e U -, 0

I I B •• el: --7 Fi v 1

1 2 C A £ u b! 1 1 , .1 • U 1 3 D j & 1
14 E A ~ Cf5 d w E --,
15 F A I ~ n n

Figure D-J (Part 2 of 2). Internal Representation of Displayed
Characters

240

F

r
~

> -
~

;t:

x
. .

11 -
0

w
'\Z
~
t
-
• •

Appendix D. Internal Representation of Displayed Characters D-3

IBM Internal Use Only

Notes:

D-4 APL/PC, Version 2.1

IBM Internal Use Only

Appendix E. APL Keyboard
Redefinition

The following is a map of the APL keyboard, which is
software defined. It consists of a country flag (indicating
whether the APL-on or the APL-off keyboard is in efIect), and
four different tables, each table defining the keys in scan code
order, in the four possible combinations:

1. Base case.

2. Shift mode.

3. Alt mode.

4. Ctrl nlode.

Undefined key combinations in the tables are denoted by a
value of -1.

Appendix E. APL Keyboard Redefinition E-l

IBM Internal Use Only

Country_Flag DB OFFH

LABEL BYTE
DB 0IBH,'1234567890+',OF5H,08H
DB 09H,'QWERTYUIOP',9EH,91H,ODH
DB -1,'ASDFGHJKL[]',OAFH,-I,OFOH
DB 'ZXCVBNM,./',-l,'*',-I,' ',-1

LABEL BYTE
DB 27,OFEH,OFDH,-'<',OF3H,'=',OF2H
DB '>',OF4H,OEBH,5EH,'-',OF6H,08H
DB O,'!',OF9H,OEEH,OE6H,7EH,18H
DB 19H,OECH,OEAH,'*',OABH,OE4H,ODH
DB -1,OEOH,OA9H,lCH,'_',IFH,lEH
DB OF8H,27H,90H,'()',OAEH,-1,OFIH
DB OE2H,OE3H,OEFH,OACH,9DH,98H
DB 7CH,';:',5CH,-1,O,-I,' ',-1

LABEL BYTE
DB 27,9FH,OFAH,OFCH,OFBH,OE8H,OEDH
DB OE9H,OFH,OE7H,OE5H,'!',92H,08H
DB -1,'qwertyuiop',91H,OF7H,ODH,-1
DB 'asdfghjkl',OAFH,OAEH,-l,-I,-1
DB 'zxcvbnm',OE4H,OFIH,OFOH,-I,-1
DB -1,' ',-1

LABEL BYTE
DB 27,-1,-1,-1,-1,-1,-1,-1,-1,-1
DB -1,-1,-I,-I,-I,ODAH,OC2H,OBFH
DB -1,-1,-I,-I,-I,-I,OC9H,OCBH
DB OBBH,10,-1,OC3H.OC5H,OB4H,-1,7
DB OC4H,OCDH,-1,OCCH,OCEH,OB9H,-1
DB -1,-1,OCOH,OCIH,OD9H,OB3H,OBAH
DB -1,-I,OC8H,OCAH,OBCH,-I,-I,-1
DB ' ',-1

The address of these tables Inay be obtained by means of the
KEYB function included with the UTI L workspace.

The country flag may be assigned two different values:

• OOOH (all bits zero) indicates "national keyboard" is in
efiect.

• OFFH (all bits one) indicates "APL keyboard" is in effect.

Each of the four keyboard tables maps the central part of the
PC keyboard, starting at the top left key (the ESC key),
advancing in left-to-right direction until the "backspace" key,

E-2 APLjPC, Version 2.1

IUM Internal Use Only

and passing then to the next row, also in left-to-right direction.
The last key in each table is the "Caps Lock" key, which is
undefined in an four tables.

One or more characters in the tables may be redefined by the
user by means of the APL DPK system function. The
redefined keyboard definition will only be retained for the
current APL session. However, you may include a keyboard
redefinition function in your PROFILE workspace, so that it
will be automatically performed whenever APL is invoked.

Example: To redefine the Q key to an A the following should
be done (the KEYB function is assumed to be included in the
active workspace):

DAV[DIO+65J DPK O,KEYB+16

In the preceding, KEYB gives us the starting position of the
I keyboard complex (the address of the country flag). Therefore,
I KEYB+16 is the address of the byte defining the key marked
I as a "Q" in the normal APL keyboard, in base case.

The ASCII representation of the character to be replaced
("A") is 65. This may be converted to APL character form by
OA V [DID +65] .

Finally, the new representation will be poked into the
appropriate position in the table by DPK.

Poking a 255 (-1) in some position in the table will disable the
corresponding character key.

A function to simplify the defining of keyboard layouts is
supplied in the UTI L workspace. See the KEYBOARD function
described in "The UTIL Workspace" on page 11-92.

Appendix E. APL Keyboard Redefinition E-3

IBM Internal Use r

Notes:

E-4 APL/PC, Version 2.1

IBM Internal Use Only

Appendix F. The GRAPI-IPAK
W orkspaces - Functions

This appendix contains a list of the functions of the
GRAPI-IPAK workspaces. It is intended as a quick reference
guide for experienced G RAPHPAK users.

