(

=== = Personal Compuier
E Computer Language
Series

APL

by IBM Madrid Scientific Center

1502219

Personal Computer
Computer Language
Series

APL

by IBM Madrid Scientific Center

First Edition (May 1983)

This product could include technical inaccuracies or typographical
errors.

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this publication.

The following paragraph applies only to the United States and
Puerto Rico: International Business Machines Corporation
provides this manual “as is”’ without warranty of any kind, either
express or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this manual at any time and
without notice.

Products are not stocked at the address below. Requests for copies
of this product and for technical information about the system
should be made to your authorized IBM Personal Computer
dealer.

A Reader’s Comment Form is provided at the back of this
publication. If this form has been removed, address comments to:
IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca
Raton, Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any obligations whatever.

© Copyright International Business Machines Corporation 1983

Preface

APL is a general-purpose language that can be used in
many applications, such as commercial data processing,
system design, mathematical and scientific computation,
and the teaching of mathematics and other subjects.
This book describes the IBM Personal Computer APL
system.

The book consists of two parts. Part 1, “Operation
Guide,” has four chapters that describe the use of the
system. Part 2, “APL Reference Guide,” has eight
chapters that explain, in detail, the APL language as
implemented on the IBM Personal Computer. Part 1
assumes some familiarity with computing, as well as a
basic knowledge of APL which can be obtained from
Part 2.

Chapter 1, “Introduction,” describes the use of the IBM
Personal Computer devices under APL, and should be
read by all who use the system. The chapter contains
information about the use of diskette drives and fixed
disks, the keyboard, display monitors, and the IBM
Graphics Printer. This chapter also introduces the APL
character set, and describes the full-screen APL input
editor.

Chapter 2, “Application Workspaces,” describes a
number of functions provided with the system that allow
a person with a basic understanding of APL to use the
IBM Personal Computer’s devices. A set of workspaces
has been provided to help you with the following
operations: .

Printer management

Full-screen editing of APL defined functions
Disk Operating System file management
Asynchronous communications with an IBM
System/370 host

Music samples

iii

iv

Chapter 3, “Auxiliary Processors,” describes, in detail,
the auxiliary processors provided with the system,
which allow a knowledgeable APL user to create
specific application workspaces. The following
auxiliary processors have been included to help you
obtain greater control of the IBM Personal Computer’s
devices:

APS80: IBM Graphics Printer Control
AP100: BIOS/DOS interrupt handling
AP205: Full-screen display management
AP210: DOS file management

AP232: Asynchronous communications
AP440: Music generator

Chapter 4, “How to Build an Auxiliary Processor,”
describes auxiliary processors that can exchange
information with APL. A person who has both a good
knowledge of APL and the ability to program in the
IBM Macro Assembler language can use this chapter to
help produce his own auxiliary processor to perform a
specific application not currently supported by the APL
system.

Chapter 5, “Using APL,” describes the major
characteristics of the APL language.

Chapter 6, “Fundamentals,” shows some typical APL
statements, lists error messages with recommended
corrective actions, describes the APL character set, and
explains the terms used in APL.

Chapter 7, “Primitive Functions and Operators,”
describes the scalar and mixed primitive functions of
APL and the operators that may be used with them.

Chapter 8, “System Functions and System Variables,”
describes the interaction between the APL language and
the system implementing it.

Chapter 9, “Shared Variables,” describes the interface
that allows two independently operating processors to
exchange information.

Chapter 10, “Function Definition,” describes the
various methods by which a defined function can be
established in an APL workspace. Ambi-valent
functions, localization of names, branching, labels,
comments, and the del (v) function editor are all
discussed in this chapter.

Chapter 11, “Function Execution,” describes the
execution of defined functions, including the related
topics of halted execution, the state indicator, stop
control, trace control, locked functions, recursive
functions, and console input and output.

Chapter 12, “System Commands,” describes the
various APL system commands that are used to control
the work session and to manage workspaces.

Three appendixes, “Alt Codes and Associated
Characters,” “Printer Control Codes,” and ‘“‘Internal
Representation of Displayed Characters” are also
included.

Notes:

vi

Contents

Part 1. Operation Guide

Chapter 1. Introduction 1-1
Backing Up Your Diskette 1-8
Before YouBegin 1-8
Protecting Your Original Diskette 1-8
Backing Up Diskette with One Drive 1-9
Backing Up Diskette with Two Drives ... 1-11
Installing APL on Your FixedDisk 1-14
Getting APL Started from Either Diskette
or FixedDisk 1-15
Including Options in the APL Command 1-16
The APL Character Set 1-17
The Keyboard 1-18
FunctionKeys 1-18
Typewriter Keyboard 1-19
Numeric Keypad 1-21
Special Key Combinations 1-22
Useof Displaysccoiiiinnaa... 1-25
Disk(ette) Drivescovveennenn.. 1-26
The Printer i, 1-27
The APL Input Editor 1-28
APL Input Editor Special Keys 1-29
How to Make Corrections on the
CurrentLine 1-31
Chapter 2. Application Workspaces 2-1
The PRINT Workspace 2-4
The EDIT Workspace 2-5
The FILE Workspace 2-8
Functions 2-9
Examplesof Use 2-22

vii

viii

The VM232 Workspace3
Selecting a Terminal
Saving Your Line Parameter

Definition
Connection with the Host
Functions
Example of Connection with the Host
Auxiliary Files onthe Host

The MUSIC Workspace

Chapter 3. Auxiliary Processors
The Printer Auxiliary Processor: AP80
BIOS/DOS Interrupt Auxiliary
Processor: AP100
The Full-Screen Auxiliary
Processor: AP205
Screen Formatting
Control Commands
Interactive Use of the Screen
Return Codes
The File Auxiliary Processor: AP210
Control Commands
Control Subcommands
Return Codes
The Asynchronous Communications Auxiliary
Processor: AP232,
Control Commands
The Music Auxiliary Processor: AP440
AP440 Command Syntax

Chapter 4. How to Build an Auxiliary

Processor
Access Control
Shared Variable Processor Services and

Return Codeso ...
Format of Shared Data
Internal Structure of APL Variables
Information about Shared Variables
Auxiliary Processor Example with One

Shared Variable
Auxiliary Processor Example with Two

Shared Variables
APL Data Segment and Macros for Auxiliary

Processorsoiiiiiiiiii...

Part 2. APL Reference Guide

Chapter 5. Using APL
Two Examples of the Use of APL
An Isolated Calculation
A Prepared Workspace
Characteristicsof APL

Chapter 6. Fundamentals
Character Setciiin...
Spaces ...
Function
Order of Execution
Data

Arrays ...

Constants ccvviiinenn...
Workspaces and Libraries
Names ...ttt i,
Implementation Limits

Chapter 7. Primitive Functions and
Operators ccoiiiiiniinnnnnn.
Scalar Functions
Plus, Minus, Times, Divide, and
Residue,
Conjugate, Negative, Signum, Reciprocal,
and Magnitude
Boolean and Relational Functions
Minimum and Maximum
Floorand Ceiling
ROLL (Random Number Function)
Power, Exponential, General and Natural
Logarithm
Circular, Hyperbolic, and Pythagorean
Functions
Factorial and Binomial Functions
Operatorsoviriieiiiinn.n.
Reduction
Scan ...
AXIS ...
Inner Product
Outer Product
Mixed Functions
Structural Functions
Selection Functions

Selector Generatorsouiiniinnnn. 7-44

Index Generator and Index Of 7-45
Membership 7-45
Grade Functions 7-46
Deal 7-50
Numeric Functions 7-50
Matrix Inverse and Matrix Divide 7-50
Decode and Encode 7-54
Data Transformations 7-56
Execute and Format 7-57
Picture Format 7-64
Chapter 8. System Functions and System
Variables 8-1
System Functions 8-3
Canonical Representation — [ICR 8-5
Delay— DL 8-6
Execute Alternate: — JEA 8-6
Expunge - EX 8-7
Function Establishment — 0FX 8-8
Name Classification— OVC 8-8
Name List— OVL 8-9
Peek/Poke — [(PK ..o, 8-10
Transfer Form— [0O7F 8-11
System Variables 8-14
Latent Expression— [OZX 8-16
Atomic Vector— [JAV 8-17
Format Control— OFC 8-18
Horizontal Tabs — OHT 8-19
Chapter 9. Shared Variables 9-1
Offers ..ooiii i 9-5
AccessControl 9-7
Retraction 9-12
Inquiries i 9-13
Chapter 10. Function Definition 10-1
Canonical Representation and Function
Establishment 10-3
The Function Header 10-5
Ambi-Valent Functions 10-6
Local and Global Names 10-7
Branching and Statement Numbers 10-8
Labels S 10-9

Function Editing— The V Form 10-10

Adding a Statement 10-11
Inserting or Replacing a Statement 10-11
Replacing the Header 10-12
Deleting a Statement 10-12
Adding to a Statement or Header 10-12
Function Display 10-13
Leavingthe v Form 10-15
Chapter 11. Function Execution 11-1
Halted Execution 11-4
State Indicator 11-5
State Indicator Damage 11-6
Trace Control 11-7
StopControl 11-7
Locked Functions 11-8
Recursive Functions 11-9
Console Input and Output 11-10
EvaluatedInput 11-12
Character Input 11-13
Interrupting Execution During Input 11-13
Normal Qutput 11-13
BareOutput 11-14
Chapter 12. System Commands 12-1
Active Workspace — Action Commands 12-7
Active Workspace — Inquiry Commands 12-10
Workspace Storage and Retrieval — Action
Commandsccovviiiiiunnnnnnnn. 12-12
Libraries of Saved Workspaces 12-12
Workspace Names 12-12
Workspace Storage and Retrieval — Inquiry
Commandsccoiiiiiinennenn.. 12-16
Sign-Off 12-17
Appendix A. ALT Codes and Associated
Charactersc.cviiiineennnn. A-1
Appendix B. Printer Control Codes B-1
Appendix C. Internal Representation of
Displayed Characters C-1
Index i X-1

xi

Notes:

xii

ony
e
-

Part 1. Operation Guide

Chapter 1. Introduction 1-1
Backing Up Your Diskette 1-8
Before YouBegin 1-8
Protecting Your Original Diskette 1-8
Backing Up Diskette with One Drive 1-9
Backing Up Diskette with Two Drives 1-11
Installing APL on Your Fixed Disk 1-14
Getting APL Started from Either Diskette
orFixedDisk 1-15
Including Options in the APL Command 1-16
The APL Character Set 1-17
The Keyboard 1-18
FunctionKeys 1-18
Typewriter Keyboard 1-19
Numeric Keypad 1-21
Special Key Combinations 1-22
Useof Displaysccoviiinininen... 1-25
Disk(ette) Drives 1-26
The Printer 1-27
The APL Input Editor 1-28
APL Input Editor Special Keys 1-29
How to Make Corrections on the
Current Line 1-31
Chapter 2. Application Workspaces 2-1
The PRINT Workspace 2-4
The EDIT Workspace 2-5
The FILE Workspace 2-8
Functions 2-9
Examplesof Use 2-22

The VM232 Workspace 2-23

Selecting a Terminal 2-24
Saving Your Line Parameter
Definition 2-31
Connection withthe Host 2-32
Functions oL, 2-34
Example of Connection with the Host 2-38
Auxiliary Files onthe Host 2-43
The MUSIC Workspace 2-57
Chapter 3. Auxiliary Processors 3-1
The Printer Auxiliary Processor: AP80 34
BIOS/DOS Interrupt Auxiliary
Processor: AP100 3-6
The Full-Screen Auxiliary
Processor: AP205 3-10
Screen Formatting 3-12
Control Commands 3-15
Interactive Use of the Screen 3-17
Return Codes 3-19
The File Auxiliary Processor: AP210 3-21
Control Commands 3-22
Control Subcommands 3-25
Return Codes 3-26
The Asynchronous Communications Auxiliary
Processor: AP232 3-28
Control Commands 3-29
The Music Auxiliary Processor: AP440 3-35
AP440 Command Syntax 3-36
Chapter 4. How to Build an Auxiliary
Processor o, 4-1
AccessControl 4-4
Shared Variable Processor Services and
Return Codes 4-5
Format of Shared Data 4-9
Internal Structure of APL Variables 4-11
Information about Shared Variables 4-12
Auxiliary Processor Example with One
Shared Variable 4-12
Auxiliary Processor Example with Two
Shared Variables 4-15

APL Data Segment and Macros for Auxiliary
Processors 4-20

ii

Chapter 1. Introduction

Backing Up Your Diskette 1-8
Before YouBegin 1-8
Protecting Your Original Diskette 1-8
Backing Up Diskette with One Drive 1-9
Backing Up Diskette with Two Drives 1-11

Installing APL on Your Fixed Disk 1-14

Getting APL Started from Either Diskette

orFixedDisk 1-15

Including Options in the APL Command 1-16

The APL CharacterSet 1-17

The Keyboard 1-18
FunctionKeys 1-18
Typewriter Keyboard 1-19
Numeric Keypad 1-21
Special Key Combinations 1-22

Useof Displayscoiiiiininn... 1-25

Disk(ette) Drives 1-26

ThePrinter, 1-27

The APL Input Editor 1-28
APL Input Editor Special Keys 1-29
How to Make Corrections on the

Current Line 1-31

1-1

Notes:

1-2

APL is a general-purpose language that enjoys wide use
in such diverse applications as commercial data
processing, system design, mathematical and scientific
computation, and the teaching of mathematics and other
subjects. It has proved particularly useful in data-base
applications, where its computational power and
communication facilities combine to increase the
productivity of both application programmers and end
users.

When implemented as a computing system, APL is
used from a typewriter-like keyboard. Statements that
specify the work to be done are typed and the computer
responds by displaying the result of the work at a device
such as a printer or video display. In addition to

work purely at the keyboard and its associated display,
entries may also specify the use of printers, disk files, or
other remote devices.

A programming language should be relevant. That is,
you should have to write only what is logically
necessary to specify the job you want done. This may
seem an obvious point, but many of the earlier
programming languages would have forced you to be
concerned as much with the internal requirements of the
machine as with your own statement of your problem.
APL takes care of those internal considerations
automatically.

A programming language needs both power and
simplicity. By power, we mean the ability to handle
large or complicated tasks. By simplicity, we mean the
ability to state what must be done briefly and neatly, in
a way that is easy to read and easy to write. You might
think that power and simplicity are competing
requirements, so that if you have one, you can’t have
the other, but that is not necessarily so. Simplicity does
not mean the computer is limited to doing simple tasks,
but that the user has a simple way to write instructions
to the computer. The power of APL as a programming
language comes in part from its simplicity.

1-3

The letters, APL, originated with the initials of a book
written by K. E. Iverson, A Programming Language
(New York: Wiley, 1962). Dr. Iverson first worked on
the language at Harvard University, and then continued
its development at IBM with the collaboration of Adin
Falkoff and others at the IBM T.J. Watson Research
Center. The term APL now refers to the language that is
an outgrowth of that work. APL is the language, and
IBM Personal Computer APL is the “brand-name” of
a particular implementation of that language, with
extensions. The implementation and extensions were
developed by the IBM Madrid Scientific Center. This
implementation, hereafter called APL, has the following
features:

® Shared variables, which allow the exchange of
information between independently operating
processors. This allows the separate loading of only
those auxiliary processors needed for a particular
work session or application. It also makes possible
the design of new auxiliary processors for an
application that may not be currently supported by
the system.

® Facilities for conversion between the internal form
and transfer form of APL objects, including).I%,
YOUT , and [JTF, that allow workspaces to be
interchanged between different systems.

® Asynchronous communications with the IBM
Virtual Machine Facility/370 permits the exchange
of workspaces and data files between systems, and
allows devices attached to the host to be used.

® All dyadic-defined functions are ambivalent, which
allows them to be used monadically without
generating a syntax error. The system function,
e, can be applied to the left argument within a
function to determine, at execution time, whether
the function actually has been called as dyadic or
monadic.

Improved error recovery is made possible by the
YRESET command, which clears the state indicator,
and [JFA (execute alternate), which allows the
trapping of an APL interrupt and error message to
permit a programmed means of recovery.

Event handling facilities are provided through an
APL interface to the BIOS/DOS interrupts, thus
allowing these interrupts to be trapped or generated
for more control of the system environment.

The APL workspace consists of two parts:

— The main workspace, which has a maximum
size of 64K bytes, where all APL statements are
executed and all APL objects are created and
modified.

— The elastic workspace, which can use all
additional free memory. If space is needed for an
operation in the main workspace, every APL
object not currently referenced will be
automatically relocated to the elastic workspace,
and returned as needed.

The following four data types are supported, and the
system automatically performs data-type
conversions whenever possible to minimize storage
space:

— Floating-point, with eight bytes per element

— Integer, with two bytes per element

— Character, with one byte per element

— Boolean, with one bit per element

The IBM Personal Computer Math Co-Processor is
used for improved performance of floating-point

operations, such as the APL transcendental
functions.

1-5

1-6

The ability to start an application automatically by
specifying an APL system command at load time,
before starting a work session. Functions that
imitate some of the system commands also are
provided, allowing the system environment to be
controlled from within a defined function.

The execution of machine-code subroutines and the
PEEK and POKE of memory contents is provided
through the [0PX system function.

The appearance of numeric output can be improved
using picture format, and the dyadic grades allow
character data to be sorted in a specified collating
sequence.

Dynamic switching between the APL and National
character sets on the keyboard provides access to an
extensive set of characters that can be entered with
one keystroke.

Multiple display monitors can be used, with
dynamic switching between the following modes:

— 40-Column Color/Graphics
— 80-Column Color/Graphics
— 80-Column Monochrome (non-APL characters)

A full-screen input and output capability provides a
full-screen input editor, which allows corrections to
be made to a previous line that can then be
re-entered for execution. A full-screen,
defined-function editor, and multiple line deletion
under the del (V) editor, increase the ease with
which programs can be created and edited.

A file management capability allows the control of
either APL or DOS files, with sequential or direct
access of fixed length and variable length records.

® The optional IBM Graphics Printer can produce
APL characters, and can be used either as a system
log to provide a record of the work session, or to
selectively print a desired APL object or result.

® The speaker attached to the system unit of the IBM
Personal Computer can be used to generate music.

To use the IBM Personal Computer APL system, you
must have the following minimum configuration:

® Either the IBM Personal Computer or the IBM
Personal Computer XT

® 128K of random access memory
® The IBM Personal Computer Math Co-Processor
® One diskette drive

® The IBM Color/Graphics Adapter, to generate both
APL and non-APL characters

® The IBM Color Monitor or other monitor that
functions with the Color/Graphics Adapter, or a
television set and RF modulator. (Television sets
and RF modulators are not sold by IBM.)

® Optional IBM 80 CPS Graphics Printer, with either
the Parallel Printer Adapter or the Monochrome
Display and Printer Adapter.

® Optional Monochrome Display and Printer Adapter
with the Monochrome Display, to display ASCII
(non-APL) characters

® Optional IBM Personal Computer Expansion Unit

® Optional IBM Asynchronous Communications
Adapter

APL comes to you on a diskette, so you have to load it

into memory before you can use it. You should read this
entire chapter before trying to use the APL system.

1-7

Backing Up Your Diskette

Because you have only one copy of the APL system,
you should back it up before you begin to use APL.
Backing up a diskette means to copy a diskette’s data
to another diskette. A backup, that is, the copy, saves
you the time, trouble, and sometimes the expense, of
recovering the information on a diskette that has been
lost, damaged, or accidentally written over.

It is a good practice to back up your important program
diskettes as soon as you purchase or create them. Then
store your original diskette properly in a place where
you can find them if you need to. Use the backup
diskettes for everyday operations.

Your data diskettes should be backed up every time you
add or change information on them.

Before You Begin

You will need these diskettes:

® The diskette you want to back up—we’re going to
call this your original diskette. You may also see it
called the source diskette.

® The diskette that will become the backup diskette.
Other names for this diskette are target or
destination diskette.

® DOS diskette

Protecting Your Original Diskette

1-8

Hint: It’s a good idea to put a tab over the
write-protect notch to make sure you don’t accidentally
write on your original diskette. You may remove the tab
when the backup diskette has been made.

When the write-protect notch is covered, if the diskettes
get mixed up, a message similar to the following
appears:

Target diskette write protected
Correct, then strike any key

If you get this message:

1. Remove the original diskette from the drive.
2. Insert the backup diskette.

3. Press any key.

(You do not have to press the Enter key.)

Backing Up Diskette With One Drive

If you have only one diskette drive, you must remove
the original diskette and insert the backup. You may
have to make this switch several times; the Disk
Operating System (DOS) will tell you when.

The DISKCOPY command will give you the following
messages:

Insert source diskette in drive A:

Insert target diskette in drive A:

So you should:
INSERT: WHEN:

Original diskette “source’ message appears
Backup diskette “target’” message appears

1-9

1-10

IMPORTANT: Read all of the following steps before
starting.

L.
2.

Make sure DOS is ready and A> is displayed.

Insert the DOS diskette in the drive, if it is not
already there.

Type:
diskcopy

and press the Enter key. The following message
appears:

Insert source diskette in drive A:

Strike any key when ready

BEFORE YOU PRESS A KEY:

a. Remove the DOS diskette that is in the drive.
b. Insert your original diskette.

¢. NOW press any key.

You will see the ir use light come on while the
original diskette is being read; then the following is
displayed:

insert target diskette in drive A:

Strike any key when ready

BEFORE PRESSING A KEY:

a. Remove your original diskette.

b. Insert the backup diskette.

¢. NOW press any key to tell DOS the correct
diskette has been inserted.

5. You will see the in use light come on while the
backup diskette is being written. Then the message
shown in Step 3 will appear again.

Hint: For this procedure, you can remember
which diskette to insert if you remember
“Original = Source.”

Insert your original diskette when DISKCOPY
asks for the source diskette.

6. Repeat Steps 3 and 4 until the following message
appears:

Copy complete
Copy another (Y/N)?
7. Type
n
You don’t have to press the Enter key.
8. The DOS prompt, A>, is displayed. Remove the
backup diskette from the drive. With a felt-tip pen,

mark the label with the contents, the date, and
perhaps, the word “Backup.”

Backing Up Diskette With Two Drives
1. Make sure DOS is ready and A> is displayed.

2. Insert your DOS diskette in drive A.

1-11

1-12

Type:
diskcopy a: b:

and press the Enter key. The following message
appears:

Insert source diskette in drive A:

Insert target diskette in drive B:

Strike any key when ready

Remove your DOS diskette from drive A.
Insert your original diskette in drive A.
Insert your backup diskette in drive B.

Drive A Drive B

Original Diskette Backup Diskette

Press any key.

This tells DOS you are ready, and DOS starts
copying the diskette.

If the diskette had not previously been formatted
with the same format as the original diskette, a
Sormatting while copying message will appear.

All information is now being copied from the
diskette in drive A to the diskette in drive B.

10.

11.

You will see one in use light go on, then the other.

When the copy has been made, you will see a
message similar to the following:

Gopy complete
Copy another (Y/N)?

Remove your original diskette from drive A, and
insert your DOS diskette.

Type
n

and press the Enter key. The DOS prompt, A>,
appears.

Remove both diskettes.

Use a felt-tip pen to label and date the backup
diskette. You may also want to write ‘“Backup” on
the label as a reminder that this is a copy of
another diskette.

Installing APL On Your Fixed Disk
If you have an IBM Personal Computer XT or an IBM
Personal Computer Expansion Unit, you may wish to
install APL on your fixed disk. To do this, simply:

1. Start DOS from any drive, then make sure that the
prompt displayed is C>.

2. When the DOS prompt appears:
a. Insert your APL diskette in drive A.
b. Type
A:FDTRANS
and press the Enter key.
When you see the message
APL transfer complete
the following will have occurred:

® A subdirectory named “APL” was created on
your fixed disk.

® The files from your APL diskette were copied to
your fixed disk (in subdirectory “APL”).

® A batch file named “APL.BAT” was copied to the

main directory on your fixed disk to make it easy
for you to start APL.

1-14

Getting APL Started From Either
Diskette or Fixed Disk

This section describes how to start APL from a diskette
and from a fixed disk.

® To start APL from diskette:
1. Insert your DOS diskette in drive A.
2. Switch on the power to your computer.
3. After you receive the DOS prompt, insert the

APL diskette in drive A and enter the
command

APL
® To start APL from your fixed disk:
1. Ensure APL is installed on your fixed disk.
2. Start DOS and enter the command, APL.

This will cause the batch file, APL.BAT, in
the main directory to be invoked.

After the APL command is executed, the following will
appear on the display screen:

IBM PERSONAL COMPUTER AP L

Version 1.00 (C) Gopyright IBM Corp. 1883
Produced by IBM Madrid Scientific Center

1-15

Including Options in the APL Command

You can include options in the APL command when
you bring up the system. The complete format of the

APL command is:

APL [EXAPL] [APx] [APy] ... [APz] [APL system command]

1-16

where the maximum number of names given after APL,
excluding the field, “APL system command,” is six.

EXAPL is the filename specification of the program
that has the dyadic formats (numeric format and
picture format). For more information, see

Chapter 7.

APx, APy, and APz represent the filenames of
auxiliary processors, which are programs that carry
out special actions not included in the APL
language. You can also build your own auxiliary
processors (see Chapter 4). The following auxiliary
processors are included with the system:

— AP80: IBM Graphics Printer control
— AP100: BIOS/DOS interrupt handling
— AP205: Full-screen display management
— AP210: DOS file management

— AP232: Asynchronous communications
— AP440: Music generator

“APL system command’ means that you can type
here any APL system command to be executed at
load time, thus giving you the possibility of
automatically starting an APL application. (For the
syntax of APL system commands, see Chapter 12.)
This field, if given, must always be the last one in
the line, and it must start with a right parenthesis.
All letters must be uppercase.

If you wish to always have EXAPL or some auxiliary
processor support, or automatically execute an APL
system command, you may create a batch file to do so
(see your IBM Personal Computer DOS manual).

The APL system command,)OFF, is used to exit from
an APL work session and transfer control to DOS. The
active workspace is lost unless it was explicitly stored
earlier in the work session with a)SAVE or)OUT
command. Any variables actively shared with an
auxiliary processor will be automatically retracted upon
exit from the APL system.

