

International Business Machines Corporation Armonk, New York 10504

IBM Program License Agreement
BEFORE OPENING THIS PACKAGE, YOU SHOULD CAREFULLY READ
THE FOLLOWING TERMS AND CONDITIONS. OPENING THIS
PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND
CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD
PROMPTLY RETURN THE PACKAGE UNOPENED AND YOUR MONEY
WILL BE REFUNDED.

This is a license agreement and not an
agreement for sale. IBM owns, or has
licensed from the owner, copyrights in
the Program. You obtain no rights other
than the license granted you by this
Agreement. Title to the enclosed copy of
the Program, and any copy made from it,
is retained by IBM. IBM licenses your
use of the Program in the United States
and Puerto Rico. You assume all respon­
sibility for the selection of the Program
to achieve your intended results and for
the installation of, use of, and results
obtained from, the Program.

The Section in the enclosed docu­
mentation entitled "License Information"
contains additional information con­
cerning the Program and any related
Program Services.

LICENSE
You may:
1) use the Program on only one

machine at anyone time, unless
permission to use it on more than
one machine at anyone time is
granted in the License Information
(Authorized Use);

2) make a copy of the Program for
backup or modification purposes
only in support of your Authorized
Use. However, Programs marked
"Copy Protected" limit copying;

3) modify the Program and/or merge it
into another program only in support
of your Authorized Use; and

4) transfer possession of copies of the
Program to another party by trans­
ferring this copy of the IBM Program
License Agreement, the License
Information, and all other documen­
tation along with at least one
complete, unaltered copy of the
Program. You must, at the same
time, either transfer to such other

84X 1712

party or destroy all your other copies
of the Program, including modified
copies or portions of the Program
merged into other programs. Such
transfer of possession terminates
your license from IBM. Such other
party shall be licensed, under the
terms of this Agreement, upon
acceptance of this Agreement by its
initial use of the Program.

You shall reproduce and include the
copyright notice(s) on all such copies of
the Program, in whole or in part.

You shall not:
1) use, copy, modify, merge, or transfer

copies of the Program except as
provided in this Agreement;

2) reverse assemble or reverse compile
the Program;
and/or

3) sublicense, rent, lease, or assign the
Program or any copy thereof.

LIMITED WARRANTY
Warranty details and limitations are
described in the Statement of Limited
Warranty which is available upon request
from I BM, its Authorized Dealer or its
approved supplier and is also contained
in the License Information. IBM provides
a three-month limited warranty on the
media for all Programs. For selected
Programs, as indicated on the outside of
the package, a limited warranty on the
Program is available. The applicable
Warranty Period is measured from the
date of delivery to the original user as
evidenced by a receipt.

Certain Programs, as indicated on the
outside of the package, are not warranted
and are provided "AS IS."

Continued on inside back cover.

First Edition (September 1988)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are Inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor­
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be
made to your IBM Authorized Dealer or your IBM Marketing Repre­
sentative.

Operating System/2 is a trademark of the International Business
Machines Corporation.

C/2 is a trademark of the International Business Machines Corpo­
ration.

All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book is Volume 1 of a four-volume set explaining the IBM C/2
compiler. It contains fundamental information needed to write pro­
grams using the IBM version of the C language, including program
structure, functions, variables, expressions, and preprocessing.

This book assumes that first-time users of IBM C/2 have completed at
least one year of computer science studies. This book is also
intended for experienced applications programmers or system pro­
grammers. Users should also be familiar with their personal com­
puter and operating system.

The following table lists some common tasks you may want informa­
tion about, and which book you can find the information in.

If You Want To ••• Refer To •••

Install IBM C/2 Fundamentals

Learn basic facts about IBM C/2 Fundamentals

Learn the format of a function Language Reference

Understand error messages Compi/e, Link, and Run

Debug a program Debug

Compile a program Compile, Link, and Run

Link a program Compile, Link, and Run

Write a program Fundamentals and Language Ref-
erence

iii

Related Publications
The following books cover topics related to the IBM C/2 Library:

• IBM CI2 Compile, Link, and Run
• IBM CI2 Language Reference
• IBM Debug

• IBM MASMI2 Fundamentals
• IBM MASMI2 Assemble, Link, and Run
• IBM MASMI2 Language Reference

• IBM Operating System/2 Version 1.00 (Standard and Extended
Editions)

- Programmer's Guide

• IBM Operating System/2 Version 1.10

- Programming Guide

• The technical reference for your personal computer.

• The technical reference for your operating system.

• IBM System Application Architecture Common Programming
Interface C Reference

• iAPX 86,88 User's Manual, Copyright 1981, Intel Corp., Santa
Clara, CA.

• iAPX 286 Hardware Reference Manual, Copyright 1983, Intel
Corp., Santa Clara, CA.

• iAPX 286 Programmer's Reference Manual, Copyright 1985, Intel
Corp., Santa Clara, CA.

iv

Contents

Chapter 1. Introducing IBM C/2 1-1
How This Book Is Organized 1-1
Conventions Used In This Book 1-3

Hexadecimal Representation 1-4
Operati ng Systems 1-4

Features and Functions 1-5
About Standards 1-6

Chapter 2. Installation and Practice Session 2-1
About the SETUP and INSTAID Programs 2-1
Space Required for Installation 2-4
Verifying Installed Options 2-4
Installing with SETUP 2-5
Installing with INSTAID 2-5
Environment Variables 2-6
System Configuration 2-7
Verifying Compiler Environment 2-7
Building Special Libraries (SETUP IL) 2-8

Practice Session 2-9
Compiling and Linking 2-10
Running the Demo Program 2-15
Using Batch Files 2-16

Understanding IBM C/2 Software 2-17
Executable Files 2-17
Include Files 2-18
Include \SYS Files 2-19
Library Files .. 2-19
Other Files 2-21

Manually Installing on Other Storage Devices 2-22
Setting the Environment 2-29
Setting the Configuration 2-29
Building Combined Libraries 2-30
Using a Numeric Coprocessor 2-30
Using an 80186, 80188, 80286 or 80386 Processor 2-30

Installing IBM C/2 On Local Area Network 2-31

Chapter 3. Building a C Program 3-1
Character Sets 3-1
Constants 3-6

v

Identifiers
Keywords
Comments
Tokens

3-12
3-14
3-14
3-16

Chapter 4. Program Structuring 4-1
Source Program 4-1
Source Files 4-2

Running the Program 4-4
Lifetime and Visibility 4-5
Naming Classes 4-9

Chapter 5. Declaring Variables, Functions, and Data Types ... 5-1
Type Specifiers 5-2

Range of Values 5-5
Declarators 5-8

Pointer, Array, and Function Declarators 5-8
Complex Declarators 5-9
Declarators with Special Keywords 5-12

Variable Declarations 5-18
Simple Variable Declarations 5-19
Enumeration Declarations 5-19
Structure Declarations 5-21
Bit-fields 5-22
Union Declarations 5-26
Array Declarations 5-27
Pointer Declarations 5-31

Function Declarations 5-32
Storage Classes 5-35

Variable Declarations at the External Level 5-36
Variable Declarations at the Internal Level 5-39
Function Declarations at the External arid Internal Levels .. 5-41

Initialization 5-42
Simple and Pointer Types 5-42
Aggregate Types .. 5-43
String Initializers 5-45

Type Declarations 5-45
Structure, Union, and Enumeration Types 5-46
Typedef Declarations 5-47

Type Names .. 5-48

Chapter 6. Forming Expressions and Making Assignments 6-1
Operands 6-1

vi

Constants
Identifiers

6-2
6-2

Strings 6-3
Function Calls 6-3
Subscript Expressions 6-4
Multidimensional Array References 6-5
Member Selection Expressions 6-7
Expressions with Operators 6-8
Expressions in Parentheses 6-9

Type-Cast Expressions 6-9
Constant Expressions 6-9
Operators 6-10

Standard Arithmetic Conversions 6-10
Unary Operators 6-12
Indirection and Address-of Operators 6-13
Sizeof Operator 6-14
Multiplicative Operators 6-14
Additive Operators 6-15
Shift Operators 6-18
Relational Operators 6-19
Bitwise Operators 6-20
Logical Operators 6-21
Sequential Evaluation Operator 6-22
Conditional Operator 6-23

Assignment Operators 6-24
Ivalue Expressions 6-24
Unary Increment and Decrement 6-25
Simple Assignment Operator (=) 6-26
Compound Assignment Operators 6-26

Precedence and Order of Evaluation 6-27
Side Effects 6-30
Type Conversions 6-31

Assignment Conversions 6-32
Type Cast Conversions 6-38
Operator Conversions 6-39
Function-Call Conversions 6-39

Chapter 7. Using C Statements 7-1
break .. 7-2
Compound Statement 7-3
continue 7-4
do .. 7-5
Expression Statement 7-6

vii

for .. 7-7
goto and Labeled Statements 7-9
if .. 7-10
null ... 7-12
return 7-13
switch 7-15
while 7-18

Chapter 8. Using IBM C/2 Functions 8-1
Function Definitions 8-1

Storage Class 8-2
Return Type 8-3
Parameters 8-4
Function 80dy 8-9

Function Declarations 8-9
Function Calls 8-11
Arguments 8-14
Using Functions with a Variable Number of Arguments 8-16
Using Recursive Functions 8-18

Chapter 9. Using Preprocessor Directives and Pragmas 9-1
Manifest Constants and Macros 9-2
#define Define Directive 9-3

Special Operators Used Within Macros 9-6
#undef Undefine Directive 9-9
#include Include Files 9-10
Conditional Compiling 9-11
#error Error Directive 9-12
#if, #elif, #else, #endif If, Else-if, Else, and End-if Directives .. 9-13
#ifdef, #ifndef Ifdef and Ifndef Di rectives 9-17
#line Line Control 9-18
#pragma 9-20

Appendix A. DIHerences from the Proposed ANSI Standard for C A-1

Appendix B. Compiler, Linker and Run-Time Limits 8-1
Compiler Limits 8-1
Linker Limits 8-2
Run-Time Limits 8-4

Glossary X-1

Index X-13

viii

Summary of Changes

Following are the differences between IBM C/2 Version 1.00 and
Version 1.10 that affect this book.

Technical Changes

New Preprocessor Features
Under this version, new preprocessor features:

Allow arguments in macro expansions to be expanded into a
string literal containing the expanded argument.

Joi n the tokens on either side of the operator into a new
token in macro expansions.

Allow production of user error messages during compiling.

Allows single line comments.

There are also three new predefined macros: _DATE_, _TIME_,
and_STDC_.

Changes to the Language Syntax
Under this version, changes made to the language syntax make it
conform more closely to the new ANSI standard. This includes new
pragmas, new object type modifiers, the unary plus operator and the
const keyword.

Installation Procedure Modifications
Under this version, the automatic installation programs build com­
bined libraries and an installation log file.

Organizational Changes
The Installation and Practice Session information has been moved to
this book from IBM CI2 Compi/e, Link, and Run.

ix

x

Chapter 1. Introducing IBM C/2

The C language is a general-purpose programming language known
for its efficiency, economy, and portability. In many cases, C pro­
grams are comparable in speed to assembler-language programs
and are easier to maintain and read. You can write portable code
because the strict definition of the language makes it independent of
any particular operating system or machine, or you can add system­
specific routines to take advantage of the efficiencies of a particular
machine. While these advantages make it a good choice for almost
any kind of programming, C is especially useful in systems program­
ming. The books in the IBM C/2™ library describe over 300 functions
that perform useful tasks in your programs.

C is different from most structured languages. It does not include
built-in functions to perform tasks such as input and output, reserva­
tion of storage, screen manipulation, and process control. Instead, C
provides run-time libraries to perform such tasks. This design con­
tributes to the adaptability and compactness of C. Run-time routines
provide support as needed, which lets you minimize their use or
tailor them for special purposes.

The books in this library show you how IBM C/2 resembles what you
have learned about C from programming texts, where IBM has
extended the C language to increase its usefulness, and where the
IBM version differs from other versions of C.

How This Book Is Organized

Chapter 1, Introducing IBM C/2: Describes the notation conventions
used in this book and some of the features and functions of IBM C/2.

C/2 is a trademark of the International Business Machines Corporation.

Introducing IBM C/2 1-1

Chapter 2, Installation and Practice Session: Explains how to install
the IBM C/2 compiler using the automatic installation programs pro­
vided or a local Area Network Installation Aid. It provides
instructions for compiling, linking, and running a sample C program
and for using batch files to set up the operating environment.

Chapter 3, Building a C Program: Discusses differences between the
C character set and the representable character set. It also dis­
cusses the rules for coding constants, identifiers, keywords, and
tokens.

Chapter 4, Program Structuring: Discusses the major parts of a C
program: preprocessor directives, declarations, the maln() function,
and called functions.

Chapter 5, Declaring Variables, Functions, and Data Types: Dis­
cusses fundamental data types of variables as well as structures,
arrays, and unions of the fundamental types. It also explains how to
create new data type names using the typedef declaration.

Chapter 6, Forming Expressions and Making Assignments: Explains
the format of expressions and assignment statements. These are the
basis of C processing.

Chapter 7, Using C Statements: Discusses the forms of C state­
ments. C statements control the flow of program processing.

Chapter 8, Using IBM C/2 Functions: Explains how to create and use
a function, the primary unit of organization of a C program.

Chapter 9, Using Preprocessor Directives and Pragmas: Discusses
the directives you use to control the action of the preprocessor.

Appendix A, Differences from the Proposed ANSI Standard for C:
Contains information about the differences between the proposed
ANSI standards and those used by IBM C/2.

Appendix B, Complier, Linker and Run-Time Limits: Contains infor­
mation about the limits imposed by C/2 .

Glossary: Includes the glossary for all books in the IBM C/2 library.

Index: Includes index entries for this book only.

1-2 Introducing IBM C/2

Conventions Used In This Book
This book uses certain conventions in defining operating system com­
mands, formats of functions, names, and terms.

Convention
Boldface

Italics

Uppercase

Color

Ellipses

Brackets

Vertical Bars

Meaning
Words or numerics printed in bold indicate proce­
dural tasks, menu items, directives, function calls,
library functions, statements, keywords, and values.
Words or numerics printed in italics represent infor­
mation you supply, such as variables and filenames.
Italics also introduce new terms or concepts.
Words printed in CAPITAL letters include DOS com­
mands, OS/2 commands, dialog commands, options,
programs, filenames, libraries, and utilities.
Color indicates screen responses and programming
examples.
Ellipses (...) indicate that you supply additional infor­
mation in the form shown.
Brackets [) indicate optional items supplied to com­
mands.
Items separated by a vertical bar m mean that you
can enter either one of the separated items. For
example:

ONloFF

means you can enter ON or OFF but not both.

Introducing IBM C/2 1-3

Th~ following terms have the specified reference:

Term
LINK
LIB
MAKE
CodeViewl

EXEMOD
Assembler

Reference
IBM Linker/2, Version 1.10
IBM Library Manager/2, Version 1.10
IBM MAKE/2, Version 1.10
IBM CodeView
IBM EXEMOD/2 Version 1.10
IBM Macro Assembler/2.

Hexa~ecimal Representation
This book represents hexadecimal numbers in two ways. The letter H
(or h) shows hexadecimal system calls, such as 59H (or 59h), in DOS.
All other hexadecimal numbers use the standard C representation
Oxhexdigits, such as Ox1 F.

Operating Systems
Throughout these books, the references to operating systems have
the following meaning:

Abbreviation
DOS
DOS mode
OS/2

Meaning
DOS 3.30 or 4.00
DOS or the DOS mode of OS/2
IBM Operating System/2™.

lCodeView is a trademark of the Microsoft Corporation.

Operating System/2 and OS/2 are trademarks of the International Busi­
ness Machines Corporation.

1-4 Introducing IBM C/2

Features and Functions
C is a flexible language that leaves much of the decision-making to
you. Since C imposes few restrictions in matters such as type con­
version, you need to understand the language well to understand the
behavior of your programs. The C language:

• Provides a full set of loop, conditional, and transfer statements to
control program flow logically and efficiently and to encourage
structured programming.

• Offers a large set of operators that correspond to common
machine instructions, allowing direct translation into machine
code. Various operators let you specify multiple operations with
minimal code.

• Provides data types that include several sizes of integers as well
as characters and single- and double-precision floating-point
types. You can design more complex data types, such as arrays,
structures; and unions to suit specific program needs.

• Lets you declare pointers to variables and functions. A pointer to
an item corresponds to the machine address of that item. Using
pOinters can increase program efficiency. You can use pointer
arithmetic in C.

• Gives you a preprocessor that acts on the text of files before com­
piling. Among the most useful applications of preprocessor
directives for C programs are the definition of program constants,
the substitution of function calls with faster macro look-alikes,
and conditional compiling.

Introducing IBM C/2 1-5

About Standards
This release of IBM C/2 follows most of the features of the draft pro­
posed American National Standards Institute (ANSI) standard for C.

This release of IBM C/2 also participates in the Common Program­
ming Interface component of IBM Systems Application Architecture.
In these publications, features of IBM C/2 which are non-standard or
non-portable are marked in a box labeled "IBM Extension."

For a complete listing of the IBM C/2 non-ANSI features see
Appendix B, "Compiler, Linker and Run-Time Limits"

1-6 Introducing IBM C/2

Chapter 2. Installation and Practice Session

IBM C/2 provides two automatic installation programs, SETUP and
INST AID. Both programs:

• Are menu-driven; they prompt you for various installation options
and provide an explanation of each option as it is displayed.

• Install the IBM C/2 compiler to run under DOS mode and OS/2
mode and to produce programs for either mode.

• Copy the files necessary to run the compiler into directories they
create according to your responses.

• Set the environment so the operating system can find these files
whenever you call the compiler.

• Build run-time libraries that you can link with your programs.
• Create a log file listing the options you choose during installation.

If you have special needs not covered by SETUP and INSTAID, you
can make the directories and copy the files yourself using the MKDIR
and COpy commands. The information and file tables in "Under­
standing IBM C/2 Software" on page 2-17 can guide you through such
an installation. Specific inst~uctions are also found there on how to
set the environment and the CONFIG.SYS file.

The practice session (see "Practice Session" on page 2-9) demon­
strates basic procedures to compile, link, and run a sample C
program.

To install C/2 as an application under PC Local Area Network, see
"Installing IBM C/2 On Local Area Network" on page 2-31.

About the SETUP and INST AID Programs
The information provided here is similar to that displayed on the
screen by the SETUP and INSTAID programs. Read the information
here first or read it on the screen as you go through the automatic
installation process. See "Installing with SETUP" or "Installing with
INSTAID" on page 2-5 to read about starting the automatic installa­
tion programs.

Installation and Practice Session 2-1

What SETUP and INSTAID Do
The SETUP and INSTAID programs install the compiler, supporting
libraries, utility programs, and other files. They can also build com­
bined libraries without going through the entire installation process.

The SETUP and INSTAID programs operate as full screen interactive
programs. They prompt for the directories on your fixed disk where
you wish to copy various types of files into. Each prompt has a
default value presented in brackets ([n. To use the default value,
press Enter.

Type a response at the cursor to override the default. As you type,
the programs check each character to see if it is valid. An invalid
character is not accepted and causes the speaker to beep. When you
finish entering the response, the programs check for valid input. If
the input is not valid, hear a beep and an error message is displayed
at the bottom of the screen.

After you have entered responses to all items, the SETUP program
asks if you would like to change any of the responses. If you accept
the default (Y), SETUP returns to the first question. The responses
you gave the first time are now the default values. You can move
quickly through the questions to review what you entered, making
changes if necessary. (With INSTAID, you can press the Esc key to
review the prompts you have already answered as you move through
the program.)

If you enter N, the programs prompt for the following names:

• Binary directory/ies: INSTAID prompts for only one but SETUP
prompts for the following:

Bound: Contains bound utilities, including the compiler and
linker. Bound means that they can run under DOS mode and
OS/2 mode.
OS/2 mode binary directory: Contains run-time modules and
utilities that run only under OS/2 mode. Prompts for this
appear only if you request OS/2 mode support.
DOS mode binary directory: Contains run-time modules and
utilities that run only under DOS mode. Prompts for this
appear only if you request DOS mode support.

• Library directory: Contains C-library files, to hold the combined
libraries built by SETUP or INSTAID.

2-2 Insta"ation and Practice Session

• Include directory: Contains C-include files for the regular C envi­
ronment and a subdirectory for the multi-thread support library.

• Source directory: Contains the sample C files, the startup
sources, and the CodeView tutorial.

• Temporary directory: Contains work files created by the com-
piler.

CAUTION:
SETUP and INSTAID overwrite any tiles In an existing directory that
contains tiles with the same names as the ones being copied. SETUP
and INSTAID create the directories It they do not exist.

When all of the directory prompts have been answered, SETUP asks
again if you want to change any of the responses. Entering Y returns
you to the first directory prompt. Your last responses now appear as
the new defaults. (With INSTAID, you can press the Esc key to review
the prompts you have already answered as you move through the
program.)

When you specify N, indicating you do not want to change any of the
options, the programs start copying files from the diskettes to your
fixed disk. They ask you to insert each disk that they need and to
press a key to signify that you are ready to start copying. They check
that the proper disk has been inserted and start copying files. For
each file copied, SETUP displays a message showing the directory
the file was copied into; INSTAID does not.

Component Libraries
Using combined libraries reduces program link time considerably.
After loading the appropriate files from the C disk set, the programs
use the information you specified about the math package(s), target
operating system(s), and memory model(s) to create one or more
combined libraries.

When the programs finish building the requested combined libraries,
they delete the component libraries (those components used to build
the combined libraries) if you specified that option in your earlier
responses. Normally, you will not need the component libraries and
should delete them since they occupy significant disk space.

Installation and Practice Session 2-3

Space Required for Installation
The following table lists the amount of disk space you will need to
install the files and libraries available with the IBM C/2 compiler. To
estimate how much storage you will need, add the value for each
option you are choosing. Verify that you have the required disk space
available before you begin; SETUP and INSTAIO stop installation if
you don't have enough.

Type of file Required disk space

.EXE 1.077MB for bound executa-
bles
244KB for DOS mode execut-
abies
238KB for OS/2 mode execut-
abies.

Standard Include 100KB

Multi-thread Include 88KB

Source (optional) 27KB for DLL
125KB for SAMPLE
78KB for STARTUP
57KB for DOS
63KB for OS/2

Library 401 KB for DLL Support
200KB for MT Support
63KB for Graphics.lib
Approximately 200KB each
for Combined

Verifying Installed Options
SETUP and INSTAIO create a file named C2INSTAL.LOG that lists the
options you chose during installation. This file resides in the binary
directory you specify during installation. (The default is \IBMC2\BIN).

2-4 Installation and Practice Session

Installing with SETUP

Note: SETUP installs the compiler under DOS mode and OS/2 mode.
When installation is complete the compiler runs under both
modes and generates programs for either mode.

To use SETUP:

1. Place the diskette labeled SETUP in drive A.

2. Make sure the current directory is A:\.

3. At the command prompt type:

SETUP driveletter

where drive/etter specifies the fixed disk used to start the oper­
ating system. If you start the system with a diskette, drive/etter
can refer to any fixed disk on your system.

4. Press Enter.

5. Follow the instructions on the screen.

Note: When installation is complete you can verify the options you
chose by checking the C2INSTAL.LOG file in the binary direc­
tory you specified during installation. (The default is
\IBMC2\BIN).

Installing with INSTAID

Note: To install the compiler with INSTAID you must be running
under OS/2 mode. However, when installation is complete the
compiler runs under DOS mode or OS/2 mode and generates
programs for either mode.

To use INSTAID:

1. Place the diskette labeled CVP in drive A.

2. Make sure the current directory is A:\.

3. At the command prompt type:

CINSTAID driveletter

where drive/etter represents the device (usually C) used to start
OS/2.

4. Press Enter.

5. Follow the instructions on the screen.

Installation and Practice Session 2-5

Note: When installation is complete you can verify the options you
chose by checking the C2INSTAL.LOG file in the binary direc­
tory you specify during installation. (The default is
\IBMC2\BIN).

Environment Variables
To access the temporary, binary, include, and library directories that
you installed, the environment variables must be set. As you go
through the installation process, SETUP and INSTAID offer you two
options:

1. Set the environment when SETUP or INSTAID Is finished.
• Choose Y (the default) if you want SETUP or INSTAID to set

the environment for you.

Note: The environment will not be set unless you have
enough environment space. If you receive an environ­
ment space error messag~ use the following config­
uration command in CONFIG.SYS to create an
environment space of 1024 bytes:

shell=command.com /p /e:1024

You must restart your system after you add this line.

See the technical reference information for DOS if you need
more information about environment space.

• Choose N if you are not using the compiler immediately after
installation. '

2. Modify the automatic batch flies.
• Choose N (the default) if you do not want SETUP or INSTAID

to modify your automatic batch files. To set the environment,
run NEW-VARS.BAT (for DOS mode) or NEW-VARS.CMD (for
OS/2) after the command prompt.

The NEW-VARS.BAT and NEW-VARS.CMD files reside in the
appropriate binary directory specified earlier in the installa­
tion process. From those directories, these files can be run
directly from the command prompt as batch files.

Note: USing NEW-VARS.BAT or NEW-VARS.CMD adds to
your existing environment strings; it does not replace
them.

• Choose Y to cause SETUP or INSTAID to add lines to
AUTOEXEC.BAT (for DOS mode) or OS2INIT.CMD (for OS/2

2-6 Installation and Practice Session

Version 1.00). This will automatically set the environment
variables each time you start your system.

Notes:

a. SETUP and INSTAID will not modify automatic batch files
under DOS Version 4.00 or OS/2 Version 1.10.

b. This option will not work on all automatic batch files, such
as those that end with a call to a program from which
they never return. You should be familiar with the auto­
matic batch file(s) on the system before choosing this
option.

System Configuration
If you are using DOS, your start-up configuration should be set to
provide enough buffers and files to run the C compiler. (See "Setting
the Configuration" on page 2-29 for more information.) SETUP
places the appropriate commands in the NEW-CONF.SYS file. This
file resides in the same binary directory as the NEW-VARS.BAT file.
If you have a CONFIG.SYS file on your root directory, copy the com­
mands in NEW-CONF.SYS into it. If you do not, rename
NEW-CONF.SYS to CONFIG.SYS and copy it to the root. If you change
or create the CONFIG.SYS file, you must restart the computer to
execute the commands in the file before using the compiler.

If you are using OS/2, your system should be set to have enough
available files to open the C runtime libraries. To do this, include the
following line in your CONFIG.SYS file:

FILES=255

If you plan to run the CodeView debugger in OS/2 mode, include the
following line in your CONFIG.SYS:

IOPL=YES

Note: After you make changes to CONFIG.SYS you must restart your
system for them to take effect.

Verifying Compiler Environment
Before running the practice session or another program, verify that
the compiler environment is set correctly. To do this, type

SET

Installation and Practice Session 2-7

When you issue the SET command without an argument, it lists all
environment variables and their current settings. Make sure the
PATH, INCLUDE, LIB, and TMP variables are in the list and that they
include the directories you installed the compiler file groups into. For
example:

PATH=C:\IBMC2\BIN;
INCLUDE=C:\IBMC2\INCLUDE;
LIB=C: \IBMC2\LIB
TMP=C:\IBMC2\TMP

Building Special Libraries (SETUP IL)
After installing all of the files on your disk, you may later realize that
you wanted a different set of combined libraries built. You can build
the libraries yourself using LIB and the list of libraries given in the C
Compiler documentation, or you can have SETUP build the libraries.
If you want SETUP to build the libraries for you, type the following
command, then follow the instructions on the screen.

SETUP driveletter /L

where drive/etter specifies the fixed disk used to start the operating
system. If you start the system with a diskette, drive/etter can refer to
any fixed disk on your system.

By specifying IL to SETUP when you start it, SETUP creates combined
libraries without doing a complete installation of the product. If you
need to load the files from disk, SETUP copies only the files that it
needs to create the libraries that you specify with the math, memory
model, and operating mode options.

In all aspects but one, it works the same as SETUP; the difference is
the source of the files. If you chose to retain the component libraries
when you originally installed IBM C/2, they would already be on your
fixed disk. Therefore, when you give the IL option, SETUP allows the
source of the files to be a directory specification. This is the directory
the files can be found in and can be the same directory you place the
resulting libraries into.

If SETUP cannot find a file in the directory you named, it prompts you
to enter a new directory. If the file no longer exists on your fixed disk,
you can specify a diskette drive, and SETUP will read the files from
the original distribution disks.

2-8 Installation and Practice Session

Note: Once you start reading from a diskette, you cannot specify a
directory again.

Practice Session
This practice session shows how to create an executable program
using either the CL command or the CC and LINK commands sepa­
rately. These instructions cover the options you need to select in
order to operate under each of the different library modules. They
also give the options that determine whether the program runs under
DOS mode or OS/2 mode. These commands work in either DOS or
OS/2 mode; that is, in either mode, you can create an executable
program to run under either mode.

The source file used in this practice session is called DEMO.C. It is
in the directory you chose for source files when you installed the
compiler. DEMO.C is a simple C program that contains only one
function, the main function. The main function is designed to display
any command-prompt arguments you pass to the program at run
time. It also displays the current environment values. You can
examine the DEMO.C source file to see how it accomplishes this. For
a full description of passing command-prompt data to programs,
getting access to the program environment from within a program,
and declaring the argc, argv, and envp parameters, see the "Passing
Data to a Program" section in Chapter 4 of IBM C/2 Compile, Link,
and Run.

Start the operating system and change the current directory to:

C:\dest\src

C The current drive.
\dest The directory you chose to contain the compiler directo­

ries. Omit this if \dest is the root directory.
\src The directory you chose to contain source files when you

installed the compiler.

The compiler allows you to compile and link a program in one or two
steps. The CL command compiles and links in one step. The CC and
LINK commands allow you to perform each operation separately.
The practice session uses both methods.

Installation and Practice Session 2-9

If you get an error message during the practice session, see
Appendix A of the IBM CI2 Compile, Link, and Run for suggestions on
how to recover from the error condition.

Note: IBM C/2 is sensitive to uppercase and lowercase. When
entering commands, type them as they appear.

Compiling and Linking
During this practice session you create an executable program using
either the CL command or the CC and LINK commands.

Using the CL Command
The following shows what to type to compile and link the DEMO
program:

CL [lAx] [I Lmode] DEMO.C

where

lAx indicates the memory model you are operating under.

If you are using the Small-model, leave lAx out. If you are using any
other library, replace x with the variable for the library model you
have installed:

Variable
M
C
L

Installed Library
Medium-model
Compact-model
Large-model.

ILmode indicates the mode the executable program will run under.

If, during the SETUP process, you chose to run programs under only
one mode, do not use the IL option. Use the IL option only if:

a. You did not choose a default operating mode or

b. You chose a default operating mode but want to create a
program to run under the other mode.

Replace mode with the variable for the mode you want the executable
program to run under:

Variable
p
c

Mode
OS/2 mode
DOS mode.

2-10 Installation and Practice Session

Press Enter after typing the correct information. The CL command
calls the compiler executable files that create the object file and link
it with the libraries that you have specified in order to create the exe­
cutable program. No prompts are displayed, only compiler and linker
messages. When the command prompt returns, the Demo program is
ready to run.

For more information, see "Running the Demo Program" on
page 2-15.

Using the CC and LINK Commands
This section describes the two-step compile and link method.

1. Type

cc

and press Enter.

The CC command calls the compiler control program CC.EXE,
which displays prompts and guides you through the compiling
process. After the compiler copyright statements appear, the first
prompt displayed is:

Source Filename [.C]:

This prompt asks for the name of the file to be compiled. If you do
not include the filename extension, CC.EXE assumes that the
extension is .C (or .c).

2. Select the correct DEMO information, depending on the library
you installed, from the following list:

Type
DEMO.C
lAM DEMO.C
lAC DEMO.C
IAL DEMO.C

Installed Library
Small-model
Medium-model
Compact-model
Large-model.

3. Type the correct information and press Enter.

The next prom pt is:

Object filename[DEMO.OBJ]:

Following the Object filename prompt you can:

a. Press Enter. This causes CC.EXE to use the default name for
the object file: DEMO.OBJ. The object file is created in the
current working directory.

Installation and Practice Session 2-11

b. Supply a name for the object file.

4. Press Enter after typing the correct information.

The next prompt is:

Source listing [NUL.LST]:

This prompt lets you create a listing of your source file. The
source listing contains your source code, on numbered lines, and
symbol table information. Any error messages that occur during
compiling are shown in the source listing immediately following
the line that caused the error.

5. Type

DEMO

and press Enter.

The listing file DEMO.LST is created in the current working direc­
tory.

The next prompt is:

Object listing [NUL.COD]:

This prompt lets you create a listing of your object file containing
the machine instructions that correspond to your C instructions.

6. Type

DEMO

and press Enter.

CC.EXE adds the default extension .COD to the name DEMO and
creates a listing file named DEMO.COD. The listing file is created
in the current working directory.

CC.EXE now begins to compile your program. If your program
has errors, they are displayed as the compiler operates.
(DEMO.C does not have errors.) When the compiling process is
finished, the command prompt is displayed.

You now have an object file named DEMO.OBJ, a source listing
file named DEMO.LST, and a listing file named DEMO.COD in
your current working directory.

7. To link your file, type

LINK

and press Enter.

2-12 Installation and Practice Session

After the linker copyright statements, the first linker prompt on
the screen is:

Object Modules [.OBJ]:

8. Type

DEMO

and press Enter.

The LINK program adds the .OBJ extension to your object module
files so you can easily locate them on the disk. Because the file
is in the current working directory, you do not have to specify a
pathname for DEMO.

The next prompt is:

Run File [DEMO.EXE]:

This prompt lets you name the executable program file.

9. Type

/NOI

and press Enter.

The linker uses the default name, shown in brackets, for the exe­
cutable file. The executable file is created in the current working
directory.

