

International Business Machines Corporation Armonk, New York 10504

IBM Program License Agreement
BEFORE OPENING THIS PACKAGE, YOU SHOULD CAREFULLY READ
THE FOLLOWING TERMS AND CONDITIONS. OPENING THIS
PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND
CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD
PROMPTLY RETURN THE PACKAGE UNOPENED AND YOUR MONEY
WILL BE REFUNDED.

This is a license agreement and not an
agreement for sale. IBM owns, or has
licensed from the owner, copyrights in
the Program. You obtain no rights other
than the license granted you by this
Agreement. Title to the enclosed copy of
the Program, and any copy made from it,
is retained by IBM. IBM licenses your
use of the Program in the United States
and Puerto Rico. You assume all respon­
sibility for the selection of the Program
to achieve your intended results and for
the installation of, use of, and results
obtained from, the Program.

The Section in the enclosed docu­
mentation entitled "License Information"
contains additional information con­
cerning the Program and any related
Program Services.

LICENSE
You may:
1) use the Program on only one

machine at anyone time, unless
perm iss ion to use it on more than
one machine at anyone time is
granted in the License Information
(Authorized Use);

2) make a copy of the Program for
backup or modification purposes
only in support of your Authorized
Use. However, Programs marked
"Copy Protected" limit copying;

3) modify the Program and/or merge it
into another program only in support
of your Authorized Use; and

4) transfer possession of copies of the
Program to another party by trans­
ferring this copy of the IBM Program
License Agreement, the License
Information, and all other documen­
tation along with at least one
complete, unaltered copy of the
Program. You must, at the same
time, either transfer to such other

84X1712

party or destroy all your other copies
of the Program, including modified
copies or portions of the Program
merged into other programs. Such
transfer of possession terminates
your license from IBM. Such other
party shall be licensed, under the
terms of this Agreement, upon
acceptance of this Agreement by its
initial use of the Program.

You shall reproduce and include the
copyright notice(s) on all such copies of
the Program, in whole or in part.

You shall not:
1) use, copy, modify, merge, or transfer

copies of the Program except as
provided in this Agreement;

2) reverse assemble or reverse compile
the Program;
and/or

3) sublicense, rent, lease, or assign the
Program or any copy thereof.

LIMITED WARRANTY
Warranty details and limitations are
described in the Statement of Limited
Warranty which is available upon request
from IBM, its Authorized Dealer or its
approved supplier and is also contained
in the License Information. IBM provides
a three-month limited warranty on the
media for all Programs. For selected
Programs, as indicated on the outside of
the package, a limited warranty on the
Program is available. The applicable
Warranty Period is measured from the
date of delivery to the original user as
evidenced by a receipt.

Certain Programs, as indicated on the
outside of the package, are not warranted
and are provided "AS IS."

Continued on inside back cover.

First Edition (September 1988)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are Inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor­
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be
made to your IBM Authorized Dealer or your IBM Marketing Repre­
sentative.

Operating System/2 is a trademark of the International Business
Machines Corporation.

C/2 is a trademark of the International Business Machines Corpo­
ration.

All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book is Volume 2 of a four-volume set explaining the IBM C/2
compiler. It gives you information you need to write, compile, link,
and run a program with IBM C/2. Sample sessions guide you through
the steps of compiling, linking, and running a sample program that is
included on one of the compiler diskettes.

This book assumes that first-time users of IBM C/2 have completed at
least one year of computer science studies. This book is also
intended for experienced applications programmers or system pro­
grammers. Users should also be familiar with their personal com­
puter and operating system.

The following table lists some comillon tasks you may want informa­
tion about and which book you can find the information in.

If You Want To ••• Refer to •••

Install IBM C/2 Fuhdamenta/s

Learn basic facts about IBM C/2 Fundamentals

Learn the format of a function Language Reference

Understand error messages Compile, Link, and Run

Debug a program Debug

Compile a program Compile, Link, and Run

Link a program Compile, Link, and Run

Write a program Fundamentals and Language Ref-
e;ence.

III

Related Publications
The following books cover topics related to the IBM C/2 Library:

• IBM CI2 Compile, Link, and Run
• IBM CI2 Language Reference
• IBM Debug

• IBM MASMI2 Fundamentals
• IBM MASMI2 Assemble, Link, and Run
• IBM MASMI2 Language Reference

• IBM Operating System/2 Version 1.00 (Standard and Extended
Editions)

- Programmer's Guide

• IBM Operating System/2 Version 1.10

- Programming Guide

• The technical reference for your personal computer.

• The technical reference for your operating system.

• IBM System Application Architecture Common Programming
Interface C Reference

• iAPX 86,88 User's Manual, Copyright 1981, Intel Corp., Santa
Clara, CA.

• iAPX 286 Hardware Reference Manual, Copyright 1983, Intel
Corp., Santa Clara, CA.

• iAPX 286 Programmer's Reference Manual, Copyright 1985, Intel
Corp., Santa Clara, CA.

Iv

Contents

Chapter 1. Introducing IBM C/2
Conventions Used In This Book

Hexadecimal Representation
Syntax Diagrams
Operating Systems

1-1
1-2
1-3
1-3
1-5

Chapter 2. Compiling 2-1
Running the Compiler 2-1

File-Naming Conventions 2-2
Special Filenames 2-2
Source Filename Prompt 2-3
Object Filename Prompt 2-3
Source Listing Prompt 2-4
Object Listing Prompt 2-4
Selecting Default Responses 2-5
Using the Source Listing 2-5
Using the Command-Prompt Method 2-7
C Compiler Error Messages 2-10

Using the Compiler Options 2-10
Available Compiler Options 2-12

Listing the Compiler Options IHELP 2-15
Allowing Case-Insensitive Options ICASE 2-16
Producing Listing Files IFs, IFI, IFa, IFc 2-16

IFs Option 2-18
IFIOption 2-20
IFa Option 2-21
IFc Option 2-22

Controlling the Preprocessor 2-23
Defining Constants and Macros 10 2-24
Predefined Identifiers 2-25
Removing Definitions of Predefined Identifiers IU, lu 2-26
Producing a Preprocessed Listing IP, IE, IEP 2-27
Preserving Comments IC 2-28
Searching for Include Files II, IX 2-28
Syntax Checking 2-29
Identifying Syntax Errors IZs, IS 2-30
Generating Function Declarations IZg 2-30
Using the Floating-Point Options 2-32

y

Selecting the Floating-Point Options IFPa, IFPc, IFPc87, IFPi,
IFPi87'.............................. 2-32

If You Have a Numeric Coprocessor 2-33
If You Do Not Have a Numeric Coprocessor 2-34
Compatibility Between Floating-Point Options 2-36

Using 80186/80188, 80286 or 80386 ProcessOrs IGO, IG1, IG2 .. 2-37
Setting the Warning Level/W Iw 2-37

Compiler Exit Codes 2-38
Preparing for Debugging IZd, IZi, 10d 2-38
Optimizing 10 2-40

Compiling Large Programs 2-44
Working with Storage Models IA 2-44
Specifying a Combined Library for Linking ILc, ILp 2-47
Advanced Topics 2-48
Enabling Language Extensions IZe, IZa, IZc 2-48
Packing Structure Members IZp 2-51
Suppressing Default Library Selection IZI 2-52
Changing the Default char Type IJ 2-53
Controlling Floating-Point Operations 2-54

Advanced Optimizing 2-55
Removing Stack Probes IGs 2-55
Setting the Data Threshold IGt 2-57
Mixed-Model Programming 2-57
Creating Customized Storage Models 2-65
Producing Code Pointers 2-66
Producing Data Pointers 2-66
Setting Up Segments 2-68

Library Support 2-69
Controlling the Function Calling Sequence IGc 2-69

Chapter 3. Linking A Program 3-1
How the Linker Works 3-2

Creating DOS Mode Applications 3-3
Creating OS/2 Mode Applications 3-3
Creating Dynamic Link Libraries 3-4
Creating Family Applications 3-5

Module Definition Files 3-5
Creating Module Definition Files 3-6

Using the Linker 3-7
File-Naming Conventions 3-8
Selecting Default Responses . 3-8
Ending the LINK Session 3-9
Using LINK Exit Codes 3-9

vi

Using a Command to Specify LINK Files 3-10
Using Prompts to Specify LINK Files 3-12
Using a Response File 3-15
Temporary Disk File 3-18

About LINK Options 3-18
Using LINK Options 3-19
Linker Options for Other IBM Language Files 3-20

Aligning Segments IALIGNMENT .. 3-20
Preparing Files for CodeView ICODEVIEW 3-21
Reserving Paragraph Space ICPARMAXALLOC 3-21
Ordering Segments IDOSSEG 3-22
Controlling Data Loading IDSALLOCATE 3-22
Packing Executable Files IEXEPACK 3-23
Optimizing Intrasegment Far Calls IFARCALLTRANSLATION .. 3-24
Viewing the Options List IHELP ~........... 3-24
Controlling Run File Loading IHIGH 3-25
Displaying LINK-Time Information IINFORMATION 3-25
Copying Line Numbers to the Map File ILiNENUMBERS 3-25
Producing a Public Symbol Map IMAP 3-26
Ignoring Default Libraries INODEFAULTLIBRARYSEARCH 3-27
Disabling Far Call Translations INOFARCALLTRANSLATION .. 3-28
Preserving Compatibility INOGROUPASSOCIATION 3-28
Preserving Lowercase INOIGNORECASE 3-29
Disabling Packing INOPACKCODE 3-29
Setting the Overlay Interrupt 10VERLAYINTERRUPT 3-30
Packing Code Segments IPACKCODE 3-30
Packing Data Segments IPACKDATA 3-31
Pausing to Change Disks IPAUSE 3-31
Setting the Maximum Number of Segments ISEGMENTS 3-32
Setting the Stack Size ISTACK 3-33
Warning of Fix-ups IWARNFIXUP 3-34
Module Definition File Statements 3-34
Defining the Code Segment Default Attributes CODE 3-35
Defining Data Segment Default Attributes DATA 3-36
Inserting Text DESCRIPTION 3-38
Exporting Functions EXPORTS 3-38
Defining Local Storage HEAPSIZE 3-39
Importing Functions IMPORTS 3-40
Naming Library Modules LIBRARY 3-41
Naming Executable Modules NAME 3-42
Preserving Export Ordinals OLD 3-43
Setting OS/2 Environment PROTMODE 3-44
Defining Segments SEGMENTS 3-44

vii

Defining local Stack STACKSIZE 3-46
Adding an Executable File to a Module STUB 3-46
The Map File 3-47
Advanced LINK Topics 3-49

Using Overlays 3-49
Overlay Manager Prompts 3-50

Generati ng OS/2 Mode Appl ications 3-50
Order of Segments 3-51

Combined Segments 3-51
Groups .. ".................................. 3-52
Fix-ups 3-52
Rules for Segment Packing in LINK 3-53

Compiling and linking in One Step Using the Cl Command 3-55
linking with the Cl Command 3-59
Compiling and linking Combined libraries 3-60

Advanced Cl Topics 3-62
Specifying Overlays () 3-62
Compiling without linking Ic 3-63
Creating Bound Applications IFb 3-63
Compiling Presentation Manager Applications IGw 3-65
Restricting the length of External Names IH 3-65
Suppressing logo lines Inologo 3-66
Declaring Functions as Intrinsic 10i 3-66
Naming Modules and Segments INM, INT, IND 3-68
Placing Variables and Functions in Segments 3-70
loop Optimization 101 3-71
Setting line Width and Page length lSI, ISp 3-72
Setting Titles and Subtitles 1St, ISs 3-74
Specifying Source Files ITc 3-74
labeling the Object File IV 3-75
Creating Special Object File Records #pragma comment 3-75
Writing Output Messages #pragma message 3-76

Chapter 4. Running C Programs 4-1
Passing Data to a Program argc, argv, envp 4-1
Exiting from the Main Function 4-3
Expanding Global Filename Arguments 4-4
Suppressing Command Processing 4-5
Suppressing Null Pointer Checks 4-6

Chapter 5. Using the Program Utilities 5-1
MAKE .. 5-1

Using MAKE 5-1

vIII

Starti ng MAKE 5-6
Advanced MAKE Topics 5-10

LIB ... 5-21
Overview of LIB Operation 5-22
Starti ng LI B 5-24
Prompts for LIB 5-24
Command-Prompt Method for LIB 5-27
Response File for LIB 5-29
Extending Lines 5-30
Ending the Library Session 5-30
Selecting Default Responses to Prompts 5-30
Library Tasks 5-30

EXEMOD 5-35
Displaying Current Status of Header Fields 5-35
Changing Fields in the File Header 5-35
Parameters 5-36
Effect on Packed Files 5-36

Chapter 6. Interfacing with IBM Macro Assembler/2 6-1
Segment Model 6-1

Groups 6-3
The C Calling Sequence 6-5
Entering an Assembler Routine 6-6
Return Values 6-7
Exiting from a Routine 6-7

Naming Conventions 6-8
Register Considerations 6-9

Appendix A. Error Messages A-1
Run-Time Error Messages A-1

System Generated Error Messages A-1
Floating-Point Exceptions A-4
Error-Handling Routine Error Messages A-6
Math Errors A-6

Compiler Error Messages A-7
Fatal Error Messages A-9
Error Messages During Compiling A-16
Warning Error Messages A-34

Command Area Error Messages A-48
Fatal Error Messages A-48
Warning Error Messages A-51
Compiler Internal Error Messages A-53
Redirecting Compiler Error Messages A-54

Ix

Linker Error Messages A-55
Fatal Error Messages A-56
Non-Fatal Error Messages A-63
Warning Error Messages A-67

Library Manager Error Messages A-72
Fatal Error Messages A-72
Error Messages A-75
Warning Error Messages A-75

MAKE Error Messages A-77
Fatal Error Messages A-77
Warning Error Messages A-82

EXEMOD Error Messages A-83
Fatal Error Messages A-83
Warning Error Messages A-84

Errno Value Error Messages A-85
Errno Values A-85

Index .. X-1

x

Summary of Changes

Following are the differences between IBM C/2 Version 1.00 and
Version 1.10 that affect this book.

Technical Changes

MAKE
The IBM MAKE/2 1.10 utility supports most of the functions of IBM
MAKE/2 1.00 with the following enhancements:

• Uses the tools initialization file, TOOLS.lNI.
• Accepts command-prompt arguments from a file.
• Does not require build lines to begin with a TAB.
• Does not require a blank line to separate a target's build lines

from the next target in the makefile.
• Uses MAKEFILE as the default MAKE description file.
• Recognizes single-character macros without parentheses.
• Supports special macros.
• Supports substitution sequences in macro invocations.
• Allows you to redefine macros so that different targets can use

different values for the same macro (this prevents MAKE from
supporting forward referencing).

• Provides global filename character expansion in targets.
• Supports include files.
• Supports conditionals and other directives.
• Supports path searching for dependents.
• Allows both I and \ as path separators.
• Allows you to explicitly generate an input script file from within a

MAKE description file.
• Provides a means of overriding option settings for specific targets

or for changing applicable command option settings from within
the MAKE description file.

• Allows the double colon (::) as a separator between targets and
dependents.

• Allows you to redirect stderr by means of a command option.

xl

Modifications
The IBM MAKE/2, Version 1.00, is not fully compatible with Version
1.10. IBM MAKE/2, Version 1.10, provides basic target and depend­
ency features. Targets are no longer evaluated sequentially. When
you invoke NMAKE, the targets you specify are updated regardless of
theil' positions in the file. If you do not specify targets, NMAKE
updates the first target in the file.

To convert these description files:

1. Create a new description block at the top of the file.

2. Give this block a pseudotarget names ALL.

3. Set the dependents for the block to all of the other targets in the
file.

When MAKE executes the description, it assumes you want to build
the target ALL and builds all targets in the file.

LINK Enhancements
IBM LINK Version 1.10:

Provides a new option that prevents prompting for libraries
and object modules in batch mode.

Allows programs with 80386 object code to be linked.

Reduces performance penalty for linking objects with
CodeView.

Issues a warning when a program includes an impossibly
large stack size.

Provides extended exit code val ues.

Allows the INOF and IFAR options for DOS mode programs.

LIB Utility Enhancements
IBM LIB Version 1.10:

xII

Has been modified so that library routines can be debugged
at the source code level if source files are available.

Complier Software Enhancements
Under Version 1.10, the compiler software:

Allows you to write and debug dynamically linked applica­
tions.

Allows you to write and debug programs that run under
control of the Presentation Manager.

Allows you to write and debug programs that contain multiple
threads that are running under OS/2.

Includes several new compiler options and pragmas.

Organizational Changes

• The installation and practice session information has been moved
from this book to IBM C/2 Fundamentals.

• Error messages have been moved from IBM C/2 Language Refer­
ence to this book.

xIII

xlv

Chapter 1. Introducing IBM C/2

This book has the following organization:

Chapter 1, Introducing IBM C/2: Describes the notation conventions
used in this book, and some of the features and functions of IBM
C/2TM.

Chapter 2, Compiling: Explains how to compile program source files
into object modules using the CC command and its options.

Chapter 3, Linking A Program: Shows how to link object modules
into an executable program using the LINK command and its options.
It also tells how to compile and link source files into executable pro­
grams in one step, using the CL command and its options.

Chapter 4, Running A C Program: Tells how to run a program. It
also explains how to pass data to a program, how to exit from the
main function, how to suppress command-prompt processing, and
how to suppress null-pointer checks.

Chapter 5, Using the Program Utilities: Tells how to maintain
program modules using the MAKE utility, its options, and the MAKE
description files. It also describes how to manage object module
libraries using the LIB utility. It describes how to create and change
a library file, how to add, delete, replace, or extract library modules,
and how to combine libraries. It also shows how to create a cross­
reference listing, perform consistency checks, and set the library
page size. Additionally, it describes how to change file headers
using the EXEMOD utility.

Chapter 6, Interfaces with the IBM Macro Assembler/2: Tells how to
write programs to link with assembler language modules or to use as
modules of assembler language programs.

C/2 is a trademark of the International Business Machines Corporation.

Introducing IBM C/2 1-1

Appendix A, Error Messages: References the error messages that
the IBM C/2 compiler can display and the error conditions that
produce them.

Index: Includes entries for this book only.

Conventions Used In This Book
This book uses certain conventions in defining operating system com­
mands, formats of functions, names, and terms.

Convention Meaning
Boldface Words or numerics printed in bold indicate proce­

dural tasks, menu items, directives, function calls,
library functions, statements, keywords, and values.

Italics Words or numerics printed in italics represent infor­
mation you supply, such as variables and filenames.
Italics also introduce new terms or concepts.

Uppercase Words printed in CAPITAL letters include DOS com­
mands, OS/2 commands, dialog commands, options,
programs, filenames, libraries, and utilities.

Color Color indicates screen responses and programming
examples.

Ellipses Ellipses (...) indicate that you supply additional infor­
mation in the form shown.

Brackets Brackets [] indicate optional items supplied to com­
mands.

Vertical Bars Items separated by a vertical bar (I) mean that you
can enter either one of the separated items. For
example:

ONloFF

means you can enter ON or OFF but not both.

1-2 Introducing IBM C/2

The following terms have the specified reference:

Term
LINK
LIB
MAKE
CodeViewl
EXEMOD
Assembler

Reference
IBM Linker/2, Version 1.10
IBM Library Manager/2, Version 1.10
IBM MAKE/2, Version 1.10
IBM CodeView
IBM EXEMOO/2 Version 1.10
IBM Macro Assembler/2.

Hexadecimal Representation
This book represents hexadecimal numbers in three ways. The letter
H (or h) shows hexadecimal system calls, such as 59H (or 59h), in
~OS. All other hexadecimal numbers use the standard C represen­
tation Oxhexdigits, such as Ox1F.

Syntax Diagrams
Syntax diagrams define the format of commands entered at the
command prompt, the command name is at the beginning (top left
corner).

The following shows the form of a syntax diagram:

COMMAND ~ 7 required
item 1

path

+ ~\..~---J---'- required ----r-.
item 2

path

..... -~\..----J---:r----c"\..---J-..,--reqUired ---------1
item 3

optional path
item

Understanding Syntax Terms

Syntax Term
syntax diagram

baseline

Description
An illustration of the structure and options of a
command.
A horizontal line that connects each of the
required items in turn.

lCodeView is a trademark of the Microsoft Corporation.

Introducing IBM C/2 1-3

branch lines

keyword

variable

required Items

optional Items

repeat symbol

Multiple horizontal lines that show choices.
Branch lines are below the baseline.
Words shown in all uppercase letters. Compiler
command and utility names are keywords. You
can type keywords in any combination of upper­
case and lowercase letters.
Items shown in lowercase italic letters mean that
you are to substitute the item. For example,
filename indicates that you should type the name
of your file in place of filename.
Items that must be included. Required items
appear on the baseline. Command names are
required items.
Items that you can i ncl ude if you choose to do so.
Optional items appear below the baseline.
A symbol that indicates you can specify more than
one choice or a single choice more than once.

Symbols show baseline continuation and completion as follows:

-+ Indicates that the command syntax is continued.

~ Indicates that a line continues from the previous line.

--I Indicates the end of a command.

tJ Indicates that you can specify a choice more than once.

1-4 Introducing IBM C/2

Reading a Syntax Diagram

1. Start at the top left of the diagram.
2. Follow only one line at a time going from left to right and top to

bottom. Items on the lines indicate what you must or can specify
and the required sequence.

3. When you encounter one or more branch lines, you must make a
choice of items. Follow the line you choose from left to right
except where you ~ncounter the repeat sym bol.

With many commands, you can enter as many of a group of options
as you want. These options are in a box that has a repeat symbol
around it. You can follow the arrow through the box until you have
selected all the options you want to use. Once you have chosen an
option from the box, you cannot choose the same option again.

Operating Systems
Throughout these books, the references to operating systems have
the following meaning:

Abbreviation
DOS
DOS mode
OS/2

Meaning
DOS 3.30 or 4.00
DOS or the DOS mode of OS/2
IBM Operating System/2™.

Operating System/2 and OS/2 are trademarks of the International Busi­
ness Machines Corporation.

Introducing IBM C/2 1-5

1-8 Introducing IBM C/2

Chapter 2. Compiling

This chapter explains how to run the compiler using the CC command
and how to use C compiler options.

The CC command is all you need to compile C source files with IBM
C/2; it runs all of the compiler passes for you. The CC command also
optimizes a program. You need not give an optimizing instruction
except to change the way CC optimizes or to disable optimization
altogether. See "Optimizing 10" on page 2-40 for more on these
choices.

By drawing on the large set of CC options, you can control and modify
the tasks performed by the command. For example, you can direct
IBM C/2 to create an object listing file or a preprocessed listing.
Compiler options also let you supply information that applies to the
compiling process, such as the definitions for manifest (symbolic)
constants, macros, and the kinds of warning messages you want to
see.

To call both the compiler and the linker at the same time use the CL
command instead of the CC and LINK commands. The CL command
is described in Chapter 3, "Linking A Program."

For a brief description of the IBM C/2 compiler options see "Available
Compiler Options" on page 2-12. Additional options are covered in
"Advanced Topics" on page 2-48.

Running the Compiler
IBM C/2 requires two types of input: a command to start the compiler
and responses to prompts. Start the compiler by typing CC at the
command prompt. IBM C/2 prompts for the input it needs by dis­
playing the following four messages, one at a time:

Source filename [.C]:
Object filename [filename.OBJ]:
Source listing [NUL.LST]:
Object listing [NUL.COD]:

To stop a compiling session for any reason, press either Ctrl + C or
Ctrl + Break at any time to return to the command prompt area, where
you can start IBM C/2 from the beginning.

Compiling 2-1

File-Naming Conventions
Use any combination of uppercase and lowercase letters for the
filenames you type in response to the prompts. For example, the
filenames abcde.fgh, AbCdE.FgH, and ABCDE.fgh are equivalent.

You can include spaces before or after filenames but not within them.
Options can appear anywhere spaces can appear. See "Using the
Compiler Options" on page 2-10 for more information.

CC uses the default file extensions .C, .OBJ, .LST, and .COD when
you do not supply extensions with your filenam!s. You can cancel
the default extension for a particular prompt by specifying a different
extension. To enter a filename that has no extension, type the name
followed by a period. For example, typing ABC. in response to a
prompt tells IBM C/2 that the specified file has no extension. Typing
ABC (no period) tells IBM C/2 to use the default extension for that
prompt.

To cancel defaults, type all or part of the filename. For example, if
the current drive is B and you want the output file to be written to the
diskette in drive A, type the response A:. The compiler writes the
output file on drive A with the default filename.

If you type any part of a legal pathname following the source listing
prompt, IBM C/2 produces a source-listing file. The default name is
the filename of the source file with the extension .LST. The filename
of a file is the portion of the name preceding the period. For
example, if you compile a file named TEST.C and type A: following
the source listing prompt, IBM C/2 produces a source-listing file on
drive A with the name A:TEST.LST.

IBM C/2 handles your response to the object listing prompt in the
same manner, using the extension .COD.

Special Filenames
You can use the following DOS device names as filenames with the
CC command. This allows you to direct files to your terminal or to a
printer. You cannot use these nam~s for ordinary filenames.

Name
AUX
CON

Device
An auxiliary device (usually the same as COM1)
The terminal

2-2 Compiling

The printer (usually the same as LPT1) PRN
NUL A null (nonexistent) file NUL as a filename means that the

compiler does not create a file.
LPT1
LPT2
LPT3
COM1
COM2

First parallel printer
Second parallel printer
Third parallel printer
First serial port
Second serial port.

Even if you add device designations or filename extensions to these
special filenames, they remain associated with the devices listed
above. For example, A:CON.XXX refers to the terminal and is not the
name of a file.

Note: Object files contain machine code and are not printable. When
responding to the object filename prompt, do not give a
filename that refers to a printer or terminal. When using
device names, do not follow them with a colon. IBM C/2 does
not recognize the colon. For example, use CON or PRN, not
CON: or PRN:, in your responses to prompts.

Source Filename Prompt
Following the source filename prompt, you specify the file that IBM
C/2 compiles. If the extension is .C, you do not have to give an exten­
sion. IBM C/2 looks for a file with that extension. Do not use the
extensions .ASM or .OBJ in the names of C source files.

Pathnames are allowed with the source filename. You can specify
the pathname of a source file in another directory or on another disk.

IBM C/2 displays an error message if you do not supply a source
filename or if you use a reserved extension.

Object Filename Prompt
Following the object filename prompt, you can supply a name for the
object file produced by compiling the source file. Give the object file
any name and any extension. It is recommended that you use the
conventional .OBJ extension because it simplifies the operation of
LINK and LIB, both use .OBJ as the default extension when proc­
essing object files.

If you supply only a drive or directory specification following the
object filename prompt, IBM C/2 creates the object file in the given

Compiling 2-3

drive or directory and uses the default filename. You can use this
option to create the object file in another directory or on another disk.
When you give only a directory specification, it must end with a back­
slash (\) so that IBM C/2 can distinguish between a directory specifi­
cation and a filename.

The default name displayed for the object file is the filename of the
source file with an .OBJ extension. If you supply no pathname, IBM
C/2 creates the object file in the current working directory.

Source Listing Prompt
Following the source listing prompt, you can tell IBM C/2 to create a
source listing. If you supply any filename following this prompt, the
compiler creates a source listing, using the filename you supply. By
convention, these listings are given the extension .LST, but you are
free to choose any extension. When you do not supply a filename,
the default is the special name NUL.LST, which tells the compiler not
to create a listing.

Object Listing Prompt
Following the object listing prompt, you can tell IBM C/2 to create an
object listing for the compiled file. The object listing contains the
machine instructions and assembled code for your program.

If you supply a filename following this prompt, IBM C/2 creates an
object listing, using the filename you supply. By convention, these
listings are given the extension .COD, but you can choose any exten­
sion you like. When you do not supply a filename, the default is the
special name NUL.COD, which tells IBM C/2 not to create a listing.

The CC command optimizes by default, so the object listing reflects
the optimized code. Since optimization may involve rearrangement
of code, the relationships between your source file and the machine
instructions may not be clear. To produce a listing without opti­
mizing, use the IOd option, discussed under "Preparing for Debug­
ging IZd, IZi, IOd" on page 2-38.

To produce a combined source and object code listing, use the IFc
option. To produce an assembler listing, use the IFa option. (An
assembler listing is a listing of the assembler code, that can be used
as input to IBM Macro Assembler/2.) See "ProduCing Listing Files
IFs, IFI, IFa, IFc" on page 2-16 for additional information.

2-4 Compiling

Selecting Default Responses
To select the default response for the current prompt, press Enter
without giving any other response. The next prompt appears.

To select default responses for all remaining prompts, type a single
semicolon (;) after the filename following the source filename, object
filename, or source listing prompts. Once the semicolon is entered,
you cannot respond to any of the remaining prompts for that com­
piling session. The compiler ignores any text appearing after the
semicolon (such as an option). Use the semicolon to save time when
the default responses are acceptable.

There is no default for the first prompt, source filename. The default
for the object filename is the filename of the source file with an .OBJ
extension. The default for the source listing prompt is the special
name NUL.LST, which tells IBM C/2 not to create a source-listing file.
The default for the object listing prompt is the special name
NUL.COD, which tells the compiler not to create an object-listing file.

If you respond to the source filename prompt with a nonexistent
filename, or to the object filename, object listing, or source listing
prompts with an incorrect pathname, IBM C/2 displays an error
message and ends. You must start the compiler again with the
correct information.

Using the Source Listing
The information in the source listing helps debug programs as they
are being developed and documents the structure of a finished
program. The source listing contains the numbered source code
lines, embedded error messages, and symbol tables. Error mes­
sages appear in the listing after the line that caused the error. The
line number given in the error message corresponds to the number of
the source line immediately above the message in the source listing.
The compiler does not expand include files in the source listing. It
places any errors detected in an include file in the source listing fol­
lowing the #Include directive for that file.

At the end of each function, a table of local symbols is given. This
table has a Name field, a Class field, an Offset field, and a Register
field for each local symbol declared in the function. The Class field of
a symbol is auto if the symbol is a non-static local variable or param
if the symbol is a formal parameter. The Offset field of a symbol is its

Compiling 2-5

offset address relative to the frame pointer (that is, the BP register).
The Offset field is positive for param symbols and negative for auto
symbols with auto storage class. The Register field indicates if the
variable is stored in a register and, if so, in which one (SI or 01).

At the end of the source code, a table of global symbols is given.
This table gives a Name field, a Type field, a Size field, a Class field,
and an Offset field for each global symbol, external symbol, and
statically-reserved variable declared in the source file.

The Type field of a symbol gives a simplified version of its type as
declared in the source file. The Type entry for a function is either a
near or a far function, depending on the storage model and how the
function was declared. The Type entry for a pointer is near pointer,
far pointer, or huge pointer. For enumeration variables, the Type
entry is Int. For structures, unions, and arrays, the Type entry is
struct/array.

The Size field of a symbol is defined only for variables. This field
specifies the number of bytes of storage reserved for the variable.
The amount of storage reserved for an external array may not be
known, so its Size field may be undefined.

The Offset field of a symbol is defined only for symbols with an entry
of global or static in the Class field. For variables, the Offset field
gives the relative offset of the location of the stored variable in the
data segment for the program file being compiled. Because the
linker combines several logical data segments into a physical
segment, this number is useful only for determining the relative posi­
tion of storage of variables. For functions, the Offset field gives the
relative offset of the start of the function in the logical code segment.
For small- and compact-model programs, logical code segments from
different program files are combined into a single physical segment
by the linker. The Offset field is useful for determining the relative
positions of different functions defined in the same source file.
However, for medium-, large-, and huge-model programs, each
logical code segment becomes a unique physical segment. In these
cases, the Offset field gives the actual offset of the function in its run­
time code segment.

2·& Compiling

Using the Command-Prompt Method
After you understand how IBM C/2 prompts and responses work, you
can use the command-prompt method to run the compiler. With this
method, you type all the filenames and options in the command you
use to start the compiler.

The entries following CC are responses to the command prompts.
You can include spaces before or after filenames but not within them.
Options can appear anywhere spaces can appear. See "Using the
Compiler Options" on page 2-10 for more information.

Note: The command-prompt form of the CC command is used for the
examples of options in this book.

The command-prompt method has the following form:

CC----8ourcename----~r-------/-------...

~ ,objectname--'

• L .80urcelistlngname J C .objectlistingname J

See option
list below

Leave the objectname, sourcelistingname, and objectlistingname
fields blank to select the default responses. Options can be placed
anywhere at the command prompt, but they must be placed before
the semicolon. When the compiler finds a semicolon at the command
prompt, it uses the default responses to the remaining prompts. The
compiler ignores any text after the semicolon at the command
prompt. See "Using the Compiler Options" on page 2-10 for more
information about options at the command prompt.

The comma serves as a separator and also has a special function at
the command prompt. If you place a comma after the objectname

Compiling 2-7

field at the command prompt (whether or not an objectname is given),
the default for the source listing field is changed from NUL.lST to the
filename of the source file plus .lST. Similarly, if a comma follows
the sourcelistingname field, the default for the objectlistingname field
is changed from NUL.COD to the filename of the source file plus
.COD.

Example
The following two commands are equivalent:

CC TEST, TEST, TEST, TEST;
CC TEST, , , ;

In the first command, the name TEST is explicitly specified for all
prompts, so TEST.C is compiled and three files are produced:
TEST.OBJ, TEST.lST, and TEST.COD.

In the second command, only the source filename is supplied. The
default name TEST.OBJ is used for the object filename because none
is specified. The comma following the object filename field causes
the default for the source listing file to be changed to TEST.lST.
Because no alternative name is supplied at the command prompt, the
compiler creates a listing file named TEST.lST. It creates the object­
listing file TEST.COD in a similar fashion.

The following example uses the semicolon to tell CC not to produce
listing files:

CC TEST;

The command tells the compiler to create an object file named
TEST.OBJ but not to create a listing file. No comma is present in the
command to change the default from NUL.COD to TEST.COD and
NUL.lST to TEST.lST.

You can combine the prompt method and command-prompt methods
by giving CC a partial command. It prompts for fields not supplied.
You can end a partial command with a semicolon, a filename, or a
comma:

semicolon CC uses the default responses for the remaining
prompts.

filename CC prompts you for the remaining responses, if any.

2-8 Compiling

comma If you give a source filename followed by a comma, CC
prompts you for the object filename, source listing name,
and object listing name, as usual. However, if you
supply both a source filename and an object filename,
then end the command with a comma, CC changes the
default source-listing name from NUL.LST to the filename
of the source file plus .LST. CC then prompts you for a
source-listing name to allow you to cancel the default.
(You can give the name NUL.LST to suppress the cre­
ation of a source listing). The default object-listing name
is changed in a similar fashion if the command ends with
a source listing name followed by a comma.

Options can also be placed at the end of a partial command.

Example
The following partial command tells IBM C/2 to compile a source
filename ASK.C and place the results in the object filename
TELL.OBJ:.

CC ASK.C, TELL.OBJ

I The command also causes CC to display the following prompt,
because you supplied the source filename and object filename but
not the source or object listing filenames:

Source listing [NUL.LST]:

The next command tells CC to use the default response (no file) for
the source and object listings. No further prompts appear in this
case:

CC ASK, TELL;

In the following command, the trailing comma (after TELL.OBJ) has a
special meaning:

CC ASK.C, TELL.OBJ,

The trailing comma causes CC to prompt as follows:

Source listing [ASK.LST]:

The default name in brackets is ASK.LST rather than NUL.LST. In this
case an object listing is created by default, unless you cancel the
default to specify a different listing name (or specify the name NUL to
suppress the listing).

Compiling 2-9

The last command tells CC to start with the object filename prompt
because only the source filename is supplied:

CC ASK

C Compiler Error Messages
The error messages produced by the C compiler fall into five
categories: warning messages, fatal error messages, compilation
error messages, command area messages, and compiler internal
error messages. The messages for each category are listed in
numeric order and described in detail in Appendix A of this book.

Note: You can control the level of warnings produced by the com-
piler using the IW option, as described under "Setting the
Warning level/W Iw" on page 2-37.

USing the Compiler Options
A number of command options are available to control and modify the
operation of the compiler. (See "Available Compiler Options" on
page 2-12.) Options must begin with a slash (I) or a hyphen (-) and
contain one or more letters. For example, IZg and -Zg are both
acceptable forms of the Zg·option.

Note: The CC command is case sensitive to the option letter, so you
must specify options exactly as shown in this book. For more
information about case, see "Allowing Case-Insensitive
Options ICASE" on page 2-16.

You can place options anywhere you can place a space when you use
the CC command, but the command ignores options following a semi­
colon. Thus, you can place options before or after any of the four
filenames (source filename, object filename, sourcelisting, and
objectlisting). The options apply to the entire compiling process, not
only to the Ii nes they appear on.

For Cl, the options must appear before the source file they apply to.
For example,

CL lOx progl. c

uses maximum optimization when compiling PROG1.C, but

CL progl.c lOx prog2.c

2-10 Compiling

uses default optimization for PROG1.C and maximum optimization for
PROG2.C. Only the linking options, such as -c or -link, may be given
following the name of the source file.

Some options use arguments, such as filenames, strings, or numbers.
In most of these cases, spaces are allowed between the option letter
and the argument. For example, IW 3 and IW3 are both acceptable
forms of the IW option.

The IGt, IFa, and IFc options are the only exceptions to the previous
example. The IGt option accepts an optional numerical argument,
whereas the IF options accept an optional path name or partial
pathname argument. When you supply an argument to one of these
options, no spaces can be placed between the option and the argu­
ment. For example, IFcMINGLE is acceptable but IFc MINGLE is not.

Note: Options that consist of more than one letter, such as IFc,
cannot have spaces between the letters. But you must put at
least one space between separate options in the list. For
example: 10as IFc.

The order options are specified in is not important. They can be
given following any prompt or at any command prompt. The default
for the prompt is still used if you supply an option but no filename in
response to the prompt.

Example
The following examples produce exactly the same results. The
source file LOAD.C on drive A is compiled. The object file is named
OUT.OBJ. The source listing file is named LOAD.SRC.
Example 1
CC
Source filename [.C]: A:\LOAD.C
Object filename [LOAD.OBJ]: OUT
Source listing [NUL.LST]: LOAD.SRC
Object listing [NUL.COD]: /Oas /Fc

Example 2
CC A:\LOAD.C, OUT,LOAD.SRC /Oas /Fc;

The IFc option produces a combined source and assembly code
listing. Because no argument was given with the IFc option, the
listing is given the default name LOAD.COD, formed by adding .COD
to the filename of the source file. The object file and combined listing
are both created on the default drive because no drive was specified.
The 10as option tells the compiler how to optimize the object file.

Compiling 2-11

The IFc and 10as options are explained under "Producing Listing
Files IFs, IFI, IFa, IFc" on page 2-16 and "Optimizing 10" on
page 2-40.

Available Compiler Options
The following table lists the IBM C/2 compiler options, a brief
description of what the options do and whether you can use the
options with the CC command, the CL command, or both.

Option Description Use with Page

Astring Creates customized CL only 2-65
storage model.

Astorage model Sets up storage for your Both 2-44
program and determines
how the program is
loaded.

c Suppresses linking. CL only 3-63

C Preserves comments Both 2-28
during preprocessing.

ICASE Allows use of IBM C 1.00 CC only 2-16
options.

Dname Defines a constant or Both 2-24
macro in a source file.

E Produces a listing of pre- Both 2-27
processed files.

EP Produces a listing of pre- CL only 2-27
processed files.

Fa Produces an assembler Both 2-16
listing.

Fbname Creates bound applica- CL only 3-63
tions.

Fc Produces mixed source Both 2-16
and object listing.

Feprogramname Names the executable file. CL only 3-57

F hexnumber Sets stack size to CL only 3-61
hexnumber.

FI Produces object listing. CL only 2-16

2-12 Compiling

Option Description Use with Page

FPa, FPc, FPi, Handle floating-point Both 2-32
FPi87, FPc87 operations.

Fmmapname Creates the map file. CL only 3-57

Fo Names the object file. CL only 3-57

Fs Produces source listing. CL only 2-16

GO, G1, G2 Enable the appropriate Both 2-37
instruction set.

Gc Controls function-calling Both 2-69
sequence.

Gm Allocates some data items. CL only 3-61

Gs Removes stack probes. Both 2-55

Gtnumber Allocates data to a new Both 2-57
data segment.

Gw Compiles a Presentation CL only 3-65
Manager application.

HELP Lists the compiler options. Both 2-15

Hnumber Restricts the length of CL only 3-65
external names.

Idirname Searches for Include direc- Both 2-28
tories.

J Changes the defau It char Both 2-53
type.

Lc Creates a DOS mode exe- CL only 2-47
cutable fi Ie.

link Passes data to LINK. CL only 3-61

Lp Creates an OS/2 mode CL only 2-47
executable file.

NDname Sets the data segment CL only 3-68
name.

NMname Sets the module name. CL only 3-68

nologo Suppresses writing logo Both 3-66
and copyright lines.

NT Sets the text segment CL only 3-68
name.

Compiling 2-13

Option Description Use with Page

Oa Cancels alias checking. Both 2-40

Od Turns off optimization. Both 2-38

Oi Declares some functions CL only 3-66
as intrinsic.

01 Turns on loop optimiza- Both 3-71
tion.

On Turns off loop optimiza- CL only 2-40
tions.

Op Enforces precision in Both 2-40
floating-point operations.

Os Favors code size during Both 2-40
optimization.

Ot Favors run time during Both 2-40
optimization.

Ow Restricts assumptions. CL only 2-40

Ox Performs maximum opti- Both 2-40
mization.

P Produces listing of pre- Both 2-27
processed files.

S Causes the compiler to CC only 2-30
perform a syntax check.

Sl/ength, Specify line width and CL only 3-72
Sp/ength page length.

Sttit/e, Sstitle Specify title and subtitle. CL only 3-74

Tcfilename Indicates a C source file. CL only 3-74

u Undefines names. CL only 2-26

U Turns off definition of pre- Both 2-26
defined identifiers.

Vstring Labels the object file. CL only 2-26

w Sets the level of warning CL only 2-37
messages.

Wnumber Sets the level of warning Both 2-37
messages.

2-14 Compiling

Option Description

X Excludes directory from
search.

Za Enables language exten-
sions.

Zc Enables language exten-
sions.

Zd Enables language exten-
sions.

Ze Enables language exten-
sions.

Zg Produces function declara-
tions.

Zi Produces an object file
containing debugging
information.

ZI Suppresses selection of
default libraries.

Zp Packs structure data.

Zpn Specifies placement of
struct members.

Zs Causes the compiler to
perform a syntax check.

Listing the Compiler Options
IHELP

Use with Page

CL only 2-28

Both 2-48

CL only 2-48

Both 2-38

Both 2-48

Both 2-30

Both 2-38

Both 2-52

Both 2-51

CL only 2-51

CL only 2-30

This option displays a list of the compiler options. You can specify
IHELP as part of the CC command or as part of the response to aCe
prompt. In either case, CC processes all information on the line con­
taining IHELP, prints the command list, and, if needed, reissues the
current prompt for further input.

Format

/HELP

Compiling 2-15

All of the input you have given up to this point has been processed.
For example, if you have typed a filename followed by IHELP, that
filename appears as the default value when the prompt is reissued.

The only exception to these rules is for source filenames. If you type
the source filename with IHELP, the source-file prompt is not reis­
sued. Instead, the object-file prompt is displayed after the command
list.

Allowing Case-Insensitive Options
ICASE
This option permits you to use options with IBM C/2 that you used
with the IBM C Compiler Version 1.00. This option works with the CC
command only.

Format

ICASE

When you specify ICASE, all options passed to the compiler can use
uppercase or lowercase letters. This provides a subset of compiler
options that are available in the IBM C Compiler Version 1.00.
Because the CC command is case-insensitive, CC cannot support
some case-sensitive switches. To handle CC commands correctly in
make or batch files written for IBM C Version 1.00, the ICASE switch
lets CC run without regard to case sensitivity in order to avoid misin­
terpreting options with case-sensitive meanings. The ICASE option is
itself case insensitive. The compiler can also read this option from
the CC environment variable.

Producing Listing Files
IFs, IFI, IFa, IFc
In addition to the command-prompt method of creating listing files,
you can use options to create source and object listings. You can
also use options to create assembler listings as well as mixed source
and assembler listings that are not available through prompts.

To set the format of generated listings, see "Setting Line Width and
Page Length lSI, ISp" on page 3-72 and "Setting Titles and Subtitles
1St, ISs" on page 3-74.

2-16 Compiling

Format

IFs[listjile] Produces source listing
IF1[listjile] Produces object listing
IFa[listjile] Produces assembler listing
IFc[listjile] Produces mixed source and object listing.
#pragma page([n]) Skips pages in source listing output.
#pragma skip([n]) Skips lines in source listing output.

The listfile, if given, must immediately follow the option. It can be any
of the following entries.

Entry
filename

Directory specification

Omitted

Result
CC uses the given filename, adding the
default extension if the filename has no
extension. The filename can include a path
to tell CC where to create the listing.
CC uses the default I isti ng name (the base
name of the source file plus the default
extension) to create the listing in the given
directory. The directory specification must
end with a backslash so that CC can disti n-
guish between it and a filename.
When you give no listfile, CC uses the
default listing name (the base name of the
source file plus the default extension) to
create the listing in the current working
directory.

The default extension is .LST for the IFs option, .COD for the IFc and
IFI options, and .ASM for the IFa option.

The #pragma page and #pragma skip pragmas default to 1. For both,
n must be a non-negative integer constant. The following example
causes the following source line to start at the top of the next page.

Example

#pragma page (1)

The compiler can produce at most one source-listing file and one var­
iation of the object listing each time you compile. If you use both the
IFa and the IFI options in one command, the compiler produces only
one file. The IFc option cancels other listing options. Whenever you
use IFc, the compiler produces a combined listing. If you give con­
flicting names for a listing file (for example, one following the prompt
and one with the option), the name specified last has precedence.
The IFs option is recognized only by the CL command.

Compiling 2-17

IFs Option
This option produces a source listing file with the default extension
. LST.

The following example shows a section of code from a source listing
file:

Line# Source Line

1 #include <stdio.h>
2
3 main(argc, argv)
4 int argc;
5 char *argv[];
6 {
7
8
9
10

FILE *infile;
char *name, line[100];
int nlines;

11 if (argc > 1)
12 {
13 nane = argv[argc - 1];

***** c.c(13) : error C2065: 'nane'
: undefined
***** c.c(13) : warning C4047: '=' :
different levels of indirection

14 if «infile = fopen(name,
15 {
16 fprintf(stderr,

UrU» == NULL)

17
18

U%s couldn't open file %s\n U,
argv[0], name);

19
20
21
22

}

1 errors detected

exit (1) ;

The error messages result from the misspelling of the variable name
on line 13.

If the source file cornpiles with no errors more serious than warnings,
the compiler includes tables of segments, local symbols, and global
symbols in the source listing. The compiler does not include symbol
tables if the compiler is unable to finish compiling.

At the end of each function, the compiler gives a table of local
symbols, as shown below for the function main:

2-18 Compiling

main Local Symbols

Name Class Offset Register

name auto -006a
1 ine auto -0068
i nfil e auto -0004
nlines auto -0002
argc param 0004
argv param 0006

The Name column lists the name of each local symbol in the function.
The Class column contains either auto if the symbol is a nonstatic
local variable or param if the symbol is a formal parameter. The
Offset column shows the offset address of the symbol relative to the
frame pointer (that is, the BP register). The Offset number is positive
for param symbols and negative for auto symbols with auto storage
class. The Register column is blank unless the compiler stores the
variable in a register. If the variable is in a register, the column
shows the register 51 or DI.

At the end of the source code, the compiler gives a table of global
symbols, as shown below:

Global Symbols

Name Type Size Class Offset

iob struct/array 160 extern *** -
exit near function *** extern ***
fopen near function *** extern ***
fprintf near function *** extern **
main near function *** global 0000

The Name column lists each global symbol, external symbol, and
statically-reserved variable declared in the source file. The Type
column shows a simplified version of the type of the symbol as
declared in the source file. The Type entry for a function is either
near function or far function, depending on the storage model and
how you declared the function. The Type entry for a pointer is near
pointer, far pointer, or huge pointer. For enumeration variables, the
Type entry is tnt. For structures, unions, and arrays, the Type entry is
struct/array.

The compiler uses the Size column only for variables. This column
specifies the number of bytes of storage reserved for the variable.
You might not know the amount of storage reserved for an external
array; its Size field might be undefined. The Class column contains

Compiling 2-19

either global, common, extern, or static, depending on how you
defined the symbol in the source file.

The compiler uses the Offset column only for symbols with an entry of
global or static in the Class field. For variables, the Offset field gives
the relative offset of the location in storage of the variable in the
logical data segment for the program file you are compiling. Because
the linker generally combines several logical data segments into a
physical segment, this number is useful only for telling the relative
position of storage of variables. For functions, the Offset field gives
the relative offset of the start of the function in the logical code
segment. For small- and compact-model programs, the linker com­
bines logical code segments from different program files into a single
physical segment. The Offset field is useful for telling the relative
positions of different functions defined in the same source file.
However, for medium-, large-, and huge-model programs, each
logical code segment becomes a unique physical segment. In these
cases, the Offset field gives the actual offset of the function in its run­
time code segment. (For more information about storage models see
"Working with Storage Models IA" on page 2-44.)

The last table in the source listing shows the segments used and their
size, as shown below:

Code size = 0057 (87)
Data size = 001c (28)
Bss size = 0000 (0).

The table gives the byte size of each segment first in hexadecimal,
and then in decimal (in parentheses).

IFIOption
This option produces an object listing file and is available only with
the CL command. The object listing contains the machine
instructions and assembler code for your program, as shown in the
following example:

2-20 Compiling

Line 12
*** 00000a 83 7e 04 01
*** 00000e 7e 42

Line 13
*** 000010 8b 76 04
*** 000013 d1 e6
*** 000015 8b 5e 06
*** 000018 8b 40 fe
*** 00001b 89 46 96

Li ne 14
*** 00001e b8 00 00
*** 000021 50
*** 000022 ff 76 96
*** 000025 e8 00 00
*** 000028 83 c4 04
*** 00002b 89 46 fc
*** 00002e 0b c0
*** 000030 75 32

cmp WORD PTR [bp+4].1 ;argc
jle $168

mov si • [bp+4] ;argc
shl si .1
mov bx. [bp+6] ;argv
mov ax. [bx-2] [si]
mov [bp-106].ax ; name

mov ax. OFFSET DGROUP:$SG67
push ax
push WORD PTR [bp-106] :name
call _fopen
add sp.4
mov [bp-4].ax :infile
or ax.ax
jne $168

The sample shows the line numbers in the source code as comments.
The machine instructions are on the left and assembler code is on the
right.

IFa Option
This option produces an assembler listing of your program. The
assembler listing contains the assembler code corresponding to your
C file, as shown below:

: Line 12
cmp WORD PTR [bp+4].1 :argc
jle $168

: Line 13
mov si.[bp+4] :argc
shl si.1
mov bx.[bp+6] ;argv
movax,[bx-2][si]
mov [bp-106],ax :name

: Line 14
mov aX,OFFSET DGROUP:$SG67
push ax
push WORD PTR [bp-106] :name
call _fopen
add sp,4
mov [bp-4],ax :infile
or ax,ax
jne $170

The sample shows the same code as in the object listing sample
except that it omits the machine instructions. This is to ensure the
listing is suitable as input for IBM Macro Assembler/2 (MASM/2).

Compiling 2-21

IFe Option
This option produces a line-by-line combined source and assembler
code listing, showing one line of your source program followed by the
corresponding line (or lines) of machine instructions, as shown in the
following example:

;1*** if (argc > 1) {
; li ne 12

*** 00000a 83 7e 04 01 cmp WORD PTR [bp+4],1 ;argc
*** 00000e 7e 42 jle $168

;1*** name = argv[argc - 1];
li ne 13

*** 000010 8b 76 04 mov si,[bp+4] ;argc
*** 000013 dl e6 shl si,l
*** 000015 8b 5e 06 mov bx,[bp+6] ;argv
*** 000018 8b 40 fe mov ax, [bx-2] [si]
*** 00001b 89 46 96 mov [bp-106],ax ;name

; 1*** if «infile = fopen(name, UrU» == NULL) {
Line 14

*** 00001e b8 00 00 mov ax, OFFSET DGROUP:$SG67
*** 000021 50 push ax
*** 000022 ff 76 96 push WORD PTR [bp-106] ;name
*** 000025 e8 00 00 call _fopen
*** 000028 83 c4 04 add sp,4
*** 00002b 89 46 fc mov [bp-4],ax ;infile
*** 00002e 0b c0 or ax,ax
*** 000030 75 32 jne $170

This sample is like the object-listing sample except that the sample
provides the C source line in addition to the line number.

In a listing file, the names of globally visible functions and variables
begin with an underscore, as shown below (this part is the same for
all three kinds of listings):

EXTRN _exit:NEAR
EXTRN _fopen:NEAR
EXTRN _fprintf:NEAR
EXTRN __ chkstk:NEAR
EXTRN __ iob:BYTE

IBM C/2 adds an underscore as a prefix to all global names to pre­
serve compatibility with other C compilers. If you write assembler
language routines to work with your C program, this naming conven­
tion is important.

The listing can also contain names that begin with more than one
underscore (for example, _chkstk and _lob in the sample). The com­
piler reserves identifiers with more than one leading underscore for
internal use, and you should not use them in your programs except
for those documented in IBM CI2 Language Reference, such as _psp,

2-22 Compiling

_amblkslz, and _'preset(). Avoid creating global names that begin
with an underscore in your C source files. Because the compiler
adds another leading underscore, these names could have two
leading underscores, possibly causing conflicts with the names
reserved by the compiler.

The CC command optimizes by default, so listing files reflect the opti­
mized code. Because optimizing code can involve rearranging it, the
correspondence between your source file and the machine
instructions might not be clear, especially when you use the IFc
option to combine the source and assembler code. To produce a
listing without optimizing, use the IOd option along with the listing
option.

Example

cc HELLO.C /FsHELLO.SRC /FcHELLO.CMB;

CC HELLO /FsHELLO.SRC •• HELLO.LST. HELLO. COD;

In the first example, CC creates a source listing called HELLO.SRC
and a combined source and assembler listing called HELLO.CMB.
The object file has the default name HELLO.OBJ.

