

International Business Machines Corporation Armonk, New York 10504

IBM Program License Agreement
BEFORE OPENING THIS PACKAGE, YOU SHOULD CAREFULLY READ
THE FOLLOWING TERMS AND CONDITIONS. OPENING THIS
PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND
CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD
PROMPTLY RETURN THE PACKAGE UNOPENED AND YOUR MONEY

WILL BE REFUNDED.

This is a license agreement and not an
agreement for sale. IBM owns, or has
licensed from the owner, copyrights in
the Program. You obtain no rights other
than the license granted you by this
Agreement. Title to the enclosed copy of
the Program, and any copy made from it,
is retained by IBM. IBM licenses your
use of the Program in the United States
and Puerto Rico. You assume all respon-
sibility for the selection of the Program
to achieve your intended results and for
the installation of, use of, and results
obtained from, the Program.

The Section in the enclosed docu-
mentation entitled “License Information”
contains additional information con-
cerning the Program and any related
Program Services.

LICENSE

You may:

1) use the Program on only one
machine at any one time, uniess
permission to use it on more than
one machine at any one time is
granted in the License Information
(Authorized Use); -

2) make a copy of the Program for

- backup or modification purposes
only in support of your Authorized
Use. However, Programs marked
“Copy Protected” limit copying;

3) modify the Program and/or merge it
into another program only in support
of your Authorized Use; and

4) transfer possession of copies of the
Program to another party by trans-
ferring this copy of the IBM Program
License Agreement, the License
Information, and all other documen-
tation along with at least one
complete, unaltered copy of the
Program. You must, at the same
time, either transfer to such other

84X1712

party or destroy all your other copies
of the Program, including modified
copies or portions of the Program
merged into other programs. Such
transfer of possession terminates
your license from IBM. Such other
party shall be licensed, under the
terms of this Agreement, upon
acceptance of this Agreement by its
initial use of the Program.

You shall reproduce and include the
copyright notice(s) on all such copies of
the Program, in whole or in part.

You shall not:

1) use, copy, modify, merge, or transfer
copies of the Program except as
provided in this Agreement;

2) reverse assemble or reverse compile
the Program;
and/or

3) sublicense, rent, lease, or assign the
Program or any copy thereof.

LIMITED WARRANTY
Warranty details and limitations are
described in the Statement of Limited
Warranty which is available upon request
from IBM, its Authorized Dealer or its
approved supplier and is also contained
in the License Information. IBM provides
a three-month limited warranty on the
media for all Programs. For selected
Programs, as indicated on the outside of
the package, a limited warranty on the
Program is available. The applicable
Warranty Period is measured from the
date of delivery to the original user as
evidenced by a receipt.

Certain Programs, as indicated on the
outside of the package, are not warranted
and are provided “AS 1S.”

Continued on inside back cover.

First Edition (September 1988)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor-
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be
made to your IBM Authorized Dealer or your IBM Marketing Repre-
sentative,

Operating System/2 is a trademark of the International Business
Machines Corporation.

C/2 is a trademark of the International Business Machines Corpo-
ration.

All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book is Volume 2 of a four-volume set explaining the IBM C/2
compiler. It gives you information you need to write, compile, link,

and run a program with IBM C/2. Sample sessions guidé you through
the steps of compiling, linking, and running a sample program that is

included on one of the compiler diskettes.

This book assumes that first-time users of IBM C/2 have completed at

least one year of computer science studies. This book is also
intended for experienced applications programmers or system pro-
grammers. Users should also be familiar with their personal com-
puter and operating system.

The following table lists some common tasks you may want informa-
tion about and which book you can find the information in.

If You Want To... Refer to...

Install IBM C/2 Fuhdamentals

Learn basic facts about IBM C/2 Fundamentals

Learn the format of a function Language Reference

Understand error messages Compile, Link, and Run

Debug a program Debug

Compile a program Compile, Link, and Run

Link a program Compile, Link, and Run

Write a program Fundamentals and Language Ref-
erence.

Related Publications
The following books cover topics related to the IBM C/2 Library:

e |IBM C/2 Compile, Link, and Run
* |BM C/2 Language Reference
e |BM Debug

e |BM MASM/2 Fundamentals
e |BM MASM/2 Assemble, Link, and Run
* |BM MASMI/2 Language Reference

¢ |IBM Operating System/2 Version 1.00 (Standard and Extended
Editions)

— Programmer’s Guide
¢ |BM Operating System/2 Version 1.10

— Programming Guide
* The technical reference for your personal computer.
¢ The technical reference for your operating system.

¢ |BM System Application Architecture Common Programming
Interface C Reference

* JAPX 86, 88 User’s Manual, Copyright 1981, Intel Corp., Santa
Clara, CA.

* jAPX 286 Hardware Reference Manual, Copyright 1983, Intel
Corp., Santa Clara, CA.

* jAPX 286 Programmer’s Reference Manual, Copyright 1985, Intel
Corp., Santa Clara, CA.

Contents

Chapter 1. IntroducingIBMC/2 1-1
Conventions Used InThisBook 1-2
Hexadecimal Representation 1-3
Syntax Diagrams e 1-3
Operating Systems 1-5
Chapter2. Compiling 2-1
Running the Compiler 2-1
File-Naming Conventions 2-2
Special Filenames 2-2
Source Filename Prompt 2-3
Object FilenamePrompt 2-3
Source ListingPrompt 2-4
Object ListingPrompt 2-4
Selecting Default Responses 2-5
Using the Source Listing 2-5
Using the Command-Prompt Method 2-7
C Compiler Error Messages 2-10
Using the Compiler Options 2-10
Available Compiler Options 2-12
Listing the Compiler Options /HELP 2-15
Allowing Case-Insensitive Options /CASE 2-16
Producing Listing Files /Fs, /Fl, /Fa, /Fc 2-16
/FsOption e 2-18
IFIOption e 2-20
/FaOption e 2-21
/FeOption 2-22
Controlling the Preprocessor 2-23
Defining Constantsand Macros /D 2-24
Predefined ldentifiers 2-25
Removing Definitions of Predefined Identifiers /U, /u 2-26
Producing a Preprocessed Listing /P, /E,/EP 2-27
PreservingComments /C 2-28
Searching forInclude Files /I, /X 2-28
SyntaxChecking, 2-29
Identifying Syntax Errors /Zs, /1S 2-30
Generating Function Declarations/Z2g 2-30
Using the Floating-PointOptions 2-32

Selecting the Floating-Point Options /FPa, /FPc, /FPc87, /FPi,
/FPi87 P
If You Have a Numeric Coprocessor
If You Do Not Have a Numeric Coprocessor
Compatibility Between Floating-Point Options
Using 80186/80188, 80286 or 80386 Processors /G0, /G1, /G2
Setting the WarninglLevel /W/w
CompilerExitCodes
Preparing for Debugging /Zd, /Zi,/0d
Optimizing /0 e
Compiling Large Programs
Working with Storage Models /A
Specifying a Combined Library for Linking /Le, /Lp
Advanced Topics e
Enabling Language Extensions /Ze, /Za,/Z¢c
Packing Structure Members /Zp
Suppressing Default Library Selection/zZl
Changing the Defaultchar Type/d
Controlling Floating-Point Operations
Advanced Optimizing
Removing Stack Probes /Gs
Setting the Data Threshold /Gt
Mixed-Model Programming
Creating Customized StorageModels
Producing Code Pointers
Producing Data Pointers
SettingUpSegments
Library Support e
Controlling the Function Calling Sequence /Ge

Chapter 3. Linking AProgram
How the LinkerWorks,
Creating DOS Mode Applications
Creating OS/2 Mode Applications
Creating Dynamic Link Libraries
Creating Family Applications
Module Definition Files
Creating Module DefinitionFiles
Usingthe Linker
File-Naming Conventions
Selecting Default Responses
Endingthe LINK Session
Using LINKExitCodes

vi

Using a Command to Specify LINKFiles
Using Prompts to Specify LINKFiles
Usinga ResponseFile
Temporary DiskFile
About LINKOptions
Using LINKOptions
Linker Options for Other IBM Language Files
Aligning Segments /ALIGNMENT
Preparing Files for CodeView /CODEVIEW
Reserving Paragraph Space /CPARMAXALLOC
Ordering Segments /DOSSEG
Controlling Data Loading /DSALLOCATE
Packing Executable Files /EXEPACK
Optimizing Intrasegment Far Calls /FARCALLTRANSLATION ..
Viewing the Options List /HELP<~.........
Controlling Run File Loading /HIGH
Displaying LINK-Time Information /INFORMATION
Copying Line Numbers to the Map File /LINENUMBERS
Producing a Public SymbolMap /MAP

Ignoring Default Libraries /NODEFAULTLIBRARYSEARCH

Disabling Far Catll Translations /NOFARCALLTRANSLATION . .
- Preserving Compatibility /NOGROUPASSOCIATION
Preserving Lowercase /INOIGNORECASE
Disabling Packing /NOPACKCODE
Setting the Overlay Interrupt /OVERLAYINTERRUPT
Packing Code Segments /PACKCODE
Packing Data Segments /PACKDATA
Pausing to Change Disks /PAUSE
Setting the Maximum Number of Segments /SEGMENTS
Setting the Stack Size /STACK
Warning of Fix-ups /WARNFIXUP
Module Definition File Statements
Defining the Code Segment Default Attributes CODE
Defining Data Segment Default Attributes DATA
Inserting Text DESCRIPTION
Exporting Functions EXPORTS
Defining Local Storage HEAPSIZE
Importing Functions IMPORTS
Naming Library Modules LIBRARY
Naming Executable Modules NAME
Preserving Export Ordinals OLD
Setting 0S/2 Environment PROTMODE
Defining Segments SEGMENTS

Defining Local Stack STACKSIZE
Adding an Executable Fileto a ModuleSTUB
TheMapFile
Advanced LINKTopics
UsingOverlays,
Overlay ManagerPrompts
Generating 0OS/2 Mode Applications
OrderofSegments
CombinedSegments
GroUPS . . & o e
Fix-ups e
Rules for Segment PackinginLINK
Compiling and Linking in One Step Using the CL Command
Linking withthe CLCommand
Compiling and Linking Combined Libraries
AdvancedCLTopics
SpecifyingOverlays ()
Compiling without Linking/c
Creating Bound Applications /Fb
Compiling Presentation Manager Applications /Gw
Restricting the Length of External Names/H
Suppressing Logo Lines/nologo
Declaring Functions as Intrinsic/0i
Naming Modules and Segments /NM, /NT,/ND
Placing Variables and Functions in Segments
Loop Optimization /0l
Setting Line Width and Page Length /SI,/Sp
Setting Titles and Subtitles /St,/Ss
Specifying Source Files/Tc
Labeling the ObjectFile/V
Creating Special Object File Records #pragma comment
Writing Output Messages #pragmamessage

Chapter 4. RunningCPrograms
Passing Data to a Program argc, argv,envp
Exiting from the Main Function
Expanding Global Filename Arguments
Suppressing Command Processing
Suppressing Null PointerChecks

Chapter 5. Using the Program Utilitles
MAKE e

viil

Starting MAKE 5-6

Advanced MAKE Topics 5-10
LIB .. e e 5-21
Overview of LIB Operation 5-22
StartingLIB e 5-24
PromptsforLIB 5-24
Command-Prompt MethodforLIB 5-27
Response Filefor LIB 5-29
Extending Lines 5-30
Ending the Library Session 5-30
Selecting Default ResponsestoPrompts 5-30
LibraryTasks 5-30
EXEMOD e e 5-35
Displaying Current Status of Header Fields 5-35
Changing Fields inthe FileHeader 5-35
Parameters 5-36
Effecton PackedFiles 5-36
Chapter 6. Interfacing with IBM Macro Assembler/2 6-1
SegmentModel e 6-1
GroUPS . . . e 6-3
The C CallingSequence 6-5
Entering an Assembler Routine 6-6
ReturnValues, 6-7
ExitingfromaRoutine 6-7
NamingConventions 6-8
Register Considerations 6-9
Appendix A. ErrorMessages A-1
Run-Time Error Messages A-1
System Generated Error Messages A-1
Floating-Point Exceptions A-4
Error-Handling Routine Error Messages A-6
MathErrors A-6
Compiler Error Messages A-7
Fatal ErrorMessages« ... A-9
Error Messages During Compiling A-16
Warning ErrorMessages A-34
Command Area Error Messages A-48
Fatal ErrorMessages A-48
Warning Error Messages, .. A-51
Compiler Internal Error Messages A-53
Redirecting Compiler Error Messages A-54

Linker ErrorMessagest ... A-55

Fatal Error Messages, A-56
Non-Fatal Error Messages A-63
Warning ErrorMessagesc.. ... A-67
Library Manager Error Messages A-72
Fatal Error Messages A-72
ErrorMessagest A-75
Warning ErrorMessages A-75
MAKE Error Messages A-77
Fatal ErrorMessages A-77
Warning Error Messages A-82
EXEMOD Error Messages A-83
Fatal Error Messages A-83
Warning Error Messages A-84
Errno Value ErrorMessages A-85
ErrnoValues A-85
Index X-1

Summary of Changes

Following are the differences between IBM C/2 Version 1.00 and
Version 1.10 that affect this book.

Technical Changes

MAKE
The IBM MAKE/2 1.10 utility supports most of the functions of IBM
MAKE/2 1.00 with the following enhancements:

Uses the tools initialization file, TOOLS.INL.

Accepts command-prompt arguments from a file.

Does not require build lines to begin with a TAB.

Does not require a blank line to separate a target’s build lines
from the next target in the makefile.

Uses MAKEFILE as the default MAKE description file.
Recognizes single-character macros without parentheses.
Supports special macros. _

Supports substitution sequences in macro invocations.

Allows you to redefine macros so that different targets can use
different values for the same macro (this prevents MAKE from
supporting forward referencing).

Provides global filename character expansion in targets.
Supports include files.

Supports conditionals and other directives.

Supports path searching for dependents.

Allows both / and \ as path separators.

Allows you to explicitly generate an input script file from within a
MAKE description file.

Provides a means of overriding option settings for specific targets
or for changing applicable command option settings from within
the MAKE description file.

Allows the double colon (::) as a separator between targets and
dependents.

Allows you to redirect stderr by means of a command option.

xi

Modifications
The IBM MAKE/2, Version 1.00, is not fully compatible with Version
1.10. IBM MAKE/2, Version 1.10, provides basic target and depend-
ency features. Targets are no longer evaluated sequentially. When
you invoke NMAKE, the targets you specify are updated regardless of
their positions in the file. If you do not specify targets, NMAKE
updates the first target in the file.
To convert these description files:

1. Create a new description block at the top of the file.

2. Give this block a pseudotarget names ALL.

3. Set the dependents for the block to all of the other targets in the

file.