Examples:

APL AP210 AP100)LOAD WORKSP

This starts APL and auxiliary processors AP210 and
AP100. Also, the workspace called WORKSP is
loaded. The Graphics Printer will not be available.
APL EXAPL APS80

This will start APL with the dyadic formats in EXAPL.
The printer is available.

The APL Character Set

The APL language has its own character set, which can
be divided into four main classes:

® Alphabetic, which consists of the Roman alphabet
in uppercase and lowercase form, and delta and
delta underlined.

® Numeric, which consists of the digits O through 9.

® Special APL characters (see Figure 3 in
Chapter 6).

® Blank.

The Keyboard

The APL system supports two different character-set
mappings of the IBM Personal Computer keyboard:
The APL character set and the National character set.
The APL mapping is normally active under the APL
system, and is automatically loaded with the system at
the start of a work session. The National character set
can be accessed under control of the APL system
through the Ctri-Backspace key combination, as
described in the “Special Key Combinations’ section.

The keyboard consists of three general areas:

® Function keys, labeled F1 through F10, on the left
side of the keyboard.

® The typewriter area in the middle, where you find
the familiar letter and number keys.

® The numeric keypad, which is similar to a
calculator keyboard, on the right side.

All keys are typematic, which means they repeat their
function for as long as you press them.

Function Keys

1-18

The only function keys currently supported by the APL
system are:

® Alt-Fl: switchto the Monochrome Display mode,
with 80 characters per line.

® Alt-F4: switch to the Color Graphics mode, with
40 characters per line.

® Alt+-F8: switch to the Color Graphics mode, with
80 characters per line.

Typewriter Keyboard

The middle area of the keyboard behaves much like a
standard typewriter. Under APL, the capitalized
Roman alphabet and the numbers O through 9 are
generated when one of these keys is pressed. Most of
the APL special characters that represent the primitive
functions are encoded as upper-shift, and are generated
by holding down either of the Shift keys and pressing
the desired key.

Note: The Shift keys are in the bottom row of
the typewriter area and have a wide arrow pointing
upward.

When the National character set is active, the
lowercase Roman alphabet and the numbers O through
9 are generated when a key is pressed. The capital
letters and some other characters are obtained by
holding down either of the Shift keys and pressing the
desired key.

Enter: This key, sometimes called the Carriage
Return key, is the large key with the bent arrow symbol
on the right side of the typewriter area. You usually
have to press this key to enter information into the
computer. The Enter key is used to pass an APL
statement or a system command to the APL interpreter
for execution.

Esc (Escape): The Esc key (also known as the
Attention key) is in the upper-left corner of the
typewriter area. Pressing this key once generates a
weak interrupt that halts execution at the end of a
statement. The key also is used to halt a request for
literal input from a defined function.

Pressing the Esc key twice generates a strong interrupt

that will cause an execution within a statement to halt
as soon as the interrupt is detected.

1-19

Caps Lock: Although similar to a Shift Lock key on a
typewriter, the Caps Lock key affects only those keys
that produce the letters of the alphabet under the
National character-set mapping. Once the Caps Lock
key has been pressed, the alphabetic keys will continue
to generate upper-shift characters until the Caps Lock
key is pressed again.

Lower-shift characters can be obtained from the Caps
Lock state by holding down one of the Shift keys and
pressing the desired key. When you release the Shift
key, the keyboard returns to the Caps Lock state.

Backspace: The Backspace key is in the upper-right
corner of the typewriter area, and is marked with an
arrow pointing to the left. With the APL system, both
the APL and National mappings of the keyboard
interpret the Backspace key as a movement of the
cursor to the left without erasing what has been typed.
Under DOS or BASIC, characters are erased during
backspacing, but the APL backspace is non-destructive.

PrtSc (Print Screen): Just below the Enter key is a
key labeled with PrtSc and *. If the National character
set is active, pressing this key generates an asterisk; if
the APL character set is active, a not-equal sign (#) is
generated. When this key is pressed while one of the
Shift keys is being pressed, a signal is generated that
causes a copy of the currently-active screen to be
printed. If you are using the IBM Monochrome
Display, non-APL characters will appear on the screen
but will be translated to APL characters for the printer.
This operation can be performed only if you have the
IBM Graphics Printer attached to your system and you
loaded the printer auxiliary processor, AP80, at the
start of the APL work session.

Other “Shifts”: Besides the upper-shift key
previously described, the typewriter keyboard has two
other “shift”” keys—the Alt (Alternate) and the Ctr/
(Control) keys. Like the Shift key, these keys must be
held down while a desired key is pressed.

1-20

The Alt key is used with the APL character-set
mapping to produce lowercase letters, and some special
APL characters along the top row. The Alt key is also
used with the keys on the numeric keypad to enter
characters not encoded on the keys. This is done by
holding down the Alt key while typing the three-digit
decimal code for the desired character (see

Appendix A).

The Ctrl key is similarly used to generate certain codes
and characters not otherwise available from the
keyboard. The Ctrl-Backspace combination is used to
switch between the APL and National character-set
mappings.

Numeric Keypad

This area of the keyboard is normally used in
conjunction with the APL Input Editor, which is
described later in this chapter. The numeric keypad also
can be used as a calculator keypad by pressing one of
the Shift keys at the same time you press the keys on
the keypad, or by pressing the Num Lock key to enter
the Num Lock state. The Num Lock key affects the
keys of the numeric keypad in the same way the Caps
Lock key affects the alphabetic keys of the typewriter
keyboard. Pressing the Num Lock key once will cause
upper-shift numeric characters to be generated. You can
temporarily nullify this state by holding down a Shift
key. To return the keypad to its normal mode under the
APL Input Editor, press the Num Lock key a second
time.

On the extreme right side of the keyboard are two
operation keys that are normally used with the numeric
keypad. When the National character set is active,
these keys generate a + (representing addition), and a
— (representing subtraction). With the APL character
set active, however, these keys generate a —+ (division)
and a + (addition).

1-21

Special Key Combinations

1-22

You should be aware of the special functions of the
folowing keys or combinations of keys:

® Crtrli-Backspace: Changes the keyboard from the
National character-set mapping to APL, or from the
APL character-set mapping to National.

® Ctrl-Alt-Del: Performs a system reset, which is the
same as switching the computer from off to on.
Hold down the CTRL and ALT keys, and press the
DEL key. Doing a system reset with these keys is
preferable to setting the Power switch off and on
again, because the system will come up faster.

® Citrl-PrtSc: This combination serves as an on-off
switch for sending display output to the printer as
well as the screen, provided you have previously
loaded the printer-handling auxiliary processor,
APBO (see “Getting APL Started™).

Press these keys to send display output to the
printer, then press them again to stop sending to the
printer. Although this action enables the printer to
function as a system log, it slows down some
operations because the computer waits during the
printing.

® Ctrl-Num Lock: Sends the computer into a pause
state. This can be used to temporarily stop printing
or program listing. The pause continues until any
key, except “‘shift” keys, the Break key, the
Ctrl-Num Lock keys, or the Ins key, is pressed.

Decals with the APL character set for the IBM
Personal Computer keyboard have been included with
this book and are in the plastic sleeve inside the back
cover. Place the decals on the keytops as shown in
Figure 1. Notice that the alternate-shift characters I, ¥,
V,4,0,8,0,®,%,~,!, and @ go on the fronts of the keys
along the top row.

Figure 2 shows the keyboard with the APL character
set.

s|esaQ 1dV ayL | a4nbig

OB IEEIR]
Hilt :;w:«Hzﬁ:i@ﬁ:jmij
) E)e)R]
B@w%:ﬁm:ﬁ@: JEJE]
) L) b) e e () o] L) () Le) [0

0Z18esl

1-23

(4!

Shift

Normal
Alternate
-~ < < = > > = v A - + - Num Scroll
Esc 1 2 3 4 5 6 7 8 9 0 + x Loc Lock
I 4 lt\ (b ® =] ® N X H E Break
A ? w € P ~ t ‘ 3 o * ~ A 7 8 9
0 w E R T Y U I 0 P -] Home| | {4 mupl - T
-
cul a r L - v s ° ' al (£ 4 5 6
tr A S D F G H J K L [!) + -
X C p) n U L T 1 \ PrtSc 1 2 3 .
T * z X c 1% B N M / o Zz | Qlend | 11 ¥ pOn| | [* +
)))) Caps 0 *
Alt Lock Ins Del ||
Function Typewriter Keyboard Numeric
Keypad

Keys

Figure 2. Keyboard with APL Character Set

Use of Displays

APL enables you to work, sequentially, in the three
following modes during the same working session:
Monochrome Display, Color/Graphics Adapter with 40
characters per line, and Color/Graphics Adapter with
80 characters per line. Only the Color/Graphics
Adapter modes support APL characters. You may use
the Monochrome Display mode; however, some APL
characters will not be displayed. Instead, the
corresponding IBM Personal Computer ASCII
characters will be displayed.

Note: “Sequentially” means that at any time
during the work session, you can change modes
without leaving APL.

‘At load time, the configuration you are in is maintained.
If you have both a Monochrome and Printer Adapter,
and a Color/Graphics Adapter, the Color Graphics
mode with 40 characters per line is activated.

If you want to change to the Monochrome Display
mode, press the Alt and F1 keys at the same time. To
switch to the Color Graphics mode with 80 characters
per line, press the Alt and F8 keys. To switch to the
Color Graphics mode with 40 characters per line, press
the Alt and F4 keys. APL does not allow you to switch
to a monitor that is not available.

When you switch from one monitor to another, for
example, from monitor A to monitor B, the screen on
monitor B clears; however, the screen on monitor A
does not. Thus you can keep part of the session
displayed on monitor A (graphics, listing of APL
objects, etc.) and continue working with monitor B.

To clear a screen you are working with, switch to that
monitor by pressing the appropriate Alt-F key
combination. If you try to switch to a monitor that is not
physically connected or switched on, you can return to
the original monitor by pressing the appropriate Alt-F
key combination.

1-25

The mode you switch to when you press an Alt-F key
combination, is as follows:

Your
Configuration Alt-F1 Alt-F4 Alt-F8

Color 80 Color 80 Color 40 Color 80
Color 40 Color 40 Color 40 Color 40
Monochrome Monochrome Monochrome Monochrome

Monochrome Monochrome Color 40 Color 80
& Color

Note: The APL system detects the IBM
Personal Computer configuration reflected in the
switch settings (see the Technical Reference
manual). If your actual configuration is different
(for example, you forgot to switch on your Color
Monitor), the system may switch to a monitor that
is not operating, and you will not be able to see
anything you type, although it can be executed if
you press the Enter key (more about this later). If
this happens, the best action is to return to the
active monitor by pressing the appropriate Alt-F
key combination.

Disk(ette) Drives

1-26

APL workspaces are collected into libraries, which are
identified by an integer number. Each disk drive of the
IBM Personal Computer represents an APL library,
with the following identification number:

Device DOS Drive Spec. APL Library
First diskette drive A 1
Second diskette drive B 2
First fixed disk C 3
Second fixed disk D 4

Disk drives are usually controlled under APL by system
commands (see Chapter 12) relating to workspace
storage and retrieval. If no library number is specified
for these commands, the device that is the current DOS
default drive will be used. Specifying an invalid library
number that corresponds to a non-existent drive should
be avoided, because the system may perform an
unintended action.

The disk drives also can be controlled with the DOS file
management auxiliary processor, AP210, which is
discussed in Chapter 3, and the FILE workspace,
which is discussed in Chapter 2.

The Printer

The optional IBM Graphics Printer can be used to
produce both APL and non-APL characters, if the
printer auxiliary processor, AP80, is specified as a
parameter to the APL command at load time, before the
start of a work session. As described in a previous
section about the keyboard, the following key
combinations can be used to control the printer:

® Shift-PrtSc: A printed copy is made of the
currently-active screen. If you are using the IBM
Monochrome Display, the untranslated ASCII
characters displayed on the Screen will be printed
as their APL equivalents.

® Ctrl-PrtSc: Acts as an On/Off switch for sending
display output to the printer, as well as to the
screen. This allows the printer to be used as a
system log to provide a record of the work session.

The AP80 auxiliary processor also allows selective
printing of desired APL objects or results. Chapter 3
discusses, in detail, the use of AP80 to control the
printer with a shared variable, and Chapter 2 explains
the use of the PRINT workspace. Control codes can be
sent to the printer, but they will not affect the APL
special characters.

1-27

The APL Input Editor

1-28

The APL Input Editor is a full-screen editor. This
means that you can enter a line (with or without a
previous change) anywhere on the screen. To enter a
line for execution, the cursor must be on that line.

The cursor is a blinking underline or box appearing just
to the right of the last character typed. You can position
the cursor by using the APL Input Editor special keys,
which are described in the next section. The cursor
marks the position at which a character is to be typed,
inserted, or deleted.

The input editor can save much time during program
development by eliminating unnecessary re-typing. In
execution mode, the input editor can be used to make
changes to a previous line. When the changed line is
entered, it is echoed below the last entered line and
executed. The input editor also can be used within the
del (V) editor during function definition (see Chapter
10) to help create or modify programs.

A full-screen, defined-function editor is included with
the EDIT workspace and is described in Chapter 2.
This special editor provides additional features that help
make function definition even easier.

APL Input Editor Special Keys

You can use some of the keys on the numeric keypad,
and the Backspace key, to move the cursor on the
screen, to insert characters, or to delete characters. The
keys and their functions are:

Up Arrow (Cursor Up—Numeric Keypad 8):
Moves the cursor up one line. If the cursor advances
beyond the upper end of the screen, it will move off
the screen and reappear at the lower end in the

same column.

Down Arrow (Cursor Down-Numeric Keypad 2):
Moves the cursor down one line. If the cursor
advances beyond the lower end of the screen, it will
move off the screen and reappear at the upper end
in the same column.

Left Arrow (Cursor Left—Numeric Keypad 4):
Moves the cursor one position to the left. The
cursor cannot advance beyond the left edge of the
screen.

Right Arrow (Cursor Right-Numeric Keypad 6):
Moves the cursor one position to the right. The
cursor cannot advance beyond the right edge of the
screen.

End (Numeric Keypad 1): Erases characters from
the current cursor position to the end of the line.

Ins (Numeric Keypad 0): Sets Insert mode on or
off. If Insert mode is off, pressing this key will turn
it on. If Insert mode is already on, pressing this key
will turn it off.

1-29

You can tell when Insert mode is on, because the
cursor covers the character position on the
Monochrome Display, or blinks twice as fast as
normal on the Color Graphics monitor. When Insert
mode is on, the character at the cursor position, and
characters following the cursor, are moved to the
right as you type characters at the current cursor
position. After each keystroke, the cursor moves
one position to the right. If you try to write beyond
the right edge of the screen (regardless of the state
of Insert mode), you will hear a warning beep.

When Insert mode is off, any characters you type
will replace the existing characters on the line.

Pressing the Enter key when Insert mode is on will
automatically turn Insert mode off.

Del (Numeric Keypad Decimal Point (.)):

Deletes the character at the current cursor position.
All characters to the right of the one deleted move
one position to the left to fill the empty space.

Backspace (Left arrow to left of Num Lock key):
Its function is the same as the Cursor-Left key,
because the APL backspace is non-destructive.

Esc: When pressed anywhere in a line, Esc causes
the message INTERRUPT to be written, and the
entire line is ignored. The line is not passed to APL
for processing. If you press Esc once while a
defined APL function is executing (see Chapter 11),
the function is interrupted after the current line is
executed. This is called a weak interrupt. If you
press Esc more than once while a function is
executing, the function stops executing as soon as
the interrupt is detected. This is called a strong
interrupt.

® —#l (Tab): Treated the same as a blank character.

How to Make Corrections on the Current Line

Any line of text typed while APL is in the input state
will be processed by the line editor, so you can use any
of the keys described in the previous section. APL is in
the input state whenever the cursor is visible. When the
Enter key is finally pressed, the entire line in which the
cursor lies is passed to APL for processing. The cursor
is not visible during processing time. When the cursor
appears again, APL has returned to the input state.

Changing Characters: If you are typing a line and
discover you typed something incorrectly, use the
Cursor-Left, Backspace, or Cursor-Right keys to move
the cursor to where the mistake was made, then type the
correct characters over the incorrect ones. You can then
move the cursor back to the end of the line, using the
Cursor-Right key, and continue typing.

Erasing Characters: If you notice you have typed an
extra character in the line, you can erase (delete) the
character using the Del key. Use the Cursor-left or
other cursor-control keys to move the cursor to the
character you want to erase. Then press the Del key,
and the character is deleted. Use the Cursor-Right key
to move the cursor back to the end of the line and
continue typing.

Adding Characters: If you see that you have omitted
characters in the line you are typing move the cursor to
where you want to add the new characters. Press the Ins
key to set Insert mode on, then type the characters you
want to add. The characters you type will be inserted at
the cursor position. The character that was at the cursor
position, and those following the cursor, will be pushed
to the right. When you are ready to resume typing
where you left off, press the Ins key again to set Insert
mode off (the cursor will return to its ordinary form),
and use the Cursor-Right key to get back to your place
in the line. Then continue typing. If you forget to press
the Ins key to set Insert mode off, it will automatically
be turned off when you press the Enter key.

1-31

1-32

Erasing part of a Line: To end a line at the current
cursor position, press the End key. Then you can
continue typing.

Canceling a Line: To cancel a line that you are
typing, press the Esc key anywhere in the line. (You do
not have to press Enter.) The line is not passed to APL
for processing,.

Chapter 2. Application Workspaces

The PRINT Workspace 2-4
The EDIT Workspace 2-5
The FILE Workspace 2-8
Functions 2-9
Examplesof Use 2-22
The VM232 Workspace 2-23
Selecting a Terminal 2-24
Saving Your Line Parameter
Definition 2-31
Connection with the Host 2-32
Functions 2-34
Example of Connection with the Host 2-38
Auxiliary Filesonthe Host 2-43
The MUSIC Workspace 2-57

2-1

Notes:

2-2

The APL diskette has a number of workspaces in
transfer form (extension .AIO). These workspaces
contain functions that you can call from your programs
to perform the following applications:

Using the printer from APL programs (PRINT)
Using the APL full-screen function editor (EDIT)
Using DOS file management routines (FILE)

Uploading and downloading files (VM232 and
FILE)

Using samples for the music auxiliary processor
(MUSIC)

These functions also can be used as examples of how to
program with the corresponding auxiliary processors in
the IBM Personal Computer APL system:

PRINT uses AP80

EDIT uses AP205

FILE uses AP210

VM232 uses FILE, AP232, and AP210
MUSIC uses AP440

2-3

The PRINT Workspace

To use the printer from APL programs, you must
include the printer auxiliary processor, AP80, as a
parameter to the APL. command at load time before you
begin an APL work session. For example,

APL AP80
To copy the PRINT workspace, you must enter:
)IN PRINT

This command will load two functions (PRINT and
FONTS into your active workspace.

The PRINT function can be used to selectively print
any APL object or result, of any rank or type (that is,
literal or numeric), from your APL program.

PRINT may be called from any other APL-defined
function, thus giving the program control of the printer.

The following examples show what is printed for
various entries.

Entry Printed
PRINT 2+2 4
PRINT ‘'ABCabc! ABCabc
PRINT 110 12345678910
PRINT 2 3p'ABCDEEF" ABC
DEF

(A variable can also be printed)

X<'IS A VARIABLE'
PRINT 'X ', X XIS A VARIABLE

2-4

If the PRINT function is used to print a character string
beginning with JAV[[J70+255] , the remaining
characters in the string are sent to the printer in
alphameric mode. In this way, printer control codes can
be included and executed. These control codes are used
to obtain emphasized printing, large character sizes, and
other special printing functions. Appendix B shows
many of these control codes, and their functions.

The FONTS function contains several examples that
use the printer’s alphameric mode to send control
commands to the printer.

If the first character in the string is not JAV[OI0+255],
the whole string is printed as it is. Therefore, a single
character can have a dual function, depending on the
selected printing mode.

The EDIT Workspace

The EDIT workspace provides an APL full-screen,
defined-function, editor. It is used with AP205.

To use the EDIT functions from APL programs, you
must include the full-screen auxiliary processor,
AP205, as a parameter to the APL command at load
time before you begin an APL work session. For
example,

APL AP205

When APL becomes ready, you must copy the EDIT
workspace into your active workspace by entering:

)IN EDIT

You can use the full-screen function editor in either
40- or 80-column mode.

2-5

If, for example, the name of the function you want to
create or edit is FN1, and you have an 80-column
display, enter the following line:

EDIT 'FN1'
If you have a 40-column display, enter:
40 EDIT'FN1'

The screen is cleared and the first page of the function
definition appears. You may now move the cursor, using
the four arrow keys on the numeric keypad, change any
character in the lines displayed, insert charaacters (with
the Ins key), delete characters (with the Del key), delete
to the end of a line (with the End key), and move the
cursor to the beginning of the next line (by pressing the
Tab key). The function keys can also be used as
indicated in the lowest line of the screen. The function
keys are described next.

F1 Displays the top page of the function (TOP).

F2 Displays the bottom page of the function
(BOT).

F3 Ends function definition. All your
modifications to the function are kept
(END).

F4 Clears the screen and displays only the

current line. You can use this key to edit lines
longer than the screen width. The maximum
line length this method allows is 160
characters (LIN).

F5 Inserts five empty lines after the current line
(INS).

F6

F17
F8

F20

Copies a line: First move the cursor to the
line you want to be copied, then press F6. An
asterisk (*) will be displayed in the lowest
line of the screen, by the F6 key indicator.
The system is now in ““copy” state. Then
move the cursor to the line after which the
preceding line is to be copied (possibly on
another page). And finally, press F6 again.
The asterisk is erased and the system is no
longer in “copy” state (COP).

Executes the current line (XEC).

Brings the cursor to the end of the current line
(EOL).

(Shift-F10) Cancels function definition. No
changes are kept. The function remains as it
was at the beginning of the session (CAN).

All other function keys are ignored.

OTHER SPECIAL KEYS

Tab Moves the cursor to beginning of the next line.

PgDn Displays the next page.

PgUp Displays the preceding page.

Esc Restores the state the current page had when
the last special key was pressed (special keys
are Esc, Enter, PgUp, PgDn, or any F key).
Esc also clears the “copy’ state. All changes
made after a special key was pressed are lost.

Enter Executes APL statements (excluding system

commands) that are typed in the topmost
unnumbered line of the screen. If this line
contains only a number (for example, 24), the
page starting at that line will be displayed. If
the Enter key is pressed while the cursor is on
any other line, the cursor will move to the
topmost line.

2-7

To delete a line, simply move the cursor to the
beginning of that line and press the End key. The line
will remain on the screen as a blank line, but will be
automatically deleted when F3 is pressed to end the edit
session. Only the part of the line contained in the
currently displayed page will be erased. If the line to be
erased extends beyond the right edge of the screen, you
must press F4 with the cursor on this line, and then
erase it using the End key.

Locked or halted functions cannot be changed with this
editor. This full-screen function editor can be used to
create new defined functions and modify existing ones.

The FILE Workspace

2-8

The FILE workspace has been designed to help you
work DOS files, and allows either sequential or random
access. It uses the auxiliary processor, AP210. This
workspace enables you to create a file, WRITE into it,
and READ from it. To do so, you WOPEN an old or
new file, and WRITE data into it. You then CLOSE
the file to save it on disk. If you only want to read data
from an old file, without writing any more data into it,
on the next access simply OPEN the file and READ in
records, either randomly or sequentially.

To use the FILE functions from APL programs, you
must include the file auxiliary processor, AP210, as a
parameter to the APL command at load time before you
begin an APL work session. For example,

APL AP210

When APL is ready, you must copy the FILE
workspace into your active workspace by entering:

)IN FILE

If this command executes successfully, the following set
of functions will be loaded into your active workspace.

Functions

The transfer file, FILE.AIQ, has the functions for
manipulating DOS files, including:

WOPEN
OPEN
CLOSE
READ
READV
WRITE
DELETE
RENAME

Other functions in this file that are used for related
purposes are:

PATCH

IN

PIN

OouT
COMPARE
TYPE
TYPEV

The following terms are used in the descriptions of the
syntax for the functions:

Brackets are used to indicate that a parameter is
optional.

CODE can be any of the following characters:

A (APL) The records in the file are APL objects
and their headers in APL internal form. Matrices,
vectors, and arrays of any rank may be stored and
recovered. Different records of a file may contain
objects of different types (for example, characters,
integers, or real numbers). An APL object in a
record may occupy up to the actual record length
(not necesarily the same number of bytes), but the
header fills a part of that area. (See Chapter 4,
“How to Build an Auxiliary Processor,” for the
structure and memory requirements of an APL
header).

2-9

2-10

B (Bool) The records in the file contain strings of
bits without any header (packed eight bits per
byte). The equivalent APL object will be a
boolean vector. In this case, all records must be
equal to the selected record length.

C (Chars) The contents of the record is a string of
characters in APL internal code, without any
header. All records must be equal to the selected
record length, with each character occupying one

byte.

D (ASCII) The contents of the record is a string of

characters in ASCII code, without any header.
All records must be equal to the selected record
length, with each character occupying one byte.

file__number is a positive integer that you define for
future reference to a file when you open it.

filespec must be in the following DOS syntax (see
DOS manual):

[d:]filename[.ext]

Note: If the message, /O ERROR, appears
when you are trying to access a file, either the door
of the drive is open, the incorrect diskette is
inserted, or the diskette is write-protected. See
Figure 17 in Chapter 12 for the recommended
action.

WARNING: Changing diskettes during an
input/output operation, or when
you have open files, may damage
your diskette.

WOPEN

OPEN

READ

This function opens a DOS data file for

reading or writing, with sequential or random access.
Up to four files may be open at one time. (See
“READ” and “WRITE” for descriptions of access
methods.)

The syntax of the function is:
file__number WOPEN 'filespec [,code]’

If no file by that name has been previously created a
new file is created.

This function opens a DOS data file for read-only,
with sequential or random access. Up to four files may
be open at one time. (See “READ”’ and “WRITE” for
descriptions of access methods.)

file__number OPEN 'filespec [,code]’

If no file by that name has been previously created an
error will result — error 255. (See “AP210: The File
Auxiliary Processor’ in Chapter 3 for a listing of all
return codes.)

This function reads a DOS data file, sequentially or
randomly, that was opened using (W)OPEN. The
syntax is:

READ file__number [record__number [record__size] |
0 < record__number < 32767

0 < record__size < 2048

file__number matches the number that you specified in
(W)OPENing the file.