Warning: G RAPHPAK is an powerful general purpose
graphical library. It is included in APL/PC 2.1 for the
convenience of mainfratne programmers already familiar 'with
its functions. Users who do not require applications to run on
both Personal and mainframe computers are advised to use the
functions provided in AP206. For a full description of
GRAPI-IPAK refer to the APL2 GRAPliPAK Users Guide and
Reference, Sli20-9230.

Users should be aware of the following differences between the
APL/PC version ofGRAPHPAK and GRAPHPAK as
implemented under APL2.

• Only four colours are available;

• Transparent fill is not available (sf~O);

• Line style is not implemented (the function STYLE is
included for compatibility, but has no effect on the
display);

GPBASE

This workspace contains the fundamental drawing and writing
functions, and is required by all other G RAPHPAK
workspaces. It contains the following functions:

Appendix F. The GRAPHPAK Workspaces - Functions F-I

COLOR

COpy

DRAW

ERASE

FILL

FIXVP

INTO

MODE

READ

STYLE

USE

USING

VIEW

VIEWPORT

WIDTH

WRITE

XFM

IBM Internal Use Only

changes the current colour;

produces hard copy of the current graphic
display on an IBM Graphics Printer;

draws lines between points;

clears the screen;

fills a polygon; (Note: transparent fill is not
implemented)

sets the viewport;

used in co-ordinate transformations;

changes the current line mode; (Note: not
functional, included for conlpatibility only)

reads data items from the screen;

changes the current fill or line style; (Note:
not functional, included for compatibility
only)

permanently changes the current attributes
(colour and width);

temporarily changes the current attributes
(colour and width);

displays the current contents of the graphics
field;

returns the co-ordinates of the corners of
the current clipping viewport;

changes the current line mode;

writes text on the current graphics field;

used in co-ordinate transformations.

F-2 APLjPC, Version 2.1

IBM Internal Use Only

GPCIIT

This workspace contains functions for drawing charts. It
requires GPBASE and GPPLOT, and the following functions
are available:

CHART

FREQ

HCHART

PIECHART

PIELA BEL

SAXES

SAXISX

SAXISY

SAXISZ

SLABEL

SLBLX

SLBLY

SLBLZ

draws a bar or column chart;

plots a frequency chart;

plots a hierarchical chart;

draws a pie chart;

labels a pie chart;

plots all three default axes on a surface or
skyscra per chart;

plots the X axis of a surface or skyscraper
chart with definable labels and annotation;

plots the Y axis of a surface or skyscraper
chart with definable labels and annotation;

plots the Z axis of a surface or skyscraper
chart with definable labels and annotation;

writes the default labels the axes of a
surface or skyscraper chart.

places definable labels on the X axis of a
surface or skyscraper chart;

places definable labels on the Y axis of a
surface or skyscraper chart;

places definable labels on the Z axis of a
surface or skyscraper chart;

Appendix F. The GRAPHPAK Works paces - Functions F-3

SS

STEP

STITLE

SURFACE

SXFM

WITH

IBM Internal Use Only

plots a skyscraper chart;

plots a step chart;

adds a title to a surface or skyscraper chart;

plots a surface chart;

maps three dimensional co-ordinates into a
screen window;

formats data for use with P IECHART.

This workspace contains functions for drawing contour maps.
It requires GPBASE and GPPLOT, and contains the following
functions:

BY used to structure the input to CONTOUR;

CONTOUR draws a contour map;

OF used to structure the input to CONTOUR.

GPDEMO

This workspace contains functions illustrating tnany aspects of
the APL/PC version of G RAPHPAK. Loading all the
GRAPHPAK workspaces and invoking the function DEMO
will cycle through the complete set of demonstrations.

The individual demonstration functions contained in this
workspace are:

F-4 APL/PC, Version 2.1

IBM Internal Use Only

APPLE

ATTRIBUTES

BLI

CAYUGAPLOT

DEMO

FLAG

FSTAR

HEALTH

IBMF

MIL ER UN

NHIST

PIES

REVB

REVC

REVENUES

shows the use of DRAW to create a picture;

shows the various line type and fill options
available;

shows the use of DRAW to create a picture;

shov!s the use of PLOT to create line
graphs;

cycles through all the demo functions in the
workspace;

shows the use of DRAW to create a picture;

shows the use of DRAW to create a picture;

shows the use of CHART to produce a
colulnn chart;

draws the IBM logo;

shows the use of CHART to produce a bar
chart;

shows the use of CHART to produce a step
chart;

shows the use of CHART to produce a pie
chart;

shows the use of CHART to produce a
simple bar chart;

shows the use of CHART to produce a
simple colunln chart;

shows the use of PLOT to create line
graphs;

Appendix F. The GRAPHPAK Workspaces - Functions F-5

SKYSCRAPER

SPIRAL

WAVEGUIDE

WGCONT

GPFIT

IBM Internal Use Only

shows the use of SS to produce a
skyscraper chart;

shows the use of SKETCH, THREEVIENS
and PERSPECTIVE to create pictures;

shows the use of SURFACE to produce a
surface chart;

shows the use of SURFACE to produce a
contour chart.