When MAKE executes the description, it assumes you want to build
the target ALL and builds all targets in the file.

LINK Enhancements
IBM LINK Version 1.10:

— Provides a new option that prevents prompting for libraries
and object modules in batch mode.

— Allows programs with 80386 object code to be linked.

— Reduces performance penalty for linking objects with
CodeView.

— lIssues a warning when a program includes an impossibly
large stack size.

— Provides extended exit code values.

— Allows the /NOF and /FAR options for DOS mode programs.

LIB Utility Enhancements
IBM LIB Version 1.10:

— Has been modified so that library routines can be debugged
at the source code level if source files are available.

Complier Software Enhancements
Under Version 1.10, the compiler software:

— Allows you to write and debug dynamically linked applica-
tions.

— Allows you to write and debug programs that run under
control of the Presentation Manager.

— Allows you to write and debug programs that contain multiple
threads that are running under 0S/2.

— Includes several new compiler options and pragmas.

Organizational Changes

¢ The installation and practice session information has been moved
from this book to IBM C/2 Fundamentals.

¢ Error messages have been moved from IBM C/2 Language Refer-
ence to this book.

xtil

xiv

Chapter 1. Introducing IBM C/2

This book has the following organization:

Chapter 1, Introducing IBM C/2: Describes the notation conventions
used in this book, and some of the features and functions of IBM
C/2™,

Chapter 2, Compiling: Explains how to compile program source files
into object modules using the CC command and its options.

Chapter 3, Linking A Program: Shows how to link object modules
into an executable program using the LINK command and its options.
It also tells how to compile and link source files into executable pro-
grams in one step, using the CL command and its options.

Chapter 4, Running A C Program: Tells how to run a program. It
also explains how to pass data to a program, how to exit from the
malin function, how to suppress command-prompt processing, and
how to suppress null-pointer checks.

Chapter 5, Using the Program Utilities: Tells how to maintain
program modules using the MAKE utility, its options, and the MAKE
description files. It also describes how to manage object module
libraries using the LIB utility. It describes how to create and change
a library file, how to add, delete, replace, or extract library modules,
and how to combine libraries. it also shows how to create a cross-
reference listing, perform consistency checks, and set the library
page size. Additionally, it describes how to change file headers
using the EXEMOD utility.

Chapter 6, Interfaces with the IBM Macro Assembler/2: Tells how to
write programs to link with assembler language modules or to use as
modules of assembler language programs.

C/2 is a trademark of the International Business Machines Corporation.

Introducing IBM C/2 1A

Appendix A, Error Messages: References the error messages that
the IBM C/2 compiler can display and the error conditions that
produce them.

Index: Includes entries for this book only.

Conventions Used In This Book

This book uses certain conventions in defining operating system com-
mands, formats of functions, names, and terms.

Convention Meaning

Boldface Words or numerics printed in bold indicate proce-
dural tasks, menu items, directives, function calls,
library functions, statements, keywords, and values.

Italics Words or numerics printed in italics represent infor-
mation you supply, such as variables and filenames.
ltalics also introduce new terms or concepts.

Uppercase Words printed in CAPITAL letters include DOS com-
mands, OS/2 commands, dialog commands, options,
programs, filenames, libraries, and utilities.

Color Color indicates screen responses and programming
examples.

Ellipses Ellipses (...) indicate that you supply additional infor-
mation in the form shown.

Brackets Brackets [] indicate optional items supplied to com-
mands.

Vertical Bars Items separated by a vertical bar (|) mean that you
can enter either one of the separated items. For
example:

ON|OFF

means you can enter ON or OFF but not both.

1-2 Introducing IBM C/2

The following terms have the specified reference:

Term Reference

LINK IBM Linker/2, Version 1.10

LIB IBM Library Manager/2, Version 1.10
MAKE IBM MAKE/2, Version 1.10
CodeView! IBM CodeView

EXEMOD IBM EXEMOD/2 Version 1.10
Assembler IBM Macro Assembler/2.

Hexadecimal Representation

This book represents hexadecimal numbers in three ways. The letter
H (or h) shows hexadecimal system calis, such as 59H (or 58h), in
DOS. All other hexadecimal numbers use the standard C represen-
tation Oxhexdigits, such as 0x1F.

Syntax Diagrams

Syntax diagrams define the format of commands entered at the
command prompt, the command name is at the beginning (top left
corner).

The following shows the form of a syntax diagram:

COMMAND requ;red required —_1>
item 1 n‘em 2
path path

| 4 required —
_ _/ _ _/ item 3
optional path
item

Understanding Syntax Terms

Syntax Term Description

syntax diagram An illustration of the structure and options of a
command.

baseline A horizontal line that connects each of the
required items in turn.

1CodeView is a trademark of the Microsoft Corporation.

Introducing IBM C/2 1-3

branch lines

keyword

variable

required items

optional items

repeat symbol

Multiple horizontal lines that show choices.
Branch lines are below the baseline.

Words shown in all uppercase letters. Compiler
command and utility names are keywords. You
can type keywords in any combination of upper-
case and lowercase letters.

ltems shown in lowercase italic letters mean that
you are to substitute the item. For example,
filename indicates that you should type the name
of your file in place of filename.

Items that must be included. Required items
appear on the baseline. Command names are
required items.

Items that you can include if you choose to do so.
Optional items appear below the baseline.

A symbol that indicates you can specify more than
one choice or a single choice more than once.

Symbols show baseline continuation and completion as follows:

> LY v

Indicates that the command syntax is continued.
- Indicates that a line continues from the previous line.
Indicates the end of a command.

Indicates that you can specify a choice more than once.

14 Introducing IBM C/2

Reading a Syntax Diagram

1. Start at the top left of the diagram.

2. Follow only one line at a time going from left to right and top to
bottom. ltems on the lines indicate what you must or can specify
and the required sequence.

3. When you encounter one or more branch lines, you must make a
choice of items. Follow the line you choose from left to right
except where you encounter the repeat symbol.

With many commands, you can enter as many of a group of options
as you want. These options are in a box that has a repeat symbol
around it. You can follow the arrow through the box until you have
selected all the options you want to use. Once you have chosen an
option from the box, you cannot choose the same option again.

Operating Systems
Throughout these books, the references to operating systems have
the following meaning:

Abbreviation Meaning

DOS DOS 3.30 or 4.00

DOS mode DOS or the DOS mode of 0S/2
0Ss/2 IBM Operating System/2™,

Operating System/2 and OS/2 are trademarks of the International Busi-
ness Machines Corporation.

Introducing IBM C/2 1-§

1-6 Introducing IBM C/2

Chapter 2. Compiling

This chapter explains how to run the compiler using the CC command
and how to use C compiler options.

The CC command is all you need to compile C source files with IBM
C/2; it runs all of the compiler passes for you. The CC command also
optimizes a program. You need not give an optimizing instruction
except to change the way CC optimizes or to disable optimization
altogether. See “Optimizing /O” on page 2-40 for more on these
choices.

By drawing on the large set of CC options, you can control and modify
the tasks performed by the command. For example, you can direct
IBM C/2 to create an object listing file or a preprocessed listing.
Compiler options also let you supply information that applies to the
compiling process, such as the definitions for manifest (symbolic)
constants, macros, and the kinds of warning messages you want to
see.

To call both the compiler and the linker at the same time use the CL
command instead of the CC and LINK commands. The CL command
is described in Chapter 3, “Linking A Program.”

For a brief description of the IBM C/2 compiler options see “Available
Compiler Options” on page 2-12. Additional options are covered in
“Advanced Topics” on page 2-48.

Running the Compiler

IBM C/2 requires two types of input: a command to start the compiler
and responses to prompts. Start the compiter by typing CC at the
command prompt. IBM C/2 prompts for the input it needs by dis-
playing the following four messages, one at a time:

Source filename [.C]:

Object filename [filename.0BJ]:

Source listing [NUL.LST]:
Object 1isting [NUL.COD]:

To stop a compiling session for any reason, press either Gtrl+C or
Ctrl + Break at any time to return to the command prompt area, where
you can start IBM C/2 from the beginning.

Compiling 2-1

File-Naming Conventions

Use any combination of uppercase and lowercase letters for the
filenames you type in response to the prompts. For example, the
filenames abcde.fgh, AbCdE.FgH, and ABCDE.fgh are equivalent.

You can include spaces before or after filenames but not within them.
Options can appear anywhere spaces can appear. See “Using the
Compiler Options” on page 2-10 for more information.

CC uses the default file extensions .C, .OBJ, .LST, and .COD when
you do not supply extensions with your filenames. You can cancel
the default extension for a particular prompt by specifying a different
extension. To enter a filename that has no extension, type the name
followed by a period. For example, typing ABC. in response to a
prompt tells IBM C/2 that the specified file has no extension. Typing
ABC (no period) tells IBM C/2 to use the default extension for that
prompt.

To cancel defaults, type all or part of the filename. For example, if
the current drive is B and you want the output file to be written to the
diskette in drive A, type the response A:. The compiler writes the
output file on drive A with the default filename.

If you type any part of a legal pathname following the source listing
prompt, IBM C/2 produces a source-listing file. The default name is
the filename of the source file with the extension .LST. The filename
of a file is the portion of the name preceding the period. For
example, if you compile a file named TEST.C and type A: following
the source listing prompt, IBM C/2 produces a source-listing file on
drive A with the name A:TEST.LST.

IBM C/2 handles your response to the object listing prompt in the
same manner, using the extension .COD.

Special Filenames

You can use the following DOS device names as filenames with the
CC command. This allows you to direct files to your terminal or to a
printer. You cannot use these names for ordinary filenames.

Name Device ,
AUX An auxiliary device (usually the same as COM1)
CON The terminal

2-2 Compiling

PRN The printer (usually the same as LPT1)

NUL A null (nonexistent) file NUL as a filename means that the
compiler does not create a file.

LPT1 First parallel printer

LPT2 Second parallel printer

LPT3 Third parallel printer

COM1 First serial port

COM2 Second serial port.

Even if you add device designations or filename extensions to these
special filenames, they remain associated with the devices listed
above. For example, A:CON.XXX refers to the terminal and is not the
name of a file.

Note: Object files contain machine code and are not printable. When
responding to the object filename prompt, do not give a
filename that refers to a printer or terminal. When using
device names, do not follow them with a colon. IBM C/2 does
not recognize the colon. For example, use CON or PRN, not
CON: or PRN;, in your responses to prompts.

Source Filename Prompt

Following the source filename prompt, you specify the file that IBM
C/2 compiles. If the extension is .C, you do not have to give an exten-
sion. IBM C/2 looks for a file with that extension. Do not use the
extensions .ASM or .OBJ in the names of C source files.

Pathnames are allowed with the source filename. You can specify
the pathname of a source file in another directory or on another disk.

IBM C/2 displays an error message if you do not supply a source
filename or if you use a reserved extension.

Object Filename Prompt

Following the object filename prompt, you can supply a name for the
object file produced by compiling the source file. Give the object file
any name and any extension. It is recommended that you use the
conventional .OBJ extension because it simplifies the operation of
LINK and LIB, both use .OBJ as the default extension when proc-
essing object files.

If you supply only a drive or directory specification following the
object filename prompt, IBM C/2 creates the object file in the given

Compiling 2-3

drive or directory and uses the default filename. You can use this
option to create the object file in another directory or on another disk.
When you give only a directory specification, it must end with a back-
slash (\) so that IBM C/2 can distinguish between a directory specifi-
cation and a filename.

The default name displayed for the object file is the filename of the
source file with an .OBJ extension. If you supply no pathname, IBM
C/2 creates the object file in the current working directory.

Source Listing Prompt

Following the source listing prompt, you can tell IBM C/2 to create a
source listing. If you supply any filename following this prompt, the
compiler creates a source listing, using the filename you supply. By
convention, these listings are given the extension .LST, but you are
free to choose any extension. When you do not supply a filename,
the default is the special name NUL.LST, which tells the compiler not
to create a listing.

Object Listing Prompt

Following the object listing prompt, you can tell IBM C/2 to create an
object listing for the compiled file. The object listing contains the
machine instructions and assembled code for your program.

If you supply a filename following this prompt, IBM C/2 creates an
object listing, using the filename you supply. By convention, these
listings are given the extension .COD, but you can choose any exten-
sion you like. When you do not supply a filename, the default is the
special name NUL.COD, which tells IBM C/2 not to create a listing.

The CC command optimizes by default, so the object listing reflects
the optimized code. Since optimization may involve rearrangement
of code, the relationships between your source file and the machine
instructions may not be clear. To produce a listing without opti-
mizing, use the /Od option, discussed under “Preparing for Debug-
ging /Zd, /Zi, /0d” on page 2-38.

To produce a combined source and object code listing, use the /Fc
option. To produce an assembler listing, use the /Fa option. (An
assembler listing is a listing of the assembler code, that can be used
as input to IBM Macro Assembler/2.) See “Producing Listing Files
[Fs, IFl, [Fa, /Fc” on page 2-16 for additional information.

2-4 Compiling

Selecting Default Responses
To select the default response for the current prompt, press Enter
without giving any other response. The next prompt appears.

To select default responses for all remaining prompts, type a single
semicolon (;) after the filename following the source filename, object
filename, or source listing prompts. Once the semicolon is entered,
you cannot respond to any of the remaining prompts for that com-
piling session. The compiler ignores any text appearing after the
semicolon (such as an option). Use the semicolon to save time when
the default responses are acceptable.

There is no default for the first prompt, source filename. The default
for the object filename is the filename of the source file with an .0BJ
extension. The default for the source listing prompt is the special
name NUL.LST, which tells IBM C/2 not to create a source-listing file.
The default for the object listing prompt is the special name
NUL.COD, which tells the compiler not to create an object-listing file.

If you respond to the source filename prompt with a nonexistent
filename, or to the object filename, object listing, or source listing
prompts with an incorrect pathname, IBM C/2 displays an error
message and ends. You must start the compiler again with the
correct information.

Using the Source Listing

The information in the source listing helps debug programs as they
are being developed and documents the structure of a finished
program. The source listing contains the numbered source code
lines, embedded error messages, and symbol tables. Error mes-
sages appear in the listing after the line that caused the error. The
line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.
The compiler does not expand include files in the source listing. It
places any errors detected in an include file in the source listing fol-
fowing the #include directive for that file.

At the end of each function, a table of local symbols is given. This
table has a Name field, a Class field, an Offset field, and a Register
field for each local symbol declared in the function. The Class field of
a symbol is auto if the symbol is a non-static local variable or param
if the symbol is a formal parameter. The Offset field of a symbol is its

Compiling 2-5

offset address relative to the frame pointer (that is, the BP register).
The Offset field is positive for param symbols and negative for auto
symbols with auto storage class. The Register field indicates if the

variable is stored in a register and, if so, in which one (Sl or DI).

