

IBM BASIC Compiler/2™ Computer Language Series

Language Reference

Programming Family

------ - .------ - ---- ---- -- ---- - - -----_ .. -------., -

Third Edition (September 1987)

The following paragraph does not apply to the United Kingdom or any
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This publication could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or infor
mation about, IBM products (machines and programs), programming,
or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to
announce such IBM products, programming, or services in your
country.

Requests for copies of this publication and for technical information
about IBM products should be made to your IBM Authorized Dealer or
your IBM Marketing Representative.

CodeView® and Microsoft® are registered trademarks of the Micro
soft Corporation.

Operating System/2 and OS/2 are trademarks of the International
Business Machines Corporation.

© Copyright International Business Machines Corporation 1984, 1987
All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means without prior permission in
writing from the International Business Machines Corporation.

Preface

This book is volume 3 of the three-volume set explaining the IBM

BASIC Compiler/2. It contains descriptions of each of the erements of
the BASIC language. The commands, functions, and statements are
listed in alphabetical order.

This book is intended for people who have experience writing BASIC

programs, though no experience with IBM'S version of BASIC or the IBM

IBM BASIC Compiler/2 is required. Users should also be familiar with
their computer and operating system.

Related Publications

If You Want To ... Refer to ...

Install the product Compile, Link, and Run

Learn basic facts about the Fundamentals
language

Know the syntax of an i rlstruc- Language Reference
tion

Understand error messages Language Reference

Debug a program Compile, Link, and Run

Compile a program Compile,;Unk, and Run

Link a program Compile, Link, and Run

Write a program Fundamentals, Language Ref-
erence, and Compile, Link,
and Run

The following books contain topics related to information in the IBM

Basic Compiler Library:

• IBM BASIC Compilerl2 Fundamentals
• IBM BASIC Compilerl2 Compile, Link, and Run

• IBM Disk Operating System Version 3.30 User's Guide
• IBM Disk Operating System Version 3.30 Technical Reference

iii

• IBM Operating Systeml2 User's Guide
• IBM Operating Systeml2 User's Reference
• IBM Operating Systeml2 Programmer's Guide
• IBM Operating Systeml2 Technical Reference

• IBM Guide to Operations
• IBM Technical Reference.

iv

Contents

BASIC Compiler Language Reference
I How to Use This Book

How This Book Is Organized
Book Organization 3

Terms and Conventions 5
Hexadecimal Representation 5

Compiler Metacommands 6
$DYNAMIC Metacommand 7
$INCLUDE Metacommand 9
$LlNESIZE Metacommand 12
$LlST Metacommand 13
$MODULE Metacommand 14
$OCODE Metacommand 15
$PAGE Metacommand 16
$PAGEIF Metacommand 17
$PAGESIZE Metacommand 18
$SKIP Metacommand 19
$STATIC Metacommand 20
$SUBTITLE Metacommand 22
$TITLE Metacommand 23
Compiler Commands, Functions, and Statements 24
ABS Function 29
ASC Function 30
ATN Function 31
BEEP Statement 32
BLOAD Command 33
BSAVE Command 35
CALL Statement 37

Calling BASIC Subprograms 38
Calling IBM Operating System/2 Functions 40
Calling IBM Macro Assembler/2 Subprograms 43
Calling Pascal Subprograms ;................ 46
Calling C Subprograms 48

CALLS Statement 50
CALL ABSOLUTE Statement 52
CALL INT86 Statement " 54
CALL INT86X Statement 57
CASE Statement 59
CDBL Function 61

v

CHAIN Statement 62
CHOIR Command 64
CHR$ Function 66
CINT Function 68
CIRCLE Statement 69
CLEAR Command 73
CLNG Function 75
CLOSE Statement 76
CLS Statement 78
COLOR Statement " 80

The COLOR Statement in Text Mode 80
The COLOR Statement in Graphics Mode 84

COM(n) Statement 86
COMMAND$ Function 88
COMMON Statement 90
COS Function 95
CSNG Function 96
CSRLlN Variable 97
CVI, CVL, CVS, CVD Functions 98
CVSMBF, CVDMBF Functions 100
DATA Statement 102
DATE$ Variable and Statement
DECLARE Statement
DEF FN and END DEF and EXIT DEF Statements
DEF SEG Statement
DEFtype Statement
01 M Statement
DO Statement
DRAW Statement
END Statement
ENVIRON Statement
ENVIRON$ Function
EOF Function
ERASE Statement
ERDEV and ERDEV$ Variables
ERR and ERL Variables
ERROR Statement
EXP Function
FIELD Statement
FILEATTR Function
FILES Command
FIX Function
FOR and NEXT Statements

vi

104
106
110
116
118
120
126
130
135
136
138
141
142
144
146
148
150
151
154
156
159
160

FRE Function 164
FREEFILE Function 166
FUNCTION Statement 168
GET Statement (Files) 173
GET Statement (Graphics) 175
GOSUB Statement 178
GOTO Statement 180
HEX$ Function :.................. 182
IF Statement 183
INKEY$ Variable 190
INP Function 192
INPUT Statement 193
INPUT # Statement 196
INPUT$ Function 198
INSTR Function
INT Function
IOCTL Statement
IOCTL$ Function
KEY Statement
KEY(n) Statement
KILL Command
LBOUND Function
LCASE$ Function
LEFT$ Function
LEN Function
LET Statement
LINE Statement
LINE INPUT Statement
LINE INPUT # Statement
LOC Function
LOCATE Statement
LOCK Statement
LOF Function
LOG Function :
LPOS Function
LPRINT and LPRINT USING Statements
LSET and RSET Statements
LTRIM$ Function
MID$ Function and Statement
MKDIR Command
MKI$, MKL$, MKS$, MKD$ Functions
MKSMBF$, MKDMBF$ Functions
NAME Command

200
201
203
205
206
212
215
216
219
220
221
223
224
228
230
232
234
237
239
241
243
244
246
248
250
253
255
257
259

vii

OCT$ Function
ON COM(n) Statement
ON ERROR Statement
ON ... GOSUB and ON ... GOTO Statements
ON KEY(n) Statement
ON PEN Statement
ON PLA Y(n) Statement
ON SIGNAL Statement
ON STRIG(n) Statement
ON TIMER Statement
OPEN Statement
OPEN "COM ... Statement
OPEN "PIPE ... Statement
OPTION BASE Statement
OUT Statement
PAINT Statement
PEEK Function
PEN Statement and Function
PLAY Statement
PLAY(n) Function
PMAP Function "
POINT Function
POKE Statement
pas Function
PRINT Statement
PRINT USING Statement

String Fields
Numeric Fields

PRINT # and PRINT # USING Statements
PSET and PRESET Statements
PUT Statement (Files)
PUT Statement (Graphics)
RANDOMIZE Statement
READ Statement
REDIM Statement
REM Statement
RESET Command
RESTORE Statement
RESUME Statement
RETURN Statement
RIGHT$ Function
RMDIR Command
RND Function

viii

261
262
265
267
269
273
275
278
281
284
286
292
298
300
302
303
311
313
316
320
321
324
327
329
330
333
333
334
340
343
345
347
353
356
358
362
364
365
366
368
369
370
372

RTRIM$ Function
RUN Command
SADD Function
SCREEN Function
SCREEN Statement
SETMEM Function
SGN Function
SHARED Statement
SHELL Function
SHELL Statement
SIGNAL Function

375
377
380
382
384
387
389
390
393
396
400

SIN Function 402
SOUND Statement .. 403
SPACE$ Function 407
SPC Function '........................... 408
SQR Function 409
STATIC Statement 410
STICK Function 412
STOP Statement 414
STR$ Function 416
STRIG Statement and Function 417

STRIG(n) Statement 419
STRING$ Function 420
SUB and END SUB and EXIT SUB Statement 421
SWAP Statement 424
SYSTEM Command 425
TAB Function 426
TAN Function 427
TIME$ Variable and Statement 428
TIMER Function and Statement 430
TRON and TROFF Commands 433
TYPE, ENDTYPE Statements 435
UBOUND Statement 438
UCASE$ Function 441
UNLOCK Statement 442
VAL Function 444
VARPTR Function 446
VARPTR$ Function 448
VARSEG Function 450
VIEW Statement 452
VIEW PRINT Statement 456
WAIT Statement 457
WHILE and WEND Statements 459

ix

WIDTH Statement
WINDOW Statement
WRITE Statement

461
464
470

WRITE # Statement 472

Appendix A. BASIC Compiler Error Messages A-1
Errors While Compiling a Program A-2

Prompt Errors A-2
Listing Errors A-6

Errors while Running a Program A-23
Errors that Cannot be Trapped A-32

Communication Errors . A-34

Appendix B. ASCII Character Codes 8-1

Appendix C. Scan Codes C-1
Extended Codes C-6

Appendix D. CodeView Error Messages 0-1

Appendix E. Linker Error Messages and Limits E-1

Appendix F. Library Manager Error Messages F-1

Index ... 1

x

BASIC Compiler Language Reference

How to Use This Book

This section tells you how to find information in this book and
describes the notational conventions that this book uses.

How This Book Is Organi~ed

This book gives specific information about BASIC statements, func
tions, and commands. Tne information is organized in the following
manner:

• The compiler metacommands are listed first in alphabetical
order. The metacommands are commands that control the opera
tion of the compiler.

• Next, each command, function, and statement of the BASIC lan
guage is listed in alphabetical order.

• Appendix A, "Error Messages," lists all the error messages you
can receive while using the compiler.

• Appendix B, "ASCII Character Codes," is a table of all the ASCII

characters and their decimal codes.

• Appendix C, "Scan Codes," lists the scan codes, in decimal and
in hexadecimal, for all the keys on the PC keyboard and the IBM

Enhanced Keyboard.

• Appendix D, "CodeView Error Messages" lists all the CodeView
error messages.

• Appendix E, "Linker Error Messages and Limits," lists error mes
sages produced by the Linker.

• Appendix F, "Library Manager Error Messages," lists error mes
sages produced by the Library Manager.

For information on the differences between IBM BASIC Compiler 2.00
and IBM BASIC Compiler/2, see chapter 1 of IBM BASIC Compilerl2
Fundamentals.

The following sample pages describe the organization of the entries
in IBM 8ASIC Compilerl2 Language Reference.

2

Book Organization

Purpose

Gives a brief functional description of the statement.

Format

Shows the correct format for the statement. The format of the state
ments follow these rules:

• Items in square brackets [] are optional.

• Items separated by a vertical bar (I) mean that you can enter one
of the separated items. For example:

ONloFF

means you can enter ON or OFF, but not both.

• An ellipsis (...) shows you can repeat an item as many times as
you want.

• You must include all punctuation, where it is shown (commas,
parentheses, angle brackets, slashes, or semicolons), except
square brackets.

• Ctrl+Break and Ctrl+C perform the same function. Any time
Ctrl +Break is documented, you may also use Ctrl +C.

• Italics are used for:

New terms when they are first defined in a book.

Example: An object module is produced ...

Variables in command formats and within text. You supply
these items.

Example: TIME [hh.mm.ss.xx]

Book titles.

Example: The IBM BASIC Compilerl2 Language Reference.

3

Book Organization

• Boldface is used for:

Anything you must type exactly as it appears in the book.

Example: Now, type dir and press ...

Anything that appears on a screen that is referred to in text.

Example: The Stack Overflow message tells you ...

Single alp~abetic keys on the keyboard.

Example: Type Sand ...

• Small capital letters are used for:

Sample file names in text.

Example: Use the AUTO EXEC file ...

Operating System and BASIC programming commands.

Example: The copy command ...

Suffixes (file or language extensions) used alone.

Example: A .BAT file is required ...

All acronyms and other fully capitalized words.

Examples: IBM, DOS

Library names.

Example: Place it in the LlB1.LlB ...

Comments
Gives detailed information about the statement.

4

Book Organization

Examples
Examples demonstrate how this statement can be used in a program.
An explanation is included where the purpose of the example is not
obvious.

Terms and Conventions

Throughout this book, the following terms and conventions apply:

BASIC is the BASIC language that has been developed specifically
for IBM.

BASIC Interpreter

is the IBM BASIC Interpreter. This is the interactive version
of BASIC that is included with DOS and OS/2.

compiler is the IBM BASIC Compiler/2.

disk refers to either a diskette or a fixed disk.

diskette refers only to a diskette.

DOS IBM Disk Operating System Version 3.30 (DOS).

DOS mode

OSI2™1

OS/2 mode

both DOS 3.30 and the DOS mode of IBM Operati ng
Systeml2™1

IBM Operating System/2.

the OS/2 mode of Operati ng System/2

Hexadecimal Representation

This book represents hexadecimal numbers with the letter H, such as
59H.

1 OS/2 and Operating System/2 are trademarks of IBM Corporation.

5

Compiler Metacommands
The metacommands are commands that supply information to the
compiler or tell it how to operate, but do not produce any executable
code. The metacommands are as follows:

$DYNAMIC

$INCLUDE

$LlNESIZE

$LlST

$MODULE

$OCODE

$PAGE

$PAGEIF

$PAGESIZE

$SKIP

$STATIC

$SUBTITLE

$TITLE

You include metacommands in your source file as part of a remark
statement; that is, you must insert metacommands after the REM

keyword or the single quote. You can have more than one
metacommand in a remark statement. For example:

REM $LINESIZE:120 $PAGESIZE:55

If you use $INCLUDE, it must be the last metacommand on the line. You
can separate metacommands on one line by spaces, tabs, or line
feed characters. If the compiler sees any other character that is not
part of a metacommand, it ignores the rest of the remark.

The compiler does not print the header for the source listing until the
compiler scans the first line of the program for metacommands. In
this way, metacommands such as $TITLE can affect the first page of
the source listing.

6

Purpose

$DYNAMIC
Metacommand

The $DYNAMIC metacommand causes the compiler to allocate dynam
ically all subsequently dimensioned arrays.

Format

$DYNAMIC

Comments

You can only dimension a statically allocated array once, but you can
redimension dynamic arrays using ERASE, DIM, and REDIM at any point
in the program.

Static allocation of array space is the default. If you issue the
$DYNAMIC metacommand, the compiler treats all following array decla
rations in a DIM statement as dynamic array declarations.

7

$DYNAMIC
Metacommand

Examples

The following example demonstrates the use of static and dynamic
arrays within the same program:

120 ' $STATIC
130 DIM C(5.5)
140 C(5,5)=1
145 C=5
150 ERASE C
160 PRINT C,C(5,5)
180 ' $DYNAMIC
190 DIM A(20,20,20)
200 I = 40
210 DIM B(I, I)
220 'ASSIGN VALUES INTO A AND B
223 A(1,1.1)=3
225 B(1,l) = 17
227 'ERASE AND REDIMENSION A
230 ERASE A
240 REDIM A(5,5,5)
260 PRINT B(l,l),A(l,l,l)
270 END

Results

5 0
17 0

8

$INCLUDE
Metacommand

Purpose

The $INCLUDE metacommand tells the compiler to include source code
from another BASIC file.

Format

$INCLUDE: 'filespec'

Comments

filespec is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specification" in IBM
BASIC Compilerl2 Fundamentals; otherwise, an error
occurs.

The default extension for the included file is .BAS. The
included file must be in ASCII format. The file specifica
tion must be enclosed in single quotation marks.

The compiler imbeds the specified file into the source file at the point
where it encounters this metacommand. The included file can be a
subroutine, a single line, or any type of partial program, but it must
be written in IBM BASIC.

When using the $INCLUDE metacommand, the following restrictions
apply:

• The $INCLUDE must be the last metacommand on the line.

• The $INCLUDE cannot immediately follow a line continuation.

• An included file cannot end with a line continuation.

• CodeView cannot debug a program with included files.

9

$INCLUOe
Metacommand

You should take care that any variables in the included files match
their counterparts in the main program, and that included lines do not
contain GOTOS to nonexistent lines or similarly erroneous code.

Included files can be very useful for COMMON declarations existing in
more than one program or for subroutines that you might have in an
external library of subroutines.

If you create the included file using the BASIC program editor from
within the BASIC Interpreter, you must remember to save it using SAVE

with the A option.

Also, because the interpreter does not support the $INCLUDE

metacommand, a program that contains a $INCLUDE metacommand
might not run correctly if you try to run it under the interpreter.

If you use an editor other than the BASIC program editor, be sure that
editor saves your file in ASCII format.

If you use a text editor other than the BASIC program editor, you can
create a file of lines without line numbers. This feature can make it
very easy to include the same file in many different programs.

You can nest $INCLUDE metacommands up to five levels deep. If you
are nesting them deeper than three levels under DOS mode, you must
create a CONFIG.SYS file (or modify an existing one) to contain the
statement:

FILES=xx

Where xx is the number of nesting levels plus 3 which BASIC uses.

Under DOS mode the maximum number of file handles per process is
20.

Under OS/2 mode, additional file handles can be obtained by using the
OS/2 mode DOSSETMAXFH function.

10

$INCLUDE
Metacommand

Examples

The first example includes the file named SUBR.BAS:

90 REM $INCLUDE: 'SUBR'

The second example uses the $INCLUDE metacommand in a remark
beginning with a single quote. The included file is named PROC.ASC:

9999 ' $INCLUDE: 'PROC.ASC'

The following example uses an included file that contains a routine
for calculating the average of two numbers:

10 PRINT "ENTER A NUMBER FROM 1 TO 10"
20 INPUT A
30 PRINT "ENTER ANOTHER NUMBER 1-10"
40 INPUT B
50 ' $INCLUDE:'AVERAGE.BAS'
60 PRINT "THE AVERAGE OF THE TWO IS ",AVG
70 END

Also see the comments under "COMMON Statement", in this book.

11

$LINESIZE
Metacommand

Purpose

The $LlNESIZE metacommand tells the compiler to change the
maximum line width in the listing file.

Format

$LlNESIZE: number

Comments

number is a constant in the range 40 through 255.

The default line size is 80 characters.

The $LlNESIZE metacommand must appear in the first line of your
program if you want the entire source listing to be the same width. If
$LlNESIZE appears anywhere else in the program, it changes only the
width of the following lines.

Examples
1000 REM $LINESIZE: 120

12

$LIST
Metacommand

Purpose

The $LlST metacommand turns the listing of source code on and off.

Format

$LlST+ 1-

Comments

The default setti ng is $LlST + .

$LlST+ turns the listing of source code on. $LlST- turns the source
code listing off.

The compiler always lists errors.

$LlST is useful, for instance, if you make a change to a large program
and you want a listing of only the change. You can cause a partial
listing by using $LlST- in the first line of the program to turn the
source code listing off, then place $LlST+ at the start of the new code
and $LlST- at the end of the new code.

Examples

100 REM $LI 5T -

13

$MODULE
Metacommand

Purpose

The $MODULE metacommand allows you to change the internal module
name that is passed to the linker.

Format

$MODULE : 'string'

Comments

string is a string expression one through eight characters long.

The $MODULE metacommand is useful when you want the module
name to be different from that of the source file. If you use this
metacommand, it must appear before the first executable statement.

Examples

REM $MODULE: 'TEMP'

14

I Purpose

$OCODE
Metacommand

The $OCODE metacommand turns the listing of object code on and off.

Format

$OCODE+ 1-

Comments

The default setting is $OCODE-. The $OCODE metacommand controls
listing the generated code in the same way $LlST controls the source
listing: $OCODE+ turns the listing of object code on, $OCODE- turns the
object code listing off.

$OCODE works independently of the setting of the IA parameter when
you compile your program. IA includes all the object code unless you
turn it off with $OCODE-. You can use $OCODE to list just parts of the
object code.

The format of the object code listing is basically like an assembler
listing, with code addresses and operation mnemonics.

Examples

REM $OCODE-

15

$PAGE
Metacommand

Purpose

The $PAGE metacommand tells the compiler to force a new page in the
compiler listing file.

Format

$PAGE

Comments

The compiler forces a page by putting the form feed character
(OCH) into the listing file and writing a heading for the new page.

Examples

REM $PAGE

16

$PAGEIF
Metacommand

Purpose

The $PAGEIF metacommand skips to the next page if there are less
than n printable lines left on the current page.

Format

$PAGEIF: n

Comments

n is a numeric constant in the range of 1 through 255.

The last six lines of each page are always blank. The compiler does
not consider these lines to be printable lines.

Examples

100 REM $PAGEIF: 10

17

$PAGESIZE
Metacommand

Purpose

The $PAGESIZE metacommand sets the number of lines per page in the
compiler listing file.

Format

$PAGESIZE: n

Comments

n is a numeric constant in the range of 15 through 255. The
default page size is 66.

The n specifies the number of lines that fit on one piece of paper. The
compiler separates pages in the listing file by form feed characters
(OCH), and eac.h page starts with a heading.

If n is 255, the compiler does not add form feed characters to the
listing file, and the listing file prints without page breaks.

The $PAGESIZE metacommand must appear in the first line of your
program if you want all the pages in your source listing to be the
same length. If $PAGESIZE appears anywhere else in the program, it
changes only the length of the followi ng pages.

Examples

100 REM $PAGESIZE: 60

18

$SKIP
Metacommand

Purpose

The $SKIP metacommand skips n printable lines or to the end of the
page, whichever occurs first.

Format

$SKIP; n

Comments

n is a numeric constant in the range of 1 through 255.

The last six lines of each page are always blank. The compiler does
not consider these lines to be printable lines.

Examples

100 REM $SKIP: 10

19

$STATIC
Metacommand

Purpose

The $STATIC metacommand causes the compiler to allocate statically
all subsequently dimensioned arrays.

Format

$STATIC

Comments

Static allocation of array space is the default. You can dimension
statically allocated arrays only once, while you can redimension
dynamic arrays using ERASE, DIM, and,REDIM at any point in the
program.

If $STATIC is in effect, the compiler statically allocates space for any
array whose bounds you declare using integer constants. If an upper
or lower bound is not an integer constant, the compiler dynamically
allocates the array at runti me.

20

Examples

$STATIC
Metacommand

The following example demonstrates the use of static and dynamic
arrays within the same program:

120 ' $STATIC
l30 DIM C(5,5)
140 C(5,5)=1
145 C=5
150 ERASE C
160 PRINT C,C(5,5)
180 ' $DYNAMIC
190 DIM A(20,20,20)
200 I = 40
210 DIM B(I,I)
220 'ASSIGN VALUES INTO A AND B
223 A(l, 1, 1)=3
225 B(l, 1) = 17
227 'ERASE AND REDIMENSION A
230 ERASE A
240 REDIM A(5,5,5)
260 PRINT B(I,I),A(l,l,l)
270 END

Results:

5 0
17 0

21

$SUBTITLE
Metacommand

Purpose

The $SUBTITLE metacommand sets the subtitle on the listing page.

Format

$SUBTITLE: ' string'

Comments

string is a character string constant that you enclose in single
quotation marks. The maximum length of the string is 60
characters. If a program does not contain a $SUBTITLE

command, the compiler uses the null string as a subtitle.

The compiler prints the specified string on each page of the listing.
The compiler might truncate a long title string if $LlNESIZE is set to a
value less than 80.

The $SUBTITLE metacommand must appear in the first line of your
program if you want the subtitle to appear on the first page of the
source listing. If $SUBTITLE appears anywhere else in the program, it
affects only the following pages.

Examples

100 ' $SUBTITLE: 'Entry Routine'

22

$TITLE
Metacommand

Purpose

The $TITLE metacommand provides a title for the compiler listing.

Format

$TITLE: 'string'

Comments

string is a character string constant that you enclose in single
quotation marks. The maximum length of the string is 60
characters.

The compiler prints the specified string on each page of the listing.
The compiler might truncate a long title string if $LlNESIZE is set to a
value less than 80.

The $TITLE metacommand must appear in the first line of your
program if you want the title to appear on the first page of the source
listing. If $TITLE appears anywhere else in the program, it affects only
the title on the following pages.

Examples

100 ' $TITLE: 'Update Program'

23

Compiler Commands, Functions, and Statements

The statements, functions, and commands that the BASIC Compiler/2
supports are listed below. They are described in detail in the
sections that follow.

Arithmetic

ABS
ATN
COS
EXP
LOG

Communications

COM(N)
ON COM(N)

Data Conversion

24

ASC
CDBL
CHR$
CINT
CLNG
CSNG
CVI, CVL, CVS, CVD
CVSMBF, CVDMBF

SGN
SIN
SQR
TAN

OPEN "COM ...

FIX
HEX$
INT
MKI$, MKL$, MKS$, MKD$
MKSMBF$, MKDMBF$
OCT$
STR$
VAL

Compiler Commands, Functions, and Statements

Defining Variables

CLEAR
COMMON
DEFTYPE
DIM
ERASE
FRE

Error Handling

ERDEV
ERDEV$
ERR

File and Subdirectory Management

CHDIR
FILES
KILL

Graphics

CIRCLE
COLOR (GRAPHICS MODE)
DRAW
GET (GRAPHICS)
LINE
PAINT
PMAP

Hardware Interface

CALL INT86
CALL INT86X
INP
ON TIMER

OPTION BASE
REDIM
SHARED
STATIC
TYPE/ENDTYPE

ERL
ERROR
ON ERROR

MKDIR
NAME
RMDIR

POINT
PSET
PRESET
PUT (GRAPHICS)
SCREEN
VIEW
WINDOW

OUT
TIMER FUNCTION
TIMER STAtEMENT
WAIT

25

Compiler Commands, Functions, and Statements

Input/Output

BLOAD
BSAVE
CLOSE
DATA
EOF
FIELD
FILEATIR
FREEFILE
GET (FILES)
INKEY$
INPUT
INPUT#
INPUT$
IOCTL
IOCTL$
LINE INPUT
LINE INPUT#
LOC
LOCK

Joystick and Light Pen Interface

ON PEN
ON STRIG(N)
PEN

Key Trapping

26

KEY
KEY(N)

LOF
LPOS
LPRINT
LPRINT USING
LSET
OPEN
PRINT
PRINT USING
PRINT#
PRINT# USING
PUT (FILES)
READ
RESET
RSET
SPC
TAB
UNLOCK
WRITE
WRITE#

STICK
STRIG
STRIG(N)

ON KEY(N)

Compiler Commands, Functions, and Statements

Memory References

DEF SEG
PEEK
POKE
SADD

Operating System Interface

CALL INT86
CALL INT86X
COMMAND$
DATE$
ENVIRON
ENVIRON$
ON SIGNAL

Program Flow Control

CALL
CALLS
CALL ABSOLUTE
CASE
CHAIN
DO
END
FOR/NEXT
GOSUB/RETURN
GOTO

VARPTR
VARPTR$
VARSEG

OPEN "PIPE ...
SETMEM
SHELL FUNCTION
SHELL STATEMENT
SIGNAL
TIME$

IF
ON ... GOSUB
ON ... GOTO
RESUME
RETURN
RUN
STOP
SYSTEM
WHILE/WEND

27

Complier Commands, Functions, and Statements

Sound

BEEP
ON PLAY{N)
PLAY

Strings

FRE
INSTR
LCASE$
LEFT$
LEN
LTRIM$

Subprogram Definition

DECLARE
DEF FN

Text Screen

CLS
COLOR (TEXT)
CSRLlN
LOCATE

Miscellaneous

28

LBOUND
LET
RANDOMIZE
REM
RESTORE

PLAY{N)
SOUND

MID$
RIGHT$
RTRIM$
SPACE$
STRING$
UCASE$

FUNCTION
SUB

POS
SCREEN
VIEW PRINT
WIDTH

RND
SWAP
TRON, TROFF
UBOUND

I Purpose

ABS
Function

The ASS function returns the absolute value of the expression x.

Format

v = ASS (x)

Comments

x can be any numeric expression.

The absolute value of a number is always positive or O.

Examples

This example shows that the absolute value of -35 is positive 35:

PRINT ABS(7*(-5))

Results:

35

29

Ase
Function

Purpose

The ASC function returns the ASCII code for the first character of a
string (x$).

Format

v = ASC(X$)

Comments

x$ can be any string expression.

The result of the ASC function is a numeric value that is the ASCII code
of the first character of the string x$. See Appendix B, "ASCII Char
acter Codes," fot a list of ASCII codes. If x$ is nUll, BASIC returns an
Illegal function call error.

The ASC function is the opposite of the CHR$ function, which converts
an ASCII code to a character.

Examples

This example shows that the ASCII code for a capital T is 84. The
statement PRINT ASC("TEST") gives you the same result.

100 X$ = "TEST"
200 PRINT ASC(X$)

Results:

84

30

ATN
Function

Purpose

The ATN function returns the arctangent of x.

Format

v = ATN(X)

Comments

x can be a numeric expression of any type.

The ATN function returns the angle whose tangent is x. The result is a
value in radians in the range -P1/2 through P1/2, where PI = 3.141593.

If you want to convert radians to degrees, multiply by 180/PI.

Examples

The first example shows the use of the ATN function to calculate the
arctangent of 3:

100 PRINT ATN(3)

Results:

1.249046

The second example finds the angle whose tangent is 1.

100 PI=3.141593
200 RADIANS=ATN(l)
300 DEGREES=RADIANS*180/PI
400 PRINT RADIANS,DEGREES

Results:

.7853982 45

31

BEEP
Statement

Purpose

The BEEP statement causes the speaker to sound, beep.

Format

BEEP

Comments

The BEEP statement causes the speaker to sound at 800 Hz for 1/4
second. BEEP has the same effect as:

PRINT CHR$(7);

Examples

In this example, the program checks to see if X is out of range. If it is,
the computer warns you by beeping.

100 IF X < 20 THEN BEEP

32

BLOAD
Command

Purpose

The BLOAD command loads a memory image file, created by BSAVE,
into memory.

Format

BLOAD filespec [,offset]

Comments

filespec is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specif4cation" in IBM
BASIC Compilerl2 Fundamentals; otherwise, an error
occurs.

offset is an integer valu.e in the range of 0 through 65535. This
is an offset at which BASIC loads the file into the current
segment specified by the latest DEF SEG statement.

If you do not specify offset, BASIC uses the offset you specified at
BSAVE. That is,BASIC loads the file into the same location from which
you saved the file using BSAVE.

When you run a BLOAD command, BASIC loads the named file into
memory, starting at the location that offset specifies.

If you do not specify the device name in filespec, BASIC uses the
default drive.

You should use BLOAD with a file that you have previously saved with
BSAVE. BLOAD and BSAVE are useful for loading and saving machine
language programs, but you do not have to use them stdctly for
machine language programs. For example, you can specify any
segment as the target or source for these statements, through the DEF

33

BLOAD
Command

SEG statement. You can save and display screen images from or to
the screen buffer.

See "Other Interface Methods" in IBM BASIC Compiler/2
Fundamentals for more information on using BLOAD with machine lan
guage programs.

Warning: BASIC does not check the offset of the current segment
where you are loading with BLOAD. You can use BLOAD anywhere in
memory, but it is your responsibility to be sure that a file loaded with
BLOAD does not conflict with the current contents of memory.

For OS/2 users:

In OS/2 mode, BLOAD treats the segment as a selector. Illegal memory
references may cause exceptions or return a Permission denied
error.

Examples

This example works only in DOS mode.

This example loads the screen buffer, which is at segment address
HB8000, for the IBM Color/Graphics Monitor Adapter. To load the
screen buffer for the IBM Monochrome Display and Printer Adapter,
you would have to change line 300 to read &HBOOO. Line 500 loads
PICTURE at offset 0, segment &HB800.

100 'load the screen buffer
200 'point SEG at screen buffer
300 DEF SEG= &HB800
400 'load PICTURE into screen buffer
500 BLOAD "PICTURE",O

The example for the BSAVE command (see the next entry) illustrates
how PICTURE was saved.

34

Purpose

BSAVE
Command

The BSAVE command saves portions of the computer's memory on the
specified device.

Format

BSAVE filespec,offset,length

Comments

filespec

offset

length

is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specification" in IBM
BASIC Compilerl2 Fundamentals; otherwise, an error
occurs.

is a 2-byte integer value in the range of 0 through 65535.
This is the offset into the segment that you declared in
the last DEF SEG. Saving starts from this location. See
the DEF SEG statement for more j nformation.

is an integer expression in the range of 1 through 65535.
This is the length of the memory image that you want to
save.

If you do not specify offset or length, BASIC returns Illegal syntax and
does not save the portion of memory.

If you do not specify the device name in filespec, BASIC uses the
default disk drive.

When you use the DEF SEG statement, you can specify any segment as
the source segment for the BSAVE data. For example, you can save an
image of the screen by doing a BSAVE of the screen buffer.

35

aSAVE
Command
For OS/2 users:

In OS/2 mode BSAVE treats the segment as a selector. Illegal memory
references may cause exceptions or return a Permission denied
error.

This example works only in DOS mode.

As explained under the BLOAD Command, the segm~nt address of the
16K-byte screen buffer for the IBM Color/Graphic Monitor Adapter is
HB8000. The segment address of the 4K-pyte screen buffer for the
IBM Monochrome Display and Printer Adapter is HBOOOO.

Use the DEF SEG statement to set up the s~gment address to the start
of the screen buffer. The offset of 0 and length &H4000 tell BASIC to
~ave the entire 16K-byte screen buffer.

100 'Save the color screen buffer
200 'point segment at screen buffer
300 DEF SEG= &HB800
400 'save buffer in file PICTURE
500 BSAVE "PICTURE",Q,&H4000

36

CALL
Statement

Purpose

The CALL statement transfers control to a subprogram.

Format

[CALL] subname [([BYVALISEG] parameter[,[BYVALISEG] parameter] ...)]

Comments

CALL is an optional keyword. If you use the CALL keyword,
enclose the parameters in parentheses. If you omit the
CALL keyword, do not enclose the parameters in paren
theses.

subname is the name of the subprogram that you want to call.

BYVAL is a keyword that can precede a parameter to indicate
that you want to pass the actual value of the parameter
to the subprogram rather than the address of the
parameter. You can only use the BYVAL keyword to pass
a parameter to a subprogram that is not written in BASIC.

Also, do not use BYVAL on array parameters.

SEG is a keyword that can precede a parameter to indicate
that you want to pass the segmented address of the
parameter to the subprogram. BASIC passes the
address as a 4-byte integer representing a segment
address and an offset. You can only use the SEG

keyword to pass a parameter to a subprogram that is
not written in BASIC.

parameter is the name of a simple variable or an array that you
want to pass to the subprogram. If the parameter is an
array, its name must be followed by a pair of paren
theses (for example, "ARRAY%O,,). You can pass a
maximum of 60 parameters to a subprogram.

37

CALL
Statement
You can use the CALL statement to call BASIC compiled subprograms,
IBM Macro Assembler/2 subprograms, IBM Pascal Compiler/2 subpro
grams, and IBM C/2 compiled subprograms.

Note: You can specify the BYVAL and SEG keywords ina CALL state
ment if either you did not list the procedure's parameters in the
DECLARE statement or you specified BYVAL and SEG in the DECLARE

statement. Otherwise, you get a Parameter type mismatch error at
compile time.

For more information, see "SUB and END SUB and EXIT SUB Statement"
and the "CALLS Statement" in this book and the "Modular
Programming" section in IBM BASIC Compilerl2 Fundamentals.

Calling BASIC Subprograms

When BASIC passes a simple variable or array element to a subpro
gram, it passes by reference. This means that the subprogram knows
the address of the variable and can change the value of the variable
in the calling routine. The subprogram can change the value of the
variable by assigning a new value to its corresponding formal param
eter in the formal parameter list through an assignment statement or
any other statement that assigns values to a memory location.

You can also pass expressions as arguments to subprograms. When
BASIC encounters an expression in the formal parameter list, it
assigns the result of the expression to a temporary variable. BASIC

then passes this variable by reference to the subprogram. This is
functionally equivalent to call by value, where BASIC passes the value
itself rather than the address of a variable.

You can prevent a subprogram from changing a simple variable or
array element's value by enclosing the argument within an extra set
of parentheses. This forces BASIC to treat the argument as an
expression. For example, in the following call:

CALL SUBPROGI {(A),B)

38

CALL
Statement

the value of A cannot be changed by SUBPROG1. However, the value of
B can be changed.

You can use the CALL statement to pass array arguments to BASIC sub
programs. You specify an array argument by following the array
name with parentheses. For example:

CALL MATADD2(5,10,ARRAYl(),ARRAY2(),TOTAL())

Two types of programming errors are commonly made in calling
BASIC subprograms:

• Argument lists in which the order, type, or number of arguments
passed to the subprogram do not exactly match the corre
sponding formal parameters in the subprogram.

If you declare the parameters of a function or a subprogram in a
DECLARE statement, the IBM BASIC Compiler/2 checks that the
number of parameters and the types of the parameters that you
are going to pass to the procedur:.e are the same as those you
declared in the DECLARE statement.

If you do not declare the parameters in a DECLARE statement, the
compiler does not check for this discrepancy. An error message
is not generated, but subtle errors may occur. For example, type
mismatching can occur when an integer argument is mistakenly
matched with a parameter that expects to receive a single
precision argument.

• Aliasing of variables.

Aliasing occurs whenever an argument passed to a subprogram
can be referred to in the subprogram more than one way. This
commonly occurs when the same nonexpression argument is
passed more than once to a subprogram. Passing variables both
in COMMON blocks and as an argument, or passing both an array
element and the array itself, can cause aliasing. The IBM BASIC

Compiler/2 does not support or check for aliasing. If aliasing of
variables occurs, the results are unpredictable.

39

CALL
Statement

Examples

The following program calls a BASIC subprogram that converts
decimal notation into binary notation:

100 REM BINARY CONVERSION
110 DEFINT A. B. C. I
128 PRINT "DECIMAL TO BINARY CONVERSION"
138 PRINT
140 INPUT "ENTER NUMBER FROM 0 TO 32767: "; B
150 CALL BINARY(B.BINSTR$)
168 PRINT "THE BINARY VALUE IS II + BINSTR$
170 END
180 REM CONVERT TO BINARY REPRESENTATION
190 SUB BINARY(C.O$) STATIC
200 DIM A(15)
210 FOR I = 15 TO 0 STEP -1
228 IF C < 2 A I THEN A(I) = 0: GOTO 250
230 A(I) = 1
248 C = C - 2 A I
258 NEXT I
268 REM CONVERT TO STRING FOR VIEWING PURPOSES
270 0$ = ""
280 FOR I = 15 TO 0 STEP -1
290 0$ = 0$ + RIGHT$(STR$(A(I».l)
388 NEXT I
310 END SUB

Calling IBM Operating System/2 Functions

Note: Even though they are called "functions," you must declare the
IBM Operating System/2 functions as SUBS in your program. Their
values are returned in the AX register and cannot be accessed
through BASIC.

You can pass parameters to OS/2 functions either by reference or by
value.

Normally, parameters are passed to OS/2 functions by reference. The
2-byte offset of the argument is passed, which allows the function to
change the contents of the argument. Some OS/2 functions may
require the full 4-byte address (segment and offset) to work with the
parameter. You can pass the full address to the function with the SEG

keyword.

40

CALL
Statement

You can also pass parameters to OS/2 functions by value. If you
specify the BYVAL keyword before an argument, its value is passed to
the function instead of its address.

For details on the OS/2 functions and their parameters, refer to IBM
Operating Systeml2 Technical Reference.

Note: BASIC is not reentrant. BASIC does not support OS/2 functions
that require an address within your program that is to be executed.

41

CALL
Statement

Examples

The following example uses the OS/2 DosGetDateTime function to
print the current date and time.

'Define a data type to hold the results returned by the
'function

TYPE DateTime
HoursMinutes AS INTEGER
SecondsHundredths AS INTEGER
DayMonth AS INTEGER
Year AS INTEGER
TimeZone AS INTEGER
DayofWeek AS INTEGER

END TYPE
DIM DateTime AS DateTime

'Declare the OS/2 function
DECLARE SUB DosGetDateTime(SEG DateTime AS DateTime)

'Define our own function to convert pieces of the date and
'time into strings for printing

FUNCTION Format$(N AS INTEGER, Length AS INTEGER) STATIC
Format$ = RIGHT$(STRING$(Length,"0")+MID$(STR$(N),2),Length)

END FUNCTI ON

'Call the OS/2 function
CALL DosGetDateTime(DateTime)

'Convert the returned values and print them
CurrentTime$ = Format$(DateTime.HoursMinutes MOD 256,2)

+ ":" + Format$(DateTime.HoursMinutes\256,2) _
+ ":" + Format$(DateTime.SecondsHundredths MOD 256,2)

CurrentDate$ = Format$(DateTime.DayMonth\256,2)
+ "-" + Format$(DateTime.DayMonth MOD 256,2)
+ "-" + Format$(DateTime.Year,4)

PRINT CurrentDate$, CurrentTime$

END

Results:

09-15-1987 11: 37: 50

42

CALL
Statement

Calling IBM Macro Assembler/2 Subprograms

You can pass parameters to IBM Macro Assembler/2 subprograms
either by reference or by val ue.

Normally, parameters are passed to IBM Macro Assembler/2 subpro
grams by reference. The 2-byte offset of the argument is passed,
which allows the subprogram to change the contents of the argument.
Some IBM Macro Assembler/2 subprograms may require the full
4-byte address (segment and offset) to work with the parameter. You
can pass the full address to the subprogram with the SEG keyword.

You can also pass parameters to IBM Macro Assembler/2 subpro
grams by value. If you specify the BYVAL keyword before an argu
ment, its value is passed to the subprogram instead of its address
and the subprogram cannot change the value of the original argu
ment.

You should not pass arrays as formal parameters to assembler lan
guage subprograms. Instead, pass the base element of the array by
reference if the assembler language subproQram needs to access the
entire array.

When transporting assembler language subprograms from the BASIC

Interpreter to the compiler, the string descriptor requires four bytes
rather than three (low byte, high byte of the length, followed by low
byte, high byte of the address) because the IBM BASIC Compiler/2
allows strings up to 32767 bytes in length. If your assembler lan
guage subprogram uses string arguments, you should recode the
subprogram to take this difference into account.

The linker determines the starting address of the subprogram; DEF SEG

is unimportant when calling a Macro Assembler subprogram from a
compiled program.

43

CALL
Statement

Examples

Note: Because of the structure for the assembler language subpro
gram, the following example is for DOS mode only. To work in OS/2

mode, the subprogram would need to be restructured. However, the
BASIC program would not have to be changed.

BASIC Program:

'ASMTEST.BAS

'This example calls an assembly language subprogram.

, -- LINK ASMTEST+ADD;

, Declare the assembly routine:
The first two arguments will be passed by value.
The result variable's segmented address will be passed.
The routine is called "Sum" locally but "Add" externally.

DECLARE SUB Sum ALIAS "Add" (BYVAL X%, BYVAL Y%, SEG Resu1t%)

01 dResult% = 0
FOR 1%=1 TO 10

Sum 1%, 01dResu1t%, NewResult%
PRINT "The sum of numbers from 1 to "1%" is "NewResult%
OldResult% = NewResult%

NEXT 1%
END

44

Assembler Language Subprogram:

ADD.ASM
Routine that adds two integers.

The BASIC call is:

Add X%, Y%, Sum%

WHERE:

X%, Y% = the numbers to add.
Sum% = the result.

x EQU 12 BP offsets for parameters
EQU 10

SUMSeg EQU 8
SUMOfs EQU 6

TestSub SEGMENT
ASSUME cs:TestSub
PUBLIC Add

Addrtn PROC FAR
PUSH BP Save base pointer
MOV BP,SP Get our own
PUSH ES

MOV AX, [BP+SUMSeg] Get segment~d address to
MOV ES,AX return summed value in
MOV SI,[BP+SUMOfs]

MOV AX, [BP+X] Sum X and Y
ADD AX, [BP+y]

MOV [ES:SI],AX Save in output variable

POP ES Restore segment register
POP BP Restore base pointer
RET 8 Return

Addrtn ENDP
TestSub ENDS

END

CALL
Statement

45

CALL
Statement

Calling Pascal Subprograms

The Pascal calling convention is the convention that the IBM Pascal
Compiler/2 and the BASIC Compiler/2 use. You can also use the
Pascal calling convention to call OS/2 environment functions directly.
In this convention, the first parameter in the parameter list is the first
parameter that the program puts on the stack. The Pascal convention
is the default.

You can pass parameters to IBM Pascal Compiler/2 subprograms
either by reference or by value. Normally, parameters are passed to
IBM Pascal Compiler/2 subprograms by reference. The 2-byte offset
of the argument is passed, which allows the subprogram to change
the contents of the argument. Some IBM Pascal Compiler/2 subpro
grams may require the full 4-byte address (segment and offset) to
work with the parameter. You can pass the full address to the sub
program with the SEG keyword.

You can also pass parameters to IBM Pascal Compiler/2 subprograms
by value. If you specify the BYVAL keyword before an argument, its
value is passed to the subprogram instead of its address and the sub
program cannot change the value of the original argument.

46

Examples

BASIC Program:

, PASTEST.BAS
, This example calls a Pascal subprogram.

, -- LINK PASTEST+ADDSUB

, Declare the Pascal routine:
The first two arguments will be passed by value.
The result variable's segmented address will be passed.

DECLARE SUB AddInts (BYVAL X%, BYVAL Y%, SEG Result%)

01 dResult% = 0
FOR I%=l TO 10

CALL AddInts(I%, OldResult%, NewResult%)
PRINT "The sum of numbers from 1 to "I%" is "NewResult%
OldResult% = NewResult%

NEXT I%
END

Pascal Subprogram:

(* ADDSUB.PAS *)
MODULE AddSub;

(* AddInts -- A subroutine that adds two integers. *)
(* The procedure must be declared with the PUBLIC attribute. *)
PROCEDURE AddInts (X, Y: INTEGER; VARS Result: INTEGER) [PUBLIC]:

BEGIN

Result := X + Y;

END;

END. (* End of MODULE *)

CALL
Statement

47

CALL
Statement

Calling C Subprograms

The C calling convention puts the parameters in reverse order on the
stack. When the call to the subprogram or function is complete, the
subprogram or function is responsible for cleaning the stack. (BASIC

will handle this for you.) To pass parameters with the C convention,
specify CDECL in the DECLARE statement for the subprogram.

You can pass parameters to IBM C/2 Compiler subprograms either by
reference or by val ue.

Normally, parameters are passed to IBM C/2 Compiler subprograms
by reference. The 2-byte offset of the argument is passed, which
allows the subprogram to change the contents of the argument.
Some IBM C/2 Compiler subprograms may require the full 4-byte
address (segment and offset) to work with the parameter. You can
pass the full address to the subprogram with the SEG keyword.

You can also pass parameters to IBM C/2 Compiler subprograms by
value. If you specify the SYVAL keyword before an argument, its value
is passed to the subprogram instead of its address and the subpro
gram cannot change the value of the original argument.

48

Examples

BASIC Program:

'CTEST.BAS
, This example demonstrates linking BASIC with a C program.

, -- LINK CTEST+CSUM; (with appropriate C and BASIC libs)

, Declare the C routine:
The first two arguments will be passed by value.
The result variable's segmented address will be passed.
BASIC will use the C calling convention (because of CDECL)

DECLARE SUB Sum CDECL (BYVAL A%, BYVAL B%, SEG Result%)

01 dResult% = 0
FOR 1%=1 TO 10

Sum 1%, OldResult%, NewResult%
PRINT "The sum of numbers from 1 to "1%" is "NewResult%
OldResult% = NewResult%

NEXT 1%
END

C Subprogram

1* CSUM.C */

/* Simple routine to add two numbers */

/* Routine must be declared a "far" routine */
int far sum(a, b, result)

int a, b; /* input numbers are values */
int far *result; /* output is a "far" pointer */

/* sum */

*result = a + b;

/* sum */

CALL
Statement

49

CALLS
Statement

Purpose

The CALLS statement calls and transfers program control to subpro
grams compiled with the IBM C/2 Compiler, the IBM Pascal Compiler/2,
or assembled with the IBM Macro Assembler/2.

Format

CALLS subname [(parameter[, parameter] ...)]

Comments

subname

parameter

50

is the name of the subprogram you are calling. The
subname is nmited to 40 characters. For external sub
programs, LINK must recognize subname as a PUBLIC

symbol. The procedure for declaring subname
depends on the language in which the subprogram is
written.

For Macro Assembler subprograms, subname must be
a name declared in a PUBLIC statement.

is the name of a variable that you want to pass to the
subprogram.

CALLS
Statement

The CALLS statement works like the CALL statement, with one differ
ence.

The CALLS statement handles communication of parameters to the
subprogram differently than the CALL statement. For each parameter
in the formal parameter list, a segment and an offset for that argu
ment are pushed onto the stack; the segment is the location of the
DATA segment of the compiler and the offset is the offset into the DATA

segment.

You should use CALLS for existing subprograms that expect both the
segment and offset of each argument to be on the stack upon routine
entry.

For related information, see the CALL Statement. See also "Modular
Programming" in IBM BASIC Compilerl2 Fundamentals.

51

CALL ABSOLUTE
Statement

Purpose

The CALL ABSOLUTE statement transfers control to a machine language
subroutine.

Format

CALL ABSOLUTE ([parameterLparameter] ... ,] intvar)

Comments

parameter is the name of any argument that you want to pass to
the machine language subroutine.

intvar is the name of an integer variable.

You must use the word ABSOLUTE. It is a global symbol that is the
name of a library routine that transfers control to your subroutine.

The parameters are optional. They are the arguments that are
passed to the machine language subroutine.

You must include intvar in the. parameter list. The value of intvar is
the starting memory location of the subroutine as an offset into the
current segment of memory as defined by the last DEF SEG statement.
The intvar is an argument to the ABSOLUTE routine, but is not passed
as an argument to your machine language subroutine. If other
parameters are included in the list, intvar must appear last. The
value of intvar must be set to the offset value before the CALL ABSO

LUTE statement is run. A DEF SEG statement must be run before the
CALL ABSOLUTE statement is performed to ensure that the code
segment is correct.

Because the subroutine is not linked to the BASIC Compiler calling
module, the machine language subroutine does not have segment
naming requirements as defined by CALL and CALLS.

52

CALL ABSOLUTE
Statement

In a compiled program, you can put the routine into an integer vari
able array by following these steps:

1. Dimension an integer array so the number of elements in the
array is the number of words, not bytes, in the subroutine.

2. Use a FOR. .. NEXT loop to read the hex values for the machine lan
guage code from DATA statements into the array.

3. Call VARPTR(arrayname) to define the offset before you perform
the CALL ABSOLUTE.

See "Calling Assembler Language Subprograms" in IBM BASIC
Compilerl2 Fundamentals for more information.

The last CALL ABSOLUTE argument (the address) is treated in the same
manner as the address argum"ents in PEEK. That is, real numbers are
changed to two-byte integers. The two-byte integers are treated as
offsets from the current DEF SEG. Long (four-byte)' integers are treated
as segment (or selector) and offset.

For OS/2 users:

In OS/2 mode, ABSOLUTE attempts to obtain a code segment alias for
the specified region. If this fails, a Permission denied error occurs.

Examples

This example calls a subroutine located at OFFSET% = 0 of the
segment returned by VARSEG. Parameters A, S, and C are passed to
the subrouti ne.

1000 DEF SEG = VARSEG(ARRAY(l» 'set segment
1010 OFFSET% = 0 'set offset
1020 CALL ABSOLUTE (A.B,C,OFFSET%)

53

CALL INT86
Statement

Purpose

The CALL INT86 statement allows a BASIC Compiler program to perform
any DOS mode software interrupt.

This statement is not available in OS/2 mode.

Format

[CALL] INT86 (intnum%,inarray%(), outarray%())

Comments

The interrupt is performed with the registers set to values specified in
the integer array inarray%. The varues of the registers after the
interrupt are stored in the integer array outarray%.

CALL INT86 sets only the nonsegment registers. Use CALL INT86X to set
all registers.

intnum%

inarray%O

54

is the integer interrupt number. It can range from 0
through 255. See IBM Disk Operating System
Version 3.30 Reference or the technical reference for
your computer for information about interrupt
numbers and the functions they perform.

is an integer array of register values that the inter
rupt uses. CALL INT86 uses an 8-element array. The
register values are:

inarray%(x) AX
inarray% (x+ 1) BX
inarray%(x+2) CX
inarray%(x+3) DX
inarray%(x+4) BP
inarray% (x+5) SI
inarray% (x+6) DI
inarray%(x+7) flags

outarray% ()

CALL INTS6
Statement

is an integer array of register values after the inter
rupt. The outarray% has the same structure as
inarray%, that is, outarray%(y) to outarray%(y+7).

If the CALL INT86 proceeds without an error, intnum% remains
unchanged and outarray% contains the register values after the inter
rupt.

If an error occurs during the CALL INT86, intnum% changes to -1, out
array% remains unchanged, and the program does not complete the
CALlINT86. An error occurs if the first argument, intnum%, is not in
the range 0 through 255.

The CALLlNT86 routine alters all registers except BP and OS.

55

CALL INT86
Statement

Examples

The following example uses INT86 to open a file and place some text in
it:

DIM INARY%(7),OUTARY%(7)

INT21%=&h21

AXREG% = 0
BXREG% = 1
CXREG% = 2
DXREG% = 3
BPREG% = 4
SIREG% = 5
DIREG% = 6
FLREG% = 7

'define input and output arrays for INT86

'interrupt number is 21H

'define register array indices
'to make program easier to understand

INARY%(AXREG%) = &H3CGG 'DOS function to create a file
INARY%(CXREG%) = G 'DOS attrigute for created file
INARY%(DXREG%) = SADD("FGO.TXT"+CHR$(G» 'Pointer to filename string

'with zero byte termination
CALL INT86(INT21%,INARY%(),OUTARY%(» 'Perform the operation

INARY%(BXREG%) = OUTARY%(AXREG%) 'Move created file handle for write
INARY%(AXREG%) = &H40GO 'DOS function to write to file
TEXT$ = "hello, world"+CHR$(13)+CHR$(lO) 'Define text to write to file

INARY%(CXREG%) = LEN(TEXT$) 'Get length of text string
INARY%(DXREG%) = SADD(TEXT$) 'Get address of text string
CALL INT86(INT21%,INARY%(),OUTARY%(» 'Perform write operation
INARY%(AXREG%) = &H3EGO 'DOS function to close a file
CALL INT86(INT21%,INARY%(),OUTARY%(» 'Perform the close

56

Purpose

CALL INT86X
Statement

The CALL INT86X statement allows a BASIC Compiler program to perform
any software interrupt.

This statement is not available under the OS/2 mode.

Format

[CALL] INT86X (intnum%,inarray%(), outarray%())

Comments

The interrupt is performed with the registers set to values specified in
the integer array inarray%O. The values of the registers after the
interrupt are stored in the integer array outarray%O.

Use CALL INT86X to set all registers, including the OS and ES registers.

Use CALL INT86 when it is not necessary to change OS and ES.

Warning: Use CALL INT86X only when the system call requi res segment
register values. Altering segment registers incorrectly can cause
serious problems.

intnum%

inarray%(x)

is the integer interrupt number. It can range from 0
through 255. See IBM Disk Operating System
Version 3.30 Reference or the technical reference for
your computer for information about interrupt
numbers and the functions they perform.

is an integer array of register values that the inter
rupt uses.

CALL INT86X uses a 10-element array. The last two
array elements in INT86X represent the segment
register values. The register values are as follows:

inarray% (x) AX

57

CALL INT86X
Statement

outarray% ()

inarray%(x+ 1)
i narray% (x +2)
inarray%(x+3)
inarray%(x+4)
inarray%(x+5)
inarray%(x+6)
inarray%(x+7)
inarray%(x+8)

inarray%(x+9)

BX
ex
ox
BP
SI
01
flags
OS (If -1, then use the current
runtime value of OS.)
ES (If -1, then use the current
runtime value of ES.)

is an integer array of register values after the inter
rupt. outarray% has the same structure as
inarray%, that is, outarray%(y) to outarray%(y+9).

If the CALL INT86X proceeds without an error, intnum% remains
unchanged and outarray% contains the register values after the inter
rupt.

If an error occurs during the CALL INT86X, intnum% changes to -1, out
array% remains unchanged, and the program does not complete the
CALL INT86X. An error occurs if the first argument, intnum%, is not in
the range 0 through 255.

The CALL INT86X routine alters all registers except BP and OS.

Examples

See the example for the CALL INT86 statement.

58

CASE
Statement

Purpose

The CASE statement selects statements to be executed based on the
value of the expression.

Format

SELECT CASE expression
CASE caseitem [,caseitem] ...

statements
[CASE caseitem [,caseitem] ...

statements]

[CASE ELSE

statements]
END SELECT

Comments

expression can be any numeric expression

caseitem can be any of the following forms:

• IS relational operator constant

The relational operators are: "<"," < = ", "=",

" > = ", ">", and" < > " .

• constant

The syntax of CASE constant is the same as CASE IS =
constant.

• constant TO constant

statements are any statements you want to execute in that case.

59

CASE
Statement

When more than one caseitem exists for a single CASE statement, the
caseitems are oRed.

The statement or statements executed have a caseitem condition that
is satisfied by the current val ue of the expression.

The CASE ELSE clause is optional, but if used, it must be the last CASE

within the SELECT/END SELECT block. An error occurs if no CASE block
qualifies and there is no CASE ELSE clause.

The expression and all constants must be of the same type.

Examples

SELECT CASE index
CASE IS > 10

PRINT "Index too high."
CASE 1 TO 10

PRINT "Index OK."
CASE ELSE

PRINT "Index too low."
END SELECT

60

CDSl
Function

Purpose

The CDBL function converts x to a double-precision number.

Format

v = CDBL(X)

Comments

x can be any numeric expression.

BASIC follows the rules for converting from one numeric precision to
another, as explained in "How BASIC Converts Numbers from One
Precision to Another" under "Numeric Variables" in IBM BASIC
Compilerl2 Fundamentals. Also see the CINT function for converting
numbers to integers, the CLNG function for converting numbers to long
integers, and the CSNG function for converting numbers to single
precision.

Examples

The value of CDBL(A) is accurate only to the second decimal place
after rounding. This is so because only two decimal places of accu
racy are supplied with A.

llO A = 454.67
120 PRINT A;CDBL(A)

Results:

454.67 454.6699829101563

61

CHAIN
Statement

Purpose

The CHAIN statement transfers control to another program.

Format

CHAIN filespec

Comments

filespec is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specification" in IBM
BASIC Compilerl2 Funcl,amentals; otherwise, an error
occurs.

The CHAIN statement performs two different ways, depending on
whether you are using the runtime module or not {to keep from using
the runtime module, you can compile with the 10 parameter}.

When you use the runtime module, chaining works as in the inter
preter. Files are left open, device status is preserved, and you can
use COMMON to pass parameters to the chained-to program. Both the
chaining program and the chained-to program must have been com
piled without the 10 parameter.

In a program that does not use the runtime module, CHAIN works just
like RUN filespec, with the exception that both the chaining program
and the chained-to program must have been compiled with 10.

Note: To share variables between programs, use the COMMON state
ment. See the "COMMON Statement" for more information.

62

Examples

CHAIN
Statement

This example shows how to run a second program from within your
application:

CHAIN "A:OVERLAY2.EXE"

63

CHOIR
Command

Purpose

The CHOIR command changes the current directory.

Format

CHOIR path

Comments

path is a string expression, not exceeding 63 characters, identi
fying the new directory that becomes the current directory.
For more information on paths, refer to "File Specification"
and "Tree-Structured Directories" in IBM BASIC Compilerl2
Fundamentals.

Examples

64

CHDIR
Command

(The examples that follow refer to the tree structure shown on the
previous page.)

