

Preface

This book explains how to use CodeView 1.10 to debug programs
written with IBM C/2, Versions 1.00 and 1.10, IBM Macro
Assembler/2, IBM Pascal Compiler/2, orlBM BASIC Compiler/2.

You should be familiar with your programming language, personal
computer, and operating system. Experienced programmers should
use this book along with their specific language reference books.

Related Publications

• IBM CI2 Compile, Link, and Run
• IBM CI2 Language Reference
• IBM CI2 Fundamentals

• IBM MASMI2 Fundamentals
• IBM MASMI2 Assemble, Link, and Run
• IBM MASMI2 Language Reference

• IBM Operating System/2 Version 1.00 (Standard and Extended
Editions)

• Programmer's Guide

• IBM Operating System/2 Version 1.10

• Programming Guide

• The technical reference for your personal computer.

• The technical reference for your operating system.

• IBM System Application Architecture Common Programming
Interface C Reference

• iAPX 86, 88 User's Manual, Copyright 1981, Intel Corp., Santa
Clara, CA.

• iAPX 286 Hardware Reference Manual, Copyright 1983, Intel
Corp., Santa Clara, CA.

• iAPX 286 Programmer's Reference Manual, Copyright 1985, Intel
Corp., Santa Clara; CA.

iii

Chapter 1. Introducing CodeVlew 1-1
Conventions Used in This Book 1-2
Restrictions 1-3

Chapter 2. Getting Started with CodeVlew 2-1
Copying Files from the Diskettes 2-1
Changing Your CONFIG.SYS File 2-2
Using the Sample Session 2-2
Starting CodeView 2-4
Choosing Startup Options 2-6

Setting the Display Mode 2-7
Specifying Startup Commands 2-7
Setti ng the Screen-Exchange Mode 2-8
Turning On Window or Sequential Mode 2-9
Turning Off the Mouse Option 2-10
Debugging Child Processes 2-10
Using the 80386 Debug Registers , 2-11
Using Enhanced Text Modes 2-11
Debugging Dynamic-Link Modules 2-11
Using Expanded Memory 2-13
Using Two Video Adapters 2-13

Using the CodeView Display 2-14
Using Window Mode 2-14

Selecting from Menus with the Keyboard 2-18
Selecting from Menus with the Mouse 2-19
Describing the Menu Selections 2-25
The Help System 2-35

Using Sequential Mode 2-36
Using Dialog Commands 2-37

Entering Dialog Commands and Arguments 2-38
Formatting CodeView Commands and Arguments 2-39

Chapter 3. Preparing Programs for CodeVlew 3-1
Preparing C Programs 3-1

Compile Options 3-1
Link Option 3-2
Writing C Source 3-2
Compiling and Linking C Programs 3-2

Preparing BASIC Programs 3-4

v

o DUMP 6-22
DB DUMP BYTES 6-23
DA DUMP ASCII 6-24
01 DUMP INTEGERS 6-25
DU DUMP UNSIGNED INTEGERS 6-26
OW DUMP WORDS 6-27
DO DUMP DOUBLEWORDS 6-28
OS DUMP SHORT REALS 6-29
DL DUMP LONG REALS 6-30
DT DUMP 10-BYTE REALS 6-31
C COMPARE MEMORY 6-32
S SEARCH MEMORY 6-33
I PORT INPUT .. 6-35
R REGISTER 6-36
7 87 Command 6-38

Chapter 7. Managing Breakpoints 7-1
BP BREAKPOINT SET 7-2
BC BREAKPOINT CLEAR 7-5
BD BREAKPOINT DISABLE 7-6
BE BREAKPOINT ENABLE 7-7
BL BREAKPOINT LIST 7-8

Chapter 8. Managing Watch Statements 8-1
W? WATCH 8-3
WP WATCHPOINT 8-6
TP TRACEPOINT .. 8-9
Y WATCH DELETE 8-13
W WATCH LIST 8-15

C Examples 8-16
Pascal Examples 8-17
Macro Assembler Examples 8-18

Chapter 9. Examining Code 9-1
S SET MODE 9-2
U UNASSEMBLE 9-4
VVIEW 9-6
• CURRENT LOCATION 9-9
K STACK TRACE 9-10

Chapter 10. Changing Code or Data 10-1
A Assemble 10-2
Enter Commands 10-6

vII

Appendix A. Quick Reference A-1
Starting CodeView A-1

Appendix B. Error Messages B-1

Index X-1

Ix

Summary of Changes

The following are the new features of CodeView:

• Support for multithreaded applications - CodeView can debug the
individual threads of a multithreaded application in OS/2 mode
only.

• Support for dynamically linked libraries - CodeView can debug
dynamic link libraries in OS/2 mode only.

• Support for child process - CodeView can debug child processes
started by your program in OS/2 mode only.

• 80386 support - CodeView supports debugging of code written
specifically for the 80386 processor. You can decode and
assemble 386 instructions, as well as view 386 registers. 80386
support is only provided in DOS and the DOS mode of OS/2.

• Expanded memory support - DOS, with expanded memory, can
substantially reduce the amount of main memory required to
debug a program. Many programs that were previously too large
can now be run with CodeView.

• 8087. 80287, or 80387 emulator support - Linking to an emulator
library instead of using a math coprocessor, you can take advan­
tage of the 7 command. CodeView displays pseudo-8087, 80287,
or 80387 registers the same way a math coprocessor does.

• Overlayed modules - CodeView is fully compatible with programs
that use overlays. It can also debug library modules.

• New commands - The SYMDEB commands COMPARE, FILL,
MOVE, INPUT, and OUTPUT were added to CodeView. The
GRAPHIC DISPLAY command allows you to examine nested
structures and linked lists of pointers.

• The Help System - Enhanced online.

xl

Chapter 1. Introducing CodeView

CodeView, Version 1.10, is a debugging program that helps you test
and debug executable files developed with IBM C/2TM, Versions 1.00
and 1.10, IBM Macro Assembler/2™, IBM Pascal Compiler/2™, and
IBM BASIC Compiler/2™ programs.

CodeView helps you track down logical errors in programs while the
program is running. CodeView displays source code or assembly
code, indicates which line is about to be run, dynamically watches the
values of variables (local or global), switches screens to display
program output, and performs many other related functions.

CodeView is designed for use with a mouse but can also be used with
the keyboard. Within CodeView there are two modes of operation,
window and sequential. These modes are discussed in Chapter 2.

The intended audience for this book is C, Macro Assembler, Pascal,
and BASIC programmers. We have chosen to use the C language in
many of our examples; however, where it is required for clarity, the
examples are language specific.

Depending on which operating system you have, you will need to use
the appropriate CodeView executable file. The following defines the
two versions of the CodeView execs available in this package:

CV.EXE Executable file that runs on the following operating systems:
DOS, Versions 3.30 and 4.00
OS/2 Standard Edition, Versions 1.00 and 1.10
OS/2 Extended Edition, Version 1.00

CVP.EXE Executable file that runs on the following operating systems:
OS/2 Standard Edition, Versions 1.00 and 1.10
OS/2 Extended Edition, Version 1.00

Note: In this book, DOS mode refers to DOS, Versions 3.30 and 4.00,
or the DOS mode of OS/2.

C/2, Versions 1.00 and 1.10, Macro Assembler/2, Pascal Compiler/2, and
BASIC Compiler/2 are trademarks of the International Business Machines
Corporation.

1-1

Restrictions
The following restrictions apply to CodeView, regardless of the lan­
guage being used. This list briefly describes the types of files not
directly supported by CodeView.

Restriction

Include files

Packed files

.COM files

Memory-resident pro­
grams

Programs that alter
the envi ronment

Program Segment
Prefix (PSP)

Explanation

CodeView cannot debug source code in
include files.

CodeView symbolic information cannot
be put into a packed file.

Files with the extension .COM can be
debugged in assembly mode only; they
can never contain symbolic informa­
tion.

CodeView can only work with disk­
resident .EXE and .COM files. Debug­
ging of memory-resident files is not
supported.

Programs running under CodeView can
read the environment, but they cannot
permanently change it. Upon exit from
CodeView, no changes to the environ­
ment are saved.

CodeView automatically preprocesses
a program's PSP the same way a C
program does; quote marks are
removed, and exactly one space is left
between the command-line arguments.
This is only an obstacle if you are
debugging a program written in a lan­
guage other than C and try to access
command-line arguments.

1-3

Chapter 2. Getting Started with CodeView

This chapter describes how to start CodeView, run the sample
session, and use the CodeView options. It describes the window and
sequential modes, introduces the menu selections, and includes
dialog commands and arguments.

Getting started with CodeView requires that you prepare a special­
format executable file for the program you want to debug; then you
can start CodeView.

Copying Files from the Diskettes

C/21.1 Use,s ------------------,

Do not follow these procedures if you have already installed the
program using either SETUP or INSTAID. CodeView was automat­
ically installed during that procedure.

Before starting CodeView, copy the master files included with this
book. We recommend you make a working copy of the diskettes
using the DISKCOPY command.

1. Using the MKDIR command, create a directory for your new
CodeView files. For example:

MD C:\CODEVIEW

2. Using your working copy of the diskettes, copy the files to your
target directory. For example:

XCOpy A:*.* C:\CODEVIEW /S

By using XCOPY with the IS option, the CodeView sample session
will automatically be copied to a directory named SAMPLE in the
directory where you are installing CodeView.

For more information on DISKCOPY, MKDIR, and XCOPY, refer to
your respective operating system's user's guide.

2-1

If CodeView was installed for you when you installed IBM C/2
1.10, the sample session was placed in a directory named
SAMPLE in the directory where your binary files were installed.

If you installed CodeView using the procedures given in the
section "Copying Files from the Diskettes" on page 2-1, the
sample session was placed in a directory named SAMPLE in the
directory where you installed CodeView.

2. Type SAMPLE and press Enter.

The SAMPLE.BAT file starts CodeView with the appropriate
options. The batch file specifies LlFE.EXE as the program that
CodeView will debug.

3. Follow the online instructions.

4. From the Demonstration Menu, choose one of the 5 options. If
you are new to CodeView, we suggest you choose option T for an
overall demonstration of the program and commands.

Note: Option P on the Demonstration Menu allows you to print the
CODEVIEW.DOC file which includes a comprehensive quick
reference to aid you in learning CodeView.

When you complete the session, SAMPLE.BAT returns to the oper­
ati ng system.

Interrupting the Sample Session ------------,

If you want to quit before the sample session ends, press Ctrl + C
or Ctrl + Break. If you are still in the batch file (SAMPLE.BAT), a
prompt appears that asks if you want to end the session. Type Y
and press Enter. If you are in CodeView, the word BREAK
appears, followed by the CodeView prompt (». Enter Q (the QUIT
command). This returns you to the operating system.

2-3

The options are one or more of the choices described in uChoosing
Startup Options" on page 2-6. The executable file is the name of a
file that CodeView loads. The name of this file must have the exten­
sion .EXE or .COM.

If you try to load a nonexecutable file, the following error message
appears:

Not an executable file

Programs containing CodeView symbolic information always have the
extension .EXE. You can debug files with the extension .COM in
assembly mode, but they cannot contain symbolic information.
CodeView can debug programs that use overlays.

The optional arguments are passed to the executable file. If the
program you are debugging does not accept command-line argu­
ments, you need not pass any.

If you specify the executable file as a filename with no extension,
CodeView searches for a file with the given base name and the exten­
sion .EXE. If the file that you specify is not in the CodeView format,
the debugger starts in assembly mode and displays the following
message:

No symbolic information

You must specify an executable file when starting CodeView. If you
omit the executable file, CodeView displays a message showing the
correct usage format. Use the CodeView options to replace the
default startup mode.

If your program is in C, BASIC, or Pascal, CodeView is now at the
beginning of the startup code that precedes your program. In source
mode, you can enter a run command (such as TRACE or PROGRAM
STEP) to automatically run through the startup code to the beginning
of your program. At this point, you are ready to start debugging your
program.

2-5

Setting the Display Mode
The IB option tells CodeView to start in the blacklwhite mode.
Normally, if CodeView detects a monochrome adapter, it displays in
two colors. If it detects a colorlgraphics adapter, multiple colors
appear.

Formal

IB I -B

If you use a two-color monitor with a color/graphic~ adapter, you may
want to use color. Monitors that display in two colors (usually green
and black, or amber and black) often attempt to show colors with dif­
ferent cross-hatching patterns, or in gray-scale shades of the display
color. In either case, you may find the display easier to read if you
use the IB option to force a black-and-white display. Most two-color
monitors have four color distinctions: background (black), normal
text, intense text, and reverse video text.

Specifying Startup Commands
The IC option lets you specify one or more commands that CodeView
runs automatically at startup. Use these options to call CodeView
from a batch or MAKE file. A semicolon separates each command
from the previous command.

Formal

ICcommands I -Ccommands

If one or more of your startup commands have arguments that require
spaces between them, enclose the entire option in double quotation
marks. Otherwise, CodeView interprets each argument as a separate
command-line argument instead of a command argument.

Example
Example 1 loads CodeView with COUNT.EXE as the executable file
and COUNT.TXT as the argument. On startup, CodeView performs
the C startup code with the command GMAIN. Because CodeView
requires no space between the GO command (G) and its argument
(main), you need not enclose the option in double quotation marks.

CV IGmain COUNT.EXE COUNT.TXT ;* Example 1

Example 2 loads the same file with the same argument, but the
command list is more extensive. CodeView starts in assembly mode
(8-) with a radix of 16 (N 16). It runs to the function countwords (G

2-7

The limitations of screen flipping are not present in screen swapping.
In screen swapping, CodeView creates a buffer in storage and for the
unused screen. At your request, CodeView swaps the screen in the
display buffer for the one in the storage buffer.

The buffer size for screen swapping with a monochrome adapter, is
4KB, or 16KB for a graphics adapter. The 143 and 150 options cause
larger buffers to be used.

CodeView defaults to screen swapping if you use a combination of
the IF option with a monochrome adapter.

The following table shows the default exchange mode (swapping or
flipping) and the default display mode (sequential or window) for
various setups.

Display Default Alternate
Adapter Modes Modes

Graphics IF IS if your program uses video-
IW display pages or graphics

IT for sequential mode

Monochrome IS IT for sequential mode
IW

Turning On Window or Sequential Mode
CodeView operates in window or sequential mode. (Window mode is
the default.) Window mode displays up to four windows, showing dif­
ferent aspects of the debugging session program at the same time.
You can use a mouse in window mode but not in sequential mode.

Format

IT I -T
IW -w
Sequential mode is useful with redirection commands. Debugging
information appears in sequence down the screen. Although window
mode is more convenient, CodeView can do any operation in sequen­
tial mode that it can do in window mode.

2-9

Using the 80386 Debug Registers
When using an 80386 machine with DOS or DOS mode, IR permits
CodeView to use the 80386's debug registers if possible when using
watchpoints.

Format

/R I -R

Note: The IR option is valid only for CV.EXE. OS/2 mode does not
support all the 80386's features.

Using the 80386's debug registers permits your program to run faster
because CodeView does not have to pause between each instruction
to check watchpoints.

USing Enhanced Text Modes
If you have an Enhanced Graphics Adapter (EGA) or a PS/2 display,
use the 143 option to enable a 43-line by 80-column text mode. If you
have a Personal System/2 display, you may use the 150 option to
enable a 50-line by 80-column text mode.

The enhanced modes operate like the 25-line by 80-column mode.
The advantage is that more file text fits on the display. The use of
these options does not effect the mode of the output screen.

Note: The 143 and 150 options are recognized only if the current
setting is in 25-line mode.

Format

143 I -43
/50 I -50

You cannot use these modes if you have a Color Graphics Adapter
(CGA) or a monochrome adapter. If CodeView detects an improper
type of display adapter, it ignores the option.

Debugging Dynamic-Link Modules
CVP.EXE debugs dynamic-link modules, but only if it is instructed
which libraries to search at run time. A module in a dynamic-link
library does not store code or symbolic information in the .EXE file of
your program. It stores the code and symbols in the library (.DLL)
file, and they do not join with the main program until run time. There­
fore, CodeView must search the dynamic-link library for symbolic
information. It does not automatically know which libraries to look

2-11

Using Expanded Memory

Format

IE

The IE option enables the use of expanded memory. If expanded
memory is present, CodeView stores the symbolic information of the
program there. This may be as much as 85 percent of the size of the
executable file for the program and represents space that would oth­
erwise be in the main memory.

Note: This option enables only expanded memory, not extended
memory.

Using Two Video Adapters

Format

/2

The 12 option permits the use of two monitors with CodeView. The
program display appears on the default monitor, while the CodeView
display appears on the other monitor. (Two monitors and two
adapters are required to use this option.)

For example, if you have both a Color Graphics Adapter (CGA) and a
monochrome adapter, you might want to set the CGA up as the
default adapter. You could then debug a graphics program with the
graphics display appearing on the graphics monitor, and the
CodeView display appearing on the monochrome monitor.

Note: Dual-monitor debugging is not supported on PS/2s.

2-13

The following are the elements of the CodeView display marked on
this screen:

1. You can open menus by specifying the appropriate title on the
menu bar. Press Alt + highlighted letter, or click on the menu
with the mouse.

2. The menu highlight is a reverse-video or colored strip indicating
the current selection. Move the highlight up or down to change
the current selection using either the arrow keys or the mouse.

3. The display window shows the program being debugged. It can
contain source code (as in the example), assembler language
instructions, or any specified text file.

4. The register window shows the current status of the registers and
flags. This is an optional window that will open or close with one
keystroke.

5. The scroll bars are the vertical bars on the right side of the
screen. Scroll one line or page using the mouse.

6. The mouse pointer shows the current position of the mouse. It
appears only if you have a mouse installed.

7. The cursor is a thin, blinking line that shows where from the key­
board. Use .the arrow keys to move the cursor up or down. Use
F6 to switch between windows.

8. The dialog window is where you enter dialog commands. These
commands have optional arguments that you can enter at the
CodeView prompt (». You can scroll up or down in this window
to view previous dialog commands and command output.

9. The display/dialog separator is the line that divides the dialog
window from the display window. You can move this line up or
down to change the relative size of the two windows.

10. The current location line (the next line of the program that will be
run) displays in reverse-video or in a different color. This line is
not always visible because you can scroll to earlier or later parts
of the program.

11. Previously set breakpoints show in intensified text.
12. The watch window is an optional window that shows the current

status of specified variables or expressions. It appears automat­
ically whenever you create watch statements.

13. The menu bar shows titles of menus and commands that you can
activate with the keyboard or the mouse.

14. Dialog windows (not shown) appear in the center of the screen
when a menu selection requires a response. The window is a
prompt for your response. It disappears when you enter your
answer, press Esc, or click either mouse button.

2-15

Key Function

F2 Displays or removes the register window. You can also
display the register window with the Register selection
from the View menu.

F3 Changes between source, mixed, and assembly modes.
You can also change using the View menu.

F4 Switches to the output screen. You can also select Output
from the View menu.

Ctrl+G Increases the size of the dialog or display window. (Grow)

Ctrl+T Decreases the size of the dialog or display window. (Tiny)

Running a Program with Keyboard Commands
The following keys set and clear breakpoints, trace through your
program, or run to a breakpoint:

Key Function

F5 Runs to the next breakpoint or to the end of the program if
CodeView finds no breakpoint. This keyboard command cor-
responds to the GO dialog command when it is given without
a destination breakpoint argument.

F7 Sets a temporary breakpoint on the line with the cursor and
runs to that line (or to a previously set breakpoint or the end
of the program if CodeView finds either before the temporary
breakpoint). In source mode, if the line does not correspond
to code (for example, if the line is a data declaration or
comment line), CodeView sounds a warning and ignores the
command. This window command corresponds to the GO
dialog command when it is given with a destination break-
point.

Fa Runs a TRACE command. CodeView runs the next source
line in source mode or the next instruction in assembly mode.
If the source line or instruction contains a function, proce-
dure, or interrupt call, CodeView starts tracing through the
call (enters the call and is ready to run the first source line or
instruction). This command does not trace into DOS function
calls (interrupt 21h).

2-17

2. There are two ways to make a selection from an open menu:

a. Use the arrow keys to move the cursor to the items on the
menu. When the item is highlighted, press Enter.
(or)

b. Press the key corresponding to the menu-selection high­
lighted letter. (In most cases, the letter is the first letter of the
menu selection.)