This workspace contains functions for curve fitting. It requires
GPBASE and GPPLOT, and contains the following functions:

AVG

CLEAR

FIT

EXP

FITFUN

LOG

LOGLOG

prepares data for FIT to plot the average Y
value;

clears the display screen;

draws a line graph through data points
prepared by AVG, SL, POLY, EXP, LOG,
PONER, LOGLOGorSPLINE

prepares data for FIT to plot the best
log-linear fit on linear axes;

executes the last function plotted;

prepares data for FIT to plot the best
log-linear fit on log-linear axes;

prepares data for FIT to plot the best
log-log fit on log-log axes;

F-6 APL/PC, Version 2.1

IBM Internal Use Only

POLY

POWER

SCRATCH

SL

SPLINE

GPGEOM

prepares data for FIT to plot the best
polynomial of specified degree;

prepares data for FIT to plot the best
log-log fit on linear axes;

erases points from a data array;

prepares data for FIT to plot the best
straight line fit;

prepares data for FIT to plot a cubic spline
specified points.

This workspace contains descriptive geometry functions. It
requires GPBASE and GPPLOT, and contains the following
functions:

ISOMETRIC restructures data so that SKETCH produces
an isometric projection;

MAGNIFY transforms a data array so that the object
represented is magnified in size;

OBLIQUE restructures data so that SKETCH produces
an oblique projection;

PERSPECTIVE restructures data so that SKETCH produces
a perspective drawing;

RETICLE draws an outline of the clipping viewport
and a pair of axes showing the extent of the
window into problem space;

ROTATE transforms a data array so that the object
represented is rotated;

Appendix F. The GRAPHPAK Workspaces - Functions F-7

SCALE

SKETCH

STEREO

THREE VIEWS

TRANSLATE

GPPLOT

IBM Internal Use Only

scales all elements of a data array so that
the largest lies within set bounds;

produces an orthogonal projection;

produces a stereo pair of inlages of an
object;

produces three views of an object, projected
into the planes of the axes;

transforms a data array so that the object
represented is moved.

This workspace contains plotting functions. I t is required by
GPFIT, GPCONT and GPCHT, and requires GPBASE. It
contains the following functions:

AND

ANNX

ANNY

AXES

AXIS

HOR

LABEL

used in formatting input for PLOT or
SPLOT;

draws an annotated horizontal axis with
definable label positions;

draws an annotated vertical axis with
definable label positions;

draws default axes;

draws definable axes;

draws an annotated horizontal axis with
default label positions;

produces the default labels for the X and Y
axes;

F-8 APL/PC, Version 2.1

IBM Internal Use Only

LBLX

LBLY

PLOT

RESTORE

SPLOT

TITLE

VER

VS

produces definable labels for the X axis;

produces definable labels for the Yaxis;

plots a line graph;

restores all attribute and plotting variables
to their default values;

similar to PLOT, but allowing more user
control over plotting characteristics;

adds a title to the graph;

draws an annotated vertical axis with
default label positions;

used in formatting input for PLOT or
SPLOT.

Appendix F. The GRAPHPAK Workspaces - Functions F-9

IBM Internal Use Only

Notes:

F-IO APLjPC t Version 2.1

IBM Internal Use Only

I Appendix G. IIardware Modification for
I IBM 4860 pejr

I A minor hardware modification to the PCjr must be performed
I before APL may be run on a PCjr.

I The hardware modification is required because the design of
I the PCjr allows the Test pin of the 8088 processor to float as it
I is not needed for normal operation. However, the correct
I operation of the 8087 emulation software depends on this line
I being held high.

I To achieve this, solder a 4.7K ohm resister between the Vee
I pin (pin 40) and the Test pin (pin 23) of the 8088 processor
I chip.

I Warning: This hardware modification should only be
I atten1pted by someone with the appropriate expertise in
I handling a soldering iron!

Appendix G. Hardware Modification for IBM 4860 PCjr G-I

IBM Internal Use Only

Notes:

G-2 APL/PC, Version 2.1

IBM Internal Use Only

I Appendix H. Patell to Restore BIOS
I I(eyboard Handler

I New versions of PCs and ATs have a new BIOS that includes
I a keyboard handler which screens out certain characters that
I are required by APL. AJ>L replaces this keyboard handler
I with an equivalent handler that does not screen out these
I characters. Older versions of PCs and ATs do not need this
I replacement code and the original handler may be restored by
I the patch given below.

I The patch to restore the use of the BIOS interrupt X'16'
I keyboard handler is as follows:

I From DOS bring up APL with AP210.