At the end of the source code, a table of global symbols is given.
This table gives a Name field, a Type field, a Size field, a Class field,
and an Offset field for each global symbol, external symbol, and
statically-reserved variable declared in the source file.

The Type field of a symbol gives a simplified version of its type as
declared in the source file. The Type entry for a function is either a
near or a far function, depending on the storage modei and how the
function was declared. The Type entry for a pointer is near pointer,
far pointer, or huge pointer. For enumeration variables, the Type
entry is Int. For structures, unions, and arrays, the Type entry is
struct/array.

The Size field of a symbol is defined only for variables. This field

specifies the number of bytes of storage reserved for the variable.
The amount of storage reserved for an external array may not be

known, so its Size field may be undefined.

The Offset field of a symbol is defined only for symbols with an entry
of global or static in the Class field. For variables, the Offset field
gives the relative offset of the location of the stored variable in the
data segment for the program file being compiled. Because the
linker combines several logical data segments into a physical
segment, this number is useful only for determining the relative posi-
tion of storage of variables. For functions, the Offset field gives the
relative offset of the start of the function in the logical code segment.
For small- and compact-model programs, logical code segments from
different program files are combined into a single physical segment
by the linker. The Offset field is useful for determining the relative
positions of different functions defined in the same source file.
However, for medium-, large-, and huge-model programs, each
logical code segment becomes a unique physical segment. In these
cases, the Offset field gives the actual offset of the function in its run-
time code segment.

2-6 Compiling

Using the Command-Prompt Method

After you understand how IBM C/2 prompts and responses work, you
can use the command-prompt method to run the compiler. With this
method, you type all the filenames and options in the command you
use to start the compiler.

The entries following CC are responses to the command prompts.
You can include spaces before or after filenames but not within them.
Options can appear anywhere spaces can appear. See “Using the
Compiler Options” on page 2-10 for more information.

Note: The command-prompt form of the CC command is used for the
examples of options in this book.

The command-prompt method has the following form:

cC——— — sourcename \ 4
,objectname
" _/ _/
,sourcelistingname ,objectlistingname

>
\—1 loptionslist —/ _ : _/

See option
list below

Leave the objectname, sourcelistingname, and objectlistingname
fields blank to select the default responses. Options can be placed
anywhere at the command prompt, but they must be placed before
the semicolon. When the compiler finds a semicolon at the command
prompt, it uses the default responses to the remaining prompts. The
compiler ignores any text after the semicolon at the command
prompt. See “Using the Compiler Options” on page 2-10 for more
information about options at the command prompt.

The comma serves as a separator and also has a special function at
the command prompt. If you place a comma after the objectname

Compiling 2-7

field at the command prompt (whether or not an objectname is given),
the default for the source listing field is changed from NUL.LST to the
filename of the source file plus .LST. Similarly, if a comma follows
the sourcelistingname field, the default for the objectlistingname field
is changed from NUL.COD to the filename of the source file plus
.COD.

Example
The following two commands are equivalent:

CC TEST, TEST, TEST, TEST;
CC TEST, , ,

In the first command, the name TEST is explicitly specified for all
prompts, so TEST.C is compiled and three files are produced:
TEST.OBJ, TEST.LST, and TEST.COD.

In the second command, only the source filename is supplied. The
default name TEST.OBJ is used for the object filename because none
is specified. The comma following the object filename field causes
the default for the source listing file to be changed to TEST.LST.
Because no alternative name is supplied at the command prompt, the
compiler creates a listing file named TEST.LST. It creates the object-
listing file TEST.COD in a similar fashion.

The following example uses the semicolon to tell CC not to produce
listing files:

CC TEST;

The command tells the compiler to create an object file named
TEST.OBJ but not to create a listing file. No comma is present in the
command to change the default from NUL.COD to TEST.COD and
NUL.LST to TEST.LST.

You can combine the prompt method and command-prompt methods
by giving CC a partial command. It prompts for fields not supplied.
You can end a partial command with a semicolon, a filename, or a
comma:

semicolon CC uses the default responses for the remaining
prompts.

filename CC prompts you for the remaining responses, if any.

2-8 Compiling

comma If you give a source filename followed by a comma, CC
prompts you for the object filename, source listing name,
and object listing name, as usual. However, if you
supply both a source filename and an object filename,
then end the command with a comma, CC changes the
default source-listing name from NUL.LST to the filename
of the source file plus .LST. CC then prompts you for a
source-listing name to allow you to cancel the default.
(You can give the name NUL.LST to suppress the cre-
ation of a source listing). The default object-listing name
is changed in a similar fashion if the command ends with
a source listing name followed by a comma.

Options can also be placed at the end of a partial command.

Example

The following partial command tells IBM C/2 to compile a source
filename ASK.C and place the results in the object filename
TELL.OBJ..

CC ASK.C, TELL.0BJ
The command also causes CC to display the following prompt,

because you supplied the source filename and object filename but
not the source or object listing filenames:

Source listing [NUL.LST]:
The next command tells CC to use the default response (no file) for

the source and object listings. No further prompts appear in this
case:

CC ASK, TELL;

In the following command, the trailing comma (after TELL.OBJ) has a
special meaning:

CC ASK.C, TELL.0BJ,

The trailing comma causes CC to prompt as follows:

Source listing [ASK.LST]:

The default name in brackets is ASK.LST rather than NUL.LST. In this
case an object listing is created by default, unless you cancel the

default to specify a different listing name (or specify the name NUL to
suppress the listing).

Compiling 2-9

The last command tells CC to start with the object filename prompt
because only the source filename is supplied:

CC ASK

C Compiler Error Messages

The error messages produced by the C compiler fall into five
categories: warning messages, fatal error messages, compilation
error messages, command area messages, and compiler internal
error messages. The messages for each category are listed in
numeric order and described in detail in Appendix A of this book.

Note: You can control the level of warnings produced by the com-
piler using the /W option, as described under “Setting the
Warning Level /W /w” on page 2-37.

Using the Compiler Options

A number of command options are available to control and modify the
operation of the compiler. (See “Available Compiler Options” on
page 2-12.) Options must begin with a slash (/) or a hyphen (-) and
contain one or more letters. For example, /Zg and -Zg are both
acceptable forms of the Zg option.

Note: The CC command is case sensitive to the option letter, so you
must specify options exactly as shown in this book. For more
information about case, see “Allowing Case-Insensitive
Options /CASE” on page 2-16.

You can place options anywhere you can place a space when you use
the CC command, but the command ignores options following a semi-
colon. Thus, you can place options before or after any of the four
filenames (source filename, object filename, sourcelisting, and
objectlisting). The options apply to the entire compiling process, not
only to the lines they appear on.

For CL, the options must appear before the source file they apply to.
For example,

CL /0x progl.c

uses maximum optimization when compiling PROG1.C, but
CL progl.c /0x prog2.c

210 Compiling

uses default optimization for PROG1.C and maximum optimization for
PROG2.C. Only the linking options, such as -c or -link, may be given
following the name of the source file. '

Some options use arguments, such as filenames, strings, or numbers.
In most of these cases, spaces are allowed between the option letter
and the argument. For example, /W 3 and /W3 are both acceptable
forms of the /W option.

The /Gt, /Fa, and /Fc options are the only exceptions to the previous
example. The /Gt option accepts an optional numerical argument,
whereas the /F options accept an optional pathname or partial
pathname argument. When you supply an argument to one of these
options, no spaces can be placed between the option and the argu-
ment. For example, /FCMINGLE is acceptable but /Fc MINGLE is not.

Note: Options that consist of more than one letter, such as /Fc,
cannot have spaces between the letters. But you must put at
least one space between separate options in the list. For
example: /Oas /Fc.

The order options are specified in is not important. They can be
given following any prompt or at any command prompt. The default
for the prompt is still used if you supply an option but no filename in
response to the prompt.

Example

The following examples produce exactly the same results. The
source file LOAD.C on drive A is compiled. The object file is named
OUT.OBJ. The source listing file is named LOAD.SRC.

Example 1

cc

Source filename [.C]: A:\LOAD.C

Object filename [LOAD.0BJ]: OUT

Source listing [NUL.LST]: LOAD.SRC
Object 1isting [NUL.COD]: /Oas /Fc

Example 2
CC A:\LOAD.C, OUT,LOAD.SRC /Oas /Fc;

The /Fc option produces a combined source and assembly code
listing. Because no argument was given with the /Fc option, the
listing is given the default name LOAD.COD, formed by adding .COD
to the filename of the source file. The object file and combined listing
are both created on the default drive because no drive was specified.
The /Oas option tells the compiler how to optimize the object file.

Compiling 2-11

The /Fc and /Oas options are explained under “Producing Listing
Files /Fs, /Fl, /Fa, /[Fc” on page 2-16 and “Optimizing /O” on
page 2-40.

Available Compiler Options

The following table lists the IBM C/2 compiler options, a brief
description of what the options do and whether you can use the
options with the CC command, the CL command, or both.

Option Description Use with Page

Astring Creates customized CL only 2-65
storage model.

Astorage model Sets up storage for your Both 2-44
program and determines
how the program is

loaded.

c Suppresses linking. CL only 3-63

(o} Preserves comments Both 2-28
during preprocessing.

/CASE Allows use of IBM C 1.00 CC only 2-16
options.

Dname Defines a constant or Both 2-24
macro in a source file.

E Produces a listing of pre- Both 2-27
processed files.

EP Produces a listing of pre- CL only 2-27
processed files.

Fa Produces an assembler Both 2-16
listing.

Fbname Creates bound applica- CL only 3-63
tions.

Fec Produces mixed source Both 2-16
and object listing.

Feprogramname Names the executable file. CL only 3-57

F hexnumber Sets stack size to CL only 3-61
hexnumber.

Fl Produces object listing. CL only 2-16

2-12 Compiling

Option Description Use with Page

FPa, FPc, FPi, Handle floating-point Both 2-32

FPi87, FPc87 operations.

Fmmapname Creates the map file. CL only 3-57

Fo Names the object file. CL only 3-57

Fs Produces source listing. CL only 2-16

GO, G1, G2 Enable the appropriate Both 2-37
instruction set.

Ge Controls function-calling Both 2-69
sequence.

Gm Allocates some data items. CL only 3-61

Gs Removes stack probes. Both 2-55

Gtnumber Allocates data to a new Both 2-57
data segment.

Gw Compiles a Presentation CL only 3-65
Manager application.

HELP Lists the compiler options. Both 2-15

Hnumber Restricts the length of CL only 3-65
external names.

Idirname Searches for include direc- Both 2-28
tories.

J Changes the default char Both 2-53
type.

Le Creates a DOS mode exe- CL only 2-47
cutable file.

link Passes data to LINK. CL only 3-61

Lp Creates an 0S/2 mode CL only 2-47
executable file.

NDname Sets the data segment CL only 3-68
name.

NMname Sets the module name. CL only 3-68

nologo Suppresses writing logo Both 3-66
and copyright lines.

NT Sets the text segment CL only 3-68

name.

Compiling 2-13

Option Description Use with Page

Oa Cancels alias checking. Both 2-40

Od Turns off optimization. Both 2-38

Oi Declares some functions CL only 3-66
as intrinsic.

(o]} Turns on loop optimiza- Both 3-7
tion.

On Turns off loop optimiza- CL only 2-40
tions.

Op Enforces precision in Both 2-40
floating-point operations.

Os Favors code size during Both 2-40
optimization.

Ot Favors run time during Both 2-40
optimization.

Oow Restricts assumptions. CL only 2-40

Ox Performs maximum opti- Both 2-40
mization.

P Produces listing of pre- Both 2-27
processed files.

S Causes the compiler to CC only 2-30
perform a syntax check.

Sllength, Specify line width and CL only 3-72

Splength page length.

Sttitle, Sstitle Specify title and subtitle. CL only 3-74

Tcfilename Indicates a C source file. CL only 3-74

u Undefines names. CL only 2-26

U Turhs off definition of pre- Both 2-26
defined identifiers. '

Vstring Labels the object file. CL only 2-26

w Sets the level of warning CL only 2-37
messages.

Wnumber Sets the level of warning Both 2-37

messages.

2-14 Compiling

Option Description Use with Page

X Excludes directory from CL only 2-28
search.

Za Enables language exten- Both 2-48
sions.

Zc Enables language exten- CL only 2-48
sions.

Zd Enables language exten- Both 2-38
sions.

Ze Enables language exten- Both 2-48
sions.

Zg Produces function declara- Both 2-30
tions.

Zi Produces an object file Both 2-38
containing debugging
information.

Zl Suppresses selection of Both 2-52
default libraries.

Zp Packs structure data. Both 2-51

Zpn Specifies placement of CL only 2-51
struct members.

Zs Causes the compiler to CL only 2-30
perform a syntax check.

Listing the Compiler Options

/HELP

This option displays a list of the compiler options. You can specify
/HELP as part of the CC command or as part of the response to a CC
prompt. In either case, CC processes all information on the line con-
taining /HELP, prints the command list, and, if needed, reissues the
current prompt for further input.

Format
JHELP

Compiling 2-15

All of the input you have given up to this point has been processed.
For example, if you have typed a filename followed by /HELP, that
filename appears as the default value when the prompt is reissued.

The only exception to these rules is for source filenames. If you type
the source filename with /HELP, the source-file prompt is not reis-
sued. Instead, the object-file prompt is displayed after the command
list.

Allowing Case-Insensitive Options
ICASE

This option permits you to use options with IBM C/2 that you used
with the IBM C Compiler Version 1.00. This option works with the CC
command only.

Format
/CASE

When you specify /CASE, all options passed to the compiler can use
uppercase or lowercase letters. This provides a subset of compiler
options that are available in the IBM C Compiler Version 1.00.
Because the CC command is case-insensitive, CC cannot support
some case-sensitive switches. To handle CC commands correctly in
make or batch files written for IBM C Version 1.00, the /CASE switch
lets CC run without regard to case sensitivity in order to avoid misin-
terpreting options with case-sensitive meanings. The /CASE option is
itself case insensitive. The compiler can also read this option from
the CC environment variable.

Producing Listing Files
IFs, IFl, IFa, IFc

In addition to the command-prompt method of creating listing files,
you can use options to create source and object listings. You can
also use options to create assembler listings as well as mixed source
and assembler listings that are not available through prompts.

To set the format of generated listings, see “Setting Line Width and

Page Length /S|, /Sp” on page 3-72 and “Setting Titles and Subtitles
/8t, /Ss” on page 3-74.

2-16 Compiling

Format

/Fs[listfilel Produces source listing

/F1[listfile] Produces object 1isting

/Fa[listfilel Produces assembler listing

/Fc[listfile] Produces mixed source and object listing.
#pragma page([n]) Skips pages in source listing output.
#pragma skip([n]) Skips lines in source listing output.

The listfile, if given, must immediately follow the option. It can be any
of the following entries.

