

--- ------ ----- ---- - ---- - - ----------_.- Personal Computer
Computer Language
Series

BASIC
Compiler
by Microsoft

First Edition Revised (March 1982)

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this publication.

Products are not stocked at the address below. Requests for copies of
this product and for technical information about the system should
he made to your authorized IBN! Personal Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment to:
IBNI Corp., Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33132. IBJ\;I may usc or distribute any of the information
you supply in any way it believes appropriate without incurring
any obligations whatever.

~-~Copyright International Business l\lachincs Corporation 1982

Preface

How to Use this Book

This book explains what you need to know about the
IBM Personal Computer BASIC Compiler. It is designed
for people who are unfamiliar with the compiler as a
programming tool. Therefore, this book provides both
a step-by-step introduction and a detailed technical guide
to the BASIC Compiler and its use. After a few compila
tions, you can use this book both as a refresher on
procedures and as a technical reference.

You should have a working knowledge of the BASIC
language to use this book. For reference information on
IBM Personal Computer BASIC, consult the IBM
Personal Computer BASIC manual.

Organization

This book contains the following sections:

Introducing the BASIC Compiler: Gives you an intro
duction to compilers in general and a comparison of
interpreters and compilers. It also provides brief
descriptions of the contents of the BASIC Compiler
package.

Using the BASIC Compiler: Tells you what you need in
order to use the BASIC Compiler, and some things you
need to do the first time you ever try to compile a
program. It also gives you an overview of program
development with the compiler.

Sample Session: Takes you step by step through the
compiling, linking, and running of a demonstration
program.

111

lV

Creating a Source Program: Describes how to create a
BASIC source program for later compilation, and how
to use the compiler metacommands.

Debugging with the BASIC Interpreter: Describes how
to debug the BASIC source file with the BASIC
interpreter before compiling it. Note that the last
section, "Differences Between the Compiler and
In terpreter," describes differences between the
language supported by the compiler and that
supported by the BASIC interpreter.

Compiling: Describes use of the BASIC Compiler in
detail, including a description of the command line
syntax and the various compiler parameters.

Linking: Describes how to use the linker to link your
compiled programs to the needed library. (Note that
Appendix B of this book contains more detailed
reference material on the linker.)

Running a Program: Describes how to run your final
executable program.

Using a Batch File: Tells how you can use the DOS
Batch command facility to automatically perform the
compile, link, and/or run steps. Sample Batch files are
included.

Differences Between the Compiler and Interpreter:
Describes all of the language, operational, and other
differences between the language supported by the
BASIC Compiler and that supported by the BASIC
in terpreter.

Note: It is important that you study these
differences and make the necessary changes in
your BASIC program before you use the
compiler.

The appendixes contain the error messages and more
detailed technical information.

Syntax Diagrams

The syntax for statements, commands, and functions
in this book is presented in the same format as in the
IBM Personal Computer BASIC manual:

• Words in capital letters are keywords and must be
entered as shown. They may be entered in any
combination of uppercase and lowercase letters.
BASIC always converts words to uppercase (unless
they are part of a quoted string, remark, or DATA
statement).

• You are to supply any items in lowercase italic
letters.

• Items in square brackets ([]) are optional.

• An ellipsis C ...) indicates an item may be repeated
as many times as you wish.

• All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or
equal signs) must be included where shown.

Related Manuals

To use the BASIC Compiler and this book, you will also
need the following manuals for reference:

• the IBM Personal Computer BASIC manual

• the IBM Personal Computer Disk Operating System
manual

v

CONTENTS

Introducing the BASIC Compiler 1
What is a Compiler? 1

Interpreters 1
Compilers 2

Vocabulary 2
The BASIC Compiler 3

Con ten ts of the BASIC Compiler Package. 5

Using the BASIC Compiler . . 6
What You Need 6
Developing Your Program 6
The First Time Through . 7

Diskette Setup for a Single Drive
System 8

Diskette Setup for a Two-Drive
System 9

Getting Started 10

Sample Session I 1
Creating and Debugging the DEMO Program 12
Compiling the DEMO Program 12
Unking the DEMO Program 16
Running the DEMO Program 18
Learning More About Developing a

Program 19

Creating a Source Program 20
Compiler Metacommands 21

Debugging with the BASIC Interpreter 24

Com piling 2 5
Preliminary Steps 25
Starting the Compiler 27

Letting the BASIC Compiler Prompt You. 27
Using a Single Command Line 30

Compiler Parameters 33
Error Trapping Parameters . . 34

vii

Event Trapping Parameters 36
Convention Parameters . . 37
Special Code Parameters . 40
The BASRUN.EXE Runtime Module 44
Summary Chart of Compiler Parameters 46

When the Compiler Finishes 47
Sample Compiler Listing 49

The Offset and Data Columns 49
Source Line 49
Compiler Messages 5 I
Summary 51

Linking 52
Preliminary Steps 53
Starting the Linker 54

Answering the Linker Prompts 54
When the Linker Finishes 56

Running a Program 57

Using a Batch File 59
SAMPLE.BAT 59
CREA TE.BA T 60
COM.BAT .. 62

Differences Between the Compiler and
Interpreter 63

Compiler Metacommands 64
$INCLUDE Mctacommand 65
$LINESIZE Metacommand 68
$LIST Metacommand 69
$OCODE Metacommand 70
$PAGE Metacommand . 71
$PAGEIF Metacommand 72
$PAGESIZE Metacommand 73
$ SKIP Metacommand 74
$ SUBTITLE Metacommand 75
$ TITLE Metacommand 76

Operational Differences 77
Language Differences . 79

CALL Statement . 80
CHAIN Statement 82
CLEAR Statement 83
COMMON Statement 84
DEF FN Statement 86
DEFtype Statements 87

Vl11

DIM Statement ..
DRAW Statement
END Statement
FOR and NEXT Statements
FRE Function .
KEY Statement
OPEN Statement
OPEN "COM ... Statement
PLAY Statement
REM Statement
RUN Command
STOP Statement
STRIG Function
USR Function .
V ARPTR$ Function
WHILE and WEND Statements
WIDTH Statement

Other Differences
Double-Precision Ari thmetic Functions
Double-Precision Loop Control

Variables
Expression Evaluation
Input Statements
Integer Variables
Line Editor . . .
Number of Files
PEEKs and POKEs
String Length
String Space Implementation

Appendix A. Messages
Errors from the Compiler

Long Messages . . .
Two-Character Codes

Errors while Running a Program
Errors That Cannot Be Trapped

Appendix B. The Linker (LINK) Program .
In troduction
Files

Input Files .
Output Files
VM.TMP (Temporary File)

Definitions .
Segment
Group .

88
89
90
91
93
94
95
96

.100

.101

.102

.103

.104

.105

.107

.108

.109

.110

.110

.110

.110

.112

.112

.113

.] 13

.114

.114

.114

.A-3

.A-4

.A-4

.A-7
. A-13
. A-22

· B-1
· B-1
· B-2
· B-2
· B-2
· B-3
· B-4
· B-4
· B-5

ix

x

Class
Command Prompts
Detailed Descriptions of the Command

Prompts
Object Modules [.OBJ]: . -.
Run File [filespec .EXE] :
List File [NUL.MAP] :
Libraries [.LIB] :
Linker Parameters

How to Start the Linker PrograIn
Before You Begin
Option 1 - Console Responses
Option 2 ~ Command Line . .
Option 3 Automatic Responses

Example Linker Session
Load Module Memory Map .. .
How to Determine the Absolute Address

of a Segment
Messages

Appendix C. Memory Maps
Segment Map
Memory Map (with Runtime Module)
Memory Map (without Runtime Module)

GLOSSARY

INDEX ...

· B-5
· B-6

· B-7
· B-7
· B-8
· B-8
· B-9

· B-ll
· B-14
· B-14

B-14
· B-15
· B-17

B-19
B-22

B-23
B-24

· C-l
· C-l
· C-3
· C-4

.G-l

.X-l

Introducing the BASIC Compiler

What is a Compiler?

A computer can perform only its own machine
instructions; it does not perform BASIC statements
directly. Therefore, before a program can be run, some
type of translation must occur from the statements in
your BASIC program to the machine language of your
computer. Compilers and interpreters are two types of
programs that perform this translation.

Interpreters

An interpreter translates your BASIC program line by line
as your program is running. In order for a BASIC
statement to be carried out, the interpreter must analyze
the statement, check for errors, then perform the
BASIC function requested.

If a statement gets performed more than once (inside
a FOR ... NEXT loop, for example), this translation
process must be repeated each time the statement is
performed.

Also, BASIC stores your program as a linked list of
numbered lines. This means the computer doesn't know
exactly where in memory each line is. When you branch
to a particular line (using a GOTO or GOSUB, for
example), the interpreter must search through every line
in a program, starting with the first, until the particular
line number is found.

The interpreter maintains a list of the variables in your
program in a similar way. When you use a variable in a
BASIC statement, this list must be searched from the
beginning until the variable is found.

Compilers

A compiler, on the other hand, translates an entire
BASIC program at one time and creates a new file
called an object file. The object file contains machine
code. All translation takes place before you actually
run your program; no translation of your BASIC
program occurs while your program is running. In
addition, memory addresses are associated with variables
and with the targets of GOTOs and GOSUBs, so that
lists of variables or of line numbers do not have to be
searched while your program is running.

Some compilers are known as optimizing compilers.
They will do things, such as changing the order of
expressions or eliminating common sub-expressions, to
either improve performance or to decrease the size of
your program.

Optimization and the elimination of the translation
step when your program is running combine to make
your program run faster.

Vocabulary

2

There are a number of words you may run into when
working with the BASIC Compiler (or any other
compiler). Most of these terms are listed in the
Glossary.

For now, you should understand that a program that
is input to the compiler for translation is called a source
HIe. It must be in ASCII format (a text file). The
compiler translates this source and creates a new file as
output. This new file is called a relocatable object file.
These two files have the default extensions .BAS and
.OBJ, respectively.

The BASIC Compiler

The BASIC Compiler is an optimizing compiler designed
to complement the BASIC interpreter.

Creating application programs with the IBM Personal
Computer BASIC Compiler provides two major
benefits:

• Increased speed of execution for most programs

• BASIC source code security

A compiled program is optimized machine code, not
source code, and consequently substantially improves
execu tion time while protecting your source program
from unauthorized alteration or disclosure.

Another advantage of the BASIC Compiler is that,
since the BASIC Compiler has been created to support
most of the interpreted BASIC language, the in terpreter
and the compiler complement each other. Therefore
you have a powerful programming environmen t in which
you can quickly run and debug programs using the
BASIC interpreter, and then later compile those programs
to increase their speed of execu tion.

The Runtime Module: A feature of the BASIC
Compiler is the ability to create programs to use the
runtime module. The runtime module is a file named
BASRUN.EXE, and it contains most of the routines
needed to implement the BASIC language. It can be
thought of as a library of routines, with the peculiarity
that it is an executable file.

3

4

The runtime module is loaded when program execution
begins; it is not reloaded when the program chains to
another program. The BASIC routines which are part
of the runtime module do not need to be saved on
diskette as part of your final compiled (executable)
program. Therefore, if you create an application
consisting of several programs which use the runtime
module, you can save a significant amount of duplicate
code and diskette space. Refer to "The BASRUN.EXE
Runtime Module" in the section called "Compiling,"
later in this book, for more information on the runtime
module.

Application programs which require the BASRUN.EXE
runtime module cannot be distributed without entering
into a license agreement with IBM. A copy of the
license agreement can be obtained by writing to IBM
at:

P.O. Box 1328-P
Boca Raton, Florida 33432

~otL;, h()wc\'t'L th:lt it is possible to devdop programs
with the BASIC Compiler which do !lot Lhc' the
BASRU:\.EXE runtime moduk, and therefore don't
req uire t he lice nse agreemen t.

Contents of the BASIC Compiler Package

The BASIC Compiler package contains:

• Two diskettes, named BASIC and LIBRARY

- The BASIC diskette contains the following files:

- BASCOM.COM - the BASIC Compiler
- LINK.EXE - the LINK Linker
- DEMO.BAS - a demonstration program
- sample batch files

- The LIBRARY diskette contains the following
files:

- BASCOM.LIB - the BASIC library
- BASRUN.EXE - the runtime module
- BASRUN.LIB - the runtime module library
- IBMCOM.OBJ -- the communications

module

• The BASIC Compiler book (this book)

Using the BASIC Compiler

What You Need

To successfully compile BASIC programs on your IBM
Personal Computer, you need:

• Your BASIC Compiler diskettes, BASIC and
LIBRARY

• At least 64K hytes of random access memory

• One diskette drive (although we recommend two
drives for easier operation)

• A display

• A printer (optional, but recommended)

• The IBM Personal Computer Disk Operating System
(DOS) diskette

• Sevcral blank 5-1/4 inch diskettcs

Developing Your ProgralTI

6

You develop a program with the BASIC Compjlcr using
these steps:

1. Create the BASIC source file

2. Debug the program

3. Compile the program

4. Link all modules needed by your program

5. Run your program

All these steps are explained in detail in later sections,
but first we will remind you to back up your diskettes,
and then we will lead you through a demonstration of
using the compiler.

The First Tilne Through

Warning:
You should back up your BASIC COlnpiler Inaster
diskettes, BASIC and LIBRARY, as soon as possible.
We recommend you back up the diskettes before you
start the sanlple session which follows.

To back up the diskettes you must first format blank
diskettes. Use the DOS FORMAT command with the
S option. This formats the diskette and copies the
DOS system files and COMMAND.COM onto your
diskette. You can start DOS using this diskette. Next
use the DOS COPY command to copy the master files
to your backup diskettes. Refer to the IBM Personal
Computer Disk Operating System manual for more
information about formatting and copying.

Store your master diskettes in a safe place and work
with the backup copies.

7

8

Diskette Setup for a Single Drive System

You will be working with these diskettes:

• BASIC diskette

• LIBRARY diskette

• The work diskette a formatted diskette which
will hold the following files:

- Your source file
- The library you'll be using during the linking

step (BASCOM.LIB or BASRUN.LIB)
- Any other modules you may be linking to your

program

• (optional) Runfile diskette when compiling large
programs, you may need to write the run file to a
separate diskette. This diskette will contain:

The run (executable) file created by the linker
BASRUN.EXE, if your compiled program uses
the runtime module

If you don't use a Runfile diskette, all output files
from the compiler and linker will normally go to
the work diskette.

Diskette Setup for a Two-Drive System

You will probably find it convenient to create two new
diskettes: one with the linker (LINK.EXE from the
BASIC diskette) and the BASIC library (BASCOM.LIB
from the LIBRARY diskette); another with the 1inker
and the runtime module library (BASRUN.LIB from
the LIBRARY diskette).

The diskettes you will be working with will be:

• BASIC diskette

• Library-Linker diskette - the appropriate one of
the two diskettes created above, containing:

- LINK.EXE
- The library you'll be using during the linking

step (BASCOM.LIB or BASRUN.LIB)

• The work diskette - a formatted diskette which
will hold the following files:

- Your source file
- Any other modules you may be linking to your

program

• (optional) Runfile diskette - when compiling large
programs, you may need to write the run file to a
separate diskette. This diskette will contain:

-- The run (executable) file created by the linker
- BASRUN.EXE, if your compiled program uses

the runtime module

If you don't use a Runfile diskette, all output files
from the com piler and linker will normally go to
the work diskette.

Q

10

Getting Started

We recommend that you compile the demonstration
program before compiling any other programs, because
this sample session gives you an overview of the
compilation process. Also, you should read all the
following sections. They contain information that is
very important to successful development of a program.

Sample Session

This section uses a demonstration program to illustrate
the step by step instructions for using the BASIC
Compiler. We include instructions for both single-drive
and two-drive systems.

If you enter commands exactly as described in this
section, you should have a successful session with the
BASIC Compiler. If a problem does arise, check and
redo each step carefully.

Remember from the section called "Using the BASIC
Compiler" that the five steps in developing a program
with the BASIC Compiler are:

l. Crea ting a source file

2. Debugging

3. Compiling

4. Linking

5. Running the program

11

Creating and Debugging the DEMO Program

Because we have prepared a debugged demonstration
program (DEMO.BAS) on diskette, you do not have
to perform the first two steps in the program
development process. Therefore, the demonstration
begins with compilation. We saved the demonstration
program on diskette in ASCII format, since the
compiler can only read files that are in ASCII format.

Compiling the DEMO Program

1 I.

Preliminary Steps: Before you actually start the
BASIC Compiler, you must prepare the work diskette.
You need a blank diskette to use as the work diskette.
Follow these steps to prepare it for use with the
compiler. Refer to the IBM Personal Computer Disk
Operating System manual for detailed information
on DOS commands.

1. Start DOS.

2. If your work diskette has not already been
formatted, format it now. Use the DOS
FORMA T IS command so DOS will be copied to
your work diskette.

3. Use the DOS COpy command to copy the
DEMO.BAS program from the BASIC diskette
to your work diskette.

4. Also, copy the file named BASRUN .EXE from
the LIBRARY diskette to your work diskette.
The demonstration program will be compiled to
use the runtime module, so BASRUN.EXE needs
to be on diskette when you run your program.

5. If you have a single diskette drive, copy the file
named BASRUN.LIB from the LIBRARY
diskette to your work diskette.

If you have a two-drive system, create a Library
Linker diskette as described previously under
"Diskette Setup for a Two-Drive System." Start
with a blank formatted diskette, and copy
BASRUN.LIB from the LIBRARY diskette and
LINK.EXE from the BASIC diskette to,this
diskette. We will call this diskette the BASRUN
Linker diskette.

In this demonstration all files created by the compiler
and by the linker will be placed on the work diskette.

Using the Compiler: Perform the following steps to
compile your program:

1. Make sure DOS is started, and diskette drive A:
is empty.

If you have a two-drive system, change the default
drive to B: by entering:

Then insert your work djskette into drive B:.

2. Insert your copy of the BASIC diskette in drive A:.
The BASIC diskette contains the BASIC Compiler
program.

3. Entcr the following in response to the DOS
prompt:

This loads the BASIC Compiler program into your
computer. It will display a heading, then a prompt.

4. If you have a single-drive system, after the heading
is displayed, remove your BASIC diskette and insert
your work diskette in drive A:.

1 ~

14

5. The first prompt displayed by the BASIC
Compiler is:

The name of the demonstration program is
DEMO.BAS, so you should respond to this prompt
as follows:

(Remember to press Enter after typing the name
of the demonstration program.) You don't have
to include the extension .BAS, since the compiler
will use .BAS as the default extension.

6. The next prompt will be:

Just press the En ter key:

This will cause the object file to have the filename
DEMO.OBJ.

7. The last prompt will look like this:

I I:

We want a listing, so respond as shown:

The compiler will add the default .LST extension
to the filename, so our listing file will be named
DEMO.LST. The Ie is not part of the filename,
but a special parameter to the compiler. IE and
the other compiler parameters are discussed under
"Compiler Parameters," later on.

The screen should look like this when completed:

As soon as you have answered the last prompt,
the compiler will begin its work. The compiler
generates relocatable object code that is stored
in the file you specified in response to the Object
f11enmne prompt.

At the same time, the listing file is written out to
your diskette with the name you specified in
response to the Source listing prompt.

8. When the compiler has finished, it displays the
message:

and control is returned to DOS. (The numbers
nnnnn will depend on the amount of memory in
your computer.)

If you enter the command DIR, you should see
the two new files listed in your work diskette
directory: DEMO.OB] and DEMO.LST.

9. At this point in the demonstration run, you can
view or print out the source listing file
(DEMO.LST).

15

One way to print the listing file is to use the TYPE
command from DOS. Press Ctrl-PrtSc to send
screen output to the printer, then enter TYPE
DEMO.LST. The listing file will be simultaneously
printed on your printer and displayed on your
screen. When the file has been prtnted, press
Ctrl-PrtSc again so the printer will stop printing
everything that is displayed on the screen.

A second way to print the file is to use the DOS
command COPY DEMO.LST LPTl:

10. When you are done looking at the listing file, you
should delete it to gain additional diskette space.
To do this from DOS, enter:

Further information on compiling and the listing file is
given in the section called "Compiling." You are now
ready for the next step - linking.

Linking the DEMO Program

16

Linking must be done using the version 1.10 linker
program on the BASIC diskette (the file named
LINK.EXE). The linker searches the BASRUN.LIB
library to resolve any external references in your
compiled object file, and creates an executable
(.EXE) file on diskette.

To use the linker, follow these steps:

1. DOS should already be active. Remove any
diskette from drive A:.

If you have a single diskette drive, insert the
BASIC diskette in drive A:.

If you have two diskette drives, insert the
BASRUN-Linker diskette in drive A:. The DOS
default drive should be B:, and your work
diskette should still be in drive B:.

2. Enter:

Your comp"!lter searches your diskette for LINK,
loads it, and then displays a heading followed by
a prompt.

3. If you have a single-drive system, remove the
BASIC diskette and insert your work diskette in
drive A:. Your work diskette contains the object
file produced by the compiler (DEMO.OBJ), along
with the library (BASRUN.LIB) needed by the
linker.

4. The first prompt from the linker is:

Respond to this with the name of the object file
created by the compiler:

You don't need to include the .OBJ extension,
because the linker provides it automatically.

5. The next prompt from the linker is:

DEMO.EXE is the name we want to give the
executable object file, so just press Enter:

6. The next prompt the linker gives you is:

Just press Enter:

This gives the linker list file the name NUL.MAP,
which tells the linker not to create a list file.

1"7

The last linker prompt is:

Again, you should just press En ter. The linker
automatically knows which library to use . .'