The INOI stands for the linker option NOIGNORECASE. Although
not necessary for the DEMO program, it is recommended that you
use this option for compatibility. Many compilers distinguish low­
ercase from uppercase in identifiers and assume the linker does
the same.

The next prompt is:

List File [NUL.MAP]:

If you enter a filename for this prompt, the linker creates a map
file that lists all the external symbols in the program and their
locations.

10. Type

DEMO/MAP

and press Enter.

This response tells the linker to create a listing file named
DEMO.MAP. The map file is created in the current directory. The

Installation and Practice Session 2-13

/MAP option causes global symbols to be listed at the end of
DEMO. MAP.

The next prompt is:

Libraries [.LIB]:

Following the libraries prompt you can:

a. Press Enter to accept the default library name. Do this if you
chose to run programs under only one mode during the
SETUP process.

b. Enter

/NOD pathname:xLIBCyz

if you

1) Did not choose a default operating mode.

2) Chose a default operating mode but want to create a
program to run under the other mode.

Replace x with the variable for the library model you have
installed:

Variable
S
C
M
L

Installed Library
Small-model
Compact-model
Medium-model
Large-model.

Replace y with the variable for the math library you have
installed:

Variable
A
E
7

Installed Library
Altmath
Emulator
8087 floati ng poi nt.

Replace z with the variable for the mode you want the executable
file to run under.

Variable
R
P

Mode
DOS mode
OS/2 mode.

11. Press Enter after typing the correct information.

The /NOD (NODEFAULT) switch tells the linker to link with the
next specified library, not the default (xLlBCyz.) The default

2-14 Installation and Practice Session

library name exists if you want to always create executable files
to run under only one mode. To do this, rename your xLlBCyz.LlB
to xLlBCE.LlB. LINK and CL link with it by default, without any
library specification.

The last prompt is:

Definitions File [NUL.DEF]:

This prompt allows you to define specific attributes of the applica­
tion.

12. Press Enter.

The LINK program now proceeds to link your file, displaying any
errors. When the command prompt returns, the linker has fin­
ished processing your file. You now have an executable file
named DEMO.EXE in your working directory, plus a map file
named DEMO.MAP.

You may want to examine the source listing (DEMO.LST), the
object listing (DEMO.COD), and the map file (DEMO. MAP) to
familiarize yourself with their formats. These files are useful for
debugging programs. However, the listing and map files are not
required for running the program, so you can delete them.

You can also delete the object file (DEMO.OBJ) because you have
the executable program file. Chapter 5 in IBM CI2 Compile, Link,
and Run explains how to use the IBM LIB program to organize
object files into libraries of useful functions.

Running the Demo Program
Run the DEMO program and pass three arguments by typing the fol­
lowing at the command prompt:

DEMO ONE TWO THREE

The program name is displayed on the screen, followed by the argu­
ments ONE, TWO, and THREE, and a listing of all current environment
settings. The environment settings include PATH, LIB, INCLUDE, and
TMP, as well as any other settings that are currently in effect
(whether or not they apply to the C program or to the compiling and
linking process).

Installation and Practice Session 2-15

Using Batch Files
You can create batch files to set up the compiler environment and call
the compiler. A batch file is a text file containing a series of execut­
able commands. Under DOS mode, batch files have the extension
.BAT. In OS/2 mode, batch files have the extension .CMD. Run a
batch file by typing the filename without the .BAT or .CMD extension.
This causes the system to execute the commands in the file. For
more information about creating and using batch files see the oper­
ating system reference information.

The examples that follow use the command-prompt method of calling
CC and LINK. The command-prompt method lets you give all
responses to the prompts on a single line instead of waiting for the
individual prompts. The command-prompt method is discussed under
"Using the Command Prompt" in Chapter 2 and "Using a Command
Prompt to Specify Link Files" in Chapter 3 of IBM C/2 Compile, Link,
and Run.

For example, if you have installed the IBM C/2 compiler on drive C,
and the destination directory is \C, you can use the following batch
file to set the correct environment and then compile and link a given
source file.

PATH=C:\IBMC2\BIN;
SET INCLUDE=C:\IBMC2\INCLUDE;
SET LIB=C:\IBMC2\LIB
SET TMP=C:\IBMC2\TMP
CC %1 ... ;
LINK %1./NOI.%1./NOD:SLIBCE SLIBCER;

The values given to PATH, INCLUDE, LIB, and TMP set the environ­
ment for the CC and LINK commands. As given, these set commands
will replace the previous environment strings.

The symbol % 1 tells DOS to look for an argument on the command­
prompt line when you run the batch file. When you type

COMPILE DEMO

at the prompt, the filename DEMO is substituted for % 1, and DEMO.C
is compiled, producing the object file DEMO.OBJ.

The last line links the object file to the library, assuming that you
have chosen not to rename the DOS mode library to SLlBCE.LlB (the
default.) The CC program returns an exit code to allow testing for
successful compiling. The exit code 0 indicates success. For infor-

2-16 Installation and Practice Session

mation on the other codes, see "Compiler Exit Codes" in Chapter 2 of
IBM CI2 Compile, Link, and Run. The DOS batch command IF
ERRORLEVEL can be used to test the exit code; see either the user's
reference information for the operating system. for more information
on this command.

The following lines could replace the LINK command in the previous
batch file. (The @ tells the system not to echo the command itself to
the screen.)

@IF ERRORLEVEL 1 GOTO FAILED
LINK %l,/NOI,%l,/NOD:SLIBCE SLIBCER;
@GOTO END
:FAILED
@ECHO Compile of %l.C failed
:END

If compiling is successful, the object file DEMO.OBJ is linked to
produce DEMO.EXE (the default name, since none is supplied). The
name DEMO is also supplied (by means of the symbol %1) for the
Map file prompt, so a map file named DEMO. MAP is produced. If
compiling is not successful, the LINK step is skipped and an explana­
tion is displayed.

The environment set by the COMPILE batch file remains in effect until
you explicitly change it or until you restart your machine. To restore
your usual environment settings, create a batch file that resets the
environment variables to the directories you most frequently use, and
call it NEW-VARS.BAT or NEW-VARS.CMD.

Understanding IBM C/2 Software
The software for IBM C/2 consists of three main file categories: com­
piler executable files, include files, and library files. Additional files
that do not fall into the three main categories are discussed sepa­
rately under "Other Files" on page 2-21.

Executable Files
The executable files allow you to compile and link your program.
They should be in the \BIN directory.

Installation and Practice Session 2-17

Compiling: CC.EXE runs the compiler. Call it by typing CC at the
command prompt. The three stages, or passes, of the compiler are
C1.EXE, C2.EXE, and C3.E.XE. They run in order when the compiler
program is processing a file.

CL.EXE starts the compiler, and then links the object file to the appro­
priate library. Call the CL.EXE by typing CL at the command prompt.
See "Compiling and Linking in One Step Using the CL Command" in
Chapter 3 of IBM C/2 Compile, Link, and Run for more information.

Linking: The file LlNK.EXE is the IBM object linker. You call the
linker by typing LINK after you have compiled a file or files. The
linker produces an executable program file from your compiled files.
See Chapter 3 in IBM C/2 Compile, Link, and Run for more informa­
tion.

Others: The files CV.EXE and CVP.EXE are the CodeView symbolic
debugger. The first file runs in DOS mode, the second file in OS/2
mode. For example, to debug DEMO.EXE, enter either CV DEMO (for
DOS mode) or CVP DEMO (for OS/2.) For more information, see
Chapter 1 in Debug.

You can use the library manager program LlB.EXE to create and
organize libraries of object modules. To call this utility, type LIB.
The EXEMOD.EXE utility modifies an executable program file. See
Chapter 6 in IBM C/2 Compile, Link, and Run for more information
about these utilities.

Include Files
Include files are text files you can incorporate into your program by
using the C preprocessor directive #Include. The include files are in
the \INCLUDE directory. These files contain definitions used by run­
time library routines. For more information about include files, see
Chapter 4 in IBM C/2 Language Reference.

2-18 Installation and Practice Session

Include \SYS Files
Some include files are stored in a subdirectory named SYS under the
\INCLUDE directory. The subdirectory contains some of the files that
define system-level constants and types. When you use files from
this subdirectory in a program, give the subdirectory name as well as
the filename.

Note: When you installed IBM C/2, you chose a name for the subdi­
rectory for the INCLUDE files. You either accepted the default
\INCLUDE or specified another name. The SETUP and
INSTAID programs create a subdirectory named SYS.

For example, having installed the compiler with SETUP or INSTAID, if
you want to include the file tlmeb.h, put the following line in your
program:

#include <sys\timeb.h>

Note that although case is significant in C programs, case is not sig­
nificant to DOS. Both sys and SYS are acceptable when used as DOS
directory names.

Library Files
Library files contain compiled run-time library routines to be linked
with your program. Four sets of library files are included in the \LlB
directory: small-model, medium-model, compact-model, and large­
model. Each library set comes in two versions, one for DOS mode
and the other for OS/2 mode. Huge-model programs use the large­
model library files.

The terms small-model, medium-model, compact-model, large­
model, and huge-model refer to standard storage models you can
choose for your program, based on its storage requirements for code
and data.

You do not have to choose a storage model to process and run your
program. The small model is appropriate for most programs, and the
compiler uses the small model and the small-model library files by
default. For more information about storage models, see the
"Working With Storage Models IA" section in Chapter 2 of IBM CI2
Compile, Link, and Run.

Two additional library files, EM.LlB and 87.LlB, can be used with all
storage models. EM.LlB is the floating-point emulator used to

Installation and Practice Session 2-19

perform floating-point operations. 87.LlB is the floating-point library.
This library provides minimal floating-point support and can be used
only when a numeric coprocessor is present. These files were
merged with the standard C libraries when the installation program
created your combined libraries. The compiler uses the emulator by
default, but you can cancel the default to use the floating-point library
(if you have a coprocessor) or the alternate math library. Floating­
point options are described in more detail in "Selecting the Floating­
Point Options" and "Controlling Floating-Point Operations" in
Chapter 2 of IBM C/2 Compile, Link, and Run.

The object file BINMODE.OBJ is provided for modifying the default
mode for data files from text mode to binary mode. The same file can
be used with all three storage models.

The SETARGV.OBJ file provides a routine that expands the DOS
global filename characters (?) and (*) in filename arguments passed
to C programs from the command prompt. Global filename expan­
sion is performed only if you explicitly link with the SETARGV file.
See "Expanding Global Filename Arguments" in Chapter 3 of IBM C/2
Compile, Link, and Run for more information.

The library files beginning with an S belong to the small-model
library set. The small-model C run-time libraries are organized into
two files:

SLlBCER.LlB = DOS version of C run-time libraries
SLlBCEP.LlB = OS/2 version of C run-time libraries

The SLlBCER.LlB library contains all C run-time library support you
need for DOS or DOS mode. The SLlBCEP.LlB library contains all C
run-time library support you need for OS/2 mode.

SLlBCER.LlB and SLlBCEP.LlB contain an object module named
CRTO.OBJ, which is the operating system startup routine for small­
model programs. The startup routine performs several important
tasks. It reserves the stack for the program and initializes the
segment registers. It sets up the argv, argc, and envp variables to
allow command-prompt arguments and environment settings to be
passed to the program. The startup routine is responsible for setting
up and maintaining the operating environment for the program. The
startup routine also initializes the emulator if the emulator is loaded.
The assembler source code for the DOS startup routine is provided in
the directory \STARTUP\DOS; the source code for the OS/2 startup

2-20 Installation and Practice Session

routine is in \STARTUP\OS2. You can create your own startup rou­
tines using the STARTUP.BAT file. For more information about cre­
ating your own startup routines, see Appendix B in IBM CI2 Language
Reference.

SLlBFP.L1B is the floating-point math library. It is required whenever
a program uses EM.L1B or 87.L1B.

SLlBFA.L1B is the alternate floating-point library. You can use
SLlBFA.L1B instead of EM.L1B and SLlBFP.L1B when speed is more
important than precision in floating-point calc~lations. See
"Selecting the Floating-Point Options" and "Controlling Floating-Point
Operations" in Chapter 2 of IBM CI2 Compi/e, Link, and Run for more
information about this option.

The compiler places the names of the default combined library
(SLlBCE.L1B) in every object file. LINK reads these names and links
the program to them automatically.

The files beginning with an M are medium-model library files, the
files beginning with a C are compact-model library files, and the files
beginning with an L are large-model library files (also used with
huge-model programs). The organization and content of these files
are similar to the small-model library set. For example,
CLlBCER.L1B, MLlBCER.L1B, and LLlBCER.L1B, like SLlBCER.L1B,
contain a startup routine named CRTO.OBJ.

If you specify the medium-, compact-, large-, or huge-model when you
process your program, the compiler uses the appropriate combined
libraries (by default, xLlBCE.L1B) when placing information in the
object file for the linker. Otherwise, the compiler uses the small­
model files.

The library L1BH.L1B contains the long integer helper routines used
by the compiler and run-times internally to do long integer arithmetic.

Other Files
The following files are optional.

Startup Flies: These files are used to build the startup portions of the
C run-time library. For more information see Appendix B in IBM CI2
Language Reference.

Installation and Practice Session 2-21

CodeVlew Flies: Included in the SAMPLE directory is a CodeView
tutorial, which demonstrates the various capabilities of the CodeView
debugger.

Information Flies: The file called README.DOC on the DRIVER
diskette explains changes that were most recently made to the
product.

Installation Flies: Some files are used by the installation programs.

SETUP Program INSTAID Program

SETUP.BAT C11PIP.LlB

SETUP.CMD C11.PIP

SETUPC2.EXE CINSTAID.CMD

The IBM PC Local Area Network uses PROFILE.NIA, located in the
root directory of the COMPILER disk.

Manually Installing on Other Storage Devices
This section has general information about installing the IBM C/2
compiler on devices other than fixed disks.

You need to create directories on a storage device so you can copy
all the necessary files into them. It is recommended that you install
the compiler into at least three separate directories and that you
install the recommended files into each directory. The compiler will
search the directories for those files. You can install the compiler on
any number of devices as long as you can copy all the recommended
files into the recommended directories. The three directories are:

\BIN
\lIB
\INCLUDE

For compiler executable files
For all the libraries
For all the include files.

You can create additional directories and install Source, Sample, and
Startup files, but you do not need these to compile a program.

These tables list the files on each diskette and the directories they
should be copied to. To install the compiler in some way not pro-

2-22 Installation and Practice Session

vided by the installation programs, use these tables as a guide to
manually copy the fi les.

From SETUP diskette To device:

C1.EXE \BIN

EXEMOD.EXE \BIN

LlB.EXE

CV.HLP

\SOURCE\DEMO.C \SRC

\SOURCE\GRDEMO.C

\SOURCE\SIEVE.C

From Include diskette To device:

LlNK.EXE \BIN

\ST ARTUP\FILE2. H \SRC\ST ARTUP

\ST ARTUP\MSDOS.H

\ST ARTUP\REGISTER.H

\ST ARTUP\STARTUP .BAT

\ST ARTUP\MAKEFILE

\ST ARTUP\CHKSTK.ASM

\STARTUP\CHKSUM.ASM

\ST ARTUP\NULBODY.C

\ST ARTUP\README.DOC

\ST ARTUP\MSDOS.lNC

\STARTUP\CMACROS.INC

\ST ARTUP\BRKCTLINC

\STARTUPWERSION.INC

\ST ARTUP\WILD.C

\ST ARTUP_FILE.C

\ST ARTUP\CRTOFP .ASM

\STARTUP\FMSGHDR.ASM

\ST ARTUP\SET ARGV .ASM

\ST ARTUP\DOS\NULBODY .LNK \SRC\STARTUP\DOS

\STARTUP\DOS\STDENVP.ASM

\ST ARTUP\DOS\CRTO.ASM

\STARTUP\DOS\CRTODAT.ASM

Installation and Practice Session 2-23

From Include diskette To device:

\STARTUP\DOS\CRTOMSG.ASM

\STARTUP\DOS\EXECMSG.ASM

\ST ARTUP\DOS\NMSGHDR.ASM

\ST ARTUP\DOS\STDALLOC.ASM

\ST ARTUP\DOS\STDARGV .ASM

\lNCLUDE\ASSERT.H \INCLUDE

\INCLUDE\BIOS.H

\INCLUDE\CONIO.H

\INCLUDE\CTYPE.H

\INCLUDE\DIRECT.H

\INCLUDE\DOS.H

\INCLUDE\ERRNO.H

\INCLUDE\FCNTL.H

\INCLUDE\FLOAT.H

\INCLUDE\GRAPH.H

\INCLUDE\IO.H

\INCLUDE\LlMITS.H

\INCLUDE\MALLOC.H

\INCLUDE\MATH.H

\INCLUDE\MEMORY.H

\INCLUDE\PROCESS.H

\INCLUDE\SEARCH.H

\INCLUDE\SET JMP.H

\INCLUDE\SHARE.H

\INCLUDE\SIGNAL.H

\INCLUDE\STDARG.H

\INCLUDE\STDDEF.H

\INCLUDE\STDIO .H

\INCLUDE\STDLlB.H

\INCLUDE\STRING.H

\INCLUDE\ TIME.H

\INCLUDE\SYS\LOCKING.H \INCLUDE\SYS

\INCLUDE\SYS\STAT.H

\INCLUDE\SYS\TIMEB.H

2-24 Installation and Practice Session

From Include diskette To device:

\INCLUDE\SYS\TYPES.H

\INCLUDE\SYS\UTIME.H

\LlB\EM.LlB \LlB

\LlB\87.LlB

\LlB\BINMODE.OBJ

\LlB\SET ARGV .OBJ

From Complier diskette To device:

C1.ERR \BIN

C1L.EXE

C3.EXE

From DRIVER diskette To device:

CL.EXE \BIN

CL.ERR

CL.HLP

C2.EXE

C23.ERR

CC.EXE

CC.HLP

From SMALL diskette To device:

MAKE.EXE \BIN

SLlBCR.LlB \LlB

SVARSTCK.OBJ

MLlBCR.LlB

MVARSTCK.OBJ

From LARGE diskette To device:

GRAPHICS.LlB \LlB

CLlBCR.LlB

CV ARSTCK.OBJ

LLlBCR.LlB

Installation and Practice Session 2-25

From LARGE diskette To device:

LVARSTCK.OBJ

From FLOAT diskette To device:

SLlBFP.LlB \LlB

MLlBFP.LlB

CLlBFP.LlB

LlBH.LlB

LLlBFP.LlB

SLlBFA.LlB

MLlBFA.LlB

CLlBFA.LlB

LLlBFA.LlB

From CodeVlew diskette To device:

CV.EXE \BIN

\SAMPLE\CODEVIEW.DOC \SRC\SAMPLE

\SAMPLE\SAMPLE.BAT

\SAMPLE\UFE.C

\SAMPLE\UFE.EXE

\SAMPLE\UFE.R

\SAMPLE\C_AUTO.CV

\SAMPLE\E_AUTO.CV

\SAMPLE\L_AUTO.CV

\SAMPLE\M_AUTO.CV

\SAMPLE\Q_AUTO.CV

\SAMPLE\S_AUTO.CV

\SAMPLE\RESPOND.COM

From CVP diskette To device:

\CVP\CVP.EXE \BIN

\CVP\CVP.HLP

\STARTUP\OS2\NULBODY.LNK \SRC\STARTUP\OS2

\ST ARTUP\OS2\CRTO.ASM

2-26 Installation and Practice Session

From CVP dlskeHe To device:

\ST ARTUP\OS2\STDENVP .ASM

\ST ARTUP\OS2\CRTODAT.ASM

\STARTUP\OS2\CRTOMSG.ASM

\STARTUP\OS2\EXECMSG.ASM

\ST ARTUP\OS2\NMSGHDRASM

\STARTUP\OS2\STDALLOC.ASM

\STARTUP\OS2\STDARGV.ASM

\STARTUP\OS2\S\CRT255.0BJ \SRC\ST ARTUP\OS2\S

\STARTUP\OS2\S_FILE255.0BJ

\STARTUP\OS2\M\CRT255.0BJ \SRC\STARTUP\OS2\M

\ST ARTUP\OS2\M_FILE255.0BJ

\ST ARTUP\OS2\C\CRT255.0BJ \SRC\ST ARTUP\OS2\C

\ST ARTUP\OS2\C_FILE255.0BJ

\STARTUP\OS2\L \CRT255.0BJ \SRC\ST ARTUP\OS2\L

\STARTUP\OS2\L _FILE255.0BJ

From DYNALINK dlskeHe To device:

\LlB\SLlBCP .LlB \LlB

\LlB\MLlBCP .LlB

\LlB\CLlBCP .LlB

\LIB\LLIBCP.LlB

\LlB\CDLLSUPP .LlB

\LlB\LLlBCDLL.LlB

\LlB\LLlBCMT.LlB

\LlB\CDLLOBJS.LlB

\LIB\CDLLOBJS.DEF

\LlB\CDLLOBJS.CMD

\LlB\CRTEXE.OBJ

\LlB\CRTDLL.OBJ

\LlB\CRTLlB.OBJ

\LlB\APILMROBJ

\LlB\CLM.CMD \BIN

\LlB\EXAMPLE\MHELLO.C \SRC\DLL

\LIB\EXAMPLE\MKMHELLO.CMD

Installation and Practice Session 2-27

From DYNALINK diskette To device:

\LlB\EXAMPlE\STMAIN.C

\lIB\EXAMPlE\STMAIN.DEF

\LlB\EXAMPlE\STDll.C

\lIB\EXAMPlE\STDll.DEF

\LlB\EXAMPlE\MKSTDll.CMD

\lIB\EXAMPlE\MTMAIN.C

\LlB\EXAMPlE\MTMAIN.DEF

\lIB\EXAMPlE\MTDll.C

\LlB\EXAMPlE\MTDll.DEF

\LlB\EXAMPlE\MKMTDll.CMD

\lNClMT\ASSERT.H \lNClUDE\MT

\lNClMT\CONJO.H

\lNClMT\CTYPE.H

\lNClMT\DIRECT.H

\lNClMT\DOS.H

\lNClMT\ERRNO.H

\lNClMT\FCNTl.H

\lNClMT\FlOAT.H

\lNClMT\IO.H

\lNClMT\lIMITS.H

-\lNClMT\MAllOC.H

\lNClMT\MATH.H

\lNClMT\MEMORY.H

\lNClMT\PROCESS.H

\lNClMT\SEARCH.H

\lNClMT\SET JMP.H

\lNClMT\SHARE.H

\lNClMT\SIGNAl.H

\lNClMT\STDARG.H

\lNClMT\STDDEF.H

\lNClMT\STDIO.H

\lNClMnSTDlIB.H

\lNClMnSTRING.H

\lNClMT\TIME.H

2-28 Installation and Practice Session

From DYNALINK diskette To device:

\INCLMnSYS\LOCKING.H \INCLUDE\MnSYS

\INCLMnSYS\ST AT.H

\INCLMnSYS\TIMEB.H

\INCLMnSYS\TYPES.H

\INCLMnSYS\UTIME.H

Setting the Environment
If you install the compiler by making all the directories and copying
the files yourself, you must set the environment variables before you
can compile and link programs. To learn about this, see "Environ­
ment Variables" on page 2-6.

Since you have not run SETUP, you do not have the files
NEW-VARS.BAT and NEW-VARS.CMD. The commands in these files
are:

PATH=C:\rour_bil1_dir(s);%PATH%
set LIB=C:\rour_lib_dir;%LIB%
set INCLUDE=C:\rour_include_dir;%INCLUDE%
set TMP=C:\rour_temp_dir;

where your x _dir(s) means the directories you chose for the various
compiler file groups.

Setting the Configuration
If you are going to run the compiler in DOS mode, see "System
Configuration" on page 2-7. The commands in the NEW-CONF.SYS
are:

files=20
buffers=10

If you are using OS/2 mode, add the following statement to your
CONFIG.SYS so that the system will have the number of files you
need to open the C runtime libraries:
FILES=255

Installation and Practice Session 2-29

Building Combined Libraries
To make the combined run-time libraries you must run LIB, the
Library Manager, for each combination of memory model, math
option, and addressing mode you expect to generate applications for.
The conventional name for a combined library is xLlBCyz.L1B, where
x is the memory model (S, M, C, or L), y is the math option (E, 7, or
A), and z is the addressing mode (R or P).

To select component library files as input to the library manager do
the following:

• Choose xLlBCz.L1B and L1BH.L1B.
• Choose one of the following depending on the math option:

EM.L1B and xLlBFP.L1B for emulation (y=E)

Choose 87.L1B and xLlBFP.L1B for coprocessor math (y=7)

xLlBFA.L1B. for alternate math (y=A)

• Choose GRAPHICS.L1B if you want the graphics functions (for
DOS mode only- z= R).

Example
Use the following LIB command to produce the medium-model, alter­
nate math, OS/2 mode combined library.

LIB MLIBCAP,MLIBCP+LIBH+MLIBFA;

Using a Numeric Coprocessor
For information on numeric coprocessors, see "Selecting the
Floating-Point Options" in Chapter 2 of IBM IBM CI2 Compile, Link,
and Run. With a numeric coprocessor, you can perform fast, efficient
floating-point operations. To take maximum advantage of the capa­
bilities of the coprocessor, select one of the 8087 options described in
the "If You Have a Numeric Coprocessor" section in Chapter 2 of IBM
CI2 Compile, Link, and Run.

Using an 80186, 80188, 80286 or 80386 Processor
To use the compiler with an 80186/80188, 80286 or 80386 processor
enable the instruction set by using the IG1 (with 80186/80188) or IG2
(with 80286/80386) options when you compile a program. See
"80186/80188, 80286 or 80386 Processors" in Chapter 2 of IBM CI2
Compile, Link, and Run for more information about these processors.

2-30 Installation and Practice Session

Installing IBM C/2 On Local Area Network
You can install IBM C/2 under the IBM PC Local Area Network
Program (PC LAN) Version 1.21 or Version 1.30. You must first install
DOS and the LAN programs into a structure of network directories.
Refer to the IBM Local Area Network Program User's Guide for
instructions on how to install applications.

For PC LAN 1.21, use the PC LAN Program Installation Aid application
selection menu. Select OTHER APPLICATION NOT LISTED BELOW
and insert the diskette labeled Compiler into Drive A.

For PCLAN 1.30, insert the diskette labeled Compiler into Drive A,
then enter the following command to run the Application Installation
Utility:

PCLPAIU

Follow the instructions on the screen.

After the C/2 files are copied to the network server, you can build
combined run-time libraries. See "Building Combined Libraries" on
page 2-30.

(Installation and Practice Session 2-31

2-32 Installation and Practice Session

Chapter 3. Building a C Program

You use the elements of the C language, names, numbers, and char­
acters, to build a C program. This chapter describes:

• Character sets
• Constants
• Identifiers
• Keywords
• Comments
• Tokens.

Character Sets
The character sets defined for C programs are the representable
character set and the C character set. C programs can contain only
characters from the C character set, but stri ng literals, character con­
stants, and comments can use any representable characters.

The representable character set consists of all letters, digits, and
symbols that you can represent graphically with a single character.
The extent of the representable character set depends on the type of
display, console, or character device you use.

See Appendix C of IBM CI2 Language Reference for an ASCII code
table of the representable character set.

The C character set is a subset of the representable character set. It
consists of letters, digits, and punctuation marks with specific
meanings to IBM C/2. You construct C programs by combining the
characters of the C character set into meaningful statements. The
compiler produces error messages when it finds characters not used
correctly or not belonging to the C character set.

LeHers and Digits
C uses the following letters and digits:

• Uppercase English letters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Lowercase English letters:

abcdefghijklmnopqrstuvwxyz

Building a C Program 3-1

• Decimal digits:
0123456789

IBM C/2 treats uppercase and lowercase letters as distinct charac­
ters. This capacity is case sensitivity. If you specify a lowercase a in
a C program item, you cannot substitute an uppercase A in its place.
You must continue using the lowercase letter to refer to that program
item. (Refer to the discussion of the linker in IBM C/2 Compile, Link,
and Run for information about case sensitivity in external names.)

White-Space Characters
Space, tab, line-feed, carriage-return, form-feed, vertical tab, and
newline characters are white-space characters. They serve the same
purpose as the spaces between printed words and lines. These char­
acters separate items within a program.

A Ctrl + Z character is an end-of-file indicator. The compiler disre­
gards any text following the Ctrl +Z mark.

IBM C/2 ignores white-space characters unless they are separators,
components of character constants, or string literals. You can use
extra white-space characters to make a program readable.

Punctuation and Special Characters
You can use the punctuation and special characters in the C char­
acter set in many ways. You can use them to organize the text of a
program or to define the tasks of the compiler or compiled program.
The following table lists these characters:

Char- Name Char- Name
acter acter

, Comma I Vertical line

Period Space

, Semicolon I Forward slash

? Question mark '" Tilde

I Single quotation Underscore -
mark

" Double quotation # Number sign
mark

(Left parenthesis % Percent sign

3-2 Building a C Program

Char- Name Char- Name
acler acler

) Right parenthesis & Ampersand

[left bracket " Caret

] Right bracket * Asterisk

{ left brace - Hyphen. minus
sign

} Right brace = Equal sign

< left angle bracket + Plus sign

> Right angle \ Backslash
bracket

! Exclamation point

This book describes how to use these special characters. You can
also use punctuation characters in the representable character set
that do not appear in this list.

Escape Sequences
Escape sequences are combinations of special characters. They rep­
resent blank and nongraphic characters in strings and character con­
stants. Use them to specify actions such as carriage returns. You
can use them to control movements from one tab position to the next
on displays and printers. You can also use them to provide literal
representations of characters that normally have special meanings.

An escape sequence consists of a backslash followed by a letter or
combination of digits. The following table lists the C language
escape sequences:

Escape Sequence Name ASCII

\n New line (IF)

\t Horizontal tab (HT)

\v Vertical tab (VT)

\b Backspace (BS)

\r Carriage return (CR)

\1 Form feed (FF)

Building a C Program 3-3

Escape Sequence Name ASCII

\a Bell (alert) (BEL)

\ I Single quotation mark

\" Double quotation mark

\\ Backslash

\ddd ASCII character in octal

\xd, \xdd or\xddd ASCII character in
hexadecimal

IBM Extension

If the backslash precedes a character that is not included in the list
above, the compiler ignores the backslash and represents that char­
acter literally. For example, the pattern \c represents the character c
in a string literal or character constant.

L..-________ End of IBM Extension ________J

The sequence \ddd lets you code any character in the ASCII character
set as a three-digit octal character code. The sequences \xd, \xdd,
and \xddd let you code an ASCII character as a hexadeci mal char­
acter code. In all cases, d represents a valid digit (0-7 in octal, 0-9
and A-F in hexadecimal). For example, you can code the backspace
character as \010 or \x08 and the ASCII null character as \0 or \xO.

Only octal digits can appear in an octal escape sequence. At least
one digit must appear. You can code the backspace character as \10.

Similarly, a hexadecimal escape sequence must contain at least one
digit. You can omit the second and third digits. For example, you can
code the hexadecimal escape sequence for the backspace character
as \x8. A safe practice when using octal and hexadecimal escape
sequences in strings is to give all three digits of the escape
sequence. If the character following a short escape sequence
happens to be an octal or hexadecimal digit, the compiler interprets it
as the omitted part of the sequence.

Escape sequences let you send nongraphic control characters (ASCII
OxOO - Ox1F and Ox80 - OxFF) to a display device. For example, the

3-4 Building a C Program

escape character \033 often appears as the first character of a control
command for a display or printer.

Always represent nongraphic characters by escape sequences.
Placing a nongraphic character in a C program has unpredictable
results and makes debugging difficult because you cannot see the
character on the display.

The backslash character (\) also is a continuation character in strings
and in preprocessor definitions. When a newline character follows
the backslash, the C compiler disregards the backslash and the
newline character and treats the next line as part of the previous line.
For an example of this treatment, see "String Literals" on page 3-11.

Operators
Operators are special characters or combinations of special charac­
ters that specify how the compiler transforms and assigns values.
The compiler interprets each combination as a unit, called a token.

The following table lists characters that form arithmetic and logical
operators for C. It gives the name of each operator. You must
specify operators exactly as they appear in the table. You cannot
imbed blanks between the characters of multicharacter operators.

Operator Name Operator Name

! Logical negation < Less than

'" Bitwise negation <= Less than or
equal

++ Increment > Greater than

-- Decrement >= Greater than or
equal

+ Addition -- Equal

- Subtraction, != Not equal
negation

* Multiplication, I Bitwise OR
indirection

I Division & Bitwise AND
address

Building a C Program 3-5

Operator Name Operator Name

% Remainder A Bitwise exclu-
sive OR

« Shift left && Logical AND

» Shift right II Logical OR

sizeof Size of item

The following table lists characters that form compound assignment
operators for C. It gives the name of each operator.

Operator Name Operator Name

= Assign += Increment and
assign

-= Decrement and * = Multiply and
assign assign

1= Divide and 0/0= Modulus and
assign assign

»= Shift right and «= Shift left and
assign assign

&= Bitwise AND and A= Bitwise exclu-
assign sive OR and

assign

1= Bitwise OR and
assign

See "Operators" on page 6-10 for a complete description of each
operator.

Constants
A constant is a number, character, or character string that you can
use as a value in a program. The value of a constant does not
change from one run to the next.

The C language has five kinds of constants: integer constants,
floating-point 90nstants, character constants, enumeration constants
and string literals. The following descriptions show the format and
use of each.

3-6 Building a C Program

Integer Constants
An integer constant is a decimal, octal, or hexadecimal number that
represents an integer value.

The following table illustrates the form of integer constants.

Decimal Octal Hexadecimal

10 012 OxA,OXA

132 0204 Ox84

32179 076663 Ox7db3 or Ox7DB3

No white-space or blank characters can appear between the digits of
an integer constant.

A decimal constant has the following form:

digits

where digits is one or more decimal digits (0 through 9).