For most menu selections, the choice runs immediately. The
ite!"ls on the View, Options, and Language menus have small
double arrows next to them when the option is on, and no
arrows when the option is off. The status of the arrows alter­
nates each time the menu opens.

3. A dialog window opens if the item selected from the menu
requires a response. Items that require a response have an
ellipsis (...) after them. Type your response in the window and
press Enter. (If you do not enter a response and press Enter, the
menu is canceled.) If the response is invalid, you receive an
error message. Press any key to make the message disappear.

Note: While a menu is open, you can press the arrow left or right
keys to move from one menu to an adjacent menu.

Cancelling a window -------------------,

To cancel a window, you can either press the Esc key, press the
Enter key, or click either mouse button when no response has
been entered.

Selecting from Menus with the Mouse
The menu bar at the top of the screen has eleven titles: File, View,
Search, Run, Watch, Options, Language, Calls, Help, F8=Trace, and
F5=Go. Of these, the first nine are menus. TRACE and GO are com­
mands that run by selecting with the mouse. The steps for opening a
menu and making a selection follow.

1. To open a menu, point to the title you want to select.

2. With the mouse pointer on the title, press and hold either button.
The selected title is highlighted and a menu box with a list of
selections appears below the title.

2-19

CodeView uses two mouse buttons. The terms click right, click left,
and click either are sometimes used to designate which buttons to
use. Use either button when dragging.

Changing the Screen with the Mouse
You can change various aspects of the screen display by pointing to
one of the following elements and either clicking or dragging with the
mouse.

Single line separating
display and dialog
windows

Arrows on the scroll bar

Drag the separator line up to increase
(grow) the size of the dialog window while
decreasing (tiny) the size of the display
window. Alternately, drag the line down to
increase the size of the display window
while decreasing the size of the dialog
window. Eliminate either window by drag­
ging the line all the way up or down (pro­
viding the cursor is not in the window you
want to eliminate).

To scroll up or down one line at a time,
click on one of the two arrows on the scroll
bar.

To scroll continuously, press and hold
either button while not moving the mouse.
(Continuous scrolling is easier to use when
you want to scroll more than a couple of
lines.) Scrolling stops upon release of the
button.

2-21

Source line or
Instruction

Point and click on a source line in source mode
or on an instruction in assembly mode to take
one of the following actions:

click left If the line under the mouse cursor
does not have a breakpoint, one is
set there. If the line already has a
breakpoint, the breakpoint is
removed. Lines with breakpoints
appear in highlighted text. This cor­
responds with the BREAKPOINT SET
and BREAKPOINT CLEAR command.

click right A temporary breakpoint is set on the
line and CodeView runs until
reaching it (or until reaching a previ­
ously set breakpoint or the end of the
program). This corresponds with the
GO command when given with a des­
tination breakpoint.

If you click on a line that does not correspond to
code (for example, if a line is a declaration or
comment), CodeView sounds a warning and
ignores the command.

2-23

sonal Computer AT or IBM Personal System/2, you can use
the SysReq key to interrupt a program regardless of how the
program uses Ctrl + Break and Ctrl + C.

Selecting Text with the Mouse
You can use the mouse to pick symbol names, commands, and other
character strings directly from the display window or the dialog
window. The string is then used as input to a dialog command or a
menu option's dialog window.

To select a string of characters, point the mouse to one end of the
string. Press the left button and hold while moving the pointer left or
right to the other end of the string; then release. As the mouse
moves, the characters highlight. Notice that the character directly
under the mouse pointer is not included as part of the string. You
must move the pointer past the last character desired.

The selected text is then used in one of two ways:

1. If you select a menu option requiring an argument, the dialog
wi ndow opens and the text appears.

2. If you press Ins, the text is copied to the end of the dialog window
buffer.

The selected text can be used only once. To use the same string
repeatedly, select the string again. If the string is selected and not
used immediately, the highlight disappears; however, CodeView
remembers the string until you press Shift + Ins or select a menu item
that requires the input dialog window.

Describing the Menu Selections
This section describes the selections on each of the CodeView
menus. Make these selections with the keyboard or the mouse.

2-25

command processor. This requires a large amount of
free memory since CodeView, the command processor,
symbol tables, and the debugged program must remain
in memory. If there is not enough memory to run the
SHELL command, an error message appears. Even if
there is enough memory to run the SHELL, there may­
not be enough memory left to run large programs from
the SHELL.

Exit Ends CodeVie\y and returns to the operating system.

The View Menu

File "Search Run Watch Options Language Calls Help F8=Trace F5=Go
I

55:
56:
57:
58:
59:
60:
61:
62:

» Source
Mixed
Assembly

Registers
Output

I dice.c I----------L...----~

F2
F4

The View m~nu includes selections for changing between source and
assembly modes and for switching between the debugging screen
and output screen. The corr~sponding function keys for menu
selection are on the right side of the menu where appropriate.

One of the following selections will have small double arrows to the
left of the name: Source, Mixed, or Assembly. These arrows indicate
which of the three display modes is in use. The Registers selection
mayor may not have double arrows to the left, depending on whether
the register window is displayed.

Selection Action

Source Changes to source mode (showing source lines only).

Mixed Changes to mixed mode (showing both unaltered code
and source lines). In a C program, the source lines do
not show until you run the C startup code to main.

Assembly Changes to assembly mode (showing unaltered code
only).

Registers (F2) Selecting this option toggles the register window on
and off.

2-27

Next

Previous

Label •••

Searches for the next match of the current regular
expression. This selection is meaningful only after
using the SEARCH command to specify the current
regular expression. If CodeView searches to the end of
the file without finding another match for the
expression, it wraps around and starts searching at the
beginning of the file.

Searches for the previous match of the current regular
expression. This selection is meaningful only after
using the SEARCH command to specify the current
regular expression. If CodeView searches to the begin­
ning of the file without finding another match for the
expression, it wraps around and starts searching from
the end of the file.

Searches the executable code for a label. A label can
be a function name, subroutine name, or an assembler
language label. If CodeView finds the label, the cursor
moves to the source line or instruction containing it.
CodeView switches to assembly mode, if necessary, to
show a label in a library routine or an assembler lan­
guage module.

The Run Menu

File View Search" Watch Options Language Calls Help I F8=Trace F5=Go

55:
56:
57:
58:
59:
6G:
61:

Start
Restart
Execute
Clear Breakpoints

The Run menu includes selections for running your program.

Selection

Start

Action

CodeView runs the program from the beginning to
the first breakpoint or to the end of the program, if
it does not encounter a breakpoint. Any previ­
ously set breakpoints or watch statements remain
in effect. (This has the same effect as selecting
Restart and then entering the GO command.)

2-29

Watchpolnt .••

Tracepolnt •••

Adds a watchpoint statement to the watch window. A
dialog window opens, asking for the source-level
expression whose value you want to test. A
watchpoint is a conditional breakpoint that causes
running to stop when the expression becomes
nonzero (true).

Adds a tracepoint statement to the watch window. A
dialog window opens, asking for the source-level
expression or storage range whose value you want
to test. A tracepoint is a conditional breakpoint that
causes a run to stop when the value of a given
expression changes. You cannot specify a storage
range tested with the Tracepolnt selection as you
can with the TRACEPOINT dialog command.

When setting a Tracepoint expression, you can
specify the format in which the value is displayed.
Type the expression followed by a comma and a
type specifier. If you do not give a type specifier,
CodeView displays the value in a default format.

Delete Watch... (Ctrl + U) Deletes a watch statement from the watch
window. A dialog window opens, showing the
current watch statements. If you are using a mouse,
move the pointer to the statement to delete, then
click either button. If you are using a keyboard, use
the arrow up or down keys. Move to the item you
want to delete, then press Enter.

Delete All Watch Deletes all statements in the watch window.

The Options Menu

File View Search Run Watch Wh Language
--------------~I
55:
56:
57:
58:
59:
6a:
61:

» Flip/Swap
» Bytes Coded
» Case Sense

386

Calls Help \F8=Trace F5=Go

The Options menu lets you set options that control CodeView.
Selections on the Options menu have small double arrows to the left
of the selection name when the option is on. The status of the option
and the presence of the double arrows reverses each time you select

2-31

The following example shows the appearance of the
same code with the option on:

27: name = gets(namebuf):
32AF:003E 8D46DE LEA AX.Word Ptr [namebuf]
32AF:0041 ·50 PUSH AX
32AF:0042 E89C03 CALL _gets (03E1)
32AF:0045 83C402 ADD SP.02
32AF:00488946DA MOV Word Ptr [name].AX

Case Sense When on, CodeView assumes symbol names are case
sensitive; when off, symbol names are not case sensi­
tive. (This option is on for C and Macro Assembler
programs, and off for BASIC and Pascal. We suggest
leaving the option in its default setting.)

386 When on, the register window displays the registers in
the wider 386 format. Furthermore, this option enables
you to assemble and run instructions that reference
32-bit registers.

Warning: If the 386 option is off, then any data stored in the high­
order word of a 32-bit register is lost.

The Language Menu

File View Search Run Watch Options M'; .•• Calls Help I F8=Trace F5=Go
----------11 dice.c :
63: »Auto
64: BASIC
65: C
66: ~----'

67:
68:
69:

The Language menu allows you to either select the expression evalu­
ator or instruct CodeView to select it automatically. As with the
Options menu, the selection that is on is marked by double arrows.
However, unlike the Options menu, only one item can be selected at a
given time.

Selection

Auto

Action

CodeView selects the expression evaluator. The
debugger automatically selects the evaluator each
time a new source file is loaded. CodeView examines
the extension of the source file, to determine which
expression evaluator to select. For example, the Auto

2-33

selecting a routine from the Calls menu does not (by itself) affect the
program's running. It does provide a convenient way to view previ­
ously called routines.

Note: If you are using CodeView to debug assembly language pro­
grams, only the current routine shows in the Calls menu.

The Help System

File View Search Run Watch Options Language CallsiIIIEIIF8=Trace FS=Go
----------11 dice.c 1--____ -..,..-__ .1....-___ .,..,

Intro to Help
Keyboard/Mouse

59:
6a:

Run Conrnands
Di sp 1 ay COIIIIIands
Expressions
Watch/Break
Memory Operations
System Conmands
Regular Expressions
Thread Conrnand
About Codeview

The CodeView online help uses menus that provide quick access to
help screens on a variety of subjects. Help is available in window and
sequential modes, but the help differs. The following explains the
help system in window mode.

Help (on menu bar) If you have a keyboard, press Alt + H to open
the Help menu. (Mouse users can click on,
Help.) Move the cursor down to highlight the
desired help item, then press Enter; or press
the highlighted character to choose an item.
(Mouse users can click on the desired item.)

F1 or H F1 or H takes you to the Intro to Help screen.

The only help available in sequential mode is the dialog version of
the HELP command (H). The help available in sequential mode is a
listing of the dialog commands and their formats.

Note: CV.HLP (for DOS or the DOS mode of OS/2) and/or CVP.HLP
(for OS/2 mode) must be in your current directory or within the
directories specified by your PATH command. If CodeView
does not find the help file, it issues an error message.

2-35

Key Function

F9 Sets or clears a breakpoint at the current program location. If
the current program location has no breakpoint. one is set. If
the current location has a breakpoint. it is removed. This is
equal to the BREAKPOINT SET (BP) dialog command without
an argument.

F10 Runs the next source line in source mode or the next instruc-
tion in assembly mode. If the source line or instruction con-
tains a function. procedure. or interrupt call. the call is run to
the end and CodeView is ready to run the line or instruction
after the call. This is equal to the PROGRAM STEP (P) dialog
command.

The CodeView WATCH (W). WATCHPOINT (WP). and TRACEPOINT
(TP) commands work in sequential mode, but because there is no
watch window, the watch statements do not show. You must use the
WATCH LIST command (W) to examine watch statements and watch
values with no arguments.

All the CodeView commands that affect program operation (such as
TRACE, GO, BREAKPOINT SET) are available in sequential mode.
Any debugging operation that you can do in window mode you can
also do in sequential mode.

Using Dialog Commands
You can use CodeView dialog commands in sequential mode or from
the dialog window in window mode. In sequential mode, they are the
primary method of entering commands. In window mode, use dialog
commands to enter commands that require arguments or that do not
have corresponding window commands.

Many window commands have duplicate dialog commands. Gener­
ally, the window version of a command is more convenient, while the
dialog version is more powerful.

2-37

location. However, by pressing Enter, CodeView places the new
command at the end of the buffer. For example, if you enter a
command while the cursor is at the start of the buffer and then scroll
to the end of the buffer, you see the command just entered. If you
scroll back to the point where you entered the command, you see the
original characters rather than the characters you typed over.

Upon starting CodeView, the buffer contains only the copyright
message. As commands are entered during the session, the buffer
gradually fills from the bottom to the top. If you do not fill the entire
buffer and you press the Home key to go to the top of the buffer, the
screen will be blank.

Formatting CodeView Commands and Arguments
The CodeView command format is similar to the format of SYMDEB
and DEBUG. However, some features, particularly operators and
expressions, are different. The general format for CodeView com­
mands is shown below:

command [argument] ... [;command2]

The command is a one-, two-, or three-character name, and argu­
ments are expressions that represent values or addresses used by
the command. Use any combination of uppercase and lowercase
letters in commands. Often, the first argument is after the command
with no space.

The number of arguments required or allowed with each command
varies. If a command takes two or more arguments, you must sepa­
rate the arguments with spaces. Use a semicolon as a command
separator if you want to specify more than one command on a line.
(Arguments may also be case sensitive.)

2-39

Chapter 3. Preparing Programs for
CodeView

This chapter describes how to produce an executable program that
can be debugged with CodeView.

Preparing C Programs
You must compile and link with the correct options to use a C
program with CodeView. These options direct the compiler and the
linker to produce an executable file that contains line-number infor­
mation and a symbol table, in addition to the executable code. This
creates a larger executable file. To minimize a program's size after
debugging, recompile and link your final version without the options
for using CodeView.

Compile Options

Option Description

IZi For full symbolic debugging information

IZd For line number records only

IOd Turns off optimization

To use CodeView to display source code, you must compile with
either /Zi or /Zd. /Zd writes less symbolic information to the object
file saving disk space and memory. For example, if you are working
on a program made up of five modules but only need to debug one
module, you can compile that module with the /Zi option and the
other modules with the /Zd option. You can examine global variables
and see source lines in modules compiled with the /Zd option, but
local variables are unavailable. If you do not use either of the IZ
options, CodeView will work only in assembly mode.

The IOd option to turn off optimization is desirable but not required.
Optimization rearranges code for greater efficiency and, as a result,
the instructions may not correspond closely to the source lines. After
debugging, you can compile a final version of the program with the
optimization level you prefer.

3-1

Example

CL IZi lad EXAMPLE.C

CC IZi lad EXAMPLE;
LINK ICO EXAMPLE;

CL IZi lad Ic MODl.C
CL IZd IOd/c MOD2.C
CL IZi MODl MOD2

;* Example 1

;* Example 2

;* Example 3

masm subl: :* Example 4
masm sub2:
cl -c -Zi cmain.c
link ICo cmain+subl+sub2 ••• s1ibc+slibc3;

In Example 1, CL is used to compile and link the source file
EXAMPLE.C. CL creates an object file, EXAMPLE.OBJ, and then
automatically starts the linker with the ICO option. Example 2 shows
how to compile and link the source file EXAMPLE.C using the CC
program provided with the compiler. Both examples result in an exe­
cutable file, EXAMPLE.EXE, which has the required line-number infor­
mation, symbol table, and unoptimized code.

In Example 3, the source module MOD1.C is compiled to produce an
object file with full symbolic and line information, while MOD2.C is
compiled to produce an object file with limited information. CL is
again used to link the resulting object files. (CL does not recompile
because the arguments do not have .C extensions.) Typing IZi on the
command line causes the linker to start with the ICO option. The
result is an executable file in which one of the modules, MOD2.C, is
harder to debug; however, the executable file takes up substantially
less space on a disk than it would if both modules were compiled with
full symbolic information.

3-3

Preparing Pascal Programs
To use CodeView with a program written in Pascal, you must compile
the program with the IBM Pascal Compiler/2 and link with the IBM
Linker/2.

Writing Pascal Source
Pascal Compiler/2 supports the use of include files by providing the
$INCLUOE metacommand. You cannot debug source code put into
include files. To debug a large program, you can debug in separately
compiled source files, rather than using include files. Variables that
might be referenced from within CodeView, must be declared
PUBLIC. The PUBLIC attribute causes the compiler to pass informa­
tion about these symbols to the linker for use by CodeView.

Debugging is simpler if you put each source statement on a separate
source line. When they are on the same line, you cannot find the sep­
arate statements individually. For example, code is easier to debug if
you write it in the following form:

if i = max then
begin

k : = k+l;
i := 0

end;

Compiling and Linking Pascal Programs
To prepare a Pascal program, compile normally; then link your
program using the ICO option. CodeView supports mixed-language
programming. An example of how to link a Pascal module with
modules from other languages is in "Preparing Macro Assembler
Programs."

Example

PASl TEST;
PAS2
LINK leo TEST;

The example compiles the source file TEST.PAS to produce an object
file, TEST.OBJ, which contains the symbol and required line-number
information. Then the linker starts with the ICO option.

3-5

• If you access command arguments in the Program Segment
Prefix (PSP), CodeView changes the PSP. Tabs, quotation marks,
and extra spaces are removed so that one space separates each
argument. CodeView retains quotation marks (along with any
quoted material) for command arguments given with the L
command.

Assembling and Linking Macro Assembler Programs
To prepare an assembler program, assemble normally; then link your
program using the ICO option. If you link your assembler program
with a module written in C (which is case sensitive), you need to
assemble with IMX or IML. After assembling, link with the ICO option
to produce an executable file.

Example

MASM EXAMPLE;
LINK ICO EXAMPLE;

;* Example 1

CL IZi IOd Ie IAL prog.e ;* Example 2
BASCOM IZi sub1;
MASM IMX sub2;
LINK ICo prog+sub1+sub2 ••• slibc+slibe3;

Example 1 assembles the source file EXAMPLE.ASM, and produces
the object file EXAMPLE.OBJ. The linker then starts with the ICO
option and produces an executable file containing the symbol table
information required.

Example 2 shows how to create mixed-language executable files that
CodeView can use. CodeView is able to trace through source files in
the same session, regardless of the language.

Note: When using CodeView with programs created with the IBM
Macro Assembler/2, the CodeView display starts in assembly
mode. (This is the startup default if CodeView does not find
line-number information.) Source mode cannot be used for
debugging, but you can load the source file into the display
window and view it in source mode. Any labels or variables
declared PUBLIC can be displayed and referenced by name
instead of address. They cannot be used in expressions
because type information is not written to the object file.

3-7

Chapter 4. Managing Expression
Evaluators

This chapter describes CodeView's expression evaluators and their
use. Expression evaluators allow the use of a specific programming
language's syntax when entering expressions and addresses as argu­
ments with CodeView commands. CodeView provides two
expression evaluators, one using C syntax and one using BASIC
syntax.

CodeView command arguments are expressions that can include
symbols, constant numbers, operators, and registers. Arguments can
be simple machine-level expressions that directly specify an address
or range in memory, or they can be source-level expressions that
correspond to operators and symbols used in C, BASIC, Pascal, or
Macro Assembler.

Each expression evaluator has a different set of operators and rules
of precedence. You can change the expression evaluator. If you
specify a language other than the one used in the source file, the
expression evaluator recognizes your program symbols. (For
example, C does not accept Basic type-declaration characters.) If
you are debugging an assembly routine called from BASIC, choose
the BASIC expression evaluator rather than C, which is the default for
assembly programs.

If the Auto option is on, CodeView examines the file extension of each
new source file that is traced. C, Pascal, and assembly modules
cause CodeView to select C as the expression evaluator. BASIC
modules cause CodeView to select the BASIC expression evaluator.

C Expression Evaluator
The C evaluator allows you to specify CodeView arguments using C
syntax. The following sections discuss the operators, symbols, con­
stants, strings and functions allowed by the evaluator. CodeView
uses the most commonly used C operators and additional operators.
These operators are listed in the following table in order of preced­
ence.