To change to the root directory from any subdirectory, use:

CHOIR "\"

To change to the directory wp from the root directory, use:

CHOIR "APPS\WP"

To change to the directory FORTRAN from the directory LANG, use:

CHOIR "FORTRAN"

To change from the directory FIN to the directory APPS, use:

CHOIR " .. "

65

CHR$
Function

Purpose

The CHR$ function converts an ASCII code to its character equivalent.

Format

v$ = CHR$(n}

Comments

n must he in the range 0 through 255.

The CHR$ function returns the one-character string with ASCII code n.
CHR$ is commonly used to send a special character to the screen or
printer. For instance, you might include the BEL character, CHR$(7),

which makes the speaker beep, as a preface to an error message
(instead of using BEEP).

See Appendix B, "ASCII Character Codes," for more information.
Also see the "ASC Function" for information on how to convert a
character back to its ASCII code.

Examples

This example prints the character equivalent of ASCII code 66:

PRINT CHR$(66)

Results:

B

The next example sets function key F1 to the string "FILES," plus
Enter. This is a good way to set the function keys so Enter is auto
matic when you press the function key.

KEY l,"FILES"+CHR$(13)

66

CHR$
Function

The following example is a program that shows all the displayable
characters, along with their ASCII codes, on the screen in 80-column
width:

110 CLS
120 FOR 1=1 TO 255
130 I ignore nondisplayable characters
140 IF (1)6 AND 1<14) OR (1)27 AND 1<32) THEN Ieee
150 COLOR e,7 I black on white
160 PRINT USING "###"; I ; I 3-di gi t ASCI I code
170 COLOR 7,0 I white on black
180 PRINT" "; CHR$(I); " ";
190 IF POS(e»75 THEN PRINT I go to next line
1eOO NEXT I

67

CINT
Function

Purpose

The CINT function converts x to an integer.

Format

v = CINT(X)

Comments

x can be any numeric expression. If x is not in the range of
-32768 through 32767, an Overflow error occurs.

BASIC converts x to an integer by rounding the fractional portion, fol
lowing the rules for converting from one numeric precision to
another, as explained in "How BASIC Converts Numbers from One
Precision to Another" under "Numeric Variables" in IBM BASIC
Compilerl2 Fundamentals.

See the FIX and INT functions, both of which also return integers. See
the CLNG function for converting numbers to long integers, the CSNG

function for converting numbers to single-precision, and the CDBL

function for converting numbers to double-precision.

Examples

Observe, in both examples, how rounding occurs:

PRINT CINT(45.499)

Results:

45

PRINT CINT(-2.89)

Results:

-3

68

Purpose

CIRCLE
Statement

The CIRCLE statement draws an ellipse on the screen with the center
(x,Y) and radius (r).

The CIRCLE statement is valid only in graphics mode.

Format

CIRCLE [STEP](x,y),r [,[attributeH, [start][,[end][, aspect]]]]

Comments

STEP

(X,Y)

r

attribute

start, end

shows that you are using relative coordinates. See
"Specifying Coordinates" under "Graphics Modes" in
IBM BASIC Compilerl2 Fundamentals for more infor
mation about STEP.

are the coordinates of the center of the ellipse. You
can give the coordinates in either absolute or relative
form. See "Specifying Coordinates" under "Graphics
Modes" in IBM BASIC Compilerl2 Fundamentals.

is the radius (major axis) of the ellipse in points.

is an integer expression that specifies a color attribute.
In SCREEN 1, (medium resolution), attribute can range
from 0 through 3. In SCREEN 2, (high resolution), attri
bute can be 0 or 1.

The default color attribute for the foreground is the
maximum color attribute for that screen mode.

The default color attribute for the background is always
o.
are angles, in radians, and can range from -2*PI
through 2*PI, where PI=3.141593.

69

CIRCLE
Statement

70

The start and end variables specify where the drawing
of the ellipse begins and ends. The angles are posi
tioned in the standard mathematical way, with 0 to the
right and going counterclockwise:

PI/2

PI O,2*PI

3*P1/2

If the start or end angle is negative (-0 is not allowed),
the ellipse is connected to the center point with a line,
and the angles are treated as if they were positive
(note that this is not the same as adding 2*PI).

The start angle can be greater or less than the end
angle. For example:

110 PI=3.141593
120 SCREEN 1
130 CIRCLE (160,100),60,,-PI,-PI/2

draws a part of a circle similar to the following:

aspect

...

is a numeric expression.

CIRCLE
Statement

The aspect affects the ratio of the x-radius to the
y-radius. The default for aspect is 5/6 in medium
resolution and 5/12 in high resolution. These values
give a visual circle, assuming, that the aspect ratio of
the screen is the standard of 4/3.

If aspect is less than 1, r is the x-radius. That is, the
radius is measured in points in the horizontal direc
tion. If aspect is greater than 1, r is the y-radius.
For example:

118 SCREEN 1
128 CIRCLE (168,188),68",,5/18

draws an ellipse like this:

4.~----60------••

In many cases, an aspect of 1 results in nicer-looking
circles in medium resolution. It also causes BASIC to
draw the circle somewhat faster.

The last point referred to after a circle is drawn is the
center of the circle.

Points that are off the screen are clipped, and no error
occurs.

71

CIRCLE
Statement

Examples

The following example draws a face:

118 PI=3.141593
128 SCREEN 1 ' medium res. graphics
138 COLOR 8.1 ' black background. palette 1
148 'two circles in color 1 (cyan)
158 CIRCLE (128.58).18.1
168 CIRCLE (288.58).18,1
178 'two horizontal ellipses
188 CIRCLE (128.58).30 •••• 5/18
198 CIRCLE (288.50).30 •••• 5/18
288 'arc in color 2 (magenta)
218 CIRCLE (168.8).158.2. 1.3*PI. 1.7*PI
228 'arc. one side connected to center
238 CIRCLE (168.52).58 •• 1.4*PI. -1.6*PI

72

CLEAR
Command

Purpose

The CLEAR statement sets all numeric variables to O's and all string
variables to null. The options set the amount of stack space.

CLEAR is supported for the run-time module only.

Format

CLEAR [,[n] [,s]]

Comments

n is an integer expression. This parameter is ignored by the com
piler. If you are compiling a program that was originally written
for the interpreter, the value for n can be included without
causing an error.

s is an integer expression that sets aside stack space for the
BASIC compiler. The default is 768 bytes. Include s if you use
many nested GOSUB statements or FOR ... NEXT loops in your
program, or if you use PAINT to do complex scenes.

CLEAR performs the following actions:

• Closes all files.

• Clears all COMMON variables.

• Resets the stack and stri ng space.

• Releases all buffers (that is, space allocated for file buffers is
returned to string space).

• Resets all variables and arrays to 0 or null.

• Resets DEF SEG to the default.

• Turns off any sound that is running and resets to Music Fore
ground.

73

CLEAR
Command

• Resets PEN and STRIG to OFF.

• Resets the DRAW graphics parameters.

• Resets all events.

Because type definitions are determined when the program is com
piled, any definitions set by DEFtype are not cleared.

If you use CLEAR, it should be the first statement in your program
because it erases all variables.

The ERASE statement is useful to free some memory without erasing
all the data in the program. It erases only specified arrays from the
work area. See the "ERASE Statement."

Examples

This example clears all data from memory (without erasing the
program):

CLEAR

The next example clears the data and sets the size of the stack to
2000 bytes:

CLEAR ,,2000

74

CLNG
Function

Purpose

The ClNG statement converts x to a long integer.

Format

v = ClNG (x)

Comments

x can be any numeric expression. If x is not in the range of
-2147483648 through 2147483647, an error occurs.

BASIC follows the rules for converting from one numeric precision to
another, as explained in "How BASIC Converts Numbers from One
PrecisiorJ to Another" under "Numeric Variables" in IBM BASIC
Compilerl2 Fundamentals. Also see the CINT function for converting
numbers to integers, the CSNG function for converting numbers to
single-precision, and the COBl function for converting numbers to
double-precision.

Examples
A = 33456.789
PRINT A#, CLNG(A#)

Results:

33456.789 33457

75

CLOSE
Statement

Purpose

The CLOSE statement terminates lID to a device or file.

Format

CLOSE [[#] filenum [,[#] filenum]]

Comments

filenum is the number used on the OPEN statement.

The association between a particular file or device and its file number
stops when CLOSE is run. Subsequent lID operations specifying that
file number are invalid. The file or device can be opened again using
the same or a different file number, or the file number can be reused
to open any device or file.

A CLOSE to a file or device opened for output causes the final buffer to
be written to the file or device.

A CLOSE with no file numbers specified causes all open devices and
files to be closed.

A RESET, RUN, STOP, SYSTEM, CLEAR or Ctrl + Break causes all open files
and devices to be automatically closed.

See also "OPEN Statement" for information about opening files.

76

CLOSE
Statement

Examples

This example causes the files and devices associated with file
numbers 1, 2, and 3 to be closed:

100 CLOSE #1,#2,#3

This example causes all open devices and files to be closed:

100 CLOSE

77

CLS
Statement

Purpose

The CLS statement clears the screen.

Format

CLS

Comments

When the screen is in text mode, the active page is cleared to the
background color. See also "COLOR Statement" and "SCREEN

Statements. "

When the screen is in graphics mode, the entire screen buffer is
cleared to the background color.

The CLS statement also returns the cursor to the home position. In
text mode, this means that the cursor is located in the upper left
corner of the screen. In graphics mode, the home position is the
center of the screen. This becomes the "last point referred to" for
future graphics statements. In medium resolution, the center of the
screen is (160,100). In high resolution, the center of the screen is
(320,100).

Changing the screen mode or width by using the SCREEN or WIDTH

statements.also clears the screen.

When you are using the VIEW statement, CLS clears only the current
viewport. To clear the entire screen, you must use VIEW to disable the
active viewport and then use CLS to clear the screen.

78

Examples

CLS
Statement

In color graphics mode, this example clears the screen to blue:

118 SCREEN 8,8,8
128 COLOR 18,1
138 CLS

79

COLOR
Statement

The COLOR Statement in Text Mode

Purpose

In Text mode the COLOR statement sets the colors for the foreground,
background, and screen border. See "Screen Displays" in IBM
BASIC Compilerl2 Fundamentals for an explanation of these items.

Format

COLOR [foreground] [,[background] [,border]]

Comments

foreground is.a numeric expression in the range 0 through 31,
representing the character color.

background is a numeric expression in the range 0 through 7 for
the background color.

border is a numeric expression in the range 0 through 15. ~t is
the color for the border screen.

If you have the Color/Graphics Monitor Adapter, the following colors
are allowed as values for foreground:

0 Black 8 Gray
Blue 9 Light Blue

2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 High-intensity White

Colors and intensity can vary depending on your display device.

80

COLOR
Statement

You might like to think of colors 8 to 15 as "light" or "high-intensity"
values of colors 0 to 7. To obtain the "light" shade for any of the
colors 0 to 7, add 8 to that color value.

You can make the characters blink by setting foreground equal to 16
plus the number of the desired color. That is, values from 16 to 31
cause blinking characters.

You can select only color attributes 0 through 7 for background in text
mode. The foreground color attribute can equal the background color
attribute. This makes any character displayed invisible. Changing
the foreground or background color attribute makes subsequent char
acters visible again.

If you have the IBM Monochrome Display and Printer Adapter, you can
use the following values for foreground:

o Black when background is 0 or 7, green otherwise.

1 Underlined green.

2-7 Green.

8 Black when background is 0 or 7, intense green otherwise.

9 Intense underlined green.

10-15 Intense green.

16 Blinking black when background is 0 or 7, blinking green
otherwise.

17 Underlined blinking green.

18-23 Blinking green.

24 Blinking black when background is 0 or 7, blinking green
otherwise.

25 Intense blinking underlined green

26-31 Intense blinking green.

81

COLOR
Statement
For background, you can select the following values:

0-6 Black

7 Green, if foreground is 0, 8, 16, or 24. Black otherwise.

Note: The color attri butes:

0,7
8,7
16,7
24,7

all produce reverse video (black on green).

All other color combinations produce some form of standard
video (green on black) on the IBM Monochrome Display.

Any parameter can be omitted. Omitted parameters assume the old
value. If the COLOR statement ends in a comma (,), you get Syntax
Error. For example:

COLOR 1,7,

is incorrect.

Any values entered outside the range ° through 255 result in an
Illegal function call error.

82

Examples

COLOR
Statement

This statement sets a yellow foreground, a bl ue background, and a
black border screen when using the Color/Graphics Monitor Adapter
or equivalent:

COLOR 14,1, 0

The following example can be used with either the Color/Graphics
Monitor Adapter or the IBM Monochrome Display and Printer Adapter:

100 PRINT "Enter your ";
120 COLOR 15,0 'highlight next word
130 PRINT "password";
140 COLOR 7 'return to default (white on black)
150 PRINT" here: ";
160 COLOR 0 'invisible (black on black)
170 INPUT PASSWORDS
180 IF PASSWORD$="secret" THEN 220
190 ' blink and highlight error message
200 COLOR 31: PRINT "Wrong Password": COLOR 7
210 GOTO 110
220 COLOR 0,7 'reverse image (black on white)
230 PRINT "Program continues ... ";
240 COLOR 7,0 'return to default (white on black)

83

COLOR
Statement

The COLOR Statement in Graphics Mode

Purpose

In graphics mode the COLOR statement sets the colors for the back
ground and palette in Screen mode 1.

This statement is available in Screen mode 1 only.

Format

COLOR [background] [,palette]

Comments

background is an integer expression in the range 0 through 15. It
specifies the background color attribute.

palette is an integer expression. It selects one of two palettes
of color. The maximum color attribute in each palette is
3.

Palette is always 0 in OS/2 mode.

In screen 1, the COLOR statement sets a background color and
chooses one of two palettes with four color attributes each (0-3).
Color attribute 0 is always the current background. You can select
one of three color attributes for the foreground color to be used with
PSET, PRESET, LINE, CIRCLE, PAINT, VIEW, and DRAW.

The colors selected when you choose each palette are as follows:

Attribute
1
2
3

84

Palette 0
Green
Red
Brown

Palette 1
Cyan
Magenta
White

COLOR
Statement

If palette is an even number, palette 0 is selected. This associates
green, red, and brown to the color attributes 1, 2, and 3.

If palette is an odd number, palette 1 is selected. This associates
cyan, magenta, and white to the color attributes 1, 2, and 3.

The default for palette is O. The color selected for background can be
the same as any of the palette colors. Any parameter can be omitted
from the COLOR statement. Omitting parameters does not cause the
current background or palette to change. Any values entered outside
the range 0 through 255 cause an Illegal function call error. Previous
values are retained.

Graphics mode can display text in any of the three colors available in
the current palette. However,' if you are not using a U.S. keyboard,
refer to the GRAFTABL command in the IBM Disk Operating System
Version 3.30 Reference for information regarding additional character
support for the Color/Graphics Monitor Adapter and other keyboards.

Examples

This statement sets the background to light blue and selects
palette 0:
110 SCREEN 1
120 COLOR 9,0

The following example is for DOS mode only:

In the next example, the background stays light blue, and palette 1 is
selected:
COLOR ,1

85

COM(n)
Statement

Purpose

The COM(N) statement enables or disables trapping of communications
activity to the specified communications adapter.

This statement is only supported under DOS 3.30 and OS/2 mode.

Format

COM(n) ON

COM(n) OFF

COM(n) STOP

Comments

n is the number of the communications adapter (1 or 2).

A COM(n) ON statement must be run to allow trapping by the ON COM(n)
statement. If a non-O line number is specified in the ON COM(n) state
ment, BASIC checks every time a new statement or line (depending on
whether you compiled using IV or IW) is run to see if any characters
have come in to the communications adapter.

If cOM(n) is off, no event trapping takes place, and any communication
activity is not remembered even if it does take place. When COM(n) is
off, data is not lost unless the amount of data exceeds the size of the
communications buffer.

Note: If your program contains any event-trapping statements, such
as ON COM, you need to compile your program using the IV or IW
switch.

If a COM(n) STOP statement has been run, no trapping can take place.
However, any communications activity that does take place is remem
bered so that an immediate trap occurs when COM(n) ON is run.

86

Examples

COM(n)
Statement

This example enables trapping of communications activity on COM1:

10 COM(l) ON

87

COMMAND$
Function

Purpose

The COMMAND$ statement returns the parameters from the command
line used to call the program.

Format

v$= COMMAND$

Comments

You can use this function to determine which command parameters
are currently in effect. With this information you can verify, for
example, the number of players selected for a game, and then branch
to the appropriate section of code.

All leading blanks are removed from the command line. The following
characters, used to control redirection of I/O are also removed:

<
>
»

Anything following these characters is also removed. All letters are
converted to uppercase (capital letters).

Examples

Suppose you have written a program named SORT that sorts an input
file alphabetically. If you call your program with the following:

SORT TENNIS.NAM

COMMAND$ will return TENNIS.NAM to your program. You can then
include a statement similar to the following in your SORT program:

X$ = COMMAND$
OPEN X$ AS #1

88

COMMAND$
Function

This procedure allows you to pass the name of the file you want to
I sort as a command parameter, rather than as input from the user

during a program run.

89

COMMON
Statement

Purpose

The COMMON statement passes variables to a chained or called
program.

Format

COMMON [SHARED][lblockname/]variable [([integer])][AS type]
[,variable[([integer])] [AS type]] ...

Comments

SHARED allows you to share variables among all subprograms in
a module.

blockname is an identifier up to 40 characters long.

variable is the name of a variable to be passed to the chained-to
program. Arrays are specified by appending "0" to the
array name.

integer

type

is the number of dimensions the array has if it is a
dynamic array.

is one of the followi ng:

• INTEGER

• LONG
• SINGLE
• DOUBLE
• STRING [* bytecount]

• typename
typename must have been
defined in a previous TYPE
statement.

The IBM BASIC Compiler/2 supports named common blocks, making it
easier to pass information between subprograms and modules.

90

COMMON
Statement

Note: A standard COMMON (blank COMMON) statement, becomes a
named COMMON statement with the addition of the optional blockname
parameter. The standard COMMON statement can be used to pass
information between subprograms and modules, but does not allow
structured development of subprogram modules and libraries.

There are two forms of array declaration in COMMON statements. If
the array declaration uses the form:

COMMON variableO

the array is treated as a static array and must have been declared
with integer constant subscripts in a previous DIM statement.

If the array is declared using the following form:

COMMON variable(integer)

the array is treated as a dynamic array, where integer is an integer
constant indicating the number of dimensions. The array elements
are not allocated at this time; only space for the dynamic array
descriptor is reserved in the COMMON area. The array must be allo
cated at some point by a DIM or REDIM statement referring to the array.
If the array is allocated in the chaining program, its element values
are passed to the chained-to program. The presence of a subse
quent DIM statement in the chained-to program produces an error. A
subsequent REDIM erases the passed values.

The SHARED attribute allows the variables to be shared globally by the
mai n program and all subprograms within a module. To declare vari
ables as global variables, place the word "SHARED" directly after the
word "COMMON." This differs from the SHARED statement. The SHARED

statement only affects variables within a single subprogram. For
more information, see the "SHARED Statement."

Unlike a blank COMMON statement, items in a named COMMON state
ment are not preserved across chaining to new programs.

91

COMMON
Statement

If the same block name is used in more than one module, the vari
ables in the variable list must be the same type and size and must be
listed in the same order. However, the names may be different. For
example:

A,B,C(2)
and

E,F,G(2)

are correct, but

A,B,C(2)
and

E,F(2).G

are not.

The COMMON statement must appear in a program before any execut
able statements. The nonexecutable statements for the IBM BASIC

Compiler/2 are as follows:

COMMON
DATA
DECLARE

DEFtype

DIM (static arrays only)
OPTION BASE
REM
SHARED
STATIC
TYPE

all compiler metacommands.

All other statements are executable.

If there are any variables in the COMMON statement whose types are
defined by a DEFtype statement, the DEFtype statement must precede
the COMMON statement.

For static arrays, the COMMON statement must appear after the DIM

statement. For dynamic arrays, the COMMON statement must appear
before the DIM statement.

92

COMMON
Statement

When you use COMMON to communicate with a chained-to program,
you must use the run-time module (compile without the /0 param
eter). Also, both the chaining program and the chained-to program
require a COMMON statement. The order of variables in the two state
ments must be the same. The common variables must be common to
all programs you are chaining to. If the size of the COMMON in the
chained-to program is smaller, the extra common variables are
ignored. If the common size is larger, the additional common vari
ables are initialized to 0 or nUll.

When you compile with the /0 parameter, COMMON may only be used
to pass variables to assembly language subprograms. To refer to
variables in COMMON, your assembly language subroutine needs this
segment definition:

COMMON SEGMENT COMMON 'BLANK'

and this group definition record:

DGROUPGROUPCOMMON

A convenient way to share COMMON areas between programs is to
place COMMON declarations and necessary preceding DIM statements
in a single included file and use the $INCLUDE metacommand in each
program .. For example:

MENU.BAS

100 REM $INCLUDE: 'COMDEF'

1000 CHAIN "PROG1"

PROG1.BAS

1100 REM $INCLUDE: 'COMDEF'

2000 CHAIN "MENU"

COMDEF.BAS

93

COMMON
Statement
DIM A(100),B$(200)
COMMON 1, J K A ()
COMMON A$,B$().X,Y,ZIP

COMDEF.BAS shows how static arrays are passed by adding 0 to the
array name.

Examples

This example chains to program PROG3 on the disk in drive A:, and
passes the static array 0 along with the variables A, BEE1, C, and G$:

100 COMMON A,BEE1,C,D(),G$
110 CHAIN "A:PROG3"

This is an example that uses dynamic arrays. Dynamic arrays must
be dimensioned after the COMMON s,tatement. The chaining program
in the following example contains the first allocation of array X:

COMMON X(2)
DIM X(N,M)

'2 indicates 2 dimensions
'first allocation

The chained-to program reallocates array X, erasing its original con
tents:

COMMON X(2)
REDIM X(O,P)

94

'reallocation

COS
Function

Purpose

The cos function returns the trigonometric cosine function.

Format

v = cos (x)

Comments

x is the angle whose cosine is to be calculated. The value of x
must be in radians. To convert from degrees to radians, multiply
the degrees by P1/180, where PI = 3.141593.

Examples

This example shows that the cosine of. PI radians is equal to -1.
Then it calculates the cosine of 180 degrees by first converting the
degrees to radians (180 degrees is the same as PI radians).

18 PI=3.141593
20 PRINT cOS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
50 PRINT COS (RADIANS)

Results:

-1
-1

95

CSNG
Function

Purpose

The CSNG statement converts x to a single-precision number.

Format

v = CSNG(X)

Comments

x can be any numeric expression.

BASIC follows the rules for converting from one numeric precision to
another, as explained in "How BASIC Converts Numbers from One
Precision to Another" under "Numeric Variables" in IBM BASIC
Compilerl2 Fundamentals. Also see the CINT function for converting
numbers to integers, the ClNG function for converting numbers to long
integers, and the CDBl function for converting numbers to double
precision.

Examples

In this example, the value of the double-precision number A# is
rounded at the seventh digit and returned as CSNG(A#):

10 A# = 975.3421222#
20 PRINT A#; CSNG(A#)

Results:

975.3421221999999 975.3421

96

CSRLIN
Variable

Purpose

The CSRLlN statement returns the vertical coordinate of the cursor.

Format

v = CSRLlN

Comments

The CSRLlN variable returns the current line (row) position of the
cursor on the active page. The active page is explained under the
SCREEN statement. The value returned is in the range 1 through 25.

The pas function returns the column location of the cursor. See "pas
Function."

See also LOCATE statement to see how to set the cursor line.

Examples

This example saves the cursor coordinates in the variables X and Y,
then moves the cursor to line 24 to put the words "HI MOM" on that
line. The cursor is then moved back to its former position.

10 Y = CSRLIN 'record current line
20 X = POS(0) 'record current column
30 LOCATE 24.1: PRINT "HI MOM"
40 LOCATE Y.X 'restore position

97

eVI, eVL, evs, eve
Functions

Purpose

The CVI, CVL, CVS, and CVD functions convert string variable types from
random files to numeric variable types.

Format

v = cVI(two-byte string)
v = CVL(four-byte string)
v = cvs(four-byte string)
v = cVD(eight-byte string)

Comments

string is a numeric value stored in a random file.

Numeric values read from a random file must be converted from
strings into numbers. CVI converts a two-byte string to an integer. CVL

converts a four-byte string to a long integer. cvs converts a four-byte
string to a single-precision number. CVD converts an eight-byte string
to a double-precision number.

The CVI, CVL, CVS, and CVD functions do not change the bytes of the
actual data. They change only the way BASIC interprets those bytes.

If floating-point numbers were written to the random file by the BASIC

Interpreter or by a previous version of the BASIC Compiler, you must
use the CVSMBF and CVDMBF functions instead of the cvs and CVD func
tions. See the next section for details on these functions.

See also the MKI$, MKL$, MKS$, MKD$ functions in this book and "BASIC
Disk Input and Output" in IBM BASIC Compilerl2 Fundamentals.

98

CVI, CVL, CVS, CVD
Functions

Examples

This example uses a random file (#1) that has previously been
opened, with fields defined as in line 100. Line 110 reads a record
from the file. Line 120 uses the cvs function to interpret the first four
bytes (N$) of the record as a single-precision number. N$ was ori
ginally a number that was written to the file using the MKS$ function.

100 FIELD #1,4 AS N$, 12 AS B$
110 GET #1
120 Y=CVS(N$)

99

CVSMBF, CVDMBF
Functions

Purpose

The CVSMBF and CVDMBF functions interpret the contents of a string
argument as a number in Microsoft Binary Format and convert it to a
'number in IE!=E format.

Format

v = CVSMBF(four-byte string)

V= CVDMBF(eight-byte string)

Comments

string is a numeri~ value stored in Microsoft Binary Format.

Numeric values read from a random file that was created with an
earlier version of the BASIC Compiler or with the BASIC Interpreter
must be converted to IEEE format. CVSMBF converts a four-byte string
to a single-precision number. CVDMBF converts an eight-byte string to
a double-precision number.

You can also use th~ ICV parameter on the IBM BASIC Compiler/2
command line to mc;lke the conversion automc;itic.

See also the MKSMBF$ MKDMBF$ functions and the CVI, CVL, cvs, and CVD

functions in this book.

100

CVSMBF, CVDMBF
Functions

Examples

This example reads a record from an old format random access file
and allows new values to be entered in its fields. It uses CVSMBF,

CVDMBF, MKSMBF$ and MKDMBF$ to convert from the old Microsoft
Binary format to the current IEEE number format.

I Define the record structure for file record:
TYPE OldRecord

10 AS STRING * 10
Cost AS STRING * 4
Amt AS STRING * 8

I Single precision number
I Double precision number

END TYPE

I Define a variable of the above structure:
DIM Buff AS OldRecord

I Open file:
OPEN "OLD. OAT" FOR RANDOM AS 11

I Get the first record:
GET 11, 1, Buff

I Decode values:
CostVal = CVSMBF(Buff.Cost)
AmtVall = CVDMBF(Buff.Amt)

I Get updated values:

I Single precision value
I Double precision value

PRINT "'lICurrent: "Buff. 10", "CostVal", "AmtVal I"
INPUT "New? :", NewID$, CostVal, AmtVall

I Encode the new values for writing to the file:
Buff.Cost = MKSMBF$(CostVal)
Buff.Amt = MKDMBF$(AmtVall)
Buff.ID = NewID$

I Write the updated record to the file:
PUT 11, 1. Buff

END

101

DATA
Statement

Purpose

The DATA statement stores the numeric and string constants that are
accessed by the READ statements of a program.

Format

DATA constant[,constant] ...

Comments

constant can be a numeric or string constant. No expressions are
allowed in the list. The numeric constants can be in any
format - integer, long integer, fixed point, floating point,
hex, or octal. String constants in DATA statements do not
have to be enclosed by quotation marks unless the string
contains commas, colons, or significant leading or
trailing blanks.

DATA statements are not executable and can be placed anywhere in
the program. A DATA statement can contain as many constants as will
fit on a line, and any number of DATA statements can be used in a
program. The information contained in the DATA statements can be
thought of as one continuous list of items, regardless of how many
items are on a line or where the lines are placed in the program. The
READ statements get access to the DATA statements in line-number
order.

The variable type (numeric or string) in the READ statement must
agree with the corresponding constant in the DATA statement or an
error occurs.

You can use :REM to add a remark to a DATA statement. You cannot,
however, use the single quote (') to add remarks to the end of a DATA

statement. If you do, the compiler treats it as part of a string.

102

DATA
Statement

Use the RESTORE statement to reread information from any line in the
list of DATA statements. See the "RESTORE Statement" in this book.

Examples

See the examples, under the "READ Statement" in this book.

103

DATE$
Variable and Statement

Purpose

The DATE$ statement sets or retrieves the date.

Format

As a variable:

v$ = DATE$

As a statement:

DATE$ = x$

Comments

For the variable (v$ = DATE$):

A 10-character string in the form mm-dd-yyyy is returned. Here, mm
represents two digits for the month, dd is the day of the month (also
two digits), and yyyy is the year. The date can be set using the oper
ating system DATE command before running your application.

For the statement (DATE$ = x$):

Thex$ is a string expression used to set the current date. You can
enter x$ in anyone of the following forms:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

The year must be in the range 1980 through 2099 in DOS, 1980 through
2079 in OS/2. If you use only one digit for the month or day, a 0 (zero)
is assumed in front of it. If you enter only one digit for the year, a 0 is

104

DATE$
Variable and Statement

appended to make it two digits. If you enter only two digits for the
year, the year is assumed to be 19yy.

Examples

In this example, we set the date to August 29, 1984. Notice how,
when we read the date back using the DATE$ function, a 0 is included
in front of the month to make it two digits, and the year becomes
1984. Also, the month, day, and year are separated by hyphens even
thouQh we enter them as slashes.

10 DATE$=18/29/84"
20 PRINT DATE$

flesults:

08-29-1984

105

DECLARE
Statement

Purpose

The DECLARE statement identifies external procedures and proce
dures that a program calls before it defines.

Format

DECLARE SUB I FUNCTION name [CDECL] [ALIAS "aliasname"] [parameters]

Comments

name

CDECL

aliasname

parameters

106

is the name of the procedure. If the procedure is
external and its name is not a proper BASIC identifier,
you can give it a nickname here to use in your
program and specify its real name for aliasname.

declares that the procedure expects parameters to
be passed in the same order as the C language
uses; that is, the first parameter is pushed on the
stack last. It also means that BASIC must clean the
parameters from the stack for you after the proce
dure returns.

If CDECL is used without ALIAS, BASIC adds an under
score to the beginning of name. If CDECL, is used
with ALIAS, BASIC does not add an underscore to the
beginning of aliasname unless it is specified explic
itly as part of aliasname.

is the real name of the procedure. You don't have to
specify an aliasname unless the procedure is
external and its name is different from name.

is a list of the parameters that the calling program
will pass to the subprogram or function.

When you are declaring a procedure that was com
piled with the IBM C/2 Compiler, the IBM Pascal

DeCLARE
Statement

Compiler/2, or assembled with the IBM Macro
Assembler/2, parameters can be of the form:

([[BYVAL I SEG]parameter [([integer]) [AS type],] ...])

BYVAL indicates that the procedure expects the
actual value of the parameter (rather than the
address of the value). When the procedure is
called, BASIC attempts to convert BYVAL parame ...
ters to the type you specify in the DECLARE state ...
ment. If BASIC cannot convert the parameter, an
error occurs.

SEG indicates that the procedure expects the far
address of the value of the parameter. Do not
use SEG or BYVAL to declare BASIC procedures.
Do not use SEG to pass array descriptors. They
are private and known only to BASIC.

The type is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING

• typename

• ANY

typename must have been
defined in a previous TYPE

statement.

ANY can be used only with
external procedures.

Note: The ANY keyword allows you to specify a
parameter without having the compiler check its
type. It is primarily intended for allowing vari ...
abies of different user ... defined types to be
passed to the same external procedure.

107

DECLARE
Statement
When you specify pqrameters in the DECLARE statement, BASIC checks
the type and count of the parameters against the actual parameters in
the SUB or FUNCTION statement. If parentheses are not present in the
DECLARE statement, BASIC does not check the type and count of the
parameters.

For all BYVAL parameters, BASIC changes the actual parameters to the
DECLAREd type before the procedure is invoked, if possible. If BASIC
cannot change the type (for example, changing a string to single
precision), an error occurs. If BASIC finds a type mismatch for a
parameter in a SUB or FUNCTION statement that is not defined as BYVAL,
BASIC returns an error.

108

Examples

DECLARE
Statement

This example uses DECLARE to allow a forward reference to a function:

I DECLARE function defined below so it can be used before it is defined:
DECLARE FUNCTION NumVowels (Txt$)

CLS
PRINT "Type some text then press <ENTER>:"
LI NE INPUT T$

PRINT
PRINT "The text contains ". NumVowels(T$): " Vowels."
END

I Now, define the function
FUNCTION NumVowels (T$) STATIC

Count = 0
FOR 1=1 TO LEN(T$)

I Extract a character:
CharS = MID$(T$, I, 1)

I If char is in the set of vowels, count it:
IF INSTR("aeiou", LCASE$(Char$)) <> 0 THEN

Count = Count + 1
END IF

NEXT I

NumVowels = Count

END FUNCTION

See also "CALL Statement" for examples of using DECLARE to identify
external procedures.

109

DEF FN and END DEF and EXIT DEF
Statements

Purpose

The DEF FN and END DEF and EXIT DEF statements define and name a
function that you write.

Format

Single-Line Format:

DEF FNname[(parameter [AS type] [,parameter[AS type]] ...)] =

expression

Multi-line Format:

DEF FNname[(parameter [AS type] [,parameter[AS type]] ...)]
statements
[FNname = expression]
[EXIT DEF]

statements
FNname = expression

END DEF

110

Comments

name

parameter

type

DEF FN and END DEF and EXIT DEF
Statements

is a correct variable name. This name, preceded by
FN, becomes the name of the function. Use a type
declaration character on the end of name to specify the
type of value the function will return.

is the name of a simple variable.

is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING

• typename
typename must have been
defined in a previous TYPE

statement.

expression defines the returned value of the function. The type of
the expression (numeric or string) must match the type
declared by name.

statements are the BASIC statements to be performed when the
function is called.

111

DEF FN and END DEF and EXIT DEF
Statements

The function definition can occupy one line, or as many program lines
as required. If your function definition fits on a single program line,
only the DEF FN statement is needed.

Parameters that appear in the function definition serve only to define
the function; they do not affect program variables that have the same
name. A variable name used in the expression does not have to
appear in the list of parameters. If it does, the value of the corre
sponding argument supplied when the function is called, is used.
Otherwise, the current value of the variable is used. If you want to
define a function that uses local variables, see the information on the
FUNCTION statement.

When a DEF FN function is called, BASIC converts the values of the
arguments to those specified by the parameters in the DEF FN state
ment. If BASIC cannot convert the ty;pe (for example, changing a string
to single-precision), an error is generated by the compiler.

112

DEF FN and END DEF and EXIT DEF
Statements

The function type determines whether the function returns a numeric
or string value. The type of the function is declared by name in the
same way as variables are declared. See IBM BASIC Compilerl2
Fundamentals for more information. If the type of expression (string
or numeric) does not match the function type, an error occurs; other
wise, the value of the expression is converted to the preCision speci
fied by name before it is returned to the calling statement.

You must define a DEF FN function before you refer to it. If you do not,
BASIC returns an error. You can define a DEF FN function only once.
An attempt to redefine a DEF FN function produces an error.

DEF FN functions cannot appear inside DEF/END DEF, IF/THEN/ELSE,

FOR/NEXT, SUB/END SUB, or WHILE/WEND blocks.

113

DEF FN and END DEF and EXIT DEF
Statements
Multi-Line Functions

If your function definition occupies more than one program line, you
must begin the definition with a DEF FN statement and end the defi
nition with an END DEF statement. The EXIT DEF statement is available
for branching out of the defined function.

Results must be assigned to the multi-line function name prior to
leaving or ending the function; otherwise, the results are lost.

Because multi-line functions are very powerful, they must be used
with care. Some things to be aware of are:

• The RETURN statement is not equivalent to the END DEF statement,
or the EXIT DEF statement. Using a RETURN statement in a multi-
Ii ne function can cause unpredktable results.

• If you are not careful when constructing multi-line functions, you
may get unexpected side effects. Most of these occur because,
as an optimizing compiler, the IBM BASIC Compiler/2 may rear
range arithmetic expressions for greater efficiency. Make use of
temporary variables and parentheses to ensure that expressions
are evaluated in the intended order.

114

DEF FN and END DEF and EXIT DEF
Statements

Examples

In this example, line 20 defines the function FNAREA, which calculates
the area of a circle with radius R. The function is called in line 40.

10 PI=3.141593
20 DEF FNAREA(R)=PI*RA 2
30 INPUT "Radius? ",RADIUS
40 PRINT "Area is " FNAREA(RADIUS)

Results:

Radius? 2
Area is 12.56637

The following example contains a function definition that converts an
angle measure in degrees, minutes, and seconds to an angle
measure in radians. (An angle must be given in radians for the trig
onometric functions of BASIC to return a meaningful answer.)

DEF FNDEGRAD(D,M,S)
STATIC PI
PI = 3.14159263
o = D + M/60 + S/3600
FNDEGRAD = D * (PI/180)

END DEF

PRINT "Enter the angle (degrees, minutes, seconds)."
PRINT "Enter 0 for degrees to end." : PRINT
NEWVAL:

INPUT ;"SIN(",DEG
IF DEG = 0 THEN PRINT ")" : END
PRINT CHR$(248) " ";
INPUT ;"",MIN : PRINT '" ";
INPUT ;"",SEC : PRINT CHR$(34);
RAD = FNDEGRAD(DEG,MIN,SEC)
PRINT ") =" SIN(RAD)
GOTO NEWVAL

Results:
Enter the angle (degrees, minutes, seconds).
Enter 0 for degrees to end.

SIN(45° 10' 10") = .7091949
SIN(45° 10' 20") = .7092291
SIN(O)

115

DEF SEG
Statement

Purpose

The OEF SEG statement defines the current segment of memory. A
subsequent BLOAO, BSAVE, CALL ABSOLUTE, PEEK, or POKE definition
specifies the offset into this segment.

Format

OEF SEG [= segment]

Comments

The segment is a numeric expression In the range 0 through 65535.

The initial setting for the segment when your application begins is the
data segment (os) of the compiler. It is the beginning of your work
space in memory.

Note: OEF and SEG must be separated by a space; otherwise, BASIC

interprets the statement DEFSEG=100 to mean "Assign the value 100
to the variable OEFSEG."

Any value entered outside the range indicated results in an Illegal
function call error. The previous value is retained.

See aiso "Calling Assembly Language Subprograms" in IBM BASIC
Compilerl2 Fundamentals for more information on using OEF SEG.

Note to OS/2 users:

In the OS/2 mode, OEF SEG treats the segment as a selector. Illegal
memory references may cause exceptions or return a Permission
denied error.

116

Examples

DEF SEG
Statement

The first example restores a segment to BASIC data segment:

DEF SEG I restore segment to the BASIC data segment

In the second example, the screen buffer for the Color/Graphics
Monitor adapter is at segment BBOOH, offset O. Because segments
are specified on 16-byte boundaries, the last hex digit can be dropped
on the DEF SEG specification. This example is for DOS mode only.

DEF SEG=&HB800

117

DEFtype
Statement

Purpose

The DEFTYPE statement declares variable types as integer, long
integer, single-precision, double-precision, or string.

Format

DEFtype letter[-Ietter] [,/etter [-letter]] ...

Comments

type is one of the following:

• INT

• lNG

• SNG

• DBl

• STR

letter is a letter of the alphabet (A - Z).

A DEFtype statement declares that the variable names beginning with
the letter or letters specified will be that type of variable. However, a
type-declaration character (0/0, &, !, #, or $) takes precedence over a
DEFtype statement in the typing of a variable. See "How to Declare
Variable Types" in IBM BASIC Compilerl2 Fundamentals.

If no type-declaration statements are encountered, the compiler
assumes that all variables without declaration characters are single
precision variables.

A DEFtype statement takes effect as soon as it is encountered in your
program during compilation. Once the type has been defined for the
listed variables, that type remains in effect either until the end of the
program or until another DEFtype statement" changes the type of the
variable. Unlike the interpreter, the compiler cannot branch around
the DEFtype statement (or any statement) by using a GOTO.

118

Examples

DEFtype
Statement

In this example, line 10 declares that all variables beginning with the
letter L, M, N, 0, or P are double-precision variables.

Line 20 caUses all variables beginning with the letter A to be string
variables.

Line 30 declares that all variables beginning with the letter X,D, E, F,
G, or H are integer variables.

10 DEFDBL L-P
20 DEFSTR A
30 DEFINT X,D-H
40 ORDER = 1#/3: PRINT ORDER
50 ANIMAL = "CAT": PRINT ANIMAL
60 X=10/3: PRINT X

Results:

.33333333333333333333
CAT
3

119

DIM
Statement

Purpose

The DIM statement specifies the maximum values for array variable
subscripts and allocates memory accordingly. It also assigns the
scope of a simple variable or array variable within a module.

Format

DIM [SHARED]variable[(subscripts)] [AS type] [,variable
[(subscripts)] [AS type]] ...

Comments

SHARED

variable

subscripts

type

120

allows you to share simple variables and arrays
among all subprograms in a module.

is the name of a simple variable or array and can be
up to 40 characters in length.

define the dimensions of the array. The subscripts can
be in two forms:

• (exp[,exp] ...), where exp is a numeric expression
that defines the upper bound of the dimension.
The lower bound is implicitly defined by the OPTION

BASE statement.

• (min TO max[,min TO max] ...), where min and max
are numeric expressions that you use to explicitly
define the upper an a lower bounds of each dimen
sion in the array.

is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING [* bytecount]

DIM
Statement

• typename
typename must have been
defined in a previous TYPE

statement.

The SHARED attribute allows variables to be shared globally by the
main program and all subprograms within a module. To declare all
variables as global variables, place the word "SHARED" directly after
the word "DIM". This differs from the SHARED statement. The SHARED

statement only affects variables within a single subprogram. For
more information, see "SHARED Statement." See also, "STATIC

Statement" for an example.

Variables that you define with the AS clause are not affected by the
DEF type statement. The type of the variable is the type defined in the
DIM statement. Do not use the type-declaration characters (%, &, !, #,
or $) with variables that have an AS clause.

You can use the AS clause in the following statements only:

COMMON
DECLARE
DEF FN
DIM
FUNCTION
REDIM
SHARED
STATIC
SUB
TYPE

The first reference to a variable must have an AS clause if any refer
ence has an AS clause. After the fi rst reference, any reference to the
variable in any of the statements listed above may have an AS clause
as long as the type is the same as in the first AS clause. Types are
the same oniy when the typename is the same. Fixed-length strings
must also be the same iength.

The DIM statement sets all the elements of the specified numeric
arrays to an initial value of O. String array elements, except fixed-

121

DIM
Statement

length strings defined with the AS clause, are all variable-length and
assigned an initial null value (O-Iength).

If an array variable name is used without a DIM statement, the
maximum value of its subscript is assumed to be 10. If a subscript is
greater than the maximum specified, an error occurs.

You can specify the range of subscripts in two ways. The first way is
to specify the range of each subscript with a single integer, variable,
or expression. In this case, the maximum value of the subscript is the
number you specify. BASIC assumes the minimum value of the sub
script is 0, unless you use the OPTION BASE statement. See "OPTION

BASE Statement."

For example, you could dimension an array with the following state
ment:

DIM A(4,I+2)

This statement defines a two-dimensional array. The first dimension
is five elements long (0 through 4); the second dimension depends on
the value of I. If you had previously assigned I the value of 1, the pre
ceding example would be equivalent to:

DIM A(4,3)

and the valid elements in array A would be:

A(O,O) A(O,l)
A(1,O) A(l,l)
A(2,O) A(2,1)
A(3,0) A(3,1)
A(4,0) A(4,1)

A(0,2)
A(1,2)
A(2,2)
A(3,2)
A(4,2)

A(0,3)
A(1,3)
A(2,3)
A(3,3)
A(4,3)

The second way to specify the range of subscripts is to specify explic
itly both the minimum and maximum values for the subscripts. For
example, you could dimension an array with the following statement:

DIM 8(-2 TO 2,10 TO 13)

122

DIM
Statement

Like the previous example, this statement also defines a two
dimensional array. However, the valid elements in array Bare:

8(-2,1O) 8(-2,11) 8(-2,12) 8(-2,13)
8(-1,1O) 8(-1,11) 8(-1,12) 8(-1, 13)
8(O,1O) 8(0,11) 8(0,12) 8(0,13)
8(1,1O) 8(1, 11) 8(1,12) 8(1,13)
8(2,1O) 8(2,11) 8(2,12) 8(2,13)

The maximum number of dimensions for an array is 60. The valid
range for subscripts is -32768 through 32767. The maximum subscript
for an array varies with the type of data stored in the array.

If you dimension an array with an integer constant and $DYNAMIC is not
in effect, BASIC allocates space for the array statically. You cannot
change the dimensions of a static array. For example, the statement

DIM S(5,30,9)

defines a three-dimensional static array. If you try to dimension a
static array more than once, an error occurs.

If you dimension an array with a variable or an expression, BASIC allo
cates space for the array dynamically. You can change the dimen
sions of the array at any time in the program with the REDIM

statement. For example, the statement

DIM 0 (J , J +4 , 7)

defines a three-dimensional dynamic array.

For more information on redimensioning arrays, see the "ERASE

Statement," the "REDIM Statement," the "$DYNAMIC Metacommand,"
and the "$STATIC Metacommand." See also "Data Types" in IBM
BASIC Compilerl2 Fundamentals.

Note: You must compile with the ID parameter to enable the compiler
to check array bounds.

123

DIM
Statement

Examples

The following example performs the multiplication of two arithmetic
arrays and assigns the product to a third array. The accompanying
figure shows this process.

130 DIM A(4,2), B(2,4), C(4,4)
140 FOR I = 1 TO 4
150 FOR K = 1 TO 2
160 READ A(I,K)
170 NEXT K
180 NEXT I
190 FOR K = 1 TO 2
200 FOR J = 1 TO 4
210 READ B(K,J)
220 NEXT J
230 NEXT K
240 FOR I = 1 TO 4
250 FOR J = 1 TO 4
260 FOR K = 1 TO 2
270 C(I,J) = A(I,K) * B(K,J) + C(I,J)
280 NEXT K
290 NEXT J
300 NEXT I
310 CLS
320 FOR I = 1 TO 4
330 LOCATE 1,1
340 FOR J = 1 TO 4
350 PRINT C(I,J);
360 NEXT J
370 NEXT I
380 END
390 REM MATRIX A
400 DATA 8,3,4,2,5,6,10,12
410 REM MATRIX B
420 DATA 9,11,13,15,5,6,4,8

A

8 3 9 11
x

4 2 5 6

5 6

10 12

124

B

13 15

4 8

c
87 106 116 144

46 56 60 76

75 91 89 123

150 182 178 246

DIM
Statement

The following example shows how to use the DIM statement to declare
variables:

TYPE MYTYPE
A AS STRING * 18 '18-character fixed-length string
B AS INTEGER
END TYPE
DIM X AS INTEGER, Y(180) AS MYTYPE

Y(lO).A="This is a test" 'assign a 14-character string
PRINT "!"+Y(l8).A+"!" 'print the string

Results:

!This is a

Note that the string was cut off to 10 characters when it was assigned
to the 10-character fixed-length string field of the variable of type
MYTYPE.

125

DO
Statement

Purpose

The DO statement repeats a series of statements as long asor until a
given condition is true.

Format

First form:

DO [WHILE I UNTIL expression]
statements
[EXIT DO]

statements
LOOP

Second form:

DO

statements
[EXIT DO]

statements
LOOP WHILEluNTIL expression

Comments

statements is any statement or statements that you want BASIC to
repeat.

expression is a numeric expression that tells BASIC how long to
repeat the loop.

126

DO
Statement

BASIC runs the program lines following the DO statement until it
encounters the LOOP statement. Then BASIC evaluates the expression
in the WHILE or UNTIL clause.

If the expression is part of a WHILE clause and the expression is true,
BASIC branches back to the statement following the DO statement and
continues the process. Otherwise, BASIC exits the loop and continues
processing with the statement after the LOOP statement.

For example, in the following loop:

DO WHILE X<5
PRINT X
X=X+l
LOOP
END

BASIC repeats the loop until X is equal to 5 (when the expression X < 5
becomes false). Then BASIC skips to the END statement.

127

DO
Statement

For example, in the following loop:

DO WHILE X<5
PRINT X
X=X+l
LOOP
END

BASIC repeats the loop until X is equal to 5 (when the expression X < 5
becomes false). Then BASIC skips to the END statement.

If the expression is part of UNTIL clause and the expression is false,
BASIC branches back to the statement following the DO statement and
continues the process. Otherwise, BASIC exits the loop and continues
processing with the statement after the LOOP statement.

For example, in the following loop:

DO UNTIL X>5
PRINT X
X=X+l
LOOP
END

BASIC repeats the loop until X is equal to 6 (when the expression X> 5
becomes true). Then BASIC skips to the END statement.

If you do not use a WHILE clause or an UNTIL clause with a DO or LOOP

statement, you must provide the program with some means of
escaping the loop, or the loop will run indefinitely. You can escape a
loop by using the EXIT DO statement, as the following example shows:

DO
INPUT X
IF X=99 THEN EXIT DO
PRINT X "SQUARED IS " X 2
LOOP
END

128

DO
Statement

You can also escape a loop by explicitly branching outside the loop
by using the GOTO statement, as the following example shows:

Hl DO
20 INPUT X
30 IF X>99 GOTO 70
40 IF X=99 GOTO 80
50 PRINT X "SQUARED IS " X-'2
60 LOOP
70 PRINT "Your input is too high."
80 END

You can nest DO loops; that is, you can place one DO loop inside
another DO loop. You must nest DO loops physically as well as log
ically. The LOOP statement for the inside DO loop must appear before
the LOOP statement for the outside DO loop.

129

DRAW
Statement

Purpose

The DRAW statement draws an object as specified by string.

Graphics mode only.

Format

DRAW string

Comments

The DRAW statement draws objects using a graphics definition lan
guage. The language commands are contained in the string
expression string. The string defines an object, which is drawn at run
time. When a movement command is given, a line is drawn from the
last point referred to.

In the following movement commands, n indicates the distance to
move. The n can be any integer. The number of points moved is n
times the scaling factor (set by the S command). The movement com
mands are detailed here.

Un Move up.

Dn Move down.

Ln Move left.

Rn Move right.

En Move diagonally up and right.

Fn Move diagonally down and right.

Gn Move diagonally down and left.

Hn Move diagonally up and left.

130

DRAW
Statement

M x,y Move absolute or relative. If x has a plus sign (+) or a
minus sign (-) in front of it, it is relative; Otherwise, it is
absolute.

The following two prefix commands can precede any of these move
ment commands:

B Move, but do not plot any pOints.

N Move, but return to the original position when finished.

The following commands are also available:

A n Set angle n. The value of n can range from 0 through 3,
where 0 is 0 degrees, 1 is 90,2 is 180, and 3 is 270. Figures
rotated 90 or 270 degrees are scaled so they appear the
same size with 0 or 180 degrees on a display screen with
standard aspect ratio 4/3.

C n Set color n. n is an integer that specifies a color attribute. In
SCREEN 1 (medium resolution), n can range from 0 through 3.
In SCREEN 2 (high resolution), n can be 0 or 1.

The default color attribute for the foreground is the
maximum color attribute for that screen mode.

The default color attribute for the background is always r.

P paint,boundary
Set figure color to paint and border color to boundary. The
paint parameter is an integer expression. You select this
attribute from the attribute range for the current screen
mode.

The boundary parameter is the border color attribute of the
figure to be filled in. You select this attribute from the attri
bute range for the current screen mode. In SCREEN 1,
(medium resolution), attribute can range from 0 through 3.
In SCREEN 2, (high resolution), attribute can be 0 or 1.

The default color attribute for the foreground is the
maximum color attribute for that screen mode. For example,
in SCREEN 5 the default color attribute is 15.

131

DRAW
Statement

The default color attribute for the background is always O.

S n Set scale factor. The value of n can range from 1 through
255. The scale factor is n divided by 4. For example, if n = 1,
then the scale factor is 1/4. The scale factor multiplied by
the pistanGes given with the U, D, L, R, E, F, G, H, and rela
tive M commands gives the actual distance moved. The
default value is 4, so the scale factor is 1.

TA n Turn angle n. The value of n can range from -360 through
+ 360. If n is positive (+), the angle turns counterclockwise.
If n is negative (-), the angle turns clockwise. Values
entered that are outside of the range -360 through + 360
cause an Illegal function call error.

X variable;
Run substring. This allows you to run a second string from
within a string.

Use the VARPTR$ format for this command, as follows:

"X" + VARPTR$(variable)

Unlike the interpreter, the compiler does not allow tr~iling
semicolons in the command string.

There are two ways you can specify variables in a DRAW string for the
compiler:

• Use the" X" variable form, concatenated (" + ") with the VARPTR$

of the variable itself.

• Use the DRAW macro, followed by an equal sign (=) and concat
enated (" + ") with the VARPTR$ of the variable itself.

The following examples demonstrate both methods:

DRAW "X"+VARPTR$(A$)
DRAW "S="+VARPTR$(SC)

The X command can be a very useful part of DRAW. It allows you to
define segments of a picture in different X variables and to combine
the~e X variables into a single DRAW statement. For example, if you
are creating a scene of a house with a chimney and a tree, each of

132

DRAW
Statement

these objects can be defined in an X variable so your DRAW statement
can look like this:

DRAW "X"+VARPTR$(HOUSE$)+"X"+VARPTR$(CHIM$)+"X"+VARPTR$(TREE$)

The aspect ratio of your screen determines the spacing of the hori
zontal, vertical, and diagonal points. The DRAW statement does not
take into account the aspect ratio of the current screen mode; that is,
DRAW "RSO USO" plots exactly 50 points to the right and then 50 up, but
the two lines will not appear to be equal in length.

The aspect ratio is used to correct the shape of objects drawn on a
nonlinear surface. The idea is to be able to draw a square, for
example, that indeed looks square.

If there are 640 by 640 dots on a screen evenly spaced along the x
and y- axes, the aspect ratio is "1 to 1" or 1/1; this is an ideal
surface. If you run the statement:

DRAW "RlOO 0100 L100 UlOO"

the box appears square.

The compiler, however, only supports two screen resolutions, each
with its own aspect ratio:

Resolution Aspect ratio

Medium resolution 320 by 200 dots-S/6
High resolution 640 by 200 dots-S/12

To draw a box that appears square in any resolution, scale the y-axis
by the corresponding aspect ratio; or scale the x-axis by 1/aspect
ratio.

For example, to draw a square box 100 dots high, scale the x-axis as
follows:
10 1100*6/5 is 120
20 DRAW "UlOO R120 0100 L120"

133

DRAW
Statement

Examples

To draw a box using variables:

10 SCREEN 1
20 A=20
30 DRAW "U="+VARPTR$(A)+"R="+VARPTR$(A)+_

"D="+VARPTR$(A)+"L="+VARPTR$(A)
40 ' DUMMY TIMING LOOP
50 FOR 1=1 TO 10000: NEXT I

To draw a box and paint the interior:

5 SCREEN 1
10 DRAW "U50R50D50L50" 'Draw a box
20 DRAW "BEl0" 'Move up and right into box
30 DRAW "P1,3" 'Paint interior
40 ' DUMMY TIMING LOOP
50 FOR 1=1 TO 10000: NEXT I

To draw a triangle:

10 SCREEN 1
20 DRAW "E15 F15 L30"
30 ' DUMMY TIMING LOOP
40 FOR 1=1 TO 10000: NEXT I

To create a "shooting star":

10 SCREEN 1,0: COLOR 0,0: CLS
20 DRAW "BM300,25" , initial point
30 STAR$= "M+7,17 M-17,-12 M+20,0 M-17,12 M+7,-17"
40 FOR SCALE=1 TO 40 STEP 2
50 DRAW "Cl;S="+VARPTR$(SCALE)+"BM-2,0;X"+VARPTR$(STAR$)
60 NEXT

To draw some spokes:

10 SCREEN 1,0:CLS
20 FOR D=0 TO 360 STEP 10
30 DRAW "TA="+VARPTR$(D)+"NU50"
40 NEXT D

134

Purpose

END
Statement

The END statement ends the program, closes all files, and returns to
the operating system.

Format

END

Comments

END statements can be placed anywhere in the program to end the
program.

An END statement at the end of a program is optional. The program
returns to the operating system after an END statement is run and
resets the screen to the initial screen mode.

Examples

This example ends the program if K is greater than 1000; otherwise,
the program branches to the label "START."

100 IF K>lOOO THEN END ELSE GOTO START

135

ENVIRON
Statement

Purpose

The ENVIRON statement modifies parameters in the operating system
environment table when running BASIC programs.

Format

ENVIRON "parm[=] [text] [;]"

Comments

parm is the name of the parameter, such as "PATH."

text is a string expression that defines the new parameter.

The parm must be separated from text by an equal sign or a blank.
ENVIRON takes everything left of the first blank or equal sign as parm.
The first "nonblank, nonequal" character after parm is taken as the
beginning of text.

If text is a null string or consists only of ";" (a single semicolon), such
as:

"PATH=;"

the parameter is removed from the environment table and the table is
compressed.

If parm does not exist, the new parameter is added at the end of the
environment table.

If par,,! exists, it is deleted, the environment table is compressed, and
parm is added at the end.

Note: When your compiled program is called, the size of its environ
ment table is the current size of the operating system environment
table (rounded up to the next 16-byte paragraph boundary). Your
program cannot expand its environment table. If you wish to add ele-

136

ENVIRON
Statement

ments to the environment table, you must expand the table from the
operating system to the size your application needs before calling
your BASIC program.

Use ENVIRON to pass configuration parameters, such as a path specifi
cation, to a child process called using SHEll or to pass configuration
parameters to your application from the operating system environ
ment.

Note: For related information, see also "ENVIRON$ Function" and
"SHEll Statement" in this book. Also the SET command in IBM Disk
Operating System Version 3.30 Reference and the EXEC function call
in IBM Disk Operating System Version 3.30 Technical Reference.

If you are using OS/2, refer to IBM Operating Systeml2 Programmer's
Guide and IBM Operating Systeml2 Technical Reference.

Examples

You can create a default PATH to the root directory on drive A: with the
following statement:

ENVIRON "PATH=A:\"

You can call the operating system from your BASIC program using the
SHEll statement and issue any valid operating system command. If a
disk file (.CMO, .COM, .EXE, or .BAT) is needed to run the command, the
operating system now automatically searches for it in the root direc
tory on drive A: if it is not on the current drive or directory.

You can add a new parameter to the environment table:

ENVIRON "HELP=C:\HELP" 'defines file parameter called "HELP"
CHDIR ENVIRON$ ("HELP") 'changes dir to "C:\HELP"

You can delete this parameter in the table by:

ENVIRON "HELP=;" 'deletes parameter "HELP" from table

137

ENVIRONS
Function

Purpose

The ENVIRON$ statement retrieves the specified string from the oper
ating system environment table for a BASIC program.

Format

v$ = ENVIRON$ (parm$)

or

v$ = ENVIRON$ (n)

Comments

parm$ is a string containing the parameter to be retrieved.

n is an integer expression returning a value in the range 1
through 255.

If a string argument is used, ENVIRON$ returns from the environment
table a string containing the text that follows parm$. If parm$ is not
found or no text follows the equal sign, a null string is returned.