An octal constant has the form:

00digits

where odigits is one or more octal digits (0 through 7). You must
include the leading o.

A hexadecimal constant has the form:

0xhdigits

or

0Xhdigits

where hdigits is one or more hexadecimal digits (0 through 9 and
either uppercase A through F or lowercase a through f). You must
include the leading 0 followed by an x or an X.

Integer constants specify positive values. If you need a negative
value, use the minus sign (-) in front of the constant. IBM C/2 treats
the minus sign as a unary arithmetic operator, forming an expression
that the compiler evaluates to a negative value.

Every integer constant has a data type based on its value. The data
type determines what conversions the compiler must perform when it

Building a C Program 3-7

uses the constant. The IBM C/2 compiler considers decimal con­
stants as signed quantities. It can give them a data type of Int or
long. This depends on the size of the value.

IBM C/2 can give octal and hexadecimal constants data types of Int,
unsigned Int, long, or unsigned long. This depends on the size of the
constant. If the IBM C/2 compiler can represent the constant as an
integer (Int), it gives the constant the Int type. If the constant is larger
than the maximum, positively-signed value that the compiler can rep­
resent as an Int but small enough without the sign to be represented
in the same number of bits as an Int, the compiler assigns it a data
type of unsigned Int. Similarly, a constant too large for the compiler
to represent as an unsigned Int becomes a long or, if necessary, an
unsigned long.

The following table shows ranges of values and their corresponding
types for octal and hexadecimal constants. These ranges apply to a
machine where the Int data type is 16-bits long.

Hexadecimal Octal Data
Range Range Type

OxOOOO - Ox7FFF 0000000 - 0077777 int

Ox8000 - OxFFFF 0100000 - 0177777 unsigned int

Ox00010000 - 000000200000 - long
Ox7FFFFFFF 017777777777

Ox80000000 - 020000000000 - unsigned long
OxFFFFFFFF 037777777777

The consequence of these rules for data types is that IBM C/2 does
not extend hexadecimal and octal constants to allow for a sign when
it converts them to longer types.

You can force the IBM C/2 compiler to assign any integer constant a
long type, an unsigned type, or both. Do this by adding the letter I or
u (or Lor U) to the end of the constant. The following table illustrates
long integer constants.

3-8 Building a C Program

Decimal Octal Hexadecimal

10L 012L OxaL or OxAL

10LU 012LU OxaLU or OxALU

791 01171 Ox4fl or Ox4FI

79u 0117u Ox4fu or Ox4Fu

"Type Specifiers" on page 5-2 describes the different data types.
"Type Conversions" on page 6-31 describes data-type conversions.

Floating-Point Constants
A floating-point constant is a decimal number representing a signed
real number. The value of a signed real number includes an integer
portion, a fractional portion, and an exponent. Floating-point con­
stants have the form:

digits. [digits] [E[+\-]digits]

or

[digits].digits[E[+ \-]digits]

where digits is one or more decimal digits (0 through 9) and E (or e)
is the exponent symbol. You must represent a number with either the
digits before the decimal point (the integer portion of the value), the
digits after the decimal point (the fractional portion), or both. The
exponent consists of the exponent symbol followed by a positive or
negative constant integer value. You can omit the decimal point only
when you give an exponent. No blank characters can separate the
digits or characters of the constant.

Floating-point constants specify non-negative values. If you need
negative values, place the minus sign (-) in front of the constant to
form a constant floating-point expression with a negative value. IBM
C/2 treats the minus sign as an arithmetic operator.

The following example shows floating-point constants and
expressions:

15.75
1. 575E1
1575e-2
-0.0025
-2.5e-3
25E-4

Building a C Program 3-9

You can omit the integer portion of the floating-point constant, as in
the following example:

.75

.0075e2
-125
-175E-2

All floating-point constants have a data type of double.

Force the IBM C/2 compiler to assign a floating-point constant to have
type float or type long double by adding the letter F or L (or f or I) to
the end of the constant. For example, these constants will have type
float:

3.75F
-12.f

and these constants will have type long double:

3.75L
-1.4E-21

Character Constants
A character constant is a letter, digit, punctuation character, or
escape sequence enclosed in single quotation marks. The value of a
character constant is the character itself. You cannot use character
constants consisting of more than one character or escape sequence.

A character constant has the form:

'char'

where char is any character from the representable character set
(including any escape sequence) except a single quotation mark ('), a
backslash (\), or a newline character. To use a single quotation mark
or backslash character as a character constant, precede it with a
backslash as shown in the following table. To represent a newline
character, use the escape sequence \n. The following table shows
how to code character constants.

Constant Value

a Lowercase a

? Question mark

\b Backspace

\x1B ASCII escape character

3-10 Building a C Program

Constant Value

\1 Single quotation mark

\\ 8ackslash

Character constants have the data type Int. IBM C/2 extends them in
type conversions to allow for a sign.

IBM C/2 permits hexadecimal bit patterns as character constants.
These consist of a backslash (\), the letter x, and up to 3 hexadecimal
digits (for example, \X12).

IBM C/2 defines two additional escape sequences:

• The sequence \v represents a vertical tab (VT).
• The sequence \" represents the double quotation mark character.

Enumeration Constants
An enumeration constant is an identifier declared in an enum decla­
ration. The constant has type Int. See "Naming Classes" on
page 4-9 and "Enumeration Declarations" on page 5-19 for more
information on enumeration constants.

String Literals
A string literal is a sequence of letters, digits, and symbols enclosed
in double quotation marks.

r

The form of a string literal is:

"characters"

where characters is one or more characters from the representable
character set, excluding the double quotation mark, the backslash,
and the newline character. To form string literals that occupy more
than one line, type a backslash and press Enter. The backslash
causes IBM C/2 to ignore the resulting newline character. For
example, the string literal:

"Long strings can be bro\
ken into two pieces."

is identical to the string:

"Long strings can be broken into two pieces."

Escape sequences (such as \n and \") can appear in string literals.
To use the double quotation mark or backslash character within a

Building a C Program 3-11

string literal, precede it with a backslash, as in the following
examples:

"This is a string literal."
"Enter a number between 1 and 100 \nOr press Enter"
"First\\Second"
"\"Yes, I do,\" she said."

These examples produce the following output:

This is a string literal.
Enter a number between 1 and 100
Or press Enter
First\Second
"Yes, I do," she said.

An easier way of representing a long string is to separate it into two
string literals, written with only white space between them. The com­
piler joins them into a single string with one null character at the end.
In this way, you can extend a string literal beyond the end of a phys­
icalline without the need for a backslash-newline combination. You
can indent the second part of the string on the next line. For
example:

"Long strings can be bra"
"ken into two pieces."

IBM C/2 stores the characters of a string in order at contiguous
storage locations and automatically adds a null character (\0) to mark
the end of the string. The compiler considers each string in a
program a distinct item. If two identical strings appear in a program,
the compiler reserves each distinct storage.

String literals have the data type char[] by default. The compiler
stores a string literal as an array with each element having a data
type of char. The number of elements in the array is the number of
characters in the string literal plus 1, because the null character
stored after the last character counts as an array element.

Identifiers
Identifiers are names you give variables, functions, and labels in a
given program. You create an identifier by declaring it with the asso­
ciated variable or function. You can use the identifier to refer to the
item after the declaration.

An identifier is one or more letters, digits, or underscores (_). It
begins with a letter or underscore. Use leading underscores with

3-12 Building a C Program

care. Identifiers beginning with an underscore can conflict with the
names of hidden system routines to produce errors.

You can use any number of characters in an identifier. Only the first
31 characters are significant to IBM C/2.

IBM Extension

External identifiers are significant to 31 characters, also.

Note: This number of significant characters is different from some C
compilers. Other programs that read compiler output, such as
a linker, might allow fewer characters.

L..-.. ________ End of IBM Extension ________ -J

These are identifiers:

cnt
tempi
top_of_page
skip12

IBM Extension

The $ sign may also be used as the first character in an identifier.

'---________ End of IBM Extension ________ -J

IBM C/2 is case sensitive. Uppercase and lowercase letters are sep­
arate and distinct characters. You can create distinct identifiers with
the same spelling but with different cases for one or more of the
letters. Each of the following identifiers is unique:

add ADD Add aDd

IBM C/2 does not allow identifiers that have the same spelling and
case as a C language keyword. You can find a description of
keywords in the next section.

The linker might further restrict the number and type of characters for
globally visible symbols. Unlike the compiler, the linker might not
distinguish between uppercase and lowercase letters. See IBM C/2
Compile, Link, and Run for information about the linker.

Building a C Program 3-13

Keywords
Keywords are predefined identifiers with special meaning. You can
use keywords only as documented in this library. The names of
program items must not conflict with these keywords:

auto double Int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto slzeof vol"tlle
do If static while

You cannot redefine keywords. You can substitute text for keywords
before compiling by using C preprocessor directives.

IBM Extension

The following identifiers can be keywords in some programs:

cdecl

_cdecl
_export
far

_far

fortran

_fortran
huge

_huge

Interrupt

_Interrupt
_Ioadds
near

_near
pascal

-pascal
_save regs

'---________ End of IBM Extension ________ -.J

Comments
A comment is a sequence of characters that the compiler interprets
as a single white-space character. The compiler otherwise ignores
comments. A comment has this form:

/* characters */

where characters is any combination of characters from the repre­
sentable character set. This includes newline characters but
excludes the combination */. This means comments can occupy more
than one line, but you cannot nest them. You can also set off a
comment on a single line by starting it with /I and finishing it at the
end of the same line.

3-14 Building a C Program

Use comments to document statements and actions in a C program.
You can put them anywhere that C allows a blank character.
Because the compiler ignores the characters of a comment, keywords
in comments do not produce errors.

These are comments:

1* Comments separate and document
lines of a program. *1

1* Comments can contain keywords such as for
and while. *1

1***
Comments can span several lines.

***/

The following example shows how the /I signals that the rest of the
line is to be treated as a comment. (See the next section for a dis­
cussion of tokens.) The next (unescaped) newline terminates the
comment.

II this is a comment on a single line
a = b
if (a <= b) II this also is one line

b--;

Because you cannot nest comments, this is an error:

1* You cannot 1* nest *1 comments *1

The compiler recognizes the */ after nest as the end of the comment.
It tries to process the remaining text as a statement. An error occurs
when it cannot do so.

To suppress the compiling of a large part of a program that contains
comments, use the #If preprocessor directive instead of comments as
in the following example.

#if 0

1* code to be suppressed *1

#endif

Building a C Program 3-15

Tokens
When the compiler processes a program, it divides the program into
groups of characters known as tokens. A token is the smallest item of
program text that has meaning to the compiler. It cannot be divided
further. Operators, constants, identifiers, and keywords are tokens.
Characters such as brackets ([]), braces ({}), less-than, greater-than
«», parentheses (0), and commas (,) are also tokens.

Tokens are delimited by blank characters and by other tokens, such
as operators and punctuation symbols. To prevent the compiler from
breaking an item into two or more tokens, do not use blanks between
the characters of identifiers, multicharacter operators, and keywords.

The compiler interprets text by including as many characters as pos­
sible in a single token before moving on to the next token. Because
of this, the compiler can sometimes misinterpret tokens. Use white
space to separate tokens.

In the following expression, the compiler makes the longest possible
operator (+ +) from the three plus signs and processes the
remaining plus sign as an addition operator (+).

i+++j

The compiler interprets this expression as (i + +) + (J), not (i) +
(+ + J). The compiler increases i by 1 and adds j. Use blanks and
parentheses to make clear what you want in such cases.

3-16 Building a C Program

Chapter 4. Program Structuring

This chapter shows how to structure C language source programs. It
introduces terms that describe the various items in IBM C/2.

Source Program
C source programs are a collection of one or more directives, decla­
rations, pragmas, and definitions. Directives instruct the C pre­
processor to act on the text of the program. Declarations establish
names and define characteristics of variables, functions, and data
types. Pragmas instruct the compiler to carry out certain functions.
Definitions are declarations that define the name and the type of vari­
ables or functions. A variable definition can give an initial value to
the variable it declares. A definition reserves storage for the vari­
able.

A function definition specifies the function body. The function body is
a compound statement containing declarations and statements that
define what the function does. The function definition declares the
function name, its parameters, and the data type of the value it
returns, if any.

A source program can have any number of directives, declarations,
and definitions. Each statement must have the proper syntax or
format. Statements can appear in more than one order. The state­
ment order affects how you can use variables and functions. In par­
ticular, the order affects the visibility of variables. See
Chapter 7, "Using C Statements" for more information about state­
ments.

A program must contain one function definition. This main function
defines what action the program takes.

Program Structuring 4-1

This is source code of a simple C program:
define TWO 2 /* Preprocessor directive */

int x = 1; /* Variable definitions */

int y = TWO;

extern int printf ();/* Function declaration */

main () /* Function definition

{

}

for main function */

int z; /* Variable declarations */
int w;

z = y + x; /* Program statements */
w = y - x;
printf ("z=%d \n w= %d \n", z, w);

This source program defines main and declares a reference to the
function prlntf. The program defines the variables x and y with initial
values. It also defines the variables z and w.

Source Files
You can divide source programs into source files. C source files are
text files that contain any combination of complete directives, decla­
rations, and definitions. To compile the source program, you must
compile the source files individually and then link them. With the
#Include directive, you combine source files into larger source files.

It is sometimes useful to place variable definitions in one source file
and declare references to those variables in any source files that use
them. This makes definitions easy to find and change, if necessary.
For the same reason, you can organize manifest constants and
macros into separate files and include them into source files as
required.

Directives in a source file apply to that source file and its included
files only. Each directive applies only to the portion of the file fol­
lowing the directive. If a set of directives applies throughout a source
program, all the source files must include the set.

Pragmas usually act on a specific part of a source file. How you use
the pragma determines the specific compiler action the pragma
defines. Information for each individual pragma is in IBM CI2
Compile, Link, and Run.

4-2 Program Structuring

The example that follows is a source program in two source files.
The main and max functions are in separate files. The program
begins with the main furiction.

/***
Source file 1 - main function
***/

#define ONE 1
#define TWO 2
#define THREE 3
/* Function declaration */

extern int max(int. int);
/* Function definition */

main ()
{

int u. w. x. y.z;
w = max(u.ONE)
x = max(w.TWO)
y = max(x.THREE)
z = max(y.z)

/**
Source file 2 - max function
**/
/* Function definition */

i nt max (a. b)
int a. b;
{

if(a>b)
return (a);

else
return (b);

The first source file declares the function max, which is defined else­
where. This is a forward declaration, a reference to the function in
source file 2. Four statements in main are function calls to max.

The lines beginning with a # sign are preprocessor directives. These
direct the preprocessor to replace the identifiers ONE, TWO, and
THREE with the specified numbers. The directives do not apply to the
second source file.

The second source file contains the function definition for max. This
definition answers the calls to max from the first source file. After
you compile the source files, you can link them and run them as a
single program.

Program Structuring 4-3

Running the Program
Every program has a primary program function. Traditionally, the
primary program function has the name main. IBM C/2 requires the
explicit name main for the primary function.

The main function is the starting point for running a program. It con­
trols the program by directing the calls to other functions. A program
usually stops running at the end of the main function, although it can
stop at other points in the program.

The source program usually has more than one function. Each func­
tion performs at least one specific task. The main function calls these
functions to perform tasks. When the source program calls a func­
tion, it begins running the first statement in the called function. The
function returns control at the return statement or at the end of the
function.

You can declare any function to have parameters. Functions called
by other functions receive values for their parameters from the argu­
ments of the calling functions. You can declare parameters of the
main function to receive values from outside the program. (The
command prompt that starts the program can pass such values.)

The first three parameters of the main function have the names argc,
argy, and enyp. The argc parameter holds the total number of argu­
ments passed to the main function. The argy parameter is an array of
pointers. Each element points to a string representation of an argu­
ment passed to the main function.

IBM Extension

The enyp parameter is a pointer to an array of pointers to string
values. The string values in this table set up the environment in
which the program runs.

'--________ End of IBM Extension ________ __'

The operating system supplies values for the argc, argy, and enyp
parameters. You supply the arguments to the main function. The
operating system, not the C language, determines the argument­
passing convention that a particular system uses. See the section

4-4 Program Structuring

about the C Calling Sequence in Chapter 6 of IBM CI2 Compile, Link,
and Run. You must declare any parameters to functions when you
define the function.

Lifetime and Visibility
Lifetime and visibility are important in understanding the structure of
a C program. The lifetime of a variable or function can be global or
local. An item with a global lifetime has storage and a defined value
for the duration of the program. The compiler reserves storage for an
item with a local lifetime each time the current point of program exe­
cution enters the program block that defines or declares that item.
When the current point leaves that block, the local item loses its
storage and its value.

An item is visible in a block or source file if the block or source file
knows the data type and the declared name of the item. An item can
be globally visible. This means that it is visible, or is visible after
appropriate declarations, throughout all source files. For more infor­
mation about visibility between source files (also known as linkage),
see the discussion of storage-class specifiers in "Storage Classes"
on page 5-35.

A program block or block is a compound statement. Compound state­
ments consist of declarations and statements. The bodies of C func­
tions are compound statements. You can nest blocks. Function
bodies can contain blocks that contain other blocks.

Declarations and definitions within blocks occur at the internallevel.
Declarations and definitions outside of all blocks occur at the external
level.

You can declare or define variables at the external or the internal
level. You can declare functions at the external or the internal level,
but you can define functions only at the external level. The definition
or body of a function cannot be a block nested in a block.

All functions have global lifetimes, regardless of where you declare
them. Variables declared at the external level have global lifetimes.
Variables declared at the internal level usually have local lifetimes.
You use the storage class specifiers static and extern to declare

Program Structuring 4-5

global variables or to make references to global variables within a
block.

Variables declared or defined at the external level are visible from
the point at which you declare or define them to the end of the source
file. You can make these variables visible in other source files with
appropriate declarations, as described in "Storage Classes" on
page 5-35. Variables with a static storage class at the external level
are visible only within the source file in which you define them.

In general, variables declared or defined at the internal level are
visible from the pOint at which you first declare them to the end of
that block. These variables are local variables. If a variable declared
inside a block has the same name as a variable declared at the
external level, the block definition replaces the external-level defi­
nition to the end of the block. The compiler restores the visibility of
the external-level variable when the current point of execution leaves
the block.

You can nest block visibility. This means that a block nested inside a
block can contain declarations that redefine variables declared in the
outer block. The new definition of the variable applies to the inner
block. C restores the original definition when the current instruction
returns to the outer block. A variable from the outer block is visible
inside inner blocks that do not redefine the variable.

Functions with static storage class are visible only in the source file
in which you define them. All other functions are globally visible.

4-6 Program Structuring

The following table summarizes the main factors that determine the
lifetime and visibility of functions and variables. The table does not
cover all cases. Refer to "Storage Classes" on page 5-35 for more
information.

Storage
Class Life

Level Item Specifier time Visibility

External Variable declaration or static Global Restricted
definition to single

source file

Variable declaration or extern Global Remainder
definition of source

file

Function declaration or static Global Restricted
definition to single

source file

Function declaration or extern Global Remainder
definition of source

file

Internal Variable definition or extern Global Block
declaration or

static

Variable definition or auto or Local Block
declaration reg-

ister

Proaram Structurina 4-7

The following program illustrates blocks, nesting, and visibility of var­
iables. In this example, there are four levels of visibility: the external
level and three block levels. Assuming that you have defined the
function prlntf elsewhere, the main function prints the values 1, 2, 3,
0,3,2,1.

/* i defined at external level */
int i = 1;

/* main function defined at external level */
main 0
{

/* Prints 1 (value of external level i) */
printf("%d\n", i);

/* First nested block */
{

/* i and j defined at internal level */
i nt i = 2, j = 3;

/* Prints 2, 3 */
printf("%d\n%d\n", i, j);

/* second nested block */
{

/* i is redefined */
int i = 0;

/* Prints 0, 3 */
pri ntf ("%d\n%d\n". i, j);

/* End of second nested block */
}

/* Prints 2 (outer definition restored)*/
printf("%d\n", i);

/* End of first nested block */
}

/* Prints l(external level definition restored)*/
printf("%d\n", i);

4-8 Proaram Structurina

Naming Classes
In any C program, identifiers refer to many items. You use identifiers
for functions, variables, parameters, union members, and other
items. C lets you use the same identifier for more than one class of
identifier, as long as you follow the rules outlined in this section.

The compiler sets up naming classes to distinguish among classes of
identifiers. You must assign unique names within each class to avoid
conflict. An identical name can identify an item in more than one
identifier class. This means that you can use the same identifier for
two or more items if the items are identifiers in different identifier
classes. The context of an identifier within a program lets the com­
piler resolve its class without ambiguity.

Items that you can name and the rules for naming them are:

• Variables and Functions: Variable and function names are in a
naming class with parameters of functions, typedef names, and
enumeration constants. Variable and function names must be
distinct from other names in this class with the same visibility.
You can redefine function names and variable names within
program blocks as described in "Lifetime and Visibility" on
page 4-5.

• Parameters: The names of parameters of a function are in a class
with the names of the variables of a function. The parameter
names must be distinct from the variable names declared at this
level. Redeclaring parameters at this level causes an error, but
you may redeclare parameter names in nested blocks within the
function body.

• Enumeration Constants: Enumeration constants are in the same
naming class as variable and function names. Enumeration con­
stant names must be distinct from variable, function, and enumer­
ation constant names with the same visibility. Like variable
names, the names of enumeration constants have nested visi­
bility. You can redefine them within blocks.

• Tags: Enumeration, structure, and union tags are in a single
naming class. (For a description of tags see "Variable
Declarations" on page 5-18.) Each enumeration, structure, or
union tag must be distinct from other tags with the same visibility.
Tags do not conflict with any other names.

• Members: The members of an individual structure or union vari­
able form a naming class to themselves. The name of a member

Program Structuring 4-9

must be unique within the structure or union. It need not be dis­
tinct from a member name in another structure or union variable,
or from any other variable name.

• Statement Labels: Statement labels form a separate naming
class. A statement label must be distinct from other statement
labels in the same function. Statement labels need not be distinct
from other names or from label names in other functions.

• Typedef Names:. The names of the data types that you define with
the typedef declaration are synonyms of data-type specifiers. (For
a description of data-type specifiers and the typedef declaration
see "Type Specifiers" on page 5-2.) The type names that you
define with the typedef declaration are in a naming class with
variable and function names. The names must be distinct from
all variable and function names with the same visibility, and from
the names of parameters of functions and enumeration constants.
like variable names, you can use typedef to redefine data-type
names within program blocks.

Structure tags, structure members, and variable names are in three
. different naming classes; no conflict occurs between the three items
named student in the following example:

struct student /* structure tag */
/* the name of a new type */

char *student; /* structure member */

int class;
int id; /* two more members */

} student; /* the name of one variable */
/* of the new type */

/* Next are three different contexts referring to three different 'students */

struct student *studptr;

studptr = &student

/* declares a pointer to the new */
/* structure type called student */

/* initialize studptr to point to the */
/* variable called student */

studptr - > student = "Harry"; /* assign a value to the structure */
/* member called student */

student. student = "Harry"; /* (does exactly the same thi ng * /
/* as the previous example */

4-10 Program Structuring

Chapter 5. Declaring Variables, Functions,
and Data Types

This chapter describes the form and constituents of e declarations for
variables, functions, and types. e declarations have the form:

Esc spec iji er] [type-specijier]declarator[=initializer] [,de clarator •••]

where se specifier is a storage class specifier; type-specifier is the
name of a defi ned type; declarator is an identifier; and initializer
gives a value or sequence of values you assign to the variable you
are declaring. You must explicitly declare all e variables before
using them. You can declare e functions explicitly in a function dec­
laration or implicitly by calling the function before you declare or
define it.

The e language defines a standard set of data types. You can add to
that set by declaring new data types based on types already defined.
You can declare arrays, data structures, and pointers to either vari­
ables or functions.

e declarations require one or more declarators. A declarator is an
identifier that you can change with brackets, asterisks, or paren­
theses. It declares a variable, array, pointer, or function type. When
you declare simple variables (such as character, integer, and
floating-point values), or structures and unions of simple variables,
the declarator is just an identifier.

The location of the declaration within the source program, and the
presence or absence of other declarations of the variable are impor­
tant factors in determining the visibility of variables.

The storage class specifier of a declaration affects how the declared
item is stored and initialized and which portions of a program can
refer to it. The four storage class specifiers are: auto, extern,
register, and static.

Declaring Variables, Functions, and Data Types 5-1

Type Specifiers
The C language provides definitions for a set of basic data types. The
following lists their names:

Inlegral Types
char
signed
signed char
Inl
shorl
signed shorl Inl
shortlnl

Floallng-Polnl Types
double
floal
long double

'long
long Inl
unsigned
unsigned char
unsigned long
unsigned Inl
signed long

unsigned shorl Inl
signed Inl
signed long Inl
Inl
signed shorl
unsigned shorl

Another class of data types is known as the enumerated types. These
consist of enumerations and void. For a discussion of type specifiers
for enumeration types see "Structure, Union, and Enumeration
Types" on page 5-46. You can use the void type to declare functions
that return no value or as the type of a pointer that can be converted
to a pointer to an object of any type. You can create additional type
specifiers with typedef declarations.

Type specifiers are commonly abbreviated, as shown in the following
figure. Integral types are signed by default. Thus, if the unsigned
keyword is omitted from the type specifier, the integral type is signed,
even if the signed keyword is not specified.

Type Specifier Abbrevlallon

char - -
inl --
shorllnl short

long Inl long

unsigned char - -
unsigned inl unsigned

unsigned shorl Inl unsigned short

5-2 Declaring Variables, Functions, and Data Types

Type Specifier Abbreviation

unsigned long Int unsigned long

float - -
const Int const

volatile long Int volati Ie long

Nole: This book uses the abbreviated forms in the preceding table
instead of the long forms of the type specifiers and assumes
that the char type is signed by default. Throughout this book,
char stands for signed char.

IBM Extension

The IJ option is available to change the default for the char type from
signed to an unsigned type. When this is in effect, the abbreviation
char has the same meaning as unsigned char. You must use the
signed keyword to declare a signed character value.

L.....-________ End of IBM Extension ________

The consl type specifier declares an object as non modifiable. The
consl keyword can be used as a modifier for any fundamental or
aggregate type, or to modify a pointer to an object of any type. A
typedef can be modified by a consl type specifier. A declaration that
includes the keyword consl, as a modifier of an aggregate type
declarator, indicates that each element of the aggregate type is
unmodifiable. If an item is declared with only the consl type
specifier, its type is taken to be consl Inl. A consl object can be
placed in a read-only region of storage.

The volaille type specifier declares an item whose value can be legit­
imately changed by something beyond the control of the program it
appears in. The volaille keyword can be used in the same circum­
stances as consl. An item can be both consl and volaille, in which
case the item cannot be modified by its own program but can be mod­
ified by some asynchronous process. The volaille keyword is imple­
mented syntactically but not semantically.

Declaring Variables, Functions, and Data Types 5-3

The following table summarizes the storage associated with each
basic type and gives the range of values that you can store in a vari­
able of each type. Because the void type does not apply to variables,
it is not in this table.

Type Storage Range of Values (Internal)

char 1 byte -128 to 127

Int and implementation-
unsigned dependent

short 2 bytes -32,768 to 32,767

long 4 bytes -2,147,483,648 to
2,147,483,647

unsigned 1 byte o to 255
char

unsigned 2 bytes o to 65,535
short

float 4 bytes IEEE standard notation; see
discussion below

double 8 bytes IEEE standard notation; see
discussion below

The char type is signed. Use the char type to store a letter, digit, or
symbol from the representable character set. The integer value of a
character is the ASCII code corresponding to that character. Because
the compiler interprets the char type as a signed 1-byte integer,
values in the range -128 to 127 are permitted for char variables,
al~hough only the values from 0 to 127 have character equivalents. In
type conversions, IBM C/2 extends a char value to allow for a sign.

The C language does not define the storage and range associated
with the Int and unsigned Int types. Instead, the size of an Int (signed
or unsigned) corresponds to the natural size of an integer on a given
machine. For example, on a 16-bit machine the integer size is
usually 16 bits, or 2 bytes. On 8088 and 80286 processors, an Int is 16
bits long. On a 32-bit machine, the integer type is usually 32 bits, or 4
bytes. Thus, the integer size is equal either to the short Int or the
long Int type, depending on the use. Similarly, the unsigned Int type
is equal eith~r to the unsigned short or unsigned long type.

5-4 Declaring Variables, Functions, and Data Types

C programs use the Inl and unsigned Inl type specifiers widely
because they let a particular machine handle integer values in the
most efficient way for that machine. However, because the size of the
Inl and unsigned Inl types varies, programs that depend on a specific
Inl size might not be portable. Use expressions involving the slzeof
operator in place of hard-coded data sizes to increase the portability
of the code.

Use the type specifiers Inl and unsigned Inl (or simply unsigned) to
define certain features of the C language (for instance, in defining the
enum type). In these cases, the definition of Inl and unsigned Inl for a
particular implementation determines the actual storage.

In IBM C/2, the short type is 16 bits in length; the long type 32 bits.
Characters are placed into consecutive memory locations starting
with the lowest address byte, while Inls are stored in the 80x86
hi-byte, lo-byte format (high byte at the lower address). As a result,
storing two characters in an Inl would give an Inl that looked as if the
characters had been stored in reverse.

Range of Values
The range of values for a variable lists the minimum and maximum
values that the machine can represent internally in a given number of
bits. However, because of the conversion rules of the C language,
you cannot always use the maximum or minimum for a variable of a
given type in an expression.

For example, the constant expression -32768 consists of the arith­
metic negation operator (-) applied to the constant value 32768.
Because 32768 is too large to represent as a short, it is given long
type, and consequently the constant expression -32768 has long
type. You can represent the value -32768 as a short only by type­
casting it to the short type. The type cast loses no information
because C can represent -32768 internally in 2 bytes of storage
space.

You can represent a value such as 65000 as an unsigned short only
by type-casting the value to unsigned short type or by giving the
value in octal or hexadecimal notation. The value 65000 in decimal
notation is a signed constant and is given long type because 65000
does not fit into a short. You can then cast this long val ue to the
unsigned short type without loss of information, because 65000 fits

Declaring Variables, Functions, and Data Types 5-5

into 2 bytes of storage space when it is stored as an unsigned
number.

Octal and hexadecimal constants have either signed or unsigned
type, but they are never sign-extended in type conversions.

Floating-point numbers use the IEEE (Institute of Electrical and Elec­
tronics Engineers, Inc.) format. Values with float type have 4 bytes,
consisting of a sign bit, an 8-bit excess 127 binary exponent, and a
23-bit mantissa. The phrase 8-bit excess 127 means the exponent has
binary 1111111 (decimal 127) added to the 8-bit binary representation
to provide a method of checking for errors.

The mantissa represents a number between 1.0 and 2.0. The high­
order bit of the mantissa is 1, which is not stored in the number and
makes the effective precision 24 bits. This representation gives an
exponent range of 10 to the (+ or-) 38th power and up to seven digits
of precision. The maximum value of a float is normally 3.4E38.

For example, consider the real number 6.0. As the product of a
number between 1.0 and 2.0 and a power of two, its unique
expression is 1.5 x 22. The exponent (2) is represented as 2 + 127, or
129. The sign bit for a positive number is 0 and the mantissa is
binary 1.1, of which the first 1 is not represented in the number.

5-6 Declaring Variables, Functions, and Data Types

The IEEE representation of 6.0 in binary is:

e leeeeeel leeeeeeeeeeeeeeeeeeeeee

sign exponent mantissa

Values with double type have 8 bytes. The format is similar to the
float format, except that the exponent is 11 bits excess 1023 and the
mantissa has 52 bits (plus the implied high-order 1 bit). The phrase
11 bits excess 1023 means the exponent has bi nary 1111111111
(decimal 1023) added to the 11-bit binary representation to provide a
method of checking for errors.

Again, consider the real number 6.0. As the product of a number
between 1.0 and 2.0 and a power of two, its unique expression is 1.5 x
22. The exponent (2) is represented as 2 + 1023, or 1025. The sign
bit for a positive number is 0 and the mantissa is binary 1.1, of which
the first 1 is not represented in the number. The IEEE representation
of 6.0 in binary is:

e leeeeeeeeel leee

sign exponent mantissa

This gives an exponent range of 10 to the (+ or -) 308th power and up
to 15 digits of precision. Type long double is equivalent to double in
IBM C/2.

Declaring Variables, Functions, and Data Types 5-7

Declarators
Another class of C data items is known as derived types. C lets you
declare arrays of values, pOinters to values, and functions returning
values of specified types. To declare these items, you must use a
declarator. A declarator is an identifier that you can change with
brackets, parentheses, and asterisks to declare an array, function
type, or pointer. Declarators appear in the array, function, and
pointer declarations described in "Array Declarations" on page 5-27,
"Function Declarations" on page 5-32, and "Pointer Declarations" on
page 5-31. This section discusses the rules for forming and inter­
preting declarators.

Format

declarator [constant-expression]
*declarator
declaratorO
declarator(arg-type-list)
(declarator)

Pointer, Array, and Function Declarators
When a declarator consists of an unchanged identifier, the item you
are declaring has a basic type. Asterisks can appear to the left of an
identifier, changing it to a pointer type. If you follow the identifier by
brackets, the type changes to an array type. If you follow the identi­
fier by parentheses, which can contain type descriptions, the type
changes to a function returning a type.

A declarator is not a complete declaration; you must include a type
specifier as well. The type specifier gives the type of the elements
for an array type, the type of object addressed by a pointer type, and
the return type of a function.

5-8 Declaring Variables, Functions, and Data Types

The sections on pointer, array, and function declarations later in this
chapter discuss each type of declaration in detail. The following
examples show the simplest forms of declarators. The example
below declares an array of Inl values (lIsI):

int list[20];

The next example declares a pointer to a char value (cp):

char *cp;

This example declares a function with no arguments returning a
double value (tunc):

double func(void);

Complex Declarators
You can enclose any declarator in parentheses. Use parentheses to
specify an interpretation of a complex declarator. A complex
declarator is an identifier qualified by more than one array, pointer,
or function modifier.