This is what the completed screen should look like:

7. After you respond to the last prompt, the linker
goes to work. BASRUN.LIB is automatically
searched to satisfy any unresolved external
references before linking ends.

After the linker is finished, control returns to DOS.
Exanline your directory to confirm that you have
created an executable DEMO file.

Enter:

You should see a file named DEMO.EXE.

Running the DEMO Program

Once you have compiled and linked your program, it is
simple to run it. From DOS, enter the program
filename, without its .EXE extension.

In the case of this demonstration, with your work
diskette still in the drive, enter:

The runtime module, BASRUN.EXE, will be loaded
into memory by your program. The compiled
program should run quite fast compared to running
the same program with the BASIC interpreter. You
may want to compare execution speeds by running
the DEMO.BAS program with the interpreter.

Learning More About Developing a Program

You have successfully compiled and run a simple
BASIC program. You are now ready to learn the more
technical details that you need to know to compile
other BASIC programs. The next sections, "Creating
a Source Program," "Debugging with the BASIC
Interpreter," "Compiling," "Linking," and "Running
a Program" contain more extensive descriptions of
each of the steps you followed in this section. The
last section, "Differences Between the Compiler and
Interpreter," describes all of the language, operational,
and other differences between the BASIC Compiler
and the BASIC interpreter.

19

Creating a Source Program

20

You may create a BASIC source file using any general
purpose text editor. But perhaps the best way is to
use the editing facilities of the BASIC interpreter.
Remember that the compiler expects its source file to
be in ASCII format, so if you do use the BASIC
program editor you should SAVE your program using
the A option. Otherwise, you will get a "Binary
Source File" error when you try to compile your
program. For more information on editing, saving,
and loading files with BASIC, you should refer to
Chapter 4 of the IBM Personal Computer BASIC
manual.

The BASIC language of the interpreter has some
differences from that of the compiler. The interpreter
allows a number of editing and file manipulation
commands that are useful mainly when creating a
program. Examples are LOAD, SAVE, LIST, and
EDIT. These are operational commands not supported
by the compiler. Some differences also exist for some
of the other statements and functions. You should
take these differences into consideration while you
are editing. See "Differences Between the Compiler
and Interpreter," later in this book, for a full
description of these differences.

Note also, that the interpreter cannot accept lines
greater than 254 characters in length. In contrast to
the interpreter, the BASIC Compiler accepts physical
lines of up to only 253 characters in length. (A
physical line for the compiler is one which ends in a
carriage return-line feed.) However, you can make the
compiler accept much longer logical lines of input by
ending the physical lines with an underscore character
(underscores in quoted strings or remarks do not
count). The underscore tells the compiler to ignore
the following carriage return, so all it sees in the carriage
return-line feed sequence at the end of the line is the
line feed character. The line feed is the line continua
tion character understood by the com piler.

For example, the following two physical lines:

are read by the compiler as a single INPUT statement,
which inputs seven values into the array A.

Note: It is somewhat impractical to use this
technique when using the program editor in the
BASIC interpreter, because each line created with
the BASIC program editor must begin with a
number.

Also, source programs that use this technique
cannot be debugged using the interpreter.

Compiler Metacommands

A special feature of the BASIC Compiler that is not
available with the BASIC interpreter are the compiler
metacommands. They nre called compiler meta
commands rather than BASIC commands because they
are not really a part of the BASIC language, but rather
they are commands to the com piler. The meta
commands for the BASIC Compiler are:

• $INCLUDE

• $LINESIZE

• $LIST

• $OCODE

• $PAGE

• $PAGEIF

• $PAGESIZE

• $SKIP

11

22

• $SUBTITLE

• $TITLE

Note the distinctive "$" prefix on the compiler
metacommands.

The metacommands are included in your source file as
part of a remark, after the keyword REM or the single
quote. Because they are imbedded in a remark, the
metacommands do not cause a syntax error when you
run your program under the BASIC interpreter, even
though the interpreter does not support them. All
the metacommands are discussed in more detail under
"Colnpiler Metacommands" in the section calIed
"Differences Between the Compiler and Interpreter,"
later in this book.

All the metacommands except $INCLUDE simply
affect the format of the listing file created by the
compiler.

The $INCLUDE metacommand, however, is a very
useful feature that allows you to combine files for your
source file. The $INCLUDE metacommand looks like
this:

REM $INCLUDE: 'filespec'

The compiler includes the specified file into the source
file at the point where it encounters this metacommand.
That is, the contents of filespe.c, known as the
included file, are read and processed as though the
included file were inserted into your source file
immediately following the $INCLUDE meta command.
When the compiler finishes processing the included file,
it goes back to the original BASIC source file and
resumes processing at the line that follows the
$INCLUDE metacommand.

This process may be thought of as imbedding filespec
into your source file at the location of the $INCLUDE
me tacommand.

The included file, like any file to be read by the
compiler, must be in ASCII format.

Included files can be very useful for COMMON
declarations existing in more than one program, or for
subroutines that you might have in an external library
of subroutines.

If you use a text editor other than the BASIC program
editor, you can create a file of lines without line
numbers. The compiler supports sequences of lines
without line numbers if the IN parameter is specified
when you start the compiler. This feature can make
it very easy to include the same file in many different
programs.

Debugging with the BASIC Interpreter

24

It is usually very helpful to use the BASIC interpreter
to debug your BASIC source program, in order to
check for syntax and program logic errors. Note,
however, that this is an optional step; it is certainly
possible to create a program without ever running
it with the interpreter.

You may use some commands or functions in your
source program that execute differently with the
interpreter. In those cases, you prohahly need to use
the compiler for debugging. The compiler meta
commands and V ARPTR$ are the only instructions
supported by the compiler that are not supported in
some form by the release 1.00 BASIC interpreter.
Also, the interpreter does not support double
precision loop counter variables as does the BASIC
Compiler.

Nevertheless, the language supported by the compiler
is intended to be as similar to the interpreter BASIC
as possible. This means you can make the BASIC
interpreter your primary debugging tool, which will
save you from doing unnecessary compilations and
links. Also, the RUN, CONT, TRON and TROFF
commands make the interpreter a very powerful
interactive debugging tool. Refer to the IBM
Personal Computer BASIC manual for more
information on these commands.

One consideration about using the interpreter as a
debugging tool: the interpreter will stop when an
error occurs while running a program. Any subsequent
errors are not caught until the first detected error is
corrected and the program is run again. The compiler,
on the other hand, scans all the lines in your program
and reports all the errors it detects. Therefore, you
may find it helpful to compile your program first to
catch syntax errors, then test the logic with the
interpreter after you correct all the syntax errors.

Compiling

After you have created and debugged your BASIC source
program, the next step is to compile it. During this step
you can check out differences that may exist between
interpreter and compiler BASIC. The compiler flags all
syntax errors as it reads your source program. If
compilation is successful, the compiler creates a
relocatable object file.

Preliminary Steps

Before you actually start the BASIC Compiler, you
should do the following:

1. Start DOS if it's not already started.

2. Remember to format your work diskette if it has
not already been formatted. Refer to the iBM
Personal Co rnp u ter Disk Operating System manual
for information about formatting. You should use
the /S parameter wi th FO RMAT so DOS will be
copied on your work diskette.

3. Copy your (debugged) BASIC source program to
the work diskette. Remember that this program
will be input to the compiler, so it must be in
ASCII format. If it is already in ASCII format, you
can use COpy to put it on the work diskette;
otherwise you must enter the BASIC interpreter,
load the program, and put it on the work diskette
using SAVE with the A option.

26

4. You may want to copy the files you will need for
the linking and running steps now. Consider the
amount of space on your work diskette and refer
to the sections "Linking" and "Running a Program,"
later in this book.

5. If you have a two-drive system you can make the
process a little easier by using the following steps:

a. Make B: the DOS default drive.
b. Place the BASIC diskette in drive A: and your

work diskette (which has your source file and
room for the output file(s)) in drive B:.

With B: as the default drive, you don't need to
include B: as the device for each of the file
specifica tions.

You are now ready to compile your BASIC prograrn.

Device Names: When you start the BASIC Compiler,
you must give file specifications for the files it needs.
In all cases the default device for the files is the DOS
default diskette drive; you can override this by
including the device name as part of the filespec.

The device name for the source file indicates the device
the file is read from. Allowable devices are:

A:, B: - diskette drives
CON - keyboard (buffered input)
USER -- keyboard (non-buffered input)

A device name with an output file indicates where the
file is to be written. Allowable devices for the output
files (the object file and the listing file) are:

A:, B: - diskette drives
CON - screen (buffered output)
USER - screen (non-buffered output)
LPTI:, PRN - printers
COM I :, AUX -- asynchronous communications

adapters
NUL - no output file

CON is a DOS reserved word for the display device.
Output written to CON is buffered as a file and thus
appears in the display in blocks of 512 characters at a
time.

USER is a speciaJ reserved word for the disp]ay.
Output written to USER is not buffered and thus
appears on the screen on a character-by-character basis.

It makes little sense to send the object file to the screen
or printer, since the object file is in binary code and is
unreadable as text. Note that the cassette (CAS 1:) is
not allowed.

Starting the COlnpiler

You can start the BASIC Compiler in either of two
ways. Which one you choose will depend on your own
preference and how you happen to have your system
set up.

• You can let the BASIC Compiler prompt you for
the information it needs .. If you have a single
diskette drive, you can change diskettes before
you proceed with answering the prompts.

• You can enter all the information the compiler
needs on a single cOlnmand line. This is a fast way
to start the compiler if you have two diskette
drives.

Letting the BASIC Compiler Prompt You

If you want to let the BASIC Compiler prompt you for
the information it needs, you can start it as follows:

If you have a two-drive system, you would normally
have B: as the default drive.

With the BASIC diskette in drive A:, enter:

'7.7

28

The BASIC Compiler will be loaded into your computer.
After a short time, the compiler will display a heading
and the following prompt:

Before you respond, you should insert the work diskette
containing your program into a diskette drive. If your
system has a single diskette drive, you must remove the
BASIC diskette and replace it with your work diskette.
If you have a two-drive system, you would normally
put your work diskette in drive B:.

Source filename is the name of the file which will be
the input to the compjler. Here you should enter the
name of the source file, that is, your program file. For
example:

The name shown in the brackets [.BAS] is the default
filename extension that the compiler will use if you
don't include a filename extension of your own. In this
example, the compiler will be using the file
MYPROG.BAS on the DOS default diskette drive.

After you enter the source filename, you will see this
prompt:

1,1

Object filename is the name you ;want the object file to
have. If you wish to have your object file stored under
the default name (in the brackets MYPROG.OBJ in
this example), you may simply press the Enter key. If
you want the object file to have a different name,
enter that name after this prompt. The compiler will
add the extension .OBJ to the filename if you don't
include a filename extension.

The last prompt will look like this:

Source listing is the name of the file that will contain
the compiled source listing. The source Jisting
contains errors and other messages produced by the
compiler, and is discussed in detail in the section called
"Sample Compiler Listing," later on.

If you do not want a listing, press the Enter key. This
will give you the default filename NUL.LST, which tells
the compiler not to create a source listing file, although
any messages will still be displayed on the screen. If
you do wan t the listing, enter the name you want to
give to the listing file here. The compiler will add the
.LST extension if you don't include one in your
filename.

You may have the listing file printed out by answering
this prompt with the device name of the printer. For
example,

This method is a fast way to get the listing printed, since
it does not require the creation of a diskette file.

Optional Compiler Parameters: You may include
special compiler parameters by adding them after the
file specification in response to any prompt. Each
parameter must begin with a slash (/). The optional
compiler parameters are discussed in the section called
"Compiler Parameters," later on.

29

Using a Single Command Line

The BASIC Compiler can also be started by using the
following command line:

BASCOM s()urcefile, objec~file, lis~file [parm] . .. ;

sourcefile is the name of your source file.

objectjlle is the name you want to give the object file
which is created by the compiler.

lis~file

parm

is the name you want to give the listing file.

is an optional compiler parameter. Each
parameter must begin with a slash (/). These
parameters arc explained in the section
called "Compiler Parameters" later on.
Take special note of the /0 parameter, which
affects the way you link and run your
compiled program.

Both the BASIC Compiler (BASCOM.COM) and your
source file must be accessible on diskette when the
command is executed. After you enter the command
line from DOS, the BASIC Compiler .is loaded and
immediately performs the tasks indicated by the
command field.

Variations on the Command Line: If you enter the
complete BASCOM command line, as shown above,
you will not be shown the prom pts for the filenames
as described previously.

If you do not have an entry for all three files in the
command line and the command line does not end in a
semicolon (;), the BASIC Compiler will prompt you
for the remaining unspecified files. If necessary, you
may at this point remove the BASIC diskette in order
to change diskettes. As explained previously under
"Letting the BASIC Compiler Prompt You," each
prompt will display its default which may be accepted
by pressing the Enter key, or overridden by entering
your own file specification.

If you do not include the source filename in the
command line, the compiler will ask for one. The
parrns will never be prompted for, but may be added
to the end of the command line or to any file
specification given in response to a prompt.

If the list of filenaines is incomplete but the command
line does end in a semicolon (;), the unspecified files
will be set to the defaults without further prompting.

Some examples:

BASCOM Inyprog.any
The source file is MYPROG.ANY. The compiler
prompts for the object file, showing a default
name of MYPROG .OB]. After a response is
given, another prompt is displayed showing the
default of NUL.LST.

BASCOM myprog.any;
If the semicolon is added, the compiler uses the
default names for the remaining files:
MYPROG.OBJ for the object file, and no source
listing.

BASCOM lnyprog.any,,;
The comma overrides the "no listing" default for
the source listing file. Instead, you get a listing
file with the source filename and the extension
.LST. For this example, you get an object file
named MYPROG.OBJ and a source listing named
MYPROG.LST.

BASCOM myprog.any"
Using the same example, but without the
semicolon, the source file MYPROG.ANY is
compiled, the object file produced is named
MYPROG.OBJ, but you get a prompt for the
listing file with the default of MYPROG.LST.

32

BASCOM myprog"list
This causes the compiler to use MYPROG.BAS
as its source file, and to generate a MYPROG.OBJ,
and a LIST .LST file. Even though the line does
not end in a semicolon, no prompts are
produced.

BASCOM myprog.any ,nul,prn;
This compiles the source program MYPROG.ANY,
but no object file is produced; the source listing
file is sent to the printer. This technique is
useful for debugging.

Com pifer Parameters

In addition to specifying filenames, extensions, and
devices to direct the compiler to produce object and
listing files, you can tell the compiler to perform
additional or alternate functions by specifying extra
parameters.

These compiler parameters may be placed at the end
of the command line after the file specifications, or
after any file specification given in response to a prompt.
Additional parameters may follow other parameters.
For example, the following command line compiles a
program named FROG.BAS and includes the /D and
/X parameters:

Parameters signal special instructions to be used during
compilation. The parameter tells the compiler to
perform a special function or to alter a normal
compiler function. More than one parameter may be
used, but all nlust begin with a slash (/). Do not
confuse these parame ters with similar parameters on
other IBM Personal Computer software products.

All the compiler parameters are described on the
following pages. First, we'll give you the detailed
descriptions of each parameter. Then you'll find a chart
that summarizes the function of each parameter.

33

34

Error Trapping Parameters

If your BASIC source program contains error trapping
routines that involve the ON ERROR statement plus
'some form of a RESUME statement, you need to use
one of the two error trapping parameters, IE or IX.
Error trapping routines require line numbers in the
object (.OBJ) file. If you do not use one of the error
trapping parameters, the compiler does not include line
numbers in the object file, and a compiler error results.

The error trapping parameters allow you to use ON
ERROR statements in your program. These
statements can aid you greatly in debugging your
BASTC programs. Note, however, that extra code is
generated by the compiler to handle ON ERROR
statements.

Parameter Action

IE The (E parameter tells the compiler that
the program contains an ON ERROR with
a RESUME line construction. To handle
ON ERROR properly, the compiler must
generate extra code for the GOSUB and
RETURN statements. Also, the compiler
must include a line number address table
(one entry per line number) in the binary
file, so that each runtime error message
includes the number of the line in which
the error occurs. The IE parameter
generates four extra bytes of code for each
line number in your program. To save
memory space and execution time, do not
use this parameter unless your program
contains an ON ERROR statement.

Note: If you use any RESUME state
ment other than RESUME line, or
you use a combination of RESUME
line with other RESUME statements,
use the IX parameter instead.

Parameter Action

IX The IX parameter tells the BASIC Compiler
that the program contains one or more
RESUME, RESUME NEXT, or RESUME a
statements.

The IX parameter performs all the functions
of the IE parameter, so the two need never
be used at the same time. For instance, the
IX parameter, like the IE parameter, causes
a line number address table (one entry per
statement) to be included in your binary
object file, so that each runtime error
message includes the number of the line in
which the error occurs. The IX parameter
also performs addi tional functions not
performed by the IE parameter. The IX
parameter generates four extra bytes of
code per statement. For example, the
program line:

consists of two statements, so eight bytes
of extra code are required when you use
the IX parameter.

Note that to handle RESUME statements
properly, the compiler cannot optimize
across statements. Therefore, do not use
IX unless your program contains
RESUME statements other than RESUME
line.

36

Event Trapping Parameters

If your BASIC source program uses event trapping
(COM(n), KEY(n), PEN, or STRIG(n)), you need
to use one of the two event trapping parameters, IV
or IW. These parameters tell the compiler to add the
extra code to check for the particular event at each
line or at each statement.

Parameter Action

IV The IV parameter tells the BASIC
Compiler to include an evcnt trap check
at each statement. This generates one
extra byte of code per statement. The
compilcr also cannot do as much
optimization as it can with IW. When
you specify IV, the compiler can only
optimize within a single statement, not
across statements. Event trapping with
the IV parameter most closely resembles
event trapping in the interpreter.

/W The /W parameter tells the compiler to
add an event trap check at each line
number. This parameter generates one
extra byte of code for each line number
in your program. If you arc using event
trapping, the /W parameter uses less space
and takes less execution time than the IV
parameter. If there is only one statement
per line in the program, then the IW
parameter is the same as the IV parameter.

Convention Parameters

The 14 and IT parameters are used to affect the
scanning and execution conventions of the compiler.
These two parameters are a feature of the BASIC
Compiler that allow you to compile and run programs
that were written in another version of BASIC - in
particular, Microsoft's version 4.51.

The convention parameters may be used together
(/4/T). The individual action of each parameter is
explained below:

Parameter Action

/4 The /4 parameter tells the compiler to use
the scanning conventions of the Microsoft
4.51 BASIC-80 interpreter. Scanning
conventions are the rules that the compiler
uses to recognize the BASIC language.

When you specify /4, the compiler follows
these rules:

• Spaces are not significant

• Variable names with imbedded
reserved words are invalid

• Variable names are restricted to two
signifi ca n t characte rs

You use the /4 parameter to correctly
compile a source program in which spaces
do not delimit the reserved words. For
example:

Without the /4 parameter, the compiler
would assign the value of the variable
ATOBSTEPC to the variable FORI. With
/4, the compiler recognizes the line as a
FOR statement.

Note: The /4 and /N parameters
may not be used together.

37

38

Parameter Action

IT The IT parameter tells the compiler to use
the Microsoft BASIC-80 version 4.51
execution conventions. "Execution
convenUons" refers to the implementation
of BASIC functions and commands and
what they actually do when you run your
program. In particular:

• FOR ... NEXT loops are always
executed at least one time.

• The value returned by POS and LPOS
may range from 0 to width-I. (This
differs from IBM Personal Computer
BASIC in that the first column is 0,
not 1.)

• The argument to TAB Inay range
from 0 to 255, and again, 0 is the
leftmost column and width-l is the
rightmost column. Also, if the
current print position is already
beyond space n, then T AB(n)
has no effect.

• The argument to SPC may range
from 0 to 255. SPC(n) prints n
spaces, even if n is greater than the
defined width of the device (it does
not do modulo arithmetic in this
case).

Parameter Action

IT • When BASIC requires an integer, it
truncates single- or double-precision
values instead of rounding, except in
INPUT statements.

(continued)

• The INPUT statement leaves the
variables in the input list unchanged
if only Enter is pressed. The
"?Redo frOlTI start" message is only
displayed when an invalid response
is given. In this case, a valid input
list must be entered or the message
"?Redo from start" is displayed
again.

39

40

Special Code Parameters

The BASIC Compiler can generate code for special uses
or situations. Some of these special code parameters
cause the BASIC Compiler to generate larger and slower
code, so you should only use them when necessary.

Parameter Action

I A The I A parameter includes a listing of the
object code for each source line in the
source listing. The object code is in
mnemonic (like assembly language) form.
Normally, the source listing produced
by the compiler consists of a listing of
your BASIC source program with any
error messages, plus the relative locations
of your code and the size of your
accumulated data area. If the I A
parameter is set, the source listing also
includes the object code generated for
each statement. Use of this parameter
will give you a longer listing file. Use it
only if you want the additional
information.

IC The IC compiler parameter is similar to
the IC: option you can use when you start
Disk or Advanced BASIC from DOS. It
sets the size of the buffer for receiving
communications data. This parameter is
specified as:

IC : com buffer

where combuffer is the desired size of the
buffer. If the IC parameter is omitted, 256
bytes are allocated to the receive buffer.
For example, the command line:

Parameter Action

jC will compile the source program named
(continued) COMTEST.BAS. The compiler will

generate a special call so that when the
com piled program is run, the
communications buffers will be allocated
to 1024 bytes.

jD

Note: A minimum of 256 bytes are
always allocated to the communica
tions receive buffer regardless of the
size specified wi th the jC parameter.