4-1

The type operator (used in type casting) can be any of the predefined
C types. CodeView limits casts of pointer types to one level of indi­
rection.

When you use a C expression as an argument with a command that
takes multiple arguments, the expression must not have any internal
spaces. For example, count + 6 is allowed, but count + 6 may be
interpreted as three separate arguments. Some commands, such as
the DISPLAY EXPRESSION command, do permit spaces in
expressions.

CodeView cannot evaluate an expression containing huge objects.

C Memory Operators
The BY, WO and OW operators are unary operators. They return the
result of a direct memory operation. Use BY to access a byte, WO to
access a word, and OW to access a doubleword. These operators are
of special interest to assembler programmers because they simulate
the BYTE PTR, WORD PTR, and DWORD PTR operations.

All of the operators listed in this section are part of the CodeView C
expression evaluator and should not be confused with CodeView
commands. As operators, they can only build expressions, which in
turn are used as arguments in commands.

Accessing Bytes (BY)
Access the byte at an address by using the BY operator.

Formal
BY address

The result is a short integer that contains the value of the first byte
stored at address.

Example
Example 1 returns the first byte at the address of sum.

>?BY sum
101

;* Example 1

Example 2 returns the byte pOinted to by the BP register, with a dis­
placement of 6.

>?BY bp+6
42

;* Example 2

4-3

Example
Example 1 returns the first doubleword at the address of sum.
>? ow sum
>132120365

;* Example 1

Example 2 returns the doubleword pointed to by the SI register.

>? ow s; ,x
>3F880000

C Symbols

Format

name

;* Example 2

A symbol is a name that represents a register, a segment address, an
offset address, or a full 32-bit address. At the C source level, a
symbol (identifier) is a variable name or the name of a function.
Symbols follow the naming rules of the C compiler.

Note: CodeView command letters are not case sensitive; symbols
given as arguments are case sensitive (unless you have
turned off case sensitivity with the Case Sense selection from
the Options menu).

In assembly language output or in output from the DISPLAY
SYMBOLS command, CodeView displays some symbol names in the
object-code format. This format includes a leading underscore. For
example, the function main is displayed as _main. Only global labels
(such as procedure names) show in this format. Labels within library
routines sometimes appear with a double underscore Lchkstk).
You must use two leading underscores when accessing these labels
with CodeView commands.

4-5

C Strings

Format

"null-terminated-string"

Strings can be specified as expressions in C. Use C escape charac­
ters within strings. For example, double quotation marks within a
string are specified with the \" escape character.

Example
EA message "This \"string\" ;s okay."

The example uses the ENTER ASCII command (EA) to enter the given
string into memory starting at the address of the variable message.

C Functions
When debugging C programs using the C expression evaluator,
expressions can contain functions that are part of the executable file.
For example, if the program contained the function sorted, the fol­
lowing example is a valid expression:

success=sorted (arrayl)

BASIC Expression Evaluator
The BASIC expression evaluator uses a subset of the BASIC opera­
tors. It also supports one important BASIC command, LET, and one
operator in addition to the BASIC operators, the colon.

The CodeView BASIC operators are listed in the following table in
order of precedence.

Precedence Operator

1 (Highest) 0

2 ..
3 * I

4 \MOD

5 +-

6 =<> > < >= <=

4-7

The routine must be a high-level language routine and the variable
must be a local variable within the routine.

When a BASIC expression is used as an argument with a command
that takes multiple arguments, the expression must not have any
internal spaces. Commands (such as the DISPLAY EXPRESSION
command) that take only one argument do permit spaces in
expressions.

BASIC Symbols

Format

name

A symbol is a name that represents a register, a segment address, an
offset address, or a full 32-bit address. At the BASIC source level, a
symbol is simply a variable name or the name of a routine; you do
not necessarily need to know what kind of address it represents. With
the BASIC expression evaluator, symbols follow the naming rules of
the BASIC compiler. In particular, all the type specifiers used in
BASIC ($, %, &, !, and #) are accepted by the BASIC expression eval­
uator.

Note: Symbols are never case sensitive to BASIC, whether the Case
Sense option is on or not.

BASIC Constants

Format

fixed-point-string[11 !]
floating-point-string[fl !]

digits Integer. default radix
&Odigits Octal radix
&digits Alternative octal radix
&Hdigits Hexadecimal radix

Single or double. fixed-point format
Single or double. floating-point format

With the BASIC expression evaluator, enter numbers as long-integer,
single-precision, or double-precision data objects. Constants are
formed according to the rules of the BASIC compiler. A single or
double- precision constant must be entered in decimal radix, regard­
less of the current system radix. To enter fixed- and floating-point
numbf:rs, use the BASIC rules for forming fixed- and floating-point
strings.

4-9

BASIC Strings
The evaluator does not allow inputting strings while dEfuugging.
However, it does recognize both fixed- and variable-length string var­
iables, as defined by the compiler. (This includes arrays and records
of strings.) Expressions that refer to strings will probably be quite
simple because string operators (concatenation and relational opera­
tors) are not supported by the evaluator.

By using the ENTER ASCII command, you can enter a string literal at
a given address. To use this technique effectively, you need to
understand how BASIC handles string variables.

BASIC Intrinsic Functions
When entering an expression, use a limited number of BASIC
intrinsic functions. The primary use of these functions is to convert a
BASIC variable or value from one type to another for purposes of cal­
culation. The following are the intrinsic functions recognized by the
expression evaluator. (See your BASIC Compilerl2 Language Refer­
ence for a complete description of the functions.)

Argumenl1 Funcllon Inpul Type OulpulType

ASC ASCII value String Integer
of first char-
acter

CDSl Data-type Numerical Double
conversion expression

CINT Conversion, ~umerical Integer
with expression
rounding

CSNG Data-type Numerical Single
conversion expression

CVI Data-type Two-byte Integer
conversion string

CVS Data-type Four-byte long
conversion string

CVD Data-type Eight-byte Double
conversion string

FIX Conversion Numerical Integer
with trun- expression
cation

4-11

To switch expression evaluators using a dialog command, enter the
following:

USE [language]

where language is C, BASIC, or Auto.

The command is not case sensitive. Entered on a line by itself, USE
displays the name of the current expression evaluator.

Example
Example 1 switches to the C expression evaluator.

>USE C
C

;* Example 1

Example 2 displays the name of the current expression evaluator,
which is BASIC.

>USE
BASIC

;* Example 2

Working with Pascal Programs
CodeView uses the C expression evaluator when debugging Pascal
programs. Therefore, expressions are translated into C when
CodeView commands are entered.

Translating Pascal Expressions Into C
Pascal PUBLIC symbols can be translated with a C construct called
cast. For example, if the Pascal REAL variable x is a PUBLIC symbol,
CodeView recognizes that there is a symbolic reference with the
name x and its location in memory.

Note: Translate integer variables if they are used in expressions
with other variables or if you use the expression evaluator to
change val ues.

4·13

Record

Assume you have the following declarations:

a rec : RECORD
- field_a: ARRAY [0 ... 5] OF WORD;

field_b : REAL8;
field_c : WORD
END;

To get the value in a_rec.field_c, the format for the equivalent C
expression is:

*(int *}&a_rec + byte offset

As field_c cannot be made PUBLIC, you will need to compute the byte
offset. The byte offset for field_c is 20 (12 bytes for field_a + 8 bytes
for field_b).
So the equivalent C expression for a_rec.field_c is:

*(;nt *}&a_rec + 20

4-15

BYTE PTR [di +6]
BYTE PTR [si][bp+6]
WORD PTR [bx][si]

BY di+6
BY si+bp+6
WO bx+si

3. Taking the address of a variable - Use the ampersand (&) to get
the address of a variable with the C expression evaluator.

OFFSET var &var

4. The PTR operator - With CodeView, C-type casts perform the
same function as the Macro Assembler PTR operator.

BYTE PTR var
\'JORD PTR var
DWORD PTR var

(char) var
(int) var
(long) var

5. Accessing array elements - Accessing arrays declared in
assembly code can cause problems because Macro Assembler
emits no type information to indicate which variables are arrays.
Therefore, CodeView treats an array name like any other vari­
able.

In C, an array name is equated with the address of the first
element. Therefore, if you prefix an array with the address oper­
ator (&), the C expression evaluator gives correct results for
array operations.

string[12]
warray[bx+di]
darray[4]

(&stri ng) [12]
(&warray) (bx+di)/2
(&darray) [1]

In the second and third examples, notice that the indexes used in
the assembly source-code expressions differ from the indexes
used in the CodeView expressions. This difference is necessary
because C arrays are automatically scaled according to the size
of elements. In assembly, the program must do the scaling.

Regular Expressions
This section explains all of the special characters that form regular
expressions. You do not need to learn the whole system to use
CodeView SEARCH commands. The simplest regular expression is a
text string. For example, to search for all instances of the symbol
count, specify count as the string to be found.

4-17

essary only for the left bracket; the right bracket is not considered a
special character.

Backslashes are also required when searching for the XOR operator
(A), the XOR assignment operator (A =), the period in member­
selection expressions, or the dollar sign ($) in variable names.

Using the Period
A period in a regular expression matches any single character. This
corresponds to the question mark used in specifying DOS filenames.

For example, you could use the regular expression ato. to search for
any of the functions atof, atoi, or atol. You could use the expression
x.y to search for strings such as x+ y, x-y, or x< y. If your program­
ming style is to put a space between variables and operators, you
could use the regular expression x . y for the same purpose.

When you use the period as a global file character, you find the
strings you are looking for, but you may also find other strings that
you are not interested in. Use brackets to be precise about the
strings you want to find.

Using Brackets
Brackets can specify a character or characters you want to locate.
Any of the characters listed within the brackets is an acceptable
match. This method is more exact than using a period to match any
character.

For example, the regular expression x[-+ /*]y matches x+ y, x-y, x/y,
or x*y, but not x= y or xzy. The regular expression count[12] matches
count1 and count2, but not countS. Similarly, \\ [ntvbrfa'"\Ox] matches
any escape sequence.

Most special characters in regular expressions have no special
meaning when used within brackets. The only special characters
wittlin brackets are the dash (-), caret (A), and right bracket (n.
These characters have a special meaning only in certain contexts, as
explained in the next sections.

4-19

Using the Asterisk
Placement of the asterisk (*) after a character causes a repeated
sequence of that character. The character to be located in the text
being matched may repeat once, numerous times, or not repeat at all.

The regular expression [for *(test] matches any of the following
strings:

for (test
for (test
for (test

This is convenient if the text contains some spaces, but you do not
know how many. Be careful in this situation; you cannot be sure if
the text contains a series of spaces or a tab. Notice that the last
example contains no repetitions of the space character.

You might also use the asterisk to search for a symbol when you are
not sure of the spelling. For example, use first*ime if you are not
sure if the symbol is spelled firsttime or firstime.

One use of the asterisk is to combine it with the period (.*). This com­
bination searches for any group of characters and is similar to the
asterisk used in specifying DOS filenames. The expression (.*)
matches (test), (response = = 'Y'), (x=O;x< =20;x+ +), or any other
string that starts with a left parenthesis and ends with a right paren­
thesis.

You can use brackets with the asterisk to search for a sequence of
repeated characters of a given type. For example, \[[0-9]*\] matches
integer constants within brackets ([1353] or [3]) but does not match
alphabetic characters or symbols within brackets ([count]). Empty
brackets ([]) are also matched since the characters in the brackets
are repeated zero times.

Matching the Start or End of a Line
In regular expressions, the caret (A) matches the start of a line while
the dollar sign ($) matches the end of a line.

The regular expression AC matches any uppercase C that starts a
line. Similarly,) $ matches a right parenthesis at the end of a line,
but not a right parenthesis within a line.

4-21

Registers

Specify a register name to use the current value stored in the reg­
ister. Registers are not needed in C source debugging, but they are
used frequently for assembler language debugging.

Format

[@]register

When you specify a symbol, CodeView first checks the symbol table
to see if there is a symbol with that name. If CodeView does not find
a symbol, it checks to see if the symbol is a valid register name. To
identify the name with a register regardless of any name in the
symbol table, use the sign @ as a prefix to the register name.

CodeView recognizes the register names in the following table:

Type Names

8-bit high registers AH BH CH OH

8-bit low registers AL BL CL OL

16-bit general purpose AX BX CX OX

16-bit segment CS OS SS ES

16-bit pOinter SP BP IP

16-bit index SI 01

32-bit general purpose EAX EBX ECX EOX

32-bit pOinter ESP EBP

32-bit index ESI EOI

Note: The 32-bit registers are only available if the 386 option is on
and the computer is running in 386 mode.

4-23

Addresses

In Example 3, the DUMP BYTES command dumps storage starting at
a point 10 bytes beyond the symbol label.

>DB 1 abe 1 + 10 ;* Example 3

In Example 4, the DUMP BYTES command dumps storage at the
address having the segment value stored in ES and the offset address
200.

>DB ES:200 ;* Example 4

4-25

Address Ranges

Example 4 uses the UNASSEMBLE command (U) to list the assembler
language statements starting 30 instructions before label and contin­
uing to label.

>U label-30 label ;* Example 4

4-27

Chapter 5. Executing Code

The TRACE (T), PROGRAM STEP (P), GO (G), EXECUTE (E) and
RESTART (L) commands run code within a program. One difference
between the commands is the size of the step that each command
runs.

Command Action

TRACE (T) Runs the current source line in source mode or
the current instruction in assembly mode;
traces into functions, procedures, and inter-
rupts.

PROGRAM STEP Runs the current source line in source mode or
(P) the current instruction in assembly mode; steps

over functions procedures or interrupts.

GO (G) Runs the current program.

EXECUTE (E) Runs the current program in slow motion.

RESTART (L) Restarts the current program.

In window mode, CodeView updates the screen to show any changes
when you run a TRACE, PROGRAM STEP, or GO command. The
highlight marking the current location moves to the new current
instruction in the display window. Values change, if appropriate, in
the register and watch windows.

In sequential mode, CodeView displays the current source line or
instruction after each TRACE, PROGRAM STEP, or GO command.
The format of the display depends on the display mode.

If the display mode is source (S +) in sequential mode, CodeView
shows the current source line. If the display mode is assembly (S-),
CodeView shows the status of the registers and flags and the new
current instruction in the format of the REGISTER command. The
mixed display mode (S&) shows the registers, the new source line,
and the new instruction.

5-1

T
TRACE

Use the following format to enter the dialog command.

Format

T [count]

If you specify the optional count, the command runs count times
before stopping.

Example
These examples show the TRACE command in sequential mode. In
window mode, there is no output from the commands, but CodeView
updates the display showing changes caused by the command.

Example 1 sets the display mode to source. It uses the SOURCE LINE
command to display the current source line. Notice that the current
source line calls the function analyze. The TRACE command then
runs the next four source lines. These lines are the first four lines of
the analyze function.

The TRACE command operates similarly for all the languages. If you
run the TRACE command when the current source line contains a
subroutine, procedure, or function call, CodeView runs the first line of
the called routine.
>S+ ;* C Example 1
source
>.
73: analyze(code,inword);
>T 4
90: char code;
92:
94: ++letters;
95: if (strchr("AEIOUaeiou",code) I I (strchr("yY",code) && linword» >

Example 2 sets the display mode to assembly and traces the current
instruction. This example and the next one are the same as the
examples of the PROGRAM STEP command. The TRACE and
PROGRAM STEP commands are different only if the current instruc­
tion is a function, procedure, interrupt call, or REP instruction when
the command runs.

5-3

P
PROGRAM STEP

The PROGRAM STEP command runs the current source line in
source mode or the current instruction in assembly mode. The
current source line or instruction is the one that the CS and IP regis­
ters pointed to. In window mode, the current instruction appears in
reverse video or in a contrasting color.

In source mode, if the current source line contains a function call,
CodeView runs the entire function and is ready to run the line after
the function call. In assembly mode, if the current instruction is a
Call, INT, or REP instruction, CodeView runs the entire procedure or
interrupt and is ready to run the next instruction after the procedure
or interrupt call.

Use the PROGRAM STEP command to run over function, procedure,
and interrupt calls. To trace into any call except operating system
calls. To trace into any call except operating system calls, use the
TRACE (T) command. There is no direct way to trace into operating
system calls.

Keyboard Selection Mouse Selection

Press F10. 1. Point on F8'" Trace.
2. Click the right button.

Use the following format to enter the dialog command.

Format

P[count]

If you specify the optional count, the command runs count times
before stopping.

Example
The examples show the PROGRAM STEP command in sequential
mode. In window mode, there is no output from the commands, but
CodeView updates the display to show changes caused by the
command.

5-5

P
PROGRAM STEP

Example 3 sets the display mode to mixed and steps through the
current instruction.

>5& ;* Example 3
mixed
>P
AX=0043 BX=0043 CX=025C DX=0000 5P=1900 BP=1904 SI=04BA DI=1952
D5=5BE4 E5=5BE4 55=5BE4 C5=56F3 IP=026E NV UP EI PL NZ NA PO NC
92: ++ 1 etters;
56F3:026E FF067201 INC Word Ptr [_letters (0172)] D5:0172=0000
>

5-7

To enter the GOTO command:

Keyboard Selection

1. Move the cursor to the source

Mouse Selection

1. Point to the source line or

G
GO

line or instruction you want to instruction you want to run to.
run to. 2. Click the right button.

2. Press F7.

The highlight marking the current location moves to the source line or
instruction unless a breakpoint or the end of the program is encount-
ered. If the target line is in another module, use Open from the Flies
menu to load the source file for the other module.

Use the following format to enter the dialog command.

Format

G [breakaddress]

If you specify the command with no argument, CodeView runs until it
finds a breakpoint or the end of the program.

You can use the GOTO form of the command by specifying a
breakaddress. The breakaddress can be a symbol, a line number, or
an address in the segment:offset format. An offset address without a
segment causes CodeView to use the address in the C8 register as
the default segment. If you give the breakaddress as a line number
but the corresponding source line is a comment, declaration, or blank
line, the following message appears:

No code at this line number

Example
These examples show the GO command in sequential mode. In
window mode, there is no output from the commands, but CodeView
updates the display to show changes caused by the command.

In Example 1, the display mode is set to source (8+). When you enter
the GO command, CodeView starts the program running at the
current address and continues until it reaches the start of the subpro­
gram BUBBLE.

5-9

E
EXECUTE

The EXECUTE command is similar to the GO command with no argu­
ments, except that it runs in slow motion. The run starts at the
current address and continues to the end of the program or until
CodeView reaches a breakpoint, tracepoint, or watchpoint. To stop
the command from running the program, press any key or click a
mouse button.

Keyboard Selection

1. Press Alt + R.
2. Press E.

Mouse Selection

1. Point to Run.
2. Press and hold a button.

Drag the highlight to Execute;
release.

Use the following format to enter the dialog command.

Format

E

You cannot set a destination for the EXECUTE command as you can
for the GO command.

In sequential mode, the output from the EXECUTE command depends
on the display mode (source, assembly, or mixed). In assembly or
mixed mode, the command runs one instruction at a time. The
command displays the current status of the registers and the instruc­
tion. In mixed mode, it also shows any source line at the instruction.
In source mode, the command runs one source line at a time, dis­
playing the lines as it runs them.

Note: The EXECUTE command has the same command letter (E) as
the ENTER command. If the command has at least one argu­
ment, CodeView interprets the E as ENTER. If there is no
argument, CodeView interprets it as EXECUTE.

5-11

Chapter 6. Examining Data and
Expressions

The following table summarizes the commands and their actions
descri bed in this chapter.

Command Action

DISPLAY EXPRESSION Displays values of CodeView
expressions.

GRAPHIC DISPLAY While in window mode, nested
structures are shown as a nulI-
terminated ASCII string next to
any field that contains a character
pointer.

DISPLAY SYMBOLS Displays the names and
addresses of symbols and the
names of defined modules within
a program.

DUMP COMMANDS Multiple DUMP commands allow
contents of storage to be dumped
to the screen or output device.

COMPARE MEMORY Compares two blocks of memory.

SEARCH MEMORY Scans a specified area of
memory for specific byte values.

PORT INPUT Reads and displays a byte from a
specified hardware port.

REGISTER Displays the contents of the
processor's registers and
changes the values of the regis-
ters.