You can apply various combinations of the array, pointer, and func­
tion modifiers to a single identifier. Some combinations are illegal.
An array cannot comprise functions, and a function cannot return an
array or a function.

When the compiler interprets complex declarators, brackets and
parentheses on the right of the identifier take precedence over aster­
isks on the left of the identifier. Brackets and parentheses have the
same precedence, and the compiler interprets them left-to-right. The
compiler applies the type specifier as the last step. Use parentheses
to change the default order of association in a way that forces a par­
ticular interpretation.

A simple rule in interpreting complex declarators is to read them
from the inside out. Start with the identifier and look to the right for
brackets or parentheses. Interpret any of these, and then look to the
left for asterisks. If you find a right parenthesis at any stage, go back
and apply these rules to everything within the parentheses before
proceeding. Finally, apply the type specifier.

Declaring Variables, Functions, and Data Types 5-9

To show this rule, the following example numbers the steps in order:

char *(*(*var)()[lO];
7 6 4 2 1 3 5

1. The identifier var is:
2. A pointer to
3. a function returning
4. a pOinter to
5. an array of 10 elements, which are
6. pointers to
7. char values.

Example
The following examples provide further illustration and show how
parentheses can affect the meaning of a declaration.

In Example 1, the array modifier has a higher priority than the pointer
modifier, so var is an array. The pointer modifier applies to the type
of the array elements; the elements are pointers to Int values.

int *var[5]; /* Array of pointers to int values */ Example 1

In Example 2, parentheses change the meaning of the declaration in
the first example. Now the pointer modifier is applied before the
array modifier, and var is a pointer to an array of 51nl values.

int (*var)[5J; /* Pointer to array of int values */ Example 2

Function modifiers also have a higher priority than pOinter modifiers.
Example 3 declares var to be a function returning a pOinter to a long
value. The function is declared to take two long values as arguments.

long *var(long,long); /* Function returning pointer to long */ Example 3

Example 4 is like Example 2. Parentheses give the pointer modifier a
higher priority than the function modifier, and var is a pointer to a
function returning a long value. Again, the function takes two long
arguments.

long (*var)(long,long);
/* Pointer to function returning long */ Example 4

The elements of an array cannot be functions. Example 5 shows how
to declare an array of pOinters to functions instead of declaring the
functions themselves as an array. This example declares var as an
array of pointers to functions returning structures with two members.
The arguments to the functions are two structures with the both struc­
ture type:

5-10 Declaring Variables, Functions, and Data Types

struct both

Example 5
int a;
char b;

} (*var[])(struct both, struct both);
/*Array of pointers to functions

returning structures */

The parentheses surrounding ·var [1 are required. Without them, the
declaration is an illegal attempt to declare an array of functions:

struct both *var[](struct both. struct both)i /* ILLEGAL */

Example 6 shows how to declare a function returning a pointer to an
array, because functions returning arrays are illegal. Here var is
declared to be a function returning a pointer to an array of 3 double
values. The function var takes one argument; the argument, like the
return value, is a pointer to an array of 3 double values. The argu­
ment type has a complex, abstract declarator. The parentheses
around the asterisk in the argument type are required; without them,
the argument type is an array of 3 pointers to double values. See
"Type Names" on page 5-48 for a discussion and examples of
abstract declarators.

double (*var(double (*)[3]))[3]; Example 6
/* Function returning a pointer to

an array of double values */

A pointer can point to another pointer, and an array can contain array
elements, as Example 7 shows. Here var is an array of 5 elements.
Each element is a 5-element array of pointers to pointers to unions
with two members.

union sign

int x;
unsigned y;
} **var [5] [5] ;

/* Array of arrays of pointers
to pointers to unions */

Example 7

Example 8 shows how the placement of parentheses alters the
meaning of the declaration. In this example, var is a 5-element array
of pointers to 5-element arrays of pointers to unions.

union sign *(*var[5])[5]; /* Array of pointers Example 8
to arrays of pointers
to unions */

Declari ng Variables, Functions, and Data Types 5-11

IBM Extension

Declarators with Special Keywords
IBM C/2 includes the following:

cdecl fortran Interrupt

_cdecl _fortran _Interrupt
_export huge -loadds
far _huge near

_far

_near
pascal

-pascal
_save regs

Use these keywords to change the meaning of variable and function
declarations. See IBM C/2 Compile, Link, and Run for a full dis­
cussion of the effects of these special keywords.

When a special keyword occurs in a declarator, it changes the item
immediately to the right of the keyword. You can apply more than
one keyword to the same item. For example, you can change a func­
tion identifier with both the far and pascal keywords. The order of the
keywords in this case does not matter. Changing the function with far
pascal has the same effect as changing the function with pascal far.

You can use two or more special keywords in different parts of the
declaration to change the meaning of the declaration. For example,
the following declaration contains two occurrences of the far
keyword.

int far * pascal far func(void);

The pascal and far keywords change the function identifier func. The
return value of func is declared to be a far pointer to an Int value.

As in any C declaration, you can use parentheses to change the inter­
pretation of the declaration. The rules governing complex
declarators apply to declarations using the special keywords as well.

Example
The following examples show the use of special keywords in declara­
tions.

This example declares a huge array named database with 65000 Int
elements. The huge keyword changes the array declarator.

int huge database [65000] ;

5-12 Declaring Variables, Functions, and Data Types

In the next example, the far keyword changes the asterisk to its right,
making x a far pointer to a pointer to char.

char * far * x;

You can also express this declaration as:

char * (far *x);

The following example shows two equal declarations. Both declare
calc as a function with the near and cdecl attributes.

double near cdecl calc(double,double);
double cdecl near calc(double,double);

The next example also shows two declarations: the first declares a
far fortran array of characters named Inltllst, and the second declares
three far pointers, named nextchar, prevchar, and currentchar. You
can use these pointers to store the addresses of characters in the
Inltllst array. You must repeat the far keyword before each
declarator.

char far fortran intlist INITSIZE;
char far *nextchar, far *prevchar, far *currentchar;

The following example shows a more complex declaration with
several occurrences of the far keyword. The far keyword always
changes the item immediately to its right.

char far *(far *getinit)(int far *);
A. A A A A A

6 5 213 4

The steps in interpreting this declaration are as follows:

1. This example declares the identifier getlnlt as
2. a far pointer
3. to a function taking
4. a single argument that is a far pointer to an Int value
5. returning a far pointer to
6. a char val ue.

The _saveregs modifier causes the compiler to generate save and
restore instructions for all registers except those used for the return
value (AX or AX/OX), if any, on entry/exit from function. Use the
_saveregs keyword when it is not certain what the register con­
ventions of the caller might be. For example, _save regs could be
used for a general-purpose function that will reside in a dynamic link
library. Since a function in a dynamic link library might be called

Declaring Variables, Functions, and Data Types 5-13

from any language, you may choose not to assume IBM C/2 calling
conventions in some cases.

The _Ioadds modifier performs the same function as the IAu switch
but on a per-function basis. The generated code loads OS register on
function entry in the following order:

1. The last segment specified by a data_seg pragma.
2. The segment name specified by the IND switch.
3. DGROUP.

See Chapter 2 in IBM CI2 Compile, Link, and Run for a discussion of
the IAu compiler option.

The _export modifier tells the compiler to insert an EXPOEF record
into the EXE file to indicate that this routine can be exported from a
OLL. This does not remove the need for .DEF files, since the linker
assumes that these functions have no IOPL set, have shared data, are
not resident, and have no alias name. This information can be over­
ridden with a .DEF file entry for the same function. The compiler
does emit the number of parameter words for the function. This
cannot be changed by a .DEF file entry with the lopl_parmwords field
set. The value in the .OEF file must either be 0 (indicating that the
linker should use the value given by the compiler) or the same as the
value given by the compiler. This field is ignored if IOPL is not
requested.

Interrupt Functions
Apply the Interrupt attribute to a function to tell the compiler that the
function is an interrupt handler. This causes the compiler to generate
entry and exit sequences that are appropriate for an interrupt­
handling function, including saving and restoring all registers and
executing an IRET instruction to return.

When an Interrupt function is called, the OS register is initialized to
the C data segment. This allows you to access global variables from
within an interrupt function. In addition, all registers (except SS) are
saved on the stack. You can access the registers that are saved
before the normal entry sequence by declaring the funcUon with a
parameter list containing a formal parameter for each register saved.

5-14 Declaring Variables, Functions, and Data Types

The following example illustrates such a declaration:

void interrupt edeel far int_handler (unsigned
eSt unsigned ds. unsigned di. unsigned
si. unsigned bp. unsigned sp. unsigned
bx. unsigned dx. unsigned ex. unsigned

ax. unsigned ip. unsigned es. unsigned
flags)

The formal parameters must appear in the opposite order from which
they are pushed onto the stack. You can omit parameters from the
end of the list in a declaration but not from the beginning. For
example, if your handler needs to use only 01 and SI, you must still
provide ES and OS but not necessarily BX or OX.

The compiler always saves and restores registers in the same, fixed
order. Regardless of which names you use in the formal parameter
list, the first parameter in the list refers to ES, the second refers to
OS, and so on.

If your interrupt handler will be called directly from C rather than by
an INT instruction, pass additional arguments by declaring all register
parameters and then declaring your parameter at the end of the list.

Observe the following precautions when using interrupt functions:

1. Avoid calling standard-library functions, especially functions that
rely on DOS INT 21 H system calls, within an Interrupt function.
(Functions that rely on INT 21H calls include stream- and
low-Ievel-I/O functions.) It may be better to use functions that do
not rely on INT 21 H or BIOS, such as string-handling functions.
Before using a standard-library function in an interrupt function,
be sure that you are familiar with the library function and what it
does. Interrupt functions are for the DOS environment; they
should not be used under OS/2.

2. If you change any of the parameters of an Interrupt function while
the function is executing, the corresponding register contains the
changed value when the function returns. For example:

void interrupt edeel far int handler
(unsigned eSt unsigned ds. ~nsigned di.
uns i gned s i)

di = -1;

Declaring Variables, Functions, and Data Types 5-15

This causes the 01 register to contain -1 when the int_handler
function returns. Generally, it is not a good idea to modify the
values of the parameters representing the IP and CS registers in
Interrupt functions. To modify a particular flag, such as the carry
flag for certain DOS and BIOS interrupt routines, use the OR
operator (I) so that other bits in the flags register are not
changed.

3. When an Interrupt function is called by an INT instruction, the
interrupt enable flag is cleared. If your function needs to do sig­
nificant processing, you should use the _enable function to set the
interrupt flag so that interrupts can be handled.

Interrupt functions often need to transfer control to a second interrupt
routine. Do this by:

1. Calling the interrupt routine (after casting it to an Interrupt func­
tion if necessary). Do this if you need to do further processing
after the second interrupt routine finishes.

void interrupt cdecl new int ()
{ -

... /* Initial processing here */
(*old_int) 0;

... /* Final processing here */

2. Calling _chalnJntr with the interrupt routine as an argument. Do
this if your routine is finished and you want the second interrupt
routine to terminate the interrupt call.

void interrupt cdecl new int ()
{ -

}

... /* Initial processing here */
_chain_intr (old_int>;

/* This is never executed */

The _export, Interrupt, _Ioadds and _saveregs modifiers have the
same binding as pascal, fortran, and cdecl and can be used in combi­
nation with themselves andlor any of the existing language modifiers
and near and far. Unlike the other modifiers, they are allowed on the
declaration and definition of functions and pointers to functions only.
The _Ioadds and _export keywords have no effect on the declaration
of function pointers other than for type checking purposes. The com­
piler strictly enforces type checking for all these attributes on assign­
ment to function pointers and when passing them as function
arguments.

5-16 Declaring Variables, Functions, and Data Types

Example
The following example generates argument mismatch and type mis­
match errors.

int far _export _loadds expfunc(void);
int (far _export *fp) ();
int ff(int (_loadds far *ldfp) (void));

fp = expfunc; /* error: fp must be _loadds also
*/

ff(expfunc); /* error: arg to ff cannot be
export */

ff(fp); /* error: arg to ff must be _loadds
*/

In the following example, funcl is a far pascal function which takes a
single argument of any pointer type and does not return a value. The
function loads OS on entry. The _saveregs attribute tells the compiler
that the function saves and restores all register contents.

void _loadds _saveregs far pascal funcl(void *s);

In the following example fp is a far pointer to an Interrupt function
with no arguments. The _Ioadds attribute indicates that the target
function loads its own OS.

void (far interrupt _loadds *fp) (void);

'--________ End of IBM Extension ________ --'

The IBM C/2 compiler recognizes the keyword volatile as a type
specifier for any object that may change in ways unknown to your
system or which has other unknown side effects.

IBM C/2 does not implement the ANSI standard semantics of volatile,
only the syntax. The compiler accepts legal declarations with volatile
but otherwise ignores the keyword.

You can give a data object the volatile attribute by placing the
keyword volatile in the declarator. For a volatile pointer, you must
place the keyword volatile between the * and the identifier. For
example:

int * volatile X; /* x is a volatile pointer to an int */

For a pointer to a volatile data object, you must place the keyword
volatile before the *identifier sequence. For example:

volatile int *x; /* x is a pointer to a volatile int */

Declaring Variables, Functions, and Data Types 5-17

The IBM C/2 compiler recognizes the keyword consl as a type
specifier for any object known to be an unchanging value. The com­
piler may place consl objects into the CONST segment because they
are read-only. The compiler may not detect every illegal attempt to
modify these objects.

You can give a data object the consl attribute by placing the keyword
consl in the declarator. For a consl pointer, you must place the
keyword consl between the * and the identifier. For example:

int * const d; /* d is a const pointer to an int */

The precedi ng examples show that consl and volaille attach to the
object to the left of the keyword unless the keyword begins the decla­
ration, in which case it applies to the identifier itself. If consl or vola­
Ille appears in the type specifier, it applies to all declarators in the
list.

Variable Declarations
This section describes the form and meaning of variable declarations.
In particular, it explains how to declare the following variable types:

Simple

Enumeration

Structures

Unions

Arrays

Pointers

Single-value variables with integral or floating-point
type.
Simple variables with integral type that hold one
value from a set of named integer constants.
Variables composed of a collection of values that
can have different types.
Variables composed of several values of different
types occupying the same storage space.
Variables composed of a collection of elements with
the same type.
Variables that point to other variables. These vari­
ables contain the locations of variables, in the form
of addresses, instead of the values of variables.

The variable declarations discussed in this section have the general
form:

[sc-specifier] type-specifier declorotor[,declorotor •••];

The se-specifier gives the storage class of the variable. In some con­
texts, you can initialize variables as you declare them. For more

5-18 Declaring Variables, Functions, and Data Types

information about initializing variables, see "Initialization" on
page 5-42.

The type-specifier gives the data type of the variable, and declarator
is the name of the variable, which you can change to declare an array
or a pointer type. You can define more than one variable in the dec­
laration by giving multiple declarators, separated by commas.

Simple Variable Declarations
A declaration for a simple variable defines the name and type of the
variable. It can also define the storage class of the variable. The
name of the variable is the identifier given in the declaration. The
type-specifier gives the name of a defined data type, as described
below.

Format

[sc-specifier]type-specifier identifier[.identifier •.•];

You can define several variables in the same declaration by giving a
list of identifiers separated by commas. Each identifier in the list
names a variable. All variables defined in the declaration have the
same type.

Example
The following example defines a simple variable x. This variable can
hold any value in the set defined by the Int type.

int x;

The next example defines two variables, reply and flag. Both vari­
ables have unsigned long type and hold unsigned long integer
values.

unsigned long reply. flag;

The following example defines a variable, order, that has double
type. You can assign floating-point values to this variable.

double order;

Enumeration Declarations
An enumeration declaration gives the name of the enumeration vari­
able and defines a set of named-integer constants called the enumer­
ation set.

Format

Declaring Variables, Functions, and Data Types 5-19

enum [tog] {enum-list} identifier [,identifier •••];
enum tog identifier[,identifier •••];

A variable declared to have enumeration type stores anyone of the
values of the enumeration set defined by that type. The integer con­
stants of the enumeration set have Int type; the storage associated
with an enumeration variable is the storage required for a single Int
value.

Enumeration declarations begin with the enum keyword and have two
forms. In the first form, you specify the values and names of the enu­
meration set in the enumeration list enum-list described in detail
next. The optional tag is an identifier that names the enumeration
type defined by the enum-list. The identifier names the enumeration
variable. You can define more than one enumeration variable in the
declaration.

The second form uses an enumeration tag to refer to an enumeration
type. The enum-list does not appear in this type of declaration
because the enumeration type is defined elsewhere. An error occurs
if the given tag does not refer to a defined enumeration type or if the
named type is not currently visible.

An enum-list has the following form:

identifier [=constont-expression]
[,identifier[=constont-expression]]

Each identifier names a value of the enumeration set. By default, the
fi rst identifier is associated with the val ue 0, the next identifier is
associated with the value 1, and so on through the last identifier
appearing in the declaration. The name of an enumeration constant
is equal to its value.

The = constant-expression phrase cancels the default sequence of
values. An identifier followed by the phrase = constant-expression is
associated with the value given by constant-expression. The
constant-expression must have Int type and can be negative. The
next identifier in the list is associated with the value of
constant-expression + 1, unless it explicitly has another value.

An enumeration set can contain duplicate constant values, but each
identifier in an enumeration list must be different from a" other enu-

5-20 Declaring Variables, Functions, and Data Types

meration identifiers with the same visibility. For example, the value 0
can be two different identifiers, null and 0, in the same set. The iden­
tifiers in the list must also be distinct from other identifiers with the
same visibility, including' ordinary variable names and identifiers in
other enumeration lists. Enumeration tags must be distinct from
other enumeration, structure, and union tags with the same visibility.

Example
This example defines an enumeration type named day and declares a
variable named workday with that enumeration type. The value 0 is
associated with saturday by default. The identifier sunday is explic­
itly set to O. The remaining identifiers are given the values 1 through
5 by default.

enum day
{
saturday,
sunday = 0,
monday,
tuesday,
wednesday,
thursday,
friday
} workday:

The next example assigns a value from the set to the variable today.
The name of the enumeration constant assigns the value.

today = wednesday:

The following example declares a variable named holiday to have the
enumeration type day. Because the example above previously
declared the day type, only the enumeration tag is necessary in this
declaration.

enum day holiday:

Structure Declarations
A structure declaration defines the name of the structure variable and
specifies a sequence of variable values, called members of the struc­
ture, that can have different types. A variable with structure type
holds the entire sequence defined by that type. No relationship exists
between the members of two different structure types.

Format

struct [tag]{member-declaration list} declarator [,declarator •••]:
struct tag declarator [,declarator •.•];

Declaring Variables, Functions, and Data Types 5-21

Structure declarations begin with the struct keyword and have two
forms, as shown above. In the first form, you specify the types and
names of the structure members in the member-declaration list,
described in detail below. The optional tag is an identifier that names
the structure type defined by the member-declaration list.

Each declarator gives the name of a structure variable. The
declarator can also change the type of the variable to a pointer to the
structure type, an array of structures, or a function returning a struc­
ture.

The second form uses a structure tag to refer to a structure type. The
member-declaration list does not appear in this type of declaration
because you have defined the structure type. The structure type defi­
nition must be visible for a tag declaration to be used, and the defi­
nition must appear prior to the tag declaration, unless the tag
declares a pointer variable or a typedef structure type. These decla­
rations can have a structure tag before you define the structure type,
as long as the structure definition is visible to the declaration.

A member-declaration list is a list of one or more variables or bit­
field declarations. Each variable declared in the member-declaration
list is defined as a member of the structure type. Variable declara­
tions within member-declaration lists have the same form as the vari­
able declarations discussed in this chapter, except that the
declarations do not contain storage class specifiers or initializers.
The structure members can have any variable type: simple, array,
pointer, union, or structure.

You cannot declare a member to have the type of the structure in
which it appears. However, you can declare a member as a pointer
to the structure type in which it appears. This lets you create linked
lists of structures.

Bit-fields
A bit-field declaration has the following form:

type-specifier [identifier] : constant-expression;

5-22 Declaring Variables, Functions, and Data Types

IBM Extension

The type-specifier for a bit-field declaration must specify an unsigned
integral type, except enum. If you give a signed type for a bit-field,
the compiler issues a warning message and converts the type to
unsigned.

Adjacent bit-fields are stored in the same storage unit having the
same size as the base type, provided:

• The base types of the adjacent bit-fields are the same.
• There is space in that storage unit for the fields.

If either requirement is not met, no other fields are stored in the
current storage unit. The next bit-field is stored in the next storage
unit aligned appropriately for its base type.

If the previous member was a bit-field, a zero-width bit-field forces
the compiler to stop allocating subsequent bit-fields from the current
storage unit, and to align to a boundary appropriate to the type of the
zero-width bit-field. Allocation for subsequent fields begins in the
next storage unit whose alignment is appropriate to the base type of
the next member.

L...-________ End of IBM Extension ________J

Declaring Variables, Functions, and Data Types 5-23

Example

struct s1 {
unsigned char c1 : 4
unsigned char c2 : 2
unsigned char c3 : 4
} ;

struct s2 {

/* offset 0 */
/* packs into same byte as c1 */
/* doesn't fit, align to offset 1 */

unsigned char c1 : 4; /* offset 0 */
unsigned int i1 : 2; /* new base type, align to offset 2 */
unsigned int i2 : 8; /* packs into same word as i1 */
};

struct s3 {
unsigned char bit : 4; /* offset 0 */
unsigned char: 0; /* force align to next char boundary */
char c; /* offset 1 */
};

struct s4 {
unsigned char bit : 4; /* offset 0 */
unsigned int : 0; /* force align to next int boundary */
char c; /* offset 2 */
};

struct s5 {
unsigned char bit : 4; /* offset 0 */
unsigned char: 0; /* force align to next char boundary */
int;; /* align int boundary, offset 2 */
};

The bit-field consists of the number of bits specified by
constant-expression. The constant-expression must be a non­
negative integer value. The width of the bit-field cannot be greater
than the number of bits in the specified type. Arrays of bit-fields,
pointers to bit-fields, and functions returning bit-fields are not
allowed. The optional identifier names the bit-field. An unnamed bit­
field whose width is specified as zero has a special function; it guar­
antees that storage for the member following it in the declaration list
begins on an Int boundary.

The identifiers in a structure declaration list must be unique within
that list. Identifiers in the list need not be distinct from ordinary vari­
able names or from identifiers in other structure declaration lists.
Structure tags must be distinct from other structure, union, and enu­
meration tags having the same visibility.

Structure members are stored sequentially in the same order in
which you declare them. The first member has the lowest storage
address and the last member has the highest. The storage for each
member begins on a storage boundary appropriate to its type. There-

5-24 Declaring Variables, Functions, and Data Types

fore, unnamed gaps can occur between the members of a structure in
storage.

Bit-fields are not stored across boundaries of their declared type. For
example, a bit-field declared with unsigned Int type is either packed
into the space remaining in the previous Int or it begins a new Int.

Example
The following example declares a structure variable named complex.
This structure has two members, x and y, with float type. The struc­
ture type is not named.

struct
{

float x,y;
} complex;

The next example declares a structure variable named temp. The
defined structure has three members: name, id, and class. The name
member is a 20-element array, and id and class are simple members
with Int and long type, respectively. The identifier employee is the
structure tag.

struct employee
{

char name[20];
int id;
long class;

} temp;

The following example declares three structure variables: student,
faculty, and staff. Each structure has the same list of three members.
The members are declared to have the structure type employee,
defined in the previous example.

struct employee student, faculty, staff;

The next example declares a structure variable named x and defines
the structure type sample. The first two members of the structure are
a char variable and a pointer to a float value. The third member,
next, is declared as a pointer to the structure type that is defined as
sample.

struct sample
{

char c;
float *pf;
struct sample *next;

} x;

Declaring Variables, Functions, and Data Types 5-25

This example declares a two-dimensional array of structures named
screen. The array contains 2000 elements. Each element is an indi­
vidual structure containing four bit-field members: icon, color, under­
line, and blink.

struct
{

unsigned icon: 8;
unsigned color: 4;
unsigned underline: 1;
unsigned blink: 1;

} screen[25][80];

Union Declarations
A union declaration defines the name of the union variable and speci­
fies a set of variable values (called members of the union) that can
have different types. A variable with union type stores any single
val ue defi ned by that type.

Format

union [tag] {member-declaration-list} declarator[. declarator ••.];
union tag declarator[.declarator .••];

Union declarations have the same form as structure declarations,
except that they begin with the union keyword instead of the struct
keyword. The same rules govern structure and union declarations,
except that bit-field members are not allowed in unions. The names
of structure and union members are not required to be distinct from
structure and union tags or from the names of other variables.

The storage associated with a union variable is the storage required
for the longest member of the union. When you use a smaller
member, the union variable might contain unused storage space. All
members are stored in the same storage space and start at the same
address. The stored value is overwritten each time a value is
assigned to a different member. When a member of a union is
accessed using a member of a different type, the result is undefined if
the value stored and the value accessed have different base types or
different sizes.

5-26 Declaring Variables, Functions, and Data Types

Example
This example declares a union variable named number. The union
number has two members: svar, a signed integer, and uvar, an
unsigned integer. This declaration lets the current value of number
be stored as either a signed or an unsigned value. The union type is
named sign.

union sign
{

i nt svar;
unsigned uvar;

} number;

The following example declares a union variable named jack. The
members of the union are, in order, a pOinter to a char value, a char
value, and an array of float values. The storage reserved for jack is
the storage required for the 20-element array f, because f is the
largest member of the union. The union type is unnamed.

union

char *a. b;
float f[20];

} jack;

This example declares a two-dimensional array of unions named
screen. The array contains 2000 elements. Each element is an indi­
vidual union with four members: window1, window2, windowS, and
window4, where each member is a structure. Each union element
holds one of the four possible structure members at any given time.
Thus, the screen variable is a composite of up to four different
windows.

union

struct
{

char icon;
unsigned color: 4;

} window!. window2. window3. window4;
} screen[25][80];

Array Declarations
A declaration for an array defines the name of the array and the type
of each element. It can also define the number of elements in the
array. A variable with array type is a pointer to the type of the array
elements, as described in "Identifiers" on page 3-12.

Format

Declaring Variables, Functions, and Data Types 5-27

type-specifier declarator[constant-expression];
type-specifier declarator[];

Array declarations have two forms, as shown above. The declarator
gives the name of the variable and can change the type of the vari­
able. The brackets following the declarator change the declarator to
array type. The constant-expression inside the brackets defines the
number of elements in the array. Each element has the type given by
the type-specifier. The declarator may not specify a function. The
type may be void only for a pointer declaration.

The integral type unsigned Int is required to hold the constant­
expression size of arrays. For arrays declared huge, the slzeof oper­
ator must be cast to type long to get the correct value.

The second form omits the constant-expression in brackets. You can
use this form only if the array is initialized, declared as a formal
parameter, or declared as a reference to an array explicitly defined
elsewhere in the program.

Define arrays of arrays (multidimensional arrays) by giving a list of
bracketed constant-expressions following the array declarator:

type-specifier declarator [constant-expression] [constant-expression] ••• ;

Each constant-expression in brackets defines the number of elements
in a given dimension. Two-dimensional arrays have two bracketed
expressions; three-dimensional arrays have three, and so on. When
you declare a multidimensional array within a function, you can omit
the first constant-expression if the array is initialized, declared as a
formal parameter, or declared as a reference to an array explicitly
defined elsewhere in the program.

You can define arrays of pointers to various types by using complex
declarators.

The storage associated with an array type is the storage requi red for
all of its elements. The elements of an array are stored in contiguous
and increasing storage locations, from the first element to the last.
No gaps occur between the elements of an array in storage.

Arrays are stored by row. For example, the following array consists
of two rows with three columns each.

char A[2][3];

5-28 Declaring Variables, Functions, and Data Types

The 3 columns of the first row are stored first, followed by the 3
columns of the second row.

To refer to an individual element of an array, use a subscript
expression, for example:
A [0] [1]

Declarina Variables. Functions. and Data Tvoes 5-29

Example
The following example defines an array variable named scores with
10 elements, each of which has Inl type. The variable named game is
declared as a simple variable with Inl type.

int scores[10]. game;

The next example defines a two-dimensional array named matrix.
The array has 150 elements, each havingfloal type.

float matrix[10] [15];

The next example defines an array of structures. This array has 100
elements. Each element is a structure containing two members.

struct
{
float X,Y;
} complex[100];

The next example defines an array of pointers. The array has 20 ele­
ments. Each element is a pointer to a char value.

char *name[20];

5-30 Declaring Variables, Functions, and Data Types

Pointer Declarations
A pointer declaration defines the name of the pointer variable and the
type of the object to which the variable points.

Format

type-specifier *[modification-spec] declarator;

The declarator defines the name of the variable and can change its
type. The type-specifier gives the type of the object. The type can be
a simple type, a structure, a union, an enum, or void.

Pointer variables can also point to functions, arrays, and other
pointers. To declare more complex pointer types, see "Complex
Declarators" on page 5-9.

The modification-spec can be either const or Yolatlle, or both. The
specifier const implies that the program itself does not change the
pOinter, while volatile implies that another process beyond control of
the program might change the pointer.

You can declare a pointer to a structure, union type, or enum before
defining the structure or union type, as long as the structure, union
type, or enum definition is visible at the time of the declaration. Such
declarations are allowed because the compiler does not need to
know the size of the structure, union, or enum to reserve space for
the pointer variable. Declare the pOinter by using the structure,
union, or enum tag. See the fourth example.

A variable declared as a pointer holds a storage address. The
amount of storage required for an address and the meaning of the
address depend on the memory model in use. Pointers to different
types might not have the same length.

In some cases the special keywords near, far, and huge are available
to change the size of a pointer. For more information about special
keywords, see "Declarators with Special Keywords" on page 5-12.

Example
Example 1 declares a pointer variable named message. It points to a
variable with char type.

char *message; Example 1

Declaring Variables, Functions, and Data Types 5-31

Example 2 declares an array of pointers named pointers. The array
has 10 elements. Each element is a pointer to a variable with Int
type. The pointers are specified as volatile; any of them might be
changed at run time by another process.

int * volatile pointers[10]; Example 2

Example 3 declares a pointer variable named pointer. It points to an
array with 10 elements. Each element in this array has Int type.

int (*pointer)[10]; Example 3

Example 4 declares two pointer variables that point to the structure
type list. This declaration can appear before the definition of the list
structure type (see next example), as long as the list type definition
has the same visibility as the declaration.

struct list *next, *previous; Example 4

Example 5 declares the variable line to have the structure type
named list. The list structure type is defined to have three members.
The first member is a pointer to a char value, the second is an Int
value, and the third is a pointer to another list structure.

struct list
{

char *token;
int count;
struct list *next;

} 1 ine;

Function Declarations

Example 5

A function declaration defines the name and return type of a function
and can establish the types and number of arguments to the function.
Function declarations, also called forward declarations, do not define
the function body. Instead, they permit the characteristics of the func­
tion to be known before the function is defined.

Format

[type-specijier]declarator([arg-typelist]) [.declarator([arg-typelist]) .••];

The declarator of the function declaration names the function, and the
type-specifier gives the return type of the function. If you omit the
type-specifier from a function declaration, the compiler assumes the
return type of the function is Int.

Function declarations can include either the extern or the static
storage class specifier.

5-32 Declaring Variables, Functions, and Data Types

Argument Type List: The arg-typelist establishes the number and
types of the arguments to the function and can also declare identifiers
for the arguments. It has one of the following forms:

type-name-list[•••.]
identifier-list[••••]

The type-name-list is a list of one or more type names. Separate
each type-name from the next by a comma. The first type-name gives
the type of the first argument to the function; the second type-name
gives the type of the second argument, and so on.

The identifier-list is a list of one or more sets of type name/identifier
specifications, such as float f. Separate each such declaration from
the next by a comma. The first set gives the type of the first argument
to the function and declares the identifier; the second set declares the
second identifier, and so on. If either type-list ends with a comma fol­
lowed by three periods, the number of arguments to the function is
variable.

Note: To maintain compatibility with previous versions, the compiler
also accepts the comma character, without trailing periods, at
the end of the arg-typelist to indicate a variable n~mber of
arguments. Use the comma only for compatibility\ it is recom­
mended that you use three periods for new code. \

A type-name for a fundamental, void, structure, union, or enum type
consists of the type specifier for that type (such as Int). Form the
type-names for pOinters, arrays, and function by combining a type
specifier with an "abstract declarator," that is, a declarator without
an identifier. "Type Names" on page 5-48 explains how to form and
interpret abstract declarators.

You can use the special keyword void in place of the arg-typelist to
declare a function that has no arguments. The compiler produces a
warning message if a call to the function or the function definition
specifies arguments.

One other construction is allowed in the arg-typelist. The phrase void
* specifies an argument of any pointer type. Use this phrase in the
arg-typelist as if it were a type-name.

You can omit arg-typelist, but you still need the parentheses after the
function identifier. In this form the function declaration establishes
neither the number nor the types of arguments to the function. When

Declaring Variables, Functions, and Data Types 5-33

you omit this information, the compiler does not perform any type­
checking between the arguments in a function call and the formal
parameters of the function defi nition.

Return Type: Functions can return values of any type except arrays
and functions. Thus, the type specifier of a function declaration can
specify any fundamental, structure, void, enum, or union type. You
can change the function identifier with one or more asterisks to
declare a pointer return type. Although functions cannot return
arrays and functions, they can return pointers to arrays and functions.
Functions that return pointers to array or function types are declared
by the function identifier with asterisks, brackets, and parentheses to
form a complex declarator.