The jD parameter causes debugging and
error handling code to be generated by the
compiler. Use of jD allows you to use
TRON and TROFF in your program.
Without jD set, TRON and TROFF are
ignored and the compiler generates a
warning message.

With jD, the BASIC Compiler creates
somewhat larger and slower object code
that performs the following checks:

• Arithmetic overflow. All numeric
operations are checked for overflow
and underflow.

• Array bounds. All array references
arc checked to see if the sUbscripts
arc within the bounds specified in
the DIM statement.

• Line numbers. The generated object
code includes line numbers so that
errors that occur when you run your
program will indicate the line where
the error occurred.

• RETURN. Each RETURN statement
is checked for a prior GOSUB
statement.

41

42

Parameter Action

ID Without the ID parameter set, array bound
(continued) errors, RETURN wHhout GOSUB errors,

and arithmetic overflow errors do not cause
error messages when you compile your
program. No error messages occur when
you run your program either, even though
the program may run incorrectly. Use the
ID parameter to make sure that you have
thoroughly debugged your program.

/N The IN parameter tells the compiler to
relax line numbering constraints. When IN
is specified, line numhers in your source
file may be in any order, or they may be
eliminated entirely. Any line numbers
which exist have nothing to do with the
sequence of the lines; they serve only as
labels for GOSUBs, GOTOs, and any other
statements which use line numbers as
references for branching.

With IN, lines are compiled normally, but
unnumbered lines eannot be targets for
GOTOs or GOSUBs.

There are three advantages to using IN:

• Elimination of line numbers increases
program readability.

• The BASIC Compiler optimizes over
entire blocks of code rather than
single lines (for exam pIe in
FOR ... NEXT loops).

• BASIC source code can more easily
be included in a program with
$INCLUDE.

Parameter Action

IR The IR parameter tells the compiler to store
multidimensional arrays in row-major order.
For a two-dimensional array, this means that
the second subscript varies faster than the
first.

IS

10

The default is to store multidimensional
arrays in column-major order.

The IS parameter forces the compiler to
write string constants more than four
charact.ers long to your .OBJ file on
diskette as they are encountered, rather
than keeping them in memory as your
program is compiled. Without IS, you
may run out of memory space while the
compiler is running if your program
contains many long string constants
(quoted strings).

The IS parameter allows programs with
many quoted strings to take up less
memory during compilation. However, it
may increase the amount of memory
needed to run your program, since
identical strings may be coded several
times. Without IS, any references to
iden tical strings are com bined so that the
string is only coded once in your final
compiled program.

The 10 parameter tells the compiler to
compile the program so it does not use
the runtime module BASRUN .EXE. The
next pages discuss the runtime module in
more detail.

44

The BASRUN .EXE Runtime Module

If you do not ~pecify the /0 parameter, your program
is compiled to use the BASRUN .EXE runtime module.
As explained under "Introducing the BASIC Compiler,"
BASRUN .EXE can be thought of as a library of
routines, with the peculiarity that it is an executable
file. It contains the body of routines that, in essence,
make up the BASIC language. Your conlpiled object
file, on the other hand, implements the particular
algorithm that makes your program a unique BASIC
program.

The runtime module contains the more frequently used
BASIC routines. If your progrhm uses other less
frequently used routines, these routines are searched
for and found in BASRUN.LIB when you link your
program.

The runtime module is loaded when you run your
executable program, and both BASRUN.EXE and your
program reside in memory at the same time. Once
loaded, BASRUN,EXE takes up 30K-bytes of memory
when you run your program.

Rl'lllL'l11l1L'L you I1lU-;t l'l1il'r il1i() :1 lil'l'lhl' ~lg:rl'l'l11l'l1t
\\ itll IB~l hl'forl' you distribute progr8m" whil'll ll\l'
till' rlll1tiIllL' l1loduk.

Using the runtime module gives you the following
advantages:

• Chaining works as in the interpreter. That is,
files are left open, device status is preserved, and
you can use COMMON to pass variables to the
chained-to program,

• It may take less time to link, since unresolved
external references do not have to be searched for
in multiple library modules.

When you do specify the /0 parameter to the compiler,
the runtime module is not used by your program at all.
BASCOM.LIB is the library which is searched when
you link the program.

Advantages of using /0 are:

• For small and simple programs, you may be able
to compile and link smaller programs than the
30K-byte minimum required to accommodate the
BASRUN.EXE module.

• Execu tion of a compiled and linked .EXE file
does not require the existence of the runtime
module on diskette when you run your program.

There are, however, some disadvantages to using /0:

• COMMON is not supported between programs.
That is, the CHAIN command is semantically
equivalent to the RUN command.

• Complete code for required BASIC routines is
included in every .EXE file generated, thus
increasing the size of each of your .EXE files.
This is not the case for .EXE files using the
runtime module.

45

Summary Chart of Compiler Param~ters

Category Parameter Action

Error IE Program has ON ERROR with
Trapping RESUME line

IX Program has ON ERROR with
RESUME, RESUME 0, or
RESUME NEXT

Event IV Perform event trap test at every
Trapping statement

/W Perform event trap test at every
line

Convention /4 Use Microsoft 4.51 scanning
conventions (not allowed together
with /N)

/T Use Microsoft 4.51 execution
conventions

Special /A Include listing of object code in
Code the listing file

/C:combu/ Set size of communications
buffer

/D Generate debug code for error
checking when program runs

/N Relax line numbering constraints

/R Store multidimensional arrays in
row-major order

/S Write quoted strings to .OBJ file
on diskette and not to data area
in memory

/0 Do not use BASRUN.EXE
runtime module

46

When the Compiler Finishes

As soon as you en ter the command line, or answer the
last prompt, the compiler begins its work. If the
program contains any syntax errors, these errors are
displayed on the screen as well as in the listing file.

When the compiler is finished, it displays a message
with the number of errors it has found. The message
looks something like this, and appears on the screen as
well as in the source listing:

If the compiler shows only warnings, you can generally
continue with the next step, linking. You should check
"Appendix A. Messages" to see what the actual message
meant.

If the compiler has indeed found errors, you must locate
and fix those problems in your source program before
you go on to the linking step. You must change your
program, save it again (in ASCII format), and rerun the
BASIC Compiler.

When the compiler is finished processing, control is
returned to DOS. You may interrupt the compiler run
prior to its normal completion by pressing Ctrl-Break.

47

~ Sa_l e!::- Report
\Jc)nes Co ..

Offset Data

OOlA 0002
001A 0002
001A 0002
001A 0002
001A 0002
0050 0002
006E 0002
006E 0002

006F 0002
006F 00C2
0075 00C2
007B 00C2
009D 00C6
009D 00C6
0026 ** 009D ** OOAl ** 00A3 ** 00A5 ** 00A9 ** OOAB **

PAGE 1
03--30-82
00:1.9:35

Source Line IBM Personal ComputeF- BASIC Compi 1 er V 1,.\00

10 $TITLE:~Sales Report~ $SUBTITLE:'Jones Co.' $PAGESIZE:70
20 ' PRICES ARE STORED IN ARRAY M
30 NUMBER OF ITEMS SOLD IS STORED IN ARRAY N
40 ' TOTAL SALES FOR EACH MODEL ARE STORED IN ARRAY T
50 PRINT TAB(l:::::);IISa l es Reportl':PRINT :PRINT
60 PRINT IIMode:l #1 11

, "Model #2 11
, IIl"lodel #3": PRINT

70 DEFINT I, . ..1
80 DATA 99a99~62~150,8,2751t50,12,25~22,61"99,82,70,31.,125.75,
20,265,7,315"50,2
90 DIM T(3,3),M(3,3),N(3,3)
100 FOR 1=1 TO 3
110 FOR J=l TO 3
120 READ M(I,J),N(I,J)
130 REM $OCODE+
140 T(I,J)=M(I,J)*N(I,J)

L001:::::0::
L00140: MOY'

S{~L

DI,.J~I..

01, 1-
DI,1 SAL

ADD 01,1%
SAL 01,1
SAL 01,1

'read data into the arrays
'turn on object code listing
'compute total sales

J::..
.0

Sample Compiler Listing

The format of the listing is affected by several of the
BASIC Compiler metacommands. Refer to "Compiler
Metacommands" in the "Differences Between the
Compiler and Interpreter" section for a complete
description of all the metacommands.

Every page of the BASIC Compiler source listing has a
header at the top. In the upper left-hand portion of the
page, the first two lines contain your choice of title
and subtitle, set with the $TITLE and SSUBTITLE
metacommands, respectively.

The first three lines in the upper right-hand portion of
the page contain the page number, the date, and the
time, respectively. The name and version number of
the compiler appear on the line below the time, aligned
with the right margin. The column labels also appear on
that line.

The Offset and Data Columns

The numbers in the columns labeled "Offset" and "Data"
are in hexadecimal. "Offset" is the relative address of the
code associated with the source line, using 0 as the start
of the program. "Data" is the cumulative data area
needed so far during the compilation. Asterisks (**)
appear in the Data column opposite object code.

Source Line

Your BASIC source program is listed in the "Source
Line" column. You can turn the source code listing off
or back on with the $LIST- and $LIST+ metacommands
(errors are always listed).

If you requested an object code listing, either by
specifying the fA parameter to the compiler, or by
including the $OCODE+ metacommand in your source
program, the object code is also shown in this column,
indented underneath the associated source line. You
can turn the object code listing on and off with the
$OCODE+ and $OCODE- metacommands.

~
0 OOAD

OOAF
00B3
00B5
00B9
00B8
OOBF
00C1
00C3
OOCS
OOCb
00C8

** ** **
**
**
** **
**
** ** **
**

MOV BX,DI
ADD DI,DFFSET T!
MOV DX,BX
ADD BX,DFFSET M!
MOV SI,BX
ADD DX,OFFSET N!
MOV CX,DI
MOV DI,DX
INT 93H
DB 65H
MOV DI,CX
INT 93H

OOCA
OOCB
ooce

**
OOCb
OOCb

DB
150 REM $OCODE-
1bO PRNT T(I,J),

4BH

OOCB
00D9
00E2
OOFO
OOF3

OOCb
OOCb
OOCb
00C6
OOCb

170 NEXT.J
180 PRINT
190 NEXT I

19742 Bytes Available
19015 Bytes Free

o Warning Error(s)
1 Severe Error(s)

SN

'turn off object code listing
~print total sales

Jt

Compiler Messages

The compiler-gives messages to you in the listing in the
form of two-character codes. The compiler shows the
error by pointing to the place in the line where the error
occurred with a caret (1\) beneath the source line, along
with showing the two-character code for the error.
Appendix A of this book lists all the two-character
codes along with their explanations.

Some of the two-character codes are only warning
messages; warnings do not need to be corrected before
you go on to the linking step. If a message is a warning,
it is noted in Appendix A. If the explanation does not
say that the message is only a warning, then the message
indicates a severe error which must be corrected.

Summary

The last lines of the compiler source listing show the
number of bytes available, the number of bytes free,
along with the total number of warning and severe error
messages. This is the same information that is displayed
on the screen when the compiler finishes.

Bytes Available is the initial amount of compiler work
space available for storing the symbol table and the
line number table, and for working storage for
optimization and code generation.

By tes Free is the size of unused compiler workspace after
the compiler has finished. If this number is less than
1024, then you are approaching the maximum program
size for the amount of memory in your computer. You
cannot increase the size of your program without creating
an error. We suggest you try compiling with the /S
parameter if your program uses many string constants.
When your program approaches maximum size, the
compiler may not be performing as many optimizations
as possible. To increase optimization, you may need to
increase the amount of memory in your computer.

Linking

52

The .OBJ file created by the compiler is not executable,
and needs to be linked to the appropriate library. Link
ing is the process of:

• Comhining separately produced object (.OBJ)
modules

• Searching the appropriate library file(s) for
definitions of unresolved external references

• Resolving extl~rnal cross-references

• Computing absolute addresses for local references
within modules

• Producing an executable file on diskette

To link a compiled program, use the 1B1\1 Personal
Computer Linker Version 1.10, which is the file named
LINK.EXE on the BASIC diskette. The version 1.1 °
linker is an updated version of the IBM Personal
Computer Linker Version 1.00, and should be used in
place of the linker (LINK) program on the DOS version
1.00 diskette.

LINK produces as output an executable object file
with .EXE as the filename extension. The modules
you link together need not all have been written in
BASIC; some may be assembled modules created with
the Macro-Assembler.

You will probably want to refer to Appendix B of this
book for information on how to use the linker before
you read this section.

Preliminary Steps

The linker needs to have the following files available on
diskette:

• Your object file (created by the compiler)

• The BASIC library being used:

- The BASCOM.LIB library, if you used the /0
compiler parameter during the compile step

- The BASRUN .LIB library, if you did not use
the /0 compiler parameter (that is, if you
elected to use the BASRUN.EXE runtime
module)

The two libraries and the /0 parameter are discussed
in marc detail earlier, in the section called "Compiler
Parameters. "

• Any other modules you may be linking to your
program

-- If you use communications files and compiled
with the /0 parameter, you need IBMCOM.OBJ

If your system has a single diskette drive, you must copy
the library needed by the linker (BASCOM. LIB or
BASRUN.LIB) from the LIBRARY diskette to the work
diskette, where your object file is.

If you have a two-drive system and want to start the
linker with the single command line, you will find it
easiest if you have created a Library-Linker diskette as
described under "Diskette Setup for a Two-Drive
System," earlier in this book. When you enter the
command line, the linker must be in a drive, in addition
to the files listed above. The suggestions that follow
for a two-drive system assume you have created such a
diskette with the appropriate library.

53

Starting the Linker

54

Like the c01npiler, you can start the linker in either of
two ways:

• You call let the linker prompt you for the informa
tion it needs. This lets you change diskettes before
you proceed with answering the prompts.

• Entering the command line is a fast way to start
the linker. Rernembcr that to do this you must
have the linker itself (LINK.EXE) available on
diskette.

In this section we will explain how to answer the linker
prompts for a compiled BASIC program. Once you
know that, you can refer to Appendix B of this book
for an explanation of starting the linker using the
command line.

Answering the Linker PrOlnpts

The linker is started as follows:

Start DOS if it's not already active.

If your systeln has a single diskette drive, insert the
BASIC diskette in drive A: and enter:

If you have a two-drive system, the default drive should
be B:. Insert your Library-Linker diskette in drive A:,
and your work diskette in drive B:. Enter:

(The linker looks for the library(s) on drive A:,
regardless of the default diskette drive. That is why it
is convenient to have B: as your default drive, and use
the Library-Linker diskette in drive A:.)

Once started, the linker program asks for the following:

Object Modules refers to the program(s) you want to
link together. Enter the name of your object file (not
the listing file). The linker will add the default exten
sion .OBJ if you don't include a filename extension of
your own. For example:

If you are linking more than one module (for example,
if you are using the CALL statement), you enter the
names of additional modules on the same line, separated
by plus signs (+). Refer to Appendix B of this book for
details.

The next prompt will be:

Run File is the name you want to give to the file contain
ing the executable code for your program. If you want
the linker to use the default name (the name given in
the brackets MYPROG.EXE in this example), just
press Enter. If you want to give the run file a different
name, enter the filename next to this prompt. This
filename will be given the extension .EXE, even if you
specify another extension.

The next prompt is:

List File is the name of the linker listing file. If you
don't want a listing, just press Enter. If you do want a
listing, enter the filename you want it to have after this
prompt. The default extension is .MAP.

The last prompt from the linker is:

You may simply press Enter. The version 1.10 linker
knows which library it needs (BASCOM.LIB or
BASRUN.LIB). You may enter the library name here
if you wish, but it is not necessary.

You should let all the optional linker parameters
(discussed in Appendix B of this book) default to their
normal settings.

When the Linker Finishes

56

After you enter the complete command line or respond
to the last prompt, the linker begins to link the program.
When linking has been completed, control returns to
DOS. If any errors occurred during linking you should
not try to execute your program. See "Appendix B.
The Linker (LINK) Program" for a list of messages from
LINK.

If linking was successful, you should have the executable
run file stored on your work diskette. We recommend
that you display the diskette directory for the work
diskette to confirm that the run filename is there (it
will have the .EXE filename extension). Using our
example filename, you should see MYPROG.EXE in the
directory.

Running a Program

The executable object file can be executed, like any file
with an extension of .EXE, by simply entering the file's
base name (the filename without the .EXE extension).

For example:

The above command executes the program DEMO.EXE.

The executable file can also be executed from within a
program, as in the following statement:

The default extension is .EXE. The .EXE file can be
an executable file created in any programming language.
The CHAIN command is used in a similar fashion. In
either case, an executable binary file is loaded.

Considerations When Using the BASRUN.EXE
Runtime Module: If the program was compiled without
using the /0 compiler parameter, then the file
BASRUN.EXE (from the LIBRARY diskette) must be
accessible on diskette when you run your program.
Your executable program first looks on the default drive
for BASRUN.EXE, then on drive A:. If the file is not
found, the following message is displayed:

You should respond with the letter for the drive where
the BASRUN .EXE module is. If you respond
incorrectly, the message will be displayed again. You
can press Ctrl-Break to exit the prompt.

When you run any compiled program, the executable
file created by the linker is loaded into memory. If the
runtime module is required, BASRUN.EXE is also
loaded and both files reside in memory at the same
time. That is, 30K-bytes of memory are taken up by
the runtime module itself.

If you chain to another program using the CHAIN
statement, the runtime module (BASRUN .EXE) is not
reloaded. However, the runtime module is reloaded
when you use RUN.

Using a Batch File

The Batch command facility of the Disk Operating
System can be a very convenient way to automatically
start the BASIC Compiler and the linker. See the IBM
Personal Computer Disk Operating System manual for
detailed information of the Batch command facility.

Several sample batch files are provided on the BASIC
diskette. All the batch files have the extension .BAT
and were created using EDLIN. They contain remarks
to document how they work. Three of these batch
files, SAMPLE.BAT, CREATE.BAT, and COM.BAT
are explained in this section.

SAMPLE.BAT

SAMPLE.BAT can be used to compile, link, and run
the DEMO.BAS program presented in "Sample
Session." This batch file assumes a two-drive system
with the BASIC diskette in drive A: and the work
diskette in drive B:. Also, you need the BASRUN
Linker diskette to use for the link step, with the file
BASRUN.EXE on the BAS RUN-Linker diskette.

SAMPLE.BAT

To run this batch file with the demonstration program
DEMO.BAS, enter the following in response to the DOS
prompt:

hO

The filename "DEMO" is used for the % 1 replaceable
parameter and "IE" for the %2 replaceable parameter.
The compiler translates DEMO.BAS and produces
DEMO.OBJ and DEMO.LST. After the directory of
the work diskette is displayed, the source listing file
(DEMO. LST) is copied to the printer and then erased
frorn the diskette. The PAUSE command then
displays a message, and the system waits until you
press a key before continuing. This allows you to
change the diskette in drive A:. The batch file then
calls the linker, which produces the executable file
DEMO.EXE. After the directory is listed, the runfile,
DEMO.EXE, is executed.

Note: Wlwn using batch files, the batch file must
be accessible each time a statement in the batch
file is to he executed. If the batch file is not
found, DOS gives the following mL~ssage:

When changing diskettes, as in SAMPLE.BAT, it is
convenient to have the batch file on both the
BASIC and BASRUN-Linker diskette.

CREATE.BAT

CREATE.BAT can be used to create and compile a
BASIC source program. The process is repeated until
you want to stop, which would normally be when you
get an error-free compilation. This batch file assumes
a single-drive system. It needs a diskette containing the
batch file, CREATE.BA T; the file BASCOM.COM
from the BASIC diskette; the file EDLIN.COM from
the DOS diskette; and space for the BASIC source
program you want to create.

CREATE.BAT

To run this batch file, enter the following in response to
the DOS prompt:

Here, progname is the name of the BASIC source
program you want to create. Do not enter the extension
.BAS, as it is already included in the batch file. parms
are whatever compiler parameters you wish to include.

The first thing CREATE.BAT does is start EDLIN.
Once it is started, you use it as you normally would to
create your BASIC source program. For information on
how to use EDLIN, refer to the IBM Personal Computer
Disk Operating System manual. Remember to include
line numbers!

After you exit EDLIN (by en tering E), your program is
saved as an ASCII file, and con trol is returned to the
batch file. The BASIC Compiler then compiles the
program you just created, but does not produce an
object file. Any campi ler errors are displayed on the
screen. The PAUSE command then allows you to make
a choice. If the compilation was successful, you can
press Ctrl-Break to exit the batch fi Ie. Otherwise,
CREATE.BAT is called again, allowing you to make
corrections and recompile.

hl

62

COM.BAT

COM.BAT can be used to compile, link, and run a
BASIC source program which uses the BASIC
communications features. This batch file assumes a
two-drive system with the BASIC diskette in drive A:
and the work diskette in drive B:. Also, you need the
BASCOM-Linker diskette to use for the link step, and
the file IBMCOM.OBJ copied from the LIBRARY
diskette to the BASCOM-Linker diskette.

COM.BAT

To run this batch file, enter the following in response
to the DOS prompt:

progname is the name of the BASIC source program
you wan t to compile. parms are whatever additional
compiler parameters you wish to include.

This batch file works similarly to SAMPLE.BAT, but
note that IBMCOM.OBJ is linked with progname.OBJ.
The communication module IBMCOM.OBJ is only
needed when your program was compiled with the
/0 parameter. As in SAMPLE.BAT, after the link is
complete, the executable file is run.