If a numeric argument is used, ENVIRON$ returns a string containing
the nth parm$ from the envi ronment table, along with the parm$=
text. If there is no nth parm, a null string is returned.

ENVIRON$ distinguishes between uppercase letters and lowercase
letters. If you add to the table in this format:

ENVIRON "LOAD=high"

and want to check to see if the operation was successful, you can use
the ENVIRON$ function like this:

PRINT ENVIRON$ ("LOAD")

138

ENVIRON$
Function

But if you run:

PRINT ENVIRON$ ("load")

ENVIRON$ returns a null string because "load" is not in the table;
however, "LOAD" is in the table.

Note: All parameters entered into the environment are converted to
uppercase by the operating system.

See also "ENVIRON Statement" and "SHELL Command."

Examples

Note: This example is for DOS mode.

When the operating system loads initially, it sets a parameter called
"COMSPEC" that tells DOS where to locate the COMMAND.COM file, and it
sets up a null path. To observe the contents of the environment table
at startup time, run the following from your program:

PRINT ENVIRON$ (1)
PRINT ENVIRON$ (2)

Results:

PATH=
COMSPEC=A: \COMMAND. COM

If you run:

PRINT ENVIRON$ ("COMSPEC")

the response from the computer is:

A:\COMMAND.COM

Note: If you booted from a fixed disk, the previous example would
display C: instead of A: for the drive specification.

139

ENVIRON$
Function

The following program saves the environment table of the compiler in
an array so that it can be modified for a child process. After the child
process is completed, the environment is restored.

10 DIM TABLE$(10) 'assume no more than 10 parms
20 PARMS = 1 'initial number of parameters
30 WHILE LEN(ENVIRON$(PARMS)) > 0
40 TABLE$(PARMS) = ENVIRON$(PARMS)
50 PARMS = PARMS+1
60 WEND
70 PARMS = PARMS - 1 'adjust to correct number
80 'now store new environment
90 ENVIRON "DATAIN=C:\DATAIN\INP.FIL"
100 ENVIRON "SORT.DAT=SORT<" +

ENVIRON$ ("DATAIN") +">LPT1:"

1000 SHELL ENVIRON$("SORT.DAT") 'data is sorted
1010 FOR I = 1 TO PARMS
1020 ENVIRON TABLE$(I) 'restore parameters
1030 NEXT I

140

Purpose

The EOF statement indicates an end-of-file condition.

EOF
Function

For communication files, EOF checks whether or not there are charac
ters in the input buffer.

Format

v = EOF(filenum)

Comments

filenum is the number specified on the OPEN statement.

EOF returns -1 (true) if end of file has been reached on the specified
file. A 0 is returned if end of file has not been reached.

EOF is significant only for a file opened for sequential input from disk
or for a communications file. A -1 for a communications file means
that the buffer is empty. If you attempt to GET a record from beyond
the end of a random access file, EOF is still false and no error is
detected, but a null record is returned.

EOF(O) returns the end-of-file condition on standard input devices used
with redirection of I/O.

Examples

This example reads information from the sequential file named DATA.

Values are read into the array M until end of file is reached.
10 OPEN "DATA" FOR INPUT AS #1
20 C=0
30 IF EOF(I) THEN END
40 INPUT #l,M(C)
50 C=C+l: GOTO 30

141

ERASE
Statement

Purpose

The ERASE statement removes or resets the elements of an array.

Format

ERASE arrayname[,arrayname] ...

Comments

The arrayname is the name of the array you want to erase or reset.

The ERASE statement performs differently for static and dynamic
arrays. When an ERASE statement is run on a static array, the array
elements are set to either O's or null strings. Running an ERASE on a
dynamic array frees the array elements. Before making another ref
erence to the dynamic array, you must first redimension it using
either a DIM or REDIM statement.

You may want to use the ERASE statement if you are running short of
memory space while running a program. After dynamic arrays are
erased, the space in memory allocated for the arrays can be used for
other purposes.

ERASE must be used when you want to redimension arrays in your
program. If you try to redimension an array without first erasing it, a
Duplicate definition error occurs.

142

ERASE
Statement

If an array is declared dynamic inside a subprogram, that array still
exists after you exit the subprogram. This causes an error if you call
the subprogram a second time and again declare it. To avoid this,
use ERASE to free the array before you EXIT the subprogram.

The CLEAR command erases all variables from the work area.

Examples

This example uses the FRE function to show how ERASE can be used to
free memory. The array BIG used up about 40K bytes of memory
when it was dimensioned as BIG(100, 100). After it is erased, it can be
redimensioned to BIG(10, 10).

100 '$DYNAMIC
110 START=FRE(-l)
120 DIM BIG(100.100)
130 MIDDLE=FRE(-l)
140 ERASE BIG
150 REDIM BIG(10.10)
160 FINAL=FRE(-l)
170 PRINT START. MIDDLE. FINAL

Results:

415168 374336 414656

143

ERDEV and ERDEV$
Variables

Purpose

The ERDEV AND ERDEV$ variables hold the interrupt 24 error code of a
device error and the name of the device generating the error. They
are read-only variables.

These variables are not available in OS/2 mode.

Format

v = ERDEV

v$ = ERDEV$

Comments

ERDEV is a read-only variable. When a critical error is detected, ERDEV

holds the DOS interrupt 24 error code in the lower eight bits, and the
upper eight bits contain bits 13, 14, and 15 of the attribute word of the
device header block.

ERDEV$ is a read-only variable. If the error was on a character device,
ERDEV$ contains the eight-byte character device name. If the error
was not on a character device, ERDEV$ contains the two-character
block device name (A:, B:, C:, and so on).

See also the "IOCTL Statement" and the "IOCTL$ Function".

144

Examples

This example simulates a printer error:

10 CLS
20 ON ERROR GOTO 60
30 LPRINT"The printer is ready"
40 PRINT"The printer is ready"
50 END
60 V$=HEX$(ERDEV)
70 PRINT "ERDEV = ";V$
80 D$=ERDEV$
90 PRINT "EROEV$ = ";0$
100 RESUME NEXT

ERDEV and ERDEV$
Variables

If you run this example with the printer turned off, the computer dis
plays:

ERDEV = 8009
ERDEV$ = LPTl

Note: If you are using a printer other than the IBM Graphics Printer,
you may receive a different error code.

The lower eight bits (bits 0 -7) of the binary equivalent equal 9,
which is the interrupt 24 error code for Printer out of paper. The
meaning of bits 13, 14, and 15 of the value returned by ERDEV is
explained in "Attribute Field" in the IBM Disk Operating System Tech
nical Version 3.30 Reference under "Ihstallable Device Drivers."

145

ERR and ERL
Variables

Purpose

The ERR AND ERL variables return the error code and line number
associated with an error.

Format

v = ERR

v = ERL

Comments

The variable ERR contains the error code for the last error.

If line numbers are used, ERL returns the number of the last line run
before the error was detected. If line numbers are not used, ERL

returns O. The ERR and ERL variables are usually used in IF ... THEN

statements to direct program flow in the error-handling routine. See
"ON ERROR Statement."

If you test ERL in an IF ... THEN statement and you are using the inter
preter as an editor, be sure to put the line number on the right side of
the relational operator, like this:

IF ERL = line number THEN ...

ERR and ERL can be set using the ERROR statement.

Compiler error codes are listed in Appendix A, " BASIC Compiler
Error Messages."

146

Examples

ERR and ERL
Variables

This example tests to see if the drive door is open when the program
needs to open a file:

10 ON ERROR GOTO 100
20 OPEN "DATA" FOR INPUT AS #1
30 END

100 IF ERR=71 THEN LOCATE 23,1:
PRINT "DISK IS NOT READY":RESUME

147

ERROR
statement

Purpose

The ERROR statement simulates the occurrence of a BASIC error or
allows you to define your own error codes.

Format

ERROR n

Comments

n must be an integer expression from 1 through 255.

If the value of n is the same as an error code used by BASIC (see
Appendix A, "BASIC Compiler Error Messages"), the ERROR state
ment simulates the occurrence of that error. If an error-handling
routine has been defined by the ON ERROR statement, the error routine
is entered. Otherwise, the error message corresponding to the code
is displayed, and running halts. See the first example.

Note: If your program contains any ON ERROR or RESUME statements,
you need to compile using the IX or IE parameter. See "Compiler
Parameters" in IBM BASIC Compilerl2 Compile, Link, and Run for
more information.

To define your own error code, use a value that is different from any
used by BASIC. (We suggest you use the highest available values; for
example, values greater than 200.) This new error code can then be
tested in an error handling routine, just like any other error. See the
second example.

If you define your own code in this way and you do not handle it in an
error handling routine, the message Unprintable error appears, and
running halts.

148

Examples

ERROR
Statement

The first example simulates a String formula too complex error:

Hl T = 16
20 ERROR T

Results:

String formula too complex in line 20

The next example is a part of a game program that allows you to
make bets. An error code of 210 is chosen because it is normally
unused. The program traps the error if you exceed the house limit.

100 ON ERROR GOTO 1000
110 INPUT "WHAT IS YOUR BET";B
120 IF B > 5000 THEN ERROR 210

1000 IF ERR = 210 THEN PRINT
"HOUSE LIMIT IS $5000"

1010 IF ERL = 120 THEN RESUME 110

149

EXP
Function

Purpose

The EXP function calculates the exponential function.

Format

v = EXP(X)

Comments

The x can be any numeric expression.

This function returns the mathemat'ical number e raised to the x
power. The e is the base for natural logarithms. An overflow occurs
if x is greater than 88.02969.

Examples

This example calculates e raised to the (2-1) power, which is e:

10 x = 2
20 PRINT EXP(X-1)

Results:

2.718282

150

FIELD
Statement

Purpose

The FIELD statement allocates space for variables in a random file
buffer.

Format

FIELD [#]filenum, width AS stringvar [,width AS stringvar] ...

Comments

filenum is the number under which the file was opened.

width is a numeric expression specifying the number of char
acter positions to be allocated to stringvar.

stringvar is a string variable that is used for random file access.

A FIELD statement defines variables used to get data out of a random
buffer after a GET or to enter data into the buffer for a PUT.

The statement:

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the
string variable N$, the next 10 positions to 10$, and the next 40 posi
tions to ADD$. FIELD does not actually place any data into the random
file buffer. This is done by the LSET and RSET statements. See "LSET

and RSET Statements."

FIELD does not remove data from the file either. Information is read
from the file into the random file buffer with the GET (file) statement.
Information is read from the buffer by simply referring to the vari
ables defined in the FIELD statement.

151

FIELD
Statement

The total number of bytes allocated in a FIELD statement must not
exceed the record length specified when the file was opened. Other
wise, a Field overflow error occurs.

Any number of FIELD statements can be run for the same file number,
and all FIELD statements that have been run are in effect at the same
time. Each new FIELD statement redefines the buffer from the first
character position, so this has the effect of having multiple field defi
nitions for the same data.

Note: Be careful about using a variable name defined in a FIELD state
ment in an input or assignment statement. Once a variable name is
defined in a FIELD statement, it points to the correct place in the
random file buffer. If a subsequent input statement or LET statement
with that variable name on the left side of the equal sign is run, the
variable is moved to string space and is no longer in the file buffer.
This can be avoided by assigning the input to a temporary variable,
then using LSET or RSET to move the input into the variable declared in
the FIELD statement.

See" BASIC Disk Input and Output" in IBM BASIC Compilerl2
Fundamentals for a complete explanation of how to use random files.

152

Examples

FIELD
Statement

This example opens a file named GUST as a random file. The variable
GUSTNO$ is assigned to the first two positions in each record,
GUSTNAME$ is assigned to the next 30 positions, and ADDR$ is assigned
to the next 35 positions.

Lines 30 through 50 put information into the buffer, and the PUT state
ment in line 60 writes the buffer to the file. Line 70 reads back that
same record, and line 90 displays the three fields. Note in line 80 that
it is permissible to use a variable name that was defined in a FIELD

statement on the right side of an assignment statement.

18 OPEN "A:CUST" AS #1
20 FIELD I, 2 AS CUSTNO$, 30 AS CUSTNAME$,

35 AS ADDR$
30 LSET CUSTNAME$= "O'NEIL INC"
40 LSET ADDR$= "50 SE 12TH ST, NY, NY"
50 LSET CUSTNO$=MKI$(7850)
60 PUT 1,1
70 GET 1, 1
80 CNUM%= CVI(CUSTNO$): N$ = CUSTNAME$
90 PRINT CNUM%, N$, ADDR$

The following program shows two different ways to retrieve informa
tion from the same random file. The contents of the file do not
change.

10 OPEN "PROG" AS #1
20 FIELD I, 20 AS LASTNAME$,15 AS FIRSTTWO$
30 FIELD I, 34 AS WHOLENAME$, 1 AS INITIAL$

153

FILEATTR
Function

Purpose

The FILEATTR function returns information about an open file.

Format

v = FILEATTR(filenum,fieldnum)

Comments

filenum is the file number.

fieldnum is the field number to return. It has two possible values:

154

1. Fi Ie open mode. Use this when you want to know how
the file was opened. This returns one of the following
values as v:

1 Sequential INPUT

2 Sequential OUTPUT

4 RANDOM access
8 APPEND

10 RANDOM character device (such as PIPE:)

2. DOS file handle. This returns the file handle as v.

Examples
I This example uses FILEATTR to retrieve the file handle and
I status from a file.

OPEN "TEST.DAT" FOR OUTPUT AS #1

DOSHandle& = FILEATTR (1, 2)
Status& = FILEATTR (1, 1)

PRI NT "The fi 1 e handl e is: "DOSHandl e&

SELECT CASE Status&

CASE 1:
PRINT "Fi 1 e is open for input"

CASE 2:
PRINT "Fi 1 e is open for output"

CASE 4:
PRINT "File is open for random access"

CASE 8:
PRINT "File is open for append"

CASE 10:
PRINT "File is a random character device"

END SELECT
END

FILEATTR
Function

155

FILES
Command

Purpose

The FILES command displays the names of files residing on a disk.
The FILES command in BASIC is similar to the operating system OIR

command.

Format

FILES [filespec]

Comments

filespec is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specification" in IBM
BASIC Compiler/2 Fundamentals; otherwise, an error
occurs.

If filespec is omitted, all the files on the current directory
of the default drive are listed.

All files matching the file name are displayed. The file name can
contain question marks (?). A question mark matches any character
in the name or extension. An asterisk (*) in any character position
matches any and all characters from that position on. If a drive is
specified as part of filespec, files that match the specified file name
on the current directory of that drive are listed; otherwise, the default
drive is used.

Examples

This command displays all files on the current directory of the default
drive:

FILES

156

FILES
Command

This displays all files with an extension of .BAS on the current direc
tory of the default drive:

FILES "*.BAS"

This displays all files on drive B:

FILES "B:"

This lists each file on the current directory of the DOS default drive
that has a file name beginning with TEST followed by up to two other
characters, and an extension of .BAS:

FILES "TEST??BAS"

In addition to listing all the files, the current directory name and the
number of bytes free are also displayed.

When using tree-structured directories, remember that each subdi
rectory contains two special entries. They are listed when you use
the FILES command to list a subdirectory. The first contains a single
period instead of a file name .. It identifies this "file" as a subdirec
tory. The second entry contains two periods instead of a file name. It
locates the higher level directory that defines this subdirectory.

See "Input and Output" in IBM BASIC Compilerl2 Fundamentals for
more information on tree structured d-irectories.

This example lists all files in the current subdirectory called LEVEL 1 on
drive A:. Note that the directory is empty.

FILES "A:\LEVELl"

<OIR> .. <OIR>

32824 Bytes free

The FILES command can also be used to list files in other directories.
The example below lists all files in the subdirectory LVL1. The back
slash must be used after the directory name.

FILES "LVLl\"

157

FILES
Command

This example lists all files in the directory LVL2 with an extension of
.BAS:

FILES "LVL2\ * .BAS"

158

FIX
Function

Purpose

The FIX statement truncates x to an integer.

Format

v = FIX(X)

Comments

The x can be any numeric expression.

FIX strips all digits to the right of the decimal point and returns the
value of the digits to the left of the decimal point.

The difference between FIX and INT is that FIX does not return the next
lower number when x is negative.

See "INT" and "CINT Functions", which also return integers.

Examples

Note in the examples how FIX does not round the decimal part when it
converts to an integer.

PRINT FIX(45.67)

Results:

45

PRINT FIX(-2.89)

Results:

-2

159

FOR and NEXT
Statements

Purpose

The FOR and NEXT Statements perform a series of instructions in a
loop a given number of times.

Format

FOR variable = x TO Y [STEP z]
statements
[EXIT FOR]

statements
NEXT [variable [,variable] ...]

Comments

variable

x

Y

Z

is an integer, long integer, single- or double-precision
variable to be used as a counter.

is a numeric expression that is the initial value of the
counter.

is a numeric expression that is the final value of the
counter.

is a numeric expression to be used as an increment.

statements are any statements that you want BASIC to repeat.

The program lines following the FOR statement are run until the NEXT

statement is encountered. Then the counter is increased by the
amount specified by the STEP value (z). If you do not specify a value
for z, the increment is assumed to be 1. A check is performed to see if
the value of the counter is now greater than the final value (y). If it is
not greater, BASIC branches back to the statement after the FOR state
ment and the process is repeated. If it is greater, running continues
with the statement following the NEXT statement.

160

FOR and NEXT
Statements

If the value of z is negative, the test is reversed. The counter is
decreased each time through the loop, and the loop is run until the
counter is less than the final value.

The body of the loop is skipped if x is already greater than y when
the STEP value is positive, or x is less than y when the STEP value is
negative. If z is 0, an infinite loop is created unless you provide some
way to set the counter greater than the final value or use the EXIT FOR

statement.

Program performance improves if you use integer counters when
possible.

Nested Loops

FOR ... NEXT loops can be nested; that is, one FOR ... NEXT loop can be
placed inside another FOR ... NEXT loop. When loops are nested, each
loop must have a unique variable name as its counter. FOR ... NEXT

loops must be nested physically as well as logically; that is, the NEXT

statement for the inside loop must appear before that for the outside
loop.

Note: If nested loops have the same end point, a single NEXT state
ment can be used for all of them.

A NEXT statement of the form:

NEXT varl. var2. var3 ...

is equivalent to the sequence of statements:

NEXT varl
NEXT var2
NEXT var3

The variables in the NEXT statement can be omitted, in which case the
NEXT statement matches the most recent FOR statement. It is a good
idea to always include the variables to avoid confuSion, but it can be
necessary if you do any branching out of nested loops. However,
using variable names on the NEXT statements causes your program to
run somewhat slower.

161

FO·R and NEXT
Statements

Active loops should be exited by setting the loop counter out of range
or setting a conditional statement with the loop causing the loop to
end, so that every iteration of the FOR statement in the loop has a cor
responding NEXT.

You can also use the EXIT FOR statement to end a loop. When BASIC

encounters an EXIT FOR, control drops to the next line after the loop.
For example:

FOR I = 1 TO 5
INPUT A$
IF A$="END" THEN EXIT FOR
PRINT A$
NEXT

If a NEXT statement is encountered before its corresponding FOR state
ment, a NEXT without FOR error occurs.

Examples

The first example shows a FOR ... NEXT loop with a STEP value of 2:

10 J=10: K=30
20 FOR I=l TO J STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT

Results:

1 40
3 50
5 60
7 70
9 80

162

FOR and NEXT
Statements

In the following example, the loop does not run because the initial
value of the loop is more than the final value:

10 J=O
20 FOR 1=1 TO J
30 PRINT I
40 NEXT I

The next program results in an error at compile time. There can be
only one NEXT statement for every FOR statement. (This is different
from other versions of BASIC that allow a different physical NEXT state
ment when jumping out of a loop.)

10 FOR 1=1 TO 5
20 IF 1=2 GOTO 50
30 NEXT
40 GOTO 60
50 NEXT
60 END

In the following example, the loop runs 10 times. The final value for
the loop variable is always set before the initial value is set. (This is
different from some other versions of BASIC, which set the initial value
of the counter before setting the final value. In another BASIC, the
loop in this example might run six times.)

10 1=5
20 FOR 1=1 TO 1+5
30 PRINT I;
40 NEXT

Results:

1 2 3 4 5 6 7 8 9 10

163

FRE
Function

Purpose

The FRE function returns the amount of available memory.

Format

v = FRE(-1)

v = FRE(X)

v = FRE(X$)

Comments

The x and x$ are dummy arguments.

FRE can return these different types of information:

• FRE(-1) returns the size of the largest block of free space for
dynamic numeric arrays.

• FRE with any other numeric argument returns the size of the next
free block of string space. Normally, this is also the largest block
of string space.

• FRE with any string value causes a housecleaning before
returning the number of free bytes. BASIC collects all its useful
data and frees up unused areas of memory once used for strings.
The data is compressed so you can continue until you really run
out of space.

If a string allocation exceeds the size of the current block, the com
piler either finds a free block large enough to hold the string, or it
does a housecleaning. This function can be used as an indicator of
when a housecleaning may take place.

You can improve the performance of programs that run many string
functions by using the MID$ statement to access substrings imbedded

164

FRE
Function

within one large string. This prevents fragmentation of string space.
See the "MID$ Statement" for an example.

Note: Ctrl + Break cannot be used during housecleaning.

Examples

The actual value returned by FRE on your computer can differ from
this example:

PRINT FRE(G)

Results:

14542

165

FREEFILE
Function

Purpose

The FREEFILE function returns the next free file number as an integer.

Format

v = FREEFILE

Comments

This function helps you manage file numbers. Because file numbers
are global to an entire BASIC program, it may be difficult for you to
assign file numbers in separately compiled modules. This function
returns the next free file number as an integer.

166

FREEFILE
Function

Examples
, This example inputs a file name then uses FREEFILE to allocate a
, "free" file number to the file when it is open. It then reads
, the file and lists it on the screen.

, This subroutine uses FREEFILE to assign a file number to a file.
, Because of this, it can be called from any main program without
, regard for file numbers it may use:
SUB ListFile (FileName$) STATIC

FileNum = FREEFILE ' allocate the file number
OPEN FileName$ FOR INPUT AS FileNum 'open the file

DO WHILE NOT EOF(FileNum)
LINE INPUT #FileNum, L$
PRINT L$

LOOP

CLOSE FileNum

END SUB

, -- Main Program -
CLS
INPUT "File to list? n, FileName$

, If file name isn't blank, open it and list it:
IF FileName$ <> n" THEN

CLS
ListFile FileName$

END IF
END

167

FUNCTION
Statement

Purpose

The FUNCTION statement defines and names a function that you write.

Format

FUNCTION name[(parameter [AS type] [,parameter [AS type]] ...)] STATIC

statements
[name = expression]
[EXIT FUNCTION]

statements
name = expression

END FUNCTION

Comments

name is the name (up to 40 characters long) that you want to
call the FUNCTION. The name of the FUNCTION cannot be
the same as any simple variable of the same type or
any array variable of the same type, nor can it be the
same as the name of a subprogram or user-defi ned
function (DEF FN).

parameter is the name of a simple variable or an array. If the
parameter is an array, it must be specified in the form:

parameter (integer)

where integer is the number of dimensions the array
has.

type is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING

168

• typename

FUNCTION
Statement

typename must have been defined in
a previous TYPE statement.

STATIC is required to indicate that the FUNCTION will not be
recursive; that is, the FUNCTION will not call itself or a
procedure that in turn calls it.

statements are the BASIC statements to be performed when the
FUNCTION is called.

expression defines the returned value of the FUNCTION. The type of
expression (numeric or string) must match the type
declared by name.

Results must be assigned to the FUNCTION name prior to leaving or
ending the FUNCTION. Otherwise, the results will be lost.

To call a FUNCTION, use its name any place an expression can be
used. Follow the name with a list of arguments (enclosed in paren
theses) to be passed to the FUNCTION. For example, the following
would be valid for a function that returns the largest value of the
integer array passed to it.

LGST%=LARGEST% (ARRAY%())

PRINT "LARGEST:"; LARGEST%(X%())

IF LARGEST%(NUM%())>lOO GOTO 2000

The following is not a valid call for a FUNCTION because there is no
place for the FUNCTION'S value to be returned.

LARGEST% (ARRl%())

If you want to call a FUNCTION before it is defined, you must first use
the DECLARE statement to descri be the FUNCTION to BASIC.

When a function is exited and reentered, the values of its local vari
ables are reset to Os and null strings. To guarantee that a local vari-

169

FUNCTION
Statement

able retains its assigned value upon reentering the FUNCTION, it should
be declared as STATIC. See "Scope of Variables" under "Modular
Programming" in IBM BASIC Compilerl2 Fundamentals for more
information.

FUNCTIONS are similar to multi-line functions defined with the DEF FN

statement, except for the following:

• FUNCTIONS may have local static and dynamic variables. Any
simple variables or arrays referred to in the FUNCTION are consid
ered to be local unless they have been explicitly declared to be
SHARED variables.

• FUNCTIONS are public. They can be called from other modules.

• BASIC does not change FUNCTION parameters. If a FUNCTION is
called with a variable that is not the same type as the FUNCTION

expects, an error occurs. FUNCTIONS are the same as subpro
grams in this respect.

See "DECLARE Statement" in this book for details on declaring
external functions and forward referenced functions

170

Examples

This example declares a function and calls it.

I Define a function to reverse a string
FUNCTION ReverseString$ (5$) STATIC

StringLen = LEN(S$)

I Put chars in reverse order into new string:
BackString$ - ""
FOR I=StringLen TO 1 STEP -1

BackString$ = BackString$ + MID$(S$,I,l)
NEXT I

I Return reversed string as value of function:
ReverseString$ = BackString$

END FUNCTION

I __ Main Program -
CLS

I Input some text:
PRINT "Type some text then press <ENTER>:"
LINE INPUT T$

I Use the function to reverse the text and print it:
Backwards$ = ReverseString$(T$)
PRINT
PRINT "The Same thing reversed is:"
PRINT Backwards$

END

FUNCTION
Statement

171

FUNCTION
Statement
This example program defines and uses the ADD function to add five
pairs of numbers.

FUNCTION ADD (X AS INTEGER. Y AS INTEGER) STATIC

ADD = X + Y

END FUNCTI ON

'Main Routine

FOR I% = 1 to 5

NEXT I%

READ A%. B%
C%=ADD(A%.B%)
PRINT C%

DATA 1.2,3,4,5,6,7,8,9,10

END

Results:

172

3
7
11
15
19

, Assign result to function name

, Invoke the ADD function
, Print the returned value

Purpose

GET
Statement (Files)

The GET statement reads a record from a random file into a random
buffer.

Format

GET [#]filenum[, [number][,id]]

Comments

filenum is the number under which the file was opened.

number is the number of the record to be read, in the range 1
through 2147483647. If number is omitted, the next record
(after the last GET or PUT) is read into the buffer.

id is any BASIC record variable. You cannot use id if a FIELD

statement is active on the file.

If field buffers are used after a GET statement, then INPUT #, LINE INPUT

#, or references to variables defined In the FIELD statement can be
used to read characters from the random file buffer. See "BASIC
Disk Input and Output" in IBM BASIC Compilerl2 Fundamentals for
more information on using GET.

If you specify id, GET transfers data from the specified record number
to the variable id. If id is smaller than the id size, then BASIC skips to
the start of the next record in the file.

Because the operating system blocks as many records as possible in
512-byte sectors, the GET statement does not necessarily perform a
physical read from the disk.

GET can also be used for communications files. In this case, number
is the number of bytes to read from the communications buffer. This

173

GET
Statement (Files)

number cannot exceed the value set by the LEN option on the OPEN

"COM ..• statement.

Random files in BASIC have fixed-length records. The requested
record number in a GET or PUT statement is multiplied by this fixed
record length to form a 31-bit product. This value is then used to
move the random file pointer by a DOS call to read or write the
desired record. Other record-number restrictions are:

• The largest record number possible is 214748364, so the largest
record number available is:

21474836471record length

• File size is limited by the available disk space.

Note: The IBM BASIC Compiler/2 stqres floating-point data in random
files differently than the BASIC Interpreter and previous versions of the
BASIC Compiler. See "Floating Point Data in Random Files" under
"Disk Data Files-Sequential and Random I/O" in IBM BASIC
Compilerl2 Fundamentals for more information.

Examples

This example opens the file CUST for random access, with fields
defined in line 20. The GET statement on line 30 reads a record into
the file buffer. Line 40 displays the information from the record that
was read.

10 OPEN "A:CUST" AS #1
20 FIELD I, 30 AS CUSTNAME$, 30 AS ADDR$, 35 AS CITY$
30 GET 1
40 PRINT CUSTNAME$, ADDR$, CITY$

174

Purpose

GET
Statement (Graphics)

The GET statement reads points from an area of the screen.

The GET Statement works in Graphics mode only.

Format

GET (x1,y1)-(x2,y2),arrayname [(index)]

Comments

(x1 ,y1), (x2,y2)

arrayname

index

are coordinates in either absolute or relative
form. Refer to "Specifying Coordinates" under
"Graphics Modes" in IBM BASIC Compilerl2
Fundamentals for more information on coordi
nates.

is the name of the array you want to hold the
information.

describes the starting location of the informa
tion within the array. If you do not specify an
index, BASIC assumes that the data starts at the
beginning of the array.

GET reads the attributes of the points within the specified rectangle
into the array. The specified rectangle has points (x1,y1) and (x2,y2)
as opposite corners. (This is the same as the rectangle drawn by the
LINE statement using the B option.)

GET and PUT can be used for high-speed object motion in graphics
mode. You might think of GET and PUT as "bit pump" operations that
move bits onto (PUT) and off (GET) the screen. Remember that PUT and
GET are also used for random access files, but the syntax of these
statements is different.

175

GET
Statement (Graphics)

The array is used simply as a place to hold the image and must be
numeric; it can be any precision, however. The required size of the
array, in bytes, is:

4 + INT((x*bitsperpixe/ + 7)/8)*y

where x and yare the lengths of the horizontal and vertical sides of
the rectangle, respectively.

The following figure contains the number of bits per pixel for each
screen mode:

Mode Bits per pixel Formula

SCREEN 1 2 LOG2(4)

SCREEN 2 1 LOG2(2)

For example, suppose you want to use the GET statement to get a 10
by 12 image in medium resolution. The number of bytes required is
4+ INT((10*2 + 7)/8)*12, or 40 bytes. The bytes per element of an array
are:

• Two for integer string
• Four for single-precision string
• Eight for double-precision string.

Therefore, you could use a static integer array with at least 20 ele
ments. Because dynamic arrays are allocated in 16-byte increments,
your array size must be a multiple of 16; otherwise, an error occurs.

The information from the screen is stored in the array as follows:

1. Two bytes giving the x-dimension in bits.
2. Two bytes giving the y-dimension in bits.
3. The data itself.

176

GET
Statement (Graphics)

It is possible to examine the x- and y- dimensions and even the data
itself if an integer array is used. The x-dimension is in element 0 of
the array, and the y dimension is in element 1.

Keep in mind that integers are stored low byte first, then high byte,
but the data is actually transferred high byte first, then low byte.

The data for each row of points in the reCtangle is left-justified on a
byte boundary. So if less than a multiple of a bits is stored, the rest of
the byte is filled with O's.

PUT and GET work significantly faster in medium resolution when x1
MOD 4 is equal to 0, and in high resolution when x1 MOD 8 is equal to
O. This is a special case where the rectangle boundaries fall on the
byte boundaries.

See the "SCREEN Statement" for detailed information on the various
screen modes.

Examples

See "PUT Statement (Graphics)" for an example.

177

GOSUB
Statement

Purpose

The GOSUB statement branches to and returns from a subroutine.

Format

GOSUB finellabel

Comments

fine is the line number of the first line of the subroutine.

label is a sequence of 1 through 40 letters, digits, or periods, in
any combination.

To distinguish labels from keywords, line numbers, or vari
ables, each label must be followed by a colon (:) when it
starts a line.

Numeric labels, alphanumeric labels, and line numbers can
be intermixed in the same program.

Note: If you wish to use error-reporting (with the ERL variable) and
error-trapping, you must use line numbers.

The line or label must be at the same level as the GOSUB statement.
That is, line or label and GOSUB must either be in the same subpro
gram or both at the main program level.

A subroutine can be called' any number of times in a program, and a
subroutine can be called from within another subroutine. Such
nesting of calls is limited only by available memory.

The RETURN statement causes BASIC to branch back to the statement
following the most recent GOSUB statement. A subroutine can contain
more than one. RETURN statement, so you can return from different
points in the subroutine. Subroutines can appear anywhere in the
program.

178

GOSUB
Statement

To prevent your program from accidentally entering a subroutine, you
can put a STOP, END, or GOTO statement before the subroutine to direct
program control around it.

Use ON •.• GOSUB to branch to different subroutines based on the result
of an expression.

See also "CALL Statement."

Examples

This example shows how a subroutine works. The GOSUB in line
10 calls the subroutine in line 40. The program branches to line
40 and starts running statements there until it sees the RETURN state
ment in line 70. At that point, the program goes back to the statement
after the subroutine call; that is, it returns to line 20. The END state
ment in line 30 prevents the subroutine from being performed a
second time.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT "IN";
60 PRINT "PROGRESS"
70 RETURN

Results:

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

179

GOTO
Statement

Purpose

The GOTO statement branches unconditionally out of the normal
program sequence to a specified line number or label.

Format

GOTO linellabel

Comments

line is the line number of a line in the program.

label is a sequence of 1 through 40 letters, digits, or periods, in
any combination.

The line and label must be at the same level as the GOTO statement.
That is, line or label and GOTO must either be in the same subprogram
or both at the main program level.

If line is the line number of an executable statement, that statement
and those following are run. If line refers to a nonexecutable state
ment (such as REM or DATA), the program continues at the first execut
able statement encountered after line.

Use ON ... GOTO to branch to different lines based on the result of an
expression.

180

Examples

GOTO
Statement

In this example, the GOTO statement in line 60 puts the program into
an infinite loop, which is stopped when the program runs out of data
in the DATA statement. (Notice how branching to the DATA statement
does not add additional values to the internal data table.)

10 DATA 5,7,12
20 READ R
30 PRINT "R = ";R,
40 A = 3.14*R"2
50 PRINT "AREA = ";A
60 GOTO 10

Results:

R = 5
R = 7
R = 12

AREA = 78.5
AREA = 153.86
AREA = 452.16

Out of DATA in module name at address nnnn:nnnn
Hit any key to return to system

The following example illustrates how labels can be used as targets
instead of line numbers:

PRINT "ENTER WHAT TYPE PET YOU HAVE"
INPUT A$
IF A$="CAT" THEN GOTO FELINE
IF A$="DOG" THEN GOTO CANINE
PRINT "IT MUST BE A LADYBUG THEN"
GOTO 961
FELINE: PRINT" OH, HOW IS HE ?"
GOTO 961
CANINE: PRINT " ARE HIS TEETH SHARP ?"
961: END

181

HEX$
Function

Purpose

The HEX$ statement returns a string that represents the hexadecimal
value of the decimal argument.

Format

v$ = HEX$(n)

Comments

n is a numeric expression in the range -2147483648 through
2147483647.

If n is negative, the two's complement form is used.

See "OCT$ Function" for octal conversion.

Examples

The following example uses the HEX$ function to figure the
hexadecimal representation for the two decimal values that are
entered:

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X " DECIMAL IS ";A$ " HEXADECIMAL"

Results:

? 32
32 DECIMAL IS 20 HEXADECIMAL

? 1023
1023 DECIMAL IS 3FF HEXADECIMAL

182

Purpose

IF
Statement

The IF Statement makes a decision regarding program flow based on
the result of an expression.

Format

Single-Line Format:

IF expression [,]THEN clause [,][ELSE [clause))

IF expression [,]GOTO finellabel [,][ELSE [clause))

Block Format:

IF expression THEN

statements
[ELSEIF expression THEN

statements]

[ELSE

statements]
END IF I ENDIF

Comments

expression can be any numeric expression.

clause can be a BASIC statement or a sequence of statements
(separated by colons); or it can be simply the number
of a line to branch to.

fine is the line number of a line existing in the program.

label is a sequence of 1 through 40 letters, digits, or periods,
in any combination.

183

IF
Statement
statements can be any BASIC statements (on one or more lines)

that you want BASIC to run depending on how
expression eval uates.

The line or label must be at the same level as the IF statement. That
is, line or label and IF must either be in the same subprogram or both
at the mai n program level.

Single-Line Format

If the expression is true (not 0), BASIC runs the THEN or GOTO clause.
THEN is followed by either a line number for branching or one or more
statements to be run. GOTO is always followed by a line number or a
label.

If the result of expression is false (0), BASIC ignores the THEN or GOTO
clause and runs the ELSE clause, if it is present. BASIC then continues
with the next executable statement.

Also note that for the single-line format, IF ... THEN ... ELSE is just one
statement. Once an IF statement occurs on a line, everything else on
that line is part of the IF statement. Because IF ... THEN ... ELSE is all one
statement, the ELSE clause cannot be a separate program line. For
example:

10 IF A=B THEN X=4
20 ELSE P=Q

is incorrect. Instead, it should be:

10 IF A=B THEN X=4 ELSE P=Q

Nesting of IF Statements: IF-statements can be nested. Nesting is
limited only by the length of the line. For example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a correct statement. If the statement does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with the
closest unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<>C"

does not print "A< >C" when A< >B.

184

IF
Statement

Note: Control constructs must be properly nested. IBM BASIC

Compiler/2 does not allow a nested NEXT in an IF statement. The
three examples that follow are constructs allowed by the IBM BASIC

Compiler 2.00 that are not allowed by IBM BASIC Compiler/2.

If expression THEN ... :NEXT

If expression THEN NEXT ELSE ...

If expression THEN ... ELSE NEXT

Block Format

When you use the block format of IF statements, remember these
rules:

• The IF, ELSEIF, ELSE, and END IF keywords must be the first words
on their program lines.

• Only comments (preceded by an apostrophe) may be on the same
line after THEN; otherwise the compiler will interpret this as the
single-line format of the IF statement.

• The ELSEIF and ELSE statements are optional.

• You may use as many ELSEIF statements as you wish, but you may
use only one ELSE statement and it must come after the last ELSEIF

statement.

If the expression in the IF statement is true (not 0), BASIC runs the next
executable statement or statements then skips to the END IF statement.
BASIC then continues with the next executable statement outside of the
IF block.

185

IF
Statement
If the expression in the IF statement is false (0), BASIC skips to the next
ELSEIF statement and evaluates the expression associated with it. If
this expression is true, BASIC runs the next executable statement or
statements and skips to the END IF statement. If this expression is
false, BASIC proceeds through the remaining ELSEIF statements until it
finds a true expression.

If none of the expressions in the IF or ELSEIF statements are true, BASIC

comes to the ELSE statement (if one exists) and runs the executable
statements following it. If no ELSE statement exists, BASIC comes to
the END IF statement and exits the IF block. Processing continues with
the statements after the END IF statement.

Note: When using IF to test equality for a value that is the result of a
single-precision or double-precision computation, remember that the
internal representation of the value may not be exact. (This is
because single-precision and double-precision values are stored
internally in floating-point binary format.) Therefore, the test should
be against the range over which the accuracy of the value can vary.

186

IF
Statement

For example, to test a computed variable A against the value 1.0, use:

IF ASS (A-1.0)<1.0E-6 THEN ...

This test returns a true result if the value of A is 1.0 with a relative
error of less than 1.0E-6.

When the expression in the IF .tatement is comparing the result of a
math operation to a variable it is important to understand that the
result of the math operation is stored with more digits of precision
than the variable. Therefore, you should assign the result of the math
operation to a variable and then use the IF statement to compare two
variables.

Instead of:
IF A#/B# = C# THEN ...

Use:
D# = A#/B#
IF D# = C# THEN ...

Examples

The following program fragments demonstrate the use of block IF, and
illustrate the difference between the single-line form and the block
form.

The following example computes simple discount prices using the
single-line IF form. Note that this is just one logical line carried over
four physical lines by use of the line-continuation character "_".
IF (x >= 10000) THEN PRINT PRICE! = x*.25! ELSE _

IF (x < 10000) and (x >= 5000) THEN PRINT PRICE! = x*.2! ELSE _
IF (x < 2500) AND (x >=1500) THEN PRINT PRICE! = x*.l ELSE _

PRINT "no discount"

187

IF
Statement
The following example uses block IF ... THEN ... ELSE to make the pre
ceding more readable:

IF (x >= 10000) THEN
PRINT PRICE! = x * .25!

ELSEIF (x < 10000) AND (x >= 5000) THEN
PRINT PRICE! = x * .02!

ELSEIF (x < 5000) AND (x >= 2500) THEN
PRINT PRICE! = x * .01

ELSE PRINT "No discount"
END IF

This statement gets record I if I is not 0:

100 IF I THEN GET #1,1

In the next example, if I is between 10 and 20, DB is calculated and
the program branches to line 300.' If I is not in this range, the
message OUT OF RANGE is printed. Note the use of two statements in
the THEN clause.

100 IF (1)10) AND (1<20) THEN
08=1982-1: GOTO 300

ELSE PRINT "OUT OF RANGE"
END IF

In the next example, in line 30 everything after the THEN is part of the
clause. This means that PRINT I is not executed unless N = I.
10 N=15
20 FOR 1=1 TO 20
30 IF N=I THEN CLS: PRINT I
40 NEXT I
50 END

Results:

15

188

IF
Statement

The following program loops, asking "DONE?", until the user types
"Y." Notice that both 'PRINT "YES'" and 'DONE = -1' are part of the IF

clause.

DONE=8
WHILE NOT DONE

PRINT "DONE?";
A$=INPUT$(l)
IF A$="Y" OR A$="y" THEN

PRINT "YES":DONE=-l
ELSE PRINT "NO"

END IF
WEND

Assume that you enter "Y."

Results:

YES

This example demonstrates the block format:

IF A$ = B$ THEN
PRINT A$ "=" B$

ELSEIF A$ < B$ THEN
PRINT A$ "<" B$

ELSE
PRINT A$ ">" B$

END IF

189

INKEY$
Variable

Purpose

The INKEY$ variable reads a character from the keyboard.

Format

v$ = INKEY$

Comments

INKEY$ reads only a single character, even if several characters are
waiting in the keyboard buffer. The returned value is a zero-, one-, or
two-character string.

• A null string (length zero) indicates that no character is pending
at the keyboard.

• A one-character string contains the actual character read from
the keyboard.

• A two-character string indicates a special extended code. The
first character is hex 00. For a complete list of these codes, see
Appendix B "ASCII Character Codes"

You must assign the result of INKEY$ to a string variable before using
the character with any BASIC statement or function.

While INKEY$ is being used, no characters are displayed on the screen
and all characters are passed through to the program except:

• Ctrl + Break, which stops the program
• Ctrl + Num Lock, which sends the system into a pause state
• Alt + Ctrl + Del, which does a System Reset
• Shift + PrtSc or PrtSc, which prints the screen.
• Pause, which sends the system into a paused state.

Note: This key is not present on all keyboards.

190

INKEY$
Variable

If you press Enter in response to INKEY$, the carriage return character
passes through to the program.

Examples

The following section of a program waits until any key is pressed:

100 PRINT "Press any key to continue"
110 A$=INKEY$: IF A$="" THEN 110

The next example shows program lines that can be used to test a two
character code being returned:

100 KB$=INKEY$
110 IF LEN(KB$)=2 THEN KB$=RIGHT$(KB$,l)

191

INP
Function

Purpose

The INP function returns the byte read from port n.

This function is not available in OS/2 mode.

Format

v = INP(n)

Comments

The n must be in the range 0 through 65535.

INP is the complementary function to the OUT statement. See "OUT

Statement. "

INP performs the same function as the IN instruction in assembler lan
guage. See also the technical reference book for your computer for a
description of valid port numbers (1/0 addresses).

Examples

This example turns on the speaker, waits for you to press a key, then
turns off the speaker:

100 A=INP(&H61)
110 OUT &H61, A OR 3 : REM Speaker on
120 WHILE INKEY$='"' : WEND
130 OUT &H61, A AND NOT 3 : REM Speaker off
140 END

192

Purpose

INPUT
Statement

The INPUT statement receives input from the keyboard while the
program is running.

Format

INPUT[;][" prompt"; I,] variable[, variable] ...

Comments

prompt

variable

is a string constant that prompts for the desired input.

is the name of the numeric or string variable or array
element that receives the input.

When the program sees an INPUT statement, it pauses and displays a
question mark on the screen to indicate that it is waiting for data. If a
prompt is included, the string is displayed. If the prompt is followed
by the semicolon (;), a question mark follows the displayed string. If
the prompt is followed by a comma, the question mark is not dis
played. For example, the statement:

INPUT "ENTER BIRTHDATE",B$

prints the prompt without the question mark.

After the prompt or question mark is displayed, you can enter the
required data from the keyboard. The input editor supplied with the
IBM BASIC Compiler/2 allows you to easily alter the response to an
input statement if a mistake is made. Any corrections must be made
before the Enter key is pressed. See" Differences Between the Com
piler and the Interpreter" in IBM BASIC Compilerl2 Compile, Link,
and Run for more information on the input editor.

The data you enter is assigned to the variables given in the variable
list. The data items you supply must be separated by commas, and

193

INPUT
Statement

the number of data items must be the same as the number of vari
ables in the list.

The type of data item that you enter must agree with the type speci
fied by the variable name. (Strings entered in response to an INPUT

statement need not be surrounded by quotation marks.)

If you respond to INPUT with too many or too few items or with the
wrong type of value (letters instead of numbers, and so on.), BASIC

displays the message ?Redo from start. If a single variable is
requested, you can simply press Enter to indicate the default values
of 0 for numeric input or null for string input. However, if more than
one variable is requested, pressing Enter causes the ?Redo from
start message to be printed because too few items were entered.
BASIC does not assign any of the input values to variables until you
give an acceptable response.

If INPUT is immediately followed by a semicolon, pressing Enter to
input data does not produce a carriage return/line feed sequence on
the screen. This means that the cursor remains on the same line as
your response.

Examples

In this example, the question mark displayed by the computer is a
prompt to tell you it wants you to enter something:

10 INPUT X
20 PRINT X "SQUARED IS" XA 2
30 END

Results:

Suppose you enter a 5.

The program conti nues:

? 5
5 SQUARED IS 25

194

INPUT
Statement

For this second example, a prompt was included in line 20, so this
time the computer prompts with "WHAT IS THE RADIUS?"

18 PI=3.14
28 INPUT "WHAT IS THE RADIUS";R
38 A=PI*R"'2
48 PRINT "THE AREA OF THE CIRCLE IS ";A
58 END

Results:

WHAT IS THE RADIUS?

Assume that you respond with 7.4. The program continues:

WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

195

INPUT #
Statement

Purpose

The INPUT # statement reads data items from a sequential device or
file and assigns them to program variables.

Format

INPUT #filenum, variable [,variable] ...

Comments

fiJenum

variable

is the number used when the file was opened for input.

is the name of a variable that will have an item in the file
assigned to it. It can be a string or numeric variable or
an array element.

The sequential file can reside on disk. It can be a sequential data
stream from a communications adapter, or it can be the keyboard
(KYBO:).

The type of data in the file must match the type specified by the vari
able name. Unlike INPUT, no question mark is displayed with INPUT #.

The data items in the file must appear just as they would if the data
were being typed in response to an INPUT statement. With numeric
values, the leading spaces, carriage returns, and line feeds are
ignored. The first character encountered that is not a space, carriage
return, or line feed is assumed to be the start of the number. The
number ends with a space, carriage return, line feed, or comma.

196

INPUT #
Statement

If BASIC is scanning the data for a string item, the leading spaces, car
riage returns, and line feeds are also ignored. The first character
encountered that is not a space, carriage return, or line feed is
assumed to be the start of the string item. If this first character is a
quotation mark ("), the string item consists of all characters read
between the first quotation mark and the second. Thus, a quoted
string cannot contain a quotation mark as a character. If the first
character of the string is not a quotation mark, the string is an
unquoted string. It ends after a comma, carriage return, or line feed,
or after 255 characters have been read. If end of file is reached when
a numeric or string item is being input, the item is cancelled.

Examples

See "BASIC Disk Input and Output" in IBM BASIC Compilerl2
Fundamentals.

197

INPUT$
Function

Purpose

The INPUT$ function returns a stringof n characters read from the key
board or from file number filenum.

Format

v$ = INPUT$(n[,[#]filenum))

Comments

n

filenum

is the number of characters to be read from the file.

is the file number used on the OPEN statement. If filenum
is omitted, the keyboard is read.

If the keyboard is used for input, no characters are displayed on the
screen. All characters (including control characters) are passed
through except Ctrl + Break, which is used to interrupt the INPUT$ func
tion. When responding to INPUT$ from the keyboard, it is not neces
sary to press Enter.

The INPUT$ function allows you to read ASCII characters that normally
are assigned special control functions, such as Backspace (ASCII code
8). If you want to read these special characters, use INPUT$ or INKEY$

(not INPUT or LINE INPUT.)

For communications files, the INPUT$ function is preferred over the
INPUT # and LINE INPUT # statements, because all ASCII characters can
be significant in communications. See also "Communications" in
IBM BASIC Compilerl2 Fundamentals.

198

INPUT$
Function

Examples

The following prog"ram lists the contents of a sequential file in
hexadecimal:

10 OPEN "DATA" FOR INPUT AS #1
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(I,#l)));
40 GOTO 20
50 PRINT
60 END

The next example reads a single character from the keyboard in
response to a question:

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

199

INSTR
Function

Purpose

The INSTR function searches for the first occurrence of string y$ in x$
and returns the position at which the match is found. The optional
offset n sets the position for starting the search in x$.

Format

v = INsTR([n,]x$,y$)

Comments

n

x$,y$

is a numeric expression in the range 1 through 32767.

can be string variables, string expressions, or string con
stants.

If n > LEN(X$), or if x$ is null, or if y$ cannot be found, INSTR returns O.
If y$ is null, INSTR returns n (or 1 if n is not specified).

If n is out of range, an error is returned.

Examples

This example searches for the string "8" within the string "ABCDEB".

When the string is searched from the beginning, "8" is found at posi
tion 2; when the search starts at position 4, "8" is found at position 6.

10 A$ = "ABCDEB"
20 B$ = "B"
30 PRINT INSTR(A$,B$);INSTR(4,A$,B$)

Results
2 6

200

INT
Function

Purpose

The INT function returns the largest integer that is less than or equal
to x.

Format

v = INT(X)

Comments

x is any numeric expression.

This is called the "floor" function in some other programming lan
guages.

See also the FIX and the CINT functions. (They also return integer
values.)

201

INT
Function

Examples

These examples show how INT truncates positive integers but rounds
negative numbers upward (in a negative direction). This is the first
example, truncating a positive, real number:

PRINT INT(45.67)

The second example shows the truncation of a negative, real number.

PRINT INT(-2.89)

Results

The result of the first example is:

45

The result of the second example is:

-3

202

IOCTL
Statement

Purpose

The 10CTL statement allows BASIC to send a control data string to a
device driver anytime after the driver has been opened using OPEN.

This statement is not available under the OS/2 mode.

Format

10CTL [#]filenum,string

Comments

filenum is the file number of the device driver.

string is a string expression containing the control data.

The file 1/0 system of BASIC allows you to create and install your own
device drivers. The 10CTL statement and the 10CTL$ function send
control data to and read data from your device driver.

An 10CTL command string can be up to 32767 bytes long. Multiple
commands within the string can be separated by semicolons:

"LF;PL66;LW132"

You define the content and format of the control data string. The pos
sible commands are determined by the characteristics of the driver
installed.

The 10CTL statement works only if the following conditions are met:

• The device driver is installed.

• The device driver states that it processes 10CTL strings.

• BASIC performs an OPEN on a file on that device.

203

IOCTL
Statement

Most standard DOS device drivers do not process IOCTl strings. You
must determine if the specific driver can handle the command.

Note: For related information, see "IOCTl$ Function" in this book,
"Device Drivers" in IBM BASIC Compiler/2 Fundamentals, and the
device driver section of the IBM Disk Operating System Version 3.30
Technical Reference.

Examples

Initially, character device drivers for lPT1:, lPT2:, and lPT3: are
installed, but they can be replaced. If you install a driver called lPT1

(no colon) to replace lPT1: and that driver is able to set page length,
an IOCTl command string to set or change the page length might be:

"PLn" (where n is the new page length) ,

You can then open the new lPT1 driver and set the page length with:

OPEN "LPTl" FOR OUTPUT AS #1
IOCTL #1, "PL60"

You could, for instance, write a device driver that controls a monitor
and is capable of setting the mode of the screen to color and also
capable of setting the width of the screen. For example:

OPEN "OPT" FOR OUTPUT AS #2
IOCTL #2, "CL:W40"

Assuming that your new driver accepts a command called "Cl" to
change the screen to color and a command called "Wn" to set the
width of the screen, the previous example passes those commands to
your driver and causes the screen to respond.

204

Purpose

IOCTL$
Function

The 10CTL$ reads a control data string from a device driver that is
open.

This function is not available under OS/2 mode.

Format

v$ = 10CTL$([#]filenum)

Comments

filenum is the number of the file open to the device.

The 10CTL$ function can be used to get acknowledgment that an 10CTL
command has succeeded or failed. It can also be used to get device
configuration information, such as device width.

Examples

This example checks to see if control data was successfully received:

10 OPEN "COMM" AS #1
20 IOCTL #1, "SW132;GW"
30 IF IOCTL$(1) = "132" THEN PRINT "WIDTH SET SUCCESSFULLY"

If the device driver "COMM" returns a value not equal to 132 from the
10CTL$ request, your command was not processed successfully, and
you should check for errors. If a device failure occurs, check the
system variables of ERDEV and ERDEV$.

205

KEY
Statement

Purpose

The KEY statement sets or displays function keys and allows you to
defi ne key traps.

Format

KEY ON

KEY OFF

KEY LIST

KEY n, x$

KEY n, CHR$(KBflag) + CHR$(scan code)

Comments

KEY ON causes the function key values to be displayed on the 25th line.
When the width is 40, five of the function keys are displayed. When
the width is 80, 10 function keys are displayed. In either width, only
the first six characters of each value are displayed.

KEY OFF erases the function key display from the 25th line, making that
line available for program use. It does not disable the function keys.

After turning off the function key display with KEY OFF, you can use
LOCATE 25,1 followed by PRINT to display anything you want on the
bottom line of the screen. Information on line 25 is not scrolled, as
are lines 1 through 24.

KEY LIST lists on the screen all function key values that are appropriate
for your hardware configuration.

KEY n,x$ allows you to set each function key to automatically type any
sequence of characters. ON is the default state for the function key
display.

206

KEY
Statement

n is the function key number in the range 1 to 10. 30 and 31 are
also valid values for n.

Note: Assigning values of 30 and 31 only has meaning on key
boards that support function keys 11 and 12 respectively, such
as the IBM Enhanced Keyboard.

x$ is a string expression that is assigned to the key. (Remember
to enclose string constants in quotation marks.)

The value of a function key n is reassigned the value of the string x$.
If. the value entered for n is nO,t valid, an Illegal function call error
occurs. The previous key string assignment is retained. x$ can be 1
to 15 characters in length. If it is longer than 15 characters, only the
first 15 characters are assigned.

Assigning a null string to a function key disables the function key.

When a function key is pressed, the INKEY$ function returns one char
acter of the function key string each time it is called. The first char
acter is bi nary 0, the second is the key scan code, as listed in
Appendix B, "ASCII Character Codes."

There are also eleven definable key traps. With this capability, you
can trap any Ctrl, Shift, or super-shift key.

These additional keys are defined by the statement:

KEY n,CHR$(KBflag) + CHR$(scan code)

n

KBflag

is a numeric expression in the range 15 through 25 .

is a mask for the shifted keys. The appropriate bit in
KBflag must be set in order to trap a key that is shifted,
Alt-shifted, or Ctrl-shifted. The KBflag values in hex are:

Caps Lock &HO if Caps Lock is not active.

Caps Lock &H40 if Caps Lock is active.

Num Lock &HO if Num Lock is not active.

Num Lock &H20 if Num Lock is active.

207

KEY
Statement

Scan code

Alt &H08 if the Alt key is pressed.

elrl &H04 if the Control key is pressed.

Left Shift &H02 if the Left Shift key is pressed.

Right Shift &H01 if the Right Shift key is pressed.

Duplicate key
&H80, for keyboards that have two keys with
identical functions, if the dupl icate key was
pressed rather than the primary key. Pairs
of Shift, Ctrl, or Alt keys are not considered
to be duplicates and cannot be trapped using
a KBflag of &H80.

On the IBty1 Enhanced Keyboard, the dupli
cate keys are the Enter key on the numeric
keypad and the following keys that are found
between the typewriter key area and the
numeric keypad:

Insert
Delete
Home
End
Page Up
Page Down
Cursor movement keys

is the number identifying one of the keys to trap.

See Appendix C, "Scan Codes."

Note that key trapping assumes that the Left and Right Shift keys are
the same, so you can use a value of &H01, &H02, or &H03 (the sum of
hex 01 and hex 02) to denote a Shift key.

You can also add multiple shift states. For example, the Ctrl and Alt
keys can be added together. Shift state values must be in hex.

208

KEY
Statement

When trapping a key or key combinations, you must know the state of
Num Lock and Caps Lock.

When one of the "new" keys of the IBM Enhanced Keyboard is
pressed, the keyboard sends a code to the computer indicating that
the key is one of the new keys followed by the scan code for the "old"
key from which it was derived. You can distinguish between the old
keys and the new (duplicate) keys using the KBflag value &H80, as
described above.

The Pause key, however, is handled slightly differently. When the
Pause key is pressed, the "new key" code is sent, followed by the Ctrl
key scan code and the Num Lock key scan code. Because there is no
"new key" code between the Ctrl and Num Lock codes, BASIC cannot
distinguish between the new Pause key and the old Num Lock key.
Therefore, to trap the Pause key, trap the Num Lock key, as shown in
the last example of this section.

Also notice that Ctrt+Break must be handled slightly differently on
the IBM Enhanced keyboard than on other IBM keyboards. On the IBM
Enhanced keyboard, you must add &H80 to KBflag. For example:

KEY 15,CHR$(&H80+&H04)+CHR$ (70) 'Trap for Ctrl+Break

When you trap keys, they are processed in the following order:

1. Ctrl + PrtSc, which activates the line printer, is processed first.
Even if Ctrl + PrtSc is defined as a trappable key, this does not
prevent characters from being echoed to the line printer.

2. Next, the function keys, the numeric keypad cursor control
keys-Cursor Up, Cursor Down, Cursor Right, and Cursor Left
(1-14)-are processed. Setting scan codes 59 to 68,72, 75, 77, or
80 as key traps has no effect, because they are considered to be
predefined.

3. Last, the keys you define for 15 through 25 are processed.

209

KEY
Statement
Notes:

1. Trapped keys do not go into the BIOS buffer. Therefore, only BASIC

knows that the keys were pressed.

2. Be careful when you trap Ctrl + Break and Ctrl + Alt + Del,
because unless you have a test in your trap routine, you will have
to turn the power off to stop your program.

3. If you are using the IBM PC Convertible, you can use the FN key to
trap certain keys. If you press the FN key, the NUM LOCK KB flag
will automatically change states (become active if not active, and
vice versa).

The following section, "KEY(n) Statement," explains how to enable
and disable function key trapping.

Examples

This example displays the function keys on the 25th line.

50 KEY ON

This example erases the function key display. The function keys are
still active, but not displayed.

10 KEY OFF

This example assigns the string "FILES" + Enter to function key 1.
This is a way to assign a commonly used command to a function key.