The second example produces a source listing called HELLO.LST
rather than HELLO.SRC because the last name provided has preced­
ence. This example also produces an object listing file named
HELLO.COD. The object file i'1 this example has the default name
HELLO.OBJ.

Controlling the Preprocessor
The CC command provides a number of options that give you control
over the operation of the C preprocessor. You can define macros and
manifest (symbolic) constants from the command prompt, change the
search path for include files, and stop compiling a source file after the
preprocessing stage to produce a preprocessed source file listing.

The C preprocessor recognizes only preprocessor directives. It
treats the source file as a text file, processing substitutions and defi­
nitions as directed. See Chapter 9 of IBM CI2 Fundamentals for a
complete discussion of C preprocessor directives.

Compiling 2-23

Defining Constants and Macros
ID
This option lets you define a constant or a macro in a source file.

Format

/Didenti/ier[=[string]]

The identifier is the name of the constant or macro, and the string is
its val ue or meani ng. IDidentifier == and IDidentifier == string cannot
be defined in the CL environment because the SET command does
not accept the = sign, a special character in the CL environment.

If you leave out both the equal sign and the string, the given constant
or macro is assumed to be defined and its value is set to 1. For
example, IDSET is sufficient to define SET.

If you give the equal sign with an empty string, the given constant or
macro is considered defined as the empty string. This definition
effectively removes all occurrences of the identifier from the source
file. For example, IDregister= removes all occurrences of register
from the source file. The identifier register is still considered to be
defined.

The effect of the 10 option is the same as a preprocessor #deflne
directive at the beginning of your source file. The identifier is defined
throughout the source file being compiled.

You can supply a command prompt definition for an identifier that is
also defined within the source file. The command prompt definition
remains in effect until the point of the redefinition in the source file.

Up to 16 definitions can appear in the command, each preceded by
the 10 option. If you need to define more than 16 identifiers, see the
discussion of the IU option under "Removing Definitions of Prede­
fined Identifiers IU, lu" on page 2-26.

Example
The following example defines the manifest constant NEED in the
source file MAIN.C:
cc MAIN.C /DNEED=2;

2-24 Compiling

Spaces are permitted (but not required) between 10 and the identifier.
This definition is equivalent to placing the directive at the beginning
of the source file as follows:

#define NEED 2

The 10 option is especially useful with the #If directive to control the
compiling of statements in the source file. For example, suppose a
source file named OTHER.C contained the following fragment:

#if defined(NEED)

#endif

Also suppose that OTHER.C does not explicitly define NEED (that is,
no #deflne directive for NEED is present). Then, all statements
between the #If and the #endlf directives are compiled only if you
supply a definition of NEED by using 10. You can do this by entering
this command:

cc MAIN.C /DNEED;

This command is sufficient to compile all statements following the #If
directive. NEED does not have to be set to a specific value to be con­
sidered defined. The following command causes the compiler to
ignore (not compile) the statements in the #If block:

cc MAIN.C;

Predefined Identifiers
The compiler defines identifiers that are useful in writing portable
programs. Use these identifiers to compile code sections condi­
tionally, depending on the current processor and operating system.
The predefined identifiers and their functions are:

Identifier
DOS

MJ8086

MJ86xM

Function
Always defined. Identifies the target operating
system as DOS.
Always defined. Identifies the target machine as
a member of the 186 family.
Identifies the target processor as an 8086.
Defined by default or when the IGO option is
given explicitly.
Always defined. Identifies the storage model,
where x is either S (small-model), C (compact­
model), M (medium-model), L (large-model), or H

Compiling 2-25

(huge-model). Small-model is the default. See
"Working with Storage Models IA" on page 2-44
for more information about storage models.

MJ286 Identifies the target processor as an 80286.
Defined when you use the IG1 or IG2 option.

NO_EXT_KEYS No extended keywords. Defined only when you
use the IZa option, disabling special keywords,
such as far and fortran.

_CHAR_UNSIGNED Type char is unsigned. Defined only when you
use the IJ option to make the char type unsigned
by default.

Removing Definitions of Predefined Identifiers
IU,/u
This option turns off the definition of one or more of the predefined
identifiers.

Format

/Uidentijier
/u

For each definition of a predefined identifier you remove, you can
substitute a definition of your own at the command prompt.

For example, the following line removes the definitions of three pre­
defined identifiers. You give the IU option three times to do this.

CC WORK /UDOS /UM_I86 /UM_I86SM;

The lu form of this option turns off all predefined names except
MJ86xM. This form of the option is available with the CL command
only, not with the CC command. The definition of the C constant
NULL is dependent on the memory model, which MJ86xM identifies.
Without a value for memory model, NULL might have an incorrect
value and cause program errors. Use the IU form to turn off the defi­
nition of MJ86xM, if needed.
CL /u WORK.C

If you remove the definitions of all predefined names, you can define
up to 20 identifiers at the command prompt with the 10 option.

2-26 Compiling

Producing a Preprocessed Listing
IP, IE, IEP
These options produce listings of preprocessed files and let you
examine the output of the C preprocessor. The IEP and IP options
are available only with the CL command, not with CC.

Format

IP
IE
IEP

The preprocessed listing file carries out preprocessor directives, per­
forms macro expansions, and removes comments. These options
suppress compiling; no object file, source listing, or object listing is
produced, even if you supply a name following the object filename,
source filename, or object listing prompt.

The IP option writes the preprocessed listing to a file with the same
prefix as the source file but with an .1 extension.

The IE option copies the preprocessed listing to the standard output
(usually your display) and places a #lIne directive in the output at the
beginning and end of each included file. You can save this output by
redirecting it to a file, using the redirection symbols> or ». See
the user's reference information for the operating system for a
description of thes~ symbols.

The IE option is useful to see how macros are expanded, particularly
when compiling errors occur on lines containing macros. The #lIne
directives renumber the lines of the preprocessed file so that errors
produced in later stages of processing refer to the original source file
rather than to the preprocessed file. You can also resubmit the pre­
processed listing for compiling.

The IEP option combines features of the IE and IP options. The com­
piler preprocesses the file and copies it to the standard output, but
adds no #lIne di rectives.

Example
The first example creates the preprocessed file MAIN.I from the
source file MAIN.C:

CL jP main.c

Compiling 2-27

The second example creates a preprocessed file with inserted #lIne
directives from the source file ADD.C. DOS redirects the output to the
file PREADD.C:

cc ADD.C IE; > PREADD.C

The third example produces the same preprocessed output as the
second example without the #lIne directives. The output appears on
the display:

CL IEP add.c

Preserving Comments
IC
This option preserves comments during preprocessing. Normally, the
compiler removes comments from a source file in the preprocessing
stage because they do not serve any purpose in later stages of com­
piling. This option is valid only when you use the IE, IP, or IEP
options. It is available only with the CL command, not with CC.

Format

IC

Example
This example produces a listing named SAMPLE.I. The listing file
contains the original source file, including comments, with all pre­
processor directives expanded and replaced:

CL IP IC SAMPLE.C

Searching for Include Files
II, IX
These options temporarily change the effects of the environment vari­
able INCLUDE. The /I option causes the compiler to search the direc­
tory you specify before searching the standard places given by the
INCLUDE environment variable. You can add more than one include
directory by giving the /I option more than once in the CC command.
The compiler searches the directories in order of their appearance in
the command. The IX option is available only with the CL command.

2-28 Compiling

Format

Ildirectory
IX

The directories are searched only until the specified include file is
found. If the file is not found in the given directories or in the
standard places, the compiler prints an error message and stops
processing. When this occurs, you must restart compiling with a cor­
rected directory specification.

You can prevent the C preprocessor from searching the standard
places for include files by using the IX (exclude) option. When CL
finds the IX option, it considers the list of standard places to be
empty. You use this option often with the II option to define the
location of include files that have the same names as include files
found in other directories but that contain different definitions. See
the second example below.

Example
The first example directs the compiler to search for include files
requested by MAIN.C, first in directory A:\INCLUDE, second in direc­
tory B:\MY\INCLUDE, and finally in the directory or directories
assigned to the INCLUDE environment variable:

cc MAIN.C II A:\INCLUDE II B:\MY\INCLUDE;

In the second example, the compiler looks for include files only in the
directory B:\ALT\INCLUDE. First, the IX option tells CL to consider the
list of standard places empty; then, the II option specifies one direc­
tory to be searched:

CL IX II B:\ALT\INCLUDE MAIN.C

Syntax Checking
The options described in this section are useful in the early stages of
program development. With the IZs option, you can quickly check a
program for syntax errors. With the IZg option, you can produce func­
tion declarations, which you can then use to enhance the
syntax-checking capabilities of the compiler.

Compiling 2-29

Identifying Syntax Errors
IZs, IS
These options cause the compiler to perform a syntax check. Use the
IZs form with the CL command and the IS form with the CC
command.

Format

IZs
IS

If the source file has syntax errors, error messages appear on the
standard output device, which is usually your screen. If a source
listing file is requested, error messages are embedded following the
source line they were detected in.

Example
The following command causes the compiler to perform a syntax
check on PRELlM.C and display messages about any errors it finds
on the screen as well as in PRELlM.LST:

CC /S PRELIM.C, ,PRELIM.LST;

Generating Function Declarations
IZg
This option produces a function declaration for each function defined
in the source file. The function declaration includes the function
return type and an argument type list created from the types of the
formal parameters of the function. Any function declarations already
present in the source file are ignored.

Format

IZg

The produced list of declarations is written to the standard output. It
can be saved in a file by means of the redirection symbols> or ».

When you use the IZg option, the source file is not compiled. As a
result, no object file or object listing is produced. The source listing
is also suppressed.

The list of declarations is helpful for verifying that actual arguments
and formal function parameters are compatible. You can save the list

2-30 Compiling

and include it in the source file to cause the compiler to perform type­
checking. The presence of a declared argument type list for a func­
tion enables compiler type-checking between actual arguments to a
function (given in the function call) and the formal parameters of a
function.

Type-checking can be helpful when writing and debugging C pro­
grams, especially if you are working with older C programs. See the
"Function Declarations" section in Chapter 5 of IBM CI2 Fundamen­
tals for details on function declarations and argument type lists.

You can use the IZg option even if the source program already con­
tains some function declarations. The compiler accepts more than
one occurrence of a function declaration, as long as the declarations
do not conflict. No conflict occurs when one declaration has an argu­
ment type list and another declaration of the same function does not,
as long as the declarations are otherwise identical.

Note: If you use the IZg option and the program contains formal
parameters that have structure, enumeration, or union types
(or pointers to such types), then the declaration of each struc­
ture, enumeration, or union must have a tag. For example,
use the following form:

struct tagA {

} A;

Your program can include calls to IBM C/2 run-time library
routines. The INCLUDE files provided with IBM C/2 contain
function declarations so that you can enable type-checking on
library calls.

Example
The following command causes the compiler to produce argument­
type lists for functions defined in FILE.C:

cc FILE.C /Zg; > FUN_DCL.H

The output is redirected to the file FUN_DCL.H; later, the argument
type lists can be included in the FILE.C to enable argument-type
checking for FILE.C.

Compiling 2-31

Using the Floating-Point Options
IBM C/2 offers several methods of handling floating-point operations.
This section provides an overview of the floating-point options avail­
able and discusses the default floating-point behavior.

Selecting the Floating-Point Options
IFPa, IFPc, IFPc87, IFPi, IFPi87
Select a floating-point operation by using one of the following options.

Format

IFPa Produces floating-point calls and selects alternate math library
IFPc Produces floating-point calls and selects emulator library
IFPc87 Produces floating-point calls and selects 8087/80287/80387 library
IFPi Produces in-line instructions and selects emulator library
IFPi87 Produces in-line instructions and selects 8087/80287/80387 library.

IBM C/2 can use a numeric coprocessor or emulate numeric opera­
tion through an emulator library. The emulator library (EM.UB) pro­
vides a large subset of the software functions of a numeric
coprocessor. The emulator can perform basic operations as accu­
rately as a numeric coprocessor. However, the emulator routines
used for transcendental math functions differ slightly from the corre­
sponding coprocessor functions, causing a slight difference (usually
within 2 bits) in the results of these operations. If you selected the
emulator library when you installed IBM C/2, the installation program
used EM.UB to build combined libraries xUBCEz.UB.

By default, IBM C/2 handles floating-point operations by generating
inline instructions (/FPi option). The emulator library is loaded, but if
a numeric coprocessor is present at run time, the coprocessor is
used instead of the emulator. This method of handling floating-point
operations works whether or not you have a coprocessor installed.
You do not have to give a floating-point option at compile time unless
you want to use one of the other options described here.

When you compile a source file using one of the floating-point
options, the name of the required floating-point library (or libraries) is
placed in the object file. At link time, the linker refers to the names in
the object file to link with the appropriate libraries. You can override
the library name given in the object file at link time and link with a
different library. (See "Changing the Default Libraries" on page 3-15

2-32 Compiling

for more information.) The only restriction on overriding at link time
is that you are not allowed to change to the alternate math library
after you have compiled by means of the IFPi or IFPi87 option.

If You Have a Numeric Coprocessor
The IFPi87 option produces in-line instructions for a numeric
coprocessor. It is the fastest and smallest option available for
floating-point operations.

The IFPc87 option is slower than IFPi87 because it makes function
calls instead of using in-line instructions. However, IFPc87 is more
flexible. It allows you to change your mind at link time (without
recompiling the file) and use either the emulator or the alternate
math library instead of relying on a numeric coprocessor. This is
made possible because calls to floating-point instructions are inter­
changeable with calls to the emulator and the alternate math library.
(See "Changing the Default Libraries" on page 3-15 for instructions
on changing libraries at link time.)

Both the IFPi87 and IFPc87 options select the xLlBC7z.LlB, where x is
the storage model and z is the addressing mode you chose during
installation. Whenever you use these options, a numeric coprocessor
must be present at run time. If no coprocessor is present, the
program does not run and the following message is displayed:

run-time error R6992 floating point not loaded

The IFPi option produces in-line instructions for a numeric
coprocessor and selects the xLlBCEz.LlB, where x is the storage
model and z is the addressing mode you chose during installation. If
a numeric coprocessor is present at run time, it is used. If not, the
emulator is used.

The emulator requires approximately 7KB of additional space when
loading, so programs that use the IFPi option are larger than pro­
grams that use IFPi87. However, IFPi is a useful option when you do
not know whether a numeric coprocessor will be available at run time
but wish to use it if it is present.

You may not want to use a numeric coprocessor even though one is
present. For example, you may be developing programs to run on
systems that lack coprocessors. Conversely, you may want to write
programs that can take advantage of a coprocessor at run time, even

Compiling 2-33

though you do not have one installed. There are two ways to control
the use of a coprocessor:

1. Use the IFpi (the default) or the IFPc option to specify either the
use of a numeric coprocessor or the emulator. To use the emu­
lator even when a coprocessor is present, set the NOa7 environ­
mental variable. See "Using the N087 Environment Variable" on
page 2-54 for more information.

2. Use the IFPc87 or IFPi87 option if you always want to lJse a
coprocessor. Programs compiled with these options fail if a
coprocessor is not present at run time.

If You Do Not Have a Numeric Coprocessor
The IFPi option produces in-line instructions for a numeric
coprocessor and selects the xLlBCEz.LlB library, where x is the
storage model and z is the addressing mode you chose during instal­
lation. If a numeric coprocessor is present at run time, it will be
used. If not, the emulator library is used. Because this option uses
in-line instructions, it is the most efficient way to get maximum preci­
sion in floating-point operations without a coprocessor.

The IFPi option is the default when you do not specify a floating-point
option. The IFPc option produces floating-point calls to the emulator
routines in library xLlBCEz.LlB, where x is the storage model and z is
the addressing mode you chose during installation.

The IFPc option is slower than IFPi because it makes function calls
instead of using in-line instructions. However, IFPc is more flexible
than IFPi. When you use the IFPc option, you can change your mind
at link time (without recompiling the file) and use a numeric
coprocessor or the alternate math library instead of using the emu­
lator. This is made possible because the same function call interface
is provided in all three libraries: the 8087/80287/80387 library, the
alternate math library, and the emulator library. See "Changing the
Default Libraries" on page 3-15 for instructions on changing libraries
at link time.

The IFPa option produces floating-point calls and selects the com­
bined library xLlBCAz.LlB, where x is the storage model and z is the
addressing mode you chose during installation. The alternate math
library uses a subset of the IEEE (Institute of Electrical and Elec­
tronics Engineers, Inc.) standard format numbers, sacrificing some

2-34 Compiling

accuracy for speed and simplicity. Infinities, NaNs, and denormal
numbers are not used.

The alternate math routines use exactly the same format for the expo­
nent and mantissa as the full IEEE format with the following
exceptions:

Notes:

1. IEEE Infinites and NaNs are presented as numbers with the expo­
nent field containing all bits on. This combination is not gener­
ated by the alternate math package. If one is seen (passed in
through a data file or constructed), it is treated as a normal
number that happens to be larger than the normal finite precision
range. If an IEEE infinity is seen, it will be treated as 2*maximum
finite IEEE number for that precision because the exponent field
is 1 larger.

2. Denormal numbers are numbers that have all bits off in the expo­
nent field and some nonzero mantissa bits. The alternate math
package treats this number as if it were zero.

3. Alternate math numbers have exactly the same precision as the
full IEEE numbers: 23 mantissa bits in single and 53 mantissa bits
in double. The maximum range for alternate math numbers is the
same as that of the full IEEE representation.

The minimum nonzero values are:

± 1.175e-38 (single)

± 2.226e-308 (double)

The full IEEE representation is given in IBM CI2 Fundamentals,
Chapter 5.

Calls to the alternate math library provide the fastest and smallest
option when you do not have a numeric coprocessor. With the IFPa
option, you can change your mind at link time and use either the
emulator or a numeric coprocessor.

In some cases, you may want to write programs that can take advan­
tage of a numeric coprocessor at run time, even though you do not
have one installed. See "If You Have a Numeric Coprocessor" on
page 2-33 for a description of the appropriate options.

Compiling 2-35

Compatibility Between Floating-Point Options
Each time you compile a source file, you can specify a floating-point
option. When you link more than one source file to produce an exe­
cutable program file, you are responsible for ensuring that floating­
point operations are handled consistently and that the environment is
set up properly to allow the linker to find the required libraries.

Note: To build libraries of C routines that contain floating-point oper­
ations, the IFPc floating-point option is recommended for all
compiling because it offers the most flexibility.

When you compile a file using the IFPi or IFPi87 option, in-line
instructions are produced. When you use the IFPi87 option, the com­
bined library xLlBC7z.LlB must be present at link time, and a numeric
coprocessor must be present at run time. When you use the IFPi
option, the combined library xLlBCEz.LlB must be present at link
time. When these requirements are satisfied, object files produced
by using the IFPi and IFPi87 options can be linked together without
compatibility problems. These object files also can be linked with
object files produced by using the IFPa, IFPc, or IFPc87 options.

When a file is compiled with the IFPa, IFPc, or IFPc87 options,
floating-point function calls are produced. Each option places the
name of the appropriate library file or files in the object file.
However, when linking several of these object files, you must be
aware of the process used to resolve the function calls.

Floating-point calls to the emulator, the alternate math library, and
numeric coprocessor instructions are interchangeable. Only one
library is used at link time to resolve the calls; the same program
cannot make calls to more than one library. You must indicate to the
linker which of your combined libraries xLlBCyz.LlB you want to link
with the program.

At link time, give the INOD (no default library search) option; then
give the name of the combined library file you want to use in the
libraries field. This library overrides the names in the object files,
and all floating-point calls then refer to the named library.

2-36 Compiling

Using 80186/80188, 80286 or 80386 Processors
IGO, IG1, IG2
This option enables the appropriate instruction set for the processor
type you are using. Although it is usually advantageous to enable the
appropriate instruction set, you are not required to do so. If you have
an 80286 or 80386 processor, for example, but want your code to run
on an 8086, use the 8086/8088 instruction set.

Format

IGa
IGl
IG2

IGO Enables the instruction set for the 8086/8088 processor. You
need not specify this option explicitly because the 8086/8088
instruction set is used by default. Programs compiled in this
way also run on the 80186/80188,80286, and 80386.

IG1 Enables the instruction set for the 80186 or 80188 processors.
IG2 Enables the instruction set for the 80286 and 80386 processors.

SeHing the Warning Level
IW/w
These options set the level of warning messages produced by the
compiler and direct the compiler to display messages about state­
ments that may not compile as the programmer intends. Warnings
indicate potential problems, not necessarily actual errors.

Format

IWnumber
/w

To use the IW option, choose one of the warning levels described in
the following table and specify the level number after the option. The
/w option provides a shorter way to say /W 0 and has the same effect.
The Iw option is available only with the CL command, not with CC.

Warning Levels

Level Warning
o Suppresses all warning messages. Only messages about

actual syntactic or semantic errors are displayed.

Compiling 2-37

1 The default. Warns about potentially missing statements,
unsafe conversions, and other structural problems. Also,
warns about overt type mismatches.

2 Warns about all automatic data conversions.
3 Warns of usage that does not comply with American National

Standards Institute (ANSI) standards.

The higher number levels are especially useful in the earlier stages
of program development when messages about potential problems
are most helpful. The lower number levels are best for compiling
programs whose questionable statements are intentionally designed.

Example
The following example directs the compiler to perform the highest
level of checking and produces the greatest number of warning
messages:

cc jW 3 MAIN.C;

Compiler Exit Codes
The C compiler control program returns an exit code of 0, 2, or 4 to
indicate the status of compiling. The exit code is useful with the DOS
BATCH command IF ERRORLEVEL; it allows you to test for the
success or failure of compiling before proceeding with other tasks in
the batch file. The exit codes are defined as follows:

Code Meaning
o Successful compiling. Compiling can be successful even if

warning messages are produced.
2 Unsuccessful compiling due to program errors.
4 Unsuccessful compiling due to system-level errors (such as

insufficient disk space) or compiler internal errors.

See Appendix A for information about specific error messages.

Preparing for Debugging
IZd, IZi, IOd
The following commands produce object-file characteristics neces­
sary for debugging with CodeView.

Format

2-38 Compiling

IZd
IZi
IOd

IZd Produces an object file containing line number records that cor­
respond to the line numbers of the source file. Useful for
passing an object file to a symbolic debugger. The debugger
can use the line numbers to refer to program locations. IZd has
no effect on the generated code but increases the size of .OBJ
files because of the line number information.

IZI Produces an object file containing full symbolic debugging infor­
mation for use with the CodeView symbolic debugger. This
object file includes full symbol table information and line
numbers.

IOd Tells the compiler not to perform optimization. Without the 10d
option, the default is to optimize. Optimization can involve rear­
rangement of instructions. If you optimize before debugging, it
may be difficult to recognize and correct your code.

IZi implies IZd also, so you do not need to give IZd when you give
IZi. IZi does not affect code generation either except for the one case
where IZi is specified and no optimization flags are given; for
example:

CL lAM II\include IZi Ic foo.c

In this case, the IZi suppresses some of the optimizations that involve
code motion. This has less impact than 10d, which suppresses all
optimizations. You are not required to use 10d when compiling for
CodeView. Certain optimizations such as jump shortening make the
code much easier to follow and debug. Using IZi without explicit opti­
mization flags does most of the default optimizations, but not the ones
that make the code hard to follow. Using IZi in conjunction with any
explicit optimization flag (/0< anything>) performs all requested opti­
mizations; nothing is suppressed.

See "Optimizing 10" on page 2-40 for information about other opti­
mization options.

Example
The following command produces an object file named TEST.OBJ that
contains line numbers corresponding to the line numbers of TEST.C.
A listing file TEST.COD is created and the source listing is sup­
pressed. No optimization is performed.

cc TEST.C •• NUL IZd IOd. TEST. COD;

Compiling 2-39

The following command produces an object file named TEST.OBJ that
contains line numbers and symbol table information corresponding to
TEST.C. It also creates a source listing file TEST.LST.

CC TEST.C •• TEST /Zi/Zd/Od;

Optimizing
/0
The optimizing procedures available with IBM C/2 can reduce the
storage space and run time required for a compiled program byelim­
inating unnecessary instructions and rearranging code. The compiler
performs some optimization by default. You can use the /0 options to
exercise greater control over the optimizations performed. See
"Advanced Optimizing" on page 2-55 for information about additional
advanced optimizing procedures.

Format

/Ostring

The string influences how the compiler performs optimization. The
string is formed from the following:

LeDer
a
d
I
n
p
s
t
w
x

Optimizing Procedure
Cancels alias checking
Disables optimization
Enables loop optimization
Disables unsafe loop optimizations
Disables certain floating point optimizations
Favors code size during optimization
Favors run time during optimization
Assumes called functions can change local variables
Performs maximum optimization.

The letters can appear in any order. For example, 10at and IOta have
the same effect. You can also specify more than one /0 option. For
example, lOa lOt is equivalent to 10at.

When you do not give an 10 option to the CC command, it uses lOt to
favor run time speed during optimizing. To cause the compiler to
favor code size instead, use the lOs option.

2-40 Compiling

The 10d option turns off optimization. This option is useful in the
early stages of program development to avoid optimizing code that
will be changed. Because optimization may involve rearrangement
of instructions, you also may want to specify the 10d option when you
use a debugger with your program or when you want to examine an
object file listing. If you optimize before debugging, the code can be
difficult to recognize and correct.

The 101 option enables loop optimization. The compiler performs
special checks to test for constants across loops. This often improves
run-time performance of programs with repetitive calculations.
Option lOx also implies 101.

The lOx option combines optimizing options to produce the fastest
possible program. Its effect is equivalent to the following for CL:

IDa; It IGs

Its effect is equivalent to the followi ng for CC:

IOalt IGs

The lOx option removes stack probes, relaxes alias checking, favors
code run time over code size, and enables loop optimization. When
you use the CL command, it also generates all intrinsics for the func­
tions listed under "Declaring Functions as Intrinsic 10i" on page 3-66.

The lOp option disables certain floating-point optimizations. The
compiler tries to keep floating-point values in extended-precision
form and stores them only when necessary. This is not desi rable for
some algorithms, such as convergence algorithms that try to find the
minimum or maximum floating point values recognized by an imple­
mentation. Optimization with the lOp option forces writing to storage
when the source requests it, which limits the precision of floating­
point calculations.

The lOa option cancels alias checking. The compiler performs alias
checking to make sure that it does not eliminate instructions incor­
rectly when you refer to the same storage location by more than one
name. Include the lOa option only when you are sure that your
program does not use aliases.

For example, consider the following code fragment:

Compiling 2-41

int count. *pc;
pc = &count;
count = 0;

(*pc)++;

count = 0;

The reference to count by means of a pOinter, (*pc), is known as an
alias for count because it provides another way to get access to the
same storage location. When the compiler performs alias checking, it
detects the indirect reference to count through pc and does not elimi­
nate the second instruction that assigns zero to count.

The lOa option tells the compiler that your program does not use
aliases. Therefore, the compiler does not check for indirect refer­
ences, such as the reference to count through a pointer. It would be
an error to use the lOa option with the above example. The compiler
sees only that the same value, 0, is assigned to count twice, without
any intervening assignments that change its value. The second
assignment would be considered redundant and would be eliminated
in the optimization stage, possibly causing the program to give incor­
rect results.

The lOw option has the same effect as lOa except that the compiler
assumes that any function call can potentially alter the value of any
variable, including local variables. For example, the following
program prints the word "pass" when compiled with the lOw option
and prints the word "fail" when compiled with the lOa option.

mainO
{

int *P. i;
i = 5;
sample«int)&i);
if (i 1= 5) puts("pass");
else puts("fail");

#ifdef EXEC
sample(a)
int a;
{

*(int *)a = 2;
}
#endif

2-42 Compiling

The IOn option turns off potentially unsafe loop optimizations in pro­
grams compiled with the 101 or lOx options. When you use the IOn
option the compiler does not perform the following types of loop
optimizations:

Hoisting division operations out of loops: This type of optimization
can cause problems in code such as the following:

for (i=0; i<=99; i+=10)
{

if (denom ! = 0)
{

}

array[i] += (numer/denom);
printf("%f ". array~]);

When loop optimizations are turned on, the compiler knows that
numerldenom does not change within the loop. Therefore, it calcu­
lates numerldenom only once: before the start of the loop, which is
before the If statement within the loop can check for division by zero.

Loop-Induction optimizations: When loop optimizations are turned
on, this code:

i nt 1 array [400] ;
unsigned char k. top_val. inc_val. var;

for(k = 3; k < top val; k += 8)
{ -

larray[k*4] = k*4;

optimizes to code such as the following:

unsigned char t;
for(t = 12; t < top val*4; t += 32)
{ -

larray[t] = t;
}

If the loop-control variable top_val in the original code is 64, the
induction expression

top_val *4

overflows the limit for type unsigned char, and the loop never termi­
nates. To avoid this problem, use the IOn option. For example:

Compiling 2-43

unsigned char t;
for(t = 12, k=3; k < top_val; k += 8,

t += 32)

larray[t] = t;

Use the Ian option to solve similar overflow problems in cases where
induction variables result from array or pointer references and the
offset part of the address is close to wrapping.

Generally, you may want to compile with Ian if your programs use
arrays that are larger than 32KB or if divide-by-zero or infinite-loop
errors occur in programs compiled with the 101 option.

Example
The following command tells the compiler to relax alias checking and
to optimize for faster execution time when it compiles FILE.C:

CC FILE.C IOta;

Compiling Large Programs
If you are compiling a large program or linking compiled files
together that form a large program with more than 64KB of data or
code, use one of the storage models described in the next section.

Working with Storage Models
IA
The CC command lets you create programs of a variety of sizes and
purposes using the IA options. These storage model options allow
you to set up storage that is bestfor your program and determine
how the system loads the program for execution.

Format

lAS (small)
lAM (medium)
lAC (compact)
IAL (large)
IAH (huge)

The compiler uses the small model by default.

The terms near, far, and huge are important for understanding the
concept of storage models. Depending on its size (and the use of
near, far, and huge as explained under "Using the Near, Far, and

2-44 Compiling

Huge Keywords" on page 2-58), a program may require more seg­
ments for its code or data. The program size includes any data and
code required for library routines.

Five commonly used storage models are available to the CC
command: the small model, the medium model, the compact model,
the large model, and the huge model. Library support is provided for
each of these standard models. Each model defines a different type
of program structure and storage. Only the memory models chosen
when you installed the compiler are available for use. To build
libraries for additional memory models, repeat the SETUP installation
using the IL option.

Program
Small-model

Description
Typically short or make limited use of memory.
Code and data for these programs each occupy one
segment and are limited to 64KB each (128KB
maximum total). Most programs fit easily in this
model; that is why small-model is the default.

Medium-model Typically have a large number of program state-
ments but a relatively small amount of data.

Compact-model Typically have a large amount of data but a rela­

Large-model

Huge-model

tively small number of program statements.
Use a large amount of data storage during normal
processing.
Similar to large-model programs but may contain
arrays that requi re more than 64KB of storage.

In all the models, no matter how large the program, no single object
file can exceed 64KB. When you choose one of these storage
models, the compiler operates with certain assumptions about the
addresses of code and data for your program.

A small-model program stores all code in a single segment, and all
data in a single segment. Because the segment addresses are con­
stant for all code items and all data items, the segment address is not
required each time an item is addressed. Instead, any items in the
program can be addressed with an offset from the segment address.
Only 16 bits are requi red to store an offset from an address, as
opposed to 32 bits for a full segment plus offset address. Thus, the
compiler produces 16-bit (near) pointers for use in small-model pro­
grams. This is the smallest and fastest option.

Compiling 2-45

A medium-model program uses multiple segments for code and a
single segment for data. The address of a function, for example, in a
medium-model program must include the address of the appropriate
code segment and the offset of the beginning of the function from the
base of that segment. Full 32-bit (far) pointers are produced by the
compiler to access code items in a medium-model program.
However, an offset is sufficient for data items because all data
resides in one segment. Data items are accessed with near pointers
in a medium-model program. The medium model provides a useful
trade-off of speed and space because most programs refer more fre­
quently to data items than to code.

In compact-model programs, the default is that the compiler gets
access to code items with near addresses and to data items with far
addresses. You can cancel the default by using the far keyword for
code and the near and huge keywords for data.

A large-model program requires the compiler to produce far pOinters
for both code and data items because multiple segments are allotted
for both code and data. The large model is useful because it can
accommodate very large programs. The 64KB limitation on array
size in the large-model program allows the compiler to perform
address arithmetic on just 16 bits (the offset portion) of the address to
refer to individual elements of the array. This is more efficient than
using a full 32-bit address and is possible because all elements of an
array are known to reside in the same segment.

The huge model removes the 64KB restriction on arrays, allowing an
array to span more than one segment. This means that address
arithmetic for array elements in huge-model programs is not limited
to the offset portion of the address but must take into account the
segment address. Thus, in addition to using far pointers for both
code and data items (as in a large model), a huge-model program
also produces far pointers for individual elements of an array.

Some restrictions apply to arrays composed of structures or unions.
To provide efficient addressing, structures and unions are not per­
mitted to cross segment boundaries. This has the following
implications:

• No structure or union element can be larger than 64KB.
• For arrays larger than 128KB, a structure or union element of the

array must have a size in bytes equal to a power of 2 (for

2-46 Compiling

example, 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on). If the
array is smaller than 128KB, this rule does not apply.

In huge-model programs, care must be taken when using the slzeof
operator or when subtracting pointers. The C language defines the
value returned by the slzeof operator to be a slze_t value, (which in
IBM C/2 is equal to an unsigned Int, but the size in bytes of a huge
array is a long In! value.) To solve this discrepancy, the IBM C/2
compiler produces the correct size of a huge array when the fol­
lowing type cast is used:

(long)s;zeof(huge_;tem)

Similarly, the C language defines the result of subtracting two
pointers as an Int value. When subtracting two huge pointers,
however, the result may be a long Int value. The C compiler gives
the correct result when you use the following type cast:

(long)(huge_ptrl - huge_ptr2)

To provide additional flexibility within the standard storage models,
IBM C/2 allows you to override the default addressing conventions for
individual program items by using the special near, far, and huge
keywords. These keywords let you access an item with either a near,
far, or huge pointer. This is particularly useful when you have a very
large or infrequently used data item that you want to access from a
small- or medium-model program.

Specifying a Combined Library for Linking
ILc,/Lp
These options allow you to build an executable file that runs in DOS
mode when compiling in OS/2 mode and to create an OS/2 mode exe­
cutable file when compiling with DOS. These options are available
only with the CL command, not with CC.

Format

/Lc
/Lp

/Lc creates a DOS mode executable file, and /Lp creates an OS/2
mode executable file. To use each option, your combined libraries
must have the names xLlBCyz.LlB. For example, to use /Lc, the DOS
mode library xLlBCyR.LlB, depending on the memory model and
floating-point option, must be visible to the linker. If you have

Compiling 2-47

renamed one of your combined libraries to xLlBCy.LlB, you link to thE
functions in that library by not specifying the /Lc or /Lp options. To
create family applications, you must first create an OS/2 mode exe­
cutable file. See "Creating Bound Applications /Fb" on page 3-63.

Example

CL /Le main.e

Advanced Topics
IBM C/2 offers a number of advanced programming options that give
you control over compiling and the final form of the executable
program. This section describes the advanced options.

Enabling Language Extensions
IZe, IZa, IZc

Format

IZe
IZa
IZe

/Ze enables C language extensions and is the default. The /Ze option
allows:

• Use of trailing commas rather than an ellipsis .in function declara­
tions to indicate variable-length argument lists

• Benign typedef redefinitions within the same scope, as in the fol­
lowing example.

typedef int INT;
typedef int INT;

• Use of mixed character and string constants in an identifier, as in
the following example.

ehar arr[5]={'a', 'b', "ede"};

• Casting data pointers to function pointers, as in the following
example.

int *ip;
i nt samp 1 eO;

«int (*)(»ip)O;

2-48 Compiling

• Casting function pointers to data pointers, as in the following
example.

int *ip;
int sampl eO;

ip = (int *)sample;

Note that the preceding example generates an illegal cast error in
programs compiled with the IZa option. Generally, casts generate a
"non-standard extension used" warning at level 3 or higher.

According to the American National Standards Institute (ANSI)
standard, the way to cast from data pointers to function pointers and
from function pOinters to data pointers is to

1. Cast to an integral type (Int or long depending on pointer size)
2. Cast to the final pointer type.

In a small-model program, the preceding examples could be rewritten
as follows to conform to the ANSI convention:

ip = (int *)(int)foo; /* cast function
pointer to data pointer */

«int (*)(»(int)ip)(); /* cast data
pointer to function pointer */

Examples like those above work correctly whether or not the program
is compiled with the IZa option. Note that the compiler generates
identical code in both cases; the only difference is that one form is
ANSI-compatible and the other is not.

When you use the IZa option, the compiler issues an error message
whenever you use a valid construction that does not conform to the
ANSI standard.

The IZa option causes the compiler to define the identifier
NO_EXT_KEYS. In the include files provided with the run-time library
functions, the compiler uses this identifier with #Itndet to condi­
tionally compile blocks of text containing the keywords cdecl, tar,
Interrupt, or near.

You can also use the IZa option to restrict the valid base types of bit­
fields. When you use IZa, any bit-field must be either Int, signed Int,
or unsigned Int. Bit-fields of width zero force alignment to an Int
boundary.

Compiling 2-49

IBM Extension

IBM C/2 considers t.he identifiers in the following list to be keywords
when processing a file:

cdecl

_export
far

fortran
huge
Interrupt

_Ioadds
near

_save regs
pascal

To transfer C programs from other systems these are not keywords
in, use the IZa option to tell the compiler to treat these words as ordi­
nary identifiers.

~ ________ End of IBM Extension ________ --'

/Zc forces the compiler to allow names declared with the pascal and
fortran modifiers to be used without regard for case.

Example

int pascal foo(void);
int pascal Foo(void);
int pascal FOO(int); 1* error: redefinition *1

Under the /Zc option, the second declaration is equivalent to the first
and the third produces a compiler error because it tries to redeclare
the same name with an argument list. Such a declaration is incon­
sistent with the first two declarations.

Foo(); /* A reference to foo */
FOO(); /* Another reference to it /*

You can also use the IZe option to allow the use of casts to produce
Ivalues, as in this example:

int *p;
«long *)p)++;

The preceding example could be rewritten to conform to the ANSI
standard as follows:

p = (int *)«char *)p + sizeof(long»;

You can also use the IZe option to allow redefinitions of extern items
as static, as in this example:

extern int foo();
static int fooO
{}

2-50 Compiling

Packing Structure Members
IZp
When storage is reserved for structures, structure members larger
than a char are ordinarily stored beginning at an Inl boundary. To
conserve space you can store your structures more compactly. The
IZp option and the pack pragma cause structure data to be packed
tightly into storage. These options are also useful to read existing
packed structures from a data file. IZp is available with both CC and
CL, but IZpn is available only with CL.

Formal

IZp [11214 •]
#pragma pack([11214])

Use IZp to specify the same packing for all structures in a module.
When you give the IZpn option, where n is 1, 2, or 4, each structure
member is stored on n-byte boundaries. The default is 1-byte.

On most processors, using the IZp option causes a program to run
slower because of the time required to unpack structure members
when accessing them. This option also reduces efficiency when a
program gets access to 16-bit members (with Inl type) that begin on
odd boundaries.

Use the pack pragma to specify packing other than that specified in
the IZp option for particular structures. Give the pack(n) pragma
(where n is 1, 2, or 4) before the structures you want packed differ­
ently. To reinstate the packing given in the IZp option type the packO
pragma with no arguments.

Example
The following command causes all structures in the program PROG.C
to be stored without extra space for alignment of members on Inl
boundaries.

cc IZp PROG.C;

In IBM C/2 Version 1.10, a structure or union whose members have
only the types char or unsigned char, or any array of those types, is
byte-aligned. That is, every such structure or union is sized exactly,
not padded to an even number of bytes as in IBM C/2 Version 1.00. If
a structure or union contains any member whose type is not char or
unsigned char, there is no difference between the versions. This

Compiling 2-51

change makes a difference only if the sum of the sizes of the
members is odd; if the sum is even, then no alignment byte is added.
This example demonstrates the difference:

char a:
struct {char a. b, c} y;
struct {char a[3]} z:
mainO
{

printf("Size of y = %d\n", sizeof(y)):
printf("Size of z = %d\n", sizeof(z));

If you compile the preceding with IBM C/2 Version 1.00 (not using
IZp), the output is:

Size of y = 4
Size of z = 4

If you compile the preceding code with IBM C/2 Version 1.10 (not
using IZp), the output is:

Size of y = 3
Size of z = 3

Programs affected by this change should not mingle object files gen­
erated by the two versions. You should recompile all of the objects
with IBM C/2, Version 1.10. If that remedy is impossible (for instance,
if you do not have source code for the objects in question), it is pos­
sible to change include files to add an extra char-type member at the
end of any odd-sized structure or union. This change adds the align­
ment member that the compiler no longer adds.

Suppressing Default Library Selection
IZI
Ordinarily, the compiler places the names of the default libraries
(containing the standard C library plus the selected floating-point
library) in the object file for the linker to read. This allows the default
libraries to be linked with a program.

This option suppresses the selection of default libraries. No library
names are placed in the object file. As a result, the object file is
slightly smaller.

Format

IZl

2-52 Compiling

Use the IZI option when you are building a library of routines. It is
not necessary for every routine in the library to contain the default
library information. Although the IZI option saves only a small
amount of space for a single object file, the total space savings is sig­
nificant in a library containing many object modules. When you link a
library of object modules created with the IZI option with a C program
file compiled without the IZI option, the default library information is
supplied by the program file.

Example
The following two commands create an object file named ONE.OBJ
that contains the name of your combined library, xLlBCyz.LlB, and an
object file named TWO.OBJ that contains no default library informa­
tion.

cc ONE.C;
CC III TWO.C;

When ONE.OBJ and TWO.OBJ are linked, the default library informa­
tion in ONE.OBJ causes the given libraries to be searched for any
unresolved references in either ONE.OBJ or TWO.OBJ as follows:

LINK ONE+ TWO;

Changing the Default char Type
IJ
In IBM C/2, the char type is signed by default. If you widen a char
value to an Int, the result is sign extended. To have an unsigned
default, use the IJ option. This causes the compiler to zero-extend
the char type when you widen it to an Int type.

Format

IJ

If you declare a char value explicitly signed, the IJ option does not
affect it, and the compiler sign extends the value when you widen it to
an Int. When you invoke CL with the IJ option, a new predefined iden­
tifier, _CHAR_UNSIGNED, is defined. This identifier is used with
#Ifndef in the file LlMITS.H to define the range of the default char
type. Note that compiling with IJ reduces by 1 the number of constant
and macro definitions that you can give at the command prompt.

Compiling 2-53

Controlling Floating-Point Operations
By default, the compiler handles floating-point operations by using
calls to an emulator library, which emulates the operation of a
numeric coprocessor. If a numeric coprocessor is present at run
time, it is used. The floating-point (/FP) options give you a choice of
five different methods of handling floating-point operations.

The advantages and disadvantages of each of the five IFP options are
described under "Selecting the Floating-Point Options IFPa, IFPc,
IFPc87, IFPi, IFPi87" on page 2-32. You should read that discussion
of floating-point options before reading this section. This section dis­
cusses two additional ways to control floating-point operations: by
changing libraries at link time and by using the N087 environment
variable.

Using the NOl7 Environment Variable
Programs compiled using the IFPc or IFPi option use a numeric
coprocessor at run time if one is installed. You can override the
selection of the coprocessor at run time and force the use of the emu­
lator by setting an environment variable named N087.

If N087 is currently set to any value when the program runs, use of
the numeric coprocessor is suppressed. The value of the N087
setti ng is pri nted on the standard output as a message. The message
prints only if a numeric coprocessor is present and suppressed; if no
coprocessor is present, no message appears. If you do not want a
message to pri nt, set N087 equal to one or more spaces; nothi ng wi II
be printed.

Only the presence or absence of the N087 definition is important in
suppressing use of the coprocessor. The actual value of the N087
setting is used only for printing the message.

The N087 variable takes effect with any program linked with the emu­
lator library, that is, a combined library with name of the form
xLlBCEz.LlB. It has no effect on programs linked with combined
libraries named xLlBC7z.LlB.

2-54 Compiling

Example
The following command causes the message Use of coprocessor
suppressed to appear on the screen when a program that can use a
coprocessor is run.
SET N087=Use of coprocessor suppressed

The next command sets the N087 variable to the space character.
Use of the coprocessor is still suppressed, but no message is dis­
played.
SET N087=space

Advanced Optimizing
This section describes additional optimizing procedures that can be
used with the optimizing options described in "Optimizing 10" on
page 2-40 to create more efficient programs from your code.

Removing Stack Probes
/Gs
You can reduce the size of a program and speed up performance
slightly by using the IGs option to remove all stack probes. A stack
probe is a short routine called by a function to check the program
stack for available space.

Format

IGs
#pragma check_stack[+I-]
#pragma check_stac~[-]

The stack probe routine is called at every entry point. Ordinarily, the
stack probe routine generates a message when it detects a stack
overflow. When you use the IGs option no message prints.

Use the IGs option when a program is known not to exceed the avail­
able stack space. For example, stack probes might not be needed for
programs that make very few function calls.

Although the IGs option, combined with the 10sa option (described
with the 10 string options under "Optimiz,ing 10" on page 2-40)
makes the smallest possi~le program, use it with care; removing
stack probes from a program can cause some execution errors to go
undetected.

Compiling 2-55

Use the check_stack pragma when you want to turn stack checking on
or off only for selected routines, leaving the default, determined by
the presence or absence of the IGs option, for the remaining routines.
To turn off stack checking, put the following line before the definition
of the function that you do not want to check.

#pragma check_stack(OFF)

The preceding line disables stack checking for all routines that follow
it, not only the routines on the same line. To reinstate stack
checking, insert the following line:

#pragma check_stack(ON)

If you omit the trailing + or -, or the empty parentheses of the pragma
chec~stack, stack checking follows the default. The following table
shows the relationship between the check_stack pragma and the IGs
option.

Complied
Syntax with IGs? Result

#pragma check_stack Yes Stack checking off

#pragma check_stack- for the routines

#pragma check_stackO that follow.

#pragma check_stack(OFF)

#pragma check_stack No Stack checking on

#pragma check_stack+ for the routines

#pragma check_stackO that follow.

#pragma check_stack(ON)

#pragma check_stack+ Yes Stack checking on

#pragma check_stack(ON) for the routines
that follow.

#pragma check_stack- No Stack checking off

#pragma check_stack(OFF) for the routines
that follow.

Example
The following command optimizes the file FILE.C by removing stack
probes with the IGs option and relaxing alias checking with the IOta
option. The letter t in the IOta option tells the compiler to favor exe­
cution time over code size in the optimization.

CC FILE.C IOta IGs;

2-56 Compiling

SeHing the Data Threshold
IGt
By default, the compiler reserves all static and global data items to
the default data segment in the small- and medium-storage models.
In compact-, large-, and huge-model programs, the compiler assigns
only initialized static and global data items to the default data
segment. This option causes all data items whose size is greater
than or equal to number bytes to be allocated to a new data segment.
When you specify number, it must follow the fGt option, with no inter­
vening spaces. When you omit number, the default threshold value is
256.

Formal

/Gt [number]

You can use the fGt option only with compact-, large-, and huge­
model programs because small- and medium-model programs have
only one data segment. This option is particularly useful with pro­
grams that have more than 64KB of initialized static and global data
in small data items.

Mixed-Model Programming
IBM Cf2 defines five standard storage models (small, medium,
compact, large, and huge) to accommodate programs with differing
storage requirements. For an introduction to storage models (using
the fA option), see "Working with Storage Models fA" on page 2-44.

One limitation of the predefined storage-model structure is that all
poi nters for code or data change size at once when you change
storage models. To overcome this limitation, IBM Cf2 lets you cancel
the default-addressing convention for a given storage model and
access an item with either a near, far, or a huge pointer. This is par­
ticularly useful with a very large or infrequently used data item that
you want to get from a small- or medium-model program. You can
get access to that item in another segment, saving space in the
default data segment.

You can use the special keywords near, far, and huge to declare
near, far, and huge data items and pointers. See "Declaring Data
with Near, Far, and Huge" on page 2-59 for more information.

Compiling 2-57

The near keyword defines an object with a 16-bit address. The far
keyword defines an object with a 32-bit segmented address. You can
get access to any data item or function with a far pointer. However,
the size of a far data item is restricted to 64KB maximum (one
segment). The address arithmetic required to refer to individual ele­
ments of a far item is performed on just 16 bits (the offset portion) of
the address, because all elements are known to reside in the same
segment.

The huge keyword identifies a data object with a full 32-bit segmented
address. A huge data item can exceed 64KB. Because elements of a
huge array occupy more than one segment, full 32-bit address arith­
metic is required to refer to individual elements of the object. Certain
restrictions apply to huge objects; these restrictions are outlined in
"Optimizing 10" on page 2-40.

In a small-model program, the far keyword lets you get access to data
and functions in segments outside the program.

In medium- and large-model programs, near lets you get access to
data with just an offset. In small-, medium-, or large-model pro­
grams, the huge keyword lets you declare and get access to an array
spanning more than 64KB (one segment).

Using the Near, Far, and Huge Keywords
Use the near and far keywords to create mixed-model programs.
These keywords are particularly useful with a very large or infre­
quently used data item that you want to access from a small- or
medium-model program. Use the far keyword to reserve a new
segment for the data item, and then get access to that item with a far
pointer, while still using near pointers (the default) for other data.

When using the near, far, and huge keywords to change addressing
conventions for particular items, you can usually use one of the
standard libraries (small, compact, medium, or large) with your
program. The large-model libraries are also appropriate for use with
huge-model programs. However, you must take care when cililing
library routines; in general, you cannot pass far pointers or
addresses of far data items to a small-model library routine. Some
exceptions to this statement are the· library routines haUoe, hfree, and
the prlnH family.

2-58 Compiling

You can always pass the value of a far item to a small-module library
routine. For example:

long far time_val;

time(&time val);/*Illegal */
printf("%ld\n". time_val); /* Legal */

If you use the near, far, or huge keywords, it is recommended that
you use function declarations with argument-type lists to ensure that
pointers are passed to functions correctly; see "Generating Function
Declarations IZg" on page 2-30.

For more information on library routines and memory models, see
"Using Huge Arrays with Library Functions" in Chapter 1 of IBM CI2
Language Reference.

Declaring Data with Near, Far, and Huge
The near, far, and huge keywords modify either objects or pOinters to
objects. When using them to declare data, code, or pointers to data
or code, keep the following rules in mind:

• The keyword always modifies the object or pointer immediately to
its right. In complex declarators such as char far* *p, think of the
far keyword and the item to its right as being a single unit. In this
case, p is a pointer to a far pointer to char. The size of p depends
on the memory model being used. See IBM CI2 Fundamentals
for complete rules for using special keywords in complex decla­
rations.

• If the item immediately to the right of the keyword is an identifier,
the keyword determines whether the item is allocated in the
default data segment (near) or a separate data segment (far or
huge). For example:

char far a;

allocates a as an item of type char with a far address.

• If the item immediately to the right of the keyword is a pointer,
the keyword determines whether the pointer holds a near
address (16 bits), a far address (32 bits), or a huge address (also
32 bits). For example:

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

Compiling 2-59

Example
The following examples show data declarations using the near, far,
and huge keywords:

char a [3000]; /* Example 1: small-model program */
char far b[30000]; /* Example 2: small-model program */

The declaration in the first example allocates the array a in the
default segment; in contrast, the array b in the second example may
be allocated in any segment. Since these declarations are made in a
small-model program, array a probably represents frequently used
data that was deliberately placed in the default segment for fast
access, whi Ie array b probably represents seldom-used data that
might make the data segment exceed 64KB. This forces the pro­
grammer to use a larger memory model if it is declared with the far
keyword. The second example uses a large array, because it is more
likely that a programmer would want to specify the address allocation
size for items of substantial size.

char a[3000]; /* Example 3: large-model program */
char near b[30000]; /* Example 4: large-model program */

In Example 3, the speed of access would probably not be critical for
array a; even though it mayor may not be allocated to the default
data segment, it is always referenced with a 32-bit address. In
Example 4, array b is explicitly allocated near to improve speed of
access in this memory model (large).

char huge a[70000]; /* Example 5: small-model program */
char huge *pa; /* Example 6: small-model program */

In Example 5, a must be declared as huge because it is larger than
64KB. Using the huge keyword instead of the standard huge memory
model means that the price for using huge data is paid only for this
one large item. Other data can be accessed within the default
segment. The pointer pa in Example 6 could be used to point to a.
Any arithmetic done with pa uses 32-bit arithmetic.

char *pa;
char far *pb;

/* Example 7: small-model program */
/* Example 8: small-model program */

In Example 7, pa is declared as a near pointer to char. The pointer is
near by default since the example is in a small-model program. In
contrast, pb in Example 8 is allocated as a far pointer to char; pb
could be used to point to and step through an array of characters
stored in a segment other than the default data segment. For
example, pa might be used to pOint to the array a in Example 1, while
pb might be used to pOint to the array b in Example 2.

2-60 Compiling

char far * *pa:
char far * *pa:

/* Example 9: small-model program */
/* Example 10: large-model program */

The pOinter declarations in Examples 9 and 10 show the interaction
between the memory model chosen and the near and far keywords;
although the declarations for pa in these two examples are identical,
Example 10 declares pa as a far pOinter to an array of far pOinters to
type char.

char far * near *pb:
char far * far *pb:

/* Example 11: any model */
/* Example 12: any model */

In Example 11, pb is declared as a near pOinter to an array of far
pOinters to type char. In Example 12, pb is declared as a far pOinter
to an array of far pointers to type char. Note that in these final two
examples, the inclusion of far and near keywords overrides the
model-specific addressing conventions shown in Examples 9 and 10;
the declarations for pb would have the same effect, regardless of the
memory model.

Declaring Functions with Near and Far
The rules for using the near and far keywords for functions are
similar to those for using them with data:

• The keyword always modifies the function or pOinter immediately
to its right. See "Declarators with Special Keywords" in IBM CI2
Fundamentals for more information about rules for evaluating
complex declarations.