Differences Between the Compiler
and Interpreter

Differences between the languages supported by the
BASIC Compiler and the BASIC interpreter must be
taken into account when compiling existing or new
BASIC programs. To help you become aware of these
differences, we recommend that you first compile the
demonstration program in the section caJled "Sample
Session," then read the following sections, and only
then begin compiling your own programs.

The differences between the languages supported by
the BASIC Compiler and the BASIC interpreter are
described on the following pages. The BASIC
commands and functions for the interpreter are
described in detail in Chapter 4 of the IBM Personal
Computer BASIC manual. Where differences exist,
the command or function is also discussed here.

63

Compiler Metacommands

64

The metacommands for the BASIC Compiler are:

$INCLUDE
$LINESIZE
$LIST
$OCODE
$PAGE

$PAGEIF
$PAGESIZE
$SKIP
$SUBTITLE
$TITLE

The metacommands are included in your source file
as part of a remark statement, after the REM keyword
or the single quote. You can have more than one
metacommand in a remark statement, for example:

but if you use $lNCLUDE, it must be the last meta
command on the line, Metacommands on one line may
be separated by space, tab, or line feed characters; if
the compiler sees any other character which is not part
of a metacommand, it ignores the rest of the remark.

The header for the source listing is not printed until
the compiler scans the first line of the program for
metacommands; this way, metacommands such as
$TITLE can affect the first page of the source listing.

$ INCLUDE
Metacommand

Purpose: Tells the compiler to include source code from another
BASIC file.

Fonnat: $INCLUDE: 'filespec'

Remarks: filespec is the file specification for the file to be
included. The default extension is .BAS.
The included file must be in ASCII format.
The file specification must be enclosed in
single quotation marks.

The compiler imbeds the specified file into the source
file at the point where it encounters this metacommand.
The included file may be a subroutine, a single line, or
any type of partial program, but it must be written in
IBM Personal Computer BASIC.

You should take care that any variables in the included
files match their counterparts in the main program, and
that included lines do not contain GOTOs to non
existent lines or similarly erroneous code.

Included files can be very useful for COMMON
declarations existing in more than one program, or for
subroutines that you might have in an external library
of subroutines.

Considerations when using the BASIC program editor:
If you create the included file using the program
editor from within the BASIC interpreter, you must
remem ber to save it using SAVE with the A option.

Also, note that since the BASIC interpreter does not
support the $ INCLUDE metacommand, a program
which contains a $INCLUDE metacommand may not
run correctly if you try to run it under the interpreter.

$INCLUDE
Metacommand

66

Considerations when using another editor: Use an
editor (such as EDLIN) that will save your file in ASCII
format.

1f you use a text editor other than the BASIC program
editor, you can create a file of lines without line
numbers. The compiler supports sequences of lines
without line numbers if the IN parameter is specified
when you start the compHer. This feature can make
it very easy to include the same file in many different
programs. But remember, line numbers must exist for
any lines that are targets of GOTOs or GOSUBs.

Notes:

1. The included lines must be in ascending order.

2. The lowest line number of the included lines
must be higher than the line number of the
$INCLUDE metacommand in the main
program.

3. The range of line numbers in the included file
must numerically precede subsequent line
numbers in the main program.

These preceding three restrictions are removed if
the main program is compiled with the IN
parameter, since line numbers need not be in
ascending order in this case. For more information,
see the section called "Compiler Parameters,"
earlier in this book.

4. An included file may not contain another
$INCLUDE metacommand; that is,
$INCLUDEs cannot be nested. This means
that $INCLUDE can only be used in the file
containing your main BASIC program.

$INCLUDE
Metacommand

However, the main program may have any
number of $ INCLUDEs.

5. The $INCLUDE metacommand must be the
last statement on a line, as in the following
statement:

Example: The first example inc.!udes the file named SUBR.BAS:

The second example uses the $INCLUDE metacommand
in a remark beginning with a single quote. The included
file is named PROC.ASC:

Also see the example under "COMMON Statement."

$LINESIZE
Metacommand

Purpose: Tells the compiler to change the maximum line width
in the listing file.

Format: $LINESIZE: number

Remarks: number is a constant.in the range 40 to 255.

Example:

68

The default line size is 80 characters.

The $LINESIZE metacommand must appear in the first
line of your program if you wan t the en tire source
listing to be the same width. If SLINESIZE appears
anywhere else in the program, it only changes the
width of the following lines.

$LIST
Metacommand

Purpose: Turns the listing of source code on and off.

Format: $LIST+

$LIST -

Remarks: The default setting is $LIST+.

Example:

$LIST+ turns the listing of source code on.
$LIST - turns the source code listing off.

Errors are always listed.

$LIST is useful, for instance, if you make a change to
a large program, and you want a listing of only the
change. You can cause a partial listing by using
$LIST - in the first line of the program to turn the
source code listing off, then place $ LIST+ at the start
of the new code and $ LIST-at the end of the new
code.

'-:::0

•

$OCODE
Metacommand

Purpose: Turns the listing of object code on and off.

Format: $OCODE+

$OCODE-

Remarks: The $OCODE metacommand controls listing the
generated code in the same way $LIST controls the
source listing: $OCODE+ turns the listing of object
code on, $OCODE- turns the object code listing off.

Example:

70

SOCODE works independently of the setting of the
/ A parameter when you compile your program. / A
includes all the object code (unless you turn it off
with $OCODE-); $OCODE is used to list just parts
of the object code.

The format of the object code listing is basically like
an assembly listing, with code addresses and operation
mnemonics.

$PAGE
Metacommand

Purpose: Tells the compiler to force a new page in the compiler
listing file.

Fonnat: $PAGE

Remarks: The page is forced by putting the form feed character
(hex OC) into the listing file and writing a new heading
for the page.

Example:

71

$PAGEIF
Metacommand

Purpose: Skips to the next page if there are less than n printable
lines left on the current page.

Format: $PAGEIF: n

Remarks: n is a numeric constant in the range I to 255.

Example:

72

The last six lines of each page are always blank. These
lines are not considered printable lines.

The default is no action.

$PAGESIZE
Metacommand

Purpose: Sets the num ber of lines per page in the compiler listing
file.

Format: $PAGESIZE: n

Remarks: n is a numeric constant in the range 15 to 255. The
default page size is 66.

Example:

n specifies the number of lines which will fit on one
piece of paper. Pages in the listing file are separated by
form feed characters (hex ~C), and each page starts
with a heading.

if nis 255, this has the effect of "infinite" page size;
that is, no form feed characters arc added to the listing
file.

The $P AGESIZE metacommand must appear in the
first line of your program if you want all the pages in
your source listing to be the same length. If
$PAGESIZE appears anywhere else in the program, it
only changes the length of the following pages.

$SKIP
Metacommand

Purpose: Skips n printable lines, or to the end of the page,
whichever occurs first.

Format: $SKIP: n

Remarks: n is a numeric constant in the range 1 to 255.

Example:

7.1

The last six lines of each page are always blank. These
lines are not considered printable lines.

$ SUBTITLE
Metacommand

Purpose: Sets compiler listing page subtitle to string.

Fonnat: $SUBTITLE: 'string'

Remarks: 'string' is a character string constant, enclosed in
single quotation marks. The maximum
length of the string is 60 characters. If a
program does not contain a $ SUBTITLE
command, the null string is used as a subtitle.

Example:

$SUBTITLE tells the compiler to head subsequent pages
of the listing with the specified subtitle, until it is
overridden by another $SUBTITLE metacommand.
The $SUBTITLE metacommand must appear in the
first line of your program if you want the subtitle to
appear on the first page of the source listing.

The specified string appears as the subtitle on each page
of the source listing in the upper left-hand corner on
the second prin ted line.

$TITLE
Metacommand

Purpose: Provides a title for the compiler listing.

Format: $TITLE: 'string'

Remarks: 'string' is a character string constant, enclosed in
single quotation marks. The maximum length
of the string is 60 characters.

Example:

76

The specified string is printed on each page of the listing.
A long title string may be truncated if $LINESIZE is set
to a value less than 80.

The $TITLE metacommand must appear in the first line
of your program if you want the title to appear on the
first page of the source listing. If $ TITLE appears
anywhere else in the program, it only affects the title
on the following pages.

Operational Differences

Those BASIC commands and statements used to operate
in the interpreter programming environment are not
acceptable input to the compiler. These are:

AUTO
CaNT
DELETE
EDIT
LIST
LLIST

LOAD
MERGE
NEW
RENUM
SAVE

Also, while certain statements function similarly in the
BASIC Compiler and the interpreter, they do require
special parameters to be specified when you start the
compiler.

• Event trapping: If you use any of the event
trapping statements, you must specify either the
IV or the jW parameter when you start the
compjIer. The event trapPlng statements are:

COM(n)
KEY(n)
ON COM(n)
ON KEY(n)

ON PEN
ON STRIG(n)
PEN STOP
STRIG(n)

• Error trapping: If you use an ON ERROR
statement and some form of a RESUME
statement, you must specify either the IE or the
IX parameter when you start the compiler. If you
use only the RESUME line form, you should
specify IE; if you use RESUME NEXT, RESUME
0, just plain RESUME, or any combination of
those with RESUME line, the IX parameter must
be used instead.

77

78

These parameters tell the compiler to generate
special extra object code. This extra code is
required for your program to run correctly when
it has an error trapping routine. Note, however,
that using these parameters increases the size of
the .OBJ and .EXE files.

• Debug code (TRON and TROFF): In order to
use TRON and TROFF, the /D parameter must be
specified when you run the compiler. Otherwise,
TRON and TROFF are ignored and a warning is
generated.

See "Compiler Parameters," earlier in this book, for a
detailed explanation of each of the compiler parameters.

Language Differences

The BASIC Compiler does not support cassette I/O,
and the following statements are not supported:

ERASE
MOTOR

Other than that, though, most programs that run under
the BASIC interpreter will compile under the BASIC
Compiler with little or no change. However,
differences exist in the following commands, statements,
and functions:

CALL
CHAIN
CLEAR
COMMON
DEFFN
DEFtype
DIM
DRAW
END

FOR ... NEXT
FRE
KEY
PLAY
REM
RUN
STOP
USR
WHILE ... WEND

Also, the BASIC Compiler includes some statements and
functions which do not exist in or have new function
compared to the BASIC interpreter release] .00:

OPEN
OPEN "COM ...
STRIG

VARPTR$
WIDTH

All the differences and the new statements and functions
are described on the following pages.

'"7C\

CALL
Statement

CALL Macro-Assembler Routine

Purpose:

Format:

Calls and transfers program control to an assembly
language routine created wi th the Macro-Assembler.

Note: The Macro-Assem bier is a scpara te
product available from IBM and is not part of
the BASIC Compiler package. If you do not
have the Macro-Assembler, then you can't use
this form of CALL.

CA LL subrtname [(variable [,J)ariable] ...)] -

Differences: subrtname is the name of the subroutine that you
wish to call.

subrtname must be recognized by LINK as a global
symbol. That is, the routine must be compiled
separately and linked to your program during the
linking step; and subrtname must be a name
dec1aredin a PUBLIC statement in Macro
Assembler language. The maximum length of a
global name is 31 characters.

The starting address of the subroutine is determined
by the linker; DEF SEG is unimportant when calling
a Macro Assembler subroutine from a compiled program.

The variables are optional and are limited in number
to 60. They are the arguments that are passed to
the assembly language subroutine. They are passed
as unsegmented addresses according to the usual

Example:

CALL
Statement

conventions, as discussed in Appendix C of the IBM
Personal Cornputer BASIC manual. Also as
mentioned in that appendix, the subroutine is a
FAR procedure, so the return to BASIC must be by
an inter-segment RET instruction.

Note, however, that since the BASIC Compiler
allows strings to be up to 32767 bytes long, the
string descriptor req uires [our bytes rather than
three (low byte, high by te of the length, followed
by low byte, high byte of address). If your
assembly language routine uses string arguments,
you may need to recode it to take this difference
into account.

The following program, REC.BAS, calls an assembly
Janguage routine called SORT, which sorts 50
integers:

In line 50, the addresses of the first and last integer
to be sorted are passed as arguments to SORT. SORT
was declared PUBLIC in the Macro-Assembler, and
was linked to REC.BAS by responding to the Object
Modules prompt from the linker as follows:

80.1

CALL
Statement (ABSOLUTE)

CALL ABSOLUTE

Purpose: Transfers control to a machine language subroutine.

Fonnat: CALL ABSOLUTE ([variable [,variabIe] ... ,] intvar)

Differences: intvar is the name of an integer variable.

80.2

The word ABSOLUTE must be used. It is a global
symbol which is the name of a library routine that
transfers control to your subroutine.

intvar must be included in the variable list. The value
of intvar is the starting memory address of the sub
routine as an offset into the current segment of
memory as defined by the last DEF SEG statement.
intvar is an argument to the ABSOLUTE routine,
but is not passed as an argument to your machine
language subroutine. If other variables are included
in the list intvar must appear last. The value of
intvar must be set to the offset value before the CALL
statement is executed. A DEF SEG statement must
be executed before the CALL ABSOLUTE statement
is performed to ensure that the code segment is
correct.

The variables are optional. They are the arguments
that are passed to the machine language subroutine.

The BASIC interpreter allows you to load the
machine language subroutine into several types of
areas. If your program uses one of the following
areas, then you don't need to make any change to
the way you loaded the subroutine with the interpreter:

Example:

CALL
Statement (ABSOLUTE)

• An unused screen buffer

• A string variable area located by peeking at the
string descriptor, which is found using
VARPTR.

Note: You cannot use an unused file buffer,
since the compiler has no preallocated set of
file buffers.

In a compiled program, you can put the routine into
an integer variable array by following these steps:

1. Dimension an integer array so the number of
elements in the array is the number of words,
not bytes, in the subroutine.

2. Use a FOR ... NEXT loop to read the hex values
for the machine language code from DATA
statements into the array. Remember that,
since integers are stored low byte first, you
must code the hex values "backwards."

3. Remember to call VARPTR (arrayname)
to define the offset before you perform the
CALL ABSOLUTE.

To preserve the array across chaining, define
the array in COMMON.

For the interpreter:

For the compiler:

CHAIN
Statement

Purpose: Passes control to another program.

Format: CHAIN fUespec

Differences: The BASIC Compiler docs not support the ALL,
MERGE, DELETE, and line options to CHAIN. If
you wish to share variables between programs, we
recommend that you usc the COMMON statement.
However, note that the BASIC Compiler only
supports CHAIN with COMMON when you use the
BASRUN.EXE runtime module; that is, when you
compile without the /0 parameter.

The CHAIN statement performs two different ways,
depending on whether you are using the
BASRUN.EXE runtime module or not (whether you
omitted or used the /0 compiler parameter).

When you use BASRUN .EXE, chaining works as in
the interpreter. Files are left open, device status is
preserved, and you can usc COMMON to pass variables
to the chained-to program. Both the chaining
program and the chained-to program must have been
compiled without the /0 parameter.

[n a program which doesn't use BASRUN .EXE,
CHAIN works just like RUN filespec, with the
exception that both the chaining program and the
chained-to program must have been compiled with
/0.

Purpose:

Format:

Performs the following actions:

• Closes all files

• Clears all COMMON variables

• Resets the stack and string space

CLEAR
Command

• Releases all diskette buffers (that is, space
allocated for file buffers is returned to string
space)

• Resets all variables and arrays to zero or null

• Resets DEF SEG to the default and clears the
definitions of any USR functions

CLEAR [,[n] [,m]]

Differences: nand tn must be integer expressions. If a value of 0
is given for either expression, the appropriate default
is used.

n is a byte count which, if specified, sets maximum
number of bytes available for BASIC to store
programs and data. The default is the current size.
m specifies stack space for BASIC. The default is
512 bytes.

Since type definitions are determined when the
program is compiled, the type definitions set by
DEFtype statements are not cleared. This differs
from the interpreter.

83

COMMON
Statement

Purpose: Passes variables to a chained or called program.

Format: COMMON variable [,variable] ...

Differences: The COMMON statement must appear in a program
before any executable statements. The non
executable statements for the BASIC Compiler are:

84

COMMON
DEFtype
DIM
OPTION BASE
REM
all compiler metacommands

All other statements are executable.

Arrays in COMMON must be declared in preceding
D 1M statements. Also, if there are any variables in
the COMMON statement whose types are defined
by a DEFtype statement, the DEFtype statement
must precede the COMMON statement.

When you use COMMON to communicate with a
chained-to program, you must use the BASRUN.EXE
runtime module (compile without the /0 parameter).
Also, both the chaining program and the chained-to
program require a COMMON statement. The order
of variables in the two statements must be the same.
The common variables must be common to all
programs you're chaining to. If the size of the
COMMON in the chained-to program is smaller,
then the extra common variables will be ignored. If
the common size is larger, the additional common
variables will be initialized to zero or null.

COMMON
Statement

When you compile with the /0 parameter,
COMMON may only be used to pass variables to
assembly language subroutines. To reference variables
in COMMON your assembly language subroutine
needs this segment definition;

COMMON SEGMENT COMMON 'BLANK'

and this group definition record;

DGROUP GROUP COMMON

A convenient way to share COMMON areas between
programs is to place COMMON declarations and
necessary preceding DIM statements in a single.
included file and use the $INCLUDE metacommand
in each program. For example:

MENU.BAS

PROG1.BAS

COMDEF.BAS

COMDEF .BAS shows how arrays are passed by
adding () to the array name.

85

DEFFN
Statement

Purpose: Defines and names a function that you write.

Fonnat: DEF FNname[(arg [,arg] . ..)] =definition

Differences: A DEF FN statement must physically, not just
logically, precede a call to the defined function. As
it reads your program from the beginning to the end,
the compiler must actually see the function
definition before it sees any call to the function.

86

Also, the com piler allows a maximum of 60
arguments to the function.

Purpose:

Format:

DEFtype
Statements

Declares variable types as integer, single-precision,
double-precision, or string.

DEFtype letter[-letter] l,letter [-letter]] . ..

where type is INT, SNG, DBL, or STR.

Differences: The compiler does not translate a DEFtype
statement into executable code as it does a PRINT
statement, for example.

Instead, the compiler allocates memory for storage
of the designated variables, and assigns them to the
appropriate data type (in teger, single-precision,
double-precision, or string).

A DEFtype statement takes effect as soon as it is
encoun tered in your program during compilation.
Once the type has been defined for the listed
variables, that type remains in effed either until the
end of the program or until another DEFtype
statement changes the type of the variable. Unlike
the interpreter, you cannot make the compiler branch
around the DEFtype statement (or any statement)
by usi ng a GOTO.

As with the interpreter, variables named with a type
declaration character (%, !, #, or $; as in A%=B) are
not affected by the DEFtype statement.

87

DIM
Statement

Purpose: Specifies the maximum values for array variable
subscripts and allocates storage accordingly.

Format: DIM variable(subscripts) [,variable(subscripts)] ...

Differences: The value of the sUbscripts in a DIM statement must
be in teger constants; they may not be variables,
arithmetic expressions, or single- or double-precision
values. For example, each of the following DIM
statements is invalid:

88

Also, the DIM statement is similar to the DEFtype
statenlent in that it affects the compiler but does not
get translated into executable code. That is, DIM
takes effect when the compiler first encounters it
and remains in effect until the end of the program:
it does not get executed again when the program is
run. If the default dimension (10) has already been
established for an array variable, and that variable is
later encountered in a DIM statement, a "Duplicate
Definition" error results. Therefore, the practice of
putting a collection of DIM statements in a subroutine
at the end of your program generates severe errors.
This is because the compiler sees the DIM statement
only after it has already assigned the default
dimension to arrays encountered earlier in the
program .

. The compiler allows a maximum of 60 dimensions
to an array.

DRAW
Statement

Purpose: Draws an object as specified by string.

Fonnat: DRAW string

Differences: string must be a string expression consisting of
drawing commands as described in Chapter 4 of the
IBM Personal Computer BASIC manual under
"DRAW Statement." However, you may not use
variable names in the string, either in the X drawing
command or using the form =variable; for n.

You can get the identical function, however, by
using VARPTR$(JJariable) instead of the variable
name. For example:

In terpreter Compiler Equivalent

89

END
Statement

Purpose:

Format:

Terminates program execution, closes all files, and
returns to the system.

END

Differences: When an END statement is encountered while a
compiled program is running, control returns to the
Disk Operating System, rather than BASIC command
level. Files arc closed, as in the interpreter.

90

The screen mode is reset to the initial screen mode
(the mode and width the screen was in when you
left DOS to begin the program).

Purpose:

Format:

FOR and NEXT
Statements

Performs a series of instructions in a loop a given
number of times.

FOR]}ariable=x TO y [STEP z]
•
•
•

NEXT [yariable 1 [,variable I ...

Differences: The counter variable may be double-precision.

Also, FOR ... NEXT loops must be statically nested.
Static nesting means that each FOR must have a
single corresponding NEXT. Static nesting also means
that each FOR ... NEXT pair must physically (not just
logically) reside within an outer FOR ... NEXT pair.
Therefore, the following construction is not allowcd:

FORI~----------~

FOF~JR ~ , '. I I
NEXT] ..

NEXTK
NEXTI~--------~

This construction is the correct form:

01

FOR and NEXT
Statements

92

Also, you should not direct program flow into a
FOR ... NEXT loop with a GOTO statemen t. The
result of such a jump is undefined, as in the
following example:

Purpose:

Fonnat:

FRE
Function

Returns the size of the curren t block of free string
space.

J) = FRE(x)

v = FRE(x$)

Differences: FRE with a numeric argument returns the size of the
current block of free string space. Normally, this is
also the largest block of string space.

If a string allocation exceeds the size of the current
block, then BASIC either finds (j free block large
enough to hold the string, orit does a housecleaning.
This function can be used as an indicator of when (J

housecleaning may take place.