APl AP210
)IN FILE

PATCH '$SCR.COM'
GIVE ADDRESS: 13
IS 26
GIVE NEW VALUE OR EMPTY LINE TO CANCEL PATCH

: EB
GIVE ADDRESS: 14
IS 80
GIVE NEW VALUE OR EMPTY LINE TO CANCEL PATCH

: 2B
GIVE ADDRESS:

Appendix H. Patch to Restore BIOS Keyboard Handler H-l

IB1\1 Internal Use Only

Notes:

B-2 APLjPC, Version 2.1

IBM Internal Use Only

Index

I S pedal Characters I
$AP.MAC 13-7
)CLEAR command 2-23, 10-9
)CO PY command emulation 11-92
)DROP command 10-19
)ERASE command 10-11
)FNS command 10-13
)IN command 10-11
)LIB command 10-20
)LOAD command 2-22, 10-17
)OFF command 10-21
)OUT command 10-16
)RESET command 2-22, 10-12
)SAVE command 2-21, 10-15
lSI command 10-13
)SINL command 10-14
)STACK command 10-10, 10-13
)SYMBOLS command 10-10,
10-13
~VARS command 2-22, 10-13
~WSID command 10-15, 10-20
J-- IMPLICIT ERROR
message 4-4

JAI, account information 2-42,
6-16

JAV, atomic vector 6-16, C-I
JCR, canonical representation 6-5
JCl', comparison tolerance 6-17
JD L, delay function 6-6
JEA, execut.e alt.ernate 2-32, 6-6
JEX, expunge 6-7
JFC, format control 6-17
JFX, function establishment 6-7
JFX, function fix 2-46
JHT, horizontal tabs 6-18
JIO, index origin 2-43, 6-18
JLC, line counter 2-31,6-19
JLX, latent expression 6-18
IN C, name class 6-8
IN L, name list 6-9
JPK, peek/poke 6-9

opp, printing precision 6-19
DPW, printing width 6-20
oRL, random link 6-20
OSVC, shared variable control 7-7
DSVO, shared variable 7-6
oSVQ, shared variable query 7-12
oSVR, shared variable

retraction 7-11
DTC, terminal control 2-27, 6-20
OfF, transfer form 6-11
ors, time stamp 6-20
orr, terminal type 6-20
oUL, user load 6-20
OW A, workspace available 6-20

access control 7-7
shared variables 13-4

access control matrix (ACM) 7-8
access control vector 7-9, 13-4
access sequence disciplines 7-3
access state of shared variable 7-8,

13-4
accessing a file 13-3
account information 6-14, 6-16
active workspace 4-13, 10-9, 11-67,

11-69
copying to 10-11
inquiry commands 10-13
list of functions in 10-13
list of variables in 10-13
settings of state indicator 10-9
transfer form of objects

in 10-16
activities in suspended state 9-4
adding a statement 8-10
adding characters 1-32
adding to a header 8-12
adding to a statement 8-12
alphabetic character set 1-18, 4-6

Index X-I

Alt codes 1-23, C-l
Altkey 1-23
alternating product 5-18
alternating sum 5-18
ambi-valent functions 8-5
AND, boolean function 5-9
APL

applications 1-3
as a computing system 1-3
character set 1-18, 1-19, 4-6
character set RO M 1-8
classes of instructions

statements 4-3
system commands 10-3

command format 1-16
data representation 13-5
data used in 4-10
environment 4-14, 10-9
examples of use 3-3
fundamentals 4-3
header 12-55
input editor 1-29
internal code 12-56
libraries 12-7,12-14,12-55
library numbers 1-35
major characteristics of 3-5
objects 12-55
package 1-8

APLFILE workspace 11-42
application workspaces 11-3
API0l stack and profile auxiliary

processor 12-14
AP103 BIOS/DOS auxiliary

processor 12-18
AP124 full screen auxiliary

processor 12-24
AP124 workspace 11-8
AP190 host communications

auxiliary processor 12-34
AP 190 workspace 11-19
AP2 non-APL program interface

auxiliary processor 12-4
AP2 workspace 11-5
AP205 full-screen auxiliary

processor 12-38
AP205 workspace 11-21
AP206 graphic auxiliary

processor 12-39
AP206 workspace 11-21
AP210 file auxiliary

processor 12-53

X-2 APL/PC, Version 2.1

181\1 Internal Use Only

AP232 asynchronous
communications auxiliary
processor 12-62

AP232X extended asynchronous
communications auxiliary
processor 12-69

AP232X workspace 11-26
AP440 music auxiliary

processor 12-76
AP488 G PIB support auxiliary

processor 12-79
AP488 workspace 11-28
AP80 printer auxiliary

processor 2-26, 12-10
arguments 8-5

boolean 5-9, 5-10
character 5-30
functions 4-7, 4-8
left and right 4-8, 5-29
matrix 5-25, 5-30
rank of 5-25, 5-30
scalar 5-30
shape 5-30
vector 5-28

arithmetic symbols 3-6, 4-6
arrays

conformable 5-34, 5-38
determining shape of 4-11
elements 4-10
empty 4-10, 5-32
indexing of 5-44
multi -dimensional 4-10
number of dimensions 4-10
selecting elements 4-11, 5-25
shape 4-11
size of 5-30
structure of 5-25
vector 4-10