• If the item immediately to the right of the keyword is a function,
the keyword determines whether the function is allocated as near
or far. For example:

char far fun():

defines fun as a function called with a 32-bit address and
returning type char.

• If the item immediately to the right of the keyword is a pointer to
a function, then the keyword determines whether the function is
called using a near (16-bit) or far (32-bit) address. For example,

char (far * pfun) ();

defines pfun as a far pointer (32 bits) to a function returning type
char.

• Function declarations must match function definitions.
• The huge keyword cannot be applied to functions.

Compiling 2-61

Example

char far fun ();
char far fun ()

{

/* Example 1: small model */

In this example, fun is declared as function returning type char. The
far keyword in the declaration means that fun must be called with a
32-bit call.

static char far * near fun ();
static char far * near fun ()

{

/* Example 2: large model */

In the second example, fun is declared as a near function that returns
a far pointer to type char. Such a function might be seen in a large­
model program as a helper routine that is used frequently, but only
by the routines in its own module. Since all routines in a given
module share the same code segment, the function could always be
accessed with a near call. However, you could not pass a pointer to
fun as an argument to another function outside the module fun was
declared in.

void far fun () ; /* Example 3: small model */
void (far * pfun) () = fun;

This example declares pfun as a far pointer to a function that has a
void return type and then assigns the address of fun to pfun. In fact,
pfun could be used to point to any function accessed with a far call.

Note: If the function pointed to by pfun has not been declared far or if
it is not far by default, then calling that function through pfun
would cause the program to fail.

double far * (far fun) (); /* Example 4: compact model */
double far * (far *pfun) () = fun;

This example declares pfun as a far pointer to a function that returns
a far pointer to type double and then assigns the address of fun to
pfun. This might be used in compact-model program for a function
that is not used frequently and thus does not need to be in the default

2-62 Compiling

code segment. Both the function and the pointer to the function must
be declared as far.

Pointer Conversions
Passing pOinters as arguments to functions may cause automatic con­
versions in the size of the pointer argument, since passing a pOinter
to a function forces the pointer size to the larger of the following two
sizes:

• The default pointer size for that type, as defined by the storage
model used during compilation. For example, in medium-model
programs, data pointer arguments are near by default and code
pointer arguments are far by default.

• The type of argument.

If the forward declaration of a function includes declared argument
types, the compiler performs type checking and enforces the conver­
sion of actual arguments to the declared type of the corresponding
formal argument. However, if no declaration is present or the
argument-type list is empty, the compiler converts pOinter arguments
to the larger of the default type of the type of the argument. To avoid
mismatch arguments, always give the argument types in a forward
declaration.

Example
This program produces unexpected results in compact-, large-, or
huge-model programs.

main ()
{
int near *x;
char far *y;
int z = 1;

Example 1

test_fun(x, y, z); /* x will be coerced to far

}
int test_fun(ptrl, prt2, a)

i nt m~ar *pt r1;
char far *ptr;
int a;

** pointer in compact. large
** or huge model
*/

printf("Value of a = %d\n". a);
}

Compiling 2-63

If the preceding example is compiled as a small-model program (no
memory model options or lAS at the command prompt) or medium­
model program (lAM option), the size of pointer argument x is 16 bits,
the size of pointer argument y is 32 bits, and the value printed for a is
1. However, if the preceding example is compiled with the lAC, IAL,
or IAH option, both x and yare automatically converted to far pointers
when they are passed to tssCfun.

Since prt1, the first parameter of testJun, is defined as a near pointer
argument, it takes only 16 bits of the 32 bits passed to it. The next
parameter, ptr2, takes the remaining 16 bits of the 32 bits passed to
ptr1, plus 16 bits of the 32 bits passed to it. Finally, the third param­
eter, a, takes the leftover 16 bits from ptr2, instead of the value of z in
the main function. This shifting process does not generate an error
message, since both the function call and the function definition are
legal; but in this case the program does not work as intended, since
the value assigned to a is not the value intended.

To pass ptr1 as a near pointer, you should include a forward declara­
tion that specifically declares this argument for tesCfun as a near
pointer. In the following example, tssCfun was declared so the com­
piler knows in advance about the near pointer argument.

Example

2-84 Compiling

Example 2
int test_fun(int near*. char far *. int);

mai n ()

int near *x;
char far *y;
int z = 1;

test_fun(x. y. z); /* now x will not be coerced
** to a far pointer; it will be
** passed as a near pointer

int test_fun(ptr1. ptr2. a)
int near *prt1;
char far *ptr2;
int a;

{
printf("Value of a = %d\n". a)

}

** no matter what memory
model is used
*/

Note: Reversing the definition order for tesCfun and main in the first
example does not avoid pointer coercions; the pointer argu­
ments must be declared in a forward declaration, as in the
second example.

Creating Customized Storage Models
A method of managing storage models is to combine features of the
standard storage models to create your own customized storage
model. You should have a thorough understanding of C storage
models and the 8086 architecture before creating your own non­
standard storage models, since there is no library support other than
the C start-up routines for any of the options that follow. These
options are available only with the CL command, not with CC.

The IAstring option lets you change the attributes of the standard
storage models to create your own storage models. The three fields
of the string correspond to the code pointer size, the data pointer
size, and the stack and data segment setup. The letters allowed in
each field are unique, so you can give them in any order after IA. All
three letters must be present.

Compiling 2-65

The standard-storage-model options (lAS, lAM, lAC, IAL, and IAH)
can be specified in the IAstring form. As an example of how to con­
struct storage models, the standard-storage-model options are listed
below with their IAstring equivalents:

Standard Custom Equivalents
lAS IAsnd
lAM IAlnd
lAC IAsfd
IAL IAlfd
IAH IAlhd

As an example of the use of customized models, suppose that you
want to create a huge-compact model. You want this model to allow
huge data items but only one code segment. Then, the option for
specifying this model is IAshd.

Note: For the descriptions that follow, the letters I for long and s for
short are for code pointers to distinguish them in the storage­
model string from the letters for data pointers. The term short
is the same as near, and long is the same as far.

ProduCing Code Pointers

Format

IAszz
/Alzz

The letter s tells the compiler to produce near (16-bit) pointers and
addresses for all code items. This is the default for small- and
compact-model programs.

The letter I means that far (32-bit) pointers and addresses address all
code items. Far pointers are the default for medium-, large-, and
huge-model programs.

ProduCing Data Pointers

Format

/Anzz
/Afzz
IAhzz

2-66 Compiling

Three sizes are available for data pointers: near, far, and huge. The
letter n tells the compiler to use near (16-bit) pointers and addresses
for all data. This is the default for small- and medium-model pro­
grams.

The letter f specifies that all data pointers and addresses are far
(32-bit). This is the default for compact- and large-model programs.

The letter h specifies that all data pointers and addresses are huge
(32-bit). This is the default for huge-model programs.

When far data pointers are used, no single data item may be larger
than a segment (64KB) because address arithmetic is performed only
on 16 bits (the offset portion) of the address. When huge data
pointers are used, individual data items can be larger than a segment
(64KB) because address arithmetic is performed on the enti re 32 bits
of the address.

Compiling 2-87

Setting Up Segments

Format

IAdzz
IAuzz
IAwzz

The letter d tells the compiler that SS equals OS; that is, the stack
segment and the default data segment are combined into a single
segment. This is the default for a" programs. In sma"- and medium­
model programs, the stack and a" data combined must occupy less
than 64KB; you get access to any data item with only a 16-bit offset
from the segment address in the SS and OS registers.

In compact-, large-, and huge-model programs, initialized global and
static data are placed in the default segment. The address of this
segment is stored in the SS and OS registers. A" pointers to data,
including pointers to local data (the stack), are full 32-bit addresses.
This is important to remember when passing pointers as arguments
in large-model programs. Although you may have more than 64KB
bytes of total data in these models, there can be no more than 64KB
of data in the default segment. The IGt and INO options can be used
to control allocation of items in the default data segment if a program
exceeds this limit. See "Naming Modules and Segments INM, INT,
INO" on page 3-68 and "Setting the Data Threshold IGt" on
page 2-57 for more information about these options.

The letter u reserves different segments for the stack and the data
segments. A segment for global and static data items is reserved for
each object file. When you specify the letter u, the address in the OS
register is saved upon entry to each function, and the new OS value
for the module the function was defined in is loaded into the register.
The previous OS value restores on exit from the function. Therefore,
only one data segment is accessible at any given time.

A single segment must be reserved for the stack and its address
stored in the stack register. The stack cannot be placed in a data
segment because it must be available throughout the entire program.

The letter w, like the letter u, sets up a separate stack segment but
does not load the OS register at each module entry point. This option
is typically used when writing application programs that run with an
operating system (such as a Presentation Manager application) or

2-88 Compiling

with a program running at the operating-system level. The operating
system or the program running under the operating system receives
the data intended for the application program and places it in a
segment; then, it must load the DS register with the segment address
for the application program.

Even though u and w set up a separate segment for the stack, the
size of the stack is still fixed at the default size unless this is canceled
with the IFhexnumber compiler option (CL only) or the ISTACK linker
option.

Library Support
Most C programs make function calls to the routines in the C run-time
library. Library support is provided for the five standard storage
models (small, medium, compact, large, and huge) through four sepa­
rate run-time libraries. When you write mixed-model programs, you
are responsible for determining which library (if any) is suitable for
your program and for ensuring that the appropriate library is used.

When using the near, far, and huge keywords to change addressing
conventions for particular items, you can use one of the standard
libraries (small, medium, compact or large) with your program.
However, you must take care when calling library routines. For
example, you cannot pass far data items to a small model library
routine.

Controlling the Function Calling Sequence
/Gc
The pascal and cdecl keywords, and the IGc option let you control the
function-calling sequence and naming conventions, permitting your C
programs to call and be called by functions written in IBM Pascal.

Format

IGc /* As a command-prompt option *1

[pascal] /* As keywords in a source file */
[cdecl]

Because C, unlike Pascal, lets you write functions that take a variable
number of arguments, it must handle function calls differently than
these languages do. Languages such as Pascal normally push actual
parameters to a function in left-to-right order. The last argument in

Compiling 2-89

the list is the last argument pushed. C functions do not know the
number of actual parameters. They must push the arguments from
right to left. The first argument in the list is the last argument pushed.
Also, the calling function in C must remove the arguments from the
stack instead of having the called function do it, as in Pascal. If the
code for removing the arguments is in the function definition, it
appears only once, as in Pascal. If the code for removing the argu­
ments is in the calling function, it appears every time there is a func­
tion call (as in C). Because function calls are more numerous than
function definitions, the method that Pascal uses often produces
slightly smaller, more efficient object modules.

IBM C/2 can produce the Pascal call/return sequence in anyone of
several ways. For the fi rst method, you may use the the pascal
keyword. Applied to functions or pointers to functions, this keyword
shows that the corresponding function is a Pascal style function,
requiring the compiler to use the correct call/return sequence. The
following example shows sort declared as a function using the alter­
native call/return sequence:

short pascal sort(char *. char *);

The second method for producing the Pascal call/return sequence
uses the /Gc option. If you use the /Gc option, the entire module
compiles using the alternative call/return sequence. You might use
this method to call all the functions in a C module from another lan­
guage or to gain the performance and size improvement provided by
this call/return sequence. However, if you use the /Gc option, you
cannot define functions that take variable numbers of parameters, nor
can you call functions, such as the C library functions, that use the C
calling sequence. When you use /Gc to compile a module, the com­
piler assumes that all functions called from that module use the
Pascal calling sequence, even if the functions are defined outside that
module.

The cdecl keyword overcomes these restrictions. When you apply it
to a function or a pOinter to a function, it shows the compiler that it is
to call the associated function using the normal C call/return
sequence. This lets you write C programs that take advantage of the
more efficient call/return sequence while retaining access to the
entire C library, to other C objects, and to your own functions that
contain variable-length argument lists.

2-70 Compiling

For convenience, IBM has applied the cc:Iecl keyword to the run-time
library function declarations in the include files distributed with this
compiler.

Using the pascal keyword or the IGc option also affects the naming
convention for the associated item (for IGc, all items). The compiler
converts the name to uppercase characters. It does not add the
leading underscore character that C usually places before the name.
You can apply the pascal keyword to data items and pointers, as well
as to functions. When applied to data items and pointers to data
items, these keywords force the naming convention described above
for that item or pointer.

The pascai and cc:Iecl keywords, like the near, far, and huge keywords
are disabled when you use the IZa option. If you use this option,
these keywords are treated as ordinary identifiers instead of
keywords.

Note: IBM C/2 also supports the keyword fortran, which is identical
in meaning and function with the keyword pascal. You cannot
call a C/2 program directly from a main program written in
IBM FORTRAN/2. Both the pascal and fortran keywords mean:

• Fixed length parameter lists are pushed left to right, not
variable length parameter lists right to left as usually done
in C.

• The called subroutine must remove the fixed number of
parameters from the stack, not the caller who would
normally adjust the stack pointer in C.

• Names are shifted to all caps; no underscore is prefixed
as is usually done in C

Example
In the following example, var_prlnt can have a variable number of
arguments because it is declared as a function using the normal,
right-to-Ieft, C function, call/return, sequence-and-naming convention.
The cdecl keyword cancels the left-to-right calling sequence set with
the IGc option when compiling a source file this declaration appears
in. If this file compiles without the IGc option, cdecl has no effect
because it is the same as the default C convention.

int cdecl var_print(char* •...);

Compiling 2·71

2-72 Compiling

Chapter 3. Linking A Program

The IBM Segmented Executable Linker (LINK) links object files com­
piled with the IBM C/2 compiler. The linker produces executable
program modules or dynamic link libraries from object files created
with IBM C/2. The linker also combines application or dynamic link
object files with object files in the .L1B libraries. The linker runs in
OS/2 and DOS mode. For information about linking programs to run
as OS/2 multi-thread programs, see Chapter 6 of IBM C/2 Language
Reference.

The linker can produce the following:

• An OS/2 executable module
• An OS/2 dynamic link library
• A DOS executable module.

The linker supports dynamic linking, executable file compression,
embedded debug information, and module definition files.

Note: Before linking your C programs, make sure your environment
variables are set. See Chapter 2 in IBM C/2 Fundamentals for
information about setting the appropriate environment vari­
ables for your operating system.

The linker's ability to create files to run in the OS/2 mode depend on
the following:

Dynamic links: If an external reference is an entry point in a dynamic
link library the linker produces an OS/2 mode executable module.
The OS/2 mode library DOSCALLS.L1B (supplied with OS/2) contains
entries for all of the OS/2 dynamic link routines. You must supply this
library to LINK when creating OS/2 mode executable program
modules or dynamic link libraries.

Module definition flies: If you supply a module definition file, LINK
produces an OS/2 mode executable module. Module definition files
are optional when creating program modules, but they are required
when creating dynamic link libraries. For more information on
module definition files, see "Module Definition Files" on page 3-5.

Linking A Program 3-1

-'

If no module definition file is supplied and no dynamic link entries are
found, the linker produces a DOS mode executable program module.
Whether you are linking an application or a group of dynamic link
routines, the output is one file. If you link an application, the resulting
file is called a program module. The linker gives the default exten­
sion .EXE to program modules. If you are linking a group of dynamic
link routines, the resulting file is called a dynamic link library. When
it creates a dynamic link library, LINK uses the extension .DLL.

Note: Dynamic link libraries and OS/2 mode executable files can be
used only in OS/2 mode. DOS mode executable files will run
only in DOS mode.

How the Linker Works
The linker performs the following steps to combine object modules
and produce an executable module:

1. Reads the object modules you submit.
2. Searches the given libraries, if necessary, to resolve external ref-

erences.
3. Assigns addresses to the segments.
4. Assigns addresses to the public symbols.
5. Reads data in the segments.
6. Reads all relocation references in the object modules.
7. Performs fix-ups (See "Fix-ups" on page 3-52 for more informa­

tion.)
8. Creates an executable image and relocation information.

The linker produces a list file that shows segment and public symbol
addresses and error messages.

The executable image contains the code and data that make up the
executable file. The relocation information is a list of references to
locations in the program; the final address of the locations is decided
after the operating system loads the program. The format and proc­
essing of these relocations is different for the DOS and OS/2 mOdes.

3-2 linking A Program

Creating DOS Mode Applications
Create a DOS mode program module by linking the compiled source
files (.OBJ) with LINK. The linker uses the compiled source files and
a list of library files (.LlB) to produce a program module. The fol­
lowing diagram illustrates the steps required to create a DOS mode
application .EXE file:

*.OBJ files I 0-
*.LlB files --:~ LINK .EXE file

1-_______ --1 (Program Module)

Creating OS/2 Mode Applications
Create an OS/2 mode program module by linking the compiled
source files (.OBJ) with LINK. The linker uses the compiled source
files, a list of library files (.LlB), and an optional module definition file
to produce a program module. A module definition file is an ASCII
text file containing information about your application. The linker
uses this information to help build the .EXE file.

The following diagram illustrates the steps required to create an OS/2
mode application .EXE file:

*.OBJ files -----i~
*.LlB files LINK

i
Module Definition File

(optional)

I--~ .EXE file

linking A Program 3-3

Creating Dynamic Link Libraries
Create dynamic link libraries by linking compiled dynamic link source
files (.OBJ) with LINK. The linker uses the compiled source files and
a module definition file to produce a dynamic link library. The
module definition file is required because it tells the linker to produce
a dynamic link library rather than an executable file. The resulting
dynamic link library contains entry points to its dynamic link routines
that can be called by other applications.

*.OBJ files ---~
*.LlB files LINK

t
Module Definition File

(required)

~---1~ .DLL File
(Dynamic Link Library

You can use the IMPLIB utility to create a .LlB file for the dynamic link
library. The .LlB file resolves external references to the dynamic link
routines. Ordinary .LlB files resolve external references by supplying
the object code referenced. The .LlB files built by IMPLIB resolve
external references by supplying special records that contain
pointers to the target dynamic link library and entry points.

Definition File ----1.~1 IMPLIB 1------1 LlB file
'-________ --' (Library Module)

For more information about the IMPLIB utility, see the programming
information for OS/2. For more information about dynamic linking
see Chapter 6 of the IBM C/2 Language Reference.

3-4 Linking A Program

Creating Family Applications
A Family Application is a program module that can run in DOS mode,
and in the OS/2 mode. To create a Family Application you must use
the BIND utility. For more information about BIND, see the program­
ming information for OS/2.

The following diagram illustrates the steps required to create a
Family Application .EXE file:

Module Definition Files

Module Definition
File (required)

Creating a
Family Application.

A module definition file is an ordinary ASCII text file that provides
additional information about the .EXE or .DLL file being created. A
module definition file is required to create a dynamic link library and
is optional to create a program module. The module definition file
contains one or more definition statements. Each statement defines
some aspect of the program module or dynamic link library, such as
segment attributes or functions exported. For a full description of
each statement see "Module Definition File Statements" on

Linking A Program 3-5

page 3-34. You can choose any filename and extension for a modulE
definition file. The default extension LINK searches for is .DEF.

Creating Module Definition Files
The following sections explain how to create module definition files
for dynamic link modules and program modules.

Module Definition Flies for Dynamic Link Libraries
A module definition file for a dynamic link library must contain a
LIBRARY statement specifying that the file being created is a
dynamic link library. The file must also contain an EXPORTS state­
ment that lists the routines within the dynamic link library to be
exported. Routines in the dynamic link library cannot be used if they
are not listed.

The following example shows a module definition file for a dynamic
link library:

;Sample Module Definition File
LIBRARY

DESCRIPTION 'Sample .DEF file for Dynamic Link Library'

CODE LOADONCALL

EXPORTS
Init @1
Start @2
End @3
Load @4
Save @5

The first line of the sample module definition file is a comment. A
comment can appear on a line by itself or on the same line as a defi­
nition statement, as long as it appears after the definition.

Note: A semicolon must precede a comment. In this example, the
LIBRARY statement tells LINK that the file being created is a
dynamic link library (.DLL). The CODE statement instructs the
system to load code segments on demand. The EXPORTS
statement lists the dynamic link routines to be exported by
name and ordinal.

Dynamic link routines use the stack of their caller. OS/2 moves and
discards code segments of dynamic link routines and moves and
swaps data segments to take the best advantage of memory.

3-6 Linking A Program

Module Definition Flies for Program Modules
A module definition file for a program module is optional. For
example, you can use it to change the stack size or to cancel the
default segment characteristics. The following example shows a
module definition file for a program module:

;Sample Module Definition File
NAME

DESCRIPTION 'Sample .DEF file for Application'

CODE LOADONCALL

STACKSIZE 2048

Note: A semicolon must precede a comment. In this example, the
NAME statement tells LINK that the file being created is a
program module (.EXE). The CODE statement specifies that
code segments are loaded on demand. The STACKSIZE is
2048 bytes.

The first line of the sample module definition file is a comment. A
comment can appear on a line by itself or on the same line as a defi­
nition statement, as long as it appears after the definition.

Using the Linker
There are three different ways to use LINK:

The prompt method: You supply information by responding to
several prompts after you call LINK.

The command-prompt method: You supply all input to LINK on one
line.

The response file method: You create a file that contains all the nec­
essary options and filenames, then supply this file to LINK.

You can also mix these three methods.

Tp use LINK, create one or more object files and submit these files
and any required library files to LINK for processing. The linker com­
bines the code and data in the object files and searches the library
files that you name to resolve external references. The linker then
copies a relocatable and executable image and the relocation infor-

Linking A Program 3-7

mation to the executable (.EXE or .DLL) file. Using the relocation
information, the operating system can load the .EXE or .DLL image to
any convenient location in memory and run it. You can run these pro­
grams by typing the name of the file at the command prompt.

File-Naming Conventions
Use any combination of uppercase and lowercase letters for the
filenames you give in response to the prompts. For example,
abcde.fgh, AbCdE.FgH, and ABCDE.fgh are all acceptable filenames.

LINK uses the default file extensions .OBJ, .EXE, .MAP, .LlB, and
.DEF when you do not supply any extensions. To cancel or replace
the default extension specify a different extension.

To enter a filename that has no extension, type the name followed by
a period. For example, if you type ABC. in response to a prompt, it
tells LINK that the given file has no extension, but typing just ABC
tells LINK to use the default extension for that prompt.

Type the name or names of the object files that you want to link. If
you do not supply filename extensions, LINK uses .OBJ by default. If
you have more than one name, separate each name with spaces or a
plus sign. If you have more names than can fit on a single line, type a
plus sign as the last character on the line and press Enter. LINK asks
you for additional object files.

Selecting Default Responses
To select the default response to a prompt, press Enter without typing
a filename. The next prompt appears.

Use the semicolon character to save time when the default responses
are acceptable. LINK does not allow the semicolon character with
the first prompt, Object Modules [.OBJ]:, because that prompt has no
default. To select all the remaining default responses at once, type a
semicolon at the next prompt and press Enter.

Note: When you use the semicolon, you cannot respond to any of the
remaining prompts for that link session.

Defaults for other linker prompts follow:

3-8 Linking A Program

• Run File: The name of the first object file specified for the pre­
vious prompt, LINK replaces the .OBJ extension with the .EXE
extension.

• List File: The special filename NUL.MAP, which tells LINK not to
create a map file.

• Libraries: For C programs, the floating point library and the
library for the appropriate memory model. The names of these
default libraries are imbedded in the .OBJ file by the compiler.
Specifying libraries at this prompt does not override the default
but adds to it. To override the default, use the INOD option. (See
"Ignoring Default Libraries INODEFAULTLIBRARYSEARCH" on
page 3-27.)

• Definitions File: The special filename NUL.DEF, which tells LINK
not to search for a definitions file.

Ending the LINK Session
You can end LINK at any time by pressing Ctrl + Break.

Note: When you use Ctrl + Break, you must restart LINK.

Using LINK Exit Codes
LINK returns an exit code of 0, 2, or 4 to indicate the status of linking.
The exit code is useful with the operating system batch command IF
ERRORLEVEL: it allows you to test for the success or failure of
linking before running other tasks that depend on the LINK step. The
exit codes from LINK are defined as:

Code Meaning
o No error
2 Program error, something was wrong with the commands

or files input to LINK.
4 System error. The linker ran out of space on output files,

was unable to reopen the temporary file, experienced an
internal error, or was interrupted by the user.

linking A Program 3-9

Using a Command to Specify LINK Files
To run the linker with a single command, supply all your responses to
link prompts on a single line. Separate your responses with commas,
as shown:
LlNK-Objlist-~\----7---"'~~---7--"""\-----7--"'--·

'- ,runfile J \.... ,listfile J \..... ,librarylist J

,definitions-file

See option
list below

objlist The object files that you want to link, separated by
plus signs or spaces. The linker requires at least one
object file. If you do not supply an extension, LINK
provides the extension .OBJ.

runfile The name of the file to receive the output that LINK
creates. You can prefix the filename with a drive
specifier and path. If you do not supply a runfile,
LINK creates one using the first object filename. It
adds the extension .EXE for program modules or .DLL
for dynamic link libraries.

listfile The name of the file to receive the map listing. The
filename can be prefixed with a drive specifier and
path. If you do not supply an extension, the linker
uses the extension .MAP. If you use the IMAP or
ILiNENUMBERS option, LINK creates a map file even
if a map file is not listed in the command.

librarylist A list of libraries for LINK to search, separated by
plus signs or spaces. LINK searches these in addi­
tion to the default libraries specified in the .OBJ file.

definitions-file An optional module definition file you can give ,to the
linker.

loptionslist A list of linker options. If you specify options, you can
put them anywhere in the command.

3-10 Linking A Program

Example
This example uses an object module FILE.OBJ to create the execut­
able file FILE.EXE. The linker searches the library ROUTINE.LlB, in
addition to the default libraries specified in the .OBJ file, for routines
and variables used within the program. It also creates a file called
FILE.MAP containing a list of the segments of the program and
groups.

LINK file.obj.file.exe,file.map.routine.lib;

It is equal to the following line:

LINK file •• file. routine;

In the following example, the linker loads and links the object
modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ and
searches for unresolved references in the library file COBLlB.LlB, in
addition to the default libraries imbedded in the ,OBJ file. By default,
the executable file produced is named FUN.EXE. A listfile named
FUNLlST.MAP is also produced.

LINK FUN+ TEXT + TABLE+CARE •• FUNLIST .COBLIB. LIB /MAP;

The next example uses the two object modules STARTUP.OBJ and
FILE.OBJ on the current drive to create an executable file named
FILE.EXE on drive B. The linker creates a map file in the \MAP direc­
tory of the current drive and searches only the libraries indicated
within the .OBJ file.

LINK startup+file.b:file.\map\file;

The following example links the application object file SAMPLE.OBJ
using the module definition file SAMPLE.DEF and the libraries
LlB1.LlB and LlB2.LlB.

LINK sample/A:4.sample.exe. sample.map/LI. libl+lib2/NOD. sample

This command creates the file SAMPLE.EXE. It also creates the map
file SAMPLE.MAP. The command searches the library files LlB1.LlB
and LlB2.LlB to resolve any external references made in
SAMPLE.OBJ. The /NOD option directs LINK to ignore any default
libraries specified in the object file.

The linker uses default filename extensions if you do not explicitly
provide your own. In the example above, LINK extends the first
occurrence of the filename SAMPLE to SAMPLE.OBJ and the final
occurrence to SAMPLE.DEF. LINK extends the library files with the
.LlB extension. The /A:4 option sets the segment alignment factor to

Linking A Program 3·11

16. The III option copies the line number information from the object
files.

Using Prompts to Specify LINK Files
The linker prompts for the information it needs by displaying the fol­
lowing lines, one at a time.

Object Modules [.OBJ]:
Run File [fi lename. EXE] :
List File [NUL.MAP]:
Libraries [.LIB]:
Definitions File [NUL.DEF]:

The linker waits for a response to each prompt before displaying the
next one.

1. To start LINK, type: LINK

LINK displays the following message:

Object Modules [.OBJ]:

list the names of the object files you want to link at the Object
Modules prompt. You must respond to this prompt; there is no
default. LINK supplies the .OBJ extension when you give a
filename without an extension; if your object file has a different
extension, you must supply it.

You can use pathnames with object filenames. You can give
LINK the pathname of an object file in another directory or on
another diskette. If LINK cannot find a given object file, it dis­
plays a message and waits for you to change diskettes or directo­
ries.

You must separate each object filename from the next by blank
spaces or a plus sign. If a plus sign is the last character typed on
the line, the Object Modules prompt reappears on the next line,
allowing you to type more object files.

2. Press Enter after you type all object filenames.

LINK displays the following prompt:

Run File [filename.EXE]:

The filename in this prompt is the first one entered in response to
the Object Modules [.OBJ): prompt. This is the default name if no
new name is supplied.

Enter the name for the executable (.EXE) file. The Run File
prompt allows any filename you prefer. However, .EXE is the

3-12 Linking A Program

recommended extension because DOS runs files with this exten­
sion. If you give no extension, LINK uses .EXE by default.

3. If you want LINK to supply a default executable filename, press
Enter.

LINK displays the prompt:

List File [NUL.MAP]:

Following the List File prompt you can:
• Enter the name of the map (.MAP) file that you want to create.

If you do not give a filename extension, LINK uses .MAP by
default. By adding the IMAP option you may also list all
external (public) symbols and their addresses (see
"Producing a Public Symbol Map IMAP" on page 3-26).

• Press Enter without giving a name. When you skip this
prompt, LINK uses the special filename NUL.MAP, which tells
LINK not to create a map file.

At the bottom of the map file, LINK gives you the address of the
program entry point.

4. Press Enter.

LINK displays the prompt:

Libraries [.LIB]:

Following the Libraries prompt you can:
a. Press Enter to go to the next prompt.

or
b. Use one search path or up to 16 search paths by listing one

or more search paths with the library names.

You can assign the search paths to the environment variable
LIB before you call LINK.

Environment variables are explained under the SET command in
the user's reference information for the operating system. Each
search path can be either a directory specification or a library
name. Directory specifications must end with a backslash (\) so
that LINK can distinguish the directory names from the library
names.

IBM C/2 encodes object files with the names of the default com­
bined libraries, xLlBCyz.LlB, for the appropriate memory model.
These combined libraries contain the C library and the floating­
point library or libraries selected at compile time. This encoded
information lets LINK search for the default library files and link
them with your C program.

Linking A Program 3-13

Typing the directory specifications causes LINK to search for the
default libraries and for any other libraries without a pathname
on the same line. LINK searches for default libraries in the fol­
lowing order:
a. The current working directory
b. The directories in the order listed following the Libraries

prompt
c. The libraries specified by the LIB environment variable.

When you give a library name, LINK searches for the library and
links it with your program. If the library name includes a direc­
tory specification, LINK searches only that directory for the
library. If you give no directory specification, LINK searches for
the library in the order just described. LINK searches all libraries
until it finds the first definition of a symbol. LINK searches default
libraries after the libraries given at the command prompt. For
information about changing the default libraries see "Changing
the Default Libraries" on page 3-15.

5. After typing the names, press Enter.

LINK displays the prompt:
Definitions File [NUL.DEF]:

Following the Definitions File, prompt you can:
• Enter the name of a module definition file for the executable

module.
• If you do not want to use a module definition file, do not enter

any names; just press Enter. LINK creates an executable file.

When you enter filenames, you must give a pathname for any file not
in the current drive directory. Select the LINK options by typing them
after the filename at any linker prompt. If LINK cannot find an object
file, it displays a message and waits for you to change diskettes, if
necessary.

You can type the rest of the filenames at the command prompt at any
linker prompt. Choose the default response for all remaining prompts
by typing a semicolon after any linker prompt. If you type a semi­
colon at the Object Modules prompt, supply at least one object
filename. You can use commas, instead of preSSing Enter, to imme­
diately specify files for the next prompt.

3-14 Linking A Program

Example
The following example links the object modules MODA.OBJ,
MODB.OBJ, MODC.OBJ, and STARTUP .OBJ. LINK searches the
library file MATH.LlB in the \LlB directory on drive B for routines and
data used in the programs. LINK then creates an executable file
named MODA.EXE and a map file named ABC. MAP. The IPAUSE
option at the Object Modules prompt causes LINK to pause while you
change diskettes. LINK then creates the executable file.

LINK

Object Modules [.OBJ]: moda + modb +
Object Modules [.OBJ]: modc + startup /PAUSE
Run File [MODA.EXE]:
List File [NUL.MAP]:abc
Libraries [.LIB]: b:\lib\math
Definitions File [NUL.DEF]:

Changing the Default Libraries
If you use the IFPa, IFPc87, or IFPc (default) option when you
compile, you can switch to a different floating-point library at link
time. Do this by entering the name of each library you want to use
following the Libraries prompt.

If you do not want to use the C library xLlBCyz.LlB, you must give the
INOD (no default library) option when you link. This option tells LINK
to ignore the encoded information in the C object files. Use this
option with caution. Be sure to specify all libraries necessary to
compile the program. See the INOD option under "Ignoring Default
Libraries INODEFAUL TLiBRARYSEARCH" on page 3-27.

Type the names of any library files containing routines or variables
your program refers to but does not define. If you do not supply
filename extensions, LINK uses .un by default.

Using a Response File
A response file contains the names of all the files that you want proc­
essed. To operate the linker with a response file, you must create the
file, then type the following:

LINK @filename

The filename is the name of the response file you created. The
response file can have any name. If the file is in another directory or
on another disk drive, you must provide a pathname.

Linking A Program 3-15

The response file has the following general form:

objectfiles
[runfiZe]
[listfile]
[l ibroryfi l es]
[defini tionsfi Ze]

Omit elements you have already provided at prompts or with a partial
command.

The responses must be in the same order as the LINK prompts. Each
response to a prompt must begin on a separate line, but you can
extend long responses across more than one line by typing a plus
sign as the last character of each incomplete line. You can place
options on any line. Use options and command characters in the
response file as if they were typed at the keyboard.

You can type a semicolon on any line in the response file. When
LINK reads the semicolon, it automatically supplies default filenames
for all files that you have not yet named in the response file. LINK
ignores the remainder of the response file. For example, if you type a
semicolon on the line of the response file corresponding to the Run
File prompt, LINK uses the default responses for the executable file
and for the remaining prompts.

When you use the LINK command with a response file, LINK displays
each prompt on your screen with the corresponding response from
your file. If the response file does not contain responses for all the
prompts (in the form of filenames, the semicolon command character,
or carriage returns), LINK displays the appropriate prompts and waits
for responses. When you type an acceptable response, LINK con­
tinues the session.

Note: End a response file with either a semicolon or a carriage
return/line feed combination. If you do not provide a final car­
riage return/line feed in the file, the linker displays the last
line of the response file and waits for you to press Enter.

3-16 Linking A Program

Example
The following lines in a response file tell LINK to load the four object
modules FUN, TEXT, TABLE, and CARE. LINK produces two output
files named FUN.EXE and FUNLIST.MAP. The IPAUSE option causes
LINK to pause before producing the executable file (FUN.EXE). This
permits a diskette change if necessary. The linker also searches the
COBLlB.LlB, in addition to the defaults libraries listed in the .OBJ
files. See the IPAUSE option under "About LINK Options" on
page 3-18 for more information.

FUN TEXT TABLE CARE
/PAUSE
FUNLIST
COBLIB.LIB;

The response file below tells the linker to link the four object modules
MODA, MODB, MODC, and STARTUP. The linker pauses for a
diskette change before producing the runfile MODA.EXE. The linker
also creates a map file ABC.MAP and searches the library MATH.LlB,
in addition to the default libraries listed in the .OBJ files, in the \LlB
directory of drive B.

moda modb mode startup /PAUSE

abc
b:\lib\math

The following example combines all three methods of supplying
filenames. Assume that you have a response file called LIBRARY
that contains the following line:

libl+lib2+lib3+lib4;

Now start LINK with a partial command:

LINK objectl object2

LINK takes OBJECT1.0BJ and OBJECT2.0BJ as its object files and
asks for the next line with the following:

Run File [objectl.EXE]: exec
List File [NUL.MAP]:
Libraries [.LIB]: @library

1. Type exec so that the linker names the run file EXEC.EXE.
2. Press Enter to show that you do not want a map file.
3. Type @ library for the linker to use in the response file containing

the four library filenames.

Linking A Program 3-17

Temporary Disk File
LINK uses available memory for the link session. If the files to be
linked create' an output file that exceeds available memory, LINK
creates a temporary disk file to serve as storage. LINK creates the
temporary file in the current working directory and displays the fol­
lowing message:

Temporary file name has been created.
Do not change diskette in drive letter:

The name is a unique temporary filename created by the linker. After
this message appears, do not remove the diskette from the given
drive (letter) until the link session ends. If you remove the diskette,
the operation of LINK is unpredictable. If LINK unexpectedly ends,
you may see the following message:

Unexpected end of file on name

If you get this message, you must restart LINK from the beginning.
After LINK creates the executable file, it automatically deletes the
temporary file.

About LINK Options
When you start the linker at a command prompt, you can specify LINK
options anywhere, except before the last comma on the response
line. If you are using a response file, you can place options after the
individual responses on the same line of the file or by themselves on
a separate Ii ne.

When specifying more than one option, you can group them at the
end of a single response to a prompt or distribute them among
several responses for different prompts. Every option must begin
with the slash character, even if other options precede it on the same
line.

LINK options are named according to their function. You can abbre­
viate the names to save space and typing. Be sure your abbrevi­
ations are at least as long as the minimum stated in the individual
descri ptions.

All linker options must begin with a slash (/).

LINK allows no gaps or transpositions.

3-18 Linking A Program

Some linker options take numerical arguments. A numerical argu­
ment can be any of the following:

• A decimal number from 0 to 65535.
• An octal number from 0 to 0177777. LINK interprets a number as

octal if it starts with a O. For example, the number "10" is a
decimal number, but the number "010" is an octal number, equal
to 8 in decimal.

• A hexadecimal number from 0 to OxFFFF (X I FFFF I). LINK inter­
prets a number as hexadecimal if it starts with "Ox." For example,
"Ox10" is a hexadecimal number, equivalent to 16 in decimal.

Using LINK Options
The linker options control what tasks LINK performs. You may use an
option anywhere in a LINK command. You can abbreviate option
names as long as your abbreviations contain enough letters to distin­
guish the specified option from other options. Minimum abbrevi­
ations are listed for each option.

The following is a list of LINK options. Those followed by a 8 are
valid for creating DOS mode and OS/2 mode executable files. Those
followed by a 0 are valid for creating DOS mode executable files, and
an 0 following the option means it is valid for creating OS/2 mode
executable files.

Option
/ALIGNMENT (0)
/CODEVIEW (8)

/CPARMAXALLOC (D)

/DOSSEG (8)
/EXEPACK (D)
/FARCALL TRANSLATION (0)
/HELP (8)

!INFORMATION (8)

/L1NENUM8ERS (8)

/MAP (8)

Description
Sets segment alignment factor
Includes symbolic debugging
information
Changes value of maximum
number of reserved paragraphs
Forces ordering of segments
Packs executable files
Optimizes intrasegment far calls
Writes a list of the available
LINK options to the screen
Displays information during the
link process
Copies line numbers to the map
file
Lists all public symbols inyour
program

/NODEFAUL TLl8RARYSEARCH (8) Ignores default libraries

Linking A Program 3-19

INOFARCALL TRANSLATION (0)
INOIGNORECASE (B)
INOPACKCODE (0)
IPACKCODE (0)

Disables far call translations
Case sensitive
Disables code segment packing
Packs code segments

IPACKDATA (0)
IPAUSE (B)

ISEGMENTS (B)

ISTACK (B)
IWARNFIXUP (0)

Packs data segments
Pauses before writi ng the exe­
cutable
Sets the maximum number of
logical segments
Sets the stack size
Issues warning message on
certain fix-ups.

Linker Options for Other IBM Language Files
These options are documented here, along with the other LINK
options because you may need them if you use LINK to link files
written by other IBM languages. They are not recommended for use
with C.

Option
IDSALLOCATE

IHIGH

INOGROUPASSOCIATION

10VERLAYINTERRUPT

Aligning Segments
IALIGNMENT

Description
Loads all data starting at the high end of
the data segment
Places runfile as high as possible in
storage
Provides some fix-up routines compat­
ibility with previous versions of other IBM
language compilers
Allows selection of an interrupt number
for overlays.

This option directs LINK to set the segment alignment factor in the
executable file to the number given, which must be a power of 2. The
default alignment is 512. This is valid for OS/2 mode executable files
only.

Format

/ALIGNMENT:number

The minimum abbreviation is IA.

3-20 Linking A Program

Comments
The number can be a hexadecimal, decimal, or octal number.

Preparing Files for CodeView
ICODEVIEW
This option directs LINK to include symbolic debugging information
for CodeView in the output .EXE file.

Format

/CODEVIEW

The minimum abbreviation is ICO.

Comments

Note: ICODEVIEW cannot be used with IEXEPACK.

Reserving Paragraph Space
ICPARMAXALLOC
This option allows you to change the default value of the MAXALLOC
field, which controls the maximum number of paragraphs reserved in
storage for your program. A paragraph is defined as the smallest
storage unit (16 bytes) addressable by a segment register.

This is valid for DOS mode executable files only.

Format

ICPARMAXALLOC:number

The minimum abbreviation is ICP.

Comments
The maximum number of paragraphs reserved for a program is deter­
mined by the value of the MAXALLOC field at offset OCH in the EXE
header. For more information about EXE file structuring and loading,
see the technical reference information for DOS.

The default for the MAXALLOC field is 65535 (decimal), or 64KB
minus 1. You can reset the default to any number between 1 and
65535 (decimal, octal, or hexadecimal). Changing the number is
helpful because:

Linking A Program 3-21

• Program efficiency is not increased by reserving all available
memory.

• You may need to run another program within your program and
need to reserve space for the run program.

If the value specified is less than the computed value of MINALLOC
(at offset OAH), the linker uses the value of MINALLOC instead.

Ordering Segments
IDOSSEG
This option forces segments to be ordered according to the following
rules:

1. All segments with a class name ending in CODE.

2. All other segments outside of DGROUP.

3. DGROUP segments in the following order:

a. Any segments of class BEG OAT A. (This class name is
reserved for IBM use.)

b. Any segments not of class BEGDATA, BSS, or STACK.
c. Segments of class BSS.
d. Segments of class STACK.

Format

/DOSSEG

The minimum abbreviation is 100.

Controlling Data Loading
IDSALLOCATE
By default, LINK loads all data starting at the low end of the data
segment. At run time, LINK sets the OS (data segment) pointer to the
lowest possible address to allow the entire data segment to be used.

This option tells LINK to load all data starting at the high end of the
data segment. To do this, at run time, set the DS pointer to the lowest
data segment address that contains program data.

This is valid for DOS mode executable files only.

3-22 Linking A Program

Format

IDSALLOCATE

The minimum abbreviation is IDS.

Comments
This option is typically used with the IHIGH option to take advantage
of unused storage within the data segment. You can reserve any
available storage below the area specifically reserved for DGROUP,
using the same OS pointer.

Packing Executable Files
IEXEPACK
This option directs LINK to remove sequences of repeated bytes (typi­
cally nulls) and to optimize the load-time relocation table before cre­
ating the DOS executable file.

This is valid for DOS mode executable files only.

Format

IEXEPACK

The minimum abbreviation is IE.

Comments
Executable files linked with this option are usually smaller and load
faster than files linked without this option. However, you cannot use
symbolic debugging programs with packed files.

This option does not always save a significant amount of disk space
and may sometimes actually increase file size. Programs that have a
large number of load-time relocations (about 500 or more) or long
streams of repeated characters are usually shorter if packed.

Note: IEXEPACK cannot be used with ICODEVIEW.

Example
This example creates a packed version of file PROGRAM.EXE.

LINK program IE;

Linking A Program 3-23

Optimizing Intrasegment Far Calls
IFARCALL TRANSLATION
This option directs LINK to optimize intrasegment far calls into the
sequence:

NOP
PUSH CS
CALL NEAR address

Format

/FARCALLTRANSLATION

The minimum abbreviation is IF.

This is valid for OS/2 mode executable files only.

Note: In most medium- and large-model programs, this option yields
significant savings in executable size and load time. However,
there is a small chance that the linker, during this optimiza­
tion, will mistakenly identify a byte with a value of Ox9a as a
far-call, when, in fact, it is an assembled constant. Be cau­
tious when using this option.

Viewing the Options List
IHELP
This option causes LINK to write a list of the available options to the
screen. This may be convenient if you need a reminder of the avail­
able options. Do not give a filename when using the IHELP option.

Format

/HELP

The minimum abbreviation is IHE.

Example

LINK /HELP

3·24 Linking A Program

Controlling Run File Loading
IHIGH
You can place the run file as low or as high in storage as possible.
This option directs LINK to cause the loader to place the run file as
high as possible in storage without overlaying the transient portion of
COMMAND.COM. The COMMAND.COM file occupies the highest
area of storage when loaded. Without the IHIGH option, the loader
places the run file as low as possible in storage.

Use the IHIGH option in association with the IDSALLOCATE option.

This is valid for DOS mode executable files only.

Format

/HIGH

The minimum abbreviation is IHI.

Note: Do not use this option with C programs.

Displaying LINK-Time Information
IINFORMATION
This option causes the linker to display which phase of processing it
is running and the name of each input module as it is linked. This is
useful during debugging.

Format

/INFORMATION

The minimum abbreviation is II.

Copying Line Numbers to the Map File
ILINENUMBERS
This option directs the linker to copy the starting address of each
program source line to a map file. The starting address is the
address of the first instruction that corresponds to the source line.

Format

/LINENUMBERS

Linking A Program 3-25

The minimum abbreviation is Ill.

Comments
LINK copies the line number data only if you give a map filename in
the LINK command and only if the given object file has line number
information. Line numbering is available in some high-level lan­
guages.

The IBM Macro Assembler/2 does not copy line number information
to the object fil~. If an object file has no line number information, the
linker ignores the ILiNENUMBERS option.

Note: If you do not specify a map file in a LINK command, you can
still use the ILiNENUMBERS option to force the linker to create
a map file. Just place the option at or before the List File
prompt. LINK gives the forced map file the same filename as
the first object file specified in the command and gives it the
default extension .MAP.

Example
This example causes the line number information in the object file
Fll!=.OBJ to be copied to the map file FILE.~AP.

LINK file/LINENUMBERS •• file

Producing a Public Symbol Map
IMAP
This option causes LINK to produce a listing of all public symbols
declared in your program. This list is copied to the map file created
by the linker.

Format

/MAP:number

The minimum abbreviation is 1M.

For a complete description of the listing file format, see "The Map
File" on pag~ 3-47.

3-26 Linking A Program

:::omments
rhe number parameter specifies the maximum number of public
)ymbols that the linker can sort in the map file. If you give no
,umber, the limit is 2048. Valid values are 1 through 32767. They can
:>e specified in hex, decimal, or octal. If the limit is exceeded, the
inker produces an unsorted list and issues the following fatal error
"essage:

~p symbol limit too high

If you get this error, link again with a lower number. The limit varies
according to how many segments the program has and how much
"emory is available.

Specifying a number also causes the sorting of public symbols by
address only, not by name, regardless of the number. If you want to
reduce the size of your map files by removing the list sorted by name,
link with IMAP followed by a small number that is large enough to
accommodate the number of public symbols in your program.

Note: If you do not specify a map file in a LINK command, you can
use the IMAP option to force the linker to create a map file.
LINK gives the forced map file the same name as the first
object file specified in the command and the default extension
.MAP.

Ignoring Default Libraries
INODEFAUL TLIBRARYSEARCH
This option directs the linker to ignore any library names it may find
in an object file. A high-level language compiler may add a library
name to an object file to ensure that a default set of libraries is linked
with the program. Using this option bypasses these default libraries
and lets you name the libraries you want by including them at the
LINK command prompt.

Format

/NODEFAULTLIBRARYSEARCH[:libname]

The libname causes the linker to ignore the library search record for
that library only. For example:

LINK progl /NOD:SLIBCE

causes the linker to ignore SLlBCE.LlB but search all others. The
minimum abbreviation is INOD.

Linking A Program 3-27

Example
This example links the object files STARTUP.OBJ and FILE.OBJ with
routines from the libraries EM.L1B, SLlBFP.L1B, and SLlBC.L1B. Any
default libraries that may have been named in STARTUP.OBJ or
FILE.OBJ are ignored.

LINK startup+file/NOD ••• em+slibfp+slibc;

Disabling Far Call Translations
INOFARCALL TRANSLATION
This option directs LINK to disable translation of intrasegment far
calls. This option is in effect by default.

This is valid for OS/2 mode executable files only.

Format

/NOFARCALLTRANS LAT I ON

The minimum abbreviation is /NOF.

Comments
When you use this option, the linker does not translate intrasegment
far calls.

Preserving Compatibility
INOGROUPASSOCIATION
This option causes the linker to process a certain class of fix-up rou­
tines in a manner compatible with previous versions of the linker.
This option is provided primarily for compatibility with previous ver­
sions of other IBM language compilers.

This is valid for DOS mode executable files only.

Format

/NOGROUPASSOCIATION

The minimum abbreviation is /NOG.

3-28 Linking A Program

Preserving Lowercase
INOIGNORECASE
This option directs LINK to treat uppercase and lowercase letters in
symbol names as distinct letters. Normally, LINK considers upper­
case and lowercase letters to be identical, treating the names TWO,
Two, and two as the same. When you use the INOIGNORECASE
option, the linker treats TWO, Two, and two as three different names.

Format

INOIGNORECASE

The minimum abbreviation is INOI.

Comments
This option is typically used with object files created by high-level
language compilers. Some compilers treat uppercase and lowercase
letters as distinct letters and assume that the linker does the same.

Example
This command causes the linker to treat uppercase and lowercase
letters in symbol names as distinct letters. The object file FILE.OBJ
is linked with routines from the C language library \SLlBC.LlB located
in the \LlB directory.

Note: The C language does not treat uppercase and lowercase
letters as the same.

LINK file/NOI ••• \lib\slibc;

Disabling Packing
INOPACKCODE
This option directs the linker to disable the packing of code segments.
INOPACKCODE is the opposite of IPACKCODE. This option is valid
for OS/2 mode executable files only.

Format

INOPACKCODE

The minimum abbreviation is /NOP.

Linking A Program 3-29

SeHing the Overlay Interrupt
IOVERLA YINTERRUPT
By default, the DOS interrupt number used for passing control to
overlays is 3FH. This option allows you to select a different interrupt
number.

This is valid for DOS mode executable files only.

Format

IOVERLAYI NTERRUPT: number

The minimum abbreviation is 10.

Comments
The number can be a decimal number from 0 to 255, an octal number
from 0 to 0377, or a hexadecimal number from 0 to OxFF. Numbers
that conflict with DOS interrupts are not prohibited, but their use is
not recommended.

Packing Code Segments
IPACKCODE
This option directs LINK to try to pack neighboring logical code seg­
ments into one physical segment. LINK performs this option by
default.

This is valid for OS/2 mode executable files only.

Format

IPACKCODE[:number]

The minimum abbreviation is IPACKC.

Comments
The number is the limit at which to stop packing; it can be any
number between 0 and 65536. If no number is given LINK uses 65536.
For more information on packing, see "Rules for Segment Packing in
LINK" on page 3-53.

3-30 Linking A Program

Packing Data Segments
IPACKDATA
This option directs LINK to pack neighboring logical data segments
into one physical segment.

This option is valid for OS/2 executatile programs only.

Format
/PACKDATA[:pocklimit]

The minimum abbreviation is /PACKD.

Comments
By default, the linker does not try to pack neighboring logical data
segments into one physical segment. The packlimit is the limit at
which to stop packing. If no packlimit is given, LINK uses 65536. For
more information about packing, see "Rules for Segment Packing in
LINK" on page 3-53.

Consider using this option if you have a large-model program with
many modules and you get LINK error L 1073- file-segment limit
exceeded.

Pausing to Change Disks
IPAUSE
This option causes LINK to pause before writing the executable file to
disk so that you can change disks.

Format
/PAUSE

The minimum abbreviation is /PAU.

Comments
If you choose the /PAUSE option, the linker displays the following
message before creating the run file:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

The letter is the proper drive name. This message appears after the
linker has read data from the object and library files and after it has

Linking A Program 3-31

written data to the map file, if one was specified. LINK resumes proc­
essing when you press Enter. After LINK writes the executable file to
disk, the following message appears:

Please replace original diskette
in drive letter and press <ENTER>

Note: Do not remove the disk used for the temporary file, if one has
been created. If the temporary disk message appears when
you have specified the IPAUSE option, you should press
Ctrl+C to end the LINK session. Rearrange your files so that
LINK can write the temporary file and the executable file to the
same disk; then try again.

Example
This command causes the linker to pause just before creating the
executable file FILE.EXE. After creating the executable file, LINK
pauses again to let you replace the original disk.

LINK file/PAUSE.file •• \lib\mathi

SeHing the Maximum Number of Segments
ISEGMENTS
This option directs the linker to process no more than number seg­
ments per program. If it finds more than the given limit, the linker
displays an error message and stops linking. The ISEGMENTS option
bypasses the default limit of 128 segments.

Format

/SEGMENTS:number

The minimum abbreviation is ISE.

Comments
If you do not specify ISEGMENTS, the linker reserves enough storage
space to process up to 128 segments. If your program has more than
128 segments, set the segment limit higher. Set the segment limit
lower if you get the following LINK error message:

Segment limit set too high

The number can be any integer value in the range 0 to 3072. It must
be a decimal, octal, or hexadecimal number. Octal numbers must
have a leading zero. Hexadecimal numbers must start with a leading
zero followed by a lowercase x. For example, Ox4B.

3-32 Linking A Program

Example
This example sets the segment limit to 192:
LINK file/SE:192;

The next example sets the segment limit to 255 (XI FF'):
LINK moda+modb.run/SEGMENTS:0xff.ab.em+mlibfp;

Setting the Stack Size
ISTACK
This option sets the program stack to the number of bytes given by
size. The linker automatically calculates the stack size, basing it on
the size of any stack segments given in the object files. If you specify
ISTACK, the linker uses the given size in place of any value it may
have calculated.

Format

ISTACK:size

The minimum abbreviation is 1ST.