10 KEY l,"FILES"+CHR$(13)

This example disables function key 1.

10 KEY 1.""

210

KEY
Statement

This example sets up a key trap for capital P. Note that all three KEY
statements - KEY, KEY(n), and ON KEY-are used with key trapping.

10 KEY 15, CHR$(&H40)+CHR$(25)
20 ON KEY(15) GOSUB 1000
30 KEY(15) ON
40 GOTO 40

This example sets up a key trap for Ctrl + Shift A. Notice that the hex
values for Gtrl (&H04) and Shift (&H03) are added together to get the
shift state.

10 KEY 20, CHR$ (&H04+&H03) +CHR$ (30)
20 ON KEY(20) GOSUB 2000
30 KEY(20) ON
40 GOTO 40

The following example allows you to trap a duplicate key. It only has
meaning for keyboards that have duplicate keys with identical func
tions.

10 REM Trap the Enter key on the numeric keypad
20 KEY 15, CHR$(&H80) + CHR$(28)
30 ON KEY(15) GOSUB 1000
40 KEY(15) ON
50 GOTO 50

The following example traps the Num Lock key and, on the IBM

Enhanced Keyboard, the Pause key.

10 KEY 15, CHR$(&HO) + CHR$(&H45)
20 ON KEY (15) GOSUB 1000
30 KEY(15) ON

100 END

1000 PRINT "Num Lock or Pause key pressed."
1010 RETURN

211

KEV(n)
Statement

Purpose

The KEV(N) statement activates and deactivates trapping of the speci
fied key in a BASIC program. See "ON KEv(n) Statement."

Format

KEv(n) ON

KEv(n) OFF

KEv(n) STOP

Comments

n is a numeric expression with a value in the range 0 though 25.
Values of 30 and 31 are also valid. The value indicates the
trapped key:

o All key traps
1 -10 Function keys F1 to F10
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15 - 25 Keys defi ned by the form:

KEV n,CHR$(KBflag) + CHR$(scan code).

30 Function key F11
31 Function key F12

KEv(n) ON must be run to activate trapping of function key or cursor
control key activity. After KEv(n) ON, if a nonzero line number is spec
ified in the ON KEv(n) statement, then every time BASIC starts a new
statement or line (dep.ending on whether you compiled using IV or
IW), it checks to see if the specified key was pressed. If so, it per
forms a GOSUB to the line number or label specified in the ON KEv(n)

212

KEV(n}
Statement

statement. A KEv(n) statement cannot precede an ON KEv(n) state
ment.

If KEv(n) is OFF, no trapping takes place and even if the key is pressed,
the event is not remembered.

Once a KEv(n) STOP statement has been run, no trapping takes place.
However, if you press the specified key your action is remembered,
so that an immediate trap takes place when KEv(n) ON is executed.

Using a value of 0 for n allows you to globally change the status of all
keys being trapped. You can turn all key traps on by executing:

KEY(0) ON

This statement is equivalent to:

KEY (1) ON
KEY(2) ON
KEY(3) ON

KEY(31) ON

Similarly, you can turn all key traps off by executing:

KEY(0) OFF

and you can stop all key trapping temporarily by executing:

KEY(0) STOP

KEv(n) ON has no effect on whether the function key values are dis
played at the bottom of the screen.

See also" KEY Statement."

Examples

The following example traps both the F1 and P keys. When P is
pressed, it temporarily disables (or reenables) the trapping of the F1
key.

213

KEY(n)
Statement

KEY l5,CHR$(&HOO)+CHR$(25) 'Define trap number
'for P

ON KEY(l) GOSUB KEYTRAP
ON KEY(15) GOSUB PAUSE

KEY(1) ON
KEY(15) ON

PRINT "Press any key except Fl or P to quit."
PRINT

WAIT. HERE:
A$ = ""

A$ = INKEY$
IF A$ = "" THEN GOTO WAIT. HERE

END '*** End of program ***

KEYTRAP:
TIMES& = TIMES& + 1
PRINT "Fl has been pressed ";TIMES&;" times."
RETURN

PAUSE:
KEY(l) STOP 'Stop trapping Fl, but remember

'it if it is pressed
ON KEY(15) GOSUB UNPAUSE
RETURN

UNPAUSE:
KEY(l) ON 'Continue trapping Fl
ON KEY(15) GOSUB PAUSE
RETURN

214

KILL
Command

Purpose

The KILL command deletes a file from a disk. The KILL command in
BASIC is similar to the operating system ERASE command.

Format

KILL filespec

Comments

filespec is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specification" in IBM
BASIC Compilerl2 Fundamentals; otherwise, an error
occurs.

KILL can be used for all types of disk files. The name must include the
extension, if one exists.

If a KILL statement is given for a file that is currently open, a File
already open error occurs.

Examples

To delete the file named "DATA1" on drive A:, you might use:

200 KILL "A:DATA1"

To delete the file "PROG.BAS" in the LEVEL2 subdirectory, you might
use:

KILL "LEVEL1\LEVEL2\PROG.BAS"

KILL can be used only to delete files. The RMDIR command must be
used to remove directories.

215

LBOUND
Function

Purpose

The LBOUND function returns the lower boundary (smallest available
subscript) for a particular array.

Format

v= LBouND(array[,dim])

Comments

array

dim

is the name of the array.

is an integer constant that indicates the number of the
dimension whose lower bound you are requesting. The
default value is 1.

If you used the DIM statement to specify an explicit lower bound for
array, such as

DIM ARRAY(-10 TO 10)

then LBOUND returns the explicit lower bound.

If you did not specify an explicit lower bound, LBOUND returns a value
of 0 or 1 depending on the setting of the OPTION BASE statement. The
default lower bound is O. LBOUND and UBOUND are particularly useful
for determining the size of an array passed to a subprogram.

Note: See also "UBOUND Function."

216

Examples

LBOUND
Function

The following example uses LBOUND and UBOUND to determine the size
of the array to be sorted:

200 OPTION BASE 1
210 DIM SHARED A(10)
220 CLS
230 PRINT "THE UNSORTED ARRAY"
240 FOR I = LBOUND(A) TO UBOUND(A)
250 READ A (I)
260 PRINT A(I)
270 NEXT I
288 CALL SORT
298 PRINT "THE SORTED ARRAY"
388 FOR I = LBOUND(A) TO UBOUND(A)
318 PRINT A(I)
320 NEXT I
338 DATA 48. 188. 19. 8. 66. 23
340 DATA 83. 6. 54. 120. 25. 98
350 END
360 REM **** EXCHANGE SORT SUBPROGRAM ****
370 SUB SORT STATIC
388 STATIC B
398 REM USE LBOUND TO DETERMINE LOWER
400 REM BOUNDARY OF ARRAY
410 FOR I = LBOUND(A) TO UBOUND(A) - 1
428 FOR J = I + 1 TO UBOUND(A)
430 IF A(I) <= A(J) THEN 478
448 B = A(J)
458 A(J) = A(I)
468 A(I) = B
478 NEXT J
488 NEXT I
490 END SUB

217

LBOUND
Function

Results:

THE UNSORTED ARRAY
40
100
19
8
66
23
83
6
54
120

THE SORTED ARRAY
6
8
19
23
40
54
66
83
100
120

218

Purpose

LeASE$
Function

The LCASE$ function converts all the letters in a string to lowercase.

Format

v$ = LCASE$(m$)

Comments

m$ is any string expression. The letters in this string can be upper
case or lowercase.

The LCASE$ function returns a string containing the characters of an
argument string converted to lowercase. You can use this function to
increase the speed of programs that use comparisons that are not
sensitive to case.

Also see "UCASE$ Function".

Examples

10 MIXED$ = "The LCASE Function."
20 LOWER$ = LCASE$(MIXED$)
30 PRINT "Mixed:",MIXED$
40 PRINT "Lowercase:",LOWER$

Results

Mixed:
Lowercase:

The LeASE Function.
the lcase function.

219

LEFTS
Function

Purpose

The LEFT$ function returns the leftmost n characters of x$.

Format

v$ = LEFT$(x$,n)

Comments

x$ is any string expression.

n is a numeric expression that must be in the range 0 through
32767. It specifies the number of characters that are to be in the
result.

If n is greater than LEN(X$), the entire string (x$) is returned. If n = 0,
the null string (length zero) is returned.

See also "MID$ Function and Statement" and "RIGHT$ Function."

Examples

In this example, the LEFT$ function is used to extract the first five char
acters from the string "BASIC PROGRAM":

10 A$ = "BASIC PROGRAM"
20 B$ = LEFT$(A$,5)
30 PRINT B$

Results:

BASIC

220

LEN
Function

Purpose

The LEN function returns the number of bytes that a variable requires.

Format

v = LEN(variable[(index)])

Comments

variable is any variable (scalar, array element, or record vari
able).

index is the subscript of the variable if it is an array element.

If the variable is a string expression, LEN includes unprintable charac
ters and blanks in the count of the number of characters.

Examples

There are 14 characters in the string "SOCA RATON, FL" because the
comma and the two blanks are counted:

18 X$ = "BOCA RATON, FL"
20 PRINT LEN(X$)

Results:

14

221

LEN
Function

This function is also useful with record variables, as the following
example illustrates:

TYPE x
A AS INTEGER
B AS INTEGER

END TYPE
DIM XINSTANCE AS X
PRINT LEN(XINSTANCE)

Results:

4

This example illustrates the use of LEN in opening a file:

TYPE x
A AS INTEGER
B AS INTEGER

END TYPE
DIM XINSTANCE AS X
OPEN "MYFILE" FOR RANDOM LEN=LEN(XINSTANCE) AS 1
GET Hl"XINSTANCE

222

LET
Statement

Purpose

The LET statement assigns the value of an expression to a variable.

Format

[LET] variable = expression

Comments

variable is the name of the variable or array element that is to
receive a value. It can be a string or numeric variable
or array element.

expression is the expression whose value BASIC assigns to vari
able. The type of the expression (string or numeric)
must match the type of the variable, or an error occurs.

The word LET is optional; that is, the equal sign is enough when
assigning an expression to a variable name.

Examples

This example assigns the value 40 to the variable HOURS. It then
assigns the value 134, which is the value of the expression HOURS *
3.35 to the variable PAY. The example also assigns the string "JOHN"

to the variable EMPLOYEE$:

10 LET HOURS=40
28 LET PAY=HOURS*3.35
30 LET EMPLOYEE$=JOHN

You can also write the same statements like this:

10 HOURS=40
20 PAY=HOURS*3.35
30 EMPLOYEE$=JOHN

223

LINE
Statement

Purpose

The LINE statement draws a line or a box on the screen.

This statement is used in Graphics mode only.

Format

LINE [(x1,y1)] -(x2,y2) [,[attribute] [,[8[F]]] [,style]]

Comments

(x1,y1), (x2,y2)

attribute

8

F

224

are the coordinates of the endpoints of a line or the
opposite corners of a box in either absolute or relative
form. See "Specifying Coordinates" under "Graphics
Modes" in IBM BASIC Compilerl2 Fundamentals.

is an integer expression that specifies a color attribute.
In SCREEN 1, (medium resolution), attribute can range
from 0 through 3. In SCREEN 2, (high resolution), attri
bute can be 0 or 1.

The default color attribute for the foreground is the
maximum color attribute for that screen mode. The
COLOR statement can change this default.

The default color attribute for the background is always
O. If you draw a line with attribute 0, you cannot see the
line.

tells LINE to draw a box with the opposite corners at
coordinates (x1,y1) and (x2,y2).

tells LINE to fill the box with color.

LINE
Statement

style is a method of telling LINE which points to plot. You
specify a 16-bit integer for style. BASIC converts this
number into a binary number. LINE reads the digits of
the number as it plots the points along the line or
around the box. If the digit is 1, LINE plots a point. If the
digit is 0, LINE does not plot a point. Then LINE moves to
the next digit of the style number and the next point on
the line. This technique is called line styling. You can
use the style option for normal lines and boxes but not
for filled boxes (SF). Using style with SF results in an
error.

The simplest form of LINE is:

LINE -(X2,Y2)

This statement draws a line from the last-referred to point to the
poi nt (x2,y2) in the foreground attribute.

You can also include a starting point:

LINE (0,0)-(319,199) 'diagonal down screen
LINE (0,100)-(319,100) 'horizontal bar across screen

You can indicate the attribute in which to draw the line:

LINE (10,10)-(20,20),2 'draw in attribute 2

10 'draw random lines in random colors
20 SCREEN 1,O,0,0: CLS
30 LINE -(RND*319,RND*199),RND*4
40 GOTO 20

10 'alternating pattern - line on, line off
20 SCREEN 1,0,0,0: CLS
30 FOR X=0 TO 319
40 LINE (X,0)-(X,199),X AND 1
50 NEXT

The next argument to LINE is B (box), or BF (filled box). You can leave
out c%r and include the argument:

LINE (0,0)-(100,100)"B 'box in foreground

Or you can include the attribute:

225

LINE
Statement
LINE (O,O)-(lOO,lOO),2,SF I filled box attribute 2

The B tells LINE to draw a rectangle with the pOints (x1,y1) and (x2,y2)
as opposite corners. This avoids havi ng to give the four LINE com
mands:

LINE (Xl,Yl)-(X2,Yl)
LINE (Xl,Yl)-(Xl,Y2)
LINE (X2,Yl)-(X2,Y2)
LINE (Xl,Y2)-(X2,Y2)

The BF means "draw the same rectangle as B, but also fill in the inte
rior points with the selected color."

The last argument to LINE is style. LINE uses the current circulating bit
in style to plot (or store) pOints on the screen. If the bit is 0, LINE does
not plot a point. If the bit is 1, LINE plots a point. After each point, LINE

moves to the next bit position in style. When LINE reaches the last bit
position, LINE wraps around and begins with the first bit again.

A 0 bit tells LINE not to plot a point, but it does not erase the eXisting
point on the screen. If you want a background color beneath a line,
you can draw a background line before a styled line to force a known
background.

226

Examples

LINE
Statement

You can use the style option to draw a dotted line across the screen
by plotting (storing) every other point. Because style is 16 bits wide,
the pattern for a dotted line looks like this:

1 ° 1 0 1 ° 1 0 1 ° 1 0 1 ° 1 0

This is equal to AAAA in hexadecimal notation.

To draw a dotted line:

10 SCREEN 1,0
20 LINE (0,0)-(319,199)",&HAAAA

To draw a cyan-colored box with dashes:

10 SCREEN 1,0
20 LINE (0,0)-(100,100),1,B,&HCCCC

The last point referred to after a LINE statement is point (x2,y2). If you
use the relative form for the second coordinate, it is relative to the
first coordinate. For example:

LINE (100,100)-STEP (10,-20)

draws a line from (100,100) to (110,80).

This example draws random boxes filled with random colors:

10 CLS
20 SCREEN 1,0: COLOR 0,0
30 LINE -(RND*319,RND*199),RND*2+1,BF
40 GOTO 30 'boxes will overlap

227

LINE INPUT
Statement

Purpose

The LINE INPUT statement reads an entire line (up to 32767 characters)
from the keyboard into a string variable, ignoring delimiters.

Format

LINE INPUT[;][" prompt";] stringvar

Comments

prompt

stringvar

is a string constant that BASIC displays on the screen
before it accepts input. BASIC does not print a question
mark unless it is part of the prompt string.

is the name of the string variable or array element to
which BASIC assigns the line. BASIC assigns all input
from the end of the prompt to the Enter to stringvar.
BASIC ignores trailing blanks.

If a semicolon immediately follows LINE INPUT, pressing Enter to end
the input line does not produce a carriage return/line feed sequence
on the screen. That is, the cursor remains on the same line as your
response.

The input editor supplied with the IBM BASIC Compiler/2 allows you to
easily alter your response, if you have made a mistake. You must
make any corrections before you press Enter.

228

LINE INPUT
Statement

See "Differences between the Compiler and the Interpreter" in IBM
BASIC Compilerl2 Compile, Link, and Run for more information on
the input editor.

Examples

See the example in "LINE INPUT # Statement."

229

LINE INPUT #
Statement

Purpose

The LINE INPUT # statement reads an entire line (up to 32767 charac
ters), ignoring delimiters, from a sequential file into a string variable.

Format

LINE INPUT #filenum, stringvar

Comments

filenum

stringvar

is the number under which the file was opened.

is the name of a string variable or array element to
which the line is assigned.

LINE INPUT # reads all characters in the sequential file up to a carriage
return. It then skips over the carriage returnlline feed sequence, and
the next LINE INPUT # reads all characters up to the next carriage
return. (If a line feed/carriage return sequence is encountered, it is
preserved. That is, the line feed/carriage return characters are
returned as part of the string.)

LINE INPUT # is especially useful if each line of a file has been broken
into fields, or if a BASIC program saved in ASCII mode is being read as
data by another program.

See also "BASIC Disk Input and Output," in IBM BASIC Compilerl2
Fundamentals.

230

Examples

LINE INPUT #
Statement

The following example uses LINE INPUT to get information from the key
board, where the information is likely to have commas or other delim
iters. The information is then written to a sequential file, and read
back out from the file using LINE INPUT #.
10 OPEN "LST" FOR OUTPUT AS #1
20 LINE INPUT "Address? ";C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "LST" FOR INPUT AS #1
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1

Results:

Address?

Suppose you respond with DELRAY BEACH, FL 33445. The program con
tinues:

Address? DELRAY BEACH, FL 33445

DELRAY BEACH, FL 33445

231

Loe
Function

Purpose

The LINE INPUT # function returns the current position in the file.

For a communications file LaC returns the number of characters
waiting in the input buffer.

Format

v = Loc(filenum)

Comments

filenum is the file number used when the file was opened.

With random files, LaC returns the record number of the last record
read or written to a random file since the file was opened.

With sequential files, LaC returns the number of records read from or
written to the file since it was opened. (A record for sequential files
is a 128-byte block of data.) When a file is opened for sequential
input, BASIC reads the first sector of the file, so LaC returns a 1 even
before any input from the file.

For a communications file, LaC returns the number of characters in
the input buffer waiting to be read. The default size for the input
buffer is 256 characters, but this can be changed by usi ng the RB
option of the OPEN "CoM ... Statement or b using the Ie: option at
compile time.

232

Loe
Function

Examples

This example stops the program when the 50th record in the file is
passed:

100 IF LOC(1»50 THEN STOP

Thjs example could be used to rewrite the record that was just read:

100 PUT #l,LOC(l)

233

LOCATE
Statement

Purpose

The LOCATE statement positions the cursor on the active screen.
Optional parameters turn the blinking cursor on and off and define the
size of the bl inking cursor.

Format

LOCATE [row][,[co/] [,[cursor][,[start] [,stop]]]]

Comments

row is a numeric expression in the range 1 through 25. It indi
cates the screen line number where you want to place the
cursor.

col is a numeric expression in the range 1 through 40 or 1
through 80, depending upon screen width. It indicates the
screen column number where you want to place the cursor.

cursor is a value indicating whether the cursor is visible or not. A
o indicates off, a 1 indicates on.

start is the cursor-start scan line. It must be a numeric
expression in the range 0 through 31.

stop is the cursor-stop scan line. It also must be a numeric
expression in the range 0 through 31.

The cursor, start, and stop do not apply to graphics mode.

The start and stop allow you to make the cursor any size you want.
You indicate the starting and ending scan lines. The scan lines are
numbered from 0 at the top of the character position. The bottom
scan line is 7 if you have the Color/Graphics Monitor Adapter, 13 if
you have the IBM Monochrome Display and Printer Adapter. If start is
given and stop is omitted, stop assumes the value of start. If start is

234

LOCATE
Statement

greater than stop, you get a two-part cursor. The cursor "wraps"
from the bottom line back to the top.

For all monitors, using start and stop values greater than the bottom
scan line can cause unpredictable results.

After a LOCATE statement, 1/0 statements to the screen begin placing
characters at the specified location.

When a program is running, the cursor is normally off. You can use
LOCATE" 1 to turn it back on.

Normally, the compiler does not print to line 25. However, if the func
tion key display is turned off by using KEY OFF, you can use:

LOCATE 25,1: PRINT ...

to put data on line 25. Line 25 does not scroll as the rest of the
screen does.

Any parameter can be omitted. Omitted parameters assume the
current value.

Any values entered outside the ranges indicated results in an Illegal
function call error. Previous values are retained.

235

LOCATE
Statement

Examples

This example moves the cursor to the home position in the upper left
hand corner of the screen:

10 LOCATE 1, 1

This example makes the blinking cursor visible; its position remains
unchanged:

10 LOCATE ,,1

In this example, position and cursor visibility remain unchanged. The
cursor is set to display at the bottom of the character on the
Color/Graphics Monitor Adapter (starting and ending on scan line 7).

10 LOCATE ,.,7

This example moves the cursor to line 5, column 1. It makes the
cursor visible, covering the entire character cell on the
Color/Graphics Monitor Adapter, starting at scan line 0 and ending
on scan line 7.

10 LOCATE 5,1,1,0,7

236

Purpose

LOCK
Statement

The LOCK statement restricts access by other processes to all or part
of an opened file.

This statement is not available under OS/2.

Format

LOCK [#]n [,[recnum] [TO recnum]]

Comments

n is the file number of the opened file.

recnum specifies the beginning and ending record numbers of the
range of records to be locked. This is only meaningful if
the file is opened for random access.

Under DOS, before you run an application that uses any LOCK or
UNLOCK statements, you must first install the SHARE module. This
module is on the DOS disk and is installed by entering the command
"SHARE" at the DOS prompt or by installing network software.

If the file is opened for sequential access, the entire file is locked
regardless of any range that is specified.

If a starting record number is not specified, record number 1 is
assumed. If an end record is not specified, only one record is locked.
The range of legal record numbers is 1 through 2147483647

Note: If locks are not removed before closing the file or program ter
mination, unpredictable results can occur.

See also "UNLOCK Statement".

237

LOCK
Statement

Examples

The following example shows how LOCK and UNLOCK are used with a
file that is opened for sequential access:

18 OPEN "DATA" FOR INPUT AS #1
28 I OPENS DATA AS A SEQUENTIAL FILE
38 LOCK #1,1 TO 2
48 I LOCKS ENTIRE FILE
58 UNLOCK #1,1 TO 2
60 I UNLOCKS ENTIRE FILE
78 LOCK #1,2
88 I ALSO LOCKS ENTIRE FILE
98 UNLOCK #1,2
188 I UNLOCKS ENTIRE FILE
118 CLOSE #1
128 END

File access controls can be applied to files opened for sequential
access or random access. When writing an application to be used in
a networking environment, care should be taken that file access is
properly controlled. Data loss or corruption can occur when file
access control is not provided.

The following example shows how LOCK and UNLOCK are used with a
file that is opened for random access:

10 OPEN "DATA2" AS #1
28 I OPEN DATA2 AS RANDOM ACCESS FILE
38 LOCK #1,3
40 I LOCKS RECORD #3 ONLY
58 LOCK #1,4 TO 10
68 I LOCKS RECORDS #4 - #10
70 UNLOCK -#1,4 TO 10
80 I UNLOCKS RECORDS #4 - #10
90 UNLOCK #1,3
100 I UNLOCKS RECORD #3
110 CLOSE #1
120 END

238

LOF
Function

Purpose

The LOF function returns the number of bytes allocated to the file
(length of the file).

For a communications file, LOF returns the amount of free space in the
input buffer.

Format

v = LOF(filenum)

Comments

filenum is the file number used when the file was opened.

LOF returns the actual number of bytes allocated to the file. If the disk
file was created by BASIC Compiler 1.00, LOF returns the number of
bytes allocated to the file in a multiple of 128. For example, if the
actual data in the file is 257 bytes, LOF returns the number 384.

For communications, Lo.F returns the amount of free space in the input
buffer. You can calculate this with the following formula:

size - Loc(filenum)

where size is the size of the communications buffer, which defaults to
256 but can be changed by using the RB option of the OPEN "COM ...

statement or by using the IC: option at compile time. LOF can be used
to detect when the input buffer is getting full. In practicality, LOC is
adequate for this purpose, as demonstrated in the example in
"Communications" in IBM BASIC Compilerl2 Fundamentals.

239

LOF
Function

Examples

This example gets the last record of the file named BIG (BIG was
created with a record length of 128 bytes):

10 OPEN "BIG" AS II
20 GET 11,LOF(1)/128

240

Purp()se

The LOG function returns the natural logarithm of x.

Format

v = LOG(X)

Comments

x must be a numeric expression greater than O.

The natural logarithm is the logarithm to the base e.

Examples

LOG
Function

The first example calculates the logarithm of the expression 45/7:

PRINT LOG(45/7)

Results:

1. 868752

241

LOG
Function

The second example calculates the logarithm of e:

E=2.718282
PRINT LOG (E)

Results:

The following example calculates the logarithm of e2
:

E=2.718282
PRINT LOG(E*E)

Results:

242

Purpose

LPOS
Function

The LPOS function returns the current position of the print head within
the printer buffer for LPT1, LPT2, or LPT3.

Format

v = LPos(n) .

Comments

n is a numeric expression that indicates the printer being tested,
as follows:

o or 1 LPT1:

2 LPT2:

3 LPT3:

Note: The colon is part of the device name and must be included
when specifying a device.

The LPOS function does not necessarily give the physical position of
the print head on the printer.

Examples

In this example, if the line length is more than 60 characters, a car
riage return character is sent to the printer so that it skips to the next
line:

100 IF LPOS(0»60 THEN LPRINT CHR$(13)

243

LPRINT and LPRINT USING
Statements

Purpose

The LPRINT AND LPRINT USING statements Print data on the printer (LPT1).

Format

LPRINT [list of expressions [;]]

LPRINT USING v$; list of expressions [;]

Comments

list of expressions
is a list of the numeric and/or string expresSions to be printed.
The expressions must be separated by commas or semicolons.

v$ is a string constant or variable that identifies the format to be
used for printing. This is explained in detail under the PRINT

statement.

These statements function like PRINT and PRINT USING, except output
goes to the printer. See "PRINT Statement" and "PRINT USING

Statement" .

LPRiNT assumes an 80-character-wide printer. That is, BASIC automat
ically inserts a carriage returnlline feed after printing 80 characters.
This means that two lines are skipped when you print exactly 80 char
acters, unless you end the statement with a semicolon. You can
change the width value with a WIDTH "LPT1:" statement.

244

LPRINT and LPRINT USING
Statements

If you do a form feed (LPRINT CHR$(12);) followed by another LPRINT and
the printer takes more th.an 10 seconds to do the form feed, you can
get a Device timeout error on the second LPRINT" To avoid this
problem, enter the following:

1 ON ERROR GOTO 65000

65000 IF ERR = 24 THEN RESUME '24=timeout

You may want to test the ERL variable to make sure the timeout was
caused by an LPRINT statement.

Examples

This is an example of sending special control characters to the IBM

Graphics Printer using LPRINT and CHR$" The printer control charac
ters are listed in the technical documentation for your printer"

10 LPRINT CHR$(14);"
20 FOR 1=2 TO 4

Title Line"

30 LPRINT "Report line";I
40 NEXT I
50 LPRINT CHR$(15);"Condensed print;132 char/line"
60 LPRINT CHR$(18);"Return to normal"
70 LPRINT CHR$(27);"E"
80 LPRINT "This is emphasized print"
90 LPRINT CHR$(27);"F"
100 LPRINT "Back to normal again"

The output produced by this program looks like this:
T -tLe Li",-,e

Repo"rt Urle 2
Report Line 3
Repo"rt U'ne 4
Condensed print;t32 char/l ine
RetIJ."rn to "no"rmaL

This is emphasized p'rint

Back to no"rmal agai"n

245

LSET and RSET
Statements

Purpose

The LSET AND RSET statements Move data into a random file buffer in
preparation for a PUT (file) statement.

Format

LSET stri ngvar = x$

RSET stringvar = x$

Comments

stringvar

x$

is the name of a variable defined in a FIELD statement.

is a string expression to place the information into the
field identified by stringvar.

If x$ requires fewer bytes than were specified forstringvar in the
FIELD statement, LSET left-justifies the string in the field, and RSET right
justifies the string. (Spaces are used to pad the extra positions.) If x$
is longer than stringvar, characters are dropped from the right.

Numeric values must be converted to strings before they are LSET or
RSET. See MKI$, MKL, MKS$, and MKD$ Functions."

See also "BASIC Disk Input and Output" in IBM BASIC Compilerl2
Fundamentals for a complete explanation of using random files.

246

LSET and RSET
Statements

Note: LSET or RSET can also be used with a string variable that was
not defined in a FIELD statement to left-justify or right-justify a string in
a given field. For example, the following program lines right-justify
the string N$ in a 20-character field. This can be useful for formatting
printed output.

10 A$=SPACE$(20)
20 RSET A$=N$

Examples

This example converts the numeric value AMT into a string, and left
justifies it in the field A$ in preparation for a PUT (file) statement:

10 LSET A$=MKS$(AMT)

247

LTRIM$
Function

Purpose

The LTRIM$ function Removes leading spaces from string expressions.

Format

v$ = L TRIM$(X$)

Comments

x$ is the name of the string you want to trim.

The LTRIM$ function examines x$, removes any spaces that pad the
beginning of the string, and returns a new string, v$, without the
spaces. x$ remains unchanged.

Also see "RTRIM$ Function."

248

Examples

This example demonstrates LTRIM$ and RTRIM$

LTRIM$
Function

DIM FixedString AS STRING * 10
DIM NormalString$

, FixedString = 10 character string
, NormalString= a dynamic string

FixedString "Test"
NormalString$ = "Test"

, RTRIM$ must be used when comparing a fixed string with a normal
, one to trim off any default trailing blanks:
IF RTRIM$(FixedString) = NormalString$ THEN

PRINT "The two strings are equal"

, If this happens, something's wrong:
ELSE

PRINT "The two strings are not equal"
END IF

, Try a string with leading blanks:
NormalString$ =" Test"
IF RTRIM$(FixedString) = NormalString$ THEN

PRINT "The two strings are still equal"

, LTRIM Removes the leading blanks so the comparison will work:
ELSEIF RTRIM$(FixedString) = LTRIM$(NormalString$) THEN

PRINT "The two strings are equal if leading blanks are removed"

, If this happens, something's wrong:
ELSE

PRINT "The two strings aren't equal"
END IF
END

249

MID$ Function and
Statement

Purpose

The MID$ statement returns the requested part of a given string. When
used as a statement, as in the second format, replaces a portion of
one string with another string.

Format

As a function:

v$ = MID$(x$,n[,m])

As a statement:

MID$(v$,n[,m]) = y$

Comments

For the function (v$ = MID$...):

x$ is any string expression.

n is an integer expression in the range 1 through 32767.

m is an integer expression in the range 0 through 32767.

The function returns a string of length m characters from x$ beginning
with the nth character. If m is omitted or if fewer than m characters
are to the right of the nth character, all rightmost characters begin
ning with the nth character are returned. If m is equal to 0 or if n is
greater than LEN(X$), MID$ returns a null string.

See also "LEFT$ Function" and "RIGHT$ Function."

For the statement (MID$... = y$):

250

MID$ Function and
Statement

v$ is a string variable or array element that will have its
characters replaced.

n is an integer expression in the range 1 through 32767.

m is an integer expression in the range 0 through 32767.

y$ is a string expression.

The characters in v$, beginning at position n, are replaced by the
characters in y$. The optional m refers to the number of characters
from y$ used in the replacement. If m is omitted, all of y$ is used.

However, regardless of whether m is omitted or included, the length
of v$ does not change. For example, if v$ is four characters long and
y$ is five characters long, then after the replacement v$ contains only
the fi rst four characters of y$.

Note: If either n or m is out of range, an Illegal function call error is
returned.

251

MIDS Function and
Statement

Examples

The first example uses the MID$ function to select the middle portion
of the stri ng B$:

10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)

Results:

GOOD EVENING

The next example uses the MID$ statement to access substrings
imbedded within one large string. This technique reduces fragmenta
tion of string space.

10 RECORD$ = STRING$(255,0)
20 PARTl.OFF = 1
30 PART1.LEN = 5
40 PART2.0FF = 6
50 PART2.LEN = 15

100 MID$(RECORD$,PART1.0FF,PART1.LEN) = "STRNG"

252

MKDIR
Command

Purpose

The MKDIR command creates a directory on the specified disk.

Format

MKDIR path

Comments

path is a string expression, not exceeding 63 characters, that identi
fies the new directory to be created. For more information
about paths, refer to "File Specification" and "Tree-Structured
Directories" in IBM BASIC Compilerl2 Fundamentals.

Examples

This example creates from the root directory a subdirectory called
APPS:

MKDIR "APPS"

This example creates from the root directory a subdirectory called FIN

under the directory APPS:

MKDIR "APPS\FIN"

This example creates from the root directory a subdirectory called wp

under the directory APP:

MKDIR "APPS\WP"

This example creates from the root directory a subdirectory called
LANG:

MKDIR "LANG"

This example makes LANG the current directory, and then creates two
subdirectories called BASIC and FORTRAN:

253

MKDIR
Command
CHDIR "LANG"
MKDIR "BASIC"
MKDIR "FORTRAN"

The same structure can be created from the root by entering:

MKDIR "LANG\BASIC""
MKDIR "LANG\FORTRAN'"'

The following example creates from the root directory subdirectories
called COMPILER and INT under the subdi rectory LANG\BASIC:

MKDIR "LANG\BASIC\COMPILER"
MKDIR "LANG\BASIC\INT"

By following the preceding examples, you create a tree structure that
looks like this:

254

MKI$, MKL$, MKS$, MKD$
Functions

Purpose

The MKI$, MKL$, MKS$, MKD$ functions convert numeric type values to
string type values for placement in random files.

Format

v$ = MKI$(integer expression)

v$ = MKL$(Iong integer expression)

v$ = MKs$(single-precision expression)

v$ = MKD$(double-precision expression)

Comments

Any numeric value that is placed in a random file buffer with an LSET

or RSET statement must be converted to a string. MKI$ converts a long
integer to a 2-byte string. MKL$ converts an integer to a 4-byte string.
MKS$ converts a single-precision number to a 4-byte string. MKD$ con
verts a double-precision number to an 8-byte string.

These functions differ from STR$ because they do not really change
the bytes of the data. They change the way BASIC interprets those
bytes.

If you want to store floating-point numbers in a random file so they
can be read by programs created with the BASIC Interpreter or a pre
vious versio of the BASIC Compiler, you must use the MKSMBF$ and
MKDMBF$ functions instead of the MKS$ and MKD$ functions. See the
next section for details on these functions.

See also the CVI, CVL, cvs, and CVD functions in this book and "BASIC

Disk Input and Output" in IBM BASIC Compiler/2 Fundamentals.

255

MKI$, MKL$, MKS$, MKD$
Functions

Examples

This example uses a random file (#1) that has previously been
opened with the fields defined in line 100. The first field, D$, is
intended to hold a numeric value, AMT. Line 110 converts AMT to a
string value using MKS$ and uses LSET to place what is really the value
of AMT into the random file buffer. Line 120 places a string into the
buffer (it is not necessary to convert a string). Line 130 writes the
data from the random file buffer to the file.

100 FIELD #1, 4 AS 0$, 20 AS N$
110 LSET 0$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

256

MKSMBF$, MKDMBF$
Functions

Purpose

The MKSMBF$ and MKDMBF$ functions translate a number in IEEE format
into Microsoft Binary Format (MBF) and return it as a string.

Format

v$ = MKSMBF$(single)
v$ = MKDMBF$(double)

Comments

single

double

is a single-precision number in IEEE format.

is a double-precision number in IEEE format.

Numeric values written to a random file that will be read with an
earlier version of the BASIC Compiler or with the BASIC Interpreter
must be converted to MEW format. You can use the MKSMBF$ and
MKDMBF$ functions to convert these numbers from IEEE format back to
Microsoft Binary Format.

You can also use the ICV parameter on the IBM BASIC Compiler/2
command line to make the conversion automatic.

Also see "CVSMBF, CVDMBF Functions."

257

MKSMBF$, MKDMBF$
Functions

Examples

This example reads a record from an old format random access file
and allows new values to be entered in its fields. It uses CVSMBF,

CVDMBF, MKSMBF$ and MKDMBF$ to convert from the old Microsoft
Binary format to the current IEEE number format.

I Define the record structure for file record:
TYPE OldRecord

ID AS STRING * 10
Cost AS STRING * 4
Amt AS STRING * 8

I Single precision number
I Double precision number

END TYPE

I Define a variable of the above structure:
DIM Buff AS OldRecord

I Open file:
OPEN "OLD.DAT" FOR RANDOM AS #1

I Get the first record:
GET #1, 1, Buff

I Decode values:
CostVal = CVSMBF(Buff.Cost)
AmtVal# = CVDMBF(Buff.Amt)

I Get updated values:

I Single precision value
I Double precision value

PRINT "Current: "Buff. ID", "CostVal", "AmtVal #"
INPUT "New? :", NewID$, CostVal, AmtVal #

I Encode the new values for writing to the file:
Buff.Cost = MKSMBF$(CostVal)
Buff.Amt = MKDMBF$(AmtVal#)
Buff.ID = NewID$

I Write the updated record to the file:
PUT #1, 1, Buff

END

258

NAME
Command

Purpose

The NAME command changes the name of a disk file. The NAME

command in BASIC is similar to the operating system RENAME

command.

Format

NAME oldspec AS newspec

Comments

oldspec is a string expression containing the file specification of
an existing file. If the drive or path is not specified, BASIC

assumes the current drive or directory.

newspec is a string expression containing the new file specifica
tion for the file. If no path is specified, BASIC assumes the
current directory.

newspec can include a drive name only if it is the same disk drive as
the one specified by oldspec. Different logical drives, defined using
the operating system's ASSIGN command, are allowed as long as they
both specify the same physical drive.

If either the file specified by oldspec does not exist or the file speci
fied by newspec already exists, then an error occurs.

If the path in newspec is different from the path in oldspec, then the
file will be "moved" to the new directory. The file itself is not moved,
but its directory entry is.

See "Filenames" and "File Specification" in IBM BASIC Compilerl2
Fundamentals for more information on file specifications.

259

NAME
Command

Examples

In this example, the file that was formerly named ACCTS.BAS on the
disk in drive A: is now named LEDGER.BAS:

NAME "A:ACCTS.BAS" AS "LEDGER. BAS"

260

Purpose

OCT$
Function

The OCT$ function returns a string that represents the octal value of
the decimal argument.

Format

v$ = OCT$(n)

Comments

n is a numeric expression in the range -2147483648 through
2147483647.

If n is negative, the two's complement form is used.

See "HEX$ Function" for hexadecimal conversion.

Examples

This example shows that 24 in decimal is 30 in octal:

PRINT OCT$(24)

Results:

38

261

ON COM(n)
Statement

Purpose

The ON COM(N) statement sets up a line number or label for BASIC to
branch to when there is information coming into the communications
buffer.

This statement is only supported under DOS and OS/2 mode.

Format

ON COM(n) GOSUB finellabel

Comments

n is the number of the communications adapter (1 or 2).

fine is the line number of the beginning of the trap routine. Setting
line equal to 0 disables trapping of communications activity for
the specified adapter.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

A COM(n) ON statement must be run to activate this statement for
adapter n. After COM(n) ON, if a non-O line number is specified in the
ON COM(n) statement, every time the program starts a new statement
or line, (depending on whether you compiled using IV or IW), BASIC

checks to see if any characters have come in to the specified commu
nications adapter. If so, BASIC performs a GOSUB to the specified line
or label.

262

Notes:

ON COM(n)
Statement

1. If your program contains any event-trapping statements, such as
ON COM, for example, you need to compile your program using the
IV or IW switch.

2. If you compile your program with the 10 switch, you must link the
IBMCOM.OBJ module.

If COM(n) OFF is run, no trapping takes place for the adapter. Even if
communications activity does take place, the event is not remem
bered.

If a COM(n) STOP statement is run, no trapping takes place for the
adapter. However, any characters being received are remembered
so an immediate trap takes place when COM(n) ON is run.

When the trap occurs, an automatic COM(n) STOP is run so that recur
sive traps never take place. The RETURN from the trap routine auto
matically does a COM(n) ON unless an explicit COM(n) OFF was
performed inside the trap routine.

When an error trap takes place, all trapping is automatically disabled
(including ON COM, ON ERROR, ON PEN, ON PLAY, ON STRIG, and ON TIMER).

Typically, the communications trap routine reads an entire message
from the communications line before returning. It is not recom
mended that you use the communications trap for single character
messages. Several characters may arrive within a short time
interval, thereby causing only one event to occur. For example, char
acters may arrive during the communications trap routine.

You can use RETURN finel/abel to go back to the BASIC program at a
fixed location. Use this nonlocal return with care, however, because
any other GOSUBS, WHILES, or FORS active at the time of the trap remain
active.

You can exit an active loop by setting the loop counter variable out of
range or setting a conditional statement within the loop to end it.

263

ON COM(n)
Statement
This insures that every repetition of a FOR has a corresponding NEXT

and every repetition of a WHILE has a corresponding WEND.

Examples

This example sets up a trap routine for the first communication
adapter at line 500:

150 ON COM(l) GOSUB 500
160 COM(1) ON

500 'incoming characters

590 RETURN

264

ON ERROR
Statement

Purpose

The ON ERROR statement sets up a line number or label for BASIC to
branch to when an error occurs.

Format

ON ERROR GOTO finellabel

Comments

line is the line number of the first line of the error-trapping routine.
If the line number does not exist, an Undefined line number
error results.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

line or label must be at the main program level; they cannot be in a
subprogram or function.

Once error-trapping has been enabled, all errors detected cause a
jump to the specified error-handling subroutine.

Note: If your program contains any ON ERROR or RESUME statements,
you may need to compile using the IX or IE parameter. See "Com
piler Parameters" in IBM BASIC Compilerl2 Compile, Link, and Run
for more information.

To disable error-trapping, run an ON ERROR GOTO o. Subsequent errors
print an error message and halt the program. An ON ERROR GOTO 0
statement that appears in an error trapping subroutine causes BASIC

to stop and print the error message for the error that caused the trap.
It is recommended that all error-trapping subroutines run an ON ERROR

GOTO 0 if an error is encountered for which there is no recovery
action.

265

ON ERROR
Statement

BASIC considers itself to be within the error-trapping routine from the
time an error occurs. It branches to the line specified by the ON ERROR

statement until a RESUME statement is encountered. You must use the
RESUME statement to exit from the error trapping routine. See also
"RESUME State m,e nt. "

Because error-trapping does not occur within the error-trapping
routine, an ON ERROR GOTO line (within the error-trapping routine),
where line is anything other than 0, does not work.

Note: If an error occurs while an error-handling subroutine is
running, the BASIC error message is printed and the program ends.
Error-trapping does not occur within the error-handling subroutine.

Examples

This example tests to see if the drive door is open when the program
needs to open a file:

10 ON ERROR GOTO 100
20 OPEN "DATA" FOR INPUT AS #1
30 END

100 IF ERR=?1 THEN LOCATE 23.1:
PRINT "DISK IS NOT READY"

110 RESUME NEXT

266

ON ... GOSUB and ON ... GOTO
Statements

Purpose

The ON ... GOSUB AND ON ... GOTO statements branch to one of several
specified line numbers or labels depending on the value of an
expression.

Format

ON n GOTO finel/abel [,Iinel/abel] ...

ON n GOSUB linel/abel [,linel/abel] ...

Comments

n is a numeric expression, rounded to an integer, if necessary.
It must be in the range 0 through 255, or an Illegal function
call error occurs.

line is the number of the line to which the program branches.

label is a sequence of 1 ttrough 40 letters, digits, or periods, in any
combination.

The line and label must be at the same level as the GOSUB or GOTO

statement. That is, the line or label and the GOSUB or GOTO must all
be in the same subprogram or all at the main program level.

The value of n determines which line number in the list the program
uses for branching. For example, if the value of n is 3, the third line
number in the list is the point at which the program branches.

In the ON ... GOSUB statement, each line number in the list must be the
first line number of a subroutine. Eventually you must have a RETURN

statement to bring you back to the line following the ON ... GOSUB.

267

ON ... GOSUB and ON ... GOTO
Statements
If the value of n is 0, or greater than the number of items in the list
(but less than or equal to 255), BASIC continues with the next execut
able statement.

Examples

The first example branches to line 150 if L-1 equals 1, to line 300 if L-1
equals 2, to line 320 if L-1 equals 3, and to line 390 if L-1 equals 4. If
L-1 is equal to 0, or is greater than 4, the program goes to the next
statement.

100 ON L-1 GOTO 150,300,320,390

The next example shows how to use an ON ... GOSUB statement:

100 REM display menu
110 PRINT "1. Routine 1"
120 PRINT "2. Routine 2"
130 PRINT "3. Routine 3"
140 PRINT "4. Routine 4"
150 INPUT "Your choice?"; CHOICE
160 ON CHOICE GOSUB 200, 300, 400, 500
170 GOTO 100 I redisplay menu after routine is done
200 REM start of first routine

290 RETURN
300 REM start of second routine

268

ON KEY(n)
Statement

Purpose

The ON KEY(n) statement sets up a line number or label for BASIC to
branch to when the specified function key or cursor control key is
pressed.

Format

ON KEY(n) GOSUB finellabel

Comme.nts

n is a numeric expression in the range 1 through 25, 30, or 31
indicating the key to be trapped, as follows:

1 -10 Function keys F1 to F10
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15 - 25 keys defined by the form:

KEY n,CHR$(KBflag) + CHR$(scan code).

See "KEY(n) Statement" for more information.

30 Function key 11 on the IBM Enhanced Keyboard
31 Function key 12 on the IBM Enhanced Keyboard.

line is the line number of the beginning of the trapping routine for
the specified key. Setting line equal to 0 stops trapping of the
key.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

269

ON KEY(n)
Statement
The line and label must be at the main program level; they cannot be
in a subprogram or function.

A KEY(n) ON statement must be run to activate this statement. After
KEY(n) ON, if a non-O line number is specified in the ON KEY(n) state
ment, then every time the program starts a new statement or line
number (depending on whether the program was compiled with IV or
IW), BASIC checks to see if the specified key was pressed. If so, BASIC

performs a GOSUB to the specified line or label.

Note: If your program contains any event-trapping statements, such
as ON KEY, for example, you need to compile your program using the
IV or IW switch.

If a KEY(n) OFF statement is run, no trapping takes place for the speci
fied key. Even if the key is pressed, the event is not remembered.

If a KEY(n) STOP statement is run, no trapping takes place for the spec
ified key. However, if the key is pressed, the event is remembered,
and an immediate trap takes place when KEY(n) ON is run.

When the trap occurs, an automatic KEY(n) STOP is run so that recur
sive traps never take place. The RETURN from the trap routine auto
matically does a KEy(n) ON unless an explicit KEY(n) OFF was
performed inside the trap routi ne.

Event trapping does not take place when BASIC is not running a
program. When an error trap (resulting from an ON ERROR statement)
takes place, all trapping is automatically disabled (including ON COM,

ON ERROR, ON PEN, ON PLAY, ON STRIG, and ON TIMER).

Key trapping may not work if you press other keys before the speci
fied key. The key that caused the trap cannot be tested using INPUT$

or INKEY$, so the trap routine for each key must be different if a dif
ferent function is desired.

You can use RETURN finel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, however,
because any other GOSUBS, WHILES, or FORS active at the time of the
trap remain active.

270

ON KEY(n)
Statement

You can exit an active loop by setting the loop counter variable out of
range or setting a conditional statement within the loop to end it.
This ensures that every repetition of a FOR has a corresponding NEXT

and every repetition of a WHILE has a corresponding WEND.

KEv(n) ON has no effect on whether the soft key values are displayed
at the bottom of the screen.

Special Considerations for DOS National Diskettes

The DOS national diskette keyboard programs have a feature that
allows you to change between the United States and national key
board at any time. Use the F1 or F2 key while holding down Alt and
Ctrl to perform the switch. (See IBM DOS for more information on the
DOS keyboard programs.) If your BASIC program traps either of these
keys, it will not pass the information to the DOS keyboard program and
the keyboard change will not take place. If YOlJr program needs to
provide this ability to change keyboard formats, avoid trapping the F1
and F2 keys.

Note: The shift state you use when trapping either of these keys
makes no difference when considering the DOS keyboard programs.
Any shift of base state trapping of F1 and F2 prevents the keystroke
from being passed to the DOS program.

271

ON KEY(n)
Statement

Examples

The following is an example of a trap routine for function key 5:

100 DN KEY(5) GOSUB 200
110 KEY(5) ON

200 'function key 5 pressed

290 RETURN 140

This example traps Ctrl + Break and Ctrl + Alt + Del. It assumes that
Caps Lock, and Num Lock are currently disabled.

10 KEY 15,CHR$(&H04)+CHR$(70) 'Trap Ctrl+Break
20 KEY 16,CHR$(&H04+&H08)+CHR$(83) 'Trap Ctrl+Alt+Del
30 ON KEY(15) GOSUB 1000
40 ON KEY(16) GOSUB 2000
50 KEY(15) ON: KEY(16) ON

1000 PRINT "Trapping for Ctrl+Break"
1010 RETURN
2000 TRAPS=TRAPS+1
2010 ON TRAPS GOTO 2100,2200,2300,2400,2500
2020 '
2100 PRINT "First trap of System Reset":RETURN
2200 PRINT "Second trap of System Reset":RETURN
2300 PRINT "Third trap of System Reset":RETURN
2400 PRINT "Fourth trap of System Reset":RETURN
2500 KEY(16) OFF 'Disable trap of System Reset

Note: When specifyi ng scan codes, you can use either hexadeci mal
or decimal notation.

272

Purpose

ON PEN
Statement

The ON PEN statement sets up a line number or label for BASIC to
branch to when the light pen is activated.

This statement is not available under the OS/2 mode.

Format

ON PEN GOSUB linel/abel

Comments

line is the line number of the beginning of the trap routine for the
light pen. Using a line number of 0 disables trapping of the
light pen.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination, followed by a colon.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

A PEN ON statement must be run to activate this statement. After PEN

ON, if a non-O line number is specified in the ON PEN statement, then
every time the program starts a new statement BASIC checks to see if
the pen was activated. If so, BASIC performs a GOSUB linel/abel.

If PEN OFF is run, no trapping takes place. Even if the light pen is acti
vated, the event is not remembered.

If a PEN STOP statement is run, no trapping takes place, but pen activity
is remembered so that an immediate trap takes place when PEN ON is
run.

273

ON PEN
Statement
When the trap occurs, an automatic PEN STOP is run so recursive traps
never take place. The RETURN from the trap routine automatically
does a PEN ON unless an explicit PEN OFF was performed inside the
trap routine.

PEN(O) is not set when pen activity causes a trap.

You can use RETURN linel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, however,
because any other GOSUBS, WHILES, or FORS active at the time of the
trap remain active.

You can exit an active loop by setting the loop counter variable out of
range or setting a conditional statement within the loop to end it.
This ensures that every repetition of a FOR has a corresponding NEXT

and every repetition of a WHILE has a corresponding WEND.

Examples

This example sets up a trap routine for the light pen:

10 ON PEN GOSUB 500
20 PEN ON

500 'subroutine for pen

650 RETURN 30

274

Purpose

ON PLAV(n)
Statement

The ON PLAy(n) statement sets up a line number or label for BASIC to
branch to when the music background buffer has gone from n to n-1
while the program is running.

I

This statement is not available in OS/2 mode.

Format

ON PLAy(n) GOSUB finel/abel

Comments

n is an integer expression in the range 1 through 32 indicating the
notes to be trapped. Values entered outside this range result in
an Illegal function call error.

fine is the beginning line number of the trap routine for PLAY. A line
number of 0 stops the trapping of PLAY.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

A PLAY ON statement must be used to start the ON PLAy(n) statement.
You can then play continuous background music while the program is
running. (See "PLAY Statement.") After PLAY ON, if a non-O line
number is specified in the PLAy(n) statement, each time the program
starts a new statement or line number (depending on whether you
compiled using IV or IW), BASIC checks to see if the music buffer has
gone from n to n-1 notes. If so, BASIC performs a GOSUB to the speci
fied line or label.

275

ON PLAY(n)
Statement
Note: If your program contains any event-trapping statements, such
as ON PLAY, for example, you need to compile your program using the
IV or /W switch.

If PLAY OFF is used, no trapping takes place. Even if a play activity
takes place, the event is not remembered.

If a PLAY STOP statement is used, no trapping takes place, but play
activity is remembered so that an immediate trap takes place when
PLAY ON is run.

When the trap occurs, an automatic PLAY STOP is run so recursive
traps never take place. The RETURN from the trap routine automat
ically does a PLAY ON unless an explicit PLAY OFF was performed inside
the trap routine.

You can use RETURN finel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, because any
other GOSUBS, WHILES, or FORS active at the time of the trap remain
active.

You can exit an active loop by setting the loop counter variable out of
range or setting a conditional statement within the loop to end it.
This ensures that every repetition of a FOR has a corresponding NEXT
and every repetition of a WHILE has a corresponding WEND.

Notes:

1. A PLAY event trap is issued only when PLAY is in the Music Back
ground mode (PLAY "MB ... "). An event trap is not issued when
PLAY is in the Music Foreground mode (PLAY "MF ... ").

2. A PLAY event trap is not issued if the Music Background buffer is
already empty when a PLAY ON statement is performed.

3. Be careful choosing values for n. For example: ON PLAY(32)
causes so many event traps that little time remains to run the rest
of the program.

See also "PLAY(n) Function" for additional information.

276

Examples

ON PLAY(n)
Statement

This example sets up a trap routine that is called when five notes are
left in the background music buffer. This example works only in DOS

mode.

10 ON PLAY(5) GOSUB 500
20 PLAY ON

500 'subroutine for background music

650 RETURN

277

ON SIGNAL
Statement

Purpose

The ON SIGNAL statement sets up a line number or label for BASIC to
branch to when the program receives an interprocess communication
signal.

This statement is not available in DOS mode.

Format

ON SIGNAL(n) GOSUB linel/abel

Comments

n is the number of a signal that the program in the OS/2 mode
sends. For a list of the valid signal numbers, see IBM Oper
ating Systeml2 Programmer's Guide.

If you specify a signal number other than those which the OS/2

mode supports, BASIC returns an Illegal function call error
message.

line is the line number of the beginning of the trap routine for
SIGNAL(n). A line number of 0 stops trapping of SIGNAL.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

You must run a SIGNAL(n) ON statement to activate this statement for
the OS/2 mode signals. If you run a SIGNAL(n) ON statement and specify
a non-O line number in the ON SIGNAL(n) statement, then every time the
program starts a new statement BASIC checks to see if signal n has
been received. If so, BASIC performs a GOSUB to the line or label that
you specified.

278

ON SIGNAL
Statement

Note: If your program contains any event-trapping statements, such
as ON SIGNAL for example, you need to compile your program using
the IV or IW switch.

If you run a SIGNAL(n) OFF statement, BASIC does not trap the OS/2 mode
n signal. Even if signal n occurs, the program does not remember the
event.

If you run a SIGNAL(n) STOP statement, BASIC does not trap signal n, but
BASIC remembers the event and traps signal n as soon as you run a
SIGNAL(n) ON statement.

When the trap occurs, BASIC automatically runs a SIGNAL(n) STOP so
that recursive traps never take place. The RETURN from the trap
routine automatically does a SIGNAL(n) ON, unless you ran an explicit
SIGNAL(n) OFF inside the trap routine.

You can use RETURN linel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, because any
other GOSUBS, WHILES, or FORS active at the ti me of the trap remai n
active.

279

ON SIGNAL
Statement

Examples

In the following example, ON SIGNAL is used to count the number of
times that signal 5 is received.

I Prepare to trap signal 5
ON SIGNAL(5) GOSUB RECEIVED.5
SIGNAL(5) ON

I Wai t unti 1 si gnal 5 is recei ved
PRINT "Press any key to stop the program."

DO
LOOP UNTI L I NKEY $ <> ""

I Print the result and end
PRINT "Signal 5 was received ";COUNT%;" times."
END

I Trap for signal
RECEIVED.5:

280

COUNT% = COUNT% + 1
RETURN

ON STRIG(n)
Statement

Purpose

The ON STRIG{N) statement sets up a line number or label for BASIC to
branch to when one of the joystick buttons (triggers) is pressed.

This statement is not available under the OS/2 mode.

Format

ON STRIG(n) GOSUB Iinel/abel

Comments

n can be 0, 2, 4, or 6, and indicates the button to be trapped as,
follows:

o button A1
2 button B1
4 button A2
6 button B2

line is the line number of the beginning of the trap routine for STRIG.

A line number of 0 stops trapping of the joystick button.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

A STRIG(n) ON statement must be run to activate this statement for
button n. If STRIG(n) ON is run and a non-O line number is specified in
the ON STRIG(n) statement, then every time the program starts a new
statement BASIC checks to see if the specified button has been
pressed. If so, BASIC performs a GOSUB to the specified line or label.

281

ON STRIG(n}
Statement

Note: If your program contains any event-trapping statements, such
as ON STRIG, for example, you may need to compile your program
using the IV or IW switch.

If STRIG(n) OFF is run, no trapping takes place for button n. Even if the
button is pressed, the event is not remembered.

If a STRIG(n) STOP statement is run, no trapping takes place for button
n, but the button being pressed is remembered so that an immediate
trap takes place when STRIG(n) ON is run.

When the trap occurs, an automatic STRIG(n) STOP is run so that recur
sive traps never take place. The RETURN from the trap routine auto
matically does a STRIG(n) ON unless an explicit STRIG(n) OFF was
performed inside the trap routine.

Using STRIG(n) ON activates the interrupt routine that checks the button
status for the specified joystick button. Downstrokes that cause trap
ping do not set functions STRIG(O), STRIG(2), STRIG(4), or STRIG(6).

You can us~ RETURN finel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, because any
other GOSUBS, WHILES, or FORS active at the time of the trap remain
active.

You can exit an active loop by setting the loop counter variable out of
range or setting a conditional statement within the loop to terminate
it. This ensures that every iteration of a FOR has a corresponding
NEXT and every iteration of a WHILE has a corresponding WEND.

282

Examples

ON STRIG(n)
Statement

This is an example of a trapping routine for the button on the first
joystick. This example is for DOS mode.

10 ON STRIG(0) GOSUB 500
20 STRIG(0) ON

500 'subroutine for 1st button

650 RETURN

283

ON TIMER
Statement

Purpose

The ON TIMER statement branches to a given line number or label in a
BASIC program when a defined period of time has elapsed.

Format

ON TIMER(n) GOSUB finellabel

Comments

n is a numeric expression in the range 1 through 86400 (1 second
through 24 hours). Values entered that are outside this range
result in an Illegal function call error.

fine is the beginning line number of the trap routine for TIMER. A line
number of 0 stops timer trapping.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

The fine and label must be at the main program level; they cannot be
in a subprogram or function.

A TIMER ON statement must be used to start the ON TIMER statement.
(See "TIMER Function and Statement.") After TIMER ON, if a non-O line
number is specified in the ON TIMER statement, then every time the
program starts a new statement or line number, (depending on
whether you compiled using IV or IW), BASIC checks to see if the spec
ified number of seconds have passed. When n seconds have
elapsed, BASIC performs a GOSUB to the specified line. The event trap
occurs, and BASIC starts counting again from O.

Note: If your program contains any event- statements, such as ON

TIMER, for example, you need to compile your program using the IV or
IW switch.

284

ON TIMER
Statement

If TIMER OFF is used, no trapping takes place. Even if TIMER activity
takes place, the event is not remembered.

If a TIMER STOP statement is used, no trapping takes place, but TIMER

activity is remembered so that an immediate trap occurs when TIMER

ON is used.