FRE with a string argument forces a hous(:~cleaning
before returning the size of the current block of
string spaCl~. After a hOLlsecleaning, all free space is
collected in one block (the current block) of string
space.

Note that the compiler maintains string space
differently than the interpreter, so its housecleaning
is faster than the interpreter.

..

KEY
Statement

Purpose: Sets or displays the soft keys.

Format: KEY ON

KEY OFr

KEY LIST

KEY n, x$

Differences: The function keys are initially disabled as soft keys.
That is, their initial value is nul1.

94

Purpose:

Format:

Allows I/O to a file or device.

OPEN
Statement

OPEN fZlespec [FOR mode] AS [#]filenum
[LEN=reell

or:

OPEN mode2, [#]filellum, filespec [,reel]

Differences: In BASIC release 1.00, printer devices (LPT 1 :,
LPT2:, LPT3:) were opened for sequential output
even if random mode was specified.

Example:

In a compiled program, a printer may be opened in
random mode. Opening the printer in random mode
suppresses the automatic line feed after a carriage
return (CHR$(l3» is received, if the file width is
255. This allows all 256 ASCII characters to be
passed to the printer without change.

Also l there is no eq uivalent in the compiler for the
IS: option on the BASIC command used to start
Disk and Advanced BASIC from DOS. The buffer
size for random files is determined by the LEN=
parameter on the OPEN statement; there is no
maximum record length.

OPEN "COM ...
Statement

Purpose:

Format:

Opens a communications file.

OPEN "COMn: [speed] [,parity] [,data] [,stop]
[,RS] [,CS[n]] [,DS[n]] [,CD[n]] [,LF]"
AS [#] filenum [LEN=number]

Differences: If you compile with the 10 parameter and use
communications files, you need to include
IBMCOM.OBJ in your list of object modules when
you link.

96

The RS, CS[n], DS[n], CD[n], and LF options are
not available in the interpreter release 1.00. These
options perform as follows:

RS suppresses RTS (Request To Send)

CS[n] controls CTS (Clear To Send)

DS[n] controls DSR (Data Set Ready)

CD[n] controls CD (Carrier Detect)

LF sends a line feed following each carriage
return

The CD (Carrier Detect) is also known as the RLSD
(Received Line Signal Detect).

n in each of the above options may range from a to
65535.

Note: The speed, parity, data, and stop
parameters are positional, but RS, CS, DS, CD,
and LF are not.

OPEN "COM ...
Statement

The RTS (Request To Send) line is turned on when
you execute an OPEN "COM ... statement unless you
include the RS option. When you specify RS, CSO
is the default.

Normally I/O statements to a communications file will
fail if the CTS (Clear To Send) or DSR (Data Set
Ready) are off. The system waits one second before
returning a "Device Timeout." The CS and OS
options allow you to avoid this problem by ignoring
these lines. If the n argument is included, it specifies
the number of milliseconds to wait for the signal
before returning a "Device Timeout" error. If n
is omitted or is equal to zero, then the line status is
not checked at all.

Normally Carrier Detect (CD or RLSD) is ignored
when an OPEN "COM ... statement is executed. The
CD option allows you to test this line by including the
n parameter, in the same way as CS and OS. If n is
omitted or is equal to zero, then Carrier Detect is
not checked at all (which is the same as omitting
the CD option).

The LF parameter is intended for those using
communication files as a means of printing to a serial
line printer. When you specify LF, a line feed
character (hex OA) is automatically sent after each
carriage return character (hex ~C). INPUT# or
LINE INPUT#, when used with a communications
file opened with the LF option, stop when they see
a carriage return. The line feed is always ignored.

97

OPEN "COM ...
Statement

Example:

98

number is the maximum number of bytes which can
be read from the communication buffer when using
GET or PUT. The default is 128 bytes. This option
is included hecause the compiler has no equivalent
for the IS: option on the BASIC command used to
start Disk or Advanced BASIC from DOS.

Opens COM 1 : at 9600 bps with no parity and eight
data bits. CTS, DSR, and RLSD are not checked.

Opens COM 1: at 1200 bps with the defaults of
even parity and seven data bits. RTS is sent,
CTS is not checked, and "Device Timeout" is
given if DSR is not seen within two seconds.
Note that the commas are required to indicate
the position of the parity, start, and stop
parameters, even though they are omitted. This
is what is meant by positional parameters.

OPEN "COM ...
Statement

An OPEN statement may be used with an ON
ERROR statement to make sure a modem is working
properly before sending any data. For example, the
following program makes sure we get Carrier Detect
(RLSD) from the modem before starting. Line 20
is set to timeout after 10 seconds. TRIES .is set to 6
so we give up if Carrier Detect is not seen within
one minute. Once communication is established,
we re-open the file with a shorter delay until
timeout.

The next example shows a typical way to use a
communication file to control a serial line printer.
The LF parameter in the OPEN statement ensures
that lines do not print on top of each other.

99

PLAY
Statement

Purpose: Plays music as specified by string.

Format: PLAY string

Differences: string must be a string expression consisting of music
commands as explained in Chapter 4 of the IBM
Personal Computer BASIC manual under "PLAY
Statement." However, you may not use variable
names in the string, either in the X music command
or using the form =variable; for n.

Example:

100

You can get the identical function, however, by
using V ARPTR$(variable) instead of the variable
name. For example:

Interpreter Compiler Equivalent

Also, the interpreter allows a maximum of 32 notes
to be buffered in "Music Background" mode. This
is increased to 256 notes in a compiled program.

The delay loop in line 40 is needed for a
compiled program. Otherwise, when program
control returns to DOS, all music currently
executing is terminated.

Purpose:

Format:

REM
Statement

Inserts explanatory remarks in a program.

REM remark

Differences: Remarks are significant when they contain compiler
metacommands.

When the compiler sees a REM statement in your
source file, it doesn't create any object code
corresponding to the remark. So remarks don't
take up time or space when your compiled program
is running. Therefore, REM may be used as freely
as you wish in your source program. Using REM
statements is a good idea to improve the readability
of your programs.

101

RUN
Command

Purpose:

Format:

Transfers control to another program, or restarts the
current program at the given line number.

RUN [line]

RUN filespec

Differences: The program to be run (specified by filespec) must

102

be an executable (.EXE) file. The default extension
.EXE is supplied. Any .EXE file can be executed
using the RUN command, even if it was not created
using the BASIC Compiler. It may be an .EXE file
created in another language besides BASIC. However,
you cannot run a BAS IC source file from your
com piled program.

It is okay for a program compiled using /0 to use
RUN filespec to transfer control to a program which
was compiled without the /0 parameter, and vice
versa. But remember, BASRUN.EXE must be
accessible whenever you run a program which uses
the runtime module (was compiled without /0).

RUN filespec loads another executable file into
memory and transfers control to it. The new program
overlays the current program in memory. The
BASIC Compiler does not support the R option with
RUN. If you want the equivalent function, you
should use the CHAIN statement.

RUN line restarts the program currently running at
the specified line number. It is the same as CLEAR
followed by GOTO line.

Purpose:

Fonnat:

STOP
Statement

Terminates program execution and returns to the
system.

STOP

Differences: The STOP statement, like the END statement, closes
all open files and returns control to DOS.

Unlike the END statement, STOP does not restore
the screen mode to where it was when you left DOS.
It also displays a message telling you the hexadecimal
address the program stopped at. If you compiled the
program with the ID, IE, or IX parameter, then the
line number the program stopped at is displayed
instead.

STOP is normally used for debugging purposes.

103

,.

STRIG
Function

Purpose:

Format:

Returns the status of the joystick buttons (triggers).

v = STRIG(n)

Differences: The BASIC interpreter re1ease 1.00 only reads two
buttons from the joysticks. The cOlnpiler supports
four buttons.

104

n is in the range 0 to 7. The values supporting
the additional buttons are:

4 Returns -1 if button A2 was pressed
since the last STRIG(4) function ca11,
returns 0 if not.

5 Returns -1 if button A2 is currently
pressed, returns 0 if not.

6 Returns -1 if button B2 was pressed
since the last' STRIG(6) function call,
returns 0 if not.

7 Returns -1 if button B2 is currently
pressed, returns 0 if not.

USR
Function

Purpose: Calls a machine language subroutine that was defined
by DEF USR.

Fonnat: 1) = USR[n] (x)

Differences: Although the USR function is implemented in the
compiler to call machine language subroutines, there
is no way to pass parameters to the subroutine,
except through the use of POKEs to memory
locations that are later accessed by the machine
language routine. That is, x is a dummy argument.

As with the interpreter, the starting address of the
subroutine is determined by the addresses given in
the DEF SEG and DEF USR statements. The DEF
USR statement specifies the address as an offset
into the code segment specified by the last DEF
SEG statement executed. A DEF SEG statement
must be executed prior to a USR call to assure that
the code segment points to the subroutine being
calJed.

The USR function returns the integer result in the
BX register.

The machine language subroutine may be loaded
into memory, as it was in the interpreter, using a
BLOAD command. Refer to "CALL
ABSOLUTE," earlier, for details.

105

USR
Function

106

If the subroutine is one of the modules linked during
the linking step, the DEF SEG and DEF USR values
must still be set, using the information given in the
linker map.

As mentioned in Appendix C of the IBllJ Personal
Computer BASIC manual, the subroutine is a FAR
procedure, so the return to BASIC must be by an
inter-segment RET instruction. However, note that
since the BASIC Compiler allows strings to be up to
32767 bytes long, the string descriptor requires
four bytes rather than three (low byte, high byte of
length, followed by low byte, high byte of address).
If your machine language routine uses string
arguments, you may need to recode it to take this
difference into account.

If you have the IBM Personal Com puter Macro
Assembler, it's probably easiest to assemble your
subroutines and then link them directly to the
compiled program. Then you can usc the CALL
statement to reference the routine. CALL does not
req uire the segment and offset values to be identified
in your BASIC program ._. the linker automatically
takes care of that for you.

Purpose:

Format:

VARPTR$
Function

Returns a character form of the address of a variable
in memory. It is primarily for use with PLAY and
DRAW in compiled programs.

v$ = V ARPTR$(variable)

Differences: VARPTR$ is not supported by the interpreter
release 1.00.

variable is the name of a variable existing in the
program.

VARPTR$ returns a three-byte string in the form:

Byte 0 Byte 1 Byte 2

type low byte of high byte of
variable address variable address

type indicates the variable type:

2 integer
3 string
4 single-precision
8 double-precision

The returned value is the same as:

CHR$(type)+MKI$(VARPTR(variable»

You can use V ARPTR$ to indicate a variable name in
the command string for PLAY or DRAW. Refer to
"DRAW Statement" and "PLAY Statement" for
examples.

107

WHILE and WEND
Statements

Purpose:

Format:

Executes a series of statements in a loop as long as
a given condition is true.

WHILE expression
• • •

(loop .'1'tatements)
•
•
•

WEND

Differences: WHILE ... WEND constructions must be statically
nested. Static nesting means when you nest
WHILE ... WEND pairs, the inner loop must reside
completely inside the outer loop. The nesting must
be physical, not just logical, as in the interpreter.

lOR

Note: When FOR ... NEXT loops are nested
within WHILE ... WEND loops, or vice-versa, the
inner loop must still reside completely inside
the outer loop. For example, the following
construction is no t allowed:

FOR I = 1 to 10....-----,
A= COUNT
WHILE A. = l-+--IJ NEXT I ~! ------'.

A=A -1
WEND f--------'

You should also not direct program flow into
a WHILE ... WEND loop without entering
through the WHILE statement. See "FOR
and NEXT Statements," earlier in this book, for
an example of this restriction. It is okay,
however, to branch out of a WHILE ... WEND
loop.

Purpose:

Format:

WIDTH
Statement

Sets the output line wid th in number of characters.
After outputting the indicated number of characters,
BASIC adds a carriage return.

WIDTH size

WIDTH filenum,size

WIDTH device,size

WIDTH LPRINT,size

Differences: The WIDTH LPRINT format is not available in the
interpreter. WIDTH LPRINT ,size does the same
thing as WIDTH "LPT 1 :" ,size, and is included in
the compiler for compatibility with some BASICs
other than IBM Personal Computer BASIC.

l{lQ

Other Differences

110

Other differences between the BASIC interpreter and
the BASIC Compiler include the following:

Double-Precision Arithmetic Functions

If you usc double-precision operands for any of the
arithmetic functions, including the transcendental
functions (SIN, COS, TAN, ATN, LOG, EXP, and
SQR), then the BASIC Compiler returns double
precision results. Only single-precision results arc
returned hy the interpreter.

Double-Precision Loop Control Variables

The compiler, unlike the interpreter, allows the use of
double-precision loop control variables. This allows
you to increase the precision of increment in loops.

Expression Evaluation

Mathematical computations have been modified in the
compiler for improved speed and accuracy, so there
may be slight differences in the results of single- or
double-precision operations compared to the interpreter.

Also, the BASIC Compiler performs optimizations, if
possible, when evaluating expressions.

During expression evaluation, the BASIC Compiler
converts operands of different types to the type of the
more precise operand.

The above expression causes J% to be converted to
single-precision and added to A!. This double-precision
resul t is added to Q#.

The BASIC Compiler is more limited than the inter
preter in handling numeric overflow. For example,
when run on the interpreter, the following statements
yield 40000 for M.

That is, J% is added to 1%. Because the number is too
large, it converts the result into a floating point
number. The result, 40000, is found and saved as
the single-precision number M.

The BASIC Compiler, however, must make type
conversion decisions during compilation. It cannot
defer until actual values are known. Thus, the compiler
generates code to perform the entire operation in
integer mode and arithmetic overflow may occur. If
the /D debug parameter is set, the error is detected.
Otherwise, an incorrect answer is produced. One
possible way to avoid this problem is to use single
precision numbers instead of integers.

Besides the above type conversion decisions, the
compiler performs certain valid optimizing algebraic
transformations before generating code. For example,
the following program could produce an incorrect
result when run:

111

112

If the compiler actually performs the arithmetic in the
order shown, no overflow occurs. However, if the
compiler performs I%+K% first and then adds JW),
overflow docs occur. The compiler follows the rules
of operator precedence, and parentheses may be used
to direct the order of evaluation. No other guarantee
of evaluation order can be made.

Inpu t Statements

The compiler limits the number of variables read by an
INPUT or INPUT # statement to 60.

Also, if you try to enter more than 255 characters in
response to any INPUT or LINE INPUT statement, the
compiler makes the computer sound a two-tone beep.

Integer Variables

The BASIC Compiler can make optimum usc of integer
variables as loop control variables. To help the compiler
produce faster and more compact object code, you
should use integer variables as much as possible. For
example, the following program executes much faster
by replacing I, the loop control variable, with 1%, or
by declaring I an integer variable with DEPINT.

Also, it is advantageous to use integer variables to
compute array subscripts. The generated code is
significantly faster and more compact.

Line Editor

When you respond to an input statement in a compiled
program, you do not have all the facilities of the
BASIC program editor to use. The BASIC Compiler
does not allow you to change lines anywhere on the
screen - you may only edit the current line. Therefore,
the following special program editor keys are not
supported by the compiler:

Home
Ctrl-Home
Cursor Up
Cursor Down
Next Word (Ctrl-Cursor Right)
Previous Word (Ctrl-Cursor Left)
Ctrl-Break

If you try to use any of these keys (with the exception
of Ctrl-Break) in response to an input statement, the
computer wiII sound a two-tone beep.

Pressing Ctrl-Break in response to an input statement
returns you to DOS. All files arc closed and the
message * Break * is displayed. The DOS screen mode
is no t restored.

In the BASIC Compiler, you can read Ctrl-Break using
INKEY$. The returned code is hex 03. This capability
allows you to test for Ctrl-Break in a program, or to
write a program which is "Ctrl-Break-proof."

Number of Files

For the Disk and Advanced BASIC interpreter, the IF:
option on the BASIC command from DOS sets the
maximum number of files that can be open at one time.
There is no equivalent to the IF: option for the
compiler; however, you may have as many files as you
want, up to a maximum of 127. You are only restricted
by the size of memory.

113

114

PEEKs and POKEs

PEEKs and POKEs into the interpreter workarea (such
as DEF SEG: POKE 106,0) are interpreter dependent
and will not work for compiled BASIC.

String Length

Strings can be up to 32767 characters long rather than
255 characters long. Therefore, any string function
parameters which identify the location in or length of a
string (which may have a maximum value of 255 in the
interpreter) may now range to 32767.

The internal storage format for the string descriptor
requires four bytes rather than three (low byte, high
byte of the length, followed by low byte, high byte of
the address). If you use machine language subroutines
with string arguments, you will have to reeode the
subroutine to account for this change.

String Space Implementation

To increase the speed of housecleaning, the
implementation of the string space for the compiler
differs from its implementation for the interpreter.
Using PEEK, POKE, VARPTR, or assembly language
routines to change string descriptors may result in a
"String Space Corrupt" error.

APPENDIXES

Contents

Appendix A. Messages
Errors from the Compiler

Long Messages . . .
Two-Character Codes

Errors While Running a Program
Errors That Cannot Be Trapped

Appendix B. The Linker (LINK) Program
Introduction
Files

Input Files .
Output Files
VM.TMP (Temporary File)

Definitions .
Segment
Group .
Class ..

Command Prompts
Detailed Descriptions of the Command

Prompts
Object Modules [.OBJ]: .
Run File ffilespec.EXE] :
List File [NUL.MAP] :
Libraries [.LIB] :
Linker Parameters . . .

/DSALLOCATION
/HIGH .
/LINE
/MAP ..
/PAUSE
/STACK

How to Start the Linker Program
Before You Begin
Option 1 -- Console Responses
Option 2 - Command Line ..
Option 3 - Automatic Responses

A-3
A-4
A-4
A-7

· A-13
· A-22

B-1
B-1
B-2
B-2
B-2
B-3
B-4
B-4
B-5
B-5
B-6

B-7
B-7
B-8
B-8
B-9

· B-l1
· B-ll
· B-12
· B-12
· B-12
· B-12
· B-13
· B-14
· B-14
· B-14
· B-15

B-17

A-l

A-2

Example Linker Session
Load Module Memory Map
How to Determine the Absolute Address

of a Segment
Messages

Appendix C. Memory Maps
Segment Map
Memory Map (with Runtime Module)
Memory Map (without Runtime Module)

GLOSSARY

B-19
B-22

. B-23

. B-24

C-l
C-l
C-3
C-4

G-l

Appendix A. Messages

During development of a BASIC program with the
BASIC Compiler, three different kinds of errors may
occur:

• BASIC Compiler long messages

• BASIC Compiler two-character codes

• BASIC runtime errors

The BASIC Compiler long messages and two-character
codes occur when you compile your program; the
BASIC runtime errors only occur at the last step in
the development process, when you actually run
your compiled program. All these messages are listed
in this appendix.

The first part of this appendix lists error codes and
messages for the errors detected by the BASIC
Compiler. They are separated into two groups: long
messages, where a whole message is displayed; and
two-character codes, which generally indicate an error
in your program.

A-3

Errors from the Compiler

Long Messages

A-4

The long messages from the compiler are severe errors;
that is, they must be corrected before you can continue.

The following errors are compiler prompt errors. When
they occur, the sequence of prompts to start the
compiler is restarted, giving you a chance to correct the
error.

Message Jl,1eaning

Bad filename
You entered a file specifica tion which was
not properly formed.

Enter the eorrect file specification.

Bad switch: /z
The character indicated by z is not a valid
compiler parameter.

Omit the parameter or en ter the correct
parameter.

Can't create file
A compiler output file cannot be opened
because there are no free directory entries
on the diskette.

If there arc any filcs on the diskette that
you don't need, erase them; otherwise, use
another diskette and retry the operation.

Message Meaning

Command error: 'z'
An error is in the command line at the
character specified by z.

Correct the command line.

The following long messages are compilation error
messages. When they occur, you must correct the
problem and restart the compiler from the
beginning.

Message Meaning

Binary source file

Disk z full

The source file you specified to the compiler
was not in ASCII format.

Make sure you specified the right file. If
necessary, start the interpreter, load the
file, and save it again with the A option.

The diskette in the drive specified by z has
no more disk storage space. If z is blank,
then the drive is the DOS default drive.

If there are any files on the diskette that you
don't need, erase them. Otherwise, use a new
formatted diskette and retry the operation.

File not found
The source file you named does not exist on
the drive specified.

Check the file specification for the source file.
If it is correct, insert the correct diskette and
retry the operation.

A-5

A-6

Message Meaning

In ternal Error
An internal malfunction occurred in the
BASIC Compiler.

Recopy your diskette. Check the hardware
and retry the compile. [f the error reoccurs,
report the conditions under which the message
appeared to your computer dealer.

Line nnnnn is undefined
A statement or command in the program refers
to a line which doesn't exist.

Check the line references in your program so
they all refer to actual program lines.

MelTIOry Overflow
The compiler working memory is exhausted.
The program is too large to compile
successfully.

Try compiling the program again with the IS
parameter to reduce compiler working
memory requirements. Or break the program
up into smaller programs.

Missing NEXT for z
No NEXT statement was found for the
variable z.

Correct the static nesting of your FOR and
NEXT statements.

Two-Character Codes

The compiler lists all the two-character errors it finds
in your source listing file as follows: the compiler
outputs the line containing the error with an arrow
beneath that line pointing to the place in the line
where the error occurred, and the two-character code
for the error. In some cases, the compiler reads
ahead on a line to determine whether an error has
actually occurred. Tn those cases, the arrow points a
few characters beyond the error, or to the end of
the line.