Comments
The size can be any positive integer value in the range 0 to 65535.
The value can be a decimal, octal, or hexadecimal number. Octal
numbers must begin with a zero. Hexadecimal numbers must begin
with a leading zero followed by a lowercase x. For example, Ox1 B.

The stack size can also be changed after linking with the EXEMOD
utility.

Example
The first example sets the stack size to 512 bytes.

LINK file/STACK:512;

The second example sets the stack size to 255 (X'FF') bytes.
LINK moda+modb.run/ST:0xFF.ab.\lib\start;

The final example sets the stack size to 24 (30 octal) bytes.

LINK startup+file/ST:030;

Linking A Program 3-33

Warning of Fix-ups
IWARNFIXUP
This option directs the linker to issue a warning for each segment­
relative fix-up of location-type offset when the segment is contained
within a group, but not at the beginning. The linker includes the dis­
placement of the segment from the group in determining the final
value of the fix-up, contrary to what happens with DOS mode execut­
able files.

This is valid for OS/2 mode executable files only.

Format

/WARNFIXUP

The minimum abbreviation is /W.

Module Definition File Statements
The module definition file defines the contents and system require­
ments of an OS/2 mode executable module. The file contains one or
more module statements, each defining a specific attribute of the
module, such as module name, number and type of program seg­
ments, and the number and names of exported and imported func­
tions.

The following section describes these module statements:

Statement
CODE
DATA
DESCRIPTION
EXPORTS
HEAPSIZE
IMPORTS
LIBRARY
NAME
OLD
PROTMODE
SEGMENT
STACKSIZE
STUB

3-34 Linking A Program

Description
Code segment attributes
Data segment attributes
One line description of the module
Exported functions
Local heap size in bytes
Imported functions
Specifies dynamic iink library
Specifies program module
Module for export ordi nals
Specifies OS/2 mode
Segment attributes per segment name
Local stack size in bytes
Adds a DOS mode executable file.

Notes:

1. Any line, or part of a line, in the definition file beginning with a
semicolon is a comment and is ignored by the linker and IMPLIB.

2. All statements in the module definition file must be entirely in
uppercase.

Defining the Code Segment Default AHributes
CODE
This statement defines the default attributes of all code segments in
the module.

Format

CODE [load option] [execute option] [privilege option] [conjonming option]

Parameters
The load option is an optional keyword specifying when the segment
is to be loaded. It must be one of the following:

PRELOAD

LOADONCALL

The segment is loaded immediately.

The segment is loaded when called.

The default is LOADONCALL.

The execute option specifies whether the segment can be read as
well as run. It must be one of the following:

EXECUTEONLY

EXECUTEREAD

The segment can only be run.

The segment can be run and read.

The default is EXECUTE READ.

Note: If you use C to create a code segment of a dynamic link
module and the source code contains a switch statement, do
not specify EXECUTEONL Y on the CODE statement of the
dynamic link module definition file. Use the default execute
option EXECUTEREAD for such segments. In many cases of
the switch statement, the compiler generates a table lookup
through the CODE segment. The table lookup method is taken
for switch statements with more than six distinct cases when
the ratio of number-of-cases to range-of-cases exceeds one­
third.

Linking A Program 3-35

The privilege option is an optional keyword specifying if the segment
has 110 privilege. It must be one of the following:

IOPL

NOIOPL

The segments have 110 privilege.

The segments do not have 110 privi lege.

The default is NOIOPL.

Conforming-option is an optional keyword specifying the access
rights to code segments.

CONFORMING

NONCONFORMING

Sets access rights to conformi ng.

Sets access rights to nonconforming.

The default is NONCONFORMING. Set the access rights to CON­
FORMING if the segment contains at least one routine that has all of
the following qualities:

• Will be called from both 10PL and non-IOPL segments
• Will not be called through call gates
• Does not need 110 privilege to operate (that is, does not access

ring 2 data, disable interrupts, or use the IN and OUT instructions.

Defining Data Segment Default AHributes
DATA
This statement defines the default attributes of the data segments of
the application. The automatic data segment contains the local stack
and heap of the module.

Format

DATA [instance option] [shared option] [write option]
[privilege option] [load option]

Parameters
The instance option is an optional keyword that describes the sharing
of the automatic data segment, which is any group named DGROUP.
It can be anyone of the following:

NONE
SINGLE

There is no automatic data segment.
The automatic data segment is shared by all
instances of the module (valid only for dynamic link
libraries).

3-38 Linking A Program

MULTIPLE The automatic data segment is copied for each
instance of the module.

The default for instance option is MULTIPLE for program modules and
SINGLE for dynamic link libraries.

The shared option is an optional keyword specifying the need to have
a unique copy of the READWRITE data segments loaded for each
process using the dynamic link library. Values are:

SHARED A single copy of each data segment is loaded.

NONSHARED A unique copy of each READWRITE data segment is
loaded for each process using the dynamic link
library.

The default is NONSHARED for program modules and SHARED for
dynamic link libraries.

The write option is an optional keyword specifying whether the
segment can be written to.

READONLY

READWRITE

The segment can only be read from.

The segment can be read from or written to.

The default is READWRITE.

The privilege option is an optional keyword specifying if the segment
has 110 privilege. It must be one of the following:

IOPL

NOIOPL

The segments have 110 privilege.

The segments do not have 110 privilege.

The default is NOIOPL.

The load option is an optional keyword specifying when the segment
is to be loaded. It must be one of the following:

PRELOAD The segment is loaded immediately.

LOADONCALL The segment is loaded when called.

If you give a CODE statement, the default is LOADONCALL.

linking A Program 3-37

Inserting Text
DESCRIPTION
This statement inserts text into the module of the application. It is
useful for embedding source control or copyright information.

Format

DESCRIPTION text

Parameters
The text is one or more ASCII characters. You must enclose the
string in single quotation marks.

Example

DESCRIPTION 'Template Application'

Exporting Functions
EXPORTS
This statement defines the names and characteristics of the functions
in the dynamic link library to export to other applications. The
EXPORTS keyword marks the beginning of the definitions. Following
the EXPORTS keyword are up to 3072 export defi nitions, each on a
separate line.

Format

EXPORTS
exportname[ordinol option][RESIDENTNAME][iopl-ponmwords]

Parameters
The exportname is one or more ASCII characters defining the func­
tion name. It has the form:

entryname[=internolname]

The entryname is the name that other applications use to get access
to the exported function. It is a required parameter.

The interna/name defines the actual name of the function if
entryname is not the actual name. It is an optional parameter.

The ordinal option defines the ordinal value of the function. It has the
form:

3-38 Linking A Program

@ordinol

where ordinal is an integer number specifying the ordinal value of the
function. The ordinal value defines the index of the name of the func­
tion in the entry table of the dynamic link library. A blank space must
precede the @ character. It is an optional parameter.

RESIDENTNAME indicates that the entry point name of the function is
kept resident in memory. It is an optional parameter, applicable only
when ordinal-option is specified. DOS normally keeps name strings
resident in memory, enabling it to rapidly resolve calls to frequently­
used entry poi nts.

The iopl-parmwords is an optional numeric value that must be speci­
fied for functions that run with 110 privilege. Each such function is
allocated a 512-byte stack. When the function is invoked, the number
of parameters (words) specified by iopl-parmwords are copied from
the caller's stack to the new stack.

Example

EXPORTS
SampleRead= @1 8
Stringln=strl @2
CharTest @3

Defining Local Storage
HEAPSIZE
This statement defines the number of bytes needed by the application
for its local heap. An application uses the local heap whenever it
reserves local storage. The default heapsize is O.

Format

HEAPSIZE bytes

Parameters
The bytes parameter is an integer number specifying the heap size in
bytes. It must not exceed 65536 (64KB), the size of a single physical
segment.

Example

HEAPSIZE 4096

Linking A Program 3-39

Importing Functions
IMPORTS
This statement defines the names and attributes of functions to be
imported from existing dynamic link modules. The IMPORTS
keyword marks the beginning of the definitions. There can be any
number of IMPORTS statements, each on a separate line.

Format

IMPORTS
[internaZ-name=] libraryname.entry

Parameters
The internal-name is an optional specification of one or more ASCII
characters. It specifies the name that the application uses to call the
function. It must be a unique identifier. The libraryname is the name
of the dynamic link library containing the function. The entry speci­
fies the function to import. It is one of the following:

entryname

en tryordina I

The actual name of the function.

The ordinal value of the function; corresponds to the
entry point in the dynamic link library. For each
entry of this type you must specify an internal-name.

Note: Named references to entry points in DOSCALLS are not sup­
ported by the IMPORTS statement; these calls fail during the
module load. To dynamically link to DOSCALLS, code the
entrynames in your program and include DOSCALLS.LlB when
linking, or code the entryordinals in your program, and use the
IMPORTS statement to import the DOSCALLS functions.

If internal-name is not given, the entry must be entryname, which is
used for the internal name.

Example

IMPORTS
Sample.SampleRead
write2hex=Sample.SampleWrite
read=Read.l

3-40 Linking A Program

Naming Library Modules
LIBRARY
This statement specifies the creation of a dynamic link library. It also
specifies the type of library initialization required for the dynamic link
library.

Note: The LIBRARY statement tells LINK to build a dynamic link
Ii.)rary. Dc. not associate the LIBRARY statement with .LlB
files that are libraries of object modules.

Format

LIBRARY [l ibraryname] [initialization-type]

Comments
The LIBRARY statement is mutually exclusive with the NAME state­
ment. If the LIBRARY statement is L:sed, it must appear as the first
statement in the definitions file. If neither LIBRARY nor NAME is
included in a module definition file, the default is NAME.

Parameters
The libraryname defines the name of the dynamic link library.
Although the libraryname is not normally specified, it can be up to
eight characters. The actual library name created by the linker is
based on the external name of the executable file. The linker uses
the libraryname to validate the library name being generated. If the
internal library name does not match the one specified by
libraryname, the linker issues a warning message. When used,
LIBRARY must be the first statement specified in the module defi­
nition file. Once a dynamic link library has been loaded, OS/2 knows
it by the internal Ii brary name.

Initialization-type is an optional keyword that specifies the type of
initialization required by the dynamic link library. If no library initial­
ization routine is defined for the library, this keyword is ignored. It
must be one of the following:

INITGLOBAL The library module initialization routine is called
once when the library module is initially loaded.

INITINSTANCE The library module initialization routine is called
once for each proce$s that gai ns access to the
library module.

The default is INITGLOBAL.

Linking A Program 3-41

Note: The starting address of the module is determined by the object
files and refers to a function that must conform to the library
initialization convention that DOS requires.

Example

LIBRARY User

Naming Executable Modules
NAME
This statement specifies creation of a program module.

Format

NAME[moduZe name] [appZicationtype]

Parameters
The modulename is optional. The actual module name created by the
linker is based on the external name of the executable file. The linker
uses the modulename to validate the module name being generated.
If the internal module name does not match modulename, the linker
issues a warning message. Applicationtype is optional and defines
the type of application being linked. This information is kept in the
executable header and is used by the Presentation Manager during
program load and execution. If specified, it must be one of the
following:

WINDOWAPI Uses the API provided by Presentation
Manager. It must be executed in a Presen­
tation Manager window.

WINDOWCOMPAT Runs (compatible) in a Presentation
Manager window or in a separate screen
group. An application is of this type if it
uses the proper subset of OS/2 VIO, KBD,
and MOU functions.

NOTWINDOWCOMPAT Does not run (not compatible) in a Presen­
tation Manager window. It must execute in
a separate screen group. All DOS mode
applications and those that use the VIO,
KBD, and MOU functions that are not com­
patible with Presentation Manager are of
this type.

3-42 Linking A Program

If applicationtype is not provided, the executable header will indicate
that the application type was unspecified.

Example

NAME Calendar WINDOWCOMPAT

Comments

The NAME statement is mutually exclusive with the LIBRARY state­
ment. If the NAME statement is used, it must appear as the first
statement in the definitions file. If neither NAME nor LIBRARY is
included in a module definition file, the default is NAME.

Preserving Export Ordinals
OLD
This statement preserves export ordinals across successive versions
of a dynamic link library.

Format

OLD 'libraryname '

Comments
The libraryname is the name of the dynamic link library to be used for
extracting export ordinals. The libraryname must be within single
quotation marks.

Exported names in this library that match exported names in the OLD
library are assigned ordinal values from the OLD library, unless:

1. The name in the OLD library did not have an assigned ordinal,
or

2. An ordinal was explicitly assigned to a name in this library.

Note: If the linker cannot find libraryname in the current directory, it
looks in the directories listed in the LIB PATH environment
variable.

Linking A Program 3-43

Setting OS/2 Environment
PROTMODE
This statement causes the linker to set the OS/2 mode only bit in the
file header of the executable (.EXE) file. Without a PROTMODE state­
ment, the OS/2 mode only bit is not set.

By default, LINK does not set the OS/2 mode only bit.

Format

PROTMODE

Comments
If the linker recognizes floating-point instructions in the object module
and the OS/2 mode only bit is not requested to be set, the linker
produces run-time relocations of type OSFIXUP. If you use the
resultant executable program as input to the BIND utility, BIND can
emulate the floating-point instructions for the DOS mode if no
coprocessor is present. If you request the OS/2 mode only bit be set,
the linker does not produce OSFIXUP relocations and the BIND utility
cannot be used to emulate the floating-point instructions for DOS
mode.

For programs that heavily use floating-point instructions, the amount
of space in the executable file that OSFIXUP relocations occupy can
be significant. By using a definitions file containing the PROTMODE
statement, you can save space in the executable file. (Do this only if
you intend to run the program only in OS/2 mode.)

Defining Segments
SEGMENTS
This statement defines code and data segment attributes on a per­
segment basis. The parameters specified override the defaults on
the CODE and DATA statements. The SEGMENTS statement marks
the beginning of the definitions. You can give any number of segment
definitions, each on a separate line.

Format

SEGMENTS[']segmentnome['] [class option] [segflags]

3-44 Linking A Program

Parameter.
Each segment definition consists of a combination of the following
parameters.

The segmentname is a character string naming the new segment.
Optionally, you can enclose the segmentname in single quotation
marks. If the segmentname is CODE or DATA or any other definitions
file keyword, you must enclose it in single quotations marks to avoid
conflict with the CODE and DATA keywords.

The class option is an optional keyword specifying the class of the
segment:

CLASS Iclossnome l

Note: If you do not give a class name, the linker assumes class
CODE. Because any segment whose class name ends in
CODE (case-insensitive) is given the type CODE by the linker,
if a segment is defined here without a CLASS directive, it is
recognized as a code segment.

The segflags is any combination of these options that are described
under the CODE and DATA keywords above:

Option
SHARED,NONSHARED
PRELOAD,LOADONCALL
EXECUTEONLY,EXECUTEREAD
(for
code segments only)
READONL Y, READWRITE (for
data segments)
IOPL, NOIOPL
CONFORMING, NONCON­
FORMING
(for code segments only)

Example
SEGMENTS

CSEG LOADONCALL
CSEG2 EXECUTEREAD
DSEGl READONLY IOPL
DSEG2 SHARED

Default
NONSHARED
LOADONCALL
EXECUTE READ

READWRITE

NOIOPL
NONCONFORMING

Linking A Program 3-45

Defining Local Stack
STACKSIZE
This statement defines the number of bytes needed by the application
for its local stack. An application uses the local stack whenever it
calls its own functions. A minimum stack size of 4096 bytes is recom­
mended. The default stack size is zero if the application makes no
function calls. Otherwise, it is 4096. The maximum stack size per­
mitted is 65535 bytes.

Format

STACKSIZE bytes

Parameters
The bytes parameter is an integer specifying the stack size in bytes.

Example
STACKSIZE 4096

Adding an Executable File to a Module
STUB
This statement adds the DOS mode executable file named in filename
to the beginning of the OS/2 mode module being created.

Format

STUB 'filename '

Parameters
The filename is the name of the DOS mode executable file to add to
the module. The name must have the DOS filename format and be
enclosed in single quotation marks. The stub is started if the OS/2
mode program is run in the DOS mode.

3-46 Linking A Program

The Map File
The map file lists the names, load addresses, and lengths of all seg­
ments in a program. It also lists the names and load addresses of
any groups in the program, the program's start address, and mes­
sages about any errors the linker may have encountered. If you use
the /MAP LINK option, the map file lists the names and load
addresses of all public symbols.

In the map file for OS/2 mode executable files, segment information
has the general form:

PROGRAM_A

Start Length Name Class

eee1:eeee e2C24H _TEXT CODE
eee1:2C3e e25e2H EMULATOR_TEXT CODE
eee1:5132 eeeeeH C_ETEXT ENDCODE
eee2:eeee ee17eH EMULATOR_DATA FAR_DATA
eee3:eeee eee36H NULL BEGDATA
eee3:ee36 ee7eSH _DATA DATA

The Start column shows the address of the first byte in the segment,
in the form segment number:offset. The segment numbers are
indexes into the segment table of the executable file and start from 1.
The Length column shows the length of the segment in bytes. The
Name column shows the name of the segment and the Class column
shows the class name of the segment.

Group information has the general form:

Origin Group

eee3:e DGROUP

At the end of the listing file, the linker shows the address of the
program entry point.

Program entry point at eee1:e2Ae

In the map file for DOS mode executable files, segment information
has the following general form.

Linking A Program 3-47

Start Stop Length Name Class

G0G0GH G2B86H G2B87H _TEXT CODE
G2B9GH GSG91H G2S02H EMULATOR_TEXT CODE
GSG92H GSG92H GGG0GH C_ETEXT ENDCODE
GS0A0H GS2GFH G017GH EMULATOR_DATA FAR_DATA
GS21GH GS24SH G0G36H NULL BEGDATA
GS246H 0S761H 0GS1CH DATA DATA -

The Start column shows the address of the first byte in the segm 3nt.
The number shown is the offset from the beginning of the program.
This number is referred to as the frame number. The Stop column
shows the address of the last byte in the segment. The Length is the
length of the segment in bytes. The Name column shows the name of
the segment and the Class column shows the class name of the
segment.

Group information has the general form:

Origin Group

0S21:G DGROUP

Program entry point at 0G00:02A0

If you have specified the IMAP LINK option, the linker adds a public
symbol list to the map file. Symbols are listed twice: once in alpha­
betic order, then in the order of their load addresses. This list has the
general form shown in the following example. The form is the same
for OS/2 mode and DOS mode programs. For each symbol address,
the number to the left of the colon represents a segment number for
OS/2 mode programs and a frame number for DOS mode programs.

Address

0003:071A
0003:071B
0001:2B7C
0003:0719
0001:0CF6

Address

0000:0000
0000:0000
0000:0000
0001:0010
0001:0180
0001:0238
0001:02A0
0001:036B

Publics by Name

$iB implicit exp
$iB-inpbas -
SiB-input
SiB-input ws
$i(output

Publics by Value

Imp DOSWRITE (DOSCALLS.13B)
Imp DOSDEVCONFIG (DOSCALLS.52)
Imp DOSEXIT (DOSCALLS.5)

_main
_countwords
_analyze
_astart
_cintDIV

3-48 Linking A Program

The first three symbols shown in the example under Publics by Value
are imported public symbols and appear in map files created for OS/2
mode programs only.

Advanced LINK Topics

Using Overlays
You can direct LINK to create an overlaid version of your DOS mode
program. This means that the loader loads parts of your program only
when they are needed; the overlaid version shares the same space in
storage. Your program should be able to run in less storage, but it
usually runs more slowly because of the time needed to read and
load the code into storage.

You specify the overlay structure to the linker in response to the
Object Modules prompt. Loading is automatic. You specify the over­
lays in the list of modules that you submit to the linker by enclosing
them in parentheses. Each parenthetical list represents one overlay.
For example:

Object Modules [.OBJ] : a+(b+c)+(e+f)+g+(i)

The elements (b+c), (e+f), and (i) are overlays. The remaining
modules and any drawn from the run-time libraries make up the resi­
dent or root part of your program. LINK loads your program or root
overlays into the same region of storage, so only one can be resident
at a time. Because LINK does not allow duplicate names in different
overlays, each module can occur only once in a program.

The linker replaces calls from the root to an overlay and calls from an
overlay to another overlay with an interrupt, followed by the module
identifier and offset. The DOS interrupt number is 3FH.

Restrictions
LINK adds the name for the overlays to the .EXE file and encodes the
name of this file into the program so the overlay manager can get
access to it. If, when the program is initiated, the overlay manager
cannot find the .EXE file (perhaps it was renamed or is not in a direc­
tory specified by the PATH environment variable), the overlay
manager prompts you for a new name.

You can only overlay modules to which control is transferred and
returned by a standard 8086 long (32-bit) CALL/RETURN instruction.

Linking A Program 3-49

You cannot use long jumps or indirect calls (through a function
pointer) to pass control to an overlay. When a pointer calls a func­
tion, the called function must either be in the same overlay or in the
root.

Overlay Manager Prompts
In the following example, suppose that B is the default drive and the
following message is displayed:

Cannot find PAYROLL.EXE
Please enter new program spec:

The response

EMPLOYEE\DATA\

causes the overlay manager to look for
EMPLOYEE\OATA \PA YROLL.EXE on drive B.

Suppose that you must change the diskette in drive B. If the overlay
manager needs t() swap overlays, it finds that PA YROLL.EXE is no
longer on B and gives the following message:

Please put diskette containing
B:\EMPLOYEE\DATA\PAYROLL.EXE
in drive B and strike any key when ready.

After the overlay is read from the diskette, the overlay manager gives
the followjng message:

Please restore the original diskette.
Strike any key when ready.

Generating OS/2 Mode Applications
If you are generating an OS/2 mode application, LINK searches for
the file named OS0001.MSG. It takes message 129 from that file and
imbeds it in your program SO it will be displayed if you attempt to run
your program under DOS mode. If LINK cannot find OS0001.MSG or
message 129 within this file, the following message is displayed (in
English):

This program cannot be run in DOS mode.

To override that default message you can:

• Provide an OS0001.MSG file containing the message you want to
use as message 129.

3·50 Linking A Program

• Use the STUB definition module statement to specify a program
to replace the default stub. This STUB program can print the
message you want or perform other functions.

Order of Segments
LINK copies segments to the executable file in the same order that it
meets them in the object files. This order is maintained throughout
the program unless the linker finds two or more segments having the
same class name. Segments having identical class names belong to
the same class type and are copied to the executable files as
adjoining blocks.

Combined Segments
LINK uses combine types to tell if two or more segments that share
the same segment name should be one segment. The combine types
are public, stack, common, and private.

• If a segment is combine type public, the linker combines it with
any segments of the same name and class. When LINK combines
segments, it makes the segments adjoining in storage; you can
reach each address in the segments using an offset from one
frame address. The result is the same as if the segments were
defined as a whole in the source file.

The linker preserves the align type of each segment in the com­
bined segment. So, even though the individual segments
compose a single, larger segment, the code and data in each
segment retain the original align type of the segment. If LINK
tries to combine segments that total more than 64KB, it displays
an error message.

• If a segment is combine type stack, the linker combines individual
segments as it does for public combine types. For stack seg­
ments, LINK copies an initial stack-pointer value to the execut­
able file. This stack-pointer value is the offset to the end of the
first stack segment (or combined stack segment) that LINK meets.
If you use the stack type for stack segments, you need not give
instructions to load the segment into the 55 register.

• If a segment is combine type common, the linker combines it with
any segments of the same name and class. When LINK combines
common segments, it places the start of each segment at the
same address. This creates a series of overlapping segments.

Linking A Program 3-51

The resulting combination segment has a length equal to the
length of the longest individual segment.

• LINK assigns a default combine type private to any segments with
no explicit combine type definition in the source file. LINK does
not combine private segments.

Groups
A group gives addressability to non-adjoining segments of various
classes relative to the same frame address. When LINK encounters a
group, it adjusts all storage references to items in the group so that
they are relative to the same frame address.

Segments of a group need not be adjoining, belong to one class, or
have the same combine type. All segments of the group must fit
within 64KB of storage. For OS/2 mode executable objects, a group
is synonymous with a selector or a physical segment.

Groups do not affect the order of loading of segments. You must use
class names and enter object files in the correct order to guarantee
adjoining segments. If the group is smaller than 64KB of storage,
LINK may place segments that are not part of the group. in the same
storage area. LINK does not specifically check that all segments in a
group fit within 64KB of storage. If the segments are larger than the
64KB maximum, the linker can produce a fix-up overflow error.

A description of groups and defining groups is in IBM Macro
Assembler/2 Language Reference.

Fix-ups
Once the linker knows the starting address of each segment in a
program and establishes all segment combinations and groups, it can
resolve any unresolved references to labels and variables. The
linker computes an appropriate offset and segment address and
replaces the temporary address values with the new values.

The size of the value that LINK computes depends on the type of ref­
erence. If LINK discovers an error in the anticipated size of the refer­
ence, it displays a fix-up overflow error message. This happens, for
example, when a program tries to use a 16-bit offset to address an
instruction in a segment that has a different frame address. It also
occurs when the segments in a group do not fit within a single, 64KB
block of storage.

3-52 Linking A Program

LINK resolves four types of references:

Short: Occurs in JMP instructions that try to pass control to labeled
instructions that are in the same segment or group. The target
instruction must be no longer than 128 bytes from the point of refer­
ence. The linker computes a signed, 8-bit number for this reference.
It displays an error message if the target instruction belongs to a dif­
ferent segment or group (different frame address). The linker also
displays an error message if the distance from the frame address to
the target is more than 128 bytes in either direction.

Near self-relative: Occurs in instructions that access data relative to
the same segment or group. The linker computes a 16-bit offset for
this reference. It displays an error message if the data resides in
more than one segment or group.

Near segment-relative: Occurs in instructions that attempt to access
data either in a specified segment or group or relative to a specified
segment register. LINK computes a 16-bit offset for this reference. It
displays an error message if the offset of the target within the speci­
fied frame is greater than 64KB or less than 0 bytes. LINK also dis­
plays an error message if LINK cannot address the beginning of the
sanctioned frame of the target.

Long: Occurs in CALL instructions that try to get access to an
instruction in another segment or group. LINK computes a 16-bit
frame address and a 16-bit offset for this reference. The linker dis­
plays an error message if the computed offset is greater than 64KB or
less than 0 bytes. The linker also displays an error message if LINK
cannot address the beginning of the sanctioned frame of the target.

Rules for Segment Packing in LINK
When the linker produces an OS/2 mode executable object, it can
pack distinct, adjacent segments into the same physical or file
segment. Physical or file segments are represented by entries in the
program segment table. The rules that LINK uses when packing seg­
ments follow:

• The limit of the total size of a set of segments packed into a file
segment is 64KB. LINK starts a new file segment while packing
segments into a file when the size of the file segment reaches
64KB.

• LINK packs adjacent segments only into a file segment.

Linking A Program 3-53

• LINK packs segments in the same group into a file segment.
LINK does not pack segments in different groups into a file
segment. If a segment in one group occurs between segments in
another group, there is an error.

• If you use the IPACKCODE:packlimit or IPACKDATA:packlimit
options, LINK packs code segments to the size you specify in
packlimit. The default packlimit is 64KB.

• LINK will not pack code and data together with IPACKCODE or
IPACKDATA. If the program declares code in the same group, all
segments in the group are forced to type CODE.

• If LINK packs any segments that are EXECUTE READ or
READWRITE, it marks the entire file segment as EXECUTEREAD
(if code) or READWRITE (if data).

• If LINK packs any segments that are PRELOAD, it designates the
entire file segment as PRELOAD.

3-54 Linking A Program

Compiling and Linking in One Step Using the CL
Command
This section summarizes the CL command. You can use the CL
command instead of the CC and LINK commands to call the compiler
and LINK.

CL uses environment variables to locate the files it needs. It also
uses the CL environment variable to read the options you want to be
in effect for every compilation. Before calling CL, use the PATH and
SET commands to assign a pathname or names to the following vari­
ables:

Variable Types of Flies
PATH Executable compiler files
INCLUDE Include files
TMP Temporary files
LIB Library files
CL Option list.

Format

CL

\ i filenames I .IIII~ .l1li ~\..
optionslist J
See option
list below

: ~ __ ------'7
~-llnk libraryfie'd~

... ..

... ..

Parameters

optionslist A hyphen followed by a combination of one or more
letters that have special meaning to the CL command.
You can use a slash instead of the hyphen if you
prefer. Most options available with the CC command
are also available with the CL command.

Linking A Program 3-55

filenames
-link
libraryfield

Comments

CL reads the option list in the CL environment vari­
able before the list at the command prompt and uses
all the options it finds.
The name of the file that the CL command processes.
The parameter that lets you pass information to LINK.
The kinds of data you can pass to LINK. See "Linking
with the CL Command" on page 3-59 for a description
of the ki nds of data you can pass.

You can give more than one option or filename, but you must set off
each item with one or more spaces.

If you use the CL command without an argument, CL displays a
summary of the CL command syntax. If you provide an argument,
each filename must be the name of a C language source file or an
object file. If the name is a source file, it must include the extension
.c or .C. When CL processes the file, it looks at the filename exten­
sion to determine whether it should start compiling or linking the file.
It compiles any files ending with .c or .C.

If the file extension is .ASM, CL does not compile the file. CL dis­
plays an error message indicating it cannot start the assembler. CL
assumes any files with other extensions or no extensions are object
files.

You can use the DOS global filename characters (? and *) in
filenames in the CL command. The CL command expands these
characters in the same manner that DOS does. (See the reference
information for DOS for a description of the global filename charac­
ters.)

Because you can process more than one file at a time with the CL
command, the order you give listing options in (the -F group of
options) is important.

3-58 Linking A Program

The -F options that can be used with the CL command are summa­
rized in the chart below:

Default Default
Option Task Filename

-Fs Produces the source Base name of source file
listing plus .LST

-Fa Produces the assembly Base name of source file
listing plus .ASM

-Fb Binds the executable file Base name of first source
or object in the command
plus .EXE

-Fc Produces the combined Base name of source file
source-assembly listing plus .COD

-Fe Names the executable Base name of first source
file or object file at command

prompt plus .EXE

-FI Produces the object Base name of source file
listing plus .COD

-Fm Creates the map file Base name of first source
or object file at the
command prompt .MAP

-Fo Names the object file Base name of source file
plus .OBJ

IBM Extension

LINK uses the default filename for the -Fs, -Fa, -Fc, -FI, and -Fm
options when the option has no argument or has a directory name as
an argument. The default filename for the -Fe and -Fo options is used
when the option is not given or when a di rectory name is given as the
argument to the option.

1.-________ End of IBM Extension ________1

Linking A Program 3-57

Some additional rules that apply to arguments of the -F options when
used with the CL command are in the chart below:

File P.thname No
Name Options Argument Argument

-Fa, Creates a listing Creates listings Creates listings
-Fc, for next sou rce in the given in the default
-FI, file at command directory for directory for
-Fs prompt; uses every source file every source file

default extension I isted after the listed after the
if no extension is option at the option at the
supplied command command

prompt; uses prompt; uses
default names default names

-Fe Uses given Creates execut- Not applicable;
fi lename for the able file in the argument is
executable file; given directory; required
uses default uses default
extension if no name
extension is sup-
plied

-Fm Uses given Creates map file Uses default
fi lename for the in the given name
map file; uses directory; uses
default extension default name
if no extension
is supplied

-Fo Uses given Creates object Not applicable;
fi lename as the files in the given argument is
object filename directory for required
for the next every source file
source file at the listed after the
command option at the
prompt; uses command
default extension prompt; uses
if no extension is default names
supplied

-Fb Uses given name Binds executable Uses same
for bound exe- file in the given name as .EXE
cutable directory file

Note: You cannot put a space between a -Fx option and any argu­
ment.

3-58 Linking A Program

Unlike the CC command, the CL command calls LINK as well as the
compiler. By default, CL automatically links. You can cancel this
with the -c option, described in "Additional Options" on page 3-61.
You can pass your own arguments to LINK. For a description of how
to pass your own arguments to LINK, read the following section.

Linking with the CL Command
By default, the CL command calls LINK after compiling. To cancel the
default and cause the CL command to stop after it compiles, use the
-c (compile only) option. (See "Compiling without Linking Ic" on
page 3-63 for more information.)

The CL command uses the response-file method of calling LINK. By
default, it builds the following response file:
LINK objectjiles [leO]
basename INOI
NUL;

The libraryfield does not have to be specified; if it is not, none is
assumed by default. The names of the default combined libraries (the
C library of the appropriate memory model plus the appropriate
floating-point library as determined by the floating-point option you
are using) are encoded in the object file. LINK searches for the
default combined libraries in the current working directory, then in
the directories specified in the LIB environment variable, if any.

The objectfiles are all object files produced in the compiling stage of
the CL command, plus any object files specified in the CL command.
The ICO option (for the CodeView symbolic debugger) is added to the
first line of the response file if the -Zi option is used in the CL
command. The INOI option tells LINK not to ignore case; uppercase
and lowercase letters are considered different. By default, basename
is the name supplied for the executable file; it corresponds to the
base name of the first source or object file in the CL command.
However, you can provide a different name by using the -Fe option.
By default, no map file is produced because the name NUL is pro­
vided in the third field. The -Fm option can be used in the CL
command to override the default and produce a map file. A map file
is also produced when the -Zd option is given in the CL command;
with -Zd, CL builds the following response file:
LINK objectji les [lLI]
basename INOI
basename;

Linking A Program 3-59

You can supply your own responses for the Iibr8ryfield by using the
-link option. This option, if included, must be the last item in the CL
command. Any libraries specified in the Iibr8ryfield are searched
before the default libraries.

The Iibr8ryfield can contain one or more of the following:

A pathname: LINK searches the given path name for the default
libraries before searching directories given by the LIB variable.

Additional or alternate library names: If a pathname is included with
the library name, only that pathname is searched. Otherwise, LINK
uses the standard library search path.

Floating-point library or libraries: Any floating-point calls in your
program refer to the given floating-point library instead of the default
floating-point library.

Options: You can supply any of the LINK options described in this
chapter.

Compiling and Linking Combined Libraries
If you link with the CL command, using the /Lc or /Lp option, CL auto­
matically links the correct libraries. If you link separately by directly
invoking LINK, then you must specify the name of your combined
library at the LINK command prompt. To link an OS/2 mode program,
specify both the name of the library and the file DOSCALLS.LlB at the
LINK command prompt.

Example
LINK sample.obj •• SLIBCER.LIB;
LINK psample.obj •• MLIBCAP.LIB+DOSCALLS.LIB;

This applies if you installed IBM C/2 to create programs for both
target operating environments or if you installed for one target envi­
ronment without renaming the combined libraries to the default
combined-library names. If you installed for a single target operating
environment and renamed the combined libraries to the default
combined-library names, invoke LINK without specifying a combined
library.

3-80 Linking A Program

Additional Options
The CL command also recognizes the options listed below. You can
begin the options with the slash (I) character, or the hyphen (-) char­
acter.

Option
Astring
c

C

EP

Fb[bound-exe]

F hexnumber

Feprogramname

Fm [mapname]
Gm

Gw
H
link libraryfield
Lc
Lp
nologo

NO name
NM name
NT name
Oa
Oi

On
Op

Task
Creates a customized storage model.
Creates an object file for each source file at the
command prompt; suppresses linking.
Preserves comments when preprocessing a file
(only when -P or -E).
Preprocesses each source file, copying the results
to the standard output. Does not put #lIne di rec­
tives in the output.
Produces a bound executable file with the name
bound-exe.
Forces stack size to be set to hexnumber bytes;
space required between IF and hexnumber.
Names the executable program file as
programname.
Creates a map file.
Allocates data items declared with the const
keyword and all string literals in segments of type
CONSTor FAR_CONST.
Compiles a Presentation Manager application.
Restricts the length of external names.
Passes the specified libraryfield to LINK.
Creates a DOS mode executable file.
Creates an OS/2 mode executable file.
Suppresses writing logo and copyright lines in the
compiler output stream.
Sets the data segment name.
Sets the module name.
Sets the text segment name.
Cancels alias checking.
Declares some functions as intrinsic. See
"Declaring Functions as Intrinsic 10i" on
page 3-66 for more information.
Disables loop optimizations.
Enforces consistent precision in floating point
operations, disables certain optimizations in
floati ng-poi nt expressions.

Linking A Program 3-81

Ow

SI linewidth

Sp page/ength

Ss subtitle

St title
Tc filename

u
Vstring
X

Zc

Zp

Restricts the compilers assumptions about where
an alias can occur when lOa is in effect.
Specifies linewidth as the number of characters­
per-line used for source listings.
Specifies page length as the number of lines-per­
page used for source listing.
Specifies subtitle as the subtitle used for source
listings.
Specifies title to be used for source listings.
Indicates that filename is a C source file. Used to
compile files without .c (.C) extensions.
Undefines names.
Labels the object file.
Removes the standard directories from the list of
directories to be searched for #include files.
Allows names declared with the pascal and fortran
modifiers to be used without regard for case.
Specifies that struct members are to be aligned on
n-byte boundaries.

Advanced CL Topics
The following sections describe options that you use with CL to
further specialize your program.

Specifying Overlays
()
Specify overlays in the CL command by enclosing the names of the
overlay source or object files in parentheses.

Example

CL src_l.c (src_2.c obj_l) obj_2

The preceding command causes the SRC_2.08J and 08J_1.08J
modules to be overlays in the SRC_1.EXE file. They are read into
memory from disk only when they are needed.

3-62 Linking A Program

Compiling without Linking
Ic
This option suppresses linking. Source files are given at the
command prompt, but the resulting object files are not linked. The
option does not create an executable file, and object files specified at
the command prompt are ignored.

Format

Ie

This option is useful in compiling individual source files that do not
make up a complete program.

The Ic option applies to the entire Cl command. The position of the
option at the command prompt has no effect.

Example

CL Ie *.C

This command compiles, but does not link, all files with the extension
.C in the current working directory.

Creating Bound Applications
IFb
This option allows you to bind a program after compiling and linking.
Binding allows a program to run in both OS/2 mode and DOS mode.
Some special rules apply to programs that must run in both modes.

See "Creating Family Applications" on page 3-5 for more information
about creating bound applications.

Format

IFb[bound-exe]

where bound-exe is a string literal that specifies the name you want
for the bound program.

If you do not specify a name, the bound program uses the same base
name as the unbound program and overwrites it. In other respects,
the IFb option follows the same file naming conventions as the IFe

Linking A Program 3-83

option. (See" Additional Options" on page 3-61.) This option causes
the compiler to invoke the BIND utility with the following command:
BIND exe-file API.LIB

~ull-path-for-DOSCALLS.LIB> 10 bound-exe
1m map-name

If bound-exe is not specified, then exe-file is used for the output
filename. If the IFm option is specified, then the 1m map-name option
is also specified to BIND. Map-name defaults according to the usual
rules for -Fm if not specified explicitly. A map file is only produced if
some form of IFm is specified.

To bind EXE files that have API calls that are not part of Family API,
you must run BIND from the command prompt using the In command
for BIND. In this case you cannot use the IFb option.

The Ic option causes the IFb option to be ignored; binding does not
occur. You cannot bind files that have been linked with the
IEXEPACK linker option.

You must be sure that the EXE file being bound was linked with the
OS/2 mode libraries (either by default or with the ILp command) and
that API.L1B and DOSCALLS.L1B are in the current working directory
or somewhere in the paths specified by the LIB environment variable.
The CL command will find DOSCALLS.L1B and create a full pathname
for the invocation of BIND.

Example
The following example creates the OS/2 mode executable file T.EXE
and the bound executable file TB.EXE. No map file is produced.

cl IFbtb lOx ILp t.e

This example compiles T.C and creates T.OBJ, but does not link or
bind. The IFb is ignored.

e1 lOx Ie IFb t.e

The next example creates the bound executable file T.EXE. The map
file, T.MAP, will be the one created by BIND, not the one created by
the linker for the unbound T.EXE. This example assumes that you
have named the OS/2 mode libraries as xLlBCy.L1B rather than
xLlBCyP.L1B, as in the dual mode case.

e1 lOx IFb IFm t.e

3-64 Linking A Program

Compiling Presentation Manager Applications
IGw
This option causes the compiler to generate a special code sequence
at the entry to a function. Use this option for developing applications
to run in the Presentation Manager environment.

Format

/Gw

Presentation Manager recognizes the code and changes the instruc­
tion at runtime to set up a correct value in OS. This allows Presenta­
tion Manager applications to move data segments at runtime.

The lAw option is also needed to control the segment setup. For
more information about lAw see "Setting Up Segments" on
page 2-68.

Restricting the Length of External Names
IH
This option lets you restrict the length of external (public) names.

Format

/Hnumber

The number is an integer specifying the maximum number of signif­
icant characters in external names. When you use the IH option, the
compiler considers only the first number characters used in the
program. The program can contain external names longer than
number characters, but the compiler ignores the extra characters.

Use the IH option to conserve space or aid in creating portable pro­
grams. IBM C/2 places no restrictions on the length of external
names (although it uses only the first 31 characters), but other com­
pilers or linkers might produce errors when they find names longer
than a certain limit.

The IH option is not available with the CC compiler command.

Linking A Program 3-65

Suppressing Logo Lines
Inologo
This option turns off the display of the compiler copyright notice.

Formal

/no10go

Use the /nologo option to save space on your compiler output stream.
This is especially useful for MAKE files or when you redi rect the com­
piler output to another file.

Declaring Functions as Intrinsic
IOi
This option tells the compiler to generate intrinsic functions instead of
function calls for certain functions.

Formal

/Oi
Ipragma intrinsic (functtonl[,functton2] •••)
Ipragma function (functionl[,function2] •••)

Intrinsic functions may be in-line functions, use special argument­
passing conventions, or, in some cases, do nothing. Programs that
use intrinsic functions are faster because they do not include the
overhead associated with function calls. However, they may be
larger because they generate additional code.

The IOi option declares the following list of functions as intrinsic:

abs fabs memepy slreal
aeos fmod memsel slrepy
asln Inp min stremp
alan Inpw oulp slrlen
alan2 log oulpw slrsel
eos log10 pow sqrt
eosh Iroll _roll Ian -
_disable Jrolr rolr lanh -
_enable max sin
exp mememp sinh

3-66 Linking A Program

In the case of the non-floating-point functions, the compiler generates
the code for the particular function directly in line rather than calling
a function. In the case of the floating-point functions, the compiler
passes the arguments on the coprocessor stack rather than the 80x86
stack.

Intrinsic versions of the memset, memcpy, and memcmp functions in
compact- and large-model programs cannot handle huge arrays or
huge pointers. To use huge arrays or huge pointers with these func­
tions, you must compile your program, using the IAH option in the
command.

If you use intrinsic forms of the floating-point functions listed above
(that is, if you compile with the IOi option or specify any of the func­
tions in an Intrinsic pragma), you cannot link with an alternate math
library (xUBCAz.UB). Any attempt to do so will cause unresolved
external errors at link time. Note that this restriction applies even if
you link with an alternate math library after compiling with the IFPc
or IFPc87 option.

To compile with 101 (to use the intrinsic forms of non-floating-point
functions) and then link with an alternate math library, specify any
floating-point functions that appear in a program in a function
pragma.

The Intrinsic pragma affects the specified functions from the point
where the pragma appears until either the end of the source file or
the next function pragma specifying any of the same functions.

You can use the function pragma selectively to generate function
calls instead of intrinsic functions when you compile a program with
the IOi option.

Linking A Program 3-67

Naming Modules and Segments
INM, INT, IND
The following options of the Cl command let you name modules and
segments:

Format

INM moduZename
INT textsegmentname
INO dotosegmentnome

The space between each of the preceding options and the name is
required. A module is an object file that the C compiler creates.
Every module has a name. The compiler uses this name in error
messages if it finds problems during processing. The name of the
module is usually the same as the name of the source file. You can
change this name using the INM (name-module) option. The new
modulename can be any combination of letters and digits.

A segment is an adjoining block of binary information (code or data)
produced by the C compiler. Every module has at least two
segments: a text segment containing the program instructions and a
data segment containing the program data. Each segment in every
module has a name. The linker uses this name to define segment
storage order when you load the program for running.

Note: The segments in the group DGROUP are an exception. For
more information about DGROUP, see "Groups" on page 6-3.

The C compiler creates text and data segment names. These default
names depend on the storage model chosen for the program. For
example, in small-model programs the compiler names the text
segment _TEXT and the data segment _DATA. The names are the
same for all small-model modules, so the compiler loads all text seg­
ments from all modules as one adjoining block, and all data seg­
ments from all modules form another adjoining block.

In medium-model programs, the compiler places the text from each
module in a separate segment with the suffix _TEXT. The data
segment is named _DATA as in the small model.

In compact-model programs, the compiler places the data from each
module in a separate segment with a distinct name, formed by using

3-68 Linking A Program

the module base name along with the suffix _DATA. An exception to
this is initialized global and static data, which the compiler puts in the
default data segment, _DATA. The code segment is named _TEXT, as
in the small model.

In large- and huge-model programs, the compiler loads the text and
data from each module into separate segments with distinct names.
Each text segment is given the name of the module plus the suffix
_TEXT. The compiler places the data, except for initialized global and
static data placed in the default data segment, from each segment in
a private segment with a unique name.

Even if you have used the INM command, the compiler uses the name
of the file itself, not the name of the module, in error messages. The
effect of the INM option is limited to changing the name of the text
segment in a program with a large code segment _TEXT to
module_TEXT. In a small-model program, the INM option has no
effect.

The following table summarizes the naming conventions for text and
data segments:

Model Text Data Module

Small _TEXT DATA filename -
Medium module_TEXT DATA filename -
Compact _TEXT DATA filename -
Large module_TEXT DATA filename -
Huge module_TEXT DATA filename -

Note: For compact, large, and huge models, _DATA is the name of
the default data segment. Other data segments have unique,
private names.

You can cancel the default names used by the C compiler, thus
canceling the default loading order, by using the INT (name text) and
IND (name data) options. These options set the names of the text and
data segments, in each module being compiled, to a given name.
The textsegmentname used with the INT option, and
datasegmentname used with the IND option can be any combination

Linking A Program 3-69

of letters and digits. To specify name as the data segment name
loaded by subsequent load OS functions, use the following.

Ipragma data_seg([name]}

All subsequent initialized static and global data will be allocated into
segment name. If omitted, name defaults to the name specified by
the INO command, if any; otherwise OGROUP is assumed.

Note: The INO command no longer requires that you set IAu also. If
you supply INO without IAu, it applies to all functions in the
module that have the _Ioadds attribute and whose data
segment name is not overridden by the data_seg pragma. If
you also supply IAu, the data segment will be loaded and you
can use the data_seg pragma to change the segment name at
the source level. The #pragma data_seg does not cause a
function to load a data segment. Use I Au or the Joadds
keyword to cause a function to load a data segment upon
entry.

The INM, INO, and INT options are not available with the CC
command.

Placing Variables and Functions in Segments
The alloc_text pragma gives you source-level control over the
segment particular functions are allocated in. The same_seg pragma
provides information the compiler can use to generate better code.

Format

I pragma alloc_text(textsegment. !unctionl[. !unction2] •••)
I pragma same_seg(variablel[.variable2] •••)

If you use overlays or swapping techniques to handle large programs,
a"oc_text allows you to tune the contents of their text segments for
maximum efficiency. The alloc_text pragma must appear before the
definitions of any of the specified functions, but it can appear either
before or after the functions are declared or called. Any functions
specified in an alloc_text pragma must either be explicitly declared
with the far keyword or assumed to be far because of the memory
model used (medium, large, or huge).

3-70 Linking A Program

The same_seg pragma tells the compiler to assume that the specified
external variables are allocated in the same data segment. You are
responsible for making sure that these variables are put in the same
data segment; one way to do this is to specify the INO option when
you compile the program. The same_seg pragma must appear before
any of the specified variables are used in executable code and after
the variables are declared. Variables specified in a same_seg
pragma must be explicitly declared with extern storage class, and
they must either be explicitly declared with the far keyword or
assumed to be far because of the memory model used (compact,
large, or huge).

Loop Optimization
/01
This option tells the compiler to perform loop optimizations. For best
performance, the 101 option should be specified along with the a
option letter 10al, since the compiler can detect more loop optimiza­
tions when it relaxes its assumptions about the use of aliases.

Use the loop_opt pragma to turn loop optimization on or off for
selected functions. To turn off loop optimization, put the following
line before the code:

Format

Ipragma loop_opt (off)

The preceding line stops loop optimization for all code that follows it
in the source file. The routines on the same line also stop. To rein­
state loop optimization, insert the following line:

Ipragma loop_opt (on)

The interaction of the loop_opt pragma with the 101 and lOx options is
explained in the following table:

Complied with
Format lOx or 101? Loops Optimized?

#pragma 100p_optO No No

#pragma 100p_optO Yes Yes

#pragma loop_opt (on) Yes or No Yes

Linking A Program 3-71

Format

#pragma loop_opt (off)

Complied with
lOx or 101?

Yes or No

Loops Optimized?

No

SeHing Line Width and Page Length
ISI,/Sp
These options are useful in preparing source listings for a printer that
uses nonstandard page lengths.

Format

151 linewidth
15p page length
Ipragma 1inesize([n])
Ipragma pagesize([n])

The linewidth is the width of the listing line in columns (on line
printers, columns usually correspond to characters). It must be a
positive integer between 79 and 132; any number outside that range
causes the compiler to issue a diagnostic message and default to 79.
Any line that exceeds the listing width is truncated.

The pageiength argument gives the number of lines to appear on
each page of the listing. The number given must be a positive integer
between 15 and 255. Any number outside this range causes the com­
piler to generate a diagnostic message and default to 63.

The lSI or ISp option applies to the remainder of the command or
until the next occurrence of lSI or ISp in the command. These options
do not create source listings; they take effect only if you also specify
the IFs option to create a source listing.

The #pragma IIneslze sets the number of characters per line to n. It
must be an integer constant between 79 and 132. If n is omitted, the
line size is set to the value specified by the lSI linesize command, if
any, or to 79, which is the default.

The #pragma pageslze sets the number of lines per page to n, which
must be an integer constant between 15 and 255. If n is omitted, the
line size is set to the value specified by the lSI pagesize command, if
any, or to 63, which is the default.

3-72 Linking A Program

Example

CL Ie IFs IS1 90 ISp 70 *.C

The previous example compiles all C source files with the default
extension (.C) in the current working directory, creating a source­
listing file for each source file. Each page of the source-listing file is
90 columns wide and 70 lines long.

Linking A Program 3-73

SeHing Titles and Subtitles
1St, ISs

Format

1St "title"
ISs "subtitle"
#pragma title(string)
#pragma subtitle(string)

The 1St and ISs options set the title and subtitle, respectively, for
source listings. The quotation marks around the title and subtitle
argument can be omitted if the title or subtitle does not contain space
or tab characters. The space between 1St or ISs and their arguments
is optional.

The title appears in the upper-left corner of each page of the source
listing. The subtitle appears below the title.

The 1St or ISs option applies to the remainder of the command or
until the next occurrence of 1St or ISs in the command. These options
do not create source listings.

Example

CL .1St "INCOME TAX" ISs 4-14 /Fs TAX*.C

The previous example compiles and links all source files beginning
with TAX and ending with the default extension (.C) in the current
working directory. Each page of the source listing contains the title
INCOME TAX in the upper-left corner. The subtitle 4-14 appears
below the title on each page.

The following example compiles two source files and creates two
source listings.

CL /e /Fs /St"CALC PROG" /Ss"COUNT" CT.C /SsISORT" SRT.C

Each source listing has a unique subtitle, but both listings have the
title CALC PROG.

Specifying Source Files
ITc
This option tells the CL command that the sourcefile is a C source
file.

3-74 Linking A Program

Format

/Tc sourcefi le

Using this option causes CL to treat the sourcefile as a C source file,
regardless of its extension. A separate /Tc option must appear for
each source file that has an extension other than .C.

Labeling the Object File
IV
This option imbeds a given text string into an object file. You can
omit the quotation marks surrounding the string if the string does not
contain white-space characters.

Format

/V"string"

Use the IV option to label an object file with a version number or a
copyright notice. The IV option is available only with the CL
command, not with the CC compiler command.

Example

CL /V"IBM C/2"MAIN.C

The above command places the string: IBM C/2 into the object file
MAIN.OBJ.

Creating Special Object File Records
#pragma comment
The following pragma puts a comment record into an object file.

Format

#pragma comment(comment-type[. char-sequence])

The type of comment record is specified by the comment-type, which
can be any of the following:

compiler Inserts a general comment record into the object
module containing the name and version number of the
compiler used to build the object module. The char­
sequence, if any, is ignored.

Linking A Program 3-75

date Inserts a general comment record into the object
module containing the date and time of compilation.
This comment record is ignored by the linker; the char­
sequence, if any, is also ignored.

lib Inserts a library-search record into the object file. It
must be followed by a char-sequence that is the (path)
name of the library to be imbedded in the search
record. The library name will be emitted into the object
file prior to the default library search records (so that
the behavior at link time is the same as if the library
name were specified at link time). Multiple comment
records of this type are inserted in the order they are
encountered in the source.

timestamp Inserts a general comment record into the object
module containing the date and time of the last modifi­
cation to the source file. The date and time in the
comment record is the same as that returned by the
asctlme function.

user Inserts a general comment record into the object
module, which contains the char-sequence specified in
the pragma. The linker ignores this comment record.

Writing Output Messages
#pragma message
The message pragma is similar to the terror directive.

Format

#pragma message(string)

Unlike the terror directive, the message pragma writes the string to
stdout instead of stderr and does not end compiling. See Chapter 9 of
IBM CI2 Fundamentals for more information about the terror direc­
tive.

3-78 Linking A Program

Chapter 4. Running C Programs

After you create an executable file, you can run your program by
giving the name of the file without the extension. However, if you
plan to run your program in the OS/2 mode, the name of the file
should have an .EXE extension.

DOS uses the PATH environment variable to find executable files.
You can run a program from any directory, as long as the executable
program file is either in your current working directory or in one of
the directories on the PATH.

The spawn, exec, and system routines provided in the IBM C run-time
library let you run other programs and DOS commands from within a
program. See IBM C/2 Language Reference for a description of these
routines.