87 Dumps the contents of the 8087,
80287, or 80387 registers. Use
only with a numeric coprocessor
chip or an 8087 emulator math
library.

6·1

?
DISPLAY EXPRESSION

Char- Output Sample Sample
acter Format Expression Output

d Signed 140000,d 40000
decimal
integer

i Signed 140000,i 40000
decimal
integer

u1 Unsigned 140000,u 40000
decimal
integer

0 Unsigned 140000,0 116100
octal integer

x or X2 Hexadecimal 140000,x 9c40
integer

f Signed value 13.12.,f 1.500000
in floating
point decimal
format with
six decimal
places

e or E3 Signed value 13.12.,e 1.500000e+000
in scientific
notation
format with
up to six
decimal
places
(trailing
zeros and
decimal point
are trun-
cated)

6-3

?
DISPLAY EXPRESSION

produces the output 100000. However, the command ?100000,hd
produces the output -31072 because only the short int part of the
value is evaluated.

Notes:

1. In the C language, CodeView does not support the nand p type
specifiers and the F and H prefixes even though the C printf func­
tion does.

2. The DISPLAY EXPRESSION command does not work for pro­
grams assembled with IBM Macro Assembler/2 because Assem­
bler does not write information to the object file about the type
size of each variable. Use the DUMP command instead.

3. Do not use a type specifier when evaluating strings in BASIC or
Pascal. Simply leave off the type specifier, and the expression
evaluator displays the string correctly. The s type specifier
assumes the C language string format, which other languages
conflict with; if you use s, then CodeView displays characters at
the given address until it encounters a null.

The remainder of this section gives examples that are relevant to all
languages, then gives examples specific to C, BASIC, and Pascal.

Use the C expression evaluator to debug code written with Macro
Assembler.

Example
Example 1 displays the value of the variable amount, an integer. The
value stored in amount first displayed in the system radix (in this
case, decimal), then in hexadecimal, then in octal.

>? amount
500
>? amount,x
If4
>1 amount,o
764
>

;* Example 1

Example 2 shows how CodeView can be used as a calculator. It con­
verts between radixes, calculates the value of constant expressions,
or checks ASCII equivalences.

6-5

?
DISPLAY EXPRESSION

Example 2 illustrates how to display the values of members of a
structure. The same format applies to unions.

>? student. i d
19643
>? pstudent->id
19643
>

;* Example 2

Example 3 shows how the DISPLAY EXPRESSION command changes
the values of variables with the C expression evaluator.

>? amount
500
>? + + amount
501
>? amount
501
>? amount=600
600
>? amount
600
>

~~ Example 3

Example 4 shows how functions can be evaluated in expressions.
CodeView runs the function square with an argument of 9 and dis­
plays the value returned by the function. You can display the values
of functions only after you have run into the function main.

>? square(9)
81
>

BASIC Examples

;* Example 4

These examples assume that the BASIC source file contains the fol­
lowing statements:

amount% = 500
strng$ = "Here is a string"

Also, assume that the program has run to these statements and that
the BASIC expression evaluator is in use.

Example 1 shows how to examine strings with the BASIC expression
evaluator. Do not use the s format specifier.

6-7

?
DISPLAY EXPRESSION

casting. The C expression evaluator assumes INTEGER when
working with Pascal variables unless you tell it otherwise.

Example 1 then uses the address-of operator (&) to display, in
hexadecimal, the address where the value of hours is stored. Only
the offset portion of the address is shown; the data segment is
assumed.

>7 hours
14
>7 hours,x
000e
>7 hours,o
16
>7 &hours,x
0068
>

;* Example 1

Example 2 displays the value of the variable speed first in the default
decimal format, then in exponential format. Because speed is not an
INTEGER, you must specify its type as described in "Working with
Pascal Programs" in Chapter 4.

Example 2 then uses the address-of operator (&) to display the
address where the value of speed is stored.

>7 *(double *)&speed
8.9285717010498
>7 *(double *)&speed,e
8. 928572e+000
>? &speed
32932:108
>

Example 3 shows how to examine STRINGs. The C expression evalu­
ator expects a zero byte to indicate the end of a string, but Pascal
does not provide one. Therefore, the best way to examine STRINGs
is not to use the DISPLAY EXPRESSION command but to use the
DUMP ASCII command and specify the actual length of the STRING
variable (here, 23 bytes).

>da buffer 1 23 ;* Example 3
80A4:0050 Here is a string.
>

6-9

?
DISPLAY EXPRESSION

Assembly Examples
By default, the C expression evaluator debugs assembly modules;
however, some C expressions are particularly helpful for debugging
assembly code. Ttle following are typical examples:

Example 1 displays the first byte at the location pointed out by BX and
is equivalent to the assembly expression BYTE PTR [bx).

>? BY bx
12
>

;* Example 1

Example 2 displays the first word at the location pointed out by
[bp+8).

>? WO bp+8
9359
>

;* Example 2

Example 3 displays the first doubleword at the location pOinted out by
[si+12).

>? ow 5;+12
12555324
>

:* Example 3

Examples 4 and 5 use type castes, which are similar to the Macro
Assembler PTR operator. The expression (char) var displays the byte
at the address of var in signed format. The expression (int) var dis­
plays the word at the same address, also in signed format. Alter
either of these commands to display results in unsigned format
simply by using the u format specifier, as shown in Example 6.

>? (char) var
5
>? (int) var
1005
>

>? (char) var,u
>? (int) var,u

;* Example 4

;* Example 5

;* Example 6

8-11

11
GRAPHIC DISPLAY

Nested structures, such as c, are displayed as { ... }. The dialog
window displays a null-terminated ASCII string next to any field that
contains a character pointer.

To expand a nested structure or view the data addressed by a
pointer, move the cursor to the appropriate field and press Enter, or
with a mouse, point to the appropriate field and click the left button. If
the field does not contain a nested structure or pOinter, CodeView
beeps to indicate that you cannot select that field; otherwise, the new
structure or the data addressed by the pointer is displayed in the
dialog window.

When viewing the data addressed by pointers, the type of the pointer
determines what format is used to display the new data. Notice that
whatever data is being pOinted to will be displayed, even if the
pointer does not currently address meaningful data.

To return to the previous structure or pointer, press the Backspace
key or click the mouse button on the right.

To quit the GRAPHIC DISPLAY command, press Esc or click the left
mouse button while the mouse pointer is outside of the dialog
window.

While the dialog window is displayed on the screen, you cannot run
other CodeView commands.

Note: To use the GRAPHIC DISPLAY command, CodeView must be
in window mode. (In sequential mode, the value of each field
is displayed as if the DISPLAY EXPRESSION command were
used. You cannot trace through nested structure the way you
can in window mode.)

8-13

X?routine.symbol

X?routine. *

X?symbol

X?*

X*

x

X
DISPLAY SYMBOLS

The specified symbol in the specified
routine. CodeView looks for routine first
in the current module, then in other
modules from first to last.

All symbols in the specified routine.
CodeView looks for routine first in the
current module, then in other modules
from first to last.

Where CodeView looks for the specified
symbol:

1. In the current function
2. In the current module
3. In other modules, from first to last.

All symbols in the current function.

All module names.

All symbolic names in the program,
including all modules and all symbols.

Note: When you debug an assembly module, you cannot use the
routine field; use the module field. Therefore, the only ver­
sions of this command that work with assembly modules are:

X?module!*
X?module!symbol

C Examples
In the following examples, assume the program you are examining is
PI.EXE and that it consists of two modules: PI.C and MATH.C. The
PI.C module is the driver module. It consists of the main function
only. The MATH.C module has several functions. Assume that the
current function is div within the MATH.C module.

Example 1 lists the two user-created modules of the program calls as
well as the library modules used in the program.

6-15

>X?math!div.* ;* Example 4
3A79:0264 int div()

01 int b
[BP-0006] int quotient
SI int i
[BP-0002] int remainder
[BP+0004] int divisor

>

X
DISPLAY SYMBOLS

Example 5 shows one specific variable s within the arctan function.

>\fXX?math!arctan.s ;* Example 5
3A79:00FA int arctan()

[BP+0004] int
>

BASIC Examples
For the following examples, assume that the program examined is
called PROG.EXE and that it consists of the modules PROG.BAS and
SORT.BAS. Assume the current routine is the main program (which,
unlike subprograms, has no name in a BASIC program), and the
module SORT.BAS contains two subprograms, SORT and SWITCH.

Example 6 lists the two modules of the program, including
PROG.OBJ, which is the main module. It lists the BASIC library files
called by the program.

>X*
PROG.OBJ
SORT.OBJ
BRUN303.LIB(ftmdata)
BRUN303.LIB(crtO)
BRUN303.LIB(crt0dat)

BRUN303.LIB(doexec)
BRUN303.LIB(execmsg)

;* Example 6

Example 7 lists the symbols in the current routine and is the main
program. Although the main program has no label and does not
show in a stack trace, it is still an independent routine and has its
own local variables. BASIC does not put local variables to the stack
unless they are subprogram parameters.

>X?*
5825:178E integer
5825:1780 single
5925:1784 integer

;* Example 7
A%[array]
HOURS!
1%

6-17

X
DISPLAY SYMBOLS

>X?SORTS!* ;* Example 11
5837:0072 <no type> J 5837:0070 <no type> K
5837:006C <no type> TEMP 5401:0003 <no type> SWAP
5401:000C <no type> SORTS 5401:003F <no type> SORT

6-19

Dump Commands

command during the session, the dump address is the start of the
data segment (OS). For example, if you enter the DUMP WORDS
command with no argument as the first command of a session,
CodeView displays the first 64 words (128 bytes) of data declared in
the data segment. If you repeat the same command, CodeView dis­
plays the next 64 words after the ones dumped by the first command.

Note: Occasionally, one of the DUMP commands that display real
numbers (DUMP SHORT REALS, DUMP LONG REALS, or
DUMP 10-BYTE REALS) displays a number that contains one
of the following character sequences:

#NaN
#INF
#IND

NaN (not a number) shows data that CodeView cannot eval­
uate as a real number. INF (infinity) shows data that
CodeView can evaluate to infinity. IND (indefinite) shows data
that CodeView can evaluate to an indefinite number.

The next sections discuss variations of the DUMP commands. The
order corresponds to the length of data that each command displays.

6-21

DB
DUMP BYTES

The OUMP BYTES command displays the hexadecimal and ASCII
values of the bytes at the specified address or in the specified range
of addresses. The command displays one or more lines, depending
on the address or range supplied. Use the following format to enter
the dialog command.

Format

DB [address I range]

Each line displays the address of the first byte in the line, followed by
up to 16 hexadecimal byte values. Corresponding ASCII values
follow the byte values. Spaces separate the hexadecimal values,
except the eighth and ninth values, which a dash separates.
CodeView displays ASCII values without separation. ASCII values
that CodeView cannot display (lower than 32 or higher than 126)
appear as periods. CodeView displays no more than 16 hexadecimal
values in a line. The command displays values and characters until
the end of the range or, if you gave no range, until it displays the first
128 bytes.

Example
The example displays the byte values from OS:O to OS:36 (OS:Ox24).
CodeView assumes the data segment if no segment is given. ASCII
characters appear on the right.
>OB 0 36
305E:0000 53 6F 60 65 20 6C 65 74-74 65 72 73 20 61 6E 64 Some letters and
305E:0010 20 6E 75 60 62 65 72 73-3A 00 10 EA 89 FC FF EF numbers: •••••••
305E:0020 00 F0 00 CA E4 -
>

8-23

DI
DUMP INTEGERS

The DUMP INTEGERS command displays the signed decimal values
of the words (2-byte values) starting at address or in the specified
range of addresses. The command displays one or more lines,
depending on the address or range specified. Each line displays the
address of the first integer in the line, followed by up to eight signed
decimal words. Spaces separate the values. The command displays
values until the end of the range or until the first 64 integers are dis­
played. Use the following format to enter the dialog command.

Format

DI [address I range]

Note: In the C language, the size of an integer is system dependent.
CodeView assumes an integer has a 2-byte value.

Example
This example displays the byte values from OS:O to OS:36 (OS:Ox24).
Compare the signed decimal numbers at the end of this dump with
the same values shown as unsigned integers.

>01 0 36
305E:0000
305E:0010
305E:0020
>

28499 25965 27680 29797 25972 29554 24864 25710
28192 28021 25954 29554 58 -5616 -887 -4097
-4096 -13824 2532

6-25

OW
OUMPWOROS

The DUMP WORDS command (OW) displays the hexadecimal values
of the words (2-byte values) starting at address or in the specified
range of addresses. The command displays one or more lines,
depending on the address or range specified. Each line displays the
address of the first word in the line, followed by up to eight
hexadecimal words. Spaces separate the hexadecimal values. The
command displays values until the end of the range or until the first
64 words appear. Use the following format to enter the dialog
command.

Format

ow [address I range]

Example

This example displays the word values from DS:O to DS:36 (DS:Ox24).
No more than eight values per line appear.

>OW 0 36
305E:0000 6F53 6560 6C20 7465 6574 7372 6120 646E
305E:0010 6E20 6075 6562 7372 003A EA10 FC89 EFFF
305E:0020 F000 CA00 09E4
>

6-27

OS
DUMP SHORT REALS

The DUMP SHORT REALS command displays the hexadecimal and
decimal values of the short (4-byte) floating-point numbers at address
or in the specified range of addresses. Use the following format to
enter the dialog command.

Format

os [address I range]

The command displays one or more lines, depending on the address
or range specified. Each line displays the address of the floating­
pOint number in the first column. Next, it shows the hexadecimal
values of the bytes in the number, followed by the decimal value of
the number. Spaces separate the hexadecimal values.

The decimal value has the form:

[-]digit.decimaldigitsE[+I-]exponent

If the number is negative, it has a minus sign; positive numbers have
a plus sign. A decimal point follows the first digit of the number. Six
decimal places appear after the decimal point. After the decimal
digits comes the letter E, which marks the start of a 3-digit signed
exponent.

The command displays at least one value. If it specifies a range, all
values in the range appear.

Example
This example displays the short-real, floating-point number at the
address of the variable _spi. Only one value appears per line.

>DS _spi
5E68:0100 DB 0F 49 40 +3.141593E+000
>

8-29

DT
DUMP 10-BYTE REALS

The DUMP 10-BYTE REALS command displays the hexadecimal and
decimal values of the 10-byte floating-point numbers at the specified
address or in the specified range of addresses. Use the following
format to enter the dialog command.

Format

DT [address 1 range]

The command displays one or more lines, depending on the address
or range specified. Each line displays the address of the floating­
point number in the first column. Next, the hexadecimal values of the
bytes in the number appear, followed by the decimal value of the
number. Spaces separate the hexadecimal values.

The decimal value has the form: '

[-] di gi t. decima 1 di gi tsE [+1-] exponent

If the number is negative, it has a minus sign; positive numbers have
a plus sign. A decimal point follows the first digit of the number.
Sixteen decimal places appear after the decimal point. After the
decimal digits comes the letter E, which marks the start of a 3-digit,
signed exponent.

The command displays at least one value. If it specifies a range, all
val ues in the range appear.

Example
This example displays the 10-byte, real, floating-point number at the
address of the variable _tpi. Only one number appears per line.

>DT _tpi
5E68:0300 DE 87 68 21 A2 DA OF C9 00 40
3. 1415926535897930E+000 >

6-31

S
SEARCH MEMORY

The SEARCH MEMORY command (do not confuse this command with
the SEARCH command), scans a specified area of memory for spe­
cific byte values. It is primarily of interest to programmers using
assembly mode and users who want to test for the presence of spe­
cific values within a range of data.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

S range list

CodeView searches the specified range of memory locations for the
byte values specified in the list. If CodeView finds bytes with the
specified values, it displays the addresses of each occurrence of
bytes in the list.

The list can have any number of bytes. A space or comma separates
each byte value, unless the list is an ASCII string. If the list contains
more than one byte, the SEARCH MEMORY command looks for a
series of bytes that precisely matches the order and value of bytes in
list. If found, the beginning address of each series is displayed.

Example
Example 1 displays the address of each memory location containing
the string error. The command searches the first 1500 bytes at the
address specified by buffer. The string was found at the three
addresses CodeView displayed.

>5 buffer L 1500 "error"
2BBA:0404
2BBA:05E3
2BBA:0604
>

;* Example 1

6-33

I
PORT INPUT

The PORT INPUT command reads and displays a byte from a speci­
fied hardware port. It is primarily of interest to assembly language
programmers writing hardware-specific programs.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

1 port

The PORT INPUT command reads and displays the byte from the
specified port that is any 16-bit address. The PORT INPUT command
is often used in conjunction with the PORT OUTPUT command.

Example
The example reads input port number 2F8 and displays the result, E8.

>1 2F8 ;* hexadecimal radix assumed
E8
>

6-35

R
REGISTER

In sequential mode, the TRACE (T), PROGRAM STEP (P), and GO (G)
commands show registers in the same format as the REGISTER
command.

Example
(Examples 1 and 2 are both C examples but apply equally well to
BASIC.)

Example 1 displays all register and flag values, as well as the instruc­
tion at the address pointed to by the CS and IP registers. Because
the mode is mixed, the current source line also appears.

The storage operand L/etters] is evaluated as OS:0172=0000. This
means that the variable letters (at offset Ox0172 of the data segment)
currently has a value of O. The next instruction (INC Word Ptr
L/etters]) increments the value.

>S& ;* Example 1
mixed
>R
AX=0043 BX=0043 CX=025C DX=0000 SP=18F4 BP=18F8 SI=04BA DI=1946
DS=5BF2 ES=5BF2 SS=5BF2 CS=5701 IP=026E NV UP EI PL NZ NA PO NC
92: ++letters;

5701:026E FF067201 INC Word Ptr [_letters (0172)] DS:0172=0000
>

Example 2 shows the display mode set to assembly (S-) with no
source line. The breakpoint number is at the right of the last line. It
shows the current address is breakpoint 2.

>S-
source
>R

;* Example 2

AX=024F BX=0001 CX=0000 DX=0000 SP=1900 BP=1908 SI=04BA DI=1946
DS=5BF2 ES=5BF2 SS=5BF2 CS=5701 IP=021F NV UP EI PL NZ NA PO NC
5701:021F 807EFC20 CMP Byte Ptr [code],20 ;BR2
>

8-37

Example

7
87 Command

In this example, the first line shows the current closure method,
rounding method, and precision. The number 037F is the
hexadecimal value in the control register. The rest of the line is an
interpretation of the bits of the number. The closure method can be
projective or affine. The rounding method rounds to the nearest even
number, rounding down, rounding up, or the chop method (cutting off
toward zero). The precision is 64 bits, 53 bits, or 24 bits.

>7
cControl 037F (Projective closure. Round nearest. 64-bit
precision) iem=0 pm=l um=l om=l zm=l dm=l im=l

cStatus 6004 cond=1000 top=4 pe=0 ue=0 oe=0 ze=l de=0 ie=0
Tag A1FF instruction=59380 operand=59360 opcode=D9EE
Stack Exp exponent Value
cST(3) special 7FFF 8000000000000000 = + Infinity
cST(2) special 7FFF 0101010101010101 = + Not a Number
cST(l) valid 4000 C90FDAA22168C235 = + 3.141592265110390E+000
cST(0) zero 0000 0000000000000000 = + 0.000000000000000E+000
>

The second line shows if each exception mask bit is set or cleared.
The masks are:

• Interrupt-enable mask (iem)
• Precision mask (pm)
• Underflow mask (um)
• Overflow mask (om)
• Zero-divide mask (zm)
• Denormalized-operand mask (dm)
• Invalid-operation mask (im).

The third line shows the hexadecimal value of the status register
(6004 in the example) and an interpretation of the bits of the register.
The condition code (cond) in the example is the binary number 1000.
The top of the stack (top) is register 4 (shown in decimal). The other
bits shown are:

• Precision exception (pe)
• Underflow exception (ue)
• Overflow exception (oe)
• Zero-divide exception (ze)

6-39

Chapter 7. Managing Breakpoints

You control how a program runs by setting breakpoints. A breakpoint
is an address where a program stops each time CodeView finds the
address. By setting breakpoints at key addresses in the program,
you can freeze the program and examine the status of memory or
expressions at that point. You can also use the WATCHPOINT (WP)
and TRACEPOINT (TP) commands to set conditional breakpoints. The
following table lists the BREAKPOINT commands that are discussed
in this chapter.