Some of the two-character codes are only warning
messages; warnings do not need to be corrected before
you go on to the linking step. If a message is a
warning, it is noted in the explanation for the message.
If the explanation does not say that the message is
only a warning, then the message indicates a severe
error which must be corrected.

Code Message and Meaning

BS Bad SUbscript
An array reference had an invalid dimension
value (such as a non-integer value) or the
wrong number of subscripts.

CD COMMON duplication
A variable appeared more than once in the
COMMON statement(s) in the program.

CN COMMON array not dimensioned
An array in a COMMON statement had not
been dimensioned when the COMMON
statement was encountered.

An array passed in a COMMON statement must
be defined in a DIM statement which precedes
the COMMON statement.

A-7

A-8

Code Message and Meaning

CO COMMON out of order
The COMMON statement was found after
executable statements in the program.

COMMON must precede any executable
statements.

DD Duplicate Definition
You tried to define the size of the saIne array
twice. This may happen in one of several ways:

• Thc same array is defined .in two DIM
statements.

• The program encounters a DIM statement
for an array after the default dimension
of lOis established for that array.

• The program sees an OPTION BASE
statement after an array has been
dimensioned, either by a DIM statement
or by default.

FD Function already defined
You used DEF FN to define a function with
the same name as a function previously defined
in your program.

FN FOR ... NEXT error
The counter variable on a FOR statement is
already in use, or a FOR statement does not
have a corresponding NEXT, or a NEXT was
encountered without a corresponding FOR.

IN INCLUDE error
The file specified in the $INCLUDE meta
command could not be found.

LL Line too long
A line has too many characters.

The line must have 253 characters or less.

Code Message and Meaning

LS String constant too long
You tried to create a string constant that is more
than 255 characters long.

Me Metacommand error
The format of a meta command was invalid, or
included an invalid argument. The metacommand
is ignored. This message is only a warning.

NO Array not dimensioned
Default dimensions were assigned to the array.
This message is only a warning.

OM Out of memory
A program has too many statement numbers,
or program memory is too full; or data
memory may be overflowing, possibly because
an array is too big.

OV Overflow
A constant was not within the range expected
by the compiler. Or an expression containing
constants was calculated by the compiler and
resulted in an overflow. One way to correct
this may be to use single-precision constants
instead of integer constants.

SI Statemen t ignored
The statement was ignored by the compiler. It
may be that the command is unimplemented.
This message is only a warning.

Code Message and Meaning

SN Syntax error
Caused by one of the following:

• Invalid argument name

• Invalid assignment target

• Invalid constant format

• Invalid DEFtype character specification

• Invalid expression syntax

• Invalid function name

• Invalid function formal parameter

• Invalid separator

• Invalid format for statement number

• Invalid character

• Missing AS

• Missing eq ual sign

• Missing GOTO or GOSUB

• Missing comma

• Missing INPUT

• Missing line n urn ber

• Missing left parenthesis

• Missing minus sign
• Missing operand in expression

• Missing right parenthesis

• Missing semicolon

• Name too long

• Expected GOTO or GOSUB

• String assignment required

• String expression required

• String variable required

• Invalid syntax

• Variable required

• Wrong number of arguments

• Formal parameters must be unique

• Single variable only allowed

• Missing TO
• Invalid FOR loop index variable

• Missing THEN

• Missing BASE

• Invalid subroutine name

Code Message and Meaning

SQ Sequence error
The line numbers in your program were not
in sequence, or contained a duplicate statement
number.

TC Too complex
An expression is too complex, there are too
many arguments in a function call, there are too
many dimensions in an array, there is more than
one variable for LINE INPUT, there are too
many variables for INPUT, or the memory limit
was exceeded.

The compiler has a limit of 60 arguments for a
function call, and 60 variables in an INPUT
statement.

TM Type mismatch
The variable is not of the required type
(numeric or string).

UC Unrecognizable command
The statement is unrecognizable or the
command is not implemented. It may be that
you used a built-in function on the left side of
an equal sign.

UF Undefined user function
You called a function before defining it with
the DEF FN statement.

WE WHILE ... WEND error
A WHILE does not have a matching WEND, or
a WEND was encountered before a matching
WHILE.

,L11

A-12

Code Message and Meaning

10 Division by zero
You tried to divide by zero, or you had a divide
overflow.

IE Missing IE parameter
Your program included a RESUME line
statement.

It must be recompiled with the IE parameter.
If the listing also contains a IX error, recompile
using IX instead of IE.

IV Missing IV parameter
The program contains event trapping statements.

Recompile the program using either of the event
trapping parameters, IV or IW.

IX Missing IX parmneter
Your program included a RESUME 0, RESUME,
or RESUME NEXT statement.

It must be recompiled with the IX parameter.

Errors while Running a Program

The following errors may occur when you run your
compiled and linked program. The first group of errors
can be trapped by using an ON ERROR statemen t.
The error numbers match those issued by the BASIC
interpreter. When an untrapped error occurs, the
message is displayed followed by an address. If the
ID, IE, or IX parameter was specified to the compiler,
then the number of the line in which the error
occurred is displayed instead.

Number Message

2 Syntax error
A string item was encountered in a DATA
statement when the program wanted a
numeric value.

Correct the DATA statement or the READ
statement.

Or, you may have the wrong number of
arguments in a COLOR, LOCATE, or
SCREEN statement.

3 RETURN without GOSUB
A RETURN statement needs a previous
unmatched GOSUB statement.

Correc t tile program. You pro ba bly need to
put a STOP or END statement before the
subroutine so the program doesn't "fall"
into the subroutine code.

4 Out of DATA
A READ statement is trying to read more
data than is in the DATA statements.

Correct the program so that there are enough
constants in the DATA statemen ts for all the
READ statements in the program.

A-14

iVumber Message

5 Illegal function call
A parameter that is out of range is passed to
a system function. The error may also occur
as the result of:

• A negative or unreasonably large subscript
• Trying to raise a negative number to a

power that is not an integer
• Calling a USR function before defining

the starting address with DEF USR
• A negative record number on GET or

PUT (file)
• An improper argument to a function or

statement (such as one that is out of the
expected range for the parameter)

• Trying to concatenate strings where the
result is more than 32767 characters
long

Correct the program. Refer to Chapter 4 of
the IBM Personal Conzputer BASIC manual
for information about the particular
statement or function.

6 Overflow
The magnitude of a number is too large to be
represented in the required num ber format.
Unlike the interpreter, execution will always
stop when this error occurs.

You may be able to change the order of
operations in a calculation so the overflow
doesn't occur; or you may have to restrict
the range of numbers in the program to avoid
the overflow. To correct integer overflow,
you may try changing to single- or double
precision variables.

Note: As with the interpreter, if under
flow occurs, the result is zero and
execution continues without an error.

Nurnber Message

7 Out of Inelnory
There is not enough free memory to allocate
file buffers, communications buffers, and/or
the music background buffer. Or you may
be doing complex painting, or you may have
too many GOSUBs.

9 Subscript out of range
You used an array element with a subscript
that is outside the dimensions of the array.

Check the usage of the array variable.

11 Division by zero
In an expression, you tried to divide by zero,
you tried to raise zero to a negative power, or
you had an integer divide overflow.

13 Type Inislna tch
You gave a string value where a numeric value
was expected, or you had a numeric value in
place of a string value. This may occur in
DRAW or PLAY with VARPTR$, or in a
PRINT USING statemen t.

14 Out of string space
String variables exceed the amount of
remaining free string space after housecleaning. '

] 6 String formula too complex
A string expression is too long or too
complex.

The expression should be broken into smaller
e x pression s.

Or more than 15 string variables were
requested in an input statement.

A-IS

A-16

Number Message

19 No RESUME
The physical end of the program was
encountered while the program was in an
error trapping routine.

Correct the error trapping routine so a
RESUME statement is executed. Or you
may want to add an ON ERROR GOTO 0
statement to the error trapping routine so
BASIC will display the message for any
uncaught error.

20 RESUME without error
The program has encountered a RESUME
statement without having trappl~d an error.
The error trapping routine should only be
entered when an error occurs or an ERROR
statement is executed.

You probably need to include a STOP or
END statement before the error trapping
routine to prevent the program from "falling
into" the error trapping mode.

24 Device Timeout
BASIC did not receive information from an
input/output device within a predetermined
amount of time.

For a communications file, this indicates that
one of the signals tested by OPEN "COM ...
is off.

25 Device Fault
A hardware error indication was returned by
an interface adapter.

For communications files, this error may also
occur when one of the signals tested by
OPEN "COM ... is lost.

Number Message

27 Out of Paper
The printer is out of paper, or the printer is
not switched on.

You should insert paper (if necessary), verify
that the printer is properly connected, and
make sure that the power is on. Then restart
the program or continue the error trapping
routine.

50 FIELD overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file in the OPEN
statement. Or, the end of the FIELD buffer
is encountered whUe doing sequential I/O
(PRINT #, WRITE #, INPUT #) to a random
file.

Check the OPEN statemen t and the FIELD
statement to make sure they correspond. If
you are doing sequential I/O to a random file,
make sure that the length of the data read or
written does not exceed the record length of
the random file.

51 In ternal error
An internal malfunction occurred in the
BASIC Compiler runtime.

Report to your computer dealer the conditions
unde.r which the message appeared.

52 Bad file number
A statement uses a file number of a file that
is not open, or the file number is not in the
range 1 to 127. Or, the device name in the [He
specification is too long or invalid, or the
filename was too long or invalid.

A-17

A-l R

Number Message

Make sure the file you wan ted was opened
and that the file number was entered
correctly in the statement. Check that you
have a valid file specification (refer to
"Naming Files" in Chapter 3 of the IBM
Personal Computer BASIC manual for
information on file specifications).

S3 File not found
A KILL, NAME, FILES, or OPEN references
a file that does not exist on the diskette in
the specified drive.

Verify that the correct diskette is in the drive
specified, and that the file specification was
entered correctly. Then retry the operation.

S4 Bad file mode
You tried to use PUT or GET with a
sequential file or a closed file; or to execute an
OPEN with a file mode other than input,
output, append, or random.

Make sure the OPEN statement was en tered
and executed properly. GET and PUT require
a random file.

S S File already open
You tried to open a file for sequential output
or append, and the file is already opened; or,
you tried to use KILL on a file that is open.

Make sure you only execute one OPEN to a
file if you are writing to it sequentially. Close
a file before you use KILL.

S7 Device I/O Error
An error occurred on a device I/O operation.
DOS cannot recover from the error.

This error may occur with communications
files, from overrun, framing, break, or parity
errors. If you are communicating using 7
or less data bits, the eighth bit will be turned
on in the byte in error.

Number Message

58 File already exists
The filename specified in a NAME
statement matches a filename already in use
on the diskette.

Retry the NAME command using a different
name.

61 Disk full
All diskette storage space is in use. Files are
closed when this error occurs.

If there are any files on the diskette that you
no longer need, erase them; or, use a new
diskette. Then rerun the program.

62 Input past end
This is an end of file error. An input statement
is executed for a null (empty) file, or after all
the data in a sequential file was already input.

To avoid this error, use the EOF function to
detect the end of file.

This error also occurs if you try to read from
a file that was opened for output or append.
If you want to read from a sequential output
(or append) file, you must close it and open .it
again for input.

63 Bad record number
In a PUT or GET statement, the record
number is equal to zero.

Correct the PUT or GET statement to use a
valid record number.

A-19

A-20

Number Message

64 Bad file name
An invalid form is used for the filename with
BLOAD, BSAVE, KILL, OPEN, NAME, or
FILES.

Check "Naming Files" in Chapter 3 of the
IBM Persunal Computer BASIC manual for
information on valid filenames, and correct
the filename in error.

67 Too many files
An attempt is made to create a new file (using
OPEN) when all directory entries on the
diskette are full, or when the file specification
is invalid.

If the file specification is okay 1 use a new
formatted diskette and retry the operation.

68 Device Unavailable
You tried to open a file to a device which
doesn't exist. Either you do not have the
hardware to support the device (such as printer
adapters for a second or third prin ter), or
you have disahled the .device.

69 ComlTIunication buffer overflow
A communication input statement was
executed, but the input buffer was already
full

You should use an ON ERROR sta tement to
retry the input when this cond ition occurs.
Subsequent inputs attempt to clear this fault
unless characters con tinue to be received
faster than the program can process them. If
this happens there are several possible
solutions:

Nurnber Message

• Increase the size of the communications
buffer using the Ie parameter when you
start the BASIC Compiler.

• Implement a "hand-shaking" protocol
with the other computer to tell it to
stop sending long enough so you can
catch up. (See the example in Appendix
F of the IB1H Personal Computer BASIC
manual.)

• User a lower baud rate to transmit and
receive.

70 Disk Write Protect
You tried to write to a diskette that is write
protected.

Make sure you are using the right diskette.
If so, remove the write protection, then retry
the operation.

71 Disk not Ready
The diskette drive door is open or a diskette
is not in the drive.

72 Disk Media Error
The con troller attachment card detected a
hardware or media fault. Usually, this means
that the diskette has gone bad.

Copy any existing files to a new diskette and
re-format the bad diskette. If formatting
fails, the diskette should be discarded.

Unprintable error
This message occurs whenever an error
message is not available for the error condition
which exists. This is usually caused by an
ERROR statement with an undefined error
code.

Check your program to make sure you handle
all error codes which you create.

Errors That Cannot Be Trapped

A-22

The following additional runtime error messages are
unrecoverable and cannot be trapped:

Message Meaning

Error in EXE file
The indicated file is in the wrong format. It
should be an executable (.EXE) file. This
may happen with RUN, CHAIN, and when
loading BASRUN.EXE.

This error also occurs when a program which
uses the BASRUN.EXE runtime module tries
to chain to an executable program which
does not use BASRUN .EXE.

Internal Error - No Line NUlnber
This error occurs when the error address
cannot be found in the line number table
during error trapping.

Internal Error - String Space Corrupt

Intenlal Error - String Space Corrupt during G.C.
These two errors usually occur because a
stdng descriptor has been improperly
modified. (G.C. stands for garbage collection,
which is the same thing as housecleaning.)

Program to 0 large
The file is too large to load into memory.
This may happen when chaining from a
program which uses the runtime module, and
when loading BASRUN.EXE.

Appendix B. TIle Linker (LINK) Program

Introduction

The linker (LINK) program is a program that:

• Combines separately produced object modules

• Searches library files for definitions of unresolved
external references

• Resolves external cross-references

• Produces a printableTisting that shows the res.olution
of external references and error messages

• Produces a relocatable load module

In this appendix, we show you how to use LINK. You
should read all of this appendix before you start LINK.

Note that this appendix contains general information
on the IBM Personal Computer Linker version 1.10
product; some of the information contained here may
not be applicable to programs compiled with the
BASIC Compiler.

R-l

Files

The linker processes the following input, output,
and temporary files.

Input Files

Output Files

B-2

Type Default Override Produced
.ext .ext by

Object .OBJ Yes Compiler]
or Macro
Assembler

Library .LIB Yes, Compiler

Automatic (None) N/A2 User
Response

Notes:

1. One of the optional compiler packages
available for use with IBM Personal
Computer DOS.

2. N/ A .-- Not applicable.

Type Default Override Used
.ext .ext by

Listing .MAP Yes User

Run .EXE No Relocatable
loader
(COMMAND
.COM)

VM.TMP (Temporary File)

LINK uses as much memory as is available to hold the
data that defines the load module being created. If the
module is too large to be processed with the available
amount of memory, the linker may need additional
memory space. If this happens, a temporary diskette
file called VM.TMP is created on the DOS default
drive.

When the overflow to diskette has begun, the linker
displays the following message:

Once this temporary file is created, you should not
remove the diskette until LINK ends. When LINK
ends, it erases the VM. TMP file.

If the DOS default drive already has a file by the naJne
of VM.TMP, it will be deleted by LINK and a new file
will be allocated; the contents of the previous file are
destroyed. Therefore, you should avoid using
VM. TMP as one of your own filenames.

Definitions

Segment

lL.1

Segment, group, and class are terms that appear in this
appendix and in some of the messages at the end of this
appendix. These terms describe the underlying function
of LINK. An understanding of the concepts that define
these terms provides a basic understanding of the way
LINK works.

A segment is a contiguous area of memory up to 64K
bytes in length. A segment may be located anywhere in
memory on a paragraph (l6-byte) boundary. Each of
the four segment registers defines a segment. The seg
ments can overlap. Each 16-bit address is an offset
from the beginning of a segment. The contents of a
segment are addressed by a segment register/offset pair.

The contents of various portions of the segment are
determined when machine language is generated.

Neither size nor location is necessarily fixed by the
machine language genera tor because this portion of the
segment may be combined at link tiIne with other
portions forming a single segment.

A program's ultimate location in memory is deter
mined at load time by the relocation loader facility
provided in COMMAND.COM, based on whether you
specified the /HIGH parameter. The /HIGH parameter
is discussed later in this appendix.

Group

Class

A group is a collection of segments tha t fit together
within a 64K-byte segment of memory. The segments
are named to the group by the assembler or compiler.
A program may consist of one or more groups.

The group is used for addressing segments in memory.
The various portions of segments within the group are
addressed by a segment base pointer plus an offset.
The linker checks that the object modules of a group
meet the 64K-byte constraint.

A class is a collection of segments. The naming of
segments to a class affects the order and relative place
ment of segments in memory. The class name is
specified by the assembler or compiler. All portions
assigned to the same class name are loaded into
memory contiguously.

The segments are ordered within a class in the order
that the linker encounters the segments in the object
files. One class precedes another in memory only if
a segment for the first class precedes all segments for
the second class in the input to LINK. Classes are
not restricted in size. The classes are divided into
groups for addressing.

Command Prompts

After you start the linker session, you receive a series
of four prompts. You can respond to these prompts
from the keyboard, respond to these prompts on the
command line, or you can use a special diskette file
called an automatic response file to respond to the
prompts. An example of an automatic response file is
provided in this appendix. Refer to the section called
"How to Start the Linker Program" in this appendix
for information on how to start the linker session.

LINK prompts you for the names of the object, run,
list~ and library files. When the session is finished,
LINK returns to DOS and the DOS prompt is displayed.
If linking is unsuccessful, LINK displays a message.

The prompts are described in order of their appearance
on the screen. Defaults are shown in square brackets
([]) after the prompt. In the response column of the
table, square brackets indicate optional entries. Object
Modules is the only prompt that requires a response
from you.

PROMPT RESPONSES

Object Modules [.OBJ] : Jllespec [+Jilespec] ...

Run File (filespec.EXE] : [filespec] UP]

List File [NUL.MAP] : Ullespec]

Libraries [.LIB] : [filespec [+filespec] ...]

Notes:

1. If you enter a file specification without
specifying the drive, the default drive is
assumed. The libraries prompt is an excep
tion - the default drive for the libraries is
determined by the compiler.

2. You can end the linker session prior to
its normal end by pr~ssing Ctrl-Break.

Detailed Descriptions of the
Command Prompts

The following detailed descriptions contain information
about the responses that you can enter to the prompts.

Object Modules [.OBJ]:

Enter one or more file specifications for the object
modules to be linked. Multiple file specifications must
be separated by single plus (+) signs or blanks. If the
extension is omitted from any filename, LINK assumes
the filename extension .OBJ. If an object module has a
different filename extension, the extension must be
specified. Object filenames may not begin with the @

symbol (@ is reserved for using an automatic response
file.)

LINK loads segments into classes in the order
encountered.

If you specify an object module, but LINK cannot
locate the file, it displays the following prompt:

You should insert the diskette containing the requested
module. This permits .OBJ files from several diskettes
to be included. On a single-drive system, diskette
exchanging can be done safely only if VM.TMP has not
been opened. As explained in the discussion of the
VM.TMP file earlier in this appendix, a message will
indicate if VM.TMP has been opened.

IMPORTANT: If a VM.TMP file has been opened,
you should not remove the diskette containing the
VM.TMP file. Remember, once a VM.TMP file is opened,
the diskette it resides on cannot be removed.

R-7

After a VM. TMP file has been opened, if you specified an
object module on the same drive that VM.TMP is on and
LINK cannot find it, the linker session ends with the
message:

Run File [filespec .EXE] :

The file specification you enter is created to store the
run (executable) file that results from the LINK session.
All run files receive the filename extension. EXE, even
if you specify another extension. If you specify another
extension, your specified extension is ignored.

The default filename for the run file prompt is the first
filename specified on the object module prompt.

List File [NUL.MAP] :

B-8

The linker list file is sometimes called the linker map.

The list file is not created unless you specifically
request it. You can request it by overriding the default
with a file specification or a device name. If you do
not include a filename extension, the default extension
.MAP is used. If you do not enter a file specification,
the DOS reserved filename NUL specifies that no list
file will be created.

The list file contains an entry for each segment in the
input (object) modules. Each entry also shows the
offset (addressing) in the run file.

Note: If the list file is allocated to a file on
diskette, that diskette must not be removed until
the LINK has ended.

If you specify an object module on the same drive as
the list file is allocated to, and LINK cannot find it,
the linker session ends with the message:

To avoid generating the list file on a diskette, you can
specify the display or printer as the list file device.
For example:

If you direct the output to your display, you can also
print a copy of the output by pressing Ctrl-PrtSc.

Libraries [.LIB] :

You may either list the file specifications for your
libraries, or just press the Enter key. If you press the
Enter key, LINK defaults to the library provided as
part of the Compiler package. The Compiler package
also provides the location of the library. For linking
objects from just the Macro Assembler, there is no
automatic default library search.