In the following example, the file named MYPROG can run as an OS/2
mode executable file named MYPROG.EXE or it can run as a DOS
mode executable file named MYPROG.COM:

Example

MYPROG

PaSSing Data to a Program
argc,argv,envp
You can get access to data at the command prompt or in the environ­
ment table at run time by declaring arguments to the main function.
Command prompt data is any data that appears on the same line as
the program name when you run the program. The environment table
contains all environment settings in effect at run time. Because a
program run begins at the main function, the main function controls
data passed at run time.

To pass data to your program by way of the command prompt, give
one or more arguments after the program name when you run it.
Each argument must be separated from other arguments by one or
more spaces or tab characters and can be enclosed in double quota­
tion marks. To give a single argument that includes spaces or tab

Running C Programs 4-1

characters, you must enclose the argument in double quotation
marks. For example:

TEST 42 "de f" 16

This command runs the program named TEST.EXE (or TEST.COM)
and passes three arguments: 42, de f, and 16.

In the DOS mode, each command-prompt argument, regardless of its
data type, is stored as a null-terminated string in an array of strings.
The combined length of a" arguments in the command (including the
program name) cannot exceed 128 bytes.

To set up your program to receive the command prompt data, declare
arguments to the main function as shown in the following example.
By declaring these variables as arguments to the main function, you
make them available as local variables in the main function.

main (argc. argv. envp)

int argc;
char *argv[];
char *envp[];

You need not declare a" three arguments, but if you do, they must be
in the order shown. To use the envp arguments, you must declare
argo and argv, even if you do not use them.

The command is passed to the program as the argv array of strings.
The number of arguments appearing at the command prompt is
passed as the integer variable argo.

The first argument of any command is the name of the program to
run. The program name is the first string stored in argv, at argv[O).
Because you must always give a program name, the integer value of
argo is at least 1.

The compiler stores the first argument after the program name at
argv[1), the second at argv[2), and so on through the end of the argu­
ments. It stores the total number of arguments, including the
program name, in argc. The third argument passed to the main func­
tion, envp, is a pointer to the environment table. You can get access
to the value of environment settings through this pointer. However,
the putenv and getenv routines from the C run-timf) library accom­
plish the same task and are easier and safer to use.

4·2 Running C Programs

Using the putenv routine might change the location of the environ­
ment table in storage, depending on storage requirements. The
value given to envp at the beginning of the program run might not be
correct throughout the running of the program. On the other hand,
the putenv and getenv routines get access to the environment table
properly, even when its location changes. These routines use the
global variable environ, described in IBM CI2 Language Reference,
which points to the correct table location.

Example
The following command runs the program MYPROG. It also passes
the four command-prompt arguments to the main function of
MYPROG. The arguments are stored as null-ended strings, and the
number of arguments is stored in argc.

MYPROG ABC lIabc ell 3 8

To get access to the last argument, for example, use an expression
similar to the following:

argv [argc - 1]

Because the value of argc is 5 (counting the program name as an
argument), this expression is equivalent to argv[4], or the fifth string
of the array.

Exiting from the Main Function
The main function, like any other C function, returns a value. The
return value of main is an int value that is passed to DOS as the
return code of the program that has been run. You can check this
return code with the IF ERRORLEVEL command in DOS batch files.

To cause the meln function to return a specific value to DOS, use a
return statement or exit function to specify the value to be returned.
For example, the statement return(6); causes the value 6 to be
returned. If you do not use either method, the return code is unde­
fined.

Running C Programs 4-3

Expanding Global Filename Arguments
You can use the DOS global filename characters, the question mark
(?), and the asterisk (*) to specify the filename and pathname argu­
ments at the command prompt. To prepare for using global filename
characters, you must link with the special routine SETARGV.OBJ.
This object file is included with your compiler software. If you do not
link with SETARGV.OBJ, the compiler treats global filename charac­
ters literally.

SETARGV.OBJ expands the global filename characters in the same
manner that DOS does. (See the system reference information for
DOS to learn more about global filename characters). If you are
enclosing an argument in quotation marks, global filename expansion
is suppressed. Within quoted arguments, you can literally represent
quotation marks by preceding the double quote character with a back­
slash.

If the compiler finds no matches for the global filename arguments,
the argument is passed literally. For example, if the argument B:*.C
is given, but the compiler finds no files with the extension of .C in the
root directory of drive B, it passes the argument as the string B:*.C.

If you frequently use global filename expansion, place the global
filename routine in whichever xLlBCyz.LlB combined libraries you
use. That way the routine is linked with your program automatically.
To do this, use the LIB utility (see "Starting LIB" on page 5-24) to
extract the module named STDARGV from the library (the module
name is the same in any combined library) and insert SETARGV.
When you replace STDARGV with the SETARGV routine, global
filename expansions are performed on command-prompt arguments.

Example >

In the following example, SETARGV.OBJ is linked with BETA.OBJ,
producing the executable file BETA.EXE. When you run BETA.EXE,
the compiler expands the global filename character (*), causing all
filenames with the extension .INC in the current working directory to
be passed as arguments to the BETA program:

LINK BETA SETARGV;
BETA *.INC "WHY?" \"HELLO\"

The argument WHY? is enclosed in double quotation marks, so
expansion of the global filename character (?) is suppressed and the

4-4 Running C Programs

argument WHY? is passed literally. In the third argument, the back­
slashes cause the quotation marks to be represented literally so the
argument "HELLO" is passed.

Suppressing Command Processing
If your program does not take command-prompt arguments, you can
save a small amount of space by suppressing the library routine that
performs command processing. This routine is called _setargv. To
suppress its use, define a routine that does nothing in the same file
that contains the main function and name it _setargv. The call to
_setargv is satisfied by your definition of _setargv, and the library
version is not loaded.

If you do not get access to the environment table through the envp
argument, you can provide your own empty routine to be used in
place of _setenvp (the environment processing routine). In the same
file that contains the main function, define a routine that does nothing,
and name it _setenvp.

If your program makes calls to the spawn or exec routines in the C
run-time library, do not suppress the environment processing routine.
This routine is used to pass an environment from the parent process
to the chi Id process.

Example
This example shows how to define the _setargv and _setenvp func­
tions to suppress command and environment processing. It is recom­
mended that you place these definitions in the file containing the
main function.

"{
}

setargvO

_setenvpO
{
}

Running C Programs 4·5

Suppressing Null Pointer Checks
When you run your C program in the DOS mode, a special error­
checking routine is automatically called to determine whether the
content of the NULL segment has changed. This error-checking
routine displays the following error message if the NULL segment has
changed: Null pointer assignment.

The NULL segment is a special location in low storage that programs
normally do not use. If the contents of the NULL segment changes
during the program run, it means that the program has written to this
area, usually by an inadvertent assignment through a null pointer.
Notice that your program can contain null pointers without generating
the precedi ng message; the message appears only when you write to
a storage location through the null pointer.

This error message does not cause your program to end. The error is
detected and the error message is printed after the normal ending of
the program.

Note: The Null pointer assignment message tells you that there is a
potentially serious error in your program. Although a program
that produces this error might appear to operate correctly, it
can cause problems later and might fail to run in a different
operating environment, such as OS/2.

The library routine that performs the null pOinter check is named
_nullcheck. Suppress the null pOinter check for a particular program
by defining a routine that does nothing and naming it _nullcheck. The
call to _nullcheck is satisfied by your definition of _nullcheck, and the
library version is not loaded. It is recommended that you place the
_nullcheck definition in the file containing the main function.

To suppress the null pOinter check for all programs, replace the cor­
responding error-checking routine in the standard C library. The
routine is stored in a module called chksum in all four libraries
(SUBC.UB, MUBe.UB, CUBC.UB and LUBC.UB). Do not remove
the routine entirely or there will be an unresolved reference in your
program. Instead, use the UB utility (see "Starting UB" on
page 5-24) to replace the chksum module with a module containing
the empty definition of _nullcheck. This replacement satisfies the call
to _nullcheck, and null pointer checking is not performed.

4-8 Running C Programs

Chapter 5. Using the Program Utilities

MAKE
The IBM Program Maintainer MAKE automates the process required
to maintain programs written in Macro Assembler, C, and other high­
level languages. MAKE carries out all tasks needed to update a
program after one or more of the source files in the program have
changed.

MAKE compares the last modification date of the file or files that
need updating with the modification dates of files that these target
files depend on. MAKE then carries out a given task only if a target
file is out of date. MAKE does not compile and link all files just
because one file was updated. This can save much time when cre­
ating programs that have many source files or that take several steps
to complete.

The following sections explain how to use MAKE and illustrate how to
maintain a sample C program. A list of MAKE error messages is in
Appendix A of this book. For a complete listing of the differences
between this version of IBM MAKE/2, Version 1.00, and IBM MAKE/2,
Version 1.10, see page xi.

Using MAKE
To use MAKE, you must create a MAKE description file that defines
the tasks you want to accomplish and the files these tasks depend on.
You can create a MAKE description file using a text editor that
produces ASCII files.

Format
A MAKE description file consists of one or more description blocks.
Each description block has the general form:

target-list: [dependent-list][;command]
[conrnond]

target-list A list of one or more files that may need updating. If
one of the files is older than any of the files specified
in the dependent-list, MAKE runs the commands
listed in this description block.

Using the Program Utilities 5-1

You can specify any number of target files. Separate
the filenames with spaces. The first filename must
begin in column one of the file. The target files must
be valid filenames and must include drive specifica­
tions and pathnames if the files are not located in
the current directory.

dependent-list A list of one or more files that are required to build
the target. (For example, you need one or more
.OBJ files to build an .EXE file.) You can specify any
number of dependent files. Separate the filenames
with spaces. For each file, you can specify a list of
directories that MAKE should search for that file.
Enclose the list in braces ({}) and separate the
directory names with semicolons. For example, if
you specify the following dependent file:

command

{\c2\src;d:\project}pass.obj

MAKE looks for PASS.OBJ in the current directory,
then in \C2\SRC on the current drive, then in
\PROJECT on drive D. If PASS.OBJ is not in any of
these locations, MAKE searches for an inference
rule to build the dependent file. See "Inference
Rules" on page 5-17 for more information.
An action to be taken if a target file is older than one
of its dependent files. This can be any operating
system command (internal or external) or any exe­
cutable file (with an extension of .BAT, .CMD, .EXE,
or .COM). If you provide a command on the same
line as the dependent-list, separate the two with a
semicolon. If you provide commands on separate
lines, do not begin the commands in column one;
precede each with at least one space or tab char­
acter. You can put only one command on a line.

If you do not specify any commands for a target-list,
MAKE searches for an inference rule to build the
target files. See "Inference Rules" on page 5-17 for
more information.

Note: Make allows the use of both \ and I as path separators in
target filenames, include filenames, and inference rules.
Notice, however that MAKE does not convert I to \ on
command lines; make sure that on command lines you provide

5-2 Using the Program Utilities

separators that are recognized by the operating system and
command you are using.

You can think of the MAKE format as an if-then statement as follows:

• If the target-file is older than any of its dependent files,

or

• If the target-file does not exist,

• Then execute the commands.

Example
The following example creates three target files. Each file has at
least one dependent file and one command. MAKE examines
WORK1.0BJ and WORK2.0BJ and creates them, if necessary, before
WORK.EXE.

WORK.EXE: WORK1.OBJ WORK2.0BJ \LIB\MATH.LIB
LINK WORK1+WORK2,WORK,WORK,\LIB\MATH.LIB /CO

WORK1.OBJ: WORK1.C WORK.H
CC /Zi WORK1",;

WORK2.0BJ: WORK2.C WORK.H
CC /Zi WORK2",;

For information about how MAKE uses this description file see "Main­
taining a Program" on page 5-9.

Using Comment Characters
Anything between a comment character (#) and a newline character
is considered a comment. MAKE ignores all characters on a line
after the comment character. A comment must not be on the same
line as a command, but it can appear on the same line as the target­
dependent-descri ption line.

The comment character:

• Must be in the first column if the comment line is between lines
containing commands, or the comment will be considered part of
a command.

• Can be placed at the beginning of any of the lines in a command
spanning several lines; this causes MAKE to ignore the part of
the command on that line only.

• Can appear anywhere on any other lines.

Using the Program Utilities 5-3

Example
Some examples of comments are:

t.exe: d.obj * Valid comment
* Valid comment

* Invalid (must start in first column)
link d.t; * Invalid (cannot follow command)

t2.exe: d2.obj; link d2,t2; * Invalid (cannot follow command)

Global Filename Character Expansion
Global filename characters, such as the asterisk and question mark,
may be used in filenames. Beginning a filename with an asterisk (for
example, *.TXT) matches all files with the specified suffix (or all files,
if you enter *. *). Global filename characters in target names expand
when the MAKE description file is read: in dependent names or com­
mands, they expand when a target is bui It.

Continuing Long Lines
You can break long description block lines over several physical
lines. If the last two characters on a line are a space and a backslash
or a tab character and a backslash, MAKE uses the next line of the
MAKE description file as if it were a continuation of that line.
Comment lines cannot be continued in this manner.

Example

EEPATH=edit\e\ * This a path

In the above example, if the comment is excluded, the following line
is taken as the continuation of the path description for EEPATH.

The following two description blocks are considered the same:

target.exe: \
depend.obj; \

1 ink depend. \
target;

target.exe: depend.obj; link depend. target;

In the following example, each piece of the LINK command is listed
on a separate physical line. DEPEND2.0BJ is not included during the
link step. DEPEND3.0BJ, however, is included.

target.exe: dependl.obj depend2.obj depend3.obj
link \

dependl+ \ * depend2+ \
depend3.· \
target;

5-4 Using the Program Utilities

Special Command Prefixes
You can alter the way MAKE handles commands by placing the fol­
lowing special characters in front of the commands:

Turns off error checking for that command only.
-n Causes MAKE to halt if the error level returned by the command

is greater than n.
@ Causes MAKE not to echo that command.
I Calls a command containing a list of arguments (in the form of a

macro, for example, $? or $**) repetitively for each argument in
the list.

Example
The following example generates four COpy commands:

print: filel.c file2.c file3.c file4.c
!copy $** lpt1:

Using the Escape Character
Some characters have special meanings within the MAKE description
file. There may be times when these special meanings conflict with
the commands and arguments you need to build your targets. MAKE
provides the A escape character to remove the special meaning of the
character that follows it.

Example
Suppose you have a file named FllE#1.0BJ that is used to build
PROGRAM.EXE. To make sure that the # in "FllE#1" is not inter­
preted as a comment character, precede it with the escape character.

PROGRAM. EXE: FILEAll.OBJ LIBRARY.LIB
LINK FILEAll ••• LIBRARY.LIB;

specifying Multiple Description Blocks for a Target
You can use one set of commands to build some of a target's depen­
dents and another set to build others. To do this, list the target twice
in the MAKE description file, and use a double colon, instead of the
usual single colon, to separate it from its dependents.

Example
The following example allows you to maintain an object library whose
source files are partly in C and partly in assembler.

Using the Program Utilities 5-5

target. lib:: a.asm b.asm e.asm
!masm $**;
lib -+a-+b-+e;

target. lib:: d.e e.e
!el Ie $**;
1 i b -+d-+e;

MAKE executes the commands in the first description block if any of
the .ASM files are out-of-date; similarly, it executes the commands in
the second block only if any of the .C files need updating.

When you use a single colon as a separator, successive dependen­
cies are cumulative, for example

target.obj: target.e
target.obj: target.h

el target.e

is equivalent to

target.obj: target.e target.h
el target.e

Starting MAKE
The MAKE command has the following syntax:

MAKE~rT------------~~~--------------~~----~

macrodefinitions

MAKE accepts command options preceded by either a slash or a
dash, and the options may be given in either uppercase or lowercase
(-a is the same as fA).

optionslist

The following options are available with the MAKE command:

18 Causes all targets to be rebuilt even if they are not out-of-date.
Ie Starts cryptic output mode. Cryptic mode suppresses the MAKE

copyright message and non-fatal error or warning messages.
CryptiC mode does not override the fp or fd options, nor does it
cause the Is option to be in effect.

Id Displays debugging information (the modification date of each
file).

Ie Causes environment variables to override aSSignments within
MAKE description files.

5-8 Using the Program Utilities

If Uses the next argument at the command prompt as the name of
the MAKE description file to use. If the next argument is -, then
MAKE reads from stdln. If you do not give a If option, MAKE
expects that a description file named MAKEFILE is present.

II Causes MAKE to ignore error codes returned by programs called
from within MAKE.

In Displays the commands that would be executed but does not
execute them.

Ip Prints the complete set of macro definitions and target
descriptions.

Iq Returns a zero status code if the target file is up-to-date, nonzero
if it is not.

Ir Ignores rules and macros from TOOLS.lNI. (See "Specifying
Macros and Inference Rules with TOOLS.lNI" on page 5-21 for
more information.)

Is Causes MAKE to run in silent mode; commands are not dis­
played as they run.

It Touches the out-of-date target files. Touching sets the date and
time to the current date and time without modifying the contents
of the files.

Ix Uses the next argument as the name of the file to redirect stderr
to. If the next argument is -, then stderr is redirected to stdout.

macro-
definitions One or more macro definitions as described
under "Using Macro Definitions" on page 5-12. Defi­
nitions that contain spaces must be enclosed in quotation
marks.

targets The names of the targets listed in the MAKE description
file that you want to build. If you do not specify a target,
MAKE builds the first target listed in the MAKE description
file.

Note: For compatibility with previous versions of IBM MAKE, if no If
option is specified and MAKE cannot find a file named
MAKEFILE, it uses the first string in the command that is not
an option or macro definition and does not contain an exten­
sion from the .SUFFIXES list as the name of the MAKE
description file. See "Special Rules" on page 5-19 for more
information on the .SUFFIXES list.

Using the Program Utilities 5-7

Example
The following example starts MAKE and instructs it to use the file
UTILS.MAK as the MAKE description file. The targets that are built
are SORT.EXE and SEARCH.EXE (and any targets that they are
dependent on). The macro OPTIONS is defined for use within the
MAKE description file. Suppose you have a MAKE description file
named UTILS.MAK that contains the following lines:

SORT.EXE: SORT.C
CL $(OPTIONS) SORT.C

SPLIT.EXE: SPLIT.C
CL $(OPTIONS) SPLIT.C

SEARCH. EXE: SEARCH.C
CL $(OPTIONS) SEARCH.C

Also suppose that you want to build SORT.EXE and SEARCH.EXE, but
not SPLlT.EXE. You also want to define the macro OPTIONS so the
IZi and IOd compiler options are used when building these files. You
would start MAKE as follows:

MAKE IF UTILS.MAK "OPTIONS=/Z; IOd" SORT. EXE SEARCH. EXE

If UTILS.MAK is the only MAKE description file in the current direc­
tory, you could take advantage of the default description filename that
MAKE uses. Rename UTILS.MAK to MAKEFILE and start MAKE as
follows:

MAKE "OPTI ONS= IZ; IOd" SORT. EXE SEARCH. EXE

Because you have not given MAKE a MAKE description filename
(using the If option), MAKE assumes that the file it should use is
called MAKEFILE.

Specifying MAKE Arguments from a File
If you specify macro definitions when starting MAKE, the command
may exceed the DOS 128-character limit. To avoid this problem, put
your command-prompt arguments in a file. For example, the
command:

MAKE @makeargs

causes MAKE to read its command-prompt arguments from the file
makeargs. This file is not a substitute for the makefile; it is merely a
device that allows you to define long macros when starting MAKE.

The order for MAKE arguments stored il1 a command file is the same
as the order for arguments given at the command prompt. Newline
characters between arguments in the command file are treated as

5-8 Using the Program Utilities

spaces. Macro definitions may be split over several lines by ending
each line (except the last line of the definition) with a backslash and
the newline character. The backslash must be preceded by a space
or tab to seperate it from the text on the line.

Example
If the following were the contents of a file named MAKE.ARG, then
entering

make @make.arg

at the command prompt would have the same effect as the example
shown on 5-8.

If util s .mak
"OPTIONS \
= IZi" IOd
sort.exe
search.exe

Maintaining a Program
Consider a program called WORK.EXE that is made from two source
files, WORK1.C and WORK2.C. Both source modules use an include
file called WORK.H. You must link both modules with routines in a
library file called MATH.LlB. During development, you often compile
and link to create WORK.EXE. To recompile only the source files that
were changed use the following MAKE description file.

WORK. EXE: WORK1.OBJ WORK2.0BJ \LIB\MATH.LIB
LINK WORK1+WORK2.WORK.WORK.\LIB\MATH.LIB JCO

WORK1.OBJ: WORK1.C WORK.H
CC IZi WORK1 ••• :

WORK2.0BJ: WORK2.C WORK.H
CC /Zi WORK2 ••• :

After each session of debugging and editing source files, start MAKE
with the following command:

MAKE IF WORK WORK.EXE

MAKE checks to see if you have:

1. Changed WORK1.C or WORK.H since the last time that the com­
piler created WORK1.0BJ. If so, MAKE recompiles WORK1.C.

2. Changed WORK2.C or WORK.H since the last time that the com­
piler created WORK2.0BJ. If so, MAKE recompiles only
WORK2.C.

3. Changed either of the object files since the last time the modules
were linked. If the compiler compiled one or both of the files,

Using the Program Utilities 5-9

MAKE relinks the program. MAKE also relinks the program if
MATH.L1B has changed.

When you first create the source files, MAKE compiles and links both
source files because none of the target files exist. If you call MAKE
again without changing any dependent files, MAKE skips all com­
mands. If you change one of the source files, MAKE recompiles that
file and relinks the program. If you change the library file MATH.L1B
but make no other changes, MAKE skips the commands in the last
two dependencies and relinks the program as specified in the first
dependency.

Advanced MAKE Topics

Using Directives
MAKE supports directives for conditionals, file inclusion, and errors.
Directives begin with an exclamation point. The exclamation point
must be located in column one and cannot be preceded by a space.
However, a space is allowed between the exclamation point and the
directive keyword that follows it. The following directives are avail­
able.

ICMDSWITCHES
IELSE
IENDIF

IERROR
IIF
IIFDEF

IIFNDEF
IINCLUDE
IUNDEF

IIF constant-expression: Checks to see whether constant-expression
evaluates to nonzero. Constant expressions consist of integer con­
stants, string constants, and program invocations. These constants
may be connected by the following operators (except string con­
stants, on which only the = = and I = operators are defined):

Binary: + _ * I % & I AA && II < < > > = = 1= < > < = > =
Unary: - /'OJ I

Note: These are the same operators that are used by the C lan­
guage, except for the bitwise exclusive OR operator (''').
Because MAKE uses the A as an escape character, you must
use AA to perform the bitwise exclusive OR operation within
the MAKE utility.

Parentheses may be used to group operands.

5-10 Using the Program Utilities

Specify integer constants in decimal, octal, or hexadecimal notation
(as in C notation, 7 is decimal, 07 is octal, and Ox7 is hexadecimal).

String constants must be enclosed in quotation marks. The following
is a test for equality with string constants:

!IF "$(VER)" == "DOS3"

Invoke a program from within an IIF directive as follows:

!IF [prog arg1 arg2 ... argn]

Such program invocations evaluate to TRUE when the return code is
non-zero. Note that programs that terminate without error usually
return zero. The following example tests the value returned by the
program by making the program invocation part of a constant
expression:

!IF ([prog1 arg1] != 0) II ([prog2] == -1)

IIFDEF identifier: Checks to see whether the macro identifier is cur­
rently defined. If so, the statements between the IIFDEF and the next
IELSE or IENDIF di rective are executed. Note that macros defi ned as
the null string are still considered as defined by IIFDEF. To undefine
a symbol, use the IUNDEF directive.

IIFNDEF identifier: Checks to see whether the macro identifier is cur­
rently defi ned. If it is not, statements between the IIFNDEF and the
next IELSE or IENDIF directive are executed.

IELSE: Causes MAKE to execute the following statements (up until
the IENDIF directive) if the preceding IIF, IIFDEF, or IIFNDEF evalu­
ated to FALSE (zero).

IENDIF: Marks the end of an IIF, IIFDEF, or IIFNDEF block of state­
ments.

IUNDEF identifier: Undefines the macro identifier.

IERROR text: Causes MAKE to print text and then stop execution.

IINCLUDE filename: Causes MAKE to read and evaluate filename
before continuing with the current MAKE description file. If filename
is enclosed between less-than and greater-than symbols (< >),
MAKE searches for the file in the directories specified by the

Using the Program Utilities 5-11

INCLUDE macro; otherwise, MAKE looks for filename in the current
directory.

The value of the INCLUDE macro is initially set the same as the value
of the INCLUDE environment variable. If you redefine the INCLUDE
macro, MAKE uses the new definition, ignoring the value of the envi­
ronment variable.

Note: You can leave the exclamation point off of the IINCLUDE direc­
tive. If INCLUDE begins in column one, MAKE assumes this
line is an IINCLUDE directive; otherwise, MAKE assumes that
INCLUDE is a target or macro.

rCMDSWITCHES: [[+I-)option) ... : Resets command switches from
within the MAKE description file. The following switches can be
reset: Id, Ii, In, and Is.

The string following rCMDSWITCHES specifies which switches should
be turned on or off. Using rCMDSWITCHES alone on a line (for
example, the argument string is nUll) restores the switch settings
from the command that invoked MAKE. The argument string consists
of + or -, followed by the letters of the switches to be changed.

The following example turns the debugging switch on, tells MAKE to
ignore exit codes returned from programs it invokes, and then tells
MAKE to start executing commands instead of just displaying them.

! CMDSWITCHES: +di -n

The strings +di-n and +d+i-n are equivalent; space in between
option letters is ignored. Only the switches specified in the argument
string are affected, unless the argument string is null, which resets all
switches to their original values.

Using rCMDSWITCHES on a line of a MAKE description file causes
the new switch values to be in effect for all targets listed between that
line and the next rCMDSWITCHES statement (or the end of the file if
no other switch-setting statement is used). The MAKEFLAGS vari­
able is updated accordingly whenever switch values change.

Using Macro Definitions
A macro definition associates a symbolic name with a particular
value. Using macro definitions, you can change values in the
description file without editing every line that uses a particular value.

5·12 Using the Program Utilities

Format

stringl = string2

The equal sign must not be preceded by a colon. Space following
string1 or preceding string2 is stripped off. Note that string2 may be
null.

Invoke a macro by preceding the macro name with a $ sign. Macro
names of length greater than 1 require parentheses around them, but
single-character macros do not require parentheses. Once the macro
is defined, string2 replaces all subsequent appearances of $(string1)
(or $string1 if string1 consists of only one character). Because
macros are case-sensitive, STRING1 and string1 indicate two dif­
ferent macros.

Use a $$ sign to generate a $ sign within your MAKE description file
without invoking a macro.

An undefined macro evaluates to the null string. Macros can be
defined in the MAKE description file or at the command prompt, and
they can be up to 64KB in length.

Change the value of a macro in your MAKE description file by rede­
fining it. The new definition remains in effect until the macro is rede­
fined again or until the end of the MAKE description file.

Example
This example shows a macro definition for the name base and its use
in the description file. MAKE replaces each occurrence of $(base)
with abc.

base=abc

$(base).obj: $(base).c
CC $(base).$(base).$(base).$(base)

$(base).exe: $(base).obj \lib\math.lib
LINK $(base).$(base).$(base) /map. \lib\math.lib:

Use the following command, to override the definition of base in the
description file, causing def to be assembled and linked instead of
abc:

MAKE "base=def" def.exe

Using the Program Utilities 5-13

Changing Macro Values
MAKE allows substitutions in macro invocations that allow you to
change the value generated without changing the macro itself.

Format

name:stringl = string2

where name is the name of the macro whose value is being modified,
string1 is the character or characters to be modified, and string2 is
the replacement character or characters. As with the macro defi­
nition, space following string1 or preceding string2 is stripped off. If
string2 is NULL, string1 is removed from name.

Example
The following macro:

FILES = filel.z file2.z file3.z

followed by this macro invocation:

$(FILES:.z=.c)

generates the value:

filel.c file2.c file3.c

The actual value of FILES remains unchanged.

Using Special Macros
MAKE recognizes the following special macros:

$*: The target name with the extension deleted. For inference rules,
this is the same as the filename part of the current dependent with
the extension deleted, unless the target and dependent are in dif­
ferent directories). For example:

DIR\TARGET.EXE: DEPEND.OBJ
ECHO $*

prints .DIR\TARGET.

$@: The full target name of the current target. When used in infer­
ence rules specifying a path for the target file, $@ evaluates to the
target name with the specified path prepended. Use the $(@O) macro
to derive the path given in the rule. For example, the following
dependency block prints DIR\TARGET.EXE.

DIR\TARGET.EXE: DEPEND.OBJ
ECHO $@

5-14 Using the Program Utilities

$**: The complete list of dependents. For example, the following
dependency block prints DEPEND.OBJ DIR\DEPEND2.0BJ.

TARGET. EXE: DEPEND.OBJ DIR\DEPEND2.0BJ
ECHO $**

$ <: The dependent that is out of date with respect to the target
(evaluated only for inference rules). For example, the following state­
ments print DIR\TARGET.DEP .

. SUFFIXES: .TAR .DEP

{DIR}.DEP.TAR:
ECHO $<

TARGET. TAR: DIR\TARGET.DEP

$1: The I ist of dependents that are out-of-date with respect to the
target. When evaluating an inference rule, $? is equivalent to $ < .
For example, assume that DIR\DEPEND.OBJ has been updated since
the last time TARGET.EXE was built. DIR\DEPEND2.0BJ has not
been updated since then. The following dependency block prints
DIR\DEPEND.OBJ.

TARGET. EXE: DIR\DEPEND.OBJ DIR\DEPEND2.0BJ
ECHO $?

$$@: A dynamic dependency parameter referring to the current
entry to the left of the colon (has meaning only on dependency lines).
For example, the following dependency block:

TARGET.EXE TARGET2.EXE: DIR\$$@
ECHO $?

prints the following:

DIR\TARGET.EXE
DIR\TARGET2.EXE

$(MAKE): Causes that line to be executed even if the In flag is set.
This macro has the default value MAKE and can be redefined if you
want to execute some other program. For example, the following
statements print Prints anyway, even if you use the In option when
starti ng MAKE.

MAKE=ECHO # Redefine the special macro MAKE

TARGET. EXE: DEPEND.OBJ
$(MAKE) Prints anyway

Using the Program Utilities 5-15

$(MAKEFLAGS): Holds the current input options. For example, if
you start MAKE as follows:

MAKE IS IE ALL

then the following dependency block:

ALL:
ECHO Current options: $(MAKEFLAGS)

prints Current options: SEa

$(CC): Predefi ned macro that is treated as if you had defi ned CC to
equal CL. You can redefine this macro. For example, this command:

el Ie DEPEND,TARGET;

causes the following dependency block to compile the file DEPEND.C.

TARGET.OBJ: DEPEND.C
$(CC) Ie DEPEND.C

$(AS): Predefined macro that is treated as if you had defined AS to
equal masm. You can redefine this macro. For example, the fol­
lowing command:

masm DEPEND. TARGET;

causes the following dependency block to assemble the file
DEPEND.ASM.

TARGET.OBJ: DEPEND.ASM
$(AS) DEPEND,TARGET;

The next examples are equivalent:

pgm.exe: modl.obj modZ.obj mod3.obj
1 ink $**, $@

pgm.exe: modl.obj modZ.obj mod3.obj
link modl.obj modZ.obj mod3.obj, pgm.exe

Changing the Meanings of Macros
You can change the meanings of the first six macros listed above by
attaching the following:

D Causes the option to be the directory part of the filename. If
there is no directory part, ".\" is used.

F Causes the option to be the file part.
S Causes the option to be the base portion of the filename

(removes the directory and suffix).
R Gives the root of the filename (the directory part and the base

part without the suffix).

5-16 Using the Program Utilities

Note: $(*B) is the same as $(*F), and $(*R) is the same as $*.

Parentheses must be used to enclose the macro when one of these
suffixes is appended.

Example
The following example compiles or assembles each of the out-of-date
files. By using the R with the $? macro, you can pass the filename
without the extension to the compiler or assembler. Notice that the
command prefix is used so MAKE will continue if an error occurs.
(For example, when MASM attempts to assemble one of the C source
files.)

target: filel.e file2.e file3.e file4.asm file5.asm file6.asm
-!masm $(?R)
-lee $(?R);

Note that the preceding commands will try to compile file4.asm. Use
the "-" before the "I" to turn off error checking.

Inference Rules
MAKE lets you create inference rules that specify commands for
target descriptions even when there is no explicit command in the
MAKE description file. An inference rule is a way of telling MAKE
how to produce a file with one type of extension from a file with the
same base name and a second type of extension.

The MAKE assignment order is:

1. Built-in rules (See "Built-In Inference Rules" on page 5-18 for
more information)

2. TOOLS.lNI definitions and rules (See "Specifying Macros and
Inference Rules with TOOLS.lNI" on page 5-21 for more informa­
tion.)

3. Environment variables
4. Definitions and rules in the MAKE description file.
5. Command prompt definitions.

Invoking MAKE with the Ie flag switches the order of 3 and 4.

Format

• dependent-ext. target-ext:
conrnond
[conrnond]

Using the Program Utilities 5-17

where dependent-ext is the extension of the dependent file and
target-ext is the extension of the target file (for example, .obj.exe).
Command is the action required to carry out the rule. More than one
command can be given, but each must be listed on a separate line.
The pair of suffixes tells MAKE how to make a file with the second
suffix from a file having the first suffix.

You can specify directory names in braces before each suffix. The
following example takes source files from one directory and updates
object files in another:

{\usr\target\dirl}.c{\usr\dir2}.obj:
cl -c $*.c

The paths can be null; for example,

{}.c{}.obj

and

{ • } • c{ . } .obj

and

.c.obj

are all equivalent. Only one directory can be specified in a path
given in such rules. To instruct MAKE to take source files from many
directories and place all the resulting files together in a directory, a
separate rule must be given for each source directory.

Built-In Inference Rules
MAKE automatically assumes the following inference rules. They
have the lowest precedence and are overruled by redefinitions in the
TOOLS.lNI file, in the MAKE description file, or at the command
prompt. (See "Specifying Macros and Inference Rules with
TOOLS.lNI" on page 5-21 for more information about TOOLS.lNI.)

.c.obj:
$(CC) $(CFlAGS) -c $*.c

.c.exe:
$(CC) $(CFlAGS) $*.c

.asm.obj:
$(AS) $(AFlAGS) $*.asm;

The macros CFLAGS and AFLAGS are not defined and evaluate to
null strings unless you define them.

5-18 Using the Program Utilities

Example
The following example specifies the filename in the rule with the
special macro name $* .

. C.OBJ:
CC $*.C ••• ;

TEST1.0BJ: TEST1.C

TEST2.0BJ: TEST2.C
CC TEST2.C;

In the preceding description file, the first line redefines the built-in
inference rule for creating .OBJ files from .C files. The rule applies to
any base name. When MAKE encounters the dependency for files
TEST1.0BJ and TEST1.C, it looks first for commands on the next line.
When it does not find any, MAKE checks for a rule that may apply and
finds the rule defined in the first lines of the description file. MAKE
applies the rule, replacing the $* macro with TEST1 when it performs
the command:

CC TESTl.C ... ;

When MAKE reaches the description block for the TEST2 files, it does
not search for a dependency rule because a command is explicitly
stated for this.

Special Rules
The following special pseudo-targets are available (note that these
pseudo-targets, like targets, must be followed by a colon) .

. SUFFIXES: Lists the file extensions that can be used in inference
rules. If a file with a dependent extension is in the current directory
and a relevant rule exists, MAKE automatically assumes a target­
dependent statement for that file. (Subsequent occurrences of this
pseudo-target followed by a list of extensions add to the existing
dependency list. .SUFFIXES followed by an empty list of extensions
clears the list.) The order of suffixes in the list tells MAKE in what
order to examine inference rules. By default, .SUFFIXES is defined
as ".obj .exe .c .asm."

SILENT: Same as the Is command option.

IGNORE: Same as the Ii command option.

Using the Program Utilities 5-19

Generating Response Flies
Some programs, such as the IBM Linker/2 and MAKE itself, allow you
to use a response file to pass arguments rather than entering them at
the command prompt. This makes it possible to pass a list of argu­
ments that is longer than the DOS 128-character limit. To create a
response file from within a MAKE description file, use the following:

Format

target: [dependency-list]
command @«[filename]

text

«

The first < < tells MAKE that what follows is the definition of a local
input script. Every line between the first and second set of less-than
symbols goes into the script file. MAKE expands macros that come
between the first and second less-than symbols.

If you enter a filename after the first < <, MAKE uses that as the
name of the input script file (the file may then be used as an input
script for subsequent commands). If no filename is specified, MAKE
creates a uniquely named file and stores the information there,
deleting the file when it terminates.

Example
The following is an example of how to construct an input file for the
LINK program
target.exe: filel.obj file2.obj file3.obj file4.obj

link @«file.lrf
filel+
fil e2+
file3+
file4
file.exe
fil e.map
1 ibl+l ib2;
«

MAKE creates a file named FILE.LRF and then executes the
command
link @file.lrf

5-20 Using the Program Utilities

Specifying Macros and Inference Rules with TOOLS.INI
If you have a set of macros or inference rules that you use often, you
can specify them through a file named TOOLS.INI rather than adding
them to each of your MAKE description files.

TOOLS.lNI is an initialization file you create to contain customization
information for MAKE and other utility programs that use TOOLS.lNI.
TOOLS.lNI can hold blocks of statements for different programs.
Each block begins with a marker (the name of the program that the
statements are intended for enclosed in brackets). This marker must
begin in Column 1. The end of the block is marked by either the end
of the file or the marker for another program.

When MAKE starts, it searches for TOOLS.INI in the current directory,
then the directories specified by the INIT environment variable. If it
finds TOOLS.lNI and finds the MAKE marker within TOOLS.INI, it
processes the block of statements before processing your makefile.

Notice that MAKE searches TOOLS.lNI for a marker of the same name
as its executable file. For example, if you rename MAKE.EXE to
BUILDER.EXE, MAKE searches TOOLS.lNI for the marker [BUILDER],
not [MAKE].

Example
The following sample TOOLS.INI file adds the file extension .PAS to
the .SUFFIXES list and defines an inference rule for building .OBJ
files from Pascal files.

[make]

.SUFFIXES: .pas

.pas.obj:

LIB

pasl $(PFLAGS) $*.pas;
pas2

The IBM Library Manager (UB) is a utility that helps you create,
organize, and maintain run-time libraries. Run-time libraries are col­
lections of compiled or assembled functions that provide a common
set of useful routines. Any program can call a run-time routine as
though the program includes the function. When you link the program
with a run-time library file, UB finds the routine in the library file and
resolves the call to the run-time routine.

Using the Program Utilities 5-21

You create run-time libraries by combining separately compiled
object files into one library file. A .LlB extension usually identifies a
library file, but you may use other extensions.

When you incorporate an object file in a library, the object file
becomes an object module. LIB makes a distinction between object
files and object modules; an object file is an independent file, but an
object module is part of a larger library file.

An object file can have a full pathname (including a drive designation
and a directory pathname) and a filename extension (usually .OBJ).
Object modules have only a name. For example, B:\RUN\SORT.OBJ
is an object filename, but SORT is the name of the corresponding
object module.

Overview of LIB Operation
You can perform a number of library management functions with IBM
LIB:

• Create a library file
• Delete modules
• Extract a module and place it in a separate object file
• Extract a module and delete it
• Add an object file to a library as a module, or add the contents to

a library
• Replace a module in the library file with a new module
• Produce a listing of all public symbols in the library modules.

For each library session, LIB first reads and interprets your com­
mands. It determines whether you are creating a new library or if
you are examining or changing an existing library.

LIB processes deletion and extraction commands (if any) first. It does
not delete modules from the existing file. Instead, it marks the
selected modules for deletion, creates a new library file, and copies
only the modules not marked for deletion into the new library file.

Next, LIB processes any addition commands. Like deletions, it does
not perform additions on the original library file. Instead, it appends
the additional modules to the new library file. (If there were no
deletion or extraction commands, LIB creates a new library file in the
addition stage by copying the original library file.)

5-22 Using the Program Utilities

As LIB carries out these commands, it reads the object modules in
the library, checks them for validity, and gathers the information nec­
essary to build a library index and a listing file. The linker uses the
library index to search the library.

The listing file contains a list of all public symbols in the index and
the names of the modules they are defined in. LIB produces the
listing file only if you ask for it during the library session.

LIB never makes changes to the original library; it copies the library
and makes changes to the copy. When you end LIB for any reason,
you do not lose your original file. It also means that when you run
LIB, enough space must be available on your disk for both the ori­
ginal library file and the copy.

When you change a library file, LIB gives you the option of specifying
a different name for the file containing the changes. If you use this
option, LIB stores the changed library under the name you give, and
preserves the original, unchanged version under its own name. If
you choose not to give a new name, LIB gives the changed file the
original library name but keeps a backup copy of the original library
file. This copy has the extension .BAK instead of .LlB.

The LIB command is easy to use. Its syntax is straightforward, and it
prompts you for responses. After you know how LIB works and what
its prompts mean, you can use one of the alternate methods of calling
LIB, described in "Starting LIB" on page 5-24. These alternative
methods let you give LIB commands without waiting for the LIB
prompts. A list of LIB error messages is in Appendix A.

Example
The following command deletes a library module named HEAP from
the library file LANG.LlB, then adds a file named HEAP.OBJ as the
last module in the library:

LIB LANG-HEAP+HEAP;

This command can also be entered this way, with the same effect:

LIB LANG+HEAP-HEAP;

This command always performs delete operations before add oper­
ations without regard to the order of operations at the command
prompt. This order prevents LIB from flagging the operation as an

Using the Program Utilities 5-23

error when a new version of a module replaces an old version in the
library file.

After a library is changed, the command writes the changed file back
to the library file LANG.L1B. LANG.BAK is the name of the original
backup file of LANG.L1B.

Starting LIB
You can start the LIB program by using one of the following methods:

The prompt method: Displays a prompt for each response it needs in
the LIB program. See "Prompts for LIB" for information on how to
use the prompt method. When you understand the LIB prompts and
operations, you can use the command-prompt method of running LIB.

The command-prompt method: Lets you type all commands, options,
and filenames on the line you use to start LIB. See "Command­
Prompt Method for LIB" on page 5-27 for information on the
command-prompt method.

The response file method: Lets you create a file that contains all the
necessary commands, then tell LIB where to find that file. See
"Response File for LIB" on page 5-29 for information on the response
file method.

All of the above methods require that you understand how LIB works
and what your responses to its prompts mean. For this reason, it is
recommended that you allow LIB to prompt you for responses until
you are comfortable with its commands and operations.

Prompts for LIB
You start LIB at the command prompt by typing LIB.

LIB prompts you for the input it needs by displaying the following
prompts, one at a time. LIB waits for you to respond to a prompt
before it displays the next one.

Library name:
Operations:
List file:
Output library:

The following sections explain the responses you can make to each
prompt.

5-24 Using the Program Utilities

Library Name Prompt
At the Library name prompt, give the name of the library file you
want. Library filenames usually have a .LlB extension. You can omit
the extension when you give the library filename because LIB
assumes an extension of .LlB. However, if your library file does not
have the .LlB extension, include the extension when you give the
library filename; otherwise, LIB cannot find the file.

The program allows pathnames with the library filename, so you can
give LIB the pathname of a library file in another directory or on
another disk.

Because LIB manages only one library file at a time, it allows only
one filename in response to this prompt. There is no default
response, so LIB produces an error message if you do not give a
filename.

If you give the name of a library file that does not exist, LIB displays
the prompt:

Library file does not exist. Create?

Respond with y if you want to create the library file or n if you do not.
If you answer n, LIB returns control to the prompt.

If you type a library filename and follow it immediately with a semi­
colon, LIB performs only a consistency check on the given library. A
consistency check tells you whether all the modules in the library are
in usable form. LIB prints a message only if it finds an incorrect
object module; no message is displayed if all modules are intact.

You can also set the library page size following this prompt. See
"Setting the Library Page Size" on page 5-34 for more information.

Operations Prompt
Following the Operations prompt, you can type one of the command
symbols for manipulating modules (+, -, - +, *, -*) followed imme­
diately by the module name or the object filename. You can specify
more than one operation following this prompt, in any order. The
default for the Operations prompt is no changes.

When you have a large number of modules or files to manipulate
(more than can be typed on one line), type an ampersand (&) as the
last symbol on the line, immediately before pressing Enter. The

Using the Program Utilities 5-25

ampersand must follow a filename; you cannot give an operator as
the last character on a line you want to continue. The ampersand
causes LIB to repeat the Operations prompt, allowing you to specify
more operations and names.

The following list describes command symbols and their meanings
and uses.

Symbol Meaning and Use

+ The plus sign adds an object file to the library file. Give the
name of the object file immediately after the plus sign. You
can use pathnames for object files. LIB supplies the .OBJ
extension so you can omit the extension from the object
filename.

You can also use the plus sign to combine two libraries.
When you give a library name after the plus sign, it adds a
copy of the contents of the library to the library file it is
changing. You must include the .LlB extension when you
give a library filename. Otherwise, LIB uses the default
.OBJ extension when it looks for the file.

The minus sign deletes a module from the library file. Give
the name of the module you want to delete immediately after
the minus sign. A module name has no pathname and no
extension.

- + A minus sign followed by a plus sign replaces a module in
the library. Insert the name of the module to be replaced
after the replacement symbol. Module names have no
pathnames and no extensions.

*

5-26

To replace a module, LIB first delete$ the specified module,
then adds to the object file having the same name as the
module. The command assumes the object file has an .OBJ
extension and resides in the current working directory.

An asterisk followed by a module name copies a module
from the library file into an object file of the same name.
The module remains in the library file. When LIB copies the
module to an object file, it adds the .OBJ extension, the
drive designation, and pathname of the current working
directory to the module name to form a complete object
filename. You cannot override the .OBJ axtension, drive

Using the Program Utilities

designation, or pathname given to the object file, but you
can later rename the file or copy it to another location.

-* A minus sign followed by an asterisk moves an object
module from the library file to an object file. This operation
is equivalent to copying the module to an object file, as
described above, then deleting the module from the library.

List File Prompt
After the List file prompt, you can give a filename for a cross­
reference listing file. You can specify a full pathname for the listing
file to create it outside your current working directory. You can give
the listing file any name and any extension. LIB does not supply a
default if you omit the extension.

A cross-reference listing file contains two lists. The first is an alpha­
betic listing of all external (public) symbols in the library. The name
of the module that the symbol name refers to comes after that symbol
name.

The second is a list of the modules in the library. Under each module
name is an alphabetic listing of the public symbols defined in that
module. The default when you omit the response to this prompt is the
special filename NUL.LST, which tells LIB not to create a listing file.

Output Library Prompt
After the Output library prompt you can give the name of a new
library file you want to create with the specified changes. The default
is the current library filename; the original, unchanged library name
remains the same, but the extension changes to .BAK, replacing the
.L1B extension. This prompt is displayed only if you specify changes
to the library following the Operations prompt.

Command-Prompt Method for LIB
The command-prompt method of starting LIB has the following form:

LIB --library •

\.'PAGESIZE: number J \.- operations ./

• ~.I/stfileJ ~.neWllbr.ryJ

Using the Program Utilities 5-27

The entries following LIB are responses to the LIB command
prompts.

library This parameter, with the optional/PAGESIZE:number
specification, corresponds to the Library name prompt.
If you want LIB to perform a consistency check on the
library, follow the library entry with a semicolon.

operations These entries are any of the operations allowed fol­
lowing the Operations prompt.

If you want to create a cross-reference listing, you must
separate the name of the listing file from the last oper­
ations entry by a comma. If you give a filename in the
new library field, the library name must be separated
from the listing filename or the last operations entry by
a comma.

listfile If specified, LIB creates a listing file with the name.
newlibrary If specified, this is the name of the revised library.

You can use a semicolon after any entry to tell LIB to use the default
responses for the remaining entries. The semicolon should be the
last character at the command prompt.

Example
The following example instructs LIB to replace the HEAP module in
the library LANG.L1B:

LIB LANG-+HEAP;

LIB first deletes the HEAP module in the library, then appends the
object file HEAP.OBJ as a new module in the library. The semicolon
command symbol at the end of the command tells LIB to use the
default responses for the remaining prompts. It also tells LIB not to
create a listing file and write the changes back to the original library
file instead of creating a new library file.

The next example causes LIB to perform a consistency check of the
library file C.L1B:

LIB C;

Does not perform any other action. LIB displays any consistency
errors it finds and returns to the operating system level.

5-28 Using the Program Utilities

The last example tells LIB to perform a consistency check of the
library file LANG.LlB and then to produce a cross-reference listing
file named LCROSS.PUB:

LIB LANG.LCROSS.PUB;

Response File for LIB
The command to start LIB with a response file has the following form:

LIB @response-!ile

where response-file specifies the name of a response file. Qualify the
response-file name with a drive and directory specification to name a
response file from a directory other than the current working direc­
tory.

Before you use this method, you must set up a response file con­
taining answers to the LIB prompts. This method lets you conduct the
library session without typing responses at the keyboard.

A response file has one text line for each prompt. Responses must
appear in the same order as the command prompts. Use command
symbols in the response file the same way you type responses on the
keyboard.

When you run LIB with a response file, the prompts are displayed
with the responses from the response file. If the response file does
not contain answers for all the prompts, LIB uses the default
responses.

Example

SLIBC
+CURSOR+HEAP-HEAP*FOIBLES
CROSSLST

This response file causes LIB to delete the module HEAP from the
SLlBC.LlB library file, extract the module FOIBLES and place it in an
object file named FOIBLES.OBJ. It adds the object files CURSOR.OBJ
and HEAP.OBJ as the last two modules in the library. Finally, LIB
creates a cross-reference file named CROSSLST.

Using the Program Utilities 5-29

Extending Lines
If you have many operations to perform during a library session, use
the ampersand command to extend the operations line. Type the
ampersand symbol after an object module or object filename. Do not
put the ampersand between an operations symbol and a name.

If you use the ampersand with the prompt method of calling LIB, the
ampersand causes the Operations prompt to repeat, letting you type
more operations. With the response file method, you can use the
ampersand at the end of a line, then continue typing operations on
the next line.

Ending the Library Session
At any time, you can use Ctrl + Break to end a library session. If you
type an incorrect response, such as a wrong or incorrectly spelled
filename or module name, you must press Ctrl + Break to leave LIB.
You can then restart the program.

Selecting Default Responses to Prompts
After any entry but the first, use a single semicolon and then press
Enter to select default responses to the remaining prompts. You can
use the semicolon command symbol with the command prompt and
response file methods of calling LIB. This is not necessary because
LIB supplies the default responses wherever you omit responses.

The default response for the Operations prompt is no operation. The
library file does not change.

The default response for the List file prompt is the special filename
NUL.LST, which tells LIB not to create a listing file.

The default response for the Output library file is the current library
name. This prompt appears only if you specify at least one operation
following the Operations prompt.

Library Tasks
This section summarizes the library management tasks you can
perform with LIB.

5-30 Using the Program Utilities

Creating a Library File
To create a new library file, type the name of the library file you want
to create following the Library name prompt. LIB supplies the .L1B
extension.

If the name of the new library is the name of an existing file, LIB
assumes you want to modify the existing file. When you give the
name of a library file that does not currently exist, LIB displays the
following prompt:

Library file does not exist. Create?

Type y (yes) to create the file or n (no) to end the library session.

Note: When you call LIB in such a way that no Operations prompt
appears, the message above also does not appear. LIB
assumes y (create the new library) by default. For example,

LIB new.lib+objl;

Where new.lib does not exist, it creates the file NEW.L1B.

You can specify a page size for the library when you create it. The
default page size is 16 bytes. See "Setting the Library Page Size" on
page 5-34 for more information.

After you give the name of the new library file, you can insert object
modules in the library by using the add operation (+) following the
Operations prompt. You can also add the contents of another library.
See "Adding Library Modules" on page 5-32 and "Combining
Libraries" on page 5-33 for an explanation of these options.

Modifying a Library File
You can change an existing library file by giving the name of the
library file following the Library name prompt. The Operations
prompt performs all operations you specify on that library.

LIB lets you keep both the original library file and the newly changed
version. You can do this by giving the name of a new library file fol­
lowing the Output library prompt. The library filename changes to the
new library filename, while the original library file remains
unchanged.

If you do not give a filename following the Output library prompt, the
changed version of the library file replaces the original library file.
LIB saves the original, unchanged library file. The original library file

LJ~ina the Proaram Utilities 5-31

has th~ extension .BAK instead of .L1B. At the end of the session, you
have two library files: the changed version with the .L1B extension
and the original, unchanged version with the .BAK extension.

Adding Library Modules
Use the plus sign following the Operations prompt to add an object
module to a library. Give the name of the object file, without the .OBJ
extension, that you want to add immediately after the plus sign.

LIB removes the drive designation and the extension from the object
file specification, leaving only the filename. This becomes the name
of the object module in the library. For example, if the object file
B:\CURSOR.OBJ is added to a library file, the name of the corre­
sponding object module is CURSOR. LIB always adds object
modules to the end of a library file.

Deletlng Library Modules
Use the minus sign following the Operations prompt to delete an
obje<:t module from a library. Give the name of the module you want
to delete immediately after the minus sign. A module name has no
pathname and no extension. It is only a name, such as CURSOR.

Replacing Library Modules
Use a minus sign followed by a plus sign to replace a module in the
library. After the replacement symbol (- +), give the name of the
module you want to replace. Module names have no pathnames and
no extensions.

To replace a module, LIB deletes the given module and adds the
object file with the same name as the module. The object file has an
.OBJ extension and resides in the current working directory.

Extracting Library Modules
Use an asterisk followed by a module name to copy a module from
the library file into an object file of the same name. The module
remain$ in the library file. When LIB copies the module to an object
file, it adds the .OBJ extension, the drive designation, and the
pathname of the current working directory to the module name. This
forms a complete object filename. You cannot override the .OBJ
extension, drive designation, or pathname given to the object file.
You can later rename the file or copy it to another location.

5-32 Using the Program Utilities

Use the minus sign followed by an asterisk (-*) to move an object
module from the library file to an object file. This operation is equiv­
alent to copying the module to an object file, then deleting the module
from the library.