Command Action

BREAKPOINT SET Creates a breakpoint at a specified address.
(BP)

BREAKPOINT Temporarily removes one or more breakpoints.
CLEAR (BC)

BREAKPOINT Temporarily removes one or more breakpoints.
DISABLE (BD)

BREAKPOINT Restores one or more disabled breakpOints.
ENABLE (BE)

BREAKPOINT LIST Displays information about current breakpoints.
(Bl)

7-1

BP
BREAKPOINT SET

The dialog version of the command is more powerful than the mouse
or keyboard versions because it lets you give a pass count and a
string of commands. The pass count specifies the first time that
CodeView is to take the breakpoint.

The commands are a list of dialog commands enclosed in quotes and
separated by semicolons. For example, if you specify the commands
as II? code;GII, CodeView automatically displays the value of the var­
iable code and then runs the GO command each time it encounters a
breakpoi nt.

In window mode, a breakpoint entered with a dialog command is dis­
played the same way as one created with a window command.
CodeView displays the source line or instruction corresponding to the
breakpoint location in highlighted text.

In sequential mode, CodeView displays information about the current
instruction each time a program encounters a breakpoint. CodeView
can show the register values, the current instruction, and the source
line depending on the display mode.

In assembly or mixed mode, CodeView also displays a breakpoint as
a comment to the right of the instruction. Disabling the breakpoint
does not remove the comment; however, deleting the breakpoint
does.

Example
Example 1 creates a breakpoint at line 19 of the current source file.

>BP .19 ;* Example 1
>

Example 2 creates a breakpoint at the address of the function display.

>BP display 10 1?++counter;G"
>

;* Example 2

CodeView passes over the breakpoint nine times before taking it on
the tenth pass. Each time the program stops for the breakpoint,
CodeView runs the quoted commands. The DISPLAY EXPRESSION
command increases the counter, then the GO command restarts the
program. If you set the counter to 0 when you set the breakpoint, this

7-3

BC
BREAKPOINT CLEAR

The BREAKPOINT CLEAR command permanently removes one or
more previously set breakpoi nts.

Keyboard Selection Mouse Selection

To remove a single breakpoint: To remove a single breakpoint:

1. Move the cursor to the breakpoint 1. Point to the breakpoint line or
line or instruction you want to instruction you want to clear.
clear. 2. Click the left button.

2. Press F9.

To remove all breakpoints: To remove all breakpoints:

1. Press Alt + R. 1. Point to Run.
2. Press C. 2. Press and hold a button. Drag to

Clear Breakpoints; release.

Use the following format to enter the dialog command.

Formal
BC [1 i st]
BC *

If you specify a list, the command removes the breakpoints named in
the list. The list can be any combination of integer values from 0
through 19. If you specify an asterisk as the argument, CodeView
removes all breakpoi nts.

Example
Example 1 removes breakpoints 0,4, and 8.

>BC 0 4 8 ;* Example 1
>

Example 2 removes all breakpoints.

>BC *
>

;* Example 2

7-5

BE
BREAKPOINT ENABLE

After using the BREAKPOINT DISABLE command to turn off break­
points, you can restore them with the BREAKPOINT ENABLE
command.

Keyboard Selection Mouse Selection

1. Move the cursor to the source 1. Point to the source line or
line or instruction of the instruction of the breakpoint.
breakpoint. 2. Click the left button.

2. Press F9.

This is the same as creating a new breakpoint at that location.

Use the following format to enter the dialog command.

Format

BE [1 i st]
BE *

If you specify a list, the command restores the breakpoints named in
the list. The list can be any combination of integer values from 0
through 19. Use the BREAKPOINT LIST command if you need to see
the numbers for each existing breakpoint. If you specify an asterisk,
CodeView restores all breakpoints.

Example
Example 1 restores breakpoints 0,4, and 8.

>BE 0 4 8 ;* Example 1
>

Example 2 restores all breakpoints.

>BE * ;* Example 2
>

7-7

BL
BREAKPOINT LIST

This shows that you probably set the breakpoint in assembly mode
because in source mode it is difficult to set a breakpoint anywhere
except on a source line.

7-9

Chapter 8. Managing Watch Statements

Watch statement commands let you set, delete, and list watch state­
ments. Watch statements are specifications that describe
expressions or areas of storage to watch. Some watch statements
also specify conditional breakpoints that mayor may not be honored,
depending on the value of the expression or memory area. The fol­
lowing table lists the watch statement commands discussed in this
chapter.

Command Action

WATCH (W?) Adds a variable or memory
location to the watch list.

WATCHPOINT (WP) Adds a watchpoint to the watch
list.

TRACEPOINT (TP) Adds a tracepoint to the watch
list.

WATCH DELETE (Y) Removes one or more items from
the watch list.

WATCH LIST (W) Displays information about
current watch items.

Impo~ant --------------------------------------~

The format for each CodeView command is always the same,
regardless of the expression evaluator. However, the method for
specifying an argument may vary with the language. Each
example in this chapter repeats with C, BASIC, and Pascal argu­
ments. The sample screens feature BASIC. At the end of this
chapter are sample screens that incorporate the examples in C,
Pascal, and Macro Assembler (with the exception of WATCH
DELETE and WATCH LIST).

Watch statements are like breakpoints; they remain in memory until
you remove them or leave CodeView. In window mode, you can
enter watch statement commands either in the dialog window or with
menu selections. Current statements appear between the menu bar
and the source window.

8-1

W?
WATCH

Use the WATCH command to set a watch statement that describes an
expression or a range of addresses in memory. The value or values
described by this watch statement show in the watch window. The
watch window updates to show new values each time the value of the
watch statement changes during program execution.

In sequential mode, use the WATCH LIST command to examine the
val ues of watch statements.

When setting a watch expression, you can specify the format in which
the value is displayed. Type the expression followed by a comma
and a format specifier. If you do not give a format specifier,
CodeView displays the value in a default format.

Note: If your program directly searches for absolute addresses, you
might get unexpected results with the DISPLAY EXPRESSION
and DUMP commands. However, the WATCH command
should show the correct values. This problem sometimes
arises when CodeView and your program try to use the same
memory location.

Keyboard Selection

1. Press Alt + W then A.
or

2. Press Ctrl +W.
3. Type the expression; press

Enter.

Mouse Selection

1. Point to Watch.
2. Press and hold a button.

Drag to Add Watch; release.
3. Type the expression; press

Enter or a button.

The dialog version of the command must be used when specifying a
range of memory for CodeView to watch. Use the following format to
enter the command.

Format

N? expression[.format] ;Watch expression
N[type] range ;Watch memory

An expression used with the WATCH command can be a simple vari­
able or a complex expression using several variables and operators.

8-3

W?
WATCH

same function, you enter them differently. (C uses a different format
for indexing arrays.)

WB arr(l) L 8
WB arr[0] L 8

; .. \. BASIC Exampl e ;)
;* C Example 4

These commands, entered while debugging a BASIC program,
produce the watch window in the following figure. (Corresponding C,
Pascal, and Macro Assembler examples are included at the end of
the chapter.)

File View Search Run Watch Options Language Calls Help I F8=Trace F5=Go
-----------11 DICE. BAS ~t------------''-------'
e) n : 4
1) higher * lee : 33.33333333333333
2) 54F2: 176E ee ee e1 ee e2 ee e3 ee ••••••••

28:
29:
3e:
31:
32:

ELSEIF n=7 or n=ll THEN
sum = sum + roll (n)

ELSE
chance = roll (n)
higher = make(n)

34: PRINT strl$;n:
. -

35: PRINT str2$;higher * lee
36: END IF
37: NEXT n
38: win = sum
39: lose = 1.e - win
4e: END SUB
41:

>W?n
>W?higher * lee
>WB arr(l) L 8
=--

8-5

WP
WATCHPOINT

Keyboard Selection

1. Press Alt+W.
2. Press W.
3. Type the expression; press

Enter.

Mouse Selection

1. Point to Watch.
2. Press a button and hold.

Drag to Watchpolnt; release.
3. Type the expression; press

Enter or a button.

Use the following format to enter the dialog command.

Format

WP? expression[.format]

The expression can be any valid CodeView expression. You can
enter format as a printf type specifier, but there is seldom reason to
do so since the expression value is normally either 1 or O.

Example
The following dialog commands display a watch statement
(watch poi nt) in the watch wi ndow:

Example 1 instructs CodeView to break running when the variable
higher is greater that the variable chance. (Note that BASIC and C
use the same format.) After setting this watchpoint, use the GO
command to run until the condition becomes true.

WP? higher> chance ;* BASIC/C Example 1

Examples 2 and 3 instruct CodeView to break running when the vari­
able n is equal to 7 or 11. Example 4 instructs CodeView to break
when the variable lines is equal to 11.

WP? n=7 or n=11
WP? n==7 I I n==ll
WP? (* (short *)&lines)==ll

;* BASIC Example 2
;* C Example 3
;* Pascal Example 4

Note: BASIC and C each display a numerical result in response to a
Boolean expression (0 being equivalent to false, nonzero to
true).

These commands, entered while debugging a BASIC program,
produce the watch window in the following figure. (Corresponding C,

8-7

TP
TRACEPOINT

Use the TRACEPOINT command to set a conditional breakpoint called
a tracepoint. A tracepoint breaks program execution when there is a
change in the the value of a specified expression or range of
memory.

The watch statement created by the TRACEPOINT command
describes the expression or memory range to watch and test for
change. The statement remains in memory until you delete it or quit
CodeView.

Nole: In window mode, tracepoint statements and their values
appear in highlighted text. In sequential mode, there is no
watch window, so the values of tracepoint statements can only
display with the WATCH LIST command.

An expression used with the TRACEPOINT command must evaluate
an Ivalue. The expression must refer to an area of memory not more
than 128 bytes in size.

For example, i = = 10 (similar to 1= 10 in BASIC) is invalid because it
is either 1 (true) or 0 (false); rather than a value stored in memory.
The expression sym1 +sym2 is invalid because it calculates the sum
of the value of two memory locations. The expresssion buffer is
invalid if the buffer is declared as an array of 64 bytes and gives the
TRACEPOINT command with the expression buffer checking all 64
bytes of the array. The same command given with the C expression
buffer [32], or BUFFER (33) in BASIC, means that it checks only one
byte (the 33rd).

Nole: The following is relevant only for C programs:

Register variables are not considered Ivalues. Therefore, if i
declares as register int I, the command TP? is invalid.
However, you can still check for changes in the value of i. Use
the DISPLAY SYMBOLS command to find which register con­
tains the value of i. Then find the value of i. Finally, set up a
watchpoint to test the value. For example, use the following
sequence of commands:

8-9

TP
TRACEPOINT

Specifier
None
B
A
I
U
W
D
S
L
T

Size
The default type
Byte
ASCII
Integer (signed decimal word)
Unsigned (unsigned decimal word)
Word
Double word
Short real
Long real
10-byte real

If you specified no type size, the default type is the last type used by a
DUMP, ENTER, WATCH storage, or TRACEPOINT memory command.
If you have used none of these commands, the default type is byte.

Example
The following dialog commands display two watch statements
(tracepoints) in the watch window.

Example 1 instructs CodeView to stop whenever the variable sum
changes.

TP? sum ;* Example 1

The following example instructs CodeView to suspend program exe­
cution whenever the first byte at the address n changes; the address
of this byte and its contents display. The value of n may change
because of a change in the second byte at the address n. This
change (by itself) has no effect on this tracepoint.

TPB n ;* Example 2

Examples 3 and 4 instruct CodeView to stop whenever any of the first
8 bytes, starting with the address of the first element or arr, change in
value.

TPB arr(1) L 8
TPB arr[0] L 8

;* BASIC Example 3
;* C Example 4

Example 5 displays three watch statements and instructs CodeView
to stop whenever the value of the variable primes changes.

8-11

y
WATCH DELETE

The WATCH DELETE command lets you delete watch statements that
were set previously with the WATCH, WATCHPOINT, or TRACEPOINT
command.

When you delete a watch statement in window mode, the statement
disappears and the watch window closes. For example, if three
watch statements are in the window and you delete statement 1,
CodeView redraws the window with one less line. Statement 0
remains unchanged, but statement 2 becomes statement 1. If there is
only one statement, the window disappears.

To delete a single watch statement:

Keyboard Selection

1. Press Alt + W then D
or

2. Press Ctrl + U
3. Use the cursor keys to move

to the statement(s) you want
to delete; press Enter.

To delete all watch statements:

Keyboard Selection

1. Press Alt+ W.
2. Press L.

Mouse Selection

1. Point to Watch.
2. Press a button and hold.

Drag to Delete Watch;
release. Point to the state­
ment you want to delete;
press a button.

Mouse Selection

1. Point to Watch.
2. Press a button and hold.

Drag to Delete All Watch;
release.

Use the following format to enter the dialog command.

Format

Y numberl*

When you set a watch statement, it assigns a number automatically,
starting with O. In window mode, the number appears to the left of the
watch statement in the watch window. In sequential mode, use the

8-13

W
WATCH LIST

The WATCH LIST command lists all previously set watchpoints and
tracepoints with their assigned numbers and current values.

This command is the only way to examine current watch statements
in sequential mode. The command has little use in window mode
because watch statements are already visible in the watch window.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

w

Note: The command letter for the WATCH LIST command is the
same as the command letter for the memory version of the
WATCH command when no memory size is given. The differ­
ence between the commands is that the WATCH LIST
command does not take an argument. The WATCH command
requires at least one argument.

Example

The following example shows the use of the WATCH LIST command.
>W
0) code.c : I
1) (float)letters/words : 4.777778
2) 3F65:0B20 20 20 43 4F 55 4E 54 COUNT
3) lines==l1: 0
>

8-15

W
WATCH LIST

Pascal Examples
The examples shown previously in a BASIC screen are entered in a
Pascal debugging session as follows:

File View Search Run Watch Options Language Calls Help
------------11 dice.PAS

FS-Trace F5=Go

e) n : 4
1) *(double *)&higher * lee : 33.333333333333
2) chance : 8971:1156 55 55 55 55 55 55 B5 3F
3) *(double *)&higher > *(double : 1
4) *(int *)&n==7 I I *(int *)&n== : e
5) *(double *)&sum e.eeeeeeeeeeee
6) 8971: 116E e4.

30:
31:
32:
33:

35:' writeln(str1. ' '. n);

>W? n
l>W? *(double *)&higher * lee
>WL chance
3>WP? *(double *)&higher > *(double *)&chance
4>WP? *(int *)&n==7 I I *(int *)&n==11
5>TP? *(double *)&sum
>TPB n
>..

+S. 333333333333 E -ee2

• Items 0 through 2 in the watch window are watch statements.
They display values but never cause running to break.

• Items 3 and 4 are watchpoints; they cause running to break when-
ever they evaluate to true (nonzero).

• Item 3 breaks running whenever higher is greater than chance.

• Item 4 breaks running whenever n is equal to 7 or 11.

• The last two items are trac~points. They cause running to break
whenever any bytes change within a specified area of memory.

• Item 5 breaks runnin~ whenever the value of sum changes.

• Item 6 breaks running whenever there is a change in the first byte
at the address of n.

8-17

W
WATCH LIST

The previous examples produce the following screen when entered in
a CodeView debugging session.

File View Search Run Watch Options Language Calls Help F8=Trace F5=Go
-----------11 test.ASH
a) sp L 8 : 531C:a9A2 aa44 a984 aa37 aaa5 eaaF aalB aaaF aaa5
1) bp L 8 : 531C:a9A4 a9B4 aa37 aaa5 aaaF aalB aaaF aaa5 aalB
2) wo bp+4.d : 5
3) by bp-2.d : 68
4) 531F:aaa6 al aa a2 aa a3 •••••

AX = ealB
BX = a9A2
CX = aa44
ox = ease
SP = a9A2
BP = a9A4

7a: First parameter largest SI = aa98
71: 01 = aA8C
72: mov BYTE PTR [bp-2].1 ; Load indicator val ue OS = 531C
73: ; of 1 into local variab ES = 531C
74: jmp SHORT finished ; and finish up SS = 531C
75: next_test: CS = 5207

i7.6: ••••• m.ov •• alx.b.8 ••••• iL.oald.3iirliid.anniiiiliii n.t.o .a.x.1III IP = aa50

78: jle
79:

>WW sp L 8
>WWbpL8
>W? wo bp+4.d
>W? by bp-2.d
>TPB arr L 5
>.

last-test go to last test NV UP
EI NG
NZ AC
PE CY

ss:a9AA
aaaF

8-19

Chapter 9. Examining Code

Several CodeView commands let you examine program code or data
related to code. The following table lists the commands that will be
discussed in this chapter.

Command Action

SET MODE (S) Sets format for code displays.

UNASSEMBLE (U) Displays assembly instructions.

VIEW (V) Displays source lines

CURRENT LOCATION (.) Displays the current location line.

STACK TRACE (K) Displays routines or procedures.

9-1

S
SET MODE

Use the following format to enter the dialog command.

Format

S[+ I - I &]

S + If you specify the plus sign, CodeView selects source mode
and displays the word source.

S- If you specify the minus sign, CodeView selects assembly
mode and displays the word assembly. The S- command
always turns off the mixed source option.

S& If you specify the ampersand, CodeView selects mixed mode
and displays the word mixed. In addition, the S& command
turns on the mixed source option.

S If you specify no argument, CodeView displays the current
mode (source, assembly, or mixed).

The UNASSEMBLE command in sequential mode is an exception; it
displays mixed, source, and assembly with both the source (S +) and
mixed (S&) modes. When you enter the dialog version of the SET
MODE command, CodeView displays the name of the new display
mode: source, assembly, or mixed.

Example
This example shows how to change the source mode to source,
assembly, and mixed. In window mode, the commands change the
format of the display window. In the sequential mode, the commands
change the output from the commands that display code (REGISTER,
TRACE, PROGRAM STEP, GO, EXECUTE, and UNASSEMBLE). See
the sections on individual commands for examples of how display
mode carries them out.

>S+
source
>s­
assembly
>s&
mixed
>

9-3

U
UNASSEMBLE

the dialog window. If you specify an address, the instructions in the
display window begin at the specified address. If you specify a
range, CodeView uses only the starting address. If you specify no
argument, CodeView scrolls down and displays the next screen of
assembler language instructions.

Notes:

1. Occasionally, code similar to the following is displayed:

FF30 111 Byte Ptr [BX + SI]

2. If you attempt to unassemble data, then CodeView may display
meaningless instructions.

Example
This sequential mode example displays eight lines of mixed source
and unassembled machine code. The output is the same if the mode
is source.

>S&
mixed
>U 0xll

;* Examp"le 1

50CE:0011 8BEC MOV BP,SP
50CE:0013 B80000 MOV AX.0000

_chkstk (140D)
D1

50CE:0016 E8F413 CALL
50CE:0019 57 PUSH
50CE:001A 56 PUSH SI
49: if (argc == 1) /* No command-line argument */

Word Ptr [argc],+01 50CE:001B 837E0401 CMP
50CE:001F 7403 JZ _main+14 (0024)

Example 2 sets tt'le mode to assembly and repeats the same
command.

>S­
assembly
>U 0xll
50CE: 0011 8BEC
50CE:0013 B80000
50CE:0016 E8F413
50CE:0019 57
50CE:001A 56
50CE:001B 837E0401
50CE:001F 7403
50CE:0021 E90900
>

;* Example 2

MOV BP,SP
MOV AX.0000
CALL __ chkstk (140D)
PUSH D1
PUSH SI
CMP Word Ptr [argc].+01
JZ main+14 (0024)
JMP =main+ld (0020)

9-5

V
VIEW

In sequential mode, the current display mode (source, assembly, or
mixed) does not affect the VIEW command; source lines appear
regardless of the mode.

In window mode, if you enter the VIEW command while the display
mode is assembly, CodeView automatically switches back to source
mode. If you specify a linen umber or an expression, CodeView
redraws the display window so that the source line corresponding to
the given address appears at the top of the source window. If you
specify a filename with a linenumber, CodeView loads the specified
file.