ASCII codes 1-23, 12-56
ASCIl translation table 11-93
assignment statement 4-3
atomic vector 6-14, 6-16, C-l
attention signal 9-4
auxiliary files on the host 11-112
auxiliary processor

API0l 12-14
API03 12-18
AP124 12-24
AP190 12-34
AP2 12-4
AP205 12-38
AP206 12-39

IBM Internal Use Only

AP210 12-53
AP232 12-62
AP232X 12-69
AP440 12-76
AP488 12-79
AP80 12-10
debugging 13-32

auxiliary processors 1-16
axis indexing 5-41
axis operator 5-19
axis, permutation of 5-36

Back Tab key 1-31
backing up diskette

with one drive A-2
with two drives A-4

Backspace key 1-22
bare output 9-13
baud rate 11-98
bilateral sharing of variables 7-3
binomial

domain of 5-16
function 5-16

BIOS function call 12-18
blank character 4-6
boolean and relational symbols 3-6
boolean functions 5-9
boolean variable 13-5
branch 2-7, 4-3, 8-7
branch statement 8-7, 9-4
branch symbol 8-7

calculation, isolated 3-3
cancelling a line 1-33
canonical representation 6-5, 8-3
Caps Lock key 1-22
catenate function 5-33
changing display modes 1-34
changing incorrect characters 1-32
changing keyboard between APL

and National character set 1-25
character data 2-4, 2-24
character input 9-12

character representation of
function 8-3

character set C-l
APL 1-19,4-6
classes 1-18, 4-6
National 1-19

character variable 13-5
circular functions 2-13, 5-14
classes of instructions

statements 4-3
system commands 10-3

clear workspace
command 2-23, 10-9
environment 10-9

clearing the screen 1-34
closing a file 11-56
collating sequence 5-45
colour graphics adapter mode 1-34
COMMAND ERROR

message 2-22, 10-6, 10-10, 10-11
commands 4-13,4-14
comment symbol 5-54, 8-9
communication with

VMj370 11-95
comparison tolerance 5-9, 6-14,

6-17
compress function 5-38, 5-40
conditional execution 2-31
configuration minimum

requirements 1-6
conformable arrays 5-34, 5-38
conjugate function 5-8
connection with host 11-103
constants 4-12
contents of machine registers 12-19
control characters 5-59
control structure 2-7
controlled decorators 5-59
conventional decorators 5-59
conventional notation 4-9
converting numeric data 13-6
copy command emulation 11-92
copying to active workspace 10-11,

11-67
cosine 5-14
coupling of name 7-6
creating defined function 8-3
Ctrl key 1-23
Ctrl-End key 1-30
Ctrl-Home key 1-30
cursor 1-21, 1-29
cyclic rotation 5-32

Index X-3

data 4-10
data transformation 5-53
deal function 5-48
debugging

APL code 2-28
auxiliary processors 13-32

decode function 5-51
decorators 5-59
defin'ed.function 3-3, 8-3

ambi-valent 8-5
execution 9-3
full-screen editor 11-51
names 4-13

defining function keys 12-15
defining libraries 12-16
definition mode 8-3
DEFN ERROR message 4-4
del editing 8-10
Del key 1--31, 1-32
delay function 6-6
delete control characters 11-101
deleting a statement 8-11
deleting characters 1-31
delta 2-19, 4-14
delta symbol 4-6
delta underbar 2-19
DEM0124 workspace 11-47
DEM0206 workspace 11-48
dimensions 4-10
disabling attention 6-11, 11-93
disabling output 11-94
diskettes 1-8
display modes 1-34
displaying internal

representation 11-55
DOMAIN ERROR message 2-13,
4-4

domino function 5-48
DOS command emulation 11-48
DOS file system 12-53
DOS function call 12-18
DOSFNS workspace 11-48
double field 5-62
down arrow key 1-30
downloading files 11-107
drop function 5-38
dropping a workspace 10-19
dyadic format 5-56

X-4 APL/PC, Version 2.1

IBM Internal Use Only

numeric 5-56
picture 5-59

dyadic function 2-12, 4-8, 8-5

e 2-12, 5-13
EDIT workspace 11-51
editing functions 2-29, 8-10
element, identity 5-7
elements 4-15
embedded decorators 5-61
empty array 4-10, 5-32
empty input 9-12
empty vector 4-10, 5-32
enabling attention 6-11, 11-93
enabling output 11-95
encode function 5-52
End key 1-30
end of line character 11-102
Enhanced Graphics Adapter

displaying APL characters 1-12
Enter key 1-21, 1-29
entering a line on the screen 1-29
environment in clear

workspace 10-9
erasing characters 1-32
erasing part of a line 1-33
error messages 4-3