Combining Libraries
You can add the contents of a library to another library by using the
plus sign with a library filename instead of an object filename. Fol­
lowing the Operations prompt, give the plus sign and the name of the
Ii brary with the contents you want to add to the Ii brary you are
changing. When you use this option, you must include the .LlB exten­
sion of the library filename. Otherwise, LIB assumes that the file is
an object file and looks for the file with an .OBJ extension.

LIB adds the modules of the library to the end of the library you are
changing. The added library still exists as an independent library.
LIB copies the modules without deleting them.

After you add the contents of a library or libraries, you can save the
new, combined library under a new name by giving a new name fol­
lowing the Output library prompt. If you omit the Output library
response, LIB saves the combined library under the name of the ori­
ginal library you are changing.

Creating a Cross-Reference Listing
Create a cross-reference listing by giving a name for the listing file
following the List file prompt. If you omit the response to this prompt,
LIB uses the special filename NUL.LST. It does not create a listing
file.

You can give the listing file any name and any extension. You can
specify a full pathname, including a drive designation, for the listing
file to create it outside the current working directory. LIB does not
supply a default if you omit the extension.

A cross-reference listing file contains two lists. The first is an alpha­
betic listing of all public symbols in the library. The name of the
module the symbol name refers to comes after that symbol name.

The second list is an alphabetic list of the modules in the library.
Under each module name is an alphabetic listing of the public
symbols the module refers to.

Using the Program Utilities 5-33

Performing Conslslency Checks
When you give only a library name followed by a semicolon at the
Library name prompt, LIB performs a consistency check, displaying
messages about any errors it finds. It does not make any changes to
the library. This option is not usually necessary because LIB checks
object files for consistency before adding them to the library.

To produce a cross-reference listing along with a consistency check,
use the command-prompt method of calling LIB. Give the library
name followed by a semicolon, then give the name of the listing file.
LIB performs the consistency check and creates the cross-reference
listing.

SeUlng Ihe Library Page Size
The page size of a library affects the alignment of modules stored in
the library. Modules in the library are aligned so that they always
start at a position that is a multiple of n bytes from the beginning of
the file. The value of n is the page size. The default page size is 16
for a new library or the current page size for an existing library.

Because of the indexing technique LIB uses, a library with a larger
page size can hold more modules than a library with a smaller page
size. However, for each module in the library, this indexing tech­
nique wastes an average of nl2 bytes of storage space (where n is the
page size). In most cases a small page size is advantageous. You
should use the smallest page size possible.

To set the library page size, add a page size option after the library
filename in response to the Library name prompt:

library-name /PAGESIZE:n

The value of n is the new page size. It must be a power of 2 and be
between 16 and 32768.

Another consequence of this indexing technique is that the page size
determines the maximum possible size of the .LlB file. This limit is
65536 times number. For example, IP:16 means that the .LlB file must
be smaller than 1 megabyte (16 times 65536 bytes) in size.

5-34 USing the Program Utilities

EXEMOD
EXEMOD displays or changes fields in the DOS file header. To use
this utility, you must understand the DOS conventions for file headers.
They are explained in the technical reference information for DOS.

Some of the options available with EXEMOD are the same as the
linker options, except that they work on files already linked. Unlike
the linker options, the EXEMOD options require that you specify
values in hexadecimal.

Note: EXEMOD uses only the DOS file header, so it is useful prima­
rily for DOS executable files. EXEMOD can also be used to
display or change fields in the DOS file header of a STUB
program that can exist in an OS/2 executable file.

Displaying Current Status of Header Fields
To display the current status of header fields, type:

EXEMOD executablefile

This command directs EXEMOD to display the current status of the
header fields. See the example at the end of this chapter.

Changing Fields in the File Header
To change one or more fields in the file header, type:
EXEMOD executablefile --....-~-----~---r-----....

\....-'STACK n--..l

\'M'Nn7 'C'H=-;
This command directs EXEMOD to change one or more of the fields in
the file header. EXEMOD expects the DOS executable file to be the
name of an existing file with the .EXE extension. If you give the
filename without an extension, EXEMOD adds .EXE and searches for
that file. If you give a file with an extension other than .EXE, EXEMOD
displays an error message.

Using the Program Utilities 5-35

Parameters
The examples in this chapter show parameters starting with a slash,
but you can also use a dash to start a parameter. You can give
EXEMOD parameters in either uppercase or lowercase, but you
cannot abbreviate them.

EXEMOD parameters require that you give all values in hexadecimal.
The available parameters and their meanings are:

ISTACK n Sets the initial SP (stack pointer) value to n, where n is a
hexadecimal value setting the number of bytes. EXEMOD
adjusts the minimum allocation value upward, if neces­
sary. This parameter has the same effect as the linker
parameter 1ST ACK.

IMIN n Sets the minimum allocation value to n, where n is a
hexadecimal value setting the number of paragraphs. The
actual value set may be different from the requested value
if adjustments are necessary to accommodate the stack.

IMAXn Sets the maximum allocation to n, where n is a
hexadecimal value setting the number of paragraphs. The
maximum allocations value must be greater than or equal
to the minimum allocation value. This option has the
same effect as the linker parameter ICPARMAXALLOC.

IH Displays the current status of the DOS program header.
Its effect is the same as entering EXEMOD with an execut­
able file but with no parameters. Do not use the IH
parameter with other parameters.

Note: The ISTACK parameter can be used on programs assembled
with the IBM Macro Assembler/2 or programs compiled with
the IBM C Compiler, Version 1.00 or 1.10. Use of the ISTACK
parameter on programs developed with other compilers can
cause the programs to fail or EXEMOD to return an error
message.

Effect on Packed Files
EXEMOD can work on packed files. When it recognizes a packed file,
it prints the following message:

exemod: (warning) packed file

It then continues to change the file header. When you load packed
files, they are expanded to their unpacked state in storage. If you use
the ISTACK parameter on a packed file, the value changed is the
value that the stack pointer (SP) is to have after expansion. If you use

5-36 Using the Program Utilities

either the IMIN or ISTACK parameter, the value is corrected as nec­
essary to accommodate unpacking of the modified stack. The IMAX
parameter operates as it would for unpacked files.

If EXEMOD displays the header of a packed file, the CS:IP and SS:SP
values appear as they will after expansion, which is not the same as
the actual values in the header of the packed file.

Example
The first example shows the file header for the file named TEST.EXE.
Suppose you enter the command:

EXEMOO test.exe

EXEMOD displays the following:

test.exe (hex) (dec)

.EXE size (bytes) 4390 17309
Minimum load size (bytes) 4190 16797
Overlay number 0 0
Initial CS: IP 0403:0000
Initial SS:SP 0000:0000 0
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

The following command shows how to change the header:

EXEMOO test.exe /STACK FF /MIN FF /MAX FFF

If you enter the same command as before, EXEMOD displays the file
header values after the change.

EXEMOO test.exe
test.exe (hex) (dec)

.EXE size (bytes) 4390 17309
Minimum load size (bytes) 5280 20877
Overlay number 0 0
Initial CS:IP 0403:0000
Initial SS:SP 0000: 00FF 256
Minimum allocation (para) FF 256
Maximum allocation (para) FFF 4095
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

Usina the Proaram Utilities 5·37

5-38 Using the Program Utilities

Chapter 6. Interlacing with IBM Macro
Assembler/2

This chapter explains how to use 8088 assembler language routines
with C language programs and functions. It outlines the segment
model that IBM C/2 uses and explains how to call assembler lan­
guage routines from C language programs. It also explains how to
call C programs from assembler language routines. This assembler
language interface is especially useful for those assembler language
programmers who want to use the functions of the standard C library
and other C libraries.

Segment Model
This section describes the run-time structure of IBM C/2 programs.
Storage for the 8088/80286/80386 series of processors is organized in
segments, each containing up to 64KB.

The following list shows the order of segments of a C program in
storage, from the highest storage location to the lowest. Because this
is the default ordering for C programs, you do not need to use the
segment order option with C programs, but it can be useful when
linking assembler language routines. For more information about
using the segment ordering option, see "Ordering Segments
IDOSSEG" on page 3-22.

Note: A map file produced by linking a C program contains seg­
ments other than those listed below. Those additional seg­
ments have specialized uses for IBM languages and should
not be used by other programs.

HEAP: The area of free storage available for dynamic allocation by
the program. Its size varies, depending on the other storage require­
ments of the program.

STACK: Contai ns the stack that you use for all local data items.

_BSS segment: Contains all uninitialized static data items except
those items explicitly declared as far or huge items in the source file.

Interfacing with IBM Macro Assembler/2 6-1

c_common: Contains all uninitialized global data items for small­
and medium-model programs. In large- and huge-model programs,
the IBM C/2 places this type of data item in a data segment with class
FAR_BSS.

CONST: Contains all constants that can only be read. These include
floating-point constants and segment values for data items declared
far in the source file or data items that are forced into their own
segment by use of the IGt option.

C lets you write to string literals. Thus, C programs store strings in
the _DATA segment instead of the CONST segment.

_DATA: The default data segment. Initialized global and static data
remain in this segment for all storage models, except for data explic­
itly declared far or for data forced into different segments by use of
the IGt option. For more information about the IGt option, see
"Setting the Data Threshold IGt" on page 2-57.

NULL: A special-purpose segment that occurs at the beginning of
DGROUP. The NULL segment contains the compiler copyright notice.
The system checks this segment before and after the program runs.
If the contents of the NULL segment change in the course of the
program run, the program has written to this area, usually by an inad­
vertent assignment through a null pointer. You are notified of this by
the error message Null pointer assignment.

Far Data Segments: IBM C/2 places initialized static and global far
or hUSlle data items in their own segments with class name
FAR_DATA. This lets the linker combine these items so that they all
come before DGROUP. Uninitialized static and global far or huge
data items are placed in segments that have class FAR_BSS. This
lets the linker place these items between the TEXT segment(s) and
DGROUP. In I~uge- and huge-model programs, the compiler treats
global uninitialized data as if it were declared far or huge (unless
specifically declared near) and given class FA~_BSS.

_TEXT: The code segment. In small-and compact-model programs,
the linker combines the code for all modules in this segment. In
medium-, large-, and huge-model programs, each module has its own
reserved text segment. The linker does not combine segments; there
are multiple text segments in medium- and large-model programs.

6-2 Interfacing with IBM Macro Assembler/2

Each segment in a medium-, large-, or huge-model program has the
name of the module plus the suffix _TEXT.

When implementing an assembler language routine to call or be
called from a C program, you refer to the _TEXT and _DATA seg­
ments most frequently. Place the code for the assembler language
routine in the _TEXT segment (or module-name_TEXT for medium-,
large-, and huge-model programs). Place data in whichever segment
is appropriate to its use, as described previously. Usually this
segment is the default data segment, _DATA.

Groups
Segments with the same group name must fit into a single physical
segment, which is up to 64KB long. This permits access to all seg­
ments in a group through the same segment register. IBM C/2
defines one group named DGROUP.

The NULL, _DATA, CONST, _BSS, c_common, and STACK segments
are together in DGROUP. This lets the compiler produce code to get
access to data in each of these segments without constantly loading
the segment values or using many segment overrides on instructions.
Address DGROUP using the OS or SS segment register. OS and SS
always contain the same value.

Compact-, large- and huge-model programs, or small- and medium­
model programs using far or huge data declarations, can change OS
temporarily to a different value to let the program get access to data
outside the default data segment. You can also use the ES register.

The stack segment (SS) is never changed; its segment registers
always contain abstract segment values, and the contents are never
examined or operated on. This provides compatibility with the 80286
processor.

In small- and compact-model programs, only one text segment is
named _TEXT. In medium-and large-model programs, the names of
all text segments must end with the suffix _TEXT. The text segments
are not grouped.

Interfacing with IBM Macro Assembler/2 8-3

Memory Align Combine Class
Model Segment Name Type Class Name Group

Small _TEXT byte public CODE
Data SegmentsOO para private FAR_DATA
Data SegmentsOO para public FAR_BSS
NULL para public BEG DATA DGROUP
DATA word public DATA DGROUP -

CONST word public CONST DGROUP
BSS word public BSS DGROUP -

STACK para stack STACK DGROUP

Medium module_TEXT byte public CODE
Data SegmentsOO para private FAR_DATA
Data SegmentsOO para public FAR_BSS
NULL para public BEG DATA DGROUP

DATA word public DATA DGROUP
CONST word public CONST DGROUP
BSS word public BSS DGROUP -

STACK para stack STACK DGROUP

Compact _TEXT byte public CODE
Data segmentsOO para private FAR_DATA
Data segmentsOO para public FAR_BSS
NULL para public BEG DATA DGROUP
DATA word public DATA DGROUP

CONST word public CONST DGROUP
BSS word public BSS DGROUP -

STACK para stack STACK DGROUP

Large module_TEXT byte put!ic CODE
Huge

Data SegmentsOO para private FAR_DATA
Data SegmentsOO para public FAR_BSS
NULL para public BEG DATA DGROUP
DATA word public DATA DGROUP

CONST word public CONST DGROUP
BSS word public BSS DGROUP

STACK nara stack STACK n~RniIP

6-4 Interfacing with IBM Macro Assembler/2

The C Calling Sequence
To receive values from C language function calls or to pass values to
C functions, assembler language routines must follow the C
argument-passing conventions. In the C language, function calls
pass their arguments to the given functions by pushing the value of
each argument onto the stack. The call pushes the value of the last
argument first and the first argument last. If an argument is an
expression, the call computes the value of the expression before
pushing it onto the stack.

Arguments with char, short, Int, unsigned char, unsigned short, or
unsigned Int type occupy a single word (16 bits) on the stack. Argu­
ments with long or unsigned long type occupy a double word (32 bits);
the value's high-order word is pushed first.

The compiler can pass float arguments only when a function proto­
type specifying float is present. Otherwise, IBM C/2 converts argu­
ments with float type to double type (64 bits). The char type
arguments are sign-extended to Int type before being pushed on the
stack; unsigned char type arguments are zero-extended to unsigned
Int type.

Pointers occupy either 16 or 32 bits, depending on the storage model,
the type of item addressed (code or data), and whether the pointer is
changed with a near or far declaration. The segment value of far
poi nters is pushed fi rst, then the offset.

If an argument is a structure, the function call pushes the last word of
the structure first and each successive word in turn until the first word
is pushed. C programs pass arrays by reference; the system evalu­
ates the array identifier as the array address, which it uses to get
access to the array.

After a function returns control to a routine, the calling routine is
responsible for removing arguments from the stack.

Interfacing with IBM Macro Assembler/2 6-5

Entering an Assembler Routine
Assembler language routines that receive control from C function
calls should preserve the contents of the BP, SI, and 01 registers and
set the BP register to the current SP register value before proceeding
with their tasks. You need not preserve the contents of the SI and 01
registers if the assembler language routine does not change them.

If the assembler routine changes the contents of the SS (stack
segment), OS (data segment), and CS (code segment) registers, it
should save their values on entry and restore them at exit. The
values of the SS and OS registers are equal in C programs, unless
you specify the u or w flag of the IA option to set up separate stack
and data segments.

The following example shows the recommended instruction sequence
for entry to an assembler language routine.
entry:

push bp
mav bp.sp
push di
push si

This is the same sequence that IBM C/2 uses.

If you use this sequence, the last argument pushed by the function
call, which is also the first argument given in the argument list of the
call, is at address [bp+4] for a near function call or [bp+6] for a far
function call. Subsequent arguments begin at [bp + 6], [bp + 8], or
[bp+ 10], depending upon the size of the first argument and whether
the function call is near or far. If the first argument is a single word
and the function call is near the next argument starts at [bp + 6]. If the
first argument is a single word and the function call is far, or if the
first argument is a double word and the function call is near, the next
argument starts at [bp+8]. If the first argument is a double word and
the function call is far, the next argument starts at [bp+ 10].

The last two push instructions in the above sequence are not neces­
sary if the assembler language routine does not change the contents
of the SI and 01 registers, which the compiler uses to store register
variables.

Note: It is recommended that you write macros to distinguish
between near and far function calls and returns. Such macros

6-6 Interfacing with IBM Macro Assembler/2

make the code more readable and can help to insulate a
program from changes in the calling sequence.

Return Values
Assembler language routines that return values to a e language
program or receive return values from e functions must follow the e
return value conventions. The conventions are shown in the fol­
lowing table.

Return Value Type
char
short
Inl
unsigned char
unsigned short
unsigned Int
long

unsigned long

strucl or union

floal or double

near pointer
far pointer

Reg Isler
AX
AX
AX
AX
AX
AX
High-order word in OX; low-order
word in AX
High-order word in OX; low-order
word in AX
Address of value in AX; value must
be in a static area in storage
Address of value in AX; value must
be in a static area in storage
AX
Segment selector in DX; offset in AX

Exiting from a Routine
Assembler language routines that return control to e programs
should restore the values of the BP, 81, and 01 registers before
returning control. You need not restore the contents of the 81 and 01
registers if the entry sequence did not push them. The following
example illustrates the recommended instruction sequence for
exiting from a routine called by a small-model program.

pop si
pop di
mov sp,bp
pop bp
ret

This sequence does not change the AX, BX, ex, or OX registers or
any of the segment registers. The sequence does not remove argu­
ments from the stack; that is the responsibility of the calling routine.

Interfacing with IBM Macro Assembler/2 6-7

The pop instructions for 81 and 01 in the above sequence are not nec­
essary if the assembler language routine does not change the con­
tents of the 81 and 01 registers and does not save them on entry.

Naming Conventions
An assembler language routine can access globally visible items
(data or functions) in a C program by prefixing the item name with an
underscore. Assembler language routines cannot access C items
declared as static. For example, you can get access to a C function
named add in an assembler language program by declaring the
name _add as external.

For a C program to access an assembler language routine or data
item, the name of the assembler language item must begin with an
underscore. The C program refers to the assembler language item
without the underscore. For example, a C program can call a publicly
defined assembler language routine named _mix by the following
declaration.

extern mix();

However, if the name of the assembler language routine does not
begin with an underscore, the C program cannot get access to it.

IBM C/2 reserves some identifiers beginning with two underscores
for internal use. Avoid using identifiers with two leading underscores
in your assembler routines and identifiers with one leading under­
score in your C source files; these identifiers might conflict with
internal names.

If you are linking C modules with modules created by IBM Macro
Assembler/2 (MA,8M), either assemble the MA8M modules with the
IMX option to pres~rve case sensitivity in these modules, or use the
LINK command to link in a separate step. Do not specify the INOI
linker option.

6-8 Interfacing with IBM Macro Assembler/2

Register Considerations
The 51 and 01 registers store the values of variables given register
storage in a C program. An assembler language routine that changes
the 51 and 01 registers must save the contents of these registers on
entry and restore them before exiting.

IBM C/2 assumes that the assembler language routine clears the
direction flag. If your assembler routine sets the direction flag, be
sure to clear it, using the CLO instruction, before returning.

If the assembler routine changes the contents of the 55 (stack
segment), 05 (data segment), and C5 (code segment) registers, it
should save their values on entry and restore them at exit. The
values of 5S and OS are equal in C programs.

Examples
The following example shows the assembler language interfaces.
The example assumes that the C program is a small-model program.

int a=l. b=l. c;

mainO
{

add(i .j)
int i.j;
{

c = add(a.b);

return(i+j) ;

If you write the add function as an assembler language routine
instead of a C function, the routine must save the proper registers,
retrieve the arguments from the stack, add the arguments, place the
return value in the AX register, restore the registers, and return
control. Here is a sample portion of how to write this routine. Pre­
serving and restoring SI and 01 is shown for illustration, although the
procedure is not strictly necessary in this case. If the assembler
routine is written to work with a medium-, compact-, or large-model C
program, the _add procedure is declared far instead of near.

Interfacing with IBM Macro Assembler/2 6-9

: i = [bp + 4]
; j = [bp + 6]

add PROC NEAR -
push bp
mov bp,sp
push di
push si

mov ax. [bp+4]
add ax, [bp+6]

pop si
pop di
mov sp,bp
pop bp
ret

add endP -
On the other hand, if the C function is called by an assembler lan­
guage routine, the routine must contain instructions that push the
arguments onto the stack in the proper order, call the function, and
clear the stack. It may then use the return value in the AX register.
These instructions are shown in the following example:

push [b]
push Cal
call _add
add sp,4
mov Lc] ,ax

6-10 Interfacing with IBM Macro Assembler/2

Appendix A. Error Messages

The C/2 compiler produces a broad range of error and warning mes­
sages to help locate errors and potential problems in programs.

This appendix lists the error messages you might find as you develop
a program and gives a brief description of the action required to
correct the errors.

Run-time errors that may occur when you run your program are dis­
cussed first. The remaining sections describe error messages
produced by the following programs:

• IBM C/2
• The IBM Linker
• The IBM LIB library management utility
• The EXEMOD header modification utility
• The MAKE program maintenance utility
• The errno variable.

Run-Time Error Messages
Run-time error messages are divided into four categories:

1. Error messages generated by the system to notify you of serious
errors.

2. Floating-point exceptions generated by the Numeric Coprocessor
or the NPX emulator.

3. Error messages generated by calls in the program to error­
handling routines in the C run-time library.

4. Error messages generated by calls to math routines in the C run­
time library. On an error, the math routines return an error value
or print a message to the standard error data stream. See
Chapter 5 in IBM CI2 Language Reference for a description of the
math routi nes.

System Generated Error Messages
Programs with serious errors can cause the system to generate the
following messages at run time:

Error Messages A-1

Number Message, Causel Action

R6000: stack overflow
Program ran out of stack space. This can occur
when a program uses a large amount of local
data or is heavily recursive. The system stops
the program with an exit status of 255. To
correct the problem, recompile using the IF
option of the CL command, or relink using the
linker ISTACK option to reserve a large stack or
modify the stack information in the executable
file header by using the EXEMOD program.

R6001: null pointer assignment
The contents of the NULL segment changed as
the program ran. The NULL segment is a special
location in low storage that is not normally used.
If the contents of the NULL segment change
during the running of a program, the program
has written to this area, usually by an inad-
vertent assignment through a null pOinter. Your
program can contain null pOinters without gener-
ating this message; the message appears only
when you get access to a storage location
through the null pointer.

This error does not cause your program to stop;
the system prints the error message following
the normal end of the program.

This message reflects a potentially serious error
in the program. Although a program that
produces this error can appear to run correctly,
it is likely to cause problems in the future and
might fail to run in a different operating environ-
ment.

A-2 Error Messages

Number Message, Cause/Action

R6002: Iloating point not loaded
Program needs the floating-point library, but that
library was not loaded. This error stops the
program with an exit status of 255. This error
occurs in three situations:

1. A format string for one of the routines in the
prlntf or scanl family contains a floating-
point format specification, and there are no
floating-point values or variables in the
program. The C compiler tries to minimize
the size of the program by loading floating-
point support only when necessary. It does
not detect floating-point format specifications
within format strings and, consequently,
does not load the necessary floating-point
routines. To correct this error, use a
floating-point argument that corresponds to
the floating-point format specification. This
causes the C compiler to load floating-point
support.

2. You specified xLlBFP.L1B or xLlBFA.L1B
(where x is S, M, L, C, or H, depending on
the storage model) after xLlBC.L1B in the
linking stage. You must relink the program
with the correct library specification.

3. The program uses floating point and is com-
piled and linked with options that require a
numeric coprocessor (-FPi87, for example)
but is run on a machine that does not have a
numeric coprocessor. You should either
recompile with the IFPi option, relink with
emulator library EM.L1B, or install a
coprocessor.

R6003: Integer divide by 0
An attempt was made to divide an integer by 0,
giving an undefined result.

R600S: not enough memory on exec

R6006: bad lormat on exec

Error Messages A-3

Number Message, Cause/Action

R6007: bad environment on exec
Errors R6DDS through R6DD7 occur when a child
process spawned by one of the exec library rou-
tines fails, and DOS was unable to return control
to the parent process.

R6008: not enough space for arguments
See explanation under error R6DD9.

R6009: not enough space for environment
Error R6DD8 and R6DD9 both occur at start-up if
there is enough memory to load the program but
not enough room for the argv and/or envp
vectors. To avoid this problem, you can rewrite
the _setargv or _setenvp routines.

Floating-Point Exceptions
The error messages listed below correspond to exceptions produced
by the numeric coprocessor. Refer to the Intel documentation for
your processor for a detailed discussion of hardware exceptions.

When you use the default floating-point control word settings in C, the
following exceptions are masked and do not occur:

Exception
Denormal
Underflow
Inexact

Default Masked Action
Exception masked
Result goes to 0.0
Exception masked.

The following errors do not occur with code that IBM C/2 produces or
code provided in the IBM C/2 run-time library:

• Square root
• Stack underflow
• Unemulated.

The floating-point exceptions have this format:

runtime-time error M6lxx : MATH-floating-point error: message text

The .following list describes the floating-point exceptions:

• A-4 Error Messages

Number Message, Causel Action

M6101: Invalid
The operation is a non-valid operation. Usually
this message appears when an operation tries to
operate on NaNs or infinities.

M6102: denormal
The operation produced a very small floating-
point number, which might no longer be correct
due to loss of significance. Denormals are
normally masked, causing them to be trapped
and operated on.

M6103: divide by 0
The operation tried to divide by O.

M6104: overflow
The operation produced an overflow in floating-
point operation.

M6105: underflow
The operation produced an underflow in a
floating-point operation. An underflow is
normally masked so that the operation yields the
result 0.0.

M6106: Inexact
Loss of precision occurred in a floating-point
operation. This exception is normally masked,
because almost any floating-point operation can
cause loss of precision.

M6107: unemulated
An attempt was made to run a floating-point
instruction not supported by the emulator or a
non-valid floating point instruction.

M6108: square root
The operand in a square root operation was neg-
ative.

Note: The sqrt function in the C run-time library
checks the argument before performing
the operation and returns an error value if
the operand is negative. See the chapter
on Library Routines in IBM CI2 Language
Reference the for detai Is on sqrt.

Error Messages A-5

Number Message, Cause/Action

M6110: stack overflow
A floating-point expression has used too many
stack levels on the numeric coprocessor or emu-
lator. (Stack overflow exceptions are trapped up
to a limit of seven additional levels beyond the
eight levels normally supported by the numeric
coprocessor.)

M6111: stack underflow
A floating-point operation resulted in a stack
underflow on the numeric coprocessor or the
emulator.

Error-Handling Routine Error Messages
The abort, assert, and perror routines print an error message to the
standard error data stream (stderr) whenever the program calls the
given routine. For a description of these routines, see Chapter 5 in
the IBM CI2 Language Reference.

Math Errors
The following errors can be generated by the math routines of the C
run-time library. These errors correspond to the exception types
defined in math.h and returned by thematherr function when a math
error occurs. See the chapter on Include Files in the IBM CI2 Lan­
guage Reference for more information.

Error
DOMAIN

Description
An argument to the function is outside the domain of
the function.

OVERFLOW The result is too large to be represented in the return

PLOSS
SING

type of the function.
A partial loss of significance occurred.
Argument singularity: an argument to the function has
an illegal value (for example, passing the value 0 to a
function that requires a nonzero value).

TLOSS A total loss of significance occurred.
UNDERFLOW The result is too small to be represented.

A-6 Error Messages

Compiler Error Messages
The C/2 compiler produces a broad range of error and warning mes­
sages to help you locate errors and potential problems in programs.
Error messages produced by the compiler are sent to the standard
output, that is usually your screen. You can redirect the messages to
a file or printer by using a DOS redirection symbol, > or ». This is
especially useful in batch file processing. See "Redirecting Compiler
Error Messages" on page A-54 for more information.

The error messages produced by IBM C/2 fall into five categories:

Fatal error messages (See "Fatal Error Messages" on page A-9) indi­
cate severe problems, those that prevent the compiler from proc­
essing your program. After printing out a message about the fatal
error, the compiler stops without producing an object file or checking
for further errors.

Error messages during compiling (See "Error Messages During
Compiling" on page A-16) identify actual program errors. No object
file is produced for a source file that has such errors. When the com­
piler finds a nonfatal program error, it tries to recover from the error.
If possible, the compiler continues to process the source file and
produce error messages. If errors are too numerous or too severe,
the compiler stops processing.

Warning messages (See "Warning Error Messages" on page A-34)
are informational only; they do not prevent compiling and linking.
The list of warning messages includes a number for each message
indicating the minimum level that must be set for the message to
appear. You can control the level of warnings generated by the com­
piler by using the IW option. See "Setting the Warning Level/W Iw"
on page 2-37 for more information.

Command area error messages (See "Command Area Error
Messages" on page A-48) give you information about non-valid or
inconsistent command options. If possible, the compiler continues
operation, printing a warning message to indicate which command
options are in effect and which are disregarded. In some cases,
command errors are fatal, and the compiler stops processing.

Compiler internal error messages (See "Compiler Internal Error
Messages" on page A-53) indicate errors on the part of the compiler

Error Messages A-7

instead of an error in your program. No matter what your source
program contains, these messages should not appear. If they do,
please report the condition to an IBM Authorized Dealer. Although
these errors are not the fault of your program, you will probably want
to rearrange your code so that the program can be compiled.

Error messages in the warning, fatal, and compiling error message
categories have the same basic form:

filename (linenumber) :msg-code error-number message

The parts of the error message are as follows:

filename
linenumber
msg-code

The name of the source file being compiled.
The line of the file containing the error.
The message code consists of two parts:

1. An initial letter that identifies the component that
is reporting the error.

2. A single digit following the letter indicates the
severity of the error.

The form of the message code with a number is:

<letter> <number> <III>

LeHer
C
D
M
R

Number
1
2
4
6

Error Type
C Compiler
CL/CC driver
Math run-time errors
General run-time errors

Error Type
Fatal Error
Error
Warning
Run-time

The <###> is the 3-digit error number within the cat­
egory.

error-number The number associated with the error.
message A self-explanatory description of the error or warning.

A command error message gives a message about
the command; it does not contain references to line
numbers and filenames.

A-a Error Messages

The messages for each category follow in numeric order, along with a
brief explanation of each error. To look up an error message, first
determine the message category, then find the error number.

Fatal Error Messages
The following messages identify fatal errors. The compiler cannot
recover from a fatal error; it stops after printing the error message.

Number Message, Cause/Actlon

C1001: Internal Complier Error
(complier file I name I ,line n)
The compiler has detected an internal error.
Please report this error to an IBM Authorized
Dealer. Include the compiler filename and line
number information.

C1002: out of heap space
The compiler has run out of dynamic storage
space. This usually means that your program
has many symbols and complex expressions. To
correct the problem, break the file into several
smaller source files.

C1003: error count exceeds n; stopping compilation
Errors in the program are too numerous or too
severe to allow recovery, and the compiler
stops. Correct the other errors and recompile
the program.

C1004: unexpected EOF
This message appears when you have insuffi-
cient space on the default disk drive for the com-
piler to create the temporary files it needs. The
space required is approximately two times the
size of the source file.

C1006: write error on complier Intermediate file
The compiler is unable to create the interme-
diate files used in the compiling process. The
exact reason is unknown.

C1007: unrecognized flag I string I in I option I
The given string in the command option is not
valid. Specify a valid string.

Error Messaaes A-9

Number Message, Cause/Action

C1009: complier limit: macros 100 deeply nested
The expansion of a macro exceeds the available
space. Check whether the macro is recursively
defined or if the expanded text is too large.

C1010: complier limit: macro expansion too big
The expansion of a macro exceeds the available
space.

C1012: bad parenthesis nesting - missing 'character'
The parentheses in a preprocessor directive are
not matched. The character is either (or).

C1013: cannot open source Ille 'filename'
The given source file cannot be opened. Make
sure you have given the correct pathname for
the file. The system may have run out of file
handles; the line FILES = 20 should be in your
CONFIG.SYS file.

C1014: too many Include Illes
Nesting of #include directives exceeds the limit
of 10 levels. Restructure your source files so
that the #include directives are not so deeply
nested.

C1015: cannol open Include Ille 'filename'
The given file cannot be opened. Make sure the
include environment variable is correct. The
system may have run out of file handles; the line
FILES = 20 should be in your CONFIG.SYS file. If
include files are shared, they should be read-
only.

C1016: #If[n]del expected an Identilier
Specify an identifier with the #ifdef and #ifndef
directives.

C1017: Incorrect Integer constant expression
The expression in an #if directive must evaluate
to a constant.

C1018: unexpected '#elll'
The #elif directive is legal only when it appears
within an #if, #ifdef, or #ifndef directive. Correct
the structure of your conditional preprocessing
directives.

A-10 Error Messages

Number Message, Causel Action

C1019: unexpected '#else'
The #else directive is legal only when it appears
within an #if, #ifdef, or #ifndef directive. Correct
the structure of your conditional preprocessing
di rectives.

C1020: unexpected '#endlf'
An #endif directive appears without a matching
#if, #ifdef, or #ifndef directive. Correct the struc-
ture of your conditional preprocessing direc-
tives.

C1021: bad preprocessor command I string I
The characters following the number sign (#) do
not form a preprocessor directive.

C1022: expected '#endlf I
An #if, #ifdef, or #ifndef directive does not end
with an #endif directive.

C1026: parser stack overflow, please simplify your
program
Your program cannot be processed because the
space required to parse the program causes a
stack overflow in the compiler. To solve this
problem, simplify your program.

C1027: DGROUP data allocation exceeds 64KB
Large, compact, or huge model allocation of var-
iables to the default segment exceeds 64KB.
Use the IGt option to move items into separate
segments.

C1032: cannot open object listing file I filename I
One of the following statements about the
filename is true:

• The given name is not valid.

• The file with the given name cannot be
opened for lack of space.

• A read-only file with the given name already
exists.

C1033: cannot open assembly language output file
'filename'
One of the conditions listed under C1032 pre-
vents filename from being opened.

Error Messages A-11

Number Message, Causel Action

C1034: cannot open source file I filename I
The filename or pathname given for the source
file is not valid.

C1035: expression too complex, please simplify
The compiler cannot produce code for a complex
expression. Break the expression into simpler
subexpressions and recompile.

C1036: cannot open source-listing file I filename I

One of the conditions listed under C1032 pre-
vents filename from being opened.

C1037: cannot open object file I filename I
One of the conditions listed under C1032 pre-
vents filename from being opened.

C1039: unrecoverable heap overflow In Pass 3
The post-optimizer compiler pass has over-
flowed the heap and cannot continue. Try
recompiling with the /Od option or breaking up
the function containing the line causing the error.

C1040: unexpected EOF In source file I filename I
The compiler detected an unexpected end-of-file
while creating a source listing or mingled a
source/object listing. The probable cause is a
source file edited during compiling. This error
most likely occurs on a multitasking system
where the compiling can be done as a back-
ground process.

C1041: cannot open complier Intermediate file - no more
flies
The compiler is unable to create intermediate
files used in the compiling process because no
more file handles are available. This can
usually be corrected by changing the files = line
in the CONFIG.SYS file to allow a larger number
of open files (20 is the recommended setting).

C1042: cannot open complier Intermediate file - no such
file or directory
The compiler is unable to create intermediate
files used in the compiling process because the
TMP environment variable is set to a non-valid
directory or path. Correct the SET
TMP = pathname command.

A-12 Error Messages

Number Message, Cause/Action

C1043: cannot open complier Intermediate file
The compiler is unable to create intermediate
files used in the compiling process. The exact
reason is unknown.

C1044: out of disk space for complier Intermediate file
The compiler is unable to create Intermediate
files used in the compiling process because no
more space is available. To correct the
problem, make more space available on the disk
and recompile.

C1045: floa,lng-polnt overflow
The compiler has produced a floating-point
exception while doing constant arithmetic on
floating-point Items at compile time, as In the fol-
lowing example:

float fp_val = 1.0e100

In this case, the double-precision constant
1.0e100 exceeds the maximum allowable value
for a floating-point data item. Be sure that each
floating-point constant you write is within the
limits of the type It is assigned to.

C1047: too many option flags, I string I
There are too many occurrences of the given
option; string contains the occurrence of the
option causing the error.

C1048: Unknown opllon I character I In I optionstring I
The specified character is not a valid letter for
optionstring. Change the option specification to
a val id letter.

C1049: Incorrect numerical argument I string I
A numerical argument was expected instead of
string. Add the correct number in this argument.

C1050: I segname I: code segment 100 large
The code generated for the given segment
exceeded 64KB. You must reduce the number of
instructions compiled for this code segment.

C1051: program too complex
Simplify your program.

Error Messages A-13

Number Message, Causel Action

C1052: too many #lfI#lfdefs
Your #if or #ifdef directives are nested more
than 32 levels deep. Restructure the conditional
preprocessing directives to reduce the degree of
nesting.

C1053: complier limit: struct/unlon nesting
Nesting of structure and union definitions are
limited to 10 levels. Change the structure or
union definition to reduce the degree of nesting.

C1054: complier limit: Inltlallzers too deeply nested
The compiler limit on nesting of initializers has
been exceeded. The limit ranges from 10
through 15 levels, depending on the combination
of types being initialized. To correct this
problem, simplify the data type being initialized
to reduce the levels of nesting, or assign initial
values in separate statements after the declara-
tion.

C1056: complier limit: out of macro expansion space
The expansion of a macro (often nested macros
and large actual parameters) has used up the
available space in the macro expansion buffer.

C1057: unexpected EOF In macro expansion
The preprocessor encountered an end-of-file
while collecting the actual arguments for a
macro expansion. This is usually caused by a
missing parenthesis to close the macro argu-
ment list.

C1058: floating point expression too complex, would
overflow NDP stack
A floating-point expression was too complex for
th.e compiler to handle, as in the following
example:

doub 1 e f (a • b. c. d. e. f. g. h. i. j)
double a. b. c, d. e. f. g. h. i. j;
{

return (a / (b / (c / (d /
(e / (f / (9 / (h /

(i/j»»»»);
}

Try breaking up the expression that caused the
error and recompiling.

A·14 Error Messages

Number Message, Cause/Acllon

C1059: oul of near heap space
Program too large (too many symbols), and the
compiler cannot allocate space in the near heap.
Try breaking the program into smaller source
modules.

C1060: out of far heap space
Program too large (too many symbols) and the
compiler cannot allocate space in the far heap.
Try removing other memory resident programs
to create extra memory space. If your machine
is a network server, you could reconfigure it so
that it does not use network software during
compiling. An alternate form of compiler pass 1
named C1 L.EXE is provided for compiling pro-
grams that get "out of nearlfar heap space"
errors. To invoke C1 L.EXE, enter the CL
command with the IB1 path option as illustrated
below:

cl /Bl path\cl1.exe sourcefile.c

where path is the path (including drive and direc-
tory) where C1L.EXE resides and sourcefile is
the name of the C source file you are compiling.
During installation, C1 L.EXE copies to
C:\IBMC2\BIN, the default directory.

C1062: error writing 10 preprocessor outpul file
A -P, -E, or -EP option was entered to create a
preprocessor listing file. However, there is no
available space on the output directory. Clear
some disk space before retrying.

C1084: 100 many lext segments
Your program contains too many text segments.
Try breaking it up into smaller modules.

C1065: complier IImll: declaralor too complex
Occurs when you compile with the Zg option and
a function definition would generate a prototype
too large to hold an internal buffer.

C1067: compiler 11m II: Idenllfler overflowed Inlernal
buffer
The object name is too long; use a shorter,
unique name.

Error Messages A-15

Number Message, Cause/Action

C1126: 'identifier': automatic allocation exceeds size
The space allocated for the local variables of a
function exceeds the given limit.

Error Messages During Compiling
Receiving any of the following messages during compiling indicates
errors in the program. When the compiler finds any of these errors, it
continues passing the program, if possible, and puts out additional
error messages. However, no object file is produced.

Number Message, Causel Action

C2000: UNKNOWN ERROR
The compiler has detected an unforeseen error
condition. Please report this error to an IBM
Authorized Dealer.

C2001: newline In constant
A newline character in a character or string con-
stant must be preceded by the backslash escape
character (\).

C2002: out of macro actual parameter space
Arguments to preprocessor macros cannot
exceed 256 bytes.

C2003: expected 'defined Id'
An #if directive has a syntax error.

C2004: expected 'deflned(ld)'
An #if directive has a syntax error.

C2005: #nne expected a line number, found 'string'
A #line directive lacks the mandatory line
number specification.

C2006: #Include expected a filename, found 'string'
An #include directive lacks the mandatory
filename specification.

C2007: #deflne syntax
A #define directive has a syntax error.

C2008: 'c' : unexpected In macro definition
The character c is misused in a macro definition.

A-16 Error Messages

Number Message, Cause/Actlon

C2009: reuse of macro formal 'identifier'
The parameter list in a macro definition contains
two occurrences of the same identifier. You
should list each unique parameter exactly once.

C2010: 'c' : unexpected In formal list
The character c is misused in the list of formal
parameters for a macro definition.

C2011: ' identifier 1 : definition too big
Macro definitions cannot exceed 512 bytes.

C2012: missing name following 1 <'
An #include directive lacks the mandatory
filename specification.

C2013: missing '>1

The closing greater-than I> I is missing from an
#include directive.

C2014: preprocessor command must start as first non-
whltespace
Non-white-space characters appear before the #
sign of a preprocessor directive on the same
line.

C2015: too many chars In constant
A character constant is limited to a single char-
acter or escape sequence. (Multi-character
character constants are not supported.)

C2016: no closing single quote
8ackslash escape character (\) must precede a
newline character in a character constant.

C2017: megal escape sequence
The characters after the escape character (\) do
not form a valid escape sequence. Use a
number corresponding to a valid character as
tabulated in Chapter 3 of IBM CI2 Fundamentals.

C2018: unknown character 1 Oxn 1

The given hexadecimal number does not corre-
spond to a character. Use a number corre-
sponding to a valid character as tabulated in
Chapter 3 of IBM CI2 Fundamentals.

Error Messages A-17

Number Message, Causel Action

C2019: expected preprocessor command, found I c I
The character following a # sign is not the first
letter of a preprocessor directive.

C2020: bad octal number I n I •

The character n is not a valid octal digit.

C2021: expected exponent value, not I n I
The exponent of a floating-point constant is not a
valid number.

C2022: I n I : too big for char
The number n is too large to be represented as a
character.

C2023: divide byO

The second operand in a division operation (/)
evaluates to 0, giving undefined results.

C2024: mod byO
The second operand in a remainder operation
(%) evaluates to 0, giving undefined results.

C2025: I identifier' : enum/strucUunlon type redefinition
The given identifier has already been used for an
enumeration, structure, or union tag. You should
use distinct names for different tags.

C2026: I identifier I : member of enum redefinition
The given identifier has already been used for an
enumeration constant, either within the same
enumeration type or within another enumeration
type with the same visibility. You should use
distinct names for different enumeration con-
stants.

C2028: strucUunlon member needs to be Inside a
struct/unlon
Structure and union members must be declared
within the structure or union.

C2029: I identifier I : bit-fields only allowed In structs
Only structure types can contain bit-fields.

C2030: I identifier I :strucUunlon member redefinition
The same identifier was used for more than one
structure or union member.

A-18 Error Messages

Number Message, Cause/Action

C2031: ' identifier' : function cannot be strucllunlon
member
A function cannot be a member of a structure.
Use a pOinter to a function instead.

C2032: 'identifier' : base type with nearlfar/huge not
allowed
Declarations of structure and union members
cannot use the near, far, and huge keywords.

C2033: ' identifier' : bit-field cannot have Indirection
The bit field is declared as pOinter *, which is not
allowed.

C2034: ' identifier' : bit-field type too small for number
of bits
The number of bits specified in the bit field dec-
laration exceeds the number of bits in the given
unsigned type.

C2035: enum/strucllunlon 'identifier' : unknown size
A member of a structure or union has an unde-
fined size.

C2036: left of '->identifier' must have strucllunlon type
The expression before member selection oper-
ator 1_> 1 is not a pointer to a structure or union
type, or the expression before member selection
operator 1.1 does not evaluate to a structure or
union.

C2037: left of '->' specifies undefined strucllunlon
, identifier'
The expression before member selection oper-
ator 1_>1 or I. 1 identifies a structure or union
type that is not defined.

C2038: ' identifier' : not strucllunlon member
The given identifier is used in a context that
requires a structure or union member.

C2039: ' ->' requires struct/unlon pOinter
The' expression before member selection oper-
ator 1_> 1 is not a pOinter to a structure or union.

Error Messages A-19

Number Me .. age, Cause/Acllon

C2040: I. I requires slrucl/unlon name
The expression before member selection oper-
ator I. I is not the name of a structure or union.

C2042: signed/unsigned mulually exclusive
You may declare an identifier type as signed or
unsigned, but not both.

C2043: Illegal break
A break statement is legal only when it appears
within a do, for, while, or switch statement.

C2044: Illegal conllnue
A conllnue statement is legal only when it
appears within a do, for, or while statement.

C2045: I identifier I : label redefined
The given identifier appears before more than
one statement in the same function.

C2046: Illegal case
The case keyword can appear only within a
switch statement.

C2047: Illegal defaull
The defaull keyword can appear only within a
swllch statement.

C2048: more Ihan one default
A switch statement contains too many defaull
labels. Only one is allowed.

C2050: non-Inlegral switch expression
Switch expressions must be integers.

C2051: case expression nol conslanl
Case expressions must be integer constants.

C2052: case expression nOllnlegral
Case expressions must be integer constants.

C2053: case value I n I already used
The decimal equivalent of case value n has
already been used in this switch statement,
where n is an integer constant.

C2054: expecled I (I 10 follow I identifier I
The context requires an open parenthesis after
the function identifier.

A-20 Error Messages

Number Message, Cause/Action

C2055: expected formal parameter list, not a type list
An argument type list appears in a function defi-
nition where a formal parameter list should
appear.

C2056: Illegal expression
An expression is illegal because of a previous
error. The previous error did not produce an
error message.

C2057: expected constant expression
The context requires a constant expression.

C2058: constant expression Is not Integral
The context requires an integer constant
expression.

C2059: syntax error: • token •
The given token caused a syntax error.

C2060: syntax error: EOF
The end of the file was found unexpectedly,
causing a syntax error.

C2061: syntax error : Identifier • identifier'
The given identifier caused a syntax error.

C2062: type I identifier I unexpected
The given type is misused. Check the syntax of
your expression.

C2063: • identifier' : not a function
The given identifier was not declared as a func-
tion, but an attempt was made to use it as a func-
tion.

C2064: term does not evaluate to a function
An attempt is made to call a function through an
expression that does not evaluate to a function
pOinter.

C2065: • identifier' : undefined
The given identifier is not defined.

C2066: cast to function returning ••• Is Illegal
An object cannot be cast to a function type.

C2067: cast to array type Is Illegal
An object cannot be cast to an array type.

Error Messages A·21

Number Message, Cause/Action

C2068: Illegal cast
A type used in a cast operation is not a legal
type.

C2069: cast of 'void' term to non-void
The void type cannot be cast to any other type.

C2070: Illegal slzeof operand
The operand of a slzeof expression must be an
identifier or a type name.

C2071: ' class' : bad storage class
The given storage class cannot be used in this
context.

C2072: ' identifier' : InlHallzatlon of a function
Functions cannot be initialized.

C2073: ' identifier' : cannot Initialize array In function
Arrays can be initialized only at the external
level.

C2074: 'identifier' cannot Initialize strucUunlon In func-
tion
Structures and unions can be initialized only at
the external level.

C2075: ' identifier' : array Initialization needs braces
The braces [{}] around an array initializer are
missing.

C2076: strucUunlon Initialization needs braces
The braces [{}] around a structure or union
initializer are missing.

C2077: non-Integral field Inltlallzer 'identifier'
An attempt is made to initialize a bit-field
member of a structure with a non-integer value.

C2078: too many Inltlallzers
The number of initializers exceeds the number of
objects to be initialized.

C2079: ' variable' uses an undefined strucUunlon 'Iden-
tifier'
The given variable is declared as a structure or
union type identifier that has not been defined.

A-22 Error Messages

Number Message, Cause/Action

C2082: redefinition of formal parameter 'identifier'
A formal parameter to a function is redeclared
within the function body.

C2083: array 'identifier' already has a size
The dimensions of the given array have already
been declared.

C2084: function 'identifier' already has a body
The given function has already been defined.

C2085: ' identifier' : not In formal parameter list
The given identifier was declared in the list of
argument declarations for a function but was not
listed in the formal parameter list in the function
header.

C2088: ' identifier' : redefinition
The given identifier was defined more than once.

C2087: 'identifier' : missing subscript
To refer to an element of an array, you must use
a subscript.

C2088: use of undefined enum strucUunlon 'identifier'
The identifier refers to a structure, enumeration,
or union type that is not defined.

C2090: function returns array
A function cannot return an array. It can return a
pointer to an array.

C2091: function returns function
A function cannot return a function. It can retu rn
a pointer to a function.

C2092: array element type cannot be function
Arrays of functions are not allowed.

C2093: cannot Initialize a static or struct with address of
automatic vars
You tried to initialize a statiC pointer to the
address of a local variable.

C2094: label 'identifier' was undefined
The function does not contain a statement
labeled with the identifier.

Error Messages A-23

Number Message, Causel Action

C2095: function: actual has type void: parame,er n
Formal parameters and arguments to functions
cannot have type void; they can, however, have
type void *, pOinter to void.

C2096: struel/unlon Qomparlson Ulegal
You cannot compare two structures or unions.
You can, however, compare individual members
of structure and unions.

C2097: Illegal Initialization
An initialization is illegal because of a previous
error. The previous error might not have
prodl,Jced an error message.

C2098: non-address expression
An attempt was made Jo initialize an item that is
not an Ivalue.

C2099: non-constant offset
An initializer uses a non-constant offset.

C2100: megal Indirection
Indirection operator * was applied to a non-
pointer value.

C2101: • &. on constant
Only variables and functions can haye their
address taken.

C2102: • &. requires Ivalue
Address-of operator & can be applied only to
Ivalue expressions.

C2103: • &. on register variable
Register variables cannot have their address
taken.

C2104: • &. on bit-field
Bit fields cannot have their address taken.

C2105: • operator· needs Ivalue
The operator mU$t have an Ivalue operand.

C2106: ·operator· : lett operand must 1»& Ivalue
The left operand of the operator must be an
Ivalue.

A-24 Error Messages

Number Message, Cause/Action

C2107: Illegal Index, Indirection not allowed
A subscript was applied to an expression that
does not evaluate to a pOinter.

C2108: non-Integral Index
Only integer expressions are allowed in array
subscripts.

C2109: subscript on non-array
A subscript was used on a variable that is not an
array.

C2110: I + I : 2 pointers
Two pOinters cannot be added.

C2111: pointer + non-Integral value
Only integer values can be added to pointers.

C2112: Illegal pointer subtraction
Only pOinters that point to the same type can be
subtracted.

C2113: I
- I : right operand pointer

The right-hand operand in a subtraction opera-
tion (-) is a pOinter, but the left-hand operand is
not.

C2114: I operator I : pointer on left; needs Integral right
The left operand of the operator is a pointer; the
right operand must be an integer value.

C2115: I identifier I : Incompatible types
An expression contains types that are not com-
patible.

C2116: I operator I : bad left or right operand
The specified operand of the operator is an
illegal value.

C2117: I operator I : Illegal for structlunlon
Structure and union type values are not allowed
with the operator.

C2118: negative subscript
A value defining an array size was negative.

Error Messages A-25

Number Me .. age, Cau.e/Actlon

C2119: I typede'" both dellne Indirection
Two typedel types are used to declare an item
and both typedel types have indirection. For
example, the declaration of pshint; in the fol-
lowing example is illegal:

typedef int *P_INT;
typedef short *p _SHORT;

/* This declaration is illegal */
P_SHORT P_INT pshint;

C2120: I void I Illegal with all types
The void type cannot be used in declarations
with other types.

C2125: I identifier': allocation exceeds 64KB
The given item exceeds the limit of 64KB. The
only items that are allowed to exceed 64KB are
huge arrays.

C2127: parameter allocation exceeds 32KB
The storage space required for the parameters
to a function exceeds the limit of 32KB.

C2128: ' identifier' huge array cannot be aligned to
segment boundary
The given array violates one of the restrictions
imposed on huge arrays. See
Chapter 3, "Linking A Program."

C2129: static function 'identifier I not found
A forward reference was made to a missing
static procedure.

C2130: #lIne expected a string containing the Ille name,
found I name'
A #line directive is missing a filename.

C2131: aHrlbutes specify more than one nearlfarlhuge
More than one near, far, or huge attribute was
applied to an item, as in the following example:

typedef int near NINT;
NINT far a; /* III ega 1 * /

C2132: syntax error: unexpected Identifier
The given identifier caused a syntax error.

C2133: array 'identifier': unknown size
A negative subscript was used in an array, or
there is an improper size designation.

A·26 Error Messages

Number Message, Cause/Action

C2134: I identifier I: strucUunlon too large
The declared symbol is greater than 232 • If the
structlunion did not have a tag name, this
message reads II <unnamed> structlunion too
large."

C2135: missing I) I In macro expansion
A macro reference with arguments is missing a
closing parenthesis.

C2137: empty character constant
The single quotes delimiting a character con-
stant must contain one character. For example,
the declaration char a = I I is illegal. To repre-
sent a null character constant, use an escape
sequence, such as I \0 I •

C2138: unmatched close comment 1*/1
The compiler detected */ without a matching /*.
This usually indicates an attempt to use nested
comments, which is illegal. Verify that your /*
and */ are properly paired and are not nested.

C2139: type following type Is Illegal
There is an illegal type combination, such as the
following:
long char a; /* III ega 1 * /

C2140: argument type cannot be function returning •••
A function is declared as a formal parameter of
another function, as in the following example:

int funcl (a)
int a(); /* 111 ega 1 * /

C2141: value out of range for enum constant
An enumerated constant has a value outside the
range of values allowed for type Int. The value
must be between -32768 and 32767.

C2142: ellipsis requires three periods
The compiler has detected the token " .. " and
assumes" ... " was intended. Use II ••• " to repre-
sent a variable-length parameter list.

Error Messages A-27

Number Message, Cause/Actlon

C2143: syntax error: missing 'token1' before 'token2'
The compiler has detected a syntax error that
may be a missing token prior to the specified
token2. The compiler inserts token1 and
attempts to continue parsing. Note that even if
the compiler has inserted the correct token, the
compile fails until the source file is changed.

C2144: syntax error: missing 'token' before type I type I
Same as C2143, except that the second token is
known to be a type, such as Int or float.