Entry Result

filename CC uses the given filename, adding the
default extension if the filename has no
extension. The filename can include a path
to tell CC where to create the listing.

Directory specification CC uses the default listing name (the base
name of the source file plus the default
extension) to create the listing in the given
directory. The directory specification must
end with a backslash so that CC can distin-
guish between it and a filename.

Omitted When you give no listfile, CC uses the
default listing name (the base name of the
source file plus the default extension) to
create the listing in the current working
directory.

The default extension is .LST for the /Fs option, .COD for the /Fc and
/F! options, and .ASM for the /Fa option.

The #pragma page and #pragma skip pragmas default to 1. For both,
n must be a non-negative integer constant. The following example
causes the following source line to start at the top of the next page.

Example
#pragma page (1)

The compiler can produce at most one source-listing file and one var-
iation of the object listing each time you compile. If you use both the
/Fa and the /Fl options in one command, the compiler produces only
one file. The /Fc option cancels other listing options. Whenever you
use /Fc, the compiler produces a combined listing. If you give con-
flicting names for a listing file (for example, one following the prompt
and one with the option), the name specified last has precedence.
The /Fs option is recognized only by the CL command.

Compiling 2-17

IFs Option v
This option produces a source listing file with the default extension
.LST.

The following example shows a section of code from a source listing
file:

Line# Source Line
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

FILE *infile;
char *name, 1ine[100];
int nlines;

WO B W=

10

11 if (argc > 1)

12 {

13 nane = argv[argc - 1];
*%kxk ¢ c(13) : error C2065: 'nane’
: undefined
**kk% ¢ c(13) : warning C4047: '=' :
different levels of indirection

14 if ((infile = fopen(name, "r")) == NULL)
15 {

16 fprintf(stderr,

17 "%s couldn't open file %s\n",

18 argv[0], name);

19 exit(l);

20 }

21 }

22 }

1 errors detected

The error messages result from the misspelling of the variable name
on line 13.

If the source file compiles with no errors more serious than warnings,
the compiler includes tables of segments, local symbols, and global
symbols in the source listing. The compiler does not include symbol
tables if the compiler is unable to finish compiling.

At the end of each function, the compiler gives a table of local
symbols, as shown below for the function main:

2-18 Compiling

main Local Symbols
Name Class Offset Register

name auto -006a
line auto -0068
infile auto -0004
nlines auto -0002
argc param 0004
argv param 0006

The Name column lists the name of each local symbol in the function.
The Class column contains either auto if the symbol is a nonstatic
local variable or param if the symbol is a formal parameter. The
Offset column shows the offset address of the symbol relative to the
frame pointer (that is, the BP register). The Offset number is positive
for param symbols and negative for auto symbols with auto storage
class. The Register column is blank unless the compiler stores the
variable in a register. If the variable is in a register, the column
shows the register Sl or DI.

At the end of the source code, the compiler gives a table of global
symbols, as shown below:

Global Symbols

Name Type Size C(Class Offset
_iob struct/array 160 extern ***
exit near function *** extern ***

fopen near function *** extern **¥
fprintf near function *** extern **
main near function *** global 0000

The Name column lists each global symbol, external symbol, and
statically-reserved variable declared in the source file. The Type
column shows a simplified version of the type of the symbol as
declared in the source file. The Type entry for a function is either
near function or far function, depending on the storage model and
how you declared the function. The Type entry for a pointer is near
pointer, far pointer, or huge pointer. For enumeration variables, the
Type entry is int. For structures, unions, and arrays, the Type entry is
struct/array.

The compiler uses the Size column only for variables. This column
specifies the number of bytes of storage reserved for the variable.

You might not know the amount of storage reserved for an external
array; its Size field might be undefined. The Class column contains

Compiling 2-19

either global, common, extern, or static, depending on how you
defined the symbol in the source file.

The compiler uses the Offset column only for symbols with an entry of
global or static in the Class field. For variables, the Offset field gives
the relative offset of the location in storage of the variable in the
logical data segment for the program file you are compiling. Because
the linker generally combines several logical data segments into a
physical segment, this number is useful only for telling the relative
position of storage of variables. For functions, the Offset field gives
the relative offset of the start of the function in the logical code
segment. For small- and compact-model programs, the linker com-
bines logical code segments from different program files into a single
physical segment. The Offset field is useful for telling the relative
positions of different functions defined in the same source file.
However, for medium-, large-, and huge-model programs, each
logical code segment becomes a unique physical segment. In these
cases, the Offset field gives the actual offset of the function in its run-
time code segment. (For more information about storage models see
“Working with Storage Models /A” on page 2-44.)

The last table in the source listing shows the segments used and their
size, as shown below:
Code size = 0057 (87)

Data size = 001c (28)
Bss size = 0000 (0).

The table gives the byte size of each segment first in hexadecimal,
and then in decimal (in parentheses).

/F1 Option

This option produces an object listing file and is available only with
the CL command. The object listing contains the machine
instructions and assembler code for your program, as shown in the
following example:

2-20 Compiling

s Li

s Li

R

ne 12

*** 00000a 83 7e 04 01 cmp

*** 00000e 7e 42

ne 13

**% 00010 8b 76 04
**% 000013 dl e6
*** 000015 8b 5e 06
*** 000018 8b 40 fe
*** 00001b 89 46 96
ne 14

*** 0000le b8 00 00
*** 000021 50

**¥% 000022 ff 76 96
*** 000025 e8 00 00
*** 000028 83 c4 04
*** 0p002b 89 46 fc
*** 00002e Ob cO
*** 000030 75 32

jle

mov
shl
mov
mov
mov

mov
push
push
call
add
mov
or
jne

WORD PTR [bp+4],1 ;argc
$168

si, [bp+4] ;argc
si,l

bx, [bp+6] ;argv
ax, [bx-2][si]
[bp-106],ax ;name

ax,0FFSET DGROUP:$SG67
ax

WORD PTR [bp-106] ;name
_fopen

sp,4

[bp-4],ax sinfile
ax,ax

$168

The sample shows the line numbers in the source code as comments.
The machine instructions are on the left and assembler code is on the
right.

IFa Option
This option produces an assembler listing of your program. The
assembler listing contains the assembler code corresponding to your

C file, as shown below:

; Line 12

cmp WORD PTR [bp+4],1 ;argc
jle $168

; Line 13

mov si,[bp+4] ;argc

shl
mov
mov
mov
s Li

mov ax,OFFSET DGROUP:$SG67

pus

si,l

bx, [bp+6] ;argv
ax, [bx-2][si]
[bp-106],ax ;name
ne 14

h ax

push WORD PTR [bp-106] ;name

cal
add
mov
or

Jne

1 _fopen

sp,4

[bp-4],ax ;infile
ax,ax

$170

The sample shows the same code as in the object listing sample
except that it omits the machine instructions. This is to ensure the
listing is suitable as input for IBM Macro Assembler/2 (MASM/2).

Compiling 2-21

{Fc Option

This option produces a line-by-line combined source and assembler
code listing, showing one line of your source program followed by the
corresponding line (or lines) of machine instructions, as shown in the
following example:

sP¥** if (arge > 1) {

; Line 12
**% 000002 83 7e 04 01 cmp WORD PTR [bp+4],1 ;argc
*** 00000e 7e 42 jle $I68
3| rex name = argvlargc - 11;
s Line 13
*** 000010 8b 76 04 mov si,[bp+4] sargc
*** 000013 dl e6 shl si,l1
*** 000015 8b 5e 06 mov bx, [bp+6] ;argv
*** 000018 8b 40 fe mov ax, [bx-2][si]
*** 00001b 89 46 96 mov [bp-106],ax ;name
:|*** if ((infile = fopen(name,"r")) == NULL) {
; Line 14
*** 0000le b8 6O 00 mov ax,0FFSET DGROUP:$SG67
*** 000021 50 push ax

*** 000022 ff 76 96 push WORD PTR [bp~106] ;name
*** 000025 e8 00 00 call _fopen
*** 000028 83 c4 04 add sp,4

**% 00002b 89 46 fc mov [bp-4],ax sinfile
*** 00002e Ob cO or ax,ax
*** 000030 75 32 jne $170

This sample is like the object-listing sample except that the sample
provides the C source line in addition to the line number.

In a listing file, the names of globally visible functions and variables
begin with an underscore, as shown below (this part is the same for
all three kinds of listings):

EXTRN _exit:NEAR

EXTRN _fopen:NEAR

EXTRN _fprintf:NEAR

EXTRN __chkstk:NEAR
EXTRN __iob:BYTE

IBM C/2 adds an underscore as a prefix to all global names to pre-
serve compatibility with other C compilers. If you write assembler
language routines to work with your C program, this naming conven-
tion is important.

The listing can also contain names that begin with more than one
underscore (for example, __chkstk and __lob in the sample). The com-
piler reserves identifiers with more than one leading underscore for
internal use, and you should not use them in your programs except
for those documented in IBM C/2 Language Reference, such as _psp,

2-22 Compiling

_amblksiz, and _fpreset(). Avoid creating global names that begin
with an underscore in your C source files. Because the compiler
adds another leading underscore, these names could have two
leading underscores, possibly causing conflicts with the names
reserved by the compiler.

The CC command optimizes by default, so listing files reflect the opti-
mized code. Because optimizing code can involve rearranging it, the
correspondence between your source file and the machine
instructions might not be clear, especially when you use the /Fc
option to combine the source and assembler code. To produce a
listing without optimizing, use the /Od option along with the listing
option.

Example
CC HELLO.C /FSHELLO.SRC /FCHELLO.CMB;

CC HELLO /FsHELLO.SRC, ,HELLO.LST, HELLO.COD;

In the first example, CC creates a source listing called HELLO.SRC
and a combined source and assembler listing called HELLO.CMB.
The object file has the default name HELLO.OBJ.

The second example produces a source listing called HELLO.LST
rather than HELLO.SRC because the last name provided has preced-
ence. This example also produces an object listing file named
HELLO.COD. The object file in this example has the default name
HELLO.OBUJ.

Controlling the Preprocessor

The CC command provides a number of options that give you control
over the operation of the C preprocessor. You can define macros and
manifest (symbolic) constants from the command prompt, change the
search path for include files, and stop compiling a source file after the
preprocessing stage to produce a preprocessed source file listing.

The C preprocessor recognizes only preprocessor directives. It
treats the source file as a text file, processing substitutions and defi-
nitions as directed. See Chapter 9 of IBM C/2 Fundamentals for a
complete discussion of C preprocessor directives.

Compiling 2-23

Defining Constants and Macros
/D

This option lets you define a constant or a macro in a source file.

Format
/Didentifier[=[string]]

The identifier is the name of the constant or macro, and the string is
its value or meaning. /Didentifier= and IDidentifier = string cannot
be defined in the CL environment because the SET command does
not accept the = sign, a special character in the CL environment.

If you leave out both the equal sign and the string, the given constant
or macro is assumed to be defined and its value is set to 1. For
example, /DSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined as the empty string. This definition
effectively removes all occurrences of the identifier from the source
file. For example, IDregister = removes all occurrences of register
from the source file. The identifier register is still considered to be
defined.

The eftect of the /D option is the same as a preprocessor #define
directive at the beginning of your source file. The identifier is defined
throughout the source file being compiled.

You can supply a command prompt definition for an identifier that is
also defined within the source file. The command prompt definition
remains in effect until the point of the redefinition in the source file.

Up to 16 definitions can appear in the command, each preceded by
the /D option. If you need to define more than 16 identifiers, see the
discussion of the /U option under “Removing Definitions of Prede-
fined ldentifiers /U, /u” on page 2-26.

Example
The following example defines the manifest constant NEED in the
source file MAIN.C:

CC MAIN.C /DNEED=2;

2-24 Compiling

Spaces are permitted (but not required) between /D and the identifier.
This definition is equivalent to placing the directive at the beginning
of the source file as follows:

#define NEED 2

The /D option is especially useful with the #it directive to control the
compiling of statements in the source file. For example, suppose a
source file named OTHER.C contained the following fragment:

#if defined(NEED)
#endif

Also suppose that OTHER.C does not explicitly define NEED (that is,
no #define directive for NEED is present). Then, all statements
between the #if and the #endif directives are compiled only if you
supply a definition of NEED by using /D. You can do this by entering
this command:

CC MAIN.C /DNEED;

This command is sufficient to compile all statements following the #if
directive. NEED does not have to be set to a specific value to be con-
sidered defined. The following command causes the compiler to
ignore (not compile) the statements in the #if block:

CC MAIN.C;

Predefined Identifiers

The compiler defines identifiers that are useful in writing portable
programs. Use these identifiers to compile code sections condi-
tionally, depending on the current processor and operating system.
The predefined identifiers and their functions are:

Identifler Function

DOS Always defined. ldentifies the target operating
system as DOS.

M_l86 Always defined. ldentifies the target machine as
a member of the 186 family.

M_18086 Identifies the target processor as an 8086.

Defined by default or when the /G0 option is
given explicitly.

M_I86xM Always defined. ldentifies the storage model,
where x is either S (small-model), C (compact-
model), M (medium-model), L (large-model), or H

Compiling 2-25

(huge-model). Small-model is the default. See
“Working with Storage Models /A” on page 2-44
for more information about storage models.

M_i286 ldentifies the target processor as an 80286.
Defined when you use the /G1 or /G2 option.

NO_EXT_KEYS No extended keywords. Defined only when you
use the /Za option, disabling special keywords,
such as far and fortran.

_CHAR_UNSIGNED Type char is unsigned. Defined only when you
use the /J option to make the char type unsigned
by default.

Removing Definitions of Predefined Identifiers
/U, lu

This option turns off the definition of one or more of the predefined
identifiers.

Format

/Uidentifier

/u

For each definition of a predefined identifier you remove, you can
substitute a definition of your own at the command prompt.

For example, the following line removes the definitions of three pre-
defined identifiers. You give the /U option three times to do this.

CC WORK /UDOS /UM_I86 /UM_186SM;

The /u form of this option turns off all predefined names except
M_I86xM. This form of the option is available with the CL command
only, not with the CC command. The definition of the C constant
NULL is dependent on the memory model, which M_I86xM identifies.
Without a value for memory model, NULL might have an incorrect
value and cause program errors. Use the /U form to turn off the defi-
nition of M_I86xM, if needed.

CL /u WORK.C

If you remove the definitions of all predefined names, you can define
up to 20 identifiers at the command prompt with the /D option.

2-26 Compiling

Producing a Preprocessed Listing
/P, IE, |JEP

These options produce listings of preprocessed files and let you
examine the output of the C preprocessor. The /EP and /P options
are available only with the CL command, not with CC.

Format

/P

JE

/EP

The preprocessed listing file carries out preprocessor directives, per-
forms macro expansions, and removes comments. These options
suppress compiling; no object file, source listing, or object listing is
produced, even if you supply a name following the object filename,
source filename, or object listing prompt.