If you enter the VIEW command with no arguments, the display scrolls
down one line short of a page; that Is, the source line that was at the
bottom of the window is now at the top.

Note: Entering the VIEW command with no argument is similar to
pressi ng the PgDn key. The difference is that the PAGE DOWN
command scrolls down one more line, and the cursor must be
In the display window.

Example
Example 1, shown in sequential mode, displays eight source lines
beginning at the function countwords.
>V countwords ;* C Example 1
58: char inword:
59: int numread;
60: {
61: int count;
62: char code;
63:
64: bytes += numread:
65: for (count = 0; count <= numread; ++count) {
>

Example 2 loads the source file MATH.C and displays eight source
lines starting at line 30.

9-7

•
CURRENT LOCATION

The CURRENT LOCATION command displays the source line or
assembler language instruction corresponding to the current program
location.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

In sequential mode, the command displays the current source line.
This line appears regardless of whether the current debugging mode
is source or assembly. If a program has no symbolic information,
CodeView ignores the command.

In window mode, this command puts the current program location,
marked with reverse video or a contrasting color, in the center of the
display window. The CURRENT LOCATION command does not affect
the display, source, or assembly mode. This command is useful if
you have scrolled through the source code or assembler language
instructions so that the current location line is no longer visible.

For example, if you are debugging a program in window mode and
have run the program near the start of the program but scroll the
display to a point near the end, the command returns the display to
the current program location.

Example
This example shows how to display the current source line in sequen­
tial mode. The same command in window mode does not produce
any output, but it can change the text shown in the display window.

>.

count = 1
>

9-9

Keyboard Selection

1. Press Alt+C. (The menu
shows the current routine at
the top, and other routines
below it are in reverse order.
The values of any routine
arguments are shown in
parentheses following the
routine.)

2. To view code at the point of
the called routine, press the
down arrow to move to the
routine below the one you
want to view; press Enter.

K
STACK TRACE

Mouse Selection

1. Point to Calls.
2. Press a button. (The current

routine is at the top and other
routines below it are in
reverse order. The values of
any routine arguments are
shown In parentheses fol-
lowing the routine.)

3. To view code at the point of
the called routine, hold a
button down; drag to the
routine below the one you
want to view; release.

The cursor moves to the calling source line or the calling instruction.
The cursor indicates the calling location in the selected routine where
the next-level routine was called. If you select the current (top-level)
routine, the cursor moves to the current location in that routine.

Use the following format to enter the dialog command.

Format

K

The output from the STACK TRACE dialog command lists the func­
tions in the reverse order that CodeView called them. The arguments
for each function appear in parentheses. Finally, the line number
from which CodeView called the function appears.

Enter the line number as an argument to the VIEW or UNASSEMBLE
command to view code at the point where CodeView called the func­
tion.

In window mode, the output from the STACK TRACE dialog command
appears in the dialog window. You might need the dialog version
instead of the menu version because the Calls menu can be cut off if
there are too many functions or function arguments. The dialog
display wraps around, if necessary, so that you can see all functions
and all arguments.

9-11

K
STACK TRACE

MAKE# are both functions returning a double-precision fioating-point
number. A function that returned a short integer would have a % type
tag. CALC does not have a type tag because it is a subprogram and,
therefore, does not return a value.

9-13

Chapter 10. Changing Code or Data

CodeView provides the following commands for changing code or
data in memory.

Command Action

Assemble Modifies code.

Enter Modifies memory, usually data.

Register Modifies registers and flags.

Fill Memory Fills a block of memory.

Move Memory Copies one block of memory to
another.

Port Output Outputs a byte to a hardware
port.

Changes to code are temporary. You can use them for testing in
CodeView, but you cannot save them or permanently change the
program. To make permanent changes, you must change the source
code and recompile.

10·1

A
Assemble

BOB6-family instruction mnemonic form. Enter instructions in upper­
case, lowercase, or mixed case.

To assemble a new instruction, type the desired mnemonic and press
Enter. CodeView assembles the instruction into storage and displays
the next available address. Continue entering new instructions until
you assemble all the instructions you want. To end assembly and
return to the CodeView prompt, press Enter.

If an instruction contains a syntax error, CodeView displays the
message:

A Syntax error

CodeView then displays the current assembly address again and
waits for a correct instruction. The caret mark (1\) in the message
points to the first character that CodeView cannot interpret.

The following rules govern entry of instruction mnemonics:

• The far-return mnemonic is RETF.

• String mnemonics must explicitly state the string size. For
example, use MOVSW to move word strings and MOVSB to move
byte stri ngs.

• CodeView automatically assembles SHORT, NEAR, or FAR jumps
and calls depending on byte displacement to the destination
address. You can cancel these with the NEAR or FAR prefix, as
shown in the following examples:
JMP 0x502
JMP NEAR 0x505
JMP FAR 0x50A

You can abbreviate the NEAR prefix as NE, but you cannot abbre­
viate the FAR prefix.

• CodeView cannot tell whether some operands refer to a word
memory location or to a byte memory location. In these cases,
you must state the data type explicitly with the prefix WORD PTR
or BYTE PTR. Acceptable abbreviations are WO and BY, as
shown in the following examples:

10-3

Example

A
Assemble

This example changes the instruction at address Ox40 so that it
moves data into the CX register instead of the BX register. The
UNASSEMBLE command shows the instruction before and after the
assembly. (With BASIC. use &H40.)

You can change a portion of code for testing. as in the example. but
you cannot save the changed program unless you change the source
code and recompile.
>U 0x40 L 1
3980:0040 89C3 MOV 8X.AX
>A 0x40
3980:0040 MOV CX.AX ;* C Example
3980:0042
>U 0x40 L 1
3980:0040 89C1 MOV CX.AX
>

10-5

value. You can then replace the value, skip to the next value, return
to a previous value, or exit from the command as explained below:

• To replace the value, type the new value after the current value.

• To skip to the next value, press the spacebar. Once you have
skipped to the next value, you can change its value or skip to the
next value. If you go past the end of the display, CodeView dis­
plays a new address to start a new display line.

• To return to the preceding value, type a backslash (\). When you
return to the preceding value, CodeView starts a new display line
with the address and value.

• To stop entering values and return to the CodeView prompt,
press the Enter key. You can exit from the command at any time.

The following sections describe the ENTER commands in order by the
size of data they store. For data types that CodeView normally
dumps and enters in hexadecimal (bytes, ASCII, words, and
doublewords), the examples specify a radix of 16.

10-7

EB
ENTER BYTES

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

The ENTER BYTE8 command enters one or more byte values to
memory. Use the following format to enter the dialog command.

Format

EB address [list]

The address is the location in memory where CodeView enters
values. The list contains the values for the bytes that CodeView sub­
stitutes for the bytes in memory. CodeView replaces the byte at the
specified address with the first byte of the list. It replaces the bytes at
all subsequent addresses until it uses the values in the list.

If you do not specify a list, CodeView asks for a new value at address
by displaying the address, its current value, and a trailing period.
You can then replace the value or skip to the next value, go to the
preceding byte, or end the command and return to the command
prompt.

Example
Example 1 first sets the radix to 16 so that you can enter numbers in
hexadecimal. It then replaces the 3 bytes at 08:100,08:101, and
08:102 with 01,28, and E5, respectively. 08 is the default segment
address for all ENTER commands.
>N16 ;* Example 1
>EB 100 01 2B E5

Example 2 displays the current value on the line following the
command and waits for you to enter a val ue.
>EB 100
2344:0100 F3.e_

;* Example 2

The underscore in Example 2 represents the cursor. CodeView waits
for you to enter the first byte value. You can change the value F3 to
the new value 5E by typing 5E.

10-9

EA
ENTER ASCII

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

The ENTER ASCII command is like the ENTER BYTES command.

Use the following format to enter the dialog command.

Format

EA address [list]

The address is the location in memory where CodeView enters
values. The list contains the values for the bytes that CodeView sub­
stitutes for the bytes in memory. CodeView replaces the byte at the
specified address with the first byte of the list. It replaces the bytes at
all subsequent addresses until it uses all the values in the list.

Example
The following example enters the string "Cannot open file into
storage". CodeView starts at the symbolic address message. You
can use the ENTER BYTES command to do the same thing.
>EA message "Cannot open file into storage"

You can also enter non-string values:
>EA message 1 2 3 4 5

10-11

Keyboard Selection

Dialog command only.

EU
ENTER UNSIGNED INTEGERS

Mouse Selection

Dialog command only.

The ENTER UN81GNEO INTEGER8 command enters into memory a
word value in the unsigned integers format. Use the following format
to enter the dialog command.

Format

EU address [list]

The address is the location in memory where CodeView enters
values. The value is an unsigned integer that CodeView enters into
memory. An unsigned integer can be any decimal integer between 0
and 65,535.

Enter the optional list as a list of expressions separated by spaces.
Enter and evaluate the expressions in the current radix. If list is not
given, CodeView prompts for new values. You must enter these
values in decimal.

Example
The following example replaces the three unsigned integers at
08:256, 08:258, and 08:260 with 10, 20, and 30. (These addresses
correspond to the hexadecimal addresses 08:0100,08:0102, and
08:0104

>EU 256 10 20 30
>

This example replaces the integer at 08:256 (08:0100) with 10.

>EU 256
3DA5:0100 130F.10
>

10-13

Keyboard Selection

Dialog command only.

ED
ENTER DOUBLEWORDS

Mouse Selection

Dialog command only.

The ENTER OOUBLEWOROS command enters a doubleword value
into memory. Use the following format to enter the dialog command.

Format

ED address [list]

The address is the location in memory where CodeView enters
values. You must type doublewords as two words separated by a
colon. If you do not type the colon and enter only one word, only the
offset portion of the address changes.

Enter the optional list as a list of expressions separated by spaces.
Enter and evaluate the expressions in the current radix. If list is not
given, CodeView prompts for new values. You must enter these
values in hexadecimal.

Example
The following example replaces the doubleword at OS:256 (OS:0100
hexadecimal) with the decimal address 8700:12008 (hexadecimal
address 21 FC:2EE8).

>EO 256 8700:12008
>

The next example replaces the offset portion of the doubleword
OS:256 (OS:0100 hexadecimal) with 2EE9 hexadecimal. Since the
segment portion of the address is left out, the existing segment (21 FC
hexadecimal) does not change.

>EO 256
30A5:0100 21FC:2EE8.2EE9
>

10-15

EL
ENTER LONG REALS

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

The ENTER LONG REAL8 command enters a long-real value into
memory. Use the following format to enter the dialog command.

Format

EL address [list]

The address is the location in memory where CodeView enters
values. Enter the optional list as a list of real numbers separated by
spaces. You must enter these numbers in decimal, regardless of the
current radix. If list is not given, CodeView prompts for new values.
Enter these values in decimal. Enter long-real numbers either in
floating-point format or in scientific-notation format.

Example
The following example replaces the four numbers at 08:256, 08:264,
08:272, and 08:280 with the real numbers 23.479,0.25, -1650.0, and
235.0. (These addresses correspond to the hexadecimal addresses
08:0100, 08:0108, 08:0110, and 08:0118.)

>EL 256 23.479 1/4 -1.65E+4 235
>

The next example replaces the number at the symbolic address PI
with 3.141593.

>EL PI
3DA5:0064 42 79 74 65 DC OF 49 40 5.012391E+001

3.141593
>

10-17

F
FILL MEMORY

The FILL MEMORY command provides an efficient way of filling a
large or small block of memory with any values. It is primarily of
interest to assembly programmers because the command enters
values directly into memory. However, you may find it useful for ini­
tializing large data areas such as an array or structure. Enter the
arguments using any radix.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

F range list

The FILL MEMORY command fills the memory in the specified range
with the byte values specified in list.

The list can be a series of byte values (separated by blanks or
commas) or an ASCII string enclosed in quotation marks. The values
in the list repeat until it fills the whole range. (If you specify only one
value, it fills the entire range with that value.) If the list has more
values than the number of bytes in the range, the command ignores
any extra val ues.

Note: Hexadecimal radix is assumed for the following examples.

Example
Example 1 fills 255 (100 hexadecimal) bytes of memory starting at
OS:0100 with the value O. You might use this command to reinitialize
the program's data without having to restart the program.

>F 100 L 100 0 ;* Example 1
>

Example 2 fills the 100 (64 hexadecimal) bytes of memory starting at
table with the following hexadecimal byte values: 42, 79, 74. These
three values repeat until they fill all 100 bytes.

10-19

M
MOVE MEMORY

The MOVE MEMORY command enables you to copy all the values in
one block of memory directly to another block of memory of the same
size. This command interests assembly programmers and those who
need to do large data transfers efficiently.

Keyboard Selecllon Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

M range address

The values in the block of memory specified by range are copied to a
block of the same size beginning at address. All data in range is
copied completely over to the destination block, even if the two
blocks overlap. If they do overlap, some of the original data in range
is altered.

To prevent loss of data, the MOVE MEMORY command copies data
starting at the source block's lowest address, whenever the source is
at a higher address than the destination. If the source is at a lower
address, then the MOVE MEMORY command copies data beginning
at the source block's highest address.

Example

>M arrl[0] L arsize arr2[e] ;* C Example
>

In the example, the block of memory beginning with the first element
of arr1, and arsize bytes long, is copied directly to a block of the
same size beginning at the address of the first element of arr2.

10-21

R
REGISTER

The REGISTER command has two functions. It displays the contents
of the processor's registers and can change the values of those regis­
ters. You can find a description of the modification features of the
command in this section. For a description of the display features of
the REGISTER command, see "Examining Data and Expressions" in
Chapter 6. -.

To display the registers:

Keyboard Selection

Press Alt + V then press R
or

Press F2.

To change register values:

Keyboard Selection

No keyboard equivalent.

Mouse Selection

1. Point to View menu.
2. Press and hold a button.

Drag to Registers, then
release.

Mouse Selection

The only register that can be
changed with the mouse is the
flag's register. The register's
individual bits (called flags) can
be set or cleared.

1. Point to the flag to change.
2. Click either button.

The highlighting of the mnemonic
that represents the flag value
changes.

Use the following format to enter the dialog command.

Format

R[regi stername[[=]expressi on]]

10·23

R
REGISTER

F changes a flag value as the registername. The REGISTER
command displays the current value of each flag as a 2-letter name.
You can see the two possible values for each flag in the chart below:

Flag When When
Name Set Clear

Overflow OV NV

Direction DN UP

Interrupt EI DI

Sign NG PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

After CodeView displays the flag values, it displays a dash. Enter a
new value after the dash to change any flag. You can enter flag
values in any order. Press Enter to record the new values. You do
not change the value of any flag for which you do not type a new
value. To not change any values, press Enter.

CodeView displays an error message if you enter an incorrect flag
name. CodeView changes the value of any flag you specified up to
the occurrence of the error. CodeView does not change the value of
any flag you specify after the occurrence of the error.

Example
Example 1 changes the IP register to the value 256 (Ox100).

>R IP 0x100 ;* Example 1
>

Example 2 displays the current value of the AX register and asks for a
new value. The underscore represents the location of the CodeView
cursor. You can type any 16-bit value after the colon. If the current
radix is 10, you can enter 256 to change the AX value to 256 (Ox100):

10-25

Chapter 11. Using System Control
Commands

The sections in this chapter describe the system-control commands.
The following table lists the commands and actions associated with
them.

Command Action

Help Displays online help.

Quit Returns to DOS.

Radix Changes radix.

Redraw Redraws the screen.

Screen Exchange Switches to output screen

Search Searches for regular expression.

Shell Escape Starts new operating system shell.

Tab Set Sets tab size.

Option Views or sets CodeView options.

Redi rection and Control redirection of CodeView input or output.
related com-
mands

11-1

The QUIT command ends CodeView and returns to DOS.

Keyboard Selecllon Mouse Selecllon

1. Press Alt+ F. 1. Point to File.
2. Press X. 2. Press a button and hold.

Drag to Exll; release.

Use the following format to enter the dialog command.

Formal
Q

Q
QUIT

When you enter the command, the DOS (or OS/2) screen with the
cursor at the DOS (or OS/2) prompt replaces the CodeView screen.

11-3

Use the following format to enter the dialog command.

Format

lI[radixnumber]

N
RADIX

The radixnumber can be 8 (octal), 10 (decimal), or 16 (hexadecimal).
The default radix when you start CodeView is 10 (decimal) unless you
write the program in assembler. The default in Macro Assembler is
16 (hexadecimal). If you give the RADIX command with no argument,
CodeView displays the current radix.

Example

>NlO
>N
10
>? prime
107
>

>N8
>? prime
0153
>

>N8
>? prime
&153
>

;* C example

;* BASIC example

The examples show how 107 decimal, stored in the variable prime, is
displayed with different radixes. The examples are in different lan­
guages; there is no logical connection between the radix and the lan­
guage.

>N8
>? 34, i
28
>N10
>? 28. i
28
>N16
>? 1C. i
28
>

11-5

@
REDRAW

The REDRAW command works in window mode by redrawing the
CodeView screen. This command is seldom necessary, but you
might need it if the output of the program being debugged temporarily
disturbs the CodeView display.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format
@

11-7

I
SEARCH

The SEARCH command searches for a regular expression in a source
file. The target expression is either an argument in a dialog
command or in a dialog box. Once you find the expression, you can
search for the next or the prior occurrence of the expression.

Regular expressions are a method of specifying variable text pat­
terns. You can use a pattern to search for text strings that match the
pattern. This method is similar to using global characters in
filenames.

You can use the SEARCH command without understanding regular
expressions. Text strings are the simplest form of regular
expressions. You can enter a string of characters as the expression
to find.

Note: When you search for the next occurrence of a regular
expression, CodeView searches to the end of the file, then
wraps and begins at the start of the file. This can have unex­
pected results if the expression occurs only once. When you
give the command repeatedly, nothing seems to happen.
Actually, CodeView is wrapping around and finding the same
expression each time.

The following characters have special meanings in regular
expressions: backslash (\), asterisk (*), left bracket (D, period (.),
dollar sign ($), and caret (1\). To find strings containing these charac­
ters, you must precede the characters with a backslash; this cancels
their special meaning.

For example, use Ix*y to find x*y or use Ibuffer\[count] to find
buffer[count]. The periods in the rational operators must also be pre­
ceded by a backslash.

The Case Sense selection from the Options menu has no effect on
searches for regular expressions. For more information on regular
expressions, see "Regular Expressions" in Chapter 4.

11·9

Use the following format to enter the dialog command.

Format

/[regularexpression]

I
SEARCH

If you enter a regularexpression, CodeView searches the source file
for the next line containing the expression. If you do not enter an
argument, CodeView searches for the next occurrence of the last
regular expression specified.

In window mode, CodeView starts searching at the current cursor
position and puts the cursor at the next line containing the regular
expression. In sequential mode, CodeView starts searching at the
last source line displayed. It puts the source line where the
expression is found on the screen.

An error message appears if CodeView cannot find the expression.
In assembly mode, CodeView automatically switches to source mode
when it finds the expression.

You cannot search for a label with the dialog version of the SEARCH
command, but using the VIEW command with the label as an argu­
ment has the same effect.

Example
The following example shows how to find the word count in the
source file.

>/count

11-11

SHELL ESCAPE

Keyboard Selection Mouse Selection

1. PressAlt+F. 1. Point to File.
2. Press D. 2. Press a button and hold.

Drag to DOS Shell; release.

Use the following format to enter the dialog command.

Format

I [I] [command]

To go to DOS (or OS/2) and run several programs or commands, type
the command with no arguments. CodeView runs a new copy of the
command processor and the operating system screen appears. You
can run programs or operating system internal commands. To return
to CodeView, type exit. The debugging screen appears with the same
status as before.

To run a program or internal command from inside CodeView, enter
the SHELL ESCAPE command (!) followed by the name of the
command or program you want to run. The output screen appears
and CodeView runs the command or program. When the output from
the command or program finishes, the message

Press any key to continue ...

appears at the bottom of the screen. Press a key to make the debug­
ging screen reappear with the same status.

If you specify two exclamation points before the command, CodeView
will not prompt you to press a key to continue. Once your command
finishes, you are immediately returned to the debugging screen.

Example
In Example 1, CodeView saves the current debugging context and
runs a copy of the command processor. The DOS (or OS/2) screen
appears and you can enter any number of commands. To return to
CodeView, type exit.