2-11

READV

2-12

If no record_number is specified, the default is
sequential access to the file. Under sequential access,
the first record (record 0) will be accessed by either a
Read or Write command immediately after the
(W)OPEN; the second record (record 1) will be
accessed on the next command, and so on. The READ
and WRITE functions work from the same access
point, meaning that the access point is advanced
sequentially to the next record each time either of these
commands is issued.

Random access is designated by specifying a particular
record. Record__size can only be specified when using
random-access method. If the record__size is not
specified, the default is the record__size specified in the
previous operation. If the record__size is not specified
on the first READ or WRITE, the default is 128 bytes.

This function sequentially reads a variable-length record
DOS character file that was previously opened using
(W)OPEN. The syntax is:

READY file__number

The file__number matches the number that you defined
in (W)OPENing the file.

WRITE

This function writes to a DOS data file, either
sequentially or randomly, that was previously opened
using WOPEN. (Trying to WRITE to an unWOPENed
file will result in error 24; see “AP210: The File
Auxiliary Processor” for a listing of all return codes.)
When the WRITE function is issued, it will write over
any existing data in the currently accessed record.

The syntax for this function is:

file__number [rec__num [rec__size]] WRITE APL__obj
0 <rec_num < 32767

0 <rec_ <2048

file__number matches the number that you arbitrarily
defined in WOPENing the file.

If the record__number is not specified, the default is
sequential access to the file. Under sequential access,
the first record (record 0) will be accessed by either a
Read or Write command immediately after the
WOPEN; the second record (record 1) will be accessed
next, and so on. The READ and WRITE functions
work from the same access point, meaning that the
access point is advanced sequentially to the next record
each time either of these commands is issued.

Random access is designated by specifying a particular
record. If the record__size is not specified, the default
is the record__size specified on the previous READ or
WRITE.

If the record__size is not specified on the first READ
or WRITE, the default is 128 bytes.

2-13

CLOSE

This function closes a file that was previously opened
using (W)OPEN. The previously assigned file__number
is available for reuse. (W)OPENIing a file__number
without having closed the corresponding file will cause
the file to be automatically closed and reopened.)

The syntax for CLOSE is:
CLOSE file__number

DELETE

This function deletes DOS data files. (Files may also be
erased in DOS using ERASE, or in APL using
)DROP .) The syntax for DELETE is:

DELETE 'filespec'

RENAME

2-14

This function changes the name of the file specified in
the right argument to the name and extension specified
in the left argument. If a valid drive is specified in the
left argument, the drive is ignored. The syntax is:

"new__filespec' RENAME 'old__filespec'

PATCH

This function allows you to make hexadecimal patches
in DOS files (including .EXE files). It works
interactively. The patches are made one byte at a time.
First the address of the byte (relative to the beginning of
the file) is requested, then the present contents are
displayed, and finally, a prompt is made for the new
value. (It must be given as two hexadecimal digits.)
After the patch has been made, a new one can be
entered. Entering an empty line (pressing the Enter key
with no data) exits the function.

The syntax for PATCH is:
PATCH 'filespec’
Example:

PATCH ‘FILE.EXE'
GIVE ADDRESS: 1294
IS 00
GIVE NEW VALUE OR EMPTY LINE TO CANCEL PATCH
: 07
GIVE ADDRESS: (press Enter key to leave PATCH)

2-15

IN

2-16

This function imitates the)7¥ command (see Chapter
12) under control of AP210. It can be called from
another APL function, thus effectively providing a
powerful IN facility. You can call this function in two
different ways.

® If you want to copy a whole file into your active
workspace, you must call the IN function in the
following way:

IN '[d:] filename'

where filename is the name of the file you want to
copy. You must not give an extension. APL
assumes an extension of .AIO and appends it to the
file name. The result is a 1 if the file exists;
otherwise the result is 0.

Example:
IN "MYFILE!'

This line will copy the whole file, MYFILE.AIO,
into your active workspace.

® If you want to copy only part of a file (some
functions and/or variables) into your active
workspace, you must call the IN function in the
following way:

namelist__matrix IN '[d:] filename'

In namelist__matrix, you have to give the names of
the functions and variables (APL objects) you want
to copy. If there is more than one object, each name
must be given as a row of a character matrix. For
filename, see above. Only the mentioned objects
are copied into the active workspace. The function
returns a logical vector result — a 1 per object copied
and a O per object not copied.

PIN

Example:
(2 3p'FUNVAR') IN 'MYFILE®

The left argument of the IN function in the
preceding example is a 2-by-3 character matrix, the
first row of which is FUN and the second is VAR.
This line copies into your active workspace the
objects (functions and/or variables), FUN and
VAR, from MYFILE.AIO.

This function is a protected IN. It works like IN, except
that an object is copied only if the outstanding object in
the active workspace has no current value. You can call
this function in two different ways:

® If you want to copy a whole file into your active
workspace (with the restriction mentioned above),
you must call the PIN function in the following way.

PIN '[d:] filename'

where filename is the name of the file you want to
copy. You must not give an extension. APL
assumes an extension of .AIO and appends it to the
file name. The result is a 1 if the file exists;
otherwise the result is O.

Example:
PIN "MYFILE'

This line will copy the whole file, MYFILE.AIO,
into your active workspace.

2-17

2-18

® [f you want to copy only part of a file (some

functions and/or variables) into your active
workspace, you must call the PIN function in the
following way:

namelist__matrix PIN '[d:] filename'

In namelist__matrix, you have to give the names of
the functions and variables (APL objects) you want
to copy. If there is more than one object, each name
must be given as a row of a character matrix. For
filename, see above. Only the mentioned objects
are copied into the active workspace. The function
returns a logical vector result — a 1 per object copied
and a 0 per object not copied.

Example:

VAR<7
(2 3p'"FUNVAR') PIN 'MYFILE'

The left argument of the PIN function in the
preceding example is a 2-by-3 character matrix, the
first row of which is FUN and the second is VAR.
This line copies into your active workspace only the
object FUN because VAR had a value before PIN
was executed (in VAR<«7 we set VAR to the value
of 7), and therefore the result of PIN is 1 0.

ouT

This function imitates the)OUT command (see
Chapter 12) under control of AP210, and can be called
from another APL function, thus effectively providing a
powerful OUT facility. You can call this function in two
different ways:

® If you want to copy your entire active workspace
(all functions and all variables) into an .AIO file
(that is, a transfer file), you must call the OUT
function in the following way:

OUT '[d:] filename'

where filename is the name of the transfer file. You
must not give an extension. APL assumes an
extension of .AIO and appends it to the file name.
The result is a 1 if the operation is successful;
otherwise, the result is O.

Example:
oUT 'MYFILE'

This line will copy all functions and variables of
your active workspace into the file, MYFILE.AIO.

® If you want to copy only part of your workspace
(some functions and/or variables) into a file, you
must call the QUT function in the following way:

namelist__matrix OUT '[d:] filename'

In namelist__matrix, you have to give the names of
the functions and variables (APL objects) you want
to copy. If there is more than one object, each name
must be given as a row of a character matrix. For
filename, see above. Only the mentioned objects
will be included in the file. The function returns a
logical vector result — a 1 per object copied and a 0
per object not copied.

Example:
(2 3p'FUNVAR') OUT 'MYFILE'

The left argument of the OUT function in the
preceding example is a 2-by-3 character matrix, the
first row of which is FUN and the second is VAR.
This line creates a transfer file called
MYFILE.AIO and writes into it, the objects FUN
and VAR in the transfer form.

COMPARE

2-20

This function compares two files. The syntax is:
record__size COMPARE filespec__matrix

The right argument is a two-row character matrix, each
row containing the filespec of one of the files to be
compared, followed by a comma, followed by the code
in which the file is to be read. The left argument
indicates the length of the record with which the files
are to be read.

The COMPARE function gives no result if both files
are identical. Otherwise, it lists the pairs of
corresponding records that are different. The function
also indicates which of the files is shorter, if applicable.

Example:
80 COMPARE 2 1ip 'FILE1.EXT,DFILE2.EXT,D'
This example compares files, FILE1.EXT and

FILE2.EXT, both of which are read with a record
length of 80 in ASCII code.

TYPE

This function imitates the DOS TYPE command. The
syntax is:

record__size [n] TYPE 'filespec [,code]'
record__size is the length of the record, the N first
characters of which are to be typed. The file with the

indicated filespec is displayed at the terminal. If V is
not given, the full record__size is typed.

TYPEV

This function imitates the DOS TYPE command for
variable record length character files. The syntax is:

TYPEV 'filespec'

2-21

Examples of Use

Following are examples of using the various DOS

file-handling functions.

1 WOPEN 'FILE.EXT' Creates a new file. Records

1 WRITE 110

1 WRITE 2 3p16

CLOSE 1

1 OPEN 'FILE.EXT!

READ 1 1
23
56
READ 1 0

1
n

1234567889310

CLOSE 1

DELETE 'FILE.EXT'!

2-22

will contain APL objects
with header (default code).

First record will be a vector
of elements from 1 to 10
(origin 1). Default
record__number is O;
default record__size is

128 bytes.

A matrix of two rows and
three columns, of elements
from 1 to 6, is written
sequentially to the file
(origin 1).

The file is closed.

Open the same file for
read-only operation.

Read the second record
first.

Here is the matrix

Now ask for the first
record.

A vector of integers.
Close the file.
Delete the file.

The VM232 Workspace

The VM232 workspace supports communications with
IBM Virtual Machine Facility/370 (VM/370) on an
IBM System/370 with an ASCII port, or an equivalent
machire.

To operate this application, you need:

® The IBM Personal Computer Asynchronous
Communications Adapter.

® FEither a full duplex modem (either acoustic or direct
coupled), or a direct cable connection to the host
computer. (The communications program does not
support communications using a half-duplex
modem.)

To use this application from APL programs, you must
include both the asynchronous communications
auxiliary processor, AP232, and the file management
auxiliary processor, AP210, as parameters to the APL
command at load time, before you begin an APL work
session. For example:

APL AP232 AP210

Then you must copy the files VM232 and FILE into
your workspace using the following commands:

)JIN VM232
)JIN FILE

You are now ready to start communications with the
host.

2-23

Selecting a Terminal

2-24

When you start up the communications program, you
are in the terminal-selection phase. A series of menus
lets you select which type of terminal the IBM Personal
Computer will simulate, and the detailed features of that
terminal.

The terminal-selection phase has three levels of menus.
The first-level menu lists the different line parameter
definitions that can be selected. When you select one of
these definitions, a second-level menu lists the terminal
options that can be specified for the selected definition.
When you select one of the options, a third-level menu
lists the possible choices for that option.

To start the terminal-selection phase, you have to call
the function, SETUP. The following will then appear:

SETUP
LINE PARAMETER DEFINITION. Select:
1: VM
2: Unused
3: Unused
4: Other
5: Gurrent Definition

0:

® Menu item 1 (““VM™) gives you a terminal that
operates with most IBM VM/370 System Control
Programs running on an IBM computer (see
“VM/370 Terminal” later in this chapter).

® Menu items 2 and 3 are listed for future use.
® Menu item 4 (““Other’’) lets you specify pertinent

parameters to define your own terminal (see ““User
Specified Terminal® later in this chapter).

® Menu item 5 (“Current Definition”’) lets you use a
terminal specification that you have created in a
previous call to the function SETUP, and that you
have saved using the procedure described under
“Saving Your Line Parameter Definition™ later in
this chapter. The application “remembers’’ whether
you created your current definition using menu item
1 or 4; when you type 5 and press Enter, it brings
up the corresponding second-level menu.

VM/370 Terminal

To access VM/370 and have your IBM Personal
Computer operate as a VM/370 terminal, you have to
type 1 and press the Enter key while in the LINE
PARAMETER DEFINITION menu. The following
menu then appears:

PARAMETER CHANGE. Select:
0: No change
1: Baud rate
2: Parity
3: Turnaround local
BE

This is the PARAMETER CHANGE menu. Using this
menu, you can change the baud rate, the type of parity
checking, and the line turnaround character sent to the
host. You can also return to APL if you type the
number 0 and then press the Enter key.

2-25

2-26

® Baud rate: Describes the speed at which

characters are sent across the communications line.
The higher the rate, the faster the transmission will
be. Generally, this rate is determined by the baud
rate that the transmission equipment can handle
and/or the baud rates available at the input port for
the host computer. If you want to change the baud
rate for your computer, type 1 on the
PARAMETER CHANGE menu and press the
Enter key. The following menu appears:

BAUD RATE. Select:
0: No change
1. 1715
2: 110
3: 150
4: 300*

5 600

6: 1200
7: 1800
8: 2400
9: 4800

10: 9600

O:

The asterisk (¥) in item 4 indicates that the VM/370
terminal will start up with a communication-line
speed of 300 baud (or bits per second), unless you
change it. This is the currently-defined value. Type
the item number that corresponds to the baud rate
you are using. For example, if you are connecting to
a 1200-baud computer port, type 6 and press the
Enter key. This sets the line’s bit rate to 1200 baud.
The PARAMETER CHANGE menu appears on
the screen again.

® Parity: Characters transmitted over an
asynchronous communications line are sent serially
as sequences of 1’s and O’s that represent each
character. The parity bit is the eighth bit of the
ASCII character code and is added to the 7-bit
code, depending on your selection, so that the
character may be checked for accuracy at the
receiving end. You have to set the parity to match
the type expected by the host computer. To set the
parity bit, enter 2 on the PARAMETER CHANGE
menu and press the Enter key. The following
appears:

PARITY. Select:
: No change
NONE
0DD

EVEN
MARK *
SPACE

SEWN=O

0:
The types of parity checked are:

— NONE: No parity bit is added to the character
transmitted. Eight bits of data are transmitted
for each character.

— ODD: The sum of all bits, including parity, of
the character transmitted, is odd.

— EVEN: The sum of all bits, including parity,
of the character transmitted, is even.

— MARK: The parity is always set to 1. This is
the default.

— SPACE: The parity is always set to 0.
To select the type of parity checking your host
system uses, type the corresponding item number

and press the Enter key. The PARAMETER
CHANGE menu appears on the screen again.

2-27

2-28

® Turnaround Local Character: To tell the host

computer that you have completed typing a line of
text, you press the Enter key. The character
produced when you press Enter is called the
turnaround local or line turnaround character sent
to the host. The turnaround character indicates the
end of a line of input sent to the host computer. The
host computer takes action on that line and sends
back a response.

The default value for this character is a Carriage
Return. If you wish to change the value of this
parameter, type 3 on the PARAMETER CHANGE
menu, and press the Enter key. The following
appears on the screen:

TURNAROUND LOCAL CHARACTER. Select:
: No change

CR (ODH) *

XON (11H)

XOFF (13H)

EOT (04H)

LF (OAH)

apebd=2o

0d:

If you want the turnaround character to be, for
example, the line feed (LF), type 5 and press the
Enter key. The PARAMETER CHANGE menu
appears on the screen again.

User—Specified Terminal

When you select item 4 (““Other”) in the LINE
PARAMETER DEFINITION menu, you can specify
all of the terminal features to make your IBM Personal
Computer operate as a terminal for your particular host
system. The following menu appears:

PARAMETER CHANGE. Select:
: No change

Baud rate

Parity

No. of stop hits
Half/Full dpx.
Turnaround local

: Delete chars.

End of line char.

NoghoeopM2O

0:
To return to APL, type 0 and press the Enter key.

® Baudrate: See “VM/370 Terminal.”
® Parity: See “VM/370 Terminal.”

® No. of stop bits: Stop bits are sent by your IBM
Personal Computer after each character to keep the
line in synchronization. These bits let the receiver
detect the beginning of the next transmitted
character. Usually one stop bit is required (default).
The number of stop bits you select must match the
number required by your host system. To change
the number of stop bits, type 3 on the
PARAMETER CHANGE menu and press the
Enter key. The following menu appears:

NO. OF STOP BITS. Select:
0: No change
1.1 *
2: 2

:

2-29

To select two stop bits, type 2 and press the Enter
key. Pressing Enter returns you to the
PARAMETER CHANGE menu.

® Half/Full dpx: Although a full duplex modem is
required, this application does not support duplex
transmission protocol. Therefore, when you type 4
in the PARAMETER CHANGE menu, the
following message appears:

FULL DUPLEX NOT SUPPORTED

and the PARAMETER CHANGE menu is
displayed again.

® Turnaround local: Recognized by the host
computer as the “‘end-of-line”’ designator. To
change this character, type 5 in the PARAMETER
CHANGE menu and press the Enter key. For more
information, see “VM/370 Terminals.”

® Delete chars: When you are in communication
with the host computer, the host may transmit
characters you do not want displayed on your
screen. Generally these are special ASCII
characters knows as control characters.

If you want to change the Delete characters, type 6
in the PARAMETER CHANGE menu and press
the Enter key. The following will appear on your
screen:

DELETE CHARS. Select up to 4:
: No change
Unused
CR (CDH)
LF (OAH)
BELL (O7H)
XON (11H)
XOFF (13H)
ESC (1BH)
TAB (09H)
BS (0O8H)

TeeNogRrwdMe

2-30

Type the numbers of the characters you want to
delete. You can type a maximum of four numbers.
Then press the Enter key. Pressing Enter returns
you to the PARAMETER CHANGE menu.

® End of line char: The character selected from this
menu specifies the end-of-line character sent from
the host computer. This character indicates that a
new line should be started on the screen.

The default value provided is a Carriage Return. If
you wish to change the value of the end-of-line
character sent by the host, type 7 on the
PARAMETER CHANGE menu and press the
Enter key. The following is displayed:

END OF LINE CHAR. Select:
: No change

CR (ODH) *

XON (11H)

XOFF (13H)

EOT (04H)

if (OAH)

L el

0:

Type the number of the character you wish to use
and press the Enter key. Pressing Enter returns you
to the PARAMETER CHANGE menu.

Saving Your Line Parameter Definition
After you have defined the line parameters for your
system, you can save your new specifications by
executing:

)OUT name

where name is the name of the transfer file in which
your application will be stored (see Chapter 12 for a
description of the)JOUT command).

2-31

The parameter definition you have saved is now your
current definition. The next time you use your
application, you have to load if using the commands:

JCLEAR
)JIN name

where name is the name you used when you saved the
application with the)JOUT command (see Chapter 12
for a description of the)/IN command).

If you do not want to change the new parameters again,
you need not call the function, SETUP.

Connection with the Host

When you have selected the communications
parameters, you must establish a connection with the
host computer by executing the following:

TERMINAL

A beep sounds and the following messages are
displayed:

Gomputer connection NOT established
You are starting up as a terminal

Check computer or modem connection
Starting in RECEIVE state

Press ESC key twice to go into SEND state

Depending on the type of connection between your IBM
Personal Computer and the host system, you must do
the following:

® Modem Connection: Read the instructions for the

modem carefully to understand how to use the
telephone set for voice and data transmission.

2-32

In general, what you must do is dial the number of
the host computer, either by using the telephone or
by typing the dial-up commands required by the
modem. When you use the dial-up commands, you
must go into SEND state by pressing the Esc key
twice. When you hear the modem’s carrier (a
high-pitched tone), the connection has been made
and you must go to the following step.

Direct Cable Connection or Modem Connection
Complete (you hear a carrier): At this stage, one
of two things may have happened:

— Your IBM Personal Computer was not opened
as a terminal (cursor not visible on the screen).
You will have to press the Esc key twice to go
into SEND state. You may now have to send a
BREAK to the host computer (the application
will prompt you for it). You will answer
YES or NO, depending on the needs of your
host system. The use of BREAK is
system-dependent; check with the person who
has installed your host system. If your host
system requires a BREAK to be sent, sending it
will cause your IBM Personal Computer to
open as a terminal.

— Your IBM Personal Computer has opened as a
terminal to the host computer. You will receive
the following:

VM/370 ONLINE
!

(cursor placed here)

Connection is established. You can proceed to
log on to your host system.

2-33

Each line is passed to the host for execution. There is
no transmission transparency yet: APL special
characters will be lost and not sent to the host. You
may, however, go into the host APL system and

execute system commands, load workspaces, and call
APL functions.

APL statements that are prefixed with the i-beam
character (T) are executed by the IBM Personal
Computer APL system, and are not passed to the host.
APL system commands cannot be executed in this way.

The entering of a line consisting of a single i-beam
character (1) is considered as a request to exit function
TERMINAL and go back into local APL mode.
However, transmission is not interrupted (that is, the
connection is not lost) until you expressly log off from
the remote system. You may also reenter terminal mode
by executing the TERMINAL function again. If you
had not disconnected the remote system, you should not
log on again at this point.

Note: If transmission fails at any point and your
terminal does not return control to you, press the
Esc key and execute the APL line:

>

You can then try to repeat the operation by invoking the
TERMINAL function again.

Functions

2-34

Four special functions are included in the workspace
and may be used for transferring files between the host
and the IBM Personal Computer.

These functions may be invoked in terminal mode by
preceding their names with an i-beam character (I).
The functions are:

UPLOAD
DOWNLOAD
APLOUT
APLIN

These functions assume that:
® Transmission has been established.

® The host VM/370 system contains the file, EDIT
EXEC, as described in the “Auxiliary Files on the
Host™ section.

® The host VM/370 system contains an APL EXEC
file to load VSAPL.

® The host VM/370 system contains the APL
workspace, OUT, as described in the “Auxiliary
Files on the Host” section.

UPLOAD

Sends a file from disk(ette) to a minidisk in the host.
The file must be composed of DOS variable-length
records separated by a carriage-return character and a
line-feed character (in that order). The last record must
also end with these two characters. Transmission is
transparent; that is, all remaining 254 characters
(except the combination of carriage return and line feed)
may be sent.

When this function is invoked, it asks for the filespec of
the source file to be sent (ENTER SOURCE FILENAME). The
Jfilespec must be given in DOS format
(/drive:[name.ext). If the file does not exist, NOT FOUND
is written and the request is repeated. To exit, press
Enter.

Next the target filename is requested (ENTER TARGET FILE
NAME). It must be given in Conversational Monitor
System (CMS) format: filename filetype filemode. If
the target filename already exists, a warning is given
(FILE EXISTS. DO YOU WANT TO REPLACE?). If the answer is
YES, the old file will be deleted. Otherwise, uploading
stops. If everything is correct, the file is transferred and
converted to its final form to assure transparency. Some
operations (including invoking APL in the host and
executing an APL function) are automatically
performed by the function.

2-35

DOWNLOAD

Performs the opposite operation as UPLOAD. It sends
a file from a minidisk in the host to a disk(ette) in your
IBM Personal Computer.

Note: If you download a file that has the APL
character ““ ~”’, you will not be able to edit it with
the standard DOS editors, because they interpret
that symbol as an end-of-file character.

The transmission protocol does not allow a file to be
downloaded if the name of the file includes any of the
following characters: @, #, and $.

APLOUT

Takes an APL workspace in transfer form (extension
.AIO) on the IBM Personal Computer and sends it to
the host. The final result of the execution of this
function is a CMS file with filetype AIO, which may be
loaded into a VSAPL workspace by means of the
following instructions:

)CLEAR

)SYMBOLS appropriate__size
YCOPY OUT IN

''IN 'filename'

)ERASE IN

)SAVE appropriate__name

2-36

APLIN

Performs the opposite operation as APLOUT. The
source workspace must be in normal VSAPLWS format
(that is, not in AIO form). The function automatically
invokes APL, loads the workspace, converts it into AIO
form with the help of the OUT workspace (see below)
and sends it to the Personal Computer with
transmission transparency. The final result is a file in
transfer form, which is created on the Personal
Computer’s disk(ette), and which may be loaded
directly into the active workspace by means of the)IN
command.

Note: If you download a file that has the APL
character “ -”’, you will not be able to edit it with
the standard DOS editors, because they interpret
that symbol as an end-of-file character.

The transmission protocol does not allow a file to be
downloaded if the name of the file includes any of the
following characters: @, #, and $.

The correspondence between the alphabetic characters
on the IBM Personal Computer and the VM/370
system is as follows:

Caps
Function | Capitals Lower Case Underlined
Upload to | Capitals Lower Case N/A
370
Download | Capitals Lower Case Special
from 370 Characters
APLIN Capitals Lower Case Lower Case
from 370
APLOUT | Capitals Caps N/A
to 370 Underlined

2-37

Example of Connection with the Host
Load the VM232 and FILE workspaces.

)IN VM232
)IN FILE

Then create a file to be uploaded to the host.

1 WOPEN 'B:TEST,D!
A<'FIRST LINE',OTCLOIO+1 2]
A<A ,VSECOND LINE' ,TCLI0+1 2]
A<A ,'LAST LINE' ,07C[OI0+1 271,'>!
o4

37
1 0 37 WRITE A
CLOSE 1
TYPEV'B:TEST'

FIRST LINE

SECOND LINE

LAST LINE

The file just created has three records with the indicated
information.

You will now have to call the function, SETUP, to
establish the characteristics of the type of terminal your
IBM Personal Computer will simulate, and the detailed
features of that terminal.

The IBM Personal Computer is connected to the host

computer through a duplex modem with a half-duplex
protocol.

2-38

To. connect your IBM Personal Computer to the host
computer, execute the function TERMINAL. The
following will appear on your screen:

TERMINAL
Computer connection NOT estahlished
You are starting up as a terminal
Check computer or modem connection
Starting in RECEIVE state
Press ESC key twice to go into SEND state

You have to dial up here. When the connection is
established, you will receive the message

VM/370 ONLINE
!

and you can proceed to log on.

L user__name

ENTER PASSWORD:
ki d
HHHHHHHH
S$8SSSSSS

password

2-39

Connection messages are received here. You may now

IPL CMS.
CMsS
T UPLOAD a Request for the sending program
ENTER SOURCE FILE NAME r Prompt from UPLOAD function
B:TEST a Our answer
ENTER TARGET FILE NAME o Prompt fromUPLOAD function
TESTTESTA a Our answer

FILE EXISTS. DO YOU WANT TO REPLACE?
o Prompt from UPLOAD function

Y e Our answer

END OF TRANSMISSION a From this point, the system
3 RECORDS SENT a automatically generates a
APL a set of lines that assure

a transparency of the
VS APL 4.0 o transmission.