Example
Example 1 declares a function named add, that takes two Int argu­
ments and returns an Int value.

int add{int. int); Example 1

Example 2 declares a function named strflnd, which returns a pointer
to a char value. The function takes at least one argument, a pointer
to a char value. The argument type list ends with a comma, showing
that the function can take more arguments.

char *strfind(char *.); Example 2

Example 3 declares a function with void return type (returning no
value). The argument-type-list is also void, meaning no arguments
are expected for this function.

void draw{void); Example 3

Example 4 sum is declared as a function returning a pointer to an
array of three double values. The sum function takes two arguments,
each a double value.

double {*sum{double. double»[3]; Example 4

In Example 5, the function named select is declared to take no argu­
ments and return a pointer to a function. The pointer return value
points to a function taking one Int argument and returning an Int
value.

int (*select{void»{int) Example 5

In example 6, the function prt is declared to take a pointer argument
of any type and to return an Int. Either the char pointer p or the short

5-34 Declaring Variables, Functions, and Data Types

pointer q can pass as an argument to prt without producing a type­
mismatch warning.

char *p;
short *q;

Example 6

int prt(void *};

Storage Classes
The storage class of a variable determines whether the item has a
global or local lifetime. An item with a global lifetime exists and has
a value throughout the program. All functions have global lifetimes.

New storage is reserved for variables with local lifetimes each time
control passes to the block they are defined in. When flow passes out
of the block, the variables no longer have meaningful values.

Although C defines only two types of storage classes, four storage
class specifiers are available:

Type
Local
Global

Specifiers
Auto and register
Extern and static.

The four storage class specifiers have distinct meanings because
storage class specifiers affect the visibility of functions and variables
as well as their storage class. Visibility and the related concept of
lifetime are discussed in "Lifetime and Visibility" on page 4-5.

The placement of variable or function declarations within source files
also affects storage class and visibility. Declarations outside of all
function definitions occur at the external level; declarations within
function definitions occur at the internal level.

The meaning of each storage class specifier depends on whether the
declaration occurs at the external or the internal level and whether
the item declared is a variable or a function. The following sections
describe the meaning of storage class specifiers in each kind of dec­
laration. They also explain the'default behavior when you omit the
storage class specifier from a variable or function declaration.

Declaring Variables, Functions, and Data Types 5-35

Variable Declarations at the External Level
Variable declarations at the external level use the static and extern
storage class specifiers or omit the storage class specifier entirely.
The auto and register storage class specifiers are not allowed at the
external level.

Variable declarations at the external level are either definitions of
variables or references to variables defined elsewhere. An external
variable declaration that also initializes the variable (implicitly or
explicitly) is a definition of the variable. Definitions at the external
level can take several forms:

• You can define a variable at the external level by declaring it with
the statiC storage class specifier. You can explicitly initialize the
static variable. If you omit the initializer, the vari~ble is automat­
ically initialized to 0 at compile time. Thus, static Int k = 16; and
static Int k; are both definitions.

• A variable is defined when it is explicitly initialized at the
external level. For example, Int J = 3; is a variable definition.

Whenever you define a variable at the external level, it is visible
throughout the remainder of the source file in which it appears. The
variable is not visible above its definition in the same source file.

A variable can be defined at the external level only once within a
source file. If you use the static storage class specifier, you can
define another variable with the same name with the static storage
class specifier in a different source file. Because each static defi­
nition is visible only in its own source file, no conflict occurs.

Use the extern storage class specifier to declare a reference to a v~r­
iable defined elsewhere. You can use these declarations to make a
definition in another source file visible or to make a variable visible
above its definition in the same source file. Whenever you declare a
reference to the variable at the external level, the variable is visible
throughout the remainder of the source file where the declared refer­
ence occurs.

For an extern reference to be valid, you must define the variable to
which it refers once, and only once, at the external level. The defi­
nition can be in any of the source files that make up the program. If

5-36 Declaring Variables, Functions, and Data Types

an extern declaration has an initializer, it is treated as the definition
of the variable.

The rules outlined here do not cover one special case; you can omit
both the storage class specifier and the initializer from a variable
declaration at the external level. For example, the declaration Int n;
is a valid external declaration. This declaration can have one of two
different meanings, depending on the context:

• If you define a variable by the same name at the external level
elsewhere in the program, the declaration is taken to be a refer­
ence to that variable, exactly as if you had used the extern
storage class specifier in the declaration.

• If no such definition is present, the declared variable reserves
storage at link time and initializes to O. If more than one such
declaration appears in the program, storage is reserved for the
largest size declared for the variable. For example, if a program
contains two uninitialized declarations of i at the external level,
Int I and char I, storage space for an Int is reserved for ~ at link
time.

Declaring Variables, Functions, and Data Types 5-37

Example
/**************************************

SOURCE FILE ONE
**************************************/

extern int i;

mainO
{

i++;

/* Reference to i. defined below */

printf("%d\n". i); /* i equals 4 */
next ();

i nt i = 3:

next()
{

i++;

/* Definition of i */

printf("%d\n". i); /* i equals 5 */
otherO;

/**************************************
SOURCE FI LE TWO

*************************************/

extern int i; /* Reference to i in first source file */

otherO
{

i++;
printf("%d\n". i); /* i equals 6 */

The two source files contain a total of three external declarations of i.
Only one declaration contains an initialization. The declaration Int I
= 3; defines the global variable i with initial value 3. The extern dec­
laration of i at the top of the first source file makes the global variable
visible above its definition in the file. Without the extern declaration,
the main function cannot refer to the global variable i. The extern
declaration of i in the second source file makes the global variable
visible in that source file.

All three functions perform the same task. They increase i and print
it. The prlnH function is defined eisewhere in the program. The
values printed are 4,5, and 6.

If the variable i is not initialized, it automatically becomes 0 at link
time. The values printed in this case are 1, 2, and 3.

5-38 Declaring Variables, Functions, and Data Types

Variable Declarations at the Internal Level
You can use any of the four storage class specifiers for variable dec­
larations at the internal level. When you omit the storage class
specifier from a variable declaration at the internal level, the default
storage class is auto.

The auto storage class specifier declares a variable with a local life­
time. The variable is visible only in the block in which you declare it.
Declarations of auto variables can include initializers, as discussed
later in this chapter. Variables with auto storage class are not initial­
ized automatically. Explicitly initialize them when you declare them
or assign them initial values in statements within the block. If you do
not initialize them, the values of auto variables are undefined.

The register storage class specifier tells the compiler to give the vari­
able storage in a register, if possible. Register storage usually
results in faster access time and smaller code size. Variables
declared with register storage class have the same visibility as auto
variables.

The number of registers for variable storage depends on the avail­
able machine. If no registers are available when the compiler meets
the register declaration, the variable is given the auto storage class
and stored. The compiler assigns register storage to variables in
exactly the same order in which the declarations appear in the source
file. Register storage, if available, is guaranteed only for Int and in
the pointer types of some memory models.

A variable declared at the internal level with the static storage class
specifier has a global lifetime. The variable is visible only within the
block in which you declare it. Unlike auto variables, variables
declared as static retain their values when the block is exited.

Declarations of static variables can include initializers. If not explic­
itly initialized, a static variable is automatically set to O. Initialization
is performed once, at link time; the static variable is not reinitialized
each time the block is entered.

A variable declared with the extern storage class specifier is a refer­
ence to a variable with the same name defined at the external level in
any of the source files of the program. The purpose of the internal
extern declaration is to make the external-level variable definition
visible within the block. The internal extern declaration does not

Declaring Variables, Functions, and Data Types 5-39

change the visibility of the global variable in any other part of the
program and may not have an initializer.

Example
The following example shows the declaration of functions at the
internal level:

int i = 1;

main(}
{ /* Reference to i, defined above */

extern int i;

/* Initial value is zero;
** a is visible only within main */

static int a;

/* b is stored in a register,
** if possible */

register int b = 0;

/* Default storage class is auto */
int c = 0;

/* Values printed are 1, 0, 0, 0 */
printf("%d\n%d\n%d\n%d\n" ,

i. a, b, c);
other();

otherO
{

/* i is redefined */
int i = 16;

/* This a is visible only within other */
static int a = 2;

a += 2;
/* Values printed are 16, 4 */

printf("%d\n%d\n", i, a);

The variable i is defined at the external level with the initial value 1.
A reference to the external-level i is declared in the main function
with an extern declaration. The static variable a is automatically set
to 0 because the initializer is omitted. The call to prlnH (assuming the
prlnH function is defined elsewhere in the source program) prints out
the values 1, 0, 0, O.

In the other function, the variable i is redefined as a local variable
with the initial value 16. This does not affect the value of the

5-40 Declaring Variables, Functions, and Data Types

external-level i. The variable a is declared as a static variable and
initialized to 2. This a does not conflict with the a in main, because
the visibility of static variables at the internal level is restricted to the
block in which you declare them.

The variable a is increased by 2, giving 4 as the result. If you call the
other function again in the same program, the initial value of a is 4.
Internal static variables retain their values when the block in which
they are declared is exited and reentered.

Function Declarations at the External and Internal Levels
Function declarations can use the static or the extern storage class
specifier. Functions have global lifetimes.

The visibility rules for functions are different from the rules for vari­
ables. Function declarations at the internal level have the same
meaning as function declarations at the external level. This means
that functions cannot have block visibility, and the visibility of func­
tions cannot be nested. A function declared to be static is visible only
within the source file in which you define it. Any function in the same
source file can call the static function, but functions in other source
files cannot call the static function. You can declare another static
function by the same name in a different source file without conflict.

Unless you compile with the /Za option, functions declared as extern
are visible throughout all source files in the program. Any function
can call an extern function. When you compile using /Za, functions
declared as extern within a block are visible only within that block.
See the "Advanced Topics" section in Chapter 2 of IBM C/2 Compi/e,
Link, and Run book for further information about the /Za option.

Function declarations that omit the storage class specifier default to
extern.

When a program redefines a reserved external identifier, the effect
depends on the identifier being replaced. Even if the replacement
meets the functional specification of the replaced function, the results
may be unpredictable because the IBM C/2 library functions may
have undocumented side effects that are necessary for the correct
operation of the function and/or related functions.

Declaring Variables, Functions, and Data Types 5-41

Il1itiilli~ilti()11

You can set a variable to an initial value by applying an initializer to
the declarator in the variable declaration. The value or values of the
initializer are assigned to the variable. Precede the initializer by an
equal sign (-), as shown below:

= ini tiol izer

You can initialize variables of any type with the restrictions outlined
below. Functions do not take initializers.

Declarations that use the extern storage class specifier cannot
contain initializers.

You can initialize variables declared at the external level. If you do
not explicitly initialize them, they are set to 0 at link time. You can
initialize any variable declared with the static storage class specifier.
Initializations of static variables are performed once, at link time. If
you do not explicitly initialize static variables, they are set to o.

Initializations of auto and register variables are performed each time
control passes to the block in which you declared them. If you omit
the initializer from the declaration of an auto or register variable, the
initial value of the variable is undefined.

Initializations of auto aggregate types (arrays, structures, and unions)
are prohibited. You can initialize only static aggregates and aggre­
gates declared at the external level.

The initial values for external variable declarations and for all static
variables, whether external or internal, must be constant
expressions. Constant expressions are described in "Constant
Expressions" on page 6-9. You can initialize automatic and register
variables with constant or variable values.

Simple and Pointer Types
To initialize simple and pointer types, assign an expression to the
variable in the following form:

Format

= expression

5-42 Declaring Variables, Functions, and Data Types

The value of expression is assigned to the variable. The conversion
rules for assignment apply.

Example
In this example, x is initialized to the constant-expression 10.

int x = 10;

In the next example, the pointer px is initialized to 0, producing a null
pointer.

register int *px = 0;

The following example uses a constant expression to initialize c.

int c = (3 * 1024);

The next example initializes the pointer b with the address of another
variable, x.

int *b = &x;

Aggregate Types
To initialize aggregate types, assign an initializer list to the aggre­
gate in the following form:

Format

= {initializer-list}

The initializer-list is a list of initializers separated by commas. Each
initializer in the list is either a constant expression or another
initializer list. Any brace enclosed list can appear within an
initializer-list. This is useful for initializing aggregate members of an
aggregate, as shown in the examples that follow.

For each initializer-list, the values of the constant expressions are
assigned in order to the members of the aggregate variable. When a
union is initialized, the initializer-list must be a single constant
expression. The value of the constant expression is assigned to the
first member of the union.

If fewer values are in an initializer-list than are in the aggregate type,
the remaining members or elements are initialized to O. Giving too
many initial values for the aggregate type causes an error. These
rules apply to each embedded initializer-list, as well as to the aggre­
gate as a whole.

Declaring Variables, Functions, and Data Types 5-43

Example
The following example declares p as a 4 x 3 array and initializes the
elements of its first row to 1, the elements of its second row to 2, and
so on through the fourth row.

int p[4] [3] =
{

};

{ 1, 1, 1 },
{ 2, 2, 2 },
{ 3, 3, 3 },
{ 4, 4, 4 },

The initializer-list for the third and fourth rows contain commas after
the last constant expression. The last initializer-list ({4, 4, 4},) is also
followed by a comma. These extra commas are permitted but not
required. The required commas are those that separate constant
expressions and initializer-lists.

If there is not an embedded initializer-list for an aggregate member,
values are assigned in order to each member of the subaggregate.
The preceding initialization is equal to:

int p[4][3] =
{

1, 1. 1. 2. 2. 2. 3. 3. 3. 4. 4. 4
};

Braces can also appear around individual initializers in the list.
In the next example, the three Int members of x are initialized to 1, 2,
and 3, respectively. The three elements in the first row of m are ini­
tialized to 4.0; the elements of the remaining row of m are initialized
to 0 by default.

struct list
{

int i. j. k;
float m [2] [3] ;

} x = {

};

1.
2.
3.
{4.0, 4.0, 4.0}

In the final example, the union variable y is initialized. The first
element of the union is an array, SO the initializer is an aggregate
initializer. The initializer list {'1'} gives values to the first row of the
array. Because only one value appears in the list, the element in the
first column is initialized to 1, and the remaining two elements in the
row are initialized to 0 (the null character), by default. Similarly, the

5-44 Declaring Variables, Functions, and Data Types

first element of the second row of x is initialized to 4 and the
remaining two elements in the row are initialized to o.
union

char x [2] [3] ;
i nt i. j. k;

} y = {

} ;

{'I'},
{'4'}

String Initializers
You can initialize an array with a string literal, for example:

char code[] = "abc";

This initializes code as a four-element array of characters. The fourth
element is the null character '\0' that ends all string literals.

If you specify the array size and the string is longer than the specified
size of the array, the extra characters are discarded. The following
declaration initializes code as a three-element character array:

char code[3] = "abed";

Only the first three characters of the initializer are assigned to code.
The character d and the null character are discarded.

If the string is shorter than the specified size of the array, the
remaining elements of the array are initialized to O.

Type Declarations
A type declaration defines the name and members of a structure or
union type or the name and enumeration set of an enumeration type.
You can use the name of a declared type in variable or function dec­
larations to refer to that type. This is useful if many variables and
functions have the same type.

A typedef declaration defines a type specifier for a type. These dec­
larations set up shorter or more meaningful names for types already
defined by C or for types declared by the user.

Declaring Variables, Functions, and Data Types 5-45

Structure, Union, and Enumeration Types
Declarations of structure, union, and enumeration types have the
same general form as variable declarations of those types. In type
declarations the variable identifier is omitted, because no variable is
declared. The tag is mandatory; it names the structure, union, or
enumeration type. The member declaration list or enum list defining
the type must appear in the type declaration. The short form of vari­
able declarations, in which a tag refers to a type defined elsewhere,
is not legal for type declarations.

This example declares an enumeration type named status. You can
use the name of the type in declarations of enumeration variables.
The identifier loss is explicitly set to -1. Both bye and tie are associ­
ated with the value 0, and win is given the value 1.

enum status
{

};

loss = -1.
bye,
tie = 0,
win

The next example declares a structure type named student:

struct student
{

};

char name[20];
int id, class;

Because the structure type student is defined, the next example
declares a variable as having student type:

struct student employee;

You cannot define a type within the formal list of a function. For
example, the following example causes an error:

void func(struct s { int a, b; } st);
void func(struct s st)
{
}

This rule applies to union and enumeration declarations as well as
structure declarations. Declare the type in conventional fashion,
outside the function's formal list.

Note: The preceding code is acceptable under the ANSI standard,
but the type is defined only to the closing parenthesis of the
prototype and the closing brace (}) of the function definition.

5-46 Declaring Variables, Functions, and Data Types

Typedef Declarations
A typedef declaration is like a variable declaration except for the
typedef keyword that appears in place of a storage class specifier.
The declaration is interpreted in the same way as variable and func­
tion declarations. The identifier, instead of taking on the type speci­
fied by the declaration, becomes a new keyword for the type.

Format

typedef type-specifier declarator [.declarator •••];

The typedef declaration does not create types. It creates synonyms
for existing types or names for types that can be specified in other
ways. You can declare any type with typedef, including pOinter, func­
tion, and array types. A typedef name for a pointer to a structure or
union type can be declared before the structure or union type is
defined, as long as the definition has the same visibility as the decla­
ration.

This example declares WHOLE to be a synonym for Int.

typedef int WHOLE;

The following example declares GROUP as a structure type with three
members. Because a structure tag, club, is also specified, either the
typedef name, GROUP, or the structure tag can be used in declara­
tions.

typedef struct club
{

char name[30];
int size, year;

} GROUP;

The next example uses the previous typedef name to declare a
pointer type. The type PG is declared as a pointer to the GROUP
type, which in turn is defined as a structure type.

typedef GROUP *PG;

The final example declares DRAWF as a function returning no value
and taking two Int arguments. This means, for example, that the dec­
laration DRAWF box; is equivalent to the declaration void box(lnt,
Int);.

typedef void DRAWF(int, int);

Declaring Variables, Functions, and Data Types 5-47

Type Names
A type name specifies a particular data type. Use type names in the
followi ng contexts:

• In the argument-type lists of function declarations
• I n type casts
• In slzeof operations.

See "Function Declarations" on page 8-9 for a discussion of
argument-type lists.

The type names for simple, enumeration, structure, and union types
are the type specifiers for those types. A type name for a pointer,
array, or function type has the form:

type-specifier abstract-declarator

An abstract-declarator is a declarator without an identifier, consisting
solely of one or more pOinter, array, or function modifier. The pOinter
modifier (*) always appears before the identifier in a declarator, while
array brackets ([]) and function modifiers (()) appear after the identi­
fier. These rules define where the identifier appears in an abstract
declarator and how to interpret the declarator accordingly. Abstract
declarators can be complex. Parentheses in a complex abstract
declarator specify a particular interpretation, just as they do for the
complex declarators in declarations. When you give a function type
with an abstract declarator, you can include the argument type list of
the function, which also consists of type names.

5-48 Declaring Variables, Functions, and Data Types

The abstract declarator, (), is not allowed alone because it is ambig­
uous. It is impossible to determine whether the implied identifier
belongs inside the parentheses (in which case it is an unmodified
type) or before the parentheses (a function type). You may not cast
objects to functions nor use slzeof to obtain the size of a function.

The type specifiers established through typedef declarations also
qualify as type names.

Example
This example gives the type name for pointer to long type:

long *

The following examples show how parentheses change complex
abstract declarators. This example gives the name for a pointer to an
array of five Int values:

i nt (*) [5]

This example names a pointer to a function taking no arguments and
returning an Int value:

int (*)(void)

Declaring Variables, Functions, and Data Types 5-49

5-50 Declaring Variables, Functions, and Data Types

Chapter 6. Forming, Expressions and
Making Assignments

This chapter describes how to form expressions and make assign­
ments in the C language. An expression is a combination of oper­
ands and operators that yields (expresses) a single value. An
operator specifies how to manipulate the constants or variables in an
expression. An operand is a constant or variable value that an oper­
ator in an expression manipulates. Each operand of an expression is
also an expression, because it represents a single value.

C assignments are expressions. An assignment yields a value. Its
value is the value assigned. In addition to the simple assignment
operator (=), C offers complex assignment operators that both trans­
form and assign their operands.

The value resulting from the evaluation of an expression depends on
the relative precedence of operators in the expression and side
effects, if present. The precedence of operators determines the
grouping of operands in an expression. Side effects are changes
caused by the evaluation of an expression. In an expression with
side effects, the evaluation of one operand can affect the value of
another. With some operators, the order in which C evaluates the
operands also affects the result of the expression.

The value represented by each operand in an expression has a type.
You can convert this type to a different type in assignments, type
casts, function calls, and operations.

Operands
A C operand is a constant, identifier, string, function call, subscript
expression, member selection expression, or more complex
expression formed by combining operands with operators or
enclosing operands in parentheses. Any operand that yields a con­
stant value is called a constant expression.

Every operand has a type. The following sections discuss the type of
value that each kind of operand represents. An operand can be cast
from its original type to another type by means of a type cast opera-

Forming Expressions and Making Assignments 6-1

tion. A type cast expression can also form an operand in an
expression.

Constants
A constant operand has the value and type of the constant value it
represents. A character constant has Int type. An integer constant
can have either Int, unsigned Int, long, or unsigned long type,
depending on the size of the integer and how the value was specified.
Floating-point constants always have double type. String literals are
considered arrays of characters. See "Strings" on page 6-3 for a dis­
cussion of string literals.

Identifiers
An identifier names a variable or function. Every identifier has a
type, established when you declare the identifier. The value of an
identifier depends upon its type, as follows:

• Identifiers of integer and floating-point types represent values of
the corresponding type.

• An identifier of enum type represents one constant value of a set
of constant values. The value of the identifier is the constant
value. Its type is Int, by definition of the enum type.

• An identifier of struet or union type represents a value of the
specified struet or union type.

• An identifier declared as a pointer represents a pointer to the
specified type.

• An identifier declared as an array represents a pointer whose
value is the address of the first element of the array. The type
addressed by the pointer is the type of the first element of the
array. For example, if you declare series to be a ten-element
integer array, the identifier series expresses the address of the
array, while the subscript expression series[n] (where n is an
integer in the range 0 to 9) refers to a variable integer element of
series.

The address of an array does not change during the running of
the program, although the values of the individual elements can
change. The pointer value represented by an array identifier is
not a variable, and an array identifier cannot form the left-hand
operand of an assignment operation.

• An identifier declared as a function represents the function itself;
its type is a function returning a value of a specific type.
Although it is declared and used in the program as though it had

6-2 Forming Expressions and Making Assignments

the type of the value that it returns, it is only an operation. Use it
optionally on one or more arguments to optionally return a value
of a specific type. It is not a variable, which could be assigned a
value. Therefore, function identifiers can appear only alone or in
expressions as right-hand sides of assignments, never as left­
hand sides.

Strings
A string literal consists of a list of characters enclosed in double
quotes, as shown below:

"string"

A string literal is stored as an array of elements with char type. The
string literal represents the address of the first element of the array.
The address of the first element of the string is a constant, so the
value represented by a string expression is a constant.

Because string literals are effectively arrays, you can use them in
contexts that allow array values. String literals are subject to the
same restrictions as arrays. Stri ng literals have two additional
restrictions: they are not variables and cannot be left-hand operands
in assignment operations.

The last character of a string is the null character \0. The null char­
acter is not visible in the string expression, but the system adds it as
the last element when it stores the string. Thus, the string "abc" actu­
ally has four characters instead of three.

Function Calls
Use a function call expression to call a function and to pass argu­
ments to a function.

Format

expression (expression-list)

A function call consists of an expression followed by an expression­
list in parentheses, where expression evaluates to a function address
(for example, a function identifier), and expression-list is a list of
expressions whose values, the actual arguments, are passed to the
function. The expression-list can be empty.

A function call expression has the value and type of the return value
of the function. If the return type of the function is Yold, the function

Forming Expressions and Making Assignments 6-3

call expression also has void type. If control returns from the called
function without running a return statement, the value of the function
call is undefined, unless the type is void.

Subscript Expressions
Use a subscript expression to access an element of an array.

Format

expressionl[expression2]

A subscript expression represents the value at the address that is
expression2 positions beyond expression1. The value of expression1
is any pointer value (such as an array identifier) and the value of
expression2 is an integer value. The value of expression2 must be
enclosed in brackets.

You can use subscript expressions to refer to array elements, or you
can apply a subscript to any other pointer.

According to the conversion rules of the addition operator, the com­
piler converts the integer value to an address offset by multiplying it
by the length of the type addressed by the pointer. For a one­
dimensional array, the following four expressions are equivalent,
assuming that a is a pointer and b is an integer.

a[b]
*(a + b)
*(b + a)
b[a]

I n each case the add ress com putes to

(b*sizeof(type pointed to»+a

For example, suppose the identifier line refers to an array of Int
values. Consider the following expression:

int line[15] ;

The compiler evaluates the expression by multiplying the integer
value i by the length of an Int. The converted value of i represents i
Int positions. The sum of this converted value and the original
pointer value (line) yields an address that is offset i Int positions from
line.

6-4 Forming Expressions and Making Assignments

As the last step in evaluating the subscript expression, the system
applies the indirection operator to the new address. The result is the
value of the array element at that position.

1 i ne [i]

The subscript expression:

line[O]

represents the value of the first element of A, because the offset from
the address represented by A is O. An expression such as:

1 i ne[5]

refers to the element offset five positions from line or the sixth
element of the array.

Multidimensional Array References
A subscript expression can be subscripted, as follows:

expressionl [expression2] [expression3] •••

Subscript expressions associate left to right. The leftmost subscript
expression, expression1lexpression2j, is evaluated first. The
address that results from adding expression1 and expression2 forms
the pointer expression to which expression3 is added. The indi­
rection operator (*) is applied after the last subscripted expression is
evaluated. The indirection operator is not applied at all if the final
pointer value addresses an array type.

Expressions with more than one subscript refer to elements of multi­
dimensional arrays. A multidimensional array is an array whose ele­
ments are arrays. The first element of a three-dimensional array, for
example, is an array with two dimensions.

Example
In the following examples, the array named prop has 3 elements,
each of which is a 4-bY-6 array of Int values.

int prop [3] [4] [6];
int i. *ip. (*ipp)[6];

The first example shows how to refer to the second individuallnt
element of prop. Arrays are stored by row, so the last subscript
varies most quickly for accessing each element of the array.

i = prop [0] [0][1];

The second example shows a more complex reference to an indi­
vidual element of prop. To evaluate the expression, the compiler

Forming Expressions and Making Assignments 6-5

multiplies the first subscript 2 by the size of the 4-by-6Int array and
adds it to the pointer value prop. The result points to the third 4-by-6
Int array.

o

2

3

o 2 3 4 5

Next the compiler multiplies the second subscript, 1, by the size of
the 6-element Int array and adds it to the address represented by
prop[2]. The result pOints to a 6-element array, the second of four
such arrays in the third 4-by-6 Int array.

Each element of the 6-element array is an Int value. The compiler
multiplies the final subscript 3 by the size of an Int data element and
adds it to prop[2][1]. The resulting pointer addresses the fourth
element of the second 6-element array of the third 4-by-6 element
array.

The last step in evaluating the expression prop[2][1][3] is applying the
indirection operator to the pointer value. The result is the Int element
at that address.

i = prop [2] [1] [3] ;

The next example does not apply the indirection operator. The
expression:

prop [2] [1]

is a valid reference to the 3-dimensional array prop. The result of the
expression is a pointer value that addresses an array with one
dimension. Because the pointer value addresses an array type, the
indirection operator is not applied.

6-6 Forming Expressions and Making Assignments

ip = prop[2][1];

The next example is a pointer array addressing an array with two
dimensions. Again, because the pointer addresses an array, the indi­
rection operator is not applied.

ipp = prop[2];

Member Selection Expressions
Member selection expressions refer to members of structures and
unions. A member selection expression has the value and type of the
selected member.

Format

expression. identifier
expression->identifier

In the first form, expression.identifier, the expression represents a
value of a structure or union. The identifier names a member of the
specified structure or union.

In the second form, expression->identifier, the expression represents
a pointer to a structure or union. The identifier names a member of
the specified structure or union.

The two forms of member selection expressions have a similar effect.
Expressions involving the pointer selection operator (-» are short­
hand versions of expressions using the period (.) in cases where the
expression before the period consists of the indirection operator (*)
applied to a pointer value. The following two statements are equal
when expression is a pointer value:

expression -> identifier
*(expression).identifier

Example
The following conditions apply to all examples:

struct pair
{

int a;
int b;
struct pair *sp;

} item. list[10];

In the following example, the address of the item structure is
assigned to the sp member of the structure. This means that item
contains a pointer to itself.

Forming Expressions and Making Assignments 6-7

item.sp = &item;

In the next example, the pointer expression item.sp is used with the
pointer selection operator (-» to assign a value to the member a.

(item.sp)->a = 24;

The final example shows how to select an individual structure
member from an array of structures.

list[8].b = 12;

Expressions with Operators
Expressions with operators can be unary, binary, or ternary
expressions. A unary expression consists of an operand prefixed by
a unary operator or an operand enclosed in parentheses and pre­
ceded by the slzeof keyword:

unary-operator operand

or

sizeof (operand)

A binary expression consists of two operands joined by a binary
operator:

operand binary-operator operand

A ternary expression consists of three operands joined by the ternary
(1 :) operator:

operand ? operand : operand

Assignment expressions use unary or binary assignment operators.
The unary assignment operators are the increment (++) and decre­
ment (--) operators. The binary assignment operators are the
simple assignment operator (=) and the compound assignment oper­
ators. Each compound assignment operator is a combination of
another binary operator with the simple assignment operator. The
forms of assignment expressions are:

operand++
operand - -
++operand
- - operand
operand = operand
operand compound-assignment-operator operand

6-8 Forming Expressions and Making Assignments

Expressions in Parentheses
You can enclose any operand in parentheses. The parentheses have
no effect on the type or value of the enclosed expression. For
example, in the expression:

(10 + 5) / 5

the parentheses around 10 + 5 mean that the value of 10 + 5 is the
left operand of the I (division) operator. The result of (10 + 5) 15 is 3.
Without the parentheses, 10 + 5 I 5 evaluates to 11.

Although parentheses affect the way the compiler groups operands in
an expression, they cannot guarantee a particular order of evaluation
for the expression.

Type-Cast Expressions
A type-cast expression has the following form:

(type-name) operand

A type cast is an explicit assignment of data type to an existing vari­
able of another data type. (See "Type Specifiers" on page 5-2 for a
description of data types and data-type specifiers.)

Constant Expressions
A constant expression is any expression that evaluates to a constant.
The operands of a constant expression can be integer constants,
character constants, floating-point constants, enumeration constants,
type casts to integer and floating-point types, and other constant­
expressions. You can combine and change the operands using oper­
ators with some restrictions.

Constant expressions cannot use assignment operators or the binary
sequential evaluation operator (,). You can use the unary address-of
operator (&) only in certain initializations.

These restrictions also apply to constant expressions used to ini­
tialize variables at the external level. The compiler allows such
expressions to apply the unary address-of operator (&) to other
external-level variables with fundamental, structure, and union types
and to external level arrays subscripted with a constant expression.
In these expressions, a constant expression not involving the

Forming Expressions and Making Assignments 6-9

address-of operator can be added to or subtracted from the address
expression.

Operators
C operators take one operand (unary operators), two operands
(binary operators), or three operands (the ternary operator).

Unary operators prefix their operand and associate right to left. The
unary operators of the C language are:

-f'oJ!
*&
sizeof

Complement operators
Indirection and address-of operators
Size operator.

Binary operators associate left to right. The binary operators are:

* I 0/0
+-
«»
<><=>===!=
&1"
&& II

Multiplicative operators
Additive operators
Shift operators
Relational operators
Bitwise operators
Logical operators
Sequential evaluation operator.

C has one ternary operator, the conditional operator (1 :). It associ­
ates right to left.

Standard Arithmetic Conversions
Most C operators perform type conversions to bring the operands of
an expression to a common type or to extend short values to the
integer size used in machine operations. The conversions performed
by C operators depend on the specific operator and the type of the
operand or operands. However, many operators perform similar con­
versions on operands of integer and floating-point types. These con­
versions are known as standard arithmetic conversions because they
apply to the types of values ordinarily used in arithmetic.

The arithmetic conversions summarized below are the standard arith­
metic conversions. The discussion of each operator in the following
sections specifies whether the operator performs the arithmetic con­
versions and also specifies additional conversions, if any, that the
operator performs.

6-10 Forming Expressions and Making Assignments

"Type Conversions" on page 6-31 outlines the path of each type of
conversion.

Arithmetic conversion proceeds in the following order:

1. Any operands of float type are converted to double type.
2. If one operand has double type, the other operand is converted to

double.
3. Any operands of char or short type are converted to Int.
4. Any operands of unsigned char or unsigned short type are con­

verted to unsigned Int type.
5. If one operand is of type unsigned long, the other operand is con­

verted to unsigned long.
6. If one operand is of type long, the other operand is converted to

long.
7. If one operand is of type unsigned Int, the other operand is con­

verted to unsigned Int.
8. If both operands have type Int, the result has type Int. If the

expression is the right-hand side of an assignment statement, the
result is computed with type Int before the assignment is made,
even though the target variable has a wider type such as
unsigned or long.

Forming Expressions and Making Assignments 6-11

Unary Operators

Arithmetic Negation (-): Produces the value of its operand and forces
the grouping of the operations enclosed in parentheses. The operand
must be an integral or floating-point value. This operation performs
the standard arithmetic conversions described above.

Bitwise Complement (-): Produces the bitwise complement of its
operand. The operand must be of integral type. This operation per­
forms the standard arithmetic conversions. The result has the type of
the operand after conversion.

Logical NOT (I): Produces the value 0 if its operand is true (nonzero)
and the value 1 if its operand is false (zero). The result has Int type.
The operand must be an integral, floating-point, or pointer value.

Unary Plus (+): Produces the value of its operand and forces the
grouping of the operations enclosed in parentheses. It is used with
expressions involving more than one associate or commutative
binary operator. Use it for considerations of overflow or loss of preci­
sion in the values of the variables in the expressions.