>! ;* Example 1

11-13

TAB SET

The TAB SET command sets the width in spaces that CodeView fills
for each tab character. The default tab is eight spaces. You might
want to set a smaller tab size if your source code has so many levels
of indentation that source lines extend beyond the edge of the screen.
This command has no effect if you wrote your source code with an
editor that indents with spaces rather than with tab characters.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

'number

The number is the new number of characters for each tab character.
In window mode, CodeView redraws the screen with the new tab
width when you enter the command. In sequential mode, any output
of source lines reflects the new tab size.

Example
In this example, the SOURCE LINE command (.) shows the source
line with the default tab width of eight spaces. The TAB SET
command sets the tab width to four spaces. The SOURCE LINE
command then shows the same line.

>.

32: for (j = q; j >= 0; j--)
>#4
>.

32: for (j = q; j >= 0; j--)
>

11-15

o
OPTION

extended registers when switching between DOS mode and
OS/2 mode.

Use + to turn the specified option on. Use - to turn the specified
option off. To check the current status of an option, do not specify
either a + or -. Entering 0 by itself (without specifiying an option or
+ or -) shows the status of all the options.

Example
In Example 1, the Case Sense option is turned off. Until case sensi­
tivity is turned back on, buffer, BUFFER, and Buffer can all be used
when referring to the variable buffer.

>OC- ;* Example 1
Case Sense Off
>

In Example 2, CodeView displays the current settings of all the
options.

>0
Flip/Swap On
Bytes Coded On
Case Sense Off
386 Off
>

;* Example 2

11-17

<
REDIRECT INPUT

The REDIRECT INPUT command causes CodeView to read all subse­
quent command input from a device, such as another terminal, or a
file. The sample session provided with CodeView is an example of
commands redirected from a file.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

< device name

Example
Example 1 redirects input from the device COM1 probably a remote
terminal.
><COMl ;* Example 1

Example 2 redirects command input from file INFILE.TXT to
CodeView. You might use this command to prepare a CodeView
session for someone else to run. You create a text file containing a
series of CodeView commands separated by carriage returnlline feed
combinations or semicolons. When you redirect the file, CodeView
runs the commands to the end of the text file. If you want the user to
continue editing after the session, the last command in the file should
be < CON. The command input is returned to the CodeView screen.
One way to create such a file is to redirect commands from CodeView
to a file and then edit the file to add comments and eliminate the
output.
><INFILE. TXT ;* Example 2

11-19

>
REDIRECT OUTPUT

In Example 2, CodeView redirects output to the file OUTFILE.TXT.
Use this to get a permanent record of a CodeView session. The
optional T echoes the session to the CodeView screen as well as to
the file. After redirecting some commands to a file, CodeView returns
output to the terminal with the command >CON.
>T>OUTFILE. TXT ;* Example 2

»CON

To redirect more commands to the same file later in the session, use
two greater-than symbols, as in Example 3, to add the output to the
existing file.
>T»OUTFILE. TXT ;* Example 3

11·21

Commands Used with Redirection
To redirect commands to or from a file, use the following commands.
Although they are always available, these commands have little prac­
tical use during a normal debugging session.

Command Action

COMMENT (*) Displays comment.

DELAY (:) Delays running of commands from a redirected file.

PAUSE (") Interrupts running of commands from a redirected file
until you press a key.

11-23

*
COMMENT

When you read the file into CodeView with the REDIRECT INPUT
command, you see the comment and the output from the command as
shown here:

><INPUT.TXT
>* Dump first 20 bytes of screen buffer
>0 OxB800:0000 L 20

;* Example 2

B800:0000 54 07 40 07 50 07 30 07-43 07 3A 07 5C 07 43 07 T.M.P.=.C.:.\.C.
B800:0010 32 07 5C 07 2.\.

><CON
>

11-25

..
Pause

The PAUSE command interrupts the running of commands from a
redirected file. CodeView then waits for you to press a key. The redi­
rected commands run as soon as a key is pressed.

Keyboard Selection Mouse Selection

Dialog command only. Dialog command only.

Use the following format to enter the dialog command.

Format

Example
This example is a text file that is redirected into CodeView. A
COMMENT command prompts you to press a key. The PAUSE
command halts the running until you respond.

* Press any key to continue
"

The output looks like this when the text is redirected into CodeView:

>* Press any key to continue
>"

The next CodeView prompt does not appear until you press a key.

11-27

Chapter 12. Additional OS/2 Mode
Debugging Features

This chapter discusses the new OS/2 mode features of CodeView.

Debugging (OS/2 Mode Versus DOS Mode)
CVP.EXE operates differently than CV.EXE. The following lists the dif­
ferences between the two:

• The OUTPUT SCREEN command (\) is different.

• CVP.EXE uses additional command-line options in debugging
dynamic-link modules and child processes.

• CVP.EXE has new commands that are not present in CV.EXE to
deal with the the multithread and multiprocess capabilities of
OS/2. Also, some of the commands for tracing and running in
CV.EXE work differently in CVP.EXE. The following sections
describe each of these differences.

Note: In the sections that follow, the words symbolic information
refer to information that CodeView uses to interpret global and local
program symbols. Without this information, the debugger cannot
provide full debugging capability.

Using CodeView's VIEW OUTPUT Command
In DOS mode, when you switch from the CodeView display to the
output window (using the \ command or F4), you remain at the output
window until you press a key. In OS/2 mode, CodeView returns to the
CodeView display screen after a 3-second delay. You can change the
delay seconds by specifying a number following the \ command.

Example

\60

Another way to view the output is to return to the Presentation
Manager screen and select the screen group labeled CVP app. This
is the screen group owned by the application being debugged. After
viewing the output windqw, switch back to the CVP.EXE screen group.
Use Alt + Esc to toggle between groups.

12-1

Choose one of the legal values for the selector:

Symbol Function

(blank) If you omit a value for the thread selector, the current
thread is assumed. If, however, you omit both the thread
selector and the thread action, CodeView responds by
displaying the status of all threads.

* Selects all threads.

n Selects the indicated thread. The value of n must be a
number corresponding to an existing thread. To deter-
mine corresponding numbers for all threads, enter the
tilde (-) by itself.

Currently selected thread.

Last thread that was running.

Choose one of the legal values for action:

Symbol Function

(blank) The status of the selected thread or threads is displayed.

BP A breakpoint is set for the specified thread. Because mUl-
tiple threads can exist within the same program, it is pos-
sible to write the program so that a given line of code can
be run by any number of different threads. However, by
using this version of the BREAKPOINT SET command, you
can specify that a breakpoint is taken only when a partic-
ular thread runs the specified line of code.

The letters BP are followed by the normal syntax for the
BREAKPOINT SET command. You can include the
optional passcount field.

E The specified thread is run in slow motion. The thread
selected for this command becomes the current thread,
while all other threads are temporarily frozen.

-*E is valid only in source mode. This runs the current
thread in slow motion but allows all other threads (except
frozen ones) to run normally.

F The specified thread or threads are frozen. A frozen
thread will not run, even when you issue a GO command,
unless that thread is the current thread. UNFREEZE (U)
reverses this condition.

12-3

Example 4 unfreezes all threads. Any threads that were frozen
before will not run when you give the GO command. If no threads are
frozen, this command has no effect.

004> -*T ;* Example 4

The existence of multiple threads affect other CodeView commands.
The following table discusses each of these commands:

Command Behavior In Multithread Programs

The CURRENT LINE command is equivalent to the ",S
command.

E The EXECUTE command runs the current thread in slow
motion. To carry out this command, CodeView recalls the
last line of code that ran within the current thread. (With a
TRACE, EXECUTE, or BREAKPOINT command, you can
run up to a specific line of thread. CodeView begins
running at the next line.)

BP BREAKPOINT SET is equivalent to the ",*BP command;
the breakpoint applies to all threads.

G GO is equivalent to the ",*G command. Control passes to
the operating system, which runs all threads in the
program except the frozen ones.

P PROGRAM STEP runs a step into the current thread.

K STACK TRACE displays the stack of the current thread.

T TRACE runs a trace in the current thread.

Note: In general, CodeView commands apply to all threads unless
the nature of the command makes it appropriate to deal with only one
thread at a time. For example, since each thread has its own stack,
the STACK TRACE command does not apply to all threads. In the
latter case, the command applies to the current thread only. The
CURRENT LINE command (.) is the sole exception to this rule. It
applies to the last thread run.

12-5

cvp Myprog /0 /L myl1b /COC- /C;T

then lOlL my/ib ICOC- is passed to new CodeView sessions, but
IC;T is not.

• When you exit from the new CodeView session, you return to the
original CodeView session (not the operating system).

Use the following dialog command to select a new current process or
to check the status of a process.

Format

I [selector[act;on]]

Choose one of the legal values for selector:

Symbol Function

(blank) If you omit a value for the process selector, the current
process is assumed. If, however, you omit both the
selector and the action, CodeView responds by displaying
the statuses of all the processes in the debugging
session.

n Selects the specified process. The value of n must be the
process 10 of one of the processes you are debugging. To
determine the IDs of valid processes, enter the vertical
bar (I) by itself.

Choose one of the legal values for action:

Command Function

(blank) The status of the selected process or processes is dis-
played.

S The specified process is selected as the current process,
and you are switched to the CodeView session for that
process.

You can also switch between CodeView sessions using the Task
Manager.

12·7

pass commands to CodeView to continue running the program or
even to quit the debug session.

To debug a pop-up routine, disable the calls to VioPopUp and
VioEndPopUp and then debug the code. When the VioPopUp and
VioEndPopUp calls are being used, you can skip around the
pop-up routine by setting a breakpoint after the VioEndPopUp and
then issuing the GO command.

Proarams that use VioSavRedrawWait -If your program depends
upon VioSavRedrawWait for notification of screen-group switches
so it can save or restore the screen, OS/2 will wait for that thread
to complete its work and call VioSavRedrawWait again before
continuing with the task switch. If CodeView halts this thread in
the middle of its execution, then OS/2 will not receive its notifica­
tion to continue.

The /2 option can be useful when debugging programs that use
VioSavRedrawWait. If you use two displays, CodeView does not
have to change screen groups to display both itself and your pro­
gram's output. Therefore, as long as you do not use Ctrl-Esc or
Alt-Esc to explicitly change screen groups, you can avoid this
problem.

12-9

Appendix A. Quick Reference

This appendix summarizes the modes, options, and commands of
CodeView.

Starting CodeView
The syntax for starting CodeView in DOS mode is:

CV [options] executablefile [arguments]

The syntax for starting CodeView in OS/2 mode is:

CVP [options] executablefile [arguments]

The executablefile is the name of the program you want to debug.
The arguments are any arguments that you want to pass to this
program.

To start CodeView, use the following startup options when running in
OS/2 mode, DOS, or DOS mode:

Option result

IB Starts with a black-and-white display and a Color
Graphics Adapter.

IC com- Runs commands on startup.
mands

1M Disables the mouse.

IT Starts in sequential mode.

IW Starts in window mode.

143 Starts in 43-row mode with an Enhanced Graphics
Adapter or PS/2 display.

150 Starts in 50-row mode with a Video Graphics Adapter
or PS/2 display.

12 Uses two video adapters.

A-1

If You Want To: Do This:

Dump a portion of Enter 0 (for DUMP) and the address where you
memory want the dump to start. For example, enter:

D 05:100

Examine a vari- Enter? and the variable or expression. For
able or example, to view the sum of sym1 and sym2
expression divided by the constant 3, enter:

? (sym1 +sym2)/3

View source code Enter V followed by a period and the number of
the first source line. For example, to view source
code starting at line 36, enter:
V.36

Though the next table concentrates on methods of entering com­
mands from the keyboard, it also includes some versions of the
mouse commands.

If You Want To: Do This:

View Help Press F1. Use the mouse, menu selection letters,
or the Tab and Enter keys to move through the
system.

Move through the Place the cursor in the window containing the
source code source code. Pressing F6 allows you to move to

the correct window. Press PgUp, PgDn, Home,
End, Cursor Up or Cursor Down to move through
the source code.

Run code one Press F8 (for TRACE) or F10 (for PROGRAM
step at a time STEP). If you use a mouse, click TRACE on the

menu bar. Use the right mouse button for the
TRACE command or the left mouse button for the
PROGRAM STEP command.

Run the program Press F5 (for GO). If the program encounters a
breakpoint, running stops. To use a mouse, you
can click either button on GO in the menu bar.

Run to a specified Move the cursor to the line that you want to run.
line of code Pressing F6 switches the cursor to the correct

window. Press F7. The reverse video line
marking the current location moves to the speci-
fied line. To use the mouse, move the cursor to
the specified line and click the right button.

A·3

WINDOW COMMAND SUMMARY
The following table shows the window commands that you can run
with either the mouse or the function keys:

Action Function Keys Mouse

Open Help Press F1 Help menu
menu

Open Register Press F2 View menu
window

Toggle Press F3 View menu
Source,
Assembly,
Mixed

Switch to Press F4 View menu
output screen

GO Press F5 Click on
F5=Go

Switch cursor Press F6 No function
window

Go to cursor Press F7 at Click right on
line location source line

Trace through Press Fa Click left on
functions Fa-Trace

Set breakpoint Press F9 at Click left on
at cursor location source code

Step over Press F10 Click right on
functions Fa-Trace

Change flag No function Click on flag

Make window Press Ctrl+G Drag bar up or
larger (Grow) down

Make window Press Ctrl+ T Drag bar up or
smaller (Tiny) down

Move up a line Move cursor Click left on
in window off top up arrow

Page up in Press PgUp Click above
window elevator

Move to top of Press Home Move elevator
window to top

A-5

Command Format

REGISTER R [reg] [[=]expression]

8087 DUMP 7

PORT INPUT I port

SEARCH S range list
MEMORY

COMPARE C range address
MEMORY

Breakpoints

Command Format

BREAKPOINT BP [address]
SET [count]

[" command"]

BREAKPOINT BC [list I *]
CLEAR

BREAKPOINT BD [list I *]
DISABLE

BREAKPOINT BE [list I *]
ENABLE

BREAKPOINT BL
LIST

A-7

System Control

Command Format

HELP H

OPTION O[FIBICl3 [+I-J]

QUIT Q

RADIX N[radix]

REDRAW @

SCREEN EXCHANGE \ [seconds]

SEARCH I[regularexpression]

TAB SET #[number]

Redirection

Command Format

REDIRECT INPUT <device

REDIRECT OUTPUT [n>[>] device

REDIRECT BOTH = device

PAUSE "

DELAY

COMMENT * [comment]

A-9

Appendix B. Error Messages

CodeView displays an error message whenever it detects a command
it cannot run. Except for startup errors, most errors stop the
CodeView command in which the error occurred, but do not stop
CodeView.

Already have base reg- You supplied more than one base reg-
Ister ister for an operand.

Already have Index reg- You supplied more than one index reg-
Ister ister for an operand.

Argument list or envlron- You issued a SHELL ESCAPE command
ment too large but there was not enough space for

either the number of parameters or the
size of the environment you tried to
pass.

Badaddre .. You specified the address in an invalid
form. For example, you might have
entered an address containing
hexadecimal characters when the radix
is decimal.

Bad breakpoint command You typed an invalid breakpoint number
with the BREAKPOINT CLEAR, BREAK-
POINT DISABLE, or BREAKPOINT
ENABLE command. The number must
be in the range of 0 through 19.

Bad emulator Info If this message occurs, note the circum-
stances of the error and report it to an
IBM Authorized Dealer.

Bad flag You specified an invalid flag mnemonic
with the REGISTER dialog command (R).
Use one of the mnemonics that appears
when you enter the command RF.

B-1

Breakpoint # or '*'
expected

Byte register Is Illegal

Cannot execute filename

Cannot find filename
Please enter new program
spec:

Cannot load overlay: too
many open flies

Cannot use struet or union
as scalar

Can't find filename

You entered the BREAKPOINT CLEAR
(BC), BREAKPOINT DISABLE (BD), or
BREAKPOINT ENABLE (BE) commands
with no argument. These commands
require that you specify the number of
the breakpoint at which CodeView is to
act or that you specify an asterisk, indi­
cating that CodeView is to act on all
breakpoints.

The instruction you are assembling
cannot accept a byte register. For
example, PUSH AL is illegal.

CodeView could not execute the
program specified in your SHELL
ESCAPE command.

The DOS overlay manager could not find
the file that contains the overlay it needs
to load. Type the name of the overlay
file (including the path, if necessary) and
press Enter.

The DOS overlay manager was unable to
open the overlay file it needed. Try
increasing the number in the FILES
command in your CONFIG.SYS file
before debugging your program again.
(See your IBM Disk Operating System
manual for more information on the
FILES command.)

You cannot use a structure or union vari­
able as a scalar value in a C
expression. The address-of operator
must precede structure or union vari­
ables, and a field specifier must follow
them.

CodeView cannot find the executable file
you specified when you started. You
probably misspelled the filename, or the
file is in a different directory.

B-3

EMM memory not lound You specified the /E option when starting
CodeView, but you do not have
expanded memory or the expanded
memory device driver is not installed.
Install the device driver or start
CodeView without the /E option.

EMM software error The expanded memory device driver has
returned an unexpected error code.

Enter directory lor CodeView cannot find the source file for
filename (cr lor none)? your program. Enter the name of the

directory where the source file is
located, including the final backslash
(for example: C:\PROJECT\SOURCE\).
To continue without using the source
file, press Enter without entering a direc-
tory name.

Exec lormat error CodeView was unable to start a sec-
ondary copy of itself. Under OS/2,
Version 1.00, you can run only one copy
of CodeView at a time so no secondary
copies can be started. Under OS/2,
Version 1.10, this message means that
the call to DosStartSession to start the
new copy of CodeView failed.

Expression: Internal error If this message occurs, note the circum-
stances of the error and report it to an
IBM Authorized Dealer.

Expression not a memory You specified an expression that does
address not evaluate to an Ivalue. For example,

TP? 'A' is invalid.

Expression too complex An expression given as a dialog
command argument is too complex.
Simplify the expression.

Extra Input Ignored You specified too many arguments to a
command. CodeView evaluates the
valid arguments and ignores the rest.
Often in this situation, CodeView does
not evaluate the arguments in the order
that you intended.

8-5

Incorrect DOS version An incompatibility problem occurred
while the DOS overlay manager was
performing a task.

Insufficient EMM memory There was not enough expanded
memory available to hold all the sym-
bolic information for the program you
want to debug. Try starting CodeView
without the IE option.

Internal debugger error If this message occurs, note the circum-
stances of the error and report it to an
IBM Authorized Dealer.

Invalid argument One of the arguments you specified is
not a valid CodeView expression.

Invalid executable file The executable file was not linked with
format - please rellnk the version of the linker released with

this version of CodeView. Relink with
the more current version of the linker.

Invalid option The option specified cannot be used with
the CodeView OPTION command.

Invalid process ID You issued a PROCESS command for an
invalid process. For a list of the valid
processes at any given time, enter I at
the CodeView command prompt.

Invalid thread ID You issued a THREAD command for an
invalid thread. For a list of the valid
threads at any given time, enter ,...,* at
the CodeView command prompt.

1/0 error If this message occurs, note the circum-
stances of the error and report it to an
IBM Authorized Dealer.

Library module not loaded CodeView cannot access one of the
dynamic link libraries (DLLs) that it
requires. Either the DLL was never
loaded, or it was prematurely termi-
nated.

Missing '''' You specified a string as an argument to
a dialog command, but you did not
supply a closing double quotation mark.

8-7

No previous regular You selected Previous from the Search
expression menu, but there was no previous match

for the last regular expression specified.

No source lines atthls The address you specified as an argu-
address ment for the VIEW command (V) does not

have any source lines. It might be an
address in a library routine or an
assembly language module.

No such flleldlrectory A file you specified in a command argu-
ment or in response to a prompt does
not exist. For example, this message
appears when you select Open from the
File menu, and then enter the name of a
nonexistent file.

No symbolic Information The program file you specified is not in
the CodeView format. You cannot debug
in source mode, but you can use
assembly mode.

Not a text file You attempted to load a file using the
Load selection from the File menu or
using the VIEW command, but the file is
not a text file. CodeView determines if a
file is a text file by checking the first 128
bytes for characters that are not in the
ASCII range of 9 through 13 and 20
through 126.