CLEAR WS

JLOAD OUT

SAVED 10:13:47 02/01/83
CMSIN'TEST TESTA'

RO;

JOFF HOLD

R;

ERASE TEST HIO A

2-40

At this point, uploading is complete and the terminal
opens. You are again connected to CMS.

TYPETESTTESTA
FIRST LINE
SECOND LINE
LAST LINE
R;
T DOWNLOAD
ENTER TARGET FILE NAME
B:TEST1
ENTER SOURCE FILE NAME
TESTTESTA
APL
USAPL 4.0
CLEAR WS
JLOAD OUT
SRYED 10:37:47 0Z/01/83
CMSOUT'TEST TEST A’
R28;
JOFF HOLD
R;

10
ERASE TEST HIO A

R;

A CMS command typed by the user

A System answer

a Request for a DOWNLOAD

a Prompt from DOWNLOAD function
a Our answer

a Prompt from DOWNLOAD function
A Our answer

a We are sending back the file

a The next commands are

a generated automatically.

2-41

END OF TRANSMISSION

10 RECORDS RECEIVED A Records are sent in blocks of 10.
A Therefore, the number given is
a rounded up to a multiple of 10.
a We are again under CMS.

I a A single i-beam followed by Enter
A is a request to return to IBM
a Personal Computer APL.

TYPEVB:TESTY’

FIRST LINE

SECOND LINE

LAST LINE

TERMINAL a We go back to terminal state.

A Startup messages are received here.

Q PRT a This is a CMS command.

NO PRT FILES
R;

LOG

CONNECT= 00:12:10 VIRTCPU= 000:02.56 TOTCPU= 000:11.05
LOGOFF AT 10:47:08 EST TUESDAY 02/01/83

VM/370 ONLINE
The VM/370 system is now in receive state. To return
to IBM Personal Computer APL, you have to press Esc

and then .

The terminal opens now, and you are back in IBM
Personal Computer APL.

2-42

Auxiliary Files on the Host

To be able to use this application, your host system
must have the following files in your minidisk A.

® EDITEXEC
® The APL workspace OUT
® APL EXEC

EDIT EXEC

&CONTROL OFF

CP TERMINAL ESCAPE OFF CHARDEL OFF
LINEND OFF LINEDEL OFF LINESIZE 165

CP SET MSG OFF WNG OFF ACNT OFF

SET BLIP OFF

SET TERMINAL LINESIZE 255

&STACK CASEM

&STACK RECFM V

EDIT &1 &2 &3 &4 &5 &6 &7

The APL Workspace OUT

The functions in this workspace can be divided into
three different sets:

® Those that perform EXPORT/IMPORT:

CMSOUT Converts 256-character files into
ASCII-compatible files.

CMSIN Converts ASCII-compatible files
into 256-character files.

APLOUT Like CMSOUT, but underlined
letters are replaced by lowercase
letters.

APLIN Like CMSIN, but lowercase letters
are replaced by underlined letters.

2-43

2-44

® Auxiliary to EXPORT/IMPORT:

CIN Used by CMSIN, APLIN

COouT Used by CMSOUT, APLOUT

GASC Used by CMSIN, APLIN,
CMSOUT, APLOUT

XUL Used by APLOUT

XULI1 Used by APLIN

CMS Used by CMSIN, APLIN,

CMSOUT, APLOUT

® [N/OUT Functions:

IN Equivalent to the)IN command
(see “The FILE Workspace™).

ouT Equivalent to the)OUT command
(see “The FILE Workspace™).

In the function listings on the following pages, some
non-APL characters are included. These characters
have bee
generated X terminal in “APL OFF” mode.
The only functions containing these non-APL
characters are: CIN, COUT, GASC, XUL, and
XULIL.

Functions
APLIN APLOUT CIN CMS CMSIN CMSOUT
COUT GASC IN OUT XUL XUL1
(14)
V APLIN X;A3SH3N3T;[0I03ASCyN1; N2, AUX
(11 [O10<«0
[2] N<X,' HTO(192"
[3] A<«110 OSVO 'N!
(4] >(0z2144<N)/E
[5] >(a/ 0 1 1 =344)/F
(6] CMS 'ERASE ',X,' AIO!
[7] SH«X,' ATO(192 FIX!
[8] A<110 [JSVO 'SH!
(91 »(v/ 0 1 1 =343H)/E
[10] GASC
[11] L:»(0=pd<«N)/0
[12] SH<«80+XUL1 CIN A
[13] =L
[14] E:'ERROR!

v

2-45

(14)
V APLOUT X;A3B3SH3N3I300I0;ASC;N13N2 ;44
[1] 0Oro+0
[2] W<X,' ATO(192'
[3] A4<110 OSV0 ‘N
(4] >(0z144<«N)/E
[5] =+(A/ 011 =344)/E
[6] CMS 'ERASE '.,X,' HIO'
(7] SH<X,' HIO(192'
[8] A<«110 [OSVO 'SH!'
[9] ~>(v/ 0 1 1 #34SH)/E
[10] GASC
(111 L:~»{0=pA«N)/0
[12] SH«COUT XUL A
[13] =L
(14] E:'ERROR!

v

2-46

(6)

V 7<CIN X;070;T;J
(11 [0O10<0
[2] Xe(I<ze'B 1) /102X, ((T10X) M 1)/
[3] X«(N1,N2)L((pN1)xZ[X1='_")+ASC12[X+1]]
(4] Z«(~Ivd< 16I)/2
[5] Z«(~I<(~J)/I)\Z

(61 Z[I/1pIl<X

4)
V CMS X3CP;T
£1] CP<'CMS!
[2] I«<100 0OSVO *cCP?
[3] CP<«X

ul 'R',(¥CP),"';!

2-47

(14)
V CMSIN X;A;SH:;N;I;1I0;ASC N1;N2;AUX
(11 0100
[2] N<((Xv' ")4X)," HIO(192!'
[3] 4<110 OSVO 'm!
[yl ~(0z1t4<N)/E
[5] >(A/ 0 1 1 =344)/F
(6] CMS 'ERASE ',X
[7] SH«X,'(192'
[8] A<«110 0OSVO 'SH!
f9] »(v/ 0 1 1 #34SH)/E
[10] G4sC
[11] L:>(0=pA<N)/0
[12] SH<CIN 4
(131 L
[14] E:'ERROR'

v

2-48

(14)
V CMSOUT X3;A3;B;SH3;N;I;I1I0;ASC;N1;N2;44
(1] [07o+0
(2] W<(X<(X1' ")4X), (X' ")¥X), ' (192"
(3] A4<«110 0OSVO 'n!
[ul >(0=144<N)/F
[51] +(A/ 0 11 =344)/F
(61 CMS 'ERASE '.,X,' HIO!
(7] SH<X,' HIO(192!'
[81 A<«110 (sSvOo 'SH!
(9] ~»(v/ 0 1 1 #34SH)/E
(101 cGAsC
(11] L:>(0=pA<N)/0
(121 SH«COUT A
[13] -L
[14] E:'ERROR!

\Y

2-49

(10)

V Z<COUT X3;I3J3010
(11 Oro+o
[2] 2+,

[3] X+~Ze(~ASCe[JAVL23 30])/ASC

[4] I«,8(2,pT)p " "[IT>pN1],(ASC,ASC)[I+(N1,N2)1X/Z]
[5]1 2<(~X)/Z

[6]1 J«(~X)/0, 14+\X+1

[7] X«((+/X)+pX)p0

[8] X[JI«1

[9] Z<X\Z

(101 Z[(~X)/1pX1«I

2-50

(1D

(1]
[2]

£3l
(4]

L5]

(6]

L71

[sl
£el

[101]

[11]

vV GASC;UIO

Q10«0

ASC«tr ' ,[JAV[23], " Y()%+,-./0123456789:; <=>
?§ABCDEFGHIJKLMNOPQRSTUVWXYZ'

ASC<ASC,' 1@ ,JAVL30]

N1<JAVLO 2u871,'E',0AVL224 244 229 249 12 225
11 245 230 246 226]
N1<N1,04V[231 234 251 227 247 232 22 24 25 228
233 237 238 31]
N1<N1,04v[15 au],'AAY ,JAVL(1+18), (16+14),21,
(26+14),(32+13),131]
N1<N1,'W*' ,0AVL 3071, 'XYZA™ 10 ' VRawnucoTx308[| |
AVANS !
N2<'21p1e1TOROA\NLAA y»<{TNaFe[a! ,[JTCLO 2 1]
No<2,'UMn' JOAVL2u0 2391,'@D' ,0AVL241], "FBGHJ ',
OAVL2 01,'CK",0AV[219 2207
N2<N2,'L' ,0AV[222 223 2u2],'PRST' ,0AV[2437,
'L O0AVE(203+14), 235 236]
N2<2 JAVL (207+112), 221 250 23 252 253 254 255

132 13]

2-51

(33)

[1]
[2]
[3]
[u]
[5]
t6]
£71
£8l
(9l
L10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

V ZR<LS IN SH13;ZX2;ZXM;ZXA;ZzX1;0PP;0I0
0PP<«15+(T0«1+ZR<0
SH1«SH1,((~" 'eSH1)/' AIO'),'(192 FIX'
OwWA<110 0OSVO 'SH1!
+(0214S8H1)/0
ZR<1
+~(0=pLS)/ZXL2
ZR<(14pLS)p0
ZXL2: ZXA<""
ZXL3:>(0=p2X1<SH1)/0
ZXA<ZXA 1478 0[1+(142X1)e'CE JvZX1
>((142X1)e" C')/2XL3
ZXM<(ZXALY V)VZXA
ZXA(ZXA" V)4 ZXA
+(0=pLS)/ZXL1
+~((pZXA)>2+1¥pLS)/ ZXL2
>(~1eLSA.=(1¥p LS 1V ZXA) / ZXL2

ZXL1:ZX1<e(ZXM1" ')4 ZXM

2-52

[18]
{19]
[20]
[21]
[22]
[23]
L24]
[25]
[26]
[27]

[28]

[29] ZXL7:2(142XA), <" ,(32X2),((0=#pZX2)/ 0"), ' ZXM"

[30]
[31]
[32]

[33]

ZXM-(ZXML" ')4 ZXM
2X2410
ZXLu:~(Z2X1=0)/2XL5
X22«<7X2,2(ZXM " ')+ ZXM
ZXM<(ZXM\ Y ")V ZXM
+~ZXLL4,ZX1<ZX1-1

ZXL5:+('FC'=142XA) /ZXL6 , ZXL7

2(1VZXA) "<, (¥2X2) ,((0#pZ2X2)/ "0 ") ,2XM,(02p2X2)/" O

+~ZXIL,8
ZXL6:Z2X1<" '=0\0plFX ZX20ZXM

~ZXL9

ZXL8:ZX1<1
ZXL9:>(0epLS)/ZXL2
ZRL(LSA = (14pLS) M1V ZXAM 1 +ZX1

+ZXL,2

2-33

(22)
V ZR<ZXM OUT SH1;ZXA;2X1;0PP;CMS

(11 [OPP<16

[2] >(~0epZXM)/ZXL1

[3] ZXM<(A/ZXMV.2((T14pZXM),3)48 3 3 p'OUTSHAIZXM');ZXM<
avr 2 3

[4] ZXLA:ZR<0=0NC ZXM

[5] ZXLO:»(0=pZXM)/0

(6] ZXA<14((2X1<3=0NC ZXM[OI0:1)/'F'),'CN'[IO+ 1tet0',
(2=0nc ZXMLOIO;1)/',2''0=0\0p"',ZXM[(0I0;],"' """]

[7] ZX1<e(2X1/'0CR'''),zXM[0070;],2X1/" 1!

(8] ZXA<zXA,((' '=zXxM(0I10;])/zXM(0O1031),' ',(¥(ppZX1),
pZX1),"' ',,v2X1

(9] ZXA«(((1+14pZXA)p" '), 'X"),ZXA«(Z2X1,79)4((2X1<T
(pZXA)=71),71)pZXA,71p" !

L1201 ~>(2=0SVO 'SHA1'")/ZXL2

[11] CMS<«'CMS!?

[12] [OwA<100 OSVO 'CMS!

[13] CMS<«'ERASE ',SH1,' AIO!

(141 'R, (3CMS),';!

[15] SH1«SH1,' AIO(192 FIX!

[16]1 [OwA<110 OSVO 'SH1!

[17] 2(0214SH1)/'>ZE<0"

[18] ZXL2:SH1«<ZXA[OI0;]

[19] 2XA« 1 0 +ZXA

2-54

[20] +(0%1tpZXA)/ZXL2
[21] ZXM< 1 0 vZXM

[(22] ->ZXLO

(2)
V R<XUL X:I3Jd
(1] J<«262I<'"ABCDEFGHIJKLMNOPQRSTUVWXYZ ' 1R+ , X

[2] RLJ/1pR1<"

()

V ReXUL1 X;I:J

[1] J<262I«

1R+, X

[2] RLJ/1pRI+'ABCDEFGHIJKLMNOPORSTUVWXYZ'[J/T]

2-55

Typical APL EXEC File

2-56

Your host system also needs a file called APL EXEC
from which you can access APL. The content of this

file is system-dependent. An example of a typical APL
EXEC file follows.

&TRACE OFF

&IF .&FILEMODE EQ .S2 &SKIP 3

&IF .&FILEMODE EQ .Y2 &SKIP 2

&TYPE * APL DISK must be accessed as Y/S or Z/Y *

&EXIT 99

CONTYPE

&TERMCLA = &PIECE OF &RETCODE 1 2

&TERMTYP = &PIECE OF &RETCODE 3 2

&TERM = GRAF

&IF &TERMCLA EQ 80 &IF &TERMTYP NE 80
&TERM = LINE

&IF &TERM = LINE CP TERM ATTN OFF

&IF & TERM = LINE CP SET LINEDIT OFF

CP TERM APL ON

* Remove FI for APLDUMP if dumps not wanted

* You will get one every time if GDDM not installed

FI APLDUMP PRINTER

CP SET EMSG OFF

CP SET IMSG OFF

APL4 &1 &2 &3 &4 &5 &6 &7 &8 &9 &10 &11 &12

FI APLDUMP CLEAR

CP TERM APL OFF

&IF &TERM = LINE CP TERM ATTN ON

&IF &TERM = LINE CP SET LINEDIT ON

CP SET EMSG TEXT

CP SET IMSG ON

The MUSIC Workspace

The MUSIC workspace provides a sample of the use of
the AP440 auxiliary processor, which makes it possible
to create music in your IBM Personal Computer at the
attached speaker.

To use the speaker from APL programs, you must
include the music auxiliary processor, AP440, as a
parameter to the APL command at load time before you
begin an APL work session. For example,

APL AP440

To copy the MUSIC workspace into your active
workspace, you must enter:

)JIN MUSIC

The following melodies are included in the MUSIC
workspace. Each melody is a part of a well-known
musical piece.

Sakura Pop Stars Blue

Bug Humor Forty Hat

Scales Dandy March

To perform them, you have to execute the following:

PLAY name

where name is the title of the melody.

2-57

Notes:

2-58

Chapter 3. Auxiliary Processors

The Printer Auxiliary Processor: AP80

BIOS/DOS Interrupt Auxiliary

Processor: AP100

The Full-Screen Auxiliary

Processor: AP205
Screen Formatting
Control Commands
Interactive Use of the Screen
Return Codes

The File Auxiliary Processor: AP210
Control Commands
Control Subcommands
Return Codes ovin...

The Asynchronous Communications Auxiliary

Processor: AP232
Control Commands

The Music Auxiliary Processor: AP440
AP440 Command Syntax

3-1

Notes:

3-2

The auxiliary processors discussed in this chapter are:

AP80

AP100
AP205
AP210
AP232
AP440

IBM Graphics Printer control
BIOS/DOS interrupt handling
Full-screen display management
DOS file management
Asynchronous communications
Music generator

Each auxiliary processor requires storage space in
addition to that required for APL and the shared

variable processor ($SVP). When you start APL with

an auxiliary processor, the shared variable processor is
loaded with it. If you load more than one auxiliary
processor, only one copy of the shared variable
processor is loaded. (Shared variables are described in

Chapter 9.)

The following table gives approximate sizes for the

auxiliary processors, APL, shared variable processor,

and EXAPL (dyadic formats). Notice that EXAPL
does not require the shared variable processor.

Module

APL
EXAPL
$SVP
AP80
AP100
AP205
AP210
AP232
AP440

Approximate Size (K-bytes)
71.

mNWRO ===
MO PWHRNARND

3-3

The Printer Auxiliary Processor: AP80

3-4

The AP80 auxiliary processor can be accessed from
APL on the IBM Personal Computer and provides a
way to control the IBM Graphics Printer from APL
functions. It allows you to specify the printing
parameters and to print character strings. The entire
APL character set is supported.

To use this auxiliary processor, you must include AP80

as a parameter to the APL command at load time
before you begin an APL work session. For example,

APL AP80

The following APL line must be executed before the
auxiliary processor can be used:

80 JSV0 'name’

where name is the name of the APL variable being
shared with the auxiliary processor.

The result of the preceding line will be a 1 if the
variable name has been accepted by the shared variable
processor. This auxiliary processor accepts only one
variable.

The following line must be executed next:
(svo 'name!'

The execution of this line must give a result of 2. If not,
the auxiliary processor is not active, or a different
variable has been shared with it and has not been
retracted.

Any character string (vector or scalar) assigned to the
variable defined by name, will be interpreted as a
command to the auxiliary processor.

If the first character in the string is JAVL[0I0+255], the
remaining characters in the string are sent to the printer
in alphameric mode. In this way, printer control codes
can be included and executed. Appendix B shows many
of these control codes. When a carriage-return
character is found, the print head returns to the
beginning of the same line. A line-feed character sends
the print head to the beginning of the next line.

If the first character in the string is not JAV[(O70+2551],
the whole string is printed according to the current print
mode. A carriage-return character sends the print head
to the beginning of the next line, as does a line-feed
character.

Therefore, a character can have a dual function,
depending on the selected printing mode.

Example:
0ro<1
go [Osvo 'Xx! Offer the variable for
sharing
1
Osvo 'x! Is it accepted?
2 Yes
X<'ABCD' ,OTCL2] The printer prints the
string, ABCD, followed
by a carriage return to
the beginning of the next
line (O7CL27]).
X<{JAV[256], '<E" Set emphasized mode
(this is a printer control
code).
X<'ABCD' ,LUTCL 2] The printer prints
ABCD in emphasized
mode, followed by a
carriage return.
dsvr 'Xx? Retract the variable.
2

3-5

BIOS/DOS Interrupt Auxiliary Processor:
AP100

3-6

The AP100 auxiliary processor provides an interface to
generate BIOS and DOS interrupts or function calls.

To use this auxiliary processor, you must include
AP100 as a parameter to the APL command at load
time before you begin an APL work session. For
example,

APL AP100

The following APL line must be executed before the
auxiliary processor can be used.

100 [ISV0 'name!’

where name is the name of the APL variable being
shared with AP100.

The result of the previous line will be a 1 if the variable
name is accepted by the shared variable processor. This
auxiliary processor accepts only one variable.

The following line must be executed next.
0svo 'name'

It must give a result of 2. If not, either the auxiliary
processor is not active, or a different variable has been
shared with it and has not been retracted.

Any character vector with at least 17 elements assigned
to the variable name, will be interpreted as a command
to the auxiliary processor to generate a BIOS/DOS
interrupt.

In the following discussion, an index origin of 0 will
always be implied. Unless specifically stated, all
characters will be considered equivalent to the one-byte
integers that are equal to the position of each on the
APL atomic vector ([J4V).

Example:

If you have to send the number 22 to the auxiliary
processor, send it in the following way:

04vi22]

If the auxiliary processor returns the character “V > its
value will be determined by executing the expression:

WZARAA

The elements of the vector must contain the following
information:

® Element O gives the interrupt number desired.

® Elements 1 to 14 give the character contents of the
machine registers that must be passed to the BIOS/
DOS interrupt service programs, in the following
order: AL, AH, BL, BH, CL, CH, DL, DH,
lower byte of SI, higher byte of SI, lower byte of
DI, higher byte of DI, lower byte of BP, higher byte
of BP.

® Element 15 should always to O to assure future
compatibility.

® FElement 16 should be either 0, 64, 128, or 192, and
is used to control the translation of the contents of
the AL register (see below).

Element 16 governs how all AL values are sent and
returned. If element 16 is 128 or 192, AL values are
considered as internal APL characters, and are
translated to their ASCII equivalents before the
interrupt takes effect. (See the following diagram.)

3-7

If no more elements are given, the interrupt is executed
only once. On the other hand, if the vector has more
than 17 elements, all the remaining ones are considered
as successive values for the AL register. The same
interrupt may thus be executed several times in
succession, with all the registers except AL containing
the same values.

When the command has been executed, a character
vector with the same number of elements as the
command is returned to the shared variable, with the
following information:

® Element O is the interrupt number just executed.

® Element 1 and those after element 16 (if any) will
contain the successive values of register AL after
each instance of the interrupt was executed. If
element 16 of the command was O or 128, the
values are passed as they are. However, if element
16 of the command was 64 or 192, the AL values
are considered as ASCII characters, and are
translated to their internal APL equivalents (see
diagram below).

® FElements 2 to 14 are the new values of the machine
registers, after the last execution of the interrupt, in
the same order indicated above.

® FElements 15 and 16 contain the machine flags after
the last execution of the interrupt, as described in
the appendix, “Assembly Instruction Set
Reference” of the Technical Reference manual.
The low-order byte is passed in element 15, and the
high-order byte in element 16.

Element 16 | 0 64 128 192

Output of AL |as is as is APL—ASCII|JAPL—ASCII

Return of AL |as is]ASCII=APL as is ASCII=APL

3-8

The'types of errors that may be found in the command
are:

'® rank error (when a value is not a vector)
® Jength error (when there are less than 17 elements
or too many for the buffer in the auxiliary
processor)

® domain error (when a character vector is not given)

In those cases, an error return code (the integer scalar
2) is passed back to the shared variable.

Example of Use:
To read an ASCII character struck from the keyboard,
using BIOS interrupt 16H and AP100, you can execute
the following function (see the Technical Reference
manual for information about BIOS interrupts):
V Z<INKEY X ;010
(11 0Oro<o
(2] Z«100 OS70 'X!'
[3] Z<{1sv0 *Xx?
[u] X<JAV[22,16p0]
(5] <AV X[1 2]
\Y

® Line 1 sets the origin to 0.

® Lines 2 and 3 share variable X with AP100.

3-9

® Line 4 assigns to the shared variable X, the input
needed to address interrupt 16H; that is:

— Element O is the number of the interrupt desired
(22 is equivalent to hexadecimal 16).

— Element 2, the contents of AH, is set to 0.
— Elements 15 and 16 are set to 0.

— The contents of the remaining elements are not
important.

® Line 5 returns the result of the interrupt:

— Element 1 returns the contents of AL, the struck
key code.

— FElement 2 returns the contents of AH, the key
scan code.

When you call the function, INKEY, the system stops
processing when line 4 is executed. The system waits
for you to press any key. When you do so, the function
returns a two-element vector: the first element is the
key code, and the second is the scan code (see
“Keyboard Encoding and Using” in the Technical
Reference manual).

The Full-Screen Auxiliary Processor:
AP205

The full-screen auxiliary processor, AP2035, is used to
manage the Monochrome or the Color/Graphics display
screens. It can be used to:

® Divide the screen into rectangular areas

® Read from or write to the screen.

® Produce highlighting, reverse video, colors, etc.

® Allow you to modify the text or graphics displayed
in certain preselected areas in an interactive way.

To use this auxiliary processor, you must include
AP205 as a parameter to the APL command at load
time before you begin an APL work session. For
example:

APL AP205

Two shared variables are required to process the screen
— a control variable and a data variable. They can be
offered in any order. The name of the data variable
must always begin with the letter “D’’; the control
variable must begin with the letter ““C.” The remaining
characters in both names (possibly none) need not be
the same for this auxiliary processor. This auxiliary
processor accepts only one pair of shared variables.

The control variable is used to select the operation to
perform and to control each input or output operation.
The function of the data variable is to transfer actual
data.

The following APL lines must be executed before the
auxiliary processor can be used:

205 [OSVO 'Cname!
205 JSVO 'Dname!

where name is the remainder of the name of each
variable.

The preceding two instructions should give a result of 1.
You then should test if the variables have been accepted
by AP205 by entering:

0svo 'Cname!

OSVO 'Dname!

3-11

Screen

3-12

Both entries must give a result of 2; otherwise, AP205
is not active or has already accepted other variable
names that have not been retracted.

When this auxiliary processor is used from a defined
function, the following steps are usually performed:

1. Offer the variables for sharing and test acceptance.
2. Specify data (if any) in the data variable.

3. Specify a request command and a field number (if
any) in the control variable.

4. Check the return code from the control variable.
5. Get data (if any is returned) from the data variable.

6. Repeat Steps 2 through 5.

Formatting

The screen is considered to be divided into rectangular
areas called fields. It is only in these areas that data can
be displayed or entered. Each field is defined by the
following six elements:

SR
SC
HT
WD
T

A

where:

® SR and SC are the screen coordinates (row and
column, respectively) of the upper-left corner
(starting position) of the field relative to the
upper-left corner of the screen.

® HT and WD are the numbers of rows (height) and
columns (width) in the field

® T is the type of field
® A is the field’s attribute.

If a field is defined beyond the right edge and/or lower
end of the screen, an error return code will result, with
one exception: if the defined field has only one row, it
may reach beyond the right edge of the screen and
follow on the next sequential lines of the screen. In this
way you can define, for example, a field with 1 row and
2000 columns occupying the whole screen.

The following field types are supported:
® (: Fieldis read/write.

® 2: Field is read-only (that is, you are not allowed
to type new information in this field).

The attribute of the field is a positive integer, not
greater than 255, that defines certain characteristics
applicable to all characters displayed in the field, such
as color, normal/reverse video, highlighting, blinking,
underlining, etc. (See the Technical Reference manual
for more information.)

Following is a list of several commonly-used attributes
for the Monochrome Display, and the effect they
produce.

Attribute Effect

0 Invisible field. Characters are accepted but
not displayed.

1 Underlined characters.

7 Normal characters.

9 Highlighted underlined characters.
15 Highlighted characters.

112 Reverse video.

120 Highlighted reverse video.

129 Blinking underlined characters.
135 Blinking normal characters.

137 Blinking highlighted underlined characters.
143 Blinking highlighted characters.

240 Blinking reverse video.

248 Blinking highlighted reverse video.

3-14

For the grapics mode with 80 characters per line,
attributes are ignored.