When the trap occurs, an automatic TIMER STOP is run so that recursive
traps never take place. The RETURN from the trap routine automat
ically does a TIMER ON unless an explicit TIMER OFF was performed
inside the trap routine.

You can use RETURN linel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, because any
other GOSUBS, WHILES, or FORS active at the time of the trap remain
active.

You can exit an active loop by setting the loop counter variable out of
range or setting a conditional statement within the loop to terminate
it. This ensures that every iteration of a FOR has a correspondi ng
NEXT and every iteration of a WHILE has a corresponding WEND.

Examples

ON TIMER is useful in programs that need an interval timer. This
example displays the time of day on line 1 every minute:

10 CLS
20 ON TIMER(60) GOSUB 10000
30 TIMER ON

10000 OLDROW=CSRLIN 'save current row
10010 OLDCOL=POS(O) 'save current column
10020 LOCATE l,l:PRINT TIME$;
10030 LOCATE OLDROW,OLDCOL 'restore row & col
10040 RETURN

285

OPEN
Statement

Purpose

The OPEN statement allows input or output to a file or device.

Any reference to networking is for DOS only.

Format

OPEN filespec [FOR mode] [ACCESS access]
[locking] AS [#]filenum [LEN = rec/]

Alternate form:

OPEN mode2, [#] filenum, filespec [,rec/]

Comments

filespec

mode

286

is a string expression for the file specification. It can
contain a path and must conform to the rules outlined
under "File Names" and "File Specification" in IBM
BASIC Compilerl2 Fundamentals; otherwise, an error
occurs.

is one of the following:

OUTPUT specifies sequential output mode.

Warning: Opening a file for sequential output
destroys the contents of the file.

INPUT specifies sequential input mode.

APPEND specifies sequential output mode where the file
is positioned to the end of data on the file when
it is opened.

RANDOM specifies random input or output mode.

mode2

access

locking

OPEN
Statement

Note that mode must be a string constant, not enclosed in
quotation marks. If mode is omitted, random access is
assumed.

(alternate form) is a string expression with the first char
acter being one of the following:

o specifies sequential output mode.

Warning: Opening a file for sequential output
destroys the contents of the file.

specifies sequential input mode.

A specifies sequential append mode.

R specifies random input/output mode.

is one of the following:

READ

WRITE

READ WRITE

allows file access for input only.

allows file access for output only.

allows file access for input and output.

is one of the following:

SHARED

LOCK READ

LOCK WRITE

Any process on any machine may read or
write the file.

No other process is to be granted read
access to this file. This access is granted
only if no other process has locked read
access to the file.

No other process is to be granted write
access to this file. This access is granted
only if no other process has locked write
access to the file.

LOCK READ WRITE

No other process is to be granted read or
write access to this file. This access is

287

OPEN
Statement

filenum

granted only if no other process has locked
read or write access to the file.

If locking is not specified, the file may be opened for
reading and writing any number of times by the process,
but other processes are denied access to this file while it
is opened.

File access control is provided to support a networking
environment. If you are not familiar with this type of
environment, you should understand that file access
must be strictly controlled to protect the integrity of data
files that are accessible by several people. Data loss
can occur when two or more programs attempt to access
the same file simultaneously. By using the file access
and locking parameters, control can be established and
data loss or corruption can be minimized. See IBM Disk
Operating System Version 3.30 Technical Reference for
more information on file sharing.

Note: You must use DOS mode and SHARE if you want to
use the new OPEN access and locking parameters.

is an integer expression whose value is from 1 through
255.

The filenum is the number associated with the file or
device for as long as it is open and is used by other I/O
statements to refer to the file or device.

Note: See "Differences Between the Compiler and the
Interpreter" in IBM BASIC Compiler/2 Compile, Link, and
Run for detailed information on the number of files
allowed.

recl is an integer expression which, if included, sets the
record length for random files. It can range from 1
through 32767. The default record length is 128 bytes.

OPEN allocates a buffer for I/O to the file or device and determines the
mode of access that is used with the buffer.

288

OPEN
Statement

Under DOS mode, the FILES=XX command in your CONFIG.SYS should be
set to the number of files you plan to have open simultaneously, plus
3, which BASIC uses.

An OPEN must be run before any I/O can be done to a device or file
using any of the following statements, or any statement or function
requiring a file number:

PRINT #
PRINT # USING
INPUT #
LINE INPUT #
IOCTL#
WRITE #
INPUT$
GET#
PUT #

GET and PUT are valid for random files or communications files. A
disk file can be either random or sequential, and a printer can be
opened in either random or sequential mode; however, all other
standard devices can be opened only for sequential operations. See
"OPEN "COM ... Statement."

BASIC normally adds a line feed after each carriage return (CHR$(13))

sent to a printer. However, if you open a printer (LPT1:,LPT2:, or LPT3:)

as a random file with width 255, this line feed is suppressed.

APPEND initially sets the file pointer to the end of the file, and the
record number is set to the last record of the file. PRINT # or WRITE #
then extends the file.

A file cannot be opened for sequential output or append if the file is
already open.

If a file opened for input does not exist, an error occurs. If a file that
does not exist is opened for output, append, or random access, a file
is created.

Any values given outside the ranges indicated result in an Illegal
function call error. The file is not opened.

289

OPEN
Statement
See the sections on device drivers and Disk 1/0 in IBM BASIC
Compilerl2 Fundamentals for a complete explanation of using disk
files. See "OPEN "COM ... Statement" for information on opening com
munications files.

Examples

Either of these statements opens the file called "DATA" for sequential
output on the default device in the directory called LVL2.

10 OPEN "LVL1\LVL2\DATA" FOR OUTPUT AS II
or

10 OPEN "0",11,"LVL1\LVL2\DATA"

Either of the next two statements opens the file named "RRFILE" in the
LVL 1 directory on the disk in drive B: for random input and output.
The record length is 256.

20 OPEN "B:LVL1\RRFILE" AS 1 LEN=256
or

20 OPEN "R",B:LVLl\RRFILE:",256

Either of the following statements opens the file named "DATA" for
sequential output on the default device:

10 OPEN "DATA" FOR OUTPUT AS II
or

10 OPEN "0" ,11, "DATA"

In the preceding example, opening for output destroys any existing
data in the file. If you do not wish to destroy data, you must open for
APPEND.

Either of the following two statements opens the file named "SSFILE"

on the disk in drive B: for random input and output. The record length
is 256.

10 OPEN "B:SSFILE" AS 1 LEN=256
or

10 OPEN "R",I,"B:SSFILE",256

This example opens the file "DATA.ART" on the disk in drive A: and
positions the file pointers and that any output to the file is placed at
the end of existing data in the file:

290

10 FILE$ = "A:DATA.ART"
20 OPEN FILE$ FOR APPEND AS 3

OPEN
Statement

Line 10 in the next example opens the printer in random mode.
Because the default width is 80, the lines printed by lines 20 and 30
end with a carriage return/line feed. Line 40 changes the printer
width to 255, so the line feed after the carriage return is suppressed.
Therefore, the line printed by line 50 ends only with a carriage return
and not a line feed. This causes the line printed by line 70 to over
print "This line is underlined", causing the line to be underlined. Line
60 changes the width back to 80 so the underlines and following lines
end with a line feed.

10 OPEN "LPT1:" AS #1
20 PRINT #1,"Printing width 80"
30 PRINT #1,"Now change to width 255"
40 WIDTH # 1, 255
50 PRINT #1,"This line will be underlined"
60 WIDTH #1,80
70 PRINT #1, STRING$(28,"_")
80 PRINT #l,"Printing width 80 with CRjLF"

Results:

Printing width 80
Now change to width 255
This line will be underlined
Printing width 80 with CRjLF

The following example opens a file for input and denies write access
to all other processes:

10 OPEN "TEST. OAT" FOR INPUT LOCK WRITE AS #1
20 INPUT #1,A$
30 CLOSE #1

291

OPEN "COM ...
Statement

Purpose

The OPEN "COM ... statement opens a communications file for RS-232
asynchronous communication with other computers and peripherals.

Valid only with an Asynchronous Communications Adapter.

This statement is only supported under DOS and OS/2 mode.

Format

OPEN "coMn:[speed] [,[parity] [,[data] [,[stop] [,RB[n]] [,TB[n]][,op[n]]
[,RS] [,cs[n]] [,os[n]] [,co[n]] [,LF] [,PE]]]]" AS [#]filenum
[LEN=number]

Comments

n

speed

parity

292

is 1 or 2, indicating the number of the Asynchronous Com
munications Adapter.

is an integer constant specifying the transmit/receive bit
rate in bits per second (bps). Valid speeds are 75, 110, 150,
300, 600, 1200, 1800, 2400, 4800, and 9600. The default is
300 bps.

is a 1-character constant specifying the parity for transmit
and receive as follows:

S SPACE: Parity bit always transmitted and received a a
space (O-bit).

o 000: Odd transmit parity; odd receive parity checking.

M MARK: Parity bit always transmitted and received a a
mark (1-bit).

E EVEN: Even transmit parity, even receive parity
checking.

OPEN "COM ...
Statement

N NONE: No transmit parity, no receive parity checking

The default is EVEN (E).

data is an integer constant indicating the number of
transmit/receive data bits. Valid values are: 5, 6, 7, and 8.
The default is 7.

stop is an integer constant indicating the number of stop bits.
Valid values are 1 and 2. The default is 2 stop bits for 75
and 110 bps; ONE stop bit for all others. If you use 5 for
data, a 2 here means 1-1/2 stop bits.

filenum is an integer expression that evaluates to a valid file
number. The number is then associated with the file for as
long as it is open and is used by other communications I/O
statements to refer to the file.

number is the maximum number of bytes that can be read from the
communications buffer when using GET or PUT. The default
is 128 bytes.

The RB, TB, OP, RS, CS, OS, CD, LF, and PE options affect the line
communications as follows:

RB[n] Controls the size of the receive buffer.

TB[n] Controls the size of the transmit buffer.

OP[n] Controls the timeout value during the opening of the file

RS suppresses RTS (Request To Send).

CS[n] Controls checking of CTS (Clear TO Send) signal.

DS[n] Controls checking of DSR (Data Set Ready) signal.

COrn] Controls checking of CD (Carrier Detect) signal.

LF sends a line feed following each carrier return.

PE enables parity checking for the data that is received.

The CD (Carrier Detect) is also known as the RLSD (Received Line
Signal Detect).

293

OPEN "COM ...
Statement

Note: The speed, parity, data, and stop parameters are positional,
but RB, lB, OP, RS, CS, OS, CD, LF, and PE are not.

The RB and lB options set the sizes of the buffers for the data being
received and transmitted, respectively. The argument n is the
number of bytes to be reserved for the buffer and can range from 0
through 65535. The default for RB is the value specified with the Ic
switch when compiling. The default for lB is 128 bytes.

The OP option allows you to specify the time the OPEN "COM ... state
ment should allow for the 'data set ready' DSR and lor the CD
'Carrier Detect' lines to become active when opening the communi
cations file. n is the number of milliseconds (between 1 and 65535) to
wait or 0 to specify that no time limit should be enforced. If the OP
option is specified without n, the default is O. If no OP option is speci
fied, the default is ten times the maximum value of the DS[n] and
CD[n] options.

Note: DSR and CD are only checked if they are set to be checked
during actual communications.

The 'request to send' RTS line is turned on when you run an OPEN

"COM ... statement unless you include the RS option.

The n argument in the CS, OS, and CD options specifies the number
of milliseconds to wait for the signal during communications before
returning a Device timeout error. The n can range from 0 through
65535. If n is omitted or is equal to 0, the line status is not checked.
The defaults are CS1000, DS1000, and COO. If RS was specified, CSO
is the default.

Normally, I/O statements to a communications file fail if the 'clear to
send' CTS or 'Data Set Ready' DSR signals are off. The system waits 1
second before returning a Device timeout. The CS and OS options
allow you to ignore these lines or to specify the amount of time to
wait before the time-out.

Normally 'carrier detect' (CD or RLSO) is ignored. The CD option
allows you to test this line by including a non-O n parameter. If n is

294

OPEN "COM ...
Statement

omitted or is equal to 0, carrier detect is not checked at all (which is
the same as omitting the CD option).

The LF parameter is intended for those using communications files to
print to a serial line printer. When you specify LF, a line feed char
acter (hex OA) is automatically sent after each carriage return char
acter (hex OC). (This includes the carriage return sent as a result of
the width setting.) INPUT # and LINE INPUT #, when used to read from a
communications file that was opened with the LF option, stop when
they see a carriage return. The line feed is always ignored.

The PE option enables parity checking. The default is no parity
checking. The PE option causes a Device 1/0 error on parity errors
and turns on the high-order bit for 7 or fewer data bits. The PE option
does not affect framing and overrun errors. These errors always turn
on the high-order bit and cause a Device 1/0 error.

Any coding errors within the string expression starting with speed
result in an error. No indication is given as to which parameter is in
error.

See "Communications" in IBM BASIC Compilerl2 Fundamentals for
more information on control of output signals and other communi
cations support.

If you specify eight data bits, you must specify parity N. BASIC uses all
eight bits in a byte to store numbers, so if you are transmitting or
receiving numeric data (for example, by using PUT), you must specify
eight data bits. (This is not necessary if you are sending numeric
data as text.)

A communications device can be open to only one number at a time.

Note: If you are using asychronous communications and want to
compile your program with the 10 switch, you must link the
IBMCOMC.OBJ module (when running under DOS 3.30) or the
IBMCOMP.OBJ module (when running under the OS/2 mode) to your
program.

295

OPEN "COM ...
Statement
See also "OPEN Statement" for information on opening devices other
than communications devices.

Examples

In this example, file 1 is opened for communication with all defaults.
The speed is 300 bps with even parity. There are seven data bits and
one stop bit.

10 OPEN "COMl:" AS #1

In this example, file 2 is opened for asynchronous I/O at 1200 bps; no
parity is to be produced or checked; eight-bit bytes are sent and
received; and one stop bit is transmitted:

10 OPEN "COM2:1200.N.8" AS #1

This example opens COM1: at 9600 bps with no parity and eight data
bits. CTS, DSR, and CD are not checked.

10 OPEN "COMl:9600.N.8 .. CS,DS,CD" AS #1

This example opens COM1: at 1200 bps with the defaults of even
parity, seven data bits, and one stop bit. RTS is sent, CTS is not
checked, and Device timeout is given if DSR is not seen within 2
seconds when needed during communications. Since no OP param
eter is specified, OPEN "COM ... will wait 20 seconds to open the commu
nications line before timing out. The commas are required to indicate
the position of the parity, start, and stop parameters, even though a
value is not specified.

10 OPEN "COMl:1200""CS,DS2000" AS #1

296

OPEN "COM ...
Statement

OPEN "COM ... can be used with the ON ERROR statement to extend the
time allowed for a communications connection to be made. For
example, the following program waits for three minutes for the
'carrier detect' line to become active. (Line 20 is set to time-out after
60 seconds on the OPEN and TRIES$ is set to 3.) After the line is open,
'carrier detect' must be seen within 2 seconds of requesting commu
nications actiivity. 'clear to send' (CTS) and Data Set Ready (DSR)
are not checked at all.

10 TRIES=3:0N ERROR GOTO 5000
20 OPEN "COMl:300,N,8,2,OPI0000, CS, OS, C02000" A§ #1
30 ON ERROR GOTO 0

5000 TRIES=TRIES-l
5010 IF TRIES=0 THEN
5020 ON ERROR GOTO 0 'give up
5030 PRINT "OPEN failed."
5035ENO IF
5040 RESUME

The next example shows a typical way to use a communication file to
control a serial line printer. The LF parameter in the OPEN "COM ...

statement ensures that lines do not print on top of each other.

10 WIOTH "COMl:", 132
20 OPEN "COMl:1200,N,8"CSI0000, OS10000,C010000,LF" AS #1

297

OPEN "PIPE ...
Statement

Purpose

The OPEN "PIPE. .. statement allows you to run a child process and read
and write its standard input and output.

This statement is not available in DOS mode.

Format

OPEN "PIPE:command string" AS #filenum

Comments

command string

filenum

is a string expression containing the name of a program
or OS/2 command to run, and, optionally, any parameters
you are passing to the child process.

is an integer expression whose value is from 1 through
255.

Note: See "Differences Between the Compiler and the
Interpreter" in IBM BASIC Compilerl2 Compile, Link, and
Run for detailed information on the number of files
allowed to be open at one time.

A program that runs under a BASIC program is referred to as a child
process. See "SHELL Function" and "SHELL Statement" for more infor
mation about child processes.

The program you specify in the command string (the child process)
can write to its standard output as if it were writing to the screen.
The BASIC program can then read this data using the INPUT # state
ment, specifying the filenum from the OPEN "PIPE. .. statement.

The child process carl read the data that BASIC prints to the PIPE as if
the data came from the keyboard.

298

OPEN "PIPE ...
Statement

Examples

The following example prints the operating system DIR command
output on the screen.

OPEN "PIPE:DIR" AS 1
WHILE NOT EOF(1)

LINE INPUT #1, A$
PRINT A$

WEND

299

OPTION BASE
Statement

Purpose

The OPTION BASE Statement declares the minimum value for array sub
scripts.

Format

OPTION BASE n

Comments

n is 1 or O.

The OPTION BASE statement must be coded before you define or use
any arrays. An error occurs if you change the base value when
arrays exist. The default base is O. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript can have is 1.

You can use only one OPTION BASE statement per module. Also, the
OPTION BASE statement must appear at the module level (that is, it
cannot appear within a SUB or FUNCTION definition.

Note: The OPTION BASE statement does not affect arrays whose lower
bound is set with the" min TO max" form of the DIM statement.

300

Examples
OPTION BASE 1
DIM A(20)
PRINT LBOUND(A) , UBOUND(A)

Results:

20

OPTION BASE 1
DIM A(15), B(-5 TO 12)

PRINT "The lower bound of A= "; LBOUND(A)
PRINT "The lower bound of B= "; LBOUND(B)

END

Results:

The lower bound of A = 1
The lower bound of B = -5

OPTION BASE
Statement

301

OUT
Statement

Purpose

The OUT Statement sends a byte to a machine output port.

This statement is not available in OS/2 mode.

Format

OUT n,m

Comments

n is a numeric expression for the port number, in the range 0
through 65535.

m is a numeric expression for the data to be transmitted, in the
range 0 through 255.

See the technical reference book for your computer for a description
of valid port numbers (I/O addresses).

OUT is the complementary statement to the INP function. See also "INP

Function."

Examples

The following example turns the speaker on and off:

100 A=INP{&H61)
110 OUT &H61. A OR 3 : REM Speaker on
120 WHILE INKEY$="" : WEND
130 OUT &H61. A AND NOT 3 : REM Speaker off
140 END

302

PAINT
Statement

Purpose

The PAINT statement fills an area on the screen with the selected
color.

This statement is used in graphics mode only.

Format

PAINT (X,y) [,[paint] [,[boundary] [,background]]]

Comments

(X,y) are the coordinates of a point within the area to be filled
in. The coordinates can be given in absolute or relative
form. For more information on specifying coordinates,
see "Graphics Modes" under "Input and Output" in IBM
BASIC Compilerl2 Fundamentals. This point is used as a
starting point. Points specified outside the limits of the
screen are not plotted, and no error occurs.

paint can be a numeric or string expression. It is used to fill a
color or pattern in or around a bounded area. When paint
is a numeric expression, it chooses an attribute from the
legal attribute range for the current screen mode.

In SCREEN 1, (medium resolution), attribute can range from
o through 3. In SCREEN 2, (high resolution), attribute can be
o or 1.

The default color attribute for the foreground is the
maximum color attribute for that screen mode.

The default color attribute for the background is always O.

boundary is an integer expression in the legal attribute range of the
current screen mode. It defines the attribute for the edges
of the figure to be painted.

303

PAINT
Statement

background is a 1-byte string expression used in paint tiling.

In medium resolution, you can fill inside or around a defined area
with anyone of four colors from the current palette defined by the
COLOR statement. Examples of this are filling a red circle with green
or surrounding a red circle with green.

PAINT begins at the specified starting point and covers an area until it
meets the specified boundary attribute. Therefore, PAINT must always
begin inside the area to be painted. Ifthe specified starting point
already has the same attribute as boundary, painting stops at that
pOint and appears not to occur. An example of this is plotting a point
with PSET that has the same attribute as boundary, and using the coor
dinates of that point with the PAINT statement.

PAINT fills any designated area no matter what the shape of the area;
however, the more complex the edges of a figure (jagged edges, for
instance), the more stack space BASIC uses. Under these circum
stances you may want to use the CLEAR statement at the beginning of
your program to increase the stack space.

The PAINT statement allows scenes to be displayed with very few
statements.

In the example that follows, the PAINT statement in line 30 fills in the
box drawn in line 20 with the color represented by the attribute in the
current palette:

10 SCREEN 1
20 LINE (O,O)-(100,150),2,B
30 PAINT (50,50),1,2

The following discussion deals with paint tiling only.

To use paint tiling, the paint attribute must be a string expression in
the form:

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Hnn)+ ...

The CHR$ sequence specifies a bit mask that is one byte wide. When
the mask is plotted all the way across and down the designated area

304

PAINT
Statement

defined by boundary, a pattern is created rather than a solid color.
You design the pattern. The two hexadecimal digits in the CHR$

expression correspond to eight bits, or one byte. The string
expression can contain up to 64 bytes.

The design created by the string expression can be mapped as
follows:

x increases -- >
76543210

0,0 x x x x x x x x Tile byte °
0,1 x x x x x x x x Tile byte 1
0,2 x x x x x x x x Tile byte 2

0,63 x x x x x x x x Tile byte 63
(maximum allowed)

The tile pattern is repeated uniformly over the area defined by
boundary. If you do not define an area with boundary, the whole
screen is your designated area. Each byte of the tile string masks 8
bits along the x-axis when plotting points. Each byte of the tile string
is rotated as required to align the pattern along the y axis. BASIC

chooses the particular byte of the pattern to plot, using the formula y
mod tile length.

305

PAINT
Statement
The method of designing patterns in each screen varies depending on
the number of color attributes available in each screen mode. This is
so because the number of bits per pixel is directly related to the
number of color attributes available in each screen mode. In any
screen, where x is the total number of color attributes for that screen:

where Y is the number of bits per pixel. In high resolution, each byte
of the string is able to plot eight points across the screen (1 bit per
pixel), because LOG2(2)=1.

In SCREEN 1, one medium-resolution tile byte describes four pixels,
because medium resolution has two bits per pixel: that is,
LOG2(4)=two bits per pixel. Every two bits of the tile byte describes
one of four possible color attributes associated with each of the four
pixels to be plotted.

Mode Bits per pixel Formula

SCREEN 1 2 LOG2(4)

SCREEN 2 1 LOG2(2)

Because there is only one bit per pixel in high resolution, a point is
plotted at every position in the bit mask that has a value of 1. In high
resolution, the screen can be painted with X's using the following
example:

5 REM Without background tile
10 CLS: SCREEN 1: COLOR 1: KEY OFF
20 LOCATE 12.7:PRINT "I LOVE MY IBM COMPUTER"
30 PAINT(320.100),CHR$(&H81)+CHR$(&H42)+

CHR$(&H24)+CHR$(&HI8)+CHR$(&HI8)+
CHR$(&H24)+CHR$(&H42)+CHR$(&H81)

306

PAINT
Statement

The length of this mask is 8, indexed 0 through 7. In this case, PAINT

at coordinates (320,100) begins by plotting byte 4. This is calculated
using the y mod tile length formula by substituting 100 for y and 8 for
tile length. This pattern appears on the screen as:

Tile byte 0
Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7

x increases -- >
76543210
10000001
01000010
00100100
00011000
00011000
00100100
01000010
10000001

CHR$(&H81)
CHR$(&H42)
CHR$(&H24)
CHR$(&H18)
CHR$(&H18)
CHR$(&H24)
CHR$(&H42)
CHR$(&H81)

307

PAINT
Statement

The following figure shows the binary and hexadecimal values asso
ciated with each attribute in medium resolution:

Color Attrib. Pattern to Pattern to
palette 0 in draw solid draw solid

binary line in line in
binary hexadecimal

green 01 01010101 &H55
red 10 10101010 &HAA
brown 11 11111111 &HFF

Color Attrib. Pattern to Pattern to
palette 1 in draw solid draw solid

binary line in line in
binary hexadecimal

cyan 01 01010101 &H55
magenta 10 10101010 &HAA
white 11 11111111 &HFF

In medium resolution, the following example plots a pattern of boxes
with a border color of red in palette 0 and magenta in palette 1:

10 CLS: SCREEN 1: COLOR 1: KEY OFF
20 LOCATE 12,7:PRINT "I LOVE MY IBM COMPUTER"
30 PAINT (320,100),CHR$(&HAA)+CHR$(&H82)+

CHR$(&H82)+CHR$(&H82)+CHR$(&H82)+
CHR$(&H82)+CHR$(&H82)+CHR$(&HAA)

Occasionally, you may want to tile over an already painted area that
is the same color or pattern as two consecutive bytes in the tile mask.
Normally, this constitutes a terminating condition because your point
is bounded by points of the same bit pattern. (An example follows on
the use of background.)

308

PAINT
Statement

You can use the background attribute to skip this terminating condi
tion. You cannot specify more than two conse'cutive lines in the tile
pattern that matches this background attribute. Doing so causes an
Illegal function call error.

Examples

The following program demonstrates how to tile an area with three
lines of red, two lines of green, and one line of red. The palette then
changes to show that the same tile mask yields the same pattern with
different colors.

10 CLS: SCREEN 1,O:KEY OFF
20 TIL$=CHR$(&HAA)+CHR$(&HAA)+CHR$(&HAA)+CHR$(&H55)+CHR$(&H55)+CHR$(&HFF)
30 COLOR 0,0 'choose palette 0
40 VIEW (1,1)-(150,100),0,2
50 GOSUB 1000
60 COLOR 0,1 'choose palette 1
70 GOTO 1020
1000 PAINT (125,50),TIL$,2
1010 RETURN

309

PAINT
Statement
The following example uses paint tiling with the background attribute:

10 CLS: SCREEN l:COLOR O,l:KEY OFF
20 TIL$=CHR$(&H5F)+CHR$(&H5F)+CHR$(&H27)+CHR$(&H81)
30 VIEW (1,1)-(150,100),0,2
40 LOCATE 3,22:PRINT "<---Without back-"
50 LOCATE 4,22:PRINT " ground tile"
60 PAINT (125,50),CHR$(&H5F)
70 PAINT (125,50),TIL$,2
80 '
90 'with background tile'
100 '
110 VIEW (160,100)-(310,198),0,2
120 LOCATE 16,1:PRINT "With background-->"
130 LOCATE 17,1:PRINT "tile chr$(&H5F)"
140 PAINT (125,50),CHR$(&H5F)
150 PAINT (125,50),TIL$,2,CHR$(&H5F)
160 LINE (1,100)-(319,100),3
170 FOR 1=1 TO 2500:NEXT I

310

PEEK
Function

Purpose

The PEEK function returns the byte read from the indicated memory
position.

Format

v = PEEK(n)

Comments

n is an integer value in the range 0 through 65535. This is the
offset from the current segment as defined by the DEF SEG state
ment. See "DEF SEG Statement."

The returned value is an integer in the range 0 through 255.

PEEK is the complementary function to the POKE statement. Because
the allocation of memory is different, PEEKS and POKES designed for
the interpreter do not work with the compiler. See "POKE Statement."

For OS/2 users:

In the OS/2 mode, PEEK changes single and double precision address
values to 2-byte integers. PEEK treats 2-byte integer address argu
ments as offsets from the segment described by the current DEF SEG.

PEEK treats the segment as a selector. Illegal memory references
may cause exceptions or return a Permission denied error.

311

PEEK
Function

Examples

The following example in a program tests which display adapter is on
the system. After line 30 is run, the variable IBMMONO has a value
of 0 if the IBM Color/Graphics Monitor Adapter is used, or 1 if the IBM

Monochrome Display and Printer Adapter is used.

10 'test display adapter
20 DEF SEG=O
30 IF (PEEK(&H410) AND &H30)=&H30 THEN IBMMONO=l ELSE IBMMONO=O

312

PEN
Statement and Function

Purpose

The PEN statement and function Reads the light pen.

This statement is not available in OS/2 mode.

Format

As a statement:

PENON

PEN OFF

PEN STOP

As a function:

v = PEN(n)

Comments

The PEN function, v= PEN(n), reads the light pen coordinates.

n is a numeric expression in the range 0 through 9 and affects the
value returned by the function as follows:

o A flag indicating if the pen was down since the last poll. It
returns -1 if down, 0 if not.

1 Returns the x-coordinate where the pen was last acti
vated.

The range is 0 through 319 in medium resolution, and 0 to
639 in high resolution.

313

PEN
Statement and Function

2 Returns the v-coordinate where the pen was last acti
vated. Range is 0 through 199.

3 Returns the current pen switch value. It returns -1 if
down, 0 if up.

4 Returns the last known valid x-coordinate.

The range is 0 through 319 in medium resolution, and 0
through 639 in high resolution.

5 Returns the last known valid y coordinate. The range is 0
through 199.

6 Returns the character row position where the pen was last
activated. The range is 1 through 24.

7 Returns the character column position where the pen was
last activated. The range is 1 through 40 or 1 through 80,
depending on WIDTH.

8 Returns the last known valid character row. The range is
1 through 24.

9 Returns the last known valid character column position.
The range is 1 through 40 or 1 through 80, depending on
WIDTH.

PEN ON enables the PEN read function. The PEN function is initially off.
A PEN ON statement must be run before any pen read function calls
can be made. A call to the PEN function while the PEN function is off
results in an Illegal function call error.

To improve running speed, turn off the pen with a PEN OFF statement
when you are not using the light pen.

Running PEN ON also allows trapping to take place with the ON PEN

statement. After PEN ON, if a non-O line number was specified in the
ON PEN statement, every time the program starts a new statement or
line number, (depending on whether you compiled using IV or IW),
BASIC checks to see if the pen was activated. See "ON PEN Statement."

314

PEN
Statement and Function

PEN OFF disables the PEN read function. No trapping of the pen takes
place. Action by the light pen is not remembered even if it does take
place.

PEN STOP disables trapping of light pen activity. If activity does occur,
however, it is remembered, and an immediate trap occurs when a PEN

ON is run.

When the pen is down in the border area of the screen, the values
returned are inaccurate.

Examples

This example prints the pen value since the last poll, and the current
value:

10 PEN ON
20 FOR I=l TO 500
30 X=PEN(0): Xl=PEN(3)
40 PRINT X, Xl
50 NEXT
60 PEN OFF

315

PLAY
Statement

Purpose

The PLAY statement plays music as specified by string.

This statement is not available in OS/2 mode.

Format

PLAY string

Comments

PLAY implements a concept similar to DRAW by imbedding a "tune defi
nition language" into a character string.

Note: In a compiled program, if the program ends before the buffer is
empty, the music stops playing. This is different from the interpreter.
If your program is sensitive to this, you can place a dummy FOR .. NEXT

loop prior to exiting your program.

string is a string expression consisting of single-character or
double-character music commands.

The commands in PLAY are:

A to G with optional #, +, or -

Plays the indicated note in the current octave. A number sign
(#) or plus sign (+) afterward indicates a sharp; a minus sign
(-) indicates a flat. A #, +, or - is not allowed unless it corre
sponds to a black key on a piano. For example, B# is an invalid
note.

o n Octave. Sets the current octave for the notes that follow. There
are seven octaves, numbered 0 through 6. Each octave goes
from C through B. Octave 2 starts with middle C. Octave 4 is
the default octave.

316

)

PLAY
Statement

> n Go up to the next higher octave and play note n. Each time note
n is played, the octave goes up, until it reaches octave 6. For
example, PLAY ">A" raises the octave and plays note A. Each
time PLAY" >A" is run, the octave goes up until it reaches
octave 6. Then each time PLAY ">A" is run, note A plays at
octave 6.

< n Go down one octave and play note n. Each time note n is
played, the octave goes down, until it reaches octave O. For
example, PLAY" < A" lowers the octave and plays note A. Each
time PLAY" < A" is run, the octave goes down until it reaches
octave O. Then each time PLAY" < A" is run, note A plays at
octave O.

N n Plays note n, which can range from 0 through 84. In the 7 pos
sibl e octaves, there are 84 notes. An n 0 means" rest." This is
an alternative way of selecting notes besides specifying the
octave (0 n) and the note name (A-G).

L n Sets the length of the notes that follow. The actual length of the
note is 1/n. n can range from 1 through 64.

Length Equivalent

L 1 whole note
L2 half note
L3 one of a triplet of three half notes

(1/3 of a four-beat measure)
L4 quarter note
L5 one of a quintuplet

(1/5 of a measure)
L6 one of a quarter-note triplet

L64 sixty-fourth note

The length can also follow the note when you want to change
only the length of the note. For example, A 16 is equivalent to
L16A.

317

PLAY
Statement
P n Pause (rest). An n can range from 1 through 64, and figures the

length of the pause in the same way as L (length).

Dot or period. When placed after a note, causes the note to be
played as a dotted note. A dot increases the duration of a note
by half the duration of the note. A note can have more than one
dot. Each dot increases the total value of the note by 1/2 the
value of the previous dot. For example, a double-dotted
halfnote is equivalent in duration to a half note plus a quarter
note plus an eighth note. Dots can also appear after a pause (P)
to scale the pause length in the same way.

T n Tempo. Sets the number of quarter notes in a minute. The n
can range from 32 through 255. The default is 120. Under
"SOUND Statement" is a table listing common tempos and the
equivalent beats per minute.

MF Music foreground. Music (created by SOUND or PLAY) runs in
foreground. Each subsequent note or sound does not start until
the previous note or sound is finished. You can press
Ctrl+Break to exit PLAY. Music foreground is the default state.

MB Music background. Music (created by SOUND or PLAY) runs in
background instead of in foreground. Each note or sound is
placed in a buffer, allowing the BASIC program to continue
running while music plays in the background. The music back
ground buffer can hold up to 32 notes at one time.

MN Music normal. Each note plays 7/8 of the time specified by L
(length). This is the default setting of MN, ML, and MS.

ML Music legato. Each note plays the full period set by L (length).

MS Music staccato. Each note plays 3/4 of the time specified by L.

XVARPTR$(variable)
Run specified string.

In all these commands, the n argument can be any integer. It can be
a constant such as 12, or it can be VARPTR$(variable), where variable
is the name of a variable. Any blanks in string are ignored.

318

PLAY
Statement

The VARPTR$ form is the only one that can be used in compiled pro
grams. For example:

PLAY "X"+VARPTR$(A$)
PLAY "O="+VARPTR$(I)

You can use X to store a "subtune" in one string and call it repet
itively with different tempos or octaves from another string.

There are two ways you can specify variables in a PLAY string for the
compiler:

• Use the "X" variable form, concatenated (u+") with the VARPTR$ of
the variable itself.

• Use the PLAY macro, followed by an equal sign (=) and concat
enated (U +") with the VARPTR$ of the variable itself.

The examples on the following page demonstrate both methods.

Examples

The following example plays a tune:

10 I 1 it t 1 e 1 amb
28 MARY$="GFE-FGGG"
38 PLAY "MB TI08 03 L8 X"+VARPTR$(MARY$) +"P8FFF4"
48 PLAY "GB-B-4 X"+VARPTR$(MARY$)+ "GFFGFE-."

The following example plays the scale from octave 0 to octave 6:

18 I Play the scale using> octave
28 SCALE$="CDEFGAB"
38 PLAY "08 X"+VARPTR$(SCALE$)
48 FOR 1=1 TO 6
50 PLAY ">X"+VARPTR$(SCALE$)
68 NEXT
70 I Play the scale using < octave
88 PLAY "06 X"+VARPTR$(SCALE$)
90 FOR 1=1 TO 6
108 PLAY "<X"+VARPTR$(SCALE$)
110 NEXT

319

PLAY(n)
Function

Purpose

The PLAY(N) function returns the number of notes currently in the
music background buffer.

This function is not available in OS/2 mode.

Format

V=PLAy(n)

Comments

n is a dummy argument that can have any value.

PLAy(n) returns a 0 when the program is running in Music Foreground
mode. The maximum value that can be returned is 32, which is the
maximum number of notes held in the buffer.

PLAy(n) returns notes in the buffer only when you are using Music
Background (MB) mode.

Examples

The following example begins praying a new tune when there are five
notes left in the background music buffer:

10 'When 5 notes in background buffer
20 'go to line 1000 and play another tune
30 PLAY "MB CDEFGAB"
40 IF PLAY(1)=5 GOTO 1000
50 GOTO 2000

1000 PLAY "MB 04 T200 L4 MS GG#GE"
2000 END

320

Purpose

PMAP
Function

The PMAP function maps physical coordinates to world coordinates or
world coordinates to physical coordinates.

This function is used in graphics mode only.

Format

V=PMAP(X,n)

Comments

x coordinate of the point that is to be mapped

n can be a value in the range ° through 3 such that:

° maps the world coordinate x to the physical coordinate x.

maps the world coordinate y to the physical coordinate y.

2 maps the physical coordinate x to the world coordinate x.

3 maps the physical coordinate y to the world coordinate y.

PMAP is used to translate coordinates between the world system as
defined by the WINDOW statement and the physical coordinate system.

PMAP(X,O) and PMAP(x,1) are used to map values from the world coor
dinate system to the physical coordinate system.

PMAP(x,2) and PMAP(x,3) are used to map values from the physical
coordinate system to the world coordinate system.

321

PMAP
Function

For example, if the statement

SCREEN 1: WINDOW (-1,-1)-(1,1)

is in effect you can use PMAP to map the world coordinate pOints of
(-1,-1) and (1,1) to their corresponding physical points on the
screen.

PMAP(-1,0) returns the physical x coordinate value of 0.

PMAP(-1,1) returns the physical y coordinate value of 199.

PMAP(1,0) returns the physical x coordinate value of 319.

PMAP(1,1) returns the physical y coordinate value of 0.

The above information tells you that the point (-1,-1), which is in the
lower left corner of the screen, corresponds to the physical point
(0,199). You also know that the point (1,1), which is in the upper right
corner, corresponds to the physical point (319,0).

Examples

The coordinates of the upper-left corner of WINDOW defined in the fol
lowing statement are (80,100); the coordinates of the lower-right
corner are 200,200.

SCREEN 2
WINDOW SCREEN (80,100) - (200,200)

If the physical screen coordinates are (0,0) in the upper-left corner
and (639,199) in the lower-right corner, then the following statements
return the screen coordinates equivalent to the window coordinates
80,100.

x = PMAP(80,0) IX = °
Y = PMAP(100,1) Iy = °

322

PMAP
Function

The following statement returns the screen coordinates equivalent to
the window coordinates 200,200.

x = PMAP(200,0)
Y = PMAP(200,1)

IX = 639
Iy = 199

The following statement returns the window coordinates equivalent to
the screen coordinates 639,199.

X = PMAP(639,2)
Y = PMAP(l99,3)

IX = 200
Iy = 200

323

POINT
Function

Purpose

The first form of the POINT function returns the color attribute of the
specified pOint on the screen. The second form returns the value of
the current x or y graphics coordinate.

This function is used in graphics mode only.

Format

v = POINT (x,y)

v = POINT (n)

Comments

(x,y) are the coordinates of the point to be used. They must be in
absolute form as explained in "Specifying Coordinates"
under "Graphics Modes" in IBM BASIC Compilerl2
Fundamentals.

If the point given is out of range, the value -1 is returned.

In medium resolution, valid returns are 0, 1, 2, and 3. In
high resolution, they are 0 and 1.

n returns the value of the current x or y graphics coordinate. n
can have a value from 0 through 3 where:

324

o
1

2

returns the current physical x-coordinate.

returns the current physical y-coordinate.

returns the current world x-coordinate if WINDOW

is active. If WINDOW is not active, it returns the
current physical x-coordinate.

POINT
Function

3 returns the current world v-coordinate if WINDOW

is active. If WINDOW is not active, it returns the
current physical y.

See also "WINDOW Statement."

Examples

The following example inverts the current setting of point (1,1):

10 SCREEN 2
20 IF POINT(I,I)<>0 THEN PRESET(I,I) ELSE PSET(I,I)

or

20 PSET(I,I),l-POINT(I,I)

This example illustrates values returned by the POINT function. Note
the change in the values, depending upon WINDOW.

10 CLS: SCREEN 1,0:KEY OFF:DEFINT A-Z
20 PRINT "POINT(n) with WINDOW inactive"
30 GOSUB 110
40 WINDOW (0,0)-(319,199)
50 PRINT "POINT(n) with WINDOW active"
60 GOSUB 110
70 PRINT "POINT(n) with WINDOW and SCREEN active"
80 WINDOW SCREEN (0,0)-(319,199)
90 GOSUB 110
100 END
110 PSET (5,15)
120 FOR 1=0 TO 3
130 PRINT INT(POINT (I));
140 NEXT
150 PRINT:PRINT
160 RETURN

Results:

POINT(n) with WINDOW inactive
5 15 5 15
POINT(n) with WINDOW active
5 184 5 15
POINT(n) with WINDOW and SCREEN active
5 15 5 15

325

POINT
Function

The following example redraws the ellipse drawn with the CIRCLE

statement, tilted the specified number of degrees.

DEFINT X,Y
INPUT "Angle of tilt in degrees (8 to 98): ",ANG
'Medium resolution screen
SCREEN 1
'Convert degrees to radians

ANG = (3.1415926#/188)*ANG
CS = COS(ANG) : SN = SIN(ANG)
'Draw e 11 ipse
CIRCLE (45,78),58,2",2
'Paint interior of ellipse
PAINT (45,78),2
FOR Y = 28 TO 128

FOR X = 28 TO 78
'Check each point in rectangle enclosing ellipse:

IF POINT(X,Y) <> 8 THEN
'If the point is in the ellipse, plot a corresponding
'point in the "tilted" ellipse:

XNEW = (X*CS - Y*SN) + 288 : YNEW = (X*SN + y*CS)
PSET(XNEW,YNEW),2

END IF
NEXT

NEXT
END

326

POKE
Statement

Purpose

The POKE statement writes a byte into a memory location.

Format

POKE n,m

Comments

n is an integer value in the range 0 through 65535. It indicates the
offset into the current segment where that data is to be written.
The current segment is defined by the DEF SEG statement. See
"DEF SEG Statement."

m m is the data to be written to the specified location. It must be
in the range 0 through 255.

The complementary function to POKE is PEEK. POKE and PEEK are useful
for efficient data storage and loading assembly language subpro
grams. See also "PEEK Function."

Warning: BASIC does not check the offset specified; therefore, do not
poke around in BASIC'S stack, BASIC'S variable area, or your BASIC

program.

Because the allocation of memory is different, PEEKS and POKES

designed for the interpreter do not work with the compiler.

327

POKE
Statement
For OS/2 users:

In OS/2 mode, POKE changes single and double precision address
values to 2-byte integers. POKE; treats 2-byte integer address argu
ments as offsets from the segment described by the current DEF SEG.

POKE treats the segment as a selector. Illegal memory references
may cause exceptions or return a Permission denied error.

Examples

See "Calling Assembly Language Subprograms" in IBM BASIC
Compiler/2 Fundamentals.

328

P~S
Function

Purpose

The POS function returns the current cursor column position.

Format

v = pos(n)

Comments

The n is a dummy argument.

The current horizontal (column) position of the cursor is returned.
The returned value is in the range 1 through 40 or 1 through 80,
depending on the current WIDTH setting.

CSRLlN can be used to find the vertical (row) position of the cursor.
See "CSRLlN Variable."

See also "LPOS Function."

Examples

This example prints a carriage return (moves the cursor to the begin
ning of the next line) if the cursor is beyond position 60 on the
screen:

IF POS(O»60 THEN PRINT CHR$(13)

329

PRINT
Statement

Purpose

The PRINT statement displays data on the screen.

Format

PRINT [list of expressions] [; I.]

Comments

list of expressions

is a list of numeric and/or string expressions, separated by
commas, blanks, or semicolons. Any string constants in the list
must be enclosed in quotation marks.

If the list of expressions is omitted, a blank line is displayed. If the
list of expressions is included, the values of the expressions are dis
played on the screen.

Print Positions

The position of each printed item is determined by the punctuation
used to separate the items in the list. BASIC divides the line into print
zones of 14 spaces each.

In the list of expressions:

• Typing a comma between expressions causes the next value to
be printed at the beginning of the next zone.

330

Note: If the last character of an expression ends at the print zone
boundary and the expression is followed by a comma, BASIC skips
the next print zone and prints the next expression in the following
print zone, thus leaving an empty print zone between the two
expressions.

PRINT
Statement

• Typing a semicolon causes the next value to be printed imme
diately after the last value.

• Typing one or more spaces between expressions has the same
effect as typing a semicolon.

If a comma, semicolon, or SPC or TAB function ends the list of
expressions, the next PRINT statement begins printing on the same
line, spacing accordingly. If the list of expressions ends without a
comma, semicolon, SPC or TAB function, a carriage return is printed at
the end of the line; that is, BASIC moves the cursor to the beginning of
the next line.

If the length of the value to be printed exceeds the number of char
acter positions remaining on the current line, the value is printed at
the beginning of the next line. If the value to be printed is longer than
the defined WIDTH, BASIC prints as much as it can on the current line
and continues printing the rest of the value on the next physical line.

Scrolling occurs as described under "Text Mode" in IBM BASIC
Compilerl2 Fundamentals.

Printed numbers are always followed by a space. Positive numbers
are preceded by a space. Negative numbers are preceded by a
minus sign. When single-precision numbers can be represented with
seven or fewer digits in fixed-point format as accurately as in
floating-paint format, they are returned in fixed-point or integer
format. For example, 10A(-7) is printed as .0000001 and 10A(-8) is
printed as 1 E-8.

BASIC automatically inserts a carriage return/line feed after printing
width characters, where width is 40 or 80, as defined by the WIDTH

statement. This causes two lines to be skipped when you print
exactly 40 (or 80) characters, unless the PRINT statement ends in a
semicolon (;).

LPRINT is used to print information on the printer. See "LPRINT and
LPRINT USING Statements."

331

PRINT
Statement

Examples

In this example, the commas in the PRINT statement cause each value
to be printed at the beginning of the next print zone:

10 X=5
20 PRINT X+5, X-5, X*{-5}

Results:

10 o -25

Here, the semicolon at the end of line 20 causes both PRINT state
ments to be printed on the same line:

10 INPUT X
20 PRINT X;"SQUARED ISI;X"'2;"AND";
30 PRINT X;"CUBED IS";XA 3

Assume that you input 9.

Results:

9 SQUARED IS 81 AND 9 CUBED IS 729

332

PRINT USING
Statement

Purpose

The PRINT USING statement prints strings or numbers using a specified
format.

Format

PRINT USING v$; list of expressions [;1.]

Comments

v$ is a string constant or variable that consists of special format
ting characters. These formatting characters determine the
field and the format of the printed strings or numbers.

list of expressions

consists of the string or numeric expressions that are to be
printed, separated by semicolons or commas.

With PRINT USING, many common formatting tasks are simplified, such
as aligning decimal points in numeric output. There are separate for
matting characters for string and numeric data. Descriptions of each
special formatting character and examples of their use are contained
in the following pages.

String Fields

When PRINT USING is used to print strings, one of three formatting char
acters can be used to format the string field:

Specifies that only the first character in the given
string is to be printed.

333

PRINT USING
Statement

\n spaces\

&

Specifies that 2 + n characters from the string are to
be printed. If the backslashes are typed with no
spaces, two characters are printed; with one space,
three characters are printed, and so on. If the string is
longer than the field, the extra characters are ignored.
If the string is shorter than the field, the string is left
justified in the field and padded with spaces on the
right.

Specifies a variable-length string field. When the field
is specified with &, the string is output exactly as input.

Examples

This example shows how to use! and \ \ to print string fields:

10 A$="LOOK" :B$="OUP
20 PRINT USING "!";A$;B$
30 PRINT USING "\ \";A$;B$

Results:

LO
LOOKOUT

This example demonstrates the use of & in conjunction with! :

10 A$="LOOK": B$="OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$

Results:

LOUT

Numeric Fields

When PRINT USING is used to print numbers, the following special char
acters can be used to format the numeric field:

A number sign is used to represent each digit position.

334

Digit positions are always filled. If the number to be
printed has fewer digits than positions specified, the
number is right-justified (preceded by spaces) in the field.

PRINT USING
Statement

A decimal point can be inserted at any position in the
field. If the format string specifies that a digit is to
precede the decimal point, the digit is always printed
(as 0 if necessary). Numbers are rounded as necessary.

+ A plus sign at the beginning or end of the format string
causes the sign of the number (plus or minus) to be
printed before or after the number.

**

$$

**$

A minus sign at the end of the format field causes nega
tive numbers to be printed with a trailing minus sign.

A double asterisk at the beginning of the format string
causes leading spaces in the numeric field to be filled with
asterisks. The ** also specifies positions for two more
digits.

A double dollar sign causes a dollar sign to be printed to
the immediate left of the formatted number. The $$ speci
fies two more digit positions, one of which is the dollar
sign. The exponential format cannot be used with $$.

The **$ at the beginning of a format string combines the
effects of the above two symbols. Leading spaces are
filled with asterisks, and a dollar sign is printed before the
number. The **$ specifies three more digit positions, one
of which is the dollar sign.

A comma at the left of the decimal point in a formatting
string prints a comma left of every third digit left of the
decimal point. A comma at the end of the format string is
printed as part of the string. A comma specifies another
digit position. The comma has no effect if used with the
exponential (A A A A) format.

You can place four or five carets after the digit position
characters to specify exponential format. Four carets
allow space for E±nn or D±nn to be printed. Five carets
allow space for numbers in IEEE format, which can have a
3-digit exponent: E±nnn or D±nnn. Any decimal point
position can be specified. The significant digits are left
justified, and the exponent is adjusted. Unless a leading
+ or trailing + or - is specified, one digit position is used

335

PRINT USING
Statement

to the left of the decimal point to print a space or a minus
sign.

An underscore in the format string causes the next char
acter to be output as a literal character.

The literal character itself can be an underscore by
placing two underscores "_" in the format string.

If the number to be printed is larger than the specified numeric field,
a percent sign (%) is printed in front of the number. If rounding
causes the number to exceed the field, the percent sign is printed in
front of the rounded number.

If the number of digits specified exceeds 24, an Illegal function call
error occurs.

Examples

Example 1: Usi ng spaces

In this example, three spaces are inserted at the end of the format
string to separate the printed values on the line:

PRINT USING "##.## ";10.2,5.3,66.789,.234

Results:

10.20 5.30 66.79 0.23

Example 2: Using a +.
PRINT USING "+##.## ";-68.95,2.4,55.6,-.9

Results:

-68.95 +2.40 +55.60 -0.90

Example 3: Using a -.

PRINT USING "##.##- ";-68.95,22.449,-7.01

336

Results:

68.95- 22.45 7.01-

Example 4: Using a **.

PRINT USING "**#.# ";12.39,-0.9,765.1

Results:

*12.4 *-0.9 765.1

Example 5: Usi ng a $$.

PRINT USING "$$###.## ";456.78,0.9,-765.1

Results:

$456.78 $0.90 -$765.10

Example 6: Usi ng a **$.

PRINT USING "**$##.##";2.34

Results:

***$2.34

PRINT USING
Statement

337

PRINT USING
Statement

Example 7: Using a comma.

PRINT USING "####,.##";1234.5

Results:

1,234.50

PRINT USING "####.##,";1234.5

Results:

1234.50,

Example 8: Using a A.

PRINT USING ".###1VVV'.-";-88888

Results:

O.889E+05-

Example 9: Using a _.

PRINT USING" !##.##_!";12.34

Results:

!12.34!

338

Example 10: Using a number too large for the field.

PRINT USING "##.##";111.22

Results:

%111.22

Example 11 Using a number too large for the field.

PRINT USING ".##";.999

Results:

%1.00

PRINT USING
Statement

Example 12: Using a string constant with a numeric field.

PRINT USING "THIS IS EXAMPLE _###"; 12

Results:

THIS IS EXAMPLE #12

339

PRINT # and PRINT # USING
Statements

Purpose

The PRINT # AND PRINT # USING statements write data sequentially to a
file.

Format

PRINT #filenum,[USING x$;] list of expressions

Comments

filenum

x$

is the number used when the file was opened for
output.

is a string expression comprised of formatting char
acters as described in the PRINT USING statement.

list of expressions
is a list of the numeric and/or string expressions that
are written to the file.

PRINT # does not compress data in the file. An image of the data is
written to the file just as it would be displayed on the screen with a
PRINT statement. For this reason, care should be taken to delimit the
data in the file, so that it is input correctly from the file.

In the list of expressions, numeric expressions should be delimited by
semicolons. For example:

PRINT #l,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks inserted between
print fields are also written to the file.)

String expressions must be separated by semicolons in the list. To
format the string expressions correctly in the file, use explicit delim
iters in the list of expressions.

340

PRINT # and PRINT # USING
Statements

For example, let A$="CAMERA" and 8$="93604-1". The statement:

PRINT #l,A$;B$

writes CAMERA93604-1 to the file. Because there are no delimiters,
this could not be input as two separate strings. To correct the
problem, insert explicit delimiters into the PRINT # statement as
follows:

PRINT #l,A$;",";B$

The image written to the file is:

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant
leading blanks, carriage returns, or line feeds, write them to the file
surrounded by explicit quotation marks using CHR$(34}.

For example, let A$="CAMERA, AUTOMATIC" and
8$="93604-1". The statement:

PRINT #l,A$;B$

writes the following image to the file:

CAMERA, AUTOMATIC93604-1

and the statement:

INPUT #l,A$,B$

puts the string "CAMERA" into A$ and "AUTOMATIC93604-1" into B$.

341

PRINT # and PRINT # USING
Statements
To separate these strings properly in the file, write double quotes to
the file image using CHR$(34). The statement:

PRINT #1,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMATIC""93604-1"

and the statement:

INPUT #l,A$,B$

inputs "CAMERA, AUTOMATIC" to A$ and "93604-1" to B$.

The PRINT # statement can also be used with the USING option to
control the format of the file. For example:

PRINT #l,USING"$$###.##,";J;K;L

Examples

Because data written to the file contains a dollar sign, use string vari
ables to read them back, as in this example:

10 A=123
20 B=6789
30 C=22.33
40 OPEN "DATA" FOR OUTPUT AS #1
50 PRINT #l,USING "$$###.##,";A;B;C
60 CLOSE
70 OPEN "DATA" FOR INPUT AS #1
80 INPUT #l,A$,B$,C$
90 CLOSE
100 PRINT A$,B$,C$

Results:

$123.00 $6789.80

342

$22.33

Purpose

PSET and PRESET
Statements

The PSET AND PRESET statements draw a point at the specified position
on the screen.

Graphics mode only.

Format

PSET (x,y) [,attribute]

PRESET (x,y) [,attribute]

Comments

(X,y)

attribute

are the coordinates of the point to be set. They can be in
absolute or relative form, as explained in "Specifying
Coordinates" under "Graphics Modes" in IBM BASIC
Compiler/2 Fundamentals.

is an integer expression that chooses an attribute from
the attribute range for the current screen mode. In
SCREEN 1, (medium resolution), attribute can range from 0
through 3. In SCREEN 2, (high resolution), attribute can be
o or 1.

The default color attribute for the foreground is the maximum color
attri bute for that screen mode.

The default color attribute for the background is always O.

PRESET is almost identical to PSET. The only difference is that if no
attribute parameter is given to PRESET, the background attribute (0) is
selected. If attribute is included, PRESET is identical to PSET. Line 70
in the example shown can be:

70 PSET(I, I) ,0

343

PSET and PRESET
Statements

Out-of-range coordinates are clipped, and no error occurs.

Examples

Lines 20 - 40 of this example draw a diagonal line from the point (0,0)
to the point (100,100). Lines 60-80 erase the line by setting each
point to a color of O.

10 CLS: SCREEN l:KEY OFF
20 FOR I=0 TO 100
30 PSET (I, 1)
40 NEXT
50 'erase line
60 FOR I=100 TO 0 STEP -1
70 PRESET(I, 1)
80 NEXT

344

PUT
Statement (Files)

Purpose

The PUT statement writes a record from a random buffer to a random
file.

Format

PUT [#]fiIenum[, [number][,id]]

Comments

filenum is the number under which the file was opened.

number is the record number for the record to be written, in the
range 1 through 2147483647.

id is any BASIC record variable. You cannot use id if a FIELD

statement is active on the file.

If you do not specify number, the record has the next available record
number (after the last PUT).

If you specify id, PUT transfers data from the specified record number
to the variable id. If id is smaller than the id size, then BASIC skips to
the start of the next record in the file before transferring any other
data.

PRINT #, PRINT # USING, WRITE #,LSET, and RSET can be used to put char
acters in the random file buffer before a PUT statement. In the case of
WRITE #, BASIC pads the buffer with spaces up to the carriage return.

Any attempt to read or write past the end of the buffer causes a Field
overflow error. See also "BASIC Disk Input and Output" in IBM
BASIC Compilerl2 Fundamentals.

345

PUT
Statement (Files)
Because DOS blocks as many records as possible in 512-byte sectors,
the PUT statement does not necessarily perform a physical write to the
disk for each record. See IBM BASIC Compilerl2 Language
Reference for more information on buffers and the CONFIG.SYS file.

PUT can be used for a communications file. In that case number is the
number of bytes to write to the communications file. This number
must be less than or equal to the value set by the LEN option on the
OPEN "COM ... statement.

Random files in BASIC have fixed-length records. The requested
record number in a GET or PUT statement is multiplied by this fixed
record length to form a 31-bit product. This value is then used to
move the random file pointer and then write the desired record.
Other record-number restrictions are:

• The largest record number possible is 214748364716, so the
largest record number available is:

2147483647/record length

• File size is limited by the available disk space.

Note: The IBM BASIC Compiler/2 stores floating-point data in random
files differently than the BASIC Interpreter and previous versions of the
BASIC Compiler. See "Floating Point Data in Random Files" under
"Disk Data Files-Sequential and Random 1/0" for more information.

Examples

See "BASIC Disk Input and Output" in IBM BASIC Compilerl2
Fundamentals.

346

Purpose

PUT
Statement (G raph ics)

The PUT statement plots images on a specified area of the screen.

Graphics mode only.

Format

PUT (x,y), arrayname [(index)] [,action]

Comments

(x,y) are the coordinates of the top left corner of the image to
be transferred.

arrayname is the name of a numeric array containing the informa
tion to be transferred. For more information on this
array, see also "GET Statement (Graphics)."

index

action

describes the starting location of the information stored
within the array. If you do not specify an index, BASIC

assumes that the data starts at the beginning of the
array.

is one of:

PSET
PRESET
XOR
OR
AND

XOR is the default.

PUT is the opposite of GET in the sense that it takes data out of the
array and puts it on the screen. However, it also provides the option
of interacting with the data already on the screen.

347

PUT
Statement (Graphics)

PSET stores the data from the array onto the screen, so this is the true
opposite of GET.

PRESET is the same as PSET except that a complementary image is
produced. For example, in medium resolution, which has a maximum
attribute of 3, an attribute of 0 in the array causes the corresponding
point to be plotted with an attribute of 3, and vice versa; an attribute
of 1 in the array causes the corresponding point to be plotted with an
attribute of 2, and vice versa.

AND, OR, and XOR specify the logical operations on the bits of each
image.

AND is used to display selected parts of an image. Only those areas
where some image already exists are shown.

OR is used to superimpose the transferred image onto the existing
image.