Example
In the following example, the new value of x is the negative of 987, or
-987:

short x = 987;
x = -x;

In the next example, the new value assigned to y is the ones' comple­
ment of the unsigned value Oxaaaa, or Ox5555:

unsigned short y = 0xaaaa;
y = -y;

In the next example, if x is greater than or equal to y, the result of the
expression is 1 (true). If x is less than y, the result is 0 (false):

if (!(x < y»;

In the next example, the compiler must honor the parenthesis
grouping of assignment to e because of the presence of the unary
plus operator. The assignment to d might be computed in the
sequence: add a to c; then add b to the result and assign to d.

int a, b, c, d, e;
d=a + (b + c);
e=a + +(b + c);

6-12 Forming Expressions and Making ASSignments

Indirection and Address-of Operators

Indirection (*): Gets access to a value indirectly through a pointer.
The operand must be a pointer value. The result of the operation is
the value to which the operand points. The result type is the type
addressed by the pointer operand. If the pointer value is null, the
result is undefined.

Address-of (&): Takes the address of its operand. The operand can
be any value that can appear as the left-hand value of an assignment
operation. The result of the address operation is a pointer to the
operand. The type addressed by the pointer is the type of the
operand.: You cannot apply the address-of operator to a bitfield
member of a structure, nor can you apply it to an identifier declared
with the register storage class specifier.

Example
The following declarations and initial values are true for all four
examples:

int *pa. x;
i nt a[20];
double d;

In the first example, the address-of operator (&) takes the address of
the sixth element of the array a. The result is stored in the pointer
variable pa.

pa = &a[5];

The indirection operator is used in the next example to get access to
the Int value at the address stored in pa. The value is assigned to the
integer variable x.

x = *pa;

The next example prints the word "True." This example tests whether
applying the indirection operator to the address of x yields the same
value as x.

if (x == *&x)
printf("True");

The following example shows a useful application of the rule shown
in the last example. A type cast converts the address of x to a pointer
to a double. C then applies the indirection operator, yielding the
result of the expression, a double value.

d = *(double *)(&x);

Forming Expressions and Making Assignments 6-13

Sizeof Operator
The slzeof operator determines the amount of storage associated
with an identifier or a type. A slzeof expression has the form:

sizeof(name)

where name is either an identifier or a type name. The type name
cannot be a void, function, or bit-field type.

When you apply the slzeof operator to an array identifier, the result is
the size of the entire array in bytes rather than the size of the pointer
represented by the array identifier.

When you apply the slzeof operator to a structure or union type name
or to an identifier of structure or union type, the result is the actual
size in bytes of the structure or union. This may include internal and
trailing padding used to align the members of the structure or union
on memory boundaries. Thus, the result may not correspond to the
size calculated by adding up the storage requirements of the
members.

Example

buffer = calloc(100. sizeof (int»;

With the slzeof operator you can avoid specifying machine-dependent
data sizes in your program. The preceding example uses the slzeof
operator to pass the size of an Int, which varies across machines, as
an argument to a function named calloc. The value returned by the
function is stored in a buffer.

Multiplicative Operators
The multiplicative operators perform multiplication (*), division (/),
and remainder (%) operations. The operands of the remainder oper­
ator must be integral; the multiplication and division operators take
integral and floating-point operands. The types of the operands can
be different. The multiplicative operators perform the usual arith­
metic conversions on the operands. The type of the result is the type
of the operands after conversion.

The conversions performed by the multiplicative operators make no
provision for overflow or underflow. Information is lost if the result of
a multiplicative operation cannot be represented in the type of the
operands after conversion.

6-14 Forming Expressions and Making Assignments

Multiplication (*): Specifies that its two operands are to be multiplied.

Division (/): Specifies that its fi rst operand is to be divided by the
second. When two integers are divided, the result, if not an integer,
is cut off. If both operands are positive or unsigned, the result is cut
off toward O. The di rection of truncation when either operand is nega­
tive can be either toward or away from 0, depending on the imple­
mentation. Division by 0 gives an error ~ither at compile or run time.

Remainder (0/0): Gives the remainder when the first operand is
divided by the second. The sign of the remainder is the same as the
sign of the first operand.

Example
The following declarations and initial values are true for all three
examples:

i nt i = h.l, j = 3, n:
double x = 2.0, y;

In the following example, x is multiplied by i to give the value 20.0.
The result has double type.

y = x * i;

In the next example, 10 is divided by 3. The result is cut off toward 0,
yielding the integer value 3.

n = i / j:

In the following example, n is assigned the integer remainder 1 when
10 is divided by 3.

n = i % j;

Additive Operators
The additive operators perform addition and subtraction. The oper­
ands can be integral or floating-point values. Some additive oper­
ations can also be performed on pointer values, as outlined under the
discussion of each operator. The standard arithmetic conversions
are performed on integral and floating-point operands. The type of
the result is the type of the operands after conversion.

The conversions performed by the additive operators make no pro­
vision for overflow or underflow. Information is lost if C cannot repre­
sent the result of an additive operation in the data type of the
operands after conversion.

Forming Expressions and Making Assignments 6-15

Addition Operator (+): Specifies addition of its two operands. The
operands can have integral or floating-point types, as described
above, or one operand can be a pointer and the other an integer.
When you add an integer to a pointer, C converts the integer value i
by multiplying it by the size of the type addressed by the pointer.
After conversion, the integer value represents i storage positions,
where each position has the length specified by the pointer type.
When the converted integer value is added to the pointer value, the
result is a new pointer value expressing the address i positions from
the original address. The new pointer value addresses the same type
as the original pointer value.

Subtraction Operator (-): Subtracts its second operand from the
first. The operands can be integral or floating-point values, as
described above. The subtraction operator also allows the sub­
traction of an integer from a pointer value and the subtraction of two
pointer values.

When an integer value is subtracted from a pointer value, the same
conversions take place as with addition of a pointer and integer. The
subtraction operator converts the integer value with respect to the
type addressed by the pointer value. The result is the storage
address i positions before the original address, where i is the integer
value and each position is the length of the type addressed by the
pointer value. The new pointer points to the type addressed by the
original pointer value.

Two pointer values can be subtracted if they point to the same type.
The difference between the two pointers is converted to a signed
integer value by dividing the difference by the length of the type the
pointers address. The result represents the number of storage posi­
tions of that type between the two addresses. The result is mean­
ingful only for two elements of the same array.

Pointer Arithmetic: Additive operations involving a pointer and an
integer generally give meaningful results only when the pointer
operand addresses an array member and the integer value produces
an offset within the bounds of the same array. The conversion of the
integer value to an address offset assumes that only storage posi­
tions of the same size lie between the original address and the
address plus offset.

6-16 Forming Expressions and Making Assignments

This assumption is valid for array members. An array is a series of
values of the same type whose elements reside in contiguous storage
locations. C does not guarantee that it stores data types without
blank segments of storage except for array elements. That is, gaps
can occur between storage positions, even positions of the same
type. Adding to or subtracting from addresses of any values but array
elements gives unpredictable results.

Similarly, the conversion involved in the subtraction of two pointer
values assumes that only values of the same type, with no gaps, lie
between the two addresses given by the operands. The difference of
any two pointers is of type Inl. The difference between any two
pointers to an array declared as huge is of type long, and the result of
the difference calculation must be cast to long in order to get the
correct value. This means that for arrays larger than 32KB and less
than 64KB, you cannot take the difference of any two arbitrary
pointers and get a correct value, since it may be greater than 32KB.

This can be done by casting the two pointers to be huge pointers,
taking the difference, casting it to long, and assigning the result to an
unsigned Inl. For example,
int arr[20000];
int *ip = &arr[20000];
unsigned diff;

diff = (long) «int huge *)ip - (int huge *)arr);

will correctly set dlff to 20000. Additive operations between pointer
and integer values on machines with segmented architecture must
take the segment addressing conventions into account. In some
cases these operations may not be valid. See the "Working with
Storage Models IAn section in Chapter 2 of IBM CI2 Compile, Link,
and Run for more information.

Example
The following declarations and initial values are true for both
examples:
i nt i = 4. j;
float x [10] ;
fl oat *px;

The following example adds the integer i to the address of the fifth
element of x, x[4]. It does this by first multiplying i by the length of a
float, and then adding the result to the address of x[4]. The result is
the address of x[8], the i'th element beyond x[4].

Forming Expressions and Making Assignments 6-17

px = &x [4] + i;

In the next example, C subtracts the address of the third element of x
(x[i-2]) from the address of the fifth element of x (x[i]). The difference
is divided by the length of a float. The result is the integer val~e 2.

j = &x[i] - &x[i-2];

Shift Operators
The shift operators shift their first operand left «<) or right (») by
the number of positions the second operand specifies. Both oper­
ands must be integral values. The usual arithmetic conversions are
performed. The type of the result is the type of the operands after
conversion.

For leftward shifts, the vacated right bits are filled with O's. In a
rightward shift, the method of filling left bits depends on the type
(after conversion) of the first operand. If it is unsigned, vacated left
bits are filled with O's. Otherwise, vacated left bits are filled with
copies of the sign bit.

The result of a shift operation is undefined if the second operand is
negative or if the second operand specifies a shift count greater than
or equal to the width in bits of the converted first operand.

The conversions performed by the shift operators make no provision
for overflow or underflow conditions. Information is lost if C cannot
represent the result of a shift operation in the data type of the first
operand after conversion.

Example

unsigned int x, y, Z;

x = 0x00aa;

y = 0x5500;

z = (x « 8) + (y » 8);

The above example shifts x left by 8 positions and shifts y right by 8
positions. It then adds the shifted values and assigns the resulting
value, Oxaa55, to z.

6-18 Forming Expressions and Making Assignments

Relational Operators
The binary relational operators test their first operand against the
second to determine if the relation specified by the operator holds
true. The result of a relational expression is either 1 (if the tested
relation holds) or 0 (if it does not). The type of the result is Int. The
relational operators test the following relationships:

Operator Relationship
< The first operand is less than the second.
> The first operand is greater than the second.
< == The first operand is less than or equal to the second.
> == The first operand is greater than or equal to the second.
== == The first operand is equal to the second.
I == The first operand is not equal to the second.

The operands can have integral, floating-point, or pointer type. The
types of the operands can be different. The usual arithmetic conver­
sions are performed on integer and floating-point operands.

One or both operands of the equality (= =) and inequality (! =) oper­
ators can have enum type. C converts an enum value in the same
manner as an Int value.

The operands of any relational operator can be two pointers to the
same type. For the equality and inequality operators, the result of the
comparison reflects whether the two pointers address the same
storage location. The result of pointer comparisons involving the
other operators «, >, < =, > =) reflects the relative position of two
storage addresses.

Because the address of a given value is arbitrary, comparisons
between the addresses of two unrelated values are meaningless.
Comparisons between the addresses of different elements of the
same array can be useful, however, because C guarantees storage of
array elements in order and without gaps from the first element to the
last. The address of the first array element is less than the address
of the last element.

C can compare a pointer value for equality or inequality to the con­
stant value O. A pointer with a value of 0 does not point to a storage
location; it is called a null pointer.

Forming Expressions and Making Assignments 6-19

Example

int x = 0, y = 0;

1. x < y

2. x > y

3. x <= y

4. x >= y

5. x == y

6. x!= y

When x and yare equal, expressions 3,4, and 5 have the value 1, and
expressions 1, 2, and 6 have the value O.

Bitwise Operators
The bitwise operators perform bitwise AND (&), inclusive OR (I), and
exclusive OR (A) operations. The operands of bitwise operators must
have one of the integral types, but their types can be different. The
usual arithmetic conversions are performed. The type of the result is
the type of the operands after conversion.

Bitwise AND (&): Compares each bit of its first operand to the corre­
sponding bit of the second operand. If both bits are 1's, C sets the
corresponding bit of the result to 1. Otherwise, it sets the corre­
sponding result bit to O.

Bitwise Inclusive OR (I): Compares each bit of its first operand to the
corresponding bit of the second operand. If either of the compared
bits is 1, C sets the corresponding bit of the result to 1. Otherwise,
both bits are O's, and C sets the corresponding result bit to O.

Bitwise Exclusive OR (A): Compares each bit of its first operand to
the corresponding bit of the second operand. If one of the compared
bits is 0 and the other bit is 1, C sets the corresponding bit of the
result to 1. Otherwise, C sets the corresponding result bit to O.

Example

6-20 Forming Expressions and Making Assignments

short i = 0xab00;
short j = 0xabcd;
short n;

1. n=i &j;

2. n = i I j;
3. n=iAj;

The result assigned to n in the first example is the same as i, OxabOO.
The bitwise inclusive OR in the second example results in the value
Oxabcd, while the bitwise exclusive OR in the third example produces
OxOOcd.

Logical Operators
The logical operators perform logical AND (&&) and OR (II) oper­
ations. The operands of the logical operators must have integral,
floating-point, or pointer type. The types of the operands can be dif­
ferent.

C evaluates the operands of logical AND and OR expressions from
left to right. If the value of the first operand is enough to determine
the result of the operation, C does not evaluate the second operand.

These operators do not perform the standard arithmetic conversions.
Instead, they evaluate each operand, comparing it to O. A pointer has
a value of 0 only if you explicitly set it to 0 through assignment or
initialization.

The result of a logical operation is either 0 or 1; the type of the result
is Int.

Logical AND (&&): Produces the value 1 if both operands have
nonzero values. If either operand is equal to 0, the result is O. If the
first operand of a logical AND operation has a value of 0, C does not
eval uate the second operand.

Logical OR (II): Performs an inclusive OR on its operands. It
produces the value 0 if both operands have 0 values. If either
operand has a nonzero value, the result is 1. If the first operand of a
logical OR operation has a nonzero value, C does not evaluate the
second operand.

Forming Expressions and Making ASSignments 6-21

Example
The following declaration is true for both examples:

int x. y;

In the following example, the prlnH function prints a message if x is
less than y and y is less than z. If x is greater than y, C does not
evaluate y < z and prints nothing.

if (x < y && y < z)
printf ("x is less than z\n");

In the next example, C prints a message if x is equal to either y or z.
If x is equal to y, C does not evaluate x == == z.

if (x == y II x == z)
printf ("x is equal to either y or z\n");

Sequential Evaluation Operator
The sequential evaluation operator (,) evaluates its two operands
sequentially from left to right. The result of the operation has the
value and type of the right operand. The operands can be any type.
The operator performs no conversions.

You use this operator (also called the comma operator) to evaluate
two or more expressions in contexts that allow only one expression to
appear.

Example
In the following example, C independently evaluates each operand of
the third expression of the for statement. It evaluates the left operand
; + = ; first and then the other operand, j --.

for (i = j = 1; i + j < 20; i += i. j--);

As shown in the next example, the comma character can separate
arguments. In the first function call, three arguments, separated by
commas, are passed to the called function:

x. y + 2. and z.

f(x. y + 2. z);

f«x--. y + 2). z);

Do not confuse the use of the comma character as a separator with
its use as an operator; the two functions are completely different.

In the second function call, parentheses force the compiler to inter­
pret the first comma as the sequential evaluation operator. This func-

6-22 Forming Expressions and Making Assignments

tion call passes two arguments to f. The first argument is the result of
the sequential evaluation operation (x--, y + 2), which has the value
and type of the expression y + 2; the second argument is z.

Conditional Operator
C has one ternary operator, the conditional operator? •.

Its form is:

operandI ? operand2 : operand3

Operand1 is evaluated in terms of its equivalence to O. It must have
integral, floating-point, or pointer type. If operand1 has a nonzero
value, operand2 is evaluated and the result of the expression is the
value of operand2. If operand1 evaluates to 0, operand3 is evaluated,
and the result of the expression is the value of operand3. Either
operand2 or operand3 is evaluated but not both.

The type of the result depends on the types of the second and thi rd
operands, as follows:

• If both the second and third operands have integral or floating­
point type (their types can be different), the usual arithmetic con­
versions are performed. The type of the result is the type of the
operands after conversion.

• Both the second and third operands can have the same structure,
union, or pointer type. The type of the result is the same struc­
ture, union, or pOinter type.

• One of the second or third operands can be a pOinter and the
other a constant-expression with the value O. The type of the
result is the pointer type.

Example

j = (i < 0) ? (-i) : (i);

The above example assigns the absolute value of ito j. If i is less
than 0, -i is assigned to j. If i is greater than or equal to 0, i is
assigned to j.

Forming Expressions and Making Assignments 6-23

Assignment Operators
Assignment operators in C can both transform and assign values in a
single operation. Using a compound assignment operator to replace
two separate operations can reduce code size and improve program
efficiency. The following is a list and description of assignment
operators:

+ + Unary increment operator

Unary decrement operator

Simple assignment operator

* == Multiplication assignment operator

I == Division assignment operator

0/0 == Remainder assignment operator

+ == Addition assignment operator

- == Subtraction assignment operator

«== Left shift assignment operator

»== Right shift assignment operator

& == Bitwise AND assignment operator

I == Bitwise inclusive OR assignment operator

A == Bitwise exclusive OR assignment operator.

In assignment, the type of the right-hand value is converted to the
type of the left-hand value. The specific path of the conversion
depends on the two types and is outli ned in detai lin "Type
Conversions" on page 6-31.

Ivalue Expressions
An assignment operation specifies that the value of the right-hand
operand is to be assigned to the storage location named by the left­
hand operand. Thus, the left-hand operand of an assignment 6pera­
tion (or the single operand of a unary assignment expression) must
be an expression referring to a storage location. Expressions that
refer to storage locations are Ivalue expressions. A variable name is
such an expression; the name of the variable denotes a storage
location, while the value of the variable is the value at that location.

6-24 Forming Expressions and Making Assignments

The C expressions that may be Ivalue expressions are:

• Identifiers of character, integer, floating-point, pointer, enumer­
ation, structure, or union type

• Subscript ([]) expressions, except when a subscript expression
evaluates to a function or an array

• Member selection expressions (-> and .), if the selected
member is one of the above expressions

• Unary indirection (*) expressions, except when such expressions
refer to arrays or functions

• A const object, which cannot be changed
• An Ivalue expression in parentheses.

IBM Extension

Type casts to pointer types, when the size of the object being cast
does not change.

L...-________ End of IBM Extension ________J

Unary Increment and Decrement
The unary assignment operators (+ + and --) increase and
decrease their operand, respectively. The operand must have inte­
gral, floating-point, or pointer type and must be an Ivalue expression.

Operands of integral or floating-point type are increased or
decreased by the integer value 1. The type of the result is the type of
the operand. An operand of pointer type is increased or decreased
by the size of the object it addresses. An increased pointer pOints to
the next object; a decreased pOinter points to the previous object.

An increment (+ +) or decrement (--) operator can appear either
before or after its operand. When the operator is a prefix to its
operand, the result of the expression is the increased or decreased
val ue of the operand. When the operator attaches to the end of its
operand, the immediate result of the expression is the value of the
operand before it increases or decreases. After C notes that result in
context, it increases or decreases the operand.

Forming Expressions and Making Assignments 6-25

Example
The following example compares the variable pos to 0, then
increases it by 1. If pos is positive before being incremented, the
next statement is run; then the contents of q are assigned to p, and
both p and q are incremented.

if (pos++ > 0)
*p++ = *q++;

The next example decreases the variable i before using it as a sub­
script to line.

if (line[--iJ != '\n')
return;

Simple Assignment Operator (=)
The simple assignment operator (=) assigns values to variables.
The right operand is assigned to the left operand; the conversion
rules for assignment apply.

Example

double x;
int y;

x = y;

C changes the value of y to double type and assigns it to x.

Compound Assignment Operators
The compound assignment operators consist of the simple assign­
ment operator combined with another binary operator. Compound
assignment operators perform the operation specified by the addi­
tional operator, and then assign the result to the left operand. A com­
pound assignment expression such as:

expressionl += expression2

can be understood as:

expressionl = expressionl + expression2

However, the compound assignment expression is not equal to the
expanded version because the compound assignment expression
evaluates expression1 only once, while in the expanded version,
expression1 is evaluated twice, once in the addition operation and
once in the assignment operation.

6-26 Forming Expressions and Making Assignments

Each compound assignment operator performs the conversions that
the corresponding binary operator performs and restricts the types of
its operands accordingly. The result of a compound assignment
operation has the value and type of the left operand.

Example

#define MASK 0x8000
n /= MASK;

This example performs a bitwise inclusive OR operation on n. The
compiler assigns the result to n. The manifest constant MASK is
defined with a #deflne preprocessor directive.

Precedence and Order of Evaluation
The precedence and associativity of C operators affect the grouping
and evaluation of operands in an expression. The precedence of an
operator is meaningful only in the presence of other operators having
higher or lower precedence. Expressions involving higher preced­
ence operators are evaluated first.

The following table summarizes the precedence and associativity of
C operators. The operators are listed in order of precedence from
the highest to the lowest. Where several operators appear together
in a line or brace, they have equal precedence and are evaluated
according to their associativity, either left to right or right to left.

Operator Symbol Type of Operation Associativity

O[]·-> Expression Left to right

- "'" ! * & ++ -- Unary Right to left
sizeof casts

* I % Multiplicative Left to right

+- Additive Left to right

« » Shift Left to right

< <= >=> Relational (inequality) Left to right

-- 1= Relational (equality) Left to right

& Bitwise AND Left to right

1\ Bitwise Exclusive OR Left to right

Forming Expressions and Making ASSignments 6-27

Operator Symbol Type of Operation Associativity

I Bitwise Inclusive OR Left to right

&& Logical AND Left to right

II Logical OR Left to right

?: Conditional Right to left

= * = 1= 0/0= Simple and compound Right to left
+=-=«= assignment
»= &= 1= 1\=

, Sequential evaluation Left to right

As the preceding table shows, operands consisting of a constant, an
identifier, a string, a function call, a subscript expression, a member
selection expression, or a parenthetical expression have highest pre­
cedence and associate left to right. Type-cast conversions have the
same precedence and associativity as the unary operators.

An expression can contain several operators with equal precedence.
When several such operators appear at the same level in an
expression, evaluation proceeds according to the associativity of the
operator, either right to left or left to right. The result of expressions
with many occurrences of multiplication, addition, or binary bitwise
operators at the same level is unaffected by the direction of evalu­
ation. The compiler can evaluate such expressions in any order,
even when parentheses in the expression appear to specify a partic­
ular order.

Only the sequential evaluation operator and the logical AND and OR
operators specify a particular order of evaluation for the operands.
The sequential evaluation operator evaluates its operands from left to
right.

The logical operators also evaluate their operands left to right.
However, the logical operators evaluate the minimum number of
operands necessary to determine the result of the expression. Thus,
some operands of the expression may not be evaluated. For
example, in the expression x && y + +, the second operand, y + +, is
evaluated only if x is true (nonzero). Thus, y is not increased when x
is false (0).

6-28 Forming Expressions and Making ASSignments

Example
The examples below show the default grouping for several
expressions:

In the first example, the bitwise AND operator has higher precedence
than the logical OR operator so

a & b

forms the fi rst operand of the logical OR operation.

Expression Default Grouping
a & b II c (a & b) II c

In the second example, the logical OR operator has higher preced­
ence than the simple assignment operator, so

b II c

is grouped as the right-hand operand in the assignment. The value
assigned to a is either 0 or 1.

Expression Default Grouping

a=bllc a = (b I I c)

The third example shows a correctly formed expression that may
produce an unexpected result. The logical AND operator has higher
precedence than the logical OR operator, so

q && r

is grouped as an operand. Because the logical operators guarantee
evaluation of operands from left to right,

q && r

is evaluated before S--. If q && r evaluates to a nonzero value, s-- is
not evaluated, and s is not decreased. To correct this problem, s-­
should appear as the first operand of the. expression or should be
decreased in a separate operation.

Expression Default Grouping
q && r I I s-- (q && r)1 I s--

The following example shows an illegal expression that produces a
prog ram error: Illegal Expression

p == e ? p += 1 : p += 2

Default Grouping

(p == e ? p += 1 : p) += 2

Forming Expressions and Making Assignments 6-29

In this example, the equality operator has the highest precedence, so
p = = 0 is grouped as an operand. The ternary operator (1:) has the
next highest precedence. Its first operand is

p == 0

and its second operand is

p += 1.

However, the last operand of the ternary operator is considered to be
p rather than

p+= 2,

because this occurrence of p binds more closely to the ternary oper­
ator than it does to the compound assignment operator. A syntax
error occurs because the left-hand operand of:

+= 2

is not an Ivalue.

To prevent errors of this kind and to produce more readable code,
use parentheses. You can correct and clarify the above example by
using parentheses, as shown here.

(p == 0) ? (p += 1) : (p += 2)

Side Effects
Side effects are changes in the state of the machine that take place as
a result of evaluating an expression. Side effects occur whenever the
value of a variable is changed. Any assignment operation has side
effects, and any call to a function that contains assignment operations
has side effects.

The order of evaluation of side effects is implementation-dependent,
except where the compiler guarantees a particular order of evalu­
ation.

For example, side effects occur in the following function call:

add (i + 1, i = j + 2);

The arguments of a function call can be evaluated in any order. The
expression

i + 1

may be evaluated before

6-30 Forming Expressions and Making Assignments

i = j + 2,

or the compiler might interpret the second operand before the first,
with different results in each case.

Unary increment and decrement operations involve assignment and
can cause side effects, as shown in the following example:

d = 0;
a = b++ = c++ = d++;

The value of a is unpredictable. The initial value of d (0) could be
assigned to c, then to b, and then to a before any of the variables are
increased. In this case, a would be equal to o.

A second method of evaluating this expression begins by evaluating
the following operands:

c++ = d++

The initial value of d (0) is assigned to c, and then both d and care
increased. Next, the increased value of c (1) is assigned to band b is
increased. Finally, the increased value of b is assigned to a. In this
case, the final value of a is 2.

Because the C language does not define the order of evaluation of
side effects, both of these evaluation methods are correct and either
can be used. Statements that depend on a particular order of evalu­
ation for side effects produce non portable and unclear code.

Type Conversions
Type conversions are the assignment of a value to a variable of a dif­
ferent data type. Use type conversions when:

A value is explicitly cast to another type.

An operator converts the type of its operand or operands
before performing an operation.

A value is passed as an argument to a function.

The following sections outline the rules governing each kind of con­
version.

Forming Expressions and Making Assignments 6-31

Assignment Conversions
In assignment operations, the type of the value being assigned is con­
verted to the type of the variable receiving the assignment. C allows
conversions by assignment between integral and floating-point types,
even when the conversion entails loss of information. The methods
of carrying out the conversions depend upon the type, as follows.

From Signed Integer Types
C converts a signed integer to a shorter signed integer by truncating
the high-order bits and converts to a longer signed integer by sign­
extension. Conversion of signed integers to floating-point values
takes place without loss of information, except that some precision
can be lost when a long value is converted to a float. To convert a
signed integer to an unsigned integer, the signed integer is converted
to the size of the unsigned integer and the result is interpreted as an
unsigned value.

The following table summarizes conversions from signed integer
types:

From To Method

char short Sign-extended.

long Sign-extended.

unsigned char Preserve pattern; high-order
bit loses function as sign bit.

unsigned short Sign-extended to short;
convert short to unsigned
short.

unsigned long Sign-extended to long; convert
long to unsigned long.

float Sign-extended to long; convert
long to float.

double Signed-extended to long;
convert long to double.

short char Preserve low-order byte.

long Sign-extend.

unsigned char Preserve low-order byte.

6-32 Forming Expressions and Making Assignments

From To Method

unsigned short Preserve bit pattern; high-
order bit loses function as
sign bit.

unsigned long Sign-extend to long; convert
long to unsigned long.

float Sign-extend to long; convert
long to unsigned long.

float Sign-extend to long; convert
long to float.

double Sign-extend to long; convert
long to double.

long char Preserve low-order byte.

short Preserve low-order word.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order word.

unsigned long Preserve bit pattern; high-
order bit loses function as
sign bit.

float Represent as float; if the long
cannot be represented
exactly, some loss of preci-
sion occurs.

double Represent as a double; if the
long cannot be represented
exactly as a double, some
loss of precision occurs.

Note: In standard C, the Int type is equal to either the short type or
the long type, depending on the implementation. In IBM C/2,
an int is equivalent to a short, and conversion of an Int value
proceeds as for a short.

Forming Expressions and Making Assignments 6-33

From Unsigned Integer Types
An unsigned integer is converted to a shorter unsigned or signed
integer by truncating the high-order bits. An unsigned integer is con­
verted to a longer unsigned or signed integer by zero-extending.
Unsigned values are converted to floating-point values by first con­
verting them to a signed integer of the same size, then converting
that signed value to a floating-point value.

When an unsigned integer is converted to a signed integer of the
same size, no change in the bit pattern occurs. However, the value
changes if the sign bit is set.

The following table summarizes conversions from unsigned integer
types:

From To Method

unsigned char Preserve bit pattern; high-
char order bit becomes sign bit.

short Zero-extend.

long Zero-extend

unsigned short Zero-extend.

unsigned long Zero-extend.

float Convert to long; convert long
to float.

double Convert to long; convert long
to double.

unsigned char Preserve low-order byte.
short

short Preserve bit pattern; high-
order bit becomes sign bit.

long Zero-extend.

unsigned char Preserve low-order byte.

unsigned long Zero-extend.

float Convert to long; convert long
to float.

double Convert to long; convert long
to double.

--

6-34 -- Forming Expressions and Making Assignments

From To Method

unsigned char Preserve low-order byte.
long

short Preserve low-order word.

long Preserve bit pattern; high-
order bit becomes sign bit.

unsigned char Preserve low-order byte.

unsigned short Preserve low-order word.

float Convert to long; convert long
to float.

double Convert directly to double.

Note: In standard C, the unsigned Int type is equal to either the
unsigned short type or the unsigned long type, depending on
the implementation. In IBM C/2, an unsigned Int is equivalent
to an unsigned short and conversion of an unsigned Int value
proceeds as for an unsigned short.

From Floating-Point Types
A float value converted to a double undergoes no change in value. A
double converted to a float is represented exactly, if possible. If C
cannot exactly represent the double value as a float, the number
loses precision but is rounded to the nearest value that can be
represented. If the value is too large to fit into a float, the number is
undefined.

A floating-point value is converted to an integer value by converting
to a long .. Conversions to other integer types take place as for a long.
The decimal fraction portion of the floating-point value is discarded in
the conversion to a long. If the result is still too large to fit into a
long, the result of the conversion is undefined.

Forming Expressions and Making Assignments 6-35 .

The following table summarizes conversions from floating-point
types:

From To Method

float char Convert to long; long to char.

short Convert to long; convert long
to short.

long Truncate at decimal point; if
result is too large to be
represented as a long, result
is undefined.

unsigned short Convert to long; convert long
to unsigned short.

unsigned long Convert to long; convert long
to unsigned long.

double Change internal represen-
tation.

double char Convert to float to char.

short Convert to float; convert float
to short.

long Truncate at decimal point; if
result is too large to be
represented as a long, result
is undefined.

unsigned short Convert to long; convert long
to unsigned short.

unsigned long Convert to long; convert long
to unsigned long.

float Represent as a float; if the
double value cannot be
represented exactly as a
float, loss of precision
occurs; if the value is too
large to be represented in a
float, the result is undefined.

6-36 Forming Expressions and Making Assignments

To and from Pointer Types
You can convert a pointer to one type of value into a pointer to a dif­
ferent type. The result might be undefined, however, because of the
alignment requirements and sizes of different types in storage.

IBM Extension

In some implementations, the special keywords near, far, and huge
can change the size of pointers within a program. You can convert a
pointer to a pointer of a different size; the path of the conversion
depends on the implementation. For example, on an 80286
processor, the compiler uses a segment-register value to convert a
16-bit pointer to a 32-bit pointer. See the "Pointer Conversion"
section in Chapter 2 of IBM C/2 Compi/e, Link, and Run for informa­
tion on pointer conversions.

'---________ End of IBM Extension ________1

You can convert a pointer value to an integral value. The path of the
conversion depends on the size of the poi nter and the size of the
integer type.

If the pointer is the same size or larger than the integer type, the
pointer behaves like an unsigned value in the conversion, except that
you cannot convert it to a floating-point value.

If the pointer is smaller than the integer type, C converts it to a
pointer with the same size as the integer type. C then converts it to
the integer type. The method of converting a pointer to a longer
pointer depends on the implementation.

C can convert an integer type to a pointer type. If the integer type is
the same size as the pointer type, the conversion causes C to treat
the integer value as a pointer (an unsigned integer). If the size of the
integer type is different from the size of the pointer type, C converts
the integer type to the size of the pointer using the conversion paths
given in the preceding charts. C then treats it as a pointer value.

If the special keywords near, far, and huge are implemented, C can
implicitly convert pointer values. In particular, the compiler can
make assumptions about the default size of pointers and convert

Forming Expressions and Making Assignments 6-37

passed pointer values accordingly, unless a forward declaration
changes the implicit conversion.

From Other Types
An enum value is an Int value, by definition of the enum type. Con­
versions to and from an enum value proceed as for the Int type. An
Int is equivalent to either a short or a long, depending on the imple­
mentation. No conversions between structure or union types are
allowed.

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, nor can any val ue be converted to void by
assignment. However, a value can be explicitly cast to void, as dis­
cussed in the following section.

Type Cast Conversions
You can explicitly declare type conversions with a type cast. A type
cast has the form:

(type-nome) operand

where type-name specifies a particular type and operand is a value
for conversion to the specified type.

The conversion of operand takes place as though you assigned it to a
variable of the named type. The conversion rules for assignments
apply to type casts as well. You can use the type name void in a cast
operation, but you cannot assign the resulting expression to any item.

Example
The following expression contains the (double) x cast expression:

printf("x=%f\n." (double)x):

The function prlntf receives the value of x as a double. The cast does
not change the value of the variable x.