When using a color/graphics display with 4Q characters
per line, the attribute of a field is selected by specifying
an integer number N. For ¥=0,, the attribute is given
by the remainder of ¥ + 4 (or the residue 4|&). The
color/graphics attributes are:

0: invisible

1: cyan
2: red
3: white

All fields must be defined together. Their definitions are
passed as an integer six-column matrix, each row
corresponding to one field. The maximum number of
different fields is 50. If fields overlap, unpredictable
effects may arise.

Once the screen format has been defined, each field is
identified by its position in the matrix, beginning at 1.
Thus, the first row in the matrix defines field number 1,
the second corresponds to field number 2, and so forth.

Example: The following matrix divides the screen into
three rectangular fields:

2 2 10 10 2 7
12 20 1 1 0 135
20 1 1 40 2 15

The first field is a square starting at row 2, column 2,
and occupying 10 rows and columns. It is a read-only
field (that is, you cannot type in it, but the program
can), and characters are displayed normally.

The second field is a single character at row 12, column
20. It can be overwritten (type is 0), and will blink if the
Monochrome Display is used.

Finally, the third field is a single line, 40 characters
wide, at the beginning of row 20. It is a read-only field.
If the Monochrome Display is used, characters written
by the program are displayed with double intensity (that
is, high-lighted).

All other portions of the screen not specifically defined
are dark.

Control Commands

Once the control variable has been shared, each value
you assign to it is considered to be a command that
describes the operation to perform.

The following commands are accepted:
Command Function
0 Clears the screen immediately

0,n Dynamically switches screen modes and
clears the new screen. n must be 1, 4, or 8
(monochrome, 40-column color,
80-column color).

1 Establishes new screen format as defined
in the data variable.

1,fn Redefines field, the number of which (fn)
is given by its position in the matrix
defining the screen format.

2.fn Writes a character vector in the indicated
field (fn). The actual information is
passed in the data variable.

2.fn,1 Writes a boolean vector in the indicated
field (fn). The actual information is
passed in the data variable. Each element
corresponds to a picture element on the
screen. A 1 means that the element is
visible, and a 0, invisible.

3-15

2,fn,2

2,fn,3

2,fn4

4,fn

4,fn,1

4,fn,2

4.fn,3

4,fn4

5,fn

Performs the logical AND operation
between the contents of the indicated field
(fn) and the boolean vector contained in
the data variable. The result is displayed
in the field.

The same as the preceding command, but
this one performs an OR operation.

The same as the preceding, but this one
performs an EXCLUSIVE OR operation.

Goes into interactive mode. You may now
type in any of the allowed fields, as
described below.

Writes a character vector in the indicated
field (fn). The actual information is
passed in the data variable.

Writes a boolean vector in the indicated
field (fn). The actual information is
passed in the data variable. Each element
corresponds to a picture element on the
screen. A 1 means that the element is
visible, and a 0, invisible.

Performs the logical AND operation
between the contents of the indicated field
(fn) and the boolean vector contained in
the data variable. The result is displayed
in the field.

The same as the preceding command, but
this one performs an OR operation.

The same as the preceding command, but
this one performs an EXCLUSIVE OR
operation.

Reads the present contents of field fn as a
character vector returned through the data
variable.

5,fn,1

9,fn
12

Reads the current contents of field fn as a
boolean vector, and returns it in the data
variable.

Goes into interactive mode. You may now
type in any of the allowed fields, as
described below.

Reads the current definition of all the
fields.

Reads the current definition of field fn.

Sets the cursor position on the screen.
The desired position is passed in the data
variable as a three-element numeric
vector, giving the field number and the
row/column coordinates of the desired
point relative to the beginning of that
field.

Interactive Use of the Screen

When commands 3 or 8 are requested, the auxiliary
processor enters a Wait state, allowing you to type at
the keyboard, thus changing the contents of one or more
read/write fields. While in this mode, the following
special keys may be used:

® The four arrow keys at the right of the
keyboard: these move the cursor in the direction
indicated by the arrow. Any point on the screen
may be accessed.

® The Ins, Del, and End keys: these have the same
function as described under “APL Input Editor
Special Keys’ in Chapter 1.

3-17

3-18

® The Tab key: positions the cursor at the beginning
of a line within a read/write field according to the
following priority:

1. The next sequential line of the same field, or
2. The first line of the next read/write field, or
3. The first line of the first read/write field

® The Ctrl-Backspace keys: switch between the
APL keyboard and the National keyboard.

You signal the end of the interactive use of the screen
by pressing any of the following keys:

A function key

A function key in Shift mode
A function key in Ctrl mode
The Enter key

The Esc key

The PgUp key

The PgDn key

When one of these keys is pressed, AP205 returns
control to the APL. The data variable returns a vector
of five numeric elements, which contain the following
information:

KT, KN, CF, CR, CC

where KT, KN is a pair of numbers defining the key
that was pressed to end the operation:

KT KN Key

0 2 Enter

1 2 Esc

1 3 PgUp

1 4 PgDn

2 n Function

Normal function keys are assigned numbers from 1 to
10, Shift function keys from 11 to 20, and Ctr/ function
keys from 21 to 30. Alt function keys are reserved for
internal system use.

CF, CR, and CC give the present position of the
cursor. CF is the number of the field where the cursor
is, and CR and CC are the row/column coordinates of

the cursor’s position relative to the beginning of that
field.

Return Codes

The following is a list of the possible return codes for
all the commands:

Successful

Command not recognized

Data variable erroneous

Data variable not shared

Buffer overflow

Attempt to use a non-existent display

NhREQ

Example of Use:

The following executable lines are assumed to be the
lines of an APL-defined function. Results of individual
lines are shown for clarity, but should not appear on the
screen (for example, by assigning them to some
variable). Otherwise, if the APL input editor is allowed
to act, the full-screen application will not work
correctly, because the screen is cleared whenever
control is transferred between the APL Input Editor and
the AP205 auxiliary processor.

205 OSV0 2 1p'cD' The variables are offered

to AP205.
11
0svo 2 1pt'cD! Are they accepted?
2 2 Yes, they are.

3-19

3-20

D+3 602 210 10 2 712 201 1 0 135 20 1 1 40 2 15

0«1
c

D<'"FIELD 1!
<2 1
c

<3

2211

0«5 2

USVR 2 1ptCD!

The data variable is
assigned the desired
screen format (see above
for an explanation of the
format).

Ask for the return code.
Successful operation.
This text will be written
in field 1.

This is the command to
write.

Return code.

Success.

Allow the user to type in
the predefined fields. To
leave this state you have
to press either Esc,
Enter, PgUp, PgDn, or
any F key.

Wait until a return code
has been assigned to C.
Now.

Shows how the user
ended.

The user pressed the Esc
key (1 2) and left the
cursor in the first
position (1 1) of field 2.
Let us read (5) the
contents of field 2.

Operation successful.

The user has typed an A
in that field.

The shared variables are
retracted.

The File Auxiliary Processor: AP210

The file auxiliary processor, AP210, is used to read
from or write to, fixed-length disk files under control of
the DOS file system. The reading and writing can be
either sequential or random.

To use this auxiliary processor, you must include
AP210 as a parameter to the APL command at load
time, before you begin an APL work session. For
example:

APL AP210

Two shared variables are required to process a file — a
data variable and a control variable. They can be
offered in any order. The name of the data variable
must always begin with the letter “D,” and the control
variable must begin with the letter “C.” The remaining
characters in both names (possibly none) must be the
same, because the coupling of both variables is
recognized by their name. Examples of valid pairs are:
Cand D, C1I and D1, and CXjj and DXJj. The control
variable is used to identify the file to be worked with,
and the particular operation to be performed. It is also
used to activate each input or output action. The data
variable contains the information being read or written.
Up to four pairs of variables may be shared at one time.

The following APL lines must be executed before the
auxiliary processor can be used:

210 OSVO t'Cname!
210 JSVO 'Dname!

where name is the common part of the names of both
variables.

3-21

The preceding two instructions must give a result of 1.
You then test if the variables have been accepted by
AP210 by executing the following:

(Jsvo t*Cname!
0sSVo 'Dname!
Both must give a result of 2. Otherwise, AP210 is not

active or has already accepted four pairs of variable
names.

Control Commands

3-22

Once the control variable has been shared, the first
value you assign to it should be a character vector,
which is considered to be a command that describes the
file name and specifies the function to be performed.
The following commands are accepted:

IR filespec| code] Open for read-only
IW filespec|code] Open for read/write
DL filespec Delete file

RN (filespec filename|.ext] Rename file

where filespec is the DOS file identification, of the
form:

[d:] filename [.ext]

d: is a letter that identifies the drive (typically A, B, C,
etc.). filename is a valid DOS file name (up to eight
characters), and the extension of the name has no more
than three characters (see your DOS manual).

code is a single letter selecting a given interpretation of
the file data. Four different interpretations are

supported:
Code
A (APL)

B (BOOL)

C (CHARS)

D (ASCII)

Interpretation of Data

The records in the file contain APL
objects, with their headers. In this way,
matrices, vectors, and arrays of any
rank may be stored and recovered.
Different records of a file may contain
objects of different types (for example,
characters, integers, or real numbers).
An APL object in a record may occupy
up to the actual record length (not
necessarily the same number of bytes),
but the header fills a part of that area.
(See Chapter 4, “How To Build an
Auxiliary Processor,” for the structure
and memory requirements of an APL
header.)

The records in the file contain strings
of bits without any header (packed
eight bits per byte). The equivalent
APL object will be a boolean vector.
In this case, all records must be equal
to the selected record length.

The contents of the record is a string of
characters in APL internal code,
without any header. All records must
be equal to the selected record length.

The contents of the record is a string of
characters in ASCII code, without any
header. All records must be equal to
the selected record length.

3-23

3-24

If the code is not stated specifically, code A is the
default.

Note: If the I/O ERROR message appears
when you are trying to access a file, either the door
of the drive is open, the incorrect diskette is
inserted, or the diskette is write-protected. See
Figure 17 in Chapter 12 for the recommended
action.

WARNING: Changing diskettes during an
input/output operation, or when
you have open files, may damage
your diskettes.

The IR command opens the file for read-only
operations. If the operation is successful, the control
variable passes into the subcommand state. You must
then specify which data transfer operation you want to
perform. (See “Control Subcommands” below.) The
IW command works in a similar way, but the file is
opened for both read and write operations. If the file
cannot be opened, the control variable remains in the
command state.

When the DL command is received, the file with the
specified filespec is erased from the designated drive (or
the default if no drive was specified). Then the control
variable returns to the command state.

When the RN command is received, the name and
extension of the file specified in the first parameter is
changed to the name and extension given in the second
parameter. A valid drive specified in the second
parameter is ignored. After this command has been
executed, the control variable returns to the command
state.

Once a command has been received and executed, a
return code is passed back to APL through the control
variable, indicating whether or not the command was
executed successfully and, if not, the reason for the
failure.

Control Subcommands

Once a file has been opened for input (command IR) or
input/output (command IW), the control variable
passes into the subcommand state. It now accepts the
assignment of numeric vectors specifying the operation
to perform, with the following structure:

[op [nr [rs]]]

where op is O (read operation) or 1 (write operation;
this is not allowed if the subcommand state was entered
through the IR command). nr is the record number to be
read or written, where the first record in the file has a
record number of 0. Finally, rs is the record length or
size.

If rs is not specified, the value used in the previous
operation applies. If such a previous operation does not
exist (as in the first read/write subcommand after
opening the file), a default record length of 128 bytes is
used. '

If nr is not specified, the value used in the preceding
operation is increased by 1 (thus, sequential access is
possible, as well as direct access). If not specifically
stated, the first value of nr after opening a file is O (that
is, the first record in the file).

If the control variable is assigned an empty vector while
in the subcommand state, the file is closed and the
control variable reverts to the command state.

Once an operation has been requested, the data variable
is used as a buffer, where the actual transfer of records
takes place. If the operation is a read, the value of the
record can be found in the data variable after the
successful completion of the requested operation
(confirmed by the return code passed through the
control variable). If the desired operation is a write, the
value of the record must be assigned to the data variable
before the corresponding subcommand is assigned to the
control variable.

3-25

Return Codes

The following is a list of the possible return codes for all
the different commands and subcommands.

Return
Code Interpretation

0 Successful.

1 Read: End of file reached. The data
variable returns an empty vector in this case.

Write: Disk full.

3 Read: The last record in the file is
incomplete. In this case, its contents are
passed anyway, padded by the characters,
UAVIOIO] up to the requested record size.

20 Command not recognized.
21 Subcommand not recognized.
22 Auxiliary processor buffer overflow;

command too large.
23 Data variable not found.

24 Data type error. This can happen on input if
code A has been requested and the record
does not contain a valid APL object, in which
case the data variable returns an empty
vector to the APL processor. This can also
happen on output if the data variable contains
an object incompatible with the code selected
in the command, or if the size of the record
exceeds the specified record length.

255 IR: File not found.
IW: File not found, or disk directory full.
DL: File not found.
RN: File not found, or duplicate name.

3-26

Examples of Use:

210 [{SV0 2 2p'C1D1'Offer two variables (C1

11
svo 2 2p 'CiD1t
2 2
C1<'"IW ,B:FILE .EXT!
c1
0
D1<110
Cl<1
Cc1
0
D1<2 3p1ib6
1«1
c1
0
c1<1?

C1«'IR,B:FILE .EXT"'

and D1) to auxiliary
processor 210.

SVP answer.

Test to see whether the
varibles have been
accepted.

OK.

Creation of a new file.
Records will contain
APL objects with header
(default code).

Return code.

Success. The file is open.
You are now in
subcommand mode.
First record will be a
vector of elements from 1
to 10.

Subcommand to write
the record in the file.
Default record number is
0, default record size is
128 bytes.

Return code.

Success.

A matrix of two rows
and three columns of
elements from 1 to 6, is
assigned to the data
variable.

Write sequentially on the
file.

Return code.

Correct.

An empty vector closes
the file and puts the
control variable in
command mode.

Open the same file for
read-only operation.

3-27

C1 Return code.

0 Success.
C1<0 1 Read the second record
first.
c1 Return code.
0 All right.
D1 Ask for the record
contents.
123 Here is the matrix.
L 56
C1<0 0 Ask now for the first
record.
c1 Return code.
0 OK.
D1 Record contents is a
12345678910 vector of integers.
€110 Close the file and go into
command state.
C1<«'RN ,B:FILE .EXT ,NEWFILE . XXX"
Rename the file.
1 Return code.
0 The file has been
renamed.
C1+«'DL,B: NEWFILE.XXX' Delete the file.
Cc1 Return code.
0 The file no longer exists.
OSVR 2 2p'CiD1t Retract the shared
variable.
22 All done.

The Asynchronous Communications
Auxiliary Processor: AP232

3-28

The AP232 auxiliary processor can be accessed from
APL on the IBM Personal Computer and provides an
interface for communications between the IBM
Personal Computer and a host (IBM System/370). (See
“Asynchronous Communications Adapter’ in the
Technical Reference manual.)

To use this auxiliary processor, you must include
AP232 as a parameter to the APL command at load
time before you begin an APL work session. For
example,

APL AP232

The following APL line must be executed before the
auxiliary processor can be used:

232 ST0 '"name'!

where name is the name of the APL variable being
shared with the auxiliary processor.

The result of the preceding line will be a 1 if the
variable name has been accepted by the shared variable
processor. This auxiliary processor accepts only one
variable.

The following line must be entered next:

0dsvo 'name!

It must give a result of 2. If not, the auxiliary processor
is not active or a different variable has been shared with
it and has not been retracted.

Control Commands

Once the control variable has been shared, the first
value you assign to it must be a character string
representing a command which indicates the function
that the auxiliary processor has to perform. The
functions are the following:

Initialize (0)
Transmit (1)
Receive (2)

Get port status (3)
Set break (4)

Get buffer size (5)

3-29

All commands are strings of a least two characters. The
first one is a number that indicates the function to be
performed (see above). The second is the port address
and must always be 1.

If you do not issue a valid command, an error code is
returned (see below for return codes).

This auxiliary processor has three buffers:
1. A 1000-byte buffer to communicate with the APL

interpreter. If the buffer ever gets full, a code of 2 is
returned.

2. A 255-byte buffer to transmit data to the host. The
auxiliary processor does not allow it to get full.

3. A 2000-byte buffer to store the data received from
the host. (See the command ““Receive” below.)

For an example of how to use this auxiliary processor,
look at the functions included in the VM232 workspace.

Initialize (0)

3-30

This command is used to initialize the port. It consists
of a string of characters of the form:

NN TEZ O

where:
® C indicates the type of the command. It must be O.

® N is the port address (always 1).

® B indicates the desired transmission baud rate. It
can have one of the following values:

Value of B Baud Rate

75
110
150
300
600

1200
1800
2400
4800
9600

OO~ UNBLWND=O

® P indicates the parity, as shown in the following
table:

Value of P Parity

0 None
1 Odd
2 Even
3 Mark
4 Space

@ S indicates the number of stop bits you want. It can
be either 1 or 2.

® X indicates the word length in bits. Its value ranges
from 5 through 8.

The return code produced by this command is a
numeric scalar indicating:

® —1: success

® 3: error

3-31

Transmit (1)

This command consists of a string of characters of the
following form:

C

N

S

where:

® (C indicates the type of the command. It must be 1.

® N is the port address. It must be 1.

® S represents the string of ASCII characters that is
to be sent.

The return code is always the numeric scalar, —1.

Receive (2)

3-32

The command consists of a string of characters of the
form:

omHZ0

where:

® C indicates the type of the command. It must be 2.
® N is the port address. It must be 1.

® T represents the turnaround character.

® E is the end-of-line character sent by the host.

® D represents four delete characters. If you want to
give fewer than four delete characters, the remaining
positions must be filled by blanks. Blank is never a
delete character.

The system returns a string of characters, the first
character of which is one of the following:

04avtorol Success

OAVEOro+9] Buffer empty (no character read)
LAvVIOro+121 Buffer overflow

0AvLOro+131] Character error in buffer

The rest of the characters returned form the string
received from the host.

Get Port Status (3)

This command returns the content of both the modem
status register (MSR) and the line status register (LSR).

The command consists of a string of characters of the
form:

C
N
where:

® C indicates the type of the command. It must be 3.
® N is the port address. It must be 1.
The return code is a boolean vector in which bits 1

through 8 represent the content of the MSR, and bits 9
through 16, the content of the LSR, as shown by the

following;:
- Port Status Bits -
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
1
76 5 4 3 21 017 6 5 4 3 2 10
-————MSR Bits > -— -LSR Bits ———

3-33

Set Break (4)

The Set Break command sends a break to put the host
in the receive state.

The command consists of a string of characters of the
form:

C

N

where:

® C indicates the type of the command. It must be 4.
® N is the port address. It must be 1.

The return code is always the numeric scalar, —1.

Get Buffer Size (5)

3-34

This command is used to ask for the size of contents of
the buffer that is currently occupied (either transmit or
receive buffer).

The syntax of the command is:

C

N

(0]

where:

® (indicates the operation. It must be 5.

® N is the port address (must be 1).

® O is the operational type of the buffer (“R” for the
receive buffer, “W”’ for the transmit buffer).

This command returns a two-element numeric vector, in
which the first element is one of the following codes:

® -1: Success
® 10: Buffer more than three-quarters full

® 11: Buffer overflow

The second element is the number of bytes occupied by
the contents of the buffer.

The Music Auxiliary Processor: AP440

The AP440 auxiliary processor provides an easy way
to create music at the attached speaker. To use this
auxiliary processor, you should have an elementary
knowledge of music and its notation.

To use this auxiliary processor, you must include
AP440 as a parameter to the APL command at load
time, before you begin an APL work session. For
example,

APL AP440
The APL line:
440 dSV0 'name!

must be executed before the auxiliary processor can be
used. name is the name of any APL variable.

The result of the preceding line will be a 1, if the
variable name is accepted by the shared variable
processor. This auxiliary processor accepts only one
variable.

3-35

The line:

dsv0 'name!

must be executed next and must give a result of 2. If
not, the auxiliary processor is not active or a different
variable has been shared with it and has not been
retracted.

Any character string assigned to name will be
interpreted as a set of commands to the auxiliary
processor to play music. Commands may be joined
within a single character string in any way you desire,
or passed through another variable which is then
assigned to the shared variable.

AP440 Command Syntax

3-36

{[tempo] [octave] [mode] [length] [NOTESPEC] [pause]}

Brackets indicate an optional parameter.

where:

[tempo]: Tn n = 0 to 6; default 4
[octave]: On[{+ —}] n = 0to 6; default 3
[mode]: Mn n = 0to 2; default 1
[length]: Ln n = 0 to 6; default O

[NOTESPEC]one[{# + —}][n][.] tone = Ato G
n = 0to 6; default O
[pause] Pn}.] n = 0to 6; default 0

NOTESPEC A to G, optionally followed by # + or
-, and a digit (O to 6), optionally
followed by a period.

Plays the indicated note in the current
octave. # or + specifies a sharp, and —
specifies a flat. The digit, if given,

length

mode

specifies the length of the note,
according to the following:

complete note

half note

quarter note

quaver note

semiquaver note
quarter quaver note
half-quarter quaver note

NN P WN=O

If a period is given, the note is played
as a dotted note; that is, its length is
multiplied by 3/2. Additional dots are
ignored, if present.

Ln, where n is a digit from O to 6, sets
a given length (according to the
previous table) applied to all later notes
in this or different strings of
commands, unless a new Lz command
is found or a note has its own length
given, which takes priority. If no Ln
command has ever been given, LO is
assumed as the default.

Mn, where »n is a digit from O to 2,
selects the music mode, according to
the following table:

0 Music staccato. Each note will
play 3/4 of the length. The rest will
be a pause.

1 Music normal. Each note will play
7/8 of its length.

2 Music legato. Each note will play
its full length.

If no Mn command has ever been
given, M1 is assumed.

3-37

3-38

octave

pause

tempo

On, where n is a digit from O to 6,
optionally followed by a + or — sets the
current octave. Each octave goes from
C-to B+. Octave 3 contains middle A
(440 Hertz). If + or — is not present,
the number given is the absolute
octave. A + sign specifies a relative
displacement to higher octaves. A —
sign corresponds to a relative
displacement to lower octaves. If no
On command has ever been given, O3
is assumed.

P, optionally followed by a digit from O
to 6, optionally followed by a period,
defines a pause or rest. The digit, if
given, specifies the length of the pause.
This length may be enlarged to 3/2 its
value if a period follows. The length
values are interpreted according to the
same table indicated in the
note-definition command.

Tn, where n is a digit from O to 6, sets
the tempo of the play, according to the
following table:

Largo (54 quarter notes per minute)
Largetto (66 per minute)

Adagio (78 per minute)

Andante (96 per minute)

Moderato (120 per minute)

Allegro (156 per minute)

Presto (198 per minute)

AN PAWN=O

If no Tn command has ever been given,
T4 is assumed.

To play tied notes, connect the expressions of the two
notes. You can also assign sub-tunes to any APL
variable (not shared with AP440) and call them
repetitively with different tempos, octaves, or lengths,
by assigning that variable to name.

For an example of how to use this auxiliary processor,

examine the variables included in the MUSIC
workspace.

3-39

Notes:

3-40

Chapter 4. How to Build an
Auxiliary Processor

Access Control

Shared Variable Processor Services

and Return Codes
Format of Shared Data

Internal Structure of APL Variables
Information about Shared Variables
Auxiliary Processor Example with

One Shared Variable

Auxiliary Processor Example with

Two Shared Variables

APL Data Segment and Macros for

Auxiliary Processors

Notes:

4-2

To build your own auxiliary processors, you must have
a good understanding of APL, APL data types,
assembler language, and the information in this chapter.
You will need the IBM Personal Computer Macro
Assembler if you desire to build your own auxiliary
processors.

Essentially, an auxiliary processor (AP) provides a
service that involves exchange of data. One obvious
service is accessing a data set. However, the services
that an AP can provide are limited only by the facilities
available in the system and the imagination of the
designer.

Auxiliary processors exchange information with the
APL processor through shared variables. A variable
becomes shared when you offer to share it and the
auxiliary processor accepts the offer. You and the AP,
in effect, then become partners. Each partner can assign
a value to the shared variable (specify it) and get its
latest value (reference it).

The shared variable processor (SVP) is a part of the
APL processor and manages all shared-variable offers
and information exchange. This processor is loaded in
main memory only if at least one auxiliary processor
using its services (the name of which begins with “AP”’)
has been selected at APL load time.

4-3

Access Control

4-4

It is often necessary for the partners to control the
sequence in which they access a shared variable. If the
access is not controlled, one partner can specify a
variable twice before the other can reference the first
value, or one partner can reference a variable twice
before the other can specify a second value.

Each shared variable has associated with it, a 4-bit
control vector that provides a means of regulating
access to the variable. Each partner presents its own
version of the access-control vector to the SVP. The
effective, or combined, access-control vector is the
logical OR of the two. Thus, each partner can impose
more discipline on the other, but neither can impose less
on itself.

The meaning of each of the four bits, as given by an
auxiliary processor to the SVP, is:

Bit Meaning

0 If 1, disallow my successive specification until
my partner has accessed the variable (either
referenced or specified it).

1 If 1, disallow my partner’s successive
specification until I have accessed the variable.

2 If 1, disallow my successive reference until my
partner has specified the variable.

3 If 1, disallow my partner’s successive reference
until I have specified the variable.

The SVYP allows or disallows each access according to
the variable’s access state. The access state at any point
in time depends on the variable’s combined
access-control vector and the prior accesses by each
partner.

Shared Variable Processor Services and
Return Codes

The following is a listing of all the SVP macros in the
file SAPMAC.ASM on the APL diskette, and the
expected arguments and return codes. These macros use
certain memory positions ($P1, $P2, $P3, $P4,
SIFLOT, and $IFLOT+2) to pass information about
the operation the auxiliary processor is requesting. The
contents of these data objects should be changed only in
the cases indicated below. They should never be used as
intermediate positions for internal calculations. Since
the definition of these objects depends on register BP,
the contents of register BP should also remain
unchanged.