The /P option writes the preprocessed listing to a file with the same
prefix as the source file but with an .l extension.

The /E option copies the preprocessed listing to the standard output
(usually your display) and places a #line directive in the output at the
beginning and end of each included file. You can save this output by
redirecting it to a file, using the redirection symbols > or >>. See
the user’s reference information for the operating system for a
description of these symbols.

The /E option is useful to see how macros are expanded, particularly
when compiling errors occur on lines containing macros. The #line
directives renumber the lines of the preprocessed file so that errors
produced in later stages of processing refer to the original source file
rather than to the preprocessed file. You can also resubmit the pre-
processed listing for compiling.

The /EP option combines features of the /E and /P options. The com-
piler preprocesses the file and copies it to the standard output, but
adds no #lIne directives.

Example
The first example creates the preprocessed file MAIN.| from the
source file MAIN.C:

CL /P main.c

Compiling 2-27

The second example creates a preprocessed file with inserted #line
directives from the source file ADD.C. DOS redirects the output to the
file PREADD.C:

CC ADD.C /E ; > PREADD.C

The third example produces the same preprocessed output as the
second example without the #line directives. The output appears on
the display:

CL /EP add.c

Preserving Comments
IC

This option preserves comments during preprocessing. Normally, the
compiler removes comments from a source file in the preprocessing
stage because they do not serve any purpose in later stages of com-
piling. This option is valid only when you use the /E, /P, or /EP
options. It is available only with the CL command, not with CC.

Format
/C

Example

This example produces a listing named SAMPLE.l. The listing file
contains the original source file, including comments, with all pre-
processor directives expanded and replaced:

CL /P /C SAMPLE.C

Searching for Include Files
n, IX

These options temporarily change the effects of the environment vari-
able INCLUDE. The /I option causes the compiler to search the direc-
tory you specify before searching the standard places given by the
INCLUDE environment variable. You can add more than one include
directory by giving the /I option more than once in the CC command.
The compiler searches the directories in order of their appearance in
the command. The /X option is available only with the CL command.

2-28 Compiling

Format

/ldirectory

24

The directories are searched only until the specified include file is
found. If the file is not found in the given directories or in the
standard places, the compiler prints an error message and stops
processing. When this occurs, you must restart compiling with a cor-
rected directory specification.

You can prevent the C preprocessor from searching the standard
places for include files by using the /X (exclude) option. When CL
finds the /X option, it considers the list of standard places to be
empty. You use this option often with the /I option to define the
location of include files that have the same names as include files
found in other directories but that contain different definitions. See
the second example below.

Example

The first example directs the compiler to search for include files
requested by MAIN.C, first in directory A:\INCLUDE, second in direc-
tory B:\MY\INCLUDE, and finally in the directory or directories
assigned to the INCLUDE environment variable:

CC MAIN.C /I A:\INCLUDE /I B:\MY\INCLUDE;

In the second example, the compiler looks for include files only in the
directory B:\\ALT\INCLUDE. First, the /X option tells CL to consider the
list of standard places empty; then, the /I option specifies one direc-
tory to be searched:

CL /X /1 B:\ALT\INCLUDE MAIN.C

Syntax Checking

The options described in this section are useful in the early stages of
program development. With the /Zs option, you can quickly check a
program for syntax errors. With the /Zg option, you can produce func-
tion declarations, which you can then use to enhance the
syntax-checking capabilities of the compiler.

Compiling 2-29

Identifying Syntax Errors
IZs, IS

These options cause the compiler to perform a syntax check. Use the
/Zs form with the CL command and the /S form with the CC
command.

Format

/1s
/S

If the source file has syntax errors, error messages appear on the
standard output device, which is usually your screen. If a source
listing file is requested, error messages are embedded following the
source line they were detected in.

Example

The following command causes the compiler to perform a syntax
check on PRELIM.C and display messages about any errors it finds
on the screen as well as in PRELIM.LST:

CC /S PRELIM.C, ,PRELIM.LST;

Generating Function Declarations
1Zg

This option produces a function declaration for each function defined
in the source file. The function declaration includes the function
return type and an argument type list created from the types of the
formal parameters of the function. Any function declarations already
present in the source file are ignored.

Format
/g

The produced list of declarations is written to the standard output. It
can be saved in a file by means of the redirection symbols > or >>.

When you use the /Zg option, the source file is not compiled. As a
result, no object file or object listing is produced. The source listing
is also suppressed.

The list of declarations is helpful for verifying that actual arguments
and formal function parameters are compatible. You can save the list

2-30 Compiling

and include it in the source file to cause the compiler to perform type-
checking. The presence of a declared argument type list for a func-
tion enables compiler type-checking between actual arguments to a
function (given in the function call) and the formal parameters of a
function.

Type-checking can be helpful when writing and debugging C pro-
grams, especially if you are working with older C programs. See the
“Function Declarations” section in Chapter 5 of IBM C/2 Fundamen-
tals for details on function declarations and argument type lists.

You can use the /Zg option even if the source program already con-
tains some function declarations. The compiler accepts more than
one occurrence of a function declaration, as long as the declarations
do not conflict. No conflict occurs when one deciaration has an argu-
ment type list and another declaration of the same function does not,
as long as the declarations are otherwise identical.

Note: If you use the /Zg option and the program contains formal
parameters that have structure, enumeration, or union types
(or pointers to such types), then the declaration of each struc-
ture, enumeration, or union must have a tag. For example,
use the following form:

struct tagA {

i A;
Your program can include calils to IBM C/2 run-time library
routines. The INCLUDE files provided with IBM C/2 contain

function declarations so that you can enable type-checking on
library calls.

Example
The following command causes the compiler to produce argument-
type lists for functions defined in FILE.C:

CC FILE.C /Zg; > FUN_DCL.H

The output is redirected to the file FUN_DCL.H; later, the argument
type lists can be included in the FILE.C to enable argument-type
checking for FILE.C.

Compiling 2-31

Using the Floating-Point Options

IBM C/2 offers several methods of handling floating-point operations.
This section provides an overview of the floating-point options avail-
able and discusses the default floating-point behavior.

Selecting the Floating-Point Options
IFPa, IFPc, IFPc87, IFPi, IFPi87

Select a floating-point operation by using one of the following options.

Format

/FPa Produces floating-point calls and selects alternate math Tibrary
/FPc Produces floating-point calls and selects emulator library

/FPc87 Produces floating-point calls and selects 8087/80287/80387 Tibrary
JFPi Produces in-line instructions and selects emulator library

/FPi87 Produces in-line instructions and selects 8087/80287/80387 1ibrary.

IBM C/2 can use a numeric coprocessor or emulate numeric opera-
tion through an emulator library. The emulator library (EM.LIB) pro-
vides a large subset of the software functions of a numeric
coprocessor. The emulator can perform basic operations as accu-
rately as a numeric coprocessor. However, the emulator routines
used for transcendental math functions differ slightly from the corre-
sponding coprocessor functions, causing a slight difference (usually
within 2 bits) in the results of these operations. If you selected the
emulator library when you installed IBM C/2, the installation program
used EM.LIB to build combined libraries xLIBCEz.LIB.

By default, IBM C/2 handles floating-point operations by generating
inline instructions (/FPi option). The emulator library is loaded, but if
a numeric coprocessor is present at run time, the coprocessor is
used instead of the emulator. This method of handling floating-point
operations works whether or not you have a coprocessor installed.
You do not have to give a floating-point option at compile time unless
you want to use one of the other options described here.

When you compile a source file using one of the floating-point
options, the name of the required floating-point library (or libraries) is
placed in the object file. At link time, the linker refers to the names in
the object file to link with the appropriate libraries. You can override
the library name given in the object file at link time and link with a
different library. (See “Changing the Default Libraries” on page 3-15

2-32 Compiling

for more information.) The only restriction on overriding at link time
is that you are not allowed to change to the alternate math library
after you have compiled by means of the /FPi or /FPi87 option.

If You Have a Numeric Coprocessor

The /FPi87 option produces in-line instructions for a numeric
coprocessor. It is the fastest and smallest option available for
floating-point operations.

The /FPc87 option is slower than /FPi87 because it makes function
calls instead of using in-line instructions. However, /FPc87 is more
flexible. It allows you to change your mind at link time (without
recompiling the file) and use either the emulator or the alternate
math library instead of relying on a numeric coprocessor. This is
made possible because calls to floating-point instructions are inter-
changeable with calls to the emulator and the alternate math library.
(See “Changing the Default Libraries” on page 3-15 for instructions
on changing libraries at link time.)

Both the /FPi87 and /FPc87 options select the xLIBC7z.LIB, where x is
the storage model and z is the addressing mode you chose during
installation. Whenever you use these options, a numeric coprocessor
‘must be present at run time. If no coprocessor is present, the
program does not run and the following message is displayed:

run-time error R6002 floating point not loaded

The /FPi option produces in-line instructions for a numeric
coprocessor and selects the xLIBCEz.LIB, where x is the storage
model and z is the addressing mode you chose during installation. If
a numeric coprocessor is present at run time, it is used. If not, the
emulator is used.

The emulator requires approximately 7KB of additional space when
loading, so programs that use the /FPi option are larger than pro-
grams that use /FPi87. However, /FPi is a useful option when you do
not know whether a numeric coprocessor will be available at run time
but wish to use it if it is present.

You may not want to use a numeric coprocessor even though one is
present. For example, you may be developing programs to run on
systems that lack coprocessors. Conversely, you may want to write
programs that can take advantage of a coprocessor at run time, even

Compiling 2-33

though you do not have one installed. There are two ways to control
the use of a coprocessor:

1. Use the /Fpi (the default) or the /FPc option to specify either the
use of a numeric coprocessor or the emulator. To use the emu-
lator even when a coprocessor is present, set the NO87 environ-
mental variable. See “Using the NO87 Environment Variable” on
page 2-54 for more information.

2. Use the /FPc87 or /FPi87 option if you always want to use a
. coprocessor. Programs compiled with these options fail if a
coprocessor is not present at run time.

If You Do Not Have a Numeric Coprocessor

The /FPi option produces in-line instructions for a numeric
coprocessor and selects the xLIBCEz.LIB library, where x is the
storage model and z is the addressing mode you chose during instal-
lation. If a numeric coprocessor is present at run time, it will be
used. If not, the emulator library is used. Because this option uses
in-line instructions, it is the most efficient way to get maximum preci-
sion in floating-point operations without a coprocessor.

The /FPi option is the default when you do not specify a floating-point
option. The /FPc option produces floating-point calls to the emulator
routines in library xLIBCEz.LIB, where x is the storage model and z is
the addressing mode you chose during installation.

The /FPc option is slower than /FPi because it makes function calls
instead of using in-line instructions. However, /FPc is more flexible
than /FPi. When you use the /FPc option, you can change your mind
at link time (without recompiling the file) and use a numeric
coprocessor or the alternate math library instead of using the emu-
lator. This is made possible because the same function call interface
is provided in all three libraries: the 8087/80287/80387 library, the
alternate math library, and the emulator library. See “Changing the
Default Libraries” on page 3-15 for instructions on changing libraries
at link time.

The /FPa option produces floating-point calls and selects the com-
bined library xLIBCAz.LIB, where x is the storage model and z is the
addressing mode you chose during installation. The alternate math
library uses a subset of the IEEE (Institute of Electrical and Elec-
tronics Engineers, Inc.) standard format numbers, sacrificing some

2-34 Compiling

accuracy for speed and simplicity. Infinities, NaNs, and denormal
numbers are not used.

The alternate math routines use exactly the same format for the expo-
nent and mantissa as the full IEEE format with the following
exceptions:

Notes:

1. IEEE Infinites and NaNs are presented as numbers with the expo-
nent field containing all bits on. This combination is not gener-
ated by the alternate math package. If one is seen (passed in
through a data file or constructed), it is treated as a normal
number that happens to be larger than the normal finite precision
range. If an IEEE infinity is seen, it will be treated as 2*maximum
finite IEEE number for that precision because the exponent field
is 1 larger.

2. Denormal numbers are numbers that have all bits off in the expo-
nent field and some nonzero mantissa bits. The alternate math
package treats this number as if it were zero.

3. Alternate math numbers have exactly the same precision as the
full IEEE numbers: 23 mantissa bits in single and 53 mantissa bits
in double. The maximum range for alternate math numbers is the
same as that of the full IEEE representation.

The minimum nonzero values are :

+ 1.175e-38 (single)

+ 2.226e-308 (double)
The full IEEE representation is given in IBM C/2 Fundamentals,
Chapter 5.

Calls to the alternate math library provide the fastest and smallest
option when you do not have a numeric coprocessor. With the /FPa
option, you can change your mind at link time and use either the
emulator or a numeric coprocessor.

In some cases, you may want to write programs that can take advan-
tage of a numeric coprocessor at run time, even though you do not
have one installed. See “If You Have a Numeric Coprocessor” on
page 2-33 for a description of the appropriate options.

Compiling 2-35

Compatibility Between Floating-Point Options

Each time you compile a source file, you can specify a floating-point
option. When you link more than one source file to produce an exe-
cutable program file, you are responsible for ensuring that floating-
point operations are handled consistently and that the environment is
set up properly to allow the linker to find the required libraries.

Note: To build libraries of C routines that contain floating-point oper-
ations, the /FPc¢ floating-point option is recommended for all
compiling because it offers the most flexibility.

When you compile a file using the /FPi or /FPi87 option, in-line
instructions are produced. When you use the /FPi87 option, the com-
bined library xLIBC7z.LIB must be present at link time, and a numeric
coprocessor must be present at run time. When you use the /FPi
option, the combined library xLIBCEz.LIB must be present at link
time. When these requirements are satisfied, object files produced
by using the /FPi and /FPi87 options can be linked together without
compatibility problems. These object files also can be linked with
object files produced by using the /FPa, /FPc, or /FPc87 options.

When a file is compiled with the /FPa, /FPc, or /FPc87 options,
floating-point function calls are produced. Each option places the
name of the appropriate library file or files in the object file.
However, when linking several of these object files, you must be
aware of the process used to resolve the function calls.

Floating-point calls to the emulator, the alternate math library, and
numeric coprocessor instructions are interchangeable. Only one
library is used at link time to resolve the calls; the same program
cannot make calls to more than one library. You must indicate to the
linker which of your combined libraries xLIBCyz.LIB you want to link
with the program.

At link time, give the /NOD (no default library search) option; then
give the name of the combined library file you want to use in the
libraries field. This library overrides the names in the object files,
and all floating-point calls then refer to the named library.

2-36 Compiling

Using 80186/80188, 80286 or 80386 Processors
1GO, /1G1, /G2

This option enables the appropriate instruction set for the processor
type you are using. Although it is usually advantageous to enable the
appropriate instruction set, you are not required to do so. If you have
an 80286 or 80386 processor, for example, but want your code to run
on an 8086, use the 8086/8088 instruction set.