0-- IMPLICIT 4-4
DEFN 4-4
DOMAIN 4-4
IMPLICIT 4-4
INDEX 4-4
INTERRUPT 4-4
LENGTH 4-4
RANK 4-5
SI DAMAGE 4-5
STACK FULL 4-5
SYMBOL TABLE FULL 4-5
SYNTAX 4-5
SYSTEM 4-5
SYSTEM LIMIT 4-5
VALUE 4-5
WORKSPACE FULL 4-6

error report 9-4
error stop 9-4
error trap 6-6
Esc key 1-21, 1-31, 1-33

IBM Internal Use Only

establishing functions 8-10
evaluated input 9-11
EXAPL 12-3
exchange assembly programs 13-33
EXCHG workspace 11-55
exc1usive-O R 5-10
execute alternate 2-31, 6-6
execute function 2-43, 5-53, 5-54
execution

mode 8-3
of defined function 9-3
order of 4-9

execution stack 4-15, 10-10, ,10-13
expand 5-39, 5-40
exponential function 5-13
expunge system function 6-7

factorial function 5-15
file control functions 11-57
file transfer functions 11-105
FILE workspace 11-56
FINDST 13-33
fixed-length record disk files 12-53
floating point variable 13-5
floor function 5-11
FOIL workspace 11-73
format control 6-17
format of APL command 1-16
format of shared data 13-5
format, dyadic

numeric 5-56
picture 5-59

format, monadic 2-17, 5-55, 11-93
format, scaled 4-12, 5-62
forms of headers 8-5
forms of numbers

conventional 4-12
scaled 4-12

FORTRAN subroutines 11-74
FORTRAN workspace 11-74
French keyboard layout 11-92
function

ambi-valent 8-5
boolean 5-9
catenate 5-33
character representation 8-3
circular 5-14

deal 5-48
decode 5-51
defined 8-3
domino 5-48
drop 5-38
dyadic 4-8, 8-5, 9-3
encode 5-52
establishing 8-10
execute 5-53, 5-54
executing 9-3
exponential 5-13
factorial 5-15
floor 4-7, 5-11
format 5-55, 5-56
general logarithm 5-13
grade down 5-45
grade up 5-46
halted 9-5
hyperbolic 5-14
index of 5-43
inverse 5-42
membership 5-44
minus 5-7
mixed 5-25
monadic 4-8
names of 4-14
natural logarithm 5-13
negative 5-8
niladic 4-8
pendent 9-4, 10-14
pendent execution 9-5
plus 5-7
power 5-12
primitive 9-3
pythagorean 5-14
reciprocal 5-8
relational 5-9
replicate 5-39
reshape 4-11
residue 5-7
reverse 5-32
revising 8-10
roll 5-12
rotate 5-32
shape 5-30
signum 5-8
stopping execution 9-4
structural 5-30
suspended execution 9-4
system 6-3
take 5-37
times 5-7

Index X-5

transpose 5-36
unlocked defined 6-5, 8-13, 9-8
valence of 8--5

function body 8-3
function definition mode 8-3
function display 8-1.2
function editing 8-10
function establishment 6-7
function header 8-3
function keys 1-19, 12-14

defining 12-15
functions for manipulating DOS

files 11-57

games control adapter 11-94, 12-23
GEDIT workspace 11-82
general logarithm function 5-13
general symbols 3-6, 4-6
generating selector

information 5-25
German keyboard layout 11-92
global names 8-6
global shared variable 7-3
go to 2-7
GPBASE workspace 11-84, F-l
G PCHT workspace 11-84, F-3
GPCONT workspace 11-85, F-4
GPDEMO workspace 11-85, F-4
GPFIT workspace 11-85, F-6
GPGEOM workspace 11-85, F-7
G PPLOT workspace 1 1-85, F-8
grade down function 5-45
grade up function 2-41, 2-46, 5-46
graphic input 11-83
GRAPHPAK workspaces 11-84,

F-l

halted execution 9-4
halting printing temporarily 1-26
header forms 8-5
hexadecimal conversion 11-55,

11-94
hexadecimal patches 11-65

X-6 APL/PC, Version 2.1

IBM Internal Use Only

Home key 1-30
horizont.al tabs 6-18
hyperbolic functions 5-14

I/O ERROR message 10-12,
10-16,10-17,10-19,10-20

identity elements 5-7
impJementation limits 4-15
IMPLICIT ERROR message 4-4,

6-14
inactive workspace 4-13
INDEX ERROR message 4-4
index generator 5-43
index of function 5-43
index origin 4-12, 6-14, 6-18
indexing 4-10, 5-41

array elements 4-11
one-origin 4-12
zero-origin 4-12

information exchange 13-3
inhibiting output 6-11
INKEY function 12-20
inner product operator 2-6, 5-21
input and output 9-10
input editor

special keys 1-29
input line stack 12-14
input state 1-32
inquiry commands, active

workspace 10-13
Ins key 1-30
insert mode 1-30
inserting a statement 8-11
inserting characters 1-30
installing APL on fixed disk 1-13
integer variable 13-5
interactive input mode 11-83
internal APL code 12-56
internal representation 11-55, 13-5
interpretations of file data 12-55
interrupt

strong 1-25
weak 1-21

INTERRUPT message 4-4,9-8
interrupt number 12-19
interrupting execution during

input 9-12

IBM Internal Use Only

INVALID WS message 10-18
Inverse function 5-42
inverse transfer form 6-12
isolated calculation 3·3

ioy~tjck 11-94, 12-23

key combinations 1-25
keyboard 1-19, 1-28
keyboard buffer 11-94
keyboard keycaps 1-26
keyboard layout 11-94
keyboard template 1-27
keycaps 1-26

labels 8-9
laminate function 5-34
lamp symbol 8-9
latent expression 6-14, 6-18
left argument 4-8
left arrow key 1-30
left identity elements 5-5
LENGTH ERROR message 2-16,