C2145: syntax error: missing 'token' before Identifier
Same as C2143, except that the second token is
an identifier whose name is not currently known.
This can happen in certain situations involving
look-ahead tokens.

C2148: syntax error: missing 'token' before Identifier
, identifier'
Same as C2145, except that the identifier is
listed.

C2147: unknown size
An operation has been done on an unsized array
that requires knowledge of the array size, for
example:

struct foo *p; ...
p[2] ;

where struct foo has not been defined at the time
the p[2] is seen. You may also get this message
when attempting to do arithmetic with a pointer
to void. To correct, cast the pOinter to an object
of known size.

C2148: array too large
You used an array larger than 232 bytes.

C2149: I identifier I: named bit-field cannot have zero
width
Bit fields of zero width must be unnamed.

A-28 Error Messages

Number

C2150:

C2151:

C2152:

C2153:

C2154:

C2155:

C2156:

C2157:

Meaaage, Cauae/Actlon

, identifier': bit field muat have type Int, signed
Int, or unalgned Int
You used compile option -Za to force ANSI con­
formance but declared a bit field with a type
other than those permitted.

more than one cdecl/fortran/paacal attribute
specified
You gave more than one of the keywords cdecl,
fortran, or paacal in a declaration.

, operator' : pointers to functions with different
attributes
The function pOinter operands of the specified
'operator' have differing near or far attributes or
different language (cdecl or fortran/pascal) attri­
butes.

int far foo 0; /* far functi on * /

int (near *fp) () = foo(); /* near func ptr - ERROR */

Or:

int pascal foo(int, int); /* pascal function */

int (*fp) 0 = foo;/* C function pointer - ERROR */

hex constants muat have at least 1 hex digit
You used the form \x, which is not valid syntax
for a hexadecimal constant.

'name' :does not refer to a segment
You used a name that was not a valid segment
name.

'name' :already In a segment
The name has already been defined in the
segment. Use a different unique name.

pragma must be at outer level
You used a pragma command interior to a func­
tion to which it applies. Place the pragma state­
ment before the function.

'name' :must be declared before use In pragma
nat
You must declare the name before using it in a
pragma.

Error Messages A-29

Number Message, Cause/Actlon

C2158: 'name' :Is a function
The given function name is incorrect in the
context in which it appeared.

C2159: more than one storage class specified
You declared a variable with more than one
storage class specifier, such as

extern static f;

C2160: ## cannot occur at the beginning of a macro defi-
nition
You cannot use the token-pasting operator at the
beginning of a macro definition. It can appear
only between tokens.

C2161: ## cannot occur at the end of a macro definition
You cannot use the token-pasting operator at the
end of a macro definition. It can appear only
between tokens.

C2162: expected macro formal parameter
A macro formal parameter should be used in this
expression.

C2163: 'functionname' :not available as an Intrinsic
You gave the functionname in an Intrinsic
pragma, but it is not among those listed as
intrinsic in "Declaring Functions as Intrinsic IOi"
on page 3-66.

C2164 'function': Intrinsic was not declared
You did not declare the given function before
using it in an Intrinsic pragma. This error
appears only if you compile with the IOi option.

C2165: 'string' :cannot modify pointers to data
You attempted to change a pOinter to data that
cannot be changed.

C2166: Ivai specifies 'const' object
You attempted to modify an item declared with
const type.

C2167: 'name' :too many actual parameters for Intrinsic
You specified too many parameters to an
Intrinsic pragma.

A-30 Error Messages

Number

C2168:

C2189:

C2170:

C2171:

C2172:

C2173:

Meaaage, Cauae/Actlon

'name' :100 few actual paramete,. for Intrlnalc
You specified too few parameters to an Intrlnalc
pragma.

'name' :Ia an Intrlnalc, H cannot be defined
You used the given name In a function definition,
but it is also an Intrinsic function. Use another
distinct name for the defined function.

'name' :Intrlnalc not declared aa a function
The name you used in an Intrlnalc pragma must
be declared with function type.

'string':bad operand
The string has incorrect operand syntax.

I functionname I: actual la not a pointer: param­
eter n
This message is generated when the nth param­
eter (of the mth parameter list) of functionname
is a structure or a union, and the corresponding
formal parameter is a pointer to yold.

int function(void *)
struct bar

{
int i ,j,k;
} *foo;

mainO
{
function(*foo); /*i11 egal to pass a structure by value*/

/*to a pointer to void*/

I functionname I: actual la not a pointer: param­
eter n, parameter lIat m
This message is generated when the nth param­
eter (of the mth parameter list) of functionname
is a structure or a union and the corresponding
formal parameter is a pOinter to yold. (See
example in C2172.)

Error Messages A-31

Number

C2174

C2177:

C2178

C2179

C2180

C2182

C2183

Message, CausefActlon

function: actual has type void: parameter n,
parameter list m
You attempted to pass a void argument to a func­
tion. Formal parameters and arguments to func­
tions cannot have type void; they can, however,
have type void * (pointer to void). This error
occurs in calls that return a pOinter to a function.
The first number indicates which argument was
in error; the second number indicates which
argument list contained the incorrect argument.

constant too big
Information is lost because a constant value is
too large to be represented in the type it is
assigned to.

'name' :storage class for same_seg variables
must be 'extern'
You specified name in a same_seg pragma, but
it was not declared with extern storage class.

'name': was used In same_seg, but storage
class Is no longer 'extern'
You specified name in a same_seg pragma, but
it was redeclared with a storage class other than
extern, as in the following example:

extern int i,j;
#pragma same_seg(i ,j)
int i;

controlling expression has type 'void'
The controlling expression in an If, while, for, or
do statement was a function with void return
type.

'name': 'void' on variable
You declared name with the void keyword. The
void keyword can be used only in function decla­
rations.

name: 'Interrupt' function must be 'far'
You declared name as a near Interrupt function.
You must declare the function without the near
attribute; and if you compile the program with
the default (small) or compact memory model,
you must explicitly declare the function with the
far attribute.

A-32 Error Messages

Number Message, Cause/Actlon

C2184 name: 'Interrupt' function cannot be
'pascallfortran'
The given Interrupt function was declared with
the FORTRAN/Pascal calling convention, either
because the fortran or pascal attribute was used
in the declaration or because the program was
compiled with the /Gc option. Functions
declared with the Interrupt attribute are required
to use the C calling conventions. Therefore, you
must either declare the function without the
fortran or pascal attribute if you compile the
program without the /Gc option, or declare the
function with the cdecl attribute if you compile
the program with the /Gc option.

C2186 'name: 'saveregs/lnterrupt' modifiers mutually
exclusive
You used both save regs and Interrupt when
declaring function name. The save regs and
Interrupt modifiers are mutually exclusive.

C2187: cast of near function pointer to far function
pointer
The compiler does not allow casts on function
pointers that change the pointer size. The
reason is that the resulting function pOinter
cannot be used to call a function. You cannot do
a near call to a far function or vice versa, so the
cast is meaningless and dangerous. The same
is true for the inverse, the cast of a far function
pointer to near.

C2188 #error : message
The #error directive was used to terminate com-
pilation and display a message.

C2189: constant Item, -Gm, and data_seg pragma
are Incompatible

You may not give a new data segment name for
const items.

C2190 'seg name' : Is a text segment
The data_seg pragma expects to receive the
name of a data segment; you passed the name of
a text segment, segname.

Error Messages A-33

Number

C2191

C2192

C2205:

Message, Cause/Action

'seg name': Is a data segment
The first argument in an alloc_text pragma
should be the name of a text segment; you
passed the name of a data segment, segname.

'func name': function has already been defined
A function name passed as an argument in an
alloc_text pragma has already been defined, as
in the following example:

sampleO
{
}

#pragma alloc_text(CODE_SEG, sample)

The preceding code causes error message
C2192 because the pragma tells the compiler
where to allocate the function after it has already
been allocated.

'name': cannot Initialize 'extern' block &Coped
variables
The ANSI C Standard does not allow the initial­
ization of block-scoped variables declared with
the extern storage class. For example:

int fooO
{

extern int i=0; /* illegal */

Warning Error Messages
The messages listed in this section indicate potential problems but do
not hinder compiling and linking. The number in brackets at the end
of each message gives the minimum warning level that must be set
for the message to appear.

Number Message, Cause/Action

C4001: macro • identifier': requires parameters [1)
The given identifier was defined as a macro
taking one or more arguments, but the identifier
is used in the program without arguments.
Specify the correct number of arguments to your
macro.

A-34 Error Messages

Number Message, Cause/Actlon

C4002: too many actual parameters for macro
'identifier' [1]
The number of arguments specified with identi-
fier is greater than the number of formal param-
eters given in the macro definition of the
identifier. Specify the correct number of argu-
ments to your macro.

C4003: not enough actual parameters for macro 'identi-
fier' [1]
The number of arguments specified with identi-
fier is less than the number of formal parameters
given in the macro definition of the identifier.
Specify the correct number of arguments to your
macro.

C4004: missing close parenthesis after 'defined' [1]
The closing parenthesis is missing from an #If
defined phrase.

C4005: ' identifier I : redefinition [1]
The given identifier is redefined.

C4006: #undef expected an Identifier [1]
The name of the identifier whose definition is to
be removed must be given with the #undef direc-
tive.

C4009: string too big, trailing chars truncated [1]
A string exceeds the compiler limit on string
size. To correct this problem, you must break
the string down into two or more strings.

C4011: Identifier truncated to 'identifier' [1]
Only the first 31 characters of an identifier are
significant.

C4014: ' identifier' : bit-field type must be unsigned [1]
Bit fields must be declared as unsigned integer
types. A conversion has been supplied.

C4015: 'identifier' : bit-field type must be Integral [1]
Bit fields must be declared as unsigned integral
types. A conversion has been supplied.

Error Messages A-35

Number Message, Causel Action

C4016: I name': no function return type, using 'Int' as
default
No function declaration or definition for name
has been given. The default return type of Int is
assumed.

C4017: cast oflnt expression to far pointer [1]
A far pOinter represents a full segmented
address. On an 808618088 processor, casting an
Int value to a far pointer produces an address
with a meaningless segment value.

C4020: 'name' too many actual parameters [1]
The number of arguments specified in a call to
function name is greater than the number of
parameters specified in the argument type list or
in the function definition.

C4021: 'name I : too few actual parameters [1]
The number of arguments specified in a call to
function name is less than the number of param-
eters specified in the argument type list or in the
function definition.

C4022: 'name': pointer mismatch: parameter n [1]
The given parameter has a different pointer type
than is specified in the argument type list or the
function definition for the named function.

C4024: ' name': dillerenttypes : parameter n [1]
The type of the given parameter in a function call
does not agree with the argument type list or the
function definition for the named function.

C4025: function declaration specified variable argument
list [1]
The argument type list in a function declaration
ends with a comma, indicating that the function
can take a variable number of arguments, but no
formal parameters for the function are declared.

C4026: function was declared with formal argument list
[1]
The function was declared to take arguments,
but the function definition does not declare
formal parameters.

A-36 Error Messages

Number Message, Cause/Action

C4027: function was declared without formal argument
list [1]
The argument type list consists of the word void.
The function was declared to take no argument,
but formal parameters are declared in the func-
tion definition, or arguments are given in a call
to the function.

C4028: parameter n declaration different [1]
The type of the given parameter does not agree
with the corresponding type in the argument type
list or with the corresponding formal parameter.

C4029: declared parameter list different from definition
[1]
The argument type list given in a function decla-
ration does not agree with the types of the formal
parameters given in the function definition.

C4030: first parameter list Is longer than the second [1]
A function is declared more than once, and the
argument type lists in the declarations differ.

C4031: second parameter list Is longer than the first [1]
A function is declared more than once, and the
argument type lists in the declarations differ.

C4032: unnamed structlunlon as parameter [1]
The structure or union type being passed as an
argument is not named, so the declaration of the
formal parameter cannot use the name and must
declare the type.

C4033: function must return a value [2]
A function is expected to return a value unless it
is declared as void.

C4034: slzeof returns 0 [1]
The slzeof operator is applied to an operand that
yields a size of zero.

C4035: I function I :no return value [2]
A function declared to return a value does not do
so.

C4036: unexpected formal parameter list [1]
A formal parameter list is given in a function
declaration and is ignored.

Error Messages A-37

Number Message, Cause/Action

C4037: 'identifier' : formal parameters Ignored [1]
Formal parameters appeared in a function decla-
ration, for example:

extern int *f(a.b.c)j

The formal parameters are ignored.

C4038: : ' identifier' : formal parameter has bad storage
class [1]
Formal parameters must have auto or register
storage class.

C4039: 'identifier' : function used as an argument [1]
A formal parameter to a function is declared to
be a function, which is illegal. The formal
parameter is converted to a function pOinter.

C4040: nearlfar/huge on 'identifier' Ignored [1]
The near, far, or huge keyword has no effect in
the declaration of the given 'identifier' and is
ignored.

C4041: formal parameter on 'identifier' Is redefined [1].
The given formal parameter is redefined in the
function body, making the corresponding actual
argument unavailable in the function.

C4042: ' identifier' : has bad storage class [1]
The specified storage class cannot be used in
this context. For example, function parameters
cannot be given extern class. The default
storage class for that context is used in place of
the illegal class.

C4044: huge on 'identifier' Ignored, must be an array
[1]
The huge keyword can only be used in array
declarations.

C4045: 'identifier' : array bounds overflow [1]
Too many initializers are present for the given
array. The excess initializers are ignored.

C4046: '&' on function/array, Ignored [1]
You cannot apply the address-of operator & to a
function or an array Identifier.

A-38 Error Messages

Number Message, Cause/Action

C4047: ' operator' : different levels of Indirection [1]
An expression involving the specified operator
has inconsistent levels of indirection. For
example:

char **p; /* Two levels of indirection */
char *q; /* One level of indirection */

p=q; /* Different levels of indirection */

C4048: array's declared subscripts different [1]
An array Is declared twice with differing sizes.
The larger size is used.

C4049: 'operator' : Indirection to different types [1]
The indirection operator * is used in an
expression to get access to values of different
types.

C4051: data conversion [3]
Two data items in an expression had different
types, causing the type of one item to be con-
verted.

C4052: different enum types [1]
Two different enum types are used in an
expression.

C4053: alleast one void operand [1]
An expression with type void is used as an
operand.

C4054 Insufficient memory may affect optimization
Not enough memory was available to perform all
of the requested optimizations. This message
appears if available memory is within 64KB of
the absolute minimum that will accommodate the
executable file.

C4056: overflow In constant arithmetic [1]
The result of an operation exceeds Ox7FFFFFFF.

C4057: overflow In constanl multiplication [1]
The result of an operation exceeds Ox7FFFFFFF.

C4058: address of frame variable taken, OS 1- SS [1]
Program was compiled with the default data
segment (08) not equal to the stack segment
(88). and you tried to point to a frame variable
with a near pOinter.

Error Messages A-39

Number Message, Cause/Action

C4059: segment lost In conversion [1]
The conversion of a far pOinter (a full segmented
address) to a near pOinter (a s~gment offset)
results in the loss of the segment address.

C4060: conversion of long address to short address [1]
The conversion of a long address (a 32-bit
pointer) to a short address (a 16-bit pointer)
results in the loss of the segment address.

C4061: long/short mismatch In argument: conversion
supplied [1]
An integral type is assigned to an integer of a
different size, causing a conversion to take
place. For example, a long is given where a
short was declared.

C4062: nearllar mismatch In argument: conversion sup-
plied [1]
A pointer is assigned to a pOinter with a different
size, resulting in the loss of a segment address
from a far pOinter or the addition of a segment
address to a near pointer.

C4063: I identifier' : function too large for post-optimizer
[0]
The named function was not optimized because
not enough space was available. To correct this
problem, reduce the size of the function by
breaking it down into two or more smaller func-
tions.

C4064: procedure too large, skipping [loop Inversion or
branch sequence or cro.s Jump] optimization
and continuing [0]
Some optimizations for a function are skipped
because insufficient space is available for opti-
mization. To correct this problem, reduce the
size of the function by breaking it down into two
or more smaller functions.

A-40 Error Messages

Number Message, Cause/Action

C4065: recoverable heap overflow In post optimizer -
some optimizations may be missed [0]
Some optimizations are skipped because not
enough space is available for optimization. To
correct this problem, reduce the size of the func-
tion by breaking it down into two or more smaller
functions.

C4066: local symbol table overflow - some local
symbols may be missing In listings [1]
The listing generator ran out of heap space for
local variables,so the source listing might not
contain symbol-table information for all local
variables.

C4067: unexpected characters following I identifier I
directive - newline expected [1]
There are extra characters following a pre-
processor directive, such as the following:

#endif NO_EXT_KEYS

This is accepted in the IBM C Compiler, Version
1.00, but not in IBM C/2. IBM C/2 requires
comment delimiters, such as the following:
#endif /* NO_EXT_KEYS */

C4068: unknown pragma [1]
The compiler does not recognize the pragma you
used and ignores this pragma.

C4069: conversion of near pointer to long Integer [1]
A near pOinter is being converted to a long
integer, which involves extending the high-order
word with the current data segment value.

C4070: function called as procedure
A function having the pascal or fortran attribute
and a struct or floating-point return type was
called as a void function. The result will never
be read or stored.

C4071: I identifier I: no function prototype given [3]
You did not supply an argument-type list for
identifier.

Error Messages A-41

Number Message, Cause/Action

C4072 : Insufficient memory to process debugging Infor-
mation [1]
Your computer lacks enough memory to compile
this program using the Zi option.

C4073: scoplng too deep, deepest scoplng merged when
debugging [1]
The visibility control of identifiers in deeply-
nested blocks exceeds a built-in limit. Variables
in all the deepest levels will be visible to
CodeView during debugging.

C4074 : non-standard extension used -' description' [3]
You used a valid construction that is not recog-
nized by the proposed ANSI standard for C. The
description string may be one of the following:

• Trailing'.' used for variable argument list

• Cast on Ivalue

• Extended initializer form

• Benign typedef redefinition

• Redefined extern to static

• Macro formals in strings

• Missing ';' following last struct/union
member

• Bit-field types other than int

• Functions given file scope

• Cast of data pointer to function pOinter

• Cast of function pOinter to data pOinter

• Function declaration used ellipsis.

C4075: size of switch expression or case constant too
large - converted to Int [1]
You used a switch expression that evaluated to
more than 32767.

C4076: ' type' : may be used on Integral types only [1]
You used the given keyword with a non-integral
data type.

C4077: unknown check_stack option [1]
You gave an incorrect argument to pragma
check_stack. Use a correct form as given in
Chapter 2 of IBM CI2 Compile, Link, and Run.

A-42 Error Messages

Number Message, Cause/Action

C4078: loss of debugging Information caused by opti-
mization
The compiler could not generate debugging
Information. You can debug by turning off opti-
mization with switch -Od.

C4079 unexpected token ' token'
The source line contains a misplaced identifier.

C4080: expected 'Identifier' for segment name, found
'token' [1]
You used token as a segment name, instead of
the correct identifier.

C4081: expected a comma, found token [1]
The syntax of the expression requires a comma
rather than token.

C4082: expected an Identifier, found 'token' [1]
The syntax of the expression requires another
identifier in place of token.

C4083: expected '(', found 'token' [1]
The syntax of the expression requires a left
parenthesis at the place token appears.

C4084: expected a pragma keyword, found 'token' (1)
You used an unknown identifier in a pragma.

C4085: expected [onlofl) (1)
The argument in the parenthesized form of the
check_stack pragma must be either on or off.

C4086: expected [1 I 2 I 4)
The pack pragma requires a parameter for byte
alignment. If you do not give it, the compiler
assumes 1-byte alignment.

C4087: 'name' : declared with 'void' parameter list (1)
A function declared with a void parameter list
was called with actual arguments.

Error Messages A-43

Number

C4088:

C4089

C4090:

C4091:

C4092:

C4093:

C4095 :

Message, Cause! Acllon

I name I : polnler mismatch: parameler n, param­
eler IIsl m [1]
The argument in the given function call has a dif­
ferent level of indirection, as in the following
example:

int (*sample (void *» (void *);

mainO
{

sample(lC:» (10); /* pointer mismatch:
parameter 1. parameter list 2 */

'function': dlfferenllypes: parameler n param­
eler IIsl m
The argument in the given function call did not
have the same type as the argument in the func­
tion prototype, as in the following example:

int (*sample(int. int»)(char *);
mainO
{

int i;
(*sample(Hl,20» (i) ;/* pointer

mi smatch : parameter 1.
parameter list 2. */

dlfferenl 'consl' aUrlbules
You used an incompatible combination of const
attributes.

no symbols were declared
Your segment contained no identifiers.

unlagged enum!slrucUunlon declared no
symbols
An aggregate type had no identifiers.

unescaped newline In characler conslanlln non­
acllve code
The preprocessor found an unmatched single
quote or double quote on a single line within an
#II/#Ildel/Nel"!#else block that is being skipped
because of a false entry condition.

expecled ')', found 'token'
This is similar to C4079. The compiler will use
token.

A-44 Error Messages

Number Message, Causel Action

C4098: void function returning a value [1]
You used a return statement with an expression
within a function returning void. The value of the
expression will be ignored by the calling func-
tion.

C4100 'name': un referenced formal parameter
The given formal parameter was never refer-
enced in the body of the function for which It was
declared. [3]

C4101 'name': unreterenced local variable
The given local variable was never used. [3]

C4102 'name': un referenced label
The given label was defined but never refer-
enced. [3]

C4103 'name': function definition used as prototype
A function definition appeared before its proto-
type in the program. [3]

C4104: 'identifier' : near data In same_seg pragma,
Ignored
The given near identifier was specified in a
same_seg pragma, as in the following example:

extern int near near_var;
extern int far far_var;
#pragma same_seg(near_var. far_var);

In this example, the compiler ignores the specifi-
cation of near _ var; consequently, it does not
assume that near_var and far_var reside in the
same data segment.

C4105 I name I : code modifiers only on function or
pointer to funcllon
The Interrupt attribute was used to declare
something other than a function or function
pOinter.

C4106: pragma requires Integer between 1 and 127
You used an incorrect number in a skip or page
pragma.

C4107: pragma requires Integer between 15 and 255
You used an incorrect number in a pageslze
pragma.

Error Messages A-45

Number Message, CauselAcllon

C4108: pragma requires Inleger between 79 and 132
You used an incorrect number in a IIneslze
pragma.

C4109: unexpecled Idenllfler 'string'
You supplied an incorrect argument (unknown
comment type) in a commenl pragma.

C4110: unexpecled loken 'Inl conslant'
The compiler encountered an integral constant in
an unexpected position in a pragma.

C4111: unexpected token 'string'
The compiler encountered a string literal out of
position in a pragma.

C4112: macro name 'name' Is reserved, name Ignored
You attempted to #undef predefined macro
names, such as _FILE_ or _DATE_, or to
undefine the keyword "defined" which is used in
preprocessor directives. This is not allowed by
the ANSI C Standard.

C4113 : function parameler lists differed
You assigned a function pointer to a function
pOinter, but the parameter lists of the functions
do not agree, as in the following example:

int (*sample) (int):
int (*example) (char. char):

mainO
{

sample = example;
}

C4114 : same type qualifier used more than once
You used the type specifier consl or yolaille
more than once in a declaration, for example:

const const i:
volatile int volatile k:

The extra specifier is Ignored.

A-46 Error Messages

Number

C4115 :

C4115 :

C4116 :

C4116 :

Message, CauselActlon

'tag' type definition In formal parameter list
Illegal
This is issued if a function definition or declara­
tion contains the declaration of a struct, union, or
en urn type. 'Tag' is replaced by the actual tag of
the struct/union/enum being declared. For
example:
int foo(enum color {red, blue, green} col);

would generate C4116.

'color' type deflnilion In formal parameler IIsl
Illegal

'no lag': type deflnilion In formal parameter IIsl
Illegal
Same as C4115 but emitted in the case when no
tag is specified, as:
int foo(ap)
union {

int *ip;
long *lp;
float *fp;
} ap;

would generate the next description of C4116.

'no lag' type definition In formal parameter IIsl
Illegal
These warnings are emitted because you cannot
pass a matching argument or define a matching
function (in the case of a prototype); the type has
prototype scope in the case of a prototype, and
function scope in the case of a definition. No ref­
erence external to these scopes can match cor­
rectly.

Error Messages A-47

Number Message, Cause/Acllon

C4185 : near call to function In different segmenl
You specified the given function in an alloc_lexl
pragma without declaring it to be far, then called
this function from another text segment, as in the
following example:

int fO;
#pragma alloc_text(NEW. f)
mainO
{

fO;
}

fO
{
}

In this example, the main function (in default text
segment) makes a near call to the f function (in
the text segment NEW). The error generated is:

near call to _, In dlfferenl segmenl
Althougl1 this is a warning message rather than
an error message, the resulting code will not
work correctly. Note that if you compile with
stack checking enabled (the default), you would
also get the following error message for the f
function:

near call 10 _chkslk In different segmenl

C4186: string 100 long. Truncated to 40 characlers.
The string argument for a 1IIIe or sublille pragma
exceeded the maximum allowable length and
was truncated.

Command Area Error Messages

The following messages indicate errors in the command that you use
to call the compiler. In some cases, command errors are fatal and
the compiler stops processing. If the error is not fatal, the compiler
continues operation but prints a warning message.

Fatal Error Messages

A-48 Error Messages

Number Message, CauselAction

D1000: UNKNOWN COMMAND ENTRY FATAL ERROR
An unforeseen error condition has been detected
by the compiler. Please report this error to an
IBM Authorized Dealer.

D1001: could not execute I pass I
The specified compiler file could not be found, or
there is not enough space in storage.

D1002: too many open flies, cannot redirect I filename I

No more file handles are available to redirect the
output of the -P option to a file. Try editing the
CONFIG.SYS file and increasing the value num
on the line flies = num (if num is less than 20.)

Error Messages

Number Message, Causel Action

D2000: UNKNOWN COMMAND ENTRY ERROR
An unforeseen error condition has been detected
by the compiler. Please report this error to an
IBM Authorized Dealer.

D2001: too many symbols predefined with -D
The limit on command definitions is normally 16;
the IU option can increase the limit to 20.

D2002: a prevlously-deflned model specification has
been overridden.
Two different storage models are specified; the
model specified last is used.

D2003: missing source file name
You must give the name of the source file to be
compiled.

D2004: too many commas
Too many commas appear in the command.

D2005: comma needed before: I filename I
The fields in the command must be set off by
commas.

D2008: a file name (not a path name) Is required
The name of a directory is given where the name
of a file is required.

Error Messages A-49

Number Message, Cause/Action

02008: too many option flags In I string I
Too many letters are given with a specific option
(for example, with the 10 option).

02009: unknown option I c I In I option I
One of the letters in the given option is not
recognized.

02010: unknown floating-point option
The specified floating-point option (an IFP
option) is not one of the five valid options.

02011: only one floating-point model allowed
You can give only one of the five floating-point
(/FP) options in the command.

02012: too many linker flags at command prompt
For compile-and-link (CL) only, you attempted to
pass more than 128 separate options and object
files to the linker.

02013: Incomplete model specification
The Astring option requires all three character
(data-pointer size, code-pointer size, and
segment setup) in string.

02015: assembly flies are not handled
You specified a filename with the extension
.ASM. The compiler cannot invoke MASM auto-
matically, so it cannot assemble these files.

02016: -Gw and -NO name are Incompatible
You cannot rename the default data segment to
name when you give the -G2 option because -Gw
also requires -Aw.

02017: -Gw and -Au flags are Incompatible
You cannot use the -Au option (if the stack
segment does not equal the data segment, load
the data segment) with -Gw because -Gw also
requires -Aw.

02018: cannot open linker cmd file
The compiler cannot open the response file used
to pass object filenames and options to the
linker. One possible cause of this error is the
existence of another file that is a read-only file
with the same name as the response file.

A-50 Error Messages

Number Message, Causel Action

D2019: cannot overwrite the source file, I filename I
The source file specified an output filename.
The compiler does not allow the source file to be
overwritten by one of the compiler output files.

D2020: -Gc option requires extended keywords to be
enabled (-Ze)
The -Gc option requires the extended keyword
cdecl to be enabled if the library functions are to
be accessible.

D2021: Invalid numerical argument I string I
You specified a non-numerical string following
an option that requires a numerical argument.

D2022: cannot open help file I filename I
The driver expects the help file to be in the same
directory or path it is in.

D2024 : -Gm and -ND name are Incompatible
You may not change the default data segment
name when using ROM code.

D2025 : missing argument
You supplied a CL option that requires an argu-
ment but did not supply the argument. For
instance, the following command generates
error 02025:

cl /Tc

The preceding command causes an error
because the ITc option requires a source
filename.

D2027: cannot link file I filename I
You specified a filename with the extension
.OBJ. This is not a valid extension as a source
filename for the CC command.

Warning Error Messages

D4000: UNKNOWN COMMAND ENTRY WARNING
An unforeseen error condition has been detected
by the compiler. Please report this error to an
IBM Authorized Dealer.

Error Messages A-51

04001: listing has precedence over assembly output
Two different listing options were chosen; the
assembly listing is not created.

04002: Ignoring unknown flag I string I
One of the options given at the command prompt
is not recognized and is ignored.

04003: 80186/286 selected over 8086 for code gener-
ation
Both IG1 and IG2 are selected.

04004: optimizing for time over space
This message confirms that the lOt option is
used for optimizing.

D4005: could not execute I name I ,

please enter new file name (full path) or Clrl+C
to quit:
One of the compiler passes cannot be found on
the current disk.

04006: only one of -P/-E/-EP allowed, -P selected
Only one preprocessor option can be specified at
one time.

04007: -C Ignored (must also specify -P or -E or -EP)
The -C option must be used with one of the pre-
processor output flags, -E, -EP, or -Po

04009: threshold only for far/huge data, Ignored
The -Gt option cannot be used in memory
models that have near data pointers. The -Gt
option can be used only with compact-, large-,
and huge-memory models.

04010: -Gp not Implemented, Ignored
The DOS version of the compiler does not allow
profiling.

D4011: preprocessing overrides source listing
The compiler produces only a preprocessor
listing because it cannot produce both a source
listing and a preprocessor listing at the same
time.

04012: function declarations override source listing
The compiler cannot produce both a source-
listing file and the function prototype declara-
tions at the same time.

A-52 Error Messages

D4013: combined listing has precedence over object
listing
When -Fc is specified along with either -FI or -Fa,
the combined listing (-Fc) is created.

D4014: Incorrect value n for I identifier I. Default m Is
used
You used an incorrect numerical value for the
given switch.

D4017: conflicting stack checking optlons- stack
checking disabled
You specified both -Ge (enable stack checking)
and -Gs (disable stack checking) at the same
command prompt. The compiler will turn off
stack checking.

D4019: string too long. Truncated to 40 characters
You supplied an overly long string as an argu-
mentfor the IND, INT, INM, 1St, or ISs option of
the CL command; the string was truncated.

Compiler Internal Error Messages

The following messages indicate errors on the part of the compiler.
Although the errors are not the fault of the program, you may want to
rearrange the code so the program can be compiled. Please report
these errors to an IBM Authorized Dealer.

Number Message, Cause/Action

C1000: UNKNOWN FATAL ERROR
An unforeseen error condition has been detected
by the compiler.

C2000: UNKNOWN ERROR
An unforeseen error condition has been detected
by the compiler.

C1001: Internal Complier Error
(complier file I name I ,line n)
The complier performs Internal consistency
checks during compiling. This message Indi-
cates that the consistency check failed and the
complier cannot continue operation.

Error Messages A-53

Number Me •• age, Cau.e/Actlon

C4000: UNKNOWN WARNING
An unforeseen error condition has been detected
by the compiler.

Redirecting Complier Error Messages
Error messages produced by the compiler are sent to the standard
output, which is usually your screen. With CL you can redirect the
messages to a file or printer by using a DOS redirection symbol, > or
». This is especially useful in batch file processing.

For example, the following command redirects error messages to the
printer device (designated by PRN):

CL ALPHA.C > PRN

while the following command redirects error messages to the file
ALPHA. ERR:

CL ALPHA.C > ALPHA. ERR

The command redirects only output normally sent to the display. In
OS/2 mode, use the stream number when redirecting the output as in:

CL ALPHA.C l>ALPHA.ERR

Example
Contents of ALPHA.C:

*include <stdio.h>

main(argc, argv)
int argc;
char argv[]:

register int i:
char *name:

for (i = 1: i < arg; ++i)
if (unlink(name = argv[i]» {

printf("could not delete %s : ", name);
perror("");
}

Contents of error message file ALPHA. ERR:

alpha.c
alpha.c(ll) : error C206S: 'arg' : undefined
alpha.c(12) : warning C4047: ,=, : different levels of indirection

A-54 Error Messages

Corrected version of ALPHA.C:

'include <stdio.h>

main(argc. argyl
int argc;
char *argv[];

register int i;
char *name;

for (i a 1; i < argc; i++)
if (unlink(name = argv[i]» {

printf("could not delete %s : ". name);
perror("");
}

Only output that ordinarily goes to the screen is redirected. The
object file is given the name ALPHA.OBJ and is created in the current
working directory.

If you request a source listing, error messages will also appear
embedded in the listing, following the line they occur in.

Linker Error Messages
This section lists error messages produced by the IBM Linker.

Fatal errors cause the linker to stop running. Fatal error messages
have the following format:

location: fatal error Llxxx: message text

Non-fatal errors indicate problems in the executable file. LINK
produces the executable file (and sets the error bit in the header if for
OS/2 mode)

location: error L2 xxx: message text

Warnings indicate possible problems in the executable file. LINK
produces the executable file (it does not set the error bit in the
header if for OS/2 mode). Warnings have the following format:

location: error L4xxx: message text

In these messages, location is the input file associated with the error,
or LINK if there is no input file. If the input file is a module definitions
file, the line number is included, as the following shows:

Error Messages A-55

foo.def(3): fatal error L1939:missing internal name

If the input file is an .OBJ or .LlB file and has a module name, the
module name is enclosed in parentheses, as shown in the following
examples:

SLIBC.LIB(file)
MAIN.QBJ(main.c)
TEXT.OBJ

Fatal Error Messages

Number Message, CauselActlon

L1001 : option: option name ambiguous
A unique option name does not appear after the
option indicator (I). For example, the command

LINK IN main;

produces this error, since LINK cannot tell which
of the three options beginning with the letter N is
intended.

L1002 : option: unrecognized option name
An unrecognized character followed the option
indicator (I), as in the following example:

LINK IABCDEF main;

L1003 : option: MAP symbol limit too high
The specified symbol limit value following the
MAP option is greater than 32767, or there is not
enough memory to incrpase the limit to the
requested value.

L1004 : option: Invalid numeric value
An incorrect value appeared for one of the linker
options. For example, a character string is
entered for an option that requires a numeric
value.

L1005 : option: packing limit exceeds 65536 bytes
The number following the IPACKCODE or
IPACKDATA option is greater than 65536.

L1006 : option: stack size exceeds 65534 bytes
The size you specified for the stack in the
ISTACK option of the LINK command Is more
than 65534 bytes.

A-56 Error Messages

Number Message, Cause/Action

L1007 : option: Interrupt number exceeds 255
You gave a number greater than 255 as a value
for the IOVERLA YINTERRUPT option.

L1008 : option: segment limit set too high
The ISEGMENTS option specified a limit greater
than 3072 on the number of segments allowed.

L1009 : number: CPARMAXALLOC : Illegal value
The number you specified in the
ICPARMAXALLOC option is not in the range 1 to
65535.

L1020: no object modules specified
You did not specify any object-file names to the
linker.

L1021 : cannot nest response flies
A response file occurs within a response file.

L1022 : response line too long
A line in a response file is longer than 127 char-
acters.

L1023 : terminated by user
You entered Ctrl + C.

L1024 : nested right parentheses
You typed the contents of an overlay Incorrectly
at the command prompt.

L1025 : nested left parentheses
You typed the contents of an overlay incorrectly
at the command prompt.

L1026 : unmatched right parenthesis
A right parenthesis is missing from the contents
specification of an overlay at the command
prompt.

L1027 : unmatched left parenthesis
A left parenthesis is missing from the contents
specification of an overlay at the command
prompt.

L1030: missing Internal name
In the module definitions file, when you specify
an import by entry number, you must give an
internal name, so the linker can identify refer-
ences to the import.

Error Messages A·57

Number Message, Cause/Action

L1031 : module description redefined
In the module definitions file, a module
description specified with the DESCRIPTION
keyword is given more than once.

L1032 : module name redefined
In the module definitions file, the module name
is defined more than once with the NAME or
LIBRARY keyword.

L1040 : too many exported entries
An attempt is made to export more than 3072
names.

L1041 : resident-name table overflow
The total length of all resident names, plus 3
bytes per name, is greater than 65534.

L1042 : nonresident-name table overflow
The total length of all nonresident names, plus 3
bytes per name, is greater than 65534.

L1043 : relocation table overflow
There are more than 65536 load-time relocations
for a single segment.

L1044 : Imported-name table overflow
The total length of all the imported names, plus 1
byte per name, is greater than 65534 bytes.

L1045 : too many TYPDEF records
An object module contains more than 255
TYPDEF records. These records describe com-
munal variables. This error can only appear with
programs produced by compilers that support
communal variables.

L1048 : too many external symbols In one module
An object module specifies more than the limit of
1023 external symbols. Break the module into
smaller parts.

L1047 : too many group, segment, and class names In
one module
The program contains too many group, segment,
and class names. Reduce the number of groups,
segments, or classes, and recreate the object
files.

A-58 Error Messages

Number Message, Causel Acllon

L1048 : 100 many segments In one module
An object module has more than 255 segments.
Split the module or combine segments.

L1049 : 100 many segments
The program has more than the maximum
number of segments. The SEGMENTS option
specifies the maximum allowed number; the
default Is 128. Relink using the ISEGMENTS
option with an appropriate number of segments.

L1050: 100 many groups In one module
The linker found more than 21 group definitions
(GRPDEF) in a single module. Reduce the
number of group definitions or split the module.

L1051 : too many groups
The program defines more than 20 groups, not
counting DGROUP. Reduce the number of
groups.

L1052 : 100 many libraries
An attempt is made to link with more than 32
libraries. Combine libraries, or use modules
that require fewer libraries.

L1053 : symbollable overflow
The program had more symbolic information
(such as public, external, segment, group, class,
and filenames) than the amount that could fit in
available real memory. Try freeing memory by
linking from the DOS command level instead of
from a MAKE file or from an editor. Otherwise,
combine modules or segments and try to elimi-
nate as many public symbols as possible.

L1054 : oul.of memory: reduce # In ISEGMENTS:# or
IMAP:#
The linker does not have enough memory to allo-
cate tables describing the number of segments
requested (the default is 128 or the value speci-
fied with the ISEGMENTS option). Try linking
again using the ISEGMENTS option to select a
smaller number of segments (for example, use
64 if the default was used previously), or free
some memory by eliminating resident programs
or shells.

Error Messages A-59

Number Message, Cause/Acllon

L1056 : 100 many overlays
The program defines more than 63 overlays.

L1057 : data record 100 large
A LEDATA record (in an object module) con-
tained more than 1024 bytes of data. This is a
translator (compiler or assembler) error. Note
which translator (compiler or assembler)
produced the incorrect object module and the
circumstances, and contact an IBM Authorized
Dealer.

L1063 : out of memory for CodeVlew Information
The linker was given too many object files with
debug information, and the linker ran out of
space to store them. Reduce the number of
object files that have debug information.

L1070: segmenlslze exceeds 14K
A single segment contains more than 64KB of
code or data. Try compiling, or assembling, and
linking using the large model.

L1071 : segmenl_ TEXT larger than 65520 byles
This error is likely to occur only in small-model
C programs, but it can occur when any program
with a segment named _TEXT is linked using the
IDOSSEG option of the LINK command. Small-
model C programs must reserve code addresses
o and 1; this is increased to 16 for alignment pur-
poses.

L1072 : common area longer than 65536 byles
The program has more than 64KB of communal
variables. This error cannot appear with object
files produced by the IBM Macro Assembler/2. It
occurs only with programs produced by IBM C/2
or other compilers that support communal vari-
ables.

L1073 : file-segment 11m II exceeded
There are more than 255 physical or file seg-
ments. You could use the IPACKDATA option,
see "Packing Data Segments IPACKDATA" on
page 3-31 for more information.

A-60 Error Messages

Number Meaaage, Cauael Action

L1074 : name: group larger than 14K bytea
A group contained segments that total more than
65536 bytes.

L1075 : entry table larger than 65535 bytea
Because of an excessive number of entry
names, you have exceeded a linker table size
limit. Reduce the number of names in the
modules you are linking.

L1080: cannot open list file
The disk or the root directory is full. Delete or
move files to make space.

L1081 : out of apace for run file
The disk the .EXE file is being written on is full.
Free more space on the disk and restart the
linker.

L1082 : atub .EXE file not found
The stub file specified in the module definitions
file is not found.

L1083 : cannot open run file
The disk or the root directory Is full. Delete or
move flies to make space.

L1084 : cannot create temporary file
The disk or root directory is full. Free more
space in the directory and restart the linker.

L1085 : cannot open temporary file
The disk or the root directory is full. Delete or
move fi les to make space.

L1086 : acratch file missing
Internal error. Note the conditions when the
error occurs and contact an IBM Authorized
Dealer.

L1087 : unexpected end-of-flle on scratch file
The disk with the temporary linker-output file is
removed.

L1088 : out of apace for lIat file
The disk the listing file is being written on is full.
Free more space on the disk and restart the
linker.

Error Messages A-61

Number Message, Cause/Acllon

L1089 : filename: cannol open response file
The linker could not find the specified response
file. This usually indicates a typing error.

L1090 : cannol reopen IIsl file
The original disk is not replaced at the prompt.
Restart the linker.

L1091 : unexpecled end.of-flle on library
The disk containing the library probably was
removed. Replace the disk containing the
library and run the linker again.

L1092 : cannol open module deflnilions file
The specified module definitions file cannot be
opened.

L1093 : obJecl nol found
LINK could not open the object module you spec-
ified.

L1100 : slub .EXE file Invalid
The stub file specified in the definitions file is not
a valid .EXE file.

L1101 : Invalid obJecl module
One of the object modules is non-valid. If the
error persists after recompiling, contact an IBM
Authorized Dealer.

L1102 : unexpecled end.of-flle
A non-valid format for a library was found.

L1103 : aHem pi 10 access data outside segmenl bounds
A data record in an object module specified data
extending beyond the end of a segment. This is
a translator error. Note which translator (com-
piler or assembler) produced the incorrect object
module and the circumstances, and contact an
IBM Authorized Dealer.

L1104 : filename : nol valid library
The specified file is not a valid library file. This
error causes the linker to stop running.

L1113 : unresolved COMDEF; Inlernal error
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

A-82 Error Messages

Number Message, Causel Action

L1114 : file not suitable for IEXEPACK; rellnk without
For the linked program, the size of the packed
load image plus the packing overhead is larger
than that of the unpacked load image. Relink
without the EXEPACK option.

L1115 : conflicting lopl-parameters-words value
The number of parameter words from a function
declared with the _export attribute does not
match the number declared in the .DEF file for
that function.

Non-Fatal Error Messages

Number Message, Cause/Actlon

L2000 : Imported entry point
A MODEND, or starting address record, referred
to an imported name. Imported program-starting
addresses are not supported.

L2001 : flxup{s) without data
A FIXUP record occurred without a data record
Immediately preceding it. This is probably a
compiler error. See the technical reference
information for DOS for more information on
FIXUP.

Error Messages A-83

Number

L2002 :

L2003 :

L2004 :

L2005 :

Message, Causel Action

flxUp overflow near number In frame seg
segname target seg segname target offset
number
The following conditions can cause this error:

• A group is larger than 64KB.
• The program contains an intersegment short

jump or inter-segment short call.
• The name of a data item in the program con­

flicts with that of a subroutine in a library
included in the link.

• An EXTRN declaration in an assembler­
language source file appeared inside the
body of a segment.

For example:

code SEGMENT public 'CODE'
EXTRN main:far

start PROC far
call main
ret

start ENDP
code ENDS

The following construction is preferred:

EXTRN main:far
code SEGMENT pub 1 i c ' CODE'
start PROC far

call main
ret

start ENDP
code ENDS

Revise the source file and recreate the object
file.

Intersegment self-relative flxup
An intersegment self-relative fix-up is not
allowed.

LOBYTE-type flxup overflow
A LOBYTE fix-up produced ali address overflow.

flxup type unsupported
A fix-up type occurred that is not supported by
the linker. This is probably a compiler error.
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

A-64 Error Messages

Number

L2010:

L2011 :

L2012 :

L2013 :

L2022 :

L2023 :

Message, Cause/Action

too many flxups In LlDATA record
There are more fix-ups applying to a LlDATA
record than will fit in the linker's 1024-byte
buffer. The buffer is divided between the data in
the LlDATA record and run-time relocation
items, which are 8 bytes apiece, so the
maximum varies form 0 to 128. This is probably
a compiler error.

name: NEAR/HUGE conflict
Conflicting NEAR and HUGE attributes are given
for a communal variable. This error can occur
only with programs produced by compilers that
support communal variables.

name: array-element size mismatch
A far communal array is declared with two or
more different array-element sizes (for example,
an array declared once as an array of characters
and once as an array of real numbers). This
error cannot occur with object files produced by
the IBM Macro Assembler/2. It occurs only with
IBM C/2 and any other compiler that supports far
communal arrays.

LlDATA record too large
A LlDATA record in an object module contains
more than 512 bytes of data. Most likely, an
assembly module contains a very complex struc­
ture definition or a series of deeply-nested DUP
operators. For example, the following structure
definition causes this error:

alpha DB 10DUP(1l DUP{l2 DUP(13 DUP(...))))

Simplify the structure definition and reassemble.
(LiDATA is a DOS term).

name alias interna/name: export undefined
A name is directed to be exported but is not
defined anywhere.

name alias interna/name: export Imported
An imported name is directed to be exported.

Error Messages A-85

Number Message, Causel Action

L2024 : name: symbol already defined
Your program defined a symbol name that the
linker already uses for one of its low-level
symbols. For example, the linker generates
special names for overlay support. Choose
another name for the symbol in order to avoid
conflict.

L2025 : name: symbol defined more than once
Remove the extra symbol definition from the
object file.

L2026 : multiple definitions for entry ordinal number
More than one entry point name is assigned to
the same ordinal.

L2027 : name: ordinal too large for export
You tried to export more than 3072 names.

L2028 : automatic data segment plus heap exceeds 14K
The size of DGROUP near data plus requested
heap size is greater than 64KB.

L2029 : unresolved externals
One or more symbols are declared to be
external in one or more modules, but they are
not publicly defined in any of the modules or
libraries. A list of the unresolved external refer-
ences appears after the message, as shown in
the following example:

_exit in file(s)
main.obj (main.c)

_fopen in files(s)
fileio.obj(fileio.c) main.obj(main.c)

The name that comes before In flle(s) is the
unresolved external symbol. On the next line is
a list of object modules that have made refer-
ences to this symbol. This message and the list
are also written to the map file, if one exists.

L2030: starting address not code (use class I CODE I)
You specified a starting address to the linker that
is a segment that is not a CODE segment.
Reclassify the segment to CODE, or correct the
starting point.

A-66 Error Messages

Number Message, Causel Action

L2041 : stack plus data exceed 64KB
The total of near data and requested stack size
exceeds 64KB, and the program will not run cor-
rectly. Reduce the stack size. The linker checks
for this condition only if /DOSSEG is enabled,
which is done automatically in the library
start-up module.

Warning Error Messages

Number Message, CauselActlon

L4000 : seg dlsp. Included
Generated as a result of using the linker
/WARNFIXUP option, described in "Warning of
Fix-ups /WARNFIXUP" on page 3-34. The
segment value is seg and the location offset is
disp.

L4001 : frame-relative flxup, frame Ignored
A fix-up occurred with a frame segment different
from the target segment where either the frame
or the target segment is not absolute. Such a
fix-up is meaningless in OS/2 mode so the target
segment is assumed for the frame segment.

L4002 : frame-relative absolute flxup
A fix-up occurred with a frame segment different
from the target segment where both frame and
target segments were absolute. This fix-up is
processed using base-offset arithmetic, but the
warning is issued because the fix-up may not be
valid in OS/2 mode.

L4003 : Intersegment self-relative flxup at offset In
segment name pos: offset Record type: 9C
target external' name'
The linker found an intersegment self-relative
fix-up. This error may be caused by compiling a
small-model program with the INT option.

L4010: Invalid alignment specification
The number following the IALIGNMENT option is
not a power of 2, or is not in numerical form.

Error Messages A-67

Number Message, Cause/Action

L4011 : PACKCODE value exceeding 65500 unreliable
Code segments of length 65501-65536 may be
unreliable on the 80286 processor.

L4012 : load-high disables EXEPACK
The options IHIGH and IEXEPACK are mutually
exclusive.

L4013 : Invalid option lor new-format executable Ille
Ignored
If an OS/2 mode program is being produced,
then the options ICPARMAXALLOC,
IDSALLOCATE,/EXEPACK,
INOGROUPASSOCIATION, and
10VERLA YINTERRUPT are meaningless, and the
linker ignores them.

L4014 : Invalid option lor old-format executable file
Ignored
If a DOS format program is produced, the options
1 ALIGNMENT, INOFARCALL TRANSLATION,
IPACKCODE, and IPACKDATA are meaningless,
and the linker ignores them.

L4015 : /CODEVIEW disables IEXEPACK
The options ICODEVIEW and IEXEPACK are
mutually exclusive.

L4020: name: code-segment size exceeds 65500
Code segments of length 65501-65536 may be
unreliable on the 80286 processor.

L4021 : no stack segment
The program does not contain a stack segment
defined with STACK combine type. This
message should not appear for modules com-
piled with IBM C/2, but it could appear for an
assembler-language module. Normally, every
program should have a stack segment with the
combine type specified as STACK. You can
ignore this message if you have a specific
reason for not defining a stack or for defining
one without the STACK combine type.

A-68 Error Messages

Number Message, CauselActlon

L4022 : name1, name2 : groups overlap
TWO groups are defined such that one starts in
the middle of another. This may occur if you
defined segments in a module definitions file or
assembly file and did not correctly order the
segments by class.

L4023 : exportname : export Internal name conflict
An exported name or its associated internal
name conflict with an already-defined public
symbol.

L4024 : name: multiple definitions for export name
The name name is exported more than once with
different internal names. All internal names
except the first are ignored.

L4025 : name: Import Internal-name conflict
An imported name, or its associated internal
name, is also defined as an exported name. The
import name is ignored. The conflict may come
from a definition in either the module definition
file or an object file.

L4026 : modulename : self-Imported
The module definitions file directed that a name
be imported from the module being produced.

L4027 : name: multiple definitions for Import Internal-
name
An imported name, or its associated internal
name, is imported more than once. The
imported name is ignored after the first mention.

L4028 : name: segment already defined
A segment is defined more than once with the
same name in the module definitions file. Seg-
ments must have unique names for the linker.
All definitions with the same name after the first
are ignored.

L4029 : name: DGROUP segment converted to type data
A segment that ~ a member of DGROUP is
defined as type CODE in a module definition file
or object file. This probably happened because
a CLASS keyword in a SEGMENTS statement is
not give'"'.

Error Messages A-69

Number Message, Causel Action

L4030: name: segment aUrlbutes changed to conform
with automatic data segment
The segment named name is defined in
DGROUP, but the shared attribute is in conflict
with the instance attribute. ,For example, the
shared attribute is NONSHARED and the
instance is SINGLE, or the shared attribute is
SHARED and the instance attribute is MUL TIPLE.
The bad segment is forced to have the right
shared attribute and the link continues. The
image is not marked as having errors.

L4031 : name: segment declared In more than one
group
A segment is declared to be a member of two
different groups. Correct the source file and
recreate the object files.

L4032 : name: code-group size exceeds 65500 bytes
Code segments of length 65501-65536 may be
unreliable on the 80286 processor.

L4034 : more than 239 overlay segments; extra put In
root
You specified an overlay structure containing
more than 239 segments. The extra segments
have been assigned to the root overlay, starting
with the 234th segment.

L4036 : no automatic data segment
The program did not define a group named
DGROUP, which is the DOS and OS/2 convention
for the default or automatic data segment. You
should give the name DGROUP to your automatic
data segment.

L4040 : NON-CONFORMING: obsolete
In the module definitions file,
NON-CONFORMING is a valid keyword for
earlier versions of LINK and is now obsolete.

L4041 : HUGE segments not supported
This feature is not implemented in the linker.

L4042 : cannot open old version
An old version of the EXE file, specified with the
OLD keyword in the module definitions file, could
not be opened.

A-70 Error Messages

Number Message, Cause/Action

L4043 : old version not segmented-executable format
The old version of the .EXE file, specified with
the OLD keyword in the module definitions file,
does not conform to segmented-executable
format.

L4044 : mlnalloc feature Is obsolete; Ignored
A line in the SEGMENTS section of the .DEF file
contained out-of-date syntax. Refer to "Module
Definition Files" on page 3-5.

L4045 : name: Is name of output file
A dynamic link library file was created without
specifying an extension. In such cases, the
linker supplies an extension of " .DLL." This is to
warn you in case you expected a ".EXE" file to
be generated.

L4046 : module name different from output file name
You specified a module name via the NAME or
LIBRARY statement in the definitions file that is
different from the output file (.EXE or .DLL)
name. This will likely cause problems in
BINDING the file or in using it in OS/2 mode.
Rename the file to match the module name
before it is executed.

L4050: too many public symbols
The linker uses the stack and all available
memory in the near heap to sort public symbols
for the /MAP option. If the number of public
symbols exceeds the space available for them,
this warning is issued and the symbols are not
sorted in the map file but instead are listed in
arbitrary order.

L4051 : filename : cannot find library
The linker could not find the specified file. Enter
a new filename, a new path specification, or
both.

L4053 : VM.TMP: Illegal filename; Ignored
VM.TMP appears as an object-file name.
Rename the file and rerun the linker.

Error Messages A-71

Number Message, Causel Action

L4054 : filename : cannot find file
The linker could not find the specified file. Enter
a new filename, a new path specification, or
both.