The usage of pointer modifiers in a cast is illustrated next. A pointer
to an object of one type may be cast to a pointer to an object of
another type.

(long *) malloc (20*sizeof(long»

In this example the function manoc returns a pointer to void. The cast
(long *) converts the returned value to a pOinter to a long.

6-38 Forming Expressions and Making Assignments

Operator Conversions
The conversions performed by C operators depend on the operator
and on the type of the operand and operands. Many operators
perform the usual arithmetic conversions.

C permits some arithmetic with pointers. In pointer arithmetic,
integer values are converted to express storage positions. See "Sub­
script Expressions" on page 6-4 and "Additive Operators" on
page 6-15 for details.

Function-Call Conversions
The type of conversion performed on the arguments in a function call
depends on whether a forward declaration with declared argument
types is present for the called function.

If a forward declaration is present and it includes declared argument
types, the compiler performs type-checking. For a description of the
type-checking process, see "Arguments" on page 8-14.

If no forward declaration is present or if the forward declaration omits
the argument type list, the only conversions performed on the argu­
ments in the function call are the usual arithmetic conversions. C
performs these conversions independently on each argument in the
call. This means that a float value converts to a double or a char or
short value converts to an Inl, and an unsigned char or unsigned
short converts to an unsigned Int.

If you use the special keywords near, far, and huge, the compiler
makes implicit conversions on pointer values passed to functions.
You can change these implicit conversions by providing argument
type lists to let the compiler perform type checking. See the "Pointer
Conversions" section in Chapter 2 of IBM CI2 Compile, Link, and Run
for more information.

Forming Expressions and Making Assignments 6-39

6-40 Forming Expressions and Making Assignments

Chapter 7. Using C Statements

The statements of a C program control the flow of a program run. In
C, several kinds of statements are available to perform loops, to
select other statements to be run, and to transfer control. This
chapter describes C statements in alphabetic order, as follows:

break
compound
continue

do
expression
for

goto
If
null

return
switch
while

C statements consist of keywords, expressions, and other statements.
The keywords that appear in C statements are:

break
case
continue

default
do
else

for
goto
If

return
switch
while

Statements appearing within C statements can be any of the state­
ments discussed in this chapter. A statement that forms a component
of another statement is called the body of the enclosing statement.
Frequently the statement body is a compound statement, which is a
single statement composed of one or more statements.

Braces begin and end a compound statement. All other C statements
end with a semicolon.

You can prefix any C statement with an identifying label consisting of
a name and a colon. Statement labels are recognized only by the
golo statement.

When a C program runs, it runs the statements in the order of their
appearance in the program, except where a statement explicitly
transfers control to another location.

Using C Statements 7-1

break

Purpose
The break statement ends the running of the smallest enclosing do,
for, switch, or while statement in which it appears. A break statement
appearing outside any do, for, switch, or while statement causes an
error.

Within nested statements, the break statement ends only the do, for,
switch; or while statement immediately enclosing it. To transfer
control out of the nested structure altogether, use a return or goto
statement.

Format

break;

Example
The following example processes an array of variable length strings
stored in lines. The break statement causes an exit from the inner for
loop after the ending null character (\0) of each string is found and
stored in lengths [i). Control then returns to the outer for loop. The
variable i is increased, and the process is repeated until i is greater
than or equal to LENGTH - 1.

for (i = 0; i < LENGTH - 1; i++)
{

for (j = 0; j < WIDTH - 1; j++)
{

if (lines[i][j] == '\0')
{

1 engths [i] = j;
break;

}

7-2 Using C Statements

Compound Statement

Purpose
In a compound statement, the compiler runs the statements in the
order they appear, except where a statement transfers control to
another location.

Format

{
[declaration]

statement
[statement]

}

Example

if (i > 0)
{

}

1 ine[i] = x;
x++;
i--;

A compound statement can appear as the body of another statement,
such as the If statement. In the above example, if i is greater than 0,
all of the statements in the compound statement are run in order.

Labeled Statements: Any statement in a compound statement can
carry a label. Therefore, transfer into the compound statement by
means of a goto is possible. However, transferring into a compound
statement is dangerous when the compound statement includes dec­
larations that initialize variables. Declarations in a compound state­
ment precede the program statements, so transferring directly to a
program statement within the compound statement bypasses the
initializations. The results are unpredictable.

Usina C Statements 7-3

continue

Purpose
The continue statement passes control to the next do, for, or while
statement in which it appears, bypassing any remaining statements in
the do, for, or while statement body. Within a do or a while state­
ment, the next iteration begins with the reevaluation of the
expression of the do or while statement. Within a for statement, the
next iteration starts with the run of the loop-expression of the for
statement. It proceeds with the evaluation of the conditional
expression and subsequent end or repeat of the statement body.

Format

continue;

Example
In the following example, the compiler runs the statement body if i is
greater than O. First, it assigns f(i) to x. Then, if x is equal to 1, the
compiler runs the continue statement. It ignores the rest of the state­
ments in the body, and running resumes at the top of the loop with the
evaluation of i-- >0.

while (i-- > 0)
{

}

x = f(i);
if (x == 1)

continue;
y = x * x;

7-4 Using C Statements

do

Purpose
The compiler runs the body of a do statement one or more times until
expression becomes false. First, it runs the statement body. Then, it
evaluates expression. If expression is false (zero), the compiler ends
the do statement and passes control to the next statement in the
program. If expression is true (nonzero), the compiler runs the state­
ment body again and tests expression again. The compiler runs the
statement body repeatedly until expression becomes false.

The do statement car:t also end with the running of a break, goto, or
return statement within the statement body.

Format

do
statement

while (expression);

Example
In the following example, the compiler runs the two statements
y == (x); and x--; regardless of the initial value of x. Then, it evalu­
ates x > O. If x is greater than 0, the compiler runs the statement body
again and reevaluates x> O. The statement body is run repeatedly as
long as x remains greater than o. The compiler stops running the do
statement when x becomes 0 or negative.

do
{

y = f(x);
x--;

} while (x > 0);

Using C Statements 7-5

Expression Statement

Purpose
An expression is a sequence of operators and operands that specifies
how to compute a value.

Format

expression;

Example
In C, assignments are expressions. The value of the expression is
the value being assigned (sometimes called the right-hand value).

In the following example, x is assigned the value of y + 3.

x = (y + 3);

In the next example, x is increased by 1.

x++;

The following example shows a function-call expression. The value
of the expression is the value, if any, returned by the function. If a
function returns a value, the expression statement usually includes
an assignment to store the returned value when the function is called.
If the return value is not assigned as in the example, the function-call
is run, but the return value, if any, is not used.
f(x);

7-6 Using C Statements

for

Purpose
The compiler runs the body of a for statement one or more times until
the optional cond-expression becomes false. The init-expression and
loop-expression are optional expressions that initialize and change
values during the running of the for statement.

The first step in the running of the for statement is the evaluation of
init-expression, if present. Next, cond-expression is evaluated with
three possible results:

• If the conditional expression is true (nonzero), the compiler runs
the statement. Then, it evaluates the loop-expression, if present.
The process begins again with the evaluation of cond-expression.

• If the conditional expression is omitted, the conditional
expression is considered true. The run proceeds exactly as
described above. A for statement lacking cond-expression ends
only upon the running of a break, goto, or return statement within
the statement body.

• If the conditional expression is false, running of the statement
ends and control passes to the next statement in the program.

A for statement can also end with the running of a break, return, or
golo statement within the statement body.

Format

for ([init-expression];
[cond-expression]:
[loop-expression]) statement:

Using C Statements 7-7

for

Example

for (i = space = tab = 0; i < MAX; i++)
{

if (1 i ne [i] == I ')

space++;
if (1 i ne [i] == I \ t I)

{
tab++;
1 i ne [i] = I ';

The example counts blank and tab (\t) characters in the array of char­
acters named line and replaces each tab character with a blank.
First, the compiler initializes i, space, and tab to O. Then, it compares
i to the constant MAX. If i is less than MAX, the compiler runs the
statement body. Depending on the value of line [i], it runs the body of
one or neither of the If statements. Then, it increases and tests i
against MAX. The compiler runs as long as i is less than MAX.

7-8 Usi ng C Statements

goto and Labeled Statements

Purpose
The goto statement transfers control di rectly to the statement speci­
fied by name. The compiler runs the labeled statement immediately
after it runs the goto statement. An error results if no statement with
the given label resides in the same function or if more than one state­
ment in the same function has identical labels.

A statement label is meaningful only to a goto statement. When a
labeled statement is encountered in any other context, the statement
is run without regard to the label.

Format

goto nome;

nome: statement

Example

if (errorcode > 0)
goto exit;

exit:
return (errorcode);

In the example, a goto statement transfers control to the pOint labeled
exit when an error occurs.

A label name is an identifier, formed by following the same rules that
govern the construction of identifiers. Each statement label must be
distinct from other statement labels in the same function.

Using C Statements 7-9

if

Purpose
The compiler runs the body of an If statement selectively, depending
on the value of expression. First, it evaluates expression. If
expression is true (nonzero), the compiler runs the statement imme­
diately following it. If expression is false, it runs the statement fol­
lowing the else keyword. If expression is false and the else clause is
omitted, the compiler ignores the statement following expression.
Control then passes from the If statement to the next statement in the
program.

Format

if (expression)
statement!

[else
state!,ent2]

Example
In the following example, the statement y = xII; is run if i is greater
than O. If i is less than or equal to 0, i is assigned to x and f(x) is
assigned to y. The statement forming the If clause ends with a semi­
colon.

if (i > 0)
Y = xli;

else
{

x = i;
Y = f(x);

C does not offer an else-If statement. The same effect is achieved by
nesting If statements. You can nest an If statement in either the If
clause or the else clause of another If statement.

When nesting If statements and else clauses, use braces to group the
statements and clauses into compound statements that clarify your
intent. In the absence of braces, the compiler resolves ambiguities
by pairing each else with the most recent If lacking an else.

7-10 Using C Statements

if

Example
In the following example, the el8e is associated with the inner H state­
ment. If; is less than or equal to 0, no value is assigned to
x.
if (i > 0) /* Without braces */

if (j > i)
x = j;

else
x = i;

Changing the indentation has no effect on the operation of this else
clause. The following is equivalent to the first example:

if (i>O) /* Without braces */
if (j>i)

x=j;
else /* Faulty indentation */

x=i;

In the next version, the braces surrounding the inner If statement
make the el8e clause part of the outer If statement. If ; is less than or
equal to 0, ; is assigned to x.

if (i > 0)
{ /* With braces */

if (j > i)
x = j;

else
x = i;

Using C Statements 7-11

return

Purpose
The return statement ends the running of the function in which it
appears and returns control to the calling function. Running resumes
in the calling function at the point just after the call. The value of
expression, if present, is returned to the calling function. If
expression is omitted, the return value of the function is undefined. In
this case, the function should have been given type void.

Format

return [expression];

Example

main()
{

y = sq(x);
draw(x, y);

sq(x)
int x;
{

return (x * x);
}

void draw(x,y)
int x, y;
{

return;

Using C Statements 7-13

switch

Purpose
The switch statement transfers control to a statement withi n its body.
The statement receiving control is the statement whose case
constant-expression matches the value of the expression in paren­
theses. Running of the statement body begins at the selected state­
ment and proceeds through the end of the body or until a statement
transfers control out of the body.

The default statement is run if no case constant-expression is equal
to the value of the switch expression. If the default statement is
omitted and no case match is found, none of the statements in the
switch body are run.

The switch expression is an integer value that must be the size of an
Int or shorter. It can also be an enumerated value. If the expression
is shorter than an Int, the compiler widens it to an Int value. The
compiler then casts each case constant-expression to the type of the
switch expression. The value of each case constant-expression must
be unique within the statement body.

The case and default labels of the switch statement body are signif­
icant only in the initial test that determines the starting point for
running of the statement body. All statements appearing between the
statement at which running starts and the end of the body run regard­
less of their labels, unless a statement transfers control out of the
body enti rely.

Declarations can appear at the head of the compound statement
forming the switch body, but the compiler does not perform initializa­
tions included in the declarations. The effect of the switch statement
is to transfer control directly to a program statement within the body,
bypassing the lines that contain initializations.

Using C Statements 7-15

switch

statements. Similarly, if i is equal to 0, only z is increased. If i is
equal to 1, only p is increased. The final break statement is not nec­
essary because control passes out of the body at the end of the com­
pound statement. The final break is included for consistency.
switch (i)
{

case -1:
n++;
break;

case 0 :
z++;
break;

case 1 :
p++;
break;

A statement can carry multiple case labels as the following sample
shows:

case 'a'
case 'b'
case 'c'
case 'd'
case 'e'
case 'f' hexcvt(c);

Although you can label any statement within the body of the switch
statement, no statement must be labeled. You can intermingle state­
ments without labels and statements with labels. Keep in mind,
however, that when the switch statement passes control to a state­
ment within the body, all succeeding statements in the block are run,
regardless of thei r labels.

Using C Statements 7-17

Chapter 8. Using IBM C/2 Functions

A function is an independent collection of declarations and state­
ments usually designed to perform a specific task. C programs have
at least one function (which must be named main) and can have other
functions. This chapter describes how to define, declare, and call C
functions.

A function definition specifies the name of the function, the return
type, its storage class, its formal parameters, and the declarations
and statements that define its action.

A function declaration establishes the name, return type, storage
class, and number and types of formal parameters of a function
whose explicit definition is at another pOint in the program. This lets
the compiler compare the types of the arguments and the types of the
formal parameters of a function. Function declarations are optional
for functions whose return type is Int. To ensure the correct matching
or conversion of data types, you must declare, before the program
calls them, functions that have return types other than Int.

A function call passes control from the calling function to the called
function. The function call also passes the values for the arguments,
if any, to the called function. Performing a return statement in the
called function returns control to the calling function. It also may
return a value from the function.

Function Definitions
A function definition specifies the name, return type, storage class,
formal parameters, and body of a function.

Format
A function definition has the following form:

[sC specijier] [type-specijier]declarator([parameter-list])
[parameter-declarations]
junction-body

The sC specifier gives the storage class of the function, which must
be either static or extern.

USing IBM C/2 Functions 8-1

Return Type
The return type of a function defines the size and type of value that
the function returns. The type declaration has the form:

[type-specifier] declarator

where the type-specifier, together with the declarator, defines the
return type and name of the function. If you do not specify a type­
specifier, the IBM C/2 compiler assumes that the return type is Int.

The type-specifier can specify any fundamental, structure, or union
type. The declarator consists of the function identifier, possibly modi­
fied to declare a pointer type. Functions cannot return arrays or func­
tions, but they can return pointers to any type, including arrays and
functions.

The return type given in the function definition must match the return
type in declarations of the function elsewhere in the program. You
need not declare functions with an Int return type before you call
them. But you must define or declare functions with other return
types before you call them.

The IBM C/2 compiler uses the type of a return value of a function
only when the function returns a value. A function returns a value
when the program performs a return statement containing an
expression. The program evaluates the expression, converts the
expression to the type of the return value, if necessary, and returns
the value to the pOint of call. If the program does not perform a
return statement, or if the return statement performed does not
contain an expression, the return value of the function remains unde­
fined. If the calling function expects a return value, the behavior of
your program is also undefined.

Example
In the following example, the return type of add is Int by default. The
function has a storage class of static. You can call it only with func­
tions in the same source file.

/* Return type is int */
static add (x. y)
int x. Yi
{

return (x+y);

Using IBM C/2 Functions 8-3

The parameter list is enclosed in parentheses and can take either of
two forms:

[identifier[. identifier] •••]

where each identifier names a parameter. You must include the
parentheses.

The preferred parameter list form is:

[sC-specifier] type-specifier declarator[••..]

Parameter declarations define the type and size of values stored in
the formal parameters. These declarations have the same form as
other variable declarations. A formal parameter can have any funda­
mental, structure, union, pointer, or array type.

A parameter can be in only the auto or register storage class. If you
do not specify a storage class, the IBM C/2 compiler assumes that the
storage class is auto. If you name a formal parameter in the param­
eter list but do not declare it, the IBM C/2 compiler assumes that the
parameter is of the Int type. You can declare formal parameters in
any order.

The identifiers of the formal parameters are used in the function body
to. refer to the values passed to the function. You cannot use these
identifiers for variable declarations within the function body.

Make sure that the type of the formal parameter corresponds to the
type of the argument and to the type of the corresponding argument
in the argument type list for the function, if present. If the function
has a variable number of arguments, you must determine the number
of arguments passed and have the program retrieve additional argu­
ments from the stack within the body of the function.

The compiler performs the usual arithmetic conversions independ­
ently on each formal parameter and on each actual argument, if nec­
essary.

Using IBM C/2 Functions 8-5

warning rather than an error, the resulting code will not work cor­
rectly because ANSI C considers old- and new-style function defi­
nitions to be different. (Where old-style means before the Proposed
ANSI Standard for C, and new-style means conforming to the Pro­
posed ANSI Standard for C.) In particular, old-style definitions, such
as the definition in the preceding code fragment, are forced to widen
type float arguments to type double. Thus, the fragment generates
the parameter-mismatch error because the prototype specifies a type
float argument and the definition specifies a type double argument.
However a new-style definition, such as

void takesfloat(float f)
{

accepts the narrower argument type.

If you have code of this kind that causes parameter-mismatch errors,
you have two possible solutions, depending on whether the desired
argument type is actually float or double:

1. If you want type double arguments, then change argument types
in the prototype to double.

2. If you want type float arguments, change the definition to use the
new-style format illustrated above.

Example
The following example shows the use of parameter lists in functions.

Using IBM C/2 Functions 8-7

The array name [20] given as the second argument in the call evalu­
ates to a char pointer. The example declares the corresponding
formal parameter to be a char pointer and uses it in subscripted
expressions as though it were an array identifier. Because an array
identifier evaluates to a pointer expression, the effect of declaring the
formal parameter as char *n is the same as declaring it char n[].

Within the function, the local variable i is a definite value and keeps
track of the current position in the array. The function returns the id
structure member if the name member matches the array n. Other­
wise, it returns zero.

Function Body
The function body is a compound statement. The compound state­
ment contains the statements that define the action of the function. It
can also contain declarations of variables that these statements use.

All variables declared in the function body have auto storage type
unless otherwise specified. When a program calls the function, the
function automatically creates storage space for the local variables
and gives them their initial values. Control passes to the first state­
ment in the compound statement and continues sequentially until the
program meets a return statement or the end of the function body.
Control then returns to the point of call.

You must code an expression in the return statement if the function is
to return a value. The return value of a function remains undefined if
no return statement occurs or if the return statement does not include
an expression.

Function Declarations
A function declaration defines the name, return type, and storage
class of a given function, as well as the type of its arguments. Such a
declaration is known as a function prototype. You can declare func­
tions implicitly or with forward declarations. The return type of a
function declared either implicitly or with a forward declaration must
agree with the return type specified in the function definition.

An implicit declaration occurs whenever you call a function without
previously defining or declaring it. When you make an implicit decla­
ration, the compiler constructs a default prototype for the function. In

Using IBM C/2 Functions 8-9

Example
In this example, the function Intadd is implicitly declared to return an
Int value, because it is called before it is defined. The compiler does
not check the types of the arguments in the call because no
argument-type list is available.

rna; nO
{

int a = 0, b = 1:
double x = 2.0, y = 3.0:
double realadd(double x, double y):

a = intadd (a, b):
x = realadd(x, y):

intadd(a, b)
int a, b:
{

return (a + b):

double realadd(x, y)
double x, y:
{

return (x + y);

The function realadd returns a double value instead of an Int. The
forward declaration of realadd in the main function lets the program
call the realadd function before it defines realadd. The definition of
realadd matches the forward declaration by specifying the double
return type.

The forward declaration of realadd also establishes the type of its two
arguments. The arguments match the types given in the forward dec­
laration and also match the types of the formal parameters.

Function Calls
A function call is an expression that passes control and zero or more
arguments to a function. A function call has the form:

expression (expression-list)

where the expression evaluates to a function address, and the
expression-list is a list of expressions whose values, the arguments,
are passed to the function. The expression-list can be empty.

Using IBM C/2 Functions 8-11

Example
This example assigns the return value, a pointer to a double, to rp.

double *realcomp(double, double):
double a, b, *rp;

rp = realcomp(a, b);

In the next example, the function call, work (count, 11ft); in main
passes an integer variable and the address of the function 11ft to the
function work.

long lift(int), step(int), drop(int):
void work (int, long (*)(int»;

main 0
{

int select, count;

select = 1:
switch (select)
{

case 1: work(count. lift);
break;

case 2: work(count, step);
break;

case 3: work(count. drop):
break:

default:
break:

void work (n, func)
int n;
long (*func)(int);
{

}

int i:
long j:

for (i = j = 0; i < n; i++)
j += (*func)(;);

This example passes the function address with the function identifier
because a function identifier evaluates to a pointer expression. To
use a function identifier in this way, you must declare the function or

Using IBM C/2 Functions 8-13

does not perform a conversion but issues warning messages as if it
had assigned the expressions to the formal parameters.

If you use the near, far, and huge keywords, you can also perform
conversions on pointer arguments.

The number of expressions given in the expression list must match
the number of parameters of the function, unless the forward declara­
tion of the function explicitly specifies a variable number of argu­
ments. In this case, the compiler checks as many arguments as there
are type names in the argument type list and converts them, if neces­
sary, as described above. If there are additional arguments in the
function call, each additional argument undergoes the usual arith­
metic conversions, but the compiler does not otherwise convert it or
check it.

If the parameter-type list contains the special type name void, the
compiler produces a warning message if it also contains arguments.

If the argument-type list is empty (omitted) or the called function has
no forward declaration, the compiler performs no type-checking,
either for type or for number of arguments. In this case, the argu­
ments in the function call, if any, undergo the usual arithmetic conver­
sions independently before the compiler places them on the stack.

The type of each formal parameter also undergoes the usual arith­
metic conversions. The converted type of each formal parameter
determines how the compiler interprets the arguments on the stack. If
the type of the formal parameter does not match the type of the argu­
ment, the compiler can misinterpret the data on the stack.

Note: Type mismatches between arguments and formal parameters
can produce serious errors, particularly when the mismatches
entail size differences. The compiler does not detect these
errors unless you provide an argument type list in the forward
declaration of the function.

Example
The following example declares that the swap function in main has
two arguments, both pointers to integers. The example declares the
formal parameters a and b as pointers to integer variables. In the
function call:

swap (&x. &y)

Using IBM C/2 Functions 8-15

int funcl(int a ••.•);

int funcl(int b. char *b. int c)
{

The compiler places all arguments in the function calion the stack.
The number of formal parameters declared for the function deter­
mines how many of the arguments are taken from the stack and
assigned to the parameters of the function. You must retrieve any
additional arguments from the stack and determine how many argu­
ments are present. See IBM CI2 Language Reference for information
about macros that you can use to handle a variable number of argu­
ments in a portable way.

Example
This example shows a function named scores that takes a variable
number of arguments. The forward declaration of scores in main
establishes that scores has at least one argument, an Int. The
comma at the end of the argument-type list means that there can be
more undeclared arguments.

i nt scores (i nt •...) ;
mai n ()
{

int count. average. i;

average = scores (count. 14. 96. 82);

scores (number)
int number;
{

int *ip. total = O. i;
ip = &number + 1;

for (i = 1; i <= number; i++. ip++)
total += *ip;

if (number> 0)
return (total/number);

return (-1);

The function call to scores passes four arguments. The compiler
checks the first argument for compatibility with the argument-type list

Using IBM C/2 Functions 8-17

Chapter 9. Using Preprocessor Directives
and Pragmas

The C preprocessor is a text processor that manipulates the text of a
source file before compiling. The compiler ordinarily calls the pre­
processor in its first pass; however, you can call the preprocessor at
any time to process text before compiling. This chapter explains the
main tasks that the preprocessor performs in response to pre­
processor directives and describes each directive in detail.

Preprocessor directives make source programs easy to change and
to compile for different systems. Directives in the source file instruct
the preprocessor to perform specific actions. For example, the pre­
processor can replace tokens in the text, insert the contents of other
files into the source file, and suppress the compiling of a portion of
the file by removing blocks of text.

The C preprocessor recognizes the following directives:

#dellne
#elll
#else

#endll
#error
#11

#lldel
#llndel
#Include

#lIne
#pragma
#undel

The # sign must be the first non-white-space character on the line
containing a directive. White space or blank characters can appear
between the number sign and the first letter of the directive. Some
directives are followed by arguments or values, as described in the
following text. Directives can appear anywhere in a source file, but
they apply only to the remainder of the source file in which they
appear.

A pragma is a pragmatic (practical) instruction to the IBM C/2 com­
piler. You imbed pragmas in C source files. Pragmas control the
actions of the compiler in a particular portion of a program without
affecting the entire program. Each implementation defines the partic­
ular pragmas available and their meaning. See IBM CI2 Compile,
Link, and Run for information about the use of pragmas and their
effects on compiling.

Using Preprocessor Directives and Pragmas 9-1

Purpose

#define
Define Directive

The #define directive substitutes a text string for an identifier.

Format

'define identifier text
'define identifier(porameter-list) text

Comments:
The #deflne directive substitutes the given text for subsequent occur­
rences of the specified identifier in the source file. The preprocessor
replaces the identifier only when it forms a token. For instance, the
preprocessor does not replace an identifier when it occurs within
strings or as part of a longer identifier. Defined identifiers are con­
ventionally given in all-capital letters, although this is not required on
the #deflne di rective.

If a parameter-list appears after the identifier, the #deflne directive
replaces each occurrence of identifier (argument-list) with a version
of text modified by substituting the arguments for the formal parame­
ters. There must be no character' between the identifier and the left
parenthesis.

The parameter-list, when given, consists of one or more formal
parameter names separated by commas. Each name in the list must
be unique, and you must enclose the list in parentheses.

The text consists of a series of tokens (such as keywords), constants,
or complete statements. One or more white space characters must
separa~e the text from the identifier (or from the closing parenthesis
of the parameter-list). If the text is longer than one line, you can con­
tinue it onto the next line by preceding the new-line character with a
backslash.

The t~xt can also be empty. The eff~ct of this option is to remove
instances of the given identifier from the source file. However, the
preprocessor still considers the identifier to be defined; it yields the
value 1 when you test the identifier with the defined operator of the
#If directive (discussed later in this chapter).

Using Preprocessor Directives and Pragmas 9-3

#define
Define Directive

REG3. It defines REG1 and REG2 as the keyword register. The defi­
nition of REG3 is empty; the preprocessor removes each occurrence
of REG3 from the source file. These directives ensure that the most
important variables (declared with REG1 and REG2) receive register
storage.
#define REG!
#define REG2
#define REG3

register
register

The next example defines a macro named MAX. The preprocessor
replaces each occurrence of the identifier MAX following the defi­
nition in the source file with the expression «x) > (y» ? (x) : (y),
where actual values replace the parameters x and y. The
occurrence: MAX(1,2) is replaced with «1) > (2»? (1) : (2).

The occurrence MAX(I,s[l]) is replaced with «(I) > (s[I]) ? (I) : (s[I]).

This macro is easier to read than the corresponding expression,
making the source program easier to understand.

Arguments with side effects can cause this macro to produce unex­
pected results. The occurrence MAX(I, s[I++]) is replaced with «I) >
(s[I++]) ? (I) : (s[I++]).

The expression (s[I++]) might be evaluated twice. If 1< = s[I++],
then I will have been increased by 2 at the end of the evaluation of
the expression.
#define MAX(x,y) «x) > (y)) ? (x) : (y)

The next example defines the macro MULT. After you define this
macro, an occurrence such as MUL T(3, 5) is replaced by (3) * (5). The
parentheses around the parameters are important because they
control the interpretation when complex expressions form the argu­
ments to the macro. For instance, the occurrence MULT(3 + 4,5 + 6)
is replaced by (3 + 4) * (5 + 6), which evaluates to 77. Without the
parentheses, the result is 3 + 4 * 5 + 6, which evaluates to 29
because the multiplication operator (*) has higher precedence than
the addition operator (+).

#define MULT(a,b) «a) * (b))

Usina Preorocessor Directives and Pragmas 9-5

#define
Define Directive

As the preprocessor progresses through the source file, the refer­
ences to show are expanded as follows:

show (x + z)

produces

printf("x + Zll) ;

show (n /* comment */ + p)

produces

printf (lin + p")

show (GREETING)

produces

printf ("GREETING")

show (' \x')

produces

printf (" '\\x' ") ;

When the program runs, the following is displayed:

x + z
n + p
GREETING
'\x'

Comments:
The extension to the ANSI C standard that previously enabled expan­
sion of macro formal arguments appearing in string literals and char­
acter constants is no longer supported. You must rewrite the code
that relied on this extension using the stringizing operator.

Using Preprocessor Directives and Pragmas 9·7

Purpose

#undef
Undefine Directive

The #undef directive removes the current definition of the identifier.

Format

lundef identifier

Comments:

The #undef directive, paired with a #deflne directive, creates a region
in a source program in which an identifier has a special meaning.
For example, a specific function of the source program can use mani­
fest constants to define environment-specific values that do not affect
the rest of the program. The #undef directive also works with the #If
directive to control compilation of portions of the source program.
The preprocessor will no longer expand occurrences of identifier. To
remove a macro definition using #undef, give only the macro
identifier. Do not give a parameter list, even if the macro is defined
with one.

Example
In this example, the #undef directive removes definitions of a mani­
fest constant and a macro. Only the identifier of the macro is given.
The #undef directive can also be applied to an identifier that has no
previous definition. This ensures that the identifier is undefined.
#define WIDTH 80
#define ADD(X.Y) (x) + (Y)

#undef WIDTH
#undef ADD

Using Preprocessor Directives and Pragmas 9-9

#include
Include Files

If the file specification does not give a complete pathname and you
enclose the file specification in double quotation marks, the pre­
processor searches for the file in the same directory that the source
file including this file resides in. It then searches directories speci­
fied in the compiler command prompt and finally searches in a set of
standard directories. The preprocessor stops searching as soon as it
finds a file with the given name.

If you enclose the file specification in less-than, greater-than
symbols, the preprocessor does not search the current working direc­
tory. It begins by searching for the file in directories specified in the
compiler command line and then searches the standard directories.

Example
The first example adds the contents of the file named stdio.h to the
source program. The less-than, greater-than symbols cause the pre­
processor to search the standard directories for stdio.h, after
searching directories specified in the command line.

#include <stdio.h>

The next ~xample adds the contents of the file specified by defs.h to
the source program. The double quotation marks mean that the pre­
processor is to search the directory containing the current source file
first.

#include "defs.h"

Conditional Compiling
This section describes the syntax and use of directives that control
conditional compiling. These directives allow for suppressing the
compiling of portions of a source file. They test a constant
expression or an identifier to determine which text blocks the pre­
processor passes on to the compiler and which it removes from the
source file during preproc~ssing.

Using Preprocessor Directives and Pragmas 9-11

Purpose

#if, #elif, #else, #endif
If, Else-if, Else, and End-if Directives

The #If di rective, together with the #ellf, #else, and #endlf di rectives,
controls the compiling of portions of a source file.

Format

lif restricted-constont-expression
[text]
[Ielif restricted-constont-expression
text]
[#elif restricted-constont-expression
text]

[#el se
text]
lendif

Comments:
Each #If directive in a source file must match a closing #endlf direc­
tive. Zero or more #ellf directives can appear between the #11 and
#endlf directives, but you can have no more than one #else directive.
The #else di rective, if present, must be the last conditional di rective
before #endlf.

The combination #11 deflned(identifier) supplants the #Ifdef and
#Ifndef di rectives.

Use the #ellf (else - if) directive in #If and #If defined blocks.

The preprocessor selects one of the given blocks of text for further
processing. A text block is any sequence of text. It can occupy more
than one line.

The preprocessor processes the selected text and passes it to the
compiler. If the text contains preprocessor directives, the pre­
processor carries out those directives.

The preprocessor removes from the file any text blocks not selected
with #If directives and does not compile them.

Using Preprocessor Directives and Pragmas 9-13

#if defined(CREDIT)
credit();

#elif defined(DEBIT)
debit();

#else
printerror();

#endif

#if, #elif, #else, #endif
If, Else-if, Else, and End-if Directives

The next two examples assume a previously defined manifest con­
stant, DLEVEL. The second example shows two sets of nested #11,
#else, and #endll di rectives. The preprocessor processes the fi rst set
of directives only if DLEVEL>5 is true. Otherwise, the preprocessor
processes the second set of instructions.

#if DLEVEL > 5
#define SIGNAL 1
#if STACKUSE == 1

#define STACK 200
#else

#define STACK 100
#endif

#else
#define SIGNAL 0
#if STACKUSE == 1

#define STACK 100
#else

#define STACK 50
#endif

#endif

In the next example, #elll and #else directives make one of four
choices, based on the val ue of DLEVEL. The manifest constant
STACK is set to 0,100, or 200, depending on the definition of DLEVEL.
If DLEVEL is undefined, the preprocessor sends dlsplay(debugptr); to
the compiler and does not define STACK.

#if DLEVEL == 0
#define STACK 0

#elif DLEVEL == 1
#define STACK 100

#elif DLEVEL > 5
display(debugptr);

#else
#define STACK 200

#endif

The following example uses preprocessor directives to control the
meaning of register declarations in a portable source file. The com­
piler assigns register storage to variables in the same order in which

Using Preprocessor Directives and Pragmas 9-15

Purpose

#ifdef, #ifndef
Ifdef and Ifndef Directives

The #Ifdef and #Ifndef directives accomplish the same task as the #11
directive used with deflned(macro). You can use these directives
anywhere you can use #If. IBM provides these directives only for
compatibility with previous versions of C. For optimal results, use the
deflned(macro) form of #If. You cannot define or undefine the identi­
fier defined.

When the preprocessor meets an #Ifdef directive, it checks to see if
the identifier is currently defined. If so, the condition is true
(nonzero). Otherwise, the condition is false (zero). The #Ifndef direc­
tive checks for the opposite condition checked by #Ifdef. If the identi­
fier has not been defined (or its definition has been removed with
#undef), the condition is true (nonzero). Otherwise, the condition is
false (zero).