If you answer the library prompt, you specify a list
of drive IDs and file specifications separated by plus
signs (+) or spaces. You can en ter from one to eight
library file specifications. A drive ID tells the linker
where to look for all subsequent libraries on the
library prompt. The automatically searched library
file specifications are conceptually placed at the end
of the response to the library prompt.

JLQ

R_10

LINK searches the library files in the order in which
they are listed to resolve external references. When
LINK finds the module that defines the external symbol,
the module is processed as another object module.

If two or more libraries have the same filename,
regardless of the location, only the first library in the
list is searched.

When LINK cannot find a library file, it displays the
following message:

The drive that the indicated library is located on must
be entered.

When you link an object module produced by the IBM
Personal Computer BASIC Compiler, the linker looks
on drive A: for the appropriate library (BASCOM. LIB
or BASRUN.LIB). You can affect this with your
response to Libraries. For example, suppose you
compiled with the /0 parameter, so the linker uses
the BASCOM.LIB library. The following library prompt
responses may be used:

Libraries [.LIB]: B:

Look for BASCOM. LIB on drive B.

Libraries [. LIB]: B: USERLIB

Look for USERLIB.LIB on drive Band
BASCOM.LIB on drive A.

Libraries [.LIB]: A:LIBI +LIB2+B:LIB3+A:

Look for LIB l.LIB and LIB2.LIB on drive
A, LIB3.LIB on drive B, and BASCOM.LIB
on drive A.

Linker Parameters

At the end of any of the four linker prompts, you
may specify one or more parameters that instruct the
linker to do something differently. Only the / and first
Jetter of any parameter are req uired.

/DSALLOCATION

The /DSALLOCATION (/D) parameter directs LINK
to load all data defined to be in DGROUP at the high
end of the group. If the /HIGH parameter is specified
(module loaded high), this allows any available storage
below the specifically allocated area within DGROUP
to be allocated dynamically by your application and
still be addressable by the same data space pointer.

Note: The maximum amount of storage which
can be dynamically allocated by the application
is 64K (or the amount actually available) minus
the allocated portion of DGROUP.

If the /DSALLOCATION parameter is not specified,
LINK loads all data defined to be in the group whose
group name is DGROUP at the low end of the group,
beginning at an offset of O. The only storage thus
referenced by the data space pointer should be that
specifically defined as resid ing in the grou p.

All other segments of any type in any GROUP other
than DGROUP are loaded at the low end of their
respective groups, as if the /DSALLOCATION
parameter were not specified.

For certain compiler packages, /DSALLOCATION is
automatically used.

R-ll

B-12

/HIGH

The /HIGH (jH) parameter causes the loader to place
the run image as high as possible in storage. If you
specify the /HIGH parameter, you tell the linker to
cause the loader to place the run file as high as possible
without overlaying the transient portion of
COMMAND. COM, which occupies the highest area of
storage when loaded. If you do not specify the /HIGH
parameter, the linker directs the loader to place the run
file as low in memory as possible.

The /HIGH parameter is used with the /DSALLOCA TION
parameter.

/LINE

For certain IBM Personal Computer language processors,
the /LINE (lL) parameter directs LINK to include the
line numbers and addresses of the source statements in
the input modules in the list file.

/MAP

The /MAP (1M) parameter directs LINK to list all
public (global) symbols defined in the input modules.
For each symbol, LINK lists its value and segment
offset location in the run file. The symbols are listed
at the end of the list file.

/PAUSE

The /P A USE (jP) parameter tells LINK to display a
message to you as follows:

This message allows you to insert the diskette that is
to contain the run file.

1ST ACK:size

The size entry is any positive decimal value up to
65536 bytes. This value is used to override the size
of the stack that the assembler or compiler has pro
vided for the load module being created. If you
specify a value greater than 0 but less than 512, the
value 512 is used.

If you do not specify ISTACK (/S), the original stack
size provided by the assembler or compiler is used.

If the size of the stack is too small, the results of
executing the resulting load module are unpredictable.

At least one input (object) module must contain a
stack allocation statement. This is automatically
provided by compilers. For the assembler, the source
must contain a SEGMENT command that has the
combine type of STACK. If a stack allocation
statement was not provided, LINK returns a
Warning: No Stack statement message.

B-13

How to Start the Linker Program

Before You Begin

• Make sure the files you will be using for linking
are on the appropriate diskettes.

• Make sure you have enough free space on your
diskettes to contain your files and any generated
data.

You can start the linker program by using one of three
options:

Option 1 - Console Responses

R-14

From your keyboard, enter:

The linker is loaded into memory and displays a series
of four prompts, one at a time, to which you must
enter the requested responses. (Detailed descriptions
of the responses that you can make to the prompts are
discussed in this appendix in the section called
"Command Prompts.")

If you enter an erroneous response, such as an
incorrectly spelled file specification, you must press
Ctrl-Break to exit LINK, then restart LINK. If the
response in error has been typed but you haven't
pressed Enter yet, you may delete the erroneous
characters (on that line only).

An example of a linker session using the console
response option is provided in this appendix in the
section called "Example Linker Session."

As soon as you have entered the last filename, the linker
begins to run. If the linker finds any errors, it displays
the errors on the screen as well as in the listing file.

Note: After any of these responses, before pressing
Enter, you may continue the response with a
comma and the answer to what would be the next
prompt, without having to wait for that prompt.
If you end any with the semicolon (;), the
remaining responses are all assumed to be the
default. Processing begins immediately with no
further prompting.

Option 2 - Command Line

From your keyboard, enter:

LINK objlist,runjile,mapfile,UbUst [parm] . .. ;

objlist is a list of object modules separated by spaces
or plus signs (+).

runfile is the name you want to give the run file.

mapjile is the name you want to give the linker map.

lib list is a list of the libraries to be used, separated by
plus signs (+) or spaces.

parm is an optional linker parameter. Each parameter
must begin with a slash (/).

The linker is loaded and immediately performs the tasks
indicated by the command line.

When you use this command line, the prompts described
in Option 1 are not displayed if you specified an entry
for all four files or if the command line ends with a
semicolon.

ILl,

If an incomplete list is given and no semicolon is used,
the linker prompts for the remaining unspecified files.
The parms are never prompted for, but may be added
to the end of the command line or to any file specifi
cation given in response to a prompt. Each prompt
displays its default, which may be accepted by pressing
the Enter key, or overridden with an explicit filename
or device name. However, if an incomplete list is given
and the command line is terminated with a final semi
colon, the unspecified files default without further
prompting.

Certain variations of this command line are permitted.

Examples:

LINK module
The object module is MODULE.OBJ. A
prompt is given, showing the default of
MODULE.EXE. After the response is
entered, a prompt is given showing the
default of NUL.MAP. After the response
is given, a prompt is displayed showing
the default extension of .LIB.

LINK module;
If the semicolon is added, no further prompts
arc displayed. The object module of
MODULE.OBJ is linked, the run file is put
into MODULE.EXE, and no list file is
produced.

LINK module,,;
This is similar to the preceding example,
except the list file is produced in
MODULE.MAP.

LINK module"
Using the same example, but without the semi
colon, MODULE.OB] is linked, and the run
file is produced in MODULE.EXE, but a
prompt is given with the default of'
MODULE.MAP.

LINK module"NUL;
No list file is produced. The run file is in
MODULE.EXE. No further prompts are
displayed.

Option 3 - Automatic Responses

It is often convenient to save responses to the linker
for use at a later time. This is especially useful when
long lists of object modules need to be specified.

Before using this option, you must create the auto
matic response file. It contains several lines of text,
each of which is the response to a linker prompt. These
responses must be in the same order as the linker
prompts that were discussed earlier in this chapter.
If desired, a long response to the object module or
libraries prompt may be contained on several lines by
using a plus sign (+) to continue the same response
onto the next line.

To specify an automatic response file, you enter a
file specification preceded by an @ symbol in place
of a prompt response or part of a prompt response.
The prompt is answered by the contents of the
diskette file. The file specification may not be a
reserved DOS filename.

From your keyboard, enter:

Use of the filename extension is optional and may be
any name. There is no default extension.

H-17

B-18

Use of this option permits the command that starts
LINK to be entered from the keyboard or within a
batch file without requiring any response from you.

Example

Automatic Response File ~ RES? 1

Automatic Response File - RES?2

Command line

Notes:

1. The plus sign at the end of the first line in
RESPI causes the modules listed in the first
two lines to be considered as the input object
modules. After reading RESPl, the linker
returns to the command line and sees
+mymod, so it includes MYMOD.OBJ in
the list of object mddules as well.

2. Each of the above lines ends when you press
the Enter key.

Example Linker Session

This example shows you the type of information that is
dispJayed during a linker session.

Once we enter:

in response to the DOS prompt, the system responds
with the following messages and prompts, which we
answer as shown:

Notes:

1. By specifying /map, we get both an alpha
betic listing and a chronological listing of
public symbols.

2. By responding prn to the list file prompt, we
send our output to the printer.

3. By specifying the /LINE parameter, LINK
gives us a listing of all line num bers for all
modules. (The /LINE parameter can
generate a large amount of output.)

4. By just pressing En ter in response to the
Libraries prompt, an automatic library
search is performed.

ILl 0

R-20

Once LINK locates all libraries, the linker map displays
a list of segments in the relative order qf their appear-
ance within the load module. The list looks like this:

Start Stop Length Name

OOOOOH 0OO28H 0029H MAINQQ
0OO30H OOOF6H OOC7H ENTXQQ
OOIOOH OOIOOH OOOOH INIXQQ
OOIOOH 038D3H 37D4H FILVQQ_CODE
038D4H 04921H lO4EH FILUQQ_CODE

074AOH 074AOH OOOOH HEAP
074AOH 074AOH OOOOH MEMORY
074AOH 0759FH OIOOH STACK
075AOH 07925H 0386H DATA
07930H 082A9H 097AH CONST·

Class

CODE
CODE
CODE
CODE
CODE

MEMORY
MEMORY
STACK
DATA
CONST

The information in the Start and Stop columns shows a
20-bit hex address of each sctment relative to location
zero. Location zero is the beginning of the load
module. The addresses displayed are not the absolute
addresses of where these segments are loaded. To
find the absolute address of where a segment is
actually loaded, you must determine where the seg
ment listed as being at relative zero is actually loaded;
then add the absolute address to the relative address
shown in the linker map. The procedure you use to
determine where relative zero is actually located is
discussed in this appendix, in the section called "How
to Determine the Absolute Address of a Segment."

Now, because we specified the jMAP parameter, the
public symbols are displayed by name and by value.
For example:

Address

0492:0003H
06CD:029FH
0492:00A3H
06CD:0087H
0602:000FH

OOlO:lBCEH
0010:lD7EH
0010:1887H
0010:19E2H
0010:11B2H

Address

OOOO:OOOlH
OOOO:OOlOH
0000:0010H
0003:0000H
0003:0095H

F82B:F31CII
F82B:F3lEH
F82B:F322H
F82B:F5B8H
F82B:F5EOH

Publics

ABSNQQ
ABSRQQ
ADDNQQ
ADDRQQ
ALLHQQ

WT4VQQ
WTFVQQ
WTIVQQ
WTNVQQ
WTRVQQ

Publics

MAIN
ENTGQQ
MAINQQ
BEGXQQ
ENDXQQ

CRCXQQ
CRDXQQ
CESXQQ
FNSUQQ
OUTUQQ

by Name

by Value

The addresses of the public sym boIs are also in the
segment:offset format, showing the location relative
to zero as the beginning of the load module. In some
cases, an entry may look like this:

F8CC:EBE2H

D "1

This entry appears to be the address of a load module
that is almost one megabyte in size. Actually, the area
being referenced is relative to a segment base that is
pointing to a segment below the relative zero beginning
of the load module. This condition produces a pointer
that has effectively gone negative. The memory map
which follows illustrates this point.

When LINK has completed, the following message is
displayed:

Load l\1odule MelTIOry Map

lL,,),,)

Data Segment
Base

64K Segment

(Data elements
have large
offsets from
the data seg
ment bases)

Low Memory

•
•
•

•
•
•

Data Area

Code

•
•
•

High Memory

(Relative to the load
modu Ie, this location
is below zero, or
negative)

Relative Zero

Load Module

How to Determine the Absolute
Address of a Segment

The linker map displays a list of segments in the
relative order of their appearance within the load
module. The information displayed shows a 20-bit
hex address of each segment relative to location zero.
The addresses that are displayed are not the absolute
addresses of where these segments are actually located.
To determine where rela tive zero is actually located,
we must use DEBUG. DEBUG is described in detail
in the IBM Personal Computer DOS manual.

Using DEBUG,

1. Load the application.

Note the segment value in CS and the offset
within that segment to the entry point as shown
in IP. The last line of the linker map also describes
this entry point, but uses relative values, not the
absolute values shown by CS and IP.

2. Subtract the relative entry as shown at the end of
the map listing from the CS:IP value. For example,
let's say CS is at 05DC and IP is at zero.

The linker map shows the entry point at 0100:0000.
(0100 is a segment ID or paragraph number; 0000
is the offset into that segment.)

In this example, relative zero is located at
04DC:0000, which is 04DCO absolute.

If a program is loaded low, the relative zero location is
located at the "end of the Program Segment Prefix, in
the location DS plus 100H.

Messages

B-24

All messages, except for the warning messages, cause the
LINK session to end. Therefore, after you locate and
correct a problem, you must rerun LINK.

Messages appear both in the list file and on the display
unless you direct the list file to CON, in which case the
display messages are suppressed.

A complete list of linker messages follows:

About to generate .EXE file
Change disks <hit ENTER>
This message is displayed when you specify the IPAUSE
parameter. Insert your Runfile diskette into the
appropriate drive and press Enter.

Ambiguous switch: z
The characters specified by z do not uniquely identify
a linker parameter. Use more characters from the
parameter name.

An internal failure has occurred
An error has occurred in the linker program. Report the
conditions under which the message appeared to your
computer dealer.

Attempt to access data outside of segment bounds
The object module is probably bad.

Bad numeric parameter
The value you specified with the 1ST ACK parameter
is not a valid numeric constant.

Cannot find file filespec
Change diskette <hit ENTER>
The linker could not locate the specified object module
on the drive. Insert the diskette with the specified
module on it and press Enter.

Cannot find library libllame
Enter new drive letter:
The specified library could not be found on the drive.
Enter the letter for the drive the library is on.

Cannot nest response file
You used @/ilespec within an automa tic response file.
Automatic response files cannot be nested.

Cannot open list file

Cannot open overlay
The preceding two messages occur because the
directory is full.

Cannot open response file
The automatic response file could not be found.

Cannot open temporary file
The directory is full.

DUP record too complex
A problem exists in an object module created from
an assembler source program. A single DUP
requires 1024 bytes before expansion.

Fixup offset exceeds field width
A machine language processor instruction refers to an
address with a NEAR attribute instead of a FAR
attribute.

Invalid format file
A library is in error.

Invalid object module
An object module is incorrectly formed or incomplete
(as when the language processor is stopped in the middle).

Invalid switch: z
The characters indicated by z do not form a valid
linker parameter.

R-J"

No object modules specified
You did not name any object modules in the command
line or in response to the prompt. The linker needs
some files to link.

Out of space on list file

Out of space on run file

Out of space on VM.TMP
The preceding three messages say that no more diskette
space remains to expand the indicated file. You should
retry the operation with a different diskette.

Program size exceeds capacity of linker
The load module is too hig for processing.

Segment size exceeds 64K
In an attempt to combine identically named segments,
the resulting segment required more tha n 64K.
64K-bytes is the addressing limit.

Stack size exceeds 65535 bytes
The size specified for the stack must be less than or
equal to 65535.

Symbol defined more than once
The linker found two or more modules that define
a single symbol name. This message is only a warning.

Symbol table capacity exceeded
The limit is about 30K. Use shorter and/or fewer
names.

There was/were number errors detected
This message is displayed for your information at the
end of the link session.

Too many external symbols in one module
The limit is 256 external symbols per module.

Too many groups
The limit is 10, including DGROUP.

Too many libraries specified
The limit is 8 libraries.

Too many overlays
The limit is 64.

Too many public symbols in one module
The limit is 1024 public symbols.

Too many segments or classes
The limit is 256 (segments and classes taken together).

Unexpected end-of-file on library
This is probably caused by an error in the file.

Unexpected end-of-file on VM. TMP
The diskette containing VM.TMP has been removed.

Unresolved externals:
This message is followed by a list of the unresolved
external references. If this error occurs, do not
attempt to run the executable file created by the linker.

VM.TMP is an illegal file name and has been ignored
VM.TMP cannot be used for an object filename.
This message is only a warning.

Warning: No Stack Statement
When combining object modules from the Macro
Assembler, at least one source file must have a
SEGMENT command with the combine type of
STACK (compilers automatically provide stack
allocation statements),

IL,")7

JL/~

Appendix C. Memory Maps

Segment l\1ap

Address

low CS

low DS

high DS

highest
memory

The segment maps for compiled programs under
BASIC is almost the same for versions with and with
out the runtime module.

Non Runtime Module
Segmen t Class

BC CODE CODE
CODE CODE

BC_ICN
BC_IDS
INIT

CaNST
DATA
COMMON
CaNST
DATA
BC __ DATA
BC~ __ FT
Be ,_CN
BC __ DS
RUN

STACK

INIT
INIT
IN IT

RT DATA
RT_DATA
BLANK
CaNST
DATA
DATA
DATA
DATA
DATA
DATA (optional)

STACK

Runtime Module
Segment Class

BC_CODE CODE
CODE CODE

BC_ICN
BC_IDS
INIT

CaNST
DATA
COMMON
CONST
DATA
BC~_.DATA
BC __ FT
BC ... CN
Be __ .. DS
RUN

STACK

INIT
INIT
INIT

RT_DATA
RT DATA
BLANK
CaNST
DATA
DATA
DATA
DATA
DATA
DATA

STACK

BASRUN.EXE
Runtime Module
Code

The segments BC __ ICN and BC_)DS are block trans
ferred to the segments BC_CN and BC __ DS at program
initialization. Just before the user program itself
executes, the DS segment is moved down in physical
memory over the segments of class INIT. If the
runtime module is used, then the data segment is
moved to high memory under the runtime module.

r 1

C-2

The contents of the segments are as follows:

BC._CODE
CODE
BC ICN

BC IDS

INIT
CONST
DATA
COMMON
CONST

DATA
BC._J)ATA
BC_FT
BC __ CN
BC __ .DS
RUN

STACK

Compiled user program
BASIC and assembler runtime routines
User program constants (moved to
BC. CN)
User program data statements (moved
to BC_DS)
Disposable runtime initialization code
Runtime initialized data values
Runtime uninitialized data values
User program COMMON area
User initialized data variables (assembly
lang.)

User data variables (assembly lang.)
User program da ta v,aria bles
User program floating point temporaries
Program constants
User program data statements
Relocatable data segment used by RUN
statement
Stack segment required by loader
(not lIsed)

The string space and stack space are set up at
initialization time. All the available space after
MEMORY is used for the string space (up the 64K total
for DS segment) except for 512 bytes reserved for the
stack. In general, while a BASCOM program is running
the segment registers DS, ES, and SS are the same. CS
varies depending on whether the program or runtime
code is executing.

Memory Map (with Runtime Module)

low memory
,----------....., ~ 0000 :0000

Interrupt vectors

DOS area
1------------4 ~ Bottom of user area

BC CODE
(compiled program)

compiled BASIC code
(64K maximum)

~-------------------4~

CODE

free memory

-~

DATA
CaNST

(runtime-- RT_~"DA T A)

COMMON

DATA
CaNST

(assembly language)

Be DATA
(user variables)

Be DS ..

Be CN
Be FT -.. ,~~

string space

- ----------
file buffers

user stack

BASRUN.EXE

space for .EXE loader

high memory

additional code
(no size restriction)

(if available)

~ DS,ES,SS :0000

runtime module data and constants
(fixed size-~ approx. 3K)

-+- COMMON area (variable per
program)

-+-

Optional data area for assembly
language subroutines

BASIC program variables

Data statements
Numeric and string constants
Floating point temporaries

~ Bottom of string space

~ (dynamic boundary)

~ Top of string space
(default-512 bytes)

~Top ofDS,ES,SS (64K maximum)

~ Top of user area

Memory Map (without Runtime Module)

low memory

Interrupt vectors

DOS area

BC CODE
~-

(compiled program)

CODE

""- - -----------
free memory

~ ---------DATA
CONST

(runtime -- RT __ DATA)

COMMON

DATA
CONST

(assembly language)

BC DATA ---
(user variables)

BC DS
""-

BC CN -
BC FT -

RUN (opt.)

string space
r--_ - --

file buffers

user stack

space for .EXE loader

high memory

C-4

~ 0000:0000

....... Bottom of user area
compiled BASIC code

(64K maximum)
~

additional code
(no size restrictions)

(if available)

~ DS~ES~SS:OOOO

~

-+

~

runtime module data and constants
(fixed size approx. 3K)

COMMON area (variable per program)

Optional data area for assembly
language subroutines

BASIC program variables

Data statements
Numeric and string constants
Floating point temporaries

.EXE file loader data (64 bytes)

~ Bottom of string space

.. (dynamic boundary)

... Top of string space
(default - 512 bytes)

... Top of DS,ES,SS (64K maximum)

~ Top of memory

GLOSSARY

This part of the book explains many of the technical
terms you may run across while programming in
BASIC.

application program: A program written by or for a
user which applies to the user's work. For example,
a payroll application program.

argument: A value that is passed from a calling
program to a function.

arithmetic overflow: Same as overflow.