Each auxiliary processor should have a buffer (the size
of which depends on the application) where the values
of the shared variables may be passed through, or
received from, the SVP. This buffer and all the
remaining data areas needed for each particular
application should be in the same segment as the
program itself (CS:), because the data segment register
must point to the APL data area, where some of the
required transfer positions are.

In all the following functions, $P4 is assumed to contain
the AP number.

$P3, in those functions that need it, should pass a
pointer to the shared variable control block.

$P1 and $P2 pass the buffer address when needed. $P1
is the segment register, $P2 the displacement.

SIFLOT and $IFLOTH2 may pass additional
information (described later in the chapter).

SIFLOT returns the result of the operation or the return
code. $SVSC also returns SIFLOTH2.

45

The SVP macros are: $SVSN, $SVSF, $SVSC,
SSVSH, $SVRT,$SVSA, $SVGA,3SVPR, $SVSZ,
SSVPW,8$SVCP, $SVRD, $SVWR, $SVRL, and
SSVWA. They are included in a file called
SAPMAC.ASM, with all the macros needed to build
an auxiliary processor.

All the SVP macros, except $S VWA, maintain the
values of $P1, $P2, $P3 and $P4. Registers AX, BX,
and BP are also maintained. All others are lost.
SIFLOT and $IFLOT2 are changed by SVP.
SSVWA keeps only the value of $P4.

$SVSN (Sign On to the SVP)

Sign-on identifies an auxiliary processor to the SVP. It
must be successfully carried out before any other
service can be obtained. Each processor is identified by
a number, between 2 and 32767. Two different
processors cannot have the same number.

Input: $P4
Output: 0, —5, —6.

$SVSF (Sign Off to the SVP)

Sign-off disconnects an auxiliary processor from the
SVP and retracts all the processor’s shared variables.
Processor sign-off is also automatic when you exit APL
through the)OFF command.

Input: $P4
Output: 0, —11.

$SVSC (Scan for Offers)

4-6

This function scans the SVP tables for an offer to this
processor. Only offers after a given chronology are
scanned. The SVP maintains a counter, which is
increased by 1 each time a new variable is offered. The
value of this counter is stored in the variable control
block and is called its chronology.

Input: $P4, SIFLOT+2 = initial chronology.

Output: O (no offer), —11, or the control block
pointer. $IFLOT+2 has the updated
chronology.

$SVSH (Share a Variable)

This function offers a variable for sharing, or requests
the present state of the variable, if previously shared.

Input: $P4, $P3
Output: 0, rejected; 1, offered; 2, shared.

$SVRT (Retract a Variable)

Retraction of a shared variable ends an auxiliary
processor’s connection to that variable. If the partner
has already retracted, the variable is no longer shared.

Input: $P4, $P3
Output: Previous condition of variable.

$SVSA (Set Access-Control Vector)

Set-access-control changes the auxiliary processor’s
setting of a shared variable’s access-control vector. The
request can be issued at any time after the variable has
been offered. The first setting (0 0 O 0) is provided
when a variable is offered.

Input: $P4, $P3, SIFLOT = new access vector, in
decimal (15=1111)
Output: Joint access vector, in decimal.

$SVGA (Get Access-Control Vector)

This function requests the present value of the
access-control vector as previously set by both users.

Input: $P4, $P3
Output: Joint access vector, in decimal.

4-7

$SVPR (Pre-Read), SSVSZ (Seize),
$SVPW (Pre-Write)

If the variable is not under the control of the partner,
the access state and control vectors are examined to
determine if a use is permissible. If so, the variable is
registered in SVP as being under the control of the
auxiliary processor. When successful, the amount of
storage required for the value is also returned.

Input: $P4, $P3
Output: If positive, number of bytes.
Errors: —1,—8,—9.

$SVCP (Copy), $SSVRD (Read)

The value of the shared variable is transferred to the
auxiliary processor’s buffer. For Copy, the access state
is not changed and control of the variable is not
released. For Read, control is released and the access
state is changed to show that the auxiliary processor has
used the value.

Input: $P4, $PI1, $P2, $P3
Output: 0,—1,—7,—9

$SVWR (Write)

The value in the auxiliary processor’s buffer is
transferred to the SVP. The access state is changed to
show that the auxiliary processor has set the variable.
Control of the variable is released.

Input: $P4, $P1, $P2, $P3, $IFLOT = number of
bytes
Output: 0, —7, —9.

$SVRL (Release the Variable)

Control of the variable, if held by the auxiliary
processor, is released. The access state is not changed.

Input: $P4, $P3
Output: 0, —9

$SVWA (Wait)

Wait releases control and allows other auxiliary
processors and the APL processor to get control. The
wait state is left (that is, control is given back to this
processor) when: an offer is extended to this
processor; a shared variable is referenced, specified, or
retracted by the partner; the access-control vector is
changed by the partner.

Input: $P4
Output: None

SVP Macros Error Return Codes

0 Success
—1 Value error
=5 Already signed on
—6 Processor table full
-1 Invalid sequence
—8 Variable locked
-9 Variable not shared

—11 Not signed on

Format of Shared Data

APL data on the IBM Personal Computer has a special
internal format. Data passed from APL to the auxiliary
processor, and data passed back to APL, must be in
that same format. If you pass invalid data to APL,
unpredictable errors may occur. Each variable contains
information that describes its data type, shape, and size.

An APL variable is one of four types:

real (floating point)
integer

logical (boolean)
literal (character)

4-9

4-10

Regardless of a variable’s data type, its elements always
occupy some number of words. If the variable has more
than one dimension, its elements are stored in row order
(as if the APL primitive ravel had been applied to the
variable).

Elements of a real variable are represented in long
floating-point format, with eight bytes per element.

Elements of an integer variable are represented as
binary numbers, with two bytes (one word) per element.
Actual values must belong to the interval (—32767,
32767).

Elements of a logical variable are represented as logical
values (0 or 1), with one bit per element. The bytes of a
logical variable, and the bits within the byte, are in row
order. The word containing the last element can have
undefined elements on the right. For example, the
elements of a 19-element logical variable are stored in
four bytes (two words) in the sequence shown below.
Unused elements of the fourth byte are undefined.

01234567 01234567 012xxxxX

Elements of a character variable are represented in
APL internal code, with one byte per element in row
order. The word containing the last element can have
one undefined byte on the right.

When you receive numeric data from APL, you should
be prepared to accept the data in any representation and
to convert between different representations.

The rank of a variable defines its shape. A scalar has a
rank of O and is a variable with no dimension. It has
only one element and contains no size information.

A variable with rank greater than O includes size
information: as many dimensions as the value of its
rank. Each dimension must be a two-byte integer, the
value of which belongs to the interval (0, 32767). The
maximum rank of a variable is 63.

Internal Structure of APL Variables

The variable is supposed to have been copied in the
auxiliary processor’s buffer, which we will call SBUF.

$PTR EQU

$nB EQU

$NELM EQU

$TYPE EQU

$RANK EQU

$p1M EQU

WORD PTR $BUF

WORD PTR $BUF+2

WORD PTR $BUF+u

BYTE PTR $BUF+6

BYTE PTR $BUF+7

WORD PTR $BUF+8

; A pointer. Should
; be ignored by the
; auxiliary processor

; Total number of

; bytes in this

; APL object

; Note: The number of

; bytes of an APL object MUST
; ALWAYS be rounded up to

; EVEN.

; Total number of
; elements in this
; APL object

; APL object type
; O0=Logical, 1=Integer,
; 2=Real, 3=Character

; Rank of APL object
; (between O and 63)

; First dimension (if any).
; As many dimensions as
; value of SRANK follow.

; Immediately after dimensions,
; values themselves appear in

; row order, packed according

; to type of data object:

; Logical: one bit/element.

; Integer: one word/element.

; Real: eight bytes/element.

; Character: one byte/element.

4-11

Information About Shared Variables

The shared-variable control block is created and
accessed by the SVP. Its address is passed to the
auxiliary processors in variable $P3. Its contents are as
follows:
$4acB BQu worp PTR [$P3]1 ; Pointer to the symbol table
; element of this variable.
; Remaining bytes used only
; by the SVP.

APL contains additional information about a shared
variable in the APL Symbol Table. The address of this
information block is contained in the shared-variable
control block ($4CB). Its contents are as follows:

; First seven bytes used only by APL.

$onvc EQU BYTE PTR [$4cB+7] ; Number of characters in
; the name of the variable.
; (Maximum number is 12.)

First character in the
name of the variable.
Remaining characters are
consecutively stored.

$ONA EQU BYTE PTR [$ACB+8]

e e e we

Auxiliary Processor Example With
One Shared Variable

The auxiliary processor shown in this section illustrates
the use of macros and segment registers. It can establish
a single connection, using a shared variable.

DGROUP GROUP APxxx ; xxx should be replaced by
; AP identification number

Ivcerupe $Apmac.AsM ; APL data segment
NAME APXxxx

APxXx SEGMENT PUBLIC 'DGROUP'
ASSUME (S :DGROUP,DS:$5Q

; Assume seg registers

4-12

$pAPL
$4Pxxx PROC

; APL environment macro
FAR : All APs are considered
as FAR procedures

JMP $BEGIN ; Jump over data area
$SHV oW 0 ; Shared variable block
; address stored here
; Value of zero means
; “not shared”
$BUF DB 512 puP(?) ; The AP buffer
; Other aux processor data words should be included here
$PTR EQU WORD PTR $BUF ; APL data object
$NB EQU WORD PTR $BUF+2 ; Total number of bytes
$NELM EQU WORD PTR $BUF+4 ; Number of elements
$TYPE EQU $sur+6 ; Data object type
$RANK EQU $sur+7 ; Rank (0-63)
$SCALAR EQU $Bur+s ; Address of value if scalar
; (SRANK = 0)
$BEGIN: $SAVE ; APL SAVE macro
MOV $Pu, xxx ; Load AP identification
; into $P4
$svsn ; Sign on to SVP
EW: $svwA ; Wait for requests
; Set initial chronology for SCAN
MOV $rFLOT+2,0
; Set 8P3 equal to the shared variable block address
MoV Ax,cs:$5HV
MoV $P3,4X
cuMp AX,0 ; Is the variable shared?
JNE EO ; Jump if so
EWO: $svsc ; Scan for offers
MoV 4x,$1Fr07 ; SIFLOT has the offer
CMP AX,0 . or a zero if no offers
JE EW ; Wait again if no offers
MOV $P3,4x ; There was an offer.
; Save its block address in $P3
$5VsH ; Accept the offer
CMP $1rroT,2 3 Was it successful?
JNE EW ; Wait again if not
MoV AX,$P3 ; Otherwise save the block
MoV ¢s:$58V,4x ; address in $SHV
MOV $1Fr0T,15 ; Prepare to set access
; control vector
$svsa ; Set it
JMP El ; and go to read the value

4-13

; The variable was previously shared

EO: $sVsH ; Question share state
cMP $IFLOT, 2 ; Is it still shared?
JE F1 ; Go toread if so
EO1: $SVRT ; Retract the variable
MoV $SHV,0 ; Indicate variable is
; no longer shared
JMP EWO ; Go to scan for new offers
; Read the value of the variable
F1: $SVPR ; Pre-read
cMP $1FL0T,-9 ; Retract variable if
JE EO01 ; no longer shared
cMP $IFLOT,0 ; Positive return code
JG E3 ; means a value
JMP EW ; Wait if not so
; the variable has a value we can read
E3: PUSH cs ; $PI must point to segment
POP $P1 ; containing buffer
LEA AX ,$BUF ; and $P2 to buffer itself
Mov $p2,4x ; within the segment
CMP $1rror,s12 ; Is value larger than
; buffer?
JBE E2 ; Jump if not
$SVRL ; Buffer overflow: release
; variable
JMP ER ; and go to prepare an
; appropriate error code
E2: $SVRD ; Read value of variable

; into buffer

4-14

THE ACTUAL OPERATION OF AUXILIARY
PROCESSOR WILL BE INCLUDED HERE

$nB
$nB,-2

; Round up to even the
; number of bytes of the
; result

ER: MOV

Mov
MOV
MOV
MOV
JMP
$4Pxxx ENDP
AP xxx ENDS
END

AX,$NB
$IFLOT AX

EW
$nB,10

$NELM, 1
$TYPE,0
$RANK ,0

$SCALAR,128 |

EWRT

; Prepare to write return
; value or return code

; SIFLOT must contain

; total number of bytes

; in value passed back

; Pass value to APL

; Wait for a further event
; Error return code

; Number of bytes will be 10
; Number of elements is 1

; Type is logical

; Rank is O (scalar)

; Value is 1 (First bit)

; Go to write return code

Auxiliary Processor Example with
Two Shared Variables

Our second example is an auxiliary processor designed
to establish up to four connections of two shared
variables each. The first one is a control variable that is
used by APL to send commands to the AP, and by the
AP to return the corresponding return code. The second
variable of the pair is a data variable, used by both
processors to exchange data objects.

DGROUP GROUP APXxxx

INCLUDE $APMAC.ASM
NAME APXXX
APxxx SEGMENT PUBLIC 'DGROUP'

; xxx should be replaced
; by the AP id number
; APL data segment

4-15

ASSUME CS:DGROUP,DS:$5q ; Assume segment registers

$pAPL
$4Pxxx PROC

JMP
$crr DB
$IBUF EQU
$BUF DB

DB
$PTR EQU
$NB EQU
$NELM EQU
$TYPE EQU
$RANK EQU
$CR EQU
$ICB EQU

$LTCB EQU
$LDB EQU
$ILTDB EQU

FAR

$BEGIN

0

2058

$IBUF DUP(?)

?

WORD PTR $BUF
WORD PTR $BUF+2
WORD PTR $BUF+4
BYTE PTR $BUF+6
BYTE PTR $BUF+7
WORD PTR $BUF+8
62

u4%$LCB
in
u*$LDB

; APL environment macro
; All APs considered

; as FAR procedures
; Jump over data arca
; CTL-DAT toggle

; Length of buffer

: Buffer of AP

; One extra byte

; APL data object in buffer
; Total number of bytes

; Number of elements

; Type

: Rank

; Value of return code

; Size of block for each

; CTL variable

; There are 4 CTL variables
; Size of block for DAT vars
; There are 4 DAT vars

: Do not change order of following four instructions

$pAT DB
$DATE LABEL
$SHV DB
$SHVE LABEL
$SVPT EQU
$sTPT EQU
$ona EQU

$BEGIN: $SAVE
MOV
$sVSN
EW: $SVWA
LEA
MOV
E000: MOV
F01: CMP
JE
JMP

4-16:

$TDB DUP(0)
NEAR

$LTCB DUP(0)
NEAR

WORD PTR [BX]
WORD PTR [BX+2]
BYTE PTR [SI+8]

$Pu, xxx

BX ,$DAT
$cTL,0
$IFLOT+2,0
Cs:$SVPT,0
E02

E2

; DAT block area

: End of DAT block area

: CTL block area

End of CTL block area
First word of block
Second word of block
Name of variable in APL
symbol table

APL SAVE macro

Load AP number into $P4
Sign on to SVP

Wait for an event

Point to DAT blocks
Toggle to DAT vars

Start chronology

Is variable shared?

Jump to EO02 if not
Otherwise go to E2

Ge we Wwe e we W W we Ws W We we W We U

$svsc
MoV
CMP
JNE
TEST
JNZ
ADD
CMP
JNE
MoV
JMP
ADD
CMP
JNE
JMP

EQ02:

F03:

E030:

AX $SIFLOT

AX,0

E1

$crr 1

E030

BX,$LDB

BX ,OFFSET $DATE
E01

$crr,1

E000

BX,$LCB

BX ,OFFSET $SHVE
EO1

EW

; There was an offer

El: MoV
MOV
MOV
Mov
CMP
JE
CMP
JNE
TEST
JNZ
JMP
TEST
JZ
$5VSH
CMP
JNE
MoV
MoV
TEST
JZ
MOV
$5vs4
JMP

EQ1:

EQO:

$p3,4x
SI,AX
SI,[S1]
cS:$sTPT, 5T
$ONA , 61
EQ1
$ona,es
E02
$cTr,1
E02

SHORT EQO

$crr,1
E02

$1FLOT,2
E03

AX,$P3
CS:$SVPT ,AX
$crr .1

E03

$I1FLOT , 15

EQ3

-

-

- .

- .

Scan for offers
Is there an offer?

Jump if so
Go to E030 if this
is a CTL variable

Increment for DAT variables

End of DAT blocks?

Retry if not

Next we will try CTL vars
Jump back and retry
Increment for CTL vars
End of CTL blocks?
Retry if not

Wait for next event

Save offer in $P3

Get pointer to this var
in APL symbol table
and save it in block

Is first letter a “C”?
Jump to EQ1 if so

Is first letter a “D’*?
Reject variable if not
Reject it if CTL variable

Otherwise accept it
Reject it if DAT variable

Share variable

Try next block

if not success

Save $P3 in first

word of block

If DAT variable,

all done

CTL var must have access
vectorequaltol 1 1 1
All done for this block

4-17

; This variable had been shared before

E2: MOV AX,CS:$SVPT ; Load $P3
MOV $p3,4%
$svsH ; Question variable state
CMP $IFLOT,2 ; If still shared,
JE E20 ; goto E20

; The variable is no longer shared

E3: $SVRT ; Retract variable
MOV CS:$SVPT,0 ; Show it is not shared
JMP E02 ; Try new offers

; The variable is still shared

E20: TEST $CTL,1 ; All done if DAT variable
JNZ E204
E20B: JMP EO03
E204: $SVPR
; Get control of variable to read
cMP $IFLOT,-9 ; Retract if no longer
JE E3 ; shared
cuP $IFLOT,0 ; Number of bytes must
JLE E20B ; be positive
CALL EAUX ; Read value
JNC EQ2 ; Successful read?
JMP ER2 ; Else, error message
FQ2:

...

; Insert here the appropriate code for the AP

Ine $nB ; Round up to even the

AND $NB,-2 ; number of bytes of result
ER2: MOV AL,22 ; Error return code=22
EFN4: MOV DX,CS:$SVPT ; All return codes come here

MOV $P3,DX : Load $P3 for CTL variable

XOR AH AH : Return code is in AL

MoV $MB,10 ; A scalar integer

; occupies 10 bytes
MOV $TYPE,1 ; Set type as integer

4-18

CcMP AL ,1
JA EFN5
MoV $7YPE,0
ROR AL,1
EFNS: MOV $RANK ,0

MOV $wELM, 1
MOV $CR,AX

$svpw
MOV $1FLOT, 10
$SVWR
JMP EW
$4Pxxx ENDP

; IFAL = 0, 1, it is logical

; Therefore, type is logical
; Put byte in place

; (Remember byte reversal
; in two-byte words)

; Rank is O (scalar result)
; Number of elements is 1
; Put result in buffer

; Prepare to write

; Number of bytes is 10

; Write the return code

; and wait for next event

; This routine reads the value of a shared variable

EAUX PROC NEAR
PUSH cs
POP $p1
LEA AX ,$BUF
MoV $p2.,4x
CMP $1rFroT,$1BUF
JA EAU1
$SVRD
cLe
RET

EAU1: $SVRL
STC
RET

EAUX ENDP

APxxx ENDS
END

; $P1 must point to segment
; of buffer

; $P2 must point to $BUF
; within the segment

; Is buffer length sufficient?
; Jump if not

; Read value into the buffer
; Clear carry (success)

; and return to caller

; Release variable

; set carry (fail)

; and return to caller

4-19

APL Data Segment and Macros for
Aucxiliary Processors

The macros and data segments for auxiliary processors
are in the file, SAPLMAC.ASM.

IF1

$3SVSN MACRO
MoV $PPTR,0
CALL $svP
ENDM

$svsF MACRO
MOV $PPTR,1
CALL $svp
ENDM

$svsc MACRO
MOV $PPTR, 2
CALL $svp
ENDM

$svsH MACRO
MOV $PPTR,3
CALL $svp
ENDM

$SVRT MACRO
MoV $rPTR 4
CALL $svp
ENDM

$svs4 MACRO
MoV $PPTR,5
CALL $svp
ENDM

$sv64A MACRO
MOV $PPTR,6
CALL $svp
ENDM

$sver MACRO
Mov $PPTR, 7
CALL $svp
ENDM

$svew MACRO
MOV $PPTR, 8
CALL $svp
ENDM

$SVSZz MACRO
MOV $PPTR,9
CALL $svp
ENDM

$svrD MACRO
MOV $rPTR, 10
CALL $svp
ENDM

4-20

$svep MACRO

Mov $pPTR,11
CALL $svp
ENDM
$SVWR MACRO
MOV $PPTR,12
CALL $svp
ENDM
$SVRL MACRO
MoV $PPTR,13
CALL $svp
ENDM
$5vwA MACRO
MOV $PPTR, 14
CALL $svp
ENDM
$svsv MACRO
MOV $PPTR,15
CALL $svp
ENDM
$pAPL, MACRO
$r1 EQU WORD PTR[BP]
$r2 EQU WORD PTR[BP+2]
$pr3 EQU WORD PTR[BP+4]
$pu EQU WORD PTR[BP+6]
$ps EQU WORD PTR[BP+8]
$Ps EQU WORD PTR[BP+10]
$PPTR EQU WORD PTR[BP+8]
$PLKR EQU WORD PTR[BP+10]
ENDM
$54VE MACRO
PUSH AX
PUSH BX
PUSH BP
PUSH $Ps
PUSH $ps
PUSH $ry
PUSH $pr3
PUSH $po
PUSH $pr1
MOV BP,SP
ENDM
ENDIF
$5q SEGMENT ~ COMMON
$WBEG1 LABEL BYTE
$svp EQU DWORD PTR $WBEG1+371H ;SVP LINK
$APLOFF EQU $WBEG1+LACH sASCIIT TO APL T.TABLE
$apron EQU $WBEG1+5ACH s APLON KEYBOARD TABLE
$ASCIT EQU $WBEG1+6ACH sAPL TO ASCII T.TABLE
$rMR EQU WORD PTR $WBEG1+8ACH ;APLDFN START ADDRESS
$r EQU $PMR+52+TYPE $PMR s INTERPRETER WORK AREA
:D0 NOT USE IT.
$IFLOT EQU $I+56%TYPE $L sRETURN CODES WORD
$5¢ ENDS

4-21

Notes:

4-22

i ««mm\v&mm
Mﬁ%&zvﬁw gg@ / ﬁb@i}@ A

m@% e %&”m%‘%%@%%f -
o

i L
- .
- L
“m ﬁ%ﬁ@

o s,
m@e«m%@%%&ﬁ&
VB g

T

1
e
A @

o . e
o . L 4 , 65@@\3?‘,)&13};@!
- g}m e sgr””g“ - %ﬂ%ﬁ -
. L - e -
i @m@%}w xm

xw‘x@x&m&@a«m

- é@%@g

5
B
z)
S Kgﬁ@’i’«f

“%Mﬂﬁ i

;xmw@mmac

f@ e

% o R B

i i)

gm e x@m»%m@ s @gwgs Hanbes

I
A ?ﬁﬁiﬂﬁ)l@?%&ﬁ&{&i
b
e

@)&W@@E@W
-

.

o gpm@smﬁg o
S s S Slﬂ\vﬂv%ﬁw
f?’g . m e

o

5 iEg ey
g%wmg@% GiiinaE o s %@mﬁ% .
mﬁi@» ’@%ﬁmxm@ e e . e‘ e %%@g’@m@@

. e e g

... .

.- wm%é
i m\ééi@@ ;{{@ GG G B
i e 2 .
mm@%? i

: * g@zﬁfﬁm 2&&4 . Z é@*ﬁ& %%
- m&%ﬁm L . . - :
. @@mm &g@% o §§ @% L ‘
- o
fg (@& i

el
%

i
%‘ﬁx? -

Part 2. APL Reference Guide

Chapter 5. Using APL
Two Examples of the Use of APL
An Isolated Calculation
A Prepared Workspace
Characteristicsof APL

Chapter 6. Fundamentals
Character Setcoiiiiiiiiinnnnn.
Spaces ... e
Function,
Order of Execution
Data ...

AITaYS ot e

Constantsccvviiiinenenn..
Workspaces and Libraries
Namescciiiiiiiiiiiiiinnn..

Chapter 7. Primitive Functions
and Operators
Scalar Functions
Plus, Minus, Times, Divide,
andResidue
Conjugate, Negative, Signum, Reciprocal,
and Magnitude
Boolean and Relational Functions
Minimum and Maximum
Floor and Ceiling
ROLL (Random Number Function)
Power, Exponential, General and Natural
Logarithm
Circular, Hyperbolic, and Pythagorean
Functions

ii

Operatorsooiiviiii i 7-17

Reduction 7-17
Scan ... 7-19
AXIS oo 7-20
Inner Product 7-22
Outer Product 7-24
Mixed Functionscouiiinininnn. 7-26
Structural Functions 7-31
Selection Functions 7-39
Selector Generatorsccuuuiu.n. 7-44
Index Generator and Index Of 7-45
Membership 7-45
Grade Functions 7-46
Deal ... 7-50
Numeric Functions 7-50
Matrix Inverse and Matrix Divide 7-50
Decode and Encode 7-54
Data Transformations 7-56
Execute and Format 7-57
Picture Format 7-64

Chapter 8. System Functions and

System Variables 8-1
System Functions 8-3
Canonical Representation — LICR 8-5
Delay—-UCIDL ..., 8-6
Execute Alternate — LIEA 8-6
Expunge - LIEX 8-7
Function Extablishment — (OOFX 8-8
Name Classification — CINC 8-8
Name List—CINL 8-9
Peek/Poke - [IPK 8-10
Transfer Form-~OTF 8-11
System Variables 8-14
Latent Expression— LJLX 8-16
Atomic Vector—- JAV 8-17
Format Control - OFC 8-18
Horizontal Tabs — COHT 8-19

Chapter 9. Shared Variables 9-1

Offerst i e 9-5
AccessControlccoiienn... 9-7
Retractioncoeun... 9-12
Inquiriescciiiiiii i 9-13
Chapter 10. Function Definition 10-1
Canonical Representation and Function
Establishment 10-3
The Function Header 10-5
Ambi-Valent Functions 10-6
Local and Global Names 10-7
Branching and Statement Numbers 10-8
Labels, 10-9
Commentscoouivuvennnnnnnnns 10-10
Function Editing— The Vv Form 10-10
Adding a Statement 10-11
Inserting or Replacing a Statement 10-11
Replacing the Header 10-12
Deleting a Statement 10-12
Adding to a Statement or Header 10-12
Function Display 10-13
Leavingthe V. Form 10-15
Chapter 11. Function Execution 11-1
Halted Execution 11-4
State Indicator 11-5
State Indicator Damage 11-6
Trace Control, 11-7
StopControl i, 11-7
Locked Functions 11-8
Recursive Functions 11-9
Console Input and Output 11-10
EvaluatedInput 11-12
Character Input 11-13
Interrupting Execution During Input 11-13
Normal Qutput 11-13
BareOutput 11-14

iii

Chapter 12. System Commands 12-1

Active Workspace — Action Commands 12-7
Active Workspace — Inquiry Commands 12-10
Workspace Storage and Retrieval — Action
Commandscovuiinninnnnnn.. 12-12
Libraries of Saved Workspaces 12-12
Workspace Names 12-12
Workspace Storage and Retrieval — Inquiry
Commandscoiiiiiiiinnnnn.. 12-16
Sign-Off i 12-17
Appendix A. ALT Codes and
Associated Characters A-1
Appendix B. Printer Control Codes B-1

Appendix C. Internal Representation of
Displayed Characters C-1

Chapter 5. Using APL

Two Examples of the Use of APL
An Isolated Calculation
A Prepared Workspace
Characteristics of APL

.............