Format

/GO
/61
/62

/GO0 Enables the instruction set for the 8086/8088 processor. You
need not specify this option explicitly because the 8086/8088
instruction set is used by default. Programs compiled in this
way also run on the 80186/80188, 80286, and 80386.

1G1 Enables the instruction set for the 80186 or 80188 processors.

1G2 Enables the instruction set for the 80286 and 80386 processors.

Setting the Warning Level
IW Iw

These options set the level of warning messages produced by the
compiler and direct the compiler to display messages about state-
ments that may not compile as the programmer intends. Warnings
indicate potential problems, not necessarily actual errors.

Format

[Wnumber

W

To use the /W option, choose one of the warning levels described in
the following table and specify the level number after the option. The
Iw option provides a shorter way to say /W 0 and has the same effect.
The /w option is available only with the CL command, not with CC.

Warning Levels

Level Warning
0 Suppresses all warning messages. Only messages about
actual syntactic or semantic errors are displayed.

Compiling 2-37

1 The default. Warns about potentially missing statements,

unsafe conversions, and other structural problems. Also,

warns about overt type mismatches.

Warns about all automatic data conversions.

3 Warns of usage that does not comply with American National
Standards Institute (ANSI) standards.

The higher number levels are especially useful in the earlier stages
of program development when messages about potential problems
are most helpful. The lower number levels are best for compiling
programs whose questionable statements are intentionally designed.

Example

The following example directs the compiler to perform the highest
level of checking and produces the greatest number of warning
messages:

CC /W 3 MAIN.C;

Compiler Exit Codes

The C compiler control program returns an exit code of 0, 2, or 4 to
indicate the status of compiling. The exit code is useful with the DOS
BATCH command IF ERRORLEVEL,; it allows you to test for the
success or failure of compiling before proceeding with other tasks in
the batch file. The exit codes are defined as follows:

Code Meaning

0 Successful compiling. Compiling can be successful even if
warning messages are produced.

2 Unsuccessful compiling due to program errors.

4 Unsuccessful compiling due to system-level errors (such as

insufficient disk space) or compiler internal errors.

See Appendix A for information about specific error messages.

Preparing for Debugging
12d, /Zi, /10d

The following commands produce object-file characteristics neces-
sary for debugging with CodeView.

Format

2-38 Compiling

/2d
VZAl
/0d

IZd Produces an object file containing line number records that cor-
respond to the line numbers of the source file. Useful for
passing an object file to a symbolic debugger. The debugger
can use the line numbers to refer to program locations. /Zd has
no effect on the generated code but increases the size of .OBJ
files because of the line number information.

1Z1 Produces an object file containing full symbolic debugging infor-
mation for use with the CodeView symbolic debugger. This
object file includes full symbol table information and line
numbers.

10d Tells the compiler not to perform optimization. Without the /Od
option, the default is to optimize. Optimization can involve rear-
rangement of instructions. If you optimize before debugging, it
may be difficult to recognize and correct your code.

/Zi implies /Zd also, so you do not need to give /Zd when you give
/Zi. /Zi does not affect code generation either except for the one case
where /Zi is specified and no optimization flags are given; for
example:

CL /AM /I\include /Zi /c foo.c

In this case, the /Zi suppresses some of the optimizations that involve
code motion. This has less impact than /0d, which suppresses all
optimizations. You are not required to use /0d when compiling for
CodeView. Certain optimizations such as jump shortening make the
code much easier to follow and debug. Using /Zi without explicit opti-
mization flags does most of the default optimizations, but not the ones
that make the code hard to follow. Using /Zi in conjunction with any
explicit optimization flag (/O<anything>) performs all requested opti-
mizations; nothing is suppressed.

See “Optimizing /0” on page 2-40 for information about other opti-
mization options.

Example

The following command produces an object file named TEST.OBJ that
contains line numbers corresponding to the line numbers of TEST.C.
A listing file TEST.COD is created and the source listing is sup-
pressed. No optimization is performed.

CC TEST.C, ,NUL /Zd /0d, TEST.COD;

Compiling 2-39

The following command produces an object file named TEST.OBJ that
contains line numbers and symbol table information corresponding to
TEST.C. It also creates a source listing file TEST.LST.

CC TEST.C,, TEST /Zi/Zd/0d;

Optimizing
10

The optimizing procedures available with IBM C/2 can reduce the
storage space and run time required for a compiled program by elim-
inating unnecessary instructions and rearranging code. The compiler
performs some optimization by default. You can use the /O options to
exercise greater control over the optimizations performed. See
“Advanced Optimizing” on page 2-55 for information about additional
advanced optimizing procedures.

Format
/0string

The string influences how the compiler performs optimization. The
string is formed from the following:

Letter Optimizing Procedure

Cancels alias checking

Disables optimization

Enables loop optimization

Disables unsafe loop optimizations

Disables certain floating point optimizations

Favors code size during optimization

Favors run time during optimization

Assumes called functions can change local variables
Performs maximum optimization.

Xg~0o3>~—a®

The letters can appear in any order. For example, /Oat and /Ota have
the same effect. You can also specify more than one /O option. For
example, /Oa /Ot is equivalent to /Oat.

When you do not give an /O option to the CC command, it uses /Ot to

favor run time speed during optimizing. To cause the compiler to
favor code size instead, use the /Os option.

2-40 Compiling

The /Od option turns off optimization. This option is useful in the
early stages of program development to avoid optimizing code that
will be changed. Because optimization may involve rearrangement
of instructions, you also may want to specify the /0d option when you
use a debugger with your program or when you want to examine an
object file listing. If you optimize before debugging, the code can be
difficult to recognize and correct.

The /Ol option enables loop optimization. The compiler performs
special checks to test for constants across loops. This often improves
run-time performance of programs with repetitive calculations.
Option /Ox also implies /Ol.

The /Ox option combines optimizing options to produce the fastest
possible program. lts effect is equivalent to the following for CL:

/0ailt /Gs

Its effect is equivalent to the following for CC:
/0alt /Gs

The /Ox option removes stack probes, relaxes alias checking, favors
code run time over code size, and enables loop optimization. When
you use the CL command, it also generates all intrinsics for the func-
tions listed under “Declaring Functions as Intrinsic /Oi” on page 3-66.

The /Op option disables certain floating-point optimizations. The
compiler tries to keep floating-point values in extended-precision
form and stores them only when necessary. This is not desirable for
some algorithms, such as convergence algorithms that try to find the
minimum or maximum floating point values recognized by an imple-
mentation. Optimization with the /Op option forces writing to storage
when the source requests it, which limits the precision of floating-
point calculations.

The /Oa option cancels alias checking. The compiler performs alias
checking to make sure that it does not eliminate instructions incor-
rectly when you refer to the same storage location by more than one
name. Include the /Oa option only when you are sure that your
program does not use aliases.

For example, consider the following code fragment:

Compiling 2-41

int count, *pc;
pc = &count;
count = 0;

(*pc)++;

count = 0;

The reference to count by means of a pointer, (*pc), is known as an
alias for count because it provides another way to get access to the
same storage location. When the compiler performs alias checking, it
detects the indirect reference to count through pc and does not elimi-
nate the second instruction that assigns zero to count.

The /Oa option tells the compiler that your program does not use
aliases. Therefore, the compiler does not check for indirect refer-
ences, such as the reference to count through a pointer. It would be
an error to use the /Oa option with the above example. The compiler
sees only that the same value, 0, is assigned to count twice, without
any intervening assignments that change its value. The second
assignment would be considered redundant and would be eliminated
in the optimization stage, possibly causing the program to give incor-
rect results.

The /Ow option has the same effect as /Oa except that the compiter
assumes that any function call can potentially alter the value of any
variable, including local variables. For example, the following
program prints the word “pass” when compiled with the /Ow option
and prints the word “fail” when compiled with the /Oa option.

main()
{
int *p, i;
i=5;
sample((int)&i);
if (i '=5) puts(*pass");
else puts("fail");

}

#ifdef EXEC
sample(a)
int a;

*(int *)a = 2;

#endif

2-42 Compiling

The /On option turns off potentially unsafe loop optimizations in pro-
grams compiled with the /Ol or /Ox options. When you use the /On
option the compiler does not perform the following types of loop
optimizations:

Hoisting division operations out of loops: This type of optimization
can cause problems in code such as the following:

for (i=0; i<=99; i+=10)

{
if (denom != Q)
{
array[i] += (numer/denom);
printf("%f ", array[i]);
}
}

When loop optimizations are turned on, the compiler knows that
numer/denom does not change within the loop. Therefore, it calcu-
lates numer/denom only once: before the start of the loop, which is
before the if statement within the loop can check for division by zero.

Loop-induction optimizations: When loop optimizations are turned
on, this code:

int larray[400];
unsigned char k, top_val, inc_val, var;

for(k = 3; k < top_val; k += 8)
{
larray[k*4] = k*4;

optimizes to code such as the following:

unsigned char t;
for(t = 12; t < top_val*4; t += 32)

larray[t] = t;

If the loop-control variable top_val in the original code is 64, the
induction expression

top_val*4

overflows the limit for type unsigned char, and the loop never termi-
nates. To avoid this problem, use the /On option. For example:

Compiling 2-43

unsigned char t;
for(t = 12, k=3; k < top_val; k += 8,
t+=32)

larray[t] = t;

Use the /On option to solve similar overflow problems in cases where
induction variables result from array or pointer references and the
offset part of the address is close to wrapping.

Generally, you may want to compile with /On if your programs use
arrays that are larger than 32KB or if divide-by-zero or infinite-loop
errors occur in programs compiled with the /Ol option.

Example
The following command tells the compiler to relax alias checking and
to optimize for faster execution time when it compiles FILE.C:

CC FILE.C /Ota;

Compiling Large Programs

If you are compiling a large program or linking compiled files
together that form a large program with more than 64KB of data or
code, use one of the storage models described in the next section.

Working with Storage Models
1A

The CC command lets you create programs of a variety of sizes and
purposes using the /A options. These storage model options allow
you to set up storage that is best for your program and determine
how the system loads the program for execution.

Format

/AS (small)
/AM (medium)
/AC (compact)
/AL (1arge)
/AH (huge)

The compiler uses the small model by default.
The terms near, far, and huge are important for understanding the

concept of storage models. Depending on its size (and the use of
near, far, and huge as explained under “Using the Near, Far, and

2-44 Compiling

Huge Keywords” on page 2-58), a program may require more seg-
ments for its code or data. The program size includes any data and
code required for library routines.

Five commonly used storage models are available to the CC
command: the small model, the medium model, the compact model,
the large model, and the huge model. Library support is provided for
each of these standard models. Each model defines a different type
of program structure and storage. Only the memory models chosen
when you installed the compiler are available for use. To build
libraries for additional memory models, repeat the SETUP installation
using the /L option.

Program Description

Small-model Typically short or make limited use of memory.
Code and data for these programs each occupy one
segment and are limited to 64KB each (128KB
maximum total). Most programs fit easily in this
model; that is why small-model is the default.

Medium-model Typically have a large number of program state-
ments but a relatively small amount of data.

Compact-model Typically have a large amount of data but a rela-
tively small number of program statements.

Large-model Use a large amount of data storage during normal
processing.

Huge-model Similar to large-model programs but may contain
arrays that require more than 64KB of storage.

In all the models, no matter how large the program, no single object
file can exceed 64KB. When you choose one of these storage
models, the compiler operates with certain assumptions about the
addresses of code and data for your program.

A small-model program stores all code in a single segment, and ail
data in a single segment. Because the segment addresses are con-
stant for all code items and all data items, the segment address is not
required each time an item is addressed. Instead, any items in the
program can be addressed with an offset from the segment address.
Only 16 bits are required to store an offset from an address, as
opposed to 32 bits for a full segment plus offset address. Thus, the
compiler produces 16-bit (near) pointers for use in small-model pro-
grams. This is the smallest and fastest option.

Compiling 2-45

A medium-model program uses multipie segments for code and a
single segment for data. The address of a function, for example, in a
medium-model program must include the address of the appropriate
code segment and the offset of the beginning of the function from the
base of that segment. Full 32-bit (far) pointers are produced by the
compiler to access code items in a medium-model program.
However, an offset is sufficient for data items because all data
resides in one segment. Data items are accessed with near pointers
in a medium-model program. The medium model provides a useful
trade-off of speed and space because most programs refer more fre-
quently to data items than to code.

In compact-model programs, the default is that the compiler gets
access to code items with near addresses and to data items with far
addresses. You can cancel the default by using the far keyword for
code and the near and huge keywords for data.

A large-model program requires the compiler to produce far pointers
for both code and data items because multiple segments are allotted
for both code and data. The targe model is useful because it can
accommodate very large programs. The 64KB limitation on array
size in the large-model program aliows the compiler to perform
address arithmetic on just 16 bits (the offset portion) of the address to
refer to individual elements of the array. This is more efficient than
using a full 32-bit address and is possible because all elements of an
array are known to reside in the same segment.

The huge model removes the 64KB restriction on arrays, allowing an
array to span more than one segment. This means that address
arithmetic for array elements in huge-model programs is not limited
to the offset portion of the address but must take into account the
segment address. Thus, in addition to using far pointers for both
code and data items (as in a large model), a huge-model program
also produces far pointers for individual elements of an array.

Some restrictions apply to arrays composed of structures or unions.
To provide efficient addressing, structures and unions are not per-
mitted to cross segment boundaries. This has the following
implications:

¢ No structure or union element can be larger than 64KB.
¢ For arrays larger than 128KB, a structure or union element of the
array must have a size in bytes equal to a power of 2 (for

2-46 Compiling

example, 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on). If the
array is smaller than 128KB, this rule does not apply.

In huge-model programs, care must be taken when using the sizeof
operator or when subtracting pointers. The C language defines the
value returned by the sizeof operator to be a slze_t value, (which in
IBM C/2 is equal to an unsigned Int, but the size in bytes of a huge
array is a long int value.) To solve this discrepancy, the IBM C/2
compiler produces the correct size of a huge array when the fol-
lowing type cast is used:

(1ong)sizeof (huge_item)

Similarly, the C language defines the result of subtracting two
pointers as an int value. When subtracting two huge pointers,
however, the result may be a long Int value. The C compiler gives
the correct result when you use the following type cast:

(1ong) (huge_ptrl - huge_ptr2)

To provide additional flexibility within the standard storage models,
IBM C/2 atlows you to override the default addressing conventions for
individual program items by using the special near, far, and huge
keywords. These keywords let you access an item with either a near,
far, or huge pointer. This is particularly useful when you have a very
large or infrequently used data item that you want to access from a
small- or medium-model program.