ASCII: American National Standard Code for
Information Interchange. An ASCII file is a
text file that uses ASCII codes to represent
each character.

backup: Pertaining to a system, device, file, or
facility that can be used in case of a malfunction or
loss of data.

binary: Pertaining to a condition that has two possible
values or states. Also, refers to the Base 2 numbering
system.

buffer: An area of storage which is used to compensate
for a difference in rate of flow of data, or time of
occurrence of events, when transferring data from one
device to another. Usually refers to an area reserved for
I/O operations, into which data is read or from which
da ta is written.

bug: An error in a program.

byte: The representation of a character in binary.
Eight bits.

G-2

call: To bring a computer program, a routine, or a
subroutine into effect, usually by specifying the
entry conditions and jumping to an entry point.

code: To represent data or a computer program in a
symbolic form that can be accepted by a computer;
to write a routine. Also, loosely, one or more computer
programs, or part of a program.

comment: A statement used to document a program.
Comments include information that may be helpful
in running the program or reviewing the output listing.

compile: To translate a computer program written in
problem-oriented language into machine-oriented
language.

compiletime: That period of time during which the
compiler is executing, during which it compiles a
BASIC source file and creates an object file.

debug: To find and eliminate mistakes in a program.

default: A value or option that is assumed when none
is specified.

delimiter: A character that groups or separates words
or values in a line of input.

directive: A compiler metacommand.

directory: A table of identifiers and references to the
corresponding items of data. For example, the directory
for a diskette contains the names of files on the diskette
(identifiers), along with information that tells DOS
where to find the file on the diskette.

disabled: A state that prevents the occurrence of certain
types of interruptions.

DOS: Disk Operating System. In this book, refers only
to the IBM Personal Computer Disk Operating System.

dummy: Having the appearance of a specified thing but
not having the capacity to function as such. For
example, a dummy argument to a function.

dynamic: Occurring at the time of execution.

echo: To reflect received data to the sender. For
example, keys pressed on the keyboard are usually
echoed as characters displayed on the screen.

edit: To enter, modify, or delete data.

enabled: A state of the processing unit that allows
certain types of in terruptions.

end of file (EOF): A "marker" immediately following
the last record of a file, signaling the end of that file.

event: An occurrence or happening; in IBM Personal
Computer Advanced BASIC, refers particularly to the
events tested by the COM(n), KEY(n), PEN, and
STRIG(n).

execute: To perform an instruction or a computer
program.

external reference: A variable name or label in one
module that is referenced in another module. External
labels are the entry points into modules.

folding: A technique for converting data to a desired
form when it doesn't start out in that form. For
example, lowercase letters may be folded to uppercase.

format: The particular arrangement or layout of data
on a data medium, such as the screen or a diskette.

form feed (FF): A character that causes the print or
display position to move to the next page.

function: A procedure which returns a value depending
on the value of one or more independent variables in a
specified way. More generally, the specific purpose of
a thing, or its characteristic action.

garbage collection: Synonym for housecleaning.

G-4

global reference: Same as external reference.

hard copy: A printed copy of machine output in a
visually readable form.

housecleaning: When BASIC compresses string space
by collecting all of its useful data and frees up unused
areas of memory that were once used for strings.

instruction: In a programming language, any meaningful
expression that specifies one operation and its operands,
if any.

integer: One of the n um bers 0, ± 1 , ± 2, ± 3, ...

integrity: Preservation of data for its intended purpose;
data integrity exists as long as accidental or malicious
destruction, alteration, or loss of data are prevented.

interface: A shared boundary.

interpret: To translate and execute each source language
statement of a computer program before translating
and executing the next statement.

interrupt: To stop a process in slich a way that it can
be resumed.

invoke: To activate a procedure a t one of its en try
points.

K: When referring to memory capacity, two to the
tenth power or 1024 in decimal notation.

keyword: One of the predefined words of a programming
language; a reserved word.

library: A set of routines in a file on diskette.

linking: The process by which the linker program
combines separate modules, resolves all ex ternal
references by searching the appropriate library, and
creates a single executable (.EXE) file on diskette.

linktime: That period of time during which the linker
is running.

location: Any place in which data or machine
instructions may be stored.

loop: A set of instructions that may be executed
repeatedly while a certain condition is true.

M: Mega; one million. When referring to memory,
two to the twentieth power; 1,048,576 in decimal
notation.

metacommand: A statement that supplies information
to the compiler but which usually does not directly
result in executable code. For the BASIC Compiler,
some of the metacommands are $INCLUDE,
$LINESIZE, $PAGE, $PAGESIZE, and $TITLE.

minifloppy: A 5-1/4 inch diskette.

mnemonic: A symbol chosen to assist the human
memory; for example, an abbreviation such as "MPY"
meaning "multiply."

module: A fundamental unit of code. There are several
types of modules, including object and executable
modules. The compiler creates object modules that are
later manipulated by the linker. Your final executable
program is an executable mod ule.

nest: To incorporate a structure of some kind into
another structure of the same kind. For example,
you can nest loops within other loops, or call sub
routine,s from other subroutines.

notation: A set of symbols, and the rules for their Llse,
for the represen tation of data.

null: Empty, having no meaning. In particular, a
string with no characters in it.

object file: Output from a compiler which is itself
executable machine code or is suitable for processing
to produce executable machine code.

G-6

offset: The number of units from a starting point (in
a record, control block, or memory) to some other
point. For example, in BASIC the actual address of a
memory location is given as an offset in bytes from the
location defined by the DEF SEG statement.

on-condition: An occurrence that could cause a pro
gram interruption. It may be the detection of an
unexpected error, or of an occurrence that is expected,
but at an unpredictable time.

operating system: Software that controls the execution
of programs; often used to refer to DOS.

operation: A well-defined action that, when applied to
any permissible combination of known entities, pro
duces a new en tity.

overflow: When the result of an operation exceeds
the capacity of the intended unit of storage.

parameter: A name in a procedure that is used to refer
to an argument passed to that procedure.

prompt: A question the computer asks when it needs
you to supply information.

range: The set of values that a quantity or function
may take.

real-time: Pertaining to the manipulation of data that
are required or generated by some process while that
process is in operation; usually the resul ts arc used to
in fluence the process while it is occurring.

record: A collection of related information, treated as
a unit. For example, in stock control, each invoice
might be one record.

recursive: Pertaining to a process in which each step
makes use of the results of earlier steps, such as when
a function calls itself.

relocatable: A module is relocatable if the code within
it can be "relocated" and run at different locations in
memory. Relocatable modules contain labels and
variables represented as offsets relative to the start of the
module. These la bels and variables are said to be "code
relative." During the linking step, the linker associates
an address with the start of the module, and then com
putes an absolute address that is equal to the associated
address plus the code relative offset for each label or
variable. These new computed values become the
absolute addresses that are used in the executable file.

routine: Executable code residing in a module. More
than one routine may reside in a module.

runtime: That period of time during which a previously
compiled and linked program is executing. By con
vention, runtime refers to the execution time of your
program and not to the execution time of the compiler
or the linker.

runtime module: BASRUN.EXE-- a module contain
ing most of the routines needed to implement the
BASIC language. The runtime module contains a
majority of the library rou tines needed to implement
the BASIC language. A library routine usually corre
sponds to a feature or sub-feature of the BASIC
language.

It is a peculiarity of the runtime module that it is an
executable .EXE file, and must be accessible on disk
when you execute your final .EXE file.

runtinle support: The body of routines that may be
linked to your compiled object file. These routines
ilnplement various features of the BASIC language.
The BASCOM.LIB and BASRUN.LIB libraries, along
with the runtime module, all contain runtime support
routines.

source: A BASIC program in ASCII format. Usually
this term is used to refer to the program which is input
to the compiler. The compiler translates this source
and creates as output a new file called an "object" file.

G-7

G-8

stack: A method of temporarily storing data so that the
last item stored is the first item to be processed.

statement: A meaningful expression that may describe
or specify operations and is complete in the context
of the BASIC programming language.

syntax: The rules governing the structure of a language.

trap: A set of conditions that describe an event to be
intercepted and the action to be taken after the inter
ception.

unbound global reference: Same as unresolved external
reference.

unresolved external reference: An external reference in
a module that is not declared in that module. The linker
tries to "resolve" this situation by searching for the
declaration of that reference in other modules. These
other modules arc usually library modules. If the
variable or label is found, the address associated with it
is substituted for the reference in the first module, and
is then said to be "resolved." When a variable is not
found, it is said to be "undefined."

External references that are not resolved as part of the
linking process can cause unpredktable results when
you run your program.

INDEX

Special Characters
... in format diagram v
; on command line 30
[]

after prompt 28, B-6
in format diagrams v

+ (plus sign)
in automatic response

file B-17
in response to linker

prompt B-7, B-9
$INCLUDE 22, 65
$LINESIZE 68
$LIST 49,69
$OCODE 49,70
$PAGE 71
$PAGEIF 72
$PAGESIZE 73
$SKIP 74
$SUBTITLE 49, 75
$TITLE 49,76
/E and other compiler

parameters 33
See also compiler parameters

/HIGH and other linker
parameters B-l1

See also linker parameters
_ (underscore---Iine

continuation character) 20
@ sym bol (linker) B-7, B-1 7

A
A option with SAVE 20
/A parameter 40,70
A: 26
absolute segment address B-23
agreemen t, license 4

alternate library parameter -
/0 43

array order parameter - /R 43
arrays 41,43,88,112
assembler 80, B-2
assem bly language

subroutines 80, 105
AUTO 77
automatic response file B-17
AUX 26
available bytes 51

B
B: 26
backing up diskettes 7
.BAS extension 2, 28
BASCOM. LIB 45, 53

See also /0 parameter
BASIC diskette, contents of 5
BASIC program editor 65, 113
BASRUN.EXE 44

See also runtime module
BASR UN.LIB 53
BASRUN-Linker diskette 13,

59
batch file 59
beeping from the

computer 112,113
book

how to use iii
organization iii
related manuals v

boundary, paragraph B-4
brackets

after prompt 28, B-6
in format diagrams v

buffer
communications 40,98

X-I

buffer (continued)
random file 95

bytes available 51
bytes free 5 1

c
IC parameter 40
CALL 80
CALL ABSOLUTE 80.2
cassette I/O 79
CHAIN 44, 57, 82
class B-5
CLEAR 83
code parameter--· /A 40
code, listing object 40,70
COM.BAT 62
COM(n) 77
command line

compiler 30
linker B-15

commands not
implemented 77, 79

COMMON 44, 84
.communications 96
communications module 5,
53,62,96

communications pararneter .
/C 40

comparison to interpreter 63
compile, link, and go 59, 62
compiler 2

BASIC Compiler package 5
command line 30
messages 15, 5 1, Appendix

A
prompts 14,27
using 27

compiler parameters 33
convention 37

/T 38
/4 37

error trapping 34, 77
/E 34
/X 35

Compiler parameters (continued)
event trapping 36,77

/V 36
/W 36

special code 40
/A 40
/C 40
/D 4 I, 78, I 1 1
/N 42
/0 43
/R 43
/S 43

summary chart 46
compiling 12, 25

finishing 47
preliminary steps 25
prompts 27
sam pIe listing 49
starting 27
starting with batch file 59

COM1: 26,96
CON 26
constants, string 43
CaNT 77
contents of con1piler

package 5
continuing a line

in linker automatic response
file B-17

in source program 20
contract, license 4
convention parameters 37

See also com p iler parameters,
convention

CREATE.BAT 60
creating the source 20, 63
Ctrl keys 113
Ctrl-Break 47,58,61,113, B-6
cursor movement keys 113

D
/D parameter 41,78, 111
Data column on compiler

listing 49

debug parameter - ID 41,78,
III

debugging 24,32,41
DEF FN 86
default drive 26, 54, B-6
default filenames 31
DEFINT, DEFSNG, DEFDBL,

and DEFSTR 87
DEFtype 87
DELETE 77
demonstration 11

compiling 12
linking 16
listing file 16
preparation 12
program 12
running 18

detecting errors 24
developing a program

steps 6
compiling 25
creating the source 20
debugging 24
linking 52
running the program 57

DGROUP B-1]
differences 20,24,63

language 79
metacommands 64
operational 77
other 110

DIM 88
diskette setup 8
diskettes in package 5
division by zero A-12, A-I5
double-precision arithmetic 1 10
DRAW 89
IDSALLOCATION linker

parameter B-l1

E
IE parameter 34
EDIT 77
editing the source 20, 63
editor 113

ellipsis in format diagram v
END 90
ERASE 79
error codes Appendix A
error detection 24
error messages 15, 51,

Appendix A
error trapping 34,77, A-I3,

A-22
See also compiler parameters,

error trapping
event trapping 36,77

See also compiler parameters,
event trapping

.EXE extension 55, B-8
execu ting a program

See running a program
execution speed 3, 19
expression evaluation 1 10
extensions, filename

.BAS 2,28

.EXE 55, B-8

.LST 29

.MAP 55, B-8

.OBJ 2,28,55, B-7

F
filename extensions

.BAS 2,28

.EXE 55,B-8

.LST 29

.MAP 55, B-8

.OBJ 2,28,55, B-7
files, maximum number 113
first tim e through 7
FOR ... NEXT 38,91
format notation v
format of source file 20
formatting diskettes 7, 12, 25
FRE 93
free bytes 51
functions, user-defined 86

G

GOSUB 42
GOTO 42
group B-5

H
/HIGH linker parameter B-4,

B-12
high memory B-l1
Home key 113
how to usc book iii

I
IBMCOM.OBJ 5,53,62,96
imbedding files 22, 65
$INCLUDE 22, 65
INPUT 39, 1 12, 1 1 3
input files

compiler 2, 26
linker B-2

integer variables 112
interpreter 1
italics in format diagrams v

J
joystick button 104

K
KEY 94

. KEY(n) 77
keys, program editor 1 13

L
language differences 63, 79
length of strings 114
lexical parameters 37
Y_A

See also compiler parameters,
convention

libraries linker prompt 56, B-9
LIBRARY diskette, contents

of 5
Library-Linker diskette 9, 13,

53
license agreemen t 4
/LINE linker parameter B-12
line command

for compiler 30
for linker B-15

line continuation character 20,
B-17

line editor 1 13
line feed 20
line length 20
line list 1
line number parameter -

/N 42
line numbers

in object code 34, 41, A-13
in source code 42

$LINESIZE 68
LINK 52, Appendix B

command line B-15
command prom pts B-6
example session B-19
finishing 56
messages B-24
starting 54, B-14

linked list 1
linker files

automatic response B-2, B-17
input B-2
library B-2, B-9
listing B-2, B-8
object B-2, B-7
output B-2
run B-2, B-8

linker parameters
/DSALLOCATION B-1 1
/HIGH B-4, B-12
/LINE B-12
/MAP B-12
/PAUSE B-12
/STACK B-13

linker program
See LINK

linker prompts 17,54, B-7
linking 16, 52, Appendix B
$LIST 49,69
LIST 77
list file linker prompt 55, B-8
listing file

compiler 16,29
linker B-8

listing, compiler sample 49
LLIST 77
LOAD 77
load module B-13, B-20
load module memory

map B-22
logical line 20
long messages A-4
long string parameter --

/S 43
loop control variables 91, I 10
LPTl: 26,95
.LST extension 29

M
machine language

subroutines 80.2, 105
Macro-Assembler 80
manual

how to use iii
organization iii
related manuals v

/MAP linker parameter B-12
.MAP ex tension 55, B-8
memory

high B-1 1 , B-1 2
low B-12

memory maps Appendix C
load module B-22

MERGE 77
messages

compiler 15,51,
Appendix A

linker B-24

metacommands 21,64
$INCLUDE 22,65
$LINESIZE 68
$LIST 49,69
$OCODE 49, 70
$PAGE 7]
$PAGEIF 72
$PAGESIZE 73
$SKIP 74
$SUBTITLE 49,75
$TITLE 49,76

MOTOR 79

N
/N parameter 42
NEW 77
Next Word 1 13
non-trappable errors A-22
NUL 26,29

o
/0 parameter 43
.0Bl extension 2,28,55, B-7
object code listing 40, 49, 70
object code parameter--

/A 40
object file 2,28,55, B-7
object filename compiler

prompt 28
o bj e c t 111 0 d u 1 e s 1 i 11 k e r

prompt 55, B-7
$OCODE 49,70
Offset column on com piler

listing 49
old library parameter - /0 43
ON COM(n) 77
ON ERROR 34,77

/E parameter 34
IX parameter 35

ON KEV(n) 77
ON PEN 77
ON STRIG(n) 77

one-drive system diskette
setup 8

OPEN 95
OPEN "COM... 96
operational differences 77
optimizing com piler 2
organization of book iii
output files

compiler 2,26
linker B-2

overflow 41,] 11, A-9, A-14

p

package, contents of 5
$PAGE 71
$PAGEIF 72
$P AGESIZE 73
paragraph boundary B-4
parameters, compiler 33

See also c0111piler parameters
/P A USE linker

parameter B-12, B-24
PEEK 114
PEN STOP 77
physical line 20
PLAY 100
plus sign

in automatic response
file B-17

in response to linker
prompt B-7, B-9

POKE 114
Previous Word 113
printing list file 16,29
PRN 26
program development

See developing a program
program editor 65, 113
prompts

compiler 14, 27
linker 17, 54, B-7

public symbols B-2 1
publicatiol!s, related v

X-6

R
/R parameter 43
related manuals v
relative zero ,B-20
relocatable loader B-2
REM 64,101
RENUM 77
requirements 6
RESUME 34,77

/E parameter 34
/X parameter 35

RETURN 41
rounding 39
RUN 102
run file linker prompt 55, B-8
Runfile diskette 8,9, B-12,

B-24
running a program 18,57

considerations with
BASRUN.EXE 58

runtime errors A-13
runtime module 3, 44

s
/S parameter 43
sample compiler listing 49
sam pie session 11

See also demonstration
SAMPLE.BAT 59
SAVE 77
saving the source file
scanning parameter
security, source code
segment B-4, B-7
SEGMENT command
segment maps C-l

20
/4 37
3

B-13

semicolon on command line 30
setting up the diskettes 8
severe error messages 51, A-7
single-drive system diskette

setup 8
$SKIP 74

source code security 3
source file 2

creating 20, 63
saving 20

source filename compiler
prompt 28

Source Line on compiler
listing 49

source listing 15, 29, 49
SPC 38
special code parameters 40
speed of execution 3, 19
square brackets

after prompt 28, B-6
in format diagrams v

stack allocation statement B-13
1ST ACK linker parameter B-13
starting

compiler 27
linker 54, B-14

statements not
iInplemented 77, 79

static nesting 91, 108
STOP 103
STRIG 104
STRIG(n) 77
string descriptor 114
string length 114
string parameter -- IS 43
string space 114
subroutines 42,80,105
subscripts 88
$SUBTITLE 49,75
symbols, global and

public B-12
syntax diagrams v
syntax of command line

compiler 30
linker B-15

system requirements 6

T

IT parameter 38
TAB 38

temporary file, VM.TMP B-3,
B-7

$TITLE 49,76
transcendental functions 110
translation 1
TRON and TROFF 41, 78
truncation 39
two-character codes 51, A-7
two-drive system diskette

setup 9
TYPE (DOS command) 16

u
underflow A-14
underscore (line continuation

character) 20
untrappable errors A-22
USER 26
user-defined functions 86
using book iii
using the compiler 6, 25

first time 7
USR 105

v
IV parameter 36
variable list 1
VARPTR$ 107
VM.TMP temporary file B-3,

B-7

w
IW parameter 36
warning messages 51, A-7
WHILE ... WEND 108
WIDTH 109
work diskette 8, 9

X-7

x
IX parameter 35

4
14 parameter 37

X-8

--- ------ ----= = ~--= - - - ----------_.-

Product Comment Form

BASIC Compiler

The Personal Computer
Software Library

6172246

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ____________________________________ ___

Address __________________________________ __

City ________________ _ State ____________ _

Zip Code ________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

8J84 PIO::!

aldelS lOU 00 aSealrl

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

adel

--- ------ --------- - ---- - - -----------.-

Product Comment Form

BASIC Compiler

The Personal Computer
Software Library

6172246

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ____________________________________ ___

Address ________________________________ ___

City _________ _ State __________ _

Zip Code ____________ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO::!

!llrlD"tC' , nil nn !:IICO!ll1 I

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

!lonD.

Continued from inside front cover

SOME STATES DO NOT ALLOW THE
EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO
YOU. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU
MA Y ALSO HAVE OTHER RIGHTS
WHICH V AR Y FROM STATE TO
STATE.

IBM does not warrant that the functions
contained in the program will meet your
requirements or that the operation of the
program will be uninterrupted or error
free.

However, IBM warrants the diskette(s) or
casseue(s) on which the program is fur
nished, to be free from defects in materials
and workmanship under normal use for a
period of ninety (90) days from the date of
delivery to you as evidenced by a copy of
your recei pl.

LIMITATIONS OF REMEDIES

IBM's entire liability and your exclusive
remedy shall be:

I. the replacement of any diskette(s) or
casseue(s) not meeting IB;\'1's "Limited
Warranty" and which is returned to
IBM or an authorized IBM PERSOl\"AL
COMPUTER dealer with a copy of your
receipt, or

2. if IB:Vl or the dealer is unable to deliver a
replacement diskette(s) or casseue(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

IN NO EVENT WILL IBM BE LIABLE
TO YOU FOR ANY DAMAGES,
INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE
LIMIT A TION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMIT A nON OR
EXCLUSION MAY NOT APPLY TO
you.
GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to

sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerni ng this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HAVE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICA nONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--- ------- - ---- ---- - ---
.:. .:....:- == ~ == ®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6172246

Printed in U.S. of America