5-1

Notes:

5-2

APL takes one APL statement at a time, converts it to
machine instructions (the computer’s internal
language), executes it, then proceeds to the next line. In
contrast to program compilers that convert complete
programs to machine language before executing any
statements, APL allows you a high degree of interaction
with the computer. If something you enter is invalid,
you will get quick feedback on the problem before you
go any further.

Two Examples of the Use of APL

A statement entered at the keyboard may contain
numbers or symbols, such as + — X =+, or names
formed from letters of the alphabet. The numbers and
special symbols stand for the primitive objects and
functions of APL--primitive in the sense that their
meanings are permanently fixed, and therefore
understood by the APL system without further
definition. A name, however, has no significance until a
meaning has been assigned to it.

Names are used for two major categories of objects.
There are names for collections of data that is
composed of numbers or characters. Such a named
collection is called a variable. Names may also be used
for programs made up of sequences of APL statements.
Such programs are called defined functions. Once they
have been established, names of variables and defined
functions can be used in statements by themselves or in
conjunction with the primitive functions and objects.

5-3

An Isolated Calculation

If the work to be done can be adequately specified
simply by typing a statement made up of numbers and
symbols, names will not be required; entering the
expression to be evaluated causes the result to be
displayed. For example, suppose you want to compare
the rates of return on money at a fixed interest rate but
with different compounding intervals. For 1000 units at
6% compounded annually, quarterly, monthly, or daily
for 10 years, the entry and response for the transaction
(assuming a printing precision ([JPP) equal to 6) would
look like this:

[PP<«6
1000x(1+.06+1 4 12 365)%10x1 4 12 365
1790.85 1814.02 1819.4 1822.03

(The largest gain is apparently obtained in going from
annually to quarterly; after that the differences are
relatively insignificant.)

Several characteristic features of APL are illustrated in
this example: familiar symbols such as + X + are
used where possible; symbols are introduced where
necessary (as the * for the power function); and a group
of numbers can be worked on together.

A Prepared Workspace

5-4

Although many problems can be solved by typing the
appropriate numbers and symbols, the greatest benefits
of using APL occur when named functions and data are
used. Because a single name may refer to a large array
of data, using the name is far simpler than typing all of
its numbers. Similarly, a defined function, specified by
entering its name, may be composed of many individual
APL statements that would be burdensome to type
again and again.

Once a function has been defined, or data collected
under a name, it is usually desirable to retain the
significance of the names for some period of time —
perhaps for just a few minutes — but more often for much
longer, possible months or years. For this reason APL
systems are organized around the idea of a workspace,
which might be thought of as a notebook in which all
the data items needed during some piece of work are
recorded together. An APL workspace will thus contain
defined functions, data structures, and a state indicator.

Characteristics of APL

The remaining chapters of this part of the book describe
APL in detail, giving the meaning of each symbol and
discussing the various features of APL for the IBM
Personal Computer. These details should be considered
in light of the major characteristics of APL, which may
be summarized as follows:

® The primitive objects of the language are arrays
(lists, tables, lists of tables, etc.). For example, 4+ B
is meaningful for any conformable arrays A and B,
the size of an array(p4) is a primitive function, and
arrays may be indexed by arrays, asin A[3 1 4 27.

® The syntax is simple: there are only three
statement types (name assignment, branch, or
neither), there is no function precedence hierarchy,
functions have either one, two, or no arguments, and
primitive functions and defined functions (programs)
are treated alike.

® The semantic rules are few: the definitions of
primitive functions are independent of the
representations of data to which they apply, all
scalar functions are extended to other arrays in the
same way (that is, item-by-item), and primitive
functions have no hidden effects (so-called
side-effects).

5-5

5-6

The sequence control is simple: one statement
type embraces all types of branches (conditional,
unconditional, computed, etc.), and the completion
of the execution of any function always returns
control to the point of use.

External communications are established by means
of variables which are shared between APL and
other systems or subsystems (such as auxiliary
processors). These shared variables are treated
both syntactically and semantically like other
variables. A subclass of shared variables — system
variables — provides convenient communications
between APL programs and their environment.

The usefulness of the primitive functions is vastly
expanded by operators, which modify their behavior
in a systematic manner. For example, reduction
(denoted by /) modifies a function to apply over all
elements of a list, as in +/L for summation of the
items of . The remaining operators are scan
(running totals, running maxima, etc.), the axis
operator which, for example, allows reduction and
scan to be applied over a specified axis (rows or
columns) of a table, the outer product, which
produces tables of values as in RATE-.*YEARS
for an interest table, and the inner product, a simple
generalization of matrix product that is very useful
in data processing and other non-mathematical
applications.

The number of primitive functions is few enough
that each is represented by a single, easily-read and
easily-written symbol, yet the set of primitives
embraces operations from simple addition to grading
(sorting) and formatting. The complete set can be
classified as follows:

Arithmetic: + - x+xeo | LT ! B

Boolean and Relational: v A v a~ << =25 =

Selection and Structural: /\ 5L ;1440 .08

|

General: e 1?17V 4ev

Chapter 6. Fundamentals

Character Set,
SPACES it e e
Function
Order of Execution
Data ... e

AITaYS ..ottt e

Constantsccciiiininnennn..
Workspaces and Libraries
Names ... e e e

6-1

Notes:

6-2

A typical statement in APL is of the form:
AREA«3%xU4

The effect of the statement is to assign to the name
AREA the value of the expression 3x4 to the right of
the specification arrow <; the statement may be read
informally as “AREA is three times four.”

The statement is the normal unit of execution. Two
primitive types occur: the specification shown above,
and the branch, which serves to control the sequence in
which the statements in a defined function (see Chapter
10) are executed. There is also a third type of statement
that may specify the use of a defined function without
either a specification or a branch.

A variant of the specification statement produces a
display of a result. If the leftmost part of a statement is
not a name followed by a specification, the result of the
expression is displayed. For example:

3Ix4

12
PERIMETER<2x(3+4)
PERIMETER

14

The result of any part of a statement can be displayed
by including the characters [}« at the appropriate point
in the statement. Moreover, any number of specification
arrows may occur in a statement. For example:

X< 243+
12

X
14

Y
I

6-3

Entry of a statement that cannot be executed will cause
an error report, which indicates the nature of the error
and the point at which execution stopped. For example:

X<5
3+(¥xX)
VALUE FERROR
3+(YxX)
A

Following is a list of error messages, with information
about the cause and suggested corrective action.

DEFN Misuse of V or [Jsymbols:
1. Invalid function header.

2. Use of other than a name
alone in reopening a function.

3. Improper request for a line

edit or display.
DOMAIN Argument is not valid.
O--IMPLICIT The system variable [J (for

example, [170) has been set to
an inappropriate value, or has
been localized and not been
assigned a value.

INDEX Index value out of range.

INTERRUPT 1. The input line being typed is
ignored. Begin typing again.

2. The input/output operation
attempted was not completed.

6-4

LENGTH
RANK
SI DAMAGE

STACK FULL

SYMBOL TABLE
FULL

SYNTAX

3. Execution was suspended
within an APL statement.

TO RESUME
EXECUTION, ENTER A
BRANCH TO THE
STATEMENT
INTERRUPTED

Shapes not conformable.
Ranks not conformable.

The state indicator (an internal
list of suspended and pendent
functions) has been damaged in
editing a function or in carrying
out an)ERASE .

Too many nested functions
called. Definition of a very large
function with v, 0Fx , OTF or
)IN .

Too many names used. This
problem can be corrected by
executing the following
sequences of commands:

YouT,)CLEAR,)IN

or)OUT,)CLEAR,
)SYMBOLS,)IN

or)ERASE,)OUT,)CLEAR,
YIN

Invalid syntax; for example, two
variables adjoining; function
used without an appropriate
number of arguments;
unmatched parentheses.

6-5

6-6

SYSTEM

SYSTEM LIMIT

VALUE

WORKSPACE
FULL

Fault in internal operation of the
system.

COMPLETE READER’S
COMMENT FORM AT THE
BACK OF THE BOOK AND
SEND TO IBM.

An implementation limit has
been reached.

Use of name that does not have
a value, or an attempt to use a
numeric constant whose
magnitude is too large or too
small for internal representation.

ASSIGN A VALUE TO THE
VARIABLE, DEFINE THE
FUNCTION, OR CHANGE
THE VALUE OF THE
CONSTANT

Workspace is filled (perhaps by
temporary values produced in
evaluating a compound
expression, or by values or
shared variables).

CLEAR STATE
INDICATOR, ERASE
NEEDLESS OBJECTS, OR
REVISE CALCULATIONS
TO USE LESS SPACE.

Character Set

The characters that may occur in a statement fall into
four main classes: alphabetic, numeric, special, and
blank. The alphabetics comprise the roman alphabet
in uppercase italic font, the same alphabet in
lowercase, delta (4), and delta underline (4). The
complete set is shown in Figure 3 with suggested

names.
ABCDEFGHIJKLMNOPQRRSTUVWXY
abcdefghijklmnopgrstuvwxy
0123456789
" dieresis O alpha ¥ nor
T overbar i upstile A nand
< less L downstile ‘V del stile
< not greater . underbar A delta stile
= equal Vo del ¢ circle stile
> not less A delta ® circle slope
> greater ° null © circle bar
notequal ' quote ® log
v or 0 quad I I-beam
A" and (1eftparen ¥ del tilde
— bar) right paren % base null
= divide [leftbracket ¥ top null
+ plus 1 right bracket)\ slope bar
X times C leftshoe ,4 slash bar
D right shoe A cap null
. N cap M quote quad
C: ::;?lian U cup ! quote dot
p rho L1 base H domino
~ tilde T top | stile
4+ up arrow 3 semicolon * star
4 down arrow i colon 1 iota
- rightarrow > Zomma > slope
. ot slash
:; ::;Z"OW space A delta underbar

Figure 3. APL Character Set

N N3
> >

The names suggested are for the symbols themselves
and not necessarily for the functions they represent. For
example, the downstile (|) represents both the
minimum, a function of two arguments, and the floor (or
integer part), a function of one argument. In general,
most of the special characters (such as +, —, X, and +
are used to denote primitive functions that are assigned
fixed meanings, and the alphabetic characters are used
to form names that may be assigned and re-assigned
significance as variables, defined functions, and other
objects.

Spaces

The blank character is used primarily as a separator.
The spaces that one or more blank characters produce
are needed to separate names of adjacent defined
functions, constants, and variables. For example, if 7' is
a defined function, then the expression 3 # 4 must be
entered with the indicated spaces. The exact number of
spaces used in succession is not important, and extra
spaces may be used freely. Spaces are not required
between primitive functions and constants or variables,
or between a succession of primitive functions, but they
may be used if desired. For example, the expression 3+4
may be entered with no spaces.

Function

The word function derives from a word that means to
execute or perform. A function executes some action on
an array (or arrays), called its argument(s), to produce
an array as a result. The result may serve as an
argument to another function. For example:

3xly
12

2+(3x4)
14

(-6)+3
2

A function (such as the negation used on the previous
page) that takes one argument is said to be monadic,
and a function (such as times) that takes two arguments
is said to be dyadic. All APL functions are either
monadic or dyadic or, in the case of defined functions
only, niladic (taking no argument). The argument of a
monadic function always appears to the right of the
function. The arguments of a dyadic function appear on
each side of the function, and are called the left
argument and right argument. Certain of the special
symbols are used to denote two different functions, one
monadic and the other dyadic. For example, X-Y
denotes subtraction of Y from X (a dyadic function),
and -Y denotes negation of Y (a monadic function).

Each of the primitive functions is denoted by a single
character or by an operator applied to such a character
(see ““Primitive Functions and Operators’). For
example, + and x are primitive functions as are +/ and
x/ (since / denotes an operator).

Order of Execution

Parentheses are used in the usual way to control the
order of execution in a statement. Any expression
within matching parentheses is evaluated before
applying to the result, any function outside the matching
pair.

In conventional notation, the order of execution of an
unparenthesized sequence of monadic functions may be
stated as follows: the (right-hand) argument of any
function is the value of the entire expression to the right.
For example, LOG SIN ARCTAN X means the Log of
Sin Arctan X, which means Log of Sin of Arctan X. In
APL, the same rule applies to dyadic functions as well.
Moreover, all functions, both primitive and defined, are
treated alike; there is no heirarchy among functions,
such as multiplication being done before addition or
subtraction.

Data

Arrays

An equivalent statement of this rule is that an
unparenthesized expression is evaluated in order from
right to left. For example, the expression 3x8[3% |5-7
is equivalent to 3x(8[(3%(](5-7)))) . Their result
is 27. A consequence of the rule is that the only
concrete use of parentheses is to form the left argument
of a function. For example, (12+3)x2 is 8 and 12+3x2
is 2. However, redundant pairs of parentheses can be
used to help improve readability. Thus, the expressions
12+3x%2 and 12+(3x2) are evaluated identically, with
a result of 2.

Data used in APL is one of two types — numeric or
character.

Data is produced by: (1) explicit entry at the
keyboard, (2) execution of APL functions or operators,
and (3) use of shared variables and system variables.

Data is organized in ordered collections called arrays.
Arrays are characterized by their content (character or
numeric), their number of axes or dimensions (rank),
and the number of elements along each axis (shape).
All elements of an array must be of the same type —
character or numeric. Arrays range from scalars, which
are dimensionless, to multi-dimentional arrays or
arbitrary rank and shape. These arrays are referred to
by the following terms:

® A scalar is an array having no dimensions.
® A vector is an array having one dimension.

® A matrix (or table) is an array having two
dimensions.

Arrays having more than two dimensions can also be
created.

An empty array is an array with one or more of its
dimensions equal to 0. Such an array is either character
or numeric, but contains no elements.

A vector can be formed by listing its elements as
described in the discussion of constants. For example:

<2 3 5 7 11 13 17 19
A<'ABCDEFGH"

The elements of a vector may be selected by indexing.
For example:

VL3 1 5]
52 11

Al8 5 1 4]
HEAD

Arrays of more complex structure may be formed with
the reshape dyadic function denoted by ¢ .

M<2 LpV B<2 UpA
M B

2 3 5 7 ABCD

11 13 17 19 EFGH

These results have two dimensions or axes and are
called tables or matrices. A matrix has two axes and is
said to be of rank 2; a vector has one axis and is of
rank 1. The left argument 2 4 in the preceding
examples specifies the shape of the resulting array.
Arrays of random shape and rank may be produced by
the same scheme. For example:

7«2 3 Lp'ABCDEFGHIJKLMNOPQRSTUVWX!
T

ABCD

EFGH

IJKL

MNOP

QRST
UvwXx

6-11

6-12

The shape of an array can be determined by the
monadic function denoted by 0 .

oV pM T
8 2y 2 314

Elements may be selected from any array (other than a
scaler) by indexing in the manner shown for vectors,
except that indexes must be given for each axis:

M[2;3] TL2:1:4]
17 P
M2 132 3 4] T[2:1 2 331 2 3 4]
13 17 19 MNOP
3 5 7 QRST
UViWX

The indexing used in the preceding examples is called
1-origin, because the first element along each axis is
selected by the index 1. One may also use O-origin
indexing by setting the index origin to 0. The index
origin is a system variable denoted by [170 (see “System
Functions and System Variables’). Thus:

70«1 70«0

VL1 2 3] vVlo 1 2]
235 235

B[2;31° B[1;2]
G G

All remaining examples assume 1-origin unless
otherwise stated.

Constants

A constant is a scalar or vector, either character or
numeric, that appears explicitly in an APL statement.

All numbers entered or displayed are in decimal, either
in conventional form (including a decimal point if
appropriate) or in scaled form. The scaled form consists
of an integer or decimal fraction called the multiplier
followed immediately by the symbol E then an integer
(which must not include a decimal point) called the
scale. The scale specifies the power of 10 by which the
multiplier is to be multiplied. Thus 1.44E2 is equivalent
to 144.

Negative numbers are represented by an overbar
immediately preceding the number; for example, 71 .44
and ~144E 2 are equivalent negative numbers. The
overbar can be used only as part of a constant and is to
be distinguished from the bar that denotes negation, as
in-X.

A scalar numeric constant is a number entered by
itself. A vector numeric constant is entered by listing
the component numbers in order, separated by one or
more spaces.

A scalar character constant may be entered by placing
the character between quotation marks; a vector
character constant may be entered by listing no
characters, or two or more characters, between
quotation marks. The system displays such a vector as
the sequence of characters, with no enclosing quotes
and with no separation of the successive elements. The
quote character itself must be entered as a pair of
quotes. Thus, the abbreviation of cannot is entered as
'"CAN''T' and prints as CAN'T .

6-13

Workspaces and Libraries

The common organizational unit in an APL system is
the workspace. When in use, a workspace is said to be
active, and is located in main storage. Part of each
workspace is set aside to serve the internal workings of
the system, and the remainder is used, as required, to
store items of information and to hold transient
information generated during a computation.

The names of variables (data items) and defined
functions (programs) used in calculations always refer
to objects known by those names in the active
workspace; information about the progress of program
execution is maintained in the state indicator of the
active workspace, and control information affecting the
form of output is held within the active workspace.

Inactive workspaces are stored in /ibraries, where they
are identified by random names. They occupy space on
disk and cannot be worked with directly. When
required, copies of stored workspaces can be made
active, or selected information can be transferred from
them into an active workspace.

Workspaces and libraries are managed by system
commands, as described under “System Commands.”

Names

Names of workspaces, functions, and variables may be
formed from any sequence of alphabetic and numeric
characters that starts with an alphabetic and contains no
blank. Some additional restrictions on names exist for
APL on the IBM Personal Computer:

® The number of significant characters in the name of
an APL object is 12.

Workspace names are subject to IBM Personal
Computer DOS file-naming restrictions, with a
maximum length of 8 alphameric characters (see
your DOS book).

Lowercase letters, delta, and delta underlined are
not allowed as part of a workspace name.

The environment in which APL operations take place is
limited by the active workspace. Hence, the same name
may be used to designate different objects (that is,
functions or variables) in different workspaces, without
interference. Also, because workspaces themselves are
never the subject of APL operations, but only of system
commands, a workspace can have the same name as an
object it holds.

Implementation Limits

The APL interpreter for the IBM Personal Computer
has the following implementation limits:

The maximum value of any dimension of an APL
object is 32767.

The maximum number of elements in a variable is
327617.

The maximum size of an APL object is 32767
bytes.

The maximum number of lines in a function is
1000.

The maximum size of the symbol table is 8K bytes.

The maximum size of the stack is 8K bytes.

6-15

An APL workspace consists of two parts:

® The main workspace. It occupies a maximum of
64K bytes. It is in this part where all APL
statements are executed, and where all APL objects
are created and modified.

® The elastic workspace. It occupies all memory that
is still available. Its size has no limit other than the
physical size of the memory. All APL objects not
part of an execution are moved to the elastic
workspace if the space they occupy in the main
workspace is needed for other purposes.

6-16

Chapter 7. Primitive Functions and

Operators

Scalar Functions,
Plus, Minus, Times, Divide, and
Residue
Conjugate, Negative, Signum, Reciprocal,
and Magnitude
Boolean and Relational Functions
Minimum and Maximum
Floorand Ceiling
ROLL (Random Number Function)
Power, Exponential, General and Natural
Logarithm
Circular, Hyperbolic, and Pythagorean
Functions
Factorial and Binomial Functions
Operatorsc.viiiiii e
Reduction
Scan ...
AXIS
Inner Product
Outer Product
Mixed Functionscccoviu...
Structural Functions
Selection Functions
Selector Generators c..iuiininn..
Index Generator and Index Of
Membership
Grade Functions
Deal
Numeric Functions
Matrix Inverse and Matrix Divide
Decode and Encode
Data Transformations
Execute and Format
Picture Format

7-1

Notes:

7-2

The primitive functions fall into two classes — scalar and
mixed. Scalar functions are defined in scalar arguments
and are extended to other arrays item-by-item. Mixed
functions are defined in arrays of various ranks and may
give results that differ from the arguments in both rank
and shape. Five primitive operators apply to scalar
dyadic functions and to certain mixed functions to
produce many new functions.

The definitions of certain functions depend on system
variables whose names begin with the symbol [I (as in
070 and 0JCT). These system variables are discussed in
more detail in “System Functions and System
Variables.”

Scalar Functions

A monadic scalar function extends to each item of an
array argument; the result is an array of the same shape
as the argument, and each item of the result is obtained
as the monadic function applied to the corresponding
item of the argument.

A dyadic scalar function extends similarly to a pair of
arguments of the same shape. To be conformable, the
arguments must agree in shape, or at least one of them
must be a scalar or a one-element array. If one of the
arguments has only one item, that item is applied in
determining each element of the result. If both
arguments have one item but different ranks, the result
has the higher rank. For example:

1 2 3x4 56
L 10 18

3+4 5 6
7 89

2 344 5 6
LENGTH ERROR

2 3+4 5 6

A

7-3

Each of the scalar functions is defined on all real
numbers with two general exceptions: the five boolean
functions are defined only on the numbers 0 and 1, and
the functions = and # are defined on characters as well
as numbers. Specific exceptions (such as 4 + 0) will be
noted where appropriate.

The scalar functions are summarized in Figure 4 with
their symbols and brief definitions or examples, which
should clarify their use. The remainder of this chapter is
devoted to more detailed definitions.

Monadic form f B Dyadic form 4 f B

Definition or Example Name Name Definition or Example
+B is B Conjugate + |Plus 2+3.2 is 5.2
-B is 0-B Negative ~ [Minus 2-3.2 is 1.2
xB is (B>0)+B<0 Signum x | Times 2%x3.2 is 6.4
#B is 1B Reciprocal + | Divide 2¢3.2 is 0.625
3.14 s 3.14 Magnitud | | Residue 4 |B is B-Ax|B:A+A=0
B B} [B Floor L [Minimum 3L7 is 3
3.141 31 4 Ceiling [| Maximum 3[7 is 7
EETIEE
?B is Random choice from 1B Roll 7 |Deal A Mixed Function (see Figure 8)
*B is (2.71828..)*B Exponential * |Power 2%3 is 8
®%B is B is *®B Natural logarithm | @ |General logarithm |A®B is Lag Bbase 4

OB is Bx3.14159... Pi times O [Circular, Hyperbolic) Pythagorean (see table at left)
10 is 1 Factorial ! |Binomial AtB is (1B)+(!4)x'B-A
!B is Bx!B-1 215 is 10 3!5is 10
or !B is Gamma (B+1)
~1is 0 ~0 s 1 Not ~
A |And 4 |B|AABAVBlA~B|AvMB
0fo} o 0 1 1
(-A)0B Al 40B vior
~ |Nand 011 O 1 1 0
(1-B*2)%.5 0| (1-Bx2)%.5
- v » |Nor 1101 0 1 1 0
Arcsin B 1| Sine B il 1|1 o1l o
Arcos B 2 | Cosine B
Arctan B 3 | Tangent B
(T1+B*2)*.5 | U4 | (14B*2)*.5 <|Less Relations
Arsinh B 5 | Sinh B < |Not greater Resultis 1 if the relation holds,
Arcosh B 6 | Cosh B = |Equal 0 ifit does not:
Artanh B 7 | Tanh B > | Not less 37 is 1
. . > | Greater 7€3 is 0
)
Table of Dyadic O Functions 2 [Not Equal

A®B is (®B):®4

Figure 4. Primitive Scalar Functions

7-4

A dyadic function ¥ may possess a left identity element
L,suchthat L F X equals X for any X, or a right
identity element R ,such that X F R equals X. For
example, one is a right identity element of < , since

X % 11is X; zerois a left or right identity of + ; one is a
left or right identity of x , and the general logarithm
function ® has no identity element.

Identity elements become important as the appropriate
result of applying a function over an empty vector; for
example, the sum over an empty vector is O (the identity
element of +), and the product over an empty vector is 1
(the identity element of x). These matters are discussed
further in the treatment of the reduction operator, which
concerns such applications of dyadic functions over
vectors.

Figure 5 lists the identity elements of the dyadic scalar
functions. The relational functions <, <, =, =, >, and
have no true identity elements, except when
considered as boolean functions; that is, when restricted
to the domains 0 and 1. These identity elements are
included in the figure.

7-5

Dyadic Identity Left-
Function Element Right
Plus + 0 L R
Minus - [¢] R
Times X 1 L R
Divide < 1 R
Residue | 0 L
Minimum L (Note 1) L R
Maximum [(Note 2) L R
Power * 1 R
Logarithm ® None
Circle (o] None
Binomial ! 1 L

And A 1 L R
Or \ 0 L R
Nand a3 None
Nor L4 None
Less < 0 L

Not greater < 1 Apply for L

Equal = 1 boolean L R
Not less > 1 arguments R
Greater > 0 only R
Not equal F 4 0 L R
Notes:

1. The largest representable number.

2. The greatest in magnitude of representable negative numbers.

Figure 5. Identity Elements of Primitive Scalar Dyadic Functions

7-6

Plus, Minus, Times, Divide, and Residue

The definitions of the first four of these functions agree
with the familiar definitions, except that the
indeterminate case 0 * 0 is defined to give the value 1.
For X#z0 , the expression X:0 causes a domain error.