XOR is a special mode that can be used for animation. Its unique
property is that when an image is PUT against a complex background
twice, the background is restored unchanged. This allows you to
move an object around without obliterating the background.

In medium resolution mode, AND, OR, and XOR have the following
effects on color:

348

AND

Screen Color

0

1

2

3

Array Value
0 1 2 3

0 0 0 0

0 1 0 1

0 0 2 2

0 1 2 3

PUT
Statement (Graphics)

349

PUT
Statement (Graphics)

OR

Screen Color Array Value
0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

XOR

Screen Color Array Value
0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 .0

350

PUT
Statement (Graphics)

Animation of an object can be performed as follows:

1. PUT the object on the screen (with XOR).

2. Recalculate the new position of the object.

3. PUT the object on the screen (with XOR) a second time at the old
location to remove the old image.

4. Repeat step 1, this time putting the object at the new location.

Movement done this way leaves the background unchanged. Flicker
can be reduced by minimizing the time between steps 4 and 1, and
making sure there is enough time delay between steps 1 and 3. If
more than one object is being animated, each object should be proc
essed individually, one step at a time.

If it is not important to preserve the background, animation can be
performed using the PSET action verb. But you should remember to
have an image area that contains the "before" and "after" images of
the object. This way the extra area erases the old image. This
method can be somewhat faster than the method using XOR described
above, since only one PUT is required to move an object (although you
must PUT a larger image).

If the image to be transferred is too large to fit on the screen, an
Illegal function call error occurs.

351

PUT
Statement (Graphics)

Examples

This example shows how to move a circle across the screen with XOR:

10 CLS:DEFINT A-Z: SCREEN l:KEY OFF
20 DIM A(404)
30 CIRCLE (160,100), 20,3
40 PAINT (160,100),2,3
50 GET (140,80)-(180,120),A:CLS
60 X=30: Y=50
70 FOR I=l TO 20
80 PUT (X,Y),A,XOR
90 PUT (X,Y),A,XOR
100 X=X + 10
110 NEXT

352

RANDOMIZE
Statement

Purpose

The RANDOMIZE statement reseeds the random number generator.

Format

RANDOMIZE [n]

RANDOMIZE TIMER

Comments

n is an integer, single-precision, or double-precision expression
that is used as the random-number seed.

If n is omitted, BASIC suspends the program and asks for a value by
displaying:

Random-number seed (-32768 to 32767)?

before executi ng RANDOMIZE.

If the random-number generator is not reseeded, the RND function
returns the same sequence of random numbers each time the
program is run. To change the sequence of random numbers every
time the program is run, place a RANDOMIZE statement at the begin
ning of the program and change the seed with each run.

The internal clock can be a useful way to get a random-number seed.
You can use VAL to change the last two digits of TIME$ to a number,
and then use that number for n.

You can get a new random-number seed without being prompted. To
do this, use the TIMER function in the expression.

353

RANDOMIZE
Statement

Examples

This example uses TIMER. Each time the program is run you see a dif
ferent sequence of numbers.

Note: The val ues you receive may be different.

10 RANDOMIZE TIMER
20 FOR I=l TO 4
30 PRINT RND;
40 NEXT

Results:

First time

.9590051 .1036786 .1464037 .7754918

Second time

.8261163 .17422 .9191545 .5041142

The following example demonstrates how different values for the
random-number seed produce different number sequences:

10 RANDOMIZE
20 FOR I=l TO 4
30 PRINT RND;
40 NEXT I

354

RANDOMIZE
Statement

Results:

Random-number seed (-32768 to 32767)7

Assume that you respond with 3.

Random-number seed (-32768 to 32767)7 3
.5074723 .209742 .3667878 .2915855

Assume that you run the program again and respond with 4.

Random-number seed (-32768 to 32767)7 4
.7730515 .6161293 .5382508 .6053215

If you try 3 again, you'll get the same sequence as the first run:

Random-number seed (-32768 to 32767)7 3
.5074723 .209742 .3667878 .2915855

355

READ
Statement

Purpose

The READ statement reads values from a DATA statement and assigns
them to variables. See the DATA statement.

Format

READ variable [,variable] ...

Comments

variable is a numeric or string variable or array element that is to
receive the value read from the DATA table.

A READ statement must always be used with a DATA statement. READ

statements assign DATA statement values to the variables in the READ

statement on a one-to-one basis.

READ statement variables can be numeric or string, and the values
that are read must agree with the variable types specified. If they do
not agree, an error results.

A single READ statement can access one or more DATA statements
(they are accessed in order), or several READ statements can access
the same DATA statement. If the number of variables in the list of vari
ables exceeds the number of elements in the DATA statement(s), an
Out of data error occurs. If the number of variables specified is fewer
than the number of elements in the DATA statement(s), subsequent
READ statements begin reading data at the first unread element. If
there are no subsequent READ statements, the extra data is ignored.

To reread data from any line in the list of DATA statements, use the
RESTORE statement. See" RESTORE Statement."

356

Examples

READ
Statement

This program segment reads the values from the DATA statements into
the array A. After running, the value of A(1) is 3.08, the value of A(2) is
5.19 and so on.

10 FOR I=l TO 10
20 READ A(I)
30 NEXT I
40 DATA 3.08,5.19,3.12,3.98,4.24
50 DATA 5.08,5.55,4.00,3.16,3.37

This program reads string and numeric data from the DATA statement
in line 30. Note that you do not need quotation marks around
"COLORADO" because it does not have commas, semicolons, or signif
icant leading or trailing blanks. However, you do need the quotation
marks around "DENVER," because of the comma.

10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z

Results:

CITY
DENVER,

STATE
COLORADO

ZIP
80211

357

REDIM
Statement

Purpose

The REDIM statement changes the space allocated to an array that has
been declared dynamic.

Format

REDIM [SHARED] variable(subscripts) [AS type] [,variable(subscripts)[AS
type]] ...

Comments

SHARED

variable

subscripts

type

358

allows you to share simple variables and arrays
among all subprograms in a module.

is the name of an array that you want to redimension.
It can be up to 40 characters in length.

define the new dimensions of the array. The sub
scripts can be in two forms:

• (exp[,exp] ...), where exp is a numeric expression
that defines the upper bound of the dimension.
The lower bound is impliCitly defined by the OPTION

BASE statement.

• (min TO max[,min TO max] ...), where min and max
are numeric expressions that you use to explicitly
define the upper an lower bounds of each dimen
sion in the array.

is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING [*bytecount]

• typename

REDIM
Statement

typename must have been defined in
a previous TYPE statement.

The REDIM statement changes the space allocated to an array that has
been declared dynamic. Static arrays cannot appear in a REDIM state
ment.

The SHARED attribute allows arrays to be shared globally by the main
program and all subprograms within a module. To declare all vari
ables as global variables, place the word "SHARED" directly after the
word "REDIM." This differs from the SHARED statement. The SHARED

statement only affects variables within a single subprogram. For
more information, see "SHARED Statement."

You can specify the range of subscripts in two ways. The first way is
to specify the range of each subscript with a single integer, variable,
or expression. In this case, the maximum value of the subscript is the
number you specify. BASIC assumes that the minimum value of the
subscript is 0, unless you use the OPTION BASE statement. See the
OPTION BASE statement.

For example, you could redimension an array with the following
statement:

REDIM A(4, I+2)

The second way to specify the range of subscri pts is to specify expl ic
itly both the minimum and maximum values for the subscripts. For
example, you could redimension an array with the following state
ment:

REDIM B(-2 TO 2,10 TO 13)

The number of subscripts must be the same in the redimensioned
array as in the original array. The following example demonstrates
an illegal REDIM:

5 REM $DYNAMIC
10 DIM MONTH$(12), TME(12,60)
20 REDIM MONTH$(12), TME(12,60,60)

359

REDIM
Statement

The preceding example is illegal because the array TME in line 20
has three dimensions declared, but the original array has two dimen
sions declared.

When a REOIM statement is compiled, all the array declarations in the
statement are treated as dynamic arrays. At runtime, when a REOIM

statement is run, the array is deallocated if it is currently allocated
and is then reallocated with the new dimensions. Old array element
val ues are lost.

Examples

This example demonstrates the use of static and dynamic arrays
within the same program:

120 I $STATIC
l30 DIM C(5,5)
140 C(5,5)=1
145 C=5
150 ERASE C
160 PRINT C,C(5,5)
180 I $DYNAMIC
190 DIM A(20,20,20)
200 I = 40
210 DIM 8(1,I)
220 I ASSIGN VALUES INTO A AND 8
223 A(1,1,1)=3
225 8(1, 1) = 17
227 I ERASE AND REDIMENSION A
230 ERASE A
240 REDIM A(5,5,5)
260 PRINT 8(1,1),A(1,1,1)
270 END

Results:

5 0
17 0

The following program fragment shows a subroutine that deletes a
record from a random-access file. This subroutine uses REOIM to allo
cate a temporary string array (STORE$) to hold the records from
STOCK.OAT.

360

REDIM
Statement

After the records are stored in STORE$, STOCK.OAT is closed, deleted,
then reopened, and the values in STORE$ are put back into the file.
The ERASE statement then deallocates STORE$.

GOSUB OPENFILE
TOTAL% = LOF(I)/50
MAIN:

PRINT "1) Add a record"
PRINT "2) Update a record"
PRINT "3) Delete a record"
PRINT "4) End program"
PRINT: INPUT "What is your choice"; BRANCH
ON BRANCH GOSUB ADDAREC, UPDATEREC, DELETEREC, ENDPROG
GOTO MAIN

'Open STOCK.DAT and allocate random-file buffers
OPENFILE:

OPEN "STOCK.DAT" FOR RANDOM AS #1 LEN=50
'Multiply-defined field

FIELD #1, 50 AS RECORD$
FIELD #1, 10 AS PART$, 35 AS DESC$, 5 AS QTY$

RETURN
DELETEREC:

INPUT "Record number to delete: ",REC%
GET #1, REC% : PRINT DESC$
INPUT "Is this the correct record"; CH$
IF CH$ <> "y" THEN GOTO DELETEREC

'Put the last record where the deleted record was
GET #1, TOTAL%
PUT #1, REC%
TOTAL% = TOTAL% -

'Allocate temporary array
REDIM STORE$(TOTAL%)

'Store STOCK.DAT in array
FOR 1% = 1 TO TOTAL%

GET #1, 1%
STORE$(I%) = RECORD$

NEXT
'Erase STOCK. OAT

CLOSE #1 : KILL "STOCK.DAT"
'Reopen STOCK.DAT

GOSUB OPENFILE
'Put STORE$ array values in STOCK.DAT

FOR 1% = 1 TO TOTAL%

NEXT

LSET RECORD$ = STORE$(I%)
PUT #1, 1%

'Erase array STORE$
ERASE STORE$

RETURN

361

REM
Statement

Purpose

The REM statement inserts explanatory remarks in a program, or
inserts compiler metacommands.

Format

REM remarklmetacommand

Comments

remark can be any sequence of characters.

metacommand
is the name of one of the special commands that

control the operation of the compiler. All compiler
metacommands begin with the $ (dollar sign) character.
See "Compiler Metacommands" for more information.

REM statements that do not contain compiler metacommands are not
run but are displayed when the program is listed exactly as they were
entered.

REM statements can be branched into (from a GOTO or GOSUB state
ment), and the program continues with the first executable statement
after the REM statement.

Remarks can be added by preceding the remark with a single quota
tion mark instead of :REM. If you put a remark on a line with other
BASIC statements, the remark must be the last statement on the line.

You cannot use the single quote (') to add comments at the end of a
DATA statement. If you do, BASIC treats it as part of a string. You can,
however, use REM to add a remark.

362

REM
Statement

Examples

This example shows the two ways to insert remarks in a program:

10 'calculate average velocity
20 SUM=O: REM initialize SUM
30 FOR I=l TO 20
40 SUM=SUM + V(l)

Line 20 might also be written:

20 SUM=O ' initialize SUM

The following example includes a compiler metacommand:

1000 REM $LlNESlZE: 120

363

RESET
Command

Purpose

The RESET command closes all disk files and clears the system buffer.

Format

RESET

Comments

If all open files are on disk, RESET is the same as CLOSE with no file
numbers after it.

364

RESTORE
Statement

Purpose

The RESTORE statement allows DATA statements to be reread from a
specified line or label.

Format

RESTORE [finel/abe/]

Comments

line is the line number of a DATA statement in the program.

label is a sequence of 1 through 40 letters, digits, or periods, in any
combination.

After a RESTORE statement is run, the next READ statement accesses
the first item in the first DATA statement in the program. If line or
label is specified, the next READ statement accesses the first item in
the specified DATA statement.

Examples

In this example, the RESTORE statement in line 20 resets the DATA

pointer to the beginning so that the values that are read in line 30 are
57, 68, and 79:

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79
50 PRINT A;B;C;D;E;F

Results:

57 68 79 57 68 79

365

RESUME
Statement

Purpose

The RESUME statement continues running a program after an error
recovery procedure.

Format

RESUME [0]

RESUME NEXT

RESUME linel/abel

Comments

Any of the formats shown previously can be used, depending on
where running is to resume:

RESUME or RESUME 0

RI;SUME NEXT

RESUME line

RESUME label

The program resumes at the statement that caused the
error.

The program resumes at the statement immediately fol
lowing the one that caused the error.

The program resumes at the specified line number.

The program resumes at the specified label. A label is
a sequence of 1 through 40 letters, digits, or periods, in
any combination.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

366

RESUME
Statement

A RESUME statement that is not in an error trap routine causes a
RESUME without error message to occur.

Note: If your program contains any ON ERROR or RESUME statements,
you need to compile using the IX or IE parameter. See "Compiler
Parameters" in IBM BASIC Compilerl2 Compile, Link, and Run for
more information.

Examples

In this example, line 1000 is the beginning of the error trapping
routine. The RESUME statement causes the program to return to line
80 when error 230 occurs in line 90.

10 ON ERROR GOTO 1000

1000 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY AGAIN": RESUME 80

367

RETURN
Statement

Purpose

The RETURN statement stops a subroutine and returns to the main
program. See also "GOSUB Statement."

Format

RETURN [linel/abe/]

Comments

line is the number of the program line you wish to return to.

label is the label you wish to return to. A label is a sequence of 1
through 40 letters, digits, or periods, in any combination.

The line and label must be at the main program level; they cannot be
in a subprogram or function.

Although you can use RETURN linel/abel to return from any subroutine,
this enhancement was added to allow nonlocal returns from the event
trapping routines. From one of these routines you will often want to
go back to a specific line; while eliminating the GOSUB entry the trap
created. The nonlocal RETURN must be used with care, however, since
any other GOSUB, WHILE, or FOR statements active at the time of the
trap remain active.

Examples

10 PRINT "Calling the sUbroutine ... "
20 GOSUB 50
30 PRINT: PRINT "We're back." :END
40 '
50 'Subroutine
60 PRINT: PRINT "We're in the subroutine now."
70 PRINT "Returning from the subroutine ... "
80 RETURN
90 PRINT "This line will never be executed."

368'

Purpose

RIGHT$
Function

The IiIGHT$ function returns the rightmost n characters of string x$.

Format

v$ = RIGHT$(x$,n)

Comments

x$ is any string expression.

n is an integer expression in the range 0 through 32767 that speci
fies the number of characters to be in the result.

If n is greater than or equal to LEN(X$), x$ is returned. If n is 0, the null
string (length zero) is returned.

See also "MID$ Function and Statement" and "LEFT$ Function."

Examples

In this example, the rightmost seven characters of the string A$ are
returned:

18 A$="BOCA RATON, FLORIDA"
20 PRINT RIGHT$(A$,7)

Results:

FLORIDA

369

RMDIR
Command

Purpose

The RMDIR command removes a directory from the specified disk.

Format

RMDIR path

Comments

path is a string expression, not exceeding 63 characters, that
identifies the subdirectory to be removed from the existing
directory. See also "File Specification" and "Tree
Structured Directories" in IBM BASIC Compilerl2
Fundamentals for more information.

The directory must be empty of all files and subdirectories, with the
exception of "." and " .. ", before it can be removed. Otherwise, a
Pathlfile access error occurs.

Examples

The following examples refer to the tree structure shown here:

370

RMDIR
Command

If you are in the root directory and you want to remove the directory
called WP, use:

RMOIR "APPS\WP"

If you want to make LANG the current directory and remove the direc
tory called FORTRAN, use:

CHOIR "LANG"
RMOIR "FORTRAN"

Another way to remove the directory FORTRAN is to make the root the
current directory and then remove FORTRAN:

CHOIR "\"
RMOIR "LANG\FORTRAN"

The directory preceding the current directory cannot be removed.
Using the same tree structure, suppose that FIN is the current direc
tory. If you try to remove the APPS directory, you get a Path/file
access error.

371

RND
Function

Purpose

The RND function returns a random number between 0 and 1.

Format

v = RND[(X)]

Comments

x is a numeric expression that affects the returned value as
described here.

The same sequence of random numbers is generated each time the
program is run unless the random-number generator is reseeded.
Reseeding is most easily done by using the RANDOMIZE statement.
See" RANDOMIZE Statement."

You can also reseed the generator when you call the RND function by
using x where x is negative. This always generates the particular
sequence for the given x. This sequence is not affected by RANDOMIZE,

so if you want it to generate a different sequence each time the
program is run, you must use a different value for x each time.

If x is positive or not included, RND(X) generates the next random
number in the sequence.

RND(O) repeats the last number generated.

To get random numbers in the range 0 through n, use the formula:

INT(RND * (n+1))

372

RND
Function

Examples

In this example, the first horizontal line of results shows three
random numbers, generated using a positive x.

In line 40, a negative number is used to reseed the random number
generator. The random numbers produced after this reseeding are in
the second row of results.

In line 80, the random-number generator is reseeded using the RAN

DOMIZE statement. In line 90, it is reseeded again by calling RND with
the same negative value as in line 40. This cancels the effect of the
RANDOMIZE statement; the third line of results is identical to the
second line.

In line 130, RND is called with an argument of 0, so the last number
printed is the same as the preceding number.

10 FOR 1=1 TO 3
20 PRINT RND(I); I x>0
30 NEXT I
40 PRINT: X=RND(-6) I x<0
50 FOR 1=1 TO 3
60 PRINT RND(I); I x>0
70 NEXT I
80 RANDOMIZE 853 I randomize
90 PRINT: X=RND(-6) I x<0
100 FOR 1=1 TO 3
110 PRINT RND; I same as x>0
120 NEXT I
130 PRINT: PRINT RND(0)

373

RND
Function

Results:

.7107346 .99058

.4124333 .4854596

.4124333 .4854596

.9438332

.8523988
.9428332
.9428332

Reseeding with the RND (negative number) function reseeds through
permutation of the last floating-point temporary. Because no floating
point calculations are done in this example, the new seed is always
the same:

10 DEF1NT A-Z
20 FOR J=1 TO 5
30 X=RND(-J)
40 FOR 1=1 TO 5:PR1NT RND;NEXT:PR1NT
50 NEXT J

If line 20 is changed to:

20 FOR J=l TO 2 STEP .1

a new seed is generated each time.

374

Purpose

RTRIM$
Function

The RTRIM$ function removes trailing spaces from string expressions.

Format

v$ = RTRIM$(X$)

Comments

x$ is the name of the string you want to trim.

The RTRIM$ function examines x$, removes any spaces that pad the
end of the string, and returns a new string, v$, without the spaces. x$
remains unchanged.

See also "LTRIM$ Function.

375

RTRIM$
Function

Examples

This example demonstrates LTRIM$ AND RTRIM$.

DIM FixedString AS STRING * 10
DIM NormalString$

FixedString "Test"
NormalString$ = "Test"

, FixedString = 10 character string
, NormalString= a dynamic string

, RTRIM$ must be used when comparing a fixed string with a normal
, one to trim off any default trailing blanks:

IF RTRIM$(FixedString) = NormalString$ THEN
PRINT "The two strings are equal"

, If this happens, something's wrong:

ELSE
PRINT "The two strings are not equal"

END IF

, Try a string with leading blanks:

NormalString$ =" Test"
IF RTRIM$(FixedString) = NormalString$ THEN

PRINT "The two strings are still equal"

, LTRIM Removes the leading blanks so the comparison will work:

ELSEIF RTRIM$(FixedString) = LTRIM$(NormalString$) THEN
PRINT "The two strings are equal if leading blanks are removed"

, If this happens, something's wrong:

ELSE
PRINT "The two strings aren't equal"

END IF
END

376

Purpose

RUN
Command

The RUN command begins a program.

Format

RUN [line]

RUN filespec

Comments

line

filespec

is the line number of the program where you want to
begin.

is a string expression for the file specification. It can
contain a path. Filespec must conform to the rules out
lined under "File Names" and "File Specification" in IBM
BASIC Compiler/2 Fundamentals; otherwise, an error
occurs.

RUN or RUN line begins the program. If line is specified, running
begins with the specified line number. Otherwise, running begins at
the lowest line number.

RUN filespec loads a file from disk into memory and runs it. It closes
all open files and deletes the current contents of memory before
loading the designated program. See also "BASIC Disk Input and
Output" in IBM BASIC Compilerl2 Fundamentals.

Running a RUN command turns off any sound that is running and
resets to Music Foreground. Also, PEN and STRIG are reset to OFF.

Note: All variables and strings are reset to 0 or nulls when the RUN

statement is run.

377

RUN
Command

Examples

This is an example of RUN line:

10 A=l
20 B=2
30 C=3
40 D=4
50 PRINT A,B,C,D
60 IF D=O THEN END
70 RUN 50
80 END

Results:

1
o

2
o

3
o

4
o

As an example of RUN filespec, change line 70 to read:

70 RUN "NEXTPGM.EXE"

The program would look like:

10 A=l
20 B=2
30 C=3
40 D=4
50 PRINT A,B,C,D
60 IF D=0 THEN END
70 RUN "NEXTPGM.EXE"
80 END

NEXTPGM.BAS looks like:

10 PRINT A,B,C,D
20 END

Results:

2

o o

378

3

o

4

o

RUN
Command

Note: You must first compile and link NEXTPGM.BAS to create
NEXTPGM.EXE. You cannot RUN a BASIC interpreter application with this
statement. For instance. the following program line:

70 RUN "NEXTPGM.BAS"

is legal in the BASIC Interpreter environment. However, unpredictable
errors result in the BASIC Compiler environment because .BAS is not
recognized as a executable filetype. The file extensions recognized
as executable by the compiler are .BAT, .CMD, .COM and .EXE.

379

SADD
Function

Purpose

The SADD function returns the address of the specified string
expression.

Format

v = SADD (string expression)

Comments

Use this function with care, because strings in string space can move
at any time. Three possible causes of string-space rearrangement
are:

• A string-space compaction as a result of FRE

• Opening or closing a file

• Allocating a string variable.

See also the FRE, PEEK, POKE, VARPTR, and VARPTR$ functions.

Examples
A$ = "Late arrivals"
ADD = SADD(A$)
LN = LEN(A$) - 1
GOSUB PRINTOUT
POKE ADD,ASC("F")

POKE ADD+2,ASC("s")
POKE ADD+3,ASC("t")
GOSUB PRINTOUT
END

PRINTOUT:
FOR I = 0 TO LN

'Store string in variable A$
'Get address of A$
'Get length of A$
'Print A$
'Change first, third, and
'fourth letters of A$

'Print new value of A$

ASCII = PEEK(ADD + 1) 'Get value at address
PRINT CHR$(ASCII); 'Convert value to character, and print

NEXT
PRINT 'Print new line
RETURN

380

Results:

Late arrivals
Fast arrivals

SADD
Function

This example uses SADD to access the text of a string rather than the
variables string descriptor (which is what would happen using
VARPTR).

I Set a string variable to some text:
A$ = "That was the week that was"

I Get address of the string text:
StringText = SADD (A$)

I Use PEEK to get the ASCII of each char and print it out
I as a character:
FOR I=l TO LEN(A$)

ASCIIVal = PEEK(StringText+I-1)
PRINT CHR$(ASCIIVal);

NEXT I
END

381

SCREEN
Function

Purpose

The SCREEN function returns the ASCII code (0 - 255) for the character
on the active screen at the specified row (line) and column.

Format

v = SCREEN(rOW,co/[,z])

Comments

row is a numeric expression in the range 1 through 25. If the soft
key display is turned on, however, only 24 rows are available.

col is a numeric expression in the range 1 through 40 or 1 through
80, depending on the WIDTH setting.

z is a numeric expression that evaluates to a true or false value.
z is valid only in text mode.

See Appendix B, "ASCII Character Codes," for a list of ASCII codes.

In text mode, if z is included and is true (non-O), the color attribute for
the character is returned instead of the code for the character. The
color attribute is a number in the range 0 through 255. This number,
v, is deciphered as follows:

(v MOD 16) is the foreground attribute.

((v \16) MOD 8} is the background attribute, where foreground is
calculated as above.

If (v>127), character is blinking; otherwise it is not.

For a list of colors and their associated attributes, see "COLOR" state
ment.

382

SCREEN
Function

In graphics mode, if the specified location contains graphic informa
tion (points or lines, not just a character), the SCREEN function returns
o.

Any values entered outside the ranges indicated result in an Illegal
function call error.

The SCREEN statement is explained in the next entry.

Examples

In this example, if the character at 10,10 is A, X is 65:

100 x = SCREEN (10,10)

This example returns the color attribute of the character in the upper
left corner of the screen:

110 x = SCREEN (1,1,1)

383

SCREEN
Statement

Purpose

The SCREEN statement sets the screen attributes to be used by subse
quent statements.

This statement is not meaningful with the Monochrome Display and
printer adapter.

Format

SCREEN [mode] [,[burst] [,[apage] [,vpage]]]

Comments

mode is a numeric expression resulting in an integer value of 0, 1,
or 2. Valid modes are:

o Text mode at current width (40 or 80).

1 Medium-resolution graphics mode (320x200).

2 High-resolution graphics mode (640x200).

burst is a numeric expression resulting in a true or false value. It
enables or disables color. On an RGB monitor, color burst
is always on. On a composite monitor, color burst can be on
or off.

384

In text mode (mode=O), a false (0) value disables color (only
the monochrome images are displayed); a true (non-O) value
enables color (color images are displayed). In medium
resolution graphics mode (mode=1), a true (non-O) value
disables color, and a false (0) value enables color.

Because high resolution graphics are only two colors (black
and white), this parameter has no effect in high resolution.

SCREEN
Statement

apage (active page) is an integer expression in the range 0 through
7 for width 40; 0 through 3 for width 80. It selects the page to
be written to by output statements to the screen, and is valid
only in text mode (mode=O). Apage is always 0 under OS/2

mode.

vpage (visual page) selects the page to be displayed on the screen,
in the same way as apage above. The visual page can be
different from the active page. vpage is valid only in text
mode (mode = 0). If omitted, vpage defaults to apage. Vpage
is always 0 under OS/2 mode.

Mode Description Width Psize Colors

0 Alpha 40,80 2k,4k 16

1 320x400 40 16 4

2 640x200 80 16k 2

If all parameters are valid, the new screen mode is stored; or the
screen is erased; or the foreground color is set to white; or and the
background and border colors are set to black.

If the new screen mode is the same as the previous mode, and color
burst does not change, nothing is changed.

If only apage and vpage are specified, display pages are changed for
viewing. Initially, both active and visual pages default to 0 (zero). By
manipulating active and visual pages, you can display one page while
building another. You can then switch visual pages instantaneously.

If you mix text and graphics in the 40-or 80-column graphics mode
and are not using a U.S. keyboard, refer to the GRAFTABL command in
IBM Disk Operating System Version 3.30 Reference and the IBM
Operating System/2 User's Reference for more information regarding
additional character support with the Color/Graphics monitor.

385

SCREEN
Statement

Note: Only one cursor is shared among all the pages. If you are
going to switch active pages back and forth, save the cursor position
on the current active page, using pos(O) and CSRLlN, before changing
to another active page. When you return to the original page, you can
restore the cursor position using the LOCATE statement.

Any parameter can be omitted. Omitted parameters, except vpage,
assume the old value. Any values entered outside the ranges indi
cated result in an Illegal function call error. Previous values are
retained.

Examples

This example selects text mode with color burst enabled, and sets
active and visual page to 0:

10 SCREEN 0,1,0,0

In this example, mode and color burst remain unchanged. Active
page is set to 1 and display page to 2.

10 SCREEN ,,1,2

This example switches to high resolution graphics mode:

10 SCREEN 2,,0,0

This example switches to medium-resolution color graphics, color
burst enabled:

10 SCREEN 1, 0

386

SETMEM
Function

Purpose

The SETMEM function is used to alter the amount of system memory
allocated for all BASIC data.

Format

v = SETMEM(X)

Comments

The x is a signed integer number of bytes representing the change to
the current memory allocation.

The value returned by the SETMEM function represents the current
memory allocation as adjusted by SETMEM, both the near and far
heaps.

If you specify SETMEM(O), the value returned is the current allocation.

If x is negative, the memory is released by SETMEM and becomes
available for memory allocation through operating system memory
allocation calls from other languages. BASIC data includes static data,
common blocks, file buffers, strings, and all arrays. COM buffers are
not included.

If SETMEM can not adjust the BASIC data allocation by the amount spec
ified by x, then SETMEM simply returns the current allocation. No
adjustment is made.

Note to Operating System/2 users

SETMEM is available in the OS/2 mode, but performs no function.
SETMEM returns the cumulative effect on a starting "memory size" of
640K for compatibility with BASIC programs written for DOS mode.

387

SETMEM
Function

To the BASIC application, it looks like 640K was available, and all
further adjustments are also successful.

Examples
I This is an example of SETMEM expanding and contracting
I the "far heap" data space.

I Check current memory size:
NewSize& = SETMEM(0&)
PRINT "Original memory= "NewSize&

I Add 2k to BASIC memory allocation:
NewSize& = SETMEM(2048&)
PRINT "New memory size= "NewSize&

I Perhaps call a C routine here ...

I Reduce memory allocation by 2k:
NewSize& = SETMEM(-2048&)
PRINT "New memory size= "NewSize&

END

388

Purpose

The SGN function returns the sign of x.

Format

v = SGN(X)

Comments

The x is any numeric expression.

SGN(X) is the mathematical signum function:

• If x is positive, SGN(X) returns 1.
• If x is 0, SGN(X) returns O.
• If x is negative, SGN(X) returns -1.

Examples

SGN
Function

This example branches to 100 if x is negative; 200 if x is 0; and 300 if x
is positive:

ON SGN(X)+2 GOTO 100,200,300

389

SHARED
Statement

Purpose

The SHARED statement allows a subprogram to access variables
declared in the main program without passing them as parameters.

Format

SHARED variable[O] [AS type] [,variable[()] [AS type]] ...

Comments

variable is the name of any simple variable or array declared at
the main program level. If the variable is an array, its
name must be followed by a pair of parentheses (for
example, "ARRAY%O").

type is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING [* bytecount]

• typename
typename must have been defined in
a previous TYPE statement.

Usually, variables and arrays referred to inside a subprogram are
considered local to that subprogram and initial values of 0 are
assumed.

However, by using either the SHARED statement in a subprogram, or
the SHARED attribute to the COMMON, DIM, or REDIM statements at the
main program level of the module, you can access variables without
passing them into a subprogram as parameters. The SHARED attribute
is used for sharing variables among all subprograms in a module,

390

SHARED
Statement

while the SHARED statement affects variables within a single subpro
gram.

For simple variables, if a variable named in a SHARED statement has
not yet been referenced at the main-program level, the variable is
created at main-program level and is shared with the subroutine or
function.

For arrays, if an array named in a SHARED statement has not yet been
referenced at the main-program level, an error occurs. The compiler
cannot know how many dimensions to give the array and what
bounds they should have.

The SHARED statement must appear only inside a named subprogram
(see "SUB Statement" and "FUNCTION Statement"). If it occurs outside
a subprogram, an error occurs.

Examples

The following program calculates the area of a chosen shape. By
making use of shared variables, the area for a different shape from
the one chosen can be calculated without re-entering the dimensions.

391

SHARED
Statement
200 REM AREA CALCULATION PROGRAM
210 CLS
220 PRINT "AREA CALCULATION"
230 PRINT: PRINT "1. RECTANGLE"
240 PRINT "2. SQUARE"
250 PRINT "3. TRIANGLE"
260 PRINT "4. EXIT"
270 PRINT "MAKE SELECTION: ".
280 FIG$=INKEY$: IF FIG$ = "" THEN 280
290 IF ASC(FIG$) < 49 OR ASC(FIG$) > 52 THEN 280
300 IF FIG$ = "4" THEN 400
310 CLS
320 INPUT "ENTER BASE: " ; BSE
330 IF FIG$ = "2" THEN 350
340 INPUT "ENTER HEIGHT: " ; HGHT
350 CALL CALCAREA
360 PRINT "AREA = "; AREA
370 LOCATE 23,1: PRINT "PRESS ANY KEY TO CONTINUE"
380 S$ = INKEY$: IF S$ = "" THEN 380
390 GOTO 210
400 END
410 REM **** AREA SUBPROGRAM ****
420 SUB CALCAREA STATIC
430 SHARED AREA, BSE, HGHT, FIG$
440 ON VAL(FIG$) GOTO 450, 470, 490
450 AREA = BSE * HGHT
460 GOTO 500
470 AREA = BSE A 2
480 GOTO 500
490 AREA = (BSE * HGHT) I 2
500 END SUB

392

SHELL
Function

Purpose

The SHELL function performs oS/2-mode commands and runs other
programs.

This function is not available in DOS mode.

Format

v = SHELL(command string)

Comments

command string is a string expression containing the name of a
program or an OS/2 mode command to run, and,
optionally, any parameters you are passing to the
program or command.

Any program run under a BASIC program is referred to as a child
process. SHELL runs child processes by loading and running a copy of
the command processor with the Ie switch. By using CMD.EXE in this
way, SHELL correctly passes any parameters you can have to the
child process. You can redirect standard input and output and run
built-in commands such as DIR and PATH. You can also invoke batch
files from the SHELL function.

When you run SHELL as a function, the parent BASIC program and the
child process run at the same time.

The value returned by the SHELL function is the id assigned to the
child process by the operating system.

When you run child processes from a BASIC application using the
SHELL function, there are some procedures and rules that your appli
cation should follow. Going outside the boundaries of these guide
lines could cause your application to fail or produce unpredictable
results.

393

SHELL
Function

A child process that alters any file opened by the BASIC application
can have unpredictable results. If you must update such files, be
sure to close them from your BASIC application before sHELLing to your
child process. Remember, files that were opened under the redi
rection of standard input and output constitute OPEN files. These files
should not be modified using the SHELL process.

A program name in command string can have any extension you
choose. If you do not supply an extension, OS/2 looks for an .EXE
extension, and then a .CMD extension. If the filename is not located
during this search, the CMD.EXE issues an error message.

Any text separated from a program name supplied in command string
by at least one blank is processed as a program parameter.

BASIC applications inherit their environments from the operating
system. Any changes your application makes to the environment are
reflected in the environment for the child process.

Note: For more information on the environment, see IBM Operating
Systeml2 User's Reference or IBM Disk Operating System Version
3.30 Reference.

Make sure that your system has enough available memory to load
any programs that you want to run as child processes. An attempt to
run a child process with insufficient free memory causes an Out of
Memory error.

394

Examples

SHELL
Function

The following example uses the SHELL function to make a backup copy
of the file SAMPLE.BAS The program continues to run while this copy is
being made.

DUMMYVAR = SHELL("COPY SAMPLES. BAS SAMPLES.BAK")

In the next example, the program called MYPROG is run as a child
process.

PROGNAME$ = "MYPROG"
ARGS$ = II FILEl FILE2 /XYZ"
X = SHELL(PROGNAME$ + ARGS$)

395

SHELL
Statement

Purpose

The SHELL statement performs operating system commands and runs
other programs.

Format

SHELL [command string]

Comments

command string is a string expression containing the name of a
program to run, and, optionally, any parameters you
are passing to the child process.

Any program run under a BASIC program is referred to as a child
process. When you run SHELL as a statement, the parent BASIC

program waits until the child process finishes. When the child
process has finished running, control returns to the parent BASIC

program at the statement following the SHELL statement.

SHELL runs child processes by loading and running a copy of the
command processor with the Ie switch. By using COMMAND.COM or
CMD.EXE in this way, SHELL correctly passes any parameters you can
have to the child process. You can redirect standard input and output
and run built-in commands such as DIR and PATH.

The BASIC program waits in memory while the child process is
running. When the child process finishes, the BASIC program con
tinues.

If you enter SHELL with no command string, a copy of the command
processor is loaded, the operating system prompt appears, and you
can enter any commands that are valid operating system commands
(DIR, COPY, and so on). You can return to the BASIC program by typing
the word EXIT.

396

SHELL
Statement

You can also invoke batch files from the SHELL statement. To return to
the parent BASIC program, your batch file must run an EXIT statement.

When you run child processes from a BASIC application using the
SHELL statement, there are some procedures and rules that your
application should follow. Going outside the boundaries of these
guidelines could cause your application to fail or produce unpredict
able results.

To guarantee that you return to your BASIC program from your child
process in the screen mode that you expect, you can do one of two
things:

• If you are using DOS mode, use BIOS Interrupt 10H, function call 15,
to save the current video mode. When your child process returns
to DOS mode, use function call 0 to restore the video mode.

If you are usi ng OS/2 mode, use the VIOGETMODE and VIOSETMODE

OS/2 calls to get and set the video mode.

• From your BASIC program, run a SCREEN statement followed by a
CLS statement immediately after the SHELL statement.

Under DOS mode, before a BASIC program runs a SHELL statement, it
saves any interrupt vectors it uses. However, interrupt vectors your
routines use (but are not used by the BASIC program) are not restored.
So be sure to save any interrupt vectors your routine uses to pre
serve the proper interface to the operating system.

In DOS mode, any routine that you run from the SHELL statement
should never end and stay resident. If this procedure is attempted,
the following can occur: all files close, the error message prints, and
control returns to the operating system.

A child process that alters any file opened by the BASIC application
can have unpredictable results. If you must update such files, be
sure to close them from your BASIC application before running a SHELL

to your child process. Remember, files that were opened under the
redirection of standard input and output constitute OPEN files. These
files should not be modified using the SHELL process.

397

SHELL
Statement
A program name in command string can have any extension you
choose. If you do not supply an extension, the operating system
looks for a .COM extension, then a .EXE extension, and finally a .BAT or
.CMD extension. If the filename is not located during this search, the
command processor issues an error message.

Any text separated from a program name supplied in command string
by at least one blank is processed as a program parameter.

BASIC applications inherit their environments from the operating
system. Any changes your application makes to the environment are
reflected in the environment for the child process.

Note: For more information on the environment, see IBM Operating
Systeml2 User's Reference or IBM Disk Operating System Version
3.30 Reference.

Make sure that your system has enough available memory to load
any programs that you want to run as child processes. An attempt to
run a child process with insufficient free memory causes an Out of
Memory error.

398

Examples

SHELL
Statement

The following example displays a disk directory from your compiled
program:

100 SHELL
A>DIR (type DIR command at DOS prompt)
A>EXIT (type EXIT to return to program)

The same result can be achieved with:

100 SHELL "DIR"

The next example creates a file, exits to the operating system SORT

utility, and returns to the BASIC application:

10 OPEN "SORTIN.DAT" FOR OUTPUT AS #1
20 'writes data to be sorted

100 CLOSE 1
110 SHELL "SORT <SORTIN.DAT >SORTOUT.DAT"
120 OPEN "SORTOUT.DAT" FOR INPUT AS #1
130 'processes the sorted data

399

SIGNAL
Function

Purpose

The SIGNAL function enables and disables trapping of OS/2 mode
signals.

This function is not available in DOS mode.

Format

SIGNAL(n) ON

SIGNAL(n) OFF

SIGNAL(n) STOP

Comments

n is the number of a signal sent through OS/2. For a list of the
valid signal numbers, see the IBM Operating Systeml2
Programmer's Guide.

If you specify a signal number other than those which the OS/2

mode supports, BASIC returns an Illegal function call error
message.

You must run a SIGNAL(n) ON statement to enable trapping by the ON

SIGNAL(n) statement. (See "ON SIGNAL Statement.") After a SIGNAL(n) ON

statement, every time the program starts a new statement, the com
piler checks to see if signal n has been received.

If you run a SIGNAL(n) OFF statement, BASIC does not trap the OS/2 mode
n signal. Even if a signal n occurs, the program does not remember
the event.

If you run a SIGNAL(n) STOP statement, BASIC does not trap signal n, but
BASIC remembers the event and traps signal n as soon as you run a
SIGNAL(n) ON statement.

400

Examples

SIGNAL
Function

This is an example of using SIGNAL(n) to allow processing to continue
in a program while it is waiting for an inter-process signal:

ON SIGNAL(4) GOSUB ProcessSignal
SIGNAL(4) ON

DO

I program could go here

LOOP UNTIL INKEY$ <> ""

END

ProcessSignal:

PRINT "Signal received
RETURN

401

SIN
Function

Purpose

The SIN function calculates the trigonometric sine function.

Format

v = SIN(X)

Comments

The x is an angle in radians.

To convert degrees to radians, multiply by P1/180, where PI=3.141593.

Examples

This example calculates the sine of 90 degrees after first converting
the degrees to radians:

10 PI=3.l4l593
20 DEGREES = 90
30 RADIANS=DEGREES * PI/180 I PI/2
40 PRINT SIN(RADIANS)

Results:

402

SOUND
Statement

Purpose

The SOUND statement generates sound through the speaker.

This statement is not available under the OS/2 mode.

Format

SOUND freq, duration

Comments

freq is the desired frequency in Hertz (cycles per second). It
must be a numeric expression in the range 37 through
32767.

duration is the desired duration in clock ticks. The clock ticks
occur 18.2 times per second. The duration must be a
numeric expression. The range of values for duration is
0.0015 through 65535.

When the SOUND statement produces a sound, the program continues
to run until another SOUND statement is reached. If duration of the
new SOUND statement is 0, the currently running SOUND statement is
turned off. Otherwise, the program waits until the first sound ends
before it runs the new SOUND statement.

You can cause the sounds to be buffered so that running does not
stop when a new SOUND statement is encountered.

If a SOUND statement is followed immediately by an END statement, the
sound being produced stops upon running the END statement and the
SOUND buffer is flushed.

See the explanation of the Music Background (MB) command under
"PLAY Statement."

403

SOUND
Statement

If no SOUND statement is running, SOUND x, 0 has no effect.

The tuning note, A, has a frequency of 440. The following figure corre
lates notes with their frequencies.

Note Frequency Note Frequency

C 130.810 C 523.250

0 146.830 0 587.330

E 164.810 E 659.260

F 174.610 F 698.460

G 196.000 G 783.990

A 220.000 A 880.000

B 246.940 B 987.770

C* 261.630 C 1046.500

0 293.660 0 1174.700

E 329.630 E 1318.500

F 349.230 F 1396.900

G 392.000 G 1568.000

A 440.000 A 1760.000

B 493.880 B 1975.500

*Middle C.

Higher (or lower) notes can be approximated by doubling (or halving)
the frequency of the corresponding note in the previous (next) octave.

To create periods of silence, use SOUND 32767,duration.

404

SOUND
Statement

The duration for one beat can be calculated from beats per minute by
dividing the beats per minute into 1092 (the number of clock ticks in a
minute).

This figure shows typical tempos in terms of clock ticks:

Tempo Beatl Ticksl Beat
Minute

very slow Larghissimo 27.3-18.2
Largo 40-60 18.2-16.55
Larghetto 60-66
Grave
Lento 16.55-14.37
Adagio 66-76

slow Adagietto 14.37-10.11
Andante 76-108

medium Andantino 10.11-9.1
Moderato 108-120

fast Allegretto 9.1-6.5
Allegro 120-168
Vivace
Veloce 6.5-5.25
Presto 168-208

very fast Prestissimo

405

SOUND
Statement

Examples

The following program creates a glissando (sliding up and down the
scale):

FOR 1=440 TO 1000 STEP 5
SOUND 1, 0.5
NEXT
FOR 1=1000 TO 440 STEP -5
SOUND 1, 0.5
NEXT

406

Purpose

SPACES
Function

The SPACE$ function returns a string consisting of n spaces.

Format

v$ = SPACE$(n)

Comments

n must be in the range 0 through 32767.

See also "sPc Function."

Examples

This example uses the SPACE$ function to print each number N on a
line preceded by N spaces. An additional space is inserted because
BASIC puts a space in front of positive numbers.

18 FOR N = 1 TO 5
28 X$ = SPACE$(N)
38 PRINT X$;N
48 NEXT N

Results:

1
2

4
5

407

SPC
Function

Purpose

The SPC function skips n spaces in a PRINT statement.

Format

PRINT spc(n)

Comments

The n must be in the range 0 through 255.

If n is greater than the defined width of the device, the value used is n
MOD width. SPC can be used only with PRINT, LPRINT, and PRINT # state
ments.

See also "SPACE$ Function."

Examples

This example prints OVER and THERE separated by 15 spaces:

PRINT "OVER" SPC(15) "THERE"

Results:

OVER THERE

408

Purpose

The SQR function returns the square root of x.

Format

v = SQR(X)

Comments

The x must be greater than or equal to O.

Examples

SQR
Function

This example calculates the square roots of the numbers 10, 15,20,
and 25:

10 FOR X = 10 TO 25 STEP 5
20 PRINT x, SQR(X)
30 NEXT

Results:

10 3.162278
15 3.872984
20 4.472136
25 5

409

STATIC
Statement

Purpose

The STATIC statement designates simple variables or arrays as local
to the subprogram in which they are declared and preserves their
values when the subprogram is exited and reentered.

Format

STATIC variable[(n}][AS type] [,variable[(n}][AS type]] ...

Comments

variable is a simple variable or array. An array declaration con
sists of a variable symbol followed by an integer constant
in parentheses.

n is an integer constant. It represents the number of dimen
sions in the array, not the actual value of the dimensions.

type is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING [*bytecount]

• typename
typename must have been defined in
a previous TYPE statement.

The STATIC statement may appear only inside a named subprogram
(see "SUB and END SUB and EXIT SUB Statement"). If STATIC appears
outside a named subprogram, an error occurs.

Simple variables and arrays referred to or declared in subprograms
are local to the subprograms in which they are declared. Initial
values of 0 or null string are assumed; however, if the subprogram is

410

STATIC
Statement

exited and reentered, the values retained for the variables may have
been changed. Declaring the variables in a STATIC statement guaran
tees that the previous values are retained.

If the first reference to an array is made with the STATIC statement,
that array is allocated dynamically. Such arrays are not actually allo
cated until they are dimensioned with the DIM statement or are redi
mensioned with the REDIM statement.

Simple variables or arrays declared within a STATIC statement over
ride any shared variables or arrays with the same name.

By default, variables used in functions are global. The STATIC state
ment can also be used inside multiline function definitions to declare
a variable as local to that function only.

For related information, see "SHARED Statement."

Examples

The following program computes the factorial value of a number:

200 REM FACTORIAL PROGRAM
210 DIM SHARED NFACT, N
220 INPUT "ENTER NUMERAL"; M
230 N=M
240 WHILE N > 1
250 CALL FACTORIAL
260 N = N - 1
270 WEND
280 PRINT M;" FACTORIAL = ";NFACT
290 END
300 REM **** FACTORIAL SUBPROGRAM ****
310 SUB FACTORIAL STATIC
320 STATIC Nl
330 REM Nl WILL RETAIN ITS VALUE
340 REM AFTER SUBPROGRAM IS EXITED
350 IF N1 <> 0 THEN N1 = N1 * N ELSE Nl = N
360 IF N = 2 THEN NFACT = Nl
370 END SUB

411

STICK
Function

Purpose

The STICK function returns the x and y coordinates of two joysticks.

This function is not available under OS/2 mode.

Format

v = sTlcK(n)

Comments

n is a numeric expression in the range 0 through 3 that affects the
result as follows:

o returns the x-coordinate for joystick A.

1 returns the y-coordinate of joystick A.

2 returns the x-coordinate of joystick B.

3 returns the y-coordinate of joystick B.

Note: STICK(O) reads all four values for the coordinates. To use any of
the other stick functions (STICK(1), STICK(2) or STICK(3)), you must first
call STICK(O).

The range of values for x and y depends on your particular joysticks.

412

Examples

STICK
Function

This program prints 100 samples of the coordinates of joystick B:

10 PRINT "Joystick 8"
20 PRINT "x coordinate","y coordinate"
30 FOR J=l TO 100
40 TEMP=STICK(O)
50 X=STICK(2): Y=STICK(3)
60 PRINT X,Y
70 NEXT

413

STOP
Statement

Purpose

The STOP statement stops a program and returns to command level.

Format

STOP

Comments

STOP statements can be used anywhere in a program to stop running.
When BASIC encounters a STOP statement, it displays the following
message:

STOP in line xxx of module modulename at address ---;---

Hit any key to return to system

When the compiler encounters a STOP statement, it displays a
message with a hexadecimal address indicating where the program
stopped. If you compile using the ID, IX, or IE switch, the compiler
displays the line number of the stopping point also.

STOP closes all open files.

Examples

This example calculates the value of TEMP, then stops. The program
was named STOPEX.BAS and it was compiled with the ID option.

10 INPUT A, B
20 TEMP= A*B
30 STOP
40 FINAL = TEMP+200; PRINT FINAL

414

Results:

? 26. 2.1

STOP in line 30 of module STOPEX at address 1E82:0092

Hit any key to return to system

STOP
Statement

415

STR$
Function

Purpose

The STR$ function returns a string representation of the value of x.

Format

v$ = STR$(X)

Comments

The x is any numeric expression.

If x is positive, the string returned by STR$ contains a leading blank
(the space reserved for the plus sign). For example:

PRINT STR$(321); LEN(STR$(321))

Results:

321 4

The VAL function is complementary to STR$. See "VAL Function."

Examples

This example branches to different sections of the program according
to the number of digits in a number that is entered. The number of
digits is counted by using STR$ to convert the number to a string; then
the program branches, based on the length of the string.
10 INPUT "TYPE A NUMBER":N
20 ON LEN(STR$(N))-1 GOSUB 30,100,200,300

416

STRIG
Statement and Function

Purpose

The STRIG statement and function returns the status of the joystick
buttons (triggers).

The STRIG statement and function is not available OS/2 mode.

Format

As a statement:

STRIG ON

STRIG OFF

As a function:

v = STRIG(n)

Comments

n is a numeric expression in the range 0 through 7. It affects the
value returned by the function as follows:

o Returns ~ 1 if button A 1 was pressed since the last STRIG(O)

function call; returns 0 if it was not pressed.

1 Returns ~ 1 if button A 1 is currently pressed; returns 0 if it
is not pressed.

2 Returns ~1 if button B1 was pressed since the last STRIG(2)

function call; returns 0 if it was not pressed.

3 Returns ~1 if button B1 is currently pressed; returns 0 if it
is not pressed.

417

STRIG
Statement and Function

4 Returns -1 if button A2 was pressed since the last STRIG(4)

function call; returns 0 if it was not pressed.

5 Returns -1 if button A2 is currently pressed; returns 0 if it
is not pressed.

6 Returns -1 if button 82 was pressed since the last STRIG(6)

function call; returns 0 if it was not pressed.

7 Returns -1 if button 82 is currently pressed; returns 0 if it
is not pressed.

STRIG ON must run before any STRIG(n) function calls can be made.
After STRIG ON, every time the program starts a new statement, the
compiler checks to see if a button was pressed.

If STRIG is OFF, no testing takes place.

See "STRIG(n) Statement" for enhancements to the STRIG function.

Examples
STRIG ON
ATRIG = 0
'Wait for trigger A to be pressed:
WHILE NOT ATRIG : ATRIG = STRIG(O) : WEND
'As long as trigger A is down, beep:
WHILE ATRIG : ATRIG = STRIG(1) : BEEP: WEND

418

STRIG(n)
Statement

Purpose

The STRIG(N) statement enables and disables trapping of the joystick
buttons.

This statement is not available under the OS/2 mode.

Format

STRIG(n) ON

STRIG(n) OFF

STRIG(n) STOP

Comments

n can be 0, 2, 4, or 6 and indicates the button to be trapped, as
follows:

o button a
2 button b
4 button a
6 button b

STRIG(n) ON must run to enable trapping by the ON STRIG(n) statement.
See the ON STRIG statement. After STRIG(n) ON, every time the program
starts a new statement, the compiler checks to see if the specified
button has been pressed.

If STRIG(n) OFF runs, no testing or trapping takes place. Even if the
button is pressed, the event is not remembered.

If a STRIG(n) STOP statement runs, no trapping takes place. However, if
the button is pressed it is remembered so that an immediate trap
takes place when STRIG(n) ON runs.

Examples
STRIG(O) ON 'Enables trapping of button Al

419

STRING$
Function

Purpose

The STRING$ function returns a string length n whose characters all
have ASCII code m or the first character of x$.

Format

v$ = STRING$(n,m)

v$ = STRING$(n,x$)

Comments

n, m are in the range 0 through 32767.

x$ is any string expression.

Examples

This example repeats an ASCII value of 45 to print a string of hyphens:

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$

Results:

----------MONTHLY REPORT----------

This example repeats the first character of the string "ABCD":

10 X$="ABCD"
20 Y$=STRING$(10,X$)
30 PRINT Y$

Results:

AAAAAAAAAA

420

SUB and END SUB and EXIT SUB
Statement

Purpose

The SUB AND END SUB AND EXIT SUB statement marks the beginning and
end of an subprogram.

Format

SUB globalname [(parameter [AS type] [,parameter [AS type]] ...)] STATIC

statements
[EXIT SUB]

statements
END SUB

Comments

globalname is a name up to 40 characters long. This name cannot
appear in any other SUB or FUNCTION statement.

parameter is the name of a simple variable or an array. If the param
eter is an array, it must be specified in the form:

parameter (integer)

where integer is the number of dimensions the array has.

type is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING

• typename
typename must have been defined in
a previous TYPE statement.

421

SUB and END SUB and EXIT SUB
Statement
STATIC is required to indicate that the subprogram is

nonrecursive; that is, it does not call itself or a subpro
gram that in turn calls it.

statements are the BASIC statements to be performed when the sub
program is called.

A subprogram must begin with a SUB statement and end with an END

SUB statement. The EXIT SUB statement is used to exit a subprogram
before the END SUB statement is reached. Executing an EXIT SUB or END

SUB statement transfers program control back to the calling routine.

To execute a subprogram, use the CALL statement. If you want to call
a the subprogram before it is defined, you must use the DECLARE

statement to describe the subprogram to BASIC.

A subprogram is similar to a function defined by a FUNCTION state
ment. However, unlike a function, a subprogram does not return a
value associated with its name and, therefore, cannot appear as part
of an expression.

Any simple variables or arrays referred to in the subprogram are
considered to be local unless they have been explicitly declared to be
SHARED variables.

When a subprogram is exited and reentered, the values of its local
variables are reset to Os and null strings. To guarantee that a local
variable retains its assigned value upon reentry to the subprogram, it
should be declared as STATIC. See "Scope of Variables" under
"Modular Programming" in IBM BASIC Compilerl2 Fundamentals for
more information.

See also "CALL Statement," " SHARED Statement," and "STATIC

Statement" and "Modular Programming" in IBM BASIC Compilerl2
Fundamentals.

422

SUB and END SUB and EXIT SUB
Statement

Examples

This program contains two subprograms. One subprogram converts
all characters of a string to uppercase; the other subprogram con
verts all characters of a string to lowercase.

220 A$="abcdeI2345ABCDE!@#$%"
230 CALL upper(A$,B$)
240 CALL lower(A$,C$)
250 IF B$="ABCDEI2345ABCDE!@#$%"_

AND C$="abcdeI2345abcde!@#$%" THEN 270
260 PRINT "FAILED"
270 END
280 SUB upper(N$,R$) STATIC
290 LCASELET$="abcdefghijklmnopqrstuvwxyz"
300 UCASELET$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
310 L=LEN(N$)
320 IF L=O THEN upper$="":EXIT SUB
330 FOR I = 1 TO L
340 P=INSTR(LCASELET$,MID$(N$,I,I»
350 IF P <> 0 THEN N$=MID$(N$,I,I-l)

+MID$(UCASELET$,P,I)+MID$(N$,I+l,L-I+I)
360 NEXT
370 R$=N$
380 END SUB
390 SUB lower(N$,R$) STATIC
400 LCASELET$="abcdefghijklmnopqrstuvwxyz"
410 UCASELET$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
420 L=LEN(N$)
430 IF L=O THEN lower$="":EXIT SUB
440 FOR I = 1 TO L
450 P=INSTR(UCASELET$,MID$(N$,I,l»
460 IF P <> 0 THEN N$=MID$(N$,l,I-l)

+MID$(LCASELET$,P,l)+MID$(N$,I+l,L-I+l)
470 NEXT
480 R$=N$
490 END SUB

423

SWAP
Statement

Purpose

SWAP statement exchanges the values of two variables.

Format

SWAP variable1, variable2

Comments

variable1, variable2
are the names of two variables or array elements.

You can swap any type variable (integer, long integer single
precision, double-precision, string, or a type you defined with the TYPE

statement), but the two variables must be of the same type or an
error results. If you swap two stri ngs, they do not have to be the
same length. You can also swap records or record elements.

Examples

In this example, after line 30 is run, A$ has the value" ALL" and B$
has the val ue " ONE ":

Hl A$=" ONE" : 8$=" ALL" : C$="FOR"
20 PRINT A$;C$;B$
30 SWAP A$, B$
40 PRINT A$;C$;B$

Results:

ONE FOR ALL
ALL FOR ONE

424

Purpose

SYSTEM
Command

The SYSTEM command exits your compiled program and returns to the
operating system.

Format

SYSTEM

Comments

SYSTEM closes all files and returns to the operating system.

425

TAB
Function

Purpose

The TAB function tabs to position n.

Format

PRINT T AB(n)

Comments

The n must be in the range 1 through 255.

If the current print position is already beyond space n, TAB goes to
position n on the next line. Space 1 is the leftmost position and
defined WIDTH is the rightmost position.

TAB can be used only in PRINT, LPRINT, and PRINT # statements.

If the TAB function is at the end of the list of data items, BASIC does not
add a carriage return, as though the TAB function had an implied
semicolon after it.

Examples

TAB is used in the following example to cause the information on the
screen to line up in columns:

10 PRINT "ITEW TAB(25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "GROCERIES","$25.00"

Results:

ITEM AMOUNT

GROCERIES $25.00

426

Purpose

The TAN function returns the trigonometric tangent of x.

Format

v = TAN(X)

Comments

TAN
Function

x is the angle in radians. To convert degrees to radians, multiply
by PI/180, where PI=3.141593.

Examples

This example calculates the tangent of 45 degrees:

10 PI=3.141593
20 DEGREES=45
30 PRINT TAN(DEGREES*PI/180)

Results:

427

TIME$
Variable and Statement

Purpose

The TIME$ variable and statement sets or retrieves the current time.

Format

As a variable:

v$ = TIMES$

As a statement:

TIME$ = x$

Comments

For the variable (v$ = TIME$):

The current time is returned as an 8-character string. The string is in
the form hh:mm:ss, where hh is the hour (00 to 23), mm is the minute
(00 to 59); and ss is the second (00 to 59). (You may have set the time
before you invoked your program).

For the statement (TIME$ = x$):

The current time is set. x$ is a string expression indicating the time
to be set. x$ can be given in one of the following forms:

hh

hh:mm

Set the hour in the range 0 through 23. Minutes and
seconds default to 00.

Set the hour and the minute. Minutes must be in the
range 0 through 59. Seconds default to 00.

hh:mm:ss Set the hour, the minute, and the second. Seconds must
be in the range 0 through 59.