Format

#ifdef identifier
#ifndef identifier

Using Preprocessor Directives and Pragmas 9-17

Example

#line
Line Control

In the first example, the internally stored line number is set to 151
and the filename is changed to COPY.C.

'line 151 "copy.c"

In the next example, the macro ASSERT uses the predefined identi­
fiers _LlNE_ and _FILE_ to print an error message about the
source file if a given assertion is not true.

'define ASSERT(cond) if(!cond)\
{printf("assertion error line %d, file(%s)\n", \
LINE, _FILE_);} else;

Using Preprocessor Directives and Pragmas 9-19

Appendix A. Differences from the Proposed
ANSI Standard for C

Although the IBM C/2 product follows most of the language design as
specified in the proposed draft American National Standard for C, a
number of differences exist.

The compiler uses a number of identifiers which in a standard imple­
mentation are reserved for the user's namespace.

The following IBM C/2 functions are non-ANSI functions:

access _dos_getfileattr _fheapset
a110ca _dos_getftime _fheapwalk

_arc _dos_gettime fieeetomsbin
bdos _dos_getvect fil el ength

_bios_disk _dos_keep fileno
_bios_equiplist _dos_open -fl oodfi 11
_bios_keybrd -dosJead flushal1
_bios_memsize -dos_setblock -fmalloc
_bios_printer _dos_setdate fmsbintoieee
_bi os_seri a 1 com _dos_setdrive -fmsize
_bios_timeofday -dos_setfileattr FP_OFF

cabs -dos_setftime _fpreset
cgets -dos_settime FP_SEG

-chain_intr -dos_setvect fputchar
chdir _dos_write -freect
chmod dup fstat
chsize dup2 ftime

-clearS7 ecvt gcvt

-clearscreen _ell ipse _getbkcolor
close _enable getch

- controlS7 eof getche
cprintf execl _getcurrentposition
cputs execle getcwd
creat execlp _getfillmask
cscanf execlpe _getimage
dieeetomsbin execv _getlinestyle

_disable execve _getlogcoord
_displaycursor execvp _getphyscoord
dmsbintoieee execvpe getpid
dosexterr _exit _getpixel

_dos_allocmem _expand _gettextcolor
_dos_close fclosea11 _gettextposition

- dos_creatnew fcvt _getvideoconfig

-dos_findfirst fdopen getw
_dos_findnext _ffree halloc
_dos_freemem fgetchar _harderr
_dos_getdate _fheapchk _hardresume
_dos_getdiskfree _hardretn

Differences from the Proposed ANSI Standard for C A-1

The following other non-ANSI identifiers exist in the IBM C/2 run-time
system:

Functions Absolutes Variables Constants
$iB J mpl icit_ exp FIARQQ daylight HUGE

$iB_inpbas FICRQQ edata

$iBJnput FIORQQ end

$iBJnput_ws FIERQQ environ

SiB_output FISRQQ sys_errlist
$iB_tpwr10 FIWRQQ sys_nerr
brk FJARQQ timezone
brkctl FJCRQQ tzname

FJSRQQ complex
STKHQQ exception

stdaux
stdprn

Note that the function names that begin with an underscore or a
dollar sign in the previous lists do not violate the ANSI namespace,
even though they are not ANSI functions.

Differences from the Proposed ANSI Standard for C A-3

Appendix B. Compiler, Linker and
Run-Time Limits

The tables in this appendix contain information about the limits
imposed by IBM C/2.

Compiler Limits
To operate IBM C/2, you must have sufficient disk space available for
the compiler to create temporary files used in processing. The space
required is approximately two times the size of the source file.

The following table summarizes the limits imposed by C/2. If your
program exceeds one of these limits, an error message informs you
of the problem.

Program Item Description Limit

String Literals Maximum length of a string, 512 bytes
including the ending null char-
acter (\0).

Constants Maximum size of a constant.
The type determines the
maximum size of a constant.
See "Constants" on page 3-6
for a discussion of constants.

Identifiers Maximum length of an identi- 31 bytes
fier. (discards

additional
characters)

Declarations Maximum level of nesting for 10 levels
structure/union definitions.

Preprocessor Maximum size of a macro 2043 bytes
Directives definition before expansion.

Maximum size of a macro 1019 bytes
definition after expansion.

Compiler, Linker, and Run-Time Limits B-1

Item Description Limit

Groups Maximum number of 21; but the linker
groups that can be always defines
defined. DGROUP so the

effective
maximum is 20

Overlays Maximum number of 63
overlays that can be
defined.

Logical Seg- Maximum number of 128 by default;
ments logical segments that however, can be

can be defined. set as high as
3072 with ISEG-
MENTS

Libraries Maximum number that 32
can be searched.

Physical Seg- Maximum number of 255 per module
ments per physical segments that
module can be allocated.

Stack Maximum stack size. 64KB

Compiler, Linker, and Run-Time Limits 8-3

Glossary

This glossary includes terms and
definitions from:

• The American National Dic­
tionary for Information Proc­
essing Systems, copyright 1982
by the Computer and Business
Manufacturers Association
(CBEMA). Copies may be pur­
chased from the American
National Standards Institute,
1430 Broadway, New York, New
York 10018. Definitions are
identified by the symbol (A)
after the definition.

• The ISO
Vocabulary-Information Proc­
essing and the ISO
Vocabulary-Office Machines,
developed by the International
Organization for Standardi­
zation, Technical Committee 97,
Subcommittee 1. Definitions of
published sections of the vocab­
ularies are identified by the
symbol (I) after the definition;
definitions from draft interna­
tional standards, draft pro­
posals, and working papers in
development by the
ISO/TC97/SC1 vocabulary sub­
committee are identified by the
symbol (T) after the definition,
indicating final agreement has
not yet been reached among
participating members.

abort. To end unexpectedly.

access. (1) The manner in which
files or data sets are referred to by
the computer. (2) To get access to.

additive operators. The operators
perform addition (+) and sub­
traction (-).

address. * A character or group of
characters that identifies a register,
a particular part of storage, or some
other data source or destination.

allocate. To assign a resource.

append. In word processing, to
attach a file to the end of another
file. Contrasts with link.

argc. A parameter that holds the
total number of arguments passed
to the main function.

argument. Any value with a funda­
mental, structure, union, or pOinter
type that a function call passes to
the formal parameters of a function
or a return call returns to the
program.

argv. An array of pointers such
that each element pOints to a string
representation of an argument
passed to the main function.

arithmetic negation. An operation
changing the sign of a number.

array. A series of values of the
same type; its elements reside in
contiguous storage locations.

assembly mode. Display mode in
which CodeView displays the
program as assembler language
instructions.

X-1

intermediate language, assembly
language, or computer language.

compound assignment operators.
Perform the operation specified by
the additional operator, then assign
the result to the left operand.

concatenate. To link.

concatenation. The operation that
joins two strings in the order speci­
fied, thus forming one string whose
length is equal to the sum of the
lengths of the two strings.

configuration. The arrangement of
a computer system or network as
defined by the nature, number, and
the chief characteristics of its func­
tional units. The term may refer to
a hardware configuration or a soft­
ware configuration.

configure. To describe the devices,
optional features, and programs
installed on the system.

constant. A number, character, or
string of characters that you can
use as a value in a program.

constant expression. An operand
that yields an unchanging value.

continuation character. In the C
language, the backs lash (\) and
Enter keys cancel the effects of the
newline escape sequence.

C preprocessor. A text processor
that manipulates the text of a source
file before compiling.

C source file. A text file that con­
tains all or part of a C language
source program.

C source program. A collection of
one or more directives, declara­
tions, and definitions.

data segment. An area of memory
reserved for a program's data.

deallocate. To free.

declaration. The C language
source code line that establishes
the names and characteristics of the
functions, variables, and types used
in the program.

decrement. The quantity by which
a variable is decreased.

declarator. An identifier that you
can modify with brackets, asterisks,
or parentheses to declare a pOinter,
array, or function data type.

definition. A declaration that also
defines variables and functions.

denormal. For the numeric
coprocessor, a special form of
floating-point number, produced
when an underflow occurs. A
denormal is a number with a biased
exponent that is zero. By providing
a significand with leading zeros, the
range of possible negative expo­
nents can be extended by the
number of bits in the significand.
Each leading zero is a bit of lost
accuracy, so the extended exponent
range is obtained by reducing sig­
nificance.

derived type. The type of an item
whose declarator consists of identi­
fiers changed by the addition of a
preceding asterisk, trailing
brackets, or trailing parentheses,

X-3

program in order to terminate the
execution of that portion.

expanded. Of a macro, replaced by
its definition.

expression. A combination of oper­
ands and operators that yields a
single value.

expression evaluator. Allows the
use of a specific programming lan­
guage's syntax when entering
expressions and addresses as argu­
ments with CodeView commands.
CodeView provides two expression
evaluators, one using C syntax and
one using BASIC syntax.

external level. Of declarations,
outside of all function definitions.

fatal. Unrecoverable.

file handle. An integer value that
the operating system uses to refer
to the file.

floating-point constant. A decimal
number representing a real, signed
number.

formal parameters. Variables that
receive values passed to a function
by a function call.

forward declaration. Declaring a
function without defining it.

flush. Referring to a buffer, writing
the contents to a final location only
after the buffer is full.

free. (1) Release. (2) Not in use.

function. An independent collection
of declarations and statements,

usually designed to perform a spe­
cific task.

function body. A compound state­
ment containing local variable dec­
larations and statements.

function call. An expression that
passes control and zero or more
arguments to a function.

function declaration. The C lan­
guage source code line that estab­
lishes the name, the return type,
and the storage class of a function
whose explicit definition is at
another point in the program.

function definition. A block of C
language source code that specifies
the name of the function, its formal
parameters, and the declarations
and statements that determine its
action.

function prototype. A function dec­
laration that also declares the types
of its parameters.

generate. To produce a computer
program by selecting subsets from
skeletal code under the control of
parameters. Also, to produce
assembler language statements
from the model statements of a
macro definition when the definition
is called by a macro instruction.

global lifetime. The property of
having storage and a defined value
throughout the program.

globally visible symbol. A program
item (such as an identifier) coded in
a context that makes it recognizable
as a unique name throughout the
program.

X-5

without regard to any specific
implementation.

line-buffer. To flush a buffer when
the compiler finds a newline char­
acter (\n) instead of when the buffer
is full.

local Ilfellme. The property of
having new storage reserved each
time the compiler enters the block
that defines or declares it.

logical AND (&&). The logical AND
operator (&&) produces the value 1
if both operands have non-zero
values.

logical operators. The operators
logical AND (&&) and OR (II).

logical OR (II). This operator (II)
performs an inclusive OR on its
operands.

long Integer constants. Integer
constants that are 4 bytes in length.

Ivalue expressions. Expressions
that refer to storage locations.

macro. An identifier that repres­
ents statements or expressions.

main. The conventional name of
the primary program function. Many
operating systems require this
name for the primary function.

manifest constant. An identifier
that represents a constant.

map file. A listing file you can
create during the LINK step that
contains a list of segments within
the load module.

members. Individual elements of a
structure, union, set, or list.

memory. Program addressable
storage.

memory allocation. The reserving,
freeing, or reallocating of blocks of
storage.

memory location. Any addressable
pOint in storage.

mixed language programming.
Making use of libraries of subrou­
tines which may be written in dif­
ferent programming languages. C
programs can link to these libraries
and call their subroutines.

mixed mode. In sequential mode,
the display mode in which
CodeView displays source lines
mixed with unassembled
instructions. One source line for
each corresponding group of
assembler language instructions is
displayed.

multidimensional array. An array
whose elements are arrays.

multiplicative operator. Performs
multiplication (*), division (I), and
remainder (%) operations.

multithread applications. Uses that
require a number of independent
actions, known as threads. These
applications use threads that can
begin at any function heading in a
program and can coexist within the
same program or even the same
module.

NaN. Not-a-number.

X-7

out certain functions prior to com­
piling.

process. A program running under
the control of an operating system.
The code and data for the program
and information about the status of
the running program, such as the
number of open files.

process-specific feature. A charac­
teristic of compiler implementation
that is true only for a single
machine or class of machines,
rather than being generally true.

program segment prefix. The
256-byte header to the memory
segment which DOS uses to hold
the compiled and linked code of a
program. When a program is
called, DOS puts essential run-time
information into this header.

protect mode. A method of
program operation that limits or
prevents access to certain
instructions or areas of storage.

range of values. Values for a vari­
able from the minimum value to the
maximum value that can be repres­
ented internally in a given number
of bits.

real mode. A method of program
operation that does not limit or
prevent access to any instructions
or areas of storage. The operating
system loads the entire program
into storage and gives the program
access to all system resources.

recursive call. To call a function by
name from a point within its own
definition.

reference. In programming lan­
guages, a language construct desig­
nating a declared language object.

register. A storage area commonly
associated with fast-access storage,
capable of storing a specified
amount of data such as a bit or an
address.

relnltlallze. To reset.

relational operators. The binary
relational operators test their first
operand against the second to
determine if the relation specified
by the operator holds true.

replicate. To copy all or a specified
portion of data.

representable character set. All
letters, digits, and symbols that can
represent a single character.

return type. A definition of the size
and type of value that the function
returns.

return values. The values of
expressions specified in return
statements of functions which are
made available to the functions that
called them.

routine. A program or sequence of
instructions called by a program
that may have some general or fre­
quent use.

run. (1) A single performance of
one or more jobs. (2) A single, con­
tinuous performance of a computer
program or routine.

run-time library. A collection of
functions in object code form,

X-9 '

storage. 1) A device or part of a
device that can retain data. 2) The
retention of data in a storage
device.

storage class. A category of vari­
ables and functions that have
similar properties of lifetime and
visibility.

storage location. Any addressable
point in storage.

stream. A logical sequence of data
items into which any input or output
can be mapped.

stream function. Functions that
treat a data file or data item as a
stream of individual characters.

stream pointer. A pOinter returned
when you open a file for stream
input or output.

string. In C, an array of characters
whose elements have the type char.
The C compiler adds a null char­
acter to mark the end of a string.

string literal. A sequence of letters,
digits, and symbols enclosed in
double quotation marks. The C
compiler treats a string literal as an
array of characters. Each element
of the array is a single character
value.

structures. Variables composed of
a collection of values that may
have different types.

structure tag. An identifier used as
a name for any structure of a speci­
fied form.

subtraction operator. The sub­
traction operator (&minus) subtracts
its second operand from the first.

symbol. A name that represents a
register, a segment address, an
offset address, or a full 32-bit
address. At the C source level, a
symbol (identifier) is a variable
name or the name of a function.

symbolic Information. Information
that CodeView uses to interpret
global and local program symbols.

terminate. To stop the operation of
a system or device; to stop the exe­
cution of a program.

ternary expression. Three oper­
ands joined by the ternary condi­
tional operator (1 :).

text mode. A form of stream
mapping in which character
sequences are composed into lines,
and for which some characters must
be altered on input or output to
conform to the conventions for
representing them.

token. A unit of program text that
has meaning to the compiler and
cannot be broken down further.

trailing zeros. Insignificant zeros
appearing at the end of a decimal
fraction.

twos complement. A binary
number notation for negative quanti­
ties.

type. A set of values together with
a set of permitted operations.

X-11

Index

- (subtraction) operator 6-16
--, decrement operators 6-8
->, member selection

operator 6-25

A
about the SETUP and INSTAID pro-

grams 2-1
about this library 1-1
abstract declarator 5-48
addition operator (+) 6-16
addition, with pOinters 6-16
additive operators 6-15
address-of (&) operator 6-13
addresses 1-5
aggregate types

array 5-27
initialization 5-42

alternate floating-point library 2-21
AND operator

bitwise (&) 6-20
logical 6-21

angle brackets « », in #include
directive 9-10

ANSI differences A-1
ANSI functions not provided A-4
ANSI standards 1-6
argc parameter 4-4
argument type list

keyword
as arg-typelist 5-33
as type name 8-15
in argument type list 5-33
in function return type 5-34

void keyword 5-33
with abstract declarator 5-48

argument types 8-14
arguments

argument type list 8-10

arguments (continued)
comma (,), in 5-33
conversion of 8-14
declaring 8-10
keywords, void in 5-33
maximum number of macro argu-

ments 8-1
maximum size of macro defi-

nition 8-1
passing 8-14
pOinter 8-12,8-14
type names, in 5-33
type-checking 5-33, 8-14
variable number 5-33,8-16

argv parameter 4-4
arithmetic

conversions 6-10
negation (-) operator 6-12
with pOinters 6-16

arrays
declarations 5-27
elements, referring to 6-4
format 5-27
identifiers 6-2
initialization 5-45
modifier 5-8, 5-27
multidimensional 5-28
storage 6-5
type 5-8, 5-27
variables, storage of 5-28

arrow, member selection
expressions 6-7

assignment
compound 6-26
connversions 6-32
expressions 6-8
how to make 6-1
listed 3-6
operators
simple (=) 6-26

X-13

compiler limits
inputfiles B-2
maximum length B-1

of a string B-1
of an identifier B-1

maximum level B-1
of nesti ng B-1
of nesting for include

files B-2
maximum number of macro argu­

ments B-1
maximum size B-1

of a constant B-1
of macro definition B-1

preprocessor directives B-1
compiler passes 2-18
compiler program, CC.EXE 2-17
compiler, linker and run-time

limits B-1
compiling

conditional 9-11
suppressing 9-11

compiling and linking 2-10
compiling multi-thread programs

See IBM C/2 Language Refer-
ence

complement operators 6-12
complex declarators 5-8
component libraries 2-3
component libraries, during installa-

tion 2-3
compound assignment

operators 6-26
compound statement 7-3
conditional compiling 9-11
conditional operator (?:) 6-23
conditional statements

if 7-10
switch 7-15

configuration, setting 2-29
constant expressions 6-9

permissible constant-
expressions 6-9

constants
case 7-15
character 3-10
constant-expressions 6-9
decimal integer 3-7
defined 3-6,9-14
enumeration 3-11
enumeration, naming class 4-9
expression 5-24, 6-1
expression in switch

statement 7-15
floating-point 3-9
floating-point, negative 3-9
hexadecimal integer 3-7
in directives 9-14
in preprocessor directives 9-14
integer 3-7
integer constant 6-2
integer, long 3-8
integer, negative 3-7
manifest 9-2
maximum size B-1
octal integer 3-7
operand 6-2
restricted 9-14
string 3-11

const, keyword 5-18
continue statement 7-4
conventions used in this book 1-3
conversions

argument type list 8-14
arithmetic 6-10
assignment 6-32
from enumeration types 6-38
from floating-point types 6-35
from pointer types 6-38
from signed integer types 6-32
from unsigned integer

types 6-34
function-call 6-39
of arguments 8-14
of formal parameters 8-15
operator 6-39
standard arithmetic 6-10

X-15

Demo program, running 2-15
description of compiler EXE

files 2-17
description of P.EXE files 2-18
differences from proposed ANSI

standard for C A-1
digits and letters

hdigits 3-7
odigits 3-7
used by IBM C/2 3-1

directives
define 9-3
defined 4-1
elif 9-13
else 9-13
endif 9-13
error 9-12
if 9-13
ifdef 9-17
ifndef 9-17
include 9-10
line 9-18
preprocessor 9-1
undef 9-9

directories SETUP and INSTAID ask
for 2-2

disk contents 2-19
organization, sys files 2-19

division operator (I) 6-15
do

keyword 7-5
statement 7 -2, 7-5

continuing running 7-4
ending 7-2

double type 5-2
range of values 5-3
storage 5-3

double-precision types 1-5
dynamic linking

See IBM C/2 Language Refer­
ence

E
A bitwise exclusive (OR) 6-20
elements of C 3-1
elements, referring to 6-4
elif directive 9-1,9-13
ellipses, how this book uses 1-3
else directive 9-1,9-13
else keyword 7-10
emulator library 2-19
EM.L1B 2-19
end-of-file indicator 3-2
end if directive 9-1,9-13
enum

expressions and identifiers 6-2
type specifier 5-46
types 5-46
type, range of values 5-3
type, storage 5-3

enumeration
constants 3-11

naming class 4-9
declarations 5-19,5-46
example 5-21
format 5-19
keyword 5-20
list 5-20
set 5-19
tag 5-20
tags 5-46
type specifier 5-19
types 5-2,5-19,5-46
types, converting 6-38
types, storage of 5-20
variables, storage of 5-20

environment
maximum size B-4
setti ng 2-29
variables, setting

automatically 2-6
verifying 2-7

envp 4-4
equality operator (= =) 6-19

X-17

formal parameters (continued)
identifiers of 8-5
storage class 8-7
type-checking 8-5

forward declarations 5-32,8-10
function declarations 5-32
function declarations, storage

class 5-41
function-call conversions 6-39
functions

body 4-1, 8-9
call expression 6-3
calls 6-3, 8-11
calls conversions 8-14
calls, indirect 8-12
declarations

defi ned 5-32
extern 8-10
forward 8-10
implicit 8-9
static 8-10
storage class specifier 8-10
with variable number of argu-

ments 5-33
definition 8-1
definitions 8-1

extern 8-2
return type 8-3
static 8-2
storage class specifier 8-2

exit from 7-13
extern 8-10
format 5-32
function calls 8-1
functions 8-1
identifiers 6-2
main arguments 4-4
main in running programs 4-4
modifier 5-8
naming class 4-9
parameters 4-4
poi nters 8-12
recursive 8-18
return type 8-3

functions (continued)
return type, implicit 8-9
return value 7-13,8-9
returning type 5-32
static 8-10
static and extern 8-2
storage class 8-2
type names, in 5-33
visibility 8-2,8-10
with variable number of argu­

ments 8-16
functions, ANSI that are not pro­

vided A-4
fundamental types

initialization 5-42
range of val ues 5-3
storage 5-3

G
general elements of C 3-1
global filename expansion 2-20
global lifetime 4-5,5-35
global variables 4-6

initialization 5-42
references to 5-39

global visibility 4-5
goto keyword 7-9
goto statement 7-9

H
hex bit patterns as constants 3-11
hexadecimal escape

sequences 3-3
hexadecimal integer constants 3-7
hexadecimal number

representation 1-4
how SETUP and INSTAID work 2-2
huge model library files 2-19

X-19

integral types 5-2
internal declarations 5-35, 5-39
internal level declarations 4-5
internal representation 5-5
internal variable

declarations 5-35, 5-39
internal variable declarations,

default storage class 5-39
interpreting complex

declarators 5-9
int, size of 5-4
iterative statements

do 7-5
for 7-7
while 7-18

K
keywords

L

continue 7-4
defined 3-14
enum 5-20
far 5-12
fortran 5-12
huge 5-12
interrupt 5-12
keyword 5-31
near 5-12
pascal 5-12
signed 5-3
sizeof 6-14
special 5-12
struct 5-22
void 5-34, 8-15
void, in argument type list 5-33
Joadds 5-12
_saveregs 5-12

labeled statements 7-9
labels

case 7-15
default 7-15

labels (continued)
naming class 4-10

LAN, IBM PC, installing with 2-31
large model library files 2-19
left shift «<) operator 6-18
letters and digits 3-1
L1BH.L1B 2-21
libraries, building special 2-8
library files

floating-point 2-19
standard C 2-20

library manager 2-18
L1B.EXE 2-18
lifetime and visibility block,

defined 4-5
lifetime, defined 4-5
lifetime, directives 4-2
lifetime, global 4-5
lifetime, local 4-5, 5-35
line control 9-18
line directive 9-1,9-18
LINE identifier 9-18
line numbers, changing 9-18
linked lists 5-22
linker limits B-2
linking, dynamic

See IBM C/2 Language Refer­
ence

L1NK.EXE 2-18
listing of IBM C non-ANSI

functions A-1
lists, linked 5-22
LLlBC.L1B 2-21
LLlBFP.L1B 2-21
local lifetime 4-5,5-35
local variables 4-6
logical operators

AND (&&) 6-21
NOT (I) 6-12
OR (\1) 6-21
order of evaluation 6-21

long type
range of values 5-3
storage 5-3

X-21

NEW-VARS.BAT and
NEW-VARS.CMD 2-29

NEW-VARS.BAT and
NEW-VARS.CMD files 2-6

non-ANSI functions, listed A-1
non-ANSI identifiers A-3
non-standard, non-portable features

See IBM extensions
nongraphic characters in C pro-

grams 3-5
nongraphic escape sequences 3-3
notations used in this book 1-3
null statement 7-12
number sign (#) character 9-1
numeric coprocessor 2-19
numeric coprocessor, using 2-30

o
octal escape $equences 3-3
octal integer constants 3-7
opening the C runtime libraries, in

OS/2 2-7
operands

binary expression 6-8
constant 6-2
conversions 6-11
defined 6-1
string literals 6-3
ternary expression 6-8
unary expression 6-8

operating system
abbreviations 1-4

operator conversions 6-39
operators

addition (+) 6-16
address-of (&) 6-13
arithmetic and logical 3-5
arithmetic negation (-) 6-12
as~ignment 3-6, 6 .. 24
associativity 6-27
binary 6-10
bitwise 6-10

AND (&) 6-20
exclusive OR 6-20

operators (continued)
bitwise (continued)

inclusive OR (I) 6-20
complement 6-12
compound assignment 6-26
conditional (7:) 6-23
constant 6-1
decrement 6-25
division (I) 6-15
equality (= =) 6-19
increment 6-25
indirection (*) 6-13
inequality (! =) 6-19
left shift «<) 6-18
listed 3-5
logical 6-21
logical AND 6-21
logical not (I) 6-12
logical OR 6-21
logical, order of evaluation 6-21
multiplication (*) 6-15
multiplicative 6-14
precedence 6-27
relational 6-19
remainder (%) 6-15
right shift (») 6-18
sequential evaluation (,) 6-22
shift 6-10,6-18
simple aSSignment (=) 6-26
sizeof 6-14
subtraction (-) 6-16
ternary 6-10
ternary (7:) 6-23
unary 6-10
unary plus (+) 6-12
with expressions 6-8
&12@OPR.

complement 6-12
optional files 2-21
OR operator

bitwise 6-20
logical 6-21

X-23

remainder operator (%) 6-15
removing macro and manifest con-

stant definitions 9-9
representable character set 3-1
representation, internal 5-5
required space for installation 2-4
reserved words, keywords 3-14
restricted constant

expressions 6-9
in directives 9-14

return keyword 7 -13
return statement 7-13
return type

declaring 8-10
implicit 8-9
in function declaration 5-34
in function definitions 8-3

return value 7-13,8-9
returning control 7-13
right shift (») operator 6-18
run-time limits 8-4

maximum length of command
prompt 8-4

program limits at run-time 8-4
runtime 8-4

running programs
main function 4-4
starting point 4-4
the Demo program 2-15

runtime libraries, opening in OS/2
mode 2-7

s
sC specifier 5-1,5-18
search path, include files 9-10
selecting component library files for

L18 2-30
selection statements

if 7-10
switch 7-15

sequential evaluation operator
(,) 6-22

setting environment variables auto-
matically 2-6

setting the configuration 2-29
setting the environment 2-29
setting up on other devices 2-22
SETUP program

installing with 2-1
memory used during 2-2
what SETUP does 2-2
/L option 2-8

shift operators 6-10,6-18
short type

range of values 5-3
storage 5-3

side effects
defined 6-30
in expressions 8-12
in macros 9-5

sign # character 9-1
signed types 5-2

converting 6-32
double 5-2
enumeration 5-2
float 5-2
int 5-2
long 5-2
short 5-2
signed char 5-2
signed int 5-2
signed short int 5-2
unsigned char 5-2
unsigned int 5-2
unsigned long 5-2
unsigned short 5-2

simple and pointer
initialization 5-42

simple assignment operator
(=) 6-26

simple type argument 8-14
simple variable declarations 5-19
single-precision types 1-5
sizeof operator 6-14

X-25

storage class specifiers, formal
parameters 8-7

storage class specifiers, in forward
declarations 8-10

storage classes
class specifiers 5-35
default, internal variable declara-

tions 5-39
defi ned 5-35
in forward declarations 8-10
in function definitions 8-2
local 5-35
specifiers 5-35
specifiers with external

variables 5-36
specifiers, global 5-35
static, with external

variables 5-36
string initializers 5-45
string literals

as initializers 5-45
format 3-11
storage of 3-12

stringizing operator, # 9-6
strings 6-3
struct keyword 5-22
struct type specifier 5-21, 5-46
struct types 5-21, 5-46
structure

declarations 5-21
example 5-25
expressions 6-2
format 5-21
identifiers 6-2
keyword 5-22
members 5-21
member, bit-field 5-22
tag 5-22
tags 4-9, 5-46

naming class 4-9
type argument 8-14
types 5-21, 5-46
types, storage of 5-24
variables, storage of 5-24

subscript expressions 6-4
subtraction operator (-) 6-16
subtraction, with pOinters 6-16
suppressing compiling 3-15,9-11
switch expression 7-15
switch statement 7 -2, 7-15

body 7-15
ending 7-2

SYS subdirectory 2-19
system configuration 2-7
system configuration, setting 2-29
system-level definitions 2-19

T
tags

enumeration 5-20, 5-46
naming class 4-9
structure 5-22, 5-46
union 5-46

terms used in the C/2 library 1-4
ternary expressions 6-8
ternary operator 6-10
ternary operator (7:) 6-23
text data files 2-21
text mode 2-21
token-pasting operator (##) 9-8
tokens 3-16
transfer statements

break 7-2
continue 7-4
do, ending 7-2
goto 7-9
labeled statements 7-9

twos complement operator 6-12
type cast conversions 6-38
type conversions 6-1, 6-31

types
signed, converting 6-32

type declarations 5-45, 5-46
type declarations, typedef - 5-45
type names 5-48
type specifiers

abbreviations 5-3

X-27

types, array, storage of 5-28
types, enumeration 5-19
types, struct 5-21
types, structure, storage of 5-24
types, union 5-26
types, union, storage 5-26

u
unary

Increment and decrement 6-25
unary expressions 6-8
unary operators 6-10
unary plus operator 6-12
undef directive 9-1,9-9
undefine directive 9-9
union

declarations 5-46
identifiers 6-2
members, naming class 4-9
members, referring to 6-7
tags 5-46

naming class 4-9
type specifier 5-46
types 5-46

union expression 6-2
union type argument 8-14
unsigned integer types,

converting 6-34
unsigned types

char 5-2
int 5-2
long 5-2
short 5-2

user-defined types 5-45
using

a numeric coprocessor 2-30
batch files 2-16
NEW-VARS.BAT and

NEW-VARS.CMD during instal­
lation 2-6

the CC and LINK
commands 2-11

the CL command 2-10

utilities

v

EXEMOD, See
EXEMOD.EXE 2-18

LIB, See L1B.EXE 2-18
linker, See LlNK.EXE 2-18

values, ranges 5-5
variable declarations

array 5-27
Internal 5-39
Internal, default storage

class 5-39
pOinter 5-31
union 5-26

variables
array, initialization 5-45
auto, initialization 5-42
declarations 4-1,5-18

enum 5-19
simple 5-19
structure 5-21

declarations, external 5-35
declarations, internal 5-35
definitions 5-36
definitions in program

structure 4-1
enumeration, storage of 5-20
global 4-6
global, initialization 5-42
global, references to 5-39
local 4-6
naming class 4-9
pOinter, storage 5-31
register, initialization 5-42
static, initialization 5-42
structure, storage of 5-24
variable number 8-16

variables, array, storage of 5-28
variables, union, storage 5-26
verifying environment 2-7
verifying installed options 2-4

X-29

X-31

r..;onllnuea Trom Ins/ae Trom cover.

SUCH WARRANTIES ARE IN LIEU OF
ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow the exclusion
of implied warranties, so the above
exclusion may not apply to you.

LIMITATION OF REMEDIES
IBM's entire liability and your exclusive
remedy shall be as follows:
1) IBM will provide the warranty

described in IBM's Statement of
Limited Warranty. If IBM does not
replace defective media or, if appli­
cable, make the Program operate as
warranted or replace the Program
with a functionally equivalent Pro­
gram, all as warranted, you may
terminate your license and your
money will be refunded upon the
return of all of your copies of the
Program.

2) For any claim arising out of IBM's
limited warranty, or for any other
claim whatsoever related to the
subject matter of this Agreement,
IBM's liability for actual damages,
regardless of the form of action,
shall be limited to the greater of
$5,000 or the money paid to I BM, its
Authorized Dealer or its approved
supplier for the license for the
Program that caused the damages
or that is the subject matter of, or is
directly related to, the cause of
action. This limitation will not apply
to claims for personal injury or
damages to real or tangible personal
property caused by IBM's negligence.

;j) In no event WlilltjM De lIaOle Tor any
lost profits, lost savings, or any
incidental damages or other conse­
quential damages, even if IBM, its
Authorized Dealer or its approved
supplier has been advised of the
possibility of such damages, or for
any claim by you based on a third
party claim.

Some states do not allow the limitation
or exclusion of incidental or consequen­
tial damages so the above limitation or
exclusion may not apply to you.

GENERAL
You may terminate your license at any
time by destroying all your copies of the
Program or as otherwise described in
this Agreement.

IBM may terminate your license if you
fail to comply with the terms and condi­
tions of this Agreement. Upon such
termination, you agree to destroy all your
copies of the Program.

Any attempt to sublicense, rent, lease or
assign, or, except as expressly provided
herein, to transfer any copy of the
Program is void.

You agree that you are responsible for
payment of any taxes, including personal
property taxes, resulting from this
Agreement.

No action, regardless of form, arising
out of this Agreement may be brought by
either party more than two years after
the cause of action has arisen except for
breach of the provisions in the Section
entitled "License" in which event four
years shall apply.

This Agreement will be construed under
the Uniform Commercial Code of the
State of New York

Z125-3301-024/87