If A and B are positive integers, the result of the residue
function A|B is the remainder when dividing A into B.
The following definition covers all values of A and B.

1. If A = 0,then A|B equals B.
2. If A#0,then A|B lies between 4 and 0 (being
permitted to equal 0 but not 4), and is equal to

B-NxA for some integer I .

For example:

1]2.385 3] 73 "2 10123
0.385 0 2710 2710

0]5.8 3]™3 72710123
5.8 0120120

Conjugate, Negative, Signum, Reciprocal, and
Magnitude
The conjugate function +X yields its argument
unchanged, the negative function -X yields the argument

reversed in sign, and the reciprocal function X is
equivalent to 1+X . For example, if X<4 5 | then:

+X -X X
4 5 L5 0.25 0.2

1-7

The result of the signum function xX depends on the
sign of its argument (" 1if X<0, 0 if X=0, and 1 if X>0).
The magnitude function | X (also called absolute value)
yields the greater of X and —X; in terms of the signum
function, it is equivalent to XxxX . For example:

_ x"3 0 U |3 0 u
101 304

Boolean and Relational Functions

7-8

The boolean functions AND, OR, NAND (not-AND),
and NOR (not-OR) apply only to boolean arguments;
that is, O and 1. If O is interpreted as false, and 1 is true,
then the definitions of these functions are evident from
their names. For example, AAB (read as 4 and B) equals
1 (is true) only if A equals 1 (is true) and B equals 1.
All cases are covered by the following examples:

A<Q0 0 1 1

B<«O 1 0 1

AANB AVB ANB A~B
0001 0111 1110 1000

The monadic function NOT yields the logical
complement of its argument; that is ~0is 1, and~1 is 0.

The relational functions apply to any numbers, but yield
only boolean results; that is O or 1. The result is 1 if the
indicated relation holds, and O otherwise. For example:

3 5<5 3 357=#753

The comparisons in determining the results of the
relational functions are not absolute, but are made to a
certain tolerance specified by the comparison tolerance
JcT. Two scalar quantities A and B are considered to be
equal if the magnitude of their difference does not
exceed the value of [ICT multiplied by the larger of the
magnitudes of A and B; that is, if (| A-B)is less than or
equal to OCT=(|A)[|B Similarly, 4>B is considered
to be true of (A-B) is greater than or equal to

-0C¢T<(1A (|B), and A>B is considered true if 4>B is
true and 4=B is not.

The comparison tolerance [ICT is typically set to the
value 1Z™ 13.The setting [JCT<0 is also useful, because it
yields absolute comparisons, but may lead to
unexpected results because of the finite precision of the
representation of numbers. For example, if the
maximum precision is 15 decimal digits, and all digits
are displayed in printing, then:

OPP<15
0cT<0
X<0.666666666666667
X
0.666666666666667
Y<3xX
y-2
2.22044604925031E 15
2=Y
0
OCT«1E 13
2=y

When applied to boolean arguments only, the relations
are, in effect, boolean functions, and denote functions
that may be familiar from the study of logic, although
referred to by different names and symbols. For
example, XY is the exclusive~OR of X and Y, and X<Y
is material implication. This association should be
clear from the following table, which lists in the first two
columns, the four possible sets of values of two boolean
arguments, and in the remaining columns the values of
the 16 boolean functions, with the symbols of the
boolean and relational functions of APL appended to
appropriate columns.

A B AfB

00 060000000121 11111

01 6000011121 000012111

10 0012001120011 0011

11 0101020101201 0101
A > < ZV ¥ = = < K

The 10 functions listed at the bottom of this table
embrace all non-trivial boolean functions of two
arguments. Consequently, any boolean expression of
two arguments X and Y can be replaced by a simple
APL expression as follows: evaluate the expression
for the four possible cases, find the corresponding
column in the table, then use the function symbol at the
bottom of the column, or, if none occurs, use X or Y or
~X or ~Y or O or 1, as appropriate.

Minimum and Maximum

7-10

The dyadic functions, minimum and maximum,
denoted by L and [, perform as expected from their
names. For example:

X< 3727
¥«3 210
Xry
3210123
XLY
37271071 7273

1

0 3
1 2 3

Floor and Ceiling

The monadic function floor, denoted by L, yields the
integer part of its argument; that is, | X yields the largest
integer that does not exceed X. Similarly, the ceiling
function denoted by [X, yields the smallest integer that
is not less than X. For example:

X<"3.14 2.718

LX rx
42 733

-r-x -L-x

b 2 3 3

The ceiling and floor functions are affected by the
comparison tolerance [JCT as follows: if there is an
integer I for which | X-I does not exceed the value of
UCTx1[| I, then both LX and [Xequal I. For example, if
results are represented and printed to 15 decimal digits,

then:
X+3%0.666666666666667
OCT<1E 13 0CT«0
LX LX

2 2
rx X

2 3

ROLL (Random Number Function)

The roll function is a monadic function named by
similarity with the roll of a die; thus 76 yields a
(pseudo-) random choice from 16 that is the first six
integers beginning with either O or 1 according to the
value of the index origin (170, For example:

Oro<«1

76 76 76
1 5 3

7’6 66666666¢©6E6E©6¢©6
4 215563451145

{r0<«0

7’76 6 66666666666
0202435530324

7-11

The domain of the roll function is limited to positive
integers.

The roll function uses an algorithm by D. H. Lehmer.
The result for each scalar argument X is a function of X
and of the random link variablelJRL. The result of the
roll function is system-dependent, but typically for
X<2%31 is equal to (170 plus the integer part of
XxORL+™ 142%31.

Power, Exponential, General and Natural
Logarithm

7-12

For non-negative integer right arguments, the power
function X+ is simply defined as the product over N
repetitions of X. It is generalized to non-positive and
non-integer arguments to preserve the relation that
X*A+B shall equal (X*4)x‘XxB). Familiar consequences
of this extension are that X~/ is the reciprocal of X*N ,
and X*:N is the Nth root of X. For example:

23 "2 10123
0.125 0.25 0.5 1 2 4 8
Ux:l 2 3 L4 56

B4 8 4 2.828427125 2.29739671 2

The indeterminate case 0=0 is defined to have the
value 1.

The domain of the power function XY is restricted in
two ways: if X=0, then Y must be non-negative; if
X<0, then Y must be an integer or a (close
approximation to a) rational number with an odd
denominator. For example, 8x.5 yields a domain
error, but“ 8*1+3and ~8%2:3 yield 2and 4,
respectively.

The expornential function *X is equivalent to the
expression E*X , where E is the base of the natural
logarithms (approximately 2.71828). For example:

* 2 10

0.1353352832 0.3678794412 1
*1 2

2.718281828 7.383056099

The natural logarithm function X is the inverse of the
exponential; that is, *®X and &*X both equal X. For
example:

®1 2 3 4

0 0.6931471806 1.098612289 1.386294361
*®1 2 3 4

12 34
®x1 2 3 4

1234

The domain of the natural logarithm function is limited
to positive numbers.

The general logarithm function B®X is defined as
(®X)=:®B . It is inverse to the power function in the
following sense: BxB@X and B®B*X both equal X.
Limitations on the domain follow directly from the
defining expression.

Circular, Hyperbolic, and Pythagorean
Functions

The symbol © denotes a monadic function whose result
equals pi times its argument. For example:

ol 2 .5
3.141592654 6.283185307 1.570796327

7-13

The symbol © is also used dyadically to denote a family
of 15 related functions as follows: the expression 70X
is defined for integer values of 7 from ~7to 7, and is in
each case equivalent to one of the circular, hyperbolic,
or pythagorean functions, as indicated in Figure 4.

The circular functions, sin, cos, and tan(10X, 20X , and
30X), require an argument in radians. For example:

PI<01
10PT+2 3 U
1 0.8660254038 0.7071067812

The hyperbolic functions, SINH and COSH (50X and
60X), are the odd and even components of the
exponential function; that is, 50X is odd, 60X is even,
and the sum (50X) +(60X)is equivalent to*X.
Consequently:

50X equals .5x(xX)-(*-X)
6oX equals .5x(*X)+(*x-X)

The definition of the hyperbolic tangent function,
TANH (70X), is similar to that of the tangent; that is
70X equals (50X)+60X .

The pythagorean functions 00X, 40X , and ~ 40X are
defined as shown in Figure 4, and are related to the
properties of a right triangle as indicated in Figure 6.
They may also be defined as follows:

“hoX equals 50 60X
00X equals 20 10X or 10 20X
4oX equals 60 50X

AC=1
AB=00BC
BC=00AB
AE=40DE
DE="40AE

Figure 6. The Pythagorean Functions

Each of the family of functions, 70X, has an inverse in
the family; that is, (-I)0X is the inverse of 70X . Certain
of the functions are not monotonic, and their inverses
are therefore many-valued. The principal values are
chosen in the following intervals:

Arcosh R« 60X
R« 4oX

Arctan R« 30X
Arccos R« 20X
Arcsin R« 10X

R<00X
R<lhoX

R=0
R=0

(|R)<00.5
(R=0)A(R<01)
(|R)<00.5

k=0
R>0

7-15

Factorial and Binomial Functions

7-16

The factorial function, !V, is defined, for positive
integer arguments, as the product of all positive integers
up to V. An important consequence of this definition is
that ! & equals ¥x!N-1, or equivalently, ! -1 equals
(1N)+N . This relation is used to extend the function to
all arguments except negative integers. For example:

N<1 2345
N
126 24 120
(1NN
1126 24
101234
1126 24
F<.5 1 1.5 2 2.5
'y
0.8862269255 1 1.329340388 2 3.32335097
(1'F)sF
1.772453851 1 0.8862269255 1 1.329340388
.50 .51 1.5
1.772453851 1 0.8862269255 1 1.329340388

This extension leads to the expression (!0)<0or 1+0for
171, and "1 is therefore excluded from the domain of
the factorial function, as are all negative integers.

The binomial function, !/, is defined, for non-negative
integer arguments, as the number of distinct ways in
which ¥ things can be chosen from # things. The
expression (!N)+(!M)x(1N-}4) yields an equivalent
definition that is used to extend the definition to all
numbers. Although the domain of factorial excludes
negative integers, the domain of the binomial does not,
because any implied division by 0 in the numerator !V
is usually accompanied by a corresponding division by
0 in the denominator; the function, therefore, extends
smoothly to all numbers, except where I is a negative
integer and M is not an integer.

The result of 7! is equivalent to coefficient 7 in the
binomial expansion (X+1)*N. For example:

012 3!3
1331

Operators

An operator may be applied to a function to get a
different function. For example, the outer product
operator, denoted by the symbols . may be applied to
any of the primitive scalar dyadic functions to derive a
corresponding “table function,” as shown in the
following for times and power:

A<1 2 3 4

Ao XA Ao %A
1 2 3 b 1 1 1 1
2 4 6 8 2 4 8 16
3 6 9 12 3 9 27 81
4 8 12 16 L 16 64 256

Four of the APL operators — reduction, scan, inner
product, and outer product — may apply to any
primitive scalar dyadic function. The axis operator
applies to functions derived from reduction and scan,
and also to certain of the mixed functions.

Reduction

Reduction is denoted by the symbol / and applies to the
function that precedes it. For example, if /<1 2 3 4 5,
then +/7 yields the sum of the items of 7, and x/V yields
their product:

+/V x/V
15 120

7-17

7-18

In general, an expression of the form f/V is equivalent
to the expression obtained by placing the function
symbol between adjacent pairs of items of the vector
V:

r/v ira2rafufs
5 5

-/v 1-2-3-4-5
3 3

The last example emphasizes that the general rule for
the order of execution from right to left is applied, and
that as a consequence, the expression -/V yields the
alternating sum of the items of V. The alternating sum is
the sum obtained after first weighting the items by
multiplying alternate elements by 1 and ~ 1. Thus:

4«1 T1 1 "1 1

VxA
1723745

+/ Vx4
3

_/V
3

Similarly, + /V yields the alternating product:

V%A
10.530.255

x/ Vx4
1.875

/v
1.875

The result of applying reduction to any scalar or vector
is a scalar; the value for a scalar or one-element vector
argument is the single item itself. (The application of
reduction to other arrays is treated in the discussion of
the axis operator.)

Scan

Reduction of an empty vector by any function is
defined as the identity element of the function, if one
exists, and as a domain error if one does not. Thus if V
is an empty vector, +/V equals 0, and A/V equals 1.

The reason for this definition is the extension to empty
vectors of an important relation between the reductions
of two vectors, P and &, and the reduction of the vector
V<P ,¢ which is obtained by chaining them together.
For example:

+/V equals (+/P)+(+/Q)
x/V equals (x/P)x(x/Q)

If Pis an empty vector, then +/P must equal O (the
identity element of +), and x/P must equal 1.

The scan operator is denoted by the symbol \ and
applies to the function that precedes it. When the
resulting function is applied to a vector I/, it yields a
vector of the same shape, the Kth element of which is
equal to the corresponding reduction over the first K
elements of V. For example:

+\1 2 3 4 5
1 3 6 10 15

x\1 2345
1 2 6 24 120

vi0 0 1 0 1
00111

M1 1010
11000

<\O 01 0110
00210000

The extension of scan to arrays other than vectors is
treated in the discussion of the axis operator.

7-19

7-20

A matrix can be viewed as a collection of either
columns or rows, and an array of higher rank can be
viewed as a collection of planes or hyperplanes. For
example, a three-dimensional array of shape 2 3 4 is
normally represented as two planes of 3-by-4 matrices,
but it can also be viewed as three planes of 2-by-4
matrices, or as four planes by 2-by-3 matrices. For any
chosen representation, the resulting (hyper)planes are
orthogonal to the chosen axis, and are said to lie along
that axis. Thus, in the preceding example, the 3-by-4
matrices lie along the first axis.

In previous sections, the reduction, and scan operators
were defined for a vector. This definition is extended to
arrays of higher rank by applying the function argument
of the operator between successive (hyper)planes. As
the preceding example shows, a multi-dimensional array
can be viewed as a collection of arrays of lesser rank
which lie along any chosen axis. The axis operator is
used to select the chosen axis, and determines the
direction of application of the scan or reduction
operators.

The axis operator is denoted by brackets immediately
following a scan or reduction operator. The brackets
enclose an expression yielding the index of the desired
axis as a scalar or one-element vector. If a scan or
reduction operator is applied to any array without the
axis operator, the direction of application will be along
the last axis. For example:

(k<3 4p112
1 2 3 L
5 6 7 8
9 10 11 12
+\[11M +/011M
1 2 3 L 15 18 21 24
6 8 10 12
15 18 21 24
+\[21M +/[21M
1 3 6 10 10 26 42
5 11 18 26
9 19 30 42
+\M +/M
1 3 6 10 10 26 42
5 11 18 26
9 19 30 42

The result of the scan operation has the same shape as
the argument. The result of a reduction operation has a
shape similar to the shape of the argument, but with the
indicated axis of reduction removed. Indexing of axes is
dependent on the current value of the index origin, (0.
With (70«1, the leftmost or first axis has an index value
of 1. The symbols # and X also denote reduction and
scan operations, which are equivalent to the standard
reduction and scan operators when used with the axis
operator. When used without an axis operator however,
these symbols cause the reduction or scan operation to
be applied along the FIRST axis.

The axis operator is also used to specify the axis of
application of the mixed functions, reverse, rotate,
catenate, compress, and expand. The axis operator
cannot be used with the inner product or outer product
operators.

7-21

Inner Product

7-22

If Pand Q are vectors of the same shape, the expression
+/Px@Qhas a variety of useful interpretations. For
example, if Pis a list of prices and @ a list of
corresponding order quantities, then +/Pxq is the total
cost. Expressions of the same form using functions
other than + and x are equally useful, as suggested by
the following examples (where B is used to denote a
boolean vector):

A/P=qQ Comparison of Pand @
+/P=¢ Count of agreements between P and @

L/P+@ Minimum distance for shipment to a particular
destination, where P represents the distances
from source to possible intermediate shipping
points, and @ the distances from these points to
the destination.

+/PxB Sum over a subset of P specified by B
x/P*B Product over a subset of P specified by B

The inner product operator produces functions
equivalent to expressions of this form; it is denoted by a
dot and applies to the two functions that surround it.
Thus P+.x@ is equivalent to +/Pxq, and Px . *B is
equivalent to x/P*Band, in general,Pf . gq is equivalent
to f/Pgq , if P and @ are vectors.

The inner product is extended to arrays other than
vectors along certain fixed axes, namely the last axis of
the first argument and the first axis of the last argument.
The lengths of these axes must agree. The shape of the
result is obtained by deleting these axes and chaining
the remaining shape vectors. The consequences for
matrix arguments are shown in Figure 7.

Rf.qC
G

A Af.gB
e
eA B

5 T 7 UK
| N7
|
{C: Tk
b pAf.gB
||
1

Figure 7. Inner Product

The consequences for the shape of inner products on
some other arrays are shown in the following example.

pA pB oC pD ok pF oG pH

35 5 2 7 7 9 9 8 8 b6 7 7

| - T R |-

| . |

3 2 7 7 6 scalar
oAf.gB pCcf.gD pEf.gF oGf.gH

Formally, pAf.gB equals ("14pA),14pB.

7-23

The inner product M+.xV is commonly called the matrix
product. Examples of it also are shown in the following.

P<2 35 7
Me(1l4)o . <14

M MA .=M
1111 0001
0111 0000
0011 0000
0001 0000

M+ . xM M- . xM
1234 1 0 1 0
0123 071 071
0012 0 0 1 0
0001 0 0 01

M+ .xP Px . xM
17 15 12 7 2 6 30 210

P+.xM MA.=0 0 1 1
2 510 17 0010

Either argument of an inner product may be a scalar or
a one-element vector; it is extended in the usual way.
For example, 4+.x1 is equivalent to +/4 , and 1+.x41is
equivalent to +#£4.

Outer Product

The outer product operator, denoted by the symbols o .
preceding the function symbol, applies to any dyadic
primitive scalar function, so that the function is
evaluated for each member of the left argument paired
with each member of the right argument. For example,
if A<~1 2 3 and B«1 2 3 u 5 ,then:

Ao . xB Ao ,<B
1 2 3 4 5 01111
2 4 6 8 10 00111
3 6 9 12 15 00011

7-24

Such tables may be better understood if they are labeled
in a way that is widely used in elementary arithmetic
texts: values of the arguments are placed beside and
above the table, and the function whose outer product is
being computed is shown at the corner. Thus:

B
x | 1 2 3 4 5
|
1 | 1 2 3 4 5
4 2 | 2 4 6 810
3 | 3 6 912 15
B
< | 12 2 3 4 5
|
1 | o 1 1 1 1
A 2 | o o0 1 1 1
3] o 0o 0 1 1

In the preceding example, the shape of the result 4o, xB
is clearly equal to (p4),(pB). This expression yields
the shape for any arguments 4 and B . Thus, if

R<Ao .+B, and A is a matrix of shape 3 4, and B is a
three-dimensional array of shape 5 6 7,then Risa
five-dimensional array of shape 3 4 5 6 7. Moreover,
R{I;J;K;L;M]equals ALT ;J J+BLK;L;M] for all
possible scalar values of the indexes.

7-25

Mixed Functions

Name

The mixed functions are grouped in five classes
according to whether they concern the structure of
arrays, selection from arrays, generation of selector
information for use by selection functions, numeric
calculations, or transformations of data, such as that
between characters and numbers. All are listed in
Figure 8, with brief definitions or examples.

Those functions that may be changed by an axis
operator may also be used without an axis operator, in
which case the axis is the last or, for the functions
denoted by ©, X, and #, the first axis.

Figure 8 summarizes the restrictions on the ranks of
arguments that may be used with each mixed function.

Sign (1) Definition or Example (2)

Functions Concerning the Structure of Arrays

Shape

Reshape

Ravel

Reverse
(3)

Rotate
(3)

pA pPis U
pEis 3 4
p5is 10
VoA Reshape A to dimension V
3 Lp112is E
12pF is 112
OpE is 10
LA LA is (x/pA)pd
JEis 112
p,5is 1
dA DCBA
&X is HGFE
LKJT
IJKL
dL11X iseXis EFGH
ABCD
dPis 7 5 3 2
AdA 3pPis 7 2 3 5is 1P
BCDA
1 0 "1dXis EFGH
LIJK

Figure 8 (Part 1 of 4). Primitive Mixed Functions
See notes on page 7—29.

7-26

Name Sign (1) Definition or Example (2)

Functions Concerning the Function of Arrays (cont)

Catenate, A, A P,12is 2 3571 2
Laminate v7Y U YHISY is YTHIS!
P,[.5]Pis2 357
2357
Transpose VQA Coordinate I of A becomes coordinate
(4) VLI of result
AET
2 18X is BFJ
CGK
DHL
1 1®Fis 1 6 11
A Reverse order of coordinates
QFis 2 1QEF
Functions Concerning Selection from Arrays
Take V4 2 34Xis ABC T24Pis5 7
EFG

Take ordrop |V I] first (V[I1=0)
orlast (V[I1<0) elementsof
coordinate [

Drop VA 2 3yXis L T24Pis 2 3
Compress V/A 1010/Pis 2 5
(3) 101 0/Eis 1 3
5 7
9 11
10 1/{1JFis 1 2 3 Wisl1 0 1/F
9 10 11 12
Expand NA 10 1\12is1 0 2
(3) A BCD
1011 1\Xis E FGH
I JKL
Indexing VLA] P[2]is 3
(4, 5) P[4 32 1]i87 532
M[AA] E[1 3;3 2111 3 2 1
11 10 9

AlAs.. E{1;] i1 2 3 4

Yo E[;1] 1 59
ABCD

YABCDEFGHIJKL'[E]is EFGH
IJKL

Figure 8 (Part 2 of 4). Primitive Mixed Functions
See notes on page 7—29.

1-27

Name Sign (1) Definition or Example (2)

Functions That Generate Selector Information

Index 15 FirstS integers
Generator 1his1 2 3 4
(4) 10 is an empty vector
Index of V14 Least index of A in V,or 1+p T/
(4) P13is 2
5125
PiEis 3 5 4 5
5555
b4y is 1
Membership 4eA4 pWGY is pW
Peihis1 1 00
0110
FeP is 1010
0000
Gradeup AV A3 53 2is4 132
(4) The permutation that would order
V (ascending or descending)
Grade down {1/ ¥3 53 2is2 1 3 4
(4)
Grade up AMA 'ABCDE'A'DEAL'is 3124
(dyadic)
(4)
Grade down AVA "ABCDE'V'DEAL'is 4 2 1 3
(dyadic)
(4)
Deal 525 W?Y is Random deal of W elements
(4) from 1Y

Functions That Involve Numeric Calculations

Matrix EM B2 2012101 is1 1
inverse 0 1
Arguments may be scalars,
vectors, or matrices

Matrix MEM (2 20P)E2 2021 01 is 3 1
division 5 7
Decode AlA 10L1 7 7 6is 1776

24 60 60L1 2 3 is 3723
Encode ATA 24 60 60T3723is 1 2 3

60 60T3723is 2 3

Figure 8 (Part 3 of 4). Primitive Mixed Functions
See notes on page 7—29.

7-28

Name Sign (1) Definition or Example (2)

Functions That Involve Data Transformation

Execute eV 2114275 3
L'Pris2 3 5 7
Format T4 '"41,5'A.=F 1.5is 1
(Monadic) pTEis 3 12
Xis vX
Format V34 4 1%P 2.0 3.0 5.0 7.0
(Dyadic) 8 T1¥Pis 2E000 3E000 SE000 7E000

'0,55'¥Pis 0,020,030,050,07

Notes:

1. Restrictions on argument ranks are indicated by: S for scalar, V for
vector, M for matrix, and A for any array (see Figure 9).

Conformability requirements are given in the text where each
function is defined.

2. Arrays used in examples:

P
2357
F
1 2 3 4
5 6 7 8
9 10 11 12
X
ABCD
EFGH
IJKL

3. The function is applied along the last axis; the symbols £, \ ,and ©
are equivalent to / . \ ,and CI) , respectively, except that the function
is applied along the first axis. In general, the relevant axis is determined
by [V] or [S] after the function symbol.

4, Function depends on index origin.

5. Elision of any index selects all along that axis.

Figure 8 (Part 4 of 4). Primitive Mixed Functions

7-29

Figure 9 shows for what mixed functions and under
what conditions scalar and vector arguments may be
substituted for each other.

1. A scalar may be used in place of a one-element vector.
a. as left argument of:

reshape 3pk > (,3)pk

take 3t15 <= (,3)tM15

drop 3¥15 = (,3)¥15

expand 1\,5 <> (,1\,5

tranpose 18,5 A (,1)8,5

format 593.2 <— (,5)¥3.2 <—> 0 5 ¥3.2
b. as right argument of:

execute srpt = e, 1p

branch -4 - >4

2. A scalar is extended to conform as necessary:
a. as left argument of:

compress 1/ 13 e d 111/ 13

rotate 102 2014 - 1149 2 2014
b. asright argument of:

compress 101/ 2 <= 101/ 222

expand 101\N2 <~ 101\ 22

take 2 3 43 “~-> 2 3 4 1 1p3

3. A one-element vector is permitted in place of a scalar.

a. as left argument of:

compress (,1)/13 <> 1/13

deal (,3)?75 > 3?5

rotate (,2)(1)2 357 <—> 202357
b. as right argument of:

index generator 1,5 = 15

deal 37,5 <> 3?5

Figure 9. Scalar Vector Substitutions for Mixed Functions

7-30

Structural Functions

In the monadic structure functions, the argument may
be any type: numeric or character. In the dyadic
selection and structure functions, one argument may be
any type, and the other (which serves as an index or
other selection indicator) must be numeric, and in two
cases (compression and expansion), is further restricted
to be boolean.

Shape, Reshape, and Ravel

The shape function is the monadic function p. When
applied to an array A, it yields the shape of A; that is, a
vector whose components are the dimensions of A. For
example, if A is the matrix of three rows and four
columns:

O O
o OON
=3 w
N F

10 11 1

then pA is the vector 3 4.

Because p4 has one component for each axis of 4, the
expression ppA is the rank of 4. The following table
shows the values of p4 and ppA for arrays of rank O
(scalars) up to rank 3. In pa