Not an executable file The file you specified for debugging
when you started CodeView is not an
executable file having the extension
.EXE or .COM.

B-9

Operator must have a You used the one of the C member
struct/unlon type selection operators (- > or .) in an

expression that does not refer to an
element of a structure or a union.

Operator needs Ivalue You specified an expression that does
not evaluate to an Ivalue in an operation
that requires an Ivalue. For example, ?
3=100 is invalid.

Outdated EMM software To use expanded memory with
(3.0 required) CodeView, you must have Version 3.00

or higher of the expanded memory
device driver. If you do not have
Version 3.00, start CodeView without the
IE option.

Out of memory CodeView cannot allocate enough
memory to perform your request.

Overlay Manager stack A stack overflow occurred while the DOS
overflow overlay manager was performing a task.

Overlay not found The DOS overlay manager was unable to
find the overlay it needed.

Overlay not resident CodeView was unable to access one of
its overlays.

PID n segmentation vlo- A child process you chose not to debug
latlon (process n) has caused a general pro-

- tection fault.

PID n zombled A child process you chose not to debug
(process n) has executed an INT 3
instruction. The process will not be able
to continue.

Please Insert dlskeHe con- The DOS overlay manager requires an
talnlng filename Into drive overlay file that is not in drive x.
x: and strike any key when Replace the diskette in drive x with the
ready diskette that contains the file indicated,

and press a key to continue.

Please restore original The DOS overlay manager has finished
dlskeHe. Strike any key reading the overlay file. Reinsert the
when ready. diskette that you removed when you

supplied the overlay file, and press a
key to continue.

8-11

Subscript not an Integer In BASIC, array subscripts must be
integer values.

Subscript out of bound The array subscript value you specified
indicates an element that does not exist
for the array. For example, given the
definition DIM X%(12), the expression
X%(13) is illegal.

Symbol not defined While assembling code, you specified a
symbol that is not defined. If you are
attempting to use an IBM Macro Assem-
bler or IBM Pascal Compiler/2 program
symbol, make sure that the symbol was
declared as a PUBLIC symbol in your
program.

Syntax error You specified an invalid command line
for a dialog command. Check for an
invalid command letter. This message
also appears if you enter an invalid
assembly language instruction using the
ASSEMBLE command. The error follows
a caret that pOints to the first character
that CodeView cannot interpret.

Thread terminated The current thread ran to the end. The
normally (number) number displayed in parenthesis is the

exit code that the thread returned.

Too few array bounds The bounds you specified at an array
given subscript do not match the array decla-

ration. For example, given the array
declaration DIM IARRAY%(3, 4), the
expression IARRAY(I%) would produce
this message.

Too many array bounds The bounds you specified in an array
given subscript do not match the array decla-

ration. For example, given the array
declaration DIM IARRAY%(3, 4), the
expression IARRAY%(I%, J%, K%J)
would produce this message.

Too many breakpoints You tried to specify a 21st breakpoint.
Codeview permits only 20 breakpoints.

8-13

Usage: cy [options] file You failed to specify an executable file
[arguments] when you started CodeView. Try again

with the syntax shown in the message.

Value Is out of range The specified value is too large for its
expected use. For example, you cannot
move a double word to a byte register.

Variable ambiguous, use The symbol name you are using could
type specifier refer to more than one program symbol.

For example, you entered? B when both
B% and B$ exist in your program. Add
one of the BASIC type specifiers (%, &,
!, #, or $) to the end of the symbol name
to indicate which symbol you mean to
use.

Video mode changed The program changed video modes from
without IS option or to one of the graphics modes when

screen swapping was not specified. You
must use the IS option to specify screen
swapping when you are debugging
graphics programs. You can continue
debugging when you get this message,
but the output screen of the debugged
program might be damaged.

VloGetBuf failing CodeView was denied access to the
logical screen buffer by the operating
system.

VloGetPhysBuf failing CodeView was denied access to a phys-
ical screen buffer by the operating
system.

Warning: packed file You started CodeView with a packed file
as the executable file. You can attempt
to debug the program in assembly
mode, but the packing routines at the
start of the program might make this dif-
ficult. You cannot debug in source mode
because EXEPACK strips all symbolic
information from a file when it packs the
file. This occurs with the IEXEPACK
linker option.

Wrong type of register The instruction you are assembling
requires a type of register different from
the one you supplied.

B-15

Index

- (dash) as option designator 2-6

A
absolute addresses 4-24,8-3
accessing bytes 4-3
accessing bytes (BY) 4-3
accessing doubleword (OW) 4-4
accessing words 4-4
adapters 2-9

graphics 2-9
monochrome (MA) 2-9

adapters, video 2-13
additional OS/2 mode debugging

features 12-1
address ranges 4-26
addresses 4-24,8-3, B-1, B-9

absolute 4-24, 8-3
as arguments B-1, B-9
full 4-24, 8-3

applications
full-screen 12-8
non-windowable 12-8
presentation manager 12-8
vio-windowed 12-8
windowable 12-8

arguments 2-5, 2-37, 2-39, 4-23,
4-24,4-26,4-28,5-12, 9-10, B-5,
B-13

address ranges 4-26
addresses 4-24
dialog commands 2-39, B-7,

B-8, B-13
function 9-10
object ranges 4-26
program 2-5,5-12
registers 4-23
routines 9-10

ASCII characters 6-23, 6-24

ASCII command 10-11
enter 10-11

assemble command 10-2, B-13
assembling and linking Macro

Assembler programs 3-7
assembly address 10-2
assembly examples 6-11
assembly mode 2-31, 9-2, B-9
assembly rules 10-3
asterisk 11-24

comment command 11-24
in regular expressions 4-21

at sign 11-7
redraw command 11-7

B
backslash(\), screen exchange

command 11-8
backspace key 2-38
BASIC

constants 4-9
examples 6-7,6-17
expression evaluator 4-7
expressions of the most com-

monly used BASIC
operators. 4-7

intrinsic functions 4-11
strings 4-11
symbols 4-9

BASIC programs, preparing 3-4
BASIC source, writing 3-4
brackets 4-19
breakpoint

address 5-9
clear command 2-30,7-5
disable command 7-6
enable command 7-7
go command 5-8
list command 7-8

X-1

commands (continued)
display expression 6-2
display symbols 6-14
DOS shell 2-26
dump 6-22, 6-23, 6-24, 6-25,

6-26, 6-27, 6-28, 6-29, 6-30, 6-31
ASCII 6-24
bytes 6-23
default size 6-22
doublewords 6-28
integers 6-25
long reals 6-30
short reals 6-29
unsigned integers 6-26
words 6-27
10-byte reals 6-31

dump commands 6-20
default size 6-20

enter 10-8, 10-9, 10-11, 10-12,
10-13, 10-14, 10-15, 10-16,
10-17, 10-18

ASCII 10-11
bytes 10-9
default 10-8
doublewords 10-15
integers 10-12
long reals 10-17
short reals 10-16
unsigned integers 10-13
words 10-14
10-byte reals 10-18

execute 2-30, 5-11
exit 2-27, 11-3
expression 6-2
fill memory 10-19
go 2-24, 2-36, 5-8
goto 2-23, 2-24, 5-8
graphic display 6-12
help 2-35, 2-36, 11-2
move memory 10-21
move separator line down 2-21
move separator line up 2-21
option 11-16
pause 11-27

commands (continued)
port output 10-22
prog ram step 2-24, 2-37, 5-5
quit 11-3
radix 11-4, 8-2
redirect input/output 11-22
redirect output 11-20
redirection 11-18
redraw 11-7
register 2-24,2-36, 6-36, 10-23,

8-1,8-2
restart 2-30,5-12, 8-12
screen exchange 2-28, 2-36,

11-8
search 2-28,4-17,11-9,8-8,

8-12
set mode 2-27, 2-36, 9-2
shell escape 2-26, 11-12, 8-10
stack trace 2-34, 9-10
tab set 11-15
thread 12-3
trace 2-24, 2-36, 5-2
tracepoint 2-31, 2-37, 8-9, 8-2,

8-10
unassemble 9-4
view 9-6, 8-9
view output 12-1
watch 2-30, 2-37, 8-3, 8-2
watch delete 2-31,8-13
watch list 2-37, 8-15
watchpoint 2-31,2-37,8-6,8-2
8087 6-38

commands used with
redirection 11-23

COMMAND.COM, with DOS shell
command 2-26

comment command 11-24
asterisk 11-24

comment line 5-8,5-9, 7-2, 7-3
compile options 3-1
compiling and linking 8ASIC pro­

grams 3-4

X-3

dragging with the mouse 2-20
dump address 6-20
dump ASCII command 6-24
dump bytes command 6-23
dump command 6-22, 6-23, 6';'24,

6-25, 6-26, 6-27, 6-28, 6-29, 6-30,
6-31

ASCII 6-24
bytes 6-23
default size 6-22
doublewords 6-28
integers 6-25
long reals 6-30
short reals 6-29
unsigned integers 6-26
words 6-27
10-byte reals 6-31

dynamic-link libraries 12-1
dynamic-link modules,

debugging 2-11

E
echo, with redirection 11-20
End key 2-16
ending CodeView 11-3
Enhanced Graphics Adapter

(EGA) 2-11
enhancements xi
enter bytes command 10-9
enter command

ASCII 10-11
bytes 10-~

default 1 0~8
doublewords 10-15
integers 10-12
long reals 10-17
short reals 10-16
unsigned integers 10-13
words 10-14
10-byte reals 10-18

enter commands 10-6
entering dialog commands and

arguments 2-38

entering dialog commands and
arguments (continued)

format 2-39
equal sign 11-22

redirect input/output
command 11-22

error messages 8-1
errorlevel code 5-8
examine 6-14

functions 6-14
modules 6-14
procedures 6-14
symbols 6-14

examine symbols command 6-14
examining code 9-1
examining data and

expressions 6-1
exclamation point (I) 2-15,11-13

command indicator 2-15
shell escape command 11-13,

8-10
executable file 2-4, 2-5, 8-9

command prompt 2-5
command-line 8-3
required for startup 2-5

execute command 2-30, 5-11
executi ng code 5-1
EXEPACK link option 8-15
exit 2-27,11-12

DOS command 11-12
exit code 5-8
exit command 2-27
exit DOS command 2-26
expanded memory 2-13
expression evaluation 6-2, 8-5,

8-7,8-8
expression evaluator 4-1
expressions 4-1

address ranges 4-25
addresses 4-24
8ASIC 4-7
C 4-1
C functions 4-7
constants 4-5, 4-9

x-s

G
getting started with CodeView 2-1
go command 2-24, 2-36, 5-8, 5-9
go F5 2-17,5-8
goto command 2-23, 2-24, 5-8
goto F7 2-17
graphic display command 6-12
graphics adapter 2-7,2-8,2-9,2-13
graphics programs 11-20

debugging 11-20
greater than 11-20

H
help command 2-35,2-36,11-2
help F1 2-16
help menu 2-35
help system 2-35
highlight 2-15
Home key 2-16
H, dialog help 11-2

I
identifiers 4-5
identifiers in arguments 8-14
immediate operand 10-4
INO (indefinite) 6-21
indentation 11-15
indirect register instructions 10-4
indirection levels 4-2
INF (infinity) 6-21
infinity 6-21
inputting lines 4-28
installing CodeView 2-1
instruction-name synonyms 10-4
integers command 10-12

enter 10-12
integers, dumping 6-25
internal debugger error 8-2,8-7
interrupt 21 5-2
intrinsic functions 4-11

introducing CodeView 1-1

L
language menu 2-33
less than sign 11-19
libraries, debugging

dynamic-link 12-2
line numbers 4-28
link option 3-1
listing 8-15

watch statements 8-15
listing breakpoints 7-8
load 5-12
local variables 4-3,8-2,8-14
long reals command 10-17

enter 10-17
long reals, dumping 6-30
Loops 8-12

tracepoints 8-12
watchpoints 8-8

Lvalue 8-9

M
Macro Assembler

examples 8-18
expressions 4-16
preparing programs 3-6
programs 4-16

managing breakpoints 7-1
managing expression

eval uators 4-1
managing watch statements 8-1
matching brackets within

brackets 4-20
matching the start or end of a

line 4-21
member selection operators 8-11
memory operators 4-3
memory release 11-12
menu 2-26, 2-27, 2-28, 2-32, 2-33,

2-34, 2-35, 5-11, 5-12, 6-36
calls 2-34, 9-10

X-7

options (continued)
link (continued)

ICODEVIEW 3-1
linker 11-12, B-15

CPARMAXALLOC 11-12
EXEPACK B-15

IB, CodeView 2-6
IE 2-13
IF, CodeView 2-8
1M, CodeView 2-10
10 2-10
10d 3-1
IR 2-11
IS, CodeView 2-8
IT, CodeView 2-9
IW, CodeView 2-9
IZd 3-1
IZi 3-1
12, two video adapters 2-13
143, CodeView 2-11
150, CodeView 2-11

options menu 2-31, 2-32, 2-33, 6-36
bytes coded 9-2
case sense 2-33, B-14
flip/swap 2-32
registers 6-36
386 2-33

options, compile 3-1
05/2 mode programs 12-8
05/2 mode restrictions 12-8
output screen 2-8, 11-8
overlays 2-5

p
parameters 2-5

program 2-5
Pascal

data types 4-14
examples 6-8,6-18,8-17
expressions 4-13
preparing programs 3-5

pass count 7 -3, 7-8

PATH command 2-4
pause command 11-27

quotation mark 11-27
period 4-19,9-9

current location command 9-9
regular expressions 4-19

period operator 4-2
period operator (.) B-12
PgDn key 2-16,9-7
PgUp key 2-16
pointer, mouse 2-15,2-20
pOinting with the mouse 2-20
port output command 10-22
practice session 2-2
precedence of operators 4-1
prefixes

printf type B-2
with type specifiers B-2

preparing
BASIC programs 3-4
C programs 3-1
Macro Assembler programs 3-6
Pascal programs 3-5

preparing programs for
CodeView 3-1

BASIC 3-4
C 3-1
compile options 3-1
considerations 3-1
link options 3-1
Pascal 3-5
restrictions 3-1

presentation manager, debugging
appl ications 12-8

printf type prefixes B-2
printf type specifiers 6-2, 8-3, 8-6,

8-10, B-2
procedure calls 5-2,5-5
procedures 9-10
procedures, examining 6-14
program 2-5

arguments 2-5
parameters 2-5

X-9

scroll bar, definition 2-15
search command 2-28,4-17,11-9,

8-8,8-12
search menu 2-28, 2-29

find 2-28, 11-9
label 2-29, 11-9
next 2-29, 11-9
previous 2-29, 11-9

searching for special
characters 4-18

selecting from menus with
keyboard 2-18

selecting from menus with the
mouse 2-19

selecting text with the mouse 2-25
selecting with the keyboard 2-16
selector, thread 12-3
separator line 2-15
sequential mode 2-9,2-14,2-36,

11-22
sequential mode, help 11-2
set block 11-12

DOS function call (Ox4A) 11-12
set mode command 2-27,2-36,9-2
set mode command F3 2-17
setting the display mode 2-7
setting the screen-exchange

mode 2-8
setti ng watch-expressions/memory

statements 8-3
shell escape command 2-26,

11-12,11-13,8-10
exclamation point 11-13

shell, DOS 2-26
short reals command 10-16

enter 10-16
short reals, dumping 6-29
slash (I) search command 11-9,

8-8
slash (/), search command 8-12
source file, with line number argu­

ments 4-28

source mode 9-2, 8-9
source module files 2-4, 2-26
special characters 2-28,4-18,11-9
special characters in regular

expressions 4-18
specifying startup commands 2-7
specifying startup options 2-6
stack trace command 2-34,9-10
stack, 8087 6-40
start 5-12
start up 8-3, 8-9
starting CodeVlew 2-4
starting the sample session 2-2
startup 2-4

command prompt 2-4
file configuration 2-4
options 2-6

startup code 11-12
stopping CodeVlew 11-3
storage release 8-10
string mnemonics 10-3
strings 2-25, 4-7, 4-10
strings as arguments 8-7
structures 6-12
support for debugging child proc­

esses 12-6
swapping, screen 2-8
switching expression

evaluators 4-12
symbols 3-6, 4-5, 4-9
symbols in arguments 8-14
symbols, examining 6-14
SYMDEB 2-14,2-36
syntax summary 11-2
Sys Req key 2-18

T
tab set command 11-15

number sign 11-15
text files, identifying 8-9
thaw threads 12-3
thread action 12-3

X·11

watch menu (continued)
tracepoint 2-31,8-10
watchpoint 2-31, 8-6

. watch statements 8-1
watch statements, definition 2-15
watch window 8-1
watch-expressions statements 8-3
watch-memory statements 8-3
watchpoint 8-6

definition 8-6
watchpoint command 2-31,2-37,

8-6,8-7, B-2
watchpoints 8-8

loops 8-8
watchpoint, defining B-2
window commands 2..;16, 2-37
window mode 2-9,2-14
window mode, help 11-2
words command 10-14

enter 10-14
words (units of memory) 4-4
Working with Macro Assembler pro­

grams 4-16
working with Pascal

programs 4-13
writing BASIC source 3-4
writing C source 3-2
writing Pascal source 3-5

V
yank 8-13

Z
zero, division by B-4

Numerics
10-byte reals command 10-18

enter 10-18
10-byte reals, dumping 6-31
8087 coprocessor 6-38, 10-4

87 command 6-38

Special Characters
.COM extension B-9
.EXE extension B-9
I (slash) as option designator 2-6
IB CodeView option 2-6
ICO 3-1
ICODEVIEW 3-1
IE CodeView option 2-13
IF CodeView option 2-8
/I codeview option 2-11
1M CodeView option 2-11
10 CodeView option 2-10
10 option 12-6
10d 3-1
IR CodeView.option2~11
IS CodeViewoption . 2-8, 8-15
IZd 3-1
IZi 3-1
12 CodeView option 2-13
143 CodeView option 2-11
150 CodeView option 2-11

X-13

Continued from inside front cover.

SUCH WARRANTIES ARE IN LIEU OF
ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow the exclusion
of implied warranties, so the above
exclusion may not apply to you.

LIMITATION OF REMEDIES
IBM's entire liability and your exclusive
remedy shall be as follows:
1) IBM will provide the warranty

described in IBM's Statement of
Limited Warranty. If IBM does not
replace defective media or, if appli­
cable, make the Program operate as
warranted or replace the Program
with a functionally equivalent Pro­
gram, all as warranted, you may
terminate your license and your
money will be refunded upon the
return of all of your copies of the
Program.

2) For any claim arising out of IBM's
limited warranty, or for any other
clai m whatsoever related to the
subject matter of this Agreement,
IBM's liability for actual damages,
regardless of the form of action,
shall be limited to the greater of
$5,000 or the money paid to IBM, its
Authorized Dealer or its approved
supplier for the license for the
Program that caused the damages
or that is the subject matter of, or is
directly related to, the cause of
action. This limitation will not apply
to claims for personal injury or
damages to real or tangible personal
property caused by IBM's negligence.

3) In no event will IBM be liable for any
lost profits, lost savings, or any
incidental damages or other conse­
quential damages, even if I BM, its
Authorized Dealer or its approved
supplier ,has been advised of the
possibility of such damages, or for
any claim by you based on a third
party claim.

Some states do not allow the limitation
or exclusion of incidental or consequen­
tial damages so the above limitation or
exclusion may not apply to you.

GENERAL
You may terminate your license at any
time by destroying all your copies of the
Program or as otherwise described in
this Agreement.

IBM may terminate your license if you
fail to comply with the terms and condi­
tions of this Agreement. Upon such
termination, you agree to destroy all your
copies of the Program.

Any attempt to sublicense, rent, lease or
assign, or, except as expressly provided
herein, to transfer any copy of the
Program is void.

You agree that you are responsible for
payment of any taxes, including personal
property taxes, resulting from this
Agreement.

No action, regardless of form, arising
out of this Agreement may be brought by
either party more than two years after
the cause of action has arisen except for
breach of the provisions in the Section
entitled "License" in which event four
years shall apply.

This Agreement will be construed under
the Uniform Commercial Code of the
State of New York.

Z125-3301-024/87