Specifying a Combined Library for Linking
ILc, ILp

These options allow you to build an executable file that runs in DOS
mode when compiling in 0S/2 mode and to create an OS/2 mode exe-
cutable file when compiling with DOS. These options are available
only with the CL. command, not with CC.

Format

/Lc

/Lp

/Lc creates a DOS mode executable file, and /Lp creates an 0S/2
mode executable file. To use each option, your combined libraries
must have the names xLIBCyz.LIB. For example, to use /Lc, the DOS
mode library xLIBCyR.LIB, depending on the memory model and
floating-point option, must be visible to the linker. If you have

Compiling 2-47

renamed one of your combined libraries to xLIBCy.LIB, you link to the
functions in that library by not specifying the /Lc or /Lp options. To
create family applications, you must first create an 0S/2 mode exe-
cutable file. See “Creating Bound Applications /Fb” on page 3-63.

Example

CL /Lc main.c

Advanced Topics

IBM C/2 offers a number of advanced programming options that give
you control over compiling and the final form of the executable
program. This section describes the advanced options.

Enabling Language Extensions
1Ze, IZa, IZc

Format

/2e
/Za
/Zc

/Ze enables C language extensions and is the default. The /Ze option
allows:

¢ Use of trailing commas rather than an ellipsis in function declara-
tions to indicate variable-length argument lists

¢ Benign typedef redefinitions within the same scope, as in the fol-
lowing example.

typedef int INT;
typedef int INT;

¢ Use of mixed character and string constants in an identifier, as in
the following example.

char arr[5]={'a', 'b', "cde"};

¢ Casting data pointers to function pointers, as in the following
example.

int *ip;
int sample();

(Gint (*)())ip)} ()5

2-48 Compiling

¢ Casting function pointers to data pointers, as in the following
example.
int *ip;
int sample();

ip = (int *)sample;

Note that the preceding example generates an illegal cast error in
programs compiled with the /Za option. Generally, casts generate a
“non-standard extension used” warning at level 3 or higher.

According to the American National Standards Institute (ANSI)
standard, the way to cast from data pointers to function pointers and
from function pointers to data pointers is to

1. Cast to an integral type (Int or long depending on pointer size)
2. Cast to the final pointer type.

In a small-model program, the preceding examples could be rewritten
as follows to conform to the ANSI convention:

ip = (int *)(int)foo; /* cast function
pointer to data pointer */

(Gint (*)())(int)ip)(); /* cast data

pointer to function pointer */
Examples like those above work correctly whether or not the program
is compiled with the /Za option. Note that the compiler generates
identical code in both cases; the only difference is that one form is
ANSI-compatible and the other is not.

When you use the /Za option, the compiler issues an error message
whenever you use a valid construction that does not conform to the
ANSI standard.

The /Za option causes the compiler to define the identifier
NO_EXT_KEYS. In the include files provided with the run-time library
functions, the compiler uses this identifier with #itndef to condi-
tionally compile blocks of text containing the keywords cdecl, far,
interrupt, or near.

You can also use the /Za option to restrict the valid base types of bit-
fields. When you use /Za, any bit-field must be either Int, signed int,
or unsigned int. Bit-fields of width zero force alignment to an int
boundary.

Compiling 2-49

r IBM Extension

IBM C/2 considers the identifiers in the following list to be keywords
when processing a file:

cdecl fortran _loadds _saveregs
_export huge near pascal
far interrupt

To transfer G programs from other systems these are not keywords
in, use the /Za option to tell the compiler to treat these words as ordi-
nary identifiers.

l End of IBM Extension

/Zc forces the compiler to allow names declared with the pascal and
fortran modifiers to be used without regard for case.

Example

int pascal foo(void);
int pascal Foo(void);
int pascal FOO(int); /* error: redefinition */

Under the /Zc option, the second declaration is equivalent to the first
and the third produces a compiler error because it tries to redeclare
the same name with an argument list. Such a declaration is incon-
sistent with the first two declarations.

Foo(); /* A reference to foo */

FOO(); /* Another reference to it /*

You can also use the /Ze option to allow the use of casts to produce
Ivalues, as in this example:

int *p;

((Tong *)p)++;

The preceding example could be rewritten to conform to the ANSI
standard as follows:

p = (int *)({char *)p + sizeof(long));

You can also use the /Ze option to allow redefinitions of extern items
as static, as in this example:

extern int foo();
static int foo()

{}

2-50 Compiling

Packing Structure Members
1Zp

When storage is reserved for structures, structure members larger
than a char are ordinarily stored beginning at an int boundary. To
conserve space you can store your structures more compactly. The
/Zp option and the pack pragma cause structure data to be packed
tightly into storage. These options are also useful to read existing
packed structures from a data file. /Zp is available with both CC and
CL, but /Zpn is available only with CL.

Format

/zp[1|2]4.]

#pragma pack([1 |2|4])

Use /Zp to specify the same packing for all structures in a module.
When you give the /Zpn option, where n is 1, 2, or 4, each structure
member is stored on n-byte boundaries. The default is 1-byte.

On most processors, using the /Zp option causes a program to run
slower because of the time required to unpack structure members
when accessing them. This option also reduces efficiency when a
program gets access to 16-bit members (with int type) that begin on
odd boundaries.

Use the pack pragma to specify packing other than that specified in
the /Zp option for particular structures. Give the pack(n) pragma
(where n is 1, 2, or 4) before the structures you want packed differ-
ently. To reinstate the packing given in the /Zp option type the pack()
pragma with no arguments.

Example

The following command causes all structures in the program PROG.C
to be stored without extra space for alignment of members on Int
boundaries.

CC /Zp PROG.C;

In IBM C/2 Version 1.10, a structure or union whose members have
only the types char or unsigned char, or any array of those types, is
byte-aligned. That is, every such structure or union is sized exactly,
not padded to an even number of bytes as in IBM C/2 Version 1.00. If
a structure or union contains any member whose type is not char or
unsigned char, there is no difference between the versions. This

Compiling 2-51

change makes a difference only if the sum of the sizes of the
members is odd; if the sum is even, then no alignment byte is added.
This example demonstrates the difference:

char a;

struct {char a, b, c} y;

struct {char a[3]} z;

main()

{
printf("Size of y = %d\n", sizeof(y));
printf("Size of z = %d\n", sizeof(z));

}

If you compile the preceding with IBM C/2 Version 1.00 (not using
/Zp), the output is:

Size of y = 4
Size of z = 4

If you compile the preceding code with IBM C/2 Version 1.10 (not
using /Zp), the output is:

Size of y = 3
Size of z = 3

Programs affected by this change should not mingle object files gen-
erated by the two versions. You shouid recompile all of the objects
with IBM C/2, Version 1.10. If that remedy is impossible (for instance,
if you do not have source code for the objects in question), it is pos-
sible to change include files to add an extra char-type member at the
end of any odd-sized structure or union. This change adds the align-
ment member that the compiler no longer adds.

Suppressing Default Library Selection
1Zi

Ordinarily, the compiler places the names of the default libraries
(containing the standard C library plus the selected floating-point
library) in the object file for the linker to read. This allows the default
libraries to be linked with a program.

This option suppresses the selection of default libraries. No library
names are placed in the object file. As a result, the object file is
slightly smaller.

Format
74!

2-52 Compiling

Use the /ZI option when you are building a library of routines. It is
not necessary for every routine in the library to contain the default
library information. Although the /ZI option saves only a small
amount of space for a single object file, the total space savings is sig-
nificant in a library containing many object modules. When you link a
library of object modules created with the /ZI option with a C program
file compiled without the /ZI option, the default library information is
supplied by the program file.

Example

The following two commands create an object file named ONE.OBJ
that contains the name of your combined library, xLIBCyz.LIB, and an
object file named TWO.OBJ that contains no default library informa-
tion.

CC ONE.C;
CC /Z1 TWO.C;

When ONE.OBJ and TWO.OBJ are linked, the default library informa-
tion in ONE.OBJ causes the given libraries to be searched for any
unresolved references in either ONE.OBJ or TWO.OBJ as follows:

LINK ONE+TWO;

Changing the Default char Type
A

In IBM C/2, the char type is signed by default. If you widen a char
value to an Int, the result is sign extended. To have an unsigned
default, use the /J option. This causes the compiler to zero-extend
the char type when you widen it to an Int type.

Format
/3

If you declare a char value explicitly signed, the /J option does not
affect it, and the compiler sign extends the value when you widen it to
an Int. When you invoke CL with the /J option, a new predefined iden-
tifier, _CHAR_UNSIGNED, is defined. This identifier is used with
#ifndef in the file LIMITS.H to define the range of the default char
type. Note that compiling with /J reduces by 1 the number of constant
and macro definitions that you can give at the command prompt.

Compiling 2-53

Controlling Floating-Point Operations

By default, the compiler handles floating-point operations by using
calls to an emulator library, which emulates the operation of a
numeric coprocessor. If a numeric coprocessor is present at run
time, it is used. The floating-point (/FP) options give you a choice of
five different methods of handling floating-point operations.

The advantages and disadvantages of each of the five /FP options are
described under “Selecting the Floating-Point Options /FPa, /FPc,
/FPc87, /FPI, /FPi87” on page 2-32. You should read that discussion
of floating-point options before reading this section. This section dis-
cusses two additional ways to control floating-point operations: by
changing libraries at link time and by using the NO87 environment
variable.

Using the NO87 Environment Variable

Programs compiled using the /FPc or /FPi option use a numeric
coprocessor at run time if one is installed. You can override the
selection of the coprocessor at run time and force the use of the emu-
lator by setting an environment variable named NO87.

If NO87 is currently set to any value when the program runs, use of
the numeric coprocessor is suppressed. The value of the NO87
setting is printed on the standard output as a message. The message
prints only if a numeric coprocessor is present and suppressed; if no
coprocessor is present, no message appears. If you do not want a
message to print, set NO87 equal to one or more spaces; nothing will
be printed.

Only the presence or absence of the NO87 definition is important in
suppressing use of the coprocessor. The actual value of the NO87
setting is used only for printing the message.

The NO87 variable takes effect with any program linked with the emu-
lator library, that is, a combined library with name of the form
xLIBCEz.LIB. It has no effect on programs linked with combined
libraries named xLIBC7z.LIB.

2-54 Compiling

Example

The following command causes the message Use of coprocessor
suppressed to appear on the screen when a program that can use a
coprocessor is run.

SET NO87=Use of coprocessor suppressed

The next command sets the NO87 variable to the space character.
Use of the coprocessor is still suppressed, but no message is dis-
played.

SET NO87=space

Advanced Optimizing

This section describes additional optimizing procedures that can be
used with the optimizing options described in “Optimizing /0" on
page 2-40 to create more efficient programs from your code.

Removing Stack Probes
IGs

You can reduce the size of a program and speed up performance
slightly by using the /Gs option to remove all stack probes. A stack
probe is a short routine called by a function to check the program
stack for available space.

Format

/Gs
#pragna check_stack[+|-]
#pragma check_stack[-]

The stack probe routine is called at every entry point. Ordinarily, the
stack probe routine generates a message when it detects a stack
overflow. When you use the /Gs option no message prints.

Use the /Gs option when a program is known not to exceed the avail-
able stack space. For example, stack probes might not be needed for
programs that make very few function calls. ‘

Although the /Gs option, combined with the /Osa option (described
with the /O string options under “Optimizing /O” on page 2-40)
makes the smallest possible program, use it with care; removing
stack probes from a program can cause some execution errors to go
undetected.

Compiling 2-55

Use the check_stack pragma when you want to turn stack checking on
or off only for selected routines, leaving the default, determined by
the presence or absence of the /Gs option, for the remaining routines.
To turn off stack checking, put the foliowing line before the definition
of the function that you do not want to check.

#pragma check_stack(OFF)

The preceding line disables stack checking for all routines that follow
it, not only the routines on the same line. To reinstate stack
checking, insert the following line:

#pragma check_stack(ON)

If you omit the trailing + or -, or the empty parentheses of the pragma
check_stack, stack checking follows the default. The following table
shows the relationship between the check_stack pragma and the /Gs
option.

Compiled
Syntax with /Gs? Result
#pragma check_stack Yes Stack checking off
#pragma check_stack— for the routines
#pragma check_stack() that follow.
#pragma check_stack(OFF)
#pragma check_stack No Stack checking on
#pragma check_stack+ for the routines
#pragma check_stack() that follow.
#pragma check_stack(ON)
#pragma check_stack+ Yes Stack checking on
#pragma check_stack(ON) for the routines
that follow.
#pragma check_stack— No Stack checking off
#pragma check_stack(OFF) for the routines
that follow.

Example

The following command optimizes the file FILE.C by removing stack
probes with the /Gs option and relaxing alias checking with the /Ota
option. The letter t in the /Ota option tells the compiler to favor exe-
cution time over code size in the optimization.

CC FILE.C /Ota /Gs;

2-56 Compiling

Setting the Data Threshold
IGt

By default, the compiler reserves all static and global data items to
the default data segment in the small- and medium-storage models.
In compact-, large-, and huge-model programs, the compiler assigns
only initialized static and global data items to the default data
segment. This option causes all data items whose size is greater
than or equal to number bytes to be allocated to a new data segment.
When you specify number, it must follow the /Gt option, with no inter-
vening spaces. When you omit number, the default threshold value is
256.

Format
/Gt [number]

You can use the /Gt option only with compact-, large-, and huge-
model programs because small- and medium-model programs have
only one data segment. This option is particularly useful with pro-
grams that have more than 64KB of initialized static and global data
in small data items.

Mixed-Model Programming

IBM C/2 defines five standard storage models (small, medium,

compact, large, and huge) to accommodate programs with differing
storage requirements. For an introduction to storage models (using
the /A option), see “Working with Storage Models /A” on page 2-44.

One limitation of the predefined storage-model structure is that all
pointers for code or data change size at once when you change
storage models. To overcome this limitation, IBM C/2 lets you cancel
the default-addressing convention for a given storage model and
access an item with either a near, far, or a huge pointer. This is par-
ticularly useful with a very large or infrequently used data item that
you want to get from a small- or medium-model program. You can
get access to that item in another segment, saving space in the
default data segment.

You can use the special keywords near, far, and huge to declare

near, far, and huge data items and pointers. See “Declaring Data
with Near, Far, and Huge"” on page 2-59 for more information.

Compiling 2-57

The near keyword defines an object with a 16-bit address. The far
keyword defines an object with a 32-bit segmented address. You can
get access to any data item or function with a far pointer. However,
the size of a tar data item is restricted to 64KB maximum (one
segment). The address arithmetic required to refer to individual ele-
ments of a far item is performed on just 16 bits (the offset portion) of
the address, because all elements are known to reside in the same
segment.

The huge keyword identifies a data object with a full 32-bit segmented
address. A huge data item can exceed 64KB. Because elements of a
huge array occupy more than one segment, full 32-bit address arith-
metic is required to refer to individual elements of the object. Certain
restrictions apply to huge objects; these restrictions are outlined in
“Optimizing /0” on page 2-40.