4-4
LIBRARY FULL message 10-17
library identification 1-35, 10-14,

12-7,12-14,12-55
defining 12-16

limits, implementation 4-15
line counter 6-14, 6-19
line editor 1-32
line parameter definition 11-96
line signal 9-14
literal (character) variable 13-5
local names 8-5
local shared variable 7-3
locked function 9-8
logarithm functions 2-12, 5-13

logical (boolean) variable 13-5
loops 2-7, 2-33
lowercase characters 4-6
lowercase letters 4··14

machine language program 6-10
machine registers 12-18
magnitude function 5-8
making corrections to current

line 1-32
managing resources 6-3
matrix

access control 7-8
axes 4-11
character 8-3

matrix divide 5-48, 5-49
matrix inverse 5-48, 5-49
matrix product 5-22
matrix transposition 5-36
maximum function 5-11
maximum limits 4-15
membership function 5-44
messages, error 4-4
minimum function 5-11
minus function 5-7
minus sign 2-9
mixed functions 5-25
module sizes 12-3
monadic function 2-12,4-8, 8-5
monochrome display mode 1-34
multi -dimensional arrays 4-10
MUSIC workspace 11-86

name assignment statement 4-3
name class 6-8
name coupling 7-6
name list 6-9
names

as label 8-9
defined functions 4-13,4-14
localisation 8-6
rules for 2-19
system functions 6-3

Index X-7

system variables 6-3
variable 4-13,4-14
workspace 4-14

NAND, boolean function 5-9
national character set 1-19,1-21
natural logarithm function 5-13
negative function 5-8
negative numbers 4-12
niladic function 4-8
non-integral index 5-35
NO R, boolean function 5-9
normal output 9-12
NOT ERASED message 10-7
NOT FOUND message 10-7
NOT function 5-9
NOT READY message 10-17,

10-19,10-20
NOT READY report 10-12, 10-16
NOT SAVED message 10-7
Num Lock 1-24
numeric character set 1-18, 4-6
numeric constant 4-12
numeric data, converting 13-6
numeric format 5-56
numeric functions 5-48
numeric keypad 1-24

object size limit 11-74
objects 4-7,4-15
offers

to share 7-6
opening a file 11-56
operator information area 12-37
operators 2-6, 5-17
options in APL command 1-16
OR, boolean function 5-9
order of execution 2-10, 2-30, 5-17
outer product operator 2-18, 2-36,

2-40, 3-6, 5-23
overbar 2-9, 2-19, 4-12

X-8 APL/PC, Version 2.1

IBM Internal Use Only

parentheses 2-10,4-9
parity 11-98
pause state 1-26
PC Storyboard 11-95
PC3278 12-34
peek/poke 6-9
pendent function 9-4, 10-14
permutation of axes 5-36
Personal Editor 11-54
PFORTPAR 11-79
pi 2-14, 5-13
picture format 5-59, 6-17
playing music 11-86
PLOT workspace 11-87
plus function 5-7
power function 2-11, 5-12
precedence 2-10
precision indicator 5-56
primitive function 3-5, 9-3

classes of 5-3
primitive operator 9-3
primitive types 4-3
PRINT workspace 11-89
printer 1-36, 2-26
printer as system log 1-26, 1-36,

6-11, 11-94
printer control codes 11-90
printing copy of screen 1-22, 1-36
printing precision 6-14, 6-19
printing width 6-14, 6-20, 9-13
processor, auxiliary 1-16
Professional Editor 11-54
Professional Graphics Adapter

displaying APL characters 1-12
PROFILE workspace 11-91
program execution 4-13, 9-3
program, machine language 6-10
programs 3-3
PROTECf'ED message 10-17,

10-19
PROTECf'ED report 10-16
PrtSc key 1-22
pythagorean functions 5-14

IBM Internal Use Only

quad output 2-29
quad symbol 4-6, 6-3, 9-11
quiet option 1-17
quote-quad symbol 4-6,9-12

radians 5-14
random link 5-12, 6-14, 6-20
RANK ERROR message 4-5
rank of a scalar 13-5
ravel 5-30
reading records from a file 11-60
real (floating point) variable 13-5
reciprocal function 5-8
recursive

See recursive
recursive functions 9-9
reduction operator 2-6, 2-34, 5-17
relational functions 5-9
replacing a statement 8-11
replacing header 8-11
replicate function 5-39
request for character input 9-12
reshape function 4-11, 5-31
residue function 5-7
ret.raction of sharing 7 -11
return codes