428

TIME$
Variable and Statement

A leading 0 can be omitted from any of the above values, but you
must include at least one digit. For example, if you want to set the
time as a half hour after midnight, you can enter:

TIME$="O:30"

but not

TIME$=":30"

If any of the values are out of range, an error is issued. The previous
time is retained. If x$ is not a valid string, a Type mismatch error
results.

Examples

The following program continuously displays the time on the screen:

10 CLS
20 LOCATE 10.15
30 PRINT TIME$
40 GOTO 20

429

TIMER
Function and Statement

Purpose

The TIMER function returns a single-precision number representing the
number of seconds elapsed since midnight or a system reset.

The TIMER statement activates and deactivates the trap routine set up
by the ON TIMER{n) statement.

Format

As a Function:

v = TIMER

As a Statement:

TIMER ON

TIMER OFF

TIMER STOP

Comments

As a Statement (TIMER ...):

A TIMER ON statement must be used to start the ON TIMER statement.
After TIMER ON, if a non-O line number is specified in the ON TIMER

statement, then every time the program starts a new statement or line
number, (depending on whether you compiled using IV or IW), BASIC

checks to see if the specified number of seconds have passed. When
n seconds have elapsed, BASIC performs a GOSUB to the specified line.
The event trap occurs, and BASIC starts counting again from O.

Note: If your program contains any event- statements, such as ON

TIMER, for example, you need to compile your program using the IV or
IW switch.

430

TIMER
Function and Statement

If TIMER OFF is used, no trapping takes place. Even if TIMER activity
takes place, the event is not remembered.

If a TIMER STOP statement is used, no trapping takes place, but TIMER

activity is remembered so that an immediate trap occurs when TIMER

ON is used.

When the trap occurs, an automatic TIMER STOP is run so that recursive
traps never take place. The RETURN from the trap routine automat
ically does a TIMER ON unless an explicit TIMER OFF was performed
inside the trap routine.

You can use RETURN linel/abel to go back to the BASIC program at a
fixed line number. Use this nonlocal return with care, because any
other GOSUBS, WHILES, or FORS active at the time of the trap remain
active.

As a Function (v=TIMER)

Fractional seconds are calculated to the nearest degree possible.
TIMER is a read-only function.

Examples

This example illustrates how TIMER resets after midnight. Values may
be slightly different for your system.

10 TIME$="23:59:59"
20 FOR 1=1 TO 20
30 PRINT "TIME$= ";TIME$;" TIMER=" ;TIMER
40 NEXT

431

TIMER
Function and Statement

Results:

TIME$= 23:59:59 TIMER= 86399.06
TIME$= 23:59:59 TIMER= 86399.11
TIME$= 23:59:59 TIMER= 86399.18

TIME$= 24:00:00 TIMER= 0
TIME$= 00:00:00 TIMER= .05
TIME$= 00:00:00 TIMER= .16
TIME$= 00:00:00 TIMER= .21

ON TIMER is useful in programs that need an interval timer. This
example displays the time of day on line 1 every minute:

10 CLS
20 ON TIMER(60) GOSUB 10000
30 TIMER ON

10000 OLDROW=CSRLIN 'save current row
10010 OLDCOL=POS(O) 'save current column
10020 LOCATE 1,1:PRINT TIME$;
10030 LOCATE OLDROW,OLDCOL 'restore row & col
10040 RETURN

432

Purpose

TRON and TROFF
Commands

The TRON and TRoFFcommands trace the running of program state
ments.

Format

TRON

TROFF

Comments

As an aid in debugging, the TRON command enables a trace flag that
prints each line number of the program as it is run. The numbers
appear enclosed in square brackets.

If line numbers are only used occasionally in your program, the
values printed by TRON are the last known line numbers. The trace is
turned off by the TROFF command.

Note: When debugging your program with TRON and TROFF, you must
compile using the ID switch. This switch causes the compiler to
perform more extensive error checking, and detects errors such as
RETURN without GOSUB that normally go undetected.

433

TRON and TROFF
Commands

Examples

This example uses TRON and TROFF to trace running of a loop. The
numbers in brackets are line numbers; the numbers not in brackets at
the end of each line are the values of J, K, and L, which are printed
by the program.

5 TRON
H) K=10
20 FOR 1=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+lO
60 NEXT
70 END

Results:

[10J[20J[30J[40J 0 10 20
[50J[60J [30J[40J 0 20 30
[50J [60J [70J

434

TYPE,ENDTYPE
Statements

Purpose

The TYPE statement lets you define a variable type.

Format

TYPE typename
elementname AS type
[elementname AS type]

END TYPE

Comments

typename is a variable type that you want to define. It can be
the same as any procedure name, label, variable
name, or element name. The typename cannot have
an explicit type character, such as %, &, !, #, or $.

elementname is the name of a variable whose type you want to
declare. It can be the same as any procedure name,
label, variable name, or typename, but it cannot be an
array. The elementname cannot have an explicit type
character, such as %, &, !, #, or $.

type is one of the following:

• INTEGER

• LONG

• SINGLE

• DOUBLE

• STRING * bytecount

• typename
typename must have been
defined in a previous
TYPE statement.

435

TYPE,ENDTYPE
Statements
bytecount declares the length of a fixed-length string.

The TYPE definition can occupy several lines. Only AS clauses,
remarks, and blank lines can be within the TYPE/END TYPE structure.
Lines withih the TYPE/END TYPE structure cannot have line numbers.

You can use the TYPE statement to declare the type of elementname
before you use elementname in the program. A TYPE statement at the
module level affects the entire module.

A TYPE statement may not be present in a subprogram or a function.

When the compiler checks to see if two types defined by TYPE state
ments are equivalent, it compares only the names of the types. One
case where the compiler compares types is the LET statement. The
type of variable on the right side must have the same name as the
type of variable on the left side. Another case is when a subprogram
or function is called. If a parameter is of a type defined in a TYPE

statement, the name of that type must be the same as the name of the
type of the corresponding parameter in the DECLARE, SUB, FUNCTION, or
DEF FN statement, if there is one.

Type declarations cannot be recursive. That is, a type declaration
cannot use itself as a type. For example, the following is incorrect:

TYPE MYTYPE
XYZ AS MYTYPE

END TYPE

436

TYPE,ENDTYPE
Statements

A type declaration can use a type that was defined by a previous TYPE

statement.

Examples
TYPE ITEMREC

NAME AS STRING * 10
AMOUNT AS REAL

END TYPE
DIM ITEM AS ITEMREC, ITEMSAVE AS ITEMREC
READ ITEM. NAME, ITEM.AMOUNT
DATA "Groceries",25.00
ITEMSAVE = ITEM I Record assignment
PRINT "ITEM" TAB(25) "AMOUNT"
PRINT ITEMSAVE.NAME TAB(25) "$" ITEMSAVE.AMOUNT

Results:

ITEM
Groceries

AMOUNT
$25

437

UBOUND
Statement

Purpose

The UBOUNO statement returns the upper bound of the specified
dimension of an array.

Format

UBOUNo(array[,dim])

Comments

array is the name of the array being examined.

dim is an integer constant from 1 to the number of dimensions
in the array. The default value is 1.

UBOUNO returns the upper bound of the specified dimension of an
array.

LBOUNO and UBOUNO are particularly useful for determining the size of
an array passed to a subprogram.

438

Examples

UBOUND
Statement

The following example uses LBOUND and UBOUND to determine the size
of the array to be sorted:

200 OPTION BASE 1
210 DIM SHARED A(10)
220 CLS
230 PRINT "THE UNSORTED ARRAY"
240 FOR I = LBOUND(A) TO UBOUND(A)
250 READ A (I)
260 PRINT A(I)
270 NEXT I
280 CALL SORT
290 PRINT "THE SORTED ARRAY"
300 FOR I = LBOUND(A) TO UBOUND(A)
310 PRINT A(I)
320 NEXT I
330 DATA 40, 100, 19, 8, 66, 23
340 DATA 83, 6, 54, 120, 25, 98
350 END
360 REM **** EXCHANGE SORT SUBPROGRAM ****
370 SUB SORT STATIC
380 STATIC B
390 REM USE LBOUND TO DETERMINE LOWER
400 REM BOUNDARY OF ARRAY
410 FOR I = LBOUND(A) TO UBOUND(A) - 1
420 FOR J = I + 1 TO UBOUND(A)
430 IF A(I) <= A(J) THEN 470
440 B = A(J)
450 A(J) = A(I)
460 A(I) = B
470 NEXT J
480 NEXT I
490 END SUB

439

UBOUND
Statement
Results:

THE UNSORTED ARRAY
40
100
19
8
66
23
83
6
54
120

THE SORTED ARRAY
6
8
19
23
40
54
66
83
100
120

440

'\

UCASE$
Function

) Purpose

The UCASE$ function converts all the letters in a string to upper case.

Format

v$ = UCASE$(m$)

Comments

m$ is any string expression. The letters in this string are
upper-case or lower-case.

The UCASE function returns a string containing the characters of an
argument string converted to upper-case. You can use this function
to increase the speed of programs that use comparisons that are not
sensitive to case.

Examples

10 MIXED$ = "The UCASE$ Function."
20 UPPERS = UCASE$(MIXED$)
30 PRINT "Mixed:",MIXED$
40 PRINT "Upper case:",UPPER$

Results:

Mixed: The UCASE$ Function.
Upper case: THE UCASE$ FUNCTION.

441

UNLOCK
Statement

Purpose

The UNLOCK statement releases locks applied to an opened file.

This function is not available under OS/2.

Format

UNLOCK [#]n [, [recnum] [TO recnum]]

Comments

n is the number of the opened file

recnum is the record number used to specify a range of records to
be unlocked.

Under DOS, before you run an application that uses any LOCK or
UNLOCK statements, you must first install the SHARE module. This
module is on the DOS disk and is installed by entering the command
"SHARE" at the DOS prompt or by installing network software.

If a record number or range of record numbers is specified and the
file is opened in random mode, only those records in the range are
unlocked. The record number range must exactly match the record
number range given in the LOCK statement, or a Permission denied
error occurs.

Failure to unlock all locks on a file before closing the file or exiting
the program may cause undefined results.

The range of legal record numbers is 1 through 2147483647.

442

Examples

The following UNLOCK is legal:

LOCK #1, 1 TO 4
LOCK #1,5 TO 8
UNLOCK #1,1 TO 4
UNLOCK #1,5 TO 8

However, the following UNLOCK is illegal:

LOCK # 1 ,ITO 4
LOCK #1,5 TO 8
UNLOCK #1,1 TO 8

UNLOCK
Statement

443

VAL
FUnction

Purpose

The VAL function returns numeric value of string x$.

Format

v = VAL(X$)

Comments

x$ is a string expression.

The VAL function strips blanks, tabs, and line feeds from the argument
string to determine the result. For example:

VAL(" -3")

Results:

-3.

If the first characters of x$ are not numeric, VAL(X$) returns 0 (zero).

Note: When used with the VAL function, the letters D and E are used
by BASIC to represent floating point constants. In this case, BASIC will
convert any string containing a D or an E into exponential form. If the
exponent of the number is greater than the maximum allowed by the
precision, an Overflow error is returned.

See "STR$ Function" for numeric-to-string conversion.

444

Examples

VAL
Function

Inthis example, VAL is used to extract the house number from an
address:

PRINT VAL("3408 SHERWOOD BLVD.")

Results:

3408

445

VARPTR
Function

Purpose

The VARPTR returns the offset into BASIC'S current data segment of a
variable in memory.

Format

v = VARPTR(variable)

Comments

variable is the name of a numeric or string variable or array
element in your program. variable can also be a record
or a record element.

VARPTR returns an offset as an integer in the range 0 through 65535.
This number is the offset into the compiler's data segment of the first
byte of data identified with variable. The format of this data is
described under "How Variables Are Stored" in IBM BASIC
Compiler/2 Fundamentals.

In previous releases of the BASIC Compiler, VARPTR returned a 20-bit
address when variable was a dynamic numeric array. With the IBM

BASIC Compiler/2, dynamic numeric arrays require a 32-bit address (a
segment and an offset). VARPTR now returns only the 16-bit offset to
the variable. If you want to know the data segment, use the VARSEG

function.

Note: If you created any programs with earlier versions of the BASIC

Compiler that use VARPTR to return the address of a dynamic numeric
array, you should change them to use VARPTR and VARSEG instead.

446

VARPTR
Function

Warning: In the BASIC Compiler 2.00 you could use the VARPTR func
tion to obtain the address of the FOB for an open file. This feature
has been removed. If you have programs that you created with BASIC

Compiler 2.00 that use this feature, they will fail with IBM BASIC

Compiler/2. Use the FILEATTR function instead.

Examples

This example uses VARPTR to get the data from a variable. In line 30,
P gets the address of the data. Integer data is stored in two bytes,
with the least significant byte first. The actual value stored at locatio,n
P is calculated in line 40. The bytes are read with the PEEK function,
and the second byte is multiplied by 256 because it contains the high
order bits.

10 DEFINT A-Z
20 DATA1=500
30 P=VARPTR(DATAl)
40 V=PEEK(P) + 256*PEEK(P 1)
50 PRINT V

See also the example for "VARSEG Function."

447

VARPTR$
Function

Purpose

The VARPTR$ function returns a character form of the offset of a vari
able in memory.

Format

v$ = VARPTR$(variable)

Comments

variable is the name of a numeric or string variable or array
element in your program. variable cannot be a record or
a record element. You must assign a value to variable
before you call VARPTR$, or BASIC returns an Illegal function
call error.

VARPTR$ returns a three-byte string in the form:

Byte 0 Byte 1 Byte 2

type low byte of vari- high byte of vari-
able address able address

The type indicates the variable type:

2 integer
20 long integer
3 string
4 single-precision
8 double-precision

The returned value is the same as:

VARPTR$(variable)=CHR$(~)+MKI$(VARPTR(variable))

448

VARPTR$
Function

You must use VARPTR$ to indicate a variable name in the command
string for PLAY or DRAW. For example:
PLAY "X"+VARPTR$(A$) PLAY "Q="+VARPTR$(I)

Examples

The following example converts the value returned by VARPTR$ into
the type and offset of the variable.

A.PTR$ = varptr$ (a$) 'Get the information for A$

A.TYPE% = asc (left$ (A.ptr$,l)) 'Break off the type byte
SELECT CASE A.TYPE%

CASE 2
PRINT "A$ is short integer."

CASE 20
PRINT "A$ is a long integer."

CASE 3
PRINT "A$ is a string."

CASE 4
PRINT "A$ is a single-precision real number."

CASE 8
PRINT "A$ is a double-precision real number."

END SELECT

A.OFFSET% = CVI(RIGHT$(A.PTR$, 2)) 'Break off the offset bytes
PRINT "Its offset in the data segment is "A.OFFSET%

449

VARSEG
Function

Purpose

The VARSEG function returns the segment of a variable in memory.

Format

v = VARSEG(variable)

Comments

variable is the name of a numeric or string variable or array
element in your program. The variable can also be a
record or a record element.

VARSEG returns the segment of memory in which the compiler stores
variable. VARSEG returns the segment number as an integer.

If you want to know the offset into the segment, use the VARPTR func
tion.

450

Examples

VARSEG
Function

This example uses VARSEG and VARPTR to get a pointer to a Dynamic
Array:

, DIM Dynamic array:
'$DYNAMIC
DIM TestDynamic%(l TO 5)

, Set the first elements of array:
TestDynamic%(l) = 6

, Get segment and offset to array:
DynamicPtr = VARPTR (TestDynamic%(l))
DynamicSeg = VARSEG (TestDynamic%(l))

, PEEK Value in array and compare it with original:
TestVal% = 256 * PEEK (DynamicPtr+l) + PEEK (DynamicPtr)
PRINT TestVal% "won't equal "TestDynamic%(l)

, Now, set the correct segment and try again:
DEF SEG=DynamicSeg
TestVal% = 256 * PEEK (DynamicPtr+l) + PEEK (DynamicPtr)
PRINT TestVal% "should equal "TestDynamic%(l)

END

451

VIEW
Statement

Purpose

The VIEW statement defines a rectangular subset of the screen onto
which WINDOW and WINDOW contents are mapped.

This function is used in graphics mode only.

Format

VIEW [[SCREEN] (x1,y1)- (x2,y2) [,[attribute] [,boundary]]]

Comments

SCREEN If the SCREEN argument is included, all points plotted are
absolute and can be inside or outside the screen limits.
However, only those points within the viewport limits are
visible. For example, if:

10 VIEW SCREEN (10.10)-(200,100)

i$ run, the point plotted by PSET (0,(l),3 does nol appear
on the screen because 0,0 is outside the viewport. PSET
(10,10),3 is within the vi~wport and places the point in the
upper-left corner.

If the SCREEN argument i$ omitted, all points plotted are
relative to the viewport. That is, ~1 and y1 are added to
the x- and y- coordinates before plotting the pOint on the
screen, For example, if:

10 VIEW (10,10)-(200.100)

is run, the point plotted by PSET (0,0),3 is at the screen
location 10,10.

(x1 ,y1)-(x2,y2)

452

are the upper-left (x1,y1) and the lower-right (x2,y2) coor
dinates of the viewport defined. The x~ and y- coordinates
must be within the limits of the screen or an lIIeg~1 func-

VIEW
Statement

lion call error occurs. For more information, see Graphics
Modes" in IBM BASIC Compilerl2 Fundamentals.

attribute lets you fill the defined viewport with color. If attribute is
omitted, the viewport is not filled. The attribute is an
integer expression that chooses an attribute from the attri
bute range for the current screen mode. In SCREEN 1
(medium resolution), attribute can range from 0 through 3.
In SCREEN 2 (high resolution), attribute can be 0 or 1.

The default color attribute for the foreground is the
maximum color attribute for that screen mode.

The default color attribute for the background is always
zero.

boundary lets you draw a boundary line around the viewport (if
space is available). If boundary is omitted, no boundary is
drawn. boundary is an integer expression in the range
described in
attribute.

It is important to note that VIEW sorts the x- and y- argument pairs,
placing the smaller values for x and y first. For example:

VI EW (100.100) - (5.5)

becomes:

VIEW (5.5)-(100.100)

Another example:

VIEW (310.100)-(200.150)

becomes:

VIEW (200.100)-(310.150)

All possible pairings of x and yare valid. The only restriction is that
x1 cannot equal x2 and y1 cannot equal y2. The viewport cannot be
larger than the screen.

VIEW with no arguments defines the entire screen as the viewport.

453

VIEW
Statement
You can define multiple viewports, but only one viewport can be
active at a time. RUN and changes in SCREEN attributes disable the
viewports.

VIEW used with WINDOW allows you to scale images. See the second
example. See also the WINDOW statement.

Note: When VIEW is used, the CLS statement clears only the current
viewport. To clear the entire screen, you must use VIEW to disable the
viewport, and then use CLS to clear the screen.

Examples

The following example defines four viewports:

10 SCREEN I:VIEW:CLS:KEY OFF
20 VIEW (1,1)-(151,91),,1
30 VIEW (165,1)-(315,91),,2
40 VIEW (1,105)-(151,195),,2
50 VIEW (165,105)-(315,195),,1
60 LOCATE 2,4:PRINT "Viewport 1"
70 LOCATE 2,25:PRINT "Viewport 2"
80 LOCATE 15,4:PRINT "Viewport 3"
90 LOCATE 15,25:PRINT "Viewport 4"
100 VIEW (1,1)-(151,91):GOSUB 1000
200 VIEW (165,1)-(315,91):GOSUB 2000
300 VIEW (1,105)-(151,195):GOSUB 3000
400 VIEW (165,105)-(315,195):GOSUB 4000
900 END
1000 CIRCLE (65,50),30,2
1010 'Draw a circle in first viewport
1020 RETURN
2000 LINE (45,50)-(90,75),1,B
2010 'Draw a box in second viewport
2020 RETURN
3000 FOR D=0 TO 360: DRAW "ta="+VARPTR$(d)+"nu20":NEXT
3010 'Draw spokes in third viewport
3020 RETURN
4000 PSET(60,50),2:DRAW "e15;f15;130"
4010 'Draw a triangle in fourth viewport
4020 RETURN

454

This example demonstrates scaling with VIEW:

10 KEY OFF:CLS: SCREEN I,O:COLOR 0,0
20 WINDOW SCREEN{320,O)-{O,200)
30 GOTO 80
40 C=l
50 CIRCLE (160,100),60,C",5\18
60 CIRCLE (160,100),60,C",1
70 RETURN
80 GOSUB 40:FOR 1=1 TO 1500:NEXT I: CLS
90 VIEW (l,l)-(160,90),,2:GOSUB 40

VIEW
Statement

455

VIEW PRINT
Statement

Purpose

The VIEW PRINT statement sets the boundaries of the screen text
window.

Format

VIEW PRINT [row TO row]

Comments

row is the number of a row on your display. It is an integer from 1
through 24. Line 25 is not used.

When you use the VIEW PRINT statement, PRINT pri nts output to your
display only between the rows you specify.

Using VIEW PRINT without specifying the row parameters initializes the
whole screen area as the text window.

456

Purpose

WAIT
Statement

The WAIT statement suspends the program while monitoring the status
of a machine input port.

This statement is not available in OS/2 mode.

Format

WAIT port, n[,m]

Comments

port is the port number, in the range 0 through 65535.

n, m are integer expressions in the range 0 through 255.

See your technical documentation for your computer for a description
of valid port numbers (I/O addresses).

The WAIT statement suspends the program until a specified machine
input port develops a specified bit pattern.

The data read at the port is xORed with the integer expression m and
then ANoed with n. If the result is 0, BASIC loops back and reads the
data at the port again. If the result is non-O, running continues with
the next statement. If m is omitted, it is ass~med to be O.

The WAIT statement lets you test one or more bit positions on an input
port. You can test the bit position for either a 1 or a O. The bit posi
tions to be tested are specifieq by setting 1's in those positions in n. If
you do not specify m, the input port bits are tested for 1's. If you
specify m, a 1 in any bit position in m (for which there is a 1 bit in n)
causes WAIT to test for a 0 for that input bit.

457

WAIT
Statement

When run, the WAIT statement loops, testing those input bits specified
by 1's in n. If anyone of those bits is 1 (or 0 if the corresponding bit in
m is 1), the program continues with the next statement. Thus WAIT

does not wait for an enti re pattern of bits to appear, but only for one
of them to occur.

Note: It is possible to enter an infinite loop with the WAIT statement.
You can do a Ctrl + Break or a System Reset to exit the loop.

Examples

This example waits for any key to be pressed. The key can still be
read using any form of input (for example, INKEY$).

100 WAIT &H60,&0

458

Purpose

WHILE and WEND
Statements

The WHILE AND WEND statements run a series of statements in a loop as
long as a given condition is true.

Format

WHILE expression
statements

WEND

Comments

expression is any numeric expression.

If expression is true (not-O), loop statements run until the WEND state
ment is encountered. BASIC then returns to the WHILE statement and
checks expression. If expression is still true, the process is repeated.
If it is not true, running resumes with the statement following the
WEND statement.

WHILE-WEND loops can be nested to any level. Each WEND will match
the most recent WHILE. An unmatched WHILE statement causes a
WHILE without WEND error, and an unmatched WEND statement
causes a WEND without WHILE error.

459

WHILE and WEND . .

Statements

Examples

The following example sorts the ~Iements of array A into alphabetical
order. A was defined with J-elements.

5 J=UBOUND(A,l)
10 'bubble sort array A
20 FLIPS=l 'force first pass thru loop
30 WHILE FLIPS
40 FLIPS=O
50 FOR 1=1 TO J-1
60 IF A(I»A(I+l) THEN SWAP A(I),A(I+l): FLIPS=l
70 NEXT I
80 WEND

460

WIDTH
Statement

Purpose

The WIDTH statement sets the output line width in number of charac
ters. After outputting the indicated number of characters, BASIC adds
a carriage return.

Format

WIDTH size

WIDTH device,size

WIDTH #filenum,size

Comments

size is a numeric expression in the range 0 through 255. This is
the new width. WIDTH 0 is the same as WIDTH 1.

device is a string expression for the device identifier. Valid devices
are SCRN:, LPT1:, LPT2:, LPT3:, COM1:, and COM2:.

Note: The colons must be included as part of the device
names.

filenum is a numeric expression in the range 1 through 127. This is
the number of a file opened to an output device.

Depending on the device specified, the following actions are possible:

WIDTH size or WIDTH "SCRN:" size
Sets the screen width. Only 40- or aO-column widths are
allowed. WIDTH 40 is not valid for the IBM Monochrome
Display.

If the screen is in medium-resolution graphics mode (as
occurs with a SCREEN 1 statement), WIDTH ao forces the

461

WIDTH
Statement

screen into high resolution (as with a SCREEN 2 statement).
The reverse if true when in high resolution.

Note: Changing the screen width clears the screen and sets
the border screen color to black.

WIDTH de vice, size
A deferred width assignment for the device. This form of
WIDTH stores the new width value without changing the
current width setting. A subsequent OPEN to the device uses
this value for width while the file is open. The width does
not change immediately if the device is already open.

Note: LPRINT, LLlST, LIST, and "LPTn" do an implicit OPEN and
are therefore affected by this statement.

WIDTH #filenum,size
The width of the device associated with filenum is imme
diately changed to the new size specified. This allows the
width to be changed at will while the file is open. This form
of WIDTH has meaning only for LPT1:. The number sign (#) is
required.

Any value entered outside the ranges indicated results in an Illegal
function call error. The previous value is retained.

The width for each printer defaults to 80 when your program is
started. The maximum width for the IBM Graphics Printer is 132.
However, no error is returned for values between 132 and 255.

It is up to you to set the appropriate physical width on your printer.
Some printers are set by sending special codes; some have switches.
For the IBM Graphics Printer you should use LPRINT CHR$(15); to
change to a condensed type style when printing at widths greater
than 80. Use LPRINT CHR$(18); to return to normal. The IBM Graphics
Printer is set up to automatically add a carriage return if you exceed
the maximum line length.

Specifying a width of 255 disables line folding. This has the effect of
"infinite" width. WIDTH 255 is the default for communications files.

462

WIDTH
Statement

Changing the width for a communications file does not change either
the receive or the transmit buffer; it just causes a carriage return
character to be sent after every size characters.

Changing screen mode affects screen width only when moving
between SCREEN 2 and SCREEN 1 or SCREEN O. See "SCREEN Statement."

Examples

In this example, line 10 stores a printer width of 75 characters per
line. Line 20 opens file #1 to the printer and sets the width to 75 for
subsequent PRINT #1, ... statements. Line 6020 changes the current
printer width to 40 characters per line. Notice that the WIDTH value
must come before the OPEN statement.

10 WIDTH II LPTl: ",75
20 OPEN ILPT1:" FOR OUTPUT AS #1

6020 WIDTH #1,40

These examples change screen mode and width:

SCREEN 1,0
WIDTH 80
WIDTH 40
SCREEN 0,1
WIDTH 80

'Set to med-res color graphi cs
'Go to hi-res graphics
'Go back to medium res
'Go to 40x25 text color mode
'Go to 80x25 text color mode

463

WINDOW
Statement

Purpose

The WINDOW statement redefines the coordinates of the viewport.

This statement is used in Graphics mode only.

Format

WINDOW [[SCREEN] (x1 ,y1)- (x2,y2)]

Comments

SCREEN

(x1,y1),(x2,y2)

controls the orientation of the screen coordinate
system.

When SCREEN is omitted, the screen coordinates
conform to the Cartesian coordinate system (x
increases to the right, y increases upward).

When SCREEN is included, x increases to the right,
and y increases downward.

are programmer-defined coordinates called world
coordinates. These coordinates are single
precision, floating-point numbers. They define the
world coordinate space that is mapped into the the
physical coordinate space, as defined by the VIEW

statement. See "VIEW Statement."

WINDOW allows you to draw objects in space ("world coordinate
system") and not be bounded by the limits of the screen ("physical
coordinate system"). This is done by specifying the world coordinate
pairs (x1,y1) and (x2,y2). BASIC then converts world coordinate pairs
for subsequent display within the viewport. To make this transforma
tion from world space to the physical space of the screen, BASIC must
know what portion of the unbounded world coordinate space contains

464

WINDOW
Statement

the information you want to be displayed. This rectangular region in
the world coordinate space is called a window.

In the physical coordinate system, if you run the following:

SCREEN 2

the screen appears with standard coordinates as:

0,0 320,0 639,0

j y increases

320,100

0,199 320,199 639,199

465

WINDOW
Statement
When WINDOW is used without the SCREEN attribute, the screen is
viewed in true Cartesian coordinates. For example, given:

WINDOW (1, -1) -(-1.1)

the screen appears as:

-1,1 O,1 1,1

I
y increases

0,0

y decreases

-1,-1 O,-1 1,-1

You may be familiar with this method of specifying coordinates.
Because the Cartesian coordinate system is widely known, many
people consider the coordinate system used with the graphics state
ments to be "upside down." The SCREEN attribute allows you to select
the coordinate system you are most comfortable with.

It is important to note that WINDOW sorts the x- and y- argument pairs,
placing the smaller values for x and y first. For example:

WINDOW (100,100)-(5,5)

becomes:

WI NDOW (5,5) - (100,100)

Another example:

WINDOW (-4,4)-(4,-4)

becomes:

WINDOW (-4,-4)-(4,4)

466

WINDOW
Statement

All possible pairings of x and yare valid. The only restrictions are
that x1 cannot equal x2 and y1 cannot equal y2.

Note that the y coordinate is inverted so that (x1,y1) is the lower-left
coordinate and (x2,y2) is the upper-right coordinate.

When the SCREEN attribute is included, with WINDOW, the coordinates
are not inverted so that (x1,y1) is the upper-left coordinate and (x2,y2)
is the lower-right coordinate.
For example:

WINDOW SCREEN (-1, -1) - (1,1)

defines the screen to look like this:

-1,-1 O,-1 1,-1

y decreases

I
0,0

y increases

-1,1 O,1 1,1

WINDOW also allows you to "zoom" and "pan." Using a window with
coordinates larger than an image displays the entire image, but the
image is small and blank spaces appear on the sides of the screen.
Choosing window coordinates smaller than an image forces clipping
and allows only a portion of the image to be displayed and magnified.
By specifying small and large window sizes, you can zoom in until an
object occupies the entire screen, or you can zoom out until the
image is just a spot on the screen.

RUN, SCREEN, and WINDOW with no attributes disable any WINDOW defi
nitions and return the screen to physical coordinates.

467

WINDOW
Statement

Examples

The following example shows clipping using WINDOW:

18 SCREEN 2:CLS
20 W1NDOW (-6,-6)-(6,6)
30 CIRCLE (4,4),5,1
40 'the circle is large and only part is visible
50 WINDOW (-100,-100)-(100,100)
60 CIRCLE (4,4),5,1 'the circle is very small
70 END

468

WINDOW
Statement

The following example shows the effect of zooming using WINDOW:

10 KEY OFF:CLS: SCREEN 1,0
20 '
30 GOTO 160
40 '=====================
50 'procedure display
60 '
70 LINE (X,O)-(-X,O)",&HAAOO 'create x axis
80 LINE (O,X)-(0,-X)",&HAA00 'create y axis
90 '
100 CIRCLE (X/2,X/2),R 'circle has radius r
110 FOR P=l TO 50:NEXT P 'delay loop
120 '
130 RETURN
140 '====================
150 '
160 X=1000:WINDOW (-X,-X)-(X,X):R=20
170 'create a graph with large coord range
180 GOSUB 50:FOR P=l TO 1000:NEXT P:CLS
190 '
200 X=60:WINDOW (-X,-X)-(X,X):R=20
210 'smaller coord range increase circle size
220 GOSUB 50:FOR P=l TO 1000:NEXT P:CLS
230 '
240 X=100:WINDOW (-X,-X)-(X,X):R=20
250 'modify window to show only portion of axes
260 GOSUB 50:FOR P=l TO 1000:NEXT P:CLS
270 '
280 PRINT " an +
example":PRINT" of +
zooming .. "
290 FOR P=l TO 1500:NEXT P
300 CLS:T=-50:U=100:X=U
310 FOR 1=1 TO 45
320 T=T + l:U=U - 1:X=X-l:R=20
330 WINDOW (T,T)-(U,U):CLS:GOSUB 50
340 NEXT I
350 END

469

WRITE
Statement

Purpose

The WRITE statement writes data to the screen.

Format

WRITE [list of expressions]

Comments

list of expressions
is a list of numeric and/or string expressions, separated
by commas or semicolons.

If the list of expressions is omitted, a blank line is displayed. If the
list of expressions is included, the values of the expressions are dis
played on the screen.

When the values of the expressions are displayed, each item is sepa
rated from the one before it by a comma. Strings are delimited by
quotation marks. After the last item in the list is printed, your
program adds a carriage returnlline feed.

WRITE is similar to PRINT. The difference between WRITE and PRINT is
that WRITE inserts commas between the items as they are displayed
and delimits strings with quotation marks. Also, positive numbers
are not preceded by blanks.

470

Examples

WRITE
Statement

The following example shows how WRITE displays numeric and string
values:

18 A=80: B=90: C$="THAT'S ALL"
20 WRITE A,B,C$

Results:

80,90,"THAT'S ALL"

471

WRITE #
Statement

Purpose

The WRITE # statement writes data to a sequential file.

Format

WRITE #filenum, list of expressions

Comments

filenum is the number under which the file was opened for
output.

list of expressions
is a list of string and/or numeric expressions, separated
by commas or semicolons.

The difference between WRITE # and PRINT # is that WRITE # inserts
commas between the items as they are written and delimits strings
with quotation marks. Therefore, it is not necessary for you to put
explicit delimiters in the list. Also, WRITE # does not put a blank in
front of a positive number. A carriage return/line feed sequence is
inserted after the last item in the list is written.

Examples

Let A$="CAMERA" and B$="93604-1". The statement:
WRITE #l,A$,B$

writes the following image to the file:
"CAMERA","93604-1"

A subsequent INPUT # statement:
INPUT #l,A$,8$

inputs "CAMERA" to A$ and "93604-1" to B$.

472

Appendix A. BASIC Compiler Error
Messages

During development of a BASIC program with the IBM BASIC Compiler/2,
two kinds of errors may occur:

• Compile-time errors.
• Run-time errors.

The BASIC compile-time errors occur when you compile your
program. The BASIC run-time errors oniy occur at the last step in the
development process, when you actually run your compiled program.
All these messages are listed in this appendix.

The first part of this appendix lists error codes and messages for the
errors detected by the IBM BASIC Compiler/2. They are separated into
two groups: prompt errors that issue a prompt describing the error
and usually allow you to correct the error and continue with the com
piling process, and listing errors that generally indicate an error in
your program and appear in the compiler listing.

A-1

Errors While Compiling a Program

The errors in this section occur when you are compiling a source file
to produce an object module.

Prompt Errors

The following errors from the compiler are severe errors, that is, they
must be corrected before you can continue. When they occur, the
sequence of prompts to start the compiler is restarted, giving you a
chance to correct the error.

Message Meaning

Extra file name ignored

You entered too many file specifications.

This message is only a warning, but you should make sure
the source, object, and source listing file names were
used by the compiler as you expected.

Line invalid. Start again

A-2

An invalid filename character was used following the path
characters "\" or ":".

Enter the correct file specification.

The following long messages are compilation error messages. When
they occur, you must correct the problem and start the compiler again
from the beginning.

Message Meaning

BASIC fatal: Input file not found

The source file you named does not exist on the drive
specified.

Check the file specification for the source file. If it is
correct, insert the correct diskette and retry the operation.

Binary source file

The source file you specified to the compiler was not in
ASCII format.

Make sure you specified the right file. If necessary, start
the interpreter, load the file, and save it again with the A
option.

IC: buffer size too large

The size that you specified for the communications buffer
was too large.

The maximum size allowed is 32767 bytes.

Colon expected after IC

The colon after the IC parameter was missing.

Insert a colon after the IC parameter and retry the opera
tion.

Buffer size expected after Ie:

The desired size of the buffer for receiving communi
cations data was missing.

Insert the number of bytes that you want to reserve for the
communications buffer (an integer from 256 to 32767). If
you omit the IC parameter, the compiler will reserve 256
bytes for the communications receive buffer.

A-3

Internal Error near xxxxx

An internal malfunction occurred in the IBM BASIC

Compiler/2.

Recopy you compiler diskette. Check the hardware and
retry the compiie. If the error reoccurs, report the condi
tions uhder which the message appeared to your com
puter dealer.

Line nnnnn is uridefined

A statement or command in the program refers to a line
that does not exist.

Check the line references in your program so they all
refer to actual program lines.

Memory Overflow

The compiler working memory is full. The program is too
large to compile successfully.

Try compiling the program again with the IS parameter to
reduce compiler working memory requirements, or break
the program up into smaller programs.

Missing NEXT for z

No NEXT statement was found for the variable z.

Correct the static nesting of your FOR and NEXT statements.

Out of memory

Your computer does not have enough work space to com
plete the requested task.

Read error on standard input

A system error occurred while reading the source file.

Unknown option Iz

The only valid IZ options are IZi and Izd.

A-4

Option unknown

You have given an illegal option.

Unknown option IFP

The only valid IFP options are IFPc, IFPc87, and IFPa.

Unknown option IF

The only valid IF options are IFPc, IFPc87, and IFPa.

Unknown option IL

The only valid IL options are ILp and ILc.

A-5

Listing Errors

The compiler points to the errors it finds in your source listing file by
displaying the line containing the error with an arrow beneath that
line pointing to the place where the error occurred and a message
describing the error. In some cases, the compiler reads ahead on a
line to determine whether an error has actually occurred. In those
cases, the arrow points a few characters beyond the error, or to the
end of the line.

Some of the compile-time messages are only warnings; warnings
do not need to be corrected before you go on to the linking step. If a
message is a warning, it is noted in the explanation for the message.
If the explanation does not say that the message in only a warning,
the message indicates a severe error that must be corrected.

Message Meaning

$INCLUDE file access error

The file specified in the $INCLUDE metacommand could not
be found. Also, the $INCLUDE metacommand must be the
last statement on the line.

$Metacommand error

The format of a metacommand was invalid or included an
invalid argument. The metacommand is ignored. This
message in only a warning.

Advanced feature error

You attempted to use a feature that is not available in the
operating system or operating system mode for which you
are compiling your program.

Array already dimensioned

A-6

You tried to define the size of the same array twice. This
may happen in one of several ways:

• The same array is defined in two DIM statements.
• The program encounters a DIM statement for an array

after the default dimension of 10 is established for that
array.

• The program sees an OPTION BASE statement after an
array has been dimensioned, either by a DIM state
ment or by default.

Array not dimensioned

Default dimensions were assigned to the array. This
message is only a warning.

Array too big

There is not enough user data space to accommodate the
array declaration.

Reduce the size of the array or use the $DYNAMIC

metacommand.

AS clause required on the first declaration

A variable that was not declared with an AS clause was
later referenced with an AS clause.

AS clause required

A variable that was declared with an AS clause was later
referenced without one.

If the first declaration of a variable has an AS clause, every
subsequent DIM, REDIM, SHARED, and COMMON statement that
references that variable must have an AS clause.

BYVAL only allowed with numeric arguments

You tried to pass a non - numeric argument to a subpro
gram with the BYVAL keyword.

Make sure that when you pass the actual value of a
parameter (BYVAL), the argument is numeric.

CASE without SELECT

A CASE statement was encountered without a SELECT.

Make sure that the CASE statement block is preceded by
the SELECT CASE expression.

A-7

Common array not dimensioned

A static array in a COMMON statement had not been dimen
sioned when the COMMON statement was encountered.

A static array passed in a COMMON statement must be
defined in a DIM statement that precedes the COMMON

statement.

COMMON out of order

The COMMON statement was found after executable state
ments in the program.

COMMON must precede any executable statements.

Data memory overflow

The program data is too big to fit in memory. This error is
caused by too many constants, or too much array data.

Try turning off the debugging options. If memory is still
exhausted, break your program into parts and use the
CHAIN statement, or use the $DYNAMIC metacommand.

Data type conflict

The variable is not of the required type (numeric or
string). An array reference had an invalid dimension
value (such as a string value).

DECLARE required

An implicit subprogram or function procedure call
appeared before the procedure definition.

Implicit calls require the subprogram or function proce
dure to be declared before being called.

DEF without END DEF

A-a

A DEF FN statement does not have a corresponding END DEF

statement. That is, a DEF FN function definition was active
when the physical end of the program was reached.

Make sure that each DEF FN statement has a corresponding
END DEF statement.

Divide by 0

You tried to divide by zero, or you had a divide overflow.

DO without LOOP

A DO statement does not have a corresponding LOOP. That
is, a DO loop was active when the physical end of the
program was reached.

Make sure that each DO statement has a corresponding
LOOP.

Duplicate common variable

A variable appeared more than once in the COMMON
statement(s} in the program.

Duplicate definition

A DECLARE, SUB, or FUNCTION statement contains informa
tion that conflicts with information that BASIC has about a
subroutine or function.

Two common causes of this error are:

• Two DECLARE statements that do not match exactly
were found for the same subroutine or function.

• A SUB or FUNCTION statement was found for a subrou
tine or function that was previously defined in a
DECLARE statement that included "ALIAS" or "CDECL."
ALIAS and CDECL can only be used with non-BASIC pro
cedures.

Duplicate statement number

A dLlplicate line number was encountered.

Dynamic array element not allow~d

Dynamic array elements are not allowed with VARPTR$.

ELSE without IF

A-9

ELSE IF without IF

An ELSEIF was encountered without a corresponding IF.

END DEF without DEF

An END DEF statement without a corresponding DEF FN state
ment was encountered.

END IF without IF

An END IF was encountered without a corresponding IF.

END SELECT without SELECT

An END SELECT was encountered without a corresponding
SELECT.

END SUB/FUNCTION without SUB/FUNCTION

An END SUB or END FUNCTION statement without a corre
sponding SUB or FUNCTION statement was encountered.

EXIT DO without DO

An EXIT DO was encountered without a corresponding DO.

EXIT FOR without FOR

An EXIT FOR was encountered without a corresponding FOR.

Expected "GOTO" or "GOSUB"

The compiler expected a GOTO or GOSUB statement.

Expecting simple or array variable

The compiler expected a variable argument.

Expression too complex

A-10

This error is caused when certain internal limitations are
exceeded. For example during expression evaluation,
strings that are not associated with variables are assigned
temporary locations by the compiler. A large number of
such strings can cause this error to occur.

Try simplifying expressions and assigning strings to vari
ables.

Formal parameters not unique

A function or subprogram declaration contains duplicate
parameters. For example, SUB foo(a,b,c,a) STATIC.

Fixed length strings not allowed

A fixed length string was encountered in a place where a
variable length string is required.

Change the fixed length string to a variable length string.

FOR index variable already in use

The counter variable on a FOR statement is already in use.

Change the counter variable name.

FOR without NEXT

A FOR statement was encountered without a matching
NEXT. That is, a FOR loop was active when the physical end
of the program was reached.

Function already defined

You used DEF FN to define a function with the same name
as a function previously defined in your program.

Function not defined

You called a function before defining it with the DEF FN

statement.

Make sure the program executes the DEF FN statement
before you use the function.

IF without END IF

The block format of the IF statement was used, and an END

IF was not found.

Make sure that, if you use the block format of the IF state
ment, your block ends with END IF.

A-11

Illegal "." in typed variable name

User defined type identifiers and element names cannot
contain periods.

The period should only be used in a scalar variable name
or as a record variable separator.

Illegal COMMON name

The plock name of the COMMON statement was not a valid
identifier.

The name can be an identifiers up to 40 characters long.

Illegal DEFXXX character specification

A oEFtype statement is entered incorrectly.

DEF can only be followed by lNG, DBl, INT, SNG, STR or (for
user defined functions) a blank space.

Illegal FOR index variable

The FOR index variable was not valid.

The index variable must either be integer, long integer,
single - precision, or double - precision.

Illegal formal parameter specification

There is an error in a function or subprogram parameter
list.

Illegal function name

The function name was not a correct variable name.

The name of the user defined function must be a valid var
iable name, and must be preceded by FN.

Illegal outside of SUB, FUNCTION or DEF FN

A-12

An EXIT SUB, EXIT FUNCTION, or EXIT DEF statement was found
that was not inside a SUB, FUNCTION, or DEF FN block,
respectively.

Illegal separator

There is an illegal delimiting character in a PRINT USING or
WRITE statement.

Use a semicolon or a comma as a delimiter.

Illegal subprogram name

The name of the subprogram was not a correct variable
name.

The name can be up to 40 characters long, and this name
cannot appear in any other SUB or FUNCTION statement.

Illegal subscript syntax

An array subscript contains a syntax error. For example,
both string and integer data types were used as sub
scripts.

Illegal syntax

Caused by one of the following:

• Invalid argument name

• Invalid assignment target

• Invalid constant format

• Invalid format for statement number

• Invalid syntax

• Missing operand in expression

• Single variable only allowed

Illegal type character in numeric constant

A numeric constant contains an inappropriate
type - declaration character.

Illegal TYPE element name

The element name in the TYPE statement was not valid.

A-13

Make sure that the element name is not an array and
make sure that it does not have any explicit type charac
ters, such as 0/0, &, !, #, $, or decimal points.

Illegal TYPE name

The type name in the TYPE statement was not valid.

Make sure that the type name does not have any explicit
type characters, such as %, &, !, #, $, or decimal points.

Incomplete control structure in IF •• THEN •• ELSE

An unmatched NEXT, WEND, END IF, END SELECT, or LOOP state
ment appears in a single line IF .. THEN .. ELSE statement.

Integer between 1 and 32767 required

The statement requires an integer argument.

Invalid character

The character was not in the BASIC character set.

The BASIC character set consists of alphabetic characters
(A - Z), numeric characters (0 - 9), and special characters.
See the "Character Set" section in the IBM BASIC

Compiler/2 Fundamentals book for a complete list of the
val id characters.

Label not defined:

A label that does not exist in the program was referred to
in a command or statement.

Check the labels in your program, and use the correct
label name.

Line too long

A line has too many characters.

The line must have 253 characters or fewer.

LOOP without DO

A LOOP was encountered without a corresponding DO.

A-14

Lower bound exceeds upper bound

The lower bound exceeds the upper bound defined in a DIM

statement.

Math overflow

The result of a calculation is too large to be represented in
BASIC number format.

Missing "*,,

You used a variable length string in a TYPE statement.

Make sure that all string elements within the TYPE declara
tion are fixed length strings.

Missing "="

Missing "IE" Switch

Your program included a RESUME line statement.

Recompile the program with the IE parameter. If the
listing also contains a IX error, recompile using IX instead
of IE.

Missing "IV" or "/W" Switch

The program contains event trapping statements.

Recompile the program using either of the event trapping
parameters, IV or IW.

Missing "IX" Switch

Your program included a RESUME 0, RESUME, or RESUME NEXT

statement.

Recompile the program with the IX parameter.

Missing "AS"

Missing "BAse"

Missing comma

Missing "GOSUB"

A-15

Missing "GOTO"

Missing "INPUT"

Missing left parenthesis

Missing line number or label

Missing minus sign

Missing right parenthesis

Missing semicolon

Missing slash

Missing "STATIC" on SUB/FUNCTION

Missing "SUB" or "FUNCTION"

Missing "THEN"

Missing "TO"

Missing "TYPE"

Must be first item on the line

Name too long

Identifiers cannot be longer than 40 characters.

Nested function definition

A function definition appears inside another function defi
nition.

NEXT without FOR

A NEXT was encountered without a corresponding FOR.

Make sure that every NEXT statement has a corresponding
FOR precedi ng it.

Only simple variables allowed

A-16

User-defined types and arrays are illegal in a READ or
INPUT statement.

Overflow in numeric constant

A numeric constant was not withi n the range expected by
the compiler, or an expression containing constants was
calculated by the compiler and resulted in an overflow.

One way to correct this is to use single - precision con
stants instead of integer constants.

Parameter type mismatch

A subprogram parameter type does not match the DECLARE

statement argument, or the calling argument.

Program memory overflow

You attempted to compile a program that has a code
segment that is larger than 64K.

Split the program into subprograms and use the CHAIN

statement.

SEG or BYVAL not allowed on CALLS

SEG or BYVAL keywords cannot be used with the CALLS

statement. Use the CALL statement.

SELECT without END SELECT

A SELECT does not have a matching END SELECT. That is, a
SELECT was still active when the physical end of the
program was reached.

Correct the program so that each SELECT has a corre
sponding END SELECT.

Skipping forward to END TYPE statement

An error was found within the TYPE definition so the com
piler skipped to the end of the TYPE declaration.

Statement Ignored

The statement was ignored by the compiler. It may be
that the command is unimplemented. This message is
only a warning.

A-17

String constant required for ALIAS

The DECLARE statement ALIAS keyword requires a string
constant argument. String variables and expressions can
not be used.

String assignment required

The string assignment is missing from an LSET or RSET

statement.

String expression required

The statement requires a string expression argument.

String variable required

The statement requires a string variable argument.

SUB/FUNCTION without END SUB/FUNCTION

A SUB or FUNCTION statement does not have a corre
sponding END SUB or END FUNCTION statement. That is, a
subroutine or function definition was active when the
physical end of the program was reached.

Make sure that each SUB statement has a corresponding
END SUB statement and that each FUNCTION statement has a
corresponding END FUNCTION statement.

Subprogram error

Caused by one of the following:

• Subprogram definition error
• Subprogram already defined
• I ncorrectly nested SUB/END SUB/EXIT SUB statements

Subprograms not allowed in control statements

Subprogram definitions are not allowed inside control
constructs such as IF .. THEN .. ELSE and SELECT CASE.

Syntax error in numeric constant

A numeric constant is not properly formed.

A-18

Too many arguments in function call

The compiler has a limit of 60 arguments for a function
call.

Too many dimensions

The compiler has a limit of 60 dimensions for an array.

Too many named COMMON blocks

The maximum number of named COMMON blocks permitted
is 126.

Too many statement numbers

The maximum number of lines in the line list following an
ON ... GOTO/GOSUB statement is 255.

Too many TYPE definitions

The maximum number of user - defined types permitted is
240.

Too many variables for INPUT

The compiler has a limit of 60 variables in an INPUT state
ment.

Too many variables for LINE INPUT

Only one variable is allowed for LINE INPUT.

TYPE already defined

You used TYPE to define a variable type with the same
name as a variable type that was previously defined in
your program.

Make sure that the type name is not the same as another
previously defined type name.

TYPE element already defined

You tried to define an element name twice in the same
TYPE statement.

A-19

Make sure that the element name is not the same as
another element name in that TYPE statement.

TYPE element not defined

You made reference to a TYPE element that has not been
defined with the TYPE statement.

Make sure the element name is defined in a TYPE state
ment before you use the element.

TYPE more than 65535 bytes

You tried to create a variable type with the TYPE statement
that was more than 65535 bytes.

TYPE not defined

You made reference to a variable type that has not been
defined with the TYPE statement.

Make sure the type name is defined with a TYPE statement
before you use the user- defined type.

TYPE statement improperly nested

User - defined type statements are not allowed in subpro
grams.

Typed variable not allowed in expression

Variables that are user-defined types are not allowed in
expressions. For example, CALL foo((X)), where X is a
user - defined type.

Unexpected end of fiI~ in TYPE declaration

An end of file was encountered while processing a TYPE

statement.

Unimplimented Command

A-20

The compiler did not implement the command. This
message is only a warning.

Unrecognizable statement

The compiler cannot recognize the statement. It may be
that you used a built- in function on the left side of an
equal sign.

Variable already defined

You tried to define the same variable twice. This may
happen in one of several ways:

• The same variable is defined in two DIM statements.
• The program encounters a DIM statement for a vari

able after the default type of single- precision has
been established for that variable.

• The program encounters a DIM statement for a vari
able after that variable has been defined with the TYPE

statement.
• The program sees a TYPE statement for the same vari

able after that variable has been defined, either by a
DIM statement or by default.

Variable length string required

Only variable length strings are allowed in a FIELD state
ment.

Variable name is not unique

You attempted to define X as a user-defined type after
X.Y had been used as a scalar.

Variable required here

The compiler expected a variable after an INPUT, LET, READ,

or SHARED statement.

Variables must have the same type

Variables used in a SWAP statement must be of the same
type.

WEND without WHILE

A WEND was encountered before a matching WHILE was
executed.

A-21

Correct the program so that there is a WHILE for each WEND.

WHILE without WEND

A WHILE does not have a matching WEND. That is, a WHILE

was still active when the physical end of the program was
reached.

Correct the program so that each WHILE has a corre
sponding WEND.

Wrong number of arguments

You used an incorrect number of arguments with a BASIC
subprogram or function.

Wrong number of dimensions

An array reference contained the wrong number of dimen
sions.

Wrong number of subscripts

A-22

An array was referenced with the wrong number of sub
scripts.

Make sure that the number of subscripts that the array
was defined with, and the number of subscripts that you
referenced the array with, are the same.

Errors while Running a Program

The following errors may occur when you run your compiled and
linked program. The first group of errors can be trapped by using an
ON ERROR statement. The error numbers match those issued by the
BASIC interpreter. When an untrapped error occurs, the message is
displayed followed by an address. If the ID, IE, or IX parameter was
specified to the compiler, the number of the line in which the error
occurred is displayed also.

Number Message

2 Syntax error
A string item was encountered in a DATA statement when
the program wanted a numeric value.

Correct the DATA statement or the READ statement.

Or, you may have the wrong number of arguments in a
COLOR, LOCATE, or SCREEN statement.

3 RETURN without GOSUB
A RETURN statement needs a previous unmatched GOSUB

statement.

Correct the program. You probably need to put a STOP or
END statement before the subroutine so the program does
not "fall" into the subroutine code.

4 Out of DATA
A READ statement is trying to read more data than is in the
DATA statements.

Correct the program so that there are enough constants in
the DATA statements for all the READ statements in the
program.

S Illegal function call
A parameter that is out of range is passed to a system
function. The error may also occur as the result of:

• A negative or unreasonably large subscript
• Trying to raise a negative number to a power that is

not an integer
• A negative record number on GET or PUT (file)

A-23

• An improper argument to a function or statement
(such as one that is out of the expected range for the
parameter)

• Trying to concatenate strings where the result is more
than 32767 characters long.

Correct the program. Refer to particular statement or
function for more information.

6 Overflow
The magnitude of a number is too large to be represented
in the required number format. Unlike the interpreter, the
compiler always stops when this error occurs.

You may be able to change the order of operations in a
calculation so the overflow does not occur; or you may
have to restrict the range of numbers in the program to
avoid the overflow. To correct integer overflow, you may
try changing to single-precision or double-precision var
iables.

Note: As with the interpreter, if underflow occurs, the
result is zero and execution continues without an error.

7 Out of memory
There is not enough free memory to allocate file buffers,
communications buffers, and/or the music background
buffer. Or you may be doing complex painting and have
run out of work space.

9 Subscript out of range
You used an array element with a subscript that is outside
the dimensions of the array, or you requested the LBOUND

or UBOUND of a dimension that the array does not have.

Check the reference to the array variable.

10 Duplicate Definition

A-24

You tried to define the size of the same array twice. This
may happen in one of several ways:

• The same array is defined in two DIM statements.
• The program encounters a DIM statement for an array

after the default dimension of 10 is established for that
array.

• The program sees an OPTION BASE statement after an
array has been dimensioned, either by a DIM state
ment or by default.

11 Division by zero
In an expression, you tried to divide by zero, you tried to
raise zero to a negative power, or you had an integer
divide overflow.

13 Type mismatch
You gave a string value where a numeric value was
expected, or you had a numeric value in place of a string
value. This may occur in DRAW or PLAY with VARPTR$, or in
a PRINT USING statement.

14 Out of string space
String variables exceed the amount of remaining free
string space after housecleaning.

16 String formula too complex
A string expression is too long or too complex.

The expression should be broken into smaller
expressions, or fewer variables should be requested in
the input statements.

19 No RESUME
The physical end of the program was encountered while
the program was in an error trapping routine.

Correct the error trapping routine so a RESUME statement
runs. Or you may waht to add an ON ERROR GOTO 0 state
ment to the error trapping routine so BASIC will display the
message for any uncaught error.

20 RESUME without error
The program has encountered a RESUME statement without
having trapped an error. The error trapping routine
should only be entered when an error occurs or an ERROR

statement runs.

You probably need to include a STOP or END statement
before the error trapping routine to prevent the program
from "falling into" the error trapping code.

24 Device Timeout
BASIC did not receive information from an input/output
device within a predetermined amount of time.

A-25

For a communications file, this indicates that one of the
signals tested by OPEN "COM ... is off.

25 Device Fault
A hardware error indication was returned by an interface
adapter.

For communications files, this error may also occur when
one of the signals tested by OPEN "COM ... is lost.

27 Out of Paper
The printer is out of paper, or the printer is not switched
on.

You should insert paper (if necessary), verify that the
printer is properly connected, and make sure that the
power is on. Then restart the program or continue the
error trapping routine.

39 CASE ELSE expected
No block in a CASE qualifies and there is no CASE ELSE.

50 FIELD overflow
A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file
in the OPEN statement. Or the end of the FIELD buffer is
encountered while doing sequential 1/0 (PRINT #, WRITE #,
INPUT #) to a random file.

Check the OPEN statement and the FIELD statement to make
sure they correspond. If you are doing sequential 1/0 to a
random file, make sure that the length of the data read or
written does not exceed the record length of the random
file.

51 Internal error

A-26

An internal malfunction occurred in the IBM BASIC

Compiler/2 runtime routines.

Recopy your compiler diskette. Check the hardware and
retry the compile. If the error occurs again, report the
conditions under which the message appeared to your
computer dealer.

52 - Bad file number
A statement uses a file number of a file that is not open, or
the file number is not in the range 1 to 127. Or, the device
name in the file specification is too long or invalid, or the
file name was too long or invalid.

Make sure the file you wanted was opened and that the
file number was entered correctly in the statement. Check
that you have a valid file specification (refer to "Naming
Files" in IBM BASIC Compiler/2 Fundamentals. for infor
mation on file specifications).

53 File not found
A KILL, NAME, FILES, or OPEN statement refers to a file that
does not exist on the disk in the specified drive.

Verify that the correct diskette is in the drive specified,
and that the file specification was entered correctly. Then
retry the operation.

54 Bad file mode
You tried to use PUT or GET with a sequential file or a
closed file; or to run an OPEN with a file mode other than
input, output, append, or random.

Make sure the OPEN statement was entered and run prop
erly. GET and PUT require a random file.

55 File already open
You tried to open a file for sequential output or append,
and the file is already opened; or, you tried to use KILL on
a file that is open.

Make sure you only run one OPEN to a file if you are
writing to it sequentially. Close a file before you use KILL.

56 Field statement active
You attempted a GET or PUT with a TYPEd record, but a FIELD
statement was active.

57 Device I/O Error
An error occurred on a device I/O operation. DOS cannot
recover from the error.

This error may occur with communications files from
overrun, framing, break, or parity errors. If you are com
municating with 7 or fewer data bits, the eighth is turned
on in the byte in error.

A-27

58 File already exists
The file name specified in a NAME statement matches a file
name already in use on the diskette.

Retry the NAME command using a different name.

59 Bad record length
The length of the record used in a GET or PUT operation is
incorrect.

61 Disk full
All storage space on the disk is in use. Files are closed
when this error occurs.

If there are any fi les on the disk that you no longer need,
erase them or use another disk. Then rerun the program.

62 Input past end
This is an end of file error. An input statement is run for a
null (empty) file, or after all the data in a sequential file
was already input.

To avoid this error, use the EOF function to detect the end
of file.