In a small-model program, the far keyword lets you get access to data
and functions in segments outside the program.

In medium- and large-model programs, near lets you get access to
data with just an offset. In small-, medium-, or large-model pro-
grams, the huge keyword lets you declare and get access to an array
spanning more than 64KB (one segment).

Using the Near, Far, and Huge Keywords

Use the near and far keywords to create mixed-model programs.
These keywords are particularly useful with a very large or infre-
quently used data item that you want to access from a small- or
medium-model program. Use the far keyword to reserve a new
segment for the data item, and then get access to that item with a far
pointer, while still using near pointers (the default) for other data.

When using the near, far, and huge keywords to change addressing
conventions for particular items, you can usually use one of the
standard libraries (small, compact, medium, or large) with your
program. The large-model libraries are also appropriate for use with
huge-mode! programs. However, you must take care when calling
library routines; in general, you cannot pass far pointers or
addresses of far data items to a small-model library routine. Some
exceptions to this statement are the library routines halloc, hfree, and
the printf family.

2-58 Compiling

You can always pass the value of a far item to a small-module library
routine. For example:

long far time_val;

time(&time_val);/*I11egal */
printf("%1d\n", time_val); /* Legal */

If you use the near, far, or huge keywords, it is recommended that
you use function declarations with argument-type lists to ensure that
pointers are passed to functions correctly; see “Generating Function
Declarations /Zg” on page 2-30.

For more information on library routines and memory models, see
“Using Huge Arrays with Library Functions” in Chapter 1 of IBM C/2
Language Reference.

Declaring Data with Near, Far, and Huge

The near, far, and huge keywords modify either objects or pointers to
objects. When using them to declare data, code, or pointers to data
or code, keep the following rules in mind:

* The keyword always modifies the object or pointer immediately to
its right. In complex declarators such as char far* *p, think of the
far keyword and the item to its right as being a single unit. In this
case, p is a pointer to a far pointer to char. The size of p depends
on the memory model! being used. See IBM C/2 Fundamentals
for complete rules for using special keywords in complex decla-
rations.

¢ |f the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item is allocated in the
default data segment (near) or a separate data segment (far or
huge). For example:

char far a;
allocates a as an item of type char with a far address.

¢ If the item immediately to the right of the keyword is a pointer,
the keyword determines whether the pointer holds a near
address (16 bits), a far address (32 bits), or a huge address (also
32 bits). For example:

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

Compiling 2-59

Example
The following examples show data declarations using the near, far,
and huge keywords:

char a [3000]; /* Example 1: small-model program */
char far b[30000]; /* Example 2: small-mode] program */

The declaration in the first example allocates the array a in the
default segment; in contrast, the array b in the second example may
be allocated in any segment. Since these declarations are made in a
small-model program, array a probably represents frequently used
data that was deliberately placed in the default segment for fast
access, while array b probably represents seldom-used data that
might make the data segment exceed 64KB. This forces the pro-
grammer to use a larger memory model if it is declared with the far
keyword. The second example uses a large array, because it is more
likely that a programmer would want to specify the address allocation
size for items of substantial size.

char af3000]; /* Example 3: large-model program */
char near b[30000]; /* Example 4: large-model program */

In Example 3, the speed of access would probably not be critical for
array a; even though it may or may not be allocated to the default
data segment, it is always referenced with a 32-bit address. In
Example 4, array b is explicitly allocated near to improve speed of
access in this memory model (large).

char huge a[70000]; /* Example 5: small-model program */
char huge *pa; /* Example 6: small-model program */

In Example 5, a must be declared as huge because it is larger than
64KB. Using the huge keyword instead of the standard huge memory
model means that the price for using huge data is paid only for this
one large item. Other data can be accessed within the default
segment. The pointer pa in Example 6 could be used to point to a.
Any arithmetic done with pa uses 32-bit arithmetic.

char *pa; /* Example 7: small-model program */
char far *pb; /* Example 8: small-model program */

In Example 7, pa is declared as a near pointer to char. The pointer is
near by default since the example is in a small-model program. In
contrast, pb in Example 8 is allocated as a far pointer to char; pb
could be used to point to and step through an array of characters
stored in a segment other than the default data segment. For
example, pa might be used to point to the array a in Example 1, while
pb might be used to point to the array b in Example 2.

2-60 Compiling

char far * *pa; /* Example 9: small-model program */
char far * *pa; /* Example 10: large-model program */

The pointer declarations in Examples 9 and 10 show the interaction
between the memory model chosen and the near and far keywords;
although the declarations for pa in these two examples are identical,
Example 10 declares pa as a far pointer to an array of far pointers to
type char.

char far * near *pb; /* Example 11: any model */
char far * far *pb; /* Example 12: any model */

In Example 11, pb is declared as a near pointer to an array of far
pointers to type char. In Example 12, pb is declared as a far pointer
to an array of far pointers to type char. Note that in these final two
examples, the inclusion of far and near keywords overrides the
model-specific addressing conventions shown in Examples 9 and 10;
the declarations for pb would have the same effect, regardless of the
memory model.

Declaring Functions with Near and Far
The rules for using the near and far keywords for functions are
similar to those for using them with data:

¢ The keyword always modifies the function or pointer immediately
to its right. See “Declarators with Special Keywords” in IBM C/2
Fundamentals for more information about rules for evaluating
complex declarations.

¢ If the item immediately to the right of the keyword is a function,
the keyword determines whether the function is allocated as near
or far. For example:

char far fun();

defines fun as a function called with a 32-bit address and
returning type char.

¢ |f the item immediately to the right of the keyword is a pointer to
a function, then the keyword determines whether the function is
called using a near (16-bit) or far (32-bit) address. For example,

char (far * pfun) ();

defines pfun as a far pointer (32 bits) to a function returning type
char.

¢ Function declarations must match function definitions.
* The huge keyword cannot be applied to functions.

Compiling 2-61

char far fun (); /* Example 1: small model */
char far fun ()

{

}

In this example, fun is declared as function returning type char. The
far keyword in the declaration means that fun must be called with a
32-bit call.

static char far * near fun (); /* Example 2: large model */

static char far * near fun ()

{

}

In the second example, fun is declared as a near function that returns
a far pointer to type char. Such a function might be seen in a large-
model program as a helper routine that is used frequently, but only
by the routines in its own module. Since ail routines in a given
module share the same code segment, the function could always be
accessed with a near call. However, you could not pass a pointer to
fun as an argument to another function outside the module fun was
declared in.

void far fun () ; /* Example 3: small model */
void (far * pfun) () = fun;

This example declares pfun as a far pointer to a function that has a
vold return type and then assigns the address of fun to pfun. In fact,
pfun could be used to point to any function accessed with a far call.

Note: If the function pointed to by pfun has not been declared far or if
it is not far by default, then calling that function through pfun
would cause the program to fail.

double far * (far fun) (); /* Example 4: compact model */
double far * (far *pfun) () = fun;

This example declares pfun as a far pointer to a function that returns
a far pointer to type double and then assigns the address of fun to
pfun. This might be used in compact-model program for a function
that is not used frequently and thus does not need to be in the default

2-62 Compiling

code segment. Both the function and the pointer to the function must
be declared as far.

Pointer Conversions

Passing pointers as arguments to functions may cause automatic con-
versions in the size of the pointer argument, since passing a pointer
to a function forces the pointer size to the larger of the following two
sizes:

¢ The default pointer size for that type, as defined by the storage
model used during compilation. For example, in medium-model
programs, data pointer arguments are near by default and code
pointer arguments are far by defaulit.

¢ The type of argument.

If the forward declaration of a function includes declared argument
types, the compiler performs type checking and enforces the conver-
sion of actual arguments to the declared type of the corresponding
formal argument. However, if no declaration is present or the
argument-type list is empty, the compiler converts pointer arguments
to the larger of the default type of the type of the argument. To avoid
mismatch arguments, always give the argument types in a forward
declaration.

Example
This program produces unexpected results in compact-, large-, or
huge-model programs.

Example 1
main ()
{
int near *x;
char far *y;
int z = 1;

test_fun(x, y, z); /* x will be coerced to far
** pointer in compact, large
** or huge model
*/

}

int test_fun{ptrl, prt2, a)

int near *ptri;

char far *ptr;

int a;

printf("Value of a = %d\n", a);

}

Compiling 2-63

If the preceding example is compiled as a small-model program (no
memory model options or /AS at the command prompt) or medium-
model program (/AM option), the size of pointer argument x is 16 bits,
the size of pointer argument y is 32 bits, and the value printed for a is
1. However, if the preceding example is compiled with the /AC, /AL,
or /AH option, both x and y are automatically converted to far pointers
when they are passed to test_fun.

Since prt1, the first parameter of test_fun, is defined as a near pointer
argument, it takes only 16 bits of the 32 bits passed to it. The next
parameter, ptr2, takes the remaining 16 bits of the 32 bits passed to
ptr1, plus 16 bits of the 32 bits passed to it. Finally, the third param-
eter, a, takes the leftover 16 bits from pir2, instead of the value of z in
the main function. This shifting process does not generate an error
message, since both the function call and the function definition are
legal; but in this case the program does not work as intended, since
the value assigned to a is not the value intended.

To pass ptr1 as a near pointer, you should include a forward declara-
tion that specifically declares this argument for test_fun as a near
pointer. In the following example, test_fun was declared so the com-
piler knows in advance about the near pointer argument.

Example

2-64 Compiling

Example 2
int test_fun(int near*, char far *, int);

main ()

int near *x;

char far *y;

int z = 1;

test_fun(x, y, z); /* now x will not be coerced
** to a far pointer; it will be
** passed as a near pointer
** no matter what memory
model is used
*/

}

int test_fun(ptrl, ptr2, a)
int near *prtl;
char far *ptr2;
int a;

{

printf("Value of a = %d\n", a) ;
}

Note: Reversing the definition order for test_fun and main in the first
example does not avoid pointer coercions; the pointer argu-
ments must be declared in a forward declaration, as in the
second example.

Creating Customized Storage Models

A method of managing storage models is to combine features of the
standard storage models to create your own customized storage
model. You should have a thorough understanding of C storage
models and the 8086 architecture before creating your own non-
standard storage models, since there is no library support other than
the C start-up routines for any of the options that follow. These
options are available only with the CL command, not with CC.

The /Astring option lets you change the attributes of the standard
storage models to create your own storage models. The three fields
of the string correspond to the code pointer size, the data pointer
size, and the stack and data segment setup. The letters allowed in
each field are unique, so you can give them in any order after /A. All
three letters must be present.

Compiling 2-65

The standard-storage-model options (/AS, /AM, /AC, /AL, and /AH)
can be specified in the /Astring form. As an example of how to con-
struct storage models, the standard-storage—model options are listed
below with their /Astring equivalents:

Standard Custom Equivalents

IAS /Asnd
/AM /Alnd
/AC /Astd
JAL /Alfd

/AH /Alhd

As an example of the use of customized models, suppose that you
want to create a huge-compact model. You want this model to allow
huge data items but only one code segment. Then, the option for
specifying this model is /Ashd.

Note: For the descriptions that follow, the letters / for long and s for
short are for code pointers to distinguish them in the storage-
model string from the letters for data pointers. The term short
is the same as near, and long is the same as far.

Producing Code Pointers

Format

/Aszz
JR1zz

The letter s tells the compiler to produce near (16-bit) pointers and
addresses for all code items. This is the default for small- and
compact-model programs.

The letter /| means that far (32-bit) pointers and addresses address all
code items. Far pointers are the default for medium-, large-, and
huge-model programs.

Producing Data Pointers

Format

/Anzz
/Afzz
/Ahzz

2-66 Compiling

Three sizes are available for data pointers: near, far, and huge. The
letter n tells the compiler to use near (16-bit) pointers and addresses
for all data. This is the default for small- and medium-model pro-
grams.

The letter f specifies that all data pointers and addresses are far
(32-bit). This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are huge
(32-bit). This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger
than a segment (64KB) because address arithmetic is performed only
on 16 bits (the offset portion) of the address. When huge data
pointers are used, individual data items can be larger than a segment
(64KB) because address arithmetic is performed on the entire 32 bits
of the address.

Compiling 2-67

Setting Up Segments

Format

/Adzz
/Auzz
/Awzz

The letter d tells the compiler that 8S equals DS; that is, the stack
segment and the default data segment are combined into a single
segment. This is the default for all programs. In small- and medium-
model programs, the stack and all data combined must occupy less
than 64KB; you get access to any data item with only a 16-bit offset
from the segment address in the 8S and DS registers.

In compact-, large-, and huge-model programs, initialized global and
static data are placed in the default segment. The address of this
segment is stored in the SS and DS registers. All pointers to data,
including pointers to local data (the stack), are full 32-bit addresses.
This is important to remember when passing pointers as arguments
in large-model programs. Although you may have more than 64KB
bytes of total data in these models, there can be no more than 64KB
of data in the default segment. The /Gt and /ND options can be used
to control allocation of items in the default data segment if a program
exceeds this limit. See “Naming Modules and Segments /NM, /NT,
/ND” on page 3-68 and “Setting the Data Threshold /Gt” on

page 2-57 for more information about these options.

The letter u reserves different segments for the stack and the data
segments. A segment for global and static data items is reserved for
each object file. When you specify the letter u, the address in the DS
register is saved upon entry to each function, and the new DS value
for the module the function was defined in is loaded into the register.
The previous DS value restores on exit from the function. Therefore,
only one data segment is accessible at any given time.

A single segment must be reserved for the stack and its address
stored in the stack register. The stack cannot be placed in a data
segment because it must be available throughout the entire program.

The letter w, like the letter u, sets up a separate stack segment but
does not load the DS register at each module entry point. This option
is typically used when writing application programs that run with an
operating system (such as a Presentation Manager application) or

2-68 Compiling

with a program running at the operating-system level. The operating
system or the program running under the operating system receives
the data intended for the apptlication program and places it in a
segment; then, it must load the DS register with the segment address
for the application program.

Even though u and w set up a separate segment for the stack, the
size of the stack is still fixed at the default size unless this is canceled
with the /Fhexnumber compiler option (CL only) or the /STACK linker
option.

Library Support

Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard storage
models (small, medium, compact, large, and huge) through four sepa-
rate run-time libraries. When you write mixed-model programs, you
are responsible for determining which library (if any) is suitable for
your program and for ensuring that the appropriate library is used.

When using the near, far, and huge keywords to change addressing
conventions for particular items, you can use one of the standard
libraries (small, medium, compact or large) with your program.
However, you must take care when calling library routines. For
example, you cannot pass far data items to a small model library
routine.

Controlling the Function Calling Sequence
1Ge
The pascal and cdecl ke