APlOl 12-17
AP124 12-33
AP2 1 ?-9
AP206 12-53
AP210 12-59
AP232X 12-75

reverse function 5-32
revising functions 8-10
right argument 4-8
right arrow key 1-30
right identity elements 5-5
roll function 5-12
rotate function 5-32
rules, semantics 3-5

sample auxiliary processors 13-30
saving a file 11-56
saving line parameter

definition 11-102
saving workspace 2-21, 10-14
scatar 5-3

rank 13-5
scaled formatting 5-62
scan operator 5-19
screen control characters 6-16
screen fields 12-25
searching

functions 11-56, 11-95
string 11-56

selecting from arrays 4-11
selection and structural

symbols 3-6
selection from arrays 5-25, 5-42
selection functions 5-37
semantic rules 3-5
sending display output to the

printer 1-36
sequence control 3-5
services provided by auxiliary

processor 13-3
setting size of execution

stack 10-10
setting size of symbol table 10-10
shape function 5-30
shape of array 4-11
shared data 13-5
shared variable 2-25
shared variable offer 2-26, 7-6
shared variable processor 13-3

return codes 13-30
services 13-8

shared variables 7-3, 13-3
access control 13-4
access control vector 13-4
access states 13-4
managing 13-3

Shift keys 1-21, 1-23
~I I?AMAGE message 4-5,9-6
slgntng off 10-21
signum function 5-8
sine 5-14
size of a file 11-60
sizes of APL modules 12-3

Index X-9

special APL characters 1-18 4-6
special key combinations I-is

1-26 '
specification arrow 4-3
square root 2-11
STACK FULL message 4-5, 9-9
stack input 12-14
stack, execution 4-15, 10-10, 10-13
stacking APL input 12-15
starting APL 1-15
state indicator 9-4, 10-14

clearing 9-6
damage 9-6
list 9-6
settings in active

workspace 10-9
statement 4-3

entering of 1-3
typical form of 4-3

stop bits 11-100
stop control 2-31,9-7
stopping execution of function 9-4
Storyboard 11-95
string searching 11-56
strong interrupt 1-25
structural functions 2-5, 5-30
structure of arrays 5-25
subcommand state 12-57
suspended function 9-4, 10-14
suspended state 9-4
SVP 13-3, 13-8
switching displays 1-34
symbol table 4-15, 10-10, 10-13
SYMBOL TABLE FULL

message 4-5
symbols 3-6
syntax 3-5
SYNTAX ERROR message 4-5
system commands 10-3
SYSTEM ERROR message 4-5
system functions 6-3
SYSTEM LIMIT message 4-5
system log 1-26
system reset 1-25
system variables 6-14, 7-3

X-IO APL/PC, Version 2.1

IBM Internal Use Only

Tab key 1-21,1-31
take function 5-37
tangent 5-14
template 1-27
temporarily halting printing 1-26
terminal control 6-14, 6-20
terminal input and output 9-10
terminal selection 11-96
terminal type 6-14, 6-20
terminating work session 10-21
time stamp 6-14, 6-20
times function 5-7
tolerance 6-14
TopView 11-66
trace control 2-30, 9-6
transfer file 10-11, 10-16
transfer form 6-11
transfer form of objects 10-16
transfer form vector 6-12
transformation of data 5-53
transpose function 5-36
trigonometric functions 2-13
trouble reports 10-7
turnaround local character 11-99
typematic keys 1-19
typewriter keyboard 1-21

undefined
underbar 2-19, 2-21
unlocked defined function 6-5,

8-13,9-8
up arrow key 1-29
uploading files 11-106
user load 6-14, 6-20
using the printer 11-89
UTIL workspace 11-92

IBI\f Internal Use Only

valence of function 8-5
\t. VALUE ERROR message 2-20,
l' 4-5
II' variable 2-20

variable-length record disk
files 12-53

variables
names 2-19,4-13,4-14
system 6-14, 7-3

vector
access-control 7-9
elements of 4-10
empty 4-10, 5-32
forming 4-10

VM232 workspace 11-95

WAS report 10-15
~ weak interrupt 1-21, 1-31,9-8

width indicator 5-57
width of number field 5-56
work session

initiation 1-15
termination 10-21

workspace
active 4-13,10-9,11-67,11-69

copying to 10-11
inquiry commands 10-13
list of functions in 10-13
list of variables in 10-13
transfer form of objects

in 10-16
determining name of 11-95
dropping of 10-19
for storing functions and

data 3-4
inactive 4-13
management of 4-13
names of 4-14
retrieval 10-14, 10-20
saving copies 10-14
state indicator 4-13
storage 2-21,10-14

workspace available 6-14, 6-20
WORKSPACE FULL

message 2-36, 4-6
write-protect notch A-I
writing data into a file 11-56

XOR 5-10

Index X-II

IBM Internal Use Only

Notes:

X-12 APLjPC, Version 2.1