This error also occurs if you try to read from a file that
was opened for output or append. If you want to read from
a sequential output (or append) file, you must close it and
open it again for input.

63 Bad record number
In a PUT, GET, LOCK, or UNLOCK statement, the record
number is equal to zero.

Correct the statement to use a valid record number.

64 Bad file name
An invalid form is used for the file name with BLOAD,

BSAVE, KILL, OPEN, NAME, or FILES.

Check "Naming Files" in IBM BASIC Compilerl2
Fundamentals. For information on valid file names, and
correct the file name in error.

67 Too many files

A-28

An attempt is made to create a new file (using OPEN) when
all directory entries on the disk are full, or when the file
specification is invalid.

If the file specification is okay, use a new formatted
diskette and retry the operation.

68 Device Unavailable
You tried to open a file to a device that does not exist.
Either you do not have the hardware to support the device
(such as printer adapters for a second or third printer), or
you have disabled the device.

69 Communication buffer overflow
A communication input statement was run, but the input
buffer was already full. You should use an ON ERROR state
ment to retry the input when this condition occurs. Subse
quent inputs attempt to clear this fault unless characters
continue to be received faster than the program can
process them. If this happens there are several possible
solutions:

• Increase the size of the communications buffer using
the RB option of the OPEN "COM ... statement or the IC
parameter when you start the IBM BASIC Compiler/2.

• Implement a "hand-shaking" protocol with the other
computer to tell it to stop sending long enough so you
can catch up.

• Use a lower baud rate to transmit and receive.

70 Permission Denied
You tried to write to a diskette that is write-protected.
Make sure you are using the right diskette. If so, remove
the write protection, then retry the operation.

Or, you attempted to write or read a record that has been
LocKed by another process. Retry the process when the
other process has unlocked the record.

Or, during an OPEN, you violated one of the sharing attri
butes of the file you are opening. Retry the OPEN with the
correct sharing attribute.

71 Disk not Ready
The diskette drive door is open or a diskette is not in the
drive.

A-29

72 Disk Media Error
The controller attachment card detected a hardware or
media fault. Usually, this means that the diskette has
gone bad. Copy any existing files to a new diskette and
re-format the bad diskette. If formatting fails, the diskette
should be discarded.

73 Advanced Feature
You tried to use a feature not available with this compiler.

74 Rename Across Disks
You tried to rename a file but specified the wrong disk.
The NAME operation is not performed.

When you use NAME, the drive you specify must be the
same for the the old file name and the new file name. The
exception to this is when the DOS ASSIGN command is
active. The drive can be logically different, but must be
the same physical drive.

75 Pathlfile access error
During an OPEN, NAME, MKOIR, CHOIR, or RMOIR operation, an
attempt was made to use a path or file name to an inac
cessible file. For example, you tried to open a directory or
volume identifier; you tried to open a read only file for
writing; or you tried to remove the current directory. The
operation is not completed.

You attempted to read or write to a file opened by another
process which has denied read or write access to other
processes.

No additional file handles are available.

76 Path not found

A:'30

During an OPEN, MKOIR, CHOIR, or RMOIR operation, the oper
ating system is unable to find the path the way it is speci
fied. The operation is not completed.

The following error messages are not numbered.

Incorrect DOS version
Check IBM BASIC Compilerl2 Fundamentals and be sure
you are using a correct version of DOS.

Unprintable error
This message occurs whenever an error message is not
available for the error condition that exists. This is usually
caused by an ERROR statement with an undefined error code.

Check your program to make sure you handle all error
codes that you create.

A-31

Errors that Cannot be Trapped

The following additional run - time error messages are unrecover
able and cannot be trapped:

Message Meaning

DOS memory - arena error

While loading the run-time module or while cHAINing, the
DOS memory management mechanism has been detected
to be corrupt. This could be due, among other things, to
POKES or BLOADS into improper locations, to errors in
assembly or other language code, or to programs that
improperly affect memory.

Error during runtime initialization

There is insufficient memory to initialize the program.

Error in CHAIN file format

The indicated file is in the wrong format. It should be an
executable (.EXE) file. This error may also occur when a
program that uses the run -time module tries to chain to a
executable program which does not use the run -time
module.

Error in EXE file

The indicated file is in the wrong format. It should be an
executable (.EXE) file. This may happen with RUN, CHAIN,
and when loading the run - time module.

This error also occurs when a program that uses the
run - time module tries to chain to a executable program
which does not use the run - time module.

Far heap corrupt

A-32

BASIC'S far memory manager for Dynamic Arrays has
detected that the memory it manages has become corrupt.
This could be due, among other things, to POKES or BLOADS
into improper locations, to errors in assembly or other
language code, or to programs that improperly affect
memory.

No line number

This error occurs when the error address cannot be found
in the line number table during error trapping.

Out of memory

Your computer does not have enough work space to com
plete the requested task.

Out of stack space

Your computer does not have enough stack space to
perform the call to the SUB, FUNCTION, DEF FN, or GOSUB pro
cedure.

Out of memory during CHAIN

Your computer does not have enough work space to
perform the CHAIN statement.

Requires DOS 2.10 or later

IBM BASIC Compiler/2 will not run on versions of DOS prior
to DOS 2.10.

Restart your computer with DOS 2.10 or a later version and
try the operation again.

String space corrupt

This error usually occurs because a string descriptor has
been improperly modified.

A-33

Communication Errors

Errors occur on communication files in the following order:

1. When opening the file:

a. Device timeout - if one of the signals to be tested (CTS, DSR, or
CD) is missing.

2. When reading data:

a. Com buffer overrun - if an overflow occurs.

b. Device 1/0 error - for overrun, break, parity, or framing
errors.

c. Device fault - if you lose DSR or CD.

3. When writing data:

A-34

a. Device fault - if you lose CTS, DSR, or CD on a modem status
interrupt while BASIC was doing something else.

b. Device timeout - if you lose CTS, DSR, or CD while waiting to
put data in the output buffer.

Appendix B. ASCII Character Codes

The following table lists all the ASCII codes (in decimal) and their
, associated characters. These characters can be displayed using

PRINT CHR$(n) where n is the ASCII code.

Some of the entries for ASCII codes 0 to 31 and 135 to 155 also indicate
the control function associated with that character. For example, ASCII

code 27 displays a left arrow, and is also recognized as an Escape
control character.

Each of these characters can be entered from the keyboard by
pressing and holding the Alt key, then pressing the digits for the ASCII

code on the numeric keypad. Note, however, that some of the codes
have special meaning to the BASIC program editor supplied with the
interpreter. The program editor uses its own interpretation for the
"codes and might not display the special character listed here.

8-1

000 001 002 003 004 005 006 007 008 009

NUL I (;)1 !I E~X I + .fa ~ BEL I C HT
SOH BS

010 011 012 013 014 015 016 017 018 019

LF I VT I FF I CR n 0
:EI ~1 I Dt21 JJ31 SO

020 021 022 023 024 026 027 028 029

() + I I I II 0 I 1 I /

050 051 052 053 054 055 056 057 058 059

2 3 4 5 I 6 I 7 I 8 I 91 .
I

.
I

060 061 062 063 064 065 066 067 068 069

< > ? I J I A I B I c I D I E I
070 071 072 073 074 075 076 077 078 079

F G H I I J I K I L I MI N I 0 I
080 081 082 083 084 085 086 087 088 089

P I
Q

I R I s I T I u I V IWI X I y I
090 091 092 093 094 095 096 097 098 099

Z I [I \ I] I " I I \ I a I b I c I
100 101 102 103 104 105 106 107 108 109

d I e I f I 9 I h I i I j I kl I I m I
110 111 112 113 114 115 116 117 118 119

n I 0 I p I q I r I s I t I u I v I w I
120 121 122 123 124 125 126 127 128 129

X I y I z I { I I }I "" lui c I u I ,

8-2

130 131 132 133 134 135 136 137 138 139

lela a a a £Lle ~TI~ ~TI
140 141 142 143 144 145 146 147 148 149

!F I dR ~ ~ E re I ~ I 6 I D~41 6 I
150 151 152 153 154 155 156 157 158 159

alu c¥NIc> (j E~cl £1¥lptlfl
~c6 Lea: Lco]Oed iiLcli Lee Lee 3:c":"'f iLeo 1CO

ali olu n NI.aI.oILIr-1
::: I ~ I ~ I T I ~~ ~; I m I mill T I
~1~1~1~1;lilrrl~ldl~1
d 1;ILIf:ITIFI~lfl~IIFI
200 201 202 203 204 205 206 207 208 209

Ib IF IJbhF liE 1= 13F 1::6 1][1 T I
ITILlblFlrlllf ~Ir II
lIII21 I 211_1 :; I ;5 I 2~ ~ 1;8 ; I

230 231 232 233 234 235 236 237 238 239

IlL TI~10Iolol00 01 E nl
240 241 242 243 244 245 246 247 248 249

1= +1~lslrIJI ~Io -I
250 251 252 253 254 255

8-3

8-4

Appendix C. Scan Codes

The following table lists the scan code, in decimal and in
hexadecimal, for each key on the IBM Personal Computer keyboard
and the IBM Enhanced keyboard.

C-1

Key Hex Code Dec. Code

ESC 01 01

! 1 02 02

@2 03 03

3 04 04

$ 4 05 05

%5 06 06

A 6 07 07

& 7 08 08

* 8 09 09

(9 OA 10

) 0 08 11

- OC 12 -

+ = OD 13

-+-- OE 14

I-+-- OF 15

-+1
Q 10 15

W 11 17

E 12 16

R 13 19

T 14 20

Y 15 21

U 16 22

I 17 23

C-2

Key Hex Code Dec. Code

0 18 24

P 19 25

{ [1A 26

}] 18 27

..J 1C 28

Ctrl 1D 29

A 1E 30

S 1F 31

D 20 32

F 21 33

G 22 34

H 23 35

J 24 36

K 25 37

L 26 38
.. 27 39 . ,

II / 28 40

- , 29 41

shift 2A 42
left

I \ 28 43

Z 2C 44

X 2D 45

C 2E 46

C-3

Key Hex Code Dec. Code

V 2F 47

B 30 48

N 31 49

M 32 50

<, 33 51

>. 34 52

?/ 35 53

shift 36 54
right

PrtSc* 37 55

Alt 38 56

Space 39 57
Bar

Caps 3A 58
Lock

F1 3B 59

F2 3C 60

F3 3D 61

F4 3E 62

F5 3F 63

F6 40 64

F7 41 65

F8 42 66

F9 43 67

F10 44 68

C-4

Key Hex Code Dec. Code

F11+ 85 133

F12+ 86 134

Num 45 69
Lock

Scroll 46 70
Lock

7 47 71
Home

8 i 48 72

9 49 73
Pg Up

- 4A 74

4 +- 4B 75

5 4C 76

6 ~ 40 77

+ 4E 78

1 End 4F 79

2 t 50 80

3 51 81
Pg On

o Ins 52 82

53 83
Del

+ - Only supported on keyboards with more than ten function keys.

C-5

Extended Codes

For certain keys or key combinations that cannot be represented in
standard ASCII code, an extended code is returned by the INKEY$

system variable. A null character (ASCII code 000) is returned as the
fi rst character of a two - character stri ng. If a two - character stri ng
is received by INKEY$, you should go back and examine the second
character to determine the actual key pressed. Usually, but not
always, this second code is the scan code of the primary key that was
pressed. The ASCII codes (in decimal) for this second character, and
the associated key(s) are listed below.

Key Hex Code Dec. Code

Nul 03 03

shift tab OF 15

a+Q 10 16

a+W 11 17

a+E 12 18

a+R 13 19

a+T 14 20

a+Y 15 21

a+U 16 22

a + I 17 23

a+O 18 24

a+P 19 25

a+A 1E 30

a+S 1F 31

a+D 20 32

C-6

Key Hex Code Dec. Code

a+F 21 33

a+G 22 34

a+H 23 35

a+J 24 36

a+K 25 37

a+L 26 38

a+Z 2c 44

a+X 20 45

a+C 2E 46

a+V 2F 47

a+8 38 59

a+N 31 49

a+ M 32 50

F1 38 59

F2 3C 60

F3 3D 61

F4 3E 62

F5 3F 63

F6 40 64

F7 41 65

F8 42 66

F9 43 67

F10 44 68

C-7

Key Hex Code Dec. Code

Home 47 71

PgUp 49 73

End 4F 79

PgDn 51 81

Ins 52 82

Del 53 83

s+F1 54 84

s+F2 55 85

s+F3 56 86

s +F4 57 87

s+F5 58 88

s+F6 59 89

s+F7 5A 90

s+F8 58 91

s+F9 5C 92

s+F10 50 93

c+F1 5E 94

c+F2 5F 95

c+F3 56 86

c+F4 61 97

c+F5 62 98

c+F6 63 99

c+F7 64 100

c+F8 65 101

C-8

Key Hex Code Dec. Code

c+F9 66 102

c+F10 67 103

a+F1 68 104

a+F2 69 105

a+F3 6A 106

a+F4 68 107

a+F5 6C 108

a+F6 60 109

a+F7 6E 110

a+F8 6F 111

a+F9 70 112

a+F10 71 113

c+PrtSc 72 114

c++- 73 115

c+~ 74 116

c+End 75 117

c+PgOn 76 118

c+Home 77 119

a+1 78 120

a+2 79 121

a+3 7A 122

a+4 78 123

a+5 7C 124

a+6 70 125

C-9

Key Hex Code Dec. Code

a+7 7E 126

a+8 7F 127

a+9 80 128

a+O 81 129

a+- 82 130

a+= 83 131

c+PgUp 84 132

F11 85 133

F12 86 134

s+F11 87 135

s+F12 88 136

c+F11 89 137

c+F12 8a 138

a+F11 88 139

a+F12 8C 140

C-10

Appendix D. CodeView Error Messages

CodeView displays an error message whenever it detects a command
it cannot run. You might see any of the following error messages.
Except for start-up errors, most errors stop the CodeView command
in which the error occurred, but do not stop CodeView.

Bad address
You specified the address in an non-valid form. For example, you
might have entered an address containing hexadecimal charac
ters when the radix is deci mal.

Bad breakpoint command
You typed an non-valid breakpoint number with the BREAKPOINT

CLEAR, BREAKPOINT DISABLE, or BREAKPOINT ENABLE command. The
number must be in the range of 0 through 19.

Bad flag
You specified an non-valid flag mnemonic with the REGISTER

dialog command (R). Use one of the mnemonics that appears
when you enter the command RF.

Bad format string
You specified a non-valid type specifier following an expression.
Expressions used with the DISPLAY EXPRESSION, WATCH, WATCHPOINT,

and TRACEPOINT commands can have printf type specifiers set off
from the expression by a comma. The valid type specifiers are d,
i, u, 0, x,
X, f, e, E, g, G, c, and s. Some type specifiers can be preceded by
the prefix h or I.

Bad radix (use 8, 10, or 16)
CodeView only uses octal, decimal, and hexadecimal radixes.

Bad register
You typed the REGISTER command (R) with an non-valid register
name. Use AX, BX, ex, OX, 5P, BP, 51, 01, 05, E5, 55, e5, IP, or
F.

Bad type cast
The valid types for type-casting are the BASIC types integer, long
integer, single- precision, double- precision, and string. These
types are listed and explained in IBM BASIC Compiler/2
Fundamentals.

0-1

Bad type (use one of ' ABDILSTUW')
The valid dump types are ASCII (A), byte (B), integer (I),
unsigned (U), word (W), doubleword (E), short real (S),
long real (L), and ten-byte real (T).

Badly formed type
The type information in the symbol table of the file you are
debugging is incorrect. If this message occurs, please note the
circumstances of the error and report it.

Breakpoint "# or *" expected
You entered the BREAKPOINT CLEAR (BC), BREAKPOINT DISABLE (BD),
or BREAKPOINT ENABLE (BE) commands with no argument. These
commands require that you specify the number of the breakpoint
at which CodeView is to act or that you specify an asterisk (*),
indicating that CodeView is to act on all breakpoints.

Cannot use struct or union as scalar
You cannot use a structure or union variable as a scalar value in
a BASIC expression. The address-of operator must precede struc
ture or union variables, and a field specifier must follow them.

Can't find filename
CodeView cannot find the executable file you specified when you
started. You probably misspelled the file name, or the file is in a
different directory.

Constant too big
CodeView cannot accept a constant number larger than
4294967295
(OxFFFFFFFF) .

Divide by zero
An expression in an argument of a dialog command attempts to
divide by zero.

Expression too complex
An expression given as a dialog command argument is too
complex. Simplify the expression.

Extra input ignored

D-2

You specified too many arguments to a command. CodeView
evaluates the valid arguments and ignores the rest. Often in this
situation, CodeView does not evaluate the arguments in the order
that you intended.

Floating point error
This message should not occur, but, if it does, please note the ci r
cumstances of the error and report it.

Internal debugger error
If this message occurs, please note the circumstances of the
error and report it.

Invalid argument
One of the arguments you specified is not a valid CodeView
expression.

Missing"
You specified a string as an argument to a dialog command, but
you did not supply a closing double quote mark.

Missing ')'
You specified an argument to a dialog command as an
expression containing a left parenthesis but no right parenthesis.

Missing '('
You specified an argument to a dialog command as an
expression containing a right parenthesis but no left parenthesis.

Missing '['
You specified an argument to a dialog command as an
expression containing a right bracket but no left bracket. This
error can also occur if you specify a regular expression with a
right bracket but no left bracket.

No closing single quote
You specified a character in an expression used as a dialog
command argument, but the closing single quote is missing.

No code at this line number
You tried to set a breakpoint on a source line that does not corre
spond to code. The line might be a data declaration or a
comment.

No match of regular expression
CodeView can find no match for the regular expression you speci
fied with the SEARCH command or with the Find selection from the
Search menu.

No previous regular expression
You selected Previous from the Search menu, but there was no
previous match for the last regular expression specified.

0-3

No program to debug
You have run to the end of the program you are debugging. You
must restart the program (using the RESTART command) before
using any command that runs code.

No source lines at this address
The address you specified as an argument for the VIEW command
(V) does not have any source lines. It might be an address in a
library routine or an assembly-language module.

No such file/directory
A file you specified in a command argument or in response to a
prompt does not exist. For example, this message appears when
you select Load from the File menu and then enter the name of a
nonexistent file.

No symbolic information
The program file you specified is not in the CodeView format.
You cannot debug in source mode, but you can use assembly
mode.

Not a text file
You attempted to load a file using the Load selection from the File
menu or using the VIEW command, but the file is not a text file.
CodeView determines if a file is a text file by checking the first
128 bytes for characters that are not in the ASCII range of 9
through 13 and 20 through 126.

Not an executable file
The file you specified for debugging when you started CodeView
is not an executable file having the extension .EXE or .COM.

Not enough space

0-4

You typed the SHELL ESCAPE command (!) or selected Shell from
the File menu, but there is not enough free storage to run
COMMAND.COM. Because storage is released by code in the BASIC

start-up routines, this error always occurs if you try to use the
SHE!...L ESCAPE command before you have run any code. Use any of
the code run commands (TRACE, PROGRAM STEP, or GO) to run the
BA$IC start-up code, then try the SHELL ESCAPE command again.
The message also occurs with assembly-language programs that
do not specifically release storage.

Object too big
You entered a TRACEPOINT command with a data object, such as
an array, that is larger than 128 bytes. You can watch data
objects larger than 128 bytes using the storage version of the
TRACEPOINT command.

Operand types Incorrect for this operation
An operand in a BASIC expression had a type that is incompatible
with the operation applied to it. For example, if you declare p as
char *, then? p*p produces this error because a pointer cannot
be multiplied by a pointer.

Operator must have a structlunion type
You used the one of the member selection operators (-> or .) in
an expression that does not refer to an element of a structure or a
union.

Operator needs Ivalue
You specified an expression that does not evaluate to an Ivalue in
an operation that requires an Ivalue. For example, ? 3 = 100 is
non-valid. See the IBM BASIC Compiler Fundamentals book for
more information on Ivalues.

Program terminated normally (number)
You ran your program to the end. The number displayed in
parentheses is the exit code that your program returns to DOS.

You must use the RESTART command (or the Start menu selection)
to start the program before running more code.

Register variable out of scope
You tried to specify a register variable using the period (.) oper
ator and a function name. For example, if- you are in a third-level
function, you can display the value of a local variable called local
in a second-level function called parent with the following
command:

? parent.local

However, this command does not work if you declare local as a
register variable.

Regular expression too complex
The regular expression you specified is too complex for
CodeView to evaluate.

0-5

Regular expression too long
The regular expression you specified is too long for CodeView to
evaluate.

Syntax error
You specified an non-valid command line for a dialog command.
Check for an non-valid command letter. This message also
appears if you enter an non-valid assembly-language instruction
using the ASSEMBLE command. The error follows a caret that
points to the first character that CodeView cannot interpret.

Too many breakpoints
You tried to specify a 21st breakpoint. CodeView permits only 20
breakpoints.

Too many open files
You do not have enough file handles for CodeView to operate cor
rectly. You must specify more files in your CONFIG.SYS file. See
your IBM Personal Computer Disk Operating System Version 3.30
Reference book for information about using the CONFIG.SYS file.

Type conversion too complex
You tried to type cast an element of an expression in a type other
than the simple types or with more than one level of indirection.
An example of a complex type is type casting to a structure or
union type. An example of two levels of indirection is char **.

Unable to open file
CodeView cannot open a file that you specified in a command
argument or in response to a prompt. For example, this message
appears when you select Load from the File menu and then enter
the name of a file that is corrupted or has its file attributes set so
that it cannot be opened.

Unknown symbol
You specified an identifier that is not in CodeView's symbol table.
Check for a misspelling. CodeView cannot recognize a symbol
name spelled with letters of the wrong case unless you turn off
the Case Sense selection on the Options menu. Another potential
cause for this message is if you try to use a local variable in an
argument when you are not in the function in which you define
the variable.

Unrecognized option option - The valid options are IB, ICcommand,
IF, 1M, IS, IT, IW, or 143

0-6

You entered an non-valid option when starting CodeView. Retype
the command line.

Usage: cv [options] file [arguments]
You failed to specify an executable file when you started
CodeView. Try again with the syntax shown in the message.

Video mode changed without IS option
The program changed video modes from or to one of the graphics
modes when screen swapping was not specified. You must use
the IS option to specify screen swapping when you are debugging
graphics programs. You can continue debugging when you get
this message, but the output screen of the debugged program
might be damaged.

Warning: packed file
You started CodeView with a packed file as the executable file.
You can attempt to debug the program in assembly mode, but the
packing routines at the start of the program might make this diffi
cult. You cannot debug in source mode because EXEPACK strips
all symbolic information from a file when it packs the file. This
occurs with the IEXEPACK linker option.

0-7

D-8

Appendix E. Linker Error Messages and
Limits

This section lists error messages produced by the IBM Linker.

Fatal errors cause the linker to stop running. Fatal error messages
have the following format:

location: error L 1 xxx: message text

Non-fatal errors indicate problems in the executable file. LINK

produces the executable file (and sets the error bit in the header if for
OS/2). Non-fatal error messages have the following format:

location: error L2 xxx: message text

Warnings indicate possible problems in the executable file. LINK

produces the executable file (it does not set the error bit in the
header if for OS/2). Warnings have the following format:

location: error L4xxx: message text

In these messages, location is the input file associated with the error,
or LINK if there is not input file. If the input file is a module definitions
file, the line number will be included, as shown below:

foo.def(3): fatal error L 1030: missing internal name

If the input file is an .OBJ or .L1B file and has a module name, the
module name is enclosed in parentheses, as shown in the following
examples:

E-1

SLlBC.LlBLfile)
MAIN.OBJ(main.c)
TEXT.OBJ

The following error messages may appear when you link object files
with LINK.

L 1001 option: option name ambiguous
A unique option name does not appear after the option indicator
(I). For example, the command

LINK IN main;

produces this error, since LINK cannot tell which of the three
options beginning with the letter N is intended.

L 1002 option: unrecognized option name
An unrecognized character followed the option indicator (I), as in
the following example:

LINK IABCDEF main;

L 1003 option: MAP symbol limit too high
The specified symbol limit value following the MAP option is
greater than 32767, or there is not enough memory to increase
the limit to the requested value.

L 1004 option: invalid numeric value
An incorrect value appeared for one of the linker options. For
example, a character string is entered for an option that requires
a numeric value.

L1005 option: packing limit exceeds 65536 bytes
The number following the /PACKCODE option is greater than 65536.

L 1006 option: stack size exceeds 65534 bytes
The size you specified for the stack in the /STACK option of the LINK

command is more than 65534 bytes.

L 1007 option: interrupt number exceeds 255
You gave a number greater than 255 as a value for the
/OVERLAYINTERRUPT option.

L 1008 option: segment limit set too high

E-2

The specified limit on the /SEGMENTS option is greater than 3072
using the /SEGMENTS

L1009 option: CPARMAXALLOC : illegal value
The number you specified in the /CPARMAXALLOC option is not in
the range 1 to 65535.

L 1020 no object modules specified
You did not specify any object-file names to the linker.

L 1021 cannot nest response files
A response file occurs within a response file.

L 1022 response line too long
A line in a response file is longer than 127 characters.

L 1023 terminated by user
You entered Ctrl + C.

L 1024 nested right parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1025 nested left parentheses
You typed the contents of an overlay incorrectly on the command
line.

L 1026 unmatched right parenthesis
A right parenthesis is missing from the contents specification of
an overlay on the command line.

L 1027 unmatched left parenthesis
A left parenthesis is missing from the contents specification of an
overlay on the command line.

L 1030 missing internal name
In the module definitions file, when you specify an import by entry
number, you must give an internal name, so the linker can iden
tify references to the import.

L 1031 module description redefined
In the module definitions file, a module description specified with
the DESCRIPTION keyword is given more than once.

L 1032 module name redefined
In the module definitions file, the module name is defined more
than once with the NAME or LIBRARY keyword.

L 1040 too many exported entries
An attempt is made to export more than 3072 names.

E-3

L 1041 resident-name table overflow
The total length of all resident names, plus three bytes per name,
is greater than 65534.

L 1042 nonresident-name table overflow
The total length of all nonresident names, plus three bytes per
name, is greater than 65534.

L 1043 relocation table overflow
There are more than 65536 load-time relocations for a single
segment.

L 1044 imported-name table overflow
The total length of all the imported names, plus one byte per
name, is greater than 65534 bytes.

L 1045 too many TYPDEF records
An object module contains more than 255 TYPDEF records.
These records describe communal variables. This error can only
appear with programs produced by compilers that support com
munal variables.

L 1046 too many external symbols in one module
An object module specifies more than the limit of 1023 external
symbols. Break the module into smaller parts.

L 1047 too many group, segment, and class names in one module
The program contains too many group, segment, and class
names. Reduce the number of groups, segments, or classes, and
recreate the object files.

L 1048 too many segments in one module
An object module has more than 255 segments. Split the module
or combine segments.

L 1049 too many segments
The program has more than the maximum number of segments.
The SEGMENTS option specifies the maximum allowed number; the
default is 128. Relink using the /SEGMENTS option with an appro
priate number of segments.

L 1050 too many groups in one module

E-4

The linker found more than 21 group definitions (GRPDEF) in a
single module.
Reduce the number of group definitions or split the module.

L 1051 too many groups
The program defines more than 20 groups, not counting DGROUP.

Reduce the number of groups.

L 1052 too many libraries
An attempt is made to link with more than 32 libraries. Combine
libraries, or use modules that require fewer libraries.

L 1053 symbol table overflow
The program has more than 256K bytes of symbolic information,
such as public, external, segment, group, class, and file names).
Combine modules or segments and recreate the object files.

Eliminate a many public symbols as possible.

L 1054 requested segment limit too high
The linker does not have enough memory to allocate tables
describing the number of segments requested (the default is 128
or the value specified with the ISEGMENTS option).
Try linking again using the ISEGMENTS option to select a smaller
number of segments (for example, use 64 if the default was used
previously), or free some memory by eliminating resident pro
grams or shells.

L 1056 too many overlays
The program defines more than 63 overlays.

L 1057 data record too large
A LEDATA record (in an object module) contained more than 1024
bytes of data. This is a translator (compiler or assembler) error.
Note which translator (compiler or assembler) produced the
incorrect object module and the circumstances, and contact your
authorized IBM Personal Computer dealer.

L 1070 segment size exceeds 64K
A single segment contains more than 64K bytes of code or data.
Try compiling, or assembling, and linking using the large model.

L 1071 segment _TEXT larger than 65520 bytes
This error is likely to occur only in small-model C programs, but it
can occur when any program with a segment named
_TEXT is linked using the IDOSSEG option of the LINK command.

Small-model C programs must reserve code addresses 0 and 1;
this is increased to 16 for alignment purposes.

E-5

L 1072 common area longer than 65536 bytes
The program has more than 64K bytes of communal variables.
This error cannot appear with object files produced by "the IBM

Macro Assembler. It occurs only with programs produced by IBM

C/2 or other compilers that support communal variables.

L 1073 file-segment limit exceeded
There are more than 255 physical or file segments.

L 1074 name: group larger than 64K bytes
A group contained segments which total more than 65536 bytes.

L 1075 entry table larger than 65535 bytes
Because of an excessive number of entry names, you have
exceeded a linker table size limit. Reduce the number of names
in the modules you are linking.

L 1080 cannot open list file
The disk or the root directory is full. Delete or move files to make
space.

L 1081 out of space for run file
The disk on which .EXE file is being written is full.
Free more space on the disk and restart the linker.

L 1082 stub .EXE file not found
The stub file specified in the module definitions file is not found.

L 1083 cannot open run file
The disk or the root directory is full. Delete or move files to make
space.

L 1084 cannot create temporary file
The disk or root directory is full. Free more space in the directory
and restart the linker.

L 1085 cannot open temporary file
The disk or the root directory is full. Delete or move files to make
space.

L 1086 scratch file missing
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

L 1087 unexpected end-of-file on scratch file
The disk with the temporary linker-output file is removed.

E-6

L 1088 out of space for list file
The disk on which the listing file is being written is full. Free
more space on the disk and restart the linker.

L 1089 filename: cannot open response file
The linker could not find the specified response file. This usually
indicates a typing error.

L 1090 cannot reopen list file
The original disk is not replaced at the prompt. Restart the linker.

L 1091 unexpected end-of-file on library
The disk containing the library probably was removed. Replace
the disk containing the library and run the linker again.

L1092 cannot open module definitions file
The specified module definitions file cannot be opened.

L1100 stub .EXE file invalid
The stub file specified in the definitions file is not a valid .EXE file.

L 1101 invalid object module
One of the object modules is non-valid.
If the error persists after recompiling, contact your authorized

IBM Personal Computer dealer.

L 1102 unexpected end-of-flle
A non-valid format for a library was found.

L 1103 attempt to access data outside segment bounds
A data record in an object module specified data extending
beyond the end of a segment. This is a translator error. Note
which translator (compiler or assembler) produced the incorrect
object module and the circumstances, and contact your author
ized IBM Personal Computer dealer.

L1104 filename: not valid library
The specified file is not a valid library file. This error causes the
linker to stop running.

L 1110 DOSALLOCHUGE failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

L1111 DOSREALLOCHUGE failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

E-7

L 1112 DOSGETHUGESHIFT failed
Internal error. You should note the conditions when the error
occurs and contact your authorized IBM Personal Computer
dealer.

L 1113 unresolved COMDEF; internal error
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

L 1114 file not suitable for IEXEPACK; relink without
For the linked program, the size of the packed load image plus
the packing overhead is larger than that of the unpacked load
image. Relink without the EXEPACK option.

L2000 imported entry pOint
A MODEND, or starting address record, referred to an imported
name. Imported program-starting addresses are not supported.

L2001 fixup(s) without data
A FIXUP record occurred without a data record immediately pre
ceding it.
This is probably a compiler error. See the IBM Disk Operating
System Reference for more information on FIXUP.

L2002 flxup overflow near number in frame seg segname target
seg segname target offset number
The following conditions can cause this error:

• A group is larger than 64K bytes
• The program contains an intersegment short jump or interseg

ment short call
• The name of a data item in the program conflicts with that of a

subroutine in a library included in the link
• An EXTRN declaration in an assembler-language source file

appeared inside the body of a segment.

For example:

code SEGMENT public 'CODE'
EXTRN main:far

start PROC far
call main
ret

start ENOP
code ENDS

The following construction is preferred:

E-8

EXTRN rnain:far
code SEGMENT public 'CODE'
start PROC far

call rnai n
ret

start ENDP
code ENDS

Revise the source file and recreate the object file.

L2003 intersegment self-relative fixup
An intersegment self-relative fixup is not allowed.

L2004 LOBYTE-type fixup overflow
A LOBYTE fixup produced an address overflow.

L2005 fixup type unsupported
A fixup type occurred that is not supported by the linker. This is
probably a compiler error. You should note the conditions when
the errOr occurs and contact your authorized IBM Personal Com
puter dealer.

L2010 too many fixups in LlDATA record
There are more fixups applying to a LlDATA record than will fit in
the linker's 1024-byte buffer.
The buffer is divided between the data in the LlDATA record itself
and run-time relocation items, which are 8 bytes apiece, so the
maximum varies form 0 to 128. This is probably a compiler error.

L2011 'name' : NEAR/HUGE conflict
Conflicting NEAR and HUGE attributes are given for a communal
variable.
This error can occur only with programs produced by compilers

that support communal variables.

L2012 'name' : array-element size mismatch
A far communal array is declared with two or more different
array-element sizes (for example, an array declared once as an
array of characters and once as an array of real numbers). This
error cannot occur with object files produced by the IBM Macro
Assembler/2. It occurs only with IBM C/2 and any other compiler
that supports far communal arrays.

L2013 LIDATA record too large
A LlDATA record in an object module contains more than 512 bytes
of data. Most likely, an assembly module contains a very
complex structure definition or a series of deeply-nested DUP

E-9

operators. For example, the following structure definition causes
this error:

alpha DB 10DUP(11 DUP(12 DUP(13 DUP(...))))

Simplify the structure definition and reassemble. (UDATA is a DOS

term).

L2020 no automatic data segment
No group named DGROUP is declared.

L2021 library instance data not supported in real mode
The library module is directed to have instance data. This works
in OS/2 mode only.

L2022 name alias internalname: export undefined
A name is directed to be exported but is not defined anywhere.

L2023 name alias internalname: export imported
An imported name is directed to be exported.

L2024 name: symbol already defined
One of the special overlay symbols required for overlay support
is defined by an object.

L2025 ' name' : symbol defined more than once
Remove the extra symbol definition from the object file.

L2026 multiple definitions for entry ordinal number
More than one entry point name is assigned to the same ordinal.

L2027 name: ordinal too large for export
You tried to export more than 3072 names.

L2028 automatic data segment plus heap exceeds 64K
The size of DGROUP near data plus requested heap size is greater
than 64K.

L2029 unresolved externals
One or more symbols are declared to be external in one or more
modules, but they are not publicly defined in any of the modules
or libraries.
A list of the unresolved external references appears after the
message, as shown in the following example:

_exit in file(s)
main.obj (main.c)
fopen in files(s)

-fileio.obj(fileio.c) main.obj(main.c)

E-10

The name that comes before in file(s) is the unresolved external
symbol. On the next line is a list of object modules which have
made references to this symbol. This message and the list are
also written to the map file, if one exists.

L2030 starting address not code (using class 'CODE')

You specified a starting address to the linker which is a segment
that is not a CODE segment. Reclassify the segment to CODE, or
correct the starting point.

L4001 frame-relative fixup, frame ignored
A fixup occurred with a frame segment different from the target
segment where either the frame or the target segment is not
absolute. Such a fixup is meaningless in OS/2 mode, so the target
segment is assumed for the frame segment.

L4002 frame-relative absolute fixup
A fixup occurred with a frame segment different from the target
segment where both frame and target segments were absolute.
This fixup is processed using base-offset arithmetic, but the
warning is issued because the fixup may not be valid in OS/2

mode.

L4010 invalid alignment specification
The number following the IALIGNMENT option is not a power of 2,
or is not in numerical form.

L4011 PACKCODE value exceeding 65500 unreliable
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4012 load-high disables EXEPACK
The options IHIGH and IEXEPACK are mutually exclusive.

L4013 invalid option for new-format executable file Ignored
If an OS/2 mode program is being produced, then the options
ICPARMAXALLOC, IDSALLOCATE, IEXEPACK,
INOGROUPAS$OCIATION, and IOVERLAYINTERRUPT are mean
ingless, and the linker ignores them.

L4014 invalid option for old-format executable file ignored
If a DOS format program is produced, the options IALIGNMENT,
INOFARCALLTRANSLATION, and IPACKCODE are meaningless,
and the linker ignores them.

L4020 name: code-segment size exceeds 65500
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

E-11

L4021 no stack segment
The program does not contain a stack segment defined With
STACK combine type. This message should not appear for
modules compiled with the IBM C/2, but it could appear for an
assembler-language module. Normally, every program should
have a stack segment with the combine type specified as STACK.

You can ignore this message if you have a specific reason for not
defining a stack or for defining one without the STACK combine
type.

L4022 name1, name2 : groups overlap
Two groups are defined such that ohe starts in the middle of
another. This may occur if you defined segments in a module
definitions file or assembly file and did not correctly order the
segments by class.

L4023 exportname : export internal-name conflict
An exported name, or its associated internal name, conflict with
an already-defined public symbol.

L4024 name: multiple definitions for export name
The name name is exported more than once with different
internal names. All internal names except the first are ignored.

L4025 name: import internal-name conflict
An imported name, or its associated internal name, is also
defined as an exported name. The import name is ignored.
The Conflict may come from a definition in either the module defi
nition file or an object file.

L4026 modulename : self-imported
The module definitions file directed that a name be imported from
the module being produced.

L4027 name: multiple definitions for import internal-name
An imported name, or its associated internal name, is imported
more than once. The imported name is ignored after the first
mention.

L4028 name: segment already defined
A segment is defined more than once with the same name in the
module definitions file. Segments must have unique names for
the linker. All definitions with the same name after the first are
ignored.

E-12

L4029 name: DGROUP segment converted to type data
A segment which is a member of DGROUP is defined as type CODE

in a module definition file or object file.
This probably happened because a CLASS keyword in a SEGMENTS

statement is not given.

L4030 name: segment attributes changed to conform with auto-
matic data segment
The segment named name is defined in DGROUP, but the shared
attribute is in conflict with the instance attribute. For example,
the shared attribute is NONSHARED and the instance is SINGLE, or
the shared attribute is SHARED and the instance attribute is MUL

TIPLE. The bad segment is forced to have the right shared attri
bute and the link continues. The image is not marked as having
errors.

L4031 name: segment declared in more than one group
A segment is declared to be a member of two different groups.
Correct the source file and recreate the object files.

L4032 name: code-group size exceeds 65500 bytes
Code segments of length 65501-65536 may be unreliable on the
80286 processor.

L4034 more than 239 overlay segments; extra put in root
You specified an overlay structure containing more than 239 seg
ments. The extra segments have been assigned to the root
overlay.

L4036 no automatic data segment

L4040 NON-CONFORMING: obsolete
In the module definitions file, NON-CONFORMING is a valid keyword
for earlier versions of LINK and is now obsolete.

L4041 HUGE segments not yet supported
This feature is -not yet implemented in the linker.

L4042 cannot open old version
An old version of the EXE file, specified with the OLD keyword in
the module definitions file, could not be opened.

L4043 old version not segmented-executable format
The old version of the .EXE file, specified with the OLD keyword in
the module definitions file, does not conform to segmented
executable format.

E-13

L4050 too many public symbols
The IMAP option is used to request a sorted listing of public
symbols in the map file, but there were too many symbols to sort
(the default is 2048 symbols). The linker produces an unsorted
listing of the public symbols. Relink using IMAP:number.

L4051 filename: cannot find library
The linker could not find the specified file. Enter a new file name,
a new path specification, or both.

L4053 VM.TMP: illegal file name; ignored
VM.TMP appears as an object-file name. Rename the file and
rerun the linker.

L4054 filename: cannot find file
The linker could not find the specified file. Enter a new file name,
a new path specification, or both.

Linker Limits

The table below summarizes the limits imposed by the linker. If you
find one of these limits, you may adjust your program so that the
linker can accommodate it.

Item Limit

Symbol table 256K

Load-time relocations Default is 32K. If
(for DOS programs) IEXEPACK is used,

the maximum is 512K.

E-14

Item Limit

Public symbols The range 7700-8700
can be used as a
guideline for the
maximum number of
public symbols
allowed; the actual
maximum depends on
the program.

External sym bois per 1023
module

Groups Maximum number is
21, but the linker
always defined
DGROUP so the effec-
tive maximum is 20.

Overlays 63

Segments 128 by default;
however, this
maximum can be set
as high as 3072 by
using the ISEGMENTS
option of the LINK

command.

Libraries 32

Group definitions per 21
module

Segments per module 255

Stack 64K

E-15

E-16

Appendix F. Library Manager Error
Messages

Error messages produced by the IBM Library Manager, LIB, have one
of the following formats:

• filenamelLlB: fatal error U1xxx : messagetext
• filenamelLlB: warning U4xxx : messagetext

The message begins with the input file name (filename), if one exists,
or with the name of the utility. LIB may display the following error
messages:

U1150 page size too small
The page size of an input library is too small, which indicates a
non-valid input .L1B file.

U1151 syntax error : illegal file specification
You gave a command operator, such as a minus sign (-), without
a module name following it.

U1152 syntax error: option name missing
You gave a forward slash (/) with a value following it.

U1153 syntax error: option value missing
You gave the IPAGESIZE option without a value following it.

U1154 option unknown
An unknown option is given. Currently, LIB recognizes the
IPAGESIZE option only.

U1155 syntax error : illegal input
The given command did not follow correct LIB syntax.

U1156 syntax err{)r
The given command did not follow correct LIB syntax.

U1157 comma or new line missing
A comma or carriage return is expected in the command line, but
did not appear. This may indicate an
inappropriately placed comma, as in the following line:

LIB math.lib,-mo~1 + mod2;

The line should have been entered as follows:

F-1

LIB math.lib -mod1 + mod2;

U1158 terminator missing
Either the response to the Output library: prompt or the last line
of the response file used to start LIB did not end with a carriage
return.

U1161 cannot rename old library
LIB could not rename the old library to have a .BAK extension
because the .BAK version al ready
existed with read-only protection. Change the protection of the

old .BAK version.

U1162 cannot reopen library
The old library could not be reopened after it was renamed to
have a .BAK extension.

U1163 error writing to cross-reference file
The disk or root directory is full. Delete or move files to make
space.

U1170 too many symbols
More than 4609 symbols appeared in the library file.

U1171 insufficient memory
LIB did not have enough memory to run. Remove any shells or
resident programs and try again, or add more memory.

U1172 no more virtual memory
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1173 internal failure
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1174 mark: not allocated
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1175 free: not allocated

F-2

You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1180 write to extract file failed
The disk or root directory is full. Delete or move files to make
space.

U1181 write to library file failed
The disk or root directory is full. Delete or move files to make
space.

U1182 filename: cannot create extract file
The disk or root directory is full, or the specified extract file
already exists with read-only protection.
Make space on the disk or change the protection of the extract

file.

U1183 cannot open response file
The response file was not found.

U1184 unexpected end-of-file on command input
An end-of-file character is received prematurely in response to a
prompt.

U1185 cannot create new library
The disk or root directory is full, to the Ii brary file already exists
with read-only protection.
Make space on the disk or change the protection of the library

file.

U1186 error writing to new library
The disk or root directory is full. Delete or move files to make
space.

U1187 cannot open VM.TMP
The disk or root directory is full. Delete or move files to make
space.

U1188 cannot write to VM
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1189 cannot read from VM
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1190 DOSALLOCHUGE failed
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

F-3

U1191 DOSREALLOCHUGE failed
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1192 DOSGETHUGESHIFT failed
You should note the conditions when the error occurs and contact
your authorized IBM Personal Computer dealer.

U1200 name: invalid library header
The input library file has a non-valid format. It is either not a
library file, or it has been corrupted.

U1203 name: invalid object module near location
The module specified by name is not a valid object module.

U4150 modulename : module redefinition ignored
A module is specified to be added to a library, but a module with
the same name is already in the library. Or, a module with the
same name is found more than once in the library.

U4151 symbol(modulename) : symbol redefinition ignored
The specified symbol is defined in more than one module.

U4152 filename: cannot create listing
The directory or disk is full, or the cross-reference listinQ file
already exists with read-only protection. Make space on the disk
or change the protection of the cross-reference listing file.

U4153 number: page size too small; ignored
The value specified in the IPAGESIZE option is less than 16.

U4155 modulename : module not in library; ignored
The specified module is nqt found in the input library.

U4156 libraryname : output-library specification ignored
An output library is specified in addition to a new library name.
For example, specifying

LI~ new.lib + one.obj,new.lst,new.lib

where new.lib does not already exist causes this error.

U4157 filename: cannot access file
LIB is unable to open the specified file.

U4158 libraryname: invalid library header; file ignored
The input library has an incorrect format.

F-4

U4159 filename: invalid formathexnumber; file ignored
The signature byte or word, hexnumber, of an input file is not one
of the recognized types.

F-5

F-6

Index

Special Characters
.COM extension 0-4
.EXE extension 0-4
$DYNAMIC 7
$INCLUOE 9

restrictions on use 9
$L1NESIZE 12
$L1ST 13
$MOOULE 14
$OCOOE 15
$PAGE 16
$PAGEIF 17
$PAGESIZE 18
$SKIP 19
$STATIC 20
$SUBTITLE 22
$TITLE 23
IE 148
IS CodeView option 0-7
IX 148
?Redo from start 194
334

A
A parameter 15
ABS 29
absolute value 29
active page 385
addresses 0-1

as arguments 0-1
addresses as arguments 0-4
aliasing of variables 39
alter system memory 387

ampersand symbol 334
animation 348
append 286
arctangent 31
arguments 0-2, 0-6

dialog commands 0-3, 0-6
arrays 120,142,300
ASC 30
ASCII character codes B-1
ASCII code 382
ASCII codes 30,66

converting to 30
aspect ratio 71, 133
assemble command 0-6
assembler language

subroutines 37
assembly mode 0-4
assignment statement 223
ATN 31

B
background 80,303
BASIC program editor 10, 330

question mark for PRINT 330
BEEP 32
blinking characters 81
BLOAO 33
border screen 80
boundary 303,453
branchi ng 180, 267
breakpoint clear command 0-1,

0-2
breakpoi nt disable

command 0-1,0-2

Index

breakpoint enable
command 0-1,0-2

breakpoint set 0-3
breakpoint set command 0-3,

0-6
BSAVE 35
burst, screen 384
BYVAL 106

c
C calling convention 48
C expressions 0-2, 0-3
CALL 37
CALL ABSOLUTE 52
CALL INT86 54
CALL INT86X 57
calling BASIC subprograms 38
calling C subprograms 48
calling Macro Assembler subpro-

grams 43
calling Pascal subprograms 46
CALLS 50
CASE 59
case sensitivity 0-6
COBL 61
CHAIN 62,90
change current directory 64
CHOIR 64
child process 140,298,393,396
CHR$ 66
CINT 68
CIRCLE 69
CLEAR 73
clear screen 78
clear system buffer 364
CLNG 75
clock 403
CLOSE 76

2 Index

close disk files 364
CLOSE Statement 364
CLS 78
CodeView error messages 0-1
color 343, 453
COLOR statement 80, 304, 382
COLOR statement in graphics

mode 84
COM 86
comma in formatting string 335
COMMANO$ 88
commands 0-3

assemble 0-6
breakpoint clear 0-1,0-2
breakpoint disable 0-1,0-2
breakpoint enable 0-1,0-2
breakpoint set 0-6
radix 0-1
register 0-1
restart 0-4, 0-5
search 0-3, 0-5
shell escape 0-4
tracepoint 0-1,0-5
view 0-4
watch 0-1
watch poi nt 0-1

comments 362
COMMON 62, 90
communication errors A-34
communications 292
communications buffer 293

communications trapping 86,
262

compile-time errors A-1
compiler commands functions

and statements 24
compiler's data segment 116
computed GOSUB/GOTO 267

CONFIG.SYS file 0-6
constant numbers as

arguments D-2
converting degrees to

radians 95
converting from numbers for

random files 255
converting from numeric to

octal 261
converting IEEE numbers to

Microsoft Binary Format
format 257

converting Microsoft Binary
Format numbers to IEEE
format 100

converting numbers 61 68 75
96 " ,

converting numbers from
random files 98

converting numeric to
string 416

converting radians to
degrees 31

converting string to
numeric 444

converting strings to lower
case 219

converting strings to upper
case 441

converti ng to integer 68
coordinates

physical 464
world 464

coordinates, absolute or relative
form 303, 343

COS 95
cosin'e 95
create a directory 253

creating tree structure 253
CSNG 96
CSRLlN 97
cursor position 97,234,329
CVI, CVL, CVS, CVD 98
CVSMBF, CVOMBF 100

D
DATA 102,356
data segment 116
DATE$ 104
decisions 59, 183
DECLARE 106
declaring arrays 120
declaring variable types 118
DEF FN 110
DEF SEG 116
defining variable types 435
DEFtype statements 118
deleting a file 215
deleting arrays 142
Device ti meout 245
DIM statement 120
dimensioning arrays 120
DIR 156
direct mode 265
d i recto ry 64
Disk Operating System Refer-

ence 271
display pages 385
divide by zero D-2
division by zero A-25
DO 126
documentation, internal

program 362
DOS command 298,393,396
DOS national diskettes 271
DOS signals 400

Index 3

double asterisk 337
double asterisk, dollar sign 335
double dollar sign 335
double-precision 61
DRAW statement 130
OS (compiler's DATA

segment) 116
duration, time 403
DYNAMIC 7

E
elapsed time 430
ELSE 183
ELSEIF 183
END 135
END DEF 110
END IF 183
end of file 141
END SUB 421
ending BASIC 425
ENDTYPE 435
ENVIRON 136
ENVI RON$ 138
environment 136, 138
EOF 141
ERASE 142
ERASE (DOS) 215
erasing a file 215
erasing arrays 142
erasing variables 73
ERDEV 144
ERDEV$ 144
ERL 146
ERR 146
ERROR 148
error codes 146, 148, Appendix

A
error line 146

4 Index

error messages
CodeView 0-1
Library Manager F-1
Linker Error Messages and

Limits E-1
error trapping 146, 148,265,

366, A-24
errors messages A-1
Errors while compiling a

program A-2
errors, compile-time A-1
errors, I/O A-35
errors, run-time A-1, A-2
event trapping 212

KEY(n) 212
exchanging variables 424
exclamation point (!)

shell escape command 0-4
exclamation point symbol 333
executable file 0-4

command line 0-2
EXEPACK link option D-7
EXIT 126
exit BASIC 425
EXIT DEF 110
EXIT SUB 421
EXP 150
exponential function 150
expression evaluation 0-2, 0-3
expressions, regular 0-3, 0-5
Extended Codes C-6

F
false or true 382
FIELD 151
File access control 237,442
file handles D-6
file menu D-4

load D-4, D-6
shell D-4

file number 166
file size 239
file, position of 232
FI LEA TTR 154
FILES 156
finding D-3, D-5

text strings D-3, D-5
FIX 159
fixed-length strings 246
flag bits D-1
flag mnemonics D-1
floor function 201
FOR 160
foreground 80
formatting 333

numeric fields 334
string fields 333

FRE 164
free space 73, 164
FREEFILE 166
frequency 403
frequency table 404
FUNCTION 168
function keys 206
function, declaring 106

G
GET (files) 173
GET (graphics) 175
glissando 406
GOSUB 178, 267
GOTO 180, 267
GRAFTABL Command 385
GRAPHICS

COLOR 84
VIEW 452
WINDOW 464

graphics statements 130, 224
DRAW 130
LINE 224

H
HEX$ 182
hexadecimal 182
high-intensity characters 81
how to use this book 1

1/0 control 203
1/0 errors A-34
IBM Enhanced Keyboard 207,

208,212,269, C-1
identifiers in arguments D-6
IF 183

block format 183
Illegal function call

in KEY 207
imbedding files 9
INCLUDE 9
indent 426
index (position in string) 200
INKEY$ 190
INP 192

Index 5

INPUT 193
INPUT # 196
input editor 193, 228
input file mode 286
INPUT$ 198
INSTR 200
INT 201
integer
internal debugger error 0-2,

0-3
INT86 54
INT86X 57
IOCTL 203
IOCTL$ 205

J
joystick 412
joystick button 281,417,419
jumping 180,267

K
key trappi ng 206
KEY(n) 212
KILL 215

L
labels 178, 180
LBOUNO 216
LCASE$ 219
LEFT$ 220
left-justify 246
LEN 221
length of file 239
length of stri ng 221
LET 223
library manager error

messages F-1

6 Index

light pen 273,313
LINE 224
line drawing in graphics 224
line feed 289
LINE INPUT 228
LINE INPUT # 230
line styling 225
LlNESIZE 12
linker error messages and

limits E-1
LIST 13
listing files 156

on disk 156
loading binary data 33
LOC ~32

local variables 0-6
LOCATE 234
LOCK 237
LOF 239
LOG 241
logarithm 241
LOOP 126
loops 160, 459
LPOS 243
LPRINT 244
LPRINT Statement 331
LPRINT USING 244
LPT1: 243, 244
LSET 246
LTRIM$ 248

M
machine input port status 457
machine language
subprograms 52

machine language
subroutines 37, 50

member selection
operators 0-5

memory image 35
menu

fi Ie 0-4, 0-6
load 0-4, 0-6
shell 0-4

options 0-6
case sensitivity 0-6

run 0-5
restart 0-5
start 0-5

MERGE 62
metacom mands 6
minus sign 335
MKOIR 253
MKI$, MKL$, MKS$, MKO$ 255
MKSMBF$, MKOMBF$ 257
mode, screen 384
MOOULE 14
multi-line functions 114
music 316,404

N
NAME 259
national keyboard 271
NEXT 160
non-U.S. keyboard 271
notes, sound 404
number of notes in buffer 320
numbers as arguments 0-2
numeric fields 334

o
OCOOE 15
OCT$ 261
octal 261
offset 116,446,448
ON COM(n) 262

ON ERROR 149,265
ON KEY(n) 269
ON PEN 273
ON PLA Y(n) 275
ON SIGNAL(n) 278
ON STRIG(n) (joystick

button) 281
ON TIMER 284
ON ... GOSUB 267
ON ... GOTO 267
OPEN 286
OPEN "COM. .. 292
OPEN "PIPE ... 298
opening files 286
opening paths 286
operand types 0-5

incompatible operations 0-5
OPTION BASE 300
options

CodeView 0-7
IS 0-7

linker 0-7
EXEPACK 0-7

options menu
case sensitivity 0-6

OS/2 mode 34, 313, 328
OUT 302
output file mode 286
overflow A-24
overlay 62

P
PAGE 16
page, active 385
page, visual 385
PAGEIF 17
PAGESIZE 18
PAINT 303

Index 7

paint tiling 308
palette 84
panning 467
Pascal calling convention 46
passing variables 62
paths 64
paths, openi ng 286
patterns 308
PEEK 311
PEN 313
PEN OFF Statement 314
PEN ON Statement 314
period operator (.) D-5
physical coordinates 464
PLAY 316
PLAY(n) 320
plus sign 335
PMAP 321
POINT 324
POKE 327
POS 329
position in string 200
position of fi Ie 232
positioning the cursor 234
precision 118
prefixes

printf type D-1
with type specifiers D-1

PRESET 343
PRINT 330
PRINT # 340
PRINT # USING 340
print formatting 333
PRINT USING 333
print zones 330
printf type prefixes D-1
printf type specifiers D-1
printing 244

8 Index

program editor 10
program stop 414
programming function keys 206
protect mode 311,316, 320
protected mode 116,273,275,

281,403,412,417,419
PSET 343
punctuation, PRINT

Statement 330
PUT (files) 345
PUT (graphics) 347

R
radix command D-1
random files 151,173,286
random numbers 353, 372
RANDOMIZE 353
READ 102, 356
redefining function keys 206
REDIM 358
Redo 194
register command D-1
register variables D-5
regular expressions D-3, D-5
REM 6,362
remarks 362
removing a directory 370
removi ng spaces from

stri ngs 248, 375
RENAME 259
renaming files 259
repeating a string 420
RESET 364
restart command D-4, D-5
RESTORE 356, 365
RESUME 366
RETURN 368
right-justify 246

RMOIR 370
RNO 372
rounding to an integer 68
RSET 246
RTRIM$ 375
RUN 377
run menu 0-5

restart 0-5
start 0-5

run-time errors A-1, A-23
running a program 377

S
SAOO function 380
savi ng bi nary data 35
scan codes C-1
screen buffer address 36
SCREEN function 382
SCREEN statement 384
search command 0-3,0-5
seeding random number gener-

ator 353
segment 450
segment of memory 116
SELECT CASE 59
sequential files 286
SETMEM 387
setting

function keys 206
SGN 389
SHAREO 390
SHAREO attribute 91, 121,359
shell escape command 0-4
SHELL function 393
SHELL statement 396
sign of a number 389
SIGNAL 400
SIN 402

sine 402
single-precision 96
SKIP 19
slash (/), Search

Command 0-3,0-5
soft keys (see function keys)
SOUNO 403
sounds 32,316,403
source mode 0-4
space 464
SPACE$ 407
spaces 331
SPC 408
SQR 409
square root 409
stack space 73
start-up 0-2, 0-4

command line 0-2, 0-4
start-up code 0-4
STATIC 20,410
STEP 160
STICK 412
STOP 414
storage release 0-4
STR$ 416
STRIG 417
STRIG(n) 419
string fields 333
stri ng space 73, 164
STRING$ 420
strings as arguments 0-3
SUB 421
subprogram, declaring 106
subroutines 178,267
subscripts 120, 300
substring 220, 250, 369
SUBTITLE 22
superimpose image 348

Index 9

SWAP 424
symbols in arguments 0-6
Syntax error

in KEY(n) 214
SYSTEM 425
system memory, alter 387

T
TAB 426
TAN 427
tangent 427
tempo table 405
terminating BASIC 425
text files, identifying 0-4
THEN 183
tile painting 308
tiling 304
TIME$ 428
time, duration 403
TIMER 430
TITLE 23
trace 433
tracepoint command 0-1, 0-5
transfer image 348
trapping

of keys 206, 212
trapping, communications 86
tree-structured di rectories

changing 64
triggers, joystick 417
trigonometric functions

arctangent 31
trigonometric sine 402
trigonometric tangent 427
TROFF 433
TRON 433
true or false 382
truncation 159, 201

10 Index

TYPE 435
type casting 0-1
type specifiers 0-1

U
UBOUNO 438
UCASE$ 441
underflow A-24
underscore 336
UNLOCK 442
UNTIL 126
user workspace 73, 164
user-defined functions 110

V
VAL 444
VARPTR 446
VARPTR$ 448
VARSEG 450
video modes 0-7
VIEW 452
view command 0-4
VIEW PRINT 456
visual page 385
vpage 385

W
WAIT 457
watch command 0-1
watchpoint command 0-1
watchpoint, defining 0-1
WEND 459
WHILE 126,459
WIDTH 461
WINDOW 452, 464
workspace 73, 164

world coordinates 464
WRITE 470
WRITE # 472

Z
zero, division by 0-2
zones, print 330
zooming 467

Index 11

c IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation
PO. Box 1328-W
Boca Raton.
Florida 33429-1328

Printed in the
United States of America

OOF8662

---- ------- - ---- ----- -- ---- - - ------------_ . -