Library Manager Error Messages
Error messages produced by the IBM Library Manager, LIB, have one
of the following formats:

jilenamelLIB: fatal error Ulxxx : messagetext

or

jilenamelLIB: warning U4xxx : messagetext

The message begins with the input filename (filename), if one exists,
or with the name of the utility.

Fatal Error Messages

Number Message, Causel Action

U1150 : page size too small
The page size of an input library is too small,
which indicates a non-valid input .L1B file.

U1151 : syntax error : Illegal file specification
You gave a command operator, such as a minus
sign (-), without a module name following it.

U1152 : syntax error: option name missing
You gave a (I) without a value following it.

U1153 : syntax error: option value missing
You gave the IPAGESIZE option without a value
following it.

U1154 : option unknown
An unknown option is given. Currently, LIB
recognizes the IPAGESIZE option only.

U1155 : syntax error : Illegal Input
The given command did not follow correct LIB
syntax.

A-72 Error Messages

Number Message, Causel Action

U1156 : syntax error
The given command did not follow correct LIB
syntax.

U1157 : comma or new line missing
A comma or carriage return is expected at the
command prompt, but did not appear. This may
indicate an inappropriately placed comma, as in
the following line:

LIB math.' ib, -modl+mod2;

The line should have been entered as follows:

LIB math.' ib -modl+mod2;

U1158 : terminator missing
Either the response to the Output library: prompt
or the last line of the response file used to start
LIB did not end with a carriage return.

U1161 : cannot rename old library
LIB could not rename the old library to have a
.BAK extension because the .BAK version
already existed with read-only protection.
Change the protection of the old .BAK version.

U1162 : cannot reopen library
The old library could not be reopened after it
was renamed to have a .BAK extension.

U1163 : error writing to cross-reference file
The disk or root directory is full. Delete or move
files to make space.

U1170 : too many symbols
More than 4609 symbols appeared in the library
file.

U1171 : Insufficient memory
LIB did not have enough memory to run.
Remove any shells or resident programs and try
again, or add more memory.

U1172 : no more virtual memory
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1173 : Internal failure
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

Error Messages A-73

Number Message, Causel Action

U1174 : mark: not allocated
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1175 : Iree: not allocated
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1180 : write to extractille lalled
The disk or root directory is full. Delete or move
files to make space.

U1181 : write to library Ille lalled
The disk or root directory is full. Delete or move
files to make space.

U1182 : filename : cannot create extractille
The disk or root directory is full. or the specified
extract file already exists with read-only pro-
tection. Make space on the disk or change the
protection of the extract file.

U1183 : cannot open response file
The response file was not found.

U1184 : unexpected end-ol-Ille on command Input
An end-of-file character is received prematurely
in response to a prompt.

U1185 : cannot create new library
The disk or root directory is full. to the library file
already exists with read-only protection. Make
space on the disk or change the protection of the
library file.

U1186 : error writing to new library
The disk or root directory is full. Delete or move
files to make space.

U1187 : cannot open VM. TMP
The disk or root directory is full. Delete or move
files to make space.

U1188 : cannot write to VM
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1189 : cannot read Irom VM
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

A-74 Error Messages

Number Message, Causel Action

U1190 : DOSALLOCHUGE failed
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1191 : DOSREALLOCHUGE failed
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1192 : DOSGETHUGESHIFT failed
Note the conditions when the error occurs and
contact an IBM Authorized Dealer.

U1200 : name: Invalid library header
The input library file has a non-valid format. It is
either not a library file, or it has been corrupted.

U1203 : name: Invalid object module near location
The module specified by name is not a valid
object module.

Error Messages

Number Message, Causel Action

U2152 : filename: cannot create listing
The directory or disk is full, or the cross-
reference listing file already exists with read-
only protection. Make space on the disk or
change the protection of the cross-reference
listing file.

U2155 : modulename : module not In library; Ignored
The specified module is not found in the input
library.

U2157 : filename: cannot access file
LIB is unable to open the specified file.

U2158 : libraryname : Invalid library header; file Ignored
The input library has an incorrect format.

U2159 : filename: Invalid format hexnumber; file Ignored
The signature byte or word, hexnumber, of an
input file is not one of the recognized types.

Warning Error Messages

Error Messages A-75

Number Message, Cause/Action

U4150 : modulename : module redefinition Ignored
A module is specified to be added to a library,
but a module with the same name is already in
the library. Or, a module with the same name is
found more than once in the library.

U4151 : 'name': symbol defined In module name, redefi-
nition Ignored
The specified symbol is defined in more than one
module.

U4153 : number: page size too small; Ignored
The value specified in the IPAGESIZE option is
less than 16.

U4155 : modulename: module not In library
A module specified to be replaced does not
already exist in the library. LIB adds the module
anyway.

U4156 : libraryname: output-library specification Ignored
An output library is specified in addition to a new
library name. For example, specifying

LIB new.llb+one.obJ,new.lst,new.llb

where new.lib does not already exist causes this
error.

U4157 : Insufficient memory, extended dictionary not
created
For the reason indicated, LIB could not create an
extended dictionary. The library is still valid, but
the linker will not be able to take advantage of
the extended dictionary to speed linking.

U4158 : Internal error, extended dictionary not created
For the reason indicated, LIB could not create an
extended dictionary. The library is still valid, but
the linker will not be able to take advantage of
the extended dictionary to speed linking.

A-76 Error Messages

MAKE Error Messages
Error messages displayed by the IBM Program Maintenance Utility,
MAKE, have one of the following formats:

filename (nJIMAKE : fatal error Ulxxx:messagetext

or

MAKE : warning U4xxx: message text

Fatal Error Messages

Number Message, Causel Action

U1000 : - syntax error: ')' missing In macro Invocation
A left parenthesis appeared without a matching
right parenthesis in a macro invocation. The
correct form is $(name).

U1001 : - syntax error: Illegal character 'character' In
macro
A non-alphanumeric character other than an
underscore appeared in a macro.

U1002 : syntax error: bad macro Invocation '$'
A single dollar sign ($) appeared without a
macro name associated with it. The correct form
is $(name).

U1003 : syntax error: ' - ' missing In macro
The = sign was missing in a macro definition.
The correct form is 'name = value'.

U1004 : syntax error: macro name missing
A macro invocation appeared without a name.
The correct form is $(name).

U1005 : syntax error: text must follow':' In macro
A string substitution was specified for a macro,
but the string to be changed in the macro was
not specified.

U1016 : syntax error: closing ,,,, missing
An opening double quotation mark appeared
without a closing quotation mark.

U1017 : unknown directive 'directive'
The directive specified is not a recognized direc-
tive.

Error Messages A-77

Number Message, Cause/Action

U1018 : directive and/or expression part missing
The directive is incompletely specified. The
expression part is required.

U1019 : too many nested If blocks
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1020: EOF found before next directive
A directive, such as IENDIF, was missing.

U1021 : syntax error: else unexpected
An IELSE directive was found that was not
expected or was placed in a syntactically incor-
rect place.

U1022 : Missing terminating char for string/program
Invocation: 'character'
The closing double quotation mark in a string
comparison in a directive was missing. Or else
the closing bracket (]) in a program invocation in
a directive was missing.

U1023 : syntax error present In expression
An expression is invalid. Check the allowed
operators and operator precedence.

U1024 : Illegal argument to ICMDSWITCHES
An unrecognized command option was speCified.

U1031 : file name missing
An include directive was found, but the name of
the file to include was missing.

U1033 : syntax error: 'string' unexpected
The specified string is not part of the valid syntax
for a makefile.

U1034 : synl&x error: separator missing
The colon that separates target(s) and
dependent(s) is missing.

U1035 : syntax error: expected separator or ' - '
Either a colon, implying a dependency line, or an
= sign, implying a macro definition, was
expected.

U1038 : syntax error: too many names to left of ' - '
Only one string is allowed to the left of a macro
definition.

A-78 Error Messages

Number Message, Cause/Action

U1037 : syntax error: target name missing
A colon (:) was found before a target name was
found. At least one target is required.

U1038 : Internal error : lexer
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1039 : Internal error: parser
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1040 : Internal error: macro-expansion
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1041 : Internal error : target building
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1042 : Internal error: expression stack overflow
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1043 : Internal error:temp file limit exceeded
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1044 : Internal error:too many levels of recursion
building a target
Note the Circumstances of the failure and notify
an IBM Authorized Dealer.

U1050: user-specified text
The message specified with the IERROR direc-
tive is displayed.

U1051 : usage:[-bcdelnpqrst -f makeflle -x stderrflle]
[macrodefs] [targets]
An error was made trying to invoke MAKE. Use
the specified form.

U1052 : out of memory
The program ran out of space in the far heap.
Note the circumstances of the failure and notify
an IBM Authorized Dealer.

U1053 : file 'filename' not found
The file was not found. The filename might not be
properly specified in the makefile.

Error Messages A-79

Number Message, Cause/Action

U1054 : file 'filename' unreadable
The file cannot be read. The file might not have
the appropriate attributes for reading.

U1055 : can't create response file I filename I
The script file cannot be created.

U1056 : out of environment space
The environment space limit was reached.
Restart the program with a larger environment
space.

U1057 : can't find command.com
The COMMAND.COM file could not be found.

U1058 : unlink of file I filename I failed.
Unlink of the temporary script file failed.

U1059 : terminated by user
You pressed Ctrl-Brk to stop MAKE.

U1070: cycle In macro definition I macroname I
A cycle was detected in the macro definition
specified. This is an invalid definition.

U1071 : cycle In dependency tree for target I targetname I
A cycle was detected in the dependency tree for
the specified target. This is invalid.

U1072 : cycle In Include flies filenames
A cycle was detected in the include files speci-
fied.

U1073 : don't know how to make I targetname I
The specified target does not exist and there are
no commands to execute or inference rules
given for it. Hence it cannot be built.

U1074 : macro definition too long
The macro definition is too long.

U1075 : string too long
The text string would overflow an internal buffer.

U1076 : name too long
The macro name, target name, or build-
command name would overflow an internal
buffer.

A-80 Error Messages

Number Message, Causel Action

U1077 : I filename I :return code value
The command invocation from MAKE failed. The
nonzero return code value was returned.

U1078 : constant overflow at 'directive'
A constant in directive expression was too big.

U1079 : Illegal expression: divide by zero present
An expression tries to divide by zero.

U1080: operator andlor operand out of place: usage
Illegal
The expression incorrectly uses an operator or
operand. Check the allowed set of operators and
their precedence.

U1081 : I filename I :program not found
MAKE could not find the external command or
program.

U1085 : can't mix Implicit and explicit rules
A regular target was specified along with the
target for a rule (which has the form
.8ufx1.8Ufx2). This is invalid.

U1086 : Inference rule can't have dependents
Dependents are not allowed when an inference
rule is being defined.

U1087 : can't have: and :: dependents for same target
A target cannot have both a single-colon and a
double-colon dependency.

U1088 : Invalid separator on Inference rules: '::'
Inference rules can use only a single colon sepa-
rator.

U1089 : can't have build commands for pseudotarget
targetname
Pseudotargets (for example, .PRECIOUS,
.SUFFIXES) cannot have build commands speci-
fied.

U1090: can't have dependents for pseudotarget
targetname
The specified pseudotarget (for example,
.SILENT, .IGNORE) cannot have a dependent.

Error Messages A-81

Number Message, CauselActlon

U1091 : Invalid suffixes In Inference rule
The suffixes being used in the inference rule are
invalid.

U1092 : too many names In rule
The rule cannot have more than one pair of
extensions (ext1.ext2) as a target for the rule.

U1093 : can't mix special pseudotargets
It is illegal to list two or more pseudotargets
together.

Warning Error Messages

Number Message, Causel Action

U4010: nonstandard suffix on command file 'filename'
The program to be executed has an extension
that is not .COM, .EXE, or .BAT.

U4011 : command file can only be Invoked from
command line
A command file cannot be invoked from within
another command file. Such an invocation would
be ignored.

U4012 : reseHlng value of special macro 'macroname'
A macro such as $(MAKE) had its value changed
from within a makefile.

U4013 : Unable to find tool Initialization file.
MAKE unable to locate filename TOOLS.INI in
current directory or search path.

U4015 : no match found for wildcard 'filename'
There are no file names to match the specified
target or dependent file with the wildcard char-
acters: asterisk (*) or question mark (?).

U4016 : too many rules for target 'targetname'
Multiple blocks of build commands are specified
for a target using single colons as separators.

U4017 : Ignoring rule rule (extension not In .SUFFIXES)
The rule was ignored because the suffix(es) in
the rule are not listed in the .SUFFIXES list.

A-82 Error Messages

Number Message, Causel Action

U4018 : special macro undefined 'macroname'
The special macro macroname is undefined.

U4019 : Filename '%s' too long; truncated to 8.3.
A target file is greater than eleven characters
truncated to DOS format.

U4020: Removed target '%s'
A processing dependency file was Interrupted by
the user or the system, creating a corrupt target
file. MAKE has removed the target file.

EXEMOD Error Messages
Error messages from the IBM EXE File Header Utility, EXEMOD, have
one of the following formats:

jiZenamelEXEMOD:fatal error ULKxx : message text

or

jiZenamelEXEMOD:warning U4xxx : messagetext

The message begins with the input filename (filename), if one exists,
or with the name of the utility.

Fatal Error Messages

Number Message, Cause/Actlon

U1050: usage: exemod file [-/h] [-/stack n] [-/max n]
[-/mln n]
You did not specify the EXEMOD command prop-
erly. Try again using the syntax shown. Note
that the option indicator can be either a slash or
a dash. The single brackets in the error message
show your optional choice.

U1051 : Invalid .EXE file: bad header
The specified input file is not an executable file
or it has an incorrect file header.

Error Messages A-83

Number Message, Causel Action

U1052 : Invalid .EXE file: actual length less than
reported
The second and third fields in the input-file
header indicate a file size greater than the actual
size.

U1053 : cannot change load-high program
When the minimum allocation value and the
maximum allocation value are both zero, you
cannot change the file.

U1054 : file not.EXE
EXEMOD adds the .EXE extension to any
filename without an extension. In this case, no
file with the given name and an .EXE extension
was found.

U1055 : filename : cannot find file
The file specified by filename was not found.

U1056 : filename: permission denied
The file specified by filename is a read-only file.

Warning Error Messages

Number Message, Cause/Actlon

U4050: packed file
The given file is a packed file. This is a warning
only.

U4051 : minimum allocation less than stack; correcting
minimum
If the minimum allocation value is not enough to
accommodate the stack (either the original stack
request or the changed request), the minimum
allocation value is adjusted. This is a warning
message only; the change is still performed.

U4052 : minimum allocation greater than maximum; cor-
recting maximum
If the minimum allocation value is greater than
the maximum allocation value, the maximum
allocation value is adjusted. This is a warning
message only; the change is still performed.

A-84 Error Messages

Errno Value Error Messages
This section lists and describes the values the errno variable can be
set to when an error occurs in a call to a library routine. Note that
only some routines set the errno variable. See Chapter 5 in IBM CI2
Language Reference for the routines that set errno.

An error message is associated with each errno value. This
message, along with a message that you supply, can be printed by
using the perror function.

The value of errno reflects the error value for the last call that set
errno. The errno value is not automatically cleared by later suc­
cessful calls. Therefore, test for errors and print error messages
immediately after a call to obtain accurate results.

The errno.h include file contains the definitions of the errno values.
However, not all of the definitions given in errno.h are used under
DOS. This section lists only the errno values used under DOS. For
the complete listing of values, see the errno.h include file.

Errno Values

The following list gives the errno values used under DOS, the system
error message corresponding to each value, and a brief description
of the circumstances that caused the error.

Value Message, Causel Action

E2BIG: Arg list too long
The argument list exceeds 128 bytes, or the
space required for the environment informa-
tion exceeds 32KB.

Error Messages A-8S

Value Message, Cause/Action

EACCESS: Permission denied
The permission setting of the file does not
allow the specified access. This error can
occur in a variety of circumstances. It signi-
fies that an attempt was made to get access to
a file (or, in some cases, a directory) in a way
that is incompatible with the attributes of the
file.

For example, this error can occur when an
attempt is made to read from a file that is not
open, to open an existing read-only file for
writing, or to open a directory instead of a file.
Under DOS 3.30 and OS/2, EACCESS can also
indicate a locking or sharing violation.

This error can also occur in an attempt to
rename a file or directory or to remove an
existing directory.

EBADF: Bad file number
The specified file handle is not a valid file
handle value, does not refer to an open file, or
an attempt was made to write to a file or
device opened for read access (or the
reverse).

EDEADLOCK Resource deadlock would occur
: Locking violation: the file cannot be locked

after 10 attempts.

EDOM: Math argument
The argument to a math function is not in the
domain of the function.

EEXIST: File exists
The O_CREAT and O_EXCL flags are speci-
fied when opening a file, but the named file
already exists.

EINVAL: Non-valid argument
A non-valid value was given for one of the
arguments to a function. For example, the
value given for the origin when positioning a
file pOinter is before the beginning of the file.

A-88 Error Messages

Value Message, Cause/Action

EMFILE: Too many open flies
No more file handles are available, so no
more files can be opened.

ENOENT: No such file or directory
The specified file or directory does not exist or
cannot be found. This message can occur
whenever a specified file does not exist or a
component of a path name does not specify an
existing directory. It can also occur in 05/2
mode if a filename exceeds 8 characters or if
the filename extension exceeds 3 characters.

ENOEXEC: Exec format error
An attempt is made to run a file that is not
executable or that has a non-valid executable
file format.

ENOMEM: Not enough core
Not enough storage is available. This
message can occur when not enough storage
is available to run a child process or when the
allocation request in an sbrk or gelewd call
cannot be satisfied.

ENOSPC: No space left on the device
No more space for writing is available on the
device. For example, the disk is full.

ERANGE: Result too large
An argument to a math function is too large,
resulting in partial or total loss of significance
in the result. This error can also occur in
other functions when an argument is larger
than expected (for example, when the
path name argument to the gelewd function is
longer than expected).

EXDEV: Cross-c:ievlce link
An attempt was made to move a file to a dif-
ferent device (using the rename function).

Error Messages A-87

A-88 Error Messages

Index

- (hyphen) option character 2-10
CC 2-10

- (minus), command symbol 5-28
-F option arguments 3-58
-F option CL command, used

in 3-56
-LINK option 3-59
-woptlon 2-38
-+ (minus-pius), command

symbol 5-28
-* (minus-asterisk) 5-33

as LIB command symbol 5-33
-* (minus-asterisk)) 5-27

as LIB command symbol 5-27

A
A option 2-57
A options

described 2-45
format 2-44
storage models

compact 2-46
huge 2-46
large 2-46
medium 2-46
small 2-45

AC option 2-47
adding

an executable file to a
module 3-46

an object module to a
library 5-26, 5-31, 5-32

Library modules 5-32
advanced topics

CL 3-62
LINK 3-49
MAKE 5-10

AH option 2-47

AL option 2-47
alias checking 2-40
align type 6-3
aligning segments 3-20
ALIGNMENT option 3-19
allocating paragraph space 3-21
allowing case-Insensitive

options 2-16
altering command execution 5-5
alternate math library 2-34
AM option 2-47
ampersand (&)

in LIB command 5-25, 5-30
applications, creating

DOS mode 3-3
family 3-5
OS/2 mode 3-3,3-50

applications, Presentation Manager,
compiling 3-65

argc variable 4-2
argument passing conventions 6-5
argument type list 2-30
arguments

conversion 6-5
for -F options 3-58
pushing 6-5
to CC options 2-11
to LINK options 3-19
to main function 4-1

argv variable 4-2
array identifier, as the array

address 6-5
As option 2-47
assembler langu~ge interface 6-1
assembler listing file 2-17,2-21
assembly language interface

program example 6-9
asterisk (*)

as global filename
character 4-4

X-1

asterisk (*) (continued)
as LIB command symbol 5-26,

5-32
used in CL command 3-56

astix. * (asterisk)
used in CL command 3-56

Astring option 3-61
AUX 2-2
available compiler options, listing

See compiler options, CC, and
CL options

B
BEGDATA class name 3-22
binding a program 3-63
bound programs 3-63
BP register 6-6, 6-7
brackets [], how this book uses 1-2
BSS class name 3-22
BSS segment 6-1
built-in inference rules 5-18

c
C Compiler 1.00 compatibility 2-16
c option 3-61, 3-63
calling sequence

for C 6-5
to OS/2 2-69

cancelling default responses,
CC 2-2

CASE option 2-16
case significance, in filenames 2-2
case-insensitive options 2-16
CC and CL options listed 2-12
CC command

option characters 2-10
partial command prompt 2-8
prompts 2-1,2-5
responding to prompts 2-1
using the command-prompt

method 2-7

X-2

CC options
See compiler options, CC

cdecl 2-69
cdecl identifier 2-50
changing the default char

type 2-53
changing the default libraries 3-15
changing the meanings of macros,

MAKE 5-16
character, escape 5-5
char_unsigned identifier 2-25
checking for syntax errors 2-30
checking syntax 2-29
check_stack 2-55
chksum 4-6
CL and CC options listed 2-12
CLcommand

format 3-55
linking 3-59
syntax 3-55

CL environment variables 3-55
CL options

-c 3-59
-F 3-56
-Fe 3-56
-Fm 3-56
-Fs 3-56
compiling Presentation Manager

applications 3-65
compiling without linking 3-63
creating bound programs 3-63
creating special object file

records 3-75
declaring functions as

intrinsic 3-66
labeling the object file 3-75
loop optimization 3-71
naming modules and

segments 3-68
nologo 3-61
placing variables and functions

and segments 3-70
restricting the length of external

names 3-65

CL options (continued)
setting line width and page

length 3-72
setting titles and subtitles 3-74
SI 3-72
Sp 3-72
specifying source files 3-74
writing output messages 3-76
Ic 3-61, 3-63
IE, IEP, IP 2-27
IF 3-61
IFb 3-61, 3-63
IFe 3-61
IFm 3-61
IGm 3-61
IGw 3-61
IH 3-61, 3-65
ILc 3-61
llink 3-61
ILp 3-61
IND 3-61
INM 3-61
INM, INT, IND 3-68
INT 3-61
lOa 3-61
10i 3-61, 3-66
101 3-71
IOn 3-61
lOp 3-61
lOw 3-62
lSI 3-62
ISp 3-62
ISs 3-62
1St 3-62
1St, ISs 3-74
ITc 3-62,3-74
lu 3-62
IV 3-62, 3-75
Iw 3-65
IX 3-62
IZc 3-62
IZp 3-62
#pragma comment 3-75
#pragma message 3-76

class field, in local and global
symbols tables 2-5

class names
CODE 3-22,3-35
FAR_BSS 6-2
FAR_DATA 6-2

CODE class name 3-22
code generation error A-53
code pointers 2-66
code segment

packing 3-30
(CS) 6-6

code size, optimizing 2-40
CodeView

compiling for 2-39
linking for 3-21
ICODEVIEWoption 3-19

colon 1-5
combine class 6-3
combined libraries, compiling and

linking 3-60
combined listing file 2-22
combined segments 3-51
combining libraries 5-26, 5-31
combining optimizing options 2-41
comma (,) in OC command

prompt 2-7 l

command area error
messages A-7

command-prompt arguments
executable file 4-1
global file 4-4
suppressing processing of 4-5

command-prompt method 2-7
commands

- + (minus-plus) 5-26
asterisk (*) 5-26, 5-29, 5-32
LIB 5-27
list file 5-33
minus sign (-) 5-26,5-32
minus (-) 5-28, 5-29

minus-asterisk (-*) 5-27,5-33
minus-plus (-+) 5-28

X-3

commands (continued)
minus-plus (-) 5-32
plus sign (+) 5-26, 5-31, 5-32
plus (+) 5-28, 5-29

using to specify LINK files 3-10
comment records, general and

library-search 3-75
comment-types 3-75
compact model programs 2-45,

2-47
compatibility between floating-point

options 2-36
compile-only option 3-59,3-61
compiler

comment-type 3-75
error messages A-7
exit codes 2-38
naming conventions 2-22
options, listed 2-12

complier options, CC
allowing case-Insensitive

options 2-16
arguments to 2-11
assembler listing 2-17, 2-21
case of 2-10
combined listing 2-22
defining constants and

macros 2-24
disabling optimization 2-38
floating-point 2-32, 2-33, 2-34
generating function

declarations 2-30
identifying syntax errors 2-30
line numbers 2-38
listing 2-15
object listing 2-17
optimizing 2-40
preprocessed listing 2-27
preprocessor 2-23,2-24
searching for include files 2-29
setting warning level 2-37
spaces in 2-11
storage models 2-44
using 80186/80188,80286 and

80386 processors 2-37

compiler options, CC (continued)
IA 2-44
lAC 2-47
IAH 2-47
IAl 2-47
lAM 2-47
lAs 2-47
ICASE 2-16
10 2-24
IE, IEP, IP 2-27
IFa 2-17,2-21
IFc 2-17,2-22
IFI 2-17
IFPa 2-34
IFPc87 2-32, 2-33
IFpi 2-32, 2-33, 2-34
IFPi87 2-32, 2-33
IFs 2-17
IGc 2-69
IGO 2-37
IG1 2-37
IG2 2-37
/I 2-29
10 2-40
10d 2-38
IS 2-30
IU 2-26
IW 2-37
IZd 2-38
IZg 2-30
IZi 2-38

compiling
and linking in one step (Cl

command) 3-55
combined libraries 3-60
conditional 2-24
for CodeView 2-39
large programs 2-44
multi-thread programs

See IBM C/2 language Refer­
ence

Presentation Manager applica­
tions 3-65

COM1 2-3
COM2 2-3
CON 2-2
conditional compiling 2-24
consistency check 5-25, 5-34
CONST segment 6-2
constants, defining 2-24
continuing long lines 5-4
controlling

data loading 3-22
floating-point operations 2-54
run file loading 3-25
the function calling

sequence 2-69
the preprocessor 2-23, 2-26

conventions
argument passing 6-5
used in this book 1-2

conversions 6-5
coprocessor 2-33

suppressing use of 2-54
copying line numbers to the map

file 3-25
copyright information,

imbedding 3-38
CPARMAXALLOC option 3-21
creating

a Library file 5-31
bound applications 3-63
customized storage

models 2-65
DOS mode applications 3-3
dynamic link libraries 3-4
family applications 3-5
mixed-model programs using

keywords 2-58
module definition files 3-6
OS/2 mode applications 3-3
programs, memory model 2-47
special object file records 3-75

cross-reference listing (LIB) 5-27,
5-33

cryptic output mode 5-6
CS (code segment) register 6-6,

6-9
Ctrl + Break keys 2-1, 5-30
Ctrl + C keys 2-1
customizing memory models

mixed 2-57,2-58
c_common segment 6-1,6-2

D
o option 2-24
data

data pointers 2-66
declarations 6-3
loading 3-22
passing at runtime 4-1
segment 6-3
segment default attributes,

defining 3-36
segment (OS) 6-6
segments 6-2

OAT A option 3-36
data segment 6-1, 6-2
date comment-type 3-75
debugging, preparation for 2-38
declaring

data items and pointers with
keywords 2-57

data with keywords 2-59
functions as Intrinsic 3-66
functions with keywords 2-61

default data segment 6-2
default file extensions, CC 2-2
default libraries

changing 3-15
ignoring 3-27
LIB 5-30
LINK 3-8
search path 3-14
suppressing selection of 2-53

default responses
cancelling CC 2-2
selecting, CC 2-5

x-s

defaults for linker prompts 3-8
defining

code segment default
attributes 3-35

constants and macros 2-24
data segment default

attributes 3-36
local stack 3-46
local storage 3-39
segments 3-44

definitions, module 3-6
deleting an object module from a

library 5-26, 5-32
demand loaded 3-7
denormal numbers 2-35
denormal, floating-point

exception A-4
DESCRIPTION 3-38
description blocks, specifying for a

target 5-5
device names 2-2
DGROUP 3-22
DGROUP group 6-3
01 register 6-6, 6-7, 6-9
differences from Version 1.00 xiii
direction flag 6-9
directives, using in MAKE 5-10
disabling

far call translations 3-28
optimization 2-38, 2-40
packing 3-29

discard 3-36, 3-37
disk file, temporary 3-18
displaying LINK-Time

information 3-25
DOS linker command syntax 3-5
DOS mode applications,

creating 3-3
DOSSEG option 3-22
DOS, predefined identifier 2-25
OS (data segment) register 6-3,

6-6,6-9

X-6

DSALLOCATE option 3-20, 3-22
dynamic allocation space 6-1
dynamic link libraries 3-1

creating 3-4
dynamic linking

E

See IBM C/2 Language Refer­
ence

E option 2-27
ellipses, how this book uses 1-2
emulator

calls to routines 2-34
library 2-32
space required 2-33

EM.LlB 2-33, 2-34
in-line instructions 2-34

enabling instruction sets for
processors 2-37

enabling language extensions 2-48
ending

the Library session 5-30
the LINK session 3-9

entering an assembler routine 6-6
entry sequence 6-6
environ variable 4-3
environment table

accessing data in 4-1
suppressing processing of 4-5

environment variables, CL 3-55
envp variable 4-2
EP option 2-27, 3-61
equal sign (=) 1-5
errno error messages A-85
error messages

compiler A-7
command A-48
during compiling A-16
fatal A-9
internal A-53
redirecting A-54
warning A-34

errno value A-85

error messages (continued)
EXEMOD A-83

fatal A-83
warning A-84

library manager A-72
fatal A-72
warning A-75

linker A-55
fatal A-56
non-fatal A-63
warning A-67

MAKE A-77
fatal A-77
warning A-82

redirecting A-54
run-time A-1

error-handling routine A-6
floating-point exceptions A-4
math A-6
system generated A-2

warning messages 2-37
setting level of 2-37

ES register 6-3
abstract 6-3

escape character, using 5-5
exception, floating-point A-4
EXE files, linking 3-8
executable files

naming 3-56
packi ng 3-23
passing data to 4-1
running 4-1

executable image 3-2
executable modules, naming 3-42
execution time, optimizing 2-40
EXEMOD utility 5-35

error messages A-83
parameters 5-36

EXEPACK option 3-19
exit codes

compiler 2-38
LINK 3-9

exit sequence 6-7
exiting

from an assembler routine 6-7
from the main function 4-3

expanding
global filename arguments 4-4
global filename characters 5-4

export identifier 2-50
exporting functions 3-38
EXPORTS 3-38
extending lines

at operations prompt 5-25
in LIB 5-30

extensions
default CC 2-2
enabling 2-48

extracting an object module from a
library 5-26, 5-32

F
F option 3-61
Fa option 2-17,2-21
family applications, creating 3-5
far call translations, disabling 3-28
far identifier 2-50
far keyword

declaring data with 2-59
declaring functions with 2-61
to declare data items and

pOinters 2-57
using to change addressing con­

ventions 2-58
using to create programs 2-58

far pointers 2-46, 2-57, 6-5
FARCALL TRANSLATION

option 3-24
FAR_BSS 6-2
FAR_DATA class 6-2
Fb option 3-61, 3-63
Fc option 2-22
Fe option 3-56, 3-61

X-7

fields, in local and global symbols
tables 2-5

file extensions 2-2
file-naming conventions 2-2,3-8
filename character expansion 5-4
files

preparing for CodeView 3-21
source, specifying 3-74
.LlB 5-25

final-object linker 3-1
fix-ups

long 3-53
near segment-relative 3-53
near self-relative 3-53
short 3-53

FI option 2-17, 2-20
floating-point libr~ries 2-32
floating-point operations

compatibility 2-36
controlling 2-54
default 2-34
function calls 2-33,2-34
in-line instructions 2-33
maximum efficiency 2-33
maximum flexibility 2-36

Fm option 3-56, 3-61
fortran identifier 2-50
fortran keyword 2-71
FPa option 2-34
FPc option 2-34
FPc87 option 2-33
FPi option 2-33, 2-34
FPi87 op~ion 2-33
Fs option 2-17, ~-18, 3-56
function declarations,

generating 2-30
functions

declaring as intrinsic 3-66

G
Gc compiler option 2-69
generating

function declarations 2-30

X-8

generating (continued)
in-line instructions 2-33
OS/2 mode appl ications 3-50
response files 5-20

getenv 4-2
global filename

arguments, expanding 4-4
character expansion in

MAKE 5-4
characters command 3-56

global symbols table fields 2-6
Gm option 3-61
groups 3-52, 6-3

DGROUP 6-3
Gs option 2-55
Gt option 2-57
Gwoption 3-61
GO option 2-37
G 1 option 2-37
G2 option 2-37

H
H option 3-61, 3-65, 5-36
HEAP segment 6-1
HEAPSIZE 3-39
HELP option 2-15
HELP option, LINK 3-24
hexadecimal number

representation 1-3
high memory 6-1
HIGH option 3-20, 3-25
huge identifier 2-50
huge keyword

declaring data with 2-59
declaring functions with 2-61
to declare data items and

pointers 2-57
using to change addressing con­

ventions 2-58
using to create programs 2-58

huge-model programs,
creating 2-47

hyphen (-) 2-10
as CC option character 2-10

I
loption 2-29
IBM Library Manager (LIB) 5-21
identifiers

predefined 2-25
removing definitions 2-26

identifying syntax errors 2-30
IF ERRORLEVEL 2-38
ignoring default libraries 3-27
imbedding copyright, source control

information, text 3-38
IMPLIB utility 3-4
importing functions 3-40
IMPORTS 3-40
in-line instructions 2-33, 2-34
include files 2-29
INCLUDE variable 2-29
inexact A-4
inference rules

built-in 5-18
specifying 5-21

infinities 2-35
INFORMATION option 3-25
information, linker 3-25
inserting copyright, source control

information, text 3-38
instruction set, enabling for

processor 2-37
inter-language calls 2-69
interfacing with IBM

Assembler/2 6-1
internal error messages A-7
interrupt identifier 2-50
intrasegment far calls 3-28
intrinsic functions, declaring 3-66

J
J option 2-53

K
keywords

declaring data with 2-59
declaring functions with 2-61
usage 2-57

kilobyte 2-44

L
labeling the object file 3-75
language extensions,

enabling 2-48
large-model programs

compiling 2-44
creating 2-47

Lc option 3-61
length of page, setting 3-72
LIB command

adding a library module 5-26,
5-31,5-32

backup library file 5-23
command symbols 5-26
command-prompt method 5-27
default responses 5-30
deleting a library module 5-26,

5-32
ending 5-30
extending lines 5-25
extracting a library

module 5-26, 5-32
extracting and deleting a library

module 5-27, 5-33
modification methods 5-23
order of operations 5-22
prompts 5-24
replacing a library

module 5-26, 5-32
response file method 5-29
setting page size 5-34
Ipagesize option 5-34

lib comment-type 3-75
LIB files 5-25

X-9

LIB variable 3-14
LIB (Library Manager) 5-21
libraries

alternate math 2-34
combining 5-33
creating 5-21,5-31
default 3-14,3-15
default, suppressing selection

of 2-53
floating-point 2-32
for mixed-model programs 2-69
modifying 5-21, 5-31
search path 3-14
searching directories for 3-13

library
listing 5-27,5-33
modules 3-41
name prompt 5-25
page size 5-34
search path 3-14
support 2-69
tasks 5-30

library manager error
messages A-72

LIBRARY option 3-41
LIB, starting 5-24
line number option 2-38
line numbers 3-25
line width, setting 3-72
LlNENUMBERS option 3-19
lines, continuing long 5-4
LINK

described 3-1
disk file, temporary 3-18
error messages A-55
examples using prompts 3-15
exit codes 3-9
files, specifying 3-10, 3-47
fix-ups 3-53
linker steps 3-2
option reference 3-18
options

X-10

allocating paragraph
space 3-21

controlling data loading 3-22

LINK (continued)
options (continued)

controlling run file
loading 3-25

information 3-25
listing 3-19
numerical arguments 3-19
ordering segments 3-22
using 3-19
IALIGNMENT 3-20
ICODEVIEW 3-21
ICPARMAXAllOC 3-21
IDOSSEG 3-22
IDSAllOCATE 3-22
IEXEPACK 3-23
IFARCAll TRANSLATION 3-24
IHElP 3-24
IHIGH 3-25
IINFORMATION 3-25
ILiNENUMBERS 3-25
IMAP 3-26
INODEFAUl TLiBRARYSEARCH
INOFARCAll TRANSLATION 3-
INOGROUPASSOCATION 3-28
INOPACKCODE 3-29
IOVERlA YINTERRUPT 3-30
IPACKCODE 3-30
IPAUSE 3-31
ISEGMENTS 3-32
ISTACK 3-33
IWARNFIXUP 3-34

output 3-1
prompt defaults 3-8
prompts 3-12
running 3-2
specifying 3-12
starting 3-12
starting the linker 3-8
temporary disk file 3-18
using the linker 3-8
.EXE files 3-8
ILiNK option 3-61
INOIGNORECASE 3-29
IPACKDATA 3-31

linking
a program 3-1
an application 3-1
CL command, used with 3-59
dynamic

See IBM C/2 Language Refer-
ence

dynam ically 3-4
for CodeView 3-21
for family applications 3-5

LINT _ARGS 2-31
list file prompt 3-13,5-27,5-33
listing files

assembler listing 2-17,2-21
combined listing 2-22
command prompt 5-33
LI B 5-23, 5-27, 5-33
LINK 3-13
object listing 2-17
preprocessed listing 2-27
producing 2-16
source listing 2-17

listing the compiler options 2-15
loadds identifier 2-50
local stack, defining the size

of 3-46
local symbols table fields 2-5
long lines, continuing 5-4
low memory 6-1
lowercase, preserving 3-29
LPT1 2-3
LPT2 2-3
LSETARGV.OBJ 4-4

M
Macro Assembler/2 interfaces 6-1
macro definitions, using 5-12
macros in MAKE, changing the

meaning of 5-16
macros in MAKE, specifying 5-21
macros, defining 2-24
main function 4-1

arguments to 4-1

main function, exiting 4-3
maintaining a program 5-9
MAKE

arguments, specifying 5-8
macro definitions 5-12
options 5-6
pseudo-targets 5-19
special macros 5-14

MAKE error messages A-77
map file 3-13,3-47,3-56
MAP option 3-19
map, public symbol 3-26
math.h error messages A-6
MAX option 5-36
maximum optimization 2-41
medium model 2-45, 2-47
memory models, creating programs

with 2-47
messages

during compiling A-7
error A-1

command area A-48
compiler A-7
errno value A-85
EXEMOD A-83
library manager A-72
linker A-55
MAKE A-77
run-time A-1

output, writing 3-76
129 3-50

methods of starting LIB 5-24
MIN option 5-36
minus plus sign (-+)

as LIB command symbol 5-26,
5-32

minus sign (-)
as LIB command symbol 5-26,

5-32
minus-asterisk (-*) 5-33

as LIB command symbol 5-33
mixed memory models

library support 2-69

X·11

mixed storage models 2-57
mixed-model programming 2-57,

2-58
modifying a Library file 5-31
modifying objects or pointers with

keywords 2-59
module definition file

creating 3-6
dynamic link 3-1
for applications 3-7
for dynamic link libraries 3-6
program 3-1
statements 3-34

CODE 3-34
DATA 3-34
DESCRIPTION 3-34
EXPORTS 3-34
HEAPSIZE 3-34
IMPORTS 3-34
LIBRARY 3-34
NAME 3-34
OLD 3-34
PROTMODE 3-34
SEGMENT 3-34
STACKSIZE 3-34
STUB 3-34

modules, naming library under
OS/2 3-41

MSETARGV.OBJ 4-4
multi-thread programming

See IBM C/2 Language Refer­
ence

multiple descriptions blocks, speci-
fying 5-5

M_1286 2-25
M_18086 2-25
M_186 2-25
MJ86xM 2-25

N
NAME 3-42

X-12

Names executable file 3-56
Names map file 3-56
naming

conventions 2-22, 6-8
executable modules 3-42
files 2-2
library modules 3-41
the executable file 3-13

naming conventions
NaN's 2-35
NO name option 3-61
near identifier 2-50
near keyword

declaring data with 2-59
declaring functions with 2-61
to declare data items and

pointers 2-57
using to change addressing con­

ventions 2-58
using to create programs 2-58

near pOinters 2-45,2-57
NM name option 3-61
NODEFAUL TLiBRARYSEARCH

option 3-19, 3-27
NOGROUPASSOCIATION

option 3-20, 3-28
nologo option 3-61,3-66
NOPACKCODE option 3-29
notations used in this book 1-2
N087 environment variable 2-54
N087 variable 2-54
no_ext_keys 2-25
NT name option 3-61
NUL 2-2,5-27
null pointer assignment 4-6
NULL segment 4-6, 6-2, A-2
nullcheck library routine 4-6
NUL.LST 5-33
NUL.MAP 3-13
numeric coprocessor 2-33, 2-34

o
o option 2-40
Oa option 3-61
object file

difference from object
module 5-30

labeling 3-75
naming 5-22
records, special 3-75

object filename prompt 2-3
object linker 3-1

command
default responses 3-8
separating entries 3-8
syntax 3-5

object listing file 2-20
object listing prompt 2-4
object module

difference from object file 5-30
naming 5-22

Od option 2-38
offset field, in local and global

symbols tables 2-5
Oi option 3-61, 3-66
OLD 3-43
On option 3-61
Op option 3-61
operating LINK 3-2
operating system

abbreviations 1-5
with IBM C/2 options 2-1

operations prompt 5-25
default 5-25

optimization
advances 2-55
default 2-40
disabling 2-38, 2-40
favoring code size 2-40
favoring execution time 2-40
maximum 2-41
options 2-40, 2-41
relaxing alias checking 2-40
removing stack probes 2-55

optimizing intrasegment far
calls 3-24

option character (I) 3-18
options

CC
See compiler options, CC

CL
See CL options

compiler, listing 2-12
LINK

See LINK options
MAKE

See MAKE options
to avoid 3-20

order of segments 3-51
ordering segments 3-22
OS0001.MSG file 3-50
OS/2 3-4

applications, creating 3-3, 3-50
naming library modules 3-41
utilities 3-4

IMPLIB 3-4
outputfrom the linker 3-1
output library prompt 5-27
output messages, writing 3-76
overlay manger prompts 3-50
OVERLAYINTERRUPT option 3-20,

3-30
to avoid

DSALLOCATE 3-20
HIGH 3-20
NOGROUPASSOCIATION 3-20
OVERLAYINTERRUPT 3-20

overlays
restrictions on 3-49
specifying on CL 3-62
using 3-49

overriding default responses,
CC 2-2

Ow option 3-62
Ox option 2-41

X-13

p
P option 2-27
PACKCOOE option 3-30
PACKOATA option 3-31
packing

code segments 3-30
data segments 3-31
executable files 3-23
structure members 2-51

page length, setting 3-72
page size 5-34
pagesize option 5-34
paragraph space 3-21
parameters, EXEMOO 5-36
partial command prompt 2-8
pascal identifier 2-50
pascal keyword 2-69
passing conventions 6-5
passing data to a program 4-1
PATH variable 4-1
paths, search 3-13
PAUSE option 3-31
pausing to change disks 3-31
placing variables and functions in

segments 3-70
plus sign 3-8

as LIB command symbol 5-26,
5-31,5-32

pointer conversions 2-63
pOinters

code 2-66
data 2-66
far 6-5

predefined identifiers 2-25,2-26
preparing for debugging 2-38
preprocessed listing file 2-27
preprocessing stage, preserving

comments in 2-28
preprocessor options

changing the search path 2-29
defining constants and

macros 2-24
producing a preprocessed

listing 2-27

X-14

preprocessor options (continued)
removing definitions of prede-

fined identifiers 2-26
10 2-24
/I 2-29
IP, IE, IEP 2-27
IU,/u 2-26

Presentation Manager applications,
compiling 3-65

preserving
comments 2-28
compatibility 3-28
export ordinals 3-43
lowercase 3-29

preserving compatibility
PRN 2-2
processors, enabling for 2-37
producing

a public symbol map 3-26
code pointers 2-66
listing files

assembler 2-17,2-21
combined 2-22
object 2-17

map files 3-13
object listing file 2-20
pOinters 2-66
preprocessed listings 2-27

program binding 3-63
program maintainer (MAKE) 5-1
program module 3-1
programming, using memory

models 2-47
prompt examples, LINK 3-15
prompts for LIB 5-24
prompts, CC 2-1
PROTMOOE 3-44
pseudo-targets in MAKE 5-19
public names
public symbol map,

producing 3-26
punctuation 1-5

pushing arguments 6-5
putenv 4-2

Q
question mark (1)

R

as global filename
character 4-4

used in CL command 3-56

reading commands 1-5
reading syntax diagrams 1-5
readonly data segments 3-37
redirecting compiler error mes-

sages A-54
register considerations 6-9
register field, in local symbols

table 2-6
registers

BP 6-6,6-7
CS 6-6,6-9
01 6-6,6-7,6-9
OS 6-3,6-6,6-9
ES 6-3
SI 6-6,6-7,6-9
88 6-3,6-6,6-9

relocation information 3-2
removing definitions of predefined

identifiers 2-26
removing stack probes 2-55
replacing an object module in a

library 5-26, 5-32
replacing library modules 5-32
reserving paragraph space 3-21
resident part of 3-49
response file

for LIB 5-29
using to operate the linker 3-15

restricting length of external
names 3-65

return value conventions 6-7

routines
assembler language 6-5, 6-6
dynamic link 3-6

rules for segment packing in
LINK 3-53

rules, inference, built-in 5-18
run file 3-8, 3-25
run-time error R6002 2-33
run-time libraries 5-21
running

C programs 4-1
LIB 5-21

responding to prompts 5-24
response file method 5-24,

5-29
the command-prompt

method 5-27
programs 4-1
the compiler

command-prompt
method 2-7

partial command prompt 2-8
responding to prompts 2-1

the linker 3-8

S
8 option 2-30
save regs identifier 2-50
search path

directories 3-13
include files 2-29
libraries 3-14

searching for include files 2-28
sector alignment 3-20
segments

align type 6-3
aligning 3-20
class name 6-3
combine class 6-3
CONST 6-2
contents 6-1
c_common 6-2
data 6-2

X-15

segments (continued)
defining 3-44
including functions and

variables 3-70
model 6-1
NULL 4-6, 6-2
order 3-22, 6-1
packj ng 3-30
registers 6-7
setting the number of 3-32
setup 2-68
STACK 6-1
text 6-2
values 6-3
within DGROUP 6-3
_BSS 6-1
_DATA 6-2
_TEXT 6-2

SEGMENTS option 3-32
segment, NULL A-2
selecting default responses

CC 2-5
to LIB prompts 5-30
to LINK prompts 3-8

selecting default responses, 3-8
selecting floating-point

options 2-32
semicolon (;)

in CC command 2-5
in LIB command 5-28,5-30
in MAKE command 5-2

SET command
setargv 4-5

command 4-5
SETARGV.OBJ 4-4
setenvp 4-5
setting

data threshold 2-57
library page size 5-34
line width and page length 3-72
maximum number of

segments 3-32
OS/2 environment 3-44

X-16

setting (continued)
overlay interrupt 3-30
sector al ignment factor 3-20
segments 2-68
STACK pOinter 5-36
stack size 3-33
titles and subtitles 3-74
warning level 2-37

SI register 6-6, 6-7, 6-9
size fi$ld, in global symbols

table 2-6
SI option 3-62, 3-72
slash (I), as CC option

character 2-10
slashes 1-5
small-model programming 2-45,

2-47
source control information, imbed-

ding 3-38
source file comments 2-28
$ource filen~me prompt 2-3
,ource files, specifying 3-74
source listing 2-5
source listing file 2-17,2-18
source listing prompt 2-4
Sp option 3-62,3-72
spaces, in CC options 2-11
special filenames 2-2
special macros, using 5-14
special object file records,

creating 3-75
specifying

a combined library for
linking 2-47

LINK files 3-10
macros and inference rules in

MAKE 5-21
MAKE arguments from a

file 5-8
multiple description blocks for a

target 5-5
overlays, CL 3-62
source files 3-74

square brackets 1-5
Ss option 3-62
SS (stack segment) register 6-3,

6-6,6-9
SSETARGV.OBJ 4-4
St option 3-62
stack 6-7
STACK class name 3-22
STACK option, displaying

status 5-36
stack order 6-5
stack pointer, setting 5-36
stack probes 2-55
STACK segment (SS) 6-1, 6-6
stack size, setting 3-33
STACKSIZE 3-46
standard places

include flies 2-29
libraries 3-14

starting
LIB 5-24
LINK 3-8
MAKE 5-6

static linking
See IBM C/2 Language Refer-

ence
STDARGV 4-4
steps, linker 3-2
stopping

LIB 5-30
the complier 2-1
the main function 4-3

storage models 2-44, 2-47
structures, packing 2-51
STUB option 3-46
subtitles, setting 3-74
suppressing

command processing 4-5
default library selection 2-53
logo lines 3-66
null pointer checks 4-6
processing of environment

table 4-5
use of a numeric

coprocessor 2-54

switches 2-10
symbols within syntax

diagrams 1-4
syntax checking 2-29
syntax conventions

diagram symbols 1-4
terms, understanding 1-3

syntax errors 2-30

T
tailoring command execution 5-5
targets, pseudo, In MAKE 5-19
Tc option 3-62
temporary disk file 3-18
terms used in the C/2 library 1-3
terms, syntax 1-3
TEXT segment 6-2
text segments 6-2
timestamp comment-type 3-75
titles, setting 3-74
TOOLS.lNI file, using 5-21
translations, disabling far call 3-28
type field, in global symbols

table 2-6
type-checklng 2-31

u
U option 2-26, 3-62

removing definitions of prede-
fined identifiers 2-26

underflow A-4
understanding syntax terms 1-3
using

a response fi Ie 3-15
an 8087/80287/80387

coprocessor 2-33
command-prompt method 2-7
commands to run LINK 3-10
comment characters in

MAKE 5-3
compiler options 2-10
directives In MAKE 5-10

X .. 17

using (continued)
escape character 5-5
floating-point options 2-32
LINK 3-7, 3-8
LINK exit codes 3-9
LINK options 3-19
macro definitions, MAKE 5-12
MAKE 5-1
near, far and huge

keywords 2-58
N087 environment

variable 2-54
overlays 3-49
pascal and fortran

keywords 2-71
prompts to specify LINK

files 3-12
source listing 2-5
special macros, MAKE 5-14
the program utilities 5-1
TOOLS.lNI file in MAKE 5-21
80186/80188,80286 and 80386

processors 2-37
IZE 2-57

utilities
library manager, LIB 5-21

v
Voption 3-62,3-75
variables, in segments 3-70

in segments 3-70
vertical bar (I), how this book

uses 1-2
viewing the options list 3-24

w
W option 2-37
WARNFIXUP option 3-34
warning level option, IW 2-37
warning messages, setting level

of 2-37

X-18

warning of fix-ups 3-34
width of page, setting 3-72
working with storage models 2-44
writing output messages 3-76

x
X option 3-62
xLlBC7.L1B 2-33

Z
Za option 2-48
Zc option 2-48, 3-62
Zd option 2-38
Ze option 2-48
Zg option 2-30
Zi option 2-38
ZI option 2-53
Zp option 2-51, 3-62
Zs option 2-30

Numerics
3 option 3-19
80186/80188 processor 2-37
80286,80386 processors 2-37
8087/80287/80387

coprocessor 2-32,2-33,2-34
in-line instructions 2-33,2-34

87.L1B 2-33

Special Characters
... ellipses 1-2
I vertical bar 1-2
1 (slash) option character 2-10

CC 2-10
,(comma) in CC command

prompt 2-7
? (question mark)

as global filename
character 4-4

used in CL command 3-56

#pragma comment 3-75
#pragma message 3-76
#pragma page 2-17
#pragma skip 2-17
= equal sign 1-5
[] brackets 1-2

X-19

X-20

Continued from inside front cover.

SUCH WARRANTIES ARE IN LIEU OF
ALL OTH ER WARRANTI ES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow the exclusion
of implied warranties, so the above
exclusion may not apply to you.

LIMITATION OF REMEDIES
IBM's entire liability and your exclusive
remedy shall be as follows:
1) IBM will provide the warranty

described in IBM's Statement of
Limited Warranty. If IBM does not
replace defective media or, if appli­
cable, make the Program operate as
warranted or replace the Program
with a functionally equivalent Pro­
gram, all as warranted, you may
terminate your license and your
money will be refunded upon the
return of all of your copies of the
Program.

2) For any claim arising out of IBM's
limited warranty, or for any other
claim whatsoever related to the
subject matter of this Agreement,
IBM's liability for actual damages,
regardless of the form of action,
shall be limited to the greater of
$5,000 or the money paid to IBM, its
Authorized Dealer or its approved
supplier for the license for the
Program that caused the damages
or that is the subject matter of, or is
directly related to, the cause of
action. This limitation will not apply
to claims for personal injury or
damages to real or tangible personal
property caused by IBM's negligence.

3) In no event will IBM be liable for any
lost profits, lost savings, or any
incidental damages or other conse­
quential damages, even if IBM, its
Authorized Dealer or its approved
supplier has been advised of the
possibility of such damages, or for
any claim by you based on a third
party claim.

Some states do not allow the limitation
or exclusion of incidental or consequen­
tial damages so the above limitation or
exclusion may not apply to you.

GENERAL
You may terminate your license at any
time by destroying all your copies of the
Program or as otherwise described in
this Agreement.

IBM may terminate your license if you
fail to comply with the terms and condi­
tions of this Agreement. Upon such
termination, you agree to destroy all your
copies of the Program.

Any attempt to sublicense, rent, lease or
assign, or, except as expressly provided
herein, to transfer any copy of the
Program is void.

You agree that you are responsible for
payment of any taxes, including personal
property taxes, resulting from this
Agreement.

No action, regardless of form, arising
out of this Agreement may be brought by
either party more than two years after
the cause of action has arisen except for
breach of the provisions in the Section
entitled "License" in which event four
years shall apply.

This Agreement will be construed under
the Uniform Commercial Code of the
State of New York.

Z125-3301-024/87

---- ------- - ---- ---- - ---- - - ------------_.-
®

© IBM Corp. 1988
All rights reserved.

International Business
Machines Corporation,
Boca Raton,
Florida 33429-1328

Printed in the
United States of America

15F0